

GameMaker	Programming	By	Example

Table	of	Contents

GameMaker	Programming	By	Example

Credits

About	the	Authors

About	the	Reviewer

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	Introduction	to	GameMaker:	Studio

Choosing	your	version

The	GameMaker:	Studio	interface

GameMaker:	Studio	documentation

An	example	project

Naming	convention	–	resource	prefixes

Drawing	the	sprite

Creating	an	object

Coordinate	planes	in	GameMaker

Creating	a	room

Testing	your	game

Summary

Review	questions

Quick	drills

2.	Your	First	Game	–	Escape	the	Dungeon

Creating	your	Escape	the	Dungeon	game

The	playable	character

The	sprite

The	object

Walls

Enemies

Making	your	enemies	move

Damaging	the	player

Making	the	player	and	enemies	shoot

Making	the	player	shoot

Making	the	enemies	shoot

More	resources

Backgrounds

Sounds

Keys	and	locks	and	advancing	to	the	next	room

Summary

Review	questions

Quick	drills

3.	Introducing	the	GameMaker	Language

Remaking	Escape	the	Dungeon	in	the	GML

Remaking	the	sprites

Remaking	the	player	object

Understanding	the	four	events

Starting	to	code	your	player	object

Making	the	player	move

Changing	the	subimage

Collisions

Coding	the	enemies

Random	seeds

Health	and	lives	system

Displaying	health	and	lives

Invincibility

Shooting

Sounds

Keys	and	locks

Scripts

Summary

Review	questions

Quick	drills

4.	Fun	with	Infinity	and	Gravity	–	An	Endless	Platformer

Creating	an	endless	platformer

Bouncing	and	movement

Death	and	enemies

Random	spawning

2D	arrays

Menus	and	textboxes

Menus

Textboxes

Summary

Review	questions

Quick	drills

5.	Saving	and	Loading	Data

Putting	in	a	scoring	system

Saving	and	loading	a	highscore

INI	file	encryption

Customizable	controls

Saving	control	configurations

Summary

Review	questions

Quick	drills

6.	A	Multiplayer	Sidescrolling	Platformer

Sprite	animation

Spritesheet	importing

Programming	the	movement

Making	your	scrolling	platformer	scroll

Client/server	multiplayer	networking

Networking	terminology

Printing	the	server’s	IP	address	and	port	on	a	screen

Creating	the	actual	server

Our	Asynchronous	Networking	event

Connection

Disconnection

Handling	data

Our	data	handling	script

The	client	in	your	client/server	system

Integrating	Xbox	gamepad	support

Legacy	gamepad	support

Modern	gamepad	support

Summary

Review	questions

Quick	drills

7.	Programming	a	Scrolling	Shooter

Creating	the	main	ship

Creating	the	enemies

Parenting	in	objects

Random	enemy	spawning

Programming	a	Boss	AI

Particles

Summary

Review	questions

Quick	drills

8.	Introducing	the	GameMaker:	Studio	Physics	Engine

A	physics	game

The	physics	engine	in	a	regular	game

Summary

Review	questions

Quick	drills

9.	Wrapping	Up

Debugging

Compile-time	errors

Runtime	errors

The	GameMaker:	Studio	debugger

Debugging	functions

Helpful	information	on	GameMaker

Quirks	of	the	GameMaker	Language

Unexplained	resources

Export	modules

Summary

Review	questions

Quick	drills

Index

GameMaker	Programming	By	Example

GameMaker	Programming	By	Example
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	authors,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	December	2015

Production	reference:	1161215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78588-796-3

www.packtpub.com

Cover	image	by	Brian	Christian	and	Steven	Isaacs	(<Isaacs-
sisaacs@bernardsboe.com>)

http://www.packtpub.com
mailto:Isaacs-sisaacs@bernardsboe.com

Credits
Authors

Brian	Christian

Steven	Isaacs

Reviewer

Genevieve	Ditangan

Commissioning	Editor

Swapnil	Khedkar

Acquisition	Editor

Vinay	Argekar

Content	Development	Editor

Anish	Dhurat

Technical	Editor

Tanmayee	Patil

Copy	Editor

Merilyn	Pereira

Project	Coordinator

Harshal	Ved

Proofreader

Safis	Editing

Indexer

Tejal	Soni

Production	Coordinator

Aparna	Bhagat

Cover	Work

Aparna	Bhagat

About	the	Authors
Brian	Christian	is	a	high	school	student	with	years	of	experience	in	programming,	much
of	it	focused	on	game	development	using	GameMaker:	Studio	via	self-teaching	the
GameMaker	Language.	He	has	also	worked	in	C++	and	JavaScript	programming	along
with	some	web	development.	Additionally,	he	is	knowledgeable	in	topics	such	as	data
formats	and	interpretation,	compilers	and	interpreters,	and	networking.	Other	languages	he
has	used	include	Intel	x86	assembly,	Lua,	Ruby,	and	Python.

Brian’s	spark	for	computer	programming	began	with	an	online	Ruby	course	from
Codecademy.	Since	then,	he	has	been	fascinated	with	how	computers	and	the	different
programming	languages	worked.	Since	he	wanted	to	know	about	this,	he	taught	himself	C
from	the	second	edition	of	The	C	Programming	Language	book,	followed	by	the	more
advanced	C++	language.

Wanting	to	try	his	hand	at	making	advanced	games	with	a	language	predominantly
intended	for	it,	Brian	became	invested	in	the	GameMaker	Language	since	he’d	already
been	using	the	drag	and	drop	functionality,	but	found	it	limiting.	He	spent	a	lot	of	time
learning	how	different	parts	of	the	language	worked	and	how	to	use	them.

First	and	foremost,	my	gratitude	goes	to	Mr.	Steven	Isaacs,	who	is	a	great	mentor,	and
without	whom,	I	wouldn’t	have	this	opportunity.	I’d	like	to	thank	my	father	and	friends,
who	have	inspired	me	to	pursue	computer	science.	Furthermore,	I	thank	my	mother	for	her
support	and	all	that	she	has	done	for	me.	I	would	especially	like	to	thank	my	teachers	and
support	staff,	for,	without	them,	and	all	the	effort	they	put	into	my	education,	I	would	not
be	where	I	am	today.

Steven	Isaacs	has	been	fascinated	with	technology	since	the	days	of	his	Apple	II	Plus
computer	and	300	baud	modem.	Tinkering,	playing	MUDs,	MOOs,	and	visiting	BBSs
occupied	much	of	his	free	time.	In	high	school,	Steven	took	a	programming	course	in
BASIC	and	created	an	adventure	game	as	his	final	project.	Many	hours	were	spent	in	and
outside	of	school	working	on	this	game,	and	it	became	somewhat	of	an	obsession.	It	has
become	abundantly	clear	that	these	activities	were	incredibly	influential	in	the	evolution
of	his	professional	life.	Steven	has	been	teaching	since	1992.	In	addition	to	teaching,
Steven	and	his	wife	Cathy	Cheo-Isaacs	owned	Liberty	Corner	Computing	(LCC),	a
computer	training	and	gaming	center	with	Paul	and	Sarah	Tarantiles.	LCC	provided
innovative	summer	camps	and	after	school	programs	offering	young	people	an
opportunity	to	use	technology	in	creative	ways.	Courses	included	programming,	website
design,	graphic	design	and	animation,	and	game	development.

Soon	after	opening	LCC,	Steven	was	hired	to	bring	his	innovative	ideas	to	William	Annin
Middle	School	in	Basking	Ridge,	NJ.	At	William	Annin,	Steven	taught	a	number	of
computer-related	courses.	His	passion	for	teaching	students	to	create	their	own	games	led
to	an	after	school	club	in	game	design,	then	a	unit	in	the	Gifted	and	Talented	Program.	The
success	of	these	programs	led	Steven	to	develop	a	full	semester	8th	grade	class	in	game
design	and	development,	and	later,	a	six-week	exploratory	course	in	game	design	and
digital	storytelling,	which	is	taken	by	all	seventh	graders.

In	addition,	Steven	developed	and	also	teaches	an	online	course	in	game	development
with	GameMaker	for	The	Virtual	High	School	(http://thevhscollaborative.org/).	In	his
teaching,	Steven	strives	to	create	an	environment	that	empowers	student	learning	through
choice	in	their	learning	path.	He	prefers	to	think	of	himself	as	a	co-learner	and	guide	for
his	students.	Steven’s	passion	for	learning	is	obvious	to	his	students	as	he	is	constantly
looking	at	creative	ways	to	solve	problems,	dabbling	with	new	game	development	and
programming	environments,	and	learning	how	to	play	and	manage	Minecraft	servers	from
his	students.	Students	in	Steven’s	class	have	many	opportunities	to	explore	topics	in
greater	depth	independently.	The	collaboration	here	with	Brian	came	from	his	choice	to
delve	deep	into	the	GameMaker	Language	to	further	his	learning.

Recently,	Steven	wrote	a	chapter	for	the	book,	Teacher	Pioneers:	Visions	from	the	Edge	of
the	Map,	edited	by	Caro	Williams-Pierce	on	applying	the	iterative	design	process	to
teaching	game	design	and	development.	In	addition,	Steven	was	an	editor	on
TeacherCraft:	How	Teachers	Learn	to	Use	MineCraft	in	Their	Classrooms	by	Seann
Dikkers.

I	would	like	to	thank	my	students	for	the	continual	inspiration	I	get	from	them	and	the
excitement	that	comes	with	every	new	day	and	new	learning	experience	in	class.	I	feel
quite	fortunate	to	be	in	a	position	where	I	can	learn	with	and	from	my	students	and	this
approach	keeps	the	learning	fresh.	A	huge	thank	you	goes	to	Brian	Christian	for	taking	the
lead	in	learning	GML,	which	led	to	our	working	on	this	book	together.	Brian	truly	took
charge	and	created	an	opportunity	to	work	together.	To	write	and	publish	a	book	with	a
student	has	been	one	of	the	highlights	of	my	career.	It	is	also	important	for	me	to
acknowledge	my	“tribe”,	primarily,	my	game-based	learning	network	of	friends.	We	have
developed	a	tremendous	community	of	practice	based	on	passion-driven	teaching	and
learning,	something	I	am	very	excited	about.	Marianne	Malmstrom	deserves	a	special
shout	out	for	pushing	me	to	follow	the	learning	and	let	go	of	the	need	to	be	the	expert.	She
has	taught	me	so	much	about	the	importance	of	empowering	students	by	watching	her	lead
by	example.	I	have	been	inspired	by	numerous	other	educators	including	Paul	Darvasi,
John	Fallon,	Zack	Gilbert,	Peggy	Sheehy,	Matthew	Farber,	Lucas	Gillispie,	Seann
Dikkers,	and	the	list	really	goes	on	and	on.	Last,	but	certainly	not	least,	I	am	entirely
grateful	to	my	family	for	their	continual	support	and	encouragement.	My	wife,	Cathy
Cheo-Isaacs	has	become	my	biggest	cheerleader	and	supporter,	truly	my	partner	in
geekdom.	My	mother	and	father,	Nancy	and	Ed	Isaacs	have	always	celebrated	my
accomplishments	and	shared	in	the	excitement	of	every	opportunity	that	comes	my	way.
And	of	course,	my	kids,	Grace	and	Leila,	remind	me	of	the	important	things	in	life	and
keep	me	grounded!

http://thevhscollaborative.org/

About	the	Reviewer
Genevieve	Ditangan,	also	known	as	Gen	or	GenDi,	started	off	enjoying	games	at	a	young
age.	With	the	passion	of	creating	art	and	the	hobby	of	exploring	worlds	through	video
games,	there	was	no	doubt	that	she	would	dedicate	her	life	to	be	a	game	designer.
Although	she	started	out	as	an	artist	first,	GenDi	has	created	artworks	that	have	been	sold
at	several	conventions.	Furthering	on	to	dream	to	be	a	game	designer	and	one	day	create	a
visually	artistic	game.	GenDi	attended	The	Art	Institute	of	Vancouver,	graduating	in	2015
with	her	game	art	and	design	diploma.	GenDi	also	previously	graduated	in	2013	from
British	Columbia	Institute	of	Technology	with	her	Graphic	Design	Associate	Certificate.
The	road	is	tough	and	long,	but	the	passion	never	goes	away.

I	would	like	thank	my	loving	and	supportive	husband,	for	helping	me	through	the
hardships	because	without	him,	I	wouldn’t	have	made	it	through	school	to	carry	on	my
passion	for	video	games,	art,	and	living	to	the	fullest.

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
GameMaker:	Studio	is	a	game	development	engine	that	is	easy	to	learn,	yet	robust	enough
to	use	to	create	commercial	games.	Budding	developers	can	use	the	drag	and	drop
approach	to	coding	or	the	built-in	programming	language,	Game	Maker	Language	(GML),
which	will	be	featured	in	this	book.

What	this	book	covers
Chapter	1,	Introduction	to	GameMaker:	Studio,	introduces	you	to	the	GameMaker
interface	and	the	basic	concepts	related	to	getting	started	with	GameMaker.

Chapter	2,	Your	First	Game	–	Escape	the	Dungeon,	gets	you	oriented	with	GameMaker
and	uses	the	drag	and	drop	approach	to	create	your	first	game,	a	maze/adventure	game.

Chapter	3,	Introducing	the	GameMaker	Language,	introduces	the	GameMaker	Language
conceptually	and	then	goes	through	a	step-by-step	recreation	of	the	Escape	the	Dungeon
game	written	entirely	with	code.

Chapter	4,	Fun	with	Infinity	and	Gravity	–	An	Endless	Platformer,	guides	you	through	the
creation	of	an	endless	platform	game.	Through	the	process,	you	will	work	with	gravity,
speed,	random	spawning,	and	further	explore	collision	events.

Chapter	5,	Saving	and	Loading	Data,	expands	the	functionality	of	your	game	by
programming	GameMaker	to	save	and	load	data.	The	chapter	will	cover	saving	and
loading	high	score	data	as	well	as	a	custom	player	keyboard	binding	configuration.

Chapter	6,	A	Multiplayer	Sidescrolling	Platformer,	expands	upon	the	platform	game	by
adding	multiplayer,	animation,	and	Xbox	Controller	support.	You	will	learn	about
client/server	networking	to	drastically	expand	upon	the	possibilities	of	what	can	be
accomplished	with	GameMaker.

Chapter	7,	Programming	a	Scrolling	Shooter,	covers	scrolling	shooters,	such	as	Xevious,
which	represent	a	classic	genre	in	gaming.	This	chapter	will	guide	you	through	the	process
of	coding	your	own	shooter,	including	a	scrolling	background	and	random	obstacles	to
avoid	and	enemies	to	shoot	down!

Chapter	8,	Introducing	the	GameMaker:	Studio	Physics	Engine,	introduces	the	built-in
GameMaker	physics	engine,	which	allows	you	to	create	physics-based	games.	In	this
chapter,	you	will	program	two	small	game	environments	based	on	the	physics	engine.

Chapter	9,	Wrapping	Up,	addresses	error	checking	and	debugging.	You	will	learn	about
the	built-in	GameMaker	debugging	features	and	strategies	to	troubleshoot	your	code	and
fix	errors.

What	you	need	for	this	book
For	this	book,	the	system	requirements	are	as	follows:

Windows	XP	or	above	(GameMaker:	Studio	requires	a	Windows-based	computer)
512	MB	RAM
128	MB	graphics
Screen	resolution	of	1024x600
Internet	connection	for	some	features
GameMaker:	Studio	Standard	(free)	version:

http://www.yoyogames.com/studio/download

http://www.yoyogames.com/studio/download

Who	this	book	is	for
If	you	have	some	basic	programming	experience	of	JavaScript	or	any	other	C-like
languages,	then	this	book	will	be	great	for	you.	No	experience	beyond	that	is	assumed.	If
you	have	no	game	development	experience	and	are	looking	for	a	hobby,	are	an
experienced	game	developer	looking	to	master	some	advanced	features,	or	fit	anywhere	in
that	spectrum,	then	you	will	find	GameMaker:	Studio	and	this	book	to	be	very	useful	in
helping	you	create	exciting	games.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“Play
around	with	some	of	the	other	actions	on	your	obj_square	to	make	it	do	more	rather	than
be	displayed	and	print	text.”

A	block	of	code	is	set	as	follows:

if	(keyboard_check_pressed(vk_up)	&&	!binding)	{

							if	(choice	<=	0)	choice	=	2;

							else	--choice;

}

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“At	the	bottom	of	the
resource	tree	are	the	Game	Information	and	Global	Game	Settings	options.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from
https://www.packtpub.com/sites/default/files/downloads/B04888_7963OT_Graphics.pdf.

https://www.packtpub.com/sites/default/files/downloads/B04888_7963OT_Graphics.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Introduction	to	GameMaker:
Studio
In	the	15	years	of	GameMaker	experience	between	us,	we	have	both	found	it	to	be	one	of
the	best	tools	for	teaching	design	as	well	as	the	introduction	to	computer	science
principles.	The	drag	and	drop	interface	lends	beautifully	to	the	understanding	of	computer
science	concepts	related	to	object-oriented	programming	including	sequencing,	loops,
conditional	statements,	variables,	among	others.	Moving	from	the	drag	and	drop	approach
to	coding	in	GameMaker	Language	(GML)	is	logical	and	the	transition	demystifies
coding.	It	is	also	important	to	point	out	the	importance	of	iterative	design	and	debugging
that	people	learning	game	development	with	GameMaker	will	become	overly	familiar
with	through	the	process.

By	definition,	a	game	is	a	special	kind	of	program	that	is	run	inside	a	loop	that	repeats	as
long	as	the	user	has	not	decided	to	close	the	game	program.	This	loop	contains	code	that
creates	objects	that	each	have	their	own	loops	to	control	animation,	movement,	actions,
and	logic	statements	based	on	various	aspects	of	what	is	occurring	in	the	game.	The
objects	are	run	until	the	time	they	are	removed	from	the	program.	The	main	loop	also
contains	logic	statements	that	run	code	based	on	different	possible	user	input	values.	An
example	of	such	logic	would	test	if	the	user	has	pressed	the	spacebar,	and	if	so,	the	game
will	modify	variables	of	the	player	object	so	that	it	rises,	and	then	falls	at	a	certain	point.
In	order	for	the	player	to	understand	what	they	have	done	in	their	game,	the	main	loop
contains	code	to	push	graphics	to	the	screen	and	audio	to	the	speakers,	both	of	which	are
affected	by	what	different	game	objects	are	doing.

There	are	many	different	ways	to	create	games.	Some	people	choose	to	write	them	in
native	C++	code	without	any	sort	of	specialized	Integrated	Development	Environment
(IDE).	However,	GameMaker:	Studio	is	a	collection	of	tools	contained	in	an	IDE	that
make	the	game	creation	process	much	easier,	by	providing	various	tools	and	code
functions	that	are	specialized	for	creating	games.	For	example,	there	is	a	visual	object
editor	so	that	the	developer	doesn’t	have	to	define	every	single	property	of	objects	in	code,
but	rather	they	can	select	various	boxes	that	define	object	properties.	Objects	control
nearly	every	aspect	of	a	GameMaker	game.	Rather	than	using	an	external	spritesheet	file
containing	separate	frames	of	animation,	GameMaker	contains	a	sprite	editor	where	each
sprite	in	itself	is	a	special	type	of	object	that	contains	the	images.	All	the	developer	has	to
do	is	to	set	the	sprite	of	an	object	to	the	main	sprite,	which	will	then	provide	access	to	all
of	the	images	inside	this	sprite.	The	main	game	loop	is	run	in	rooms,	where	all	of	the
objects	are	placed,	in	turn	creating	the	full	game.	At	compile	time,	everything	produced	in
the	project	is	converted	into	C++	code,	then	compiled,	so	in	the	end,	the	developer	has
essentially	written	their	game	in	C++,	but	by	using	a	much	easier	method.

We	will	begin	with	an	overview	of	the	different	versions	of	GameMaker:	Studio	that	are
available	for	download.	This	will	be	followed	by	a	guide	to	the	User	Interface	(UI)	of	the
IDE	to	orientate	you	to	working	in	the	GameMaker	environment.	In	this	simple	example,

you	will	learn	about	creating	resources	(various	kinds	of	assets)	and	their	purposes,
naming	conventions,	and	some	drag	and	drop	coding	among	other	skills.	The	IDE	is
essentially	a	collection	of	integrated	editing	tools	used	in	a	programming	environment.

GameMaker:	Studio	is	an	application	used	by	newcomers	to	game	design	and	by
experienced	developers	alike,	for	both	personal	and	commercial	purposes:

This	contains	a	very	clean	interface	including	a	fully	functional	drag	and	drop
programming	interface	making	it	very	easy	to	get	started	creating	games.
Experienced	GameMaker	developers	typically	choose	to	create	games	using	the	text-
based	coding	functionality	of	the	built-in	GML.
This	also	contains	many	high-level	functions	and	components	for	a	variety	of	things
that	developers	might	need	done	in	their	game	and	for	a	variety	of	platforms.
Examples	include	networking,	Steamworks™	SDK	support,	in-app	purchases,	and
more	for	platforms	such	as	Microsoft	Windows™,	Apple	Mac	OS	X™,	Linux™	in
terms	of	desktop	and	laptops,	and	Google	Android™,	and	Apple	iOS	for	mobile.
Many	more	platforms	are	available	for	use	with	GameMaker:	Studio.
GameMaker:	Studio	has	been	used	to	create	many	commercial	games,	a	varying
selection	of	which	you	can	view	at	http://yoyogames.com/showcase.

http://yoyogames.com/showcase

Choosing	your	version
GameMaker:	Studio	is	available	for	download	exclusively	for	Microsoft	Windows	at
http://yoyogames.com/studio.	There	are	a	few	different	versions	available,	each	adding
more	functionality	as	the	price	point	increases.	All	of	the	versions	allow	you	to	create
games	using	the	game	engine.	For	the	most	part,	the	increased	functionality	relates	to
publishing	your	game	to	different	platforms	as	well	as	providing	some	additional	features.

The	Standard	Edition	is	fully	functioning	and	is	perfectly	adequate	for	developing	games
in	GameMaker:	Studio.	The	Professional	Edition	includes	many	more	features	than	the
Standard,	such	as	team	features,	early	access	builds,	the	ability	to	purchase	additional
export	modules,	and	allows	the	developer	to	publish	games	to	platforms	beyond	Windows
and	GameMaker:	Player.	The	Master	Collection	contains	everything	available,	which	is
the	Professional	Edition	bundled	with	all	the	export	modules.	The	additional	export
modules	cannot	be	purchased	with	only	the	Standard	Edition	of	GameMaker:	Studio.

Whatever	version	you	choose,	keep	in	mind	its	limitations	and	what	you	might	need,	but
do	not	pay	for	more	than	you	need.	You	might	purchase	the	Master	Collection	and	end	up
only	using	the	additional	HTML5	module,	making	the	additional	features	unnecessary.
However,	keep	in	mind	that	you	can	commercially	publish	your	games	with	any	version	of
the	IDE,	but	the	Standard	Edition	will	force	a	splash	screen	and	application	name	that	both
say	“Made	with	GameMaker:	Studio”.

You	can	always	upgrade	later,	so	the	Standard	version	is	a	perfectly	appropriate	place	to
start.	Once	you’ve	chosen	your	version,	get	a	license	key	for	it	and	download	the
GameMaker:	Studio	installer	and	run	it.

Tip
The	following	is	a	note	about	GameMaker:	Studio	licenses.	The	IDE	will	revalidate	its
license	key	with	the	YoYo	Games	servers	once	a	month.	However,	if	it	cannot	connect	to
them,	you	must	manually	relicense	it	with	a	special	license	file.	Read	more	about	this	at
http://help.yoyogames.com/entries/27068613-Offline-Licence-Verification-for-
GameMaker.

http://yoyogames.com/studio
http://help.yoyogames.com/entries/27068613-Offline-Licence-Verification-for-GameMaker

The	GameMaker:	Studio	interface
Now	that	you’ve	completely	installed	GameMaker:	Studio,	let’s	begin	learning	some	of
the	basics	of	GameMaker:	Studio.	Create	a	new	game	project	by	selecting	the	New	tab	at
the	top	(after	launching	it),	and	choosing	your	project	directory,	as	well	as	a	name	for	this,
we	recommend	testGame	or	something	similar.	Once	your	project	is	created,	you	should
see	a	window,	the	GameMaker:	Studio	IDE,	that	looks	quite	similar	to	the	one	shown	in
the	following	screenshot:

The	left-hand	side	of	the	IDE	consists	of	your	resources,	which	is	where	all	your	sounds,
sprites,	rooms,	scripts,	and	other	resources	can	be	found.	Clicking	on	it	simply	selects
them,	and	double-clicking	will	uncollapse	folders	and	open	up	the	properties	of	resources.
Right-clicking	on	any	of	those	folders	will	open	a	menu	allowing	you	to	create	a	new
instance	of	the	resource	type.	For	example,	right-clicking	on	the	Sprites	folder	would	give
you	the	option	to	create	a	new	sprite	that	you	can	edit	and	use	in	your	game.	If	you	right-
click	on	Scripts,	you	can	create	a	new	script.	Right-clicking	on	any	of	those	folders	also
allows	the	creation	of	a	new	group,	which	is	a	subfolder	strictly	for	organizational
purposes.	If	a	resource	or	group	is	right-clicked	on,	many	more	options	will	be	available,
such	as	renaming,	editing	properties,	and	so	on.	At	the	bottom	of	the	resource	tree	are	the
Game	Information	and	Global	Game	Settings	options.	The	former	is	like	a	small
notepad	that	you	as	the	developer	can	write	small	notes	or	reminders	for	yourself	in,	but	it
is	not	packaged	with	the	game.

The	latter,	the	Global	Game	Settings	option,	will	allow	the	editing	of	many	properties	of
the	game.	When	working	with	the	Professional	Edition	or	additional	modules	it	contains,
many	additional	settings	that	can	be	edited	for	specific	targets	and	SDKs.

Along	the	top	are	various	buttons,	some	of	which	are	for	creating	resources	(an	alternative
to	right-clicking	the	folders	on	the	left	of	the	IDE)	and	others	for	game	compilation
options:

The	green	arrow	is	for	regular	compilation	and	testing,	while	the	red	one	plays	the	game	in
debug	mode	with	a	debugger	attached	so	as	to	view	variables	and	other	properties	of	the
game	as	it	runs	to	help	you	locate	problems	in	your	game.	We’ll	teach	you	more	about	the
debugger	in	Chapter	9,	Wrapping	Up.	The	brush	is	for	cleaning	the	target,	which	comes	in
handy	when	you	want	to	see	if	a	glitch	was	caused	by	compilation	issues	or	a	fault	in	your
code.	The	hot	keys	for	these	three	buttons	are	F5,	F6,	and	F7,	respectively.

Everything	from	the	green	Pac-Man	to	the	white	rectangle	and	inclusive,	are	the	buttons
for	creating	resources.	The	next	button	is	a	button	to	access	the	Global	Game	Settings,
mentioned	previously.	You	can	always	hover	your	mouse	over	any	of	the	buttons	to	see
what	they	do.

The	drop-down	list	all	the	way	at	the	end	of	the	top	bar	allows	you	to	choose	your	target
(or	the	OS	for	which	your	game	should	be	compiled),	which	will	vary	based	on	what
modules	you	may	or	may	not	have	purchased.	All	will	show	up	in	the	list	regardless	of
what	you	bought,	but	Microsoft	Windows	and	GameMaker:	Player	are	the	only	ones	that
will	actually	work	if	you	use	the	Standard	Edition	of	GameMaker:	Studio.

Additional	keyboard	shortcuts	that	you	will	find	handy	are	Ctrl	+	S	for	saving,	Ctrl	+	N	to
create	a	new	project,	and	Ctrl	+	O	for	opening	an	existing	project.

GameMaker:	Studio	documentation
One	of	the	most	important	buttons	on	that	bar	is	the	question	mark	surrounded	by	a	circle.
Clicking	on	it	opens	the	complete	GameMaker	documentation	in	a	new	window.	It	is	a
comprehensive	reference	for	everything	about	the	IDE,	its	functionality,	drag	and	drop
coding,	GML	coding,	and	all	other	aspects	of	GameMaker:	Studio.	It	is	very	useful,	and
you	will	likely	reference	it	often.	This	documentation	can	also	be	accessed
athttp://docs.yoyogames.com/.	Additionally,	when	working	in	your	code	editor,	if	you	put
your	cursor	on	one	of	GameMaker’s	built-in	functions	or	variables,	and	click	your	middle
mouse	button,	the	documentation	page	for	it	will	open	so	you	can	learn	more	about	how	to
use	it.

http://docs.yoyogames.com/

An	example	project
Now	that	you’ve	got	everything	set	up	and	you	know	some	of	your	way	around	the	IDE,
let’s	start	with	an	example	game	to	get	started	with	using	GameMaker	and	to	make	sure
everything	is	working	correctly.	You’ll	first	want	to	create	a	new	sprite,	either	by	right-
clicking	on	the	Sprites	folder	and	selecting	Create	Sprite	or	clicking	on	the	Pac-Man
symbol	located	on	the	top	bar.	This	will	open	a	new	window	that	allows	you	to	edit	all	of
the	properties	of	your	new	sprite.	We’re	going	to	make	a	simple	sprite	that	looks	like	a
square.

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Naming	convention	–	resource	prefixes
Start	with	naming	it,	but	don’t	just	name	it	testSprite	or	something	like	that.	There	are
some	very	important	points	to	be	made	in	naming	conventions	of	resources.	It	is	a	good
idea	to	choose	names	that	are	related	to	the	resources	you	are	naming.	The	most	important
consideration	is	that	your	naming	should	be	consistent	regardless	of	the	naming
convention	you	choose.	If	you	start	using	camelCase,	always	use	it.	camelCase	is	where
the	first	letter	of	each	name	is	lowercase,	but	every	next	word	in	the	name	has	a	capital
first	letter,	for	example,	myLastName	or	playerHorizontalSpeed.	If	you	always	use
underscores	for	naming	(and	this	might	be	easier	since	GameMaker’s	built-in	variables
and	functions	use	underscores	for	naming,	an	example	of	this	would	be	the	variable
image_index),	then	always	use	underscores.

Also,	you	must	never	have	spaces	in	any	of	your	names	because	in	coding,	this	would
cause	GameMaker	to	think	they	are	two	separate	names	and	your	game	will	not	function
properly.	It	is	also	good	practice	to	follow	and	incorporate	the	resource	prefixes.	The
GameMaker	compiler	does	not	recognize	prefixes;	they	are	simply	part	of	the	name,	but
all	of	your	resources	must	have	different	names,	as	resource	types	are	not	distinguished	by
the	compiler.	Using	prefixes	is	an	easy	way	to	group	your	resources	though	(so	using
spr_player	and	obj_player	is	better	than	player	and	player1).

Using	the	prefixes	is	also	very	helpful	for	you	and	any	other	programmers,	since	using
them	allows	you	to	easily	distinguish	resource	types.	The	resource	prefixes	are	what	help
to	distinguish	between	a	sprite	named	test	and	an	object	named	test.	Also,	make	sure
that	you	use	meaningful	names	so	that	you	can	easily	find	what	you’re	looking	for	or
figure	out	what	a	resource	is	just	by	name.	Following	is	a	chart	of	the	resource	types	and
suggested	prefixes.	Eventually,	you	will	have	many	resources	in	your	games	and	will	need
to	easily	distinguish	one	from	another.

Resource	type Acceptable	prefix(es) Example(s)

Sprites spr	or	s spr_test	or	s_test

Sounds snd snd_test

Backgrounds bg bg_test

Scripts scr scr_test

Fonts fnt fnt_test

Objects obj	or	o obj_test	or	o_test

Rooms rm	or	lvl rm_test	or	lvl_test

We	recommend	you	use	these	prefixes	when	naming	your	resources,	as	they	are	universal
and	will	help	you	to	stay	consistent	in	your	naming.	This	is	not	a	complete	list	of
resources	and	prefixes	but	this	table	should	give	you	a	good	sense	of	the	naming

convention.

Drawing	the	sprite
It’s	time	to	get	started	with	sprites!	Create	your	first	sprite	by	right-clicking	the	Sprites
folder	and	choosing	Create	Sprite	or	clicking	on	the	Pac-Man	icon	in	the	toolbar.	As
discussed,	we	suggest	naming	your	sprite	spr_square	or	something	similar,	so	enter	that
in	the	Name	field.	Next,	you	can	select	either	the	Load	Sprite	or	Edit	Sprite	options.	The
first	allows	you	to	select	an	image	that	you	already	have	saved	on	your	computer,	so	select
that	if	you	already	have	an	image	of	a	square	premade	or	prefer	to	use	external	programs
for	editing	your	sprites.	GameMaker	supports	a	wide	array	of	image	types	including	.bmp,
.gif,	.jpg,	.png,	and	.swf.	We’re	going	to	go	through	the	built-in	sprite	editor,	but	in
time,	you	will	probably	be	using	both	approaches	of	sprite	editing.

To	start	making	your	own	images,	you’ll	first	have	to	click	on	Edit	Sprite.	Right	now,	the
only	thing	you	need	to	know	how	to	do	is	to	make	a	new	subimage	(more	on	these	later)
inside	of	your	sprite.	Click	on	the	white	dog-eared	paper	next	to	the	green	checkmark
(which	is	the	equivalent	of	OK	in	all	windows	and	options	in	GameMaker:	Studio).	It	will
ask	you	what	you	want	the	dimensions	of	the	image	to	be,	which	carry	across	all
subimages	in	the	sprite.	Leave	the	32	by	32	default	alone	for	now—we’re	just	making	a
simple	square:

Now	double-click	on	the	new	subimage	that	was	created,	which	should	be	labeled	as
image	0,	as	GameMaker:	Studio	uses	zero-based	indexing	(where	the	first	entry	of
something,	in	this	case	subimages	in	a	sprite,	is	entry	0),	and	the	sprite	editor	will	open,
which	should	look	like	this:

The	left-hand	side	of	the	editor	consists	of	your	tools	and	dot	sizes,	while	the	right-hand
side	is	your	color	picker.	Two	colors	can	be	held	at	a	time,	one	corresponding	to	each
mouse	button	(left	and	right).	As	far	as	the	tools,	the	most	important	ones	would	be	the
pencil	for	basic	drawing,	the	eraser	for	erasing,	the	selection	tool	to	select	an	area	for
manipulation,	and	the	fill	option	to	fill	in	an	area	with	a	single	color.	Hovering	over	any	of
these	tools	tells	you	their	function	and	hotkey.	We’re	only	going	to	use	one	of	these	tools
right	now.	Start	making	your	square	by	selecting	any	color	from	the	color	picker.	Next,
use	the	fill	option	to	fill	in	the	entire	grid	with	your	selected	color	and	then	click	on	the
green	checkmark	three	times	(in	the	three	separate	windows	of	course)	to	completely	close
out	of	the	sprite	and	return	to	the	main	IDE.

Creating	an	object
Now	that	our	sprite	is	finished	up,	we’re	going	to	create	a	basic	object	to	put	in	our	game.
It	is	worth	pointing	out	an	important	distinction	here.	Sprites	are	simply	graphics	to	be
used	in	your	game	while	objects	are	programmed	with	events	and	actions	in	order	to
function	in	the	game.	Without	an	object,	the	game	is	just	going	to	be	an	unchanging
screen.	Objects	are	what	control	and	do	everything	in	the	game.	Start	with	creating	your
object,	named	obj_square	with	your	method	of	choice.	The	following	window	should
appear:

To	assign	a	sprite	to	your	object	(which	is	not	always	necessary,	in	fact	many	objects	in
your	games	will	not	use	sprites)	select	the	blue	button	in	the	box	labeled	Sprite	and	pick
the	sprite	we	previously	created,	spr_square.	Don’t	worry	about	anything	else	you	see	on
the	left	sidebar,	we	will	get	into	this	in	more	detail	later.	For	now,	focus	your	attention	on
the	first	large	box,	labeled	Events.	Events	are	simply	things	that	happen	in	your	game,
such	as	player	input	or	when	an	instance	of	an	object	is	created,	and	they	are	handled
similarly	to	if	statements,	and	run	the	associated	Action(s).	Actions	are	the	same	as
statements	(what	should	happen	based	on	the	event).	So	one	event	might	be	a	keypress	of
the	space	key,	and	when	that	occurs,	the	player	should	jump.	In	pseudo-code	for	that
event,	you	might	say,	if	the	space	key	is	pressed,	then	alter	the	player’s	y	coordinate	so
that	they	rise.	Then,	once	they’ve	reached	a	certain	point,	change	the	y	coordinate	so	that
the	player	falls.	Right	now,	we	shall	be	putting	an	event	into	our	game.	Select	the	Add
Event	button	at	the	bottom,	select	the	Draw	button,	followed	by	the	Draw	menu	option.
This	is	a	kind	of	event	that	is	run	over	and	over	for	each	instance	until	the	instance	is
destroyed	(removed	from	the	game),	and	is	used	for	rendering.	You	can	display	whatever
you	want:	shapes,	text,	sprites,	and	much	more.

Another	event,	the	Step	event,	is	similar	to	this	(it	runs	over	and	over)	but	it	does	not

control	rendering.	You	shouldn’t	use	the	Draw	event	as	a	replacement	Step	event	though
we	use	both	together	(or	just	one	of	them	if	you	only	need	one	of	them).

Now	focus	on	the	right	sidebar.	This	is	where	all	of	your	available	Actions	are,	and
whatever	you	drag	into	the	Actions	pane	will	be	run	when	the	associated	event	occurs.
Select	the	draw	tab	at	the	bottom	of	the	list	of	tabs	on	the	right	and	then	drag	the	Draw
Self	box	(the	first	action)	into	the	Actions	window.	This	will	draw	in	the	room	the	sprite
of	the	instance	of	the	object	that	is	calling	the	function.	You	do	not	always	need	to	use	the
function,	but	we	do	need	it	now	because	we	have	manually	included	a	Draw	event.	If	we
don’t	include	it,	then	the	square	won’t	be	displayed;	only	whatever	we	tell	it	to	display	in
the	next	step	will	be	displayed.	If	you	manually	include	a	Draw	event	in	your	object,	it
will	not	draw	its	sprite	and	will	only	draw	what	you	tell	it	to	draw	inside	this	event.	So	if
we	don’t	tell	the	object	to	draw	itself	in	this	event,	you	will	see	no	squares	drawn.	Now,
drag	the	Draw	Text	box,	the	fourth	option	or	the	first	in	the	second	row,	into	the	Actions
box:

This	should	open	up	a	box	that	looks	like	the	one	in	the	preceding	screenshot	where	you
can	edit	the	arguments	that	you	pass	to	the	Draw	Text	function,	which	include,	in	this
case,	the	text	itself	and	the	x/y	coordinates	where	you	want	to	draw	the	text.	Edit	the	text
field	so	that	it	holds,	Hello,	World!	(no	quotes)	but	do	not	enter	anything	into	the	x	and	y
fields	yet—there	is	something	unexpected	about	these.

Coordinate	planes	in	GameMaker
Typically,	on	a	coordinate	plane,	your	x	value	would	increase	as	you	move	right	and	your
y	value	would	increase	as	you	move	up.	This	stays	true	for	x,	but	not	for	y.	For	y,	the	value
will	increase	as	you	move	down,	meaning	that	the	fourth	quadrant,	which	usually	holds
negative	y	values,	will	hold	positive	y	values,	and	the	first	quadrant,	usually	holding
positive	y	values,	will	hold	negative	y	values.	This	is	a	very	important	note	to	remember
when	thinking	about	where	things	will	be	placed	in	your	game.	Although,	do	know	that
the	room	only	exists	in	your	fourth	quadrant,	and	so	what	is	shown	on	your	screen	is	also
only	the	fourth	quadrant.	However,	everything	can	be	placed	anywhere,	so	you	can
actually	place	objects	and	whatever	you	draw	at	negative	coordinates,	but	of	course,	either
none	or	only	a	portion	of	whatever	you	have	placed	will	be	shown	in	the	game	window.	A
third	(or	z)	axis	does	exist;	it	is	called	depth	and	refers	to	the	placement	of	objects	in	your
game	in	terms	of	being	above	and	below	each	other.	You	will	learn	about	this	in	depth	in
the	next	chapter.	Here	is	a	simple	coordinate	plane	to	explain	this:

Now	that	you	know	this,	we	can	resume	passing	arguments	to	the	Draw	Text	function.
For	this	example,	we	are	going	to	have	a	room	with	dimensions	of	1024	by	768	pixels,	and
we	want	this	message	to	appear	in	the	middle	of	the	room,	so	we’re	going	to	pass	an	x
value	of	512	and	a	y	value	of	384	to	the	function.	Do	not	select	the	Relative	checkbox,	as
what	this	would	do	is	have	the	message	appear	at	(512,	348)	relative	to	the	origin	of	the
square	object,	which,	unless	we	put	the	object	exactly	in	the	top	left	corner	of	the	room
(which	we	won’t),	will	have	the	message	display	somewhere	not	in	the	middle.	Select	the
OK	button	twice	to	get	back	to	the	main	IDE.

Creating	a	room
We’re	now	going	to	create	one	more	final	resource,	and	that	is	a	room.	Without	a	room,
the	game	will	not	compile,	so	you	must	always	have	at	least	one	room,	even	if	it	is
completely	empty.	A	room	is	where	your	game	takes	place	and	where	your	objects	are
placed.	While	your	objects	control	the	mechanics	of	your	game,	they	have	to	be	placed	in
a	room	for	them	to	actually	be	used.	Create	a	room	with	your	method	of	choice	and	name
it	rm_main	or	something	similar.	Many	games	contain	sandbox	or	testing	rooms	that	the
player	wouldn’t	have	access	to,	and	are	just	for	testing	various	parts	of	your	game.	Even
though	we	only	have	one	object	in	our	game	and	aren’t	really	testing	anything,	you	can
think	of	this	room	as	a	testing	room:

The	default	dimensions,	which	we	will	be	using,	are	already	set,	as	is	the	room	speed,	or
how	many	times	per	second	each	object	in	the	room	runs	its	code.	The	room	speed	of	30	is
perfectly	fine	for	us	right	now.	Select	the	objects	tab	on	the	left	sidebar,	and	the	only
object	we	have,	obj_square,	will	be	already	assigned	to	your	left	mouse	button.	Click
anywhere	in	the	room	to	place	this	object,	and	place	more	than	one.	For	this	example,	10
would	be	a	good	number.	Click	on	the	green	checkmark	when	you	are	done,	and	you	will
have	finished	creating	your	first	game	in	GameMaker:	Studio.

Testing	your	game
Only	one	step	is	left,	and	that	is	compiling	and	running	your	game.	Press	F5	on	your
keyboard	or	click	on	the	green	arrow	on	the	top	bar.	This	will	begin	the	compilation
process	and	then	run	your	game.	If	everything	worked	correctly,	then	you	should	see	a
game	window	that	looks	similar	to	this,	but	with	the	squares	wherever	you	placed	them
and	in	whatever	color	you	chose	for	the	sprite:

If	your	game	window	doesn’t	look	like	this,	then	check	whether	you	followed	all	the
instructions	correctly	(such	as	choosing	the	right	event	and	the	right	parameters	for	your
Draw	Text	action).	You	might	want	to	check	it	with	the	sample	code	included	with	this
book	to	ensure	that	everything	is	correct.	If	that	doesn’t	work,	perform	a	clean	build	with
F7	to	make	sure	your	next	compilation	will	start	completely	fresh	so	that	any	compiler-
induced	errors	will	not	occur.	If	both	of	those	failed	to	help	you,	look	at	the	compiler
window	at	the	bottom	to	see	if	it	tells	you	anything	about	errors:

If	none	of	these	options	work,	then	you	might	need	to	perform	a	fresh	install	of
GameMaker:	Studio.	YoYo	Games	has	provided	an	excellent	guide	for	this,	which	is
located	at	http://help.yoyogames.com/entries/37903916-How-to-perform-a-fresh-install.

What’s	happening	here	in	the	game	is	that	one	instance	of	the	message	Hello,	World!	and
one	instance	of	obj_square	are	being	created	for	each	instance	of	the	object	that	you
placed	in	the	room.	The	top-left	corner	of	the	message	is	where	the	coordinates	we	put	in
earlier	are	applied,	which	is	why	the	message	isn’t	precisely	in	the	center	of	the	room.	The
reason	that	you	only	see	one	instance	of	that	message	rather	than	many	is	because	we	told
all	the	objects	to	display	a	message	at	that	exact	location.	In	turn,	all	of	these	instances	of
the	message	are	actually	overlapping	directly	on	top	of	one	another.

http://help.yoyogames.com/entries/37903916-How-to-perform-a-fresh-install

Summary
Now	that	you	have	finished	the	chapter,	you	have	a	good	understanding	of	the
GameMaker:	Studio	interface.	You	have	learned	what	many	of	the	buttons	on	the	main
interface	do;	how	to	create	and	name	resources	including	sprites,	objects,	and	rooms;	how
to	add	events	and	actions	to	your	objects	and	assign	them	sprites;	how	rooms	and	their
coordinates	work;	and	how	to	compile	your	games.

Review	questions
It’s	always	good	to	be	asked	questions	so	that	you	can	be	sure	you	comprehend	everything
you	have	read;	so,	here	are	some	review	questions	to	go	over.	If	you	can’t	figure	one	out,
that’s	a	sign	that	you	could	benefit	from	more	reviewing	of	the	chapter:

What	are	examples	of	common	naming	conventions	used	for	the	various	resources
available	in	GameMaker:	Studio?
How	do	you	open	the	documentation	for	GameMaker:	Studio	and	what	is	it	useful
for?
What	is	the	difference	between	the	green	play	button	and	the	red	play	button	when	it
comes	to	compiling	and	running	your	game?
How	do	coordinate	planes	in	rooms	here	vary	from	the	Cartesian	coordinate	system
(regular	mathematics)?
What	are	events	and	actions	and	how	are	they	related?

Quick	drills
It’s	also	good	for	comprehension	to	apply	the	skills	you	learned	in	different	ways,	so	here
are	some	little	challenges	that	you	can	try	out	to	make	sure	you	understand	how	to
perform	the	tasks	you	learned:

1.	 Edit	the	sprite	in	your	spr_square	and	play	around	with	some	of	the	other	tools	in
the	editor	to	modify	your	original	image	(your	final	outcome	doesn’t	even	have	to	be
a	square);	just	rename	the	sprite	to	reflect	this,	as	with	your	object.

2.	 Play	around	with	some	of	the	other	actions	on	your	obj_square	to	make	it	do	more
rather	than	be	displayed	and	print	text.	Try	something	and	immediately	test	it.	It	will
become	good	practice	to	test	your	games	often	in	order	to	discover	errors	where	they
originate.	If	you	add	ten	features	and	discover	a	bug,	you	don’t	know	where	it	came
from—but	if	you	add	one	and	get	a	bug,	you	know	where	your	problem	is.

3.	 Create	a	new	project	named	testGame2	or	something	like	that.	It	will	be	a	clone	of
the	original	example,	but	you’re	not	going	to	reread	the	instructions	in	the	chapter	or
read	them	from	your	example	game.	You’re	instead	going	to	see	if	you	can	recall
how	to	do	everything	from	memory.	If	you	can’t	recall	something,	review	the	chapter
to	make	sure	you	are	comfortable	with	the	content.

Remember	that	all	of	these	drills	and	questions	are	for	your	comprehension	and	you’re
good,	so	do	them—it	only	helps.	With	that,	this	chapter	concludes	and	hopefully,	you
learned	a	lot	about	using	GameMaker:	Studio.	The	next	chapter	will	cover	the	creation	of
a	more	complex	game	with	which	the	player	interacts.	It	will	be	an	escape	the	dungeon
game	from	which	you	will	learn	all	sorts	of	components	of	programming	games	in
GameMaker:	Studio,	much	more	so	than	you	already	know	about.

An	extra	note	that	you	might	find	helpful—GameMaker	saves	backups	of	your	game	by
default	in	your	Documents\GameMaker\Backups\<project	name>	folder.	You	might	find
that	it	saves	them	far	too	often	and	does	not	save	enough,	so	under	the	File	option	in	the
IDE’s	top	bar,	select	Preferences,	and	the	left	pane	will	allow	you	to	specify	some
backup-related	options	(frequency,	location,	and	amount).	Backups	are	useful	if	you
accidentally	break	your	game	and	need	to	go	back	to	a	point	where	everything	worked.	It
might	be	helpful	to	make	a	copy	of	a	working	project	alongside	using	the	built-in	backup
system.

Chapter	2.	Your	First	Game	–	Escape	the
Dungeon
In	this	chapter,	you	will	start	to	really	learn	about	creating	games	in	the	GameMaker:
Studio	IDE.	The	last	game	you	made	was	rather	simple	and	did	not	have	much	to	it.
However,	in	this	chapter,	you	will	be	creating	a	basic	dungeon	escape	game.	You	will	be
guided	through	a	step-by-step	process	and	then	have	an	opportunity	to	expand	upon	your
game	and	make	it	your	own.	This	type	of	game	will	teach	you	many	skills	that	will	apply
to	many	other	games	and	serves	as	a	solid	foundation	with	regard	to	the	basic	use	of
GameMaker.	You’ll	learn	about	player	input,	collision,	health,	movement,	resources,
variables,	and	a	variety	of	other	topics.	This	Escape	the	Dungeon	example	will	provide	a
good	experience	in	the	use	of	the	GameMaker	IDE	and	its	drag	and	drop	coding	interface.
It	also	serves	to	segue	into	the	GML,	which	you	will	begin	to	utilize	in	the	next	chapter.

Creating	your	Escape	the	Dungeon	game
Your	Escape	the	Dungeon	game	is	going	to	be	a	simple	2D	maze-like	game	where	the
player	dodges	enemies	and	escapes	a	labyrinth	of	sorts	to	proceed	through	the	levels.	Your
player	will	be	able	to	shoot	at	these	enemies	and	the	enemies	in	turn	will	shoot	randomly.
In	addition,	the	player	will	need	to	collect	keys	to	unlock	doors	to	the	next	level.	This	will
introduce	the	use	of	variables	in	the	game.	The	game	is	fairly	simple,	but	teaches	many
skills	in	terms	of	using	GameMaker:	Studio.

First,	create	a	new	game	project	called	EscapeTheDungeon	by	selecting	the	New	tab	at	the
very	start	screen	of	GameMaker:	Studio.	Choose	your	directory	and	project	name.	The
GameMaker	IDE	should	then	open	in	a	new	workspace.

The	playable	character
The	playable	character	is	something	that	has	a	few	components	that	make	it	up.	It	is	an
object	that	the	user	of	the	game	will	control	via	keyboard	input	that	can	allow	it	to	move
in	four	directions	and	shoot.	The	player	consists	of	a	sprite	and	an	object	that	has	many
events	and	actions.	It	starts	with	the	creation	of	the	main	sprite	and	its	individual
subimages.	Next	is	creating	an	object	that	is	programmed	based	on	events	and	actions	in
GameMaker:	Studio.	The	object	can	receive	input	from	the	player	and	monitor	what	is
going	on	in	the	game	so	that	it	can	react	appropriately	to	the	different	possible	situations.
In	this	game,	there	are	a	number	of	things	that	the	player	needs	to	do,	including	moving
and	shooting.

The	sprite
Follow	these	steps	for	creating	a	sprite:

1.	 Start	creating	your	game	by	making	a	new	sprite	named	spr_PC	where	PC	stands	for
Playable	Character.

2.	 Select	the	Edit	Sprite	option,	and	then	select	the	same	button	we	used	before	to
create	a	new	subimage—the	white	dog-eared	paper	on	the	top	bar.	Give	it	the
dimensions	of	32	by	64,	after	which	a	new	image	0	will	be	created.	Double-click	on
it	to	open	it	up	in	the	sprite	editor	and	draw	a	semi-top	view	of	your	character.	A
semi-top	view	would	mean	that	you	combine	a	top-down	view	with	a	frontal	view.	It
doesn’t	have	to	look	perfect.

3.	 After	you	have	finished	drawing	it,	you	will	want	to	resize	the	canvas	so	that	it
completely	fits	the	player	sprite.	But	first,	select	the	actual	content	of	the	player	sprite
and	move	it	to	the	top-left	corner	so	that	the	top	and	left	edges	of	the	sprite	touch	the
top	and	left	edges	of	the	canvas.	Next,	you	can	resize	the	canvas.	To	do	this,	you
click	on	Transform	at	the	top,	followed	by	Resize	Canvas.	You	can	also	use	the
keyboard	shortcut	Ctrl	+	Alt	+	C.	A	window	that	looks	like	the	following	screenshot
will	appear:

4.	 You	probably	won’t	keep	the	aspect	ratio	(which	is	the	original	ratio	of	width	to	the
height	of	the	sprite),	so	uncheck	that	box.	The	box	with	all	the	arrows	that	you	see	at
the	bottom	right	defines	which	region/direction	of	the	sprite	will	be	kept	when
resizing.	Because	we	put	the	sprite	into	the	top-left	corner,	the	one	that	you	would
choose	is	the	top-left	arrow.	In	that	way,	resizing	the	canvas	will	eliminate	from	the
bottom-right	corner	and	keep	the	top	left	safe,	provided	that	you	don’t	eliminate	too
much.	Note	that	you	will	be	changing	which	arrow	you	select	after	a	few	resizes,	as
you	might	have	finished	resizing	one	side,	but	not	the	other.

5.	 Start	with	decreasing	the	pixel	amounts	(at	the	top	on	the	right	side)	in	small
amounts.	The	left	side	is	the	percent	of	the	canvas	to	get	rid	of,	but	that	can	be	hard	to
guess,	so	pixels	are	usually	good,	particularly	for	such	small	sprites.	Don’t	go
overboard	making	the	canvas	smaller—if	you	do	it	too	much,	some	parts	of	your
image	will	be	deleted.	You	can	always	undo	a	resize,	but	it’s	better	to	not	have	to.
Change	the	arrow	that	you	have	selected	as	you	go	along	and	keep	resizing	until	the
canvas	perfectly	matches	the	sprite.	Your	canvas	most	likely	won’t	be	proportional	to
its	original	size;	the	lengths	probably	won’t	be	powers	of	two	nor	will	they	be	even,
but	that	is	still	fine—in	fact	it’s	better	to	perfectly	resize	your	canvas	to	get	rid	of	as
much	whitespace	as	possible.	If	you	don’t,	problems	with	collision	events	(more	on
this	later)	might	occur	when	playing	your	game.

Once	you	have	finished	creating	that	subimage,	you’re	going	to	create	three	more.
But	this	requires	a	different	button.	The	first	button	that	you	used	was	responsible	for
creating	the	first	subimage	of	the	sprite,	labeled	image	0.	But	using	that	button	again
will	erase	the	existing	image	0	and	create	a	new	one.	So	instead,	to	add	image	1,
image	2,	image	3,	…,	and	image	n	you	will	use	the	button	that	is	five	buttons	after
the	original	one	you	used.	It	should	appear	as	a	white	paper	with	a	plus	logo	at	the
top	right	corner.	The	one	directly	next	to	it	on	the	left,	with	the	down	arrow	at	the
bottom	right	of	it,	adds	a	new	subimage	directly	before	the	one	that	you	have
currently	selected	(the	one	selected	will	be	highlighted	in	blue),	and	will	thus	rename
the	affected	subimages	so	that	the	names	are	always	in	numbered	order.

There’s	also	the	option	to	select	a	subimage	and	then	press	Ctrl	+	C	to	copy	it,	then
Ctrl	+	V	to	paste	it,	which	you	may	choose	to	do	instead	of	using	the	aforementioned
buttons	in	the	following	step	so	that	you	have	a	vantage	point.

6.	 Create	three	new	subimages	with	the	new	button	with	the	plus	logo.	They	should	all
be	images	of	the	player,	but	from	different	views.	Make	image	1	a	view	of	the	back,
image	2	a	view	of	the	right,	and	image	3	a	view	of	the	left.

7.	 For	your	left	and	right	orientations,	you	can	simply	copy	the	entire	canvas	of	one	of
them,	paste	it	into	the	other,	then	select	Transform	followed	by	Mirror/Flip	(which
can	also	be	accessed	by	pressing	Ctrl	+	Alt	+	M).	Then	make	sure	Mirror

Horizontally	is	checked	and	hit	the	checkmark	button.
8.	 Don’t	resize	your	canvas	unless	you	need	to	make	it	slightly	bigger—the	canvas	size

remains	the	exact	same	for	each	subimage,	so	you	can	end	up	with	whitespace	by
increasing	the	size.	Your	final	outcome	should	have	subimages	with	views	that	look
like	the	following:

With	this,	you	have	completed	your	sprite	for	the	playable	character.	Next	is	creating	the
object.

The	object
Now	that	your	sprite	for	the	playable	character	has	been	completed,	you	should	create	its
object.	Start	off	with	creating	and	naming	the	object	something	like	obj_PC	and	then
assign	a	sprite	to	it.	Next,	add	the	event	labeled	as	Keyboard,	then	select	<Left>,	at	the
top	of	the	list.	You	probably	noticed	the	other	key-related	events	when	looking	at	the	list
of	events,	shown	in	the	following	screenshot:

The	following	is	a	table	to	show	the	differences	between	these	three	key-related	events:

Keyboard Key	Press Key	Release

This	checks	over	and	over	if	a	key	is
pressed	and	repeats	its	associated
action	as	long	as	the	key	is	pressed

This	checks	once	to	see	if	a	key
is	pressed	and	runs	its	associated
action	once	for	each	press

This	checks	to	see	if	a	key	has	been	released
and	runs	its	associated	action	based	on	if	the
particular	key	has	been	released

While	pressing,	the	action	is	run	many
times

One	press	and	the	action	runs
once One	release	and	the	action	runs	once

Okay,	so	now	that	you	understand	the	difference	between	these	key-related	events,	you
can	start	working	on	your	Keyboard	event	for	the	left	arrow	key.

1.	 The	first	tab	on	the	right,	labeled	move,	contains	a	section	also	named	Move	that	has
an	action	called	Move	Fixed.	It	is	the	first	option	and	its	image	looks	like	eight	green
arrows	diverging	from	the	center.	Drag	that	into	the	Actions	box	for	the	keyboard
event.

2.	 The	parameter	window	will	open.	Because	this	is	a	Keyboard	event	for	the	left
arrow	key,	we	will	select	the	left	arrow	in	the	grid.	This	will	make	the	object	move
towards	the	left.	Next,	change	speed	to	3.	This	defines	how	fast	an	object	is	moving.

3.	 Once	you’ve	passed	your	Move	Fixed	action	and	its	required	parameters,	select	the
main1	tab	at	the	side,	and	under	the	Sprite	section,	drag	the	first	option—Change
Sprite—into	the	Actions	box	so	that	it	runs	before	the	Move	Fixed	event.

4.	 Your	parameters	consist	of	the	main	sprite	from	which	to	pull	a	subimage,	the
subimage	itself	to	pick,	and	the	speed.	First	select	the	sprite	for	the	player	you	created
earlier.	Next,	because	the	subimage	for	the	left	side	of	our	character	is	labeled	image
3,	put	3	into	the	subimage	box.	The	speed	refers	to	how	fast	the	subimages	of	the
sprite	will	be	cycled	through,	but	because	we	only	want	the	left	image	to	be	displayed
while	moving	left,	set	that	to	0	as	shown	in	the	following	screenshot:

5.	 Now,	add	a	Key	Release	event,	and	again	select	<Left>.	This	is	for	when	the	player
stops	pressing	the	left	key,	and	thus,	we	want	them	to	stop	moving.	Drag	a	Move
Free	action,	the	gray	option	right	next	to	Move	Fixed,	into	the	Actions	box.

The	direction	parameter	refers	to	which	direction	the	object	should	be	facing,	so	that
means	up,	down,	left,	or	right.	But	you	don’t	pass	it	to	any	of	those	words,	you	pass	it	a
number	or	a	special	variable	called	direction.	The	numbers	corresponding	with	right,	up,

left,	and	down	are	0,	90,	180,	or	270	respectively.	The	following	diagram	is	to	show	the
direction	values,	which	you	will	directly	use	sometimes:

But	you	shouldn’t	be	using	those	numbers	here	either.	Instead,	use	the	built-in	direction
variable.	It	is	a	special	variable	that	every	object	has	and	refers	to	the	direction	the	object
is	facing.	In	this	way,	you	don’t	necessarily	have	to	know	their	direction—you	can	just
pass	this	variable.

So,	type	direction	(no	quotes)	into	the	direction	box,	and	put	0	into	the	speed	box,	so
that	the	player	will	stop	moving	after	you	release	the	Left	key.	Now,	repeat	this	process	for
each	of	the	other	keys,	substituting	in	the	correct	directions	and	subimages,	where	needed,
so	that,	you	can	control	your	player	in	all	four	directions.	Exit	from	the	player	object	and
create	a	new	room.	Insert	one	instance	of	the	player	object	anywhere	in	the	room,	and	then
run	your	game.

What	did	you	notice?	Probably	that	on	startup,	the	player	cycles	through	all	the	subimages
really	fast.	But	that’s	not	what	you	want,	right?	You	want	them	to	be	set	on	one	subimage
at	startup.	And	this	is	where	the	Create	event	comes	in	handy.

Go	back	to	your	obj_PC	and	add	a	Create	event.	This	is	run	every	time	the	instance	of	the
object	is	created.	It’s	good	for	setting	up	things	such	as	variables	that	you’ll	need	later	or
setting	things	up	so	they	don’t	bug	out	or	anything.	Drag	in	another	Change	Sprite	action
into	the	Actions	box,	and	pick	whatever	subimage	you	want—we	recommend	image	0,
the	down	facing	subimage.	Again,	make	sure	that	speed	is	0	there,	so	that	it	doesn’t	still
cycle	through	the	subimages.	Run	your	game	again,	and	your	object	should	stay	on	the
first	subimage	until	you	press	a	key	other	than	Down.	This	is	because	we	basically
initialized	the	sprite	so	that	it	would	be	set	to	a	specific	one.	We	decided	what	the	starting
sprite	would	be.	So	great,	you’ve	got	the	movement	and	changing	sprite	based	on
direction	functionality.	It	is	a	rather	basic	system,	as	you	can	probably	notice,	given	that
most	people	move	their	legs	when	walking	along,	but	this	is	a	good	enough	system	to	use
to	at	least	teach	the	basics.

Walls
Okay,	so	you’ve	got	your	player	moving,	but	so	far	the	game	is	pretty	boring.	There’s
nothing	to	do	except	move	around	a	blank	screen.	We	could	add	enemies,	but	there’s	a
fundamental	problem	in	the	game	that	needs	fixing	now.	There	are	no	walls,	and	thus	the
player	can	just	walk	off	screen.	They	won’t	fall	off	some	kind	of	an	edge	or	anything,
they’ll	be	able	to	walk	right	back	in;	but	most	games	don’t	have	that	ability.	So,	we	need
to	add	some	walls.

Start	with	making	your	wall	sprite:	spr_wall.	It	should	be	32	by	32	pixels	and	at	least
somewhat	resemble	a	wall.	This	sprite	needs	only	one	subimage:	the	wall,	and	once
you’ve	finished	making	it,	you	can	start	on	the	object.	The	object	is	also	very	simple.
Create	the	object,	name	it,	and	assign	it	a	sprite.	But	there’s	one	more	thing	you	have	to	do
—set	it	as	solid.	Setting	it	as	solid	will	allow	the	player	to	collide	with	it,	that	is,	a
collision	event	inside	of	the	player	will	recognize	only	solid	objects;	otherwise,	they	will
just	pass	right	through,	which	we	don’t	want.	Voilà,	you’ve	finished	making	the	object.

That	doesn’t	mean	you’re	done	with	walls	yet	though.	You	need	to	add	another	event	to
the	player	object	that	occurs	when	they	hit	(collide	with)	a	wall.	Open	up	the	player	object
and	add	a	new	Collision	event,	selecting	your	wall	object	when	it	prompts	you.	This	event
will	be	triggered	whenever	the	player	hits	an	instance	of	the	wall.	Earlier,	whenever	the
player	stopped	pressing	an	arrow	key,	we	wanted	the	player	object	to	stop.	Like	before,
drag	in	the	Move	Free	action,	and	set	the	variable	as	direction	and	speed	as	0.	Your
player	will	now	stop	short	whenever	it	hits	a	wall.	Open	up	your	room	and	put	walls	all
around	the	room.	Next,	create	a	sort	of	maze	through	which	the	player	must	traverse,	and
move	your	player	to	the	starting	point	(if	it	is	not	already	there).	Test	your	game.

Tip
My	player	object	is	sometimes	getting	stuck	even	though	it	shouldn’t!	How	do	I	fix
this?

Depending	on	the	size	of	your	player	sprite,	your	player	might	be	colliding	with	the	wall
because	the	wall’s	width	is	32	pixels	and	one	grid	space	is	32	pixels,	so	spaces	between
two	blocks	could	be	32	pixels.	When	the	player	tries	to	get	through	these	spaces,	it	could
be	brushing	up	against	the	walls,	and	thus	colliding,	getting	them	stuck.

The	way	to	fix	this	is	to	first	make	sure	that	you	resized	the	canvas	or	cropped	the	image
to	fit	the	player	sprite	exactly.	Test	your	game,	and	if	the	problem	no	longer	arises,	then
you’ve	fixed	your	problem.	Otherwise,	you	can	open	up	the	sprite,	select	Transform,	and
then	Stretch	(which	can	also	shrink	the	sprite,	as	we	will	be	doing	here).	You	can	also	use
the	keyboard	shortcut	Ctrl	+	Alt	+	E.	Select	whatever	quality	you	want	of	the	outcome	in
relation	to	the	original,	although	the	default	Normal	option	is	fine,	and	then	decrement	the
dimensions	in	small	amounts	until	you	think	it’s	small	enough.	Just	make	sure	it’s	smaller
than	the	smallest	space	it	needs	to	get	through.	Test	the	game	out,	and	see	if	the	problem
persists.	If	it	still	does,	continue	to	shrink	the	canvas	with	Stretch	until	the	problem	is
fixed.

Tip
My	player	object	is	stopping	even	though	it’s	not	touching	the	wall!	How	do	I	fix
this?

Your	player	might	be	supposedly	colliding	with	the	wall	even	though	you	see	a	few	pixels
in	front	of	it.	This	is	because	basic	collision	checking	in	GameMaker	goes	by	the
dimensions	of	the	whole	dimensions	of	the	sprite	itself.	It	uses	the	largest	dimensions,	and
will	always	be	a	rectangle.	The	head	or	another	region	of	your	player	is	most	likely
protruding	outwards	compared	to	other	parts,	and	thus	there	are	blank	spots	that	still	count
for	collisions.	The	way	to	fix	this	is	to	use	precise	collision	checking,	where	the	collision
mask	(the	shape	used	for	a	particular	sprite	by	GameMaker	to	determine	if	there	is	a
collision)	used	by	the	sprite,	follows	the	shape	of	the	subimages	exactly.	This	will	solve
your	problem.

To	utilize	precise	collision	checking,	go	back	to	your	player	sprite’s	window.	Click	on	the
checkbox	next	to	Precise	collision	checking	under	the	box	labeled	Collision	Checking.
The	only	disadvantage	of	this	here,	at	least	in	this	case,	is	that	the	player	object	might	get
stuck	on	a	wall	(if	their	body	is	completely	touching	the	wall)	and	you	will	have	to	move
left	or	right	to	move	at	all.	There	are	some	cases	in	which	it	is	bad	to	use,	such	as	the
aforementioned	and	as	it	is	slower	than	regular	collision	checking,	but	it	is	fine	here.
When	you	move	on	though,	you	are	likely	to	stop	using	precise	collision	checking,	given
its	downsides,	and	alternative	collision	checking	methods.

Enemies
Okay,	so	your	player	moves,	changes	sprite	based	on	direction,	and	we’ve	put	in	a	maze.
But	the	game	is	still	boring.	We	need	to	add	some	enemies	and	a	health	property	to	the
player	so	that	they	can	be	damaged	by	these	enemies.	Create	your	sprite	in	a	similar
manner	to	what	you	did	with	the	player,	in	that,	there	are	four	subimages	for	each	of	the
enemy’s	directions,	and	do	it	in	the	same	order	as	you	did	for	the	player.	This	enemy	is
going	to	either	walk	up	and	down	or	left	and	right.

Once	you	have	completed	your	enemy’s	sprite,	create	two	objects	named	obj_enemyVert
and	obj_enemyHor,	for	their	walking	patterns.	Make	sure	to	set	both	of	them	as	solid,	by
selecting	the	checkbox,	as	when	the	player	hits	the	enemy,	we	want	a	collision	event	to	be
triggered	(thus	requiring	solid).	As	we	had	previously	with	the	player,	make	sure	you	have
a	Create	event	for	each	enemy.	Add	the	Change	Sprite	action	to	it	so	that	the	object	does
not	cycle	through	its	entire	sprite’s	subimages	before	moving.	Your	enemy	will	start
moving	immediately,	so	this	is	not	entirely	necessary,	but	it	is	a	good	habit	to	indicate	the
starting	direction	and	subimage	for	objects	that	will	move	in	your	game.	This	is	important
in	case	the	enemy	is	somehow	noticeably	slow	as	it	initializes	and	starts	to	walk,	where	we
will	handle	more	of	the	sprite	changing	code.

Making	your	enemies	move
In	your	horizontally	(left	and	right)	moving	enemy,	under	the	Create	event,	add	a	Move
Fixed	action.	Select	both	the	left	and	right	arrows.	What	this	does	is,	it	makes	the	game
choose	between	either	the	left	or	right	directions.	So	your	object	could	start	moving	left,	or
it	could	start	moving	right.	Set	speed	to	2,	slightly	slower	than	our	player.

Next,	add	a	Collision	event,	and	choose	obj_Wall.	When	the	enemy	hits	a	wall,	we	want
it	to	reverse	its	direction.	To	do	this,	we	select	the	Reverse	Horizontal	action;	it’s	under
the	Move	section	under	the	move	tab	on	the	left	and	is	the	first	option	in	the	third	row,
with	a	green	arrow	pointing	towards	the	left.	There	are	no	parameters	or	anything	to
provide	this	action	with,	so	you	can	just	add	it	and	be	done.

Now,	we	want	to	change	the	sprite	of	the	enemy,	but	we	have	to	be	able	to	tell	what
direction	they	are	facing.	Luckily,	there	is	the	built-in	direction	variable.	To	test	its
value,	we	will	use	a	Test	Variable	action,	located	under	control,	then	Variables.	It	is	the
middle	option—an	octagonal	square.	The	variable	we	want	to	test	is	direction,	and	the
value	we	want	to	test	it	for	is	0.	Remember	that	0	represents	the	right	direction.	So	if
direction	is	equal	to	0	(that	is,	the	enemy	is	moving	to	the	right),	then	the	following
action	should	be	run.

In	order	to	have	the	next	action	run	based	on	whether	direction	equals	0,	we	will	use
Start	and	End	blocks.	These	are	like	curly	braces,	{},	in	text-based	coding.	In	the	control
tab,	under	Other,	there	are	two	triangles.	The	one	whose	point	is	facing	upwards	is	a
Start	block,	the	equivalent	of	the	{,	and	the	one	whose	point	is	facing	downwards	is	an
End	block,	the	equivalent	of	the	}.	Drag	both	of	these	underneath	the	Test	Variable
action.

Inside	the	triangle	blocks,	place	a	Change	Sprite	action	and	change	the	object’s	subimage
so	that	it	is	one	of	the	enemies	moving	to	the	right.	Now,	we	want	a	similar	thing	to	occur
if	the	object	is	moving	to	the	left,	which	happens	when	the	object	is	not	moving	right,	and
thus	whenever	the	object	is	not	moving	right,	it	is	moving	left.	That	seems	obvious,	but
it’s	important.	This	means,	we	can	just	use	an	Else	block	and	not	have	to	test	any	more
conditions.	Drag	in	an	Else	block,	located	next	to	the	Start	block.	Then,	drag	two	Start
and	End	blocks	beneath	it.

Put	in	a	Change	Sprite	action	(inside	those	blocks)	so	that	the	object’s	subimage	will
change	to	that	of	the	enemy	moving	left.	Now,	the	object’s	image	will	be	altered	based	on
its	direction.	However,	this	so	far	only	happens	when	the	object	hits	a	wall.	When	they
first	are	moving,	they	won’t	necessarily	have	the	right	subimage	displayed.	To	fix	this,
copy	all	of	the	actions	from	the	testing	of	the	direction	variable	(not	the	reversing	of	it)
down	to	the	last	End	block	we	just	made	under	the	Collision	event	with	the	wall,	and
then,	paste	it	underneath	the	Move	Fixed	action	in	the	Create	event.	You	can	select	the
Test	Variable	action,	then	press	Shift	and	click	on	the	last	End	block	to	highlight	all	of	it,
and	then	use	Ctrl	+	C	to	copy	it	and	Ctrl	+	V	to	paste	it.	Now	the	subimage	will	always
reflect	the	direction.

There’s	only	one	more	thing	we	have	to	fix.	As	of	now,	the	two	enemies	can	collide	and
pass	through	each	other.	To	fix	this,	add	two	Collision	events,	one	for	each	version	of	the
enemy.	Copy	all	the	actions	from	the	Collision	with	the	wall	event	and	paste	it	into	these
two	new	Collision	events.	Now	the	enemies	will	“reflect”	off	each	other.

In	the	end,	all	of	your	Collision	events	for	the	horizontally	moving	enemy	should	look
like	the	following.	In	your	Create	event,	what	is	here	from	lines	2	through	9	should
appear	directly	following	the	Move	Fixed	action.

Repeat	this	entire	process	for	the	other	version	of	the	enemy—the	one	that	moves	up	and
down.	Change	actions,	parameters,	and	such	as	needed	to	reflect	the	different	directions.
The	Reverse	Vertical	action	is	on	the	right	of	the	Reverse	Horizontal	action;	remember
that	0	represents	right,	90	is	up,	180	is	left,	and	270	is	down.	Test	your	game	and	make
sure	everything	is	working	perfectly.	If	it’s	not,	then	go	back	and	make	sure	you	used	the

right	parameters	and	actions	and	you	put	them	everywhere	that	they	should	be.

Damaging	the	player
Now	that	the	movement	is	working	in	your	player	and	enemies,	you	can	program	in	a
health	and	damage	system.	The	way	that	this	will	work	is	that	whenever	the	player	hits	an
instance	of	the	enemy,	their	health	will	be	decremented.	If	their	health	runs	out,	then	they
will	lose	a	life	and	must	restart.

To	implement	this	system,	first	go	to	the	Create	event	for	your	player.	Now	go	to	the
score	tab,	and	under	the	Health	section,	drag	out	the	first	option:	Set	Health.	Give	it	a
value	of	100.	Since	health	is	a	built-in	global	variable,	there	is	only	one	of	it	and	any	uses
of	it	will	refer	to	that	variable.	Thus,	you	cannot	give	both	your	player	and	enemy	a
variable	for	health	named	health;	for	that,	you	might	want	to	give	the	enemy	one	of	your
own	variables,	such	as	hp.

Next,	create	two	Collision	events	inside	the	player,	one	for	each	type	of	enemy.	Drag	out
another	set	Health	action	for	each,	and	give	it	a	value	of	-25.	Then,	select	the	Relative
checkbox.	Whenever	the	player	collides	with	either	enemy,	their	health	will	be	set	relative
to	-25,	meaning	it	will	be	decremented	by	25.

Now,	select	the	move	tab	and	drag	out	a	Jump	to	Start	action	(the	second	one	under	the
Jump	section)	for	each	Collision	event.	There	are	no	parameters	for	this	one,	so	you	can
drag	it	out	and	be	done.	At	this	point,	whenever	the	player	hits	an	enemy,	their	health	will
be	decremented	and	they	will	jump	to	their	starting	position	in	the	room.	The	reason	we
have	them	move	is	because	if	neither	the	enemy	nor	the	player	moves	or	dies,	then	the
player’s	health	will	continue	to	decrement	as	long	as	they	are	colliding	with	the	enemy,
and	they	will	lose	all	their	health	in	less	than	a	second,	which	would	of	course	not	be
good.

Okay,	so	we	have	the	basic	health	system	working.	But	the	player	needs	to	die	and	the
health	needs	to	be	displayed.	To	do	this,	create	a	new	object	called	obj_healthControl.
This	is	a	controller	object,	a	kind	of	object	that	doesn’t	necessarily	appear	visually	in
your	game,	but	controls	variables,	timing,	and	other	important	elements	of	your	game	that
it	could	not	work	without.	Controller	objects	are	nothing	more	than	a	regular	object,
they’re	not	recognized	by	the	GameMaker:	Studio	compiler	or	anything	like	that,	but
using	them	is	a	common	approach	developers	use	to	control	aspects	of	the	game	that	do
not	require	a	visible	sprite	in	the	game.	When	objects	without	sprites	(which	are	most
often	controller	objects)	are	placed	in	the	room	editor,	they	will	appear	(to	the	developer)
as	a	blue	circle	with	a	question	mark	inside	to	indicate	their	presence	in	the	game.

Now	you	will	add	a	new	event.	Select	the	Other	option,	then	No	more	health.	This	will
be	triggered	when	the	health	is	less	than	or	equal	to	0.	It	is	not	always	the	best	approach	to
use,	as	you	might	want	the	player	to	die	when	their	health	is	less	than	1	(maybe	the	health
is	0.75),	but	for	our	purposes	here	it	is	fine,	given	the	value	of	the	total	health	and	the
values	that	can	be	decremented	from	it.	The	other	approach	would	be	to	use	a	Test
Variable	action	and	test	to	see	if	the	variable	(in	this	case	health)	is	less	than	1.

In	this	example,	when	the	player’s	health	is	eliminated,	we	want	the	game	to	end	or
restart,	based	on	what	the	player	chooses.	To	do	this,	we	will	ask	them	a	question.	Select
the	control	tab,	and	then	under	Questions,	pick	the	action	whose	symbol	is	a	question
mark	inside	of	a	bubble;	have	it	say,	You	have	died.	Restart?.	Now	drag	out	a	Start
and	End	block.	Inside,	place	a	Restart	Game	action,	located	in	the	Game	section	under
the	main2	tab.	So,	if	the	player	says	yes	to	restarting,	the	game	will	restart.	Now	drag	out
an	Else	block	and	a	Start	and	End	block.	If	the	player	answered	no,	then	they	want	the
game	to	end.	So	drag	out	an	End	the	game	action,	located	directly	next	to	the	Restart	the
game	action:

Great,	now	the	game	restarts	or	ends	when	the	player	dies.	But	the	user	needs	to	know
what	their	health	is	and	not	have	to	think	about	or	remember	it.	This	is	a	simple
implementation.	Add	one	more	event,	a	Draw	event,	like	the	one	we	used	previously.
Inside,	drag	a	Draw	Health	action,	the	third	option	under	Health	under	the	score	tab.	x1
refers	to	the	x	coordinate	of	the	top-left	corner,	y1	to	the	y	coordinate	of	the	top-left
corner,	x2	to	the	x	coordinate	of	the	bottom-left	corner,	and	y2	to	the	y	coordinate	of	the
bottom-left	corner.	back	color	refers	to	the	background	color	of	the	bar,	and	bar	color	is
what	color	the	actual	bar	itself	will	fade	from	and	to	as	the	health	decreases.	The	length	of
the	bar	should	be	a	multiple	of	10,	as	the	health	variable	is	at	most	100,	and	the	health	bar
needs	to	look	clean.	It	also	needs	to	look	full	when	the	health	is	100.	For	this	game,	the
length	of	the	health	bar	will	be	50	pixels.	To	do	this,	set	the	value	of	x1	to	10,	and	the
value	of	x2	to	60.	The	height	of	the	bar	should	be	20	pixels,	so	set	y1	to	10	and	y2	to	30.
Recall	that	in	GameMaker’s	coordinate	planes,	y	increases	as	you	move	down,	not	up.	The
background	color	of	the	bar	should	be	black	so	that	the	player	knows	how	much	health
they	have	in	relation	to	the	whole	amount	they	could	have,	and	the	bar	color	that	you

choose	can	be	anything	you	like.	Do	not	select	the	Relative	checkbox,	as	then	you	would
need	to	very	precisely	place	the	healthControl	object.

You	might	think	that	now	adding	the	health	control	object	to	the	room	will	display	the
health	and	the	player	will	see	their	health	and	the	bar	will	get	shorter	as	they	hit	enemies
more.	This	is,	however,	not	necessarily	true.	The	problem	is	that	the	health	bar	might	be
displayed	below	some	wall	or	something	because	it	is	rendered	before	the	wall,	putting	the
wall	on	top.	There	is	a	simple	fix,	and	you	do	not	need	to	destroy	any	walls.	Instead,	you
can	set	the	depth	of	your	health	control	object	and,	in	turn,	that	of	anything	it	draws,	in
this	case,	a	health	bar.	Depth,	as	you	should	recall	from	the	previous	chapter	is	basically
the	rendering	order	of	your	objects.	How	large	or	small	the	number	that	you	set	it	to	does
not	matter,	as	depth	is	relative.	In	depth,	the	object	with	the	largest	depth	number	is
rendered	first,	and	the	object	with	the	smallest	depth	number	is	rendered	last.	It	does	not
matter	if	those	numbers	are	1	and	-1	or	1000	and	-1000,	they	will	be	rendered	in	the	same
order.	To	set	the	depth	of	your	healthControl	object	and	thus	make	the	health	bar	appear
on	top	of	everything	else,	change	the	Depth	option	beneath	the	four	checkboxes	on	the
left	side	of	your	object	to	-10.	If	you	were	to	set	another	object’s	depth	to	-11,	then	the
health	bar	would	appear	below	that,	but	assuming	you	didn’t,	this	health	bar	will	be	on	top
of	everything.	While	you	could	just	use	-1,	multiples	of	10	are	so	much	nicer	to	work
with.	Now	the	health	bar	will	work	perfectly.

Play	your	game	and	get	hit	four	times	by	an	enemy.	Make	sure	that	the	question	appears	to
restart,	and	click	both	buttons	to	make	sure	everything	is	working	correctly.	Also,	observe
your	health	bar.	When	you	died,	you	might	notice	that	the	last	quarter	of	the	health	bar
does	not	disappear.	This	is	because	the	Draw	event	is	run	after	the	No	more	health	event,
so	the	game	will	notice	that	the	player	has	died	and	thus	restart	or	end	the	game	before	it
clears	the	health	bar.	This	unfortunately	cannot	be	fixed	with	drag	and	drop	programming,
but	you	will	be	able	to	solve	it	with	the	programming	language	of	GameMaker,	which	you

will	soon	learn	about	in	the	following	chapter.

In	the	following	chapter,	some	more	features	will	be	added	to	the	health	system	that	we
have	in	place	(such	as	pickups).

Making	the	player	and	enemies	shoot
Now	that	you	have	the	basics	of	your	player,	enemies,	and	health	working,	we	can	add	one
more	feature	that	builds	on	all	three	of	these—firing	shots.	The	player	and	the	enemy	will
fire	in	different	ways	from	each	other.

Making	the	player	shoot
We’ll	start	with	working	on	the	player’s	shooting	mechanics.	Start	with	making	an	8	x	8
sprite	for	the	bullet	or	whatever.	It	needs	only	one	subimage,	and	you	can	just	make	a
simple	ball.

Now	create	an	object	for	your	bullet.	Add	a	Collision	event	for	each	of	the	enemies.
Whenever	it	collides	with	an	enemy,	it	should	destroy	itself	and	the	enemy	it	is	colliding
with.	To	do	this,	go	to	the	main1	tab,	and	drag	out	two	of	the	Destroy	Instance	actions
(that	is	two	for	each	Collision	event),	which	looks	like	a	white	recycle	bin	(a	white	bin
with	two	curved	green	arrows	forming	a	circle).	The	first	one	will	destroy	the	bullet,	so
you	can	leave	that	alone.	But	the	second	one	needs	to	destroy	the	enemy.	The	way	to	do
this	is	to	select	the	Other	circle	under	the	Applies	to	box	at	the	top	of	the	action’s	box.
The	three	options	there	are	Self,	Other,	and	Object.	Here	is	a	table	to	explain	the
differences	between	the	options:

Self Other Object

The	instance	of	the	object	that	you	are
working	in

The	instance	of	the	object	that	you	are
interacting	with

All	instances	of	a	particular
object

Make	sure	that	you	did	this	for	the	Collision	event	with	each	enemy.

Great,	so	now	whenever	the	bullet	hits	an	enemy,	it	will	kill	both	itself	and	the	enemy.
There’s	just	one	more	Collision	we	have	to	add,	and	that	is	between	the	wall	and	the
bullet.	The	bullet	should	not	be	able	to	go	through	the	wall,	so	add	a	Collision	event	with
the	wall	inside	of	the	bullet,	and	when	this	happens,	the	bullet	should	destroy	itself,	just
like	with	the	enemy.	You	would	not	want	to	destroy	the	other	in	this	case	or	you	would
destroy	the	wall.	There	might	be	times	where	you	would	want	to	be	able	to	destroy	select
walls,	such	as	if	it	is	blocking	a	path	that	you	want	to	get	through,	but	not	in	our	example
here.

Now,	the	bullet	for	the	player	will	work	if	it	hits	an	enemy,	but	we	still	need	to	program	it
to	be	fired	by	your	main	character.	We	will	do	this	inside	of	the	player.	Firstly,	let’s	discuss
how	the	shooting	will	work.	The	bullets	should	be	fired	when	the	player	hits	the	spacebar,
but	we	do	not	want	the	player	to	fire	a	continuous	stream	of	bullets.	To	start	this	off,
declare	a	new	variable	inside	of	the	Create	event	for	the	player	called	can_shoot,	and	set
it	to	1.	Use	the	Set	Variable	action,	the	first	under	the	Variables	section	under	the	control
tab.	1	refers	to	true	in	programming,	and	0	to	false.	Whenever	can_shoot	is	0,	the	player
cannot	shoot,	but	they	can	if	can_shoot	equals	1:

Now	add	a	new	Keyboard	event	for	the	spacebar.	When	the	player	hits	the	spacebar,	if
can_shoot	is	equal	to	1,	the	game	should	spawn	a	bullet	near	the	player	and	temporarily
prevent	them	from	shooting	for	one	second.	First,	drag	out	a	Test	Variable	action	and
have	it	tested	to	see	whether	can_shoot	is	equal	to	1.	Also,	drag	out	your	Start	and	End
blocks.	To	spawn	the	bullet,	put	a	Create	Moving	action	(the	light	bulb	with	a	green
arrow	under	Objects	under	the	main1	tab)	inside	your	Start	and	End	blocks.	Have	it
create	an	instance	of	the	player’s	bullet	at	the	exact	center	of	the	player,	and	make	sure
that	you	select	the	Relative	checkbox.	Because	nobody	should	be	able	to	run	faster	than	or
at	the	same	speed	as	a	bullet,	set	speed	to	5,	which	is	greater	than	the	speed	of	both	the
enemy	and	player.	Bullets	should	travel	in	the	same	direction	as	the	direction	in	which	you
are	moving,	so	the	direction	variable	should	be	used	for	the	direction	parameter.	Note	that
direction	is	local	to	each	instance	of	each	object.

Now,	we	need	to	work	out	a	system	where	the	player	must	wait	before	shooting	another
bullet.	First,	set	the	variable	can_shoot	to	0	beneath	the	Create	Moving	action	so	that
they	cannot	shoot	until	we	assign	it	a	value	of	1	again.	To	do	this,	we’ll	use	an	alarm.
These	are	timers	that	count	steps,	and	they	are	local	to	each	instance	of	each	object.	The
number	of	steps	per	second	is	equal	to	the	speed	of	your	room.	We	are	going	to	have	that
be	30	for	this	game,	thus	meaning	that	there	will	be	30	steps	a	second.	Recall	that	room
speed	refers	to	how	many	times	per	second	the	objects	in	the	room	check	their	code,	and
thus,	every	object	will	check	its	code	room	speed	steps	every	second.	It	is	imperative	to
note	that	changing	the	room	speed	will	change	the	number	of	steps	per	second,	and	thus
know	how	long	you	have	to	set	your	alarms	for.	To	create	an	alarm,	drag	the	first	option,
the	clock,	under	Timing	under	the	main2	tab.	Set	the	number	of	steps	to	30,	as	we	want
the	player	to	have	to	wait	one	second	before	being	able	to	fire	again.	Use	the	default	Alarm
0.	Make	sure	you	did	all	of	that	inside	of	the	Start	and	End	blocks	associated	with	your
Test	Variable	action:

Next,	add	an	Alarm	event,	and	again	use	Alarm	0.	When	Alarm	0	is	triggered,	the
variable	can_shoot	should	be	set	to	1	so	that	the	player	can	shoot	again.

And	there	you	have	it.	Your	player	can	now	shoot	and	your	enemies	should	disappear
when	you	hit	them.	Test	your	game	to	make	sure	everything	is	functioning	correctly.

Making	the	enemies	shoot
Now	that	your	player	can	shoot,	we	should	make	your	enemies	shoot.	It’s	mostly	the
same.	First	create	a	sprite	for	the	enemy	bullet	and	make	it	a	different	color	from	that	of
your	player	to	distinguish	the	two.	Keep	the	same	size	though	as	our	player	bullet,	8	x	8
pixels.

Now	create	a	new	object	for	the	enemy’s	bullet.	Whenever	it	collides	with	a	wall	or	the
player,	it	should	destroy	itself.	But	it	should	also	decrement	the	health	variable	by	15	(or
whatever	amount	of	health	you	choose	to	subtract.	Just	make	sure	that	the	value	of	health
will	always	be	an	integer,	as	the	way	we	are	currently	handling,	dying	is	that	when	health
is	less	than	or	equal	to	0,	not	1,	then,	and	only	then,	will	the	game	restart	prompt	appear)
when	it	collides	with	the	player.	It	is	very	important	that	it	destroys	itself	upon	collision
with	the	player,	as	otherwise,	it	would	continuously	damage	the	player	and	they	would	be
dead	in	less	than	a	second.

Now	that	your	bullet	object	has	been	made,	you	need	the	enemy	to	be	able	to	fire	it.	The
way	it	will	do	this	is	randomly.	There	will	be	a	chance	that	the	enemy	shoots	a	bullet,	and
a	chance	that	it	doesn’t.	To	do	this,	create	a	new	Step	event	in	each	of	your	enemy	objects.
When	it	asks	for	what	kind	of	step,	select	Step	again.	Recall	that	there	are	30	steps	per
second	for	this	game.	Therefore,	ideally,	all	of	your	Step	events	will	be	run	thirty	times
every	second.	However,	this	is	only	ideal.	Depending	on	how	much	code	is	in	your	Step

event	and	how	many	things	the	engine	has	to	handle	at	once,	your	Step	events	might	only
be	run	29	or	28	and	so	on	times	a	second.	This	can	make	a	difference,	but	in	a	case	such	as
this,	it	doesn’t	matter	quite	so	much.	As	long	as	the	event	is	still	run	a	good	amount	of
times	every	second,	you	should	be	fine.	If	you	ever	run	into	complications	with	this,	find
ways	to	refine	your	code	blocks	when	using	drag	and	drop,	and	regular	code	in	future
chapters.	You	will	become	more	efficient	in	your	programming	as	you	get	more
comfortable	with	GameMaker.	Even	cleaning	up	the	smallest	of	things	can	make	quite	a
difference.

Anyway,	inside	of	your	Step	event,	for	both	objects,	add	a	Test	Chance	action,	the	middle
option	that	looks	like	a	green	die	under	Questions	in	the	control	tab.	Type	20	into	the
sides	parameter.	There	will	be	a	1	in	20	(5	percent)	chance	that	a	bullet	will	be	spawned
each	step,	so	with	30	steps	per	second,	the	enemy	should	shoot	3	times	every	2	seconds
(on	average).	Drag	out	your	Start	and	End	blocks,	then	a	Create	Moving	action	in
between	these.	Spawn	an	instance	of	the	enemy’s	bullet	at	the	center	of	it.	The	speed
should	be	5,	and	the	direction	is	the	value	of	the	direction	variable.	Make	sure	to	check	the
Relative	checkbox.	Also,	make	sure	that	you	did	this	for	both	enemy	objects:

And	with	that,	you	have	finished	the	shooting	feature	for	both	your	player	and	enemies.
Test	out	your	game	and	make	sure	that	the	firing	system	is	working	for	both,	your	player
and	enemy.	Change	the	chance	of	shooting	in	the	step	event	to	see	how	it	impacts	the
gameplay	if	you	increase	or	decrease	it.	Do	the	same	for	the	steps	in	the	Alarm	event	for
your	player.

More	resources
Alright,	so	all	of	the	features	of	your	game	are	working	perfectly.	You’ve	got	movement,
collisions,	a	damage	system,	and	bullets.	But	the	game	lacks	some	pizzazz.	And	that
pizzazz	comes	in	the	form	of	more	resources.	Of	all	the	resources	on	that	resource	tree	that
you	can	use,	only	three	have	been	used.	But	we	can	use	so	many	more.	For	now,	we’re
just	going	to	add	a	background	and	sounds.

Backgrounds
Every	time	you’ve	played	your	game	so	far,	the	background	of	your	game	was	just	plain
gray,	which	is	quite	boring.	So	instead,	you	can	create	your	own	backgrounds,	or
download	them	from	somewhere	(if	you	are	downloading	them,	you	need	to	be	aware	of
copyright	laws	and	ensure	that	you	are	permitted	to	use	the	image	if	you	plan	to	publish
your	game,	not	this	one	but	others).	When	you’re	downloading	it,	make	sure	that	the
image	is	proportional	to	1024	x	768,	otherwise	it	could	appear	to	loop	(which	is
sometimes	good,	if	a	background	is	intended	to	repeat)	if	you	do	not	choose	to	stretch	it.
Of	course,	sometimes	stretching/warping	it	can	make	it	appear	strange,	whether	the	image
is	too	small	or	too	large.	Just	ensure	that	it’s	a	good	background	that	will	look	right	to	you.
Of	course,	it’s	not	of	high	importance	in	this	game	though,	this	is	just	an	example	to	teach
you	how	to	use	GameMaker’s	background	capabilities.

Now,	we	will	go	through	the	process	of	adding	a	background.	Create	your	new
background	and	use	the	naming	convention	bg_<name>.	If	you	downloaded	it	or	made	it
with	an	external	program,	click	on	Load	Background	and	navigate	to	the	image	file.
Otherwise,	use	the	built-in	editor	and	make	something.	The	dimensions	should	be	1024	by
768,	as	those	are	the	dimensions	of	our	room.	It	doesn’t	need	to	be	perfect,	as	this	is	just	a
simple	test	game	and	if	you	are	on	a	development	team,	there	is	probably	a	graphic	artist
to	handle	sprites	and	backgrounds	in	commercially	published	games.

Once	you’ve	finished	creating	the	background,	you	can	add	it	to	your	game.	To	do	this,
open	up	your	room	and	select	the	backgrounds	tab.	First,	select	the	checkbox	that	says
Visible	when	room	starts.	Then	select	your	background	via	the	button	underneath	the
Foreground	image	checkbox.	Voilà,	your	background	will	have	been	added:

Sounds
Sounds	can	completely	change	a	game.	Some	games	are	even	critically	acclaimed	for	their
soundtracks.	They	also	can	serve	as	things	to	notify	the	player	that	something	has
happened	(for	example,	they	have	hit	a	wall,	or	their	score	was	incremented,	and	so	on).
We	will	overview	the	second	use	of	sounds	rather	than	create	soundtracks,	but	the	first	is
quite	easy	to	stem	from	this.

We	will	create	a	few	sounds	for	when	an	enemy	dies,	when	the	player	gets	hit,	and	when
the	player	advances	to	the	next	room	(which	we	will	implement	at	the	last	stage	of	this
chapter).	Recall	that	the	naming	convention	is	snd_<name>.	GameMaker:	Studio	does	not
include	a	built-in	sound	editor,	so	you	will	need	to	make	these	from	an	external	program
or	download	some	royalty-free	assets	online.	The	Edit	Sound	button	in	the	sound
resource	window	is	just	to	open	up	an	external	sound	editor	if	you	linked	one.	The	first
button	next	to	the	Name	box	is	for	loading	the	sound,	the	one	after	that	plays	and	loops	it
for	you,	and	the	third	one	stops	the	playback	of	the	sound.	You	can	also	adjust	the	base
volume	of	the	sound	with	the	slider.

Once	you’ve	loaded	your	three	sounds,	you	can	use	them.	The	first	one	is	for	when	the
enemy	dies.	This	should	be	run	when	a	bullet	hits	it,	so	go	to	the	object	for	the	player’s
bullet.	Upon	collision	with	each	enemy	object,	it	should	play	the	sound.	To	do	this,	the
main1	tab	contains	an	action	called	Play	Sound	located	under	the	Sound	section.	It	is	the
first	option.	Drag	it	in	underneath	the	previous	actions	and	have	it	play	the	enemy	death
sound	once	(that	means	leave	the	loop	parameter	as	false).	If	you	wanted	to	make	a
sound	play	continuously	(as	you	might	for	a	soundtrack),	you	would	set	the	loop
parameter	to	true.	Make	sure	you	did	this	for	when	the	bullet	hits	either	of	the	two
enemies.	Next	is	the	sound	for	when	the	player	jumps	back	to	the	start.	This	is	played
upon	collision	with	an	enemy,	so	under	each	Collision	event	with	the	enemy	inside	of	the
player	object,	have	the	designated	sound	play	after	the	health	is	decremented	but	before
they	jump	to	start.	We	will	do	the	third	sound	(for	advancing	to	the	next	room)	after	we
have	implemented	that.	Test	your	game	to	make	sure	the	right	sounds	play	when	you
expect	them	to.

Tip
My	sounds	aren’t	always	playing!	How	do	I	fix	this?

Make	sure	that	your	sounds	are	set	to	be	played	on	both	collisions	in	both	the	bullet	and
the	player.	If	that	doesn’t	work,	perform	a	clean	build	with	F7	to	test	your	game	again.

Keys	and	locks	and	advancing	to	the	next	room
One	final	thing	you	can	do	that	really	makes	the	game	good	is	to	add	more	levels.	So	far,
you	have	been	experimenting	in	one	room	that	you	can’t	escape	from,	even	though	the
game	is	called	Escape	the	Dungeon.

So	start	with	creating	a	second	level.	Make	sure	to	put	in	a	player,	enemies,	walls,	and
most	importantly	the	health	control	object.	Also,	add	in	your	background.	When	you	have
finished	creating	your	new	room,	create	two	new	sprites.	One	should	be	a	lock,	and
another	should	be	a	key.	Once	you	have	created	these,	create	an	object	for	each.	Both
should	be	solid.	Then,	that’s	it	for	them.	Inside	of	your	player,	create	a	variable	inside	of
your	Create	event	called	has_key	and	set	it	to	0.	Then,	add	an	event	for	colliding	with	the
key,	and	have	it	assign	a	value	of	1	(meaning	true)	to	that	variable.	Also,	destroy	the
instance	of	the	key.	Next,	add	a	Collision	event	with	the	lock.	Test	the	variable	has_key	to
ensure	that	it	is	set	to	true	(meaning	you	have	already	collected	the	key).	The	sound	for
going	to	the	next	room	should	be	played	and	the	player	should	go	to	the	next	room.	You
already	know	how	to	make	it	play	the	sound,	so	put	that	in.

Next,	in	order	to	go	to	the	next	room,	go	to	the	main1	tab	and	drag	out	the	second	option
under	Rooms;	it’s	a	white	rectangle	with	a	green	arrow	pointing	to	the	right.	Now	the
thing	about	this	one	is	that	it	will	go	to	the	room	that	follows	the	current	one	on	the
resource	tree.	To	be	sure	that	it	goes	to	the	right	one	and	to	not	have	to	worry	about	the
ordering,	you	can	alternatively	use	the	Different	Room	action,	which	is	the	white
rectangle	with	a	green	arrow	pointing	downwards,	and	then	you	just	select	the	room	the
player	should	go	to	via	its	name.

Now,	go	to	your	original	room	and	add	a	key	and	lock	somewhere.	Test	your	game	to
make	sure	that	it	advances	to	the	next	room.	If	you	did	everything	right,	then	your	player
should	go	to	the	next	room	if	they	got	the	key	and	hit	the	lock.	Nice	job!

Summary
That	was	one	hefty	chapter.	You	learned	a	lot	about	GameMaker	for	just	one	chapter.	Just
to	review,	you	learned	about	movement,	collision,	timing,	sounds,	backgrounds,	variables,
and	much	more.	Did	you	understand	everything?	If	you	were	confused	about	anything,	go
back	and	review	the	content.	You	can	also	re-read	what	you	put	in	your	game	project	or
search	in	the	documentation	for	subjects	related	to	your	question.	The	Using	GameMaker
section	of	the	documentation	is	helpful	for	drag	and	drop	programming,	which	we	have
used	in	this	chapter.	Make	sure	that	you	understand	everything	we	did	too,	at	least	to	a
good	extent,	as	we	will	continue	to	use	the	aspects	of	this	chapter	and	build	upon	them.
This	does	provide	practice,	but	it	is	also	important	to	at	least	understand	the	basics	so	you
can	further	advance	your	knowledge	of	them.	Once	you	think	you’ve	got	everything
down,	tackle	these	review	questions,	then	the	drills.

Review	questions
1.	 What	is	the	difference	between	the	Keyboard	and	Key	Press	event?
2.	 What	is	the	difference	between	the	Move	Fixed	and	Move	Free	actions?
3.	 What	is	the	difference	between	regular	and	precise	collision	checking?
4.	 How	would	you	define	“steps”	in	GameMaker?	How	many	steps	are	there	per

second?	How	does	this	relate	to	alarms?
5.	 What	are	some	of	GameMaker’s	built-in	variables	and	what	are	they	commonly	used

for?
6.	 What	are	the	four	values	of	direction	and	which	directions	are	they	associated	with?
7.	 What	is	depth?	How	is	it	used?

Quick	drills
1.	 Add	narrative	to	your	game	by	using	the	Display	Message	action	under	Info	in	the

main2	tab.	You	can	add	a	story	at	the	beginning	of	levels,	based	on	collision	events,
and	so	on.	Experiment	with	the	display	messages	to	create	an	engaging	story	to	draw
the	player	into	your	game.

2.	 Make	a	new	enemy	in	your	game.	Implement	the	changing	sprite	based	on	the
direction	feature	that	we	had	for	the	other	enemies,	but	put	in	some	kind	of	new
feature	so	that	the	previous	enemies	don’t	feature.	Examples	of	such	features	might
include	providing	it	a	health	system,	but	if	you	do	that,	you	cannot	use	the	health
variable	for	your	enemies	and	must	use	a	new	one	because	the	health	variable	is
global;	a	new	weapon,	such	as	bullets	that	behave	in	a	new	way	such	as	passing
through	walls;	a	boss	enemy	that	has	multiple	attacks,	using	the	event	we	used	before
for	random	shooting;	and	lots	of	health.

3.	 Add	a	few	more	levels	to	your	game,	each	with	a	lock	and	key	and	everything.	Then,
create	a	final	level	in	which	you	have	finally	escaped	the	dungeon	and	have	your
freedom.	Using	the	Display	Message	action	from	Quick	Drill	1,	create	some	kind	of
winning	message	to	alert	the	player	to	their	freedom.

4.	 Add	a	feature	where	the	player	can	regain	their	health,	either	by	pickups	or	gradual
regeneration.	Pickups	would	involve	hitting	a	pickup	and	getting	more	health.
Regeneration	would	entail	gaining	more	health	every	time	an	alarm	goes	off.	Make
sure	to	cap	the	health	so	that	the	player	cannot	get	too	much	health.	You	would	cap	it
by	assigning	a	variable	to	hold	the	difference	between	the	total	possible	health	and
the	current	health.	If	that	variable	is	less	than	the	normal	increase,	then	increment	the
health	by	that	variable.	Otherwise,	increment	it	by	the	normal	amount.

5.	 This	is	more	of	a	long	drill	than	a	quick	drill,	but	it	is	an	important	one.	Open	up	this
game’s	Global	Game	Settings.	Under	the	Windows	tab	at	the	top,	change	Display
Name,	Splash	Screen,	and	Game	Icon	(you’ll	need	a	*.ico	and	a	*.png	for	the
latter	two).	The	splash	screen	shows	up	when	you	launch	the	game,	and	the	game
icon	is	what	appears	on	the	taskbar	and	in	the	top	left	corner	of	the	game	window	on
Windows	when	the	game	is	being	run,	and	the	icon	that	shows	up	in	File	Explorer.
It’s	possible	that	these	changes	won’t	take	effect	when	compiling	your	game,
depending	on	whether	you	are	using	the	Standard	Edition	or	not	(Standard	will	not
have	the	changes	take	effect).	At	the	side	is	the	Graphics	tab.	It	has	unfortunately
become	somewhat	of	a	cliché	to	use	basic	windowing	in	GameMaker	rather	than
using	its	fullscreen	capabilities,	which	is	a	shame.	To	battle	this,	select	the	Start	in
Fullscreen	mode	option.	Save	your	changes	there.	The	only	issue	with	fullscreen	in
this	game	is	that	it	does	not	work	well	with	our	code	that	makes	popup	messages,	so
we’re	really	just	showing	you	how	to	set	up	fullscreen.	Now,	you	will	create	a
standalone	application	of	your	game.	To	do	this,	go	to	File,	then	select	Create
Application.	The	options	we	recommend	are	either	the	Windows	NSIS	Installer	or
Single	runtime	executable.	The	first	creates	an	installer	to	install	the	game	to
Program	Files,	and	thus	the	directory	you	choose	here	is	just	for	where	the	installer
is	located.	The	second	option	creates	one	executable	(.exe)	file	as	a	standalone	file

with	everything	packaged	inside	(very	helpful	for	rapid	testing),	and	thus	the
directory	you	choose	here	is	where	the	executable	will	appear.	Do	either	of	the	two
and	then	run	your	game.	Either	of	these	options	provides	you	with	the	opportunity	to
distribute	a	playable	version	of	the	game	and	the	end	user	will	not	need	to	have
GameMaker:	Studio	or	GameMaker:	Player	installed	in	order	to	play.

6.	 Finish	editing	your	game	and	then	save	it.	Now	select	File	at	the	top	left,	and	then
Export	Project.	You	can	also	use	the	keyboard	shortcut	Ctrl	+	Alt	+	E	to	export	it.
What	this	does	is,	it	creates	a	zipped	up	version	of	your	work	that	contains	all	your
assets	and	everything	associated	with	the	project.	This	is	very	useful	for	when	you
want	to	work	on	the	project	on	multiple	computers	or	share	it	with	other	people.	Save
the	file	you	get	(a	.gmz	file)	to	a	flash	drive	or	an	online	storage	service.	Find	another
computer	with	GameMaker:	Studio	installed	and	open	up	the	.gmz	file.	If	you	can’t
find	such	a	computer,	just	open	the	.gmz	on	your	current	computer.	You	will	find	that
everything	you	had	been	working	on	will	be	right	there.	Use	this	functionality
whenever	you	need	to	share	your	game	project	or	work	on	it	elsewhere,	as	.gmz	files
are	compressed	files	of	your	entire	project,	and	thus	take	up	much	less	space.

An	alternative	way	to	access	a	project	from	multiple	computers,	and	perhaps
better,	is	to	use	source	control	with	a	Git,	Mercurial,	or	SVN	repository.	Google
how	to	set	this	up,	it’s	pretty	easy.	Here	is	the	link	to	a	good	tutorial	on	setting
up	Git	https://www.reddit.com/r/gamemaker/wiki/git-gms.

With	that,	you	have	completely	finished	this	game	in	drag	and	drop	programming.
Congratulations!	It	was	a	lot	to	create	for	just	one	chapter.	But	you	did	it.	Up	next	is
recreating	this	entire	game	in	the	GameMaker	Language	and	adding	some	more
functionality	with	that	to	show	what	the	language	can	do	to	extend	upon	the	limitations	of
drag	and	drop	programming	in	GameMaker:	Studio.

https://www.reddit.com/r/gamemaker/wiki/git-gms

Chapter	3.	Introducing	the	GameMaker
Language
This	chapter	will	introduce	you	to	the	GameMaker	Language,	which	is	the	way	that
developers	who	use	GameMaker:	Studio	explore	its	full	possibilities	and	can	directly
program	their	games	in	a	more	authentic	programming	environment.	We	will	focus	on
GameMaker	Language	(GML)	for	the	remainder	of	this	book.	The	previous	chapter	taught
drag	and	drop	programming	to	provide	some	familiarity	with	the	GameMaker:	Studio
environment	and	provide	a	base	game	to	model	for	this	chapter.	The	first	chapter	taught
many	different	basic	aspects	of	programming	in	GameMaker,	such	as	input,	collision,
variables,	and	more.	Few	people	interested	in	making	advanced	games	continue	to	work
exclusively	in	the	drag	and	drop	environment,	as	there	are	a	lot	of	reasons	that	the	GML	is
far	superior.	If	you	have	any	experience	with	the	Java	or	C++	programming	languages,	it
might	help,	as	those	taught	object-oriented	principles,	but	is	definitely	not	necessary:

When	drag	and	drop	programming	is	used,	the	GameMaker	compiler	must	convert	it
to	code,	then	directly	compile	it	to	machine	code	to	be	executed.	When	it	does	this
conversion	to	code,	it	is	unfortunately	not	clean	and	can	have	excess	code	that	slows
your	game	and	makes	it	act	in	a	way	you	would	not	expect.	GML	gives	you	direct
control	over	your	game	so	that	you	are	in	complete	control	of	what	is	happening
behind	it.
Programming	in	the	GML	makes	it	easier	to	find	and	troubleshoot	problems	as	you
have	directly	programmed	everything	and	thus	have	an	easier	time	understanding
how	everything	is	working	(or	isn’t).
The	drag	and	drop	programming	environment	is	very	limited	and	there	are	many
functions	that	it	does	not	contain,	which	are	vital	for	the	success	of	a	game	made	in
GameMaker.	This	becomes	especially	apparent	as	you	really	want	control	over	all
aspects	of	your	game.
GML	is	much	more	low-level	(closer	to	machine	code-like	languages	such	as	C	or
C++,	but	not	so	close	that	you	need	to	write	code	to	long	extents)	than	the	drag	and
drop	programming	environment.	This	means	you	can	do	more	in	it	and	have	much
more	control.	Most	of	the	drag	and	drop	functions	are	high-level,	which	limits	what
you	could	do,	in	turn	limiting	your	games.

These	are	a	few	of	the	major	reasons	that	GML	is	superior	to	drag	and	drop	when	it	comes
to	full-scale	game	development,	but	there	are	more,	which	you	might	find	as	you	continue
to	develop	games	in	GameMaker.	In	the	last	game,	you	might	have	noticed	only	a	few
issues	that	stemmed	from	working	in	the	drag	and	drop	environment,	but	when	it	comes	to
full-scale	games	that	you	will	create	in	GameMaker:	Studio,	the	Game	Maker	Language	is
definitely	the	way	to	go.

Remaking	Escape	the	Dungeon	in	the
GML
So	now	that	you’ve	heard	enough	about	why	to	use	the	GML,	let’s	begin	learning	it.	It	will
be	helpful	to	open	the	project	from	the	previous	chapter,	as	we	will	be	copying	much	of	it
with	edits	here	and	there	to	make	the	game	better.	Open	another	instance	of	GameMaker:
Studio	and	create	a	new	project,	and	name	it	escapeTheDungeonGML.	You	will	need	to
recreate	the	resources,	but	you	can	retrieve	your	image	and	audio	assets	from	the	previous
game.

Remaking	the	sprites
Follow	these	steps	for	remaking	your	game’s	sprites:

1.	 When	you	create	your	new	sprite	(let’s	do	the	player’s	sprite	for	now)	name	it	and
then	select	Load	Sprite.	Navigate	to	<original	Escape	the	Dungeon	root
directory>\sprites\images	and	you	will	find	all	the	images	of	your	entire	project.
It’s	unfortunately	not	organized	into	subfolders,	but	there	shouldn’t	have	been	too
many	sprites	in	the	last	project.	Select	the	frontal	view	we	made	first	in	the	last
chapter.

2.	 To	add	your	other	subimages,	select	Edit	Sprite	and	the	familiar	old	window	should
open	up.	Along	the	top,	where	the	other	buttons	we	have	used	before	are,	is	a	button
with	a	similar	function	to	the	white	rectangle	with	the	plus	logo	on	it,	but	instead	of	a
white	rectangle	with	a	plus,	it	is	a	manila	folder	with	a	plus,	as	you	might	find	in	a
filing	cabinet.	This	one	is	two	buttons	down	from	the	first	button	we	learned,	the
white	dog-eared	page	that	adds	your	image	0	and	will	load	a	new	subimage	from	a
file	(for	example,	image	1,	image	2,	image	3,	…,	and	image	n)	into	your	sprite.	You
can	navigate	to	the	same	directory	as	you	did	before.	When	you	add	these	new
images,	make	sure	the	subimages	end	up	in	the	same	order	as	in	the	previous	chapter
—the	front,	back,	right,	and	left	views.	These	are	the	images	you	replicate	for	the
player.

3.	 Also,	append	four	more	subimages	to	your	player	sprite	to	move	to	the	northeast,
southeast,	southwest,	and	northwest	in	that	order.	You	will	have	added	four	more
subimages	to	your	sprite,	four	more	that	you	had	not	already	created.	Follow	this
order	as	it	is	easy	to	remember	(it’s	just	a	clockwise	direction)	as	shown	in	the
following	screenshot:

Now,	we	will	modify	the	collision	mask	of	the	player	sprite.	This	is	so	that	we	do	not
have	to	use	precise	collision	checking	(which	does	have	its	problems,	such	as	in
speed	and	the	fact	that	it	isn’t	always	as	precise	as	we’d	like)	and	so	that	we	don’t
have	the	issue	of	large	bounding	boxes	with	regular	collision	checking.	The	collision
mask	is	the	region	of	a	sprite	that	another	object	must	hit	in	order	for	a	collision	to	be
triggered.

4.	 In	order	to	edit	it,	select	the	Modify	Mask	button	on	the	main	properties	screen	for
the	player	sprite.	The	top	right	box	(labeled	as	Bounding	Box)	on	the	left	pane	is

what	we	care	about	right	now.	A	screen	like	the	following	should	appear:

5.	 In	order	to	modify	our	collision	mask,	we	must	select	the	Manual	bullet,	which	will
allow	us	to	edit	the	four	boxes	below	it.	The	numbers	in	the	boxes	refer	to	how	many
pixels	in	from	the	related	edge	the	collision	mask	should	start	(for	example,	setting
the	Bottom	box	to	50	would	make	the	bottom	edge	of	the	collision	mask	start	at	50
pixels	from	the	top	of	the	sprite,	or	setting	the	Right	box	to	50	would	make	the	right
edge	of	the	collision	mask	start	at	50	pixels	in	from	the	right	side	of	the	sprite).	Know
that	setting	collision	masks	and	the	numbers	you	use	aren’t	at	all	related	to	the
inverted	y	axis	in	rooms.

6.	 Set	the	collision	mask	so	that	it	starts	2	pixels	in	from	every	edge.

Note
The	automatic	values	that	are	already	there	before	you	modify	them	are	not	values
that	make	the	entire	sprite	the	mask,	so	make	sure	that	you	have	the	mask	begin	2
pixels	in	from	the	dimensions	of	the	sprite,	not	from	the	values	you	have	already	seen
before	you	in	the	boxes.	For	example,	if	your	sprite	is	a	50	x	50	sprite	and	you	want
to	start	your	mask	2	pixels	in	on	every	edge,	your	values	from	left	to	right	and	top	to
bottom	would	read	2,	48,	2,	and	48.

The	section	labeled	Shape	refers	to	what	shape	the	collision	mask	should	take.	You	might
think	precise	is	the	best,	but	again,	precise	can	have	its	issues.	Also,	most	games	(not	just
in	GameMaker)	have	hitboxes	(also	known	as	collision	masks)	based	on	rectangles,	so
most	of	the	time	you’ll	probably	want	to	choose	the	Rectangle	option.

You	might	as	well	get	all	of	your	sprites	out	of	the	way	now,	as	we	don’t	need	to	do	the
sprites	and	the	objects	together,	step-by-step,	when	the	sprites	have	already	been	made.
Take	a	moment	to	put	in	all	the	sprites	from	the	original	Escape	the	Dungeon	game	so	you
have	them	available	in	this	version	of	the	game	right	away.	Also,	for	any	other	sprites	that
aren’t	rectangular	(such	as	for	the	enemy),	or	close	to	it,	you	might	want	to	modify	the

collision	mask.

Remaking	the	player	object
As	always,	start	making	this	player	object	by	assigning	it	a	name	and	a	sprite.	Also,	set	it
as	solid.	Now,	in	the	previous	chapter	we	had	you	start	with	a	Keyboard	<Left>	event.
But	that	was	a	Drag	and	Drop	event!	Moving	forward,	we	only	want	to	use	Drag	and
Drop	when	necessary!	This	necessity	occurs	when	the	event	is	simple	enough	to	not	cause
problems	and	it	would	be	hard,	tedious,	or	verbose	to	write	in	code,	or	when	you	cannot
do	the	event	in	code	(and	there	are	times	that	this	happens).	It	will	definitely	continue	to
be	necessary	for	setting	up	properties	of	your	different	resources	and	to	add	four	special
kinds	of	events	that	we	will	use	most	often,	which	we’ve	used	before:	the	Create,	Alarm,
Step,	and	Draw	events!

Understanding	the	four	events
Most	of	what	you	do	in	your	games	should	be	handled	using	these	four	events,	(but	do
note	that	there	are	definitely	times	when	you	will	need	to	use	others;	and	these	will	mainly
be	under	the	Other	or	Asynchronous	sections	in	the	event	listing).	Become	familiar	with
and	understand	the	four	events	we	listed	earlier,	as	you	will	use	them	very	often.	For
events	that	have	multiple	types,	they	are	listed	in	an	evaluation	order:

Create	events:	These	are	run,	once,	upon	the	creation	of	an	instance	of	the	object,
and	are	commonly	used	for	variable	initialization	purposes.
Alarm	events:	These	are	used	for	the	timing	and	they	occur	once	a	specified	alarm
has	counted	down	to	0.	Every	instance	of	every	object	has	twelve	alarms	that	can	be
used.
Step	events:	These	are	events	inside	your	objects	that	are	run	on	every	single	step.
The	number	of	steps	per	second	is	defined	by	your	room	speed,	so	a	room	speed	of
30	means	that	there	are	30	steps	a	second	and	your	Step	events	should	be	run	30
times	every	second.	Most	things	are	handled	in	your	Draw	event.	There	are	three
different	kinds	of	Step	events.

Begin	Step:	This	is	the	kind	of	step	event	you	would	choose	when	you
absolutely	always	need	something	to	run	first	in	an	instance	in	terms	of	an
evaluation	order.
Step:	This	is	the	basic	kind	of	step	event	that	will	work	for	you	most	of	the	time.
It	is	run	in	the	middle	of	the	other	events.
End	Step:	This	is	the	kind	of	step	event	you	would	choose	when	you	absolutely
always	need	something	to	run	last	in	an	instance	in	terms	of	evaluation	order.

Draw	events:	The	Draw	events	are	what	control	what	is	displayed	on	the	screen	of
your	game.	Not	all	drawing	requires	a	Draw	event;	for	example,	if	you	are	just
drawing	an	object	and	nothing	else,	that	does	not	require	one,	but	any	special
drawing	with	code	must	be	put	in	a	Draw	event.

Draw:	This	is	the	kind	of	drawing	event	that	will	work	for	many	of	your
drawing	needs,	and	thus,	you	will	mostly	need	only	to	use	this	one.	This	also	has
more	types:

Default	Draw:	This	is	where	you	don’t	even	put	in	a	Draw	event	or	any
drawing-related	actions	and	just	an	object’s	sprite	is	shown,	assuming	it	was	set
to	visible.

Custom	Draw:	This	is	where	you	will	put	in	a	Draw	event	and	use	drawing-
related	functions.	Unless	you	tell	the	object	to	also	draw	itself,	Custom	Draw
will	not	draw	the	object,	which	is	why	we	put	a	Draw	Self	action	into	the	game
from	the	first	chapter.

Draw	Begin:	This	is	like	the	Begin	Step	event	where	it	makes	sure	that
something	is	drawn	before	the	main	Draw	event;	again,	the	event	is	local	to
every	instance.

Draw	End:	This	is	like	the	End	Step	event	where	it	makes	sure	something	is
drawn	after	the	main	Draw	event;	again	the	event	is	local	to	every	instance.

Draw	GUI	events:	GUI	stands	for	graphical	user	interface,	so	these	events	are
great	for	creating	a	heads-up	display	to	show	different	important	notes	to	the
player,	such	as	their	health,	lives,	ammo,	and	so	on.	The	Draw	GUI	Begin	and
Draw	GUI	End	functions	are	similar	to	the	regular	Draw	Begin	and	Draw	End
events,	but	they	are	specifically	for	the	GUI.	The	Draw	GUI	events	are	not
affected	by	any	changes	in	view	of	the	room,	rescaling,	rotation,	or	anything	else
and	exist	on	a	separate	layer	of	their	own,	which	appears	above	everything	else.
The	other	kinds	of	Draw	events,	while	they	do	exist	and	are	in	use,	are	less
important	to	know,	but	the	ones	mentioned	here	are	most	important	for	you	to
know.

That	was	one	long	list	of	events,	but	it	was	an	important	one.	You’ll	be	using	all	of	these
events	quite	often	in	your	game	creation.

Starting	to	code	your	player	object
By	now,	you	should	be	able	to	guess	that	you	want	to	add	a	regular	Step	event	to	your
player	object,	so	do	that.	Anytime	we	want	to	add	a	Step	event	rather	than	Begin	Step	or
End	Step,	know	that	you	should	add	the	regular	Step	event:

Now,	for	the	rest	of	the	game,	there	is	exactly	one	action	that	you	will	be	using,	but	there
are	two	more	that	you	should	know	about.	They	are	all	located	under	the	Code	section	of
the	control	tab.	The	first	action	there,	called	Execute	Code,	allows	you	to	directly	put
pieces	of	code	directly	into	the	object.	The	next	one	is	how	you	call	a	script	via	drag	and
drop	and	you	provide	the	script	name	and	up	to	five	arguments.	If	you	call	a	script	via
code,	which	is	probably	the	better	option,	you	can	supply	up	to	16	arguments.	Scripts	are
how	you	can	create	your	own	functions	in	the	GML	for	you	to	reuse	or	make	code	more
manageable.	We’ll	learn	more	about	these	later.	The	third	action	that	you	see	is	for	putting
comments	in	your	drag	and	drop	code,	which	you	might	use	to	leave	little	notes	for
yourself	rather	than	regular	code	commenting,	as	that	is	better	done	in	the	direct	code.

Begin	the	coding	portion	of	your	own	game	by	dragging	an	Execute	Code	action	into
your	Create	event.	The	code	editing	window	will	now	appear:

This	window	is	a	familiar	text	editor.	The	checkmark	does	the	same	as	usual,	as	does	the
Applies	To	section	(Self	means	the	code	is	run	from	the	object	this	code	is	written	in	-	so
in	this	case	self	would	mean	the	code	is	run	by	obj_PC;	Other	means	it’s	run	as	though
called	from	an	object	you	are	colliding	with—but	remember	that	we	won’t	use	drag	and
drop	collision	events	anymore,	so	we	can’t	really	use	it;	and	Object	means	the	code	will
run	as	though	called	from	every	instance	of	a	particular	object).

The	manila	folder	with	an	arrow	is	to	load	code	from	a	*.txt	file,	the	floppy	disk	is	to
save	the	code	to	a	*.txt	file,	and	the	printer	is	to	print	all	your	code	for	a	hard	copy.	The
arrows	are	for	undo/redo;	the	following	three	buttons	are	for	cut,	copy,	and	paste	(also

usable	with	Ctrl	+	X,	Ctrl	+	C,	and	Ctrl	+	V,	respectively).	The	magnifying	lens	opens
your	Find	and	Replace	panel,	also	accessible	with	Ctrl	+	F,	where	you	can	find	any	text
and	change	it	to	something	else.	The	same	button	and	keyboard	shortcut	closes	it.	You
probably	don’t	want	to	click	the	following	two	buttons,	as	these	check	your	code	for
errors,	which	is	very	helpful.

There	is	one	very	nifty	feature	that	you	will	want	to	use	often	when	using	the	Execute
Code	action.	You	can	name	(and	this	name	will	show	up	in	the	Actions	box	in	any	event
in	any	object)	them	by	typing	///<name>—three	forward	slashes	and	any	name	you	want
—at	the	top	of	your	code.	For	this	code	block,	because	we	are	going	to	be	initializing
variables,	you	should	name	it	Initialize	Variables.

Now	let’s	add	some	actual	code	here.	Set	the	variable	spd	to	5.	This	will	be	the	player’s
speed.

Making	the	player	move

Close	that	out,	add	a	Step	event	to	your	object,	and	drag	an	Execute	Code	block	into	that
one.	Name	the	block	Movement.

This	game	example	will	have	the	player	move	in	eight	different	directions—all	the	points
of	the	compass.	In	the	previous	chapter,	you	started	to	create	your	player	object	by	using	a
Keyboard	<Left>	event.	To	recreate	your	keyboard	event	in	GML,	you	will	use	the
keyboard_check(key)	function,	where	the	key	parameter	is	the	key	whose	state	(held	or
not	held)	you	want	to	check.	If	you	are	using	a	letter,	for	example,	the	letter	A,	then	your
key	parameter	would	be	the	value	of	ord('A'),	meaning	that	you	would	type	in
keyboard_check(ord('A'))	to	check	whether	the	A	key	is	being	pressed.	When	using
ord(str),	you	must	always	pass	a	capital	letter	in	single	quotes	as	your	str	parameter.

The	section	on	Keyboard	Input	is	accessible	by	navigating	to	Reference	|	Mouse,
Keyboard	and	Other	Controls	|	Keyboard	Input,	and	it	is	very	important	that	you
reference	this	often,	for	obvious	reasons:

This	contains	a	complete	list	of	all	virtual	keys,	which	refer	to	non-alphanumeric	character
keys,	such	as	arrow	keys,	Shift,	Esc,	spacebar,	and	so	on.	We	will	first	use	the	virtual	key
constants	for	the	up	and	right	arrow	keys	on	the	keyboard,	as	northeast	(up	and	right)	is
the	first	key	combo	that	we	will	check	for,	given	that	we	are	putting	in	eight	movement
directions.	Look	at	that	page	in	the	documentation,	and	find	what	the	names	for	the	two
keys	are;	Constant	refers	to	the	parameter	that	you	pass	while	Description	is	what	the
key	is	on	the	keyboard.	You	should	find	that	the	up	key	is	represented	by	vk_up	and	the
right	key	is	represented	by	vk_right,	where	vk	stands	for	virtual	key.	Thus,	to	check
whether	the	up	arrow	key	is	being	pressed	you	would	type	keyboard_check(vk_up).	But
of	course,	it	can’t	be	on	its	own,	just	as	a	statement	in	the	middle	of	your	code	that
evaluates	to	a	Boolean	value.	Instead,	put	it	inside	an	if	statement,	along	with	a	check	for
the	right	key,	so	that	it	looks	like	the	following:

if	(keyboard_check(vk_up)	&&	keyboard_check(vk_right))	{

//code

}

Typing	an	==	true	here	is	unnecessary,	as	not	typing	it	directly	implies	that	you	are
testing	to	see	if	the	return	value	of	the	function	calls	is	true.	Now	recall	that	in	the	last
game,	pressing	the	right	key	would	make	the	player	move	right	at	a	speed	of	3.	When
putting	code	inside	this	if	statement,	you	won’t	be	using	the	speed	variable.	Instead,	we
will	directly	modify	the	x	and	y	coordinates	of	the	player,	which	is	very	common	to	do,
and	that	gives	you	more	control.	It	also	means	you	don’t	have	to	check	for	a	key	release
with	the	function	keyboard_check_released(key).	In	terms	of	making	the	player	move

via	the	use	of	x	and	y	coordinates,	you	need	to	know	that	decreasing	x	makes	the	object
move	left,	increasing	it	makes	it	move	right,	decreasing	y	makes	the	object	move	up,	and
increasing	it	makes	it	move	down.	Changing	the	values	by	5	pixels	in	either	direction	is
also	common,	as	is	using	the	shorthand	+=	and	-=	operators.	In	order	for	the	player	to
move	diagonally	up	to	the	right	by	pressing	both	the	up	and	right	keys,	we	would	want	x
to	be	incremented	by	our	spd	variable	(remember,	we	set	that	to	5,	but	we’re	also	using
that	variable	so	we	can	easily	adjust	the	speed	later),	and	y	to	be	decreased	by	the	spd
variable.	The	code	would	look	like	this:

if	(keyboard_check(vk_up)	&&	keyboard_check(vk_right))	{

x	+=	spd;

y	-=	spd;

}

The	next	step	is	following	the	same	basic	code,	but	substituting	other	keys	for	the
function.	Find	all	the	other	arrow	key	constants	you	need	and	test	if	the	specified	keys	are
being	held,	then	act	accordingly.	Remember	to	use	+=,	-=,	and	x	and	y	appropriately,
depending	on	the	key.	You	will	also	want	to	use	else	if	statements	for	all	of	the	checks,
so	that	you	save	as	much	time	as	possible,	since	you	shouldn’t	check	all	of	the	if
statements	if	you	already	know	the	player	wants	to	move	in	a	certain	direction.	Also,	the
order	of	all	your	else	if	statements	should	be	all	the	diagonal	movements	first,	followed
by	the	regular	up,	down,	left,	and	right	directions.	In	this	way,	the	game	will	make	sure
that	the	player	doesn’t	want	to	move	in	any	of	the	diagonal	directions	before	testing
movements	directly	on	the	x	and	y	axis,	since	the	diagonal	movements	require	two	keys,
but	the	others	require	only	one,	so	we	should	check	for	the	more	specific	first.	Your
structure	will	look	something	like	this:

if	(keyboard_check(vk_up)	&&	keyboard_check(vk_right))	{

x	+=	spd;

y	-=	spd;

}

else	if	(keyboard_check(vk_down)	&&	keyboard_check(vk_right))	{

x	+=	spd;

y	+=	spd;

}

<...>

else	if	(keyboard_check(vk_up))	{

y	-=	spd;

}

else	if	(keyboard_check(vk_right))	{

x	+=	spd;

}

<...>

Note
It	is	a	good	habit	to	save	and	test	your	code	often.	It’s	especially	important	to	save	your
code	when	it	works	so	you	have	a	backup,	should	something	get	messed	up.	The	player
movement	is	a	great	time	to	demonstrate	this	importance.	As	you	are	coding	your
movement,	you	should	continually	check	that	the	player	is	moving	as	you	intend,	based	on
your	coding.	It	is	much	easier	to	catch	and	fix	an	error	earlier	rather	than	later.	When	it

comes	to	troubleshooting	code,	it	is	crucial	to	identify	where	the	code	started	to	fail.	In
general,	if	you	continually	test	your	program	you	will	notice	where	the	breakdown,	from
when	it	is	working	to	when	it	stops	working,	exists.	When	this	is	the	case,	you	know
where	the	error	must	be	and	where	to	focus	your	debugging.	Even	if	you	cannot	find	the
error	on	the	first	release,	many	games	release	patches	or	free	DLC,	and	Valve’s	Steam
distribution	system	especially	has	a	good	system	for	this.	Do	make	sure,	however,	that	you
carefully	pick	when	you	are	testing,	sometimes	you’ll	test	at	a	time	that	is	too	early	and
the	code	won’t	work	and	you’ll	have	to	wait	until	more	code	has	been	written.

Changing	the	subimage

So	your	movement	is	working	fine,	but	at	this	point,	you’re	not	really	using	your
character’s	subimages.	To	solve	this,	inside	your	if	statement	and	all	of	the	else	if
statements,	you	will	assign	a	value	to	the	variable	image_index,	a	variable	that	holds	the
current	subimage	of	the	sprite	an	object	is	using.	So	if	an	object	uses	image	3	of	its	sprite,
then	image_index	will	hold	a	value	of	3.	Remember	what	number	each	subimage
corresponded	to	in	your	sprite	when	you	assign	a	value,	and	also	that	the	subimage	values
always	start	at	0	(zero-based	indexing).	Your	code	should	follow	the	following	format:

if	(keyboard_check(vk_up)	&&	keyboard_check(vk_right))	{

		x	+=	spd;

		y	-=	spd;

		image_index	=	4;

}

Now	test	your	game	to	see	that	the	correct	subimages	are	displayed	and	the	movement	is
working	fine.

You	should	notice	that	your	sprite	changes	as	soon	as	you	hit	any	arrow	key	but	then
reverts	back	to	spinning	as	soon	as	you	stop	pressing	all	keys.	To	fix	this	problem,	set	the
value	of	the	variable	image_speed	to	0	in	the	object’s	Create	Event.

This	is	a	variable	that	refers	to	how	fast	the	object	cycles	through	its	sprite’s	subimages,
and	we	used	it	in	the	previous	chapter	whenever	we	told	the	player	object	what	subimage
to	change	to.	You	just	didn’t	realize	it.	Now	the	subimage	will	stay	to	what	it	was	and
never	cycle	through,	and	change	only	when	you	directly	make	it	change.

Collisions

As	of	this	moment,	the	player	can	pass	through	walls,	like	a	ghost,	as	we	haven’t	put
anything	in	about	collision.	Of	course,	the	player	shouldn’t	be	a	ghost,	so	we	need	walls.
Make	a	wall	object,	assign	it	a	sprite,	and	flag	it	as	solid.	Now,	we	need	to	tell	the	player
not	to	move	if	it	is	going	to	hit	one	of	these	walls.	Since	the	player	will	move	by	amounts
of	spd	pixels,	we	need	to	test	if	there	is	already	a	wall	where	the	player	wants	to	move.
The	place_free(x,	y)	function	comes	in	handy	here.	It	checks	whether	the	instance	that
calls	this	function	would	collide	with	any	solid	objects	if	it	were	at	the	x	and	y	parameters
passed	to	the	function.	If	there	is	no	collision,	the	function	returns	a	true	value	(allowing
the	player	to	move	in	our	case),	and	if	there	is	one,	it	returns	a	false	value	(indicating	that
the	player	cannot	move	in	our	case).	You	need	to,	along	with	making	sure	the	designated
keys	are	being	held,	ensure	that	there	would	be	no	collision	if	the	player	moved	(thus

meaning	you	should	use	the	&&	operator).	For	moving	to	the	northeast,	you	would	use	the
place_free	function	to	check	whether	(spd,	-spd)	relative	to	the	player	object	is	free	of
solid	objects	(in	this	case,	the	walls,	but	other	objects	later	on	will	be	set	as	solid).	To	do
this,	you	would	pass	the	place_free	variable	parameters	of	(x	+	spd,	y	-	spd)	within
the	current	if	statement	as	follows:

if	(keyboard_check(vk_up)	&&	keyboard_check(vk_right)	&&	place_free(x	+	

spd,	y	-	spd))

In	this	code,	if	the	up	and	right	keys	are	pressed,	and	the	place,	which	is	spd	pixels	to	the
right	of	the	player	and	spd	pixels	to	the	north	of	the	player,	is	free	of	all	solid	objects	(in
this	case,	currently	just	walls,	but	later	other	objects),	then	the	movement	code	will	be	run.

For	the	regular	vertical	and	horizontal	movements,	you	can	just	substitute	x	or	y	(meaning
without	modification),	respectively.	So	if	the	above	code	didn’t	check	about	holding	the
right	key,	and	it	was	strictly	for	moving	up,	then	you	could	substitute	(x,	y	-	spd).	Do
all	this	for	all	of	your	different	if	statements.	Then	put	walls	inside	your	room	to	create
another	maze.	Finally,	test	your	game	and	make	sure	that	things	are	working	as	they
should.

Coding	the	enemies
Your	player	is	working	perfectly	now,	so	we	can	begin	work	on	the	enemies.	Create	one
enemy	object.	Set	it	as	solid	so	that	the	player	will	not	walk	through	them.	Inside	a	Create
event	put	in	a	code	block.	First,	to	prevent	subimage	cycling,	set	the	image_speed	to	0.
Next,	we	will	use	the	choose(val0,	val1,	...,	val15)	function,	which	will	randomly
select	one	of	its	parameters	and	return	that	parameter.	You	do	not	need	to	pass	it	16
parameters,	but	you	have	the	option	to.	The	parameter	can	be	a	string,	integer,	variable,	or
constant:

1.	 For	this	game,	we	will	pass	the	function	to	two	different	strings:	horizontal	and
vertical.	The	return	value	of	the	function	should	be	put	inside	a	variable	called
walk_pattern.	Declaring	variables	in	GML,	at	least	for	this	part	right	here,	can	be
done	simply	by	typing	the	variable’s	name.	In	GML,	we	never	define	a	type	(such	as
int,	char,	and	so	on),	unlike	in	other	languages	such	as	C	or	C++.	Since	we	want	the
variable	walk_pattern	to	be	equal	to	the	return	value	of	the	choose	function,	we
would	just	type	walk_pattern	=	choose("horizontal",	"vertical");.	This	will
also	be	placed	within	the	code	for	the	Create	event.

2.	 You	also	need	to	set	a	variable	my_speed	(since	speed	is	already	a	designated	variable
we	need	a	different	name)	to	hold	the	value	of	choose	when	it	has	been	passed	the
arguments	2	and	-2.	For	this,	add	the	code	my_speed	=	choose(2,-2);.	We	will	use
this	variable	to	decide	the	initial	direction	of	the	enemy	after	its	axis	has	already	been
chosen.	Finally,	set	a	variable	already_set_start	to	false,	and	this	will	be	used	to
test	if	in	our	Step	event;	the	initial	direction	of	the	enemy	has	already	been	chosen
with	my_speed.	This	will	make	more	sense	once	you	start	coding	it	in	the	next	few
paragraphs.

For	now,	your	created	event	should	include	the	following:

image_speed	=	0;

walk_pattern	=	choose("horizontal","vertical");

my_speed	=	choose(2,-2);

already_set_start	=	false;

Now,	you	can	create	your	Step	event.	Make	two	new	blocks	of	code	called	Walk
Horizontal	and	Walk	Vertical.

Inside	the	horizontal	one,	make	an	if	statement	that	tests	to	see	if	the	variable
walk_pattern	is	equal	to	"horizontal".	All	of	the	following	code	should	go	inside	this
if	statement.

In	the	previous	chapter,	the	speed	variable	was	used	along	with	direction	to	make	the
enemies	move.	In	this	chapter,	we	will	not	use	that	variable.	Instead,	we	will	use	the
hspeed	variable,	which	refers	to	the	horizontal	speed	of	an	object.	If	it	is	positive,	the
object	is	moving	right,	and	if	it	is	negative,	the	object	is	moving	left.	We	can	make	the
enemy	move	left	or	right	at	random,	thanks	to	the	my_speed	variable	we	set	before.	Set	up
an	if/else	if	construct	that	first	tests	whether	my_speed	is	equal	to	2	and	also	requires

(using	the	&&	operator)	that	the	variable	already_set_start	is	set	to	false	so	that	the
startup	direction	(left	or	right)	is	not	set	multiple	times.	You	don’t	need	to	use	==	false,
instead	you	can	put	an	!	in	front	of	the	variable	(such	as	!already_set_start).	The	!	is
the	NOT	operator,	which	would	mean	here	if	already_set_start	is	not	true,	then	the	if
statement	can	evaluate	to	true.	If	this	if	statement	evaluates	to	true,	then	the	variable
hspeed	should	be	set	to	2,	and	the	subimage	should	be	set	to	that	of	the	enemy	moving	to
the	right.	If	the	if	statement	evaluated	to	false,	then	the	else	if	should	test	if
already_set_start	is	false,	and	if	so,	the	hspeed	variable	will	be	set	to	-2	and	the
subimage	to	that	of	the	enemy	moving	to	the	left.	So	far,	the	code	for	Walk	Horizontal
should	look	like	this:

///Walk	Horizontal

if	(walk_pattern	==	"horizontal")	{

			if	(my_speed	==	2	&&	!already_set_start)	{

						hspeed	=	2;

						image_index	=	2;	

			}

			else	if	(!already_set_start){

								hspeed	=	-2;

								image_index	=	3;

			}

			already_set_start	=	true;

}

The	same	idea	would	apply	to	the	code	for	the	vertical	movement	code,	but	you	will	be
testing	for	the	string	"vertical",	using	the	vspeed	variable	(for	vertical	speed),	and
substituting	different	values	for	image_index.

Test	your	game.	Your	enemies	should	randomly	move	horizontally	and	vertically,	but	you
will	quickly	notice	that	they	are	currently	going	right	through	the	walls.

We	will	now	put	in	code	for	when	the	enemy	collides	with	a	wall	or	another	enemy	and
must	reverse	its	direction	and	change	its	subimage	accordingly.	Outside	the	else	(in	your
horizontal	code),	put	in	another	if	statement.	Here,	we	will	use	the
collision_rectangle(x1,y1,x2,y2,obj,prec,notme)	function	to	see	whether	the
enemy	has	collided	with	a	wall,	the	player,	or	another	enemy.	This	function	will	return	the
ID	of	the	instance	collided	with,	if	there	is	one	or	the	keyword	noone	if	there	is	no
collision.	Put	this	function	into	the	if	statement	three	times,	with	an	||	(or)	separating
each	of	them	so	that	we	can	check	for	a	collision	with	a	wall	and	a	collision	with	another
enemy	and	a	collision	with	the	player.	Test	if	the	return	value	is	not	equal	to	the	noone
keyword	by	using	the	!=	operator.	But	first,	we	should	break	down	the	parameters:

The	x1	and	y1	parameters	are	the	coordinates	of	the	top-left	corner	of	the	rectangle
for	which	a	collision	will	be	checked;	x2	and	y2	are	the	bottom-right	corner	of	the
rectangle.
obj	is	the	object	to	check	for	a	collision	with.
prec	refers	to	if	it	should	use	precise	collision	checking	(true	for	precise,	false	for
regular),	although,	as	explained	before,	precise	collision	checking	isn’t	very	good	to

use.
notme	is	a	Boolean	parameter	that	refers	to	whether	a	collision	with	the	instance
calling	the	code	either	should	or	should	not	be	checked	for.	If	your	obj	parameter
was	the	same	object	that	the	instance	calling	the	code	belongs	to,	but	you	don’t	want
the	calling	instance	to	count	for	a	collision,	you	set	this	value	to	true,	and	if	you
want	a	collision	with	the	calling	instance	to	have	the	ability	to	occur,	or	if	this	is
unimportant	to	you,	you	can	set	the	value	to	false:

if	(collision_rectangle(x	+	<value	put	for	left	edge	of	bounding	box>,

y	+	<value	put	for	top	edge	of	bounding	box>,

x	+	<value	put	for	right	edge	of	bounding	box>,

y	+	<value	put	for	bottom	edge	of	bounding	box>,

obj_wall,	false,	false)	!=	noone

||	collision_rectangle(x	+	<value	put	for	left	edge	of	bounding	box>,

	y	+	<value	put	for	top	edge	of	bounding	box>,

	x	+	<value	put	for	right	edge	of	bounding	box>,

	y	+	<value	put	for	bottom	edge	of	bounding	box>,

	obj_enemy,	false,	true)	!=	noone

||	collision_rectangle(x	+	<value	put	for	left	edge	of	bounding	box>,

	y	+	<value	put	for	top	edge	of	bounding	box>,

	x	+	<value	put	for	right	edge	of	bounding	box>,

	y	+	<value	put	for	bottom	edge	of	bounding	box>,

	obj_PC,	false,	false)	!=	noone

You	don’t	have	to	type	it	like	this;	it’s	just	for	easier	readability.	Anyway,	let’s	break	all
this	down:

We	want	to	use	the	same	bounding	box	that	we	gave	to	our	enemy	here,	so	that	is
why	for	x1	and	y1	you	add	the	value	you	put	for	the	left	and	top	edges	to	x	and	y
(respectively),	and	is	also	why,	for	x2	and	y2,	we	add	the	values	we	put	for	the	right
and	bottom	edges	to	x	and	y	(respectively).
Next,	we	substitute	the	objects	we	want	to	check	for	collisions	with,	so	we	put	in
their	names.
The	next	parameter	is	whether	or	not	to	use	precise	collision	checking,	and	we	don’t
want	to	use	that,	so	that	should	be	false.
Finally,	the	last	parameter	is	the	notme	parameter.	Now	for	the	checks	for	the	wall
and	player,	we	can	set	this	to	false,	as	preventing	a	check	for	the	enemy	calling	the
code	is	irrelevant.	But	for	the	check	for	another	enemy,	we	need	to	set	the	parameter
to	true	(excluding	the	calling	instance),	as	they	would	thus	automatically	always	be
in	that	rectangle.

Make	sure	you	called	that	function	three	times	and	separated	the	three	calls	by	||	inside
your	if	statement.

Inside	the	curly	brackets	{	},	place	an	if/else	statement	where	it	tests	if	hspeed	equals	2.
If	so,	change	the	subimage	to	the	one	of	the	left	view	and	make	the	enemy	walk	in	the
opposite	direction	by	typing	hspeed	*=	-1,	which	multiplies	hspeed	by	-1.	Otherwise,
the	subimage	should	be	set	to	that	of	the	enemy	moving	right,	and	hspeed	should	also	be
reversed:

<if	statement	from	above>	{

				if	(hspeed	==	2)	{

									image_index	=	3;

									hspeed	*=	-1;

						}

						else	{

											image_index	=	2;

											hspeed	*=	-1;

						}

			}

Let’s	break	down	this	code:

Is	the	enemy	colliding	with	a	wall,	another	enemy,	or	the	player?
If	so,	test	whether	hspeed	equals	2,	because,	if	it	equals	2,	the	enemy	is	currently
moving	to	the	right,	and	if	not	it	is	moving	to	the	left:

If	it	does	equal	2,	set	the	subimage	to	that	of	the	enemy	moving	left,	then	reverse
the	direction	so	that	the	enemy	moves	left
Otherwise,	set	the	subimage	to	that	of	the	enemy	moving	right,	then	reverse	the
direction	so	that	the	enemy	moves	right

Now	do	the	same	collision	code	that	you	used	for	your	horizontal	code,	but	put	it	into	the
vertical	code,	and	of	course,	still	using	the	vspeed	variable	instead	of	hspeed	and	using
different	values	for	image_index.

Test	your	game	five	times	and	watch	the	direction	of	two	different	instances	of	the	enemy.

Did	you	notice	how	the	axis	the	enemies	travel	on	and	the	direction	they	start	off	with	is
always	the	same	(in	that,	the	same	instance	will	always	have	the	same	axis	and	start
direction	across	playthroughs)?	This	is	because	the	game	will	always	generate	the	same
seed	to	be	used	for	its	randomization	functions.	This	means	that	every	time	you	play	the
game,	each	instance	will	still	have	the	same	return	value	for	the	choose	function	that	it	had
before.	So	it’s	not	truly	random.	However,	you	can	make	seeds	completely	random	and
change	across	playthroughs	by	using	time.	Time	is	always	changing,	and	thus	if	you	use	it
to	set	a	seed,	your	games	will	always	be	different.

Random	seeds
For	this	game,	and	for	most	other	games	that	you	create,	you	should	set	the	random	seed
in	the	creation	code	(code	that	is	run	once	a	room	is	created)	of	a	room	that	is	shown
before	all	others	that	use	any	random	functions.	In	this	way,	all	of	the	random	functions
will	be	truly	random	across	playthroughs,	rather	than	just	random	once,	and	then	repeated.
To	set	this	up,	create	a	new	room	called	rm_setup	and	make	sure	that	it	is	at	the	top	of	the
Rooms	section	of	your	resource	tree.	That	way,	it	will	always	be	the	first	room	to	be	run.
Next,	under	the	settings	tab	is	a	Creation	code	button.	Clicking	on	it	will	open	the
familiar	text	editor:

There	are	three	functions	we	will	be	using	together	in	order	to	set	a	random	seed	based	on
time.	They	are	random_set_seed(val),	where	val	is	what	seed	you	want	to	be	set;
date_get_second_of_year(date),	where	date	is	the	date	to	check;	and
date_current_datetime().	The	first	function	allows	you	to	set	the	seed,	the	second
allows	you	to	find	the	second	of	the	year	based	on	the	date	parameter,	and	the	third	tells
you	the	current	date.	To	set	these	functions	up	so	that	you	eventually	have	a	completely
random	seed	based	on	time,	type	the	following	into	the	code	editor:

random_set_seed(date_get_second_of_year(date_current_datetime()));

In	this	code,	the	seed	will	be	set	to	the	second	of	the	year	based	on	the	current	date.	Note
that	the	way	we	are	currently	doing	this	isn’t	always	the	best	practice.	Evaluation	order
can	unfortunately	vary	based	on	target	platform	in	order	to	improve	optimization.	The
HTML5	module,	for	example,	might	evaluate	from	right	to	left	rather	than	left	to	right	as
done	in	Microsoft	Windows.	It	is	thus	not	necessarily	good	to	include	many	function	calls
inside	of	your	functions.	To	solve	this,	you	can	set	up	variables	that	hold	the	values	of
your	arguments,	and	pass	these	to	the	function.	We	also	want	to	use	the	var	keyword,
which	completely	sets	up	local	variables	that	are	destroyed	once	they	are	no	longer
needed.	These	variables	are	commonly	used	in	scripts	and	then	written	off	after	the	script
call	is	complete.

So	in	this	case,	we	will	type	var	arg	so	that	a	variable	arg	has	been	declared	local	to	the
room’s	creation	code	and	will	be	destroyed	when	no	longer	required.	Next,	we	assign	the
same	value	as	the	argument	we	passed	to	random_set_seed	and	then	pass	the	variable	to
the	function	instead	of	what	we	had	passed	to	it	before.	Thus,	the	variable	will	hold	a
value	of	date_get_second_of_year(date_current_datetime())	and	the	functions
would	work	just	the	same,	and	eliminate	any	problems	that	you	might	get	from	the
evaluation	order.

Next,	you	need	to	tell	that	room	that	it	needs	to	go	to	the	main	room	after	having	set	the
random	seed.	Use	the	room_goto(room)	function,	where	the	room	parameter	is	the	name	of
the	room	in	the	resource	tree,	you	want	the	game	to	switch	to.	Thus,	in	the	end,	your	seed
will	have	been	set	and	your	main	room	will	have	been	traveled	to,	all	in	less	than	a
second.	Your	code	should	look	like	the	following:

var	arg	=	date_get_second_of_year(date_current_datetime());

random_set_seed(arg);

room_goto(rm_main);

If	you	were	to	do	the	setting	of	the	seed	in	the	main	room,	it	would	not	be	fast	enough	to
set	the	seed	before	the	enemy	object	uses	the	choose	function,	but	by	doing	it	in	a	separate
room,	you’ve	ensured	that	it	will	all	work.

Now	test	your	game	a	few	times,	and	you	should	notice	that	the	enemies	are	completely
random.

Health	and	lives	system
Like	in	the	last	game,	there	is	a	health	system	where	the	player	can	be	damaged	if	they	get
hit	by	an	enemy.	We	need	to	first	set	the	health	variable,	change	it	on	collision	with
enemies,	and	draw	its	value	to	the	screen	via	a	health	bar.	We	can	also	put	in	a	lives
system,	in	which	when	all	health	is	lost,	the	player	loses	a	life	and	the	room	is	reset.

So	to	begin,	create	a	controller	object	for	controlling	the	health	of	the	player	and	assign	it
a	depth	of	-10	so	that	anything	it	draws	is	not	blocked.

Next,	you	will	need	to	set	the	variable	for	health	to	100	and	lives	to	3.	These	are	both
built-in	global	variables	that	GameMaker	has.	Set	them	in	the	room	creation	code	of
rm_setup	so	that	they	are	assigned	after	the	seed	has	been	set	but	before	we	go	to	the	next
room.

We	chose	to	set	them	up	in	this	room	because	we	want	the	values	to	be	global	across	the
game,	and	if	we	had	them	set	in	the	Create	event	of	the	health	controlling	object,	they
would	reset	in	every	new	room,	almost	like	a	new	game	every	room.	Next,	go	back	to	the
player	and	create	an	Execute	Code	block	labeled	Damage	in	the	Step	event.	First,	use	the
collision_rectangle	function	to	test	if	the	player	has	collided	with	an	enemy.
Remember	to	adjust	the	coordinate	parameters	so	that	they	match	the	bounding	box	of
your	player.	If	the	player	has	collided,	the	health	variable	should	be	decremented	by
whatever	value	you	want	it	to	be	decremented	by,	in	our	case,	the	player	will	have	lost	10
health	and	will	be	closer	to	losing	a	life:

if	(collision_rectangle(x	+		<value	put	for	left	edge	of	bounding	box>,	y	+		

<value	put	for	top	edge	of	bounding	box>,	x	+		<value	put	for	right	edge	of	

bounding	box>,	y	+		<value	put	for	bottom	edge	of	bounding	box>,	obj_enemy,	

false,	false)	!=	noone	&&	!invincible)	{

health	-=	<value	to	decrement	health	by>;

}

Now,	go	back	to	your	object	for	controlling	health.	Put	in	an	Execute	Code	block	in	the
Step	event.	If	health	is	less	than	1	(as	there	are	times	when	health	won’t	always	be	an
integer),	then	the	lives	variable	should	be	decremented	by	1,	as	the	player	has	lost	their
health.	All	of	the	following	code	in	the	health	controller	object’s	Step	event	should	go
inside	of	this	if	statement.

You	can	decrement	the	lives	variable	with	the	--	operator,	either	by	putting	it	before	or
after	the	lives	variable.	It	doesn’t	matter	in	this	case,	but	for	future	reference,	putting	it
first	(the	predecrement	operator)	immediately	decrements	the	variable	and	returns	this	new
value,	but	putting	it	after	(post-decrement)	returns	the	original	value	and	then	decrements
the	variable.	The	same	applies	for	the	++	operator,	but	of	course,	that	is	for	incrementation
by	1.	Here’s	a	small	code	block	to	further	teach	about	++	and	--.	Imagine	that	the
following	lines	i	=	0	are	all	run	in	separate	programs	(so	each	use	of	i	in	each	line	begins
with	it	having	a	value	of	0):

i	=	0;

array[i++]	=	0;	//array[0]	=	0,	and	then	i	=	1

array[++i]	=	0;	//i	=	1,	and	then	array[1]	=	0

array[i--]	=	0;	//array[0]	=	0,	and	then	i	=	-1;

array[--i]	=	0;	//i	=	-1,	and	then	array[-1]	=	0	THIS	WILL	CAUSE	AN	ERROR

Now	that	you	understand	those	operators,	let’s	write	some	more	code.	If	the	lives	variable
is	greater	than	zero	(the	player	still	has	lives)	the	health	variable	should	be	set	back	to
100	(as	we	do	not	want	them	to	regain	all	their	health	if	they	lost	all	their	lives;	this	will
cause	complications	later	when	drawing	the	health	and	lives).	Then,	the	player	should
move	to	the	start	position.	This	is	a	bit	more	complex	than	you	might	think.	Here,	we	will
use	the	with	statement.	The	with	statement	is	useful	for	modifying	some	or	many
properties	of	some	or	many	objects,	or	to	have	other	objects	call	functions.	To	use	the
with	statement,	you	type	with	(<object	name,	instance	ID	number	-	usually	using
a	variable,	or	a	related	keyword>)	{	//code	}.	Since	we	want	to	modify	the
player’s	x	and	y	coordinates,	we	can	provide	the	with	statement	with	the	name	of	the
player	object	and	then	use	the	x	and	y	coordinates	as	we	would	normally	do.	To	make
them	equal	to	those	of	the	player	when	they	first	started,	use	the	xstart	and	ystart
variables.

The	following	code	would	be	in	the	step	event	for	the	controller	object	for	the	health:

///Health	Depleted

if	(health	<	1)	{

			--lives;

			if	(lives	>	0)	{

								health	=	100;

			}

			with	(obj_PC)	{

								x	=	xstart;

								y	=	ystart;

			}

}

The	health	system	isn’t	yet	complete,	but	we	will	work	on	displaying	the	values,	and	then
finish	it	up,	as	we	have	to	do	some	parts	of	the	system	in	the	Draw	event	due	to	evaluation
order	of	GameMaker	events.

Displaying	health	and	lives
So	let’s	display	the	values	of	the	lives	and	health	variables.	First,	draw	a	heart	sprite	that
represents	your	lives.	Make	sure	that	there	are	a	few	pixels	of	whitespace	all	around	the
heart;	this	will	aid	in	spacing	out	the	hearts.	Next,	we	will	use	a	repeat(n)	loop	to	draw
one	heart	for	as	many	lives	as	the	player	still	has.	Use	the	following	code	to	draw	the
hearts,	which	we	will	then	explain.	This	code	should	be	executed	in	the	Draw	event	for
the	health	controller	object:

var	i	=	0;

repeat	(lives)	{

							draw_sprite(<name	of	heart	sprite>,	0,	30	+	i	*	

sprite_get_width(<name	of	heart	sprite>)	+	4,	34);

							++i;

}

In	this	code,	a	local	variable	i	is	first	set	to	0.	It	is	a	simple	counter	variable	that	represents

how	many	hearts	have	already	been	drawn,	using	zero-based	indexing.	Next,	a	repeat	loop
is	run	lives	number	of	times.	The	draw_sprite	function’s	first	parameter	is	the	sprite	to	be
drawn;	the	second	is	the	subimage	to	be	used;	the	third	is	the	x	coordinate	for	the	drawing
to	take	place,	and	the	fourth	parameter	is	the	y	coordinate.	To	explain	the	x	parameter
code,	let’s	walk	through	each	heart.	The	first	heart	that	is	drawn	will	be	drawn	at	(34,	34),
as	the	variable	i	is	currently	0,	which	means	that	the	width	of	the	heart	sprite	received
from	the	sprite_get_width	function	does	not	matter	for	the	first	heart,	and	an	offset	of	4
is	added	to	the	original	30.	The	second	heart	will	be	drawn	at	(34	+	<width	of	heart
sprite>,	34),	as	now	i	has	a	value	of	1	and	is	multiplied	by	the	width	of	the	heart	sprite.
The	third	heart	will	be	drawn	at	(34	+	2	*	<width	of	heart	sprite>,	34),	as	now	the
variable	i	has	a	value	of	2,	and	is	again	multiplied	by	the	width	of	the	heart	sprite.
Drawing	the	lives	should	be	working	perfectly	now.	Test	it	out	to	make	sure!

Now,	we	should	draw	the	healthbar.	The	function	for	this	is	draw_healthbar(x1,	y1,
x2,	y2,	amount,	backcol,	mincol,	maxcol,	direction,	showback,	showborder).
We	will	explain	all	of	these	parameters:

x1,	y1,	x2,	y2:	These	are	what	you	would	expect	the	coordinates	to	use,	where	the
first	two	are	the	top-left	corner	and	the	last	two	are	the	bottom-left	corner.
amount:	This	is	the	variable	that	refers	to	how	much	of	the	healthbar	should	be	filled,
and	it	can	have	a	value	between	0	and	100.
backcol:	This	is	what	color	the	background	of	the	healthbar	should	be.	If	you	choose
to	show	a	background	to	your	healthbar,	this	is	the	color	that	will	be	shown	in
depleted	parts	of	the	bar.
mincol:	This	is	the	color	shown	when	the	value	of	amount	is	at	its	lowest.
maxcol:	This	is	the	color	shown	when	the	value	of	amount	is	at	its	highest.
direction:	This	is	where	the	bar	that	shows	the	value	is	anchored	(which	side	will	be
depleted	last).	It	has	four	values:	0	for	left,	1	for	right,	2	for	top,	and	3	for	bottom.
showback:	This	refers	to	whether	or	not	the	background	should	be	shown,	and	if	it	is
false	then	the	backcol	parameter	will	be	ignored.
showborder:	This	refers	to	whether	or	not	a	1	pixel	border	should	surround	the	bar’s
elements	(the	main	bar	and	the	subbar	that	shows	the	amount	parameter).

So,	for	your	coordinate’s	parameters,	just	make	the	bar	appear	somewhere	in	the	top-left
corner	of	your	room,	but	make	sure	that	it	appears	below	the	hearts	for	lives.	You	might
need	to	test	your	game	a	few	times	to	get	it	right.	For	the	amount,	we	will	use	the	health
variable,	as	this	bar	is	meant	for	health.	You	don’t	always	need	to	use	the	bar	for	health
though,	that’s	why	it	lets	you	choose	your	variable.	You	could	have	it	display	power,
progress,	and	so	on,	anything	that	can	be	represented	by	a	percent	from	0	to	100.	As	for
the	color	parameters,	there	are	many	options	that	you	can	use.	You	can	find	them	all	in	the
documentation	by	navigating	to	Reference	|	Drawing	|	Colour	and	Blending:

Pick	whatever	colors	you	want	to	use	for	those	parameters.	Next,	for	the	direction
parameter,	most	healthbars	decrease	from	right	to	left,	meaning	the	left	portion	is	retained
the	longest,	so	in	that	case	you	would	choose	0.	But	if	you	made	your	healthbar	longest	on
the	vertical,	you’ll	want	to	choose	top	or	bottom.	Choose	whatever	you	think	looks	and
works	best.	As	for	showback,	we	strongly	recommend	showing	the	background,	as	that	is
how	it	can	be	easily	seen	how	much	of	the	original	amount	of	health	there	still	is,	and	thus
how	much	you	lost.	Finally,	for	showborder,	this	is	again	your	choice.

The	drawing	part	of	the	health	and	lives	system	has	been	completed,	so	now	we	have	to	go
back	to	finishing	up	the	basic	system,	which	if	you	recall,	we	took	a	break	from	because
we	needed	to	do	part	of	it	in	the	Draw	event	due	to	evaluation	order	of	events	in
GameMaker.	The	next	part	that	we	will	be	doing	is	where	the	game	will	reset	if	the	player
has	lost	all	of	their	lives.	To	do	this,	inside	of	your	Draw	event,	put	an	if	statement	that
tests	to	see	if	the	lives	variable	is	less	than	or	equal	to	0	(<=	operator).	The	reason	we
include	<	in	there	is	because	there	is	always	a	chance	that	GameMaker	is	somewhat	slow
or	other	issues	occur.	It’s	a	good	precaution	to	include	that	doesn’t	hurt	at	all.	The	if
statement	here	does	not	need	curly	brackets,	as	the	code	it	runs	is	only	one	statement,	a
one-liner,	so	you	can	type	it	directly	after	the	if	statement’s	parentheses.	if	statements
with	one-liners	never	need	curly	brackets.	Inside	of	this	if	statement,	we	will	make
GameMaker	wait	a	short	amount	of	time,	1	step	to	be	exact,	before	resetting	the	game.
This	is	so	that	the	Draw	event	can	finish	depleting	the	health	bar	and	draw	no	hearts	so	as
to	properly	reflect	the	respective	variables.	In	order	to	make	GameMaker	sleep	for	a	short
time,	we	can	use	an	Alarm	event.	All	twelve	alarms	that	every	instance	of	each	object	has

available	are	held	in	an	array	called	alarm.	As	such,	to	set	an	alarm	and	make	it	start
ticking,	you	can	type	alarm[<alarm	to	set>]	=	<steps	to	make	it	count>.	Setting
your	alarm	to	have	a	value	greater	than	0	makes	it	tick;	setting	it	to	equal	0	triggers	it;	and
setting	it	to	equal	-1	stops	it	completely	from	ticking,	and	at	that	point	it	is	done.

Remember	that	we	want	to	make	GameMaker	wait	one	step.	The	alarm	that	you	use	does
not	matter,	but	we	recommend	using	Alarm	0	to	keep	things	simple.	The	code	for
checking	the	lives	and	setting	the	alarm	should	be	placed	at	the	end	of	the	Draw	event	of
the	health	controller	object.

Now,	make	the	event	for	Alarm	0,	and	inside	of	it	we	will	display	a	message	and	go	to	the
setup	room	so	as	to	restart	the	game.	The	function	for	showing	a	message	is
show_message(str),	where	str	is	the	string	to	be	displayed.	Display	a	message	that	tells
the	player	they	have	lost	all	their	lives	and	that	the	game	will	be	reset,	then	go	to	the	room
where	the	random	seed	was	set	with	the	function	room_goto,	like	we	used	before.

Invincibility
Once	you’ve	got	all	that	finished,	test	your	game.	You	probably	noticed	that	you	lose	your
health	really	fast.	This	is	because	whenever	you	were	up	against	an	enemy,	you	would	lose
health.	And	GameMaker	was	testing	if	you	were	up	against	an	enemy	around	30	times	a
second,	so	you	were	losing	health	around	30	times	a	second.	This	is	why	you	would	lose
all	of	your	health	very	quickly.

There	are	a	few	ways	you	could	fix	this.	One	would	be	to	use	an	alarm	so	that	you	are	not
continuously	damaged.	Another	would	be	to	make	the	enemy	move	away	a	small	amount
whenever	you	hit	them.	The	third	one,	and	the	one	we	will	create,	is	to	set	up	temporary
invincibility,	where	whenever	the	player	hits	an	enemy,	they	lose	some	health	(as	we
already	have	in	place),	and	then	become	immune	to	damage	for	a	short	time.	After	they
are	no	longer	immune,	they	can	be	damaged	again,	and	then	become	immune	again.

1.	 To	set	up	this	system,	first	declare	a	variable	called	invincible	inside	the	Create
event	of	your	player	object,	and	set	it	to	false.	You	can	probably	figure	out	what
this	variable	is	for.

2.	 Next,	after	the	player	has	taken	damage	from	the	enemy,	the	invincible	variable
should	be	set	to	true,	as	now	the	player	should	be	temporarily	invincible.	Also,	in	the
if	statement	already	present	there,	the	invincible	variable	should	be	set	to	false	in
order	for	the	whole	if	statement	to	evaluate	to	true	(&&	operator).	Next,	set	the	alarm
0	to	90	steps	so	that	it	is	triggered	after	three	seconds.	This	alarm	controls	how	long
the	player	should	be	invincible.	In	the	Alarm	0	event,	set	the	invincible	variable
back	to	false,	so	that	the	invincibility	will	expire.

3.	 The	final	step	is	to	draw	some	kind	of	icon	to	show	that	the	player	is	invincible.
Typically,	the	player	would	flash	when	invincible,	however,	that	would	entail	the	use
of	animated	sprites.	This	is	not	hard,	but	rather	it	is	something	that	you	will	be
learning	in	a	later	project.	First,	create	a	sprite	to	indicate	the	player	is	invincible.

4.	 Next,	add	a	Draw	event	to	the	player.	Inside	of	it,	use	the	draw_self()	function	so
that	both	the	player	and	the	invincibility	sprite	can	be	drawn	(as	what	you	are	doing
is	using	a	Custom	Draw	event,	in	which	the	calling	object	is	not	drawn	by	default).

The	function	takes	no	parameters.	If	the	invincible	variable	is	true	(remember	that
you	still	don’t	need	==	true),	then	the	sprite	should	be	drawn.	Also,	set	the	depth	of
your	player	object	to	10	so	that	the	invincibility	sprite	will	be	drawn	above
everything	else.

The	icon	for	invincibility	will	now	appear	as	long	as	the	player	is	invincible.

Voilà,	you	have	finished	the	health	and	lives	system.	Play	your	game	a	few	times	and
make	sure	that	everything	is	working	perfectly.

Shooting
The	next	part	of	your	game	is	to	give	both	the	enemy	and	the	player	shooting	capabilities.
First,	make	the	bullet	object	for	your	player.	If	it	collides	with	a	wall
(collision_rectangle),	then	it	should	destroy	itself,	using	the	instance_destroy()
function	(no	parameters).	Next,	declare	a	local	variable	(var	keyword)	equal	to	the	return
value	of	calling	collision_rectangle	when	checking	for	a	collision	with	the	enemy
object.	The	variable	will	either	hold	the	value	noone	(no	collision	with	an	enemy	object)	or
the	instance	ID	of	the	enemy	object	it	collided	with.	Next,	test	if	the	variable	is	not	equal	to
the	keyword	noone.	If	there	was	a	collision	(meaning	that	the	variable	was	not	equal	to
noone),	then	put	in	a	with	statement	(although	you	do	not	need	curly	brackets	for	this
with	statement,	as	it	will	be	a	one-liner)	to	destroy	the	enemy.	When	using	the	with
statement,	in	between	its	parentheses	should	be	the	variable	that	you	used	to	hold	the
enemy’s	instance	ID.	After	the	enemy	has	been	destroyed,	the	bullet	should	be	too.

1.	 Next,	go	to	the	Create	event	of	your	player.	Inside	it,	declare	the	variable	can_shoot
and	set	it	equal	to	true.	Then	create	an	Execute	Code	block	in	your	player’s	Step
event.	Test	to	see	if	the	Shift	key	is	being	held	down	and	if	can_shoot	equals	true.
The	reason	we	use	the	Shift	key	(a	modifier	key)	is	due	to	hardware	issues.	Some
keyboards	can	have	problems	with	different	key	combos,	such	as	up	arrow	+	left
arrow	+	spacebar.	This	is	not	a	GameMaker	problem.	Gaming	keyboards	are
designed	to	handle	the	pressing	of	many	keys	at	once,	but	we	cannot	assume	the	end
user	will	be	using	one,	so	we	must	plan	for	the	basics,	and	thus	use	the	Shift	key.	The
problem	is	specifically	called	“keyboard	ghosting”,	and	you	can	read	more	about	it	at
https://www.microsoft.com/appliedsciences/antighostingexplained.mspx.	You	could
try	using	another	key	(other	than	Shift),	but	test	your	game	to	make	sure	that	you	can
move	and	shoot	in	all	eight	directions.

2.	 Anyway,	if	the	Shift	key	is	being	held	down	and	can_shoot	equals	true,	a	local
variable	should	be	set	equal	to	the	return	value	of	the	function	instance_create(x,
y,	obj),	as	this	will	store	the	ID	of	the	instance	into	the	variable.	Have	the	bullet	be
spawned	in	the	middle	of	the	player.

3.	 Next,	create	a	with	statement	and	have	it	refer	to	the	variable	you	just	created.	Inside
the	with	statement,	the	variable	direction	should	be	set	equal	to	other.direction.	In
a	with	statement,	other	refers	to	the	main	object	inside	which	the	with	statement	is
contained.	So	in	this	case,	the	direction	of	the	bullet	will	be	set	to	the	direction	of	the
player.	Then,	the	speed	of	the	bullet	should	be	set	to	whatever	you	want	it	to	be	set	to,
within	a	reasonable	amount,	for	example	we	set	it	to	10.

4.	 Outside	of	the	with	statement,	the	variable	can_shoot	should	be	set	as	false	and
Alarm	1	should	be	set	to	30	steps	so	that	the	player	temporarily	cannot	shoot.	Inside
the	event	for	Alarm	1,	set	the	can_shoot	variable	back	to	true	so	that	the	player	can
shoot	again.

5.	 There’s	one	more	thing	that	you’ll	need	to	incorporate	for	the	player’s	shooting.	It’s
somewhat	tedious,	but	it’s	not	hard.	In	the	way	that	we’re	currently	creating
movement,	the	variable	direction	does	not	change.	Changing	the	x	and	y	coordinates
does	not	change	direction,	so	we	need	to	do	that	manually	inside	each	if	statement

https://www.microsoft.com/appliedsciences/antighostingexplained.mspx

that’s	for	movement.	Keep	in	mind	that	right	is	0,	up	is	90,	left	is	180,	and	down	is
270,	and	from	that,	figure	out	the	diagonal	values	(they’ll	be	off	by	45	degrees).	So
under	each	keyboard	check	in	the	Execute	Code	block	for	movement,	set	the
direction	variable	to	a	corresponding	value.

That	was	a	lot	to	digest,	but	the	shooting	code	in	the	step	event	for	the	player	should	look
like	this:

///Shooting

if	(keyboard_check(vk_shift)	&&	can_shoot)	{

			var	bullet	=	instance_create(x	+	<width	of	player	/	2	rounded,	y	+	

<height	of	player	/	2	rounded>,	obj_playerBullet);

			with	(bullet)	{

								direction	=	other.direction;

								speed	=	10;

			}

			can_shoot	=	false;

			alarm[1]	=	30;

}

Once	you’ve	done	all	that,	test	out	your	game	to	ensure	that	the	player	is	shooting
correctly	and	the	enemies	are	being	destroyed	upon	impact	with	the	bullet.

The	next	part	is	to	get	your	enemies	to	shoot.	Start	with	setting	up	your	enemy’s	bullet.
When	it	hits	the	wall	or	the	player,	it	should	destroy	itself.	To	make	it	damage	the	player,
go	to	the	Execute	Code	block	in	the	player	we	already	have	for	damage.	Add	a	second	if
statement	to	the	code	that	follows	the	format	of	the	previous	one	(even	with	the	same	code
run	if	the	statement	is	true),	except	a	collision	with	the	enemy’s	bullet	is	checked	for	and
health	is	decremented	by	a	different	amount.

Next,	add	an	Execute	Code	block	to	the	Step	event	of	the	enemy.	We	will	use	the
irandom(n)	function,	which	returns	an	integer	from	0	to	n	(inclusive	of	both),	and	test	to
see	if	it	returns	0	after	having	been	passed	the	parameter	19,	so	that	we	can	have	a	one-
twentieth	chance	of	shooting	a	bullet.	Since	0	is	also	false,	you	can	just	put	a	!	operator
in	front	of	the	irandom	function	when	calling	it.	So	if	the	function	returns	a	value	of	0,
then	an	instance	of	the	enemy’s	bullet	should	be	created,	and	the	new	bullet’s	ID	should	be
held	in	a	local	variable.	Use	a	with	statement	to	assign	the	new	bullet	a	direction	and
speed.	Remember	that	other,	when	used	in	a	with	statement,	refers	to	the	instance	the
with	statement	is	inside	of.	Also,	since	we	did	not	modify	the	x	and	y	coordinates	directly
to	move	around	the	enemies,	instead	we	used	hspeed	and	vspeed,	direction	is	changed
automatically	by	the	engine	so	you	do	not	need	to	worry	about	that.

With	that,	all	of	the	shooting	has	been	completed,	so	you	can	test	your	game	to	ensure	that
everything	is	working	right.

Sounds
Since	backgrounds	are	created	via	the	room	editor,	we	need	not	go	over	them	again,	but
feel	free	to	add	one	to	your	room.	We	will,	however,	go	over	sounds.	Create	your	three
sounds—for	enemy	death,	the	player	getting	hit,	and	when	the	player	moves	to	the	next
room	(the	latter	of	these	will	again	be	put	in	later).	You	can	load	them	from	<original
Escape	the	Dungeon	root	directory>\sound\audio.	Once	you’ve	loaded	them,	let’s
work	on	the	first	sound	for	when	the	enemy	dies.	Find	your	code	for	the	enemy	getting
destroyed	when	the	player’s	bullet	hits	it.	Directly,	after	the	enemy	has	been	hit,	we	will
use	the	audio_play_sound(index,	priority,	loop)	function.

Index	is	the	name	of	the	sound	(snd_enemyDeath	in	this	case);	priority	is	how	important
the	sound	is,	that	is,	a	lower	priority	sound	will	be	dropped	in	order	to	play	a	higher
ranking	one	if	the	number	of	sounds	currently	being	played	exceeds	the	limit	of	128,	or
otherwise	set	by	the	function	audio_channel_num(num),	but	you	need	not	worry	about	this
second	function,	nor	breaking	that	limit,	at	least	for	now.	The	priority,	of	course,	does	not
matter	here,	especially	since	we	have	only	three	sounds	in	our	game,	so	you	can	set	that	to
0,	and	we	only	want	the	sound	to	play	once	(so	set	loop	to	false).	Now,	use	this	function
twice	in	your	Execute	Code	block	for	damaging	the	player,	once	in	each	if	statement,
after	Alarm	0	has	been	set.	You	will	use	a	different	sound	this	time	to	indicate	when	the
player	is	damaged	rather	than	the	sound	used	for	the	enemy.	We	will	use	the	last	sound
shortly	once	you	set	up	the	lock	and	key	system.

Great!	Your	sounds	should	be	working	perfectly.	Test	your	game	to	make	sure	of	that	and
listen	to	the	sweet	music	of	your	game.

Keys	and	locks
This	next	part	is	pretty	simple.	First,	create	your	lock	and	key	objects	and	assign	them
sprites.	Then,	in	the	Create	event	of	your	player,	set	the	variable	has_key	to	false.	This
will	be	used	to	determine	whether	or	not	we	have	a	key	to	open	the	lock.	Next,	add	an
Execute	Code	block	to	the	Step	event.	Hold	the	value	of	collision_rectangle	when
checking	for	a	collision	with	the	key	into	a	local	variable.	If	the	variable	is	not	equal	to
noone,	then	the	key	should	be	destroyed	(using	a	with	statement).	Then,	the	has_key
variable	should	be	set	to	true,	as	the	player	has	received	the	key.	Next,	test	whether	the
player	collides	with	the	lock	and	if	they	have	the	key.	If	both	are	so,	they	should	go	to	the
next	room	(so,	create	that	room),	and	the	sound	for	advancing	rooms	should	be	played.

Now,	we	should	have	some	way	to	tell	the	player	that	they	have	the	key.	In	the	Draw
event	of	the	player,	test	whether	they	have	the	key,	and	if	so,	a	symbol	that	shows	this
should	be	displayed	in	the	top-left	corner	(the	draw_sprite	function).

That’s	it	for	keys	and	locks.	Like	we	said,	it’s	really	simple.	Test	the	game	to	ensure	that
you	can	successfully	advance	to	the	next	room.	When	you	test	it,	damage	yourself	in	the
first	room	so	that	you	lose	one	life	and	a	little	bit	more	health.	Then,	go	to	the	next	room,
and	you	should	see	that	the	health	and	lives	carried	over.

Scripts
This	will	be	a	brief	tutorial	on	the	use	of	scripts	in	GameMaker.	Creating	a	script	is	like
any	other	resource,	and	upon	its	creation,	the	text	editor	will	open.	Notice	that	in	the	top
right,	rather	than	showing	Self,	Other,	and	Object,	a	small	box	for	changing	the	name	of
the	script	appears.	This	is	because	all	scripts	can	be	called	by	anything	and	thus	don’t
really	apply	to	any	specific	object.	The	rest	of	the	text	editor	is	the	same,	however.	Your
scripts	serve	as	the	equivalent	of	functions	in	other	languages,	meaning	that,	you	create
them	for	reuse	or	to	easily	manage	things.	Your	scripts	can	also	have	arguments.	We’re
going	to	set	up	a	simple	script	that	controls	the	enemy’s	movements.

Make	a	new	script.	Now,	open	both	movement	patterns	in	the	enemy	object.	Cut	and	paste
both	of	them	into	this	script,	and	remove	the	third	slashes	that	you	had	for	naming	the
code	blocks	so	that,	now,	it’s	just	//Walk	<Horizontal	or	Vertical>	depending	on	the
pattern.	Also,	make	the	second	main	if	statement	(the	second	one	that	tests	whether	the
horizontal	or	vertical	movement	pattern	should	be	used)	an	else	statement	to	reduce
redundancy	and	overchecking,	as	the	enemy	can	only	move	horizontally	or	vertically,	at
least	in	this	game.

At	the	top	of	your	script,	we	must	allow	it	to	take	in	an	argument.	To	do	this,	we	set	a
variable,	axis,	equal	to	argument	0.	argument	0	is	a	keyword	that	represents	the	first
argument	a	script	can	take	in.	There	are	argument	0,	argument	1,	argument	2,	…	and
argument	15	available	for	you	to	use.	This	argument	that	we	are	using	will	decide
whether	the	horizontal	or	vertical	movement	pattern	should	be	used.	Previously,	the
walk_pattern	variable	was	used	in	the	code,	but	now	we	are	going	to	replace	the	use	of
the	variable	walk_pattern	in	this	script	with	the	use	of	the	variable	axis	so	that	we	can
pass	the	script	the	walking	pattern.

Once	you	have	finished	editing	your	script,	go	back	to	the	enemy,	and	in	an	Execute	Code
block	in	the	Step	event,	call	the	script	as	you	would	any	other	function;	<name>
(<parameter>);	scripts	are	really	just	functions.	They	are	really	easy	to	use	and	are	very
helpful,	so	use	them	when	you	can.	Test	the	game	out	a	few	times	to	ensure	that	you
created	and	called	the	script	correctly.

Summary
So	you’ve	finished	your	text-coded	remake	of	Escape	the	Dungeon.	Pat	yourself	on	the
back,	as	like	the	other	chapters,	this	was	a	hefty	one.	Go	back	and	review	the	chapter	so
that	you	properly	understand	everything.	Once	you	think	you’ve	got	it	down,	tackle	these
review	questions,	followed	by	the	drills.

You	have	now	successfully	finished	your	first	chapter	that	makes	use	of	the	GML.	Did
you	see	how	great	it	is	and	how	much	you	can	do	with	it?	Just	take	a	look	at	the
documentation,	you’ll	see	that	GML	opens	your	possibilities	wide	open.	You	can	really	do
a	lot	with	it.	In	the	next	chapter,	you	will	learn	how	to	create	an	endless	platformer	with
infinite	spawning.

Review	questions
1.	 Explain	what	each	type	of	event	that	we	will	use	is,	and	what	they	can	be	used	for.
2.	 How	do	you	declare	a	local	variable	(what	keyword	do	we	use)?
3.	 What	are	some	of	the	advantages	of	direct	coding	over	drag	and	drop?
4.	 What	is	a	room’s	creation	code	and	how	do	you	modify	it?
5.	 What	is	the	problem	with	randomness	in	GameMaker	(think	seeds)?	And	how	can

you	solve	that	problem?
6.	 What	are	some	of	the	“translations”	of	drag	and	drop	to	code	that	we	used?
7.	 What	are	the	different	ways	that	we	have	made	objects	move?	Explain	them,	and

think	about	some	of	their	pros	and	cons.
8.	 Review	some	of	the	functions	we	used	in	this	game,	not	just	by	rereading	this

chapter;	it	might	also	be	good	to	look	at	the	documentation	for	even	more	examples.
The	documentation	is	at	http://docs.yoyogames.com.

http://docs.yoyogames.com

Quick	drills
1.	 If	you	currently	play	your	game,	as	long	as	you	are	colliding	with	the	enemy,	they

will	flip	direction.	That	doesn’t	make	much	sense.	Fix	this	so	that	they’ll	only	collide
when	hit	head	on.	You	can	do	this	by	testing	the	enemy’s	hspeed/vspeed
(depending)	and	using	the	collision_line(x1,y1,x2,y2,obj,prec,notme)
function,	where	the	only	difference	from	collision_rectangle	is	that	the	coordinate
parameters	are	the	top	and	bottom	points	of	the	line,	not	top	left	and	bottom	right.

2.	 See	if	you	can	recreate	some	of	the	extra	things	that	you	did	in	your	game	in	the
previous	chapter	in	code,	and	for	this,	you	should	definitely	reference	your	last	game
project.	If	you	can’t	redo	them,	don’t	fret,	as	you	might	not	have	learned	about	the
functions	necessary	yet	and	not	every	drag	and	drop	function	is	directly	tied	to	a
GML	function.

3.	 Add	ammunition	for	shooting	so	that	you	only	have	a	certain	number	of	bullets.
Then,	set	it	up	so	that	you	can	collect	“ammo”	packs	to	provide	additional	ammo.	Of
course,	you	should	do	this	in	code.	Also,	display	the	ammunition	by	using	the
draw_healthbar	function,	which	doesn’t	just	have	to	be	for	health.

4.	 Give	the	enemies	a	health	system	(using	a	variable	hp)	and	make	a	small	heatlhbar
constantly	appear	above	their	heads.	Make	sure	to	call	draw_self()	so	that	they,
along	with	the	healthbar,	are	drawn.

5.	 Make	a	bomb	weapon	system,	where	the	player	can	throw	a	bomb	that	goes	a	certain
distance	before	“exploding”	(you	don’t	necessarily	have	to	show	an	explosion,	we
will	teach	you	about	particle	systems	later)	and	hurting	enemies	within	a	certain
radius	with	the	collision_circle(x1,	y1,	rad,	obj,	prec,	notme)	function,
where	rad	is	the	radius.

6.	 Add	additional	temporary	“power	ups”	for	your	player	(for	example,	speed	boost,
faster	rate	of	fire,	or	health	and	lives	boosts,	which	wouldn’t	be	temporary,	of	course,
and	so	on).

Chapter	4.	Fun	with	Infinity	and	Gravity
–	An	Endless	Platformer
The	previous	two	chapters	took	you	through	the	creation	of	a	dungeon	game	in	which	the
player	moved	in	all	directions	of	the	compass	in	order	to	escape	a	maze-like	dungeon	in
which	they	were	placed.	You	gave	the	player	the	ability	to	shoot,	have	health	and	lives,
move	to	other	rooms,	and	much	more,	but	GameMaker	isn’t	just	for	top-down	or	side-
scrolling	games.	You	can	use	it	for	minigames	too,	and	specifically,	in	this	chapter,	we
will	use	it	for	both	platforming	and	making	the	game	endless	until	death.	GameMaker
already	contains	built-in	functionality	to	do	both	of	these	in	your	projects.	There’s	no	real
goal	in	the	game	except	to	keep	going	for	the	longest	time.	So	without	further	ado,	let’s
begin	to	program	our	game.

Creating	an	endless	platformer
Let’s	first	explain	exactly	how	this	game	will	work.	Whenever	the	player	hits	a	platform,
they	will	bounce	into	the	air,	regardless	of	whether	a	key	was	pressed.	They	will	come
down	in	the	air	too,	and	bounce	on	any	platforms	they	land	on.	Direction	can	be	controlled
by	the	left	and	right	keys.	If	they	do	not	land	again	after	falling,	and	thus	go	off	the	bottom
of	the	screen,	they	die.	As	they	get	higher,	the	screen	will	move,	in	that,	platforms
previously	visible	and	usable	will	go	off	screen	and	disappear.	Enemies	will	be
incorporated,	followed	by	the	main	part	of	the	game—random	spawning.	The	game	will
finish	up	with	the	introduction	of	menu	and	message	displaying	systems.

You	can	compare	this	whole	game	to	games	such	as	Doodle	Jump	or	Pixel	Jump.

So	let’s	begin!	First,	make	your	player	sprite.	Give	it	two	subimages,	for	a	left	and	right
view,	and	modify	the	collision	mask	to	whatever	you	think	works	best	for	the	sprite.	Make
an	object	for	the	player	and	prevent	it	from	cycling	through	its	subimages.	We’ll	do	the
rest	of	the	player	object	in	a	short	while.	For	now,	create	a	sprite	for	the	platform.	Modify
its	collision	mask	so	that	only	the	very	top	of	it	counts	for	a	collision.	At	least,	in	our	case,
this	was	by	setting	the	bottom	edge	of	the	mask	to	0,	which	allowed	a	sliver	of	the
platform	to	be	collided	with.	We	want	the	player	to	be	able	to	jump	through	the	bottom,
but	not	fall	through	the	top.	Create	the	object	for	the	platform	and	flag	it	as	solid.

Great,	you’re	done	with	the	platform,	so	you	can	return	to	the	player.	In	the	Create	event
(which	you	should	already	have	because	you	stopped	the	subimages	from	cycling),	set	the
variable	gravity_direction	to	270.	This	variable	controls	the	direction	that	the	gravity	is
pulling	from,	meaning	that,	setting	it	to	270	(which	is	down)	will	cause	the	force	of
gravity	to	pull	from	below,	as	if	the	game	were	on	Earth,	or	really,	any	other	celestial
body.	The	player	won’t	be	pulled	to	the	top	or	side;	rather	they	will	be	pulled	to	the
bottom.	However,	setting	this	variable	only	alters	the	gravity’s	direction;	it	does	not	set	the
force	of	gravity	that	is	done	with	another	variable	you	will	use	very	shortly.

Bouncing	and	movement
So	once	you’ve	got	that	down,	make	a	Step	event	in	your	player	and,	as	always,	put	in	an
Execute	Code	block.	We	will	use	this	one	to	make	the	player	bounce.	The	player	will	only
bounce	if	they	hit	a	platform	(that’s	pretty	logical	but	it’s	always	good	to	plan	literally
everything	out).	Once	they’ve	hit	it,	they	should	go	up	in	the	air,	at	which	point	(when
they	are	not	colliding	with	a	platform)	a	small	amount	of	gravity	should	be	induced	that
makes	the	player	begin	to	move	slower	into	the	upward	direction	until	they	eventually	fall.
Also	when	in	the	air,	the	player	should	be	able	to	move	left	and	right.	If	the	player	was	in
fact	colliding	with	a	platform,	then	there	should	be	no	force	of	gravity	acting	upon	them.
Finally,	we	need	to	cap	the	speed	that	the	player	can	be	moving	in	the	downward
direction.	This	is	because	gravity	is	cumulative,	and	it	can	make	the	player	go	really	fast.
GameMaker	does	not	specify	a	cap	on	the	speed,	and	as	such,	the	player	could	move	so
fast	that	we	don’t	even	see	it.	Collisions	might	not	even	be	detected.	And	above	all,	that’s
pretty	unrealistic.	So	a	cap	is	definitely	necessary.	Now	that	you	understand	the	structure
of	what	we’ll	be	programming	here,	let’s	actually	do	it:

1.	 Well	first,	since	the	platform	is	solid	and	we	want	to	test	whether	the	player	is	hitting
it,	we	can	use	the	place_free(x,	y)	function	we	used	in	the	previous	chapter	to	test
whether	the	player	is	hitting	a	platform.	For	the	x	parameter,	you	can	supply	the	basic
x,	as	the	player	object	will	be	bouncing	vertically	on	the	platforms.	Next,	for	your
second	parameter,	pass	in	y	+	1.	This	might	seem	strange,	as	1	is	most	likely	not	the
height	of	your	player	and	your	player	sprite’s	origin	is	at	the	top,	but	at	least	in	this
case	it’s	referring	to	the	bottom	of	the	player	plus	one	pixel	down.	Okay,	so	now	that
you	put	in	the	parameters	and	put	the	function	in	your	if	statement,	there’s	one	thing
to	remember.	The	return	value	of	this	function	is	false	upon	collision,	meaning	that
we	need	to	test	whether	the	function	is	false.	So	after	you’ve	tested	for	that,	the
vspeed	variable	should	be	set	to	-10	assuming	the	if	statement	returns	to	true.	In	the
end,	if	the	player	collides	with	a	platform,	they	will	move	upwards	at	a	speed	of	10
pixels	per	step	(as	by	definition,	any	type	of	speed	in	GameMaker	refers	to	pixels
moved	per	step).

2.	 The	next	part	we	need	to	put	in	is	a	test	to	see	whether	the	player	is	in	the	air.	If	so,	a
small	amount	of	gravity	should	be	introduced,	and	the	player	should	be	able	to	move
left	and	right.	The	if	statement	is	nearly	the	same	as	the	last	one,	except	we	want	to
test	whether	the	function	is	true,	not	false.	If	this	is	true,	set	the	gravity	variable	to
0.5.	The	player	will	be	pulled	with	a	downward	force	of	0.5	(gravity	is	not	any	sort
of	standard	measure,	you	just	need	to	see	what	seems	right).	Also,	inside	the	if
statement,	we	will	use	a	switch(variable/function	call)	statement	for	keyboard
input.	There’s	a	good	chance	you’ve	already	used	a	switch	statement	in	other
programming	projects,	but	we’ll	review	it	anyway.	The	value	you	provide	is	either
through	a	variable,	or	by	calling	a	function.	The	switch	statement	will	find	the	value,
and	then	test	to	see	what	case	you	put	it	in	matches	with,	if	any.	Switches	are	to
reduce	verbosity	when	testing	for	many	values	of	one	variable	or	function	with	the
same	parameters.	The	format	is	as	follows:

switch(variable/function	call)	{

case	(<possible	value>):

<statements>

break;	<this	is	not	required	in	every	case>

case	(<possible	value)>:

<statements>

break;	<this	is	not	required	in	every	case>

default:	<optional;	for	when	above	cases	fail>

<statements>

break;	<this	is	not	required	in	every	case>

}

3.	 So	for	this	switch	statement,	we	will	pass	it	the	keyboard_key	variable,	which	holds
the	value	of	the	key	currently	being	pressed.	Our	switch	statement	will	have	two
different	cases,	looking	for	values	of	vk_left	and	vk_right,	as	these	are	the	two
keys	we	will	use	to	move	the	player.	In	each,	change	the	value	of	the	hspeed	variable
to	some	variant	on	4	(positive	or	negative,	depending	on	the	key	being	pressed)	and
change	the	subimage	that	the	object	uses	so	that	it	matches	the	direction.	Also	put	a
break	at	the	end	of	each	of	these	cases,	as	this	tells	the	switch	statement,	“We	found
what	we	need—stop	looking!”.	After	you’ve	implemented	these	two	cases,	put	in	a
default	case.	This	will	activate	when	neither	the	left	nor	the	right	keys	were	pressed.
If	it	is	run,	the	player	should	stop	moving	on	the	horizontal	axis,	and	then	the	switch
should	break.

4.	 So	now	that	you’ve	put	in	this	switch	statement,	let’s	take	a	moment	to	discuss	the
differences	between	using	this	and	the	former	structure	we	used	in	the	previous
chapter—if	statements.	On	the	plus	side	for	this,	it’s	much	more	organized	and
reduces	verbosity.	Also,	you	might	have	noticed	that	in	the	previous	chapter,	one	key
could	“overtake”	the	other,	but	the	overtaken	key	could	not	overtake	the	key	that	it
was	overtaken	by	(meaning,	for	instance,	pressing	left	and	right	would	make	the
player	move	right,	no	matter	the	order	you	pressed	the	keys	in),	which	was	due	to	the
evaluation	order.	However,	on	the	negative	for	the	use	of	a	switch	statement,	there
seems	to	be	a	hardware	issue,	wherein	holding	one	key,	followed	by	holding	a	second
simultaneously,	and	then	releasing	this	second	key	would	stop	the	player	from
moving	at	all.	For	example,	if	you	hold	the	left	key,	and	then	also	hold	the	right,	the
player	will	move	right	(as	expected),	but	then	releasing	the	right	key	will	not	make
the	player	move	in	the	left	direction	again.	Another	issue	is	that,	if	you	press	the	left
key	(or	any	key	you’ve	mapped	that	requires	constant	pressing),	and	then	some	other
key	you	haven’t	mapped	to	anything,	nothing	will	happen	until	you	release	both	keys
and	press	the	one	you	need.	This	is	because	the	variable	we	used	holds	the	value	of
the	most	recent	key	that	was	pressed.	So	yes,	it	does	seem	like	switch	statements	can
have	a	few	big	issues	with	keyboard	input,	but	it’s	always	good	to	know	your	options,
and	perhaps	the	way	you	use	them	won’t	cause	issues,	perhaps	for	other	uses	of
keyboard	input	that	aren’t	for	moving.

5.	 Well	anyway,	after	you’ve	finished	your	switch	statement,	put	in	an	else	statement
(completely	outside	of	the	previous	if),	so,	this	else	will	be	run	if	there	was,	in	fact,
a	collision	beneath	the	player.	When	this	occurs,	the	gravity	variable	should	be	set
to	0.	At	the	end	of	this	code	block,	test	if	the	vpseed	variable	is	greater	than	10

(meaning	that	the	player	is	falling	faster	than	a	speed	of	10).	If	so,	vspeed	should	be
set	back	to	10	so	as	to	put	in	a	speed	cap.

There	you	have	it,	you’ve	completely	finished	the	bounce	system	on	your	game.	Make	a
room,	but	have	the	dimensions	set	to	512	long	by	768	high.	For	now,	manually	place
platforms	all	around	the	room.	Test	out	your	game	to	make	sure	everything	is	working	as
it	should	(keeping	in	mind	the	aforementioned	issues).

Death	and	enemies
Okay,	so	the	next	thing	we’re	going	to	incorporate	into	the	game	is	death,	wherein	if	the
player	falls	off	the	screen	(at	its	bottom),	they	will	die	and	the	room	will	restart.	This	is
actually	a	very	simple	thing	to	incorporate.	Add	another	Execute	Code	block	below	the
one	you	already	have	to	make	the	player	bounce.	When	the	player	falls	off	screen,	their	y
coordinate	will	be	greater	than	that	of	the	height	of	the	room,	meaning	that	you	should	test
for	that.	If	that	if	statement	evaluates	to	true,	then	you	should	show	a	message	that	tells
the	player	they	have	died	and	the	game	will	restart	(using	the	show_message	function),	and
then	you	should	restart	the	room	with	the	room_restart()	function.	See?	Like	we	told
you,	it’s	a	really	simple	system.

After	you’ve	put	this	in,	we’re	going	to	put	in	some	really	quick	code	that	makes	the	sides
of	the	room	loop	(meaning	that	if	they	(the	player)	go	off	the	left	edge	of	the	screen,	they
come	back	on	the	right,	and	vice	versa).	First,	test	whether	the	x	coordinate	of	your	player
is	less	than	0,	meaning	that	they	have	gone	off	the	left	edge.	If	so,	the	value	of	the	x
coordinate	should	be	set	to	the	room_width	variable,	and	you	can	probably	figure	out	what
that	variable	is	for.	Otherwise,	if	(else	if)	the	x	coordinate	of	the	player	is	greater	than
that	variable	(they	have	gone	off	the	right	edge),	then	x	should	be	set	to	0,	which	will
make	them	show	up	on	the	left	edge.

Once	you’ve	finished	that,	test	it	out	in	your	game	to	make	sure	that	both	features	are
working	great.	If	so,	you	can	move	onto	the	creation	of	your	enemy.	This	is	a	bit	more
complex	than	the	last	part.	The	way	it	will	work	is	that,	if	the	player	hits	the	enemy	on	its
bottom,	the	player	will	die,	but	if	they	hit	the	enemy	on	the	top,	the	enemy	will	die.
Follow	these	steps:

1.	 First,	create	your	enemy’s	sprite	and	object.	The	enemy	sprite	should	have	a	smaller
width	than	that	of	the	platform,	as	this	will	help	in	the	random	spawning	later.	Make
sure	you	modified	the	collision	mask,	and	that	the	object	is	set	as	solid.

2.	 Next,	in	the	Create	event	of	the	player,	set	the	did_not_hit_enemy	variable	to	true.
This	variable	will	dictate	whether	or	not	the	player	has	hit	the	enemy	on	the	bottom.
Whenever	it	is	true,	they	can	continue	to	bounce	on	platforms,	but	otherwise	they
will	fall	through	them.

3.	 Next,	add	a	new	Execute	Code	block	to	the	Step	event.	Test	whether	the	top	of	the
player	has	hit	the	enemy	object	(use	the	collision_line	function),	and	if	so,	the
player	should	fall	at	a	speed	of	10	(vpseed	variable	is	positive),	and	the	variable	we
declared	earlier	in	the	Create	event	should	be	set	to	false,	as	they	now	have	hit	the
enemy	on	the	bottom.	Finally,	there	are	just	a	couple	of	things	we	need	to	add	to	the
bouncing	code.	In	the	code	where	you	use	the	place_free	function	to	see	whether
the	player	is	hitting	a	solid	object,	also	require	that	the	did_not_hit_enemy	variable
is	true	for	the	if	statement	to	evaluate	as	true.	In	this	way,	they	will	only	bounce	if
they	haven’t	hit	an	enemy	and	taken	damage.	Next,	beneath	that	if	statement	you
just	modified,	declare	a	local	variable	equal	to	the	return	value	of	collision_line
when	its	parameters	are	for	a	check	for	the	player	hitting	the	top	of	the	enemy.	If	this
variable	is	not	equal	to	noone	and	the	player	has	not	hit	the	enemy	on	the	bottom	(use

the	variable	from	before),	then	the	enemy	should	be	destroyed	(use	the	with
statement).	We	want	it	right	here,	as	using	the	place_free	function,	like	we	did,
allows	the	player	to	bounce	on	top	of	enemies,	and	we	need	to	see	whether	they	hit
an	enemy	and	not	a	platform,	and	thus	whether	an	enemy	should	be	destroyed.

Well,	once	you’ve	got	all	that	finished,	test	your	game	to	make	sure	that	you	fall	to	the
bottom	of	the	screen	and	the	room	restarts	after	you	hit	an	enemy,	and	that	they	are
destroyed	if	you	hit	the	tops	of	them.	Also	make	sure	that	the	sides	of	the	game	screen
loop.

Random	spawning
Now,	we	can	finally	get	to	one	of	the	big	features	of	our	game—random	spawning	so	that
no	playthrough	is	exactly	the	same.

Tip
In	this	section,	we	highly	recommend	following	all	the	formats,	variable	names,	and	so	on.
that	we	provide	you,	as	this	will	make	following	along	very	easy.	This	section	contains
lots	of	tedious	and	somewhat	complex	code	that,	while	not	difficult,	you	can	get	lost	in	if
you	don’t	pay	careful	attention.	On	that	note,	if	you	used	different	hspeed	and	vspeed
variables	in	your	player	than	the	ones	we	provided,	change	them	back,	as	we	use	numbers
that	rely	on	those	speeds.	Usually,	we	give	you	more	control	over	your	projects,	but	again
this	is	a	more	complex	section.

Let’s	first	plan	how	we’re	going	to	do	this	random	spawning.	Four	different	arrays	of
objects	and	coordinates	will	be	set	up	at	the	start	of	the	game,	as	will	the	random	seed.
One	of	these	will	be	an	array	of	the	initial	pattern	of	platforms	that	will	always	be
spawned,	and	it	will	be	spawned	once	the	main	room	is	created.	The	other	three	will	be	the
patterns	that	are	chosen	randomly,	in	that,	the	game	chooses	to	use	one	of	the	patterns	and
then	spawns	it,	and	then	chooses	another,	and	spawns	it,	and	so	on	and	so	forth.	A	script
will	handle	the	spawning	of	new	platforms.	As	the	player	continues	to	move	up,	the
platforms	and	enemies	will	move	down	and	be	destroyed	when	they	go	off	the	bottom	of
the	screen.

So	let’s	begin.	Start	with	deleting	all	the	platforms	and	enemies	in	your	main	room	except
for	one,	which	should	be	in	the	center	on	the	x	axis,	and	somewhere	at	the	bottom	of	your
room.	Next,	we	will	change	the	origin	of	the	sprites	for	the	enemy	and	platform.	This
changes	the	location	where	they	are	anchored.	Currently,	spawning	one	of	them	at	(0,	0)
would	put	the	top-left	corner	of	them	at	(0,	0),	but	we	can	change	the	origin	so	that	they
are	spawned	based	on	a	different	point.	This	will	make	more	sense	later.	In	the	Origin
section	of	the	main	window	for	the	platform	and	enemy	sprites,	select	the	Center	button,
but	then	for	the	platform,	set	the	number	in	the	Y	box	to	0.	Thus,	the	enemy	will	be
anchored	on	its	exact	center,	and	the	platform	on	its	center	top.	Next,	create	a	room	called
rm_setup,	and	make	sure	that	it	is	the	first	room	that	is	created	(by	putting	it	at	the	top	of
the	Rooms	section	of	the	resource	tree).	In	the	creation	code	for	this	room,	set	the	random
seed	in	the	same	way	we	did	in	the	previous	chapter.	We’ll	now	take	a	short	break	before
beginning	to	code	again.

2D	arrays
You’ve	probably	already	used	arrays	in	your	programming,	but	you	might	not	have	used
2D	arrays;	whereas,	the	syntax	for	a	one-dimensional	array	would	be:

array[0]	=	0;

array[1]	=	1;

<...>

A	two	dimensional	array	would	have	syntax	like	the	following:

array[0,0]	=	0;

array[0,1]	=	1;

array[1,0]	=	0;

array[1,1]	=	1;

<...>

This	allows	another	dimension	to	exist	in	your	array,	as	if	a	regular	array	has	only	a
length,	a	two-dimensional	array	has	also	a	height.	You	can	even	create	n-dimensional
arrays,	where	you	just	add	another	subindex.	However,	while	there	are	functions	that
check	different	things	about	1D	and	2D	arrays,	not	one	exists	for	arrays	with	dimensions
that	exceed	two,	so	be	careful	about	using	them.	We	will	be	using	two-dimensional	arrays
for	this	project,	where	each	first	index	is	for	an	object	to	be	spawned	as	a	whole,	and	the
“subindexes”	will	represent	coordinates	and	the	object	itself	to	be	spawned.

So	let’s	start	setting	up	an	array.

First,	we’ll	make	the	2D	array	call	pattern_initial	that	is	always	spawned	at	the	start,
and	its	indexes	and	values	will	follow	a	format,	shown	as	follows:

global.pattern_initial[<val>,2]	=	<y	coordinate>;	//spawned			//

first

global.pattern_initial[<val>,1]	=	<x	coordinate>;

global.pattern_initial[<val>,0]	=	<object>;

global.pattern_initial[<val	-	1>,2]	=	<y	coordinate>;	//spawned	//

next

global.pattern_initial[<val	-	1>,	1]	=	<x	coordinate>;

global.pattern_initial[<val	-	1>,	0]	=	<object>;

<...>

The	//	that	you	see	indicates	a	single	line	comment.	Anything	after	the	double	forward
slash	on	the	line	that	it	is	present	will	not	be	compiled	(and	thus	not	run)	by	the	game.	For
multiline	comments,	/*	(start	of	block)	and	*/	(end	of	block)	are	used.	Anything	between
the	forward	slash	and	asterisks	will	not	be	compiled	and	run,	and	the	comment	blocks	can
span	many	lines.

However,	for	the	actual	code,	val	represents	the	number	of	platforms	that	will	be	spawned
minus	one,	as	arrays	use	zero-based	indexing,	and	this	initial	pattern	will	spawn	only
platforms.	Also,	global.<variable	or	array>	will	make	the	variable/array	accessible	in
all	of	the	code	in	your	game.	So	any	object	can	access	the	array.	The	array	has	what	is
known	as	global	scope	and	the	same	is	for	variables	that	are	made	global.	Now,	before	you
begin	making	your	array,	you	need	to	know	a	few	things:

Firstly,	assuming	that	you	used	the	same	room	dimensions,	speeds,	values	for	gravity,
and	so	on	that	we	used	earlier	in	this	chapter,	the	player	can	only	move	about	145
pixels	left	and	right	when	in	the	air,	and	90	pixels	up	when	in	the	air	(we	found	this
out	by	averaging	different	distances	the	player	was	able	to	move	from	point	to	point).
This	thus	means	that	all	platforms	must	be	within	145	pixels	on	the	x	axis	and	90
pixels	on	the	y	axis	of	the	ones	spawned	before	and	after	it.	This	also	means	that	the
first	platform	spawned	in	this	pattern	must	be	within	that	range	in	comparison	to	the
single	platform	you	have	left	in	your	room,	and	also	that	the	start	and	end	platforms

for	the	other	patterns	you	will	make	(the	formats	for	which	we	will	get	into	soon)
must	be	within	the	range	of	all	other	start	and	end	platforms	except	for	the	starting
platform	of	the	initial	pattern.
The	second	thing	you	should	know	is	that	you	will	create	your	arrays	with	the	first
main	index	you	declare	being	the	highest	index,	and	then	the	first	subindex	will	also
be	the	highest	subindex,	as	this	helps	for	memory	allocation	as	the	computer	will	then
know	how	much	memory	will	need	to	be	allocated.	If	you	were	to	start	from	index	0
and	then	go	up,	it	wouldn’t	know	how	much	memory	is	needed,	which	can	cause
issues	with	large	arrays.	Don’t	worry	if	you’re	confused	about	all	this,	we	will	show
you	a	sample	of	what	your	array	should	look	like.
Also,	your	y	coordinate	should	always	be	decrementing	as	you	continue	to	make	your
array	so	that	there	are	no	gaps	or	anything.
Finally,	the	last	platform	in	this	pattern	must	be	spawned	very	close	to	the	top	of	your
room	(very	close	to	0	on	the	y	axis),	so	you	must	create	enough	arrays	to	make	that
happen.

The	following	is	a	commented	sample	of	what	we	have:

//we	have	a	single	platform	in	main	room	at	(256,	736)

//we	have	eleven	platforms	spawned

global.pattern_initial[10,2]	=	680;	//y	coordinate,	within

//range	of	90px

global.pattern_initial[10,1]	=	350;	//x	coordinate,	within

//range	of	145px

global.pattern_initial[10,0]	=	obj_platform;	//object	to	spawn

global.pattern_initial[9,2]	=	620;	//notice	how	main	index	is

//one	less	from	the	previous,	but	the	subindex	is	the	same

global.pattern_initial[9,1]	=	280;	//also	note	how	the	y

//coordinate	decreased	(moving	up)

global.pattern_initial[9,0]	=	obj_platform;

So	based	on	this	code,	you	should	be	able	to	figure	out	what	your	arrays	will	look	like	and
how	you	should	structure	them.	Reference	this	sample	when	needed,	as	the	spawning
method	we	are	using	is,	while	a	very	good	one	to	use	as	it	prevents	the	possibility	of
impossible	patterns	can	be	somewhat	complex	to	set	up.	When	you	have	finished	creating
your	array,	make	the	setup	room	change	to	the	main	room.

Inside	the	creation	code	for	the	main	room,	we	will	put	in	code	that	spawns	this	array,
using	a	for	loop	(the	structure	and	syntax	of	which	we	will	explain	now).

The	basic	format	for	a	for	loop	is:

for(assignment;	condition;	assignment/variable	change)	{}

Usually,	the	variable	you	assigned	first	is	a	counter	variable.	The	first	assignment	only
happens	once,	whereas	the	second	occurs	after	every	time	that	the	loop	body	runs.	This
second	assignment	is	usually	an	incrementation	or	decrementation	of	your	counter
variable.	The	condition	is	the	same	as	with	an	if	statement.

However,	there	can	be	deviations	from	the	standard	structure,	in	terms	of	missing	parts.
You	can	skip	any	of	the	three	parts	in	the	parentheses	of	the	loop	provided,	which	you	put

in	the	semicolon	that	delimits	its	end	as	usual	(except	for	the	second	assignment	that
doesn’t	get	a	semicolon	no	matter	what	you	are	doing).	However,	you	must	never	have	a
for	loop	with	no	condition;	it	will	run	infinitely.	GameMaker	doesn’t	allow	you	to	have
loops	with	no	condition	though,	these	will	not	compile.	In	general,	most	language
compilers	allow	loops	with	any	part	missing,	so	be	careful.

Back	to	the	loop	we	will	be	writing.	A	local	variable	will	be	declared	that	holds	the	value
of	the	highest	main	index	of	the	array.	That	variable	will	then	be	used	to	access	the
necessary	values	for	spawning	a	platform,	and	then	be	decremented	and	the	cycle	will
repeat	until	all	of	the	array’s	platforms	have	been	spawned.	The	code	would	look	as
follows:

for	(var	i	=	array_height_2d(global.pattern_initial)	-	1;	i	>	-1;	--i)

				instance_create(global.pattern_initial[i,1],	

global.pattern_initial[i,2],	global.pattern_initial[i,0);

First,	the	local	variable,	a,	is	declared	equal	to	the	length	of	the	array	minus	one,	as	the
array_height_2d(2D	array)	function	returns	the	actual	height	of	the	first	index,	not
using	zero-based	indexing.	Then,	the	loop	will	repeat	until	the	variable	is	equal	to	-1,	an
index	that	arrays	cannot	have.	The	strict	format	we	used	allows	us	to	have	the	values
inside	of	the	array	be	used	as	parameters	for	the	instance_create	function	with	a	for
loop.

Once	you	have	finished	this,	open	up	the	platform	object.	Give	it	a	Step	event,	and	inside
it,	put	in	code	so	that	when	the	platform	goes	off	the	bottom	of	the	screen,	it’s	destroyed.
Then,	test	whether	the	player	is	moving	upwards	(which	you	can	do	by	testing
obj_PC.vspeed,	which	gives	us	the	value	of	the	vspeed	variable	of	the	player	object,	but
you	should	only	follow	this	format	when	there	is	a	single	instance	of	the	object,	like	with
the	player),	and	if	so,	the	platform’s	speed	should	be	set	to	the	exact	opposite	of	that	of	the
player.	Otherwise	(the	player	wasn’t	moving	upwards),	the	platform	should	stop	moving.
This	gives	the	illusion	that	the	player	is	actually	climbing	up,	but	in	the	reality	of	the
program,	the	platforms	are	just	moving	and	the	player	is	staying	in	one	region.	Now	copy
all	of	this	code	and	put	it	in	the	Step	event	of	the	enemy	object.	You	can	alternatively
create	a	script	that	both	objects	call,	if	you	so	wish.

After	you’ve	done	this,	test	your	game	to	ensure	that	the	platforms	are	being	spawned
correctly.	If	so,	you	can	move	on.

The	next	step	is	creating	the	arrays	for	the	patterns	that	will	be	chosen	at	random,	and	then
creating	and	implementing	the	script	that	performs	this.	The	format	for	these	arrays	is	as
follows:

global.pattern_<num>[<val>,1]	=	<x	coordinate>;	//spawned

//first

global.pattern_<num>[<val>,0]	=	<object>;

global.pattern_<num>[<val	-	1>,1]	=	<x	coordinate>;	//spawned

//next

global.pattern_<num>[<val	-	1>,0]	=	<object>;

You	will	create	three	of	these	arrays,	which	will	be	global.	For	each	of	them,	the	x
coordinates	for	the	platforms	must	be	within	145	pixels	of	the	platforms	spawned	before
and	after	them.	The	beginning	and	ending	platforms	must	also	be	within	the	range	of	all
other	beginning	and	ending	platforms	in	the	randomly	chosen	arrays	and	within	the	last
platform	that	is	spawned	from	the	initial	array.	Make	all	of	your	arrays	in	the	creation	code
for	the	setup	room,	after	the	initial	array	is	made	but	before	the	room	changes.

Once	you’ve	finished	that,	we	will	make	a	script	to	spawn	new	platforms.	First,	we	must
test	whether	there	is	anything	near	the	top	of	the	screen	by	using	the
collision_rectangle	function.	Check	whether	there	is	no	collision	in	the	area	formed	by
the	points	(0,	0)	and	(512,	75).	The	object	is	all,	which	is	a	keyword	meaning	every
single	object	in	the	room,	but	make	sure	to	set	the	notme	parameter	to	false	so	that	the
player	will	not	trigger	a	collision.	If	there’s	no	collision	(and	all	of	the	following	code	will
be	placed	in	the	previous	if	statement),	then	create	a	switch	statement	that	checks	the
value	of	the	function	irandom_range(n1,n2),	where	n1	is	the	low	end	from	which	an
integer	will	be	chosen,	and	n2	is	the	high	end	from	which	it	will	be	chosen.	Pass	it	the
arguments	1	and	3	so	that	the	function	can	return	1,	2,	or	3.	Now	we	will	put	in	three	case
statements.	Set	one	up	for	each	of	the	different	possible	return	values,	and	do	not	set	up	a
default	case.

Let’s	work	on	the	first	case.	First,	we	must	declare	a	local	variable,	a,	equal	to	the	height
of	the	array	global.pattern_one,	which	we	can	do	by	using	the	array_height2d(array)
function,	and	then	subtracting	1	so	that	the	variable	uses	zero-based	indexing.	Next,
declare	another	local	variable	called	last_obj_spawned	equal	to	instance_create	when
it	spawns	the	object	at	global.pattern_one[a,0]	at	(global.pattern_one[a,1],	0)	so
that	we	can	base	the	placement	of	further	spawned	objects	off	of	the	first	object.

Remember	that	the	subindex	of	1	holds	the	x	coordinate,	and	the	subindex	of	0	holds	the
object.	After	the	object	has	been	created,	decrement	the	original	local	variable	(a)	so	that
we	have	“moved	on”	to	the	next	main	index.	Now,	we	will	put	in	a	while	loop	that
continues	until	that	variable	is	equal	to	-1,	as	again	no	array	can	hold	a	value	at	that	index.
Inside	of	this	while	loop,	create	an	if/else	construct	that	tests	to	see	whether	the	object
referred	to	by	the	current	index	being	used	by	the	local	variable	is	the	enemy.	If	so,	create
an	enemy	at	(<specified	x	coordinate>,	last_obj_spawned	-	<half	of	enemy
sprite's	width>)	so	that	the	enemy	will	be	spawned	(at	least	on	the	y	axis)	just	above	the
previously	spawned	platform.	If	that	if	statement	was	false,	then	a	local	variable	called
spawn_dist	should	be	equal	to	the	return	value	of	irandom_range	when	it	can	generate	a
number	from	50	to	80.	This	variable	will	specify	how	far	north	of	the	previous	object
spawned	(other	than	any	enemy	not	spawned	first	in	the	pattern)	a	new	platform	should	be
created.	Now	create	a	platform	(but	don’t	directly	reference	the	platform	object,	instead
reference	it	through	the	array	so	that	you	can	create	other	kinds	of	platforms	or	any	other
object	later	on)	at	the	x	coordinate	specified	in	the	array	and	the	y	coordinate	of	the
previous	object	(last_obj_spawned.y)	minus	spawn_dist,	so	that	the	platform	is
spawned	at	a	random	(but	fair)	distance	from	the	previous	object,	and	set	the	return	value
equal	to	the	variable	we	used	for	what	the	last	object	spawned	was.	After	that,	decrement
the	variable	we	used	for	the	main	index,	and	then	break	the	case	outside	the	while	loop.

You	can	now	copy	and	paste	the	entire	contents	of	this	case,	and	paste	it	into	the	other
cases,	replacing	the	references	to	the	array	for	the	first	pattern	with	references	to	the	arrays
for	the	second	and	third	patterns	as	needed.

When	you’ve	finished	creating	your	script,	call	it	at	the	end	of	the	player	object’s	Step
event	so	that	new	platforms	will	be	constantly	spawned.	Now	play	your	game	and	ensure
that	all	the	spawning	is	working	as	you’d	expect	it.	You	might	need	to	tweak	some	of	the	x
coordinates,	but	it	should	be	good	otherwise.

Menus	and	textboxes
The	last	things	we	will	implement	into	this	chapter	are	menus	and	textboxes.	Menus	give
us	options	to	perform	actions,	and	the	two	we	will	be	creating	are	a	menu	for	a	start	screen
where	we	can	start	or	quit	the	game,	and	one	for	pausing,	where	we	can	resume	or	quit	the
game.	Textboxes	are	just	boxes	of	text,	as	you’d	expect,	not	unlike	the	boxes	that	show	up
with	the	show_message	function.

Menus
We’re	going	to	start	with	creating	the	menus,	and	more	specifically,	the	start	screen	menu.
We’ll	start	with	the	assets	we’ll	need.	Begin	with	creating	two	sprites.	One	should	be	for	a
Start	button,	and	the	other	for	a	Quit	button.	Each	will	have	two	subimages.	The	first
subimage	is	for	when	the	button	is	unselected,	and	the	second	is	for	when	it	is.	We	made
our	buttons	96	by	24	pixels,	so	you	should	make	yours	somewhere	around	that	size.	Next,
create	a	font	(two	options	up	from	Objects).	Name	it	what	you	like,	and	then	select	a	font
on	your	computer	from	the	drop-down	list	below	the	Name	field.	A	note	about	this:	fonts
are	not	packaged	with	the	game,	which	is	why	we	will	teach	you	about	another	method	for
fonts	that	uses	sprites,	in	the	next	chapter,	but	there	are	good	reasons	to	use	regular	fonts.
Anyway,	that’s	all	you	need	to	do	for	the	font,	so	you	can	now	create	an	object	that	we
will	use	solely	in	the	start	screen.	Give	it	a	Create	event	in	which	the	choice	variable	is
set	to	0.	This	variable	will	be	used	to	hold	which	button	the	user	has	currently	selected.
Next,	add	a	Draw	event.	Inside	of	it,	we	will	set	the	font,	the	alpha	(opacity),	and	the	color
to	use	when	drawing	the	title	of	the	game	on	the	start	screen.	The	functions	for	this	are
draw_set_font(font),	draw_set_alpha(alpha)	and	draw_set_color(color).	The
parameters,	respectively,	are	the	font	to	use,	the	alpha	to	use	(a	real	number	from	0	to	1),
and	the	color	to	set	for	drawing.	You	must	always	specify	an	alpha	and	color	before
drawing	if	you	do	not	use	functions	in	which	you	specify	those	values,	and	must	also
specify	a	font	if	drawing	text.	Anyway,	set	those	values.	Next,	we	will	use	the	function
draw_text_transformed(x,	y,	string,	xscale,	yscale,	angle),	where	the	string	is
the	text,	xscale	is	the	scale	you’d	like	to	change	the	length	of	the	text	by	(for	example,	1
is	100	percent,	or	regular,	0.5	is	50	percent,	or	half	size),	yscale	is	the	same	(except	for
the	height),	and	angle	is	the	angle	at	which	you’d	like	the	text	to	be	aligned	(0	is	regular,
180	is	spun	180°).	For	the	coordinates,	you	should	know	that	the	text	is	anchored	by	the
top-left	corner.	Anyway,	draw	the	title	somewhere	on	the	screen,	and	manipulate	it
however	you	like.

When	you	have	finished	that,	we	will	put	in	the	menu	system.	First,	set	the	alpha	back	to
1.	Then,	make	an	if/else	if	constructed	to	test	whether	the	up	arrow	key	has	been	pressed
(the	function	is	keyboard_check_pressed),	and	if	not	(else	if),	then	check	whether	the
down	key	has	been	pressed.	If	the	up	key	was	pressed,	then	the	variable	choice	should	be
set	to	0,	but	it	should	be	set	to	1	if	the	down	key	was	pressed.	Now	create	a	switch
statement	for	that	variable.	If	it	was	equal	to	0,	then	use	the	draw_sprite	function	to	draw
the	second	subimage	(the	one	for	selected)	of	the	Start	button,	and	the	first	subimage	of
the	Quit	button.	Then,	break	the	case.	Do	the	same	for	if	the	variable	was	equal	to	1,	but
reverse	the	subimages.	In	this	way,	pressing	the	up	or	down	arrow	keys	will	change	the

sprite	used	for	the	button	to	let	the	player	know	what	they	are	currently	choosing.	Next,
outside	the	switch,	test	whether	the	Enter	key	has	been	pressed.	This	key	is	for	“pressing”
the	button.	Inside,	should	be	another	switch	for	the	choice	variable,	with	the	same	cases.
If	the	Start	button	was	chosen,	then	the	room	should	be	changed	to	the	setup	room.	If	it
was	the	Quit	button	chosen,	then	the	game_end()	function	should	be	called,	which	closes
the	application.	At	the	end	of	the	Draw	event,	set	the	drawing	color	to	black.	You	should
always	reset	your	colors	and	alphas	when	you’re	done	using	them.

Make	a	start	screen	room,	give	it	a	background,	and	put	the	object	we	just	created	into	the
room.	Test	your	game	to	make	sure	that	the	appropriate	actions	are	run	when	you	select
and	“press”	the	buttons,	and	that	the	sprites	change.

Once	it	works,	we	will	add	a	fade	out/fade	in	system.	Start	off	with	creating	an	object	to
control	the	transitioning.	Give	it	a	really	small	depth	(such	as	negative	one	million)	so	that
it	will	render	on	top	of	everything	and	you	don’t	have	to	worry	about	changing	numbers	or
anything.	Also,	check	the	Persistent	checkbox.	This	will	allow	it	to	be	created	in	one
room,	and	then	still	exist	in	the	next	room	when	the	room	changes.	We	have	to	do	this
because	the	fade	out	part	will	be	in	the	first	room,	but	the	fade	in	sequence	will	be	in	the
second	room.	If	we	don’t	make	the	object	persistent,	there	never	will	be	a	fade	in.

Next,	inside	of	the	object’s	Create	event,	set	a	variable	called	fade_alpha	(not	the	alpha
itself)	to	0,	another	variable	called	state	to	1,	and	a	third	variable	called	fade_speed	to
0.05.	The	first	will	be	for	what	alpha	we	set	at	different	times,	the	second	is	to	control
whether	we	are	fading	in	or	out,	and	the	third	controls	the	rate	at	which	the	drawing	alpha
is	changed.

Now,	add	a	Draw	event.	First,	set	the	color	to	black.	Next,	we	will	use	the	clamp(val,
min,	max)	function,	which	sets	a	value	to	something,	but	ensures	that	it	stays	within	a
range.	The	first	parameter	is	the	basic	value	to	set	the	return	value	to,	while	the	second	and
third	create	the	range	that	the	number	will	be	kept	inside.	Set	the	fade_alpha	variable
equal	to	this	function.	For	the	first	parameter,	use	fade_alpha	+	(fade_speed	*	state),

and	for	the	other	two,	since	an	alpha	must	be	within	0	and	1,	the	parameters	should	be	0
and	1.	In	this	way,	we	will	increment	(or	decrement,	based	on	the	value	of	state)	the
fade_alpha	variable	by	0.05.	After	you	have	done	this,	we	need	to	stop	the	player	object
from	moving	up	or	down	when	the	room	is	fading	out	(as	we	will	be	using	this	transition
for	both	going	to	and	from	the	main	room).	First,	test	whether	we	are	fading	out	(state
equals	1)	and	an	instance	of	the	player	object	exists,	with	the	instance_exists(obj)
function.	If	so,	set	vspeed,	hspeed,	and	gravity	of	the	player	to	0	(obj_PC.<var>	=	0).
We	have	to	test	whether	the	player	exists	at	all,	as	we	might	be	fading	out	from	the	starting
screen	(which	has	no	player),	not	the	main	room.	We	must	also	set	these	variables	here
rather	than	in	the	player,	as	doing	it	in	the	player	would	actually	be	too	slow	and	they
would	noticeably	continue	to	fall.

After	that,	check	whether	the	fade_alpha	variable	is	equal	to	1	(it	has	hit	its	maximum
value)	and	if	we’re	still	in	the	first	state.	If	so,	go	to	the	room	set	by	the	variable
global.target_room	(a	variable	whose	value	we	will	set	later).	Also,	set	our	state	to	-1
so	that	we	will	start	losing	alpha.	Otherwise,	if	(else	if)	our	fade_alpha	is	0	and	our
current	state	is	-1,	the	transition	object	should	be	destroyed.	Finally,	set	the	alpha	to	our
fade_alpha	variable,	and	use	the	draw_rectangle(x1,	y1,	x2,	y2,	outline)	function
to	draw	our	fading	transition.	The	outline	parameter	is	whether	the	rectangle	is	just	an
outline	(true)	or	is	filled	in	(false).	We	want	the	rectangle	to	cover	the	entire	screen,	so
make	it	filled	in.	Also,	for	the	second	set	of	coordinate	parameters,	use	the	room_width
and	room_height	variables	so	as	to	make	this	code	versatile	and	reusable.	After	you	draw
the	rectangle,	set	the	alpha	(not	the	variable,	but	the	direct	alpha)	back	to	1.	We	found	that
glitches	occurred	when	transitioning	from	the	start	screen	to	the	main	room	when	we	did
not	do	this,	and	it	was	most	likely	because	we	have	to	pass	through	the	setup	room	before
going	to	the	main	one,	which	is	why	it’s	important	to	set	the	alpha	back	to	1.

When	you	have	finished	work	on	your	transition	object,	open	the	Creation	code	for	the
setup	room.	Delete	the	call	to	room_goto,	and	replace	it	by	setting	global.target_room	to
the	main	room,	followed	by	creating	the	transition	object.	Once	that’s	done,	test	your
game	to	ensure	that	you	can	smoothly	transition	from	the	start	screen	to	the	main	room.

Now	let’s	work	on	the	pause	menu.	First,	create	a	button	sprite	just	like	the	others,	but	for
Resume.	Then,	create	a	new	object	for	the	pause	menu.	Set	its	depth	to	-100.	We’ll	now
start	with	the	Create	event.	Call	the	function	surface_create(w,h)	with	arguments	of
surface_get_width(application_surface)	and
surface_get_height(application_surface)	and	set	it	equal	to	pause_surface.	The
application	surface	is	the	default	surface	everything	is	drawn	on,	and	we	will	be	basically
copying	its	contents	to	another	surface	for	reasons	we	will	soon	explain.	Then,	set	the
variables	is_paused	and	can_proceed	to	false,	and	Alarm	0	to	1	step.	Also,	set	the
variable	choice	(used	for	the	same	purpose	as	last	time)	to	0.	When	Alarm	0	triggers,	set
that	second	variable	to	true.	We	need	the	surface	to	exist	for	a	whole	step	before	doing
anything	more	with	it,	so	that	it	can	be	created	and	so	that	it	is	registered	and	everything,
which	is	why	we	have	that	second	variable	and	the	alarm.	Now	add	a	Step	event,	where	an
if	statement	checks	if	the	can_proceed	variable	is	true	and	if	the	P	key	has	been	pressed.
To	use	the	P	key	with	keyboard_check_pressed,	you	simply	supply	the	function

ord('P'),	which	returns	the	unicode	value	for	the	key.	If	the	if	statement	evaluated	to
true,	then	call	the	instance_destroy()	function.

Now,	we	can	work	on	the	Draw	event.	First	test	whether	can_proceed	is	true.	All	of	the
following	code	will	go	inside	that	if	statement.	First,	check	whether	the	pause	surface
exists	(as	they	can	get	erased	on	some	devices,	such	as	on	an	Android	smartphone	if	the
app	is	“paused”	by	an	incoming	call)	with	the	surface_exists(surface)	function.	If	so,
draw	the	pause	surface	with	draw_surface(surface,	x,	y).	You	should	substitute	(0,
0)	for	the	coordinates	so	that	the	surface	covers	the	whole	screen.	If	the	surface	did	not
exist,	then	use	the	event_perform(type,	numb)	function	to	reperform	the	Create	event,
in	which	we	had	drawn	the	surface	and	stopped	the	pause	menu	from	continuing	for	a
step.	The	type	is	ev_create,	and	the	numb	refers	to	the	specific	subevent	(an	example	of
this	would	be	for	a	specific	key	in	a	keyboard	event),	which	for	us	will	be	0.	After	that,
test	whether	the	variable	is_paused	is	false,	which	becomes	true	once	all	the	objects	have
stopped.	If	it	was	false,	then	it	should	be	set	to	true.	Then,	use	the
surface_set_target(surface)	function	to	set	the	surface	to	draw	to	be	the	pause
surface.	Then,	draw	the	application	surface,	effectively	copying	the	main	surface	to	the
pause	surface.	Then	reset	the	surface	to	be	the	application	surface	with
surface_reset_target().	After	that,	we	will	deactivate	all	instances	except	the	pause
menu	with	instance_deactivate_all(notme),	where	notme	should	be	set	to	true.	If	we
set	it	to	false,	the	game	would	effectively	freeze,	so	it’s	kind	of	useless	for	GameMaker
to	have	the	option	to	set	notme	to	false,	but	who	knows	what	people	want	to	do	with	their
games?	When	we	deactivate	all	the	instances,	they	stop	drawing	themselves,	and	thus	we
see	a	blank	screen.	We	should	see	what	was	there	right	before	we	paused	the	game	so	that
the	player	doesn’t	only	see	the	pause	menu,	which	is	why	we	created	a	surface	that	holds
what	the	screen	used	to	look	like.

After	you	have	finished	that,	we	will	put	in	the	menu	system	that	appears	when	the	game
is	paused.	Begin	by	setting	the	alpha	to	a	full	or	somewhat	transparent	value.	Next,	we
will	use	the	function	draw_roundrect_color(x,	y,	x1,	y1,	col1,	col2,	outline)	to
create	the	background	of	the	pause	menu.	The	col1	and	col2	parameters	are	for	the	center
and	border	colors	respectively.	Pick	whatever	colors	you	want,	but	set	outline	to	false
(so	the	rectangle	is	filled	in).	After	that,	you	can	copy/paste	the	code	we	had	for	the	start
screen	all	the	way	from	changing	the	value	of	choice	based	on	keyboard	input	down	to	the
end	of	the	if	statement	that	checks	for	the	Enter	key.	There	are	a	few	things	we’ll	need	to
change.	First,	instead	of	the	first	option	being	the	Start	button,	it	should	be	the	Resume
button.	You	also	might	need	to	change	some	of	the	coordinates	around.	Next,	if	the	player
“presses”	the	Resume	button,	the	pause	menu	should	be	destroyed.	If	they	hit	the	Quit
button,	set	the	global.target_room	variable	to	the	room	for	the	start	screen,	and	spawn
an	instance	of	the	transition	object.	In	this	way,	we	can	have	the	smooth	transition
incorporated	both	to	and	from	the	main	room.	Finally,	if	you	changed	the	alpha	or
anything,	reset	it.

There’s	just	one	more	thing	to	add:	a	Destroy	event.	This	is	like	a	Create	event,	but	it	is
run	whenever	the	instance	is	destroyed	instead	of	when	it’s	created.	Inside	of	this	Destroy
event,	call	the	functions	instance_activate_all()	and	surface_free(surface).	The

first	function	reactivates	all	objects	in	the	room	(which	if	you	recall,	we	deactivated	in	the
Draw	event),	and	the	second	deletes	the	surface	(pass	it	the	argument	pause_surface),	as
these	take	up	lots	of	memory	and	we	don’t	need	it	anymore	until	the	player	pauses	again.

When	you	have	completed	that,	your	pause	object	is	finished.	The	final	things	to	do	is	to
check	whether	the	player	pressed	the	P	key	at	the	top	of	the	player	object’s	Step	event,
and	if	so,	the	pause	menu	object	should	be	created	and	should	display	some	text	that	tells
the	player	that	pressing	the	P	key	pauses	the	game.	Add	a	Draw	event	to	your	player
object	for	this.	Call	draw_self()	so	that	the	player	sprite	will	be	drawn,	as	will	the	text.
Call	draw_text(x,	y,	text)	to	draw	text	that	tells	the	player	what	to	press	for	pausing.

Test	out	your	game	to	make	sure	your	pause	menu	is	working	right	and	the	screen	appears
paused	as	well.	Also,	make	sure	that	both	options	are	working	correctly	in	the	menu.	If	so,
we	can	now	work	on	the	final	part	of	this	chapter—textboxes!

Textboxes
Congrats!	You’ve	made	it	this	far,	and	have	only	one	thing	left	to	program,	a	textbox.
Unfortunately,	GameMaker	has	no	built-in	functions	for	this,	which	is	quite	surprising,	as
most	games	use	a	textbox,	so	we	will	need	to	do	this	on	our	own.	Now,	you	might	say,
“What	was	wrong	with	the	show_message	function?”	A	couple	things.	If	you	want	a	game
with	a	nice	UI	that	looks	clean,	you	probably	don’t	want	to	use	that	function.	It’s	a	dialog
box;	these	are	usually	for	errors	or	important	prompts.	Also,	that	function	is	for	debug
purposes,	and	is	not	intended	for	release.	In	fact,	we	commonly	used	it	to	see	the	values	of
variables	or	to	see	whether	something	had	ran	properly	when	we	were	making	these
games.

So	we’re	going	to	make	a	textbox.	Unfortunately,	you	will	need	to	pay	very	close	attention
to	what	we	are	about	to	do,	as	this	is	actually	a	rather	complex	(yet	not	impossible)	and
somewhat	difficult	thing	to	implement.	We	will	try	to	explain	it	as	best	we	can	for	you	to
understand,	and	recommend	for	this	section,	as	we	did	with	the	random	spawning,	that
you	use	the	values	we	do.	So	let’s	start.	Make	an	object	for	the	textbox.	Set	its	depth	to
-90,	so	that	it	renders	beneath	the	pause	menu,	and	give	it	a	Create	event,	in	which	the
variables	height	and	width	are	set	to	128.	These	will	be	for	the	height	and	width	of	the
textbox.	Next,	set	the	variable	padding	to	equal	8.	This	will	be	how	much	blank	space
there	should	be	from	the	text	to	the	edges	of	the	box.	Now,	we	get	into	some	of	the	more
complex	stuff—data	structure	(DS)	lists.	These	are	very	similar	to	one-dimensional
arrays;	however,	they	are	more	dynamic	and	flexible,	and	allow	us	to	do	more	such	as
shuffle	values,	change	their	sorting,	or	put	values	in	anywhere.	That	doesn’t	mean	you
should	abandon	arrays,	as	for	one,	there	are	no	2D	DS	lists,	and	two,	DS	lists	take	up	more
memory	and	we	don’t	always	need	them.	Anyway,	create	a	DS	list	called	start	by	setting
the	variable	start	equal	to	ds_list_create().	It	will	hold	the	different	places	at	which	a
new	line	has	been	printed	(in	a	number,	which	is	the	placement	of	the	character	that	begins
the	line).	Now	set	the	variables	count,	last_space,	and	line	to	0.	These	represent	the
current	spot	in	the	string	we	will	be	printing,	the	place	in	the	message	where	the	last	space
printed	was,	and	the	current	line	we	are	printing	on.	Now	set	the	variable	message	equal	to
global.msg	+	"#Hit	Enter	to	continue.",	which	conjoins	the	two	strings.	The	#

symbol	represents	a	newline.	Then,	set	the	variable	str	equal	to	a	completely	empty
string,	and	it	will	be	the	current	line	of	text	that	we	are	printing,	whereas	the	message	is
the	whole	string.	Now	set	the	variable	global.text_box_finished	to	false.

Now	add	a	Destroy	event,	and	destroy	the	DS	list	with	ds_list_destroy(id),	where	id
should	be	start	for	us.	Add	a	Step	event,	where	you	test	whether	the	Enter	key	has	been
pressed.	If	so,	destroy	the	textbox	and	set	global.text_box_finished	to	true.

1.	 Now	comes	the	really	complex	stuff	with	the	Draw	event.	First,	set	the	alpha	to
whatever	you’d	like,	and	draw	a	round,	colored	rectangle	(using	the	function	we	used
for	the	pause	menu).	Then,	set	the	alpha	back	to	1,	and	set	the	color	to	something	that
is	distinctly	different	from	the	color	you	chose	for	the	textbox’s	background.

2.	 Now	the	following	order	of	code	might	seem	strange	or	unconventional,	but	it	is	put
in	this	order	so	that	it	will	work	properly.	We	start	with	testing	whether
string_width(str)	is	greater	than	width	-	(padding	*	2),	as	we	want	to	make
sure	that	the	lines	do	that,	go	out	of	the	box,	and	that	they	do	leave	whitespace	around
themselves.	So	if	the	width	of	the	string	is	greater,	then	we	must	remove	part	of	the
original	message	(just	a	space)	so	that	it	fits.	We	do	this	by	setting	message	equal	to
string_delete(str,	index,	count),	where	those	are	all	parameters,	not	any	of	our
variables,	and	represent	the	string	to	modify	the	position	of	the	first	character	to	get
rid	of,	and	how	many	characters	to	get	rid	of.	We	pass	it	message,	last_space,	and	1.

3.	 Then,	we	use	string_insert(substr,	str,	index)	and	set	message	equal	to	it.	Our
parameters	(substring	to	add,	string	to	copy,	and	position)	are	the	newline	character
(#),	message,	and	last_space	+	1.

4.	 Lastly,	we	use	the	ds_list_add(id,	val)	function	to	add	last_space	+	1	to	the	DS
list	start.

5.	 Now,	outside	of	that	if,	test	whether	count	is	less	than	string_length	when	passed
a	message.	If	so	(there’s	more	to	be	printed),	use	string_char_at(str,	index)	to
see	if	it	returns	the	space	character	when	passed	message	and	count.	Outside	of	this
latest	if	statement,	(but	inside	the	one	where	we	test	the	length	of	the	message),
increment	count	by	1.

6.	 We	have	only	a	few	more	things	to	do	in	this	Draw	event.	Test	if	the	height	of	str	is
greater	than	height	-	padding	(although	you	can	do	padding	*	2	if	you	find	it
looks	better)	with	the	string_height(string)	function.	If	so,	increment	line	by	1,
as	we	have	gone	to	the	next	line.

7.	 Now,	we	can	actually	decide	what	to	print	based	on	all	of	our	calculations.	Set	str
equal	to	string_copy(str,	index,	count),	which	represents	the	string	to	copy
from,	the	position	to	copy	from	(numbered	from	1,	not	0),	and	how	many	characters
to	copy.	We	will	pass	it	message,	and	two	calls	to	ds_list_find_value(id,	pos),
where	the	first	parameter	is	the	id	of	the	list	to	use,	and	pos	is	the	position	to	find	the
value	in.	In	the	first	call,	your	DS	list	is	start,	and	your	pos	is	line.	In	the	second,
it’s	the	same	parameters,	but	you	will	subtract	that	value	from	count.

8.	 Finally,	draw	the	message	with	draw_text(x,	y,	string),	where	you	should	add
padding	to	the	object’s	x	and	y	coordinates,	and	your	string	argument	should	be	str.
Finally,	set	the	color	back	to	black.

With	that,	there	are	only	a	few	more	things	to	do,	and	they	are	all	in	the	player	object.	In
its	Create	event,	set	the	variable	made_text_box	to	false.	Next,	test	if	that	new	variable
we	created	in	the	Create	event	is	false.	If	so,	set	a	variable	global.msg	to	a	string	of	text
that	tells	the	player	they	have	died	and	that	the	game	will	restart,	and	then	spawn	a	textbox
if	so.	Spawn	it	somewhere	towards	the	middle	of	the	screen,	not	at	the	top.	The	reason	we
must	do	this	is	because	we	made	it	so	that	new	platforms	are	spawned	if	there	are	no
objects	(no	collision)	at	the	top	of	the	screen,	and	this	object	we’ve	just	created	could
cause	a	collision,	thus	meaning	no	new	platforms	would	ever	be	spawned.	Also,	inside	the
if,	set	the	new	variable	we	created	in	the	Create	event	to	true,	so	that	we	do	not	spawn
more	than	one	textbox.	Finally,	test	whether	global.text_box_finished	is	true,	and	if
so,	restart	the	room	and	delete	the	call	to	show_message.

Congrats,	you’ve	finished	the	textbox	and	it	it’s	time	to	test	it	out.	Make	sure	that
everything	works	perfectly	in	your	game,	and	if	so,	you’re	done	with	this	chapter.

Applaud	yourself.	Seriously.	It	had	some	difficult	stuff.	When	you’re	done	praising
yourself	for	your	hard	work,	we	can	move	onto	the	summary.

Summary
Great	job	on	making	it	this	far!	You	can	applaud	yourself	again	if	you	want.	Make	sure
you	review	this	chapter,	especially	the	part	on	textboxes	and	string	manipulation,	as	that
can	get	a	little	bit	confusing.	Once	you	think	you’re	ready,	tackle	the	Review	questions,
followed	by	the	Quick	drills.

Review	questions
1.	 What’s	the	advantage	of	the	way	we	“randomly”	spawned	our	platforms	and

enemies?
2.	 What	does	changing	the	origin	of	a	sprite	do	for	positioning	any	associated	objects?
3.	 What’s	a	switch	statement	and	how	is	it	structured?
4.	 What	are	2D	arrays	and	how	do	you	set	them	up?
5.	 How	do	you	create	global	arrays	and	variables?

Quick	drills
1.	 Edit	the	current	initial	array	to	include	enemies	(this	is	why	we	had	the	then-verbose

subindex	of	the	platform),	and	then	create	another	initial	array	that	follows	the	format
of	the	first.	Also	put	in	a	script	that	chooses	between	the	two	arrays	and	then
implements	the	chosen	one.

2.	 Make	different	messages	appear	based	on	different	actions	in	your	game.	Some	might
be	good	to	tell	the	player	what	buttons	to	press	for	different	things.	A	note	though,
you	should	make	sure	that	you	don’t	have	multiple	boxes	up	at	once.

3.	 Add	new	items	and	platforms	to	your	game,	such	as	breakaway	platforms	(or	ones
with	holes)	upon	which	the	player	can’t	bounce,	spikes,	platforms	that	move	up	and
down/left	and	right,	or	platforms	that	allow	the	player	to	jump	for	longer.	If	you	can
think	of	any	more	ideas,	try	them	out!

4.	 Add	power-ups	to	your	game	that	give	the	player	new	abilities,	such	as	ones	that
make	the	player	fly	up	for	a	short	time,	double	jump,	increased	left	and	right	speed,
or	any	others	you	can	think	of.

5.	 Make	some	of	the	values	of	some	of	the	arrays	random	values	(in	a	range)	to	shake
the	game	up	even	more,	but	test	your	game	so	that	you	can	always	keep	on	going.

With	that,	you	have	completed	this	chapter,	so	applaud	yourself	again.	Anything	you’re
still	confused	about,	you	should	definitely	go	back	and	read	about	and	maybe	you	should
read	about	some	of	the	functions	in	the	documentation	too.	In	the	next	chapter,	we	will
adding	more	to	this	game	by	putting	in	a	score	system	with	a	new	way	to	display	it,	a	way
to	save	it	as	a	high	score	that	can	be	reloaded,	and	a	way	to	change	what	the	user	can	enter
on	their	keyboard	to	make	things	happen.

Chapter	5.	Saving	and	Loading	Data
In	this	chapter,	you	will	add	a	lot	of	functionality	to	your	previous	games.	This	includes
implementing	a	score	system	and	displaying	the	score	with	the	use	of	fancier	sprite	fonts,
saving	a	highscore	to	a	.ini	file,	which	you	can	then	load	into	your	game	to	show	the
highscore	across	playthroughs,	as	well	as	allowing	the	player	to	change	their	keyboard
configurations	for	this	game,	which	will	then	also	be	saved	and	loaded.	We’ll	also	encrypt
the	data	inside	the	.ini	file,	after	the	basics	of	saving	the	highscore	to	it	are	finished.
Using	.ini	files	is	actually	a	simple	process,	as	you	will	see	when	we	get	to	that	part	in
the	chapter.

Putting	in	a	scoring	system
For	this	chapter,	you	can	just	work	in	your	previous	game	and	continue	to	edit	that,	so	you
don’t	need	to	make	any	new	game	projects.	Open	your	infinite	platform	game,	and	we’ll
start	with	putting	in	the	score	system.	We	will	get	into	drawing	and	saving	it	later.

First,	add	a	Create	event	to	the	platform	object.	Inside	it,	set	a	variable	called	hit	to
false,	and	it	will	tell	whether	or	not	the	player	has	bounced	on	it.	The	player	should	only
be	able	to	score	points	from	a	platform	once,	so	that’s	why	we	have	to	put	in	this	variable.
Next,	below	everything	you	already	have	in	the	Step	event	for	the	platform,	test	for	a
collision	with	the	player,	and	also	it	is	required	that	the	variable	we	set	before	is	false.	If
so,	increment	the	score	variable	(a	built-in	global	variable)	by	10,	and	set	the	hit	variable
to	true,	so	that	the	player	can’t	get	more	than	10	points	per	platform:

if	(collision_line(x	+	<left	edge	of	bounding	box	value>,	y,

x	+	<right	edge	of	bounding	box	value>,	y,	obj_PC,	false,	false)	!=	noone	

&&	!hit)	{

			score	+=	10;

			hit	=	true;

}

Next,	we	can	increment	the	score	whenever	an	enemy	is	killed.	We’ll	actually	do	this	in
the	player’s	code.	In	the	player	object’s	Step	event,	inside	the	if	statement	where	it	tests
whether	the	player	hit	the	enemy	on	top	(it	uses	a	variable)	and	destroys	the	enemy	(using
a	with	statement)	if	so,	increment	the	score	variable	by	15	(you	will	probably	need	to	add
curly	brackets	for	this	as	the	previous	code	was	a	one-liner).

The	final	part	for	just	getting	the	most	basic	part	of	the	score	system	to	work	is	to	create
an	object	that	controls	scoring	properties.	Create	a	controller	object	and	set	its	depth	to
-90	(as	it	will	draw	the	score	too,	later),	and	then	set	the	variable	score	to	0	in	its	Create
event.	Put	the	object	into	your	main	room,	but	don’t	do	it	at	the	top.	Somewhere	in	the
middle	is	probably	good,	and	you	should	recall	why	from	the	previous	chapter	(the	issue
with	spawning	and	objects	being	towards	the	top	of	the	screen).	At	this	point,	while	your
basic	scoring	system	should	be	working	perfectly,	there’s	no	way	to	display	the	score,	so
you	can’t	actually	be	sure	that	it’s	working.	To	solve	this	problem,	we’ll	put	in	a	quick
rudimentary	fix	just	so	you	can	see	everything	is	working	right.	Add	a	Step	event	to	the
score	object.	Inside,	check	for	a	keypress	of	the	spacebar,	and	if	there	is	one,	use	the
show_message	function	(as	this	is	for	debugging	and	quick-fix	purposes,	so	we	don’t	need
to	use	anything	fancy)	to	display	the	score	variable.	Once	you’ve	put	this	in,	test	your
game	to	ensure	that	the	basic	score	system	is	working	correctly:

if	(keyboard_check_pressed(vk_space))	show_message(score);

If	it	is,	then	we	can	move	onto	displaying	the	score.	You	can	start	with	deleting	the	Step
event	we	just	put	in	the	scoring	object.	The	next	step	is	to	create	our	spritefont.	A
spritefont	is	basically	a	font,	but	all	the	characters	are	held	in	subimages	of	a	sprite.	All	of
the	subimages	must	be	in	ASCII	order	with	no	blanks	(for	example,	if	you	will	be	printing
out	.	and	0,	but	not	\,	you	must	include	\	anyway,	either	by	making	a	subimage	for	it	with

the	actual	character,	or	just	inserting	a	blank	subimage.	The	documentation	has	a	page
with	both	ASCII	and	Unicode	(UTF-8)	characters	and	values,	located	under	Reference	|
Game	Assets	|	Fonts	|	font	tables,	so	you	can	ensure	that	you	are	following	the	correct
ordering	and	everything.	You	might	also	find	the	website,	http://www.asciitable.com
useful.

However,	for	this	spritefont,	you	will	need	only	the	numbers	0	through	9.	Make	a	16	x	16
pixel	sprite	with	10	subimages.	The	first	subimage	must	be	of	the	number	0	and	the	last
must	be	of	the	number	9	and	those	in	between	must	go	in	order.	When	you	have	finished
creating	it,	we	will	set	it	as	a	font.	In	the	Create	event	of	the	scoring	object,	we	will	use
the	font_add_sprite(spr,	first,	prop,	sep)	function.	The	parameters	are,	in	order,
the	sprite	in	which	the	font	is	located,	the	numerical	value	of	the	first	character	in	the	font,
whether	the	font	is	proportional	(true:	spacing	is	based	on	individual	size	of	characters;
false:	use	monospacing	based	on	subimage	width),	and	the	spacing	to	be	left	between
individual	characters.	For	the	first	parameter,	you	should	know	what	to	do.	For	the	second,
you	should	pass	ord("0"),	as	this	will	give	the	function	for	creating	the	font	the	numerical
value	for	"0",	and	this	font	only	contains	numbers.	As	for	the	last	two,	we	recommend
true	and	4,	as	those	seemed	to	look	best.	Monospacing	probably	looks	best	only	if	all	the
characters	are	about	the	same	width,	so	we	advise	using	proportional	fonts	most	of	the
time.	We	also	must	set	a	variable	equal	to	the	return	value	of	the	function,	as	we	have	to
be	able	to	access	and	use	the	font	later.

Do	that,	set	the	depth	of	the	object	to	-90	(so	it	renders	above	the	player,	platforms,
enemies,	and	so	on),	and	add	a	Draw	event.	This	object	will	be	in	multiple	rooms,	the	start
screen	and	the	main	room.	This	is	because	when	the	game	is	ended,	we	will	want	to	save
the	highscore	(which	we	will	implement	later,	when	putting	in	the	saving)	to	a	file	to	be
reloaded	later.	Because	it	will	be	in	different	rooms,	and	we	only	want	the	scores	to	be

http://www.asciitable.com

displayed	in	the	main	room,	test	if	the	current	room	is	equal	to	the	main	room.	The	current
room	is	held	in	the	variable	room,	and	you	just	test	if	that’s	equal	to	<name	of	main
room>.

If	this	is	true	(and	all	the	following	code	will	go	in	the	if	statement	we	just	made),	then
first	set	the	alpha	to	1.	While	this	is	somewhat	redundant	(as	we	set	it	to	1	at	the	end	of	all
drawing	events	anyway),	it’s	good	to	ensure	that	the	alpha	is	set	to	what	we	want	it	to,	in
case	there	were	any	bugs	or	we	forgot	to	reset	it.	Next,	set	the	color	to	display	the	score
label	in,	followed	by	the	font	(this	font	should	not	be	your	spritefont,	rather	it	should	be	a
regular	font	asset,	the	font	you	used	to	display	the	title	would	work,	as	your	spritefont
contains	only	numbers	and	no	letters,	and	we’re	about	to	draw	a	label),	and	finally,	draw
the	score	label	so	that	it	can	be	identified,	using	the	draw_text	function.	Next,	we	will
draw	what	the	actual	score	is.	Set	the	current	font	to	your	new	sprite	font	(held	in	the	new
variable	we	declared	in	the	Create	event).	Now	draw	the	score	50	pixels	away	on	the	x
axis	(at	least	this	was	what	seemed	to	work	for	us)	from	where	you	drew	the	score	label.
At	the	end	of	your	Draw	event,	set	the	color	back	to	black,	if	you	changed	it	from	that.

With	that,	drawing	the	score	is	finished,	so	you	should	test	your	game	to	ensure	that	it	is
working	correctly.	If	so,	you	can	move	onto	implementing	and	saving	a	highscore.

Saving	and	loading	a	highscore
So	in	the	system	we	will	be	implementing,	a	highscore	will	be	saved	to	and	loaded	from
an	.ini	file.	In	terms	of	the	game,	whenever	the	player	dies,	if	the	highscore	is	less	than
the	current	score,	the	value	of	the	score	will	be	assigned	to	the	highscore.	The	highscore,
like	the	regular	score,	will	also	be	displayed	at	all	times.	Whenever	the	game	ends,	the
highscore	will	be	saved	to	the	.ini	file	so	as	to	reuse	it	later.

We	will	save	our	data	using	a	.ini	file.	While	GameMaker	contains	support	for	two	other
methods,	text,	you	can	create	your	own	format	and	parse	ASCII	characters,	and	binary,
which	opens	up	a	file	for	raw	data	input	(so	characters	will	be	represented	by	their	values,
not	what	they	are	directly,	like	if	you	opened	it	up	in	a	hex	editor).	INI	files	are	the	easiest
to	start	with	when	beginning	to	use	the	GameMaker	file	system,	and	using	them	allows	us
to	teach	you	a	standard	format	that	is	very	easy	to	follow.	When	you’re	making	your	own
games	however,	feel	free	to	try	your	hand	at	these	other	functions.

Let’s	first	begin	with	our	.ini	file.	Before	we	create	it,	we	should	go	over	what	it	is	and
its	structure.	INI	stands	for	initialization,	as	these	files	are	commonly	used	to	set	up
configurations,	variables,	properties,	or	other	things	that	can	be	edited	and	that	need	to	be
constant	across	uses	of	a	program.	These	files	use	sections,	properties,	and	values.	You
can	think	of	a	property	as	a	variable.	Comments	are	denoted	by	semicolons	rather	than	//
and	/*	*/,	not	unlike	in	the	assembly	language.	Some	programs	might	allow	for	blank
lines	and	whitespace,	while	others	might	not,	so	it	is	best	to	have	no	whitespace	just	to	be
sure.	Newlines	are	okay	though.

Well	enough	about	that,	let’s	show	you	how	you	will	make	yours.	Open	up	your	favorite
text	editor	(Notepad,	Notepad++,	Atom,	Sublime	Text,	Emacs,	Vim,	whatever	you	want).
Immediately,	select	your	Save	As	button	and	save	the	file	as	sav.ini	(sav	for	save).	This
might	give	you	some	syntax	highlighting	help	in	your	editor	when	creating	your	file.	If	it
doesn’t,	don’t	worry,	INI	files	are	easy.

In	order	to	declare	a	section,	you	type	[<section	name>].	Declare	a	section	named
highscore.	Beneath	that,	you	declare	a	property	just	as	you	would	a	variable—by	typing
its	name	and	assigning	it	a	value.	Create	a	property	called	highscore	as	well,	and	set	its
value	to	0,	which	is	the	default.	You	don’t	need	semicolons	to	end	a	variable	declaration;
the	end	of	a	line	does	that.	Remember,	semicolons	denote	comments.	Also	remember	that
some	programs	tolerate	whitespace,	and	some	don’t,	so	don’t	include	any.	Our	sav.ini
file	looked	like	the	following:

[highscore]	;declare	a	section	called	highscore

highscore=0	;set	the	default	value	of	highscore	to	0

Once	you’ve	finished	up	your	file,	go	back	to	GameMaker.	Add	a	new	item	to	the
Included	Files	section	of	the	resource	tree.	Navigate	to	the	sav.ini	file	and	put	it	in.

Once	you’ve	done	that,	let’s	put	in	the	highscore	system	and	actually	use	the	file.	Open	the
Creation	code	for	your	setup	room.	Put	the	following	code	after	we	set	up	the	arrays	but
before	we	transition	to	the	next	room.	First	use	the	ini_open(name)	function.	The	name

parameter	is	a	string,	and	is	the	name	of	the	ini	file	you	want	to	use,	including	its
filename	extension.	For	example,	we	would	type	ini_open("sav.ini");.	After	this,
declare	a	variable	global.highscore.	Set	it	equal	to	ini_read_real(section,	key,
default).	The	function	reads	a	real	number	from	the	.ini	file	that	is	currently	opened,
and	the	first	parameter	is	the	section	to	read	the	value	from,	while	the	second	is	the
property.	key	is	synonymous	with	property.	The	final	is	a	default	value	to	return	if	a	value
was	not	found	in	the	place	we	looked,	or	if	there	was	no	.ini	file	at	all.	It	must	be	a	real
number,	but	least	for	this	game,	we	don’t	need	to	worry	about	it,	however	a	number	must
still	be	passed	for	that	parameter.	The	section	and	key	parameters	are	both	highscore
(including	quotes,	as	strings	are	expected),	and	your	final	one	can	be	0,	but	of	course	you
needn’t	check	for	that	value,	as	we	definitely	opened	the	right	.ini	file	that	has	that
section	and	key.	After	that,	close	the	.ini	file	with	ini_close().

We	can	now	add	to	our	player	object	the	code	that	changes	the	highscore	if	it	is	less	than
the	score.	At	the	end	of	the	if	statement,	where	we	test	whether	the	player	has	gone	off
screen,	test	whether	global.highscore	is	less	than	score.	If	so,	the	highscore	should	be
set	to	equal	the	score.	In	this	way,	whenever	the	player	dies,	the	highscore	will	be	updated.

Now	open	up	your	score	object.	Add	a	Game	end	event,	which	is	under	the	Other	section
of	the	events	list,	shown	as	follows:

Whenever	the	game	is	closed,	either	through	the	game_end	function	or	by	clicking	on	the
red	X	(at	least	on	Windows),	this	event	will	be	triggered.

Inside	of	it,	open	up	our	sav.ini	file.	Then,	we	will	use	the	function
ini_write_real(section,	key,	value)	to	save	our	highscore.	The	first	two	parameters
are	the	same	as	before	(with	the	function	that	reads	a	real	number),	while	the	third	is	what

value	to	assign	to	the	property	we	are	writing	to.	We	will	write	to	the	section	highscore,
the	key	highscore,	and	the	value	we	write	is	that	of	global.highscore.	Remember	to
write	your	first	two	parameters	as	strings	with	double	quotes.	After	that,	close	the	ini	file:

ini_write_real("highscore",	"highscore",	global.highscore);

The	final	part	to	add	is	to	draw	our	highscore.	In	the	Draw	event	for	this	object,	directly
after	we	draw	the	score	label,	draw	a	highscore	label	on	the	opposite	edge	of	the	screen.
Then,	after	the	score	itself	is	drawn,	draw	the	highscore.

There’s	one	last	thing	to	do;	add	this	score	object	to	your	room	for	the	start	screen	so	that
the	Game	end	event	can	trigger	when	the	game	is	quit	via	the	menu.	Usually	you	would
simply	flag	the	object	as	persistent,	but	this	seemed	to	cause	issues	(after	we	put	in	the
encryption	system	next)	where	the	Create	event	of	the	object	would	not	be	rerun
whenever	the	main	room	was	reset	after	the	player	died,	and	thus	the	score	would	not	be
reset.	You	can	certainly	try	persistence,	but	if	your	score	does	not	reset	after	each	death,
unflag	the	object	as	persistent	and	put	it	directly	into	the	start	screen	room,	which	solved
the	issue.

Now	test	your	game.	You	should	see	that	at	first,	your	Highscore	is	0,	but	then,	when	you
accumulate	more	than	that	and	then	die,	the	highscore	is	updated,	and	the	process	repeats.

When	you	have	finished	testing	your	game,	close	it	out,	and	open	your	sav.ini	file.

Surprised?	The	value	of	the	Highscore	key	didn’t	change	from	0!	This	is	because
GameMaker	isn’t	modifying	the	original	copy	of	the	file;	instead,	it’s	modifying	its	own
copy.	On	Windows,	this	copy	is	located	at	%localappdata%\<Project	Name>	(and	that	is
an	actual	directory	path	you	can	open	in	Windows	Explorer).	If	you	want	to	reset	your
highscore,	you	can	set	the	value	of	the	key	in	that	file	to	0,	or	just	delete	the	file
completely.	When	you	call	the	ini_open	function,	if	the	file	you	want	to	open	does	not
exist	and	you	have	to	read	values	from	it,	an	.ini	file	will	be	created,	with	the	name	that
you	specified.	The	locations	for	the	files	on	other	platforms	can	be	found	in	the
documentation	under	Reference	|	File	Handling	|	File	System	Limits,	a	page	which	also
talks	about	how	GameMaker	handles	using	a	filesystem.

Congrats,	you’re	done	with	your	scoring	system!	The	next	thing	we	will	do	is	encrypt	our
.ini	file	so	as	to	prevent	people	from	cheating.

INI	file	encryption
Encryption	is	the	process	of	changing	data	from	a	readable	form	to	a	more	obscure	and
difficult-to-understand	form	that	prevents	people	from	easily	accessing	and	altering	data.
And	we’re	going	to	do	it	in	our	games.	There	are	a	bunch	of	ways	we	could	go	about	this,
and	since	we’re	not	guarding	anyone’s	important	credentials,	we	don’t	need	the	most
secure	methods	available	such	as	MIT’s	new	Enigma	system	or	anything	like	that.	The
ways	you	could	do	it	are	to	use	base64	encoding	and	decoding,	or	to	use	mathematical
formulas	in	which	you	get	a	number	from	the	highscore,	and	then	convert	it	to	some	kind
of	unreadable	string	by	converting	the	number	to	ASCII	or	Unicode	characters,	planning
for	overflow	by	adding	additional	characters.	Or	you	could	apply	bitwise	operations	(as	in

the	assembly	operations	AND,	OR,	or	XOR,	not	those	in	other	programming	languages).
Other	functions	exist	to	check	whether	a	file’s	values	have	stayed	the	same,	but	these	seem
to	require	a	web	server.	For	this	tutorial,	we’re	going	to	use	base64	encoding.

Now	there	is	one	thing	you	should	know	about	base64.	It’s	a	standard.	And	since	it’s	a
standard,	anyone	dedicated	enough	to	hacking	your	game	could	easily	decode	it.	It’s
recommended	that	you	combine	the	encode	functions	with	math	formulas	and	other	things
so	that	it’s	not	quite	as	easily	hacked.	We	won’t	be	going	over	that,	as	if	we	did	it	would
kind	of	make	your	encryption	more	easily	guessed,	but	we	recommend	that	you	look	at
some	of	the	math	functions	and	at	some	ASCII	and	Unicode	tables	to	figure	out	an
encryption	system.	There’s	a	lot	more	than	your	basic	four	operators.	The	top	page	for	the
documentation	on	GameMaker’s	math-related	functions	is	at	Reference	|	Maths.	Use	the
available	functions	wisely	when	making	your	encryption,	but	get	creative.

A	useful	note	though,	the	bitwise	XOR	operator	(a	^	b)	is	very	useful	in	encryption,	and
is	commonly	used,	as	if	you	XOR	two	numbers,	and	then	XOR	the	result	with	one	of	the
original	numbers,	you’ll	get	the	other	original	number	as	a	result.	If	you	don’t	know	what
XOR	is,	it	lines	up	and	compares	the	binary	versions	of	numbers,	and	every	time	there	is	a
1	and	a	0,	the	result	will	be	a	1,	but	if	there	is	a	1	and	a	1	or	a	0	and	a	0,	the	result	will
be	0.	So	for	example,	101110	XORed	with	001101	will	return	100011.

Let’s	start	with	the	encryption	code,	which	we	will	put	in	the	Game	end	event	of	our
score	object.	Delete	what	you	already	have	in	there,	except	for	opening	and	closing	the
.ini	file.	First	declare	a	local	variable	(after	opening	but	before	closing),	which	will	have
held	the	encrypted	version	of	the	highscore.	We	will	use	the	base64_encode(string)
function,	which	encodes	a	string	in	the	base64	format,	which	will	be	more	unreadable	to
the	human	eye	than	a	strict	number.	However,	since	the	highscore	is	a	number	and	not	a
string,	we	must	convert	the	parameter	we	pass	to	the	base64_encode	function	to	a	string
using	the	string(val)	function,	where	the	parameter	is	a	real	number	to	convert.	In	the
end,	your	code	should	look	something	like	the	following:

var	encoded_highscore	=	base64_encode(string(global.highscore));

You	might	want	to	break	this	up	into	more	variables	so	as	to	have	code	that	is	versatile	no
matter	the	evaluation	order,	especially	if	you	are	planning	on	distributing	to	the	HTML5
platform.

After	that,	we	will	open	our	sav.ini	file	and	write	the	string	to	it	with	the
ini_write_string	function,	which	is	the	exact	same	as	the	ini_write_real	function	(it
even	takes	the	same	parameters),	except,	it	expects	a	string	rather	than	a	number	for	the
value	parameter.	Then	close	the	file.

We	will	now	work	on	the	decryption	of	the	data.	In	the	setup	room,	delete	everything	you
have	related	to	the	.ini	file	except	for	opening	and	closing	it.	Between	the	code	for
opening	and	closing	the	file,	declare	a	local	variable.	It	will	hold	the	decoded	version	of
the	value	in	the	.ini	file.	Use	the	base64_decode	and	ini_read_string	functions,	which
have	the	same	parameters	as	their	counterparts	(for	encoding	and	for	real	numbers),	except
the	latter	function	takes	a	string.	The	decoding	function	will	decode	whatever	string	is	in

the	.ini	file:

var	decoded_highscore	=	base64_decode(ini_read_string("highscore",	

"highscore",	0));

Finally,	set	our	global	highscore	variable	equal	to	real(string),	when	you	pass	it	the
local	variable	we	made.	This	function	converts	a	string	to	a	real	number.

There’s	only	one	last	thing	we	have	to	do	for	this	encryption	process.	First,	delete	the	.ini
file	in	%localappdata%\<Project	Name>.	Then	change	the	value	of	our	highscore
property	in	the	original	.ini	file	from	0	to	"0",	so	that	it	is	a	string.	Finally,	delete	the
sav.ini	file	already	in	the	project	from	the	resource	tree,	and	load	the	new	one.

And	you’re	done	with	encryption!	Run	your	game	and	play	it	a	few	times.	Afterwards,
find	the	copy	of	sav.ini	that	GameMaker	uses,	and	open	it.	You	should	see	that	your
highscore	is	now	saved	as	a	string	that	you	can’t	exactly	decipher	on	your	own.	Great!
You’ve	implemented	a	basic	system	that	prevents	cheaters	from	ramping	up	the	score!	The
final	part	of	this	chapter	is	to	give	the	player	customizable	control	configurations.

Customizable	controls
The	final	system	we	will	be	incorporating	into	our	game	is	one	through	which	players	can
customize	and	save	their	keybinds	so	that	they	are	different	from	the	left	and	right	arrow
keys	and	the	Enter	key.	We	will	only	put	in	a	binding	system	for	these	keys,	but	it	is	quite
easy	to	extend	the	system	to	include	other	keys,	such	as	the	one	for	pause,	and	moving	the
selection	up	and	down	on	a	menu.	The	keybinds	will	be	saved	to	our	.ini	file	whenever
the	game	is	closed,	and	loaded	back	in	at	its	very	start.

So	let’s	begin	putting	it	in!	First,	make	another	button	sprite,	just	like	the	others	that	we
made,	but	it	will	be	for	modifying	the	keybindings.	When	you’ve	finished	that,	open	up
the	pause	menu	object.	The	majority	of	our	code	for	the	keybindings	system	will	be
programmed	in	here,	as	creating	another	object	could	make	things	complicated.

First,	we’ll	be	setting	a	variable	in	the	Create	event	of	our	pause	menu	object.	Set
binding	to	false.	This	is	to	tell	if	we	are	currently	rebinding	keys	(true	if	so,	false	if
not),	and	whether	keypresses	that	were	already	assigned	to	an	action	should/shouldn’t
perform	the	action	(for	example,	if	we’re	rebinding,	do	not	modify	the	choice	variable	if
the	up/down	arrow	keys	are	pressed,	as	those	keys	could	have	been	pressed	for	a	rebind;
we	won’t	be	rebinding	these	though,	it’s	just	an	example).

After	you’ve	done	that,	open	the	Draw	event	for	your	pause	menu	object.	Find	the	code
where	you	change	the	choice	variable	to	0	or	1	based	on	a	press	of	the	up	or	down	arrow
key.	Get	rid	of	that	code;	the	next	part	is	really	simple	and	you’ll	just	start	it	from	scratch.
First	test	whether	the	up	key	has	been	pressed	and	whether	we	are	not	currently	rebinding
(using	the	variable	we	declared	in	the	Create	event).	If	so,	then	put	another	if	statement
inside	to	test	whether	our	current	selection	(choice	variable)	is	less	than	or	equal	to	0	(our
choice	was	the	top	one,	and	then	we	pressed	up;	and	the	less	than	or	equal	to	as	there’s
always	a	possibility	of	bugs	in	GameMaker,	and	testing	for	a	less	than	as	well	doesn’t	hurt
at	all).	If	that	second	if	statement	is	true,	then	set	our	current	selection	to	the	last	one
(give	the	variable	a	value	of	2).	Otherwise,	decrement	the	choice	variable.	Your	if
statement	should	look	something	like	the	following,	and	then	you	can	follow	it	as	a	format
for	your	second	if	statement:

if	(keyboard_check_pressed(vk_up)	&&	!binding)	{

							if	(choice	<=	0)	choice	=	2;

							else	--choice;

}

Outside	that	if	statement	we	just	made,	put	an	else	if	that	tests	for	a	press	of	the	down
key	and	whether	we	are	binding	at	the	moment	or	not.	The	code	inside	of	this	one	is	nearly
the	same	as	in	the	other	if	statement.	However,	here,	you	would	instead,	test	whether
choice	is	greater	than	or	equal	to	2	(the	last	option),	and	set	it	to	0	(the	first	option)	if	so.
If	it	wasn’t	greater	than	2,	then	increment	it	so	that	the	selected	option	moves	down	one.

The	reason	we	had	to	put	this	new	system	in	and	take	out	the	old	one	is	because	the
previous	one	only	worked	if	you	had	two	options	in	your	menu,	but	now	we	have	three
options,	and	thus	need	to	make	the	code	more	flexible.	The	old	system	works	perfectly	for

the	start	screen,	however,	as	that	menu	has	only	two	options:	Start	and	Quit.

The	next	part	is	to	make	the	menu	background	longer	(on	the	y	axis)	so	that	it	can	fit	three
buttons.	Once	you’ve	done	that,	we	need	to	draw	the	third	button.	Inside	of	the	first	switch
that	we	already	have	there	(the	one	that	draws	our	buttons),	draw	the	button	to	change	the
bindings	inside	of	the	two	cases	we	already	had	there,	and	then	add	a	third	case	where	the
button	for	changing	the	bindings	will	appear	as	selected.

At	this	point,	you	can	test	out	your	game,	but	just	know	that	your	new	button	won’t	do
anything	except	get	highlighted.	Hitting	the	Enter	key	on	it	won’t	do	anything	at	all,	but
just	ensure	that	you	can	cycle	through	all	three	choices	and	that	they	appear	selected	as
appropriate.

Now	we’ll	be	putting	in	the	rebinding	system.	Begin	with	modifying	the	if	statement	that
tests	whether	the	Enter	key	has	been	pressed.	Instead,	have	it	check	whether
global.select	has	been	pressed,	as	this	will	hold	whatever	key	we	want	to	use	for
selecting	choices.	Also,	have	this	if	statement	make	sure	that	we	are	not	currently	binding
and	that	the	just_bound_select	variable	is	false.	When	we	actually	put	in	the	rebinding
system,	the	rebinding	code	will	be	run	before	this	switch	statement	(so	this	variable	will
already	be	declared),	and	the	key	for	selecting	will	also	be	the	last	key	to	be	binded.	Thus,
since	GameMaker	updates	keypresses	once	per	step,	at	its	start,	we	want	to	prevent	this	if
statement	from	being	triggered	just	because	we	rebinded	the	select	key.	When	this	variable
is	false,	we	have	not	just	rebinded	the	select	key,	and	when	it’s	true	we	have.	It’ll	make
more	sense	once	we	put	in	the	actual	rebinding	part.

Basically,	your	if	statement	should	look	something	like	the	following:

if	(keyboard_check_pressed(global.select)	&&	!binding	&&	

!just_bound_select)	{	<...>	}

Now,	inside	the	switch	case	that	this	if	statement	runs	from,	add	another	case	below	the
ones	already	there	that	is	for	the	third	possible	value	of	choice.	Inside	it,	you	should	set
the	variable	binding	to	true,	as	we	have	begun	to	rebind	our	keys,	and	then	set	the
bound_left,	bound_right	and	bound_select	variables	to	false.	These	three	variables	tell
us	whether	or	not	we	have	rebinded	the	left,	right,	and	select	keys	yet	(respectively),	and
at	this	point,	we	have	not,	of	course.	Also,	setting	them	here,	rather	than	in	the	Create
event,	allows	us	to	rebind	as	many	times	as	we	want	per	instance	of	the	pause	menu,	and
will	also	prevent	us	from	creating	more	variables	that	we	don’t	use,	because,	perhaps,	the
player	opened	the	pause	menu	just	to	pause	or	to	quit	rather	than	rebind.	Anyway,	after
you’ve	assigned	these	variables,	break	the	case.

The	final	part	to	put	in	is	where	we	actually	rebind	the	keys.	Put	it	right	at	the	beginning
of	your	menu	system	(right	after	the	if	statement	that	tests	whether	the	variable
is_paused	is	false,	which	we	implemented	in	the	previous	chapter).	We	don’t	put	this
code	inside	the	switch	statement	we	were	just	in,	as	the	player	won’t	be	pressing	all	the
keys	in	one	step,	and	the	if	statement	that	runs	the	switch	statement	only	triggers	whether
we	are	not	binding,	then	it	starts	the	binding	process	if	we	selected	that	option	and	won’t
be	triggered	until	we	stop	binding.	We’d	also	need	some	kind	of	loop	to	wait	for	user

input,	which	is	always	a	bad	thing	to	do,	as	it	will	freeze	the	game.	Never	use	loops	for
user	input.

First,	set	the	just_bound_select	variable	to	false,	as	this	will	be	a	default	value	for	the
variable,	which	will	be	set	to	true	right	after	we’ve	rebinded	the	key	for	selecting.	This
also	makes	sure	it	goes	back	to	false,	the	step	after	we	finish	rebinding.	After	this,	test
whether	we	are	currently	rebinding.	If	so	(and	all	of	the	following	code	will	be	put	in
here),	set	the	font,	color,	and	alpha	that	we	will	be	using.

Next,	we	must	test	whether	we	have	bound	the	left	key	yet	(bound_left	will	be	false).	If
you	recall	from	before,	we	said	that	we	need	a	variable	to	indicate	whether	the	Enter	key
has	just	been	rebinded	because	GameMaker	updates	keypresses	once	per	step,	at	its	start.
We	don’t	need	anything	to	tell	us	whether	we	have	just	begun	binding	and	whether	we
should	wait	a	step	before	rebinding	the	left	key	in	case	it	gets	assigned	to	our	select	key
when	we	first	start	rebinding,	as	this	code	is	technically	run	after	we	set	the	variable
binding	to	true	in	the	switch	statement	at	the	end	of	this	code.	Anyway,	inside	the	if
statement	we	just	created,	to	see	whether	we	have	not	bound	the	left	key,	first	draw	a
string	of	text	towards	the	top	of	the	screen	that	asks	us	to	press	the	new	keybinding	to
move	left,	so	that	the	player	knows	which	key	to	press.	Next,	test	whether	the	player	has
pressed	any	key,	using	vk_anykey,	which	represents	whether	the	player	presses	any	key	on
the	keyboard.	If	so,	set	global.left	(the	variable	that	will	hold	the	key	for	moving	left)	to
keyboard_lastkey,	which	holds	the	last	key	that	the	player	pressed.	After	that,	you	will
have	binded	the	key	for	moving	left,	so	set	bound_left	to	true.	So	far,	you’ll	have
something	like	the	following,	and	you	can	use	it	as	a	model	for	the	following	keys:

just_bound_select	=	false;

if	(binding)	{

							draw_set_font(fnt_title);

							draw_set_color(c_black);

							draw_set_alpha(1);

							if	(!bound_left)	{

										draw_text(20,	50,	"Press	the	new	binding	for	moving	left.");

										if	(keyboard_check_pressed(vk_anykey))	{

													global.left	=	keyboard_lastkey;

													bound_left	=	true;

										}

							}

}

Now,	create	an	else	if	that	checks	whether	we	have	not	bound	the	right	key	yet	(and	this
should	go	outside	of	the	if	statement	that	tests	whether	we	have	bound	the	left	key	of
course).	We	want	an	else	if	so	that	only	one	key	is	binded	per	step,	as	GameMaker	also
only	updates	which	key	is	being	pressed	once	per	step.	The	code	inside	here	is	nearly	the
same,	except	the	message	will	ask	us	to	press	the	new	binding	for	the	right	key;
global.right	will	be	set	to	the	last	key	pressed,	and	bound_right	will	be	set	to	true,	as
we	will	have	bounded	the	right	key	now.	After	that,	create	another	else	if	statement	for
the	select	key.	After	you	set	bound_select	to	true,	set	binding	to	false	(as	we	are	no
longer	rebinding	and	just_bound_select	to	true,	since	we	have	just	rebound	the	select

key).

Great	job!	You’ve	successfully	completed	rebinding	the	keys,	and	the	only	thing	left	is	to
make	use	of	them.	You’ve	already	implemented	it	into	the	pause	menu,	so	there	are	just
three	other	places	to	make	sure	that	the	correct	keys	are	used.	These	are	the	menu	on	the
starting	screen,	the	textbox,	and	the	player.	For	the	first	two,	replace	vk_enter	with
global.select	(for	when	choosing	menu	options	and	quitting	the	textbox,	respectively)
and	for	the	player,	replace	vk_left	and	vk_right	with	global.left	and	global.right
(to	move	left	and	right	in	the	air	in	the	switch	statement	in	the	player’s	code	for	bouncing
and	moving).	These	changes	are	all	in	the	objects’	respective	Step	events.

There’s	only	one	thing	left	to	do,	you	need	to	set	the	defaults	for	these	variables.	Since
right	now,	we’re	focused	on	the	basic	system	and	not	saving	the	configurations	(that	will
come	soon	though),	set	the	global	variables	that	hold	the	keybinds	to	the	default	ones	(the
key	constants)	we	had	used	initially	inside	of	the	Creation	code	for	the	start	screen	room
(as	this	room	uses	the	keybind	for	selecting	a	menu	option).	Otherwise,	before	you	rebind,
the	things	that	use	these	variables	won’t	work	and	the	game	will	throw	you	an	error	log
because	the	variables	don’t	even	exist	as	of	yet.

Test	your	game.	Rebind	the	three	keys	to	whatever	you	want;	just	make	sure	that	two	of
them	don’t	get	the	same	value,	and	that	you	don’t	set	a	nonrebindable	key	to	a	rebindable
one	(for	example,	don’t	set	your	select	key	to	the	up	arrow),	and	then	try	out	the	rebind.
Rebind	a	few	times	and	keep	trying	it	out.	Once	you’re	sure	it’s	perfect,	we’ll	save	these
configurations	to	our	.ini	file.

Saving	control	configurations
We’ll	start	saving	our	configurations	by	modifying	our	.ini	file.	Open	up	the	original
sav.ini.	Give	it	a	section	called	binds,	and	give	the	keys	left,	right,	and	select	values	of
37,	39,	and	13,	respectively.	These	are	the	values	of	vk_left,	vk_right,	and	vk_enter.	We
found	these	out	by	displaying	the	values	on	the	screen	in	a	test	game.	Thus,	the	default
keys	will	be	the	arrow	keys	and	the	Enter	key.	Remove	the	.ini	file	already	in
%localappdata%\<Project	Name>,	and	remove	the	included	file	from	GameMaker,
replacing	it	with	the	new	one.

Now	create	a	persistent	object	for	saving	the	configurations	to	the	.ini	file.	Add	a	Game
end	event.	Inside	of	it,	open	the	sav.ini	file.	Now	since	keyboard	bindings	aren’t
something	we	need	to	worry	about	people	hacking	(and	thus	we	don’t	need	to	encode	or
decode	anything),	you	can	just	use	the	ini_write_real	function	to	save	the	value	of	the
keybinds	to	the	.ini	file.	After	you’ve	done	that,	close	the	.ini	file,	and	place	the	object
in	the	main	room.	Its	persistence	will	carry	it	to	the	start	room	if	we	go	there,	so	that	it	can
save	keybinds	no	matter	which	room	the	game	ends	in.

The	final	step	is	to	load	the	binds	on	game	startup.	In	the	Creation	code	for	your	start
menu	room,	remove	the	code	you	have	for	setting	the	default	binds	directly.	Instead,	open
the	.ini	file,	use	the	ini_read_real	function	to	load	in	the	keybinds	to	our	global
keybind	variables,	and	close	the	.ini	file.

Test	your	game	and	change	the	bindings,	and	make	sure	that	they	work.	Close	your	game,
and	then	open	the	copy	of	sav.ini	that	GameMaker	uses.	You	should	see	that	the	values
for	the	keys	left,	right,	and	select	have	changed	from	37,	39,	and	13,	and	are	now	all
something	else.	Run	your	game	again	to	ensure	that	the	new	binds	are	still	working.	If	so,
great	job!	You’re	done	with	this	chapter.

Summary
Nice	job!	You	finished	this	entire	chapter,	and	while	it	was	easier	than	the	others,	it
definitely	had	some	more	advanced	topics	in	it.	Before	you	move	on	to	the	questions	and
then	the	drills,	you	should	definitely	review	the	chapter.	Once	you	feel	you’re	ready	to,
move	on.

Review	questions
1.	 What	is	an	INI	file,	what	are	its	components	called,	and	how	do	you	structure	it?
2.	 How	do	you	create	and	use	a	spritefont?
3.	 What	are	the	other	two	ways	to	use	files	in	GameMaker?
4.	 What	are	some	different	ways	that	you	can	encrypt	data	in	GameMaker?
5.	 What	should	you	combine	the	use	of	encoding	functions	in	GameMaker	with,	and

why?

Quick	drills
1.	 Allow	the	player	to	rebind	other	keys	that	have	been	used	in	the	game,	and	save	these

too.
2.	 Create	a	highscore	leaderboard	wherein	multiple	highscores	are	saved	and	ranked.
3.	 Add	score	bonus	items	that	the	player	can	pick	up.

Nice	job!	You’ve	now	finished	the	entire	chapter,	and	this	game	project	too!	Before
moving	onto	the	next	chapter,	you	might	want	to	review	the	past	chapters	to	ensure	that
you	are	comfortable	with	the	functions	and	so	that	you	have	a	solid	basis	in	what	we’ve
gone	over	so	far.	As	in	any	good	game,	the	difficulty	ramp	will	continue	to	rise	as	the	next
chapter	increases	in	complexity.	You’ll	learn	about	side	scrolling	platformers	(easy),	but
also	views	(more	difficult),	client/server	networking	for	multiplayer,	and	sprite	animation.

Let’s	get	onto	scrolling!

Chapter	6.	A	Multiplayer	Sidescrolling
Platformer
In	this	chapter,	you	will	learn	about	a	few	different	GameMaker	components	as	you	create
a	sidescrolling	platformer	game.	These	include	sprite	animation,	sidescrolling	with	views,
networked	client/server	multiplayer,	and	finally,	Xbox	gamepad	support	(a	section	you	can
safely	skip	if	you	don’t	have	an	Xbox	controller).	We’ve	tested	all	the	code	on	an	Xbox
360	Controller,	but	it	should	function	properly	on	an	Xbox	One	controller	(assuming	you
have	all	of	your	drivers	installed).	The	movement	and	platforming	will	be	done	using	an
alternate	method	from	what	we’ve	used	before,	which	you	might	prefer	and	find	more
efficient.	Sprite	animation	is	also	very	easy,	and	doesn’t	really	introduce	new	concepts,	but
it	is	important	to	learn.	Networked	multiplayer	is	more	complex	than	other	concepts	you
have	learned,	but	the	system	is	relatively	simple	enough	to	use	even	if	you	have	no	prior
networking	experience.	The	final,	and	optional,	section	on	gamepad	input	allows	you	to
give	the	player	multiple	mediums	through	which	they	can	interact	with	their	game.	So
what	are	you	waiting	for?	Let’s	start	the	chapter!

Sprite	animation
In	this	section,	we	will	teach	you	how	to	animate	your	sprites	as	opposed	to	giving	them
single	subimages	for	each	state	that	they	could	be	in.	This	is	a	very	simple	concept,	so	let’s
dive	right	in.

For	this	section,	you	might	want	to	use	an	external	program	for	your	sprite	editing	so	that
you	can	easily	draw	different	frames	of	animation	for	a	single	state	with	ease.	Most
external	editors	will	allow	you	to	(in	some	way)	see	the	previous	frame	when	editing	the
next	one	so	that	you	have	a	frame	of	reference.	A	very	good	image	editor	we’ve	found	and
used	(although	it	is	intended	mainly	for	pixel	art)	is	Aseprite,	which	is	at
http://www.aseprite.org.	You	could	consider	it	both	free	and	paid,	and	both	versions	are
the	same.	For	$10,	you	get	a	prebuilt	program	with	everything	ready,	but	you	can	also
build	the	source	from	Aseprite’s	official	GitHub	repository.	If	you	want	to	build	it,	some
guides	are	available.

With	your	image	editor,	create	two	different	animations,	one	for	walking	and	one	for
jumping.	Only,	ensure	that	they	have	the	character	facing	towards	the	right	for	each	(that
is,	do	not	make	one	animation	walk	left	and	one	walk	right,	only	do	right),	as	there	is	a
way	we	can	simply	reverse	the	image	so	that	we	only	need	one	sprite	for	two	different
walking	directions.	Give	the	walking	animation	two	frames,	but	the	jumping	animation
none	(you	should	definitely	use	these	numbers	to	make	following	along	with	the
networking	section	easier	later	on).	To	add	frames	in	Aseprite,	go	to	the	Frame	menu	and
choose	New	Frame	(or	New	Empty	Frame	if	you	want	to	start	from	scratch	for	the
second	frame,	but	that	gives	you	no	vantage	point).	If	you	are	using	a	different	program	it
will	likely	be	a	similar	menu	item:

In	the	end,	our	two	frames	for	walking	looked	like	the	following	in	Aseprite.	It’s	subtle
(notice	the	positioning	of	the	arms,	legs,	and	eyes),	but	nonetheless,	an	animation	that’s
good	enough	to	show	that	we	have	animation	working	in	GameMaker:

http://www.aseprite.org

You	can	export	the	animation	as	a	.gif	file	once	you’re	done,	as	GameMaker:	Studio
supports	GIF	importing.	You	can	also	export	it	as	a	spritesheet,	and	we’ll	show	you	how	to
import	it.	Otherwise,	you’ll	probably	have	to	export	into	separate	images.

Spritesheet	importing
If	you	exported	the	spritesheet,	here	is	how	you	can	import	it	using	the	GameMaker	sprite
editor.	Select	the	Edit	Sprite	option	on	the	sprite’s	main	properties	page.	Then,	select	File
and	Create	from	Strip.	Load	in	the	spritesheet,	and	a	window,	as	shown	here,	should
appear:

The	first	three	sections	should	be	self	explanatory	for	you,	but	we’ll	explain	the	rest.	The
offsets	refer	to	the	offset	of	the	first	image	in	the	spritesheet	in	terms	of	number	of	cells	or
pixels.	A	cell	would	be	defined	by	the	width	and	height	of	the	image.	Pixels	are	easier	to
use,	so	we	used	pixels	instead	of	cells.	The	separations	refer	to	the	separation	between
each	image,	in	pixels.	When	you’re	setting	the	values	for	these	boxes,	you	might	not	end
up	putting	in	the	values	you’d	expect,	so	you’ll	need	to	toy	around	with	and	tweak	the
numbers	a	bit.

Once	you	have	finished	making	the	subimages	for	your	sprite,	change	the	bounding	box
for	it	to	whatever	you	think	fits.	Then,	set	the	origin	of	both	your	player	sprites	to	(<half
of	sprite	width>,	0).	In	this	way,	the	drawing	of	the	player	will	be	anchored	on	the
middle	of	it.	The	method	we’ll	use	to	use	this	single	sprite	for	drawing	both	walking
directions	flips	the	drawing	origin,	which	can	make	the	shift	between	walking	left	and
right	look	very	erratic.	By	centering	the	origin,	the	problem	is	fixed	and	the	flipped	sprite
appears	in	the	same	spot	as	before	rather	than	across	a	“mirror”	of	the	sprite	direction
previously	used.

Before	we	move	onto	the	animation	and	movement,	we’ll	make	a	quick	platform.	Make	a
sprite	and	object	for	a	platform,	but	do	not	flag	it	as	solid.	When	you’re	done	with	that,
we’ll	go	onto	movement	and	animation.

Programming	the	movement
We’ll	now	move	onto	the	movement,	but	we’re	not	done	with	animation.	We’ll	do	the
animation	while	we	do	the	movement	since	both	are	performed	at	the	same	time.	Make	a
player	object,	and	assign	its	sprite	to	the	walking	animation	sprite	via	the	main	properties
page.

Now	add	a	Create	event,	inside	of	which	we’ll	stop	the	player	from	animating	by	setting
image_speed	to	0.	In	this	tutorial,	we	won’t	use	idle	animations	(in	fact,	do	not	put	one	in;
otherwise,	this	will	make	the	networking	section	a	bit	harder	to	follow),	but	it’s	basically
the	same	concept	as	what	we	will	be	doing;	when	the	player	isn’t	moving,	set	its	sprite	to
that	of	the	idle	animation.

Once	you’ve	assigned	this	variable,	declare	two	variables	called	hspd	and	vspd	and	set
both	to	0.	In	our	system,	we	will	not	use	hspeed	and	vspeed	(so	make	sure	you	spelled	the
variables	correctly);	rather,	we	will	directly	modify	the	x	and	y	coordinates	of	our	player
in	a	more	efficient	system.	Every	time	we	say	“horizontal	speed”	or	“vertical	speed”	in	the
following	section,	pay	careful	attention	that	you	use	the	proper	variables	(our	variables,
that	is).

Now	add	a	Step	event	to	your	object.	We	must	now	put	in	code	that	checks	whether	the
player	is	standing	on	a	platform.	We	will	use	the	place_meeting(x,	y,	obj)	function,
which	will	allow	you	to	test	whether	a	specified	object	collides	with	a	given	point.	It
returns	true	when	there	is	a	collision.	Check	whether	a	platform	is	directly	beneath	(x,	y
+	1)	the	player.	If	so,	our	vspd	variable	should	be	set	to	0	(since	the	player	should	not
move	vertically	anymore).	Then,	set	the	sprite_index	variable	to	the	walking	sprite	for
the	player.	This	variable	is	like	image_index,	except	it	holds	the	sprite	being	used,	rather
than	the	subimage	being	used.	Beneath	that,	check	whether	the	space	button	is	being	held,
and	if	so,	set	our	vertical	speed	(using	our	variable,	not	the	built-in	one	of	course)	to	-15,
but,	you	can	tweak	this	variable	to	your	liking	later	on.	Outside,	where	we	check	whether
a	platform	was	beneath	the	player,	write	an	else	if	statement	to	check	whether	our
vertical	speed	is	less	than	15	(this	will	be	our	max	fall	speed).	If	so,	increment	it	by	1	so
that	eventually,	the	player	will	start	falling.

After	that,	we	will	check	whether	the	left	or	right	arrow	keys	are	being	held.	If	the	right
key	is	being	held,	then	set	our	horizontal	speed	(again,	our	own	variable	hspd)	to	5,	and	if
the	left	key	is	being	held,	then	set	it	to	-5.	Neither	of	these	should	be	else	if	statements,
nor	should	the	following	statement	be.	Our	final	if	statement	will	check	whether	both	the
left	and	right	arrow	keys	are	being	pressed.	We	needn’t	check	whether	both	or	neither	are
being	pressed,	as	we	redefine	our	own	speed	variables	at	the	top	of	every	step.	Inside	the
if	statement,	set	both	the	speed	of	the	image	and	the	horizontal	speed	of	the	player	to	0,
since	they	shouldn’t	be	moving	when	neither	or	both	keys	are	pressed.

Outside	this,	just	below,	will	be	where	the	real	animation	work	resides.	First,	check
whether	our	horizontal	speed	is	greater	than	0.	If	so	(we’re	moving	right),	set	our	current
sprite	to	the	walking	one,	our	image_speed	to	0.5	(so	that	it	is	animating),	and	our
image_xscale	to	1.	This	variable	is	for	the	horizontal	scaling	of	the	sprite	being	used	by

the	object.	A	value	of	1	(meaning	100	percent)	is	regular,	whereas,	a	value	of	-1	(-100
percent)	is	completely	flipped.	It	can	take	other	numbered	values	too.	Remember	how	we
made	you	center	the	sprite’s	origin?	This	variable	flips	on	the	origin	of	the	sprite,	so	by
having	this	origin	in	the	center	and	not	the	top-left,	we’ll	see	the	player	flip	from	facing
right	to	left	(and	vice	versa),	but	it	won’t	look	like	it	in	doing	so,	they	just	jumped	forward
a	bunch	of	pixels.	So	in	the	end,	the	if	statement	checks	if	we’re	walking	right,	and	it	will
make	sure	that	the	player	object	is	animating	in	the	right	direction	if	so.	The	reason	we
didn’t	put	this	up	with	the	key	check	is	because	if	we	did,	and	then	it	turned	out	the	if
statement	that	checks	whether	we’re	pressing	both	keys	got	run,	the	wrong	direction	might
be	displayed.

Next,	put	an	else	if	statement	that	checks	whether	we’re	walking	left	(our	horizontal
speed	will	be	less	than	0).	If	so,	put	in	all	the	same	code	as	the	previous	if	statement,
except	our	horizontal	scale	should	be	-1	so	that	we	face	left.

Finally,	add	a	regular	if	statement	that	checks	whether	our	vertical	speed	is	not	0
(meaning,	we	are	either	jumping	or	falling).	If	so,	the	current	sprite	being	used	should	be
set	to	the	jumping	one.	We	don’t	set	the	horizontal	scale,	as	these	are	set	by	left	and	right
movement.

The	last	part	to	be	added	is	where	we	actually	make	the	player	move.	We’ll	first	work	on
the	horizontal	movement	part,	and	it	is	imperative	that	you	use	the	order	of	horizontal
code,	then	vertical	code.	First,	check	whether	there	is	a	platform	with	(x	+	hspd,	y)
pixels	to	the	side	of	the	player.	In	this	way,	we	can	prevent	the	player	from	going	inside
the	wall	by	putting	in	code	that	makes	them	go	right	next	to	it.

Inside	the	if	statement,	put	in	a	while	statement.	Have	it	verify	that	there	is	no	platform
(x	+	sign(hspd),	y)	next	to	us.	The	sign(num)	function	tells	us	the	sign	on	the	number
it	is	passed.	For	a	negative	number,	it	returns	-1,	for	0	it	returns	0,	and	for	a	positive
number	it	returns	1.	Thus,	if	our	hspd	variable	were	to	make	us	move	left,	we’ll	check
whether	there	is	a	platform	or	wall	to	the	direct	left	of	us.	If	it	would	make	us	move	right,
we’ll	check	whether	there	is	a	platform	to	the	direct	right	of	us.	Inside	the	while
statement,	increment	x	by	sign(hspd)	so	that	we	move	1	pixel	at	a	time	to	the	left	or	right
and	do	not	go	inside	a	wall.	Outside	the	while	loop,	set	our	horizontal	speed	to	0,	and
outside	the	if	statement	that	this	assignment	is	contained	in,	increment	x	by	our	horizontal
speed.	Then,	after	that,	set	hspd	to	0	again	so	that	way	it	will	be	reset	each	step	for	certain.
In	the	end,	if	moving	to	the	left	or	right	would	have	put	us	inside	a	wall,	we	will	move	left
or	right	until	we	are	just	up	against	this	wall,	and	then	prevent	the	player	from	moving	in
the	same	direction	anymore.	If	it	wouldn’t	have,	we’ll	move	left	or	right	regularly.

Now	you	can	copy	almost	all	of	the	code	we	just	wrote	(from	checking	whether	moving
left	or	right	would	put	us	inside	a	wall,	to	incrementing	x	by	our	horizontal	speed,	but	not
the	line	after	that)	and	paste	it	beneath	there.	Change	all	uses	of	x	to	y,	and	all	references
of	hspd	to	vspd.

After	this,	you	can	save	and	close	your	player	object.	Make	a	room	that	contains	platforms
and	your	player.	Make	sure	that	you	use	some	of	the	platforms	as	walls	and	ceilings.	Test
your	game	and	ensure	that	you	are	able	to	move	left	and	right	everywhere,	and	jump

everywhere	too.	Through	our	system,	you	should	be	able	to	jump	around	all	you	want,
change	your	direction	in	midair,	and	be	animated	when	on	the	ground,	like	in	every
platformer	you’ve	ever	played.	Once	it’s	all	working,	we’ll	move	onto	making	the
platformer	actually	scroll.

Making	your	scrolling	platformer	scroll
This	next	part	is	all	about	view	manipulation	in	your	game,	and	it’s	actually	really	easy.	It
might	just	be	the	easiest	thing	we	teach	you	in	this	entire	book.

So	let’s	get	started!	We’ll	first	make	a	background,	and	then	do	the	rest	of	this	in	the	room
editor.	Create	a	background	resource	in	your	project.	If	you	have	one	ready	to	import,
make	sure	that	it’s	not	the	same	throughout	and	that	you’ll	be	able	to	notice	differences	at
different	points	in	the	background.	Any	size	should	work,	as	the	room	editor	lets	you
stretch	or	loop	your	background	if	it’s	not	perfectly	fitting	to	the	room	size.	Of	course,
when	you	stretch	your	background,	it	loses	some	quality,	so	for	a	game	that	you	publish,
you’ll	most	likely	want	to	make	a	background	that	fits	the	room	or	one	that	is	fit	for
repeating	itself.	If	you	don’t	have	one	ready,	you	can	make	it	with	GameMaker	directly.
The	editor	for	backgrounds	is	the	same	as	the	sprite	editor.

After	you’ve	made	your	background,	save	it	and	open	up	your	room.	Start	with	the
settings	tab	of	your	room	editor.	Our	Width	and	Height	were	2048	and	384,	respectively.
You	should	also	use	these	values	as	this	will	make	the	networking	section	easier	later	on.
By	the	way,	now	that	we’re	going	to	use	views,	2048	won’t	be	what’s	on	your	screen	(in
fact,	your	screen	might	not	even	support	that),	so	you	can	make	your	rooms	as	long	as	you
want	when	using	views.	Now	open	the	backgrounds	tab	in	the	editor.	Set	the	room’s
background	to	your	new	background	resource	with	the	box	right	below	the	Foreground
image	checkbox.	If	your	background	doesn’t	perfectly	match	the	size	of	your	room,	you
can	either	have	GameMaker	loop	the	background	by	default,	or	stretch	it	by	selecting	the
Stretch	checkbox	as	follows:

Once	you’re	done	with	those	things,	we’ll	work	on	the	view	manipulation	itself.	Select	the
views	tab,	shown	as	follows:

Before	we	start	manipulating	the	view,	let’s	define	what	it	is.	A	view	is	what	is	displayed
on	screen,	and	typically	is	smaller	than	the	room	that	the	view	is	of	so	that	you	have	the
ability	to	show	only	a	portion	of	the	room.	For	example,	if	you	have	a	really	long	and	tall
room,	you’ll	probably	only	want	to	show	a	portion	of	it	at	a	time	so	as	to	hide	things	from
the	player	and	prevent	the	player	object	from	appearing	very	tiny.	Now	that	you	know
what	a	view	is,	we	can	manipulate	it.	The	first	step	to	follow	is	to	allow	GameMaker	to
use	views	for	this	room,	which	you	do	by	selecting	the	first	checkbox.	You	can	unselect
the	next	two	checkboxes,	but	you	should	know	what	they’re	for,	as	sometimes	you	might
want	them	selected.

The	first	checkbox	is	about	clearing	the	application	surface	with	the	window	color.	If	you
know	you’re	going	to	cover	the	entire	surface,	you	can	leave	this	unchecked.	You’ll
probably	always	cover	the	entire	application	surface.

The	next	checkbox	is	about	the	backbuffer	being	filled	with	a	color.	You	select	it	only	if
you	know	that	there	will	be	blank	spaces	on	the	screen	or	if	your	background	has	any
transparency.	The	color	is	black	by	default,	and	can	be	set	by	window_set_color(color).
You	don’t	need	to	select	this	checkbox	if	your	views	will	cover	the	whole	window	or	if
your	background	fills	it.

For	our	purposes,	unselecting	these	two	checkboxes	is	fine.

Next,	make	sure	that	View	0	is	currently	selected	(in	the	list	towards	the	top).	Make	it
visible	at	the	start	of	the	room	by	selecting	the	checkbox	beneath	this	list.	Now	we	can	set
the	dimensions	for	the	view	and	its	port	on	the	screen	(how	it’s	displayed	in	the	window;

we’ll	explain	this	latter	part	when	we	get	there).	For	us,	a	view	width	of	512	looked	good.
As	for	the	height,	set	it	to	whatever	you	like,	but	384	(the	same	height	as	the	room)	looked
nice	for	us.	Basically,	your	view	will	start	at	(x,	y),	which	will	be	the	top-left	corner,	and
then	the	bottom-right	corner	will	be	defined	by	your	width	and	height.	At	this	point,	you
should	see	a	rectangle	appear	in	the	room	editing	side	(right	side)	of	your	room	editor.
This	is	the	area	that	your	view	will	encompass,	and	thus	you	can	use	it	to	tweak	your	view
values.

The	next	part	is	the	port	on	the	screen,	which	is	how	the	view	will	appear	in	the	game
window.	If	you	don’t	want	any	stretching	at	all,	give	it	the	same	dimensions	as	your	view.
But	if	you	do	want	stretching,	smaller	numbers	in	the	port	will	downsize	the	view,	and
larger	ones	will	make	the	view	look	larger.	The	x	and	y	coordinates	for	your	port	on	the
screen	should	always	be	(0,	0),	anything	else	will	give	strange	results.

The	last	part	we’ll	do	is	the	object	to	follow.	By	having	the	view	follow	an	object,	it	will
change	based	on	the	position	of	the	object	it	is	following.	We	want	our	view	to	follow	the
player,	so	set	the	object	to	follow	to	the	player	object.	Then,	the	Hbor	and	Vbor	boxes
refer	to	how	many	pixels	from	the	edge	of	the	view	the	object	being	followed	must	be	for
the	view	to	start	moving.	80	looked	good	to	us,	since	you	want	the	player	to	be	able	to	see
some	of	what’s	coming	up	before	they	reach	it.	The	Hsp	and	Vsp	are	the	speeds	at	which
the	view	will	change.	-1	is	the	default,	which	means	as	soon	as	the	player	reaches	the
edge,	the	view	will	move	as	fast	as	the	player.	We	used	-1	as	well	for	our	game.

When	you	have	finished	manipulating	the	view	of	your	game,	add	more	platforms	to	your
room	to	make	it	longer	and	make	it	truly	a	scrolling	platformer.	Once	you’re	done,	save
your	room	and	run	your	game.	Make	sure	that	the	view	is	set	correctly	and	that	it	looks
right	to	you.	If	it	looks	right,	great	job!	You	can	move	onto	client/server	multiplayer
networking.

Client/server	multiplayer	networking
This	next	section	will	cover	multiplayer	networking	in	your	game.	Note	that	this	is	an
advanced	topic,	both	in	general	and	in	relation	to	the	other	topics.	But	we’ll	prepare	you
for	it.	You’ll	first	have	to	learn	some	terms,	which	we’ll	explain,	so	that	it	won’t	be	hard	to
understand	how	what	we’re	doing	works	when	we	start	writing	the	code.	Without	further
ado,	let’s	begin!

Networking	terminology
Here	is	some	networking	terminology	to	familiarize	yourself	with	before	beginning	to
write	your	code.	There’s	some	more	information	for	each	we’ll	tell	you	later,	but	for	now
you	just	need	to	have	a	basic	understanding	of	these	things:

Buffer:	This	is	a	region	of	system	memory	allocated	for	you	to	read	and	write	to,	and
send	in	packets/datagrams	when	used	in	networking.
Packet:	This	is	the	data	sent	over	a	network	when	talking	about	TCP.
Datagram:	This	is	equivalent	to	a	packet,	but	for	UDP.
Transmission	Control	Protocol	(TCP):	This	is	a	reliable,	connection-based
networking	protocol.	It	includes	error-checking	so	that	all	your	data	is	sent,	is	sent	in
the	right	order,	and	is	not	corrupted.	It	being	connection-based	means	that	your	server
and	client	must	be	directly	connected	to	each	other.	The	downside	is	that	if	you	were
to,	for	instance,	send	"Hello,	World",	it	could	be	received	as	"He"	+	"llo"	+	",
Wor"	+	"ld"	rather	than	"Hello,	World".
User	Datagram	Protocol	(UDP):	This	is	a	less	reliable,	but	very	useful	networking
protocol.	UDP	is	faster	than	TCP,	as	it	does	not	include	as	much	error-checking,	but	it
does	ensure	that	what	is	received	is	what	is	sent	(so	if	you	sent	"Hello,	World"	over
one	datagram,	"Hello,	World"	would	be	received).	UDP	is	not	connection-based,
rather,	it	just	sends	data	even	if	nobody	is	listening.
Socket:	A	socket	is	one	end	of	a	TCP	connection/UDP	session.	Multiples	of	these	can
exist	on	a	single	port	(if	there	are	multiple	clients).	It	is	what	a	computer	uses	to
communicate	with	another	computer.	Computers	do	not	share	sockets.	Data	is	sent
over	sockets.
IP	address:	This	is	a	unique	address	that	every	device	connected	to	a	network	has.
These	are	important	for	a	client	to	be	able	to	connect	to	a	server.	IP	addresses	aren’t
always	known	or	used	by	the	person,	there	are	also	URLs	(what	you	type	in	your
browser’s	box)	that	also	allow	you	to	connect	to	a	server.	The	URLs	are	converted	to
IP	addresses.
Port:	A	server	can	communicate	on	a	single	port,	with	clients	communicating	with
the	port	via	their	socket.	Ports	are	shared,	with	a	server	setting	one	up	and	the	clients
connecting	to	it	(or	simply	talking	to	it	when	talking	about	UDP).	Port	numbers	are
unsigned	16-bit	integers,	and	thus	have	a	range	of	0	to	65535.
Client/server	networking:	Contrary	to	peer-to-peer	networking	wherein	all
computers	talk	to	all	the	other	computers	that	are	connected,	this	system	has	a	client
talk	to	a	server	rather	than	any	other	clients.	The	server	sends	data	to	and	receives
data	from	clients,	and	is	used	as	a	passage	to	successfully	distribute	all	of	your
packets.	The	clients	in	the	end	might	get	data	from	the	other	clients,	just	through	a
server.	Servers	are	typically	run	on	machines	with	more	processing	power,	while	the
client	is	run	on	a	computer	with	significantly	less	processing	power.	This	is	true	for
systems	where	the	server	is	an	external	program,	and	also	where	the	server	is
included	in	the	same	application	as	the	client,	but	the	player	must	choose	to	host	a
server	alongside	running	a	client.

Once	you’ve	got	these	terms	down,	we	can	move	onto	having	the	server	find	its	own	IP
and	display	it	on	a	screen,	along	with	its	port	number.

Printing	the	server’s	IP	address	and	port	on	a
screen
The	first	thing	we	must	do	in	order	to	have	a	client/server	system	is	to	have	the	server
display	its	IP	address	and	port	so	that	players	can	connect	to	it.	Both	are	necessary	to
connect	to	a	server.

The	first	thing	you	should	do	is	create	a	new	project	in	GameMaker.	This	one	will	be	for
the	server;	as	for	this	game,	we’re	going	to	have	our	server	in	a	separate	application	from
the	client.	Keep	in	mind	however,	that	you	can	integrate	the	server	into	the	same
application	as	your	client,	we’re	just	doing	it	this	way	to	keep	things	a	bit	more	simple	and
so	that	we	can	focus	on	the	networking	portion.	Converting	this	example	into	your	own
games	so	that	the	server	is	integrated	definitely	shouldn’t	be	hard.

However,	inside	the	project,	create	a	new	object	just	to	find	the	port.	Inside	the	Create
event,	set	the	random	seed	(as	we	will	be	generating	a	random	port	number	to	use)	in	the
same	way	that	we	set	it	in	previous	chapters	(such	as	in	the	Random	seeds	section	in
Chapter	3,	Introducing	the	GameMaker	Language).	Then,	generate	a	random	number
within	the	range	of	49152	to	65535,	inclusive,	and	save	it	to	a	global	variable	called	port.
That	range	of	port	numbers	is	not	preassigned	for	a	specific	purpose	by	the	Internet
Assigned	Numbers	Authority	(IANA).	Thus,	it	is	completely	safe	to	use	a	port	number
within	that	range.	Ports	can	still	be	taken	up	in	that	range	by	other	programs	of	course,	but
it	is	not	guaranteed	that	they	will	be	already	taken.

After	you’ve	done	this,	we’ll	create	a	UDP	server	that	will	be	used	to	find	the	server’s
machine’s	IP	address.	To	do	this,	use	the	network_create_server(type,	port,
max_client)	function.	The	first	parameter	is	the	type	of	server	we	wish	to	create,	and
since	we	want	to	create	a	UDP	server,	we’ll	use	the	network_socket_udp	type.	The	port
should	be	the	port	you	just	created,	and	for	the	max	amount	of	allowed	clients,	you	should
pass	1,	since	we	only	want	the	server	to	connect	to	this.	Now,	put	your	function	call	inside
an	if	statement	and	check	whether	it	returns	a	value	less	than	0.	A	return	value	less	than	0
implies	that	the	function	failed	when	it	attempted	to	create	the	server.	As	such,	we	will
show	an	asynchronous	message	that	tells	the	user	that	it	failed	to	create	a	server	for
finding	the	IP	address,	and	asks	them	whether	they	want	to	try	again.	To	display	an
asynchronous	message,	we	use	the	show_question_async(message)	function.	Rather	than
completely	freezing	the	game,	an	asynchronous	function	call	will	allow	the	game	to	still
run	while	the	message	hasn’t	been	interacted	with.	This	function	would	not	be	used	for
debug	purposes,	whereas	the	show_message	function	we	used	before	was.

After	this	if	statement,	put	in	an	else,	inside	which	the	rest	of	the	Create	event’s	code
will	go.	Inside,	declare	a	local	variable	called	sock	(for	socket)	equal	to	the	return	value	of
the	network_create_socket(type)	function.	Create	a	UDP	socket	using	the	same
constant	we	used	earlier,	when	we	made	the	UDP	server.

Next,	we	will	create	a	buffer.	Set	the	local	variable	called	buff	to	the	return	value	of
buffer_create(size,	type	alignment).	The	size	is	how	much	space	should	be

allocated	for	the	buffer	in	the	system	memory,	and	thus,	the	maximum	amount	of	data	that
might	be	held	in	it.	Our	type	is	buffer_fixed.	A	fixed	buffer	is	one	where	that	size
parameter	can	never	change,	and	the	memory	allocated	will	never	have	to	increase.	In	a
fixed	buffer,	you’ll	be	overwriting	data.	The	byte	alignment	for	us	is	1,	and	you’ll	see	why
soon.	Byte	alignment	refers	to	how	many	bytes	of	data	the	buffer	should	be	aligned	to
(how	many	bytes	should	be	used	for	each	number)	and	it	depends	on	the	number	of	bits
that	your	values	might	take	up	and	its	type.	Whenever	you	read	or	write	to	a	buffer,	it
reads,	writes,	and	moves	forward	by	the	alignment.	For	the	list	of	byte	alignments	in
relation	to	buffer	types,	in	the	documentation,	go	to	the	page	for	our	buffer_create
function	under	Reference	|	Buffers.	Scroll	down,	and	you’ll	see	what	the	alignments
should	be	for	different	data	types	and	sizes.

See	how	8-bit	integers	should	be	aligned	to	1	byte?	This	is	because	8	bits	make	up	one
byte.	All	8-bit	integers	take	up	a	single	byte,	no	more,	and	so	that	is	why	the	alignment	for
an	8-bit	integer	is	1.	Unsigned	(positive	only)	8-bit	numbers	go	from	0	to	255,	whereas	the
range	for	signed	is	-128	to	127.	ASCII	characters	also	take	up	8-bits,	which	is	why	strings
are	aligned	to	1	as	well.	See	the	16-bit	number	alignment?	It	is	2,	since	16-bits	make	up	2
bytes,	so	they	need	to	be	aligned	to	2	bytes.

Enough	about	that	though,	once	you’ve	created	your	buffer	and	aligned	it	to	1,	we’re
going	to	fill	it	with	zeros.	0	is	an	8-bit	number,	so	that’s	why	we	aligned	our	buffer	to	1.	In
order	to	fill	a	buffer	with	data,	use	the	buffer_fill(buffer,	offset,	type,	value,
size)	function.	The	first	parameter	is	the	index	of	our	buffer,	which	you	just	stored	in	a
variable.	Next,	is	the	offset	(in	bytes)	to	start	at.	0	is	the	start,	so	pass	the	function	0	for	our
offset	parameter.	The	type	of	data	we	will	fill	the	buffer	with	is	buffer_bool,	which	can
have	values	of	0	or	1.	For	the	next	parameter,	we	will	be	filling	our	buffer	with	0,	as
mentioned	before.	Finally,	the	size	is	how	many	bytes	you	want	to	fill,	and	our	buffer	has
a	size	of	32,	so	pass	this	function	a	32	so	that	we	fill	the	whole	buffer.

After	this,	we	can	finally	broadcast	the	buffer	with	the	network_send_broadcast(socket,
port,	buffer,	size)	function.	You	already	know	what	to	pass	the	function	for	the	first
three	parameters.	For	the	size	parameter,	do	not	pass	32.	Instead,	pass	it	the
buffer_get_size(buffer)	function,	where	you	pass	this	function	the	index	of	our	buffer.
This	allows	for	more	versatility.

After	this,	it	is	important	that	we	destroy	our	socket	and	buffer.	Buffers	are	dynamic
resources,	such	as	DS	Maps,	and	they	can	slow	down	your	program	and	eventually	crash	it
if	you	don’t	get	rid	of	them	and	keep	the	space	when	it’s	not	being	used.	So,	you	have	to
destroy	the	buffer	once	you	no	longer	need	it.	Destroy	the	socket	with
network_destroy(socket),	and	pass	it	our	socket’s	index.	Then,	destroy	the	buffer	with
buffer_delete(buffer),	and	again	pass	the	buffer’s	index.

Once	you’re	done	with	this,	we	can	add	an	Asynchronous	event	for	the	question	we	asked
earlier.	Asynchronous	events	are	the	last	section	in	the	Add	Event	dialog,	and	there	are	a
bunch	of	different	subtypes.	We	want	Asynchronous	Dialog,	as	that	is	what	is	triggered
by	a	function	such	as	show_question_async,	so	add	one.	All	Asynchronous	events	have	a
special	DS	Map	available	for	their	duration.	It	is	always	called	async_load,	but	the	keys

and	values	are	always	different	depending	on	the	type	of	Asynchronous	event.

At	the	top	of	our	Asynchronous	Dialog	event,	put	in	an	if	statement.	Recall	that	we	can
find	a	value	in	a	DS	Map	with	the	function	ds_map_find_value(id,	key).	Put	the
function	inside	of	your	if	statement.	The	id	is	the	index	of	the	DS	Map,	and	the	key	is	a
string	that	gives	us	access	to	an	associated	value.	The	DS	Map	we	want	is	of	course
async_load,	but	as	for	the	key,	we	want	"status".	That	key	refers	to	which	button	on	the
dialog	the	user	pressed,	and	has	a	value	of	true	if	they	pressed	the	Okay	button,	or	false
if	they	hit	the	Cancel	button.	Check	whether	they	pressed	the	Okay	button,	and	if	they
did,	rerun	the	Create	event.	Recall	that	you	can	do	this	with	the	event_perform(type,
numb)	function.	Remember	our	type	is	ev_create,	for	the	Create	event,	and	since	there
are	no	special	sub-events	for	the	Create	event,	give	the	function	0	for	the	numb.	Outside
the	if	statement,	put	an	else,	in	which	we	end	the	game,	since	the	user	didn’t	want	to	try
again.

Once	you’re	done	with	that,	add	an	Asynchronous	Networking	event.	This	will	be
triggered	when	the	server	connects	to	itself,	and	we	will	be	able	to	find	the	IP	address	of
the	machine	the	server	is	running	on.	Inside,	make	a	global	variable	that	will	hold	the	IP
address	we	need.	You	can	get	this	IP	address	by	loading	it	in	from	the	special	DS	Map
available	to	us,	and	using	the	key	"ip".	After	this,	create	an	instance	of	a	server	object
(you	haven’t	yet	actually	made	the	object,	but	just	pass	the	name	that	you’ll	give	it	next),
and	then	destroy	the	current	object.

Great	job,	you	now	have	the	IP	address	of	the	machine	on	which	the	server	runs.	We	now
have	to	display	it	along	with	the	port.	Make	a	new	object,	with	the	same	name	as	the	one
you	just	used	in	the	previous	event	we	were	working	on.	Add	a	Create	event	for	it,	and
increment	our	global	port	variable	by	1	if	it’s	less	than	65535	(the	upper	bound	of	port
numbers).	Otherwise,	if	it’s	greater	than	49152	(the	lower	bound),	decrement	it	by	1.	We
have	to	do	this	because	it	seemed	for	us,	when	we	hadn’t,	the	previous	port	for	the	UDP
server	was	still	being	somehow	occupied,	so	we	had	to	change	the	port	to	something	else
for	the	actual	multiplayer	server.

Once	you’ve	done	that,	add	a	Draw	event	to	the	server	object.	Set	the	color	and	alpha	you
want	to	use.	Then	use	draw_text	to	show	the	server’s	IP	address	along	and	it’s	port	below
that.	The	IP	is	stored	in	a	string,	but	the	port	is	a	number,	so	you	have	to	draw	the	string
version	of	the	port	with	the	string	function.	Also,	make	sure	to	label	the	two	values	(for
example,	"SERVER	IP	ADDRESS:	"	+	global.server_ip).

At	this	point,	add	a	room	to	your	game,	and	put	in	an	instance	of	the	object	that	find’s	the
server’s	IP	address	(the	first	object).	Then	run	your	game,	and	you	should	see	your	IP
address	and	the	port	number	that’s	being	used	printed	on	the	screen.	If	it’s	working,	we
can	move	onto	the	actual	server	part	of	our	game.

Creating	the	actual	server
Now	go	back	to	your	server’s	Create	event.	Create	a	TCP	server	that	can	have	two	clients,
maximum,	and	hold	its	index	in	a	variable.	The	constant	for	a	TCP	server	is
network_socket_tcp.	Next,	set	a	variable	called	retry	equal	to	-1.	We’ll	explain	its
purpose	very	soon.	Then,	check	whether	it	failed	when	we	tried	to	create	our	TCP	server
(remember,	return	value	less	than	0).	If	so,	set	our	retry	variable	equal	to	the	return	value
of	show_question_async.	Have	the	function	tell	the	user	that	the	program	failed	to	create
a	server,	and	ask	if	they	want	to	try	again.	Functions	that	trigger	the	Asynchronous
Dialog	event	will	return	the	index	of	that	function	call	(so	calling	the	same	function	twice
gives	two	different	values).	Usually,	when	you	have	an	Asynchronous	Dialog	event,
you’ll	have	multiple	function	calls	that	could	trigger	it,	so	you	need	to	figure	out	which
function	call	triggered	it.	You	use	the	index	of	the	function	call	to	do	this.	-1	is	an
impossible	index	value,	which	is	why	we	set	the	retry	variable	equal	to	it	at	first.	Later,
we	will	check	to	see	whether	this	function	call	triggered	an	Asynchronous	Dialog	event
with	this	variable.

After	you’ve	done	this,	put	in	an	if	statement	that	checks	whether
global.initialized_server_vars	is	false,	which	we’ll	set	an	initial	value	to	a	little
later	on.	The	rest	of	the	Create	event	will	go	in	here.	Inside,	create	an	array	called
sockets.	It	should	have	two	indexes,	which	should	be	set	to	-1,	since	again,	these	are
impossible	index	values.	We’re	going	to	store	socket	indexes	here	later	on.	Next,	set	a
variable	called	network_array_position	equal	to	0.	We’ll	use	this	when	we	have	to
figure	out	where	in	the	sockets	array	we	should	save	a	socket	index.

The	final	variable	we	must	set	is	going	to	be	called	data_to_send_buff.	It	should	hold	the
index	of	a	buffer,	the	size	of	which	is	2435	(we’ll	explain	this	next)	and	which	is	byte
aligned	to	4.	The	reason	its	size	should	be	2435	is	because	that	is	the	maximum	amount	of
data	that	could	be	saved	in	the	buffer.	It	will	hold	the	x	coordinate	of	a	player	(max	of
2048—make	sure	your	room	width	is	that	to	make	things	simpler	here),	the	maximum	y
coordinate	of	the	player	(max	of	384—make	sure	your	room	height	is	that	to	make	things
simpler	here).	It	will	also	hold	a	0	or	a	1	depending	on	which	sprite	that	player	is	using
(these	aren’t	the	actual	indexes—we’ll	be	doing	an	if	statement	for	the	two	different
sprites	so	it’s	easier	to	set	a	buffer	size;	if	you	had	an	additional	sprite,	check	whether	you
can	combine	sprites	or	simplify	your	animation	to	make	this	networking	part	easier),	a	0	or
a	1	for	the	player’s	subimage	(those	are	the	actual	indexes,	and	if	you	had	more	than	two
subimages	in	your	walking	animation,	get	rid	of	one	to	make	things	simpler),	and	a	-1	or	1
for	the	horizontal	scaling	of	the	player.

As	for	the	byte	alignment	of	4,	signed	floating	point	32-bit	numbers	take	up	4	bytes
(signed	for	horizontal	scaling	and	floating	because	x	and	y	coordinates	can	have	decimal
points).	We	would	have	liked	to	use	signed	floating	point	of	16-bit	numbers	and	use	an
alignment	of	2,	as	that’s	all	the	space	we	need	(in	fact,	it’s	more,	but	8-bit	is	too	small,	and
you	always	have	to	make	sure	that	you	use	the	right	bit	size	for	the	maximum	value	for	a
single	number	that	you	might	write	to	a	buffer—Google	the	ranges	for	the	bit	sizes	if	you
need	help),	but	at	the	time	of	writing,	this	is	not	supported	in	GameMaker.	If,	however,

you’re	reading	this	at	a	time	when	it	is	supported	(you’ll	know	because	the	documentation
page	where	you	saw	the	byte	alignments	to	be	used	won’t	say	floating	16-bit	numbers	are
unsupported),	then	use	a	byte	alignment	of	2	for	the	buffer	in	our	server	and	client,	and
replace	all	the	times	we	use	buffer_f32	with	buffer_f16.	Otherwise,	just	do	what	we’re
doing	if	you	think	that’ll	be	too	confusing	to	follow.

On	that	note,	know	that	you	can	have	multiple	buffers	in	your	games	(if,	for	instance,	in
one	buffer	you	only	have	to	write	a	few	8-bit	numbers,	but	in	another	you	need	to	write
some	16-bit	integers,	you	could	of	course	have	multiple	buffers),	but	we’re	just	making
one	because	we	don’t	have	a	ton	of	data	to	send	in	this	example	and	we’re	making	things
simple	here.

Anyway,	once	you’re	done	reading	all	that	and	making	your	buffer,	set	the	variable
global.initialized_server_vars	to	true,	since	we’ve	set	variables	in	the	server	that
shouldn’t	be	reset.	We	need	to	have	this	check	because	we	might	be	performing	the
Create	event	a	second,	third,	or	fourth	time,	and	so	on,	if	the	server	keeps	failing	to	be
created	(we’ll	do	this	in	an	Asynchronous	Dialog	event	soon).	We	especially	don’t	want
to	recreate	the	buffer	(that’s	a	lot	of	wasted	memory).

But	you	might’ve	thought,	“Hey,	we	didn’t	declare	that	variable	anywhere.	We	should
declare	it	before	testing	its	value.”	Good	thinking.	But	were	you	also	thinking	we	should
set	it	in	the	Creation	code	for	the	server	room	since	declaring	it	in	the	Create	event
would	just	reset	the	variable	too	and	remove	its	purpose?	Unfortunately,	you	would	be
wrong	to	do	that,	for	a	really	weird	reason.	GameMaker	runs	the	Create	events	of	the
objects	inside	of	a	room	before	it	runs	the	Creation	code	of	the	room.	Yes,	before	a	space
is	even	fully	created,	the	things	inside	of	it	(or	those	that	could	be,	since	the	server	object
isn’t	even	in	the	room	at	the	start)	are.	So	we	have	to	do	something	really	redundant	to
assign	the	variable	a	value.	Make	a	new	room.	In	its	Creation	code,	set	the	variable
global.initialized_server_vars	to	false,	and	then	move	to	the	server	room.	Make
sure	the	room	is	run	before	the	server	room.	Really	redundant,	right?	But	unfortunately,
there’s	no	other	way.

The	next	part	is	to	make	our	Asynchronous	Dialog	event.	Inside,	check	whether	our
retry	variable	equals	the	index	of	the	function	that	triggered	this	event	and	whether	the
user	pressed	Okay	rather	than	Cancel	on	the	dialog	box.	The	index	is	stored	in	the	key
"id",	and	recall	that	to	check	which	button	the	user	pressed,	we	use	the	key	"status",
where	pressing	Okay	gives	a	true	value.	Inside	the	if	statement,	show	an	asynchronous
message	with	the	function	show_message_async	that	tells	the	user	to	try	again	if	the	issue
persists.	Then,	perform	the	Create	event	again.

Outside	the	if	statement,	put	in	an	else	if	that	just	checks	whether	the	previous	if
statement	didn’t	run	because	the	user	pressed	Cancel	(meaning	that	"id"	will	still	have
the	index	of	the	show_question_async	function	we	called	earlier).	End	the	game	inside
the	else	if.	When	you’re	done	with	that,	we’ll	put	in	the	second	last	component	of	the
server—the	Asynchronous	Networking	event	and	handling	data.

Our	Asynchronous	Networking	event

Yes,	this	section	is	so	big	it	even	has	its	own	heading.	So	get	ready,	and	get	focused.	We
won’t	make	it	overly	difficult	or	anything,	but	just	know	that	this	part	is	going	to	be	a	bit
harder.

So	begin	with	creating	an	Asynchronous	Networking	event	in	your	server	object.	Inside,
create	a	switch	statement.	You	should	have	it	check	what	the	value	of	the	"type"	key	is	of
our	async_load	DS	Map.	We	will	have	three	cases.

Connection

The	first	case	should	run	if	the	value	was	network_type_connect.	Whenever	a	client
connects	to	the	server,	the	"type"	key	will	have	this	value.	Inside	of	this	case,	set	a	local
variable	called	just_connected_socket	equal	to	the	"socket"	value	of	the	async_load
DS	Map.	We	now	have	the	index	of	the	socket	of	the	newly	connected	client.	The
"socket"	key	is	available	only	during	a	connection	and	disconnection	of	a	client	to	the
server.	Then,	set	sockets[network_array_position]	equal	to	that	local	variable	we	just
made.	That	way,	we	can	save	the	new	socket	to	either	the	first	or	the	second	slot.	Next,
check	whether	network_array_position	equals	0	(meaning	that	a	client	has	connected	to
the	first	slot).	If	so,	increment	this	variable	since	we	should	now	be	writing	the	next	socket
to	the	second	slot	in	the	sockets	array.

After	this,	use	the	show_message_async	function	to	notify	the	user	that	a	client	has
connected.	Finally,	break	the	case.

Disconnection

Now,	we’ll	handle	the	disconnection	of	a	client.	The	constant	for	a	disconnection	is
network_type_disconnect,	so	put	in	a	case	for	that	below	the	one	for	a	connection.	Then,
inside,	first	check	whether	the	socket	that	has	disconnected	(again	held	in	the	"socket"
key,	which	is	also	available	in	connection	and	disconnection)	equals	the	socket	index	held
in	index	0	of	our	sockets	array.	If	so,	set	that	position	to	-1,	and	decrement	our
network_array_position	variable.	Otherwise,	set	the	socket	held	in	index	1	of	our
sockets	array	to	-1.

Next,	verify	that	the	socket	held	in	index	0	of	our	sockets	array	is	not	-1.	Via	this,	we’re
going	to	tell	the	socket	that	is	still	there,	if	there	is	one,	that	the	other	player	has
disconnected.	So	we	kind	of	lied	before	when	we	said	what	the	buffer	would	be	holding,
by	not	mentioning	-2.	But	we	didn’t	mention	it	because	the	buffer	will	never	be	holding	a
-2	alongside	any	of	those	other	values.	If	the	buffer	has	a	-2	in	it	for	this	purpose,	it’s	not
going	to	be	holding	any	other	values.	So	we	didn’t	need	to	make	the	buffer	larger	than
2435	to	accommodate	a	-2,	since	only	the	-2	will	be	used	and	sent	when	there	is	a	-2.

Whenever	writing	to	a	buffer,	we	must	first	seek	its	beginning,	at	least	with	fixed	buffers.
Seeking	in	a	buffer	is	easy.	Just	use	the	buffer_seek(buffer,	base,	offset)	function.
Our	buffer	is	data_to_send_buff	of	course.	Our	next	parameter	will	be	the	constant
buffer_seek_start,	and	the	final	one	will	be	a	0.	When	seeking,	the	function	seeks
offset	number	of	positions	from	the	base,	so	this	function	call	right	here	will	seek	the
exact	start	of	the	buffer.

Now,	we	can	write	a	value	to	this	buffer	with	the	buffer_write(buffer,	type,	value)
function.	Our	buffer	is	the	same	as	the	one	we	just	seeked	in,	and	the	type	shall	be
buffer_f32	(unless,	again,	you’re	reading	this	when	16-bit	floats	can	be	used,	in	which
case	use	buffer_f16).	Finally,	we	will	write	a	-2.	So	whenever	a	client	disconnects,	if
there	is	another	client	still	connected,	we’ll	send	a	-2	and	the	client	that	received	this	value
will	know	that	they	are	the	only	connected	client.

The	final	thing	we	have	to	do	is	to	send	the	buffer	with	the
network_send_packet(socket,	buffer,	size)	function.	Since	in	this	if	statement,	we
checked	whether	the	first	socket	slot	was	connected,	we’ll	use	that	same	socket	here.	Next,
you	should	know	what	our	buffer	is.	As	for	the	size,	before	we	had	used	the
buffer_get_size	function.	However,	this	returns	the	size	of	all	the	data	in	your	buffer.
Keep	in	mind	that	we	are	not	erasing	the	buffer	every	time	we	write	to	it,	there’s	still	the
old	data.	So,	if	we	used	that	function,	it	would	send	the	old	data,	which	we	don’t	want.	So
to	solve	this,	we’ll	use	the	buffer_tell(buffer)	function,	which	tells	you	how	many
bytes	in	your	“cursor”,	so	to	speak,	is	in	the	buffer.	That	way,	we’ll	only	send	the	value(s)
that	we	just	wrote.	Make	sure	you	don’t	seek	anywhere	else	in	the	buffer	when	you’re
doing	this	though,	and	that	you	write	in	order,	not	seeking	to	the	end	of	where	you’ll	write
and	then	somewhere	in	the	middle.	So	use	this	function	as	our	argument	for	the	size
parameter,	and	then	you’ve	successfully	sent	a	-2	to	the	client.

Now,	make	an	else	if	statement	that	checks	whether	index	1	of	our	sockets	array	is	not
equal	to	-1.	Copy	the	code	you	just	wrote	(from	seeking	to	sending)	and	put	it	in	this	else
if,	but	instead	of	having	it	sent	to	sockets[0],	have	it	sent	to	sockets[1].	So	whenever	a
client	disconnects,	we’ll	tell	the	other	client	that	is	still	connected	(if	there	is	one)	that	they
are	the	only	client	connected.

Outside	that	else	if,	notify	the	user	that	a	client	has	disconnected	(again	with	an
Asynchronous	event	of	course,	it’s	imperative	that	one	be	used;	otherwise,	the	server	will
stop	until	the	user	interacts	with	the	dialog).	Then,	you	can	break	the	case.

Handling	data

Nice	job,	you’ve	made	it	this	far!	We	only	have	one	more	case	to	add,	which	is	for	when
the	server	receives	data.	The	constant	for	this	is	network_type_data,	so	add	one	final	case
for	this.

Whenever	we	get	data	in	a	Asynchronous	Networking	event,	we’ll	have	two	additional
keys	available	to	use:	"buffer"	and	"size".	The	first	is	the	index	of	the	buffer,	and	the
second	is	its	size.	We	don’t	care	about	the	size	for	this	game,	but	it’s	good	for	you	to	know
about.	The	buffer	index	is	destroyed	after	this	event	is	over,	so	you	have	to	handle	it	in	this
one,	or	save	it.

Inside	the	case,	check	whether	the	value	for	the	key	"id"	is	equal	to	the	first	socket	we
have	saved	and	verify	that	the	second	socket	we	have	saved	isn’t	-1	(as	when	we	get	data,
we’re	going	to	send	data	to	the	other	client,	but	it’s	redundant	to	send	a	nonexistent	client).
This	"id"	key	is	like	the	"socket"	key,	but	it’s	for	an	existing	connection,	not	a	new	or
destroyed	one.	Usually,	it	holds	the	socket	that	triggered	this	event,	but	if	the	event	was

triggered	in	the	server	and	the	event	was	triggered	for	data,	then	this	will	hold	the	socket
index	of	the	client	that	sent	the	data.	Anyway,	inside	of	this	if	statement,	call	a	script	(that
we’ll	soon	make)	called	scr_handle_data,	and	pass	it	the	buffer	we	received	(using	the
DS	Map	key,	we	told	you	about	in	the	previous	paragraph)	and	1.	The	script	we	will	be
creating	will	take	two	parameters:	a	buffer	index	and	the	one	which	the	client	needs	to	spit
the	data	back	out	to.	This	second	parameter	of	course	uses	zero-based	indexing.

Otherwise,	if	the	value	for	the	key	"id"	equals	the	second	socket	we	have	saved	and	the
first	socket	we	have	saved	isn’t	-1	(we	got	data	from	the	second	socket	and	the	first	socket
exists),	set	index	1	of	our	buffers	array	to	the	buffer	we	received,	and	call	the	same
script,	passing	it	the	same	first	parameter	but	0	for	the	second	parameter.	Finally,	(outside
the	else	of	course!),	break	the	case.

The	neat	thing	about	the	Asynchronous	Networking	event	is	that	it	can	be	triggered
whenever	there’s	a	connection,	disconnection,	or	a	buffer	received.	As	such,	it	can	be
triggered	multiple	times	a	step	for	two	different	buffers,	so	we	don’t	have	to	worry	about
the	data	of	only	one	client	being	handled.

Congratulations!	You’ve	sort	of	finished	this	networking	event!	Sort	of,	because	you’ve
still	got	a	script	to	work	on.	Let’s	get	working	on	that!
Our	data	handling	script

So	make	a	new	script,	and	make	sure	to	call	it	scr_handle_data	so	that	the
Asynchronous	Networking	event	doesn’t	call	a	nonexistent	script.	Set	the	local	variables
buff	to	argument0,	and	client_to_send_to	to	argument1.

First,	seek	the	beginning	of	the	buffer	we	were	passed.	Next,	we	will	read	the	first	value	of
the	buffer	into	the	local	variable	player_x	with	the	function	buffer_read(buffer,
type).	We’ll	be	reading	from	the	buffer	we	were	passed;	use	the	type	of	buffer_f32	like
before	(unless,	of	course,	you’ve	been	using	16-bit	floats	if	it’s	supported).	Now,	do	the
same	for	the	following	local	variables:	player_y,	player_sprite,	player_subimage,	and
finally,	player_xscale.

Once	you’ve	read	in	all	the	values,	we’ll	send	them	back	out	to	the	other	client.	So	first,
seek	the	beginning	of	our	data_to_send_buff	buffer.	Then,	write	the	values	to	the	buffer
in	the	order	you	got	them	(first	in,	first	out,	unlike	a	stack	in	Assembly).

Finally,	send	this	buffer	to	the	socket	in	sockets[client_to_send_to],	and	remember
that	we	got	that	index	as	a	parameter	already.	Also,	use	our	buffer_tell	method	again	to
know	the	size	of	our	buffer.	When	you’re	done	with	that,	you’re	done	with	the	script,	so
you	can	close	the	code	editor	there.

Nice	job	getting	this	far,	but	there’s	just	one	last	thing	we	have	to	do.	If	the	server	closes
before	the	clients	do	and	there	are	two	clients	connected,	we	need	to	tell	them	both	that	the
server	has	been	shut	down	so	that	they	don’t	continue	to	display	the	second	player	on
screen.	Clients	don’t	have	a	disconnection	event,	so	we	can’t	test	for	that,	instead	we	must
have	the	server	tell	the	clients	directly	that	it	has	disconnected.	This	is	really	easy	though.
We’re	going	to	use	basically	the	same	method	we	used	for	when	a	client	has	disconnected.

So	create	a	Game	End	event	inside	of	your	server.	Inside,	verify	that	both	sockets	are	not
equal	to	-1	(meaning,	we	have	two	clients	connected).	Next,	seek	the	beginning	of	our
data_to_send_buff	buffer.	Write	a	-2	to	it.	Then,	we	have	a	special	way	we’re	going	to
send	this	data	to	the	clients—with	a	for	loop.	With	networking,	sending	data	can
sometimes	fail,	and	if	we	fail	to	send	this	data,	then	the	client	might	think	there’s	still	a
second	player	and	display	them	even	though	they’re	not	connected.	So	we’re	going	to	try
multiple	times	with	each	send	to	give	us	the	best	chance	of	the	-2	being	sent.

In	the	for	loop,	have	a	counter	variable	that	starts	with	a	value	of	0	increment	with	each
run	of	the	loop.	This	loop	should	run	as	long	as	the	function	call	that	sends	data	to	the
client	returns	a	value	less	than	0	(meaning	it	failed)	and	the	counter	variable	is	less	than	5
(so	we’ll	make	a	total	of	five	attempts).	You	should	have	two	of	these,	one	for	each
different	client.

Finally,	destroy	our	server	and	delete	our	buffer.

This	is	the	best	we	can	get,	aside	from	calling	a	sleep	function	in	between	sending	the
data	and	destroying	the	server	or	having	a	UDP	stream	that	gets	sent	to	the	client.	Doing
this,	however,	would	complicate	this	tutorial;	we	just	want	to	teach	you	some	basics.
GameMaker	used	to	have	a	sleep	function,	but	they	removed	it.	Alarms	typically	work	as
replacements,	but	the	Game	End	event	runs	at	the	closing	of	your	game/application,	so
you	can’t	do	anything	after	it	(which,	in	this	case,	would	be	to	use	an	alarm	to	wait	before
removing	the	server	and	buffer).

Great	job!	You’ve	completed	your	server	program.	You	can	now	move	onto	making	your
client	system!	Applaud	yourself.	Unfortunately,	you	can’t	test	your	server	yet,	as	your
client	isn’t	yet	created,	but	once	it’s	been	made,	you	can	test	your	system.

The	client	in	your	client/server	system
So	you	just	finished	half	of	the	multiplayer	system—the	server.	The	other	half	that	you
have	to	create	is	your	client,	and	that	will	go	in	the	same	project	you	were	using	in	the	rest
of	the	game	(where	you	put	in	views,	and	so	on).

So	open	up	your	main	project	if	it	isn’t	open	already.	Inside,	make	a	client	object.	First	we
will	use	the	function	get_string_async(string,	default)	to	prompt	the	player	for	a
server	and	port.	The	first	parameter	is	the	string	you	want	displayed	(the	prompt	itself),
and	the	second	is	the	textbox’s	default	string.	Prompt	the	player	for	the	IP	address	and	port
number	of	the	server	they	want	to	connect	to,	and	have	them	type	it	in	the	format	of
IP:port	(for	example,	our	string	parameter	was	"Type	in	the	IP	Address	and	the
port	of	the	server	you	wish	to	connect	to	in	the	format	of	IP:port.	The	IP

and	port	are	printed	on	the	screen	of	the	server.").	Provide	an	empty	string	as
the	default	string.	You	needn’t	save	the	index	of	the	function	call	in	a	variable,	since	all	of
the	times	that	we	use	a	function	that	triggers	an	Asynchronous	Dialog	event	will	be	for
this	same	purpose.

After	this,	set	the	variable	player_two	to	-1.	It	will	later	hold	the	index	of	the	second
player,	if	one	is	to	connect.	Then,	set	the	variables	server_ip	and	server_port	both	to	an
empty	string	("").	Next,	set	connected	to	false,	as	we	have	not	yet	connected	to	the
server.	After	this,	create	a	TCP	socket	with	the	function	network_create_socket(type)
and	save	the	index	to	a	variable	called	socket.	And	since	we	want	a	TCP	socket,	pass	in
network_socket_tcp.	Finally,	create	a	fixed	buffer	called	buff	with	a	size	of	2435	(the
same	size	as	the	one	in	the	client),	and	align	it	to	4	bytes	(or	a	2	if	you’ve	been	using	16-
bit	for	the	other	parts	of	this	chapter).

After	that,	you’re	done	with	your	Create	event.	Now	let’s	move	onto	the	Asynchronous
Dialog	event.	In	here	is	where	we	will	parse	the	string	that	the	user	input,	separating	it	into
an	IP	and	port,	and	then	we	will	attempt	to	connect	to	the	provided	server.	If	this	fails	at
any	point,	we’ll	prompt	the	user	for	another	string,	telling	them	where	they	might’ve	gone
wrong.	So	first	add	in	an	Asynchronous	Dialog	event.	Inside,	set	the	local	variable
server_string	equal	to	the	"result"	key	of	our	async_load	DS	Map.	Then,	set
server_ip	and	server_port	to	empty	strings	again,	as	this	event	could	be	run	over	and
over	again,	and	we	need	to	reset	those	strings	every	time.	Finally,	set	the	local	variable
met_colon	to	false.	A	colon	signifies	the	end	of	the	IP	address	or	URL	and	the	beginning
of	a	port	number.

Once	you’ve	set	up	these	variables,	test	whether	server_string	equals	an	empty	string.
This	happens	whenever	the	user	hits	the	Cancel	button	or	actually	supplies	nothing	and
hits	the	Okay	button.	If	so,	prompt	the	user	again,	telling	them	that	they	didn’t	supply	an
IP	address	or	port	number,	and	remind	them	of	the	format	to	type	these	in.	If	you	want	to
put	in	a	newline,	use	the	#	character.	And	don’t	provide	a	default	string,	as	with	the	rest	of
the	calls	you’ll	make	to	this	function	in	this	event.

After	this,	put	an	else	statement.	The	rest	of	the	code	for	this	event	will	go	in	there.	At	the
top,	put	in	a	for	loop.	Set	the	local	variable	i	to	1.	Have	this	loop	run	as	long	as	it	is	less

than	string_length(string)	+	1,	where	you	pass	the	function	the	string
server_string.	Increment	i	after	each	iteration	of	the	loop.	The	reason	we	didn’t	set	the
variable	to	0	first	and	have	the	loop	run	while	the	variable	is	less	than	the	length	of	the
string,	but	rather	we	set	it	to	1	and	had	the	loop	run	while	it’s	less	than	the	length	plus	1	is
because	of	the	way	strings	are	indexed.	Strings	are	indexed	from	1,	not	0,	so	in	the	string
"Hello",	the	"H"	is	at	index	1,	and	the	length	is	5.	If	we	wanted	to	print	this	entire	string
out,	character	by	character,	we’d	have	to	set	a	counter	variable	equal	to	1	and	then	have
the	loop	run	while	the	counter	is	less	than	6	(length	plus	one).	If	strings	were	indexed	from
0,	we	would	run	the	loop	as	long	as	the	counter	was	less	than	5,	as	lengths	are	always	the
literal	and	exact	length.

Inside	this	loop,	first	set	the	local	variable	substr	equal	to	string_char_at(str,	index).
Our	string	to	pass	it	will	be	server_string,	and	our	index	will	be	the	value	of	our	counter
variable,	i.	This	will	set	substr	equal	to	the	current	character	that	we	are	looking	at	in	the
string	that	the	user	gave	us.

Below	this,	put	in	another	for	loop	(still	nested	in	our	previous	one).	Set	another	local
counter	variable	called	a	equal	to	48,	have	the	loop	run	as	long	as	the	counter	is	less	than
58	and	met_colon	is	true,	and	increment	a	in	each	iteration	of	the	loop.	In	the	ASCII
table,	the	number	48	represents	the	character	0,	and	the	number	58	represents	the	colon
character.	The	number	57	represents	the	character	9	(the	last	digit),	so	the	colon	character
directly	follows	the	character	9.	This	loops	runs	as	long	as	our	counter	represents	the
digits.	Ports	must	always	be	numbers,	and	this	loop	we	have	here	is	going	to	prevent
attempting	to	connect	to	a	port	number	that	isn’t	composed	of	just	digits,	which	would
throw	us	an	error.	The	loop	is	only	for	the	port,	that	is	why	we	have	it	only	run	if
met_colon	is	true.	Inside	this	loop,	test	whether	substr	=	chr(val),	where	you	pass	the
function	a.	If	so,	break	out	of	the	for	loop	with	the	break	statement.	Below	this,	put	an
else	if	that	checks	whether	our	counter	equals	57	(so	we’re	on	the	last	possible
legitimate	character	for	a	port,	and	our	substring	isn’t	that	character).	If	so,	prompt	the
user	for	a	server	and	port	again,	and	tell	them	they	provided	an	invalid	port.	Again,	remind
them	of	the	format.	So,	the	loop	will	exit	once	the	current	character	we’ll	be	looking	at	is	a
digit,	and	if	it’s	not,	the	user	will	be	asked	to	provide	a	valid	port.

Outside	this	loop,	verify	that	our	current	character	is	not	the	colon	(the	IP	versus	port
delimiter),	and	if	we	haven’t	met	the	colon	yet.	If	so,	add	the	current	character	to
server_ip,	like	in	the	following	code.	We’re	showing	you	the	code	directly,	since
combining	strings	in	GameMaker	can	get	weird	with	what	you	can	and	can’t	do	and	how
you	do	it.	Sometimes,	using	a	function	will	work,	sometimes	it	won’t	work.	At	least	in	this
case,	it	worked	when	we	did	it	the	following	way:

server_ip	=	server_ip	+	substr;

So	as	long	as	we’re	not	supposed	to	be	writing	to	our	port	string,	add	the	current	character
to	the	IP	string.	Below	this,	put	an	else	if	that	checks	whether	the	current	character	is	the
colon.	If	so,	set	met_colon	to	true.

Finally,	put	an	else	statement	that	adjoins	the	current	character	to	the	string	server_port
in	the	same	way	that	we	did	it	with	the	IP,	as	once	we’ve	met	our	delimiter	character,	we

should	be	writing	to	the	port	string,	not	the	IP	string.

After	that	(and	now	your	code	will	be	outside	the	main	for	loop),	put	in	an	if	statement.
Have	it	check	whether	the	port	string	is	equal	to	an	empty	string	(so	no	port	number	was
parsed	in).	If	so,	add	one	more	prompt	for	an	IP	and	port	and	tell	them	that	they	didn’t
enter	any	port	number,	and	remind	them	of	the	format	to	type	the	string	in.

Below	this	should	be	an	else	if	statement.	Here,	you	will	be	attempting	to	connect
(inside	of	the	else	if	condition)	to	the	server	with	the	network_connect(socket,	url,
port).	The	first	parameter	is	the	socket	to	connect	with,	which	you	made	in	the	Create
event	of	this	object	and	called	socket.	The	next	parameter	doesn’t	have	to	be	a	URL,	it
can	be	an	IP	address	as	well,	which	we’ll	be	using	here.	The	third	parameter	is	the	port.	So
pass	in	the	socket	you	made	before	in	this	object,	server_ip,	and	real(server_port),	as
the	third	parameter	is	supposed	to	be	a	number,	not	a	string.	The	real	function	returns	its
string	argument	as	a	number.	Then,	check	whether	the	connection	function	returned	a
value	less	than	0	(the	connection	failed).	If	so,	tell	the	user	that	the	client	failed	to	connect
to	the	provided	server	because	either	the	wrong	IP	and	port	were	provided,	or	the
connection	actually	failed.	Also,	tell	them	the	format	to	type	in	their	response	to	the
prompt.

After	this,	add	a	final	else	statement,	wherein	you	set	connected	to	true,	as	the
connection	to	the	server	was	successful	and	you	can	now	send	and	receive	data	with	it.

Now	let’s	add	our	Step	event	where	we	send	data	to	the	server.	Inside,	test	whether	we’re
connected	to	the	server	(so	connected	will	be	true).	Inside,	we’re	going	to	be	sending
data	about	the	player	to	the	server.	So	we	have	to	start	with	seeking	the	start	of	the	buffer,
which	if	you	remember,	we	called	buff.	Next,	write	the	x	and	y	coordinates	of	the	player
and	make	sure	to	use	the	same	type	you’ve	been	using	all	along.	Then,	check	whether	the
player’s	sprite_index	is	the	walking	sprite.	If	so,	write	a	0	to	the	buffer.	Otherwise	(since
you	should	only	have	two	sprites	for	the	player	in	this	game),	write	a	1.	After	this,	write
the	player’s	image_index,	and	then	their	image_xscale.	Finally,	send	the	buffer	over	the
socket	that	the	client	object	created.

Once	you’ve	finished	that,	we	have	to	put	in	code	for	when	the	client	receives	data.	Add	a
Asynchronous	Networking	event.	Check	whether	the	event	type	was
network_type_data	(so	check	the	"type"	key	in	async_load).	Next,	load	the	buffer	we
received	into	a	local	variable	called	received_buff.	Then,	seek	its	beginning.	Read	its
first	value	into	a	local	variable	called	buffer_first_val.	We’re	reading	it	into	this	first
because	the	first	value	is	either	going	to	be	-2	or	the	x	coordinate	of	the	player	in	the	other
client.	Check	whether	this	new	variable	equals	-2	and	if	an	instance	of	the	other	player
exists	(using	the	instance_exists(object)	function,	where	you	pass	it	what	you	will	be
naming	the	other	object).	If	so,	use	the	with	statement	(passing	it	player_two)	to	destroy
the	instance	of	the	other	player.

Next,	put	in	an	else	if	clause	that	checks	whether	buffer_first_val	is	not	equal	to	-2
(so	we	know	why	the	above	if	statement	wasn’t	triggered	and	are	running	the	proper
code),	where	the	rest	of	the	code	for	this	event	will	go.	Assign	player_x	(which	must	not
be	local,	nor	can	any	of	the	other	variables	made	in	the	event	after	now	be)	to	be	equal	to

buffer_first_val.	Then,	read	in	the	y	coordinate.	After	this,	test	whether	the	value	you
read	in	is	a	0.	If	so,	player_two_sprite	should	equal	what	you	will	name	the	walking
sprite.	Otherwise,	it	should	equal	what	you	will	name	the	jumping	sprite.	Then,	read	in	a
value	to	player_two_subimage	and	player_two_xscale.

After	this,	verify	that	an	instance	doesn’t	exist	of	the	other	player	object	(making	sure	to
use	the	same	name	you	used	before).	If	one	doesn’t	exist,	assign	player_two	to	equal	the
return	value	of	instance_create,	when	you	create	the	other	player	at	(player_x,
player_y)	so	that	the	variable	will	hold	the	index	of	this	other	player	object.

Then,	use	a	with	statement,	passing	it	the	index	of	the	other	player	object.	Assign	x	to
other.player_x.	other.player_x	will	be	referencing	player_x	in	the	client,	since	you’re
in	a	with	statement	right	now,	and	x	will	reference	the	x	coordinate	of	the	instance	you
passed	to	the	with	statement.	Do	the	same	for	the	other	variables	(y,	sprite_index,
image_index,	and	finally	image_xscale).

Great	job!	You’re	almost	done	with	the	client.	We	have	only	a	few	more	things	to	do.	Add
a	Game	End	event	to	the	client	object.	Inside,	delete	the	buffer	called	buff,	and	then
delete	our	socket.	Now	you	can	put	the	client	into	your	room.

The	final	part	is	to	actually	create	the	second	player	object	and	its	sprites.	As	far	as	the
sprites,	you	can	actually	import	existing	sprite	files	if	you	right-click	on	the	Sprites	folder
in	the	resource	tree,	and	select	Add	Existing	Sprite.	Navigate	to	<Project	root
directory>\sprites	and	import	the	proper	.gmx	files	(although	you	have	to	do	them	one
at	a	time)	that	you	see	there.	By	importing	the	sprite,	you’ll	essentially	be	making	a
complete	copy,	but	GameMaker	will	automatically	attach	_new	to	the	end	of	the	name	of
the	copy.	What	you’ll	want	to	change	in	the	copies	is	the	color	scheme,	as	well	as	what
they’re	called.	Make	sure	that	their	names	are	the	same	as	the	ones	you	used	in	the
Asynchronous	Networking	event	for	the	client	object	so	that	nothing	fails.	Then,	create	a
second	player	object	(and	again,	make	sure	to	use	the	same	name	as	in	the	client	object)
and	assign	it	the	walking	sprite	in	the	object’s	main	properties	editor	screen.	You	don’t
need	to	do	anything	else	to	the	object.

Now,	the	unfortunate	thing	about	this	networking	section	is	that	you	couldn’t	really	test
small	amounts	of	code	bit	by	bit	as	much	as	you	would	have	liked,	so	it’ll	be	a	bit	harder
to	find	issues	in	your	code.	However,	it’s	not	horribly	impossible,	as	you	should	be	able	to
see	the	general	area	of	where	your	issues	took	place.	Start	with	just	testing	your	game	with
one	client	and	one	server	to	see	if	you	can	connect	and	so	on.	Then,	once	all	that	works,
use	the	keyboard	shortcut	Ctrl	+	Alt	+	C	when	in	your	client	project.	Make	sure	to	choose
Single	runtime	executable	(*.exe)	under	the	Save	as	type	section	of	the	dialog	that
opens.	That	way	you	can	easily	have	two	instances	of	the	client	open	on	a	single
computer.	Once	the	client	executables	have	been	made,	run	the	server	from	the	regular
compile	in	GameMaker	(you	don’t	have	to	make	an	executable),	and	then	run	two
instances	of	your	client	on	the	same	computer.	Connect	both	to	the	server,	and	move
around	in	both.	You	should	see	that	the	second	player	object	in	each	client	moves	around.
If	it	does,	great	job!	If	it’s	not	working,	you	might	want	to	check	your	firewall	settings	to
see	if	that	could	be	blocking	a	connection;	sometimes,	it	does	this	by	default	for	local

connections.	Otherwise,	check	your	code	for	any	errors.	In	the	end	of	all	this,	our	setup
will	look	like	the	following:

If	you	can,	get	three	computers,	put	one	client	on	one,	another	client	on	another,	and	a
server	on	the	third.	That	should	work	too!	If	you	can’t	get	three,	but	you	can	get	two,	do
the	same	thing,	but,	of	course,	on	two	computers.	And	if	you	can,	try	setting	up	a	web
host,	running	the	server	there,	and	connecting	to	the	URL,	not	the	IP	address	of	the	web
host.	That	should	work	too,	since	the	function	we	used	for	connecting	to	a	server	accepts
URLs;	or	if	you	don’t	have	a	web	host,	but	you	do	have	some	kind	of	external	IP	address
that	people	can	connect	to	(if	you’re	going	to	have	to	change	your	router’s	settings,	like
when	setting	up	a	web	server,	we	advise	you	not	to	try	this	and	be	satisfied	with	the	other
tests),	try	running	the	server	on	this	external	IP	and	connecting	to	the	external	IP	address
rather	than	a	local	one.

Yay!	You’re	done	with	the	networking	section	of	your	game!	Applaud	yourself.	Seriously.
Networking	is	a	much	more	difficult	section,	and	it’s	got	kinks	to	work	out,	since	it’s	one
of	the	things	that	can	be	more	prone	to	errors,	even	if	you	think	all	your	code	is	good.	But
you	made	it!	If	there	was	anything	you	were	confused	about,	reread	those	bits.	You	don’t
need	to	know	them	for	the	next	section,	but	you	should	review	those	parts	while	they’re
fresh	in	your	head.

A	final	note	though	about	networking.	Often,	you’ll	want	to	see	what	was	sent	from	what
machine	to	what	other	machine	so	that	you	can	trace	issues,	and	for	that	there	is	the
program	Wireshark	(https://www.wireshark.org).	The	only	unfortunate	thing	about	it	is
that	it	cannot	read	data	that	is	sent	from	one	machine	to	itself	(so	for	instance	if	you	have
your	client	and	server	all	running	on	a	single	computer,	it	can’t	see	that	data)	because	it
gets	data	sent	from	Ethernet	drivers,	and,	at	least,	on	Windows,	data	that	doesn’t	need	to
leave	the	machine	will	not	reach	there.	So,	when	using	Wireshark,	make	sure	to	have,	at

https://www.wireshark.org

least,	two	computers.

But	anyway,	once	you’re	ready,	move	onto	putting	Xbox	gamepad	support	into	your
game.

Integrating	Xbox	gamepad	support
This	next	and	final	section	will	show	you	how	to	incorporate	Xbox	controls	into	your
game.	Remember	however,	this	section	is	completely	optional	if	you	do	not	have	an	Xbox
controller	on	hand	to	test.	In	such	a	case,	external	programs	exist	that	allow	the	player	to
bind	a	button	press,	joystick	direction,	and	so	on,	on	a	controller	to	a	keypress	so	that	they
still	can	use	an	Xbox	controller,	even	if	it	isn’t	completely	official	support.	You	can	refer
your	players	to	these	programs.	Two	that	we	have	heard	of	are	JoyToKey	and	Xpadder.
Their	websites	are	at	http://joytokey.net/en	and	http://www.xpadder.com.	Both	are	great
and	allow	multiple	game	profiles.

If	you	do	however	have	an	Xbox	controller	on	hand	and	would	like	to	learn	how	to
incorporate	support	for	it	into	your	games,	continue	on.

GameMaker	has	two	different	kinds	of	gamepad	support.	One	of	them	is	legacy,	not	yet
obsolete	and	still	available	for	use,	but	not	recommended	and	also	only	for	Windows,	and
the	other	is	the	updated	version	with	more	functionality.	The	legacy	support	most	likely
relies	on	the	old	DInput	system,	whereas	the	modern	one	most	likely	XInput,	but	there
could	be	other	things	at	play	when	it	comes	to	the	difference	between	legacy	and	modern
gamepad	support	in	GameMaker.

While	it	would	seem	obvious	to	jump	into	the	updated	one,	we	found	that	one	of	our
relatively	new	Xbox	controllers	actually	needed	the	legacy	support	and	could	not	function
with	the	more	current	support.	On	that	note	though,	most	players	probably	use	devices	that
would	use	the	new	functionality,	but	it	would	not	be	bad	to	include	support	for	the	other
form	of	gamepad	support,	especially	since	it’s	really	easy.	So	it’s	probably	best	to	include
both.

To	test	which	functionality	will	work	for	your	device,	we	can	use	a	debug	message.	At	the
top	of	the	Step	event	for	your	player	object	(since	GameMaker	might	not	immediately
recognize	the	gamepad	being	plugged	in,	so	it’s	not	good	to	put	this	in	the	Create	event,	at
least	for	this	small	game,	and	we	want	the	player	to	be	able	to	plug	in	a	gamepad	at	any
time),	put	the	following	code.	If	joystick_exists(id),	where	id	can	be	1	or	2	for	two
total	slots,	pass	it	1	for	the	first	slot,	returns	true,	then	show	a	message	that	says	so.	Then,
below	that	check	whether	gamepad_is_connected(slot),	where	slot	can	be	from	0	to
however	many	controllers	the	device	the	game	is	running	on	supports,	returns	true	when
you	pass	it	0	for	slot.	If	so,	show	a	message	different	from	the	first.	The	first	function	is
for	the	legacy	support,	the	second	is	for	the	newer	gamepad	support.	Run	the	game	to	see
which	version	your	gamepad	supports.

Either	way,	it’s	probably	in	your	best	interest	to	put	in	code	for	both,	even	if	your	gamepad
won’t	support	both,	but	you	should	know	at	which	phase	of	this	section	your	gamepad	will
definitely	work.	So	let’s	start	with	the	actual	gamepad	support.

http://joytokey.net/en
http://www.xpadder.com

Legacy	gamepad	support
We’ll	start	with	the	older	version’s	code.	In	your	if	statement	where	you	checked	if	a
joystick	exists	(you	just	put	it	in),	instead	of	having	it	display	a	debug	message,	have	it	set
the	local	variable	joystick_connected	to	true.	Otherwise,	set	it	to	false	so	that	we	are
always	checking	if	the	gamepad	is	plugged	in.	In	both	assignments,	you’ll	have	to	make
the	variable	local	so	that	it’s	always	properly	created.

Then,	find	where	you	checked	for	a	keypress	of	the	spacebar.	Add	an	OR	operator	and	put
in	a	set	of	parentheses,	so	that	the	total	Boolean	value	of	what	we’re	about	to	put	in	will	be
checked	with	that	OR.	Inside	this	set	of	parentheses,	check	whether	we	have	a	joystick
connected	and	whether	the	A	button	is	pressed.	To	check	for	a	button	press,	use	the
function	joystick_check_button(id,	numb).	The	id	parameter	is	the	same	as	before,	but
numb	is	the	numerical	value	of	the	button	you	want	to	check	for.	The	following	is	a	chart
for	the	numerical	values.	The	numb	parameter	can	be	up	to	32,	but	the	Xbox	controller
doesn’t	have	32	buttons:

A B X Y Left	button Right	button Back	button Start	button Left	joy	press Right	joy	press

1 2 3 4 5 6 7 8 9 10

Nice	job,	you’ve	got	on	board	with	the	working	of	the	legacy	system.	We’ll	now	program
left	and	right	movement.	Highlight	all	of	the	code	between	incrementing	vspd	if	it’s	less
than	15	and	testing	whether	both	or	neither	of	the	left	and	right	arrow	keys	are	being
pressed,	and	deleted.	We’re	going	to	start	afresh.	In	the	spot	where	all	that	code	was,	first
declare	a	local	variable	called	using_controller,	and	set	it	to	false.	After	this,	put	in	an
if	statement	that	checks	whether	our	joystick	is	connected	and	if	the	stick	itself	returns	a
value	less	than	or	equal	to	-0.1	or	greater	than	or	equal	to	0.1.	To	check	the	value	of	a
joystick	using	legacy	support,	use	the	function	joystick_xpos(id).	Legacy	support
doesn’t	have	a	built	in	dead-zone,	so	we	must	see	if	the	value	we	get	is	outside	that	range
of	10	percent.	In	the	end,	your	if	statement’s	condition	will	look	like	the	following:

if	(joystick_connected	&&	((joystick_xpos(1)	>=	0.1)	||	(joystick_xpos(1)	

<=	-0.1)))	{	<...>	}

Inside	of	here,	set	our	horizontal	speed	(remember	to	use	our	own	variable	called	hspd)
equal	to	five	times	of	whatever	value	we	got	from	the	joystick.	In	this	way,	the	player	can
vary	their	speed.	Then,	set	using_controller	to	true,	since	we	are	using	the	controller	of
course!

Outside	this,	put	an	else	clause.	Inside	of	it	should	be	two	different	if	statements.	The
first	should	check	whether	we’re	pressing	the	right	key,	and	if	so	our	horizontal	speed
should	be	5.	The	next	should	test	if	we’re	pressing	the	left	key,	and	if	so,	our	horizontal
speed	should	be	set	to	-5.

Finally,	put	your	cursor	on	the	line	with	the	if	statement	that	checks	whether	both	of	the
arrow	keys	are	being	pressed.	Add	two	OR	operators	and	two	sets	of	parentheses	after
each.	Inside	the	first	set,	check	whether	the	right	key	is	being	held	and	if	the	controller’s

joystick	is	being	used.	In	the	second	set,	do	the	same,	but	for	the	right	key.	In	the	end,	the
if	statement	will	run	in	the	following	conditions:

Both	arrow	keys	are	being	pressed
Both	arrow	keys	are	being	pressed	and	the	joystick	is	being	pushed
One	key	is	being	pressed	and	the	joystick	is	being	pushed

Nice,	there’s	nothing	else	to	do	for	legacy	support.	If	your	controller	required	it	from	the
test	before,	you	can	run	your	game.	Otherwise,	just	move	onto	the	newer	support	section.

Modern	gamepad	support
Now,	we’ll	do	the	current	support.	At	the	top	of	the	Step	event	for	the	player,	where	you
checked	if	the	gamepad	is	connected	and	showed	a	debug	message	if	so,	have	it	set
gamepad_connected	to	true	instead	of	showing	a	message.	Otherwise,	set	it	to	false.

Great.	Now	we	can	do	the	jumping.	After	the	code	where	you	check	if	the	A	button	has
been	pressed	using	legacy	code,	add	another	OR	operator	and	another	set	of	parentheses.
Check	whether	our	gamepad	is	connected,	and	if	the	A	button	has	been	pressed.	Button
presses	are	a	lot	easier	on	the	gamepad.	You	use	the	function
gamepad_button_check(slot,	button),	where	the	slot	is	the	same	as	before,	and	as	for
the	button,	there	is	a	list	of	constants	in	the	documentation	under	Reference	|	Mouse,
Keyboard,	and	Other	Controls	|	Gamepad	Input.	Find	the	constant	for	the	A	button
and	then	call	this	function.

Nice	job!	You’re	done	with	the	jumping	for	the	modern	gamepad	support,	now	we	must
put	in	the	left	and	right	movement.	This	is	actually	very	easy.	In	between	the	if	statement
that	checks	if	the	legacy	gamepad	is	connected	and	if	its	joystick	is	outside	of	a	specific
dead-zone,	and	the	else	clause	below	it,	and	an	else	if	statement.	Inside,	check	if	the
gamepad	is	connected.	Inside	the	else	if	statement,	set	our	horizontal	speed	equal	to	five
times	the	value	of	the	left	joystick’s	x	axis.	To	find	this	value,	use	the	function
gamepad_axis_value(slot,	axisIndex).	For	the	second	parameter,	find	the	constant	on
the	documentation	page	we	just	supplied	you	that	represents	the	left	joystick’s	x	axis.
After	you’ve	set	our	horizontal	speed,	verify	that	it	is	not	equal	to	0.	If	so,	set
using_controller	to	true.	Modern	gamepad	support	has	a	built-in	dead-zone	system,
wherein	if	the	joystick	returns	value	within	the	dead-zone,	the	function	just	returns	a	0,	so
our	horizontal	speed	won’t	be	anything	other	than	0	unless	the	player	bumps	their	joystick
enough.

Great	job!	You’re	done	with	the	newer	gamepad	support.	Even	if	your	joystick	was	only
going	to	support	legacy	code	anyway,	it’s	still	good	to	play	your	game	again	to	ensure	you
didn’t	mess	up	the	newer	support’s	code	and	in	turn	mess	up	the	legacy	code.	So	either
way,	test	your	game	to	ensure	once	and	for	all	that	your	gamepad	support	works.

If	it	does,	congratulations!	We	just	have	one	last	note	about	gamepads.	It	is,	unfortunately,
significantly	harder	to	put	in	a	rebinding	system,	as	there’s	no	equivalent	of	the	variable
keyboard_lastkey	for	gamepads.	You	will	need	to	check	whether	the	button	press	was
this	button,	or	this	button,	and	so	on.	It’s	not	undoable,	you	can	use	a	switch	statement	in
fact;	but	you	should	know	that	you	won’t	be	able	to	get	the	same	efficiency	we	had	in
Chapter	4,	Fun	with	Infinity	and	Gravity	–	An	Endless	Platformer	without	the	use	of
external	DLLs	and	a	GameMaker	extension.

But	anyway,	nice	job!	You’re	done	with	the	chapter,	and	it’s	time	to	move	onto	the
summary.

Summary
Congrats!	You’ve	finished	this	chapter.	That	was	one	hefty	chapter,	huh?	But	you	finished
it,	so	great	job.	As	usual,	you	should	go	review	the	chapter	and	refresh	your	brain	on	some
of	the	things	you	learned.	Once	you’ve	done	that,	move	on	to	the	Review	questions,
followed	by	the	Quick	drills.

Review	questions
1.	 What	is	image_xscale,	and	what	was	the	problem	we	would’ve	had	with	it	had	we

not	centered	the	origin	of	the	player	sprite?
2.	 How	do	you	import	a	spritesheet?
3.	 What	are	views,	and	what	is	the	port	on	screen?
4.	 Describe	all	of	the	networking	terms	we	explained	to	you	earlier:	buffer,	packet,	TCP,

UDP,	socket,	port,	client/server	networking,	and	IP	address.
5.	 What	is	byte	alignment?
6.	 What	must	you	do	before	reading	and	writing	to	a	fixed	buffer?
7.	 What	were	the	two	different	kinds	of	gamepad	support	we	incorporated,	and	what	are

some	of	the	differences	between	them?

Quick	drills
1.	 Allow	the	player	to	press	a	key	to	join	a	server	(rather	than	having	the	popup	appear

immediately).	If	they	want	to	join	a	server,	make	sure	they	aren’t	currently	connected
to	one.	If	they	are,	then	disconnect	them	from	that	server	before	joining	them	to	the
new	one.

2.	 Now,	allow	pressing	a	button	on	an	Xbox	controller	to	do	the	same	thing.	Make	sure
to	incorporate	both	legacy	and	modern	gamepad	support.

Great	job!	You’ve	completed	this	entire	chapter.	Applaud	yourself	one	last	time,	and	again
review	anything	you	were	confused	about.	In	the	next	chapter,	we’ll	create	a	scrolling
shooter	game,	such	as	Namco’s	Xevious.	Let’s	get	going!

Chapter	7.	Programming	a	Scrolling
Shooter
In	this	chapter,	we	will	provide	an	overview	of	the	creation	of	a	scrolling	shooter	game
(such	as	the	classic	Xevious	by	Namco	or	Guxt	by	Studio	Pixel).	By	design,	a	scrolling
shooter	typically	has	a	scrolling	background	and	the	player	tries	to	avoid	obstacles	and
enemies	while	shooting	down	the	enemies.	The	game	can	be	one	infinite	level	or	broken
into	different	levels	depending	on	the	design	implemented.	Think	about	some	scrolling
shooters	you	might	have	played	against,	and	if	you	haven’t	played	any,	try	Guxt
(http://cavestory.org/pixels-works/guxt.php).	It’s	great!	This	chapter	will	cover	object
parenting,	AI,	a	new	kind	of	event,	the	paths	resource,	and	particles.	It’s	time	to	get
started!

http://cavestory.org/pixels-works/guxt.php

Creating	the	main	ship
The	first	step	in	our	game	will	be	to	create	our	main	ship,	controlled	by	the	player.	Make	a
new	GameMaker	project.	We’re	going	to	make	this	game	in	a	little	retro	style,	so	draw
two	subimages	for	your	main	ship’s	sprite,	one	for	forward,	and	one	for	tilting	right
(which	we	will	repurpose	for	tilting	left	with	image_xscale).	Typically	in	games	of	this
style,	no	extra	sprite	will	exist	for	moving	downward,	and	it	will	use	the	same	one	as	for
moving	forward.	The	subimages	should	be	32	x	32,	to	make	some	things	easier	later	on.
When	creating	your	ship,	give	it	two	guns,	one	on	each	side.	An	example	is	shown	as
follows:

Once	you	have	made	your	ship’s	subimages,	modify	the	sprite’s	bounding	box	as	usual,
and	also	make	sure	to	center	the	origin	(on	both	axes)	so	that	we	don’t	run	into	any	issues
with	image_xscale	and	so	that	we	can	easily	program	the	vertical	movement,	accounting
for	going	off	of	the	screen.	After	this,	create	the	object	for	your	main	ship	and	assign	it	the
ship	sprite.

In	the	Create	event	of	your	new	ship	object,	set	our	subimage’s	cycling	speed	to	0
(image_speed=0;)	so	that	we	don’t	loop	through	the	images.	After	this,	add	a	Step	event,
where	we	will	program	the	movement	and	animation.	We	will	reuse	some	of	the	code
from	the	previous	chapter	for	this	part	since	that	code	worked	really	well.	As	you	develop
more	games,	you	will	want	to	utilize	resources	from	other	games	wherever	you	can	rather
than	recreating	everything	from	scratch:

1.	 First,	set	the	local	variables	hspd	and	vspd	to	0,	as	we	did	in	the	previous	chapter.
Make	sure	to	always	use	these	variables	when	we	talk	about	horizontal	or	vertical
speed.

2.	 Next,	check	if	we	have	pressed	the	up	key.	If	so,	set	our	vertical	speed	to	-6.	Then,
check	whether	we’ve	pressed	the	down	key,	and	if	so,	set	our	vertical	speed	to
positive	6.	Then	check	whether	we’ve	pressed	both	of	the	left	and	right	arrow	keys.	If
so,	our	vertical	speed	should	be	0.	Put	in	the	same	code,	but	for	the	left	and	right
arrow	keys,	and	for	our	horizontal	speed,	of	course.

3.	 Once	you’ve	done	that,	we’ll	program	the	animation.	First,	check	whether	we’re
moving	left	or	right	at	all.	If	so,	set	our	subimage	to	the	one	of	the	ship	moving
forward.	Otherwise,	if	our	horizontal	speed	is	greater	than	0	(meaning	that	we	are
moving	to	the	right),	correctly	assign	our	current	subimage	to	that	of	moving	right,
and	also	accordingly	set	image_xscale.	Finally,	put	an	else	that	does	the	same	thing,
except	the	difference	will	be	that	image_xscale	should	be	the	opposite	of	what	you
previously	defined	it	as.

There’s	just	one	more	thing	to	program	in	the	Step	event,	making	the	ship	actually	move.

First,	put	in	an	if	statement	that	checks	whether	by	moving	from	our	current	y	position	by
vspd	pixels	would	have	our	y	coordinate	be	greater	than	or	equal	to	the	height	of	our	room
(remember	the	room_height	variable	from	Chapter	4,	Fun	with	Infinity	and	Gravity	–	An
Endless	Platformer?)	or	have	it	be	less	than	or	equal	to	0.	Use	place_meeting	for	the
collision	checking.

Inside	the	if	statement,	put	a	while	loop	that	runs	as	long	as	moving	by	y	+	sign(vspd)
pixels	(as	in	the	previous	chapter)	wouldn’t	have	the	y	coordinate	of	the	ship	object	be
equal	to	the	height	of	our	room	or	0.	Inside	the	loop,	increment	y	by	sign(vpsd).	Then,
outside	of	this	loop,	set	our	vertical	speed	to	0.	Outside	the	if	statement,	increment	y	by
our	vertical	speed.	This	code	is	basically	the	exact	same	as	what	we	used	in	the	previous
chapter,	so	it	shouldn’t	be	confusing.	Basically,	if	moving	by	1	pixel	would	have	the
middle	of	the	ship	(since	we	completely	centered	the	origin),	go	past	the	top	or	bottom	of
the	room,	we’ll	move	until	that	happens.

Copy	all	the	code	and	paste	it	below,	but	replace	all	uses	of	y	with	x,	all	uses	of	vspd	with
hspd,	and	all	uses	of	room_height	with	room_width.

When	you’re	done	with	that,	create	a	room,	put	your	ship	object	in	it,	and	test	your	game.
Make	sure	that	the	ship	can	fly	all	around,	but	that	at	least	half	of	it	will	always	appear
onscreen	(or	a	quarter	in	the	case	of	going	into	the	corners	of	the	room).	If	all	that	works,
you	can	move	onto	the	creation	of	our	enemies.

Creating	the	enemies
The	next	step	in	our	game	will	be	to	program	the	enemies	and	give	them	a	simple	AI.	The
first	part	of	the	process	is	to	create	an	enemy	sprite.	Since	we’re	going	to	have	you	create
an	enemy	with	a	specific	routine,	you	should	either	use	the	sprite	provided	in	the	example
project	or	you	should	create	a	32	x	32	enemy	sprite	with	a	single	subimage	that	is	intended
to	rotate	and	shoot	two	bullets,	one	out	of	each	side.	When	you’re	done	with	creating	the
subimage,	modify	the	mask	as	usual	and	also	center	the	origin	of	the	sprite.	After	this,
create	an	enemy	object	and	assign	it	the	proper	sprite.

Parenting	in	objects
GameMaker	uses	the	object-oriented	programming	paradigm,	as	you’ve	probably	noticed
by	now.	Most	of	what	we	do	is	in	objects,	and	even	the	resources	that	aren’t	called	objects
are	actually	objects	in	terms	of	object-oriented	programming.	They	just	can’t	do	what
GameMaker	objects	do.	So	rooms	are	objects,	backgrounds	are	objects,	everything	is	an
object.	And	what	is	an	object	really?	It’s	an	area	of	memory	with	a	bunch	of	data	in	it.
GameMaker	has	different	kinds	of	objects.	We	will	focus	on	objects	as	defined	by
GameMaker,	as	these	are	the	objects	where	most	of	our	programming	exists.	The	other
types	of	objects	don’t	share	all	the	same	variables.	For	example,	your	backgrounds	can’t
really	use	the	x	variable.	But	they	can	use	the	hspeed	variable.	The	regular	objects	and
everything	else	are	distinct	from	one	another,	even	though	they’re	all	technically	objects.

Now	that	we	have	a	better	understanding	of	objects	(just	an	area	of	memory	that	holds
data),	we	can	think	about	what	this	can	mean.	If	an	object	is	just	an	area	of	memory	that
holds	a	bunch	of	data,	and	the	object	itself	is	data,	can	we	have	objects	within	objects?

Yes!	If	you	already	have	experience	with	object-oriented	programming,	you	probably
already	know	this,	but	for	those	of	you	who	don’t,	having	objects	within	objects	is	where
you	have	parent	objects	and	child	objects.	Child	objects	are	contained	in	parent	objects,
and	they	inherit	properties	from	their	parent	object.	You	can	even	have	a	child	object	also
be	a	parent	object!

Parenting	can	also	group	objects,	so	instead	of	checking	for	a	collision	for	every
individual	enemy,	we	can	just	check	for	a	collision	with	a	parent,	and	assign	this	parent
object	children.	This	is	what	we	will	be	doing	in	this	game.

Now	you	might	be	wondering,	“How	do	I	use	this	powerful	tool?”	Don’t	worry,	we’ll
show	you	right	now.	First	make	an	object	called	class_enemy	(as	we’re	basically	going	to
create	an	enemy	class	as	if	we	were	using	another	language	such	as	C++	or	Java).	Give	it	a
Step	event	wherein	you	check	whether	its	x	or	y	coordinates	are	outside	the	room,	or
whether	the	variable	hp	(set	by	children	of	this	object)	is	less	than	1.	Destroy	the	instance,
if	so.

Now,	we	can	give	the	object	child	objects.	Open	up	the	regular	enemy	object	so	that	you
can	choose	its	parent	(done	via	the	main	properties	page	for	any	object),	as	shown	in	the
following	screenshot:

To	assign	a	parent,	just	click	on	the	little	menu	icon	next	to	the	Parent	box	to	open	a
contextual	menu	(that’s	what	they’re	called	if	you	didn’t	know)	that	lists	all	the	objects
you	can	choose	from.	Choose	the	object	we	created,	called	class_enemy.	Once	you’ve
assigned	this	object	as	a	parent,	you	can	open	up	the	parent	object	and	you	should	see
obj_enemy	(assuming	that’s	what	you	called	it)	as	a	child	in	the	Children	box.

Now	that	you’ve	set	this	up,	we	can	actually	work	on	the	enemy	itself.	Before	we	do	that,
let’s	make	a	bullet.	Make	a	small	bullet	sprite,	one	that	will	look	good	with	your	enemy’s
sprite.	Of	course,	modify	the	mask	and	center	the	origin.

Then,	make	a	bullet	object,	make	it	a	child	of	class_enemy.	Give	it	a	Create	event,
wherein	you	set	the	variable	hp	to	5.	We’re	going	to	give	all	children	of	class_enemy	a
health	system	so	that	they	can	all	be	destroyed	by	the	player’s	bullets.	Next,	add	a	Step
event.	Inside,	call	the	function	event_inherited().	By	default,	when	a	parent	object	and
a	child	object	both	share	an	event	(say,	for	example,	they	both	have	a	Step	event,	as	we
have),	the	child	will	not	run	the	parent’s	event.	But	by	calling	the	function,	it	will,	so	that
the	child	will	run	both	events.

Next,	we’re	going	to	use	a	function	we	haven’t	used	in	a	while,	collision_rectangle(x,
y,	x2,	y2,	obj,	prec,	notme).	Recall	that	it	returns	either	noone	or	the	index	of	the
object	you	were	looking	for	that	happened	to	be	in	that	range.	Check	for	a	collision	with
the	main	ship	object	within	the	same	range	as	the	bounding	box	you	gave	the	enemy’s
bullet’s	sprite.	Destroy	the	bullet	if	the	function’s	return	value	is	not	equal	to	noone.

Now	that	you’re	done	with	the	bullet,	we	can	go	back	to	the	enemy.	Inside	the	enemy’s
Create	event,	set	the	variable	can_shoot	to	true.	Add	an	event	for	Alarm	0,	wherein	you
allow	the	enemy	to	shoot	again.

Now	we	can	get	to	work	on	the	enemy’s	Step	event.	First,	check	whether	its	hp	is	less	than
1	(as	objects	should	always	check	whether	they	should	be	destroyed	before	they	do
anything).	Destroy	the	instance	if	so.

Below	this,	we	will	make	the	enemy	object	spin.	This	is	done	by	using	the	image_angle
variable,	which	ranges	from	0	to	359	and	uses	the	same	system	as	the	direction	variable
(with	0	being	right,	90	being	up,	and	so	on).	Check	whether	the	variable	is	less	than	358.	If
so,	increment	it	by	2.	Otherwise,	set	it	to	0	(which	359	is	one	degree	less	than,	as	0	is
equivalent	to	359,	but	we	are	of	course	using	2	for	our	increase,	as	with	a	room	speed	of
30,	incrementing	by	1	is	slow).

After	this,	we	can	give	the	enemy	a	tracking	AI,	wherein	it	will	follow	the	player	until	it
hits	a	certain	range,	then	it’ll	just	shoot.	Add	an	if	statement	to	check	whether	an	instance
of	the	main	ship	exists	(otherwise,	we	can	get	an	error	by	accidentally	referencing	an
object	that	isn’t	in	the	room)	using	the	instance_exists(obj)	function	from	the	previous
chapter.	Most	of	the	code	for	this	Step	event	will	be	included	here.

The	next	function	we’ll	use	is	distance_to_object(obj),	and	we’re	sure	you	can	guess
its	parameter	and	return	value.	Have	the	if	statement	run	if	the	enemy’s	distance	from	the
player	is	less	than	or	equal	to	200.	If	so,	set	our	speed	to	0	(since	we	should	no	longer	be
moving).	Below	this,	but	still	inside	the	if	statement,	check	whether	can_shoot	is	true.	If

so,	create	two	variables,	bullet_one	and	bullet_two.	Do	not	make	them	local,	otherwise,
we	can’t	reference	them	in	a	with	statement.	Assign	them	to	two	different	calls	to
instance_create,	with	which	you	make	bullet	objects	in	the	center	of	the	enemy.

Next,	add	two	with	statements,	one	for	each	variable.	In	the	first,	we	will	be	setting	the
speed	and	direction	of	the	bullet	with	the	motion_set(dir,	speed)	function.	The
direction	should	be	the	image_angle	of	the	enemy	object	(referenced	in	the	with	statement
with	other.image_angle).	The	speed	should	be	10.	After	this,	set	the	image_angle	of	the
bullet	to	the	image_angle	of	the	enemy	so	that	it	all	lines	up	correctly.

Everything	you	put	in	the	preceding	with	statement	can	go	into	the	second.	We’ll	add	a	bit
to	it	though.	First	off,	the	direction	of	this	second	bullet	should	be	the	opposite	of	the
enemy’s	(and	in	turn,	that	of	the	other	bullet).	You	can	do	this	by	adding	180	in	the	first
parameter	for	motion_set.	Secondly,	the	horizontal	scaling	should	also	be	the	opposite,	so
set	the	image_xscale	of	the	second	bullet	to	the	opposite	of	the	first	bullet.	Do	this	by
setting	it	equal	to	-1	times	other.bullet_one.image_xscale.

After	this	(but	still	inside	the	if	statement	for	can_shoot),	set	Alarm	0	to	30	steps,	and
then	set	can_shoot	to	false.	Based	on	the	default	room	speed,	30	steps	is	equal	to	one
second.	So,	in	this	case,	we	are	slowing	the	shooting	down	to	one	shot	per	second.	Once
the	timer	is	activated,	the	enemy	will	be	able	to	shoot	again.

Now	we’ve	just	got	a	little	more	code	to	write.	After	the	if	statement	where	you	check	if
the	enemy	is	within	range	of	the	main	ship,	add	an	else	clause.	Inside,	first	declare	a	local
variable	called	dir	that	will	hold	the	direction	that	the	main	ship	is	in,	in	relation	to	the
enemy	ship.	For	this,	use	the	point_direction(x,	y,	x2,	y2)	function,	where	you	pass
it	the	enemy’s	coordinate’s	and	the	player’s	coordinates.

Then,	paste	in	the	following	if	statement.	Generally,	we	don’t	just	paste	the	raw	code	in
without	having	you	attempt	it	first,	as	that’s	bad	practice,	but	this	is	a	rather	complex	if
statement,	so	we	will	provide	you	with	the	code	and	explain	it	so	you	can	understand	what
is	happening:

if	((dir	>=	315	||	dir	<=	45)	&&	!collision_rectangle(x	+	16,

y	-	16,	x	+	26,	y	+	16,	class_enemy,	false,	true))

||	(dir	>	45	&&	dir	<=	135	&&	!collision_rectangle(x	-	16,

y	-	26,	x	+	16,	y	-	16,	class_enemy,	false,	true))

||	(dir	>	135	&&	dir	<=	225	&&	!collision_rectangle(x	-	26,

y	-	16,	x	-	16,	y	+	16,	class_enemy,	false,	true))

||	(dir	>	225	&&	dir	<	315	&&	!collision_rectangle(x	-	16,

y	+	16,	x	+	16,	y	+	26,	class_enemy,	false,	true))

Let’s	break	down	this	if	statement.	What	it	does	is,	it	tests	whether	there	is	another	enemy
in	the	area	we’ll	be	moving	through.	Let’s	begin	with	the	first	part.	First,	we	must	test	in
its	own	set	of	parentheses	if	our	direction	is	greater	than	or	equal	to	315	or	(|	|)	less	than
or	equal	to	45.	The	|	|	(OR)	operator	indicates	that	either	of	these	statements	must	be	true
in	order	to	execute	the	code.	This	region	is	a	quarter	circle	that	corresponds	to	the	right
direction	in	GameMaker.	It’s	a	diagonal	quarter	though	(so	not	perfectly	up	and	down
lines,	if	you	were	to	draw	the	quarter	on	the	“circle”).

Then,	we	check	if	there	is	also	no	other	enemy	on	the	right	side.	The	&&	(AND)	operator
indicates	that	both	of	these	statements	must	be	true.	The	first	coordinate	we	passed	to	the
function	is	the	complete	right	edge	of	the	object’s	sprite,	up	at	its	top.	The	second	is	10
pixels	away	from	the	edge	(on	the	x	axis),	and	all	the	way	at	the	bottom.	For	the	last
parameter	(which	is	notme,	if	you	recall),	it	is	imperative	that	we	pass	true,	otherwise	it’s
possible	that	the	instance	of	the	enemy	calling	the	function	could	make	the	function	return
true.	That	entire	section	is	contained	in	its	own	set	of	parentheses	of	course,	to	separate	it
from	the	others.

The	other	sections	are	basically	the	same.	However,	for	testing	direction,	we	use	&&
(AND)	and	not	||	(OR),	as	for	the	first	section,	no	number	can	be	315	or	more,	and	still	be
less	than	or	equal	to	45,	but	for	the	other	directions,	the	numbers	are	in	a	range	where	the
numbers	flow	into	one	another.	You’ll	also	notice	that	the	coordinates	are	different,	as	we
are	testing	different	regions.	The	rectangle	checked	is	always	10	pixels	long	on	the	axis
that	corresponds	to	the	direction	we’re	checking.	It	might	help	if	you	draw	the	rectangles
on	a	coordinate	plane	to	try	to	map	it	all	out.

Basically,	each	section	is	evaluated	(it	checks	if	the	player	is	on	the	right	and	if	that	side	is
free	of	enemies,	then	if	the	player	is	in	the	north	and	if	that	side	is	free	of	enemies,	and	so
on)	and	then	we	use	an	OR	operator	in	between	each	of	them	because	each	section	only
returns	true	if	the	section	corresponds	to	the	current	direction	of	the	player,	in	relation	to
the	enemy,	so	we	will	essentially	be	checking	as	follows:	is	it	the	right	section	and	is	that
free,	or	is	it	the	top	section	and	is	that	free,	or	is	it	the	left	section	and	is	that	free,	or	is	it
the	bottom	section	and	is	that	free?	It’s	a	rather	complex	if	statement,	but	once	you	break
it	down,	it’s	not	so	confusing.

Now,	we	will	set	the	speed	and	direction	of	the	enemy	with	motion_set	if	the	statement
returns	true.	The	direction	is	the	player’s	direction	in	relation	to	us,	which	we	stored	in
the	local	variable	dir,	and	a	speed	of	3	was	appropriate.	After	this,	directly	outside	that
big	if	statement	that	we	just	wrote,	put	in	an	else	clause	that	sets	the	speed	to	0.	Then,
outside	of	the	if	statement	that	checks	whether	or	not	an	instance	of	the	main	ship	exists,
put	an	else	clause	that	also	sets	the	enemy’s	speed	to	0.

Great	job!	You’ve	finished	programming	the	enemy.	We’ve	just	got	to	add	one	line	of
code	to	the	main	ship.	At	the	very	end	of	its	Step	event,	after	you	increment	x	by	hspd,
check	if	the	main	ship	has	collided	with	an	instance	of	the	class_enemy	object	(using	the
place_meeting	function).	If	so,	destroy	the	main	ship.

Now	open	up	your	room	editor.	Add	a	few	instances	of	the	enemy	object	into	your	room,
then	run	your	game.	Is	everything	working	perfectly?	If	so,	great	job!	But	you	probably
noticed	that	our	player	is	defenseless!	Well	that’s	not	right,	is	it?

Let’s	incorporate	a	quick	shooting	system.	Create	a	small	bullet	sprite,	modify	the
collision	box,	and	center	the	origin	of	course.	Then	create	an	object	for	the	player’s	bullet,
and	give	it	a	Create	event.	Set	its	speed	to	10	and	direction	to	90	(up).

Add	a	Step	event.	Inside,	declare	a	local	variable	called	enemy_hit,	and	use
collision_rectangle	to	get	the	index	of	any	enemies	the	bullet	hits.	Check	whether	the

variable	is	equal	to	noone.	If	not,	decrement	hp	of	the	enemy	by	5,	with	enemy_hit.hp	-=
5.	Then,	destroy	the	bullet.	After	this,	outside	the	if	statement,	check	whether	the	bullet’s
y	coordinate	is	less	than	0	(as	the	bullet	can	only	be	shot	up).	Destroy	the	instance	of	the
bullet	if	so.

Now	that	you’ve	finished	the	bullet,	we	have	to	let	the	ship	shoot	it.	In	the	Create	event
for	the	main	ship,	set	can_shoot	to	true.	Also,	set	it	to	true	in	the	Alarm	0	event	for	this
object.

Then,	at	the	end	of	the	Step	event	for	the	main	ship	object,	check	whether	the	player	has
pressed	the	spacebar,	and	whether	they	can	shoot.	If	so,	set	can_shoot	to	false	and	set
Alarm	0	to	15	steps.	Then,	create	two	instances	of	the	player’s	bullet	object	on	opposite
sides	of	it.	Try	to	get	them	to	line	up	with	wherever	you	placed	the	guns	in	the	sprite.
Once	you’re	done	with	that,	you’re	done	with	all	the	shooting!	Test	your	game	to	make
sure	that	you’re	able	to	shoot	and	destroy	the	enemy	with	two	bullets.

Random	enemy	spawning
The	next	step	in	our	game	will	be	to	randomly	spawn	the	enemies	for	variation	in	the
game.

For	this,	create	an	object	called	obj_control.	In	its	Create	event,	set	the	variable
alarm_num	to	300.	We’ll	be	using	this	variable	to	decide	for	when	the	alarm	in	this	object
should	be	triggered.	300	steps	with	a	room	speed	of	30	is	10	seconds.

Then,	set	the	random	seed	for	the	game	using	the	same	method	we’ve	been	using	for	a	few
chapters,	which	is	shown	as	follows	since	we	haven’t	used	it	in	a	while:

random_set_seed(date_get_second_of_year(date_current_datetime()));

Following	this,	perform	the	Alarm	0	event	with	event_perform.	Pass	the	function
ev_alarm	and	0.	Inside	the	object’s	Alarm	0	event,	put	an	if	statement	that	checks
whether	the	main	ship	exists.	Inside	the	if	statement,	create	a	switch	statement	for
generating	a	random	integer	from	0	to	2	(inclusive	of	course!).	In	each	case,	generate
different	patterns	of	enemies.	You	might	want	to	use	the	room	editor	to	get	the	right
coordinates.	Remember	to	break	each	case!

Outside	the	if	statement,	set	Alarm	0	to	alarm_num.	Then	check	whether	alarm_num	is
greater	than	120	(4	seconds).	If	so,	decrement	it	by	5.	In	this	way,	the	time	between	enemy
spawns	will	always	be	at	least	4	seconds.

When	you’re	done	with	all	that,	close	out	the	object.	We’ll	add	more	to	it	later	of	course,
but	we	needn’t	add	anything	more	yet.	Open	up	the	room	editor	and	delete	the	enemy
objects	you	already	had	in	there.	Put	an	instance	of	obj_control	in	the	top-left	corner	of
the	room.	Play	your	game	and	make	sure	that	the	frequency	of	enemies	increases,	and	that
the	patterns	are	random,	but	that	the	patterns	appear	only	within	4	seconds	or	more	of	each
other.	If	you’re	done	with	that,	we’ll	move	onto	programming	a	boss	for	the	player	to
fight.

Programming	a	Boss	AI
In	this	section,	we’ll	be	programming	in	a	Boss	AI	for	the	player	to	fight	after	a	certain
time	(a	minute	specifically).	Create	a	missile	sprite	where	its	head	points	downwards	(to
make	launching	it	from	the	boss	easier	to	code),	and	of	course,	center	its	origin.	Then,
create	a	boss	object	and	a	missile	object.	We’ll	work	on	the	boss	later,	but	we’ll	have	to
reference	it	in	the	missile	object.

Make	the	missile	object	a	child	of	class_enemy,	give	it	a	depth	of	-10,	and	of	course
assign	it	its	sprite.	In	the	Create	event	for	the	object,	give	it	two	variables:	hp,	which
should	be	set	to	5,	and	dir,	which	should	be	set	to	270.	dir.	This	will	be	the	default
direction	of	the	missile	to	face.

Now,	add	a	Step	event	to	the	object.	First	call	event_inherited().	Next,	check	if	an
instance	of	the	boss	object	collides	with	the	bottom	of	the	missile	(using	place_meeting).
If	so,	increment	y	by	5.	What	this	does	is	have	the	missile	move	down	out	of	the	boss’
launchers	until	it’s	outside	and	can	move	freely.

After	that,	add	an	else	clause.	Inside,	check	whether	an	instance	of	the	main	ship	exists.	If
so,	set	dir	to	the	direction	of	the	main	ship	in	relation	to	the	missile.	Then	set
image_angle	to	dir	+	90.	We	need	the	+	90	because	the	missile	sprite	faces	downward,
by	default,	so	if	dir	holds	270	(down),	we	need	image_angle	to	equal	360	(equivalent	to
0),	as	that	would	have	the	missile	use	the	default	angle	for	its	sprite.	After	that,	use
motion_set	to	make	the	missile	chase	the	player	at	a	speed	of	5.

Now,	we	can	work	on	the	boss	itself.	Create	a	sprite	for	a	boss	that	would	appear	at	the	top
of	the	screen	with	two	launchers	on	either	side,	or	just	use	the	one	provided	in	the	example
project	to	make	things	simpler.	Center	the	origin	and	change	the	collision	mask	as	usual.
Then,	go	back	to	that	boss	object	you	made	earlier;	make	it	a	child	of	class_enemy,	give	it
its	sprite,	and	set	its	depth	to	-20.	In	the	Create	event	of	the	object,	set	the	variables	hp	to
200	and	alarm_num	to	120.	Then,	perform	the	Alarm	0	event.

Inside	that	event,	add	an	if	statement	that	checks	whether	the	main	ship	exists.	If	so,	put
in	a	switch	statement	wherein	you	generate	a	random	integer	from	0	to	1	(inclusive	of
course!).	Create	two	cases	for	them.	Inside	each,	either	spawn	two	instances	of	the	enemy
object	out	of	either	launcher,	or	two	instances	of	the	missile	object.	Make	sure	to	break	the
cases.	Outside,	set	Alarm	0	to	alarm_num.

Next,	add	a	Step	event	to	the	boss	object.	Inside,	put	an	if	statement	that	checks	whether
hp	is	less	than	1.	If	so,	create	an	instance	of	obj_destroy_enemies	(and	we	will	create	this
object	right	after	this).	Then	destroy	the	boss.	After	this,	check	whether	the	top	half	of	the
boss	is	less	than	0	(we’re	going	to	have	this	boss	move	down	into	the	view,	spawning
outside	of	the	room	at	first).	Increment	y	if	so.

Before	we	forget,	let’s	create	that	object	to	destroy	the	rest	of	the	enemies.	Make	that
object,	and	in	its	Create	event,	set	Alarm	0	to	5	steps.	Now,	open	up	the	Step	event,	and
inside,	check	whether	the	number	of	instances	of	class_enemy	is	more	than	1	(use
instance_number(obj)	for	this).	If	so,	put	in	a	with	statement	that	destroys	the	nearest

instance	of	that	object	by	using	the	function	instance_nearest(x,	y,	obj).	This	will
eventually	destroy	all	the	enemies.	Add	an	else	clause	(so	this	will	have	run	if	there	are
no	more	enemies)	wherein	the	object	destroys	itself.	Then,	set	Alarm	0	to	5	(outside	the
else	clause).

Now	we’re	going	to	implement	a	resource	called	Paths.	This	resource	allows	you	to	force
an	object	to	travel	along	a	certain	path	without	having	to	store	positions	in	an	array	or
something	like	that.	Paths	make	everything	very	simple.	The	first	thing	we	must	do	is	to
create	a	path,	of	course.	Close	your	boss	object,	we’ll	return	to	it	later.	Create	a	new	path
called	path_boss.	The	editor	might	look	daunting,	but	not	if	you	know	what	you	need.
First,	in	the	grid,	the	green	box	is	the	start	point	of	the	path,	the	red	point	is	the	one	you’ve
selected,	and	blue	ones	are	any	other	points.	You	also	should	know	that	you	can	display
the	background	of	a	room	in	the	editor	so	you	know	how	to	set	up	our	points.	Display	the
main	room	by	selecting	the	gray	box	on	the	top	bar	that	says	<Select	Room
Background>	and	choosing	it	from	the	drop-down	menu.	Finally,	set	the	grid	snaps	to	32
(the	boxes	are	labeled	as	Snap	X	and	Snap	Y),	which	is	the	same	as	the	room	editor’s
snaps.

So	now	that	your	editor	is	set	up,	we	can	plot	our	points.	First,	move	the	green	box	point
to	the	horizontal	middle	of	the	room	background	area,	and	make	sure	to	move	it	down
vertically	from	the	top	so	that	it	is	in	the	same	position	as	the	boss’	y	coordinate	after	it’s
moved	fully	onto	the	screen.	Then,	click	anywhere	to	make	another	point.	The	next	point
should	be	on	the	right	side	of	the	original	one,	so	that	when	the	boss	moves	to	it,	its	right
edge	will	be	nearly	against	the	edge	of	the	room.	Add	another	point	just	like	this,	but	on
the	left	edge.	Now	you	might	be	wondering	what	the	sp	box	is	for.	This	is	the	speed
percentage.	When	you	set	this	path,	you	also	set	a	speed.	If	you	were	to	set	a	speed	of	4
when	you	begin	the	path,	a	speed	percentage	of	100	would	have	the	object	using	the	path
move	at	a	speed	of	4.	With	a	speed	percentage	of	75,	it	would	move	at	a	speed	of	3.	Keep
the	percentage	at	100	for	all	three	points.	The	Closed	checkbox	will	make	the	last	point
the	same	as	the	start	point—a	closed	loop.

When	you’re	done	with	that,	close	the	path	editor,	and	open	your	boss	object.	We	have	one
final	event	to	add—a	User	defined	event.	These	events	are	special	in	that	they’re	not
special	to	GameMaker.	What	that	means	is	that	you	can	give	your	objects	events	that
GameMaker	doesn’t	assign	any	special	actions	to,	and	that	it	doesn’t	always	run.	So	while
the	Create	event	is	run	whenever	an	object	is	created,	your	User	defined	event	is	run
whenever	you	want	it	to	be	run	with	the	event_perform	(or	any	similar)	function.	You
have	a	total	of	16	of	these	types	of	events	available	to	you,	which	should	be	more	than
enough.	So	if	you	wanted	to	run	a	special	event	whenever	something	takes	damage,	you
could	do	that	with	this!	To	create	one	of	these	events,	select	the	other	|	User	defined	|
User	0	in	the	dialog	for	adding	a	new	event.	Inside,	check	whether	alarm_num	is	more
than	60	(two	seconds).	Decrement	that	variable	by	5	if	so	that	whenever	the	boss	is	hit,	it
will	increase	the	frequency	with	which	it	launches	missiles	or	enemies.

You’ve	now	finished	the	boss	object,	so	you	can	close	it.	We	have	some	quick	code	to	add
in	the	player	bullet	object	that	is	specially	tailored	for	hitting	the	boss.	Open	that	object’s

Step	event.	Right	after	you	decrement	the	hp	variable	of	the	enemy	that	has	been	hit,	put
in	an	if	statement.	Use	the	object_get_name(obj)	function,	which	takes	an	instance	of
an	object	as	input,	and	outputs	the	name	you	provided	it	in	the	project’s	resource	tree.	In
our	case,	we’ll	pass	it	enemy_hit,	and	the	return	value	we’ll	look	for	is	the	string
"obj_boss".

Inside	the	if	statement,	check	whether	the	boss’	hp	is	equal	to	100.	If	so,	we’ll	make	it
start	a	path.	You	can	do	this	by	calling	the	path_start(path,	speed,	endaction,
absolute)	function	inside	a	with	statement	(for	the	enemy	the	bullet	collided	with,	of
course,	which,	in	this	case,	can	only	be	the	boss).	The	first	argument	is	our	path,
(path_boss).	The	next	is	the	speed	at	which	it	should	move.	For	this,	pass	the	number	6.

Our	next	parameter	decides	what	to	do	once	the	path	ends.	They	are	as	follows:

0:	End	path
1:	Continue	path	from	original	point;	jumps	to	start	position	if	path	is	not	closed
2:	Continue	from	current	position
3:	Go	backwards	(reverse	speed)

We’ll	use	the	second	option	(so	pass	1).	The	final	parameter	takes	a	Boolean	value,	true
for	following	the	absolute	path	in	the	editor,	false	for	following	a	relative	path.	Pass
true,	since	we	based	our	points	on	the	room.

Outside	the	if	that	checked	the	boss’	hp,	put	another	with	statement	that	has	the	boss
object	that	we	hit	perform	the	User	Defined	0	event.	The	parameters	you	pass	to	the
event_perform	function	will	be	ev_other	and	ev_user0,	as	User	defined	events	are	a	type
of	Other	event.	So	whenever	the	player’s	bullet	hits	the	boss,	the	boss	will	increase	the
frequency	with	which	it	spawns	missiles	and	enemies.

Now,	we	just	have	some	code	to	add	to	the	controller	object	we	made,	and	then	we’re
done	with	the	boss!	First,	set	the	variable	steps	to	0	inside	of	the	object’s	Create	event.
Next,	inside	of	the	Alarm	0	event,	find	the	if	statement	that	checks	whether	an	instance
of	the	main	ship	exists.	Have	the	if	statement	also	require	that	an	instance	of	the	boss
object	doesn’t	exist	and	that	the	variable	steps	is	less	than	1800.

When	that	number	of	steps	have	passed,	we	will	create	the	boss	object.	Now,	add	an	else
if	clause	that	checks	if	the	main	ship	and	the	boss	object	both	exist.	Inside,	create	two
enemies	at	opposite	ends	of	the	screen	(the	boss	will	be	created	in	the	middle	of	the
screen)	so	that	there	are	more	enemies	other	than	those	the	boss	pumps	out.

When	you’re	done	with	that	event,	add	a	Step	event.	Inside,	increment	the	steps	variable
by	1.	If	it	equals	1800,	create	an	instance	of	the	boss	object	in	the	middle	of	the	screen.

Now,	add	the	final	event	that	we	will	need—a	Draw	event.	Inside,	set	the	color	to	draw
with	whatever	you’d	like,	we	chose	dark	gray.	Then,	we	will	use	the
draw_set_halign(halign)	function,	which	chooses	how	to	horizontally	anchor	what	you
draw.	You	might	say	it	modifies	the	origin.	By	default,	the	coordinate	you	provide	will	be
for	the	top-left	corner	of	what	you	draw.	But	you	can	change	it	to	the	middle	or	by	the
right	corner!	The	parameters	you	can	pass	are	fa_left,	fa_center,	and	fa_right,	which

are	pretty	self	explanatory.	We’re	going	to	anchor	by	the	center,	so	choose	fa_center	as
your	argument	to	the	function	of	course.	The	draw_set_valign(valign)	function	also
exists,	which	takes	fa_top,	fa_middle,	and	fa_bottom	as	arguments.

Now,	check	if	an	instance	of	class_enemy	doesn’t	exist	and	if	the	variable	steps	is	more
than	1800.	If	so,	draw	a	winning	message	at	the	center	of	the	screen	(by	manipulating	the
height	and	width	of	the	room).	Otherwise,	if	an	instance	of	the	main	ship	does	not	exist,
draw	a	losing	message	at	the	same	position.

Congrats!	You’re	done	with	the	Boss	AI,	and	you	already	have	all	the	objects	you	need	in
the	room.	So	you	can	test	your	game	immediately.	Do	so,	and	make	sure	that	the	boss
shows	up	after	a	minute,	and	that	it	randomly	shoots	missiles	or	enemies,	and	that	after	its
hp	is	at	100,	it	moves	left	and	right.	If	that’s	all	working,	great	job!	You’ve	only	one	more
section	to	go	through.

Particles
The	final	section	of	this	chapter	will	introduce	you	to	the	use	of	particles	in	your	game.
Once	you’ve	gone	through	this,	it	should	be	child’s	play	to	use	the	extra	functionality	for
them	that	we	won’t	go	over,	since	particles	are	very	easy	to	set	up	and	use,	and	they’re
also	a	very	good	component	to	get	into	the	habit	of	using.

Before	we	begin	coding	particles,	let’s	define	what	a	particle	is.	A	particle	is	a	graphical
resource	defined	by	the	particle	type	from	which	they	are	created,	and	they	are	displayed
by	using	a	particle	system.	They	can	create	small	or	large	effects	without	being	CPU-
intensive,	allowing	us	to	create	cool	effects	without	employing	objects	or	sprites	that	could
slow	down	the	game.	Particles	create	an	organization	for	displaying	your	effects,	and
make	it	very	easy.	Particle	types	are	“defined”,	so	to	speak,	and	are	then	displayed	via	a
particle	system	directly,	or	through	an	emitter,	which	gives	you	some	more	functionality
that	you	don’t	always	need.	We	won’t	be	using	an	emitter	for	the	first	particle	we	create	in
this	chapter.

Let’s	create	our	first	particle—an	explosion	particle.	This	chapter	uses	the	project	from	the
previous	chapter,	so	you	can	simply	modify	that	one	or	clone	it.	Once	you’ve	done	either
of	the	two,	create	an	object	called	obj_particle.	You	can	likely	guess	what	we’ll	do	in	it.
Add	a	Create	event.	Here,	we	will	be	setting	up	our	particle	system	and	types.

The	first	step	is	to	create	a	particle	system.	It’s	generally	good	practice	to	have	one	particle
system	that	you	create	at	the	start	of	the	game	and	delete	at	the	end	(as	they	are	dynamic
resources,	and	cause	a	memory	leak	if	they’re	not	removed	from	memory),	rather	than
creating	a	bunch	of	different	systems,	as	that	can	get	confusing	and	you’ll	take	up	way
more	resources	than	you	have	to.	To	create	a	particle	system,	assign	a	variable	global.ps
to	the	return	value	of	the	function	part_system_create().	Skip	a	line	or	two,	as	now	we
will	be	creating	two	different	particle	types—a	small	and	large	explosion.	The	first	will	be
for	regular	and	missile	enemies,	whereas	the	second	will	be	for	the	boss.	Create	a	particle
type	by	assigning	global.pt_explosion	to	part_type_create().	Next,	we	specify	the
particle’s	shape	with	the	function	part_type_shape(ind,	shape).	Pass	it	the	index	of	the
particle	type	to	modify,	which	is	stored	in	that	variable	we	literally	just	created.	Then,	use
the	pt_shape_explosion	shape	as	your	second	argument.	Now,	we	can	specify	a	size	with
part_type_size(ind,	size_min,	size_max,	size_incr,	size_wiggle).	Specify	a
minimum	size	of	0.25,	a	max	of	0.3,	an	incrementation	of	0.1,	and	a	wiggle	(how	much
should	be	randomly	added/subtracted	per	step)	of	0.	The	next	function	to	be	used	is
part_type_color3(ind,	color1,	color2,	color3)	so	that	we	can	give	the	particle
three	colors	to	move	between.	The	part_type_color1	(which	takes	one	color)	and
part_type_color2	particles	(which	takes	two)	also	exist,	but	we’re	going	to	use	three
colors.	The	particle’s	color	will	fade	from	the	first,	to	the	second,	to	the	third.	The	colors
we	will	use	are	c_orange,	c_red	and	c_gray,	in	that	order.	Our	final	function	for	this
particle	type	is	part_type_life(ind,	life_min,	life_max).	Give	a	minimum	life	of	30
steps,	and	a	max	of	60.

Nice	job!	You	finished	that	particle	type.	Next,	we	will	create	another	explosion.	Since	we

already	did	the	hard	part,	we	will	take	what	we	did	and	adjust	it	for	our	next	particle.	Copy
all	the	code	for	that	particle	type	you	already	completed,	and	paste	it	below.	Change	all
uses	of	global.pt_explosion	to	global.pt_big_explosion	in	this	paste.	Also,	give	it	a
minimum	size	of	2,	a	max	of	5,	and	an	incrementation	of	0.5.	Finally,	give	the	new
particle	type	a	life	of	60	to	90	steps	rather	than	30	to	60.

Congrats!	You’ve	made	your	particle	system	and	its	two	types.	However,	particles	are
dynamic	resources,	so	they	must	be	removed	when	not	needed.	Add	a	Game	end	event	to
this	object.	Use	part_type_destroy(ind)	to	destroy	our	two	types,	and
part_system_destroy(ind)	to	destroy	our	system.	You	can	now	close	out	the	object.

Let’s	now	edit	the	class_enemy	object.	Give	it	a	Destroy	event.	Inside,	we	will	“spawn”
particles	using	the	function	part_particles_create(ind,	x,	y,	parttype,	number).
We	first	pass	our	particle	system,	held	in	global.ps.	Then,	we	pass	the	function	the
coordinates	to	spawn	the	particle	at.	(x	-	(sprite_width	/	2)	-	8,	y)	looked	good	to
us.	On	the	horizontal	axis,	this	spawns	it	at	the	current	x	coordinate	minus	half	of	the
width	of	the	sprite	the	object	is	using	minus	8.	Our	particle	type	will	be	chosen	in	the
Create	events	of	our	enemies	in	a	variable	called	particle,	so	pass	particle	for
parttype.	Then,	since	we	only	want	one	explosion	to	be	created,	pass	1	for	the	number
parameter.

Now,	close	out	that	object,	and	we’ll	open	up	the	enemy	bullet	object,	for	starters.	Give	it
its	own	Destroy	event,	and	put	an	Execute	Code	action	in	(the	same	one	we’ve	been
using	for	everything	since	Chapter	3,	Introducing	the	GameMaker	Language).	Put
///Parent	Destroy	Override	into	it,	and	then	close	it	out.	So	if	you	look	at	the	Destroy
event	for	this	object,	you’ll	see	that	comment	without	even	opening	the	action	(since	if
you	remember,	three	forward	slashes	on	the	first	line	make	the	comment	appear	as	the
“title”	or	name	of	the	Action	in	the	drag	and	drop	interface	for	GameMaker).	From	the
previous	chapter,	recall	that	when	a	child	object	has	an	event,	and	its	parent	has	that	same
event	as	well,	the	child	doesn’t	run	that	event.	Well,	we	don’t	want	any	particles
associated	with	the	enemy	bullet,	so	we	need	to	prevent	it	from	running	the	event	that
would	make	it	spawn	particles,	and	so	we’ve	given	it	a	nearly	empty	Destroy	event.

We	say	nearly	because	we	did	put	something	in—a	comment.	Now,	the	thing	about
GameMaker	is	that	it	removes	empty	events	from	objects.	So	if	you	gave	an	object	a
Draw	event	but	didn’t	put	any	code	in	it	(maybe	you’re	going	to	do	that	later),	the
workspace	would	actually	delete	the	event	from	the	object.	You	override	this	by	just
putting	something	into	the	event,	in	this	case,	a	comment,	but	you	could	write	var	foo	=
"bar"	if	you	wanted	(but,	of	course,	this	takes	some	memory	and	uses	the	CPU	when	it
doesn’t	need	to),	as	that	qualifies	as	putting	something	into	the	event.

So	anyway,	now	that	you’ve	put	in	this	Destroy	event	override,	close	out	the	object	and
open	up	the	regular	enemy	object.	Inside	of	its	Create	event,	set	the	particle	variable	to
-1.	Next,	we	check	if	the	particle	global.pt_explosion	exists	using	the
part_type_exists(ind)	function,	as	these	enemies	are	spawned	at	the	beginning	of	the
game	when	the	particle	might	not	have	been	initialized.	If	the	particle	does	exist,	set
particle	to	the	global	explosion	particle.	Close	the	Create	event,	and	open	the	Step

event.	Check	whether	particle	equals	-1	and	if	the	explosion	particle	exists.	Set
particle	to	global.pt_explosion.

Now	close	out	that	event	and	the	object,	and	put	the	exact	same	code	in	the	missile	object,
except	the	new	code	in	the	Step	event	should	go	below	the	call	to	event_inherited().
Now,	you	can	do	the	same	thing	for	the	boss	object,	but	replace	references	to
global.pt_explosion	with	global.pt_big_explosion.

Remember	how	we	said	that	the	enemies	are	created	at	the	start	of	the	game,	but	the
particles	might	not	be	initialized	yet?	Well	for	that	reason,	we	have	to	set	the	variable	that
the	index	of	the	regular	explosion	particle	is	held	in	to	some	value	prior	to	the	enemy
setting	its	particle	so	that	it	doesn’t	reference	a	nonexistent	variable.	In	order	to	do	this,
open	the	Create	event	of	our	control	object.	Set	global.pt_explosion	to	-1	at	the	top.	In
this	way,	the	variable	will	exist	for	the	enemy	object	when	it	references	it,	but	it	will	still
get	the	correct	particle	once	the	explosion	particle	has	been	initialized.

Great	job!	You’ve	completed	the	work	for	the	explosion	particles,	and	can	test	your	game.
Ensure	that	all	the	particles	function	properly	whenever	you	destroy	an	enemy	or	missile,
and	that	after	the	boss	is	destroyed,	the	enemies	are	destroyed	one	by	one,	but	not	all	at
once.	If	it	all	works	fine,	move	on!

Now	let’s	add	a	rain	particle	to	our	game	via	the	use	of	a	sprite	and	a	particle	emitter.
Create	a	small	raindrop	sprite	(around	8	x	8).	Once	you’re	satisfied	with	it,	open	up	the
obj_particle	object’s	Create	event.	At	the	bottom,	create	a	particle	and	hold	its	index	in
pt_rain.	Now,	rather	than	setting	its	shape,	color,	size,	and	other	things,	we	simply	set	its
sprite	with	part_type_sprite(ind,	sprite,	animate,	stretch,	random).	The	first
two	parameters	should	be	obvious,	but	as	for	the	last	three,	they	all	take	Boolean	values
for	whether	or	not	to	follow	the	sprite’s	animation	(true	means	yes,	false	means	no),
whether	or	not	to	stretch	the	animation	to	meet	the	particle’s	lifespan	(true	yes,	false	no),

and	whether	or	not	to	choose	a	random	subimage	(true	yes,	false	no).	Pass	false	for	all
three	of	those	parameters.	Next,	let’s	give	the	particle	a	speed	with
part_type_speed(ind,	speed_min,	speed_max,speed_incr,	speed_wiggle).	We
found	a	minimum	of	2,	a	max	of	2.5,	an	incrementation	of	0.2,	and	no	wiggle	looked
best.

Following	this,	supply	the	particle	a	constant	direction	of	down	with
part_type_direction(ind,	dir_min,	dir_max,	dir_incr,	dir_wiggle)	by	passing
270	for	the	minimum	and	maximum	directions,	and	0	for	the	incrementation	and	wiggle.
After	this,	give	the	particle	a	lifespan	of	300	steps.

Now	that	you	have	created	your	particle,	find	it	in	the	Create	event,	where	you	created
your	particle	system.	Below	this,	create	a	particle	emitter	and	hold	its	index	in	the	em
variable	with	part_emitter_create(ps),	and	pass	the	function	our	particle	system,	held
in	global.ps.	Now,	since	we’re	doing	a	rain	particle,	we’ll	specify	a	region	for	the	emitter
to	“spawn”	the	rain	particles	using	the	function	part_emitter_region(ps,	ind,	xmin,
xmax,	ymin,	ymax,	shape,	distribution).	The	first	two	parameters	are	the	particle
system	that	the	emitter	is	in,	followed	by	the	emitter	itself.	Then	we’ll	be	passing	the
coordinates	that	specify	the	region.	For	this	particle,	we	found	that	passing	0,	room_width,
-16,	and	then	0	looked	good.	The	particles	will	be	created	in	this	region,	then	move
downwards.	Following	this,	pass	ps_shape_rectangle	for	a	general	rectangular
distribution,	and	ps_distr_linear	so	that	the	particles	have	an	equal	chance	of	appearing
anywhere,	rather	than	being	mostly	created	around	the	edges	or	center	of	the	region.

Now	you’ve	finished	setting	up	your	emitter!	We	have	only	one	more	line	of	code	for	this
Create	event.	When	we	tested	the	game	like	this,	we	noticed	the	rain	did	not	appear	on
top	of	the	boss	object,	rather	it	showed	on	top.	In	order	to	fix	this,	we	can	set	the	depth	of
our	particle	system.	Right	after	you	create	the	system,	set	its	depth	with
part_system_depth(ind,	depth),	giving	it	a	depth	of	negative	one	million.	Depth	is
relative,	but	for	things	that	appear	on	top	of	everything,	people	generally	give	them
extreme	depths	rather	than	something	like	-10	so	that	they	don’t	have	to	change	it	if	they
give	something	a	depth	of	-20,	for	instance.

Now	that	you’ve	finished	the	Create	event,	open	up	the	Game	end	event	for	this	object.
Destroy	our	rain	particle	type,	and	then	destroy	the	emitter	with
part_emitter_destroy(ps,	ind),	passing	it	the	system	that	the	emitter	is	in,	followed	by
the	emitter.	Now,	let’s	actually	spawn	the	particles.	Add	a	Step	event	for	this	object.
Inside,	use	part_emitter_stream(ps,	ind,	parttype,	number).	Our	type	is	of	course
the	rain	particle,	and	five	looked	nice	to	us.	Once	you’ve	done	all	of	this,	you’re	done	with
your	rain	particle!	So	test	your	game,	and	make	sure	that	the	rain	looks	good	and	works
perfectly.

The	following	is	a	screenshot	of	how	it	looked	in	our	game:

Summary
You	learned	a	lot	of	different	information	in	this	chapter—parenting,	how	to	create	a
tracking	AI,	change	drawing	alignment,	creating	your	own	events,	creating	and	using
paths,	and	implementing	particles!	Of	course,	go	back	and	review	the	chapter	to	make	sure
you	understand	all	the	functions	and	everything	else	we	taught	you.	In	the	following
chapter,	we	will	be	overviewing	the	GameMaker	physics	engine	and	show	you	how	to
utilize	its	capabilities	in	two	different	ways—one	of	which	you	might	not	expect.

Review	questions
1.	 What	are	User	defined	events	for?
2.	 How	do	you	make	something	move	towards	something	else,	but	make	sure	not	to	hit

what	it	isn’t	tracking?
3.	 How	can	you	change	the	horizontal	alignment	(you	might	also	call	it	the	origin)	from

which	text	(and	anything	else)	is	drawn?
4.	 How	do	you	set	up	parenting	in	GameMaker,	and	what	is	the	purpose	of	setting	up

parent	and	child	objects?	What	can	you	accomplish	with	the	use	of	parent	objects	that
you	might	not	be	able	to	otherwise?

5.	 Define	and	contrast	particles,	particle	systems,	and	particle	emitters.
6.	 How	do	you	set	up	a	particle	with	GameMaker’s	constants	and	with	a	sprite	that	you

made?
7.	 What	is	the	best	practice	for	creating	and	using	particle	systems?
8.	 How	did	we	stop	the	enemy	bullet	from	having	to	use	a	particle?
9.	 What	are	objects	(not	in	a	GameMaker	sense,	but	in	terms	of	object-oriented

programming)?

Quick	drills
1.	 Add	a	score	system	to	the	game	so	that	the	player	gets	points	as	they	play,	and	make

the	game	endless.
2.	 Add	a	highscore	display.
3.	 In	line	with	the	score	system,	create	a	system	that	has	waves	of	increasing	difficulty.

Let	the	player	know	when	they	have	reached	the	next	wave.
4.	 Add	a	lives	system	for	the	main	player	(that	is,	start	the	game	with	three	lives).	In

past	games,	you	have	created	lives	and	displayed	the	lives	using	the	main	character
sprite.

5.	 Give	the	player	a	speed	powerup,	as	well	as	the	ability	to	shoot	a	more	powerful	kind
of	bullet	(which	should	of	course	require	a	longer	recharge).	Get	creative	and
program	another	enemy	AI.	Look	up	some	of	the	functions	in	the	GameMaker
documentation,	while	also	using	some	of	the	ones	that	you’ve	already	learned	to
create	a	unique	and	challenging	enemy.

6.	 Play	around	with	your	existing	particle	types	so	that	they	look	how	you	want	them	to
—particles	are	great	for	playing	around	with,	as	it’s	not	like	you	can	bug	your	game
just	by	modifying	some	of	their	properties.

7.	 Create	one	or	two	new	particle	types,	and	play	around	with	those	as	well.

Chapter	8.	Introducing	the	GameMaker:
Studio	Physics	Engine
In	this	chapter,	we	will	introduce	the	built-in	GameMaker	physics	engine,	based	on	the
open	source	Box2D	and	LiquidFun	physics	engines.	The	engine	has	a	lot	of	features	that
you	might	find	beneficial,	one	of	which	being	that	you	can	create	physics-based	games.
However,	you	are	not	restricted	to	using	the	engine	for	a	sandbox	style	physics	game.	It
has	powerful	and	simple-to-use	collision	checking	that	can	even	be	used	for	all	the	games
we’ve	made	so	far.	You	could	refactor	all	of	those	games	just	by	implementing	physics!	In
this	chapter,	we’ll	program	two	small	engines	based	on	the	physics	engine	in	order	to	give
you	a	small	introduction	into	setting	up	the	physics	engine	in	your	games.

A	physics	game
In	this	section,	we	will	program	a	small	physics	sandbox.	We’re	not	going	very	in-depth,
as	this	is	intended	to	be	a	small	introduction	to	the	physics	engine,	not	a	complete	tutorial.
Let’s	first	explain	some	information	that	you’ll	need	to	know	when	you’re	using
GameMaker’s	physics	engine.	For	one,	you	should	not	mix	physics-specific	code	with
code	that	controls	movement	that	doesn’t	use	physics	(for	example,	use	physics	speed
variables	rather	than	the	variable	speed).	It’s	also	important	to	limit	how	many	physics
instances	are	active	at	once	in	your	game,	as	they	use	intense	calculations	to	make
everything	flow	properly.	In	relation	to	this,	use	parenting	for	collision	checks—children
will	not	inherit	physics	properties,	but	they	can	inherit	collision	events.	If	you	had	five
different	enemies,	it’s	best	to	have	your	player	check	for	a	collision	with	a	parent	rather
than	all	five	of	those	different	enemies,	if	you	can.

But	anyway,	let’s	start	with	making	our	physics	game.	The	first	step	is	to	create	the
project,	so	do	that.	Then	create	two	sprites—a	ball	sprite	and	a	block	sprite.	Center	their
axis,	but	do	nothing	to	their	collision	masks.	The	physics	properties	that	we	will	set	up
will	handle	that.

Now	create	two	objects,	one	for	a	ball	and	one	for	a	block.	We’ll	work	with	the	block	first.
Assign	the	proper	sprite,	and	then	select	the	checkbox	that	says	Uses	Physics.	Additional
buttons	and	boxes	will	be	made	available	to	you	to	modify	the	physics	properties	of	this
object,	but	we	only	care	about	two	of	them.	See	the	Density	box?	This	controls	the	density
of	an	object	(well,	of	course),	and	thus	controls	its	weight	and	how	it	is	impacted	by
different	forces	and	components	of	your	physics	world.	However,	we	don’t	want	our	block
to	move	at	all.	We	want	it	to	function	as	a	wall	and	floor.	In	order	to	make	an	object
“infinitely	heavy”,	as	one	way	to	put	it,	set	its	density	to	0.0.	This	will	make	it	impossible
to	move.

Next,	we	will	modify	the	collision	shape	(or	fixture)	of	the	object,	so	select	the	Modify
Collision	Shape	button.	A	window	will	pop	up	for	you	to	modify	the	points	of	the	shape.
By	default,	the	shape	you	can	have	is	a	circle,	but	we	choose	the	shape	option	(not	a
square,	as	when	we	put	in	code	for	the	ball’s	collision	with	the	block,	it	would	fly	straight
up	if	it	hit	a	side	block).	With	the	shape	of	the	fixture	that	we	will	use,	it	will	diagonally
bounce,	so	select	that	one.	The	shape	option	allows	you	to	create	a	nonconcavular
polygonal	collision	shape	with	n	sides.	It	will	start	as	a	triangle	but	you	can	add	sides	by
adding	points	to	the	shape	(keep	it	as	a	triangle	for	this	though).	Move	the	vertices	of	your
triangle	collision	shape	to	have	one	in	the	top	right,	one	in	the	top	left,	and	then	one	16
pixels	below	in	the	center.	When	you’re	done	with	that,	close	out	that	window,	followed
by	the	object’s	window:

Now,	we	can	work	on	the	ball	object.	Give	it	a	sprite	and	make	it	use	physics,	but	go
straight	to	modifying	its	collision	shape—don’t	modify	its	density	because	we	do	want	it
to	dynamically	and	actively	interact	with	the	physics	of	the	game.	Make	the	circle	match
up	with	the	sprite,	and	then	close	out	the	collision	shape	window.

When	using	the	GameMaker	physics	engine,	in	order	to	register	a	collision,	we	use	the	old
drag	and	drop	Collision	event;	we	don’t	use	the	collision	functions.	So	whenever	you’re
using	the	GameMaker	physics	engine,	make	sure	to	use	the	Collision	event	if	you	want	a
collision	registered	between	two	objects;	otherwise,	they’ll	pass	right	through	each	other.
So	right	now,	add	to	the	ball	object	a	Collision	event	with	the	block	object.	Inside,	we	will
apply	force	to	the	ball	with	the	function	physics_apply_force(x,	y,	xforce,	yforce).
The	forces	are	measured	in	Newtons.	We	want	the	ball	to	“bounce”,	so	apply	an	xforce	of
0	and	a	yforce	of	-5000	at	(x,	y).

Now	let’s	add	another	Collision	event	to	this	object—with	another	instance	of	the	ball
object.	Inside,	use	the	same	function	we	just	used	with	all	the	same	arguments	except	for
yforce.	Rather	than	-5000,	pass	-1000	*	(other.y	-	(other.sprite_height	/	2)	-
y).	This	will	give	an	upward	motion	of	1000	Newtons	multiplied	by	the	difference
between	the	y	coordinate	bottom	of	the	ball	on	top	and	the	y	coordinate	of	the	center	of	the
bottom	ball,	so	that	the	top	ball	will	go	up	and	the	bottom	one	will	go	down.	When	you
play	the	game,	you’ll	see	what	we	mean.

The	final	object	we’ll	make	is	obj_control.	In	its	Step	event,	put	a	if	statement.	We	will
check	whether	the	player	has	clicked	the	left	mouse	button	by	using	the	function
mouse_check_button_pressed(button).	Pass	it	to	mb_left	for	the	left	mouse	button.

Inside	the	if	statement,	put	another	if	statement	that	checks	whether	instance_count
(which	tells	you	how	many	instances	are	active	in	the	room)	is	higher	than	200.	We	don’t

want	to	have	too	many	balls	(which	would	be	physics	instances)	active	in	the	room	at	once
(clicking	will	be	creating	these	after	we	put	in	that	code	soon).

Inside	of	that	if	statement,	insert	a	for	loop.	Set	the	local	variable	i	to	0,	check	whether	it
is	less	than	instance_count,	and	then	increment	our	counter.	In	each	iteration	of	our	loop,
check	whether	the	coordinates	of	the	instance	whose	ID	is	held	in	instance_id[i]	(an
array	of	the	IDs	of	all	active	instances	in	the	room)	are	outside	the	room.	However,	rather
than	checking	whether	their	y	coordinate	is	less	than	0	in	one	of	the	conditions,	check	if	it
is	less	than	-32	so	that	we	don’t	delete	instances	close	to	the	game	screen	(in	this	way,	we
can	be	sure	to	make	it	seem	as	though	no	balls	are	randomly	being	lost).	Only	the	ball
objects	could	possibly	be	outside	of	the	room,	so	we	needn’t	check	whether	the	instance	is
one	of	the	ball	objects.

If	that	if	statement	returned	true,	then	destroy	the	instance	whose	id	is	in
instance_id[i].	Then	break	out	of	the	for	loop	(with	break	of	course).	Outside	the	if
statement,	we	checked	whether	the	count	of	active	instances	was	higher	than	200,	create
an	instance	of	the	ball	object	at	(mouse_x,	mouse_y)	so	that	one	will	spawn	at	the	mouse
cursor’s	position.

Now	close	out	that	object,	and	make	a	new	room.	In	the	physics	tab,	check	the	Room	is
Physics	World	box,	and	then	proceed	to	put	in	your	control	object	and	blocks	as	walls	and
a	floor.	Don’t	put	in	a	ceiling.	Once	you’ve	finished	that,	compile	and	run	your	game,	and
you	should	be	able	to	create	balls	by	clicking	anywhere	on	the	screen	and	see	them
bouncing	off	of	the	blocks	and	other	balls.

So	this	game	doesn’t	really	have	a	lot	going	on	yet,	and	there’s	an	important	physics
feature	we	haven’t	showed	you	yet—joints!	These	are	what	allow	you	to	bind	physics
instances	together	at	a	certain	point	in	order	to	have	them	behave	in	certain	ways	(you
might	want	a	motor,	or	a	car!).	What	we’ll	be	creating	is	a	platform	joint	to	a	base	on	the
floor.	When	the	balls	bounce	on	it,	it	will	rotate.	If	it	goes	fast	enough,	then	it	can	apply
force	to	other	balls	that	hit	it.	This	is	actually	pretty	easy	to	set	up.

Begin	with	creating	two	sprites—a	rectangle	and	a	triangle.	Center	the	rectangle	sprite’s
origin.	As	for	the	triangle	sprite,	only	center	it	on	the	x	axis,	but	have	the	y	coordinate	of
its	origin	be	0	(at	the	top).

Now	create	two	objects	for	each	of	those	two	sprites.	Give	the	rectangle	a	collision	shape
that	matches	its	sprite	completely,	and	then	open	up	the	triangle	object.	Give	this	one	a
density	of	0.0	(so	it	doesn’t	move	and	doesn’t	fall	through	the	floor),	and	then	give	it	a
triangular	collision	shape.

Now,	inside	this	object’s	Create	event,	we’ll	joint	the	rectangle	and	the	triangle	with	a
revolute	joint.	This	allows	one	instance	to	revolve	around	the	other	with	a	certain	degree
of	freedom.	Use	the	function	physics_joint_revolute_create(inst1,	inst2,
w_anchor_x,	w_anchor_y,	ang_min_limit,	ang_max_limit,	ang_limit,

max_motor_torque,	motor_speed,	motor,	col).	It’s	a	long	function,	but	we’ll	go
through	its	arguments	step	by	step.

The	first	two	arguments	are	the	two	instances	to	join.	These	will	be	id	and

obj_rectangle.	id	is	the	instance	ID	of	the	triangle	object,	which	is	calling	this	function.
Then	pass	the	x	and	y	coordinates	of	the	triangle	object.	Following	this,	pass	two	zeros,
and	then	a	false,	and	then	two	more	zeros,	and	another	false.	We	will	not	limit	the	angle
of	this	joint	to	a	minimum	nor	a	maximum,	nor	will	we	use	a	motor	(which	would	force	a
revolution	to	always	occur).	Then,	pass	false	for	the	last	argument,	since	we	don’t	want
our	two	instances	to	register	collisions,	nor	do	we	really	care	about	them	actually.	We	just
want	the	rectangle	to	revolve	freely	about	the	tip	of	the	triangle.

Once	you’ve	done	all	of	that,	open	up	the	ball	object,	and	give	it	a	Collision	event	with
the	rectangle	object.	Make	sure	to	put	in	an	empty	Execute	Code	block	with	a	comment
so	that	the	event	is	not	deleted.

When	you’re	done	setting	up	collisions	and	joints	and	other	physics	related	properties,
place	the	triangle	object	on	the	“floor”	of	the	room,	and	then	put	the	rectangle	directly
above	it.	Then	test	your	game	as	usual:

A	final	note	before	we	move	onto	the	next	game—when	you’re	deactivating	instances	in	a
game	using	physics,	make	sure	to	set	phy_active	to	false	for	all	the	instances	using
physics	(and	then	true	when	reactivating).

The	physics	engine	in	a	regular	game
The	remainder	of	this	chapter	will	be	a	small	tutorial	on	how	to	incorporate	physics	into	a
top-down	style	game,	like	our	first	one.	We’re	just	going	to	create	a	small	engine	to
demonstrate	how	you	would	move	around	a	player	and	get	perfect	collisions.

So	first	create	a	simple	player	sprite	and	wall	sprite.	They	can	be	simple	squares	or
complex	shapes	if	you	want.	Make	sure	that	you	center	the	origins—it’s	important	for	the
collisions	to	work	properly.

Now	create	a	player	and	wall	object.	Give	the	wall	its	sprite,	a	density	of	0,	and	a	collision
shape.	If	you	made	the	sprite	complex	(although	walls	are	usually	blocky),	then	select	the
Shape	option	and	plot	a	series	of	points	to	get	a	collision	shape	that	matches	the	wall	and
then	open	up	the	player	object.	Give	the	player	its	sprite	and	a	collision	shape.	If	the
player’s	sprite	is	complex,	then	use	the	Shape	option.

Now	let’s	make	the	player	move	and	stop	at	the	wall.	Add	a	Create	event,	and	set
phy_fixed_rotation	to	true.	If	we	left	this	in	its	default	state	(false),	then	when
pushing	against	a	wall,	the	player	would	rotate	slightly,	but	we	don’t	want	that,	we	want	it
to	look	like	it’s	in	a	normal	top-down	game.

After	this,	set	hspd	and	vspd	to	0.	Add	a	Step	event	to	the	object.	If	the	player	is	pressing
the	left	arrow	key,	set	our	horizontal	speed	to	-5.	If	they’re	pressing	the	right	arrow	key,
then	set	it	to	positive	5.	And	if	we’re	pressing	both	or	neither	of	the	keys,	set	our
horizontal	speed	to	0.	Following	this,	put	in	the	same	code	but	for	the	up	and	down	arrow
keys.

Once	you’ve	done	this,	we’ll	actually	modify	the	coordinates	of	the	player.	No	longer	can
you	use	x	and	y	however,	instead	you	will	use	phy_position_x	and	phy_position_y.
Increment	both	these	variables	by	our	horizontal	and	vertical	speeds,	respectively	of
course.	Then	set	both	of	our	speeds	to	0.	Once	you’ve	completed	this,	add	a	Collision
event	to	this	object	for	when	it	hits	the	wall.	Recall	how	we	said	GameMaker	deletes
empty	events.	As	such,	you’ll	need	to	add	a	comment	to	the	event	so	that	it	has	some
“substance”	to	it	and	so	that	a	collision	is	registered,	but	without	anything	extra	being
done.

Once	you’ve	finished,	make	a	new	room.	Make	it	a	physics	world	under	the	physics	tab.
Also	under	that	tab,	set	the	Y	Gravity	to	0	so	that	nothing	is	pulled	downwards.	Then	put
in	walls	and	the	player	object,	and	run	your	game.	See	how	perfect	the	collisions	are	and
how	the	movement	is	still	perfect?	And	it	was	so	easy	to	implement,	right?	The	physics
engine	is	pretty	great!

Summary
Kudos	on	finishing	this	introductory	physics	chapter!	The	following,	and	final,	chapter
will	wrap	this	up,	and	include	debugging	and	some	other	useful	information	that	we
couldn’t	teach	you	as	of	yet.

Review	questions
1.	 What	is	a	fixture?
2.	 What	is	a	joint?
3.	 How	can	you	give	a	physics	object	“infinite	weight”?
4.	 What	variables	do	we	use	for	the	coordinates	of	an	object	that	uses	physics?
5.	 How	can	you	check	whether	a	mouse	button	is	clicked,	and	how	can	you	check	the

cursor’s	position?

Quick	drills
1.	 Play	around	with	different	shapes	in	your	sandbox	game	and	see	how	they	all

interact.	Have	one	of	your	shapes	spawn	when	the	player	clicks	the	right	mouse
button	(mb_right).

2.	 Also	play	around	with	revolution	joints,	maybe	have	balls	that	collide	revolute.	If	you
want,	you	could	try	some	of	the	other	joint	types	shown	in	GameMaker’s
documentation	to	see	how	they	work.

3.	 In	your	second	game,	add	a	projectile	that	the	player	can	spawn	that	uses	physics
properties.	Program	it	just	like	the	ones	in	previous	games.

Chapter	9.	Wrapping	Up
This	final	chapter	will	cover	a	variety	of	important	information	that	is	rather	useful	but	did
not	find	its	way	into	the	earlier	chapters.	The	main	section	is	on	debugging,	but	we’ve
included	additional	information.	You	won’t	be	programming	anything	until	the	Quick
drills	section,	and	those	won’t	be	actual	games—you’ll	be	causing	errors	on	purpose.

So	without	further	ado,	let’s	begin	the	chapter!

Debugging
You	will	learn	about	some	of	GameMaker’s	debugging	capabilities.	Before	that,	we’d	like
to	show	you	a	lightweight	debugger	console	that	you	can	modify	and	add	to	any	game
project	to	help	with	the	debugging	process.	We’ve	used	it	before,	and	it	has	been	very
helpful.	Find	it	at	http://gmc.yoyogames.com/index.php?showtopic=675236.

As	for	regular	debugging,	GameMaker:	Studio	has	four	features	for	debugging:

Compile-time	errors
Runtime	errors
Debugger	module
Debugging	functions

Compile-time	errors	are	probably	the	easiest	to	fix,	since	they	directly	tell	you	what	the
issue	is.	Runtime	errors	still	tell	you	the	issue,	but	the	runner	is	unable	to	know	exactly
what	is	causing	the	issue.	Furthermore,	a	runtime	error	might	not	always	occur,	so	you’ll
have	to	test	your	game	many	different	times	with	many	different	conditions	in	order	to
eliminate	all	the	bugs	that	you	can.	As	far	as	the	debugger,	it’s	rather	similar	to	any	other
debugger	for	a	compiled	program;	it	just	has	some	GameMaker	specific	features.	Finally,
GameMaker	has	some	debugging-specific	functions	(some	of	which	you	know	of	already,
such	as	show_message).	Now	we	will	explain	each	of	these	features	in	detail.

http://gmc.yoyogames.com/index.php?showtopic=675236

Compile-time	errors
We’ll	first	go	a	little	bit	in-depth	with	compile-time	errors.	Again,	note	that	you	won’t
need	to	write	any	code	for	this	chapter	yet,	so	just	read	along.

We’ve	created	an	object	called	obj_foo,	and	in	its	Create	event,	we’ve	had	it	call
scr_foo().	We	put	it	in	a	room,	and	then	got	the	following	compile-time	error	when	we
attempted	to	run	the	game:

Now	before	you	even	saw	the	preceding	image,	you	should	have	known	what	was	wrong
—we	never	created	a	scr_foo.	However,	now	you	know	what	a	compile-time	error	would
look	like.	It	tells	us	the	object	we	had	an	error	in,	the	event,	the	action,	the	line	number
(actually,	we	wrote	the	call	on	line	1,	so	when	you	get	these	errors,	look	in	the	general
vicinity	of	the	line	it	tells	you	where	the	error	occurred),	and	what	the	error	was	(in	this
case,	scr_foo	isn’t	a	script	or	function).

There	are	a	variety	of	compile-time	errors	that	you	can	get,	and	they	are	generally	easy	to
understand	and	they	help	the	programmer	locate	and	fix	the	error.	One	error	might	be	that
you	attempted	to	set	a	read-only	variable	to	some	value.	If	you	did	that,	the	Compile
Errors	window	would	tell	you	all	the	same	information	as	it	did	in	the	error	shown
previously,	except	the	error	itself	would	be	different.	Every	error	message	follows	the
same	format.

Runtime	errors
The	next	error	we	will	show	you	is	a	runtime	error.	These	are	still	easy	to	fix	(at	least	most
of	the	time),	but	new	users	to	GameMaker	often	get	confused	by	the	large	bulk	of
messages	that	the	runner	tells	you.	Usually,	you’ll	only	end	up	using	one	small	part	of	the
error	message,	so	it’s	important	to	know	where	to	look.	But	by	the	end	of	this	section,
you’ll	know	how	to	find	your	way	around	a	runtime	error.

In	order	to	create	a	runtime	error,	we’ve	put	the	following	code	in	the	Create	event	of
obj_foo	(and	we	have	of	removed	the	call	to	scr_foo):

for	(var	i	=	0;	i	<	3;	++i)	foo[i]	=	i;

var	a	=	foo[3];

Right	away,	you	should	see	the	issue;	we’ve	attempted	to	reference	the	nonexistent	fourth
position	in	the	array	called	foo.	When	we	run	the	game,	we	get	the	following	error:

So	in	this	screenshot,	you	see	a	lot	of	words	and	information	in	the	error	message.	Since
you	already	know	what	the	error	is,	you	might	be	able	to	decipher	the	important
information	from	this	error,	but	let’s	explain	parts	of	the	message	that	you	need,	which
we’ve	boxed.	We	first	see	that	this	is	a	Variable	Index	error.	Array	indexes	are	nothing
more	than	variable	pointers,	so	here	the	error	is	with	a	variable	index	not	existing.

Following	this	is	the	really	important	part	that	you	need;	it	tells	you	exactly	where	the
error	occurred,	and	you	can	even	see	the	code	from	that	line	in	the	window.

The	most	common	error	that	people	get	is	a	Variable	Get	error,	where	they	attempt	to
access	a	variable	that	doesn’t	exist.	This	is	because,	while	we	all	try	to	be	perfect,	nobody
is	that	great	at	typing	or	remembering	the	names	they	gave	their	variables.	For	instance,
you	might	declare	a	variable	called	a,	and	then	reference	A.	Or	perhaps,	you’ll	declare	a
variable	called	socket,	and	reference	sockets.	There	is	a	variety	of	errors	that	the
GameMaker	runner	will	spit	out,	but	now	you	should	know	how	to	decipher	them.

The	GameMaker:	Studio	debugger
In	this	next	section,	we	will	overview	the	use	of	the	GameMaker:	Studio	debugger,	which
is	likely	the	most	important	feature	of	GameMaker’s	four	debugging	features,	as	this
allows	you	to	see	how	your	code	is	running	and	working	while	the	program	is	running.
Like	in	any	other	debugger,	you	can	set	breakpoints;	see	local	and	global	variable	values;
step	into,	over,	and	out	of	code;	and	there	are	also	features	to	the	debugger	that	are	tailored
for	use	with	GameMaker.	Without	further	ado,	let’s	show	it	to	you!

We’ve	moved	all	the	code	from	our	Create	event	to	the	Step	event,	and	fixed	the	bug	we
had	created.	In	the	following	screenshot,	you	can	see	the	debugger	window	for	the	game:

We’ve	set	a	breakpoint	by	double-clicking	on	line	3	in	the	debugger,	so	in	the	Locals
pane,	we	can	see	the	contents	of	the	foo	array	and	the	values	of	the	variables	a	and	i	(the
latter	of	which	shows	up	in	Other	because	it	is	a	local	variable).	To	open	up	new	panes,
right-click	a	pane’s	name,	select	Set	Type,	and	choose	the	desired	type	(of	which	there	are
a	lot,	all	helpful).	The	helpful	ones	are	the	Source	(especially),	Locals,	and	Globals
variables,	and	All	Instances	(showing	you	variables	of	different	instances	of	objects	in
your	game).

If	you	want	two	panes	open,	right-click	on	a	pane’s	name,	select	Split,	and	then	choose	the
desired	split	direction.	A	new	pane	called	Empty	will	be	created,	and	then	just	choose	that
one’s	type.

In	the	top	bar,	the	green	play	button	resumes	the	game	(puts	in	on	top	of	the	debugger
window,	and	resumes	it	if	it	is	stopped).	The	green	pause	button	stops	the	game,	and	the
circular	arrow	resets	it.	Following	this,	your	yellow	arrows	are	Step	In,	Step	Over,	and
Step	Out	(for	when	going	through	the	code	step	by	step	-	going	into	a	script,	running	the
script	without	entering	it,	and	going	out	of	a	script	and	into	the	main	code).	Then,	the
clock	is	for	real-time	updates,	which	doesn’t	always	work	in	every	case	(so	instead,	we
usually	just	set	breakpoints	and	check	values	then).

Along	the	left	side	is	where	you	can	access	different	code	blocks	(scripts	and	events,	the
latter	of	which	is	under	each	object	in	the	Objects	folder).	Double-click	on	one	to	see	the
source	and	set	breakpoints.	The	GameMaker	debugger	is	very	easy	to	use	and	is	very

beneficial	to	the	debugging	process,	as	with	any	debugger.

Debugging	functions
The	final	feature	that	GameMaker	has	available	to	use	for	the	debugging	process	is	a	set
of	debugging-specific	functions	and	variables.	The	following	is	a	table	of	what	is	available
to	use:

Code Description

debug_mode true	when	running	a	game	in	the	debug	mode,	and	false,	when	in	regular	mode.

get_integer(str,	def)
This	opens	a	prompt	for	you	to	enter	an	integer.	Pass	it	a	prompt	message	and	default
value.

get_string(str,	def) This	opens	a	prompt	for	you	to	enter	a	string.	Parameters	are	the	same	as	get_integer.

show_error(str,	abort)
This	shows	a	specific	error	message.	Pass	true	for	the	second	argument	to	abort	the
game,	and	false	to	continue	as	usual.

show_message(str) This	shows	a	message.

show_question(str) This	asks	a	yes/no	question.	It	returns	true/false	for	yes/no.

show_debug_message(string) This	shows	a	debug	message	in	the	compile	window	(not	a	pop	up).

show_debug_overlay(enable)

This	shows	important	debugging	information:	I/O	processing,	step	event	speed,	draw
event	time,	debug	update	time,	time	waiting	for	GPU	to	finish	drawing	a	frame,	text
render	time,	screen	clearing	time,	and	GPU	flush.	Pass	true	to	enable	it,	false	to
disable	it.

code_is_compiled() This	checks	whether	the	code	was	compiled	with	the	YoYo	Compiler	properly.

fps
This	returns	how	many	CPU	steps	GameMaker	is	actually	completing—limit	of	your
room	speed.

fps_real
This	returns	the	actual	number	of	CPU	steps	GameMaker	is	actually	completing	(not
limited	by	the	room	speed).

We’ll	now	use	a	few	of	these	functions	in	tandem.	We	put	a	Create	event	back	into	our
object	and	put	the	following	code	into	it:

if	(debug_mode)	{

				show_debug_overlay(true);

				show_debug_message("DEBUG	MESSAGE");

				show_message("DEBUG	MESSAGE");

}

The	following	is	a	screenshot	of	the	game	being	run	with	the	compile	window	alongside
it:

You	can’t	see	the	regular	show_message	call,	since	we	felt	showing	the	overlay	was	more
important,	and	the	overlay	is	rendered	(so	it	comes	after	the	Create	event).	You	already
know	what	show_message	looks	like	though,	you’ve	used	it.	At	the	bottom	of	the	compile
window	is	the	output	of	our	call	to	show_debug_message.	In	the	game	window,	you	can
see	the	debug	overlay	(somewhat,	the	game	doesn’t	really	take	up	a	lot	of	resources).

Helpful	information	on	GameMaker
This	section	is	sort	of	a	“mash-up”	of	a	bunch	of	important	information	that	we	didn’t	get
to	tell	you	before,	but	that	we	will	now.	Some	of	it	is	especially	helpful	to	prevent	you
from	writing	code	that	would	be	flawless	in	other	languages	but	incorrect	in	GML.

Before	we	begin	though,	a	very	useful	GameMaker	community	is	located	at
https://www.reddit.com/r/gamemaker	(and	we’ve	linked	another	later).	The	community	is
very	helpful	and	answers	any	questions	you	might	have,	and	they	sometimes	post	projects
and	code	that	you	can	use	that	might	be	tedious	to	make	otherwise.	The	same	goes	for	the
community	linked	later.

https://www.reddit.com/r/gamemaker

Quirks	of	the	GameMaker	Language
So	the	first	bit	of	information	will	be	on	the	GameMaker	Language.	Let’s	talk	about	data
types.	Pretty	simple,	right?	They	include,	int,	float,	double,	char,	string,	and	bool.
Well,	GameMaker	actually	only	has	float	and	string.	Integers	are	just	real	numbers,	and
characters	are	just	strings.	There	are	no	Booleans.	true	and	false	are	actually	constants,
and	values	that	count	as	true	are	0.5	and	above,	and	ones	that	count	as	false	are	below
0.5.	It’s	important	to	know	this	in	case	you	write	code	that	relies	on	-1	being	true	rather
than	false	(and	rightfully	so,	as	other	programming	languages	count	0	as	the	only	false
value)	and	then	it	doesn’t	work.

Another	GameMaker	quirk:	=	is	the	same	as	==	when	it	comes	to	conditions.	While	there
is	the	advantage	of	not	having	to	worry	about	forgetting	to	type	the	second	equal	sign,
there	is	the	disadvantage	that	you	lose	the	ability	to	write	assignments	in	your	conditions
like	you	would	be	able	to	do	in	other	languages	such	as	C++.	It’s	not	a	big	flaw	(you	can
still	put	your	assignments	elsewhere	and	have	the	code	work	the	same),	but	now	you
won’t	attempt	this	and,	as	such,	won’t	cause	a	Variable	Get	error	to	occur	when	your	code
would	seem	perfectly	fine.

A	final,	and	very	useful	tip,	is	that	if	you	ever	find	yourself	limited	by	GameMaker’s
features,	you	can	find	extensions	that	expand	upon	GameMaker’s	ability	on	the
GameMaker	forums	(http://gmc.yoyogames.com)	and	on	the	GameMaker	Marketplace
(https://marketplace.yoyogames.com).	People	program	these	extensions	to	put	extra
functions	into	their	projects	so	that	they	aren’t	limited	by	what	GameMaker	can	do.
Furthermore,	if	you	ever	find	yourself	stuck	and	can’t	figure	out	how	to	program
something,	chances	are	that	part	of	what	you	need	or	something	related	might	be	available
in	either	of	the	two	aforementioned	places,	or	in	the	Reddit	link	provided	previously.

http://gmc.yoyogames.com
https://marketplace.yoyogames.com

Unexplained	resources
You’ve	likely	noticed	that	there	are	some	resources	in	GameMaker	that	we	haven’t	even
touched.	These	include:

Shaders:	These	are	small	programs	that	run	on	the	GPU	and	modify	each	pixel	on
your	screen.	These	however,	are	not	written	in	GML,	rather,	they	are	written	in	the
OpenGL	ES	Shading	Language,	which	is	very	syntactically	different	from	GML
(the	shader	language	is	far	closer	to	the	C	language).	Given	their	complexity	and	high
contrast	from	GML,	we	did	not	go	over	them.
Timelines:	These	allow	you	to	specify	exactly	what	will	happen	at	different	steps	in
your	game.	This	makes	it	easy	to	set	up	routines	for	your	objects	to	follow	at
different	times	in	your	game.	Timelines	have	their	own	special	editor;	however,	you
will	find	parts	of	it	very	similar	to	the	regular	object	editor.
Macros:	These	are	also	known	as	constants.	These	are	very	easy	to	use.	If	you	don’t
know	what	a	macro,	or	a	constant,	is,	it’s	a	variable	with	a	value	that	cannot	change.
You	typically	give	your	macros	names	in	uppercase,	and	they	are	commonly	used	for
colors	that	you	create	with	functions	such	as	make_color_rgb(red,	green,	blue).
Your	colors	will	be	constant,	of	course,	so	it’s	easiest	to	have	them	as	macros.
Sometimes,	macros	are	also	used	for	version	numbers,	company	names,	game	names,
or	for	other	information.

Furthermore,	if	you	are	using	the	Professional	Edition	of	GameMaker,	you	might	have
noticed	the	Configuration	section	on	the	top	bar.	These	let	you	specify	different	options
for	each	platform	(explained	next)	that	you	export	to.	In	relation	to	macros,	every
configuration	gets	its	own	set	of	macros	alongside	the	global	macros	you	might	see
labeled	as	All	Configurations.

Export	modules
So	GameMaker	has	different	export	modules	(or	“targets”	or	“platforms”,	as	they	are
sometimes	called),	which	are	just	different	operating	systems	and	hardware	that	you	can
publish	your	game	to.	All	of	them	have	some	differences	(except	for	desktop—you	don’t
really	need	to	worry	about	incompatibilities	and	such	with	those	except	for	a	few
Windows-specific	functions	that	you	likely	won’t	use	anyway).

However,	for	the	others,	there	are	things	you’ll	need	to	learn	via	the	docs	that	weren’t
taught	in	this	book	(such	as	touch	controls	on	mobile	or	the	Steam	API)	simply	since	we
can’t	assume	that	you	even	have	the	Professional	Edition	of	GameMaker:	Studio	in	this
book,	and	Windows/desktop	is	the	easiest	to	start	learning	with,	since	it’s	the	export
already	available	to	you	and	you	don’t	have	to	set	up	compiling	and	debugging	over	your
LAN.	The	Standard	version	of	GameMaker:	Studio	is	free	and	allows	you	to	publish	to	a
windows	executable	or	self-extracting	installer.	The	other	modules	can	be	purchased
separately	(assuming	you	have	the	Professional	Edition	of	GameMaker)	or	as	part	of	the
GameMaker:	Studio	Master	Collection.	This	will	be	required	if	you	would	like	to	publish
your	games	to	iOS,	Android,	Mac,	or	other	platforms.

Some	of	the	modules	also	don’t	support	some	functions	(HTML5	doesn’t	work	with
binary	files	nor	networking).

Summary
Congratulations!	You’ve	finished	this	entire	book	and	can	now	begin	your	life	as	a	game
developer,	or	a	hobbyist	game	developer	(or	perhaps	continue	and	learn	different	game
development	engines).	You	learned	a	lot	of	information	throughout	the	course	of	this	book
—from	input,	to	drawing,	to	menus,	to	networking,	to	the	file	system,	to	particles,	and	a
whole	lot	more!	Quite	a	lot	of	code!	Now	if	you’re	ever	confused	about	something	or
forgot	something,	the	answer	is	probably	right	in	this	book	for	you	to	quickly	reference.	In
addition	to	using	the	book	as	a	reference	you	should	now	be	comfortable	using	the
resources	provided	in	GameMaker:	Studio	as	well	as	the	online	GameMaker	community.

Review	questions
1.	 What	are	the	different	features	available	for	debugging	in	GameMaker:	Studio?
2.	 What	is	the	difference	between	compile-time	and	runtime	errors?
3.	 What	is	the	purpose	of	a	timeline?
4.	 What	are	shaders?

Quick	drills
1.	 Purposefully,	create	bugs	in	a	project	that	would	give	compile-time	and	runtime

errors	and	see	what	GameMaker	tells	you	about	them.
2.	 Visit	the	GameMaker	Community	(http://gmc.yoyogames.com/)	and	become	a

member	of	the	forums.	At	this	point,	you	should	be	able	to	assist	others	with	issues
they	might	have	with	GML	and	GameMaker:	Studio,	as	well	as	be	assisted	by	the
people	in	the	community!

3.	 Here	is	some	flawed	code;	figure	out	where	the	problems	are:

5	=	foo;

foo	=	1;

bar	=	foobar;

While(true)	{}

for	(var	i	=	0;	i	<	10;	++i)	foo[i]	=	0;

bar	=	foo[10];

--

foo	=	"bar;

http://gmc.yoyogames.com/

Index
A

ASCIITable
URL	/	Putting	in	a	scoring	system

Aseprite
about	/	Sprite	animation
URL	/	Sprite	animation

aspect	ratio	/	The	sprite
Asynchronous	Networking	event

about	/	Our	Asynchronous	Networking	event
connection,	handling	/	Connection
disconnection,	handling	/	Disconnection
data,	handling	/	Handling	data,	Our	data	handling	script

B
backgrounds	/	Backgrounds
basic	collision	checking	/	Walls
Boss	AI

programming	/	Programming	a	Boss	AI
buffer

about	/	Networking	terminology

C
client

in	client/server	system	/	The	client	in	your	client/server	system
client/server	multiplayer	networking

about	/	Client/server	multiplayer	networking
IP	address,	printing	of	server	on	screen	/	Printing	the	server’s	IP	address	and
port	on	a	screen
port,	printing	of	server	on	screen	/	Printing	the	server’s	IP	address	and	port	on	a
screen
actual	server,	creating	/	Creating	the	actual	server

client/server	networking
about	/	Networking	terminology

collision	mask	/	Walls
compile-time	errors

about	/	Compile-time	errors
constants

about	/	Unexplained	resources
controller	object	/	Damaging	the	player
customizable	controls

about	/	Customizable	controls
control	configurations,	saving	/	Saving	control	configurations

D
2D	arrays

using,	in	programming	/	2D	arrays
datagram

about	/	Networking	terminology
data	structure	(DS)	/	Textboxes
debugger

about	/	The	GameMaker:	Studio	interface
debugging

about	/	Debugging
debugging,	features

compile-time	errors	/	Compile-time	errors
runtime	errors	/	Runtime	errors
debugger	/	The	GameMaker:	Studio	debugger
functions	/	Debugging	functions

debugging	console	engine
reference	link	/	Debugging

debugging	functions
about	/	Debugging	functions

depth	/	Coordinate	planes	in	GameMaker
documentation,	GameMaker*	Studio

about	/	GameMaker:	Studio	documentation
reference	link	/	GameMaker:	Studio	documentation

E
endless	platformer

creating	/	Creating	an	endless	platformer
player,	bouncing	/	Bouncing	and	movement
player	movement	/	Bouncing	and	movement
death,	incorporating	into	game	/	Death	and	enemies
enemies,	incorporating	into	game	/	Death	and	enemies
random	spawning	/	Random	spawning
menus,	implementing	/	Menus	and	textboxes,	Menus
textboxes,	implementing	/	Textboxes

enemies,	Escape	the	Dungeon	game
about	/	Enemies
moving	/	Making	your	enemies	move
player,	damaging	/	Damaging	the	player

Escape	the	Dungeon	game
creating	/	Creating	your	Escape	the	Dungeon	game
playable	character	/	The	playable	character
walls	/	Walls
enemies	/	Enemies
working	on	player’s	shooting	mechanics	/	Making	the	player	shoot
working	on	enemy’s	shooting	mechanics	/	Making	the	enemies	shoot
keys	and	locks,	advancing	to	next	room	/	Keys	and	locks	and	advancing	to	the
next	room

Escape	the	Dungeon	game,	in	GML
about	/	Remaking	Escape	the	Dungeon	in	the	GML
sprites,	remaking	/	Remaking	the	sprites
player	object,	remaking	/	Remaking	the	player	object
events	/	Understanding	the	four	events
player	object,	coding	/	Starting	to	code	your	player	object
player,	moving	/	Making	the	player	move
subimage,	modifying	/	Changing	the	subimage
collisions	/	Collisions
enemies,	coding	/	Coding	the	enemies
random	seeds,	creating	/	Random	seeds
health	system	/	Health	and	lives	system
lives	system	/	Health	and	lives	system
health	variables,	displaying	/	Displaying	health	and	lives
lives	variables,	displaying	/	Displaying	health	and	lives
invincibility	/	Invincibility
shooting	capabilities	/	Shooting
sounds	/	Sounds
key	objects,	creating	/	Keys	and	locks
lock	objects,	creating	/	Keys	and	locks

scripts	/	Scripts
example	project

about	/	An	example	project
naming	convention	/	Naming	convention	–	resource	prefixes
sprite,	drawing	/	Drawing	the	sprite
object,	creating	/	Creating	an	object
coordinate	planes	/	Coordinate	planes	in	GameMaker
room,	creating	/	Creating	a	room
game,	testing	/	Testing	your	game

explosion	particle
creating	/	Particles

export	modules
about	/	Export	modules

G
GameMaker

resources	/	Unexplained	resources
GameMaker*	Player

about	/	Choosing	your	version
GameMaker*	Studio

version,	selecting	/	Choosing	your	version
reference	link,	for	licenses	/	Choosing	your	version
interface	/	The	GameMaker:	Studio	interface
documentation	/	GameMaker:	Studio	documentation

GameMaker*	Studio,	for	Microsoft	Windows
download	link	/	Choosing	your	version

GameMaker*	Studio	debugger
about	/	The	GameMaker:	Studio	debugger

GameMaker	community
reference	link	/	Helpful	information	on	GameMaker

GameMaker	forums
reference	link	/	Quirks	of	the	GameMaker	Language

GameMaker	Language
quirks	/	Quirks	of	the	GameMaker	Language

GameMaker	Marketplace
reference	link	/	Quirks	of	the	GameMaker	Language

H
highscore

saving	/	Saving	and	loading	a	highscore
loading	/	Saving	and	loading	a	highscore

I
INI	(initialization)

about	/	Saving	and	loading	a	highscore
INI	file	encryption

about	/	INI	file	encryption
interface,	GameMaker*	Studio

about	/	The	GameMaker:	Studio	interface
Internet	Assigned	Numbers	Authority	(IANA)

about	/	Printing	the	server’s	IP	address	and	port	on	a	screen
IP	address

about	/	Networking	terminology
IP	address,	of	server

printing,	on	screen	/	Printing	the	server’s	IP	address	and	port	on	a	screen

J
JoyToKey

URL	/	Integrating	Xbox	gamepad	support

K
key-related	events

differences	/	The	object
keyboard	ghosting

about	/	Shooting
reference	link	/	Shooting

L
legacy	gamepad	support

about	/	Legacy	gamepad	support
licenses,	GameMaker*	Studio

reference	link	/	Choosing	your	version

M
macros

about	/	Unexplained	resources
modern	gamepad	support

about	/	Modern	gamepad	support
movement

programming	/	Programming	the	movement

N
networking	terminology

buffer	/	Networking	terminology
packet	/	Networking	terminology
datagram	/	Networking	terminology
Transmission	Control	Protocol	(TCP)	/	Networking	terminology
User	Datagram	Protocol	(UDP)	/	Networking	terminology
socket	/	Networking	terminology
IP	address	/	Networking	terminology
port	/	Networking	terminology
client/server	networking	/	Networking	terminology

O
OpenGL	ES	Shading	Language

about	/	Unexplained	resources

P
packet

about	/	Networking	terminology
particle	emitter

setting	up	/	Particles
particles

about	/	Particles
creating	/	Particles

physics	engine,	in	regular	game
about	/	The	physics	engine	in	a	regular	game

physics	game
about	/	A	physics	game

playable	character,	Escape	the	Dungeon	game
about	/	The	playable	character
sprite,	creating	/	The	sprite
object	/	The	object

port
about	/	Networking	terminology

port,	of	server
printing,	on	screen	/	Printing	the	server’s	IP	address	and	port	on	a	screen

precise	collision	checking	/	Walls

R
random	spawning

about	/	Random	spawning
resources,	GameMaker

shaders	/	Unexplained	resources
timelines	/	Unexplained	resources
macros	/	Unexplained	resources

room	speed	/	Creating	a	room
runtime	errors

about	/	Runtime	errors

S
scoring	system

about	/	Putting	in	a	scoring	system
highscore,	saving	/	Saving	and	loading	a	highscore
highscore,	loading	/	Saving	and	loading	a	highscore

scrolling	platformer
making	scroll	/	Making	your	scrolling	platformer	scroll

scrolling	shooter	game
main	ship,	creating	/	Creating	the	main	ship
enemies,	creating	/	Creating	the	enemies
parenting,	in	objects	/	Parenting	in	objects
random	enemy	spawning	/	Random	enemy	spawning
Boss	AI,	programming	/	Programming	a	Boss	AI

shaders
about	/	Unexplained	resources

socket
about	/	Networking	terminology

sounds	/	Sounds
sprite

creating	/	The	sprite
spritefont

about	/	Putting	in	a	scoring	system
sprites

animating	/	Sprite	animation
spritesheet

importing	/	Spritesheet	importing
subimage	/	Drawing	the	sprite

T
timelines

about	/	Unexplained	resources
Transmission	Control	Protocol	(TCP)

about	/	Networking	terminology

U
User	Datagram	Protocol	(UDP)

about	/	Networking	terminology

V
version,	GameMaker*	Studio

selecting	/	Choosing	your	version
virtual	key	/	Making	the	player	move

W
walls,	Escape	the	Dungeon	game

about	/	Walls
Wireshark

URL	/	The	client	in	your	client/server	system

X
Xbox	gamepad	support

integrating	/	Integrating	Xbox	gamepad	support
legacy	gamepad	support	/	Legacy	gamepad	support
modern	gamepad	support	/	Modern	gamepad	support

Xpadder
URL	/	Integrating	Xbox	gamepad	support

Y
YoYo	Games

reference	link,	for	guide	/	Testing	your	game

Z
zero-based	indexing	/	Drawing	the	sprite

	GameMaker Programming By Example
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Introduction to GameMaker: Studio
	Choosing your version
	The GameMaker: Studio interface
	GameMaker: Studio documentation
	An example project
	Naming convention – resource prefixes
	Drawing the sprite
	Creating an object
	Coordinate planes in GameMaker
	Creating a room
	Testing your game
	Summary
	Review questions
	Quick drills
	2. Your First Game – Escape the Dungeon
	Creating your Escape the Dungeon game
	The playable character
	The sprite
	The object
	Walls
	Enemies
	Making your enemies move
	Damaging the player
	Making the player and enemies shoot
	Making the player shoot
	Making the enemies shoot
	More resources
	Backgrounds
	Sounds
	Keys and locks and advancing to the next room
	Summary
	Review questions
	Quick drills
	3. Introducing the GameMaker Language
	Remaking Escape the Dungeon in the GML
	Remaking the sprites
	Remaking the player object
	Understanding the four events
	Starting to code your player object
	Making the player move
	Changing the subimage
	Collisions
	Coding the enemies
	Random seeds
	Health and lives system
	Displaying health and lives
	Invincibility
	Shooting
	Sounds
	Keys and locks
	Scripts
	Summary
	Review questions
	Quick drills
	4. Fun with Infinity and Gravity – An Endless Platformer
	Creating an endless platformer
	Bouncing and movement
	Death and enemies
	Random spawning
	2D arrays
	Menus and textboxes
	Menus
	Textboxes
	Summary
	Review questions
	Quick drills
	5. Saving and Loading Data
	Putting in a scoring system
	Saving and loading a highscore
	INI file encryption
	Customizable controls
	Saving control configurations
	Summary
	Review questions
	Quick drills
	6. A Multiplayer Sidescrolling Platformer
	Sprite animation
	Spritesheet importing
	Programming the movement
	Making your scrolling platformer scroll
	Client/server multiplayer networking
	Networking terminology
	Printing the server's IP address and port on a screen
	Creating the actual server
	Our Asynchronous Networking event
	Connection
	Disconnection
	Handling data
	Our data handling script
	The client in your client/server system
	Integrating Xbox gamepad support
	Legacy gamepad support
	Modern gamepad support
	Summary
	Review questions
	Quick drills
	7. Programming a Scrolling Shooter
	Creating the main ship
	Creating the enemies
	Parenting in objects
	Random enemy spawning
	Programming a Boss AI
	Particles
	Summary
	Review questions
	Quick drills
	8. Introducing the GameMaker: Studio Physics Engine
	A physics game
	The physics engine in a regular game
	Summary
	Review questions
	Quick drills
	9. Wrapping Up
	Debugging
	Compile-time errors
	Runtime errors
	The GameMaker: Studio debugger
	Debugging functions
	Helpful information on GameMaker
	Quirks of the GameMaker Language
	Unexplained resources
	Export modules
	Summary
	Review questions
	Quick drills
	Index

