

GameMaker	Cookbook

Table	of	Contents

GameMaker	Cookbook

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	Subscribe?

Free	Access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Sections

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	Game	Plan	–	Creating	Basic	Gameplay

Introduction

Animating	a	sprite

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Moving	your	player

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Adding	projectiles

Getting	ready

How	to	do	it…

How	it	works…

See	also

Creating	hazards

Getting	ready

How	to	do	it…

How	it	works…

Programming	basic	enemies

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Setting	up	player	health	and	lives

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Creating	scoring	mechanism

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Creating	win/lose	scenarios

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

2.	It’s	Under	Control	–	Exploring	Various	Control	Schemes

Introduction

Keyboard	controls

Mouse	controls

Gamepad	controls

Touch	controls

Tilt	controls

Creating	2D	movement

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Adding	a	Run	button

Getting	ready

How	to	do	it…

How	it	works…

Making	your	character	jump

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Using	a	point-and-click	interface

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Following	the	cursor

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Setting	up	a	controller

Getting	ready

How	to	do	it…

How	it	works…

Utilizing	analogue	joystick	acceleration

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Adding	tap	control

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Using	swipes

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Moving	characters	or	objects	by	tilting	a	device

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

3.	Let’s	Move	It	–	Advanced	Movement	and	Layout

Introduction

Drag	and	drop	items/characters

Grid-based	movements

Paths

Multiple	inputs

Dragging	onscreen	objects

Getting	ready

How	to	do	it

How	it	works

Dragging	objects	on	a	grid

Getting	ready

How	to	do	it

How	it	works

Moving	a	character	on	a	grid

Getting	ready

How	to	do	it

How	it	works

There’s	more…

Setting	a	path

Getting	ready

How	to	do	it

How	it	works

There’s	more

Creating	enemy	pathfinding

Getting	ready

How	to	do	it

How	it	works

There’s	more…

See	also

Controlling	a	character	with	a	mouse	and	keyboard

Getting	ready

How	to	do	it

How	it	works

There’s	more

See	also

4.	Let’s	Get	Physical	–	Using	GameMaker’s	Physics	System

Introduction

Physics	engine	101

Gravity	and	force

Physics	in	the	environment

Advanced	physics-based	objects

Creating	objects	that	use	physics

Getting	ready

How	to	do	it

How	it	works

Alternating	gravity

Getting	ready

How	to	do	it

How	it	works

There’s	more

Applying	force	via	magnets

Getting	ready

How	to	do	it

How	it	works

Creating	a	moving	platform

Getting	ready

How	to	do	it

How	it	works

Making	a	rope

Getting	ready

How	to	do	it

How	it	works

There’s	more

5.	Now	Hear	This!	–	Music	and	Sound	Effects

Introduction

Audio	basics

Sound	effects

3D	audio

Importing	and	playing	background	music

Getting	ready

How	to	do	it

How	it	works

There’s	more

Implementing	situational	sound	effects

Getting	ready

How	to	do	it

How	it	works

There’s	more

Adding	sound	emitters	and	listeners

Getting	ready

How	to	do	it

How	it	works

There’s	more

Adjusting	the	listener	orientation

Getting	ready

How	to	do	it

How	it	works

Replicating	the	Doppler	effect	with	emitters

Getting	ready

How	to	do	it

How	it	works

6.	It’s	All	GUI!	-	Creating	Graphical	User	Interface	and	Menus

Introduction

GUI	basics

Game	screens	and	menus

Setting	up	a	basic	HUD	with	code

Getting	ready

How	to	do	it

How	it	works

Making	your	HUD	scalable

Getting	ready

How	to	do	it

How	it	works

Using	the	GUI	layer	in	full	screen	mode	with	views

Getting	ready

How	to	do	it

How	it	works

There’s	more

Adding	a	title	screen

Getting	ready

How	to	do	it

How	it	works

Creating	splash	pages

Getting	ready

How	to	do	it

How	it	works

There’s	more

Adding	a	game	over	screen

Getting	ready

How	to	do	it

How	it	works

7.	Saving	the	Day	–	Saving	Game	Data

Introduction

Background	data

Save	systems

Creating	game	settings

Getting	ready

How	to	do	it

How	it	works

There’s	more

Making	a	pause	screen

Getting	ready

How	to	do	it

How	it	works

There’s	more

Saving	player	selection	and	score

Getting	ready

How	to	do	it

How	it	works

There’s	more

Encrypting	and	decrypting	save	data

Getting	ready

How	to	do	it

How	it	works

8.	Light	‘em	up!	–	Enhancing	Your	Game	with	Lighting	Techniques

Introduction

Basic	lighting

Light	transitions

Light	effects

Creating	a	room	with	a	light	switch

Getting	ready

How	to	do	it

How	it	works

There’s	more

Lighting	objects	with	a	spot	light

Getting	ready

How	to	do	it

How	it	works

There’s	more

Changing	day	to	night

Getting	ready

How	to	do	it

How	it	works

There’s	more

Creating	a	flashlight

Getting	ready

How	to	do	it

How	it	works

Making	a	flickering	torch

Getting	ready

How	to	do	it

How	it	works

9.	Particle	Man,	Particle	Man	–	Adding	Polish	to	Your	Game	with	Visual	Effects	and
Particles

Introduction

Particles

Game	feedback

Using	particles	to	simulate	kicking	up	dust

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Simulating	rainfall

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Creating	an	explosion

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Adding	screen-shake

Getting	ready

How	to	do	it…

How	it	works…

Using	slow	motion

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

10.	Hello,	World	–	Creating	New	Dimensions	of	Play	Through	Networking

Introduction

Basic	networking

Online	play

Connecting	a	client	to	a	server

Getting	ready

How	to	do	it…

How	it	works…

Setting	up	asynchronous	play	for	a	turn-based	game

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Index

GameMaker	Cookbook

GameMaker	Cookbook
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	December	2015

Production	reference:	1151215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78439-984-9

www.packtpub.com

http://www.packtpub.com

Credits
Author

Brandon	Gardiner

Reviewers

Ryan	Laley

John	M.	Walker,	PE

Commissioning	Editor

Nadeem	N.	Bagban

Acquisition	Editor

Kirk	D’costa

Content	Development	Editor

Siddhesh	Salvi

Technical	Editor

Madhunikita	Sunil	Chindarkar

Copy	Editor

Rashmi	Sawant

Project	Coordinator

Nidhi	Joshi

Proofreader

Safis	Editing

Indexer

Hemangini	Bari

Production	Coordinator

Shantanu	N.	Zagade

Cover	Work

Shantanu	N.	Zagade

About	the	Author
Brandon	Gardiner	is	a	game	developer	and	designer	living	out	his	love	of	video	games.
Though	he	started	his	foray	into	games	through	3D	art	and	level	design,	he	always	kept	a
notebook	of	ideas	for	games	and	game	mechanics	he	wished	to	see.	When	he	discovered
GameMaker:	Studio,	he	found	that	he	could	bring	these	ideas	to	life.

He	is	a	graduate	of	the	first	iteration	of	the	game	development	program	at	Toronto’s
George	Brown	College.	In	college,	he	worked	as	an	artist	and	designer	on	several	game
projects	for	outside	companies,	including	tie-ins	for	children’s	television	shows	and
educational	titles.	After	graduating,	he	founded	MechaBee	Studios	where,	being	the	sole
developer	of	mobile	and	PC	games,	he	is	a	jack	of	all	trades.

He	also	writes	a	blog	at	http://www.gamemakerhq.com,	through	which	he	hopes	to	build	a
resource	for	other	independent	developers.	He	lives	with	his	wife	in	Toronto	where	he	is	a
veteran	of	the	annual	Toronto	Game	Jam	(tojam.ca),	an	active	member	of	the	International
Game	Developers	Association.

http://www.gamemakerhq.com
http://tojam.ca

About	the	Reviewers
Ryan	Laley	is	an	independent	games	designer.	He	has	been	a	lecturer	in	video	games
design	at	South	Essex	College	at	further	and	higher	education	levels	for	over	5	years.	He
has	been	using	GameMaker:	Studio	professionally	during	those	years,	and	he	continues	to
develop	and	publish	games	using	it.	He	began	his	teaching	career	after	graduating	from
university,	and	since	then,	he	has	covered	every	aspect	of	games	development	in	his
classes,	including	2D	and	3D.

In	his	spare	time,	he	independently	develops	his	own	games	and	publishes	them	himself
under	the	studio	name	of	Friendly	Fire	games.	His	most	recent	projects	focus	on	mobile
phone	platforms,	with	his	latest	release	Blobb	in	2015.	His	future	projects	will	continue	to
expand	on	mobile	platforms	and	eventually	onto	PCs.

I’d	like	to	thank	Jade	for	her	continued	support	and	allowing	games	to	continue	to	be	more
than	just	a	fun	past-time,	but	a	career	as	well.

John	M.	Walker,	PE	is	a	licensed	professional	engineer	in	industrial	engineering	and	is
currently	a	licensed	full-time	teacher	in	computer	science	and	programing	at	Cleveland
High	School	in	Portland,	Oregon.	He	has	been	teaching	full	time	for	the	last	15	years	for
High	School	and	Regional	Professional	Higher	Ed	conferences.

He	has	worked	for	more	than	20	years	as	an	information	technology	manager	for	high-
technology	firms	dealing	with	systems	administration	and	networking	architecture	and
engineering.	His	favorite	position	was	director	of	technology	for	the	Portland	Trail
Blazers,	while	designing	and	constructing	the	Moda	Center.

He	has	also	reviewed	GameMaker	Essentials,	Packt	Publishing.

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	Subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	Access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
Since	1999,	GameMaker:	Studio	has	enabled	fledgling	and	experienced	developers	alike
to	help	create	video	games	quickly	and	easily.	In	the	years	since	its	initial	release	(as	a
program	called	Animo),	GameMaker	has	grown	and	evolved	into	a	viable	commercial
game	engine	that	has	helped	developers	release	games	for	PC,	Mac,	mobile	devices,	and
even	the	Microsoft	Xbox	and	Sony	PlayStation	family	of	consoles.

During	its	progression,	GameMaker	has	changed	in	many	ways,	adding	new	features	and
abilities	to	be	taken	advantage	of	by	developers	around	the	world.	Though	these	features
may	be	out	of	reach	for	new	users,	the	goal	of	this	book	is	to	familiarize	beginners	and
bring	such	elements	within	reach.	This	book	is	not	just	a	how-to	manual,	it	is	an	answer	to
the	question	“What	can	GameMaker	do	for	me?”

By	reading	this	book	and	completing	the	recipes	therein,	you	will	gain	a	greater
understanding	of	GameMaker’s	capabilities	as	well	as	start	them	on	the	path	to	unlock
their	full	potential.

What	this	book	covers
Chapter	1,	Game	Plan	–	Creating	Basic	Gameplay,	shows	you	how	to	create	the	basic
elements	of	a	game.

Chapter	2,	It’s	Under	Control	–	Exploring	Various	Control	Schemes,	helps	you	figure	out
how	to	implement	user	controls	for	a	variety	of	devices.

Chapter	3,	Let’s	Move	It	–	Advanced	Movement	and	Layout,	teaches	you	more	advanced
ways	to	move	players	and	non-player	characters	alike.

Chapter	4,	Let’s	Get	Physical	–	Using	GameMaker’s	Physics	System,	introduces	you	to	the
physics	system	and	demonstrates	how	GameMaker	handles	gravity,	friction,	and	so	on.
You	will	also	learn	how	to	implement	this	system	to	make	more	realistic	games.

Chapter	5,	Now	Hear	This!	–	Music	and	Sound	Effects,	helps	you	pick	up	the	ins	and	outs
of	GameMaker’s	audio	system.

Chapter	6,	It’s	All	GUI!	–	Creating	Graphical	User	Interface	and	Menus,	discusses	the
most	important	element	of	the	Graphical	User	Interface	(GUI).

Chapter	7,	Saving	the	Day	–	Saving	Game	Data,	discusses	how	GameMaker	handles	how
to	save	data	as	well	as	its	various	uses.

Chapter	8,	Light	‘em	up!	–	Enhancing	Your	Game	with	Lighting	Techniques,	helps	you
understand	how	GameMaker’s	surfaces	can	add	lighting	effects	to	your	game.

Chapter	9,	Particle	Man,	Particle	Man	–	Adding	Polish	to	Your	Game	with	Visual	Effects
and	Particles,	shows	you	how	GameMaker	handles	particles	and	how	you	can	draw
players	in	with	simple	effects.

Chapter	10,	Hello,	World	–	Creating	New	Dimensions	of	Play	Through	Networking,
teaches	you	how	to	create	multiplayer	games	with	GameMaker’s	networking	capabilities.

What	you	need	for	this	book
For	this	book,	you	will	require	the	following	software:

Windows	XP	or	above
512	MB	RAM
128	MB	graphics
A	screen	resolution	of	1024×600
An	Internet	connection	for	some	features

For	a	detailed	platform-specific	list	of	requirements,	refer	to
http://www.yoyogames.com/studio/system-requirements.

http://www.yoyogames.com/studio/system-requirements

Who	this	book	is	for
This	book	is	intended	for	GameMaker:	Studio	enthusiasts	who	are	looking	to	add	more
substance	and	improve	their	content.	If	you	know	your	way	around	the	program	and	have
some	basic	GML	skills	but	want	to	take	them	further,	then	this	book	is	for	you.

Sections
In	this	book,	you	will	find	several	headings	that	appear	frequently	(Getting	ready,	How	to
do	it,	How	it	works,	There’s	more,	and	See	also).

To	give	clear	instructions	on	how	to	complete	a	recipe,	we	use	these	sections	as	follows:

Getting	ready
This	section	tells	you	what	to	expect	in	the	recipe,	and	describes	how	to	set	up	any
software	or	any	preliminary	settings	required	for	the	recipe.

How	to	do	it…
This	section	contains	the	steps	required	to	follow	the	recipe.

How	it	works…
This	section	usually	consists	of	a	detailed	explanation	of	what	happened	in	the	previous
section.

There’s	more…
This	section	consists	of	additional	information	about	the	recipe	in	order	to	make	the	reader
more	knowledgeable	about	the	recipe.

See	also
This	section	provides	helpful	links	to	other	useful	information	for	the	recipe.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“Create	a
sprite	and	name	it	spr_enemy_patrol.”

A	block	of	code	is	set	as	follows:

x1:	-16

y1:	-24

x2:	16

y2:	-34

back	color:	black

bar	color:	green	to	red

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Click	Add	Event,
then	Other,	and	select	Animation	End.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from
https://www.packtpub.com/sites/default/files/downloads/9849OS_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/9849OS_ColorImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Game	Plan	–	Creating	Basic
Gameplay
In	this	chapter,	we’ll	cover	the	following:

Animating	a	sprite
Moving	your	player
Adding	projectiles
Creating	hazards
Programming	basic	enemies
Setting	up	player	health	and	lives
Creating	a	scoring	mechanism
Creating	win/lose	scenarios

Introduction
GameMaker	is	a	great	tool	for	people	interested	in	various	aspects	of	game	development.
It	can	be	used	to	quickly	create	simple,	playable	games,	or	even	churn	out	hits	like	Hotline
Miami	and	Gunpoint.	Want	to	take	part	in	a	game	jam?	GameMaker	can	save	you	hours	of
coding,	and	as	many	headaches.	Have	a	game	mechanic	you	want	to	visualize?
GameMaker	is	great	for	prototyping;	it	can	do	that.	Well,	you	will	have	to	do	the	work.
GameMaker	will	just	make	it	faster	and	easier.

Let’s	take	a	look	at	just	how	quickly	and	easily	we	can	make	a	game	using	GameMaker’s
drag-and-drop	interface.

Animating	a	sprite
Animated	sprites	can	be	made	by	importing	frames	from	a	sprite	sheet	or	by	creating
individual	images	in	a	3rd	party	program.	What	happens,	though,	if	you	don’t	have	access
to	these	methods?	GameMaker	includes	its	own	image	editor	that,	while	not	as	versatile	as
programs	like	Photoshop,	has	received	some	recent	upgrades	that	can	help	you	create
some	decent	animations.

Getting	ready
Let’s	make	a	player	character	sprite	with	a	simple	walk	cycle.	If	you	haven’t	already,	now
would	be	a	good	time	to	open	GameMaker,	start	a	new	project,	and	create	a	sprite.	Name
the	sprite	spr_player_walk.

Tip
Using	descriptive	names	like	this	allows	you	to	categorize	your	assets,	which	makes
finding	the	right	asset	much	easier.

How	to	do	it…
As	mentioned	before,	you	can	use	3rd	party	art	programs	to	create	your	own	sprites	and
import	them	to	GameMaker.	If	you’re	more	interested	in	just	making	something	that
moves,	I’ve	included	the	files	necessary	to	create	an	animated	sprite;	simply	load	them
from	sprite	properties	and	you’re	almost	good	to	go.

With	that	out	of	the	way,	let’s	look	at	using	GameMaker’s	built-in	Sprite	Editor.

1.	 With	Sprite	Properties	open,	click	on	Edit	Sprite	to	open	the	Sprite	Editor.
2.	 Click	the	Create	a	New	Sprite	button	near	the	top	left;	the	icon	looks	like	a	blank

document.	The	default	size	for	a	sprite	is	32×32	(pixels)	but	let’s	change	that	to
64×64.

3.	 Click	on	Animation	and	select	Set	Length	from	the	menu.	Set	this	animation	to	12
frames.	You	should	now	have	12	blank	images	beginning	with	image	0	and	ending
with	image	11.	The	numbering	system	here	is	important	when	it	comes	to	coding,	so
keep	that	in	mind.

4.	 If	you	double-click	on	the	first	image	the	Image	Editor	will	open;	this	is	where	you’ll
draw	and	edit	your	frames,	thus	animating	the	sprite.	At	first	glance,	the	editor	is
reminiscent	of	simple	bitmap	editors	that	allow	you	to	paint	images	using	your	mouse
or	tablet.	If	you	open	the	Image	menu,	however,	you’ll	find	that	you	have	access	to
more	advanced	options	such	as	edge	smoothing,	alpha	and	opacity	controls,	and	even
shadows.

5.	 If	you	open	the	View	menu,	you’ll	find	you	can	toggle	the	visibility	of	a	grid	over	the
image.	Each	space	in	this	grid	represents	one	pixel	in	the	image,	making	this	tool
perfect	for	creating	pixel	art	in	GameMaker.	Using	this	and	other	tools	available,
here’s	the	first	frame	I	made	for	our	character:

The	Image	Editor	comes	with	another	feature	that	is	great	for	animating	your	sprites:
Onion	Skin.	Onion	Skin	allows	you	to,	while	working	on	one	frame	of	an	animation,
view	the	following	and	preceding	frames.	You	can	set	how	many	frames	you	want	visible,
both	backwards	and	forwards,	and	use	the	Onion	Skin	value	to	change	the	opacity	of
those	frames	to	alter	their	visibility	while	working.	This	can	help	you	paint	each	form	and
make	the	animation	more	fluid	because	you	can	see	where	you’ve	been	and	where	you’re
going.	A	useful	addition	to	this	is	the	Scratch	Page.	Simply	hit	the	J	key	to	be	taken	to
and	from	a	frame	that	doesn’t	actually	exist	in	your	animation,	but	allows	you	to	cut	and
paste	image	elements.	It’s	a	big	help	when	you	want	to	move	separate	pieces	of	an	image
from	one	frame	to	another.

Note
The	Scratch	Page	looks	the	same	as	the	standard	Image	Editor	window	and	holds
whatever	you	paste	in	it.

There	you	have	it;	you’ve	animated	a	sprite	for	use	in	a	game.	That’s	a	great	first	step,	but
we’re	not	finished.	If	you	use	this	sprite	on	your	character	it	will	appear	as	though	he’s
walking	at	all	times.	I	don’t	know	about	you,	but	that’s	not	what	I	want	to	see	in	a	game.
You	could	animate	an	idle	sprite,	which	is	ideal	for	a	polished	look,	but	we’re	going	to
speed	this	up	by	using	a	single-frame	idle	pose.

1.	 Open	up	Sprite	Properties	for	spr_player_walk	and	click	Edit	Sprite.
2.	 Select	whichever	frame	you	feel	looks	best	as	an	idle	pose	(I	chose	the	first	frame).
3.	 Click	Edit,	then	click	Copy.
4.	 Close	Sprite	Properties,	create	a	new	sprite,	and	call	it	spr_player_idle.
5.	 Click	Edit	Sprite,	press	Ctrl	+	V	on	your	keyboard	to	paste	the	copied	frame,	and

close	the	editor	and	Sprite	Properties	window.

Done.	You	now	have	a	second	sprite	for	a	single	character.

How	it	works…
As	we’ve	just	seen,	it’s	possible	to	create	fully	animated	characters	without	the	use	of	a
3rd	party	program.	While	other	programs	give	you	many	more	options	not	found	in
GameMaker,	such	as	layers,	you	still	have	access	to	the	fundamentals	you	need	to	get	the
job	done.	The	editor	is	great	for	pixel	art	and	Onion	Skin	makes	animating	a	lot	smoother
by	showing	you	adjacent	frames.

There’s	more…
Now,	we’ve	only	made	sprites	for	two	states	of	our	character’s	being:	idle	and	walking
right.	There	are	many	other	sprites	you	may	want	to	consider	if	you’re	looking	to	build	a
full	game.	Think	about	other	games	you’ve	played;	how	many	different	movements	and
poses	do	they	incorporate?	Walking,	running,	jumping,	rolling,	punching,	shooting,	and	so
on,	you	get	the	idea.	When	designing	a	game,	any	actions	you	intend	for	your	player
character	should	be	listed	and	planned	out	because	you	need	to	consider	just	how	many
sprites	you’ll	need.	Will	they	be	animated?	Will	they	look	different	depending	on	what
direction	the	player	is	facing,	or	can	they	be	mirrored?	How	long	will	it	take	for	the
animation	to	play	out?	These	are	all	important	questions,	but	they	get	easier	to	answer
with	each	game	you	make.

See	also
Sprites	used	for	GUI	will	be	discussed	in	Chapter	6,	It’s	All	GUI!	–	Creating	Graphical
User	Interface	and	Menus,	while	sprite-based	VFX	are	used	in	Chapter	9,	Particle	Man,
Particle	Man	–	Adding	Polish	to	Your	Game	with	Visual	Effects	and	Particles.

Moving	your	player
There	are	many	different	types	of	games	with	different	visuals	and	play	styles.	Some
games	are	devoid	of	a	visible	player	character	but	most,	especially	2D	games,	have	the
player	controlling	a	sprite	or	3D	model	onscreen.	We’re	going	to	take	a	quick	look	at
putting	a	character	in	front	of	the	player	that	he/she	can	control.

Getting	ready
You’ve	animated	some	sprites,	but	animated	sprites	won’t	do	you	any	good	without	a
character	to	which	they	can	be	applied.	Create	a	new	object	and	call	it	obj_player.	Under
Sprite,	click	the	menu	icon	and	select	spr_player_idle.

How	to	do	it…
1.	 In	obj_player‘s	Object	Properties	window,	click	Add	Event,	then	click	Keyboard

and	select	<Right>	from	the	menu.	This	event	will	allow	you	to	make	things	happen
while	you’re	pressing	the	right	arrow	key	on	your	keyboard.	What	we	want	to	have
happen	is	for	our	player	character	to	move	to	the	right	and	to	have	his	right	facing
walk	cycle	play	while	he	is	doing	it,	so	let’s	do	it.

2.	 Under	the	Main1	tab	on	the	right	side	of	the	Object	Properties	window,	drag
Change	Sprite	(it	looks	like	a	green	Pac-Man)	and	drop	it	in	the	Actions	box.

3.	 The	actions	we	want	apply	to	obj_player,	so	select	Applies	to	Self.
4.	 Since	we	want	to	use	spr_player_walk	in	this	case,	select	the	sprite	from	the	drop-

down	menu.
5.	 Subimage	defaults	to	0,	but	this	tells	GameMaker	that	we	only	want	to	show	the	first

frame	of	the	animation.	Since	we	want	to	have	the	entire	animation	play,	you’ll	need
to	set	this	value	to	-1,	which	tells	GameMaker	to	ignore	the	subimage	count.

6.	 The	sprite’s	play	speed	can	be	altered	by	setting	the	Speed	option	to	a	value	between
0	and	1.	Set	the	value	to	0.8	so	that	the	walk	cycle	will	play	at	80	percent	of	the
room’s	frame	rate	and	close	this	box.

We	want	the	player	character	to	move	right	when	the	right	arrow	key	is	pressed	but
we	don’t	want	him	to	simply	walk	right	off	the	screen.	How	mad	would	you	be	if	the
character	you	were	controlling	simply	gave	up,	said	That’s	it,	I’m	out	of	here!	and
disappeared	off	screen?	Sounds	like	an	entirely	frustrating	experience.	Since	we	don’t
want	this	to	happen,	let’s	make	sure	it	can’t.	For	that,	you’ll	need	to	add	a	variable
check	before	your	character	goes	anywhere.

7.	 Under	the	Control	tab,	drag	and	drop	Test	Variable	to	the	Actions	box.
8.	 We	want	to	test	the	variable	x,	which	is	the	player’s	x	coordinate	or	horizontal

position.	Since	we	want	to	the	player	to	stay	on-screen,	we’ll	set	the	value	to
room_width-16	and	the	operation	will	be	less	than.

9.	 Close	the	Test	Variable	box	and	under	the	Move	tab,	drag	and	drop	Jump	to
Position	to	the	Actions	box.

10.	 Set	x	to	4,	leave	y	as	0,	and	make	sure	Relative	is	checked.	If	you	were	to	test	this
out	now,	your	player	will	begin	moving	to	the	right	as	his	walk	cycle	animation
played.	The	problem	is	that	now	it	doesn’t	stop.

11.	 Add	another	event	but	this	time	choose	Key	Release	<Right>.	Add	Change	Sprite
to	the	Actions	box	but	this	time	select	spr_player_idle	from	the	menu.	This	time,	if
you	were	to	run	a	test,	your	player	would	walk	right	when	holding	the	right	arrow
key	and	go	back	to	his	idle	pose	when	it	is	released.

These	same	steps	can	be	repeated	for	all	directions	using	corresponding	keyboard
events	but	you	need	to	take	into	consideration	whether	or	not	you	need	to	mirror	the
sprites.	If	you’ve	created	separate	sprites	for	each	direction	you’ll	simply	choose
which	sprite	you’ll	need	at	the	time.	If,	however,	you’ve	opted	to	mirror	the	sprites,
you’ll	need	to	add	one	more	thing	to	each	key	event.

12.	 Under	the	Main1	tab,	drag	and	drop	Transform	Sprite	into	the	Actions	box	for	each
key	event	(key	release	events	included)	and	modify	the	xscale	(for	horizontal
mirroring)	or	the	yscale	(for	vertical	flipping).	Setting	the	value	to	-1	would	flip	the
image	and	setting	it	to	1	would	revert	it	to	its	original	facing.	If	the	image	is	already
facing	that	way,	no	change	is	made.	Avoid	using	the	options	in	the	Mirror	menu,	as
these	selections	alter	the	image	from	its	present	state	instead	of	assigning	a	value.
This	would	mean	that	if	you	hit	the	left	arrow	key,	and	the	character	was	already
facing	left,	he	would	flip	and	face	right.	That	would	be	confusing!

Tip
This	and	any	other	drag	and	drop	function	in	GameMaker	can	also	be	used	in	code	and
scripts.	In	fact,	coding	them	yourself	often	allows	for	greater	control	over	how	they	work.

How	it	works…
The	movement	discussed	in	this	section	is	quite	simple.	In	this	case,	you’ve	instructed
GameMaker	to	make	your	character	move	left	or	right	and	play	the	walk	animation
(facing	the	proper	direction)	as	he	goes.	Using	jump	to	position	allows	you	to	move	a
character	to	any	point	in	the	screen	or,	as	you	did	here,	move	the	character	relative	to	its
current	position,	adding	the	entered	values	to	existing	coordinates.	Using	a	negative	value
would	subtract	from	the	current	coordinates,	causing	the	character	to	move	in	the	opposite
direction.	If	you	want	your	character	to	move	up	or	down	you	would	change	the	value	of	y
and	leave	x	as	0.	I	encourage	you	to	play	around	with	the	values	entered,	as	this	will
change	the	player’s	speed.

There’s	more…
It	might	seem	like	this	section	had	a	lot	of	text	to	set	up	very	simple	movement,	but	I	can
assure	you	it	is	all	necessary.	This	section	and	the	rest	of	the	chapter	set	up	some	core
ideas	that	will	recur	throughout	your	GameMaker	experience	and	will	be	explored	much
further	later	on.

See	also
Several	methods	of	advanced	player	movement	and	controls	will	be	demonstrated	in
Chapter	2,	It’s	Under	Control	–	Exploring	Various	Control	Schemes,	and	Chapter	3,	Let’s
Move	It	–	Advanced	Movement	and	Layout.

Adding	projectiles
Now	that	our	character	can	move,	logically	(or	rather,	illogically),	we	want	to	give	him	a
gun.	Though	countless	games	offer	projectiles	as	part	of	the	gameplay,	there	are	a	great
number	of	design	choices	to	consider	that	will	ultimately	alter	the	way	the	player	plays.
We’re	going	to	create	simple	projectiles	right	now	but	later	in	the	book	we’ll	discuss
different	design	choices	for	creating	and	controlling	gameplay.

Getting	ready
1.	 Create	a	sprite,	call	it	spr_projectile,	and	load	the	images	you	would	like	to	use;

you	can	use	a	single,	static	image,	but	it	looks	much	better	if	your	projectile	has	a
brief	animation.	(I’ve	provided	a	projectile	animation	in	the	downloaded	project	files.
The	sprite	is	16px	by	16px.)

2.	 Now	create	an	object	for	the	projectile	(obj_projectile)	and	assign	the	sprite	you
made.

We	want	to	create	a	projectile	at	our	character’s	location	whenever	the	player	hits	the
Spacebar.	On	creation	of	the	projectile,	we	want	GameMaker	to	verify	the	direction	the
player	is	facing	and	send	it	flying	in	that	direction.	Before	GameMaker	can	check	the
direction,	though,	we	need	to	create	a	variable	that	tells	GameMaker	which	direction	the
object	is	actually	facing.	It	sounds	convoluted	but	in	execution	it’s	really	fairly	simple,	so
let’s	begin.

How	to	do	it…
1.	 Open	the	Object	Properties	for	obj_player	and	add	a	Create	event.
2.	 Under	the	Control	tab,	drag	and	drop	Set	Variable	to	the	Actions	box.
3.	 Name	the	variable	dir	and	set	the	value	to	1.
4.	 In	the	Keyboard	event	for	right,	drag	and	drop	Set	Variable	from	the	Control	tab	and

have	it	set	dir	to	1.
5.	 Do	the	same	for	the	left	keyboard	event	but	have	it	set	dir	to	-1.
6.	 Now	create	a	Key	Press	event	and	select	<Space>.
7.	 Under	the	Main1	tab,	drag	and	drop	Create	instance	to	the	Actions	box.
8.	 Select	obj_projectile	from	the	menu	but	leave	the	x	and	y	values	as	0.
9.	 Open	the	Object	Properties	for	obj_projectile	and	add	a	Create	event.
10.	 Under	the	Control	tab,	drag	and	drop	Test	Variable	to	the	Actions	box.
11.	 Under	Applies	to	select	obj_player	and	have	it	test	whether	or	not	the	variable	dir

is	equal	to	a	value	of	1.
12.	 Now,	under	the	Move	tab,	drag	and	drop	Move	Fixed	to	the	Actions	box	and	have

our	projectile	move	to	the	right	at	a	speed	of	8.
13.	 In	the	same	Create	event,	repeat	these	steps	but	check	dir	for	a	value	of	-1	and	have

the	projectile	move	to	the	left.	The	obj_projectile	properties	window	should	look
like	this:

There’s	one	last	thing	we	should	look	at,	here,	and	that’s	how	often	our	player	character
can	shoot.	As	it	is	right	now	he	can	shoot	every	time	the	Spacebar	is	pressed.	Imagine	our
character	is	holding	a	handgun.	Now	think	about	how	quickly	the	player	could	potentially
press	the	Spacebar,	over	and	over.	I	don’t	know	about	you	but	I	imagine	a	handgun	that
can	shoot	that	fast	must	be	magical;	maybe	a	wizard	made	it.	There	is	a	way	around	this
magical	handgun	made	by	wizards,	and	that	way	involves	alarms	and	variables.

1.	 Open	up	the	properties	for	obj_player	once	more	and,	in	the	Create	event,	drag	and

drop	another	Set	Variable	to	the	Actions	box.
2.	 Call	the	variable	shoot	and	set	the	value	to	1.
3.	 In	the	Key	Press	event	for	Space,	drag	Set	Variable	to	the	Actions	box	and	set	shoot

to	0.
4.	 Under	the	Main2	tab,	drag	Set	Alarm	to	the	Actions	box	and	set	Alarm	0	to	30.
5.	 Now	click	on	Add	Event,	select	Alarm	0,	and	drag	Set	Variable	to	the	Actions	box

and	have	it	set	shoot	back	to	1.
6.	 There’s	just	one	final	change	to	make,	now.	Go	back	to	the	Space	key	press	event

and	drag	Test	Variable	to	the	Actions	box	and	have	it	test	if	shoot	is	equal	to	1.
7.	 Make	sure	this	is	the	first	thing	GameMaker	does	when	Spacebar	is	pressed	by

dragging	it	to	the	top	of	the	list.
8.	 Now,	the	rest	of	the	actions	here	should	only	be	carried	out	if	shoot	is	equal	to	1.	To

make	sure	this	is	the	case,	drag	Start	Block	from	the	Control	tab	and	drop	it	above
Create	Instance,	and	drag	End	Block	to	the	bottom	of	the	list.	The	Spacebar	key
press	event	should	now	look	like	this:

Congratulations!	You	now	have	a	player	that	can	shoot	projectiles	in	the	direction	he	is
facing	and	do	so	at	a	realistic	rate.	This	outcome	is	much	more	appealing	than	having	a
player	who	fires	his	gun	wherever	he	pleases	at	incredible	rates.	You’re	a	loose	cannon,
player!

How	it	works…
In	order	to	make	your	character	shoot	projectiles,	we’ve	had	to	use	several	important
elements	of	programming	with	GameMaker,	namely	variables	and	alarms.	When	the
Spacebar	is	hit,	GameMaker	first	has	to	check	whether	or	not	the	variable	shoot	is	equal
to	1.	If	not,	nothing	happens.	You	could	hit	the	spacebar	as	many	times	as	you	want,	but
unless	shoot	equals	1,	you’ll	get	nothing	out	of	it.	Now,	assuming	shoot	does	equal	1,
GameMaker	moves	on	to	create	a	projectile	in	the	same	place	as	the	player,	which	is	(0,	0)
relative	to	wherever	the	player	object	is	sitting.	If	you	want	the	projectile	to	be	created
near	the	player,	say	to	give	the	appearance	that	the	projectile	is	coming	out	of	a	gun,	you
could	change	the	coordinate	values	for	(x,	y).

At	the	same	time,	GameMaker	is	setting	shoot	to	0	to	prevent	the	player	from	shooting
again	right	away,	and	setting	an	alarm	to	30	steps.	At	the	end	of	those	30	steps,	shoot	is
set	back	to	1.	Each	step	is	the	same	as	one	frame	in-game,	meaning	if	the	game	is	running
at	60	frames	per	second,	the	player	can	fire	every	half-second.

Once	the	projectile	is	created,	GameMaker	is	testing	another	variable	we	set:	dir.	This	is
simply	to	tell	GameMaker	in	which	direction	the	player	is	facing	and	GameMaker	then
sends	the	projectile	off	in	that	direction.	Bam.	Projectiles.	No	pun	intended.

See	also
Projectiles	will	be	expanded	on	in	Chapter	9,	Particle	Man,	Particle	Man	–	Adding	Polish
to	Your	Game	with	Visual	Effects	and	Particles.

Creating	hazards
So	our	player	can	move	and	shoot.	That’s	great,	but	what	fun	is	that	when	there	are	no
obstacles?	Hazards	offer	a	great	challenge	and	can	even	be	the	core	of	your	gameplay.
How	boring	would	Mario	Kart	be	without	banana	peels?	Or	Pitfall	without…well,	the
pits?	Video	game	hazards	come	in	many	forms	and,	if	you	play	games,	you’ve	likely
encountered	most,	if	not	all	of	them.	Spikes,	lasers,	electrical	traps,	and	falling	objects	are
a	few	examples,	but	they	have	at	least	one	thing	in	common:	if	your	player	character
touches	them,	he/she	will	be	hurt	or	killed.	Now,	in	most	games	the	latter	isn’t	permanent,
what	with	health	bars	and	lives	(we’ll	get	into	those	later),	but	it	remains	a	major	part	of
the	gameplay.	Let’s	look	at	creating	some	simple	hazards	that	can	give	your	players	a	hard
time.

Getting	ready
In-game	hazards	can	come	in	many	forms	and	various	visual	styles.	Like	the	projectiles
we	discussed	previously	they	can	be	static	images,	but	they	look	much	better	as	animated
sprites.	We’re	going	to	build	a	spike	trap;	you	can	use	your	own	art,	but	I’ve	included	an
animated	sprite	in	the	downloadable	files.

1.	 Create	a	sprite,	name	it	spr_hazard_spike,	and	load	the	necessary	images.	Before
we	move,	on	you’re	going	to	need	to	set	up	the	sprite’s	collision	mask.	Sprites	are
assigned	a	collision	mask	by	default	but	you	can	modify	it	to	your	own	needs.	We
only	want	the	trap	to	be	activated	and	for	the	player	to	take	damage	when	the	spikes
are	actually	touched,	as	opposed	to	the	area	around	the	trap.

2.	 Under	Collision	Checking	make	sure	Precise	collision	checking	is	selected.
3.	 Click	Modify	Mask	and,	under	Shape,	select	Precise.	To	the	left	of	that	is	a	slider

that	allows	you	to	specify	Alpha	Tolerance.	This	is	useful	because	it	allows	you	to
shrink	and	grow	the	mask	according	to	the	sprite’s	outline	(the	empty	space	around	it
being	an	alpha	map).

Once	you	save	your	selections	we’re	ready	to	get	started.

How	to	do	it…
1.	 Begin	by	creating	a	new	object	called	obj_hazard_spike	and	assigning	the	sprite

you	made	previously.
2.	 Add	a	Create	event	and	drag	and	drop	two	instances	of	Set	Variable.	One	will	set

image_speed	to	0,	the	other	will	set	trap_set	to	1.
3.	 Add	a	Collision	event	with	obj_player	as	the	target.
4.	 Drag	and	drop	Test	Variable	to	the	Actions	box,	checking	that	trap_set	is	equal	to

1.
5.	 Place	both	a	Start	and	End	Block	in	the	Actions	box.	Within	this	block	you’ll	need

two	Set	Variables;	one	that	sets	trap_set	to	0,	and	another	that	sets	image_speed	to
1.

6.	 Still	within	the	block,	set	Alarm	0	to	60.	Your	Actions	box	should	now	look	like	this:

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	from	your	account	at
http://www.packtpub.com	for	all	the	Packt	Publishing	books	you	have	purchased.	If
you	purchased	this	book	elsewhere,	you	can	visit	http://www.packtpub.com/support
and	register	to	have	the	files	e-mailed	directly	to	you.

7.	 Create	the	event	for	Alarm	0.
8.	 In	the	Actions	box,	drag	and	drop	Set	Variable,	setting	image_speed	to	1.
9.	 Drag	and	drop	Set	Alarm,	setting	Alarm	1	to	30.
10.	 Add	the	event	for	Alarm	1,	where	you’ll	drag	Set	Variable	and	have	it	set	trap_set

to	1.
11.	 Add	a	Step	Event	and	drag	Test	Variable	to	the	Actions	box	and	have	it	test

whether	or	not	image_index	is	equal	to	4.
12.	 This	should	be	followed	by	a	Start	and	End	Block.	Within	this	block	should	be	a

http://www.packtpub.com
http://www.packtpub.com/support

Test	Variable	that	checks	whether	or	not	alarm[0]	is	greater	than	0,	as	well	as
another	Start	and	End	Block.

13.	 Within	this	block	you’ll	need	a	Set	Variable	that	sets	image_speed	to	0.	When
you’re	done,	the	Actions	box	should	look	like	this:

14.	 Finally,	click	Add	Event,	then	Other,	and	select	Animation	End.
15.	 All	you	need	in	the	Actions	box	here	is	a	Set	Variable	that	sets	image_speed	to	0.

Got	all	that?	It’s	a	lot	to	do	all	at	once,	but	we’ll	go	through	what	it	does,	step	by	step.	The
good	news	is	that	you	now	have	a	spike	trap	that	springs	when	touched	by	the	player	and
stays	sprung	for	a	bit	before	retracting.	There’s	a	good	reason	behind	this	that	we’ll
explore	a	little	further	once	we	get	into	player	health.

How	it	works…
The	trap	you’ve	just	made	uses	collision	detection	and	alarms	to	set	and	reset	variables
that	control	the	trap’s	state.	On	creation,	GameMaker	sets	the	image_speed	to	0,	keeping
the	animation	on	the	1st	frame,	and	establishes	the	variable	trap_set,	which	will	only	be
used	by	this	particular	instance	of	the	spike	trap.	Think	of	trap_set	as	a	sort	of	on/off
switch,	using	binary	(0	or	1)	to	dictate	its	current	state.	When	the	player	collides	with	the
trap,	GameMaker	checks	whether	or	not	the	trap	is	on.	If	trap_set	is	equal	to	1	(on),
GameMaker	proceeds	to	set	image_speed	to	1	(so	the	animation	will	begin	to	play),	set
Alarm	0	to	60	steps,	and	reset	trap_set	to	0	so	that	the	spike	trap	will	not	be	activated
over	and	over	again.	This	is	to	give	the	player	a	chance	to	move	away	from	the	trap	to
avoid	being	injured	a	second	time.	The	Step	Event	checks	every	single	step	to	see
whether	or	not	the	sprite’s	animation	has	advanced	to	frame	number	4.	If	it	has,	it	then
checks	whether	or	not	Alarm	0	is	still	counting	down.	If	it	is,	image_speed	is	set	to	0,	so
that	the	animation	remains	on	the	4th	frame	(in	the	up	position)	until	Alarm	0	is	finished
counting	down.	When	it	has,	the	image_speed	is	set	back	to	1,	allowing	the	animation	to
continue,	and	Alarm	1	is	set	to	30	steps.	The	animation	can	continue	(retracting	the
spikes)	but	once	it	reaches	the	last	frame,	the	Animation	End	event	then	sets
image_speed	to	0	again,	preventing	the	animation	from	looping.	The	last	thing	to	happen
in	this	long	list	of	events	is	the	end	of	Alarm	1,	which	simply	gives	trap_set	a	value	of	1,
thereby	resetting	the	trap	to	be	used	again.

It’s	a	lot	to	take	in	at	once,	but	creating	this	trap	is	a	great	demonstration	of	the
programming	logic	we’re	going	to	get	into	later	on.	For	now,	enjoy	your	new	spike	trap!

Programming	basic	enemies
Enemies	are	more	or	less	an	extension	of	hazards;	the	basic	idea	is	that	if	they	touch	(or
shoot	a	projectile	that	touches)	the	player,	the	player	is	injured	or	killed.	Only	in	games,
though,	not	in	real	life.	There	is	one	difference	here:	enemies	move.	You	can	create
enemies	that	will	march	to	their	deaths	(think	Goombas	in	the	Mario	Bros	games),	patrol	a
given	area	(think	soldiers	in	the	Metal	Gear	games),	or	even	actively	hunt	the	player
(think	ghosts	in	Pac-Man).	For	now,	we’re	going	to	take	a	look	at	a	simple	enemy	that	will
patrol	a	straight	line.

Getting	ready
As	with	everything	we’ve	done	so	far	in	this	chapter,	you’ll	need	sprites	to	represent	your
enemy.	You	can	make	your	own	or	you	can	use	the	one	included	in	the	downloaded	files.
It’s	acceptable	to	use	the	same	sprite	for	different	types	of	enemies	but,	from	a	game
design	perspective,	it’s	a	good	idea	to	differentiate.	This	will	make	it	easier	for	your	player
to	identify	the	enemy	types	and	react	accordingly.

Create	a	sprite	and	name	it	spr_enemy_patrol.	Load	the	associated	images	from	the	files
provided,	or	create	your	own,	and	be	sure	to	set	up	the	collision	mask.

How	to	do	it…
1.	 Create	an	object	called	obj_enemy_patrol	and	assign	the	sprite	you	just	made.
2.	 Add	a	Create	event	and	drag	and	drop	Set	Variable	that	sets	image_speed	to	0.6.
3.	 Drag	and	drop	Set	Variable,	which	will	set	dir	as	-1,	and	Transform	Sprite,	which

will	change	the	xscale	to	-1.	Now,	that’s	the	simple	part.	The	rest	of	the	actions	for
(for	the	moment)	will	be	handled	by	a	Step	event.

4.	 Add	a	Step	event.	This	is	where	you’ll	need	to	run	several	tests	in	order	to	dictate
your	enemy’s	movement.

5.	 Drag	and	drop	Test	Variable	and	have	it	check	whether	or	not	dir	is	equal	to	-1.
6.	 Beneath	this,	drag	a	Start	and	End	Block,	within	which	you’ll	add	a	Test	Variable

that	checks	whether	or	not	x	is	greater	than	16.
7.	 Below	this,	you’ll	need	a	Start	and	End	Block,	between	which	you	should	place

Moved	Fixed,	and	set	it	to	move	left	at	a	speed	of	1.
8.	 Under	all	of	the	preceding	boxes,	drag	and	drop	another	Start	and	End	Block.
9.	 Within	this	block,	place	a	Test	Variable	that	checks	whether	x	is	less	than	or	equal	to

16,	followed	by	another	Start	and	End	Block.
10.	 Within	this	block	you	will	need	a	Set	Variable	that	sets	dir	to	1,	a	Transform	Sprite

that	changes	xscale	to	1,	and	a	Move	Fixed	that	sets	the	move	direction	to	the	right
at	a	speed	of	1.

You	now	have	exactly	half	of	the	actions	required	for	a	patrolling	enemy.	At	this	point	you
can	do	one	of	two	things:	You	could	copy	this	entire	set	of	actions,	paste	the	copies
directly	below	the	existing	actions,	and	go	about	changing	the	variables	to	their	exact
opposites,	or	you	could	drag	and	drop	new	blocks	in	the	same	order,	but	set	the	variables
to	their	opposites.	The	former	is	much	faster,	but	the	latter	will	help	you	learn	more	about
programming	logic.	In	any	respect,	your	Actions	box	should	look	like	this:

How	it	works…
While	this	Step	event	contains	a	lot	of	actions,	it	is	really	doing	something	quite	simple.
GameMaker	is	checking,	every	game	step,	for	the	patrolling	enemy’s	state	and	position.	If
headed	left	and	his	position	on	the	room’s	x	coordinate	is	more	than	16,	he’ll	continue	on
in	that	direction.	Once	he	gets	past	this	point,	GameMaker	switches	his	direction,	flips	the
sprite	and	sends	him	off	to	the	other	side	of	the	room	until	his	x	coordinate	reaches	the
room	width	minus	16	pixels,	rinse	and	repeat.

There’s	more…
This	method	of	creating	a	patrolling	enemy	is	a	simple	enough	way	to	move	your	enemy
in	a	set	space.	I	chose	to	have	him	walk	right	across	the	entire	room,	but	you	could	also
have	him	walk	within	a	smaller	space.	Another	way	to	accomplish	this	is	to	create	left	and
right	boxes,	remove	their	visibility	by	unchecking	the	Visible	box	in	Object	Properties,
and	placing	them	at	either	end	of	the	area	you	want	patrolled.	In	the	enemy’s	properties,
instead	of	having	everything	in	the	Step	event,	you	can	control	when	they	change
direction	by	when	they	collide	with	the	invisible	boxes.	The	same	actions	would	apply;
they	would	just	be	executed	in	a	different	way.	This	just	goes	to	show	you	that	there	are
many	possible	solutions	to	all	of	the	problems	you	may	encounter	when	making	games;
you	just	have	to	find	them.

See	also
Paths	will	be	discussed	in	Chapter	4,	Let’s	Get	Physical	–	Using	GameMaker’s	Physics
System.

Setting	up	player	health	and	lives
Any	action	game	involving	a	player	controlled	character	is	likely	to	have	some	sort	of
“health”	and	“life”	system.	These	are	terms	long	used	in	video	games	that	are	used	in
conjunction	with	how	your	character	is	abstractly	“alive”	within	the	game	itself.	In	reality,
health	and	life	in	games	are	simply	numbers	whereby	you	lose	a	chance	to	play	or	even
the	game	itself	when	they	reach	zero.	GameMaker	makes	keeping	track	of	these	numbers
quite	easy	when	it	comes	to	the	drag	and	drop	actions,	so	we’re	going	to	look	at	how	we
can	add	these	elements	to	our	player	character.

Getting	ready
Since	this	recipe	involves	making	additions	to	your	existing	player	character,	you	don’t
need	to	do	much.	You’ll	need	a	sprite	to	indicate	your	player’s	lives	(call	it	spr_life)	but
other	than	that	all	you	need	to	do	now	is	open	the	obj_player	Object	Properties	window.

How	to	do	it…
1.	 In	the	Create	event,	from	the	Score	tab,	drag	and	drop	the	Set	Health	action	into	the

Actions	box	and	set	Health	to	100.
2.	 From	the	same	tab,	drag	and	drop	Set	Lives	and	set	it	to	3.
3.	 Add	a	Set	Variable	to	the	Actions	box	and	set	hit	to	0.
4.	 Click	Add	Event,	then	Collision,	and	select	obj_enemy_patrol	from	the	menu.
5.	 Add	Test	Variable	to	the	Actions	box	and	have	it	check	for	whether	hit	equals	0.
6.	 Below,	drag	and	drop	Start	and	End	Block,	and	within	that	block	add	Set	Health

with	a	relative	value	of	-20.
7.	 Add	Set	Variable,	setting	hit	to	1.
8.	 Add	Set	Alarm	1	and	set	it	to	60	steps.	Repeat	these	actions	using	obj_hazard_spike

in	place	of	your	enemy.
9.	 Add	an	event	for	Alarm	1	and	drag	Set	Variable	to	the	Actions	box,	setting	hit	to	0.
10.	 Add	the	event	Draw	GUI	and,	from	the	score	tab,	drag	Draw	Health	to	the	Actions

box.
11.	 Make	sure	Relative	is	checked	and,	under	the	appropriate	headings,	enter	the

following	values:

x1:	-16

y1:	-24

x2:	16

y2:	-34

back	color:	black

bar	color:	green	to	red

12.	 Drag	and	drop	Draw	Life	Images	to	the	Actions	box	and	enter	the	following	values:

x:	room_width-64

y:	64

image:	spr_life

13.	 Create	a	Step	event	and	add	a	Test	Variable	that	checks	if	health	is	equal	to	0.
14.	 Below	that,	drag	a	Start	and	End	Block	and	within	that	block	add	Set	Variable

lives	to	-1	relative,	and	Set	Variable	health	to	100.

How	it	works…
Health	and	lives	are	very	straightforward,	with	GameMaker	doing	a	lot	of	the	work	for
you	when	using	the	drag	and	drop	actions.	Essentially,	GameMaker	has	created	the
variable	health	and	you’ve	set	it	to	a	value	of	100.	You’ve	also	created	the	variable	hit,
which	you	use	to	control	when	you	can	be	injured.	If	hit	is	set	to	0	(off)	then	you	can	be
hit	by	an	enemy	or	hazard.	If	you	are	hit	by	one	of	them	you	lose	20	health	points	and	the
variable	hit	is	set	to	1.	This	is	to	prevent	contact	with	an	enemy	continuously	draining
your	health,	as	it	is	being	checked	every	step.	An	alarm	is	set	to	60	steps	and	at	the	end	of
that	countdown	hit	is	set	back	to	0,	meaning	you	can	be	injured	once	more.

The	Step	event	is	also	constantly	checking	for	when	your	health	reaches	0.	When	it	does,
the	lives	variable	is	decreased	by	1	and	your	health	is	reset	to	100.

There’s	more…
In	this	case	we	set	the	health	bar	to	a	specific	coordinate	relative	to	the	player’s	position.
This	was	purely	a	design	choice	to	show	you	that	you	have	options.	You	can	set	the	health
bar	to	a	static	position	on	the	screen,	much	like	we	did	for	the	lives	indicator.	As	for	the
lives	indicator,	using	the	Draw	Lives	action	instead	of	Draw	Life	Images	allows	you	to
indicate	the	player’s	remaining	lives	with	text	and	numbers.

Creating	scoring	mechanism
In	the	days	of	arcades,	a	high	score	was	king.	It	wasn’t	enough	to	beat	a	game;	you	had	to
get	in	the	top	10	highest	scores	in	order	to	claim	local	fame.	Once	your	score	was	high
enough	to	knock	someone	out	of	the	top	ten,	the	victory	could	be	finalized	by	putting	your
initials	next	to	it.	Or	a	dirty	word.	Not	that	I’ve	ever	done	that….

Regardless,	a	lot	of	games	today	don’t	rely	on	a	scoring	system,	but	focus	on	the	story,
experience,	or	multiplayer	rankings.	Let’s	bring	back	a	little	piece	of	gaming	history	by
creating	a	simple	scoring	mechanism.

Getting	ready
This	recipe	does	not	involve	any	new	sprites	or	other	assets	but	does	require	a	new	object.
Call	the	object	obj_score	and	leave	the	sprite	box	blank.

How	to	do	it…
1.	 In	the	Object	Properties	for	obj_score,	add	a	Create	event.
2.	 Drag	Set	Score	from	the	Score	tab	to	the	Actions	box,	and	have	it	set	the	score	to	0.
3.	 Create	a	Draw	GUI	event	and	drag	Draw	Score	to	the	Actions	tab	with	the

following	values:

x:	32

y:	32

caption:	Score:

4.	 Close	the	obj_score	Object	Properties	window	and	open	obj_enemy_patrol.
5.	 Add	a	Collision	event	with	obj_projectile	and,	from	the	Main1	tab,	drag	and	drop

Destroy	Instance	to	the	Actions	box	(Applies	to:	self).
6.	 Drag	Set	Score	to	the	Actions	box	and	change	the	new	score	to	10	relative.
7.	 Close	the	Object	Properties	window	and	open	obj_projectile.
8.	 Add	a	Collision	event	with	obj_enemy_patrol	and	drag	and	drop	Destroy	instance

at	Position	like	you	did	previously.

How	it	works…
GameMaker	is	again	doing	a	lot	of	the	heavy	lifting,	here.	You	created	obj_score	to	keep
track	of	scoring.	Not	assigning	a	sprite	to	it	will	allow	the	object	to	be	in	a	room,	affecting
the	game,	without	being	seen.	The	rest	of	the	recipe	is	simply	placing	the	score	counter	as
a	GUI	element,	checking	for	collisions	between	projectile	and	enemy,	and	adding	points
and	destroying	the	two	when	they	collide.

There’s	more…
In	this	recipe,	obj_score	acted	as	what’s	referred	to	as	a	controller	object.	These	objects
are	often	invisible	and	control	specific	aspects	of	the	game.	Since	an	object	needs	to	be
active	in	order	for	its	actions	and	variables	to	be	used,	any	aspect	of	the	game	that	needs	to
be	present	without	interruption	should	be	assigned	to	a	controller.	I	use	controllers	for
music,	HUD,	global	variables,	and	more.

See	also
Most	chapters	going	forward	will	deal	with	controllers	and	their	various	functions.

Creating	win/lose	scenarios
The	term	“game”	has	many	different	definitions,	to	the	point	where	experts	can’t	always
agree	what	makes	a	game.	Most	definitions,	though,	determine	that	games	are	only	such	if
they	involve	both	win	and	lose	scenarios.	I	mean,	who	wants	to	play	a	game	you	can’t	win
or	lose?

Getting	ready
This	recipe,	again,	does	not	necessitate	new	sprites	or	even	objects.	We’ll	be	relying	on
existing	objects	but	we’ll	be	adding	some	new	variables.	Start	by	opening	the	Object
Properties	for	obj_player.

How	to	do	it…
1.	 In	the	Step	event	you	should	already	have	the	actions	that	check	the	value	of	health.

Beneath	all	of	that,	drag	and	drop	Test	Variable	and	have	it	check	whether	lives
equals	0.

2.	 Below	that,	from	the	Main2	tab,	drag	Restart	Game	to	the	Actions	tab.
3.	 Close	obj_player	and	open	obj_score.
4.	 Create	a	Step	event	and	drag	Test	Variable	to	the	Actions	box	and	have	it	check

whether	score	is	equal	to	100.
5.	 Below	that,	drag	Restart	Game	from	the	Main2	tab.

How	it	works…
As	you	may	have	guessed	by	the	names	of	the	actions,	you	are	simply	asking	GameMaker
to	check	the	values	of	score	and	lives,	and	restarting	the	game	when	they	reach	a	certain
point.	In	previous	recipes	you	set	the	score	to	increase	by	10	whenever	you	shot	an	enemy.
If	you	shoot	10	enemies,	the	game	will	restart.	You	set	the	lives	variable	to	3	but	had	it
decrease	by	1	every	time	your	health	reached	0.	Once	you	have	no	lives	left,	the	game
restarts.

There’s	more…
Using	Game	Restart	in	this	scenario	is	arbitrary;	it	is	simply	there	to	demonstrate	that	you
can	tell	GameMaker	to	change	the	game’s	state	based	on	your	score,	health,	or	number	of
lives.	Under	the	Main1	tab	in	Object	Properties	you	can	find	actions	that	take	you	to
other	rooms	you	may	have	created.	This	can	be	used	to	go	from	one	level	to	another.

See	also
The	Chapter	6,	It’s	All	GUI!	–	Creating	Graphical	User	Interface	and	Menus,	deals	with
more	advanced	GUI	and	Chapter	7,	Saving	the	Day	–	Saving	Game	Data,	covers	save
systems	and	leaderboards.

Chapter	2.	It’s	Under	Control	–	Exploring
Various	Control	Schemes
In	this	recipe,	we’ll	cover	the	following	topics:

Listing	controls
Creating	2D	movement
Adding	a	Run	button
Making	your	character	jump
Using	a	point-and-click	interface
Following	the	cursor
Setting	up	a	controller
Utilizing	analogue	joystick	acceleration
Adding	tap	control
Using	swipes
Moving	characters	or	objects	by	tilting	a	device

Introduction
If	someone	gives	you	a	videogame	controller	and	asks	you	to	play	the	game,	your	first
question	would	likely	be	“How	do	I	play?”	This	is	a	simple	way	of	asking	“How	do	I
control	what	I	see	on	the	screen?”	A	game’s	controls	are	a	major	part	of	the	gameplay	as
your	player’s	input	essentially	determines	everything.	An	otherwise	good	game	can	be
rendered	unplayable	by	an	awkward	or	overly	complicated	control	scheme.	This	is
compounded	by	the	push	toward	touch	controls	that,	especially	in	the	mobile	game
market,	demand	a	simple	interface	with	a	lot	of	developers	opting	for	a	one-touch
gameplay.

Just	because	game	controls	are	trending	toward	simplistic,	it	doesn’t	mean	you	need	to
shoehorn	your	game	to	work	in	this	fashion.	The	most	important	thing	about	your	control
setup	is	that	it	needs	to	fit	to	your	game’s	style.	You	won’t	see	one-touch	controls	on	a
first-person	shooter	just	like	you	won’t	see	a	memory	game	that	requires	two	joysticks	and
eight	buttons;	it	just	doesn’t	make	sense.	For	this	reason,	we’re	going	to	take	a	look	at
several	control	options,	including	touch	controls,	in	order	to	give	you	the	tools	you	need	to
make	a	game	that	feels	right.

Let’s	take	a	quick	look	at	the	controls	we	have	at	our	disposal.

Keyboard	controls
Do	you	have	a	computer?	If	so,	there	are	chances	that	you	have	a	keyboard	to	go	with	it.
Let’s	put	it	to	work	with	some	simple	movement	code	by:

Creating	2D	movement
Adding	a	Run	button
Making	your	character	jump

Mouse	controls
Your	mouse	is	an	incredibly	versatile	peripheral	utilized	by	almost	every	modern	program.
If	you’ve	ever	played	a	game	on	your	computer,	it’s	almost	guaranteed	that	you’ve	used
your	mouse	at	least	for	one.	We’ll	look	at	how	we	can	implement	mouse	controls	for
gameplay	with:

Using	a	point-and-click	interface
Following	the	cursor

Gamepad	controls
PC	games	have	been	using	gamepad	controls	for	years.	Today,	gamepads	are	supported	by
many	other	operating	systems,	including	Android,	iOS,	and	even	HTML5.	Because	of
this,	GameMaker	is	also	compatible	with	them,	which	means	that	you	can	create	a	console
experience	for	all	sorts	of	games.	Let’s	look	at	how	GameMaker	handles:

Setting	up	a	controller
Utilizing	analogue	joystick	acceleration

Touch	controls
Touchscreens	have	been	commercially	available	since	1983.	Since	then,	the	technology
has	come	a	long	way	and	mobile	devices,	such	as	smartphones	and	tablets,	have	made
touchscreens	their	primary	mode	of	interaction.	If	you	hope	to	get	on	the	hundreds	of
games	that	are	released	for	these	platforms	daily,	you’ll	need	to	know	a	thing	or	two	about
touch	controls.	We’ll	learn	about	touch	controls	by:

Adding	tap	control
Using	swipes

Tilt	controls
Tilt	controls	are	not	always	the	best	means	of	moving	a	character	or	object	in	a	game	but,
used	correctly	and	sparingly,	can	add	much	needed	fun	and	excitement.	This	example	will
give	you	a	good	idea	of	how	to	create	tilt	controls	for	your	game,	but	it’s	up	to	you	to
decide	how	(or	if)	you’ll	implement	them.	This	includes	the	following:

Moving	characters	or	objects	by	tilting	a	device

Creating	2D	movement
In	Chapter	1,	Game	Plan	–	Creating	Basic	Gameplay,	we	demonstrated	the	basic
character	movement	using	GameMaker’s	drag	and	drop	interface.	It	involved	a	lot	of
blocks.	Next,	we	will	create	more	sophisticated	movement	code	in	only	a	handful	of	code
blocks.

Getting	ready
You’ll	need	a	character	object	(obj_player)	and	a	room	where	you	can	place	it.	We	won’t
be	discussing	the	object’s	sprite	or	animation	here;	this	is	purely	about	moving	your
character	in	two	dimensions	on	the	screen.	For	this	reason,	we’re	using	a	simple	block	to
represent	our	player	character.

How	to	do	it…
1.	 In	obj_player,	add	a	Create	event.
2.	 Drag	and	drop	an	Execute	Code	block	(under	the	Control	tab)	into	the	Actions	box.
3.	 Open	it	and	enter	the	following	code:

///set	variables

max_spd	=	12;

accel_spd	=	1;

decel_spd	=	2;

4.	 Close	this	code	block	and	add	a	Step	event.
5.	 Drag	a	code	block	to	the	Actions	box	and	enter	the	following	code:

///control	movement

if	(keyboard_check(vk_right))	and	not	(keyboard_check(vk_left))

{

hspeed	+=	accel_spd;

hspeed	=	min(hspeed,	max_spd);

}	

if	hspeed>0	and	not	(keyboard_check(vk_right))

{

hspeed	-=	decel_spd;

}

if	(keyboard_check(vk_left))	and	not	(keyboard_check(vk_right))

{

hspeed	-=	accel_spd;

hspeed	=	max(hspeed,	-max_spd);

}	

if	hspeed<0	and	not	(keyboard_check(vk_left))

{

hspeed	+=	decel_spd;

}

if	(keyboard_check(vk_left))	and	(keyboard_check(vk_right))	or	not	

(keyboard_check(vk_left))	and	not	(keyboard_check(vk_right))

{

hspeed	=	0;

}

6.	 Close	this	code	block	and	you’re	done.

Note
Placing	///	in	front	of	the	first	line	of	code	in	a	code	block	not	only	works	like	a	comment
(the	compiler	ignores	it),	it	becomes	the	title	of	the	code	block	and	even	appears	in	the
Actions	box.	This	is	a	great	way	to	keep	track	of	what	each	code	block	does.

How	it	works…
In	the	Create	event,	you	need	to	set	up	a	few	variables	that	will	be	used	only	by	your
player	character.	These	variables	are	then	used	in	the	control	movement	code	block.	This
code	tells	GameMaker	to	check	(every	step)	which	keys	are	being	pressed.	If	the	right
arrow	key	is	being	pressed	but	the	left	arrow	key	is	not,	the	horizontal	speed	becomes
equivalent	to	itself	plus	the	value	of	acceleration	(accel_spd)	until	the	maximum	speed
(max_spd)	is	reached.	Once	the	maximum	speed	is	reached,	if	the	player	continues	to	hold
the	right	arrow	key,	the	character	will	continue	to	move	at	this	speed.	If	the	right	arrow
key	is	released,	as	long	as	the	horizontal	speed	is	greater	than	0,	the	value	of	deceleration
(decel_spd)	is	subtracted.	This	allows	the	character’s	acceleration	and	deceleration	when
moving,	which	is	more	realistic	than	jumping	from	0	to	top	speed	in	an	instant	and	vice
versa.	The	last	bit	of	code	is	simply	used	to	make	sure	that	if	both	left	and	right	arrow
keys	are	pressed	simultaneously,	the	character	will	not	move	at	all.

There’s	more…
The	values	used	for	each	variable	in	this	recipe	are	arbitrary,	and	you	can	choose	your	own
values	for	each.	If	you’re	calculating	a	movement	like	this,	I	recommend	that	you	play
around	with	these	values	and	playtest	the	results	in	order	to	make	the	character	move	in
the	way	you	want	it	to	move.

See	also
A	basic	character	movement	using	GameMaker’s	drag	and	drop	interface	is	discussed	in
Chapter	1,	Game	Plan	–	Creating	Basic	Gameplay.

Adding	a	Run	button
One	of	my	first	“Aha!”	moments	in	gaming	as	a	kid	was	finding	out	that	in	Super	Mario
Bros,	you	could	hold	down	the	B	button	to	make	Mario	run,	allowing	you	to	jump	farther
than	a	normal	jump.	Regardless	of	how	you	remember	it,	there	was	something	exciting
about	moving	that	quickly,	as	though	you	were	flying	through	this	world	by	the	seat	of
your	pants.	One	false	move	and	you	were	done	for!	Why	not	recreate	that	excitement	by
adding	a	run	button	of	your	own?

Getting	ready
You’ll	need	a	character	(obj_player)	who	has	movement	controls,	at	least	horizontally.
Refer	to	the	code	in	the	previous	section	if	you	need	it.

How	to	do	it…
1.	 Open	obj_player.
2.	 Click	on	the	Step	event	and	open	the	control	movement	code	block.
3.	 Below	the	movement	code,	add	the	following	code:

//make	the	character	run

if	keyboard_check(vk_shift)

{

				hspeed	=	(hspeed*2);

}

That’s	it!

How	it	works…
This	piece	of	code	is	simple	as	it	is	short.	All	it	tells	GameMaker	to	do	is	to	check	whether
the	player	is	holding	the	Shift	key	(it	doesn’t	matter	which	one)	and	to	double	the
horizontal	speed	as	long	as	he	or	she	is.	This	works	in	both	directions	without	having	to
duplicate	the	code.

Making	your	character	jump
Imagine	that	you	grew	up	playing	games,	such	as	Pitfall,	Super	Mario	Bros,	or	Metroid
(it’s	likely	the	case	for	many	of	you).	Now	imagine	playing	these	games	without	a	jump
button.	You	couldn’t,	could	you?	Of	course	not;	these	games	feature	jumping	over
obstacles	and	between	platforms	as	a	major	gameplay	element.	Now,	imagine	you	want	to
make	your	own	platforming	game.	How	would	you	make	your	character	jump?	Let’s	find
out!

Getting	ready
You’ll	need	a	character	with	movement	controls,	not	unlike	the	ones	you	may	have	by
following	the	preceding	recipes.	A	jump	animation	is	a	good	thing	to	have	as	well.	It’s	not
absolutely	necessary,	but	I	wrote	the	following	code	to	incorporate	one.	You’ll	also	need
ground	objects	and	any	platforms	you	wish	to	have.	You	need	to	create	one	object	with	no
sprite	and	call	it	obj_ground_parent.	From	there,	you	can	create	your	platforms	and
ground	objects	with	appropriate	sprites,	but	make	sure	they	all	have	obj_ground_parent
listed	as	the	parent.	This	way,	when	you	program	a	collision	for	one,	it	associates	with	all
of	them.

How	to	do	it…
1.	 In	the	Create	event	of	obj_player,	add	the	following	variables:

jump_spd	=	15;

grav	=	1;

grav_max	=	10;

2.	 In	the	Step	event,	enter	the	following	code	above	your	movement	code:

if	(!place_meeting(x,	y+(vspeed/2),	obj_ground_parent))

{

				if	vspeed	<	grav_max

				{

								vspeed+=grav;

				}

}

else

{

				vspeed	=	0;

}

3.	 Enter	this	code	below	the	existing	movement	code:

//make	the	character	jump

if	keyboard_check_pressed(vk_space)	and	(place_meeting(x,	y+vspeed,	

obj_ground_parent))

{

				vspeed	=	-jump_spd;

}

4.	 Close	the	code	block	windows	and	you’re	done.

How	it	works…
With	this	code,	you	are	essentially	creating	very	basic	gravity	and	then	defying	this
gravity.	The	variables	set	in	the	Create	event	control	your	jump	speed	and	gravity	and	the
Step	event	code	puts	them	to	use.

The	first	line	of	code	tells	GameMaker	that	if	your	character	is	not	currently	in	contact
with	the	ground	(or	a	platform),	then	its	vertical	speed	will	increase	by	the	value	of	the
gravity	at	every	step,	as	long	as	the	speed	does	not	exceed	the	maximum	value.	This
essentially	creates	a	very	basic	form	of	velocity.	If,	however,	your	character	is	in	contact
with	a	platform	or	ground,	the	vertical	speed	is	set	to	0.

The	next	set	of	code	is	all	you	need	for	basic	jump	controls.	You	might	notice	that	we’re
not	checking	whether	the	Spacebar	key	is	being	pressed,	we’re	checking	whether	it	was
pressed.	This	is	to	prevent	continuous	jumping	if	the	button	is	held	down.	If	the	player
wants	to	jump	again,	he	or	she	must	press	the	button	a	second	time.	This	will	only	work	if
the	character	is	standing	on	the	ground	or	platform,	preventing	the	player	from	double
jumping	and	beyond.	You	may	also	notice	that	the	code	used	to	actually	make	the	player
jump	is	the	negative	value	of	jump_spd.	Simply	put,	this	is	because	0	on	the	y	axis	is	at	the
top	of	the	screen,	as	opposed	to	the	bottom.

There’s	more…
By	adding	another	variable	(say,	djump),	you	can	allow	your	character	to	double	jump:

1.	 Set	the	djump	variable	to	a	value	of	1	in	the	Create	event.
2.	 Replace	your	jump	code	with	this	code:

if	keyboard_check_pressed(vk_space)	and	(place_meeting(x,	y+vspeed,	

obj_ground_parent))

{

				vspeed	=	-jump_spd;

				djump	=	0;

}

else	

{

				if	keyboard_check_pressed(vk_space)	and	(djump	<	1)

				{

								vspeed	=	-jump_spd;

								djump	=	1;

				}

}

This	code	changes	the	value	of	djump	to	0	when	the	player	jumps	while	on	the	ground.	So
as	long	as	the	value	of	djump	is	less	than	1,	the	player	can	jump	again,	but	the	code	then
changes	djump	back	to	1,	thereby	disallowing	a	third	jump.

See	also
Physics	will	be	discussed	much	more	in	depth	in	Chapter	4,	Let’s	Get	Physical	–	Using
GameMaker’s	Physics	System.

Using	a	point-and-click	interface
If	you’ve	ever	played	a	computer	game,	chances	are	you’ve	done	so	using	a	mouse	or
similar	device	at	one	point	or	another.	So	many	game	genres	utilize	such	a	peripheral	but
few	have	made	as	big	an	impact	as	Diablo,	which	was	released	in	1996.	Diablo	was	not
the	first	action-RPG	to	use	a	mouse-based	movement,	but	it	was	among	the	first	to	use	8
direction	movement	and	certainly	revitalized	a	game	genre	in	decline.	Even	with	the
release	of	Diablo	3	in	2012,	the	biggest	change	is	the	360-degree	movement	in	place	of	the
8	direction	movement	based	on	a	grid.	Given	the	continued	popularity	of	this	genre,	you
may	be	inclined	to	recreate	it	in	a	game	of	your	own,	so	let’s	do	that	now.

Getting	ready
To	start	with,	you’ll	need	a	room	and	an	animated	character	set	for	either	a	top-down	or
3/4	isometric	view	with	separate	sprites	for	each	direction.	This	is	easily	achieved	if	you
create	a	3D	model	for	your	character	and	simply	render	out	the	various	poses	and
animation	frames,	but	this	depends	entirely	on	the	visual	style	you	choose	for	your	game.
Make	sure	to	give	each	sprite	a	descriptive	name	such	as	spr_player_walk_east,
spr_player_walk_northeast,	and	so	on.	Create	one	for	each	of	the	8	directions.	You’ll
also	need	two	objects:	one	called	obj_player	using	either	one	of	the	player	walk	sprites	or
a	player	idle	sprite	and	one	called	obj_waypoint	using	a	colored	square	sprite.
Obj_waypoint	should	be	invisible,	though	you	can	make	it	visible	for	testing	purposes.

How	to	do	it…
1.	 In	obj_player,	add	a	Create	event.
2.	 Add	a	block	of	code	containing	the	following	code:

///set	variables

speed	=	0;

image_speed	=	0;

waypoint	=	0;

3.	 Add	a	Step	event,	where	you’ll	drag	two	code	blocks	to	the	Actions	box.	The	first
block	should	contain	this	code:

///create	waypoint

if	mouse_check_button_pressed(mb_left)	and	waypoint	=	0

{

				instance_create(mouse_x,mouse_y,obj_waypoint);

				waypoint	=	1;

}

4.	 The	second	block	will	contain	considerably	more	code	than	the	first:

///player	movement

if	waypoint	=	1

{

				move_towards_point(obj_waypoint.x,	obj_waypoint.y,	5);

				image_speed	=	1;

}

else

{

				speed=0;

}

if	(direction	>=	337.5	or	direction	<	22.5)

{

				sprite_index	=	spr_player_walk_east;

}

if	(direction	>=	22.5	and	direction	<	67.5)

{

				sprite_index	=	spr_player_walk_northeast;

}

…

There	is	much	more	to	the	code	than	I’ve	added	here,	where	you	will	see	the	ellipsis
at	the	end.	You	should	continue	with	the	code	for	each	of	the	8	directions.	Each
direction	should	comprise	45	degrees	without	overlapping	on	adjacent	directions.

5.	 Next,	add	a	Collision	event	to	obj_waypoint	as	the	target.
6.	 Drag	a	code	block	to	the	Actions	box	and	add	the	following	code:

///stop	player,	remove	waypoint

speed	=	0;

waypoint	=	0;

image_speed	=	0;

				with	obj_waypoint

{

				instance_destroy();

}

You	can	now	test	this	(very	basic)	point-and-click	movement,	which	is	perfect	for
dungeon	crawlers	and	action	RPGs.	If	you	make	the	waypoint	visible,	you	can	see	when	it
is	placed	and	removed,	which	will	help	you	fine-tune	the	values	to	your	liking.

How	it	works…
This	code	asks	GameMaker	to	check	various	things	at	every	step	of	the	game.	First,
GameMaker	checks	whether	obj_waypoint	exists.	If	it	does	not	exist,	the	player	character
does	nothing;	it	stays	right	where	it	is.	If	you	click	anywhere	in	the	room,	however,	this
creates	an	instance	of	obj_waypoint	and,	since	it	now	does	exist,	the	character	will	walk
toward	it	at	a	specified	speed.	GameMaker	then	checks	which	direction	it’s	travelling	in
order	to	change	the	sprite	to	match	that	direction.	Once	it	arrives	at	the	x	and	y	coordinates
of	obj_waypoint,	GameMaker	then	removes	the	instance,	causing	the	player	character	to
stop	in	its	tracks.

There’s	more…
Using	this	code	as	is	will	completely	ignore	all	objects	that	are	not	obj_waypoint,	so
unless	your	character	is	a	ghost	that	can	walk	through	anything,	you’ll	need	to	make	sure
it	avoids	solid	objects.	This	can	be	done	using	GameMaker’s	drag	and	drop	interface,
specifically	Step	Avoiding,	but	you	can	fine-tune	it	to	your	liking	by	coding	it	yourself.

See	also
Advanced	movement	and	paths	will	be	discussed	further	in	Chapter	3,	Let’s	Move	It	–
Advanced	Movement	and	Layout.

Following	the	cursor
As	long	as	we’re	using	the	mouse,	we	may	as	well	look	into	further	uses	for	our	favorite
peripheral.	Some	games,	like	the	brick	breaker	subgenre,	may	use	the	mouse	without
relying	on	the	mouse	buttons.	As	you	move	your	mouse	left	and	right,	your	paddle	moves
correspondently	onscreen,	allowing	you	to	bounce	a	ball	upwards	toward	bricks.	You
know…the	ones	you	want	to	break.	Tennis-style	games	like	Pong	work	on	the	same	basic
principle,	only	on	a	different	axis.	If	you’ve	ever	wanted	to	revisit	this	classic	control
scheme,	now	is	as	good	a	time	as	any.

Getting	ready
We	won’t	get	into	creating	a	full	Pong	or	brick	breaker	style	game	at	this	point;	we	only
want	to	learn	how	the	paddle	moves.	In	this	case,	we’ll	make	a	paddle	that	moves	along
the	x	axis.	That	said,	all	you	need	is	a	sprite	and	object	named	in	the	vein	of	_paddle	and
you’re	set.

How	to	do	it…
Get	ready	for	this	one,	it	may	take	a	while.

1.	 In	obj_paddle	add	a	Step	event.
2.	 Place	a	code	block	in	the	Actions	box	and	enter	the	following	code:

	///paddle	movement

x	=	mouse_x;

Okay,	you’re	finally	done.	Go	grab	some	water	and	pat	yourself	on	the	back.	You	did	it!

How	it	works…
With	that	one	line	of	code	(and	one	descriptive	comment	just	in	case	you	forget	what	it
does)	you’ve	told	GameMaker	that	you	want	the	x	coordinate	for	obj_paddle	to	be
exactly	that	of	your	mouse	cursor.	That’s	all	you	need.	It’s	not	even	necessary	to	code
where	the	paddle	should	stop	because	GameMaker	knows	the	size	of	the	room;	once	the
cursor	leaves	the	confines	of	the	room,	it	no	longer	exists.	This	type	of	control	is	great	for
brick	breakers,	Pong	clones,	or	even	balancing	games,	so	use	it	at	your	own	discretion.

There’s	more…
Okay,	so	you	want	to	expand	on	this	idea?	How	about	something	that	follows	the	cursor	at
a	slower	pace?	In	the	Step	event,	replace	the	code	with	this:

move_towards_point	(mouse_x,	mouse_y,	5);

This	code	will	cause	the	object	to	constantly	move	toward	the	cursor’s	position.	If	you
completed	the	previous	recipe,	you’d	have	used	this	code	to	make	your	player	character
move	toward	a	mouse	click.	The	difference	here	is	that	the	x	and	y	coordinates	are
dynamic,	moving	as	the	mouse	moves	without	waiting	for	a	click.

See	also
We’ll	be	looking	into	further	uses	for	that	mouse	of	yours	in	Chapter	3,	Let’s	Move	It	–
Advanced	Movement	and	Layout.

Setting	up	a	controller
Have	you	ever	asked	a	gamer	about	his	or	her	favorite	gaming	setup?	Everyone	has	their
preferences,	but	most	gamers	are	very	particular	about	how	they	control	a	game.	Some
gamers	prefer	a	keyboard	and	mouse	but	other	gamers,	including	myself,	are	quite	fond	of
gamepads.	If	you	check	the	history	of	game	controllers,	you	might	be	surprised	to	find
many	variations.	You	may	also	be	surprised	to	find	how	vehemently	some	gamers	will
defend	their	choice	of	input	device,	though	many	will	tell	you	that	it	all	comes	down	to
what’s	comfortable.	Personally,	I	prefer	Xbox	360	and	Xbox	One	controllers.	Luckily,
these	are	both	compatible	with	the	PC,	so	we	will	facilitate	the	use	of	one	(and	other
compatible	gamepads)	in	the	next	recipe.

Getting	ready
You’ll	need	at	least	one	controller	that	can	connect	to	your	PC.	Big	surprise.	I	will	use	a
wireless	Xbox	360	controller	that	connects	to	my	PC	via	a	dedicated	wireless	dongle	(I
love	this	word;	it’s	just	fun	to	say).	Your	PC	and	GameMaker	will	do	a	lot	of	the	work	for
you;	we’re	just	going	to	make	coding	for	a	gamepad	a	little	easier.

How	to	do	it…
Once	you	have	your	gamepad	connected,	it	essentially	works	right	away.	I	like	to	map	the
face	buttons	using	a	controller	object	that	can	be	found	in	every	room	in	the	game.

1.	 Create	an	object	with	no	sprite	and	call	it	obj_control.
2.	 Add	a	Create	event	and	drag	a	code	block	to	the	Actions	box.
3.	 Enter	the	following	code	in	the	code	block:

///assign	names	to	face	buttons

gpad_A	=	gp_face1;

gpad_B	=	gp_face2;

gpad_X	=	gp_face3;

gpad_Y	=	gp_face4;

Close	the	code	block	and	you’re	done.

How	it	works…
You	may	be	wondering	why	I	only	chose	to	assign	new	variables	to	the	four	face	buttons.
The	reason	is	that	these	are	the	only	buttons	for	which	GameMaker	uses	a	nondescript
name;	all	the	other	controls	on	the	gamepad	are	named	for	what	they	are.	For	example,
right	on	the	D-pad	becomes	gp_dpadr	and	the	Select	button	becomes	gp_select.	Buttons
and	controls	such	as	these	are	universal	across	most,	if	not	all,	gamepads,	whereas	the	face
buttons	have	different	designations	based	on	the	gamepad’s	manufacturer.	For	example,
the	X	button	on	an	Xbox	controller	would	be	the	Square	button	on	a	PlayStation
controller.	You	can	rename	any	and	all	gamepad	buttons	in	GameMaker	but	I	find	this	to
be	quite	unnecessary.

Once	you	have	the	buttons	mapped	to	your	liking,	you	can	test	them	by	putting	the	code	in
a	Step	event:

if	gamepad_button_check_pressed(0,	gpad_A)

{

		//your	code	here

}

This	code	will	simply	check	whether	the	A	button	on	the	gamepad	that	is	in	the	first
controller	slot	has	been	pressed	and	released,	and,	if	it	has	been	pressed	and	released,	it
executes	the	commands.

Note	that	it	is	a	best	practice	to	verify	that	a	gamepad	is	connected	prior	to	using	gamepad
functions.

In	the	preceding	case,	you	can	nest	the	if	statement	in	another	if	statement,	as	follows:

if	gamepad_is_connected(0)

{

		global.gpad	=	true;

}

else

{

		global.gpad	=	false;

}

You	can	find	more	information	at	http://docs.yoyogames.com/.

http://docs.yoyogames.com/

Utilizing	analogue	joystick	acceleration
Anyone	who’s	used	a	modern	gamepad	controller	knows	that	most	games	incorporate	the
joysticks	for	camera	control	and	player	movement,	the	latter	being	more	common.	Given
this	fact,	it	would	be	helpful	to	know	how	this	works	with	GameMaker.	Now,	this	can	be
handled	by	allowing	GameMaker	to	check,	in	absolutes,	whether	one	of	the	sticks	is
moving	in	a	specific	direction.	This	is	fine	for	menus	and	the	like,	but	what	if	you	want	to
handle	acceleration?	Let’s	take	a	look	at	this.

Getting	ready
Of	course,	you’ll	need	to	have	at	least	one	gamepad	connected	to	your	PC.	It’s	not
necessary	to	have	the	face	buttons	mapped,	as	seen	in	the	previous	recipe.	You’ll	also	need
an	object	with	a	sprite	to	move	with	the	gamepad,	but	this	can	simply	be	a	box	or	any
other	sprite	you	have.

How	to	do	it…
1.	 In	your	object,	add	a	Create	event	to	a	code	block.
2.	 In	the	code	block,	add	the	following	code:

///set	variables

max_spd	=	12;

3.	 Now,	add	a	Step	event	and	drag	a	code	block	to	the	Actions	box.	The	code	block
should	contain	the	following	code:

///analogue	movement

if	(gamepad_axis_value(0,	gp_axislh)	>	0.2)	or	(gamepad_axis_value(0,	

gp_axislh)	<	(-0.2))

{

				hspeed	=	gamepad_axis_value(0,	gp_axislh)*max_spd;

}

else

{

				hspeed	=	0;

}

if	(gamepad_axis_value(0,	gp_axislv)	>	0.2)	or	(gamepad_axis_value(0,	

gp_axislv)	<	(-0.2))

{

				vspeed	=	gamepad_axis_value(0,	gp_axislv)*max_spd;

}

else

{

				vspeed	=	0;

}

Here,	you	have	a	analogue	movement	with	acceleration	in	all	directions.

How	it	works…
This	code	may	seem	complicated,	but	it	is	really	quite	simple;	the	object’s	vertical	and
horizontal	speeds	are	directly	proportionate	to	the	position	of	the	left	thumbstick.	When	a
gamepad’s	thumbstick	is	used,	GameMaker	reads	its	position	as	a	value	between	1	and	-1.
Pushed	all	the	way	to	the	right,	this	value	becomes	one,	but	halfway	to	the	right,	this	value
becomes	0.5.	As	you	can	guess,	the	same	value	reads	as	-1	when	pushed	to	the	extreme
left	and	0	when	at	rest.	Now,	because	GameMaker	constantly	checks	the	axis	value	and
because	thumbsticks	can	register	every	minute	movement	even	when	at	rest,	we	created	a
“dead	zone”	that	tells	GameMaker	to	only	increase	the	object’s	vertical	or	horizontal
speed	when	the	axis	value	reads	within	a	specified	range	(which	would	require	the
player’s	physical	input).	This	way,	the	object	doesn’t	move	around	simply	because	you
tilted	your	gamepad	and	gravity	took	over.	Once	the	thumbstick	is	moved	beyond	this
dead	zone	in	any	direction,	the	generated	value	is	then	multiplied	by	the	maximum	speed,
which	means	that	the	object’s	speed	is	regulated	by	how	far	the	thumbstick	is	pushed	in
that	direction.	See,	its	easy.

There’s	more…
You	don’t	necessarily	need	to	allow	movement	in	all	directions.	If	you	ask	GameMaker	to
check	only	for	vertical	or	horizontal,	it	will	only	return	the	requested	value,	not	both.

See	also
Joystick	movement	will	be	discussed	in	Chapter	3,	Let’s	Move	It	–	Advanced	Movement
and	Layout.

Adding	tap	control
If	there’s	one	thing	mobile	games	and	apps	tell	you	to	do,	it’s	to	tap	something.	Tap	to
start.	Tap	to	continue.	Tap	to	win!	Okay,	this	one	may	be	less	common,	but	the	point
remains	the	same.	Tap	controls	are	the	most	common	control	styles	in	mobile	games	and
the	best	part	is	they’re	not	hard	to	code.	Let’s	take	a	look	at	an	example	right	now.

Getting	ready
For	this	recipe,	you’ll	need	two	objects.	Give	one	object	a	simple	sprite	(such	as	a	blue
circle)	and	name	it	obj_balloon	and	name	the	other	obj_control	but	don’t	assign	a	sprite
to	it.	Make	sure	obj_control	is	placed	inside	the	room	you’re	using	for	this	recipe.

How	to	do	it…
1.	 In	the	control	object,	add	a	Create	event	to	a	code	block	that	sets	the	following

alarm:

alarm[0]	=	60;

2.	 Next,	add	an	event	to	Alarm0	using	the	following	code:

instance_create((random_range(0,room_width)),

(random_range(0,room_height)),obj_balloon);

3.	 In	obj_balloon,	simply	add	a	mouse	left	pressed	event	and	enter	this	code	into	a
code	block:

instance_destroy();

obj_control.alarm[0]	=	60;

That’s	it!	Try	running	this	on	your	mobile	device	or	even	on	your	computer,	using	the
mouse	to	control.

How	it	works…
This	recipe	couldn’t	have	been	simpler,	but	it	demonstrates	an	important	point	about	how
GameMaker	utilizes	touch	controls.	Here,	your	finger	on	the	screen	acts	as	the	click	of	a
mouse	on	your	computer.	Due	to	this	correlation,	the	point-and-click	interface,	as	seen
previously,	can	be	ported	to	a	touchscreen	device	with	few	changes.

There’s	more…
The	difference	between	a	touchscreen	and	your	computer	is	that	most	touchscreens	can
handle	multi-touch,	that	is,	multiple	input	points	at	the	same	time.	Your	computer	isn’t
going	to	have	multiple	mice	working	simultaneously,	so	the	standard	functions	don’t	work
for	multiple	inputs.	Instead	of	using	the	standard	functions,	you	can	use	specific	functions,
such	as	if	device_mouse_check_button_pressed(0,	mb_left)	press=true;	where	0
represents	the	device	being	checked.	Multi-touch	can	handle	up	to	five	inputs	at	one	time,
which	are	numbered	0-4.	Keep	this	in	mind	if	you’re	looking	to	use	gestures	for	specific
controls.

Using	swipes
If	you	use	a	mobile	device,	such	as	a	phone	or	tablet,	it’s	a	safe	bet	to	use	swipe	controls
in	a	game	or	an	app;	popular	games	such	as	Fruit	Ninja	have	been	designed	entirely
around	this	type	of	a	touchscreen	input.	Swipe	controls	are	intuitive	for	certain	onscreen
actions	(such	as	slicing	a	fruit),	so	the	game	just	feels	right;	it’s	satisfying.	Let’s	take	a
moment	to	cook	up	some	satisfying	controls.

Getting	ready
We’ll	create	a	simple	demo	to	showcase	the	swipe	movement.	To	do	this,	you’ll	need	a
simple	room	and	two	objects.	The	first	object	should	be	called	obj_target	and	requires	a
sprite;	I	chose	a	simple	green	box.	The	second	should	be	called	obj_control_swipe	and
requires	no	sprite.	Based	on	the	name,	I’m	sure	you	can	guess	what	this	second	object
does.

How	to	do	it…
1.	 In	obj_target,	add	a	Create	event	to	a	code	block	containing	the	following	code:

x	=	room_width/2;

y	=	room_height/2;

2.	 Add	a	Step	event	to	the	code	block	where	you’ll	enter	this	code:

if	(x	<	0)	or	(x	>	room_width)	or	(y	<	0)	or	(y	>	room_height)

{

				instance_destroy();

				instance_create(room_width/2,room_height/2-50,obj_target);

}

3.	 This	is	all	you’ll	need	to	do	to	the	target,	but	make	sure	to	add	it	to	the	room.
4.	 Next,	open	obj_control_swipe	and	add	a	Create	event.
5.	 Drag	a	code	block	to	the	Actions	tab	and	enter	the	following	code:

mx_start	=	0;

my_start	=	0;

mx_end	=	0;

my_end	=	0;

swipe_time	=	0;

swipe_speed	=	0;

swipe	=	false;

6.	 When	this	is	done,	add	a	Step	event	to	a	code	block	containing	the	following	code:

if	mouse_check_button_pressed(mb_left)

{

				mx_start	=	mouse_x;

				my_start	=	mouse_y;

				swipe	=	true;

}

if	swipe	=	true

{

				mx_end	=	mouse_x;

				my_end	=	mouse_y;

				swipe_time	+=0.5;

				if	mouse_check_button_released(mb_left)

				{

								swipe	=	false;

								swipe_speed	=	

point_distance(mx_start,my_start,mx_end,my_end)/swipe_time;

								swipe_time	=	0;

								if	

collision_line(mx_start,my_start,mx_end,my_end,obj_target,false,false)

								{

												with(obj_target)

												{

																direction	=	point_direction(other.mx_start,	

other.my_start,	other.mx_end,	other.my_end);

																speed	=	other.swipe_speed;

												}

								}

				}

}

7.	 Close	the	control	object	and	make	sure	you	add	it	to	your	room.	Though	it	is
invisible,	nothing	will	happen	here	without	it.	Once	this	is	done,	you’re	all	set	to	test
it.

How	it	works…
This	recipe	involves	several	conditional	checks	and	if	statements.	As	with	any	code,	the
reason	is	that	we	don’t	want	certain	things	to	happen	unless	certain	prerequisites	have
been	met.	It	first	checks	whether	the	left	mouse	button	has	been	pressed,	and	if	it	has	been
pressed,	it	continues	and	sets	the	start	coordinates	of	the	mouse	and	the	swipe	variable	to
true.	While	swipe	is	true,	GameMaker	will	track	the	mouse’s	coordinates	and	increase	the
value	of	swipe_time	at	every	step.	Once	the	left	mouse	button	is	released,	swipe	becomes
false	and	the	speed	of	the	swipe	is	calculated.	This	is	done	by	calculating	the	distance
between	the	mouse	button	press	and	release,	and	dividing	it	by	the	current	value	of
swipe_time,	which	is	then	set	back	to	0.

Now,	we	don’t	want	to	move	the	target	by	swiping	just	anywhere,	so	we	need	GameMaker
to	check	whether	the	target	itself	was	swiped.	This	is	done	using	collision_line,	which
takes	the	given	start	and	end	coordinates	and	checks	whether	the	selected	object	collides
with	that	line	at	any	point.	You	must	decide	whether	you	want	GameMaker	to	check	the
collision	precisely,	which	is	slower	to	compute	(by	entering	true),	or	you	can	simply	use
the	sprites	collision	mask,	which	is	faster	(by	entering	false).	Here,	we	used	the	latter.
You	must	check	whether	the	calling	instance	(the	object	from	which	the	code	is	read)
should	be	excluded	from	the	collision	check	or	not	by	entering	“true”	to	exclude	it	or
“false”	to	include	it.	In	this	case,	it	was	irrelevant.

Once	all	of	these	checks	have	been	completed,	if	they	all	return	true,	GameMaker	takes
the	speed	(calculated	previously)	and	the	direction	(set	by	checking	the	start	and	end
coordinates	of	the	swipe)	and	applies	them	to	our	target.	So,	based	on	how	quickly	you
swipe	and	in	which	direction,	as	long	as	you	connect	to	the	target,	it	will	move
accordingly.

There’s	more…
As	you	may	have	guessed,	moving	the	target	isn’t	the	most	important	part	of	this	code;	it’s
simply	the	outcome.	You	can	use	swipe	gestures	to	do	anything	from	the	menu	navigation
to	destroying	enemies.	Once	the	requirements	to	register	a	swipe	have	been	completed,
what	that	action	does	is	completely	up	to	you.

Moving	characters	or	objects	by	tilting	a
device
Another	widely	used	feature	in	smartphones	and	tablets	is	the	built-in	gyroscope.	This
component	allows	basic	motion	controls	that	are	read	by	their	movement.	The	most
common	use	of	device	tilt	is	to	control	the	screen’s	visual	orientation,	but	it	can	also	be
used	for	games.	We’re	going	to	take	a	look	at	how	to	use	tilt	controls	to	move	an	object
around.

Getting	ready
Before	we	begin,	you’ll	need	to	set	up	your	room	for	a	mobile	device.	As	we’ll	test	tilt
functions	that	utilize	an	accelerometer,	this	recipe	can	only	be	tested	on	a	mobile	device,
such	as	a	smartphone	or	tablet.	With	the	purchase	of	a	GameMaker	Professional	license,
you	can	test	them	on	Android	devices	without	purchasing	the	exporter.	If	you	wish	to	test
on	iOS	or	Windows	mobile	devices,	you’ll	need	to	purchase	their	respective	export
licenses.	For	this	recipe,	I	used	the	Android	target	in	portrait	mode	for	testing	purposes.	I
set	the	room	to	768	px	wide	by	1280	px	high	and	locked	the	screen	to	portrait	under
Global	Game	Settings.	You’ll	also	need	to	create	two	objects:	obj_ball	and	obj_wall.
Give	obj_ball	a	yellow	circle	as	the	sprite	and	make	obj_wall	a	black	square.	Under
Object	Properties	of	obj_wall,	make	sure	Visible	is	not	checked.

In	your	room,	place	the	ball	anywhere	within	and	surround	the	outer	edge	of	the	room
with	your	wall	object.	For	this	purpose,	you	can	either	line	the	edges	with	individual
instances	of	obj_wall,	or	simply	use	four	of	them	that	have	been	stretched	to	complete	the
perimeter.

How	to	do	it…
1.	 Open	obj_ball	and	add	a	Step	event.
2.	 Drag	a	code	block	to	the	Actions	box	and	add	the	following	code:

if	device_get_tilt_x()	<	-0.1	or	device_get_tilt_x()	>	0.1

{

								x	-=	(device_get_tilt_x()*20);

}

if	device_get_tilt_y()	<	-0.1	or	device_get_tilt_y()	>	0.1

{

								y	+=	(device_get_tilt_y()*20);

}

3.	 Now,	add	a	Collision	event	to	obj_wall	as	the	target.
4.	 From	the	Move	tab,	drag	the	Bounce	block	to	the	Actions	box	and	use	the	following

settings:

Applies	to:	Self

Precise:	Not	precisely

Against:	All	objects

Once	this	is	done,	you	can	close	all	the	boxes	and	test	on	your	Android	device	by	tilting	it
back	and	forth.

How	it	works…
For	most	devices,	a	tilt	is	registered	by	GameMaker	using	the	device’s	accelerometer	in
the	same	way	as	it	uses	a	gamepad’s	analogue	joysticks.	A	value	between	1	and	-1	is
populated	based	on	how	far	the	device	is	tilted	in	one	direction.	In	some	devices,	a	90
degree	tilt	to	the	right	produces	a	value	of	1,	whereas	a	90	degree	tilt	to	the	left	produces	a
value	of	-1.	In	other	devices,	this	is	reversed	and	the	same	goes	for	tilting	up	and	down.	If
you	test	on	your	device	and	find	that	a	tilt	to	the	right	sends	the	ball	to	the	left,	you	can
simply	change	x	-=…	to	x	+=….

The	wall	objects	you	placed	in	the	room	were	simply	used	for	testing	purposes.	Without
them,	your	ball	object	can	move	outside	the	play	area.

There’s	more…
This	recipe	calls	for	locking	the	device’s	screen	orientation	to	Portrait	mode.	If	you	plan	to
make	a	game	that	has	different	control	options	depending	on	the	device	orientation,	you
can	use	the	display_get_orientation()function.	This	function	checks	whether	the
device	is	in	landscape	or	portrait	mode	or	not	and	deploys	your	code	accordingly.	Refer	to
http://docs.yoyogames.com/	for	more	information.

http://docs.yoyogames.com/

Chapter	3.	Let’s	Move	It	–	Advanced
Movement	and	Layout
In	this	recipe,	we’ll	cover	the	following	topics:

Dragging	onscreen	objects
Dragging	objects	on	a	grid
Moving	a	character	on	a	grid
Setting	a	path
Creating	enemy	pathfinding
Controlling	a	character	with	a	mouse	and	keyboard

Introduction
Ask	any	gamer	what	his/her	favorite	game	is	and	you’ll	likely	get	an	immediate	response.
Now	ask	the	same	gamer	whether	he/she	would	be	willing	to	play	only	that	game,	and	no
other,	forever.	You	probably	won’t	get	the	same	enthusiasm	in	the	response	and	for	good
reason.	I	don’t	know	about	you,	but	I	can’t	imagine	playing	just	one	game	the	rest	of	my
life.	Luckily,	we	have	a	lot	of	choice	when	it	comes	to	what	we	play.	With	so	many	genres
and	subgenres	out	there,	we	end	up	with	a	limitless	variety	when	it	comes	to	games.	Now,
some	developers	create	many	games	in	the	same	genre;	they’ve	found	a	niche	to	fill	and
they’re	happy	to	do	so.	Others	prefer	to	experiment	with	various	genres,	sometimes	even
combining	aspects	of	multiple	genres	for	a	different	experience.

If	we	didn’t	have	games	offering	so	many	different	experiences,	we	would	get	bored	with
games	very	quickly.	It’s	up	to	developers	to	keep	gaming	fresh	with	new	controls	and
gameplay	styles,	so	we’re	going	to	take	a	look	at	how	to	recreate	a	few	of	these	styles	in
GameMaker.

Drag	and	drop	items/characters
Drag	and	drop	controls	work	great	in	many	situations,	such	as	point-and-click
adventures,	strategy	games,	and	even	inventory	systems.	Let’s	make	them	happen	in
GameMaker.

Dragging	onscreen	objects

Grid-based	movements
Grids	can	be	implemented	in	several	different	game	styles,	even	when	you	might	not	be
aware	of	them.	Strategy	games,	puzzles,	and	RPGs	can	utilize	grids	to	move	characters
and	items	around.

Dragging	objects	on	a	grid
Moving	a	character	on	a	grid

Paths
GameMaker	uses	paths	to	allow	several	different	gameplay	elements.	You	can	set
enemies	on	a	specific	path	to	patrol	a	given	area,	you	can	create	moving	platforms	and
background	elements,	and	you	can	even	use	them	to	move	your	players.	Let’s	create	some
paths	to	see	them	in	action:

Setting	a	path
Creating	enemy	pathfinding

Multiple	inputs
Many	mobile	games	utilize	one-touch	controls	but	how	often	do	you	see	the	same	from
PC	and	console	games?	With	all	of	these	buttons,	there	has	to	be	something	they	can	be
used	for	right?

Controlling	a	character	with	a	mouse	and	keyboard

Dragging	onscreen	objects
Using	your	mouse	to	drag	items	onscreen	is	a	common	practice	in	many	computer
applications,	and	even	predates	the	release	of	Windows	3.1,	which	brought	the	visual
interface	into	the	mainstream.	If	you	use	a	computer	for	work	or	play,	you	certainly	drag
icons,	text,	and	so	on	on	a	daily	basis;	you	even	do	it	when	creating	with	GameMaker.
Dragging	items	has	many	applications	in	games,	but	in	order	to	implement	it,	we	first	need
to	know	how	it	works.

Getting	ready
You’ll	need	a	room	and	an	object	called	obj_block	to	place	in	it.	The	sprite	can	be
anything	here,	so	I’ve	simply	made	a	blue	square.	Place	the	object	anywhere	in	the	room
and	you’re	ready	to	go.

How	to	do	it
1.	 In	obj_block,	add	a	Create	event.
2.	 Drag	and	drop	a	code	block	using	the	following	code:

///Set	variables

dragged	=	false;

global.canDrag	=	true;

3.	 Add	a	Left	Button	event.
4.	 Drag	a	code	block	to	the	Actions	box	and	enter	the	following	code:

///Pick	up	object

if	global.canDrag	=	true

{

				global.canDrag	=	false;

				dragged	=	true;

}

5.	 Add	a	Step	event.
6.	 In	this	event,	place	a	code	block	using	the	following	code:

///Drag	object

if	dragged	=	true

{

				x	=	mouse_x;

				y	=	mouse_y;

}

7.	 Add	a	Global	Left	Released	event	(under	Mouse	|	Global	Mouse).
8.	 Drop	a	code	block	in	the	Actions	box	using	this	code:

///Drop	object

dragged	=	false;

global.canDrag	=	true;

Once	this	is	done,	you	can	test	your	code.	Try	it	with	multiple	instances	of	obj_block	in
the	same	room.

How	it	works
As	you	can	see,	the	Create	event	sets	the	two	variables	that	will	be	used	to	tell
GameMaker	whether	an	object	can	be	picked	up	and	dragged	around	with	the	mouse	or
not.	The	variable	dragged	checks	whether	the	left	mouse	button	is	being	pressed.	We	tell
GameMaker	to	set	the	x	and	y	coordinates	of	the	object	to	be	represented	by	the
appropriate	coordinates	of	the	mouse,	as	long	as	dragged	is	true.	Since	the	code	for	this	is
in	a	Step	event,	once	the	left	mouse	button	is	released	and	dragged	becomes	false,	the
object	then	ignores	the	mouse’s	x	and	y	coordinates	and	stays	put	(unless	told	to	do
otherwise).

You	may	have	also	noticed	that	the	canDrag	variable	is	a	global	variable.	This	is	used	to
prevent	the	mouse	from	picking	up	other	objects	if	the	player	drags	something	on	top	of
them.	While	the	dragged	variable	pertains	to	the	specific	object	being	dragged,	the
canDrag	global	variable	pertains	to	everything	in	the	game.	This	way,	as	long	as	an	object
is	being	dragged	around,	no	other	object	can	be	picked	up.	Now,	you	can	obviously
change	this	if	you	want	a	mouse	drag	to	pick	up	multiple	objects,	but	keep	in	mind	that
this	code	will	stack	objects	in	exactly	the	same	place.	This	means	that	multiple	instances
of	the	same	object	will	appear	to	become	one.

Dragging	objects	on	a	grid
Often,	games	require	objects	to	be	in	specific	locations	in	order	to	be	used,	such	as
buildings	in	a	real-time	strategy	game.	When	placing	your	building,	you’ll	need	to	drop	it
on	a	specific	grid.	There	are	different	ways	to	demonstrate	this,	but	the	most	common	way
is	simply	to	lock	the	building	to	the	said	grid	in	order	to	keep	it	from	being	placed	in	an
undesired	location.	If	real	life	worked	this	way,	then	construction	planning	would	be	a
breeze.	Since	real	life	does	not	work	like	this,	let’s	at	least	make	it	happen	in	GameMaker
so	that	we	can	enjoy	some	form	of	worry-free	construction.

Getting	ready
This	recipe	assumes	the	completion	of	the	previous	recipe,	Dragging	onscreen	objects,	so
you’ll	need	to	get	it	done	and	open	your	GameMaker	file.	Go	ahead	and	do	it	now,	if	you
haven’t;	I’ll	wait.	All	set?	Good.	Now	before	you	begin,	there	are	certain	things	you	need
to	check.	Make	sure	the	length	and	width	of	the	room	you’re	using	is	divisible	by	32.	If
you	wish	to	use	a	different	value,	this	should	be	reflected	in	the	given	equation.	I	used
1024	x	768.	For	testing	purposes,	you	may	wish	to	create	a	simple	grid	background	in
order	to	see	the	snapping	in	action.	Again,	the	grid	needs	to	match	the	equation	you	use.

How	to	do	it
1.	 Open	the	Object	Properties	of	obj_block.
2.	 Under	the	Step	event,	open	the	code	block	labeled	Drag	object.
3.	 Replace	the	code	for	the	x	and	y	coordinates	with	the	following	code:

x=(mouse_x	div	32)*32	+16;

y=(mouse_y	div	32)*32	+16;

Once	this	is	completed,	you	can	test	it	by	picking	up	a	block	and	moving	it	around.	Notice
that	it	will	not	even	appear	between	the	grid	points.	This	means	that	you	can	drop	it
anywhere	and	it	will	always	be	within	the	confines	of	the	grid.

How	it	works
This	code	works	just	like	the	code	in	the	previous	section,	but	it	restricts	the	object’s
movement	in	order	to	keep	it	within	the	confines	of	the	grid.	This	way,	the	object	will
never	be	out	of	place.	Essentially,	you’re	telling	GameMaker	that	when	obj_block	is
picked	up,	it	can	only	be	moved	along	the	grid	by	means	of	the	equations	used	to	establish
its	x	and	y	coordinates.	For	x,	we	use	the	div	function	to	take	the	numerical	value	of	the
mouse’s	position	on	the	x	axis,	divide	it	by	32,	and	round	it	to	the	nearest	whole	integer.
This	new	value	is	then	multiplied	by	32	to	give	the	resemblance	of	an	actual	grid	position,
and	16	is	added	to	the	center	of	the	object	in	a	single	box	on	the	grid,	16	being	half	of	32.

Now,	in	this	case,	we	haven’t	actually	built	a	grid	in	the	game.	We’re	causing	the	object	to
move	as	though	it	is	bound	by	a	grid,	but	GameMaker	does	not	keep	track	of	what	objects
lie	in	each	space;	that’s	for	another	recipe.

Moving	a	character	on	a	grid
As	you	may	have	guessed	so	far,	a	lot	of	games	use	grids	for	various	purposes.	We’ve	seen
moving	objects	around	a	grid	with	the	mouse,	but	what	you	may	not	realize	is	that	many
games	that	use	keys	or	a	controller	for	movements	also	utilize	grids.	Classic	role	playing
and	action	games,	such	as	the	original	Legend	of	Zelda	or	Pokemon,	keep	the	player	on	a
grid	in	order	to	force	players	into	specific	positions	or	to	facilitate	the	environment	layout.
Let’s	take	a	look	at	how	to	use	a	grid	to	move	a	player	smoothly.

Getting	ready
To	begin,	you’ll	need	four	sprites	and	an	object	called	obj_player.	Each	sprite	will
represent	a	direction	of	travel:	right,	left,	up,	and	down.	If	your	character	is	symmetrical,
you	can	simply	flip	one	sprite	horizontally.	Make	sure	that	you	use	a	descriptive	naming
convention	for	your	sprites;	I	chose	spr_player_move_right,	and	so	on.	Assign	one	of
these	sprites	to	the	object	itself	to	begin	with	and	you’re	ready	to	go.

How	to	do	it
1.	 Open	obj_player	and	add	a	Create	event.
2.	 Drag	a	code	block	to	the	Actions	box	and	enter	the	following	code:

///set	destination

image_speed	=	0;

destination_x	=	x;

destination_y	=	y;

walking	=	false;

3.	 Add	a	Step	event.
4.	 In	a	code	block,	enter	the	following	code:

///walk	or	do	not	walk

if	(destination_x	==	x	and	destination_y	==	y)

{

				walking	=	false;

				image_speed	=	0;

}

5.	 Enter	this	code	and	complete	it	for	the	x	and	y	axes:

///character	direction	and	movement

if	(destination_x	>	x)

{

				x	+=2

}

if	(destination_x	<	x)

{

				x	-=2

}

…

6.	 In	the	same	code	block,	enter	this	code	and	complete	the	movement	in	all	directions:

if	(keyboard_check(vk_right)	and	not	walking)

{

				destination_x	+=	32;

				image_speed	=	1;

				sprite_index	=	spr_player_move_right;

				walking	=	true;

}

if	(keyboard_check(vk_left)	and	not	walking)

{

				destination_x	-=	32;

				image_speed	=	1;

				sprite_index	=	spr_player_move_left;

				walking	=	true;

}

…

Now,	you	can	place	your	player	object	in	the	room	and	test	it.	You	can	press	any	direction
key	and	the	player	will	move	to	the	next	available	space	along	the	grid.	Hold	down	the

key	and	the	player	will	keep	moving!

How	it	works
The	previous	recipe	can	potentially	be	executed	in	several	ways.	This	way	offers	a	smooth
movement	while	sticking	to	a	grid	and	can	be	adjusted	for	speed	preferences.	By	setting
the	destination_	variables,	you’re	allowing	the	player	to	give	GameMaker	the
coordinates	of	the	next	grid	space	to	which	he	or	she	would	like	to	move,	assuming	that
the	player	is	not	already	moving.	The	code	then	tells	GameMaker	that	once	this
destination	is	set,	you	need	to	move	the	player	object	at	a	set	speed	in	pixels	per	step.
While	this	is	going	on,	the	walking	variable	tells	GameMaker	that	the	player	is	just
walking.	While	the	player	is	walking,	GameMaker	no	longer	sets	the	destination,	but	once
the	previously	set	destination	is	reached,	walking	once	again	becomes	false	and
GameMaker	can	set	a	new	destination,	assuming	that	the	player	is	still	holding	a	direction
key.	The	grid	size	and	the	speed	at	which	the	player	object	moves	are	arbitrary	and	will
depend	on	your	preferences.	One	thing	to	keep	in	mind,	though,	is	that	the	grid	size	must
be	divisible	by	the	speed,	otherwise	your	player	object	will	end	up	moving	independent	of
the	grid.

There’s	more…
You	may	have	noticed	that	while	the	character	is	moving,	we	used	the	walking	variable.
This	would	imply	that	there	is	more	than	one	mode	of	transportation	(think	of	the	bicycle
in	Pokemon).	With	the	use	of	another	variable	and	some	more	if	statements,	you	can	have
variable	speeds	for	your	player’s	movement,	which	is	similar	to	the	Run	button	in	Chapter
1,	Game	Plan	–	Creating	Basic	Gameplay.

Setting	a	path
In	GameMaker,	paths	can	be	used	for	many	things,	some	of	which	will	be	discussed	in	the
following	recipes.	Before	we	get	started	with	the	recipes,	it	might	be	helpful	to	first	learn
how	to	create	simple	paths	and	move	objects	along	them.

Getting	ready
Before	we	make	a	path,	let’s	take	a	quick	look	at	the	tool	itself.	To	open	the	path	editor,
click	on	the	icon	at	the	top	of	the	window	that	looks	like	a	green	arrow	moving	in	a
serpentine	fashion.

This	will	open	a	window	where	you	can	plot	the	path,	straight	or	curved,	to	be	used	in
your	game.

Name	the	path,	path_test.

How	to	do	it
1.	 With	the	path	editor	open,	select	Smooth	Curve.

2.	 Uncheck	the	box	marked	Closed.
3.	 Click	on	the	grid	to	place	the	first	point	of	your	path.
4.	 Place	two	more	path	points	along	the	same	x	axis.
5.	 Now	that	the	second	point	has	turned	blue,	you	can	alter	the	curve	of	the	path.	Move

this	point	up	in	order	to	create	an	upwards	curve.

6.	 Continue	with	the	path	by	adding	more	points	and	adjusting	the	curves	of	each
section.

7.	 Save	your	path	and	create	a	new	object	called	obj_path_test.
8.	 Give	this	new	object	a	red	square	for	the	sprite	and	add	a	Create	event.
9.	 Drag	Set	Path	from	the	Move	tab	to	the	Actions	box.

10.	 In	Set	Path,	use	the	following	settings:
Applies	to:	Self

Path:	path_test

Speed:	5

At	end:	Reverse

Relative:	Relative

11.	 Place	an	instance	of	obj_path_test	anywhere	in	the	room.

When	you	test	your	game,	obj_path_test	will	follow	the	path	you	created,	though	you
won’t	be	able	to	see	the	actual	path.	You	can	edit	any	path	you	create,	allowing	you	to
tweak	it	to	your	needs.

How	it	works
Paths	are	very	simple	to	set	up,	but	very	versatile	when	applied	to	your	game.	By	adding
more	points	and	adjusting	the	angle	of	each	curve,	you	can	move	objects	exactly	how	you
want	to	move	them	and	where	you	need	them.	Adjusting	the	numerical	value	of	Precision
will	change	according	to	how	precisely	the	path	follows	the	curve	you	created	by	adding
or	removing	vertices	along	the	line.	You	can	alter	this	value	on	a	scale	of	1	to	8,	1	being
straight	lines	and	sharp	angles,	8	being	much	softer	curves.

On	the	left-hand	side	of	the	editor	window,	you	will	see	each	point	on	the	path	as	well	as
its	coordinates.	You	can	use	the	buttons	here	to	add	a	point	to	the	line,	insert	a	point	before
the	selected	point,	or	delete	the	selected	point.	You	can	also	select	each	point	after	you’ve
plotted	it	and	alter	its	x	and	y	coordinates	as	well	as	its	relative	speed	at	that	point	in	the
path	(sp).	Play	around	with	the	points	and	values	here	to	see	what	kind	of	a	path	you	can
create.

There’s	more
Once	you’ve	created	a	path,	you	can	use	the	Path	Editor	to	alter	the	line,	resize	the	path,
mirror	it,	flip	it,	and	rotate	it,	as	well	as	shift	its	position.	When	you	use	the	path	with	an
object,	I	recommend	that	you	test	it	with	different	settings	in	the	Set	Path	options	box.
Changing	the	speed	yields	predictable	results,	but	try	the	others.	You	can	allow	your
object	to	reverse	its	path	when	it	reaches	the	end,	like	we	did	here,	but	you	can	also	allow
it	to	stop,	start	over	from	the	beginning	of	the	path,	or	continue	from	the	end.	Changing
the	Relative	setting	from	relative	to	absolute	will	cause	GameMaker	to	ignore	your
placement	of	the	object	in	the	room	and	instead	follow	the	coordinates	of	each	point	as
they	were	in	the	editor	(this	can	change	the	path’s	size	as	well	as	its	location).	Try	them	all
out!

Creating	enemy	pathfinding
In	games,	there	are	several	ways	to	move	enemies	around	the	playable	area.	In	Chapter	1,
Game	Plan	–	Creating	Basic	Gameplay,	we	discussed	a	simple	way	of	using	the	x	and	y
coordinates.	In	the	previous	recipe,	we	discussed	setting	paths,	which	can	also	be	used	to
shuttle	enemies	around	the	screen	for	your	player	to	avoid	or	destroy.	These	are	both	good
options,	depending	on	what	you	want	for	your	game,	but	what	about	enemies	that	can
actually	navigate	a	level,	avoid	obstacles,	and	pursue	the	player?	Let’s	add	some	depth	to	a
top-down	game	by	creating	a	slightly	more	complex	enemy	AI.

Getting	ready
First,	you’ll	need	a	character	object	called	obj_player	that	can	move	in	four	directions
(with	collision	detection),	and	an	enemy	object	called	obj_enemy.	Once	again,	I’ve
animated	the	player	character	using	the	3/4	top-down	sprites	from	previous	recipes.	For
the	enemy	sprite,	though,	let’s	take	a	red	circle	and	add	a	line	(the	one	with	the	arrow)	to
the	right	side	of	the	image	so	that	you	can	see	which	direction	the	enemy	is	facing.

You’ll	also	need	an	object	called	obj_wall	for	your	enemy	to	navigate.	Make	the	wall	a
32	x	32	pixel	block	and	set	the	origin	to	(0,0).	Place	it	around	the	border	of	your	room	and
use	it	to	create	a	sort	of	labyrinth	throughout.	Before	you	do	this,	make	sure	that	your
room	has	dimensions	that	are	divisible	by	32.

How	to	do	it
1.	 In	obj_player,	add	a	Create	event.
2.	 Place	a	code	block	in	the	Actions	box	and	add	the	following:

image_speed	=	0;

3.	 Add	a	Step	event	with	a	code	block.
4.	 Enter	the	following	code:

///player	movement	and	collision	detection

if	(keyboard_check(vk_right))	and	(!place_meeting((x	+	8),	y,	

obj_wall))

{

				sprite_index	=	spr_player_move_right;

				image_speed	=	1;

				x	+=	8;

}

else	if	(keyboard_check(vk_left))	and	(!place_meeting((x	-	8),	y,	

obj_wall))

{

				sprite_index	=	spr_player_move_left;

				image_speed	=	1;

				x	-=	8;

}

else	if	(keyboard_check(vk_up))	and	(!place_meeting(x,	(y	-	8),	

obj_wall))

{

				sprite_index	=	spr_player_move_up;

				image_speed	=	1;

				y	-=	8;

}

else	if	(keyboard_check(vk_down))	and	(!place_meeting(x,	(y	+	8),	

obj_wall))

{

				sprite_index	=	spr_player_move_down;

				image_speed	=	1;

				y	+=	8;

}

else

{

				image_speed	=	0;

}

5.	 Open	obj_enemy	and	add	a	Step	event.
6.	 Drag	a	code	block	to	the	Actions	box	and	add	the	following:

///enemy	pathfinding

image_angle	=	direction

room_grid	=	mp_grid_create(0,0,room_width/32,room_height/32,32,32);

enemy_path	=	path_add();

mp_grid_add_instances(room_grid,	obj_wall,	1);

mp_grid_path(room_grid,	enemy_path,	x,	y,	obj_player.x,	obj_player.y,	

1)

path_start(enemy_path,	5,	"",	1);

Your	enemy	object	is	now	ready	to	track	down	your	player	object.	The	hunt	is	on!

How	it	works
The	movement	code	in	this	recipe	doubles	as	collision	detection	for	the	player	object.
Using	!place_meeting(x,	y,	object)	allows	you	to	move	the	character	only	if	an
instance	of	obj_wall	is	not	currently	in	the	space	to	which	you	wish	to	move.	This	means
that	GameMaker	will	look	at	the	coordinates	you	provide	(current	x	coordinate	and	current
y	coordinate	plus	8	pixels,	for	example)	to	see	whether	or	not	an	instance	of	obj_wall	is
there.	If	the	coast	is	clear,	you	are	okay	to	move	in	that	direction.	If	obj_wall	is	there,
then	GameMaker	will	not	execute	the	movement	code.

The	pathfinding	code	works	well	to	have	one	or	many	objects	follow	another	without
clipping	through	other	objects	but	it	assumes	one	thing:	The	enemy	knows	where	the
player	is	at	all	times.	This	isn’t	ideal	for	creating	realistic	enemy	AI,	but	it	does
demonstrate	the	use	of	a	Motion	Planning	grid,	or	mp_grid.	Motion	planning	is	a	series
of	functions	that	allows	GameMaker	to	plot	a	course	for	an	object	using	various	means.	In
this	case,	we	used	the	more	elaborate	Motion	Planning	grid,	which	uses	a	grid	that	you
plot	in	a	given	area	to	decide	the	best	path	for	the	object	to	reach	its	goal.	We’ve	used	the
entire	room	as	a	given	space,	created	a	32	x	32	virtual	grid,	and	instructed	the	enemy
object	to	use	this	grid	to	plot	8-directional	movement	in	order	to	find	the	player	while
avoiding	the	walls.	Once	the	grid	is	set	and	the	instructions	are	given,	we’ve	used
path_start	to	begin	the	hunt.	Notice	the	quotation	marks?	That	space	is	reserved	for	the
path’s	end	action.	By	assigning	a	number	from	0-3	you	can	tell	the	enemy,	assuming	it
reaches	its	target,	to	either	end	the	path,	continue	from	the	starting	position,	continue	from
its	current	position,	or	go	backwards	across	the	path.	Here,	because	we	want	the	enemy	to
continue	hunting	the	player,	we’ve	given	an	empty	string,	meaning	neither	of	those	four
actions	apply.	Be	sure	to	play	around	with	these	options,	as	well	as	grid	size	and	targets,
until	you	find	an	AI	that	works	for	you.

There’s	more…
In	order	for	this	code	to	work	smoothly,	you’ll	need	to	make	sure	your	player	object	is
unable	to	clip	through	the	wall	objects.	As	mentioned	previously,	the	movement	code	we
used	creates	a	very	simple	collision	detection	that	prevents	obj_player	from	moving
through	solid	objects.	Code	like	this	is	important	because	if	your	player	is	occupying	the
same	space	as	an	object	the	enemy	is	programmed	to	avoid,	the	enemy	will	deem	that	the
player	no	longer	exists.	This	can	result	in	the	enemy	stopping	its	path,	but	can	also	cause
errors	or	glitches,	such	as	disappearing	enemy	objects.

See	also
You	can	read	more	about	Motion	Planning	at	http://docs.yoyogames.com/.

http://docs.yoyogames.com/

Controlling	a	character	with	a	mouse	and
keyboard
In	the	previous	chapter,	we	looked	at	how	to	control	your	player	character	with	a	mouse,
as	well	as	a	keyboard.	I’m	willing	to	bet	you’ve	played	a	game	that	required	an	input	from
both	of	these	devices	at	the	same	time.	You	have,	haven’t	you?	I	thought	so.	Let’s	take	a
look	at	a	classic	gameplay	element	that	requires	multiple	inputs	to	shoot	aliens.

Getting	ready
We	need	a	hero.	Not	an	actual	hero,	mind	you,	but	rather	a	player	character	who	can	run
around	onscreen	and	shoot	things.	For	the	purposes	of	this	recipe,	we’ll	use	a	static	image
of	a	guy	with	a	gun,	seen	from	the	top.	Let’s	turn	it	into	a	sprite	called	spr_player	and	use
it	to	represent	an	object	of	the	same	name.	You’ll	also	need	a	sprite	called	spr_alien,
which	should	be	an	image	of	an	alien,	also	seen	from	above.	Use	this	sprite	to	represent
obj_alien.	You’ll	need	a	controller	object	to	spawn	aliens,	so	we’ll	call	it
obj_alien_controller.	To	make	this	more	of	a	game,	let’s	create	bullets	so	that	our	hero
can	take	care	of	the	alien	horde	and	save	the	world.	Create	a	small	bullet	sprite	called
spr_bullet	and	an	object	following	the	same	name.

How	to	do	it
1.	 Open	obj_player	and	add	a	Step	event.
2.	 Drag	a	code	block	to	the	Actions	box	and	add	the	following	code:

///keyboard	movement

if	keyboard_check(ord('W'))	&&	(y>=32)

{

				y	-=	5;

}

if	keyboard_check(ord('S'))	&&	(y<=(room_height-32))

{

				y	+=	5;

}

if	keyboard_check(ord('A'))	&&	(x>=32)

{

				x	-=	5;

}

if	keyboard_check(ord('D'))	&&	(x<=(room_width-32))

{

				x	+=	5;

}

3.	 Drag	a	second	code	block	to	the	Actions	box	and	enter	the	following	code:

///player	rotation

direction	=	point_direction(x,y,mouse_x,mouse_y);

image_angle	=	direction;

if	mouse_check_button_pressed(mb_left)

{

				instance_create(x,	y,	obj_bullet);

}

4.	 Close	obj_player	and	open	obj_alien.
5.	 Create	a	Step	event	and	drag	a	code	block	to	the	Actions	box.
6.	 Enter	the	following	code:

///follow	player

move_towards_point(obj_player.x,	obj_player.y,	3);

image_angle	=	point_direction(x,	y,	obj_player.x,	obj_player.y);

7.	 Create	a	Collision	event	using	obj_bullet.
8.	 Drag	a	code	block	to	the	Actions	box	and	add	the	following	code:

///destroy	alien	and	bullet

instance_destroy();

with(other)

{

		instance_destroy();

}

9.	 Close	obj_alien	and	open	obj_bullet.
10.	 Add	a	Create	event	and	drag	a	code	block	to	the	Actions	box.
11.	 Enter	the	following	code	before	closing	obj_bullet:

///bullet	trajectory

direction	=	obj_player.direction;

speed	=	10;

12.	 Create	an	object	called	obj_alien_controller.	Do	not	give	it	a	sprite.
13.	 In	obj_alien_controller,	add	a	Create	event.
14.	 Drag	a	code	block	to	the	Actions	box	and	add	the	following	code:

///set	alarm

spawn	=	0;

alarm[0]	=	180;

15.	 Add	an	event	to	Alarm0.
16.	 Drag	a	code	block	to	the	Actions	box	and	add	the	following	code:

///set	spawn	switch

spawn	=	1;

spawn_point	=	choose(0,1,2,3);

alarm[0]	=	120;

17.	 Create	a	Step	event	and	drag	a	code	block	to	the	Actions	box.
18.	 Add	the	following	code:

///spawn	aliens

if	spawn	=	1

{

spawn	=	0;

if	(spawn_point	=	0)

{

				instance_create(-64,random(room_height),	obj_alien);

}

if	(spawn_point	=	1)

{

				instance_create((room_width+64),	random(room_height),	obj_alien);

}

if	(spawn_point	=	2)

{

				instance_create(random(room_width),	-64,	obj_alien);

}

if	(spawn_point	=	3)

{

				instance_create(random(room_width),	(room_height+64),	obj_alien);

}

}

Once	these	steps	are	completed,	you	can	close	the	controller	object	and	it	is	ready	to	go.
Make	sure	that	there	is	an	instance	each	of	obj_alien_controller	and	obj_player	in	the
room	and	press	play	to	test	it.

How	it	works
This	recipe	essentially	puts	to	use	elements	of	previous	recipes	we’ve	looked	at.	The
movement	code	is	not	different	from	what	we’ve	used,	though	we’ve	moved	it	to
incorporate	the	WASD	key	formation.	Using	the	point_direction	function,	we	allow	the
player	to	constantly	face	your	mouse’s	position,	making	aiming	quick	and	easy.	This
control	style	is	great	for	top-down	shooters,	sometimes	called	bullet	hell	games	if	they’re
really	fast-paced	and	intense.

The	aliens,	as	you	may	have	guessed,	are	being	spawned	by	the	alien	controller	object.	By
asking	it	to	choose	from	a	list	of	four	choices,	we	can	have	it	spawn	along	any	side	of	the
room	at	a	random	place.	Using	the	move_towards_point	function	in	the	alien’s	Step	event,
we	can	ensure	that	any	alien	that	spawns	is	immediately	set	to	run	toward	our	player,	even
as	he	moves	around	the	room.	That	is,	until	he	shoots	them,	at	least.	You	can	also	use
multiple	controller	objects	as	spawn	points	if	you’d	like	to	avoid	using	random	values.
Simply,	tell	the	controller	to	spawn	at	its	location,	place	them	wherever	you	want,	and
you’re	off.

With	these	elements	put	together,	you	more	or	less	have	yourself	a	game.	You	can	add	a
score,	crosshairs	for	your	mouse,	player	health,	and	many	more	to	make	it	look	more	like
the	games	that	we	know,	but	here	you	have	the	basics.	Let’s	see	what	you	can	do	with	it.

There’s	more
Now,	if	you	prefer	to	use	a	gamepad,	this	same	style	could	translate	into	a	twin-stick
shooter.	Instead	of	having	the	player’s	movement	and	direction	linked	directly	to	key
presses	and	the	position	of	the	mouse,	you	can	assign	them	to	the	analogue	sticks	on	a
gamepad.	We’ve	looked	at	moving	a	player	around	with	one	stick,	and	rotating	the	player
using	a	second	is	quite	similar.

Since	the	analogue	stick’s	output	is	read	as	values	along	the	horizontal	and	vertical	axis,
we’ll	need	to	use	them	to	tell	GameMaker	exactly	where	our	player	should	be	looking:

var	h_val	=	gamepad_axis_value(pad_num,	gp_axisrh);

var	v_val	=	gamepad_axis_value(pad_num,	gp_axisrv);

if	((h_val	!=	0)	or	(v_val	!=	0))

{

direction	=	point_direction(0,	0,	h_val,	v_val);

image_angle	=	direction;

}

Here,	we	tell	GameMaker	to	read	both	the	vertical	and	horizontal	axis	of	the	right
analogue	stick	and	check	whether	they	are	equal	to	0	or	not.	Assuming	that	one	or	both
values	is	not	0,	GameMaker	takes	the	values	recorded	and	plugs	them	into	the
point_direction	function,	which	is	similar	to	using	the	mouse’s	x	and	y	coordinates.
From	there,	we	simply	need	to	equate	the	player’s	direction	and	image	angle	to	the
point_direction	function	and	the	player	will	follow	the	movement	of	the	right	analogue
stick.

One	important	caveat	to	this	is	that	without	a	proper	“deadzone”,	you	may	see	some
movement	errors.	Analogue	sticks	can	move	about	slightly	without	the	user	applying	any
pressure.	For	this,	we	can	set	parameters	such	that	it	does	not	act	on	the	input	below	a
certain	level,	as	we	did	in	a	previous	recipe.	For	this	case,	I	would	recommend	that	you	set
the	deadzone	using	the	following	code:

gamepad_set_axis_deadzone(pad,	0.5);

See	also
Spawn	points	and	emitters	will	be	discussed	further	in	Chapter	9,	Particle	Man,	Particle
Man	–	Adding	Polish	to	Your	Game	with	Visual	Effects	and	Particles.

Chapter	4.	Let’s	Get	Physical	–	Using
GameMaker’s	Physics	System
In	this	chapter,	we’ll	cover	the	following	topics:

Creating	objects	that	use	physics
Alternating	gravity
Applying	force	via	magnets
Creating	a	moving	platform
Making	a	rope

Introduction
The	majority	of	video	games	are	ruled	by	physics	in	one	way	or	another.	2D	platformers
require	coded	movement	and	jump	physics.	Shooters,	both	2D	and	3D,	use	ballistic
calculators	that	vary	in	sophistication	to	calculate	whether	you	shot	that	guy	or	missed	him
and	he’s	still	coming	to	get	you.	Even	Pong	used	rudimentary	physics	to	calculate	the
ball’s	trajectory	after	bouncing	off	of	a	paddle	or	wall.	The	next	time	you	play	a	3D
shooter	or	action-adventure	game,	check	whether	or	not	you	see	the	logo	for	Havok,	a
physics	engine	used	in	over	500	games	since	it	was	introduced	in	2000.	The	point	is	that
physics,	however	complex,	is	important	in	video	games.	GameMaker	comes	with	its	own
engine	that	can	be	used	to	recreate	physics-based	sandbox	games,	such	as	The	Incredible
Machine,	or	even	puzzle	games,	such	as	Cut	the	Rope	or	Angry	Birds.	Let’s	take	a	look	at
how	elements	of	these	games	can	be	accomplished	using	GameMaker’s	built-in	physics
engine.

Physics	engine	101
In	order	to	use	GameMaker’s	physics	engine,	we	first	need	to	set	it	up.	Let’s	create	and
test	some	basic	physics	before	moving	on	to	something	more	complicated.

Creating	objects	that	use	physics

Gravity	and	force
One	of	the	things	that	we	learned	with	regards	to	GameMaker	physics	was	to	create	our
own	simplistic	gravity.	Now	that	we’ve	set	up	gravity	using	the	physics	engine,	let’s	see
how	we	can	bend	it	to	our	will.

Alternating	gravity
Applying	force	via	magnets

Physics	in	the	environment
GameMaker’s	physics	engine	allows	you	to	choose	not	only	the	objects	that	are	affected
by	external	forces	but	also	allows	you	to	see	how	they	are	affected.	Let’s	take	a	look	at
how	this	can	be	applied	to	create	environmental	objects	in	your	game.

Creating	moving	platforms

Advanced	physics-based	objects
Many	platforming	games,	going	all	the	way	back	to	Pitfall!,	have	used	objects,	such	as	a
rope	as	a	gameplay	feature.	Pitfall!,	mind	you,	uses	static	rope	objects	to	help	the	player
avoid	crocodiles,	but	many	modern	games	use	dynamic	ropes	and	chains,	among	other
things,	to	create	a	more	immersive	and	challenging	experience.

Making	a	rope

Creating	objects	that	use	physics
There’s	a	trend	in	video	games	where	developers	create	products	that	are	less	games	than
play	areas;	worlds	and	simulators	in	which	a	player	may	or	may	not	be	given	an	objective
and	it	wouldn’t	matter	either	way.	These	games	can	take	on	a	life	of	their	own;	Minecraft
is	essentially	a	virtual	game	of	building	blocks	and	yet	has	become	a	genre	of	its	own,
literally	making	its	creator,	Markus	Persson	(also	known	as	Notch),	a	billionaire	in	the
process.	While	it	is	difficult	to	create,	the	fun	in	games	such	as	Minecraft	is	designed	by
the	player.	If	you	give	a	player	a	set	of	tools	or	objects	to	play	with,	you	may	end	up
seeing	an	outcome	you	hadn’t	initially	thought	of	and	that’s	a	good	thing.	The	reason	why
I	have	mentioned	all	of	this	is	to	show	you	how	it	ties	to	GameMaker	and	what	we	can	do
with	it.	In	a	sense,	GameMaker	is	a	lot	like	Minecraft.	It	is	a	set	of	tools,	such	as	the
physics	engine	we’re	about	to	use,	that	the	user	can	employ	if	he/she	desires	(within
limits,	of	course),	in	order	to	create	something	funny	or	amazing	or	both.

What	you	do	with	these	tools	is	up	to	you,	but	you	have	to	start	somewhere.	Let’s	take	a
look	at	how	to	build	a	simple	physics	simulator.

Getting	ready
The	first	thing	you’ll	need	is	a	room.	Seems	simple	enough,	right?	Well,	it	is.	One
difference,	however,	is	that	you’ll	need	to	enable	physics	before	we	begin.	With	the	room
open,	click	on	the	Physics	tab	and	make	sure	that	the	box	marked	Room	is	Physics	World
is	checked.

After	this,	we’ll	need	some	sprites	and	objects.	For	sprites,	you’ll	need	a	circle,	triangle,
and	two	squares,	each	of	a	different	color.	The	circle	is	for	obj_ball.	The	triangle	is	for
obj_poly.	One	of	the	squares	is	for	obj_box,	while	the	other	is	for	obj_ground.	You’ll
also	need	four	objects	without	sprites:	obj_staticParent,	obj_dynamicParent,
obj_button,	and	obj_control.

How	to	do	it
1.	 Open	obj_staticParent	and	add	two	collision	events:	one	with	itself	and	one	with

obj_dynamicParent.
2.	 In	each	of	the	collision	events,	drag	and	drop	a	comment	from	the	Control	tab	to	the

Actions	box.
3.	 In	each	comment,	write	Collision.
4.	 Close	obj_staticParent	and	repeat	steps	1-3	for	obj_dynamicParent.
5.	 In	obj_dynamicParent,	click	on	Add	Event,	and	then	click	on	Other	and	select

Outside	Room.
6.	 From	the	Main1	tab,	drag	and	drop	Destroy	Instance	in	the	Actions	box.	Select

Applies	to	Self.
7.	 Open	obj_ground	and	set	the	parent	to	obj_staticParent.
8.	 Add	a	Create	event	with	a	code	block	containing	the	following	code:

var	fixture	=	physics_fixture_create();

physics_fixture_set_box_shape(fixture,	sprite_width	/	2,	sprite_height	

/	2);

physics_fixture_set_density(fixture,	0);

physics_fixture_set_restitution(fixture,	0.2);

physics_fixture_set_friction(fixture,	0.5);

physics_fixture_bind(fixture,	id);

physics_fixture_delete(fixture);	

9.	 Open	the	room	that	you	created	and	start	placing	instances	of	obj_ground	around	it
to	create	platforms,	stairs,	and	so	on.	This	is	how	mine	looked	like:

10.	 Open	obj_ball	and	set	the	parent	to	obj_dynamicParent.
11.	 Add	a	Create	event	and	enter	the	following	code:

var	fixture	=	physics_fixture_create();

physics_fixture_set_circle_shape(fixture,	sprite_get_width(spr_ball)	/	

2);

physics_fixture_set_density(fixture,	0.25);

physics_fixture_set_restitution(fixture,	1);

physics_fixture_set_friction(fixture,	0.5);

physics_fixture_bind(fixture,	id);

physics_fixture_delete(fixture);

12.	 Repeat	steps	10	and	11	for	obj_box,	but	use	this	code:

var	fixture	=	physics_fixture_create();

physics_fixture_set_box_shape(fixture,	sprite_width	/	2,	sprite_height	

/	2);

physics_fixture_set_density(fixture,	0.5);

physics_fixture_set_restitution(fixture,	0.2);

physics_fixture_set_friction(fixture,	0.01);

physics_fixture_bind(fixture,	id);

physics_fixture_delete(fixture);

13.	 Repeat	steps	10	and	11	for	obj_poly,	but	use	this	code:

var	fixture	=	physics_fixture_create();

physics_fixture_set_polygon_shape(fixture);

physics_fixture_add_point(fixture,	0,	-(sprite_height	/	2));

physics_fixture_add_point(fixture,	sprite_width	/	2,	sprite_height	/	

2);

physics_fixture_add_point(fixture,	-(sprite_width	/	2),	sprite_height	/	

2);

physics_fixture_set_density(fixture,	0.01);

physics_fixture_set_restitution(fixture,	0.1);

physics_fixture_set_linear_damping(fixture,	0.5);

physics_fixture_set_angular_damping(fixture,	0.01);

physics_fixture_set_friction(fixture,	0.5);

physics_fixture_bind(fixture,	id);

physics_fixture_delete(fixture);

14.	 Open	obj_control	and	add	a	Create	event	using	the	following	code:

globalvar	shape_select;

globalvar	shape_output;

shape_select	=	0;

15.	 Add	a	Step	and	add	the	following	code	to	a	code	block:

if	mouse_check_button(mb_left)	&&	alarm[0]	<	0	&&	!place_meeting(x,	y,	

obj_button)

{

instance_create(mouse_x,	mouse_y,	shape_output);

alarm[0]	=	5;

}

if	mouse_check_button_pressed(mb_right)

{

				shape_select	+=	1;

}

16.	 Now,	add	an	event	to	alarm[0]	and	give	it	a	comment	stating	Set	Timer.
17.	 Place	an	instance	of	obj_control	in	the	room	that	you	created,	but	make	sure	that	it

is	placed	in	the	coordinates	(0,	0).
18.	 Open	obj_button	and	add	a	Step	event.
19.	 Drag	a	code	block	to	the	Actions	tab	and	input	the	following	code:

if	shape_select	>	2

{

				shape_select	=	0;

}

if	shape_select	=	0

{

				sprite_index	=	spr_ball;

				shape_output	=	obj_ball;

}

if	shape_select	=	1

{

				sprite_index	=	spr_box;

				shape_output	=	obj_box;

}

if	shape_select	=	2

{

				sprite_index	=	spr_poly;

				shape_output	=	obj_poly;

}

Once	these	steps	are	completed,	you	can	test	your	physics	environment.	Use	the	right
mouse	button	to	select	the	shape	you	would	like	to	create,	and	use	the	left	mouse	button	to
create	it.	Have	fun!

How	it	works
While	not	overly	complicated,	there	is	a	fair	amount	of	activity	in	this	recipe.	Let’s	take	a
quick	look	at	the	room	itself.	When	you	created	this	room,	you	checked	the	box	for	Room
is	Physics	World.	This	does	exactly	what	it	says	it	does;	it	enables	physics	in	the	room.	If
you	have	any	physics-enabled	objects	in	a	room	that	is	not	a	physics	world,	errors	will
occur.	In	the	same	menu,	you	have	gravity	settings	(which	are	vector-based)	and	pixels	to
meters,	which	sets	the	scale	of	objects	in	the	room.	This	setting	is	important	as	it	controls
how	each	object	is	affected	by	the	coded	physics.	YoYo	Games	based	GameMaker’s
physics	on	the	real	world	(as	they	should)	and	so	GameMaker	needs	to	know	how	many
meters	are	represented	by	each	pixel.	The	higher	the	number,	the	larger	the	world	in	the
room.	If	you	place	an	object	in	two	different	rooms	with	different	pixel	to	meter	settings,
even	though	the	objects	have	the	same	settings,	GameMaker	will	apply	physics	to	them
differently	because	it	views	them	as	being	of	differing	size	and	weight.

Let’s	take	a	look	at	the	objects	in	this	simulation.	Firstly,	you	have	two	parent	objects:	one
static	and	the	other	dynamic.	The	static	object	is	the	only	parent	to	one	object:
obj_ground.	The	reason	for	this	is	that	static	objects	are	not	affected	by	outside	forces	in	a
physics	world,	that	is,	the	room	you	built.	Because	of	this,	the	ground	pieces	are	able	to
ignore	gravity	and	forces	applied	by	other	objects	that	collide	with	them.	Now,	neither
obj_staticParent	nor	obj_dynamicParent	contain	any	physics	code;	we	saved	this	for
our	other	objects.	We	use	our	parent	objects	to	govern	our	collision	groups	using	two
objects	instead	of	coding	collisions	in	each	object.	So,	we	use	drag	and	drop	collision
blocks	to	ensure	that	any	children	can	collide	with	instances	of	one	another	and	with
themselves.	Why	did	you	drag	comment	blocks	into	these	collision	events?	We	did	this	so
that	GameMaker	doesn’t	ignore	them;	the	contents	of	each	comment	block	are	irrelevant.
Also,	the	dynamic	parent	has	an	event	that	destroys	any	instance	of	its	children	that	end	up
outside	the	room.	The	reason	for	this	is	simply	to	save	memory.	Otherwise,	each	object,
even	those	off-screen,	would	be	accounted	for	in	calculations	at	every	step	and	this	would
slow	everything	down	and	eventually	crash	the	program.

Now,	as	we’re	using	physics-enabled	objects,	let’s	see	how	each	one	differs	from	the
others.	When	working	with	the	object	editor,	you	may	have	noticed	the	checkbox	labelled
Uses	Physics.	This	checkbox	will	automatically	set	up	the	basic	physics	code	within	the
selected	object,	but	only	after	assuming	that	you’re	using	the	drag	and	drop	method	of
programming.	If	you	click	on	it,	you’ll	see	a	new	menu	with	basic	collision	options	as
well	as	several	values	and	associated	options:

Density:	Density	in	GameMaker	works	exactly	as	it	does	in	real	life.	An	object	with
a	high	density	will	be	much	heavier	and	harder	to	move	via	force	than	a	low-density
object	of	the	same	size.	Think	of	how	far	you	can	kick	an	empty	cardboard	box
versus	how	far	you	can	kick	a	cardboard	box	full	of	bricks,	assuming	that	you	don’t
break	your	foot.
Restitution:	Restitution	essentially	governs	an	object’s	bounciness.	A	higher
restitution	will	cause	an	object	to	bounce	like	a	rubber	ball,	whereas	a	lower
restitution	will	cause	an	object	to	bounce	like	a	box	of	bricks,	as	mentioned	in	the

previous	example.
Collision	group:	Collision	grouping	tells	GameMaker	how	certain	objects	react	with
one	another.	By	default,	all	physics	objects	are	set	to	collision	group	0.	This	means
that	they	will	not	collide	with	other	objects	without	a	specific	collision	event.
Assigning	a	positive	number	to	this	setting	will	cause	the	object	in	question	to	collide
with	all	other	objects	in	the	same	collision	group,	regardless	of	collision	events.
Assigning	a	negative	number	will	prevent	the	object	from	colliding	with	any	objects
in	that	group.	I	don’t	recommend	that	you	use	collision	groups	unless	absolutely
necessary,	as	it	takes	a	great	deal	of	memory	to	work	properly.
Linear	damping:	Linear	damping	works	a	lot	like	air	friction	in	real	life.	This	setting
affects	the	velocity	(momentum)	of	objects	in	motion	over	time.	Imagine	a	military
shooter	where	thrown	grenades	don’t	arc,	they	just	keep	soaring	through	the	air.	We
don’t	need	this.	That’s	what	rockets	are	for.
Angular	damping:	Angular	damping	is	similar	to	linear	damping.	It	only	affects	an
object’s	rotation.	This	setting	keeps	objects	from	spinning	forever.	Have	you	ever
ridden	the	Teacup	ride	at	Disneyland?	If	so,	you	will	know	that	angular	damping	is	a
good	thing.
Friction:	Friction	also	works	in	a	similar	way	to	linear	damping,	but	it	affects	an
object’s	momentum	as	it	collides	with	another	object	or	surface.	If	you	want	to	create
icy	surfaces	in	a	platformer,	friction	is	your	friend.

We	didn’t	use	this	menu	in	this	recipe	but	we	did	set	and	modify	these	settings	through
code.	First,	in	each	of	the	objects,	we	set	them	to	use	physics	and	then	declared	their
shapes	and	collision	masks.	We	started	with	declaring	the	fixture	variable	because,	as
you	can	see,	it	is	part	of	each	of	the	functions	we	used	and	typing	fixture	is	easier	than
typing	physics_fixture_create()	every	time.	The	fixture	variable	that	we	bind	to	the
object	is	what	is	actually	being	affected	by	forces	and	other	physics	objects,	so	we	must
set	its	shape	and	properties	in	order	to	tell	GameMaker	how	it	should	react.	In	order	to	set
the	fixture’s	shape,	we	use	physics_set_circle_shape,	physics_set_box_shape,	and
physics_set_polygon_shape.	These	functions	define	the	collision	mask	associated	with
the	object	in	question.	In	the	case	of	the	circle,	we	got	the	radius	from	half	the	width	of	the
sprite,	whereas	for	the	box,	we	found	the	outer	edges	used	via	half	the	width	and	half	the
height.	GameMaker	then	uses	this	information	to	create	a	collision	mask	to	match	the
sprite	from	which	the	information	was	gathered.	When	creating	a	fixture	from	a	more
complex	sprite,	you	can	either	use	the	aforementioned	methods	to	approximate	a	mask,	or
you	can	create	a	more	complex	shape	using	a	polygon	like	we	did	for	the	triangle.	You’ll
notice	that	the	code	to	create	the	triangle	fixture	had	extra	lines.	This	is	because	polygons
require	you	to	map	each	point	on	the	shape	you’re	trying	to	create.	You	can	map	three	to
eight	points	by	telling	GameMaker	where	each	one	is	situated	in	relation	to	the	center	of
the	image	(0,	0).	One	very	important	detail	is	that	you	cannot	create	a	concave	shape;	this
will	result	in	an	error.

Every	fixture	you	create	must	have	a	convex	shape.	The	only	way	to	create	a	concave
fixture	is	to	actually	create	multiple	fixtures	in	the	same	object.	If	you	were	to	take	the
code	for	the	triangle,	duplicate	all	of	it	in	the	same	code	block	and	alter	the	coordinates	for

each	point	in	the	duplicated	code;	you	can	create	concave	shapes.	For	example,	you	can
use	two	rectangles	to	make	an	L	shape.	This	can	only	be	done	using	a	polygon	fixture,	as
it	is	the	only	fixture	that	allows	you	to	code	the	position	of	individual	points.

Once	you’ve	coded	the	shape	of	your	fixture,	you	can	begin	to	code	its	attributes.	I’ve
described	what	each	physics	option	does,	and	you’ve	coded	and	tested	them	using	the
instructions	mentioned	earlier.	Now,	take	a	look	at	the	values	for	each	setting.	The	ball
object	has	a	higher	restitution	than	the	rest;	did	you	notice	how	it	bounced?	The	box	object
has	a	very	low	friction;	it	slides	around	on	platforms	as	though	it	is	made	of	ice.	The
triangle	has	very	low	density	and	angular	damping;	it	is	easily	knocked	around	by	the
other	objects	and	spins	like	crazy.	You	can	change	how	objects	react	to	forces	and
collisions	by	changing	one	or	more	of	these	values.	I	definitely	recommend	that	you	play
around	with	these	settings	to	see	what	you	can	come	up	with.

Remember	how	the	ground	objects	are	static?	Notice	how	we	still	had	to	code	them?	Well,
that’s	because	they	still	interact	with	other	objects	but	in	an	almost	opposite	fashion.	Since
we	set	the	object’s	density	to	0,	GameMaker	more	or	less	views	this	as	an	object	that	is
infinitely	dense;	it	cannot	be	moved	by	outside	forces	or	collisions.	It	can,	however,	affect
other	objects.	We	don’t	have	to	set	the	angular	and	linear	damping	values	simply	because
the	ground	doesn’t	move.	We	do,	however,	have	to	set	the	restitution	and	friction	levels
because	we	need	to	tell	GameMaker	how	other	objects	should	react	when	they	come	in
contact	with	the	ground.	Do	you	want	to	make	a	rubber	wall	to	bounce	a	player	off?	Set
the	restitution	to	a	higher	level.	Do	you	want	to	make	that	icy	patch	we	talked	about?
Then,	you	need	to	lower	the	friction.	These	are	some	fun	settings	to	play	around	with,	so
try	it	out.

Alternating	gravity
Gravity	can	be	a	harsh	mistress;	if	you’ve	ever	fallen	from	a	height,	you	know	what	I
mean.	I	often	think	it	would	be	great	if	we	could	somehow	lessen	gravity’s	hold	on	us,	but
then	I	wonder	what	it	would	be	like	if	we	could	just	reverse	it	all	together!	Imagine
flipping	a	switch	and	then	walking	on	the	ceiling!	I,	for	one,	think	that	it	would	be	great.
However,	since	we	don’t	have	the	technology	to	do	it	in	real	life,	I’ll	have	to	settle	for
doing	it	in	video	games.

Getting	ready
For	this	recipe,	let’s	simplify	things	and	use	the	physics	environment	that	we	created	in	the
previous	recipe.

How	to	do	it
1.	 In	obj_control,	open	the	code	block	in	the	Create	event.
2.	 Add	the	following	code:

physics_world_gravity(0,	-10);

That’s	it!	Test	the	environment	and	see	what	happens	when	you	create	your	physics
objects.

How	it	works
GameMaker’s	physics	world	gravity	is	vector-based.	This	means	that	you	simply	need	to
change	the	values	of	x	and	y	in	order	to	change	how	gravity	works	in	a	particular	room.	If
you	take	a	look	at	the	Physics	tab	in	the	room	editor,	you’ll	see	that	there	are	values	under
x	and	y.	The	default	value	is	0	for	x	and	10	for	y.	When	we	added	this	code	to	the	control
object’s	Create	event,	we	changed	the	value	of	y	to	-10,	which	means	that	it	will	flow	in
the	opposite	direction.	You	can	change	the	direction	to	360	degrees	by	altering	both	x	and
y,	and	you	can	change	the	gravity’s	strength	by	raising	and	lowering	the	values.

There’s	more
Alternating	gravity’s	flow	can	be	a	lot	of	fun	in	a	platformer.	Several	games	have	explored
this	in	different	ways.	Your	character	can	change	gravity	by	hitting	a	switch	in	a	game,	the
player	can	change	it	by	pressing	a	button,	or	you	can	just	give	specific	areas	different
gravity	settings.	Play	around	with	this	and	see	what	you	can	create.

Applying	force	via	magnets
Remember	playing	with	magnets	in	science	class	when	you	were	a	kid?	It	was	fun	back
then,	right?	Well,	it’s	still	fun;	powerful	magnets	make	a	great	gift	for	your	favorite	office
worker.	What	about	virtual	magnets,	though?	Are	they	still	fun?	The	answer	is	yes.	Yes,
they	are.

Getting	ready
Once	again,	we’re	simply	going	to	modify	our	existing	physics	environment	in	order	to
add	some	new	functionalities.

How	to	do	it
1.	 In	obj_control,	open	the	code	block	in	the	Step	event.
2.	 Add	the	following	code:

if	keyboard_check(vk_space)

{

with	(obj_dynamicParent)

				{

				var	dir	=	point_direction(x,y,mouse_x,mouse_y);

				physics_apply_force(x,	y,	lengthdir_x(30,	dir),	lengthdir_y(30,	

dir));

				}

}		

Once	you	close	the	code	block,	you	can	test	your	new	magnet.	Add	some	objects,	hold
down	the	spacebar,	and	see	what	happens.

How	it	works
Applying	a	force	to	a	physics-enabled	object	in	GameMaker	will	add	a	given	value	to	the
direction,	rotation,	and	speed	of	said	object.	Force	can	be	used	to	gradually	propel	an
object	in	a	given	direction,	or	through	a	little	math,	as	in	this	case,	draw	objects	nearer.
What	we’re	doing	here	is	while	the	Spacebar	is	held	down,	any	objects	in	the	vicinity	are
drawn	to	the	magnet	(in	this	case,	your	mouse).	In	order	to	accomplish	this,	we	first
declare	that	the	following	code	needs	to	act	on	obj_dynamicParent,	as	opposed	to	acting
on	the	control	object	where	the	code	resides.	We	then	set	the	value	of	a	dir	variable	to	the
point_direction	of	the	mouse,	as	it	relates	to	any	child	of	obj_dynamicParent.	From
there,	we	can	begin	to	apply	force.	With	physics_apply_force,	the	first	two	values
represent	the	x	and	y	coordinates	of	the	object	to	which	the	force	is	being	applied.	Since
the	object(s)	in	question	is/are	not	static,	we	simply	set	the	coordinates	to	whatever	value
they	have	at	the	time.	The	other	two	values	are	used	in	tandem	to	calculate	the	direction	in
which	the	object	will	travel	and	the	force	propelling	it	in	Newtons.	We	get	these	values,	in
this	instance,	by	calculating	the	lengthdir	for	both	x	and	y.	The	lengthdir	finds	the	x	or
y	value	of	a	point	at	a	given	length	(we	used	30)	at	a	given	angle	(we	used	dir,	which
represents	point_direction,	that	finds	the	angle	where	the	mouse’s	coordinates	lie).	If
you	want	to	increase	the	length	value,	then	you	need	to	increase	the	power	of	the	magnet.

Creating	a	moving	platform
We’ve	now	seen	both	static	and	dynamic	physics	objects	in	GameMaker,	but	what
happens	when	we	want	the	best	of	both	worlds?	Let’s	take	a	look	at	how	to	create	a
platform	that	can	move	and	affect	other	objects	via	collisions	but	is	immune	to	said
collisions.

Getting	ready
Again,	we’ll	be	using	our	existing	physics	environment,	but	this	time,	we’ll	need	a	new
object.	Create	a	sprite	that	is	128	px	wide	by	32	px	high	and	assign	it	to	an	object	called
obj_platform.	Also,	create	another	object	called	obj_kinematicParent	but	don’t	give	it	a
sprite.	Add	collision	events	to	obj_staticParent,	obj_dynamicParent,	and	itself.	Make
sure	that	there	is	a	comment	in	each	event.

How	to	do	it
1.	 In	obj_platform,	add	a	Create	event.
2.	 Drag	a	code	block	to	the	Actions	box	and	add	the	following	code:

var	fixture	=	physics_fixture_create();

physics_fixture_set_box_shape(fixture,	sprite_width	/	2,	sprite_height	

/	2);

physics_fixture_set_density(fixture,	0);

physics_fixture_set_restitution(fixture,	0.2);

physics_fixture_set_friction(fixture,	0.5);

physics_fixture_bind(fixture,	id);

physics_fixture_delete(fixture);

phy_speed_x	=	5;	

3.	 Add	a	Step	event	with	a	code	block	containing	the	following	code:

if	(x	<64)	or	(x	>	room_width-64)

{

				phy_speed_x	=	phy_speed_x	*	-1;

}

4.	 Place	an	instance	of	obj_platform	in	the	room,	which	is	slightly	higher	than	the
highest	instance	of	obj_ground.

Once	this	is	done,	you	can	go	ahead	and	test	it.	Try	dropping	various	objects	on	the
platform	and	see	what	happens!

How	it	works
Kinematic	objects	in	GameMaker’s	physics	world	are	essentially	static	objects	that	can
move.	While	the	platform	has	a	density	of	0,	it	also	has	a	speed	of	5	along	the	x	axis.
You’ll	notice	that	we	didn’t	just	use	speed	=	5,	as	this	would	not	have	the	desired	effect	in
a	physics	world.	The	code	in	the	steps	simply	causes	the	platform	to	remain	within	a	set
boundary	by	multiplying	its	current	horizontal	speed	by	-1.	Any	static	object	to	which
movement	is	applied	automatically	becomes	a	kinematic	object.

Making	a	rope
Is	there	anything	more	useful	than	a	rope?	I	mean	besides	your	computer,	your	phone	or
even	this	book.	Probably	a	lot	of	things,	but	that	doesn’t	make	a	rope	any	less	useful.
Ropes	and	chains	are	also	useful	in	games.	Some	games,	such	as	Cut	the	Rope,	have	based
their	entire	gameplay	structure	around	them.	Let’s	see	how	we	can	create	ropes	and	chains
in	GameMaker.

Getting	ready
For	this	recipe,	you	can	either	continue	using	the	physics	environment	that	we’ve	been
working	with,	or	you	can	simply	start	from	scratch.	If	you’ve	gone	through	the	rest	of	this
chapter,	you	should	be	fairly	comfortable	with	setting	up	physics	objects.	I	completed	this
recipe	with	a	fresh	.gmx	file.

Before	we	begin,	go	ahead	and	set	up	obj_dynamicParent	and	obj_staticParent	with
collision	events	for	one	another.	Next,	you’ll	need	to	create	the	obj_ropeHome,	obj_rope,
obj_block,	and	obj_ropeControl	objects.	The	sprite	for	obj_rope	can	simply	be	a	4	px
wide	by	16	px	high	box,	while	obj_ropeHome	and	obj_block	can	be	32	px	squares.
Obj_ropeControl	needs	to	use	the	same	sprite	as	obj_rope,	but	with	the	y	origin	set	to	0.
Obj_ropeControl	should	also	be	invisible.

As	for	parenting,	obj_rope	should	be	a	child	of	obj_dynamicParent	and	obj_ropeHome,
and	obj_block	should	be	children	of	obj_staticParent,	and	obj_ropeControl	does	not
require	any	parent	at	all.	As	always,	you’ll	also	need	a	room	in	which	to	place	your
objects.

How	to	do	it
1.	 Open	obj_ropeHome	and	add	a	Create	event.
2.	 Place	a	code	block	in	the	Actions	box	and	add	the	following	code:

var	fixture	=	physics_fixture_create();

physics_fixture_set_box_shape(fixture,	sprite_width	/	2,	sprite_height	

/	2);	physics_fixture_set_density(fixture,	0);

physics_fixture_set_restitution(fixture,	0.2);

physics_fixture_set_friction(fixture,	0.5);

physics_fixture_bind(fixture,	id);

physics_fixture_delete(fixture);

3.	 In	obj_rope,	add	a	Create	event	with	a	code	block.
4.	 Enter	the	following	code:

var	fixture	=	physics_fixture_create();

physics_fixture_set_box_shape(fixture,	sprite_width	/	2,	sprite_height	

/	2);

physics_fixture_set_density(fixture,	0.25);

physics_fixture_set_restitution(fixture,	0.01);

physics_fixture_set_linear_damping(fixture,	0.5);

physics_fixture_set_angular_damping(fixture,	1);

physics_fixture_set_friction(fixture,	0.5);

physics_fixture_bind(fixture,	id);

physics_fixture_delete(fixture);

5.	 Open	obj_ropeControl	and	add	a	Create	event.
6.	 Drag	a	code	block	to	the	Actions	box	and	enter	the	following	code:

setLength	=	image_yscale-1;

ropeLength	=	16;

rope1	=	instance_create(x,y,obj_ropeHome2);

rope2	=	instance_create(x,y,obj_rope2);

physics_joint_revolute_create(rope1,	rope2,	rope1.x,	rope1.y,	

0,0,0,0,0,0,0);

repeat	(setLength)

{

				ropeLength	+=	16;

				rope1	=	rope2;

				rope2	=	instance_create(x,	y+ropeLength,	obj_rope2);

				physics_joint_revolute_create(rope1,	rope2,	rope1.x,	rope1.y,	

0,0,0,0,0,0,0);

}

7.	 In	obj_block,	add	a	Create	event.
8.	 Place	a	code	block	in	the	Actions	box	and	add	the	following	code:

var	fixture	=	physics_fixture_create();

physics_fixture_set_circle_shape(fixture,	

sprite_get_width(spr_ropeHome)/2);

physics_fixture_set_density(fixture,	0);

physics_fixture_set_restitution(fixture,	0.01);

physics_fixture_set_friction(fixture,	0.5);

physics_fixture_bind(fixture,	id);

physics_fixture_delete(fixture);

9.	 Now,	add	a	Step	event	with	the	following	code	in	a	code	block:

phy_position_x	=	mouse_x;

phy_position_y	=	mouse_y;

10.	 Place	an	instance	of	obj_ropeControl	anywhere	in	the	room.	This	will	be	the
starting	point	of	the	rope.	You	can	place	multiple	instances	of	the	object	if	you	wish.

11.	 For	every	instance	of	obj_ropeControl	you	place	in	the	room,	use	the	bounding	box
to	stretch	it	to	however	long	you	wish.	This	will	determine	the	length	of	your	rope.

12.	 Place	a	single	instance	of	obj_block	in	the	room.

Once	you’ve	completed	these	steps,	you	can	go	ahead	and	test	them.

How	it	works
This	recipe	may	seem	somewhat	complicated	but	it’s	really	not.	What	you’re	doing	here	is
taking	multiple	instances	of	the	same	physics-enabled	object	and	stringing	them	together.
Since	you’re	using	instances	of	the	same	object,	you	only	have	to	code	one	and	the	rest
will	follow.

Once	again,	our	collisions	are	handled	by	our	parent	objects.	This	way,	you	don’t	have	to
set	collisions	for	each	object.	Also,	setting	the	physical	properties	of	each	object	is	done
exactly	as	we	have	done	in	previous	recipes.	By	setting	the	density	of	obj_ropeHome	and
obj_block	to	0,	we’re	ensuring	that	they	are	not	affected	by	gravity	or	collisions,	but	they
can	still	collide	with	other	objects	and	affect	them.	In	this	case,	we	set	the	physics
coordinates	of	obj_block	to	those	of	the	mouse	so	that,	when	testing,	you	can	use	them	to
collide	with	the	rope,	moving	it.

The	most	complex	code	takes	place	in	the	Create	event	for	obj_ropeControl.	Here,	we
not	only	define	how	many	sections	of	a	rope	or	chain	will	be	used,	but	we	also	define	how
they	are	connected.	To	begin,	the	y	scale	of	the	control	object	is	measured	in	order	to
determine	how	many	instances	of	obj_rope	are	required.	Based	on	how	long	you

stretched	obj_ropeControl	in	the	room,	the	rope	will	be	longer	(more	instances)	or
shorter	(fewer	instances).	We	then	set	a	variable	(ropeLength)	to	the	size	of	the	sprite	used
for	obj_rope.	This	will	be	used	later	to	tell	GameMaker	where	each	instance	of	obj_rope
should	be	so	that	we	can	connect	them	in	a	line.	Next,	we	create	the	object	that	will	hold
the	obj_ropeHome	rope.	This	is	a	static	object	that	will	not	move,	no	matter	how	much	the
rope	moves.	This	is	connected	to	the	first	instance	of	obj_rope	via	a	revolute	joint.	In
GameMaker,	a	revolute	joint	is	used	in	several	ways:	it	can	act	as	part	of	a	motor,	moving
pistons;	it	can	act	as	a	joint	on	a	ragdoll	body;	in	this	case,	it	acts	as	the	connection
between	instances	of	obj_rope.	A	revolute	joint	allows	the	programmer	to	code	its	angle
and	torque,	but	for	our	purposes,	this	isn’t	necessary.	We	declared	the	objects	that	are
connected	via	the	joint	as	well	as	the	anchor	location,	but	the	other	values	remain	null.
Once	the	rope	holder	(obj_ropeHome)	and	initial	joint	are	set	up,	we	can	automate	the
creation	of	the	rest.	Using	the	repeat	function,	we	can	tell	GameMaker	to	repeat	a	block	of
code	a	set	number	of	times.

In	this	case,	this	number	is	derived	from	how	many	instances	of	obj_rope	can	fit	within
the	distance	between	the	y	origin	of	obj_ropeControl	and	the	point	to	which	you
stretched	it.	We	subtract	1	from	this	number	as	GameMaker	will	calculate	too	many	in
order	to	cover	the	distance	in	its	entirety.	The	code	that	will	be	repeated	does	a	few	things
at	once.	First,	it	increases	the	value	of	the	ropeLength	variable	by	16	for	each	instance	that
is	calculated.	Then,	GameMaker	changes	the	value	of	rope1	(which	creates	an	instance	of
obj_ropeHome)	to	that	of	rope2	(which	creates	an	instance	of	obj_rope).	The	rope2
variable	is	then	reestablished	to	create	an	instance	of	obj_rope,	but	also	adds	the	new
value	of	ropeLength	so	as	to	move	its	coordinates	directly	below	those	of	the	previous
instance,	thus	creating	a	chain.	This	process	is	repeated	until	the	set	length	of	the	overall
rope	is	reached.

There’s	more
Each	section	of	rope	is	a	physics	object	and	acts	as	such	in	the	physics	world.	By	changing
the	physics	settings	when	initially	creating	the	rope	sections,	you	can	see	how	they	react	to
collisions.	How	far	and	how	quickly	the	rope	moves	when	pushed	by	another	object	is
very	much	related	to	the	difference	between	their	densities.	If	you	make	the	rope	denser
than	the	object	colliding	with	it,	the	rope	will	move	very	little.	If	you	reverse	these	values,
you	can	cause	the	rope	to	flail	about,	wildly.	Play	around	with	the	settings	and	see	what
happens,	but	when	placing	a	rope	or	chain	in	a	game,	you	really	must	consider	what	the
rope	and	other	objects	are	made	of.	It	wouldn’t	seem	right	for	a	lead	chain	to	be	sent
flailing	about	by	a	collision	with	a	pillow,	now	would	it?

Chapter	5.	Now	Hear	This!	–	Music	and
Sound	Effects
In	this	chapter,	we’ll	cover	the	following	topics:

Importing	and	playing	background	music
Implementing	situational	sound	effects
Adding	sound	emitters	and	listeners
Adjusting	the	listener	orientation
Replicating	the	Doppler	effect	with	emitters

Introduction
When	you	think	about	it,	sound	is	not	absolutely	necessary	to	the	majority	of	video	games;
most	of	us	have	played	a	game	with	the	sound	off	at	one	point	or	another.	Having	said
this,	most	gamers	would	certainly	agree	that	sound	effects	and	music	make	the	experience
much	more	enjoyable.	In	fact,	there	are	many	games	in	which	sound	and	music	comprise
most,	if	not	all,	of	the	gameplay.	Consider	playing	Guitar	Hero	or	Rock	Band	with	no
sound.	While	you	could	play	and	win	based	solely	on	the	visual	cues,	why	would	you
want	to?	The	fun	of	rhythm	and	music	games	lies	in	the	rhythm	and	music.	Take	the	music
out	of	Dance	Dance	Revolution	and	you’re	just	stomping	on	a	beat	pad.

A	game’s	music	and	effects	definitely	add	to	the	experience	and	are	often	part	of	our
gaming	memories.	When	I	think	of	my	favorite	games,	I	can	always	remember	the	music
that	played	in	the	background	and	the	sound	effects	as	I	played.	While	this	is	true	for	most
gamers,	the	opposite	effect	can	be	said	about	music	and	sounds	that	just	don’t	fit.	If	your
character	is	shooting	a	gun	but	it	sounds	like	a	barking	dog,	it’s	really	hard	to	lose	yourself
in	the	game’s	world.

Getting	a	game’s	sound	just	right	can	be	difficult,	but	with	the	right	know-how	you	can	at
least	get	started.	Let’s	take	a	look	at	GameMaker’s	sound	system	and	what	it	can	do	for
you.

Audio	basics
The	first	step	to	implementing	audio	in	GameMaker	is	to	learn	the	basics.	We’ll	take	a
look	at	some	core	elements	of	importing	and	playing	audio:

Importing	and	playing	background	music

Sound	effects
Sound	effects	can	add	so	much	to	a	game	to	make	it	more	engaging	and	interesting.	It
would	seem	weird	if	your	character	collected	a	coin	and	there	was	no	“ba-ding!”	right?
Let’s	add	some	sound	effects	to	our	gameplay:

Implementing	situational	sound	effects

3D	audio
Sometimes	having	simple	sound	effects	just	isn’t	enough.	GameMaker’s	sound	system
allows	you	to	simulate	3D	space	using	audio:

Adding	sound	emitters	and	listeners
Adjusting	listener	orientation
Replicating	the	Doppler	effect	with	moving	emitters

Importing	and	playing	background	music
Personally,	I	feel	that	music	affects	my	enjoyment	of	a	game	in	a	big	way.	I	have	my
favorite	game	music	such	as	the	level	two	background	music	from	Super	Mario	Bros.	3,
the	Song	of	Storms	from	Legend	of	Zelda:	Ocarina	of	Time,	and	the	entire	soundtrack	of
Capy	Games’	Superbrothers:	Sword	&	Sworcery.	They	each	bring	with	them	a	certain
element	of	nostalgia,	as	they	play	an	important	role	in	my	gaming	history.	It’s	tough	to
say,	with	certainty,	whether	my	enjoyment	of	each	of	these	games	could	have	been
affected	by	a	change	in	the	music,	but	I	think	it	could.	I’m	sure	if	you	think	of	your
favorite	moments	from	your	favorite	games,	you	can	hear	the	music	in	your	head.	Keeping
this	in	mind	(no	pun	intended),	let’s	learn	a	little	about	importing	and	playing	music	in
GameMaker.

Getting	ready
You’ll	need	three	things	to	begin	this	recipe:	a	room	(of	course),	an	object	called
obj_musicControl,	and	a	song	of	your	choice.	You	can	use	either	an	.mp3	or	a	.wav;	I
chose	the	former.	Once	you	have	these	elements,	you’re	ready	to	begin.

How	to	do	it
1.	 Click	on	the	Create	a	sound	button	on	your	toolbar.	It’s	the	one	that	looks	like	a

small	speaker	when	viewed	from	the	front.	The	following	menu	will	pop	up:

2.	 Click	on	the	Load	sound	from	a	file	button	(the	folder	icon)	and	select	your	music
file.

3.	 Name	your	sound	for	use	in	GameMaker.	I	chose	snd_bgm01.
4.	 Under	Attributes,	select	Compressed—Streamed	and	click	on	Ok.
5.	 In	obj_musicControl,	add	a	Create	event.
6.	 Drag	a	code	block	to	the	Actions	box	and	enter	the	following	code:

audio_play_sound(snd_bgm01,	1,	true);

pause	=	false;

stop	=	false;

state	=	"Play";

7.	 Add	a	Step	event	to	a	code	block	containing	the	following	code:

if	keyboard_check_pressed(ord('P'))

{

				pause	=	!pause;

				if	pause

				{

								audio_pause_sound(snd_bgm01);

								state	=	"Pause";

				}

				else

				{

								audio_resume_sound(snd_bgm01);

								state	=	"Play";

				}

}

if	keyboard_check_pressed(ord('S'))

{

				stop	=	!stop;

				if	stop

				{

								audio_stop_sound(snd_bgm01);

								state	=	"Stop";

				}

				else

				{

								audio_play_sound(snd_bgm01,	1,	true);

								state	=	"Play";

				}

}

8.	 Add	a	Draw	event	and	place	a	code	block	in	the	Actions	box.
9.	 Enter	the	following	code:

draw_text(room_width/2,320,string(state));

Once	this	is	complete,	you	can	add	your	music	controller	object	to	the	room	and	test	it.
Use	the	S	and	P	keys	on	your	keyboard	to	pause,	stop,	and	play	your	music,	which	should
play	right	from	the	get-go.

How	it	works
This	recipe	is	quite	simple	and	is	really	just	used	to	demonstrate	a	few	basics	of	sound	in
GameMaker.	Importing	sound	files	work	in	the	same	way,	whether	it	is	music	or	sound
effects.	You	can	import	either	an	.mp3	or	a	.wav	from	the	Sound	Properties	editor	and	the
settings	can	be	changed	at	any	time.	One	very	important	thing	you	need	to	remember	is
that	when	you	rename	a	sound	file,	you	need	to	change	any	instance	that	appears	in	code.
Similarly,	if	you	change	the	sound	you	associate	with	a	particular	name,	you’ll	need	to
remember	where	you	used	it	in	the	code;	otherwise,	you	could	end	up	with	a	sound
playing	at	an	undesired	moment.	Once	you’ve	given	your	sound	a	proper	name,	preferably
following	an	appropriate	naming	convention,	you’re	ready	to	call	instances	of	the	sound	in
the	game.

In	the	Sound	Properties	editor,	you’ll	notice	a	few	things.	The	first	is	the	selection	for
audio	compression	and	playback,	which	are	very	important	things	to	consider.	Your
options	come	in	the	form	of	whether	the	sound	is	compressed	and	whether	it	is	streamed.
In	order	to	make	the	right	choice,	you	really	need	to	take	a	look	at	what	you’re	uploading
(sound	effect	or	music)	and	how	memory	and	CPU	intensive	your	game	will	be.	In	our
case,	we	uploaded	some	background	music.	For	this	reason,	we	chose	to	use	an	.mp3	file
(a	smaller	file	size)	and	we	selected	Compressed—Streamed.	This	means	that	the	file
size	is	further	compressed	(saves	disc	space	when	packaging	your	game)	and	is	unloaded
as	the	.mp3	file	is	played.	This	requires	more	work	from	the	CPU	but	because	the	file	is
loaded	in	smaller	chunks,	it	is	ideal	for	music	files.	This	would	not	be	ideal	for	sound
effects	(which	are	usually	much	shorter	but	played	more	frequently),	just	as	you	would	not
want	to	have	a	song	file	uncompressed	in	its	entirety	every	time	it	is	played.

If	you	choose	an	.mp3	sound	file,	you’ll	notice	a	quality	meter	that	allows	you	to	adjust	the
sound	quality,	and	thus	memory	and	CPU	requirements	for	this	particular	file.	Below	this,
you’ll	see	the	Target	options.	This	is	where	you	can	adjust	whether	the	file	should	be
played	as	mono,	stereo,	or	3D	audio,	as	well	as	the	sample	and	bit	rates.	You	can	also	edit
the	file	itself	as	long	as	you’ve	associated	an	audio	editing	program,	as	GameMaker	does
not	have	a	built-in	editor.

With	the	file	loaded	and	selections	made,	your	background	music	is	ready	to	go.	What
we’ve	done	in	this	recipe	is	simply	have	the	song	begin	to	play	when	the	music	control
object	loads	using	the	audio_play_sound	function.	This	function	will	be	used	to	play	all
sounds	and	music	by	calling	an	instance	of	the	sound	(which	acts	like	an	object	at	this
point),	assigning	a	channel	priority,	and	indicating	whether	it	will	be	looped	or	not.	The
instance’s	priority	will	be	used	to	manage	which	sounds	will	be	stopped	and	which	will
continue	to	play	in	the	event	where	too	many	sound	files	are	playing	at	once	or	taking	up
too	much	memory.	You	can	assign	priority	with	numbers	from	0	to	1	or	0	to	100.	In	our
case,	the	priority	isn’t	important	(as	we	have	only	one	sound	file	playing)	but	we	did	make
it	loop.	The	rest	of	the	recipe	demonstrates	audio_pause_sound,	audio_resume_sound,
and	audio_stop_sound,	all	of	which	are	used	exactly	as	their	names	suggest.

There’s	more
There	are	several	other	basic	functions	used	for	GameMaker’s	audio	system.	You	can	use
audio_exists	to	verify	that	a	particular	sound	file	is	packaged	and	audio_get_name	to
identify	an	audio	file’s	name	(which	is	good	for	music	menus	and	displaying	a	song	title
as	it	plays).	You	can	also	use	audio_is_playing	or	audio_is_paused	to	verify	the	play
state	of	a	particular	sound	instance	and	audio_pause_all	and	audio_stop_all	to	halt	the
play	of	any	sounds	(both	music	and	sound	effects)	that	may	be	playing	at	the	time.

Implementing	situational	sound	effects
Ever	noticed	how	almost	anything	that	you	do	in	games	produces	some	kind	of	sound
effect?	It	could	be	as	simple	as	a	“ding!”	every	time	you	collect	gold	or	a	complex	series
of	explosions	coming	from	your	speakers,	but	in	the	best	games,	a	lot	of	thought	and
planning	goes	into	sound	design	because	it	is	really	important	to	the	experience.	Sound	in
games,	at	its	core,	is	meant	to	inform	the	player	of	something	happening.	If	the	sound
doesn’t	match	the	action,	it	can	break	a	player’s	engagement	with	the	game	world.	You’ve
likely	played	a	game	with	poor	sound	design;	you	might	not	remember	it,	but	you	surely
remember	the	games	that	did	it	right.	Let’s	take	a	look	at	how	we	can	create	audible
responses	to	accompany	in-game	events.

Getting	ready
For	this	recipe,	we’re	going	to	reuse	some	of	the	movement	code	from	Chapter	2,	It’s
Under	Control	–	Exploring	Various	Control	Schemes.	If	you	skipped	the	Making	your
character	jump	recipe;	don’t	worry,	I’ve	copied	everything	you	need	here.	What	you	will
need,	however,	is	a	player	character	and	platform	on	which	this	character	can	jump.	The
first	object	you’ll	need	should	be	called	obj_ground_parent	and	requires	no	sprite.	The
second	object	should	be	called	obj_ground	requires	a	sprite	(this	should	just	be	a	colored
square)	and	needs	obj_ground_parent	set	as	the	parent	object.	Lastly,	you’ll	need
obj_player	with	the	sprite	of	your	choice.	In	a	room,	create	a	small	platform	using
instances	of	obj_ground	and	place	an	instance	of	obj_player	on	top.

How	to	do	it
1.	 In	obj_player,	add	a	Create	event.
2.	 Drag	a	code	block	to	the	Actions	box	and	enter	the	following	code:

soundState	=	0;

grav	=	1;

grav_max	=	10;

3.	 Add	a	Step	event	and	place	a	code	block	in	the	Actions	box.
4.	 In	the	code	block,	enter	the	following	code:

if	(!place_meeting(x,	y+(vspeed/2),	obj_ground_parent))

{

				if	vspeed	<	grav_max

				{

								vspeed+=grav;

				}

}

else

{

				vspeed	=	0;

}

if	keyboard_check_pressed(vk_space)	and	(place_meeting(x,	y+vspeed,	

obj_ground_parent))

{

				jump_spd	=	((soundState	+	1)	*	7);

				vspeed	=	-jump_spd;

				var	jump	=	audio_play_sound(snd_sfx_jump,	5,	false);

				if	soundState	=	0

				{

								audio_sound_pitch(jump,	1.3);

				}

				if	soundState	=	1

				{

								audio_sound_pitch(jump,	1);

				}

				if	soundState	=	2

				{

								audio_sound_pitch(jump,	0.7);

				}

				soundState	+=	1;

				if	soundState	>	2

				{

								soundState	=	0;

				}

}

You	can	now	close	the	Object	Properties	editor	for	obj_player	and	test	the	program.
Use	the	Spacebar	to	jump	and	see	what	happens.	Make	sure	your	speakers	are	turned	on!

How	it	works
In	this	recipe,	we	simply	want	to	have	a	sound	play	when	the	player	character	jumps.
What	I’ve	shown	you,	however,	is	a	method	of	altering	the	way	in	which	a	sound	is	played
back	in	GameMaker.	Did	you	notice	that	the	sound	changed	to	match	the	height	to	which
the	player	jumped?	This	is	to	show	that	sound	plays	an	important	role	in	the	overall	game
experience.	We	controlled	this	using	audio_sound_pitch	to	alter	the	pitch	of	the	sound	we
played	without	having	a	separate	file.	Do	you	want	to	see	just	how	much	sound	matters?
Try	reversing	the	values	in	each	jump.	Set	the	first	jump	to	a	pitch	of	0.7	and	the	third
jump	to	a	pitch	of	1.3	and	test	it	out.	It	doesn’t	fit	nearly	as	well,	does	it?

Essentially,	audio_sound_pitch	does	exactly	what	it	says	it	does;	it	sets	a	sound’s	pitch.
In	order	to	use	it,	you’ll	need	to	set	a	variable	to	contain	the	audio_play_sound	function
in	order	to	have	a	pitch	to	be	set	in	the	first	place.	Try	playing	around	with	the	pitch	by
changing	the	number	used.	Keep	in	mind	that	it	is	possible	to	go	too	far	here;	a	pitch	value
below	0	or	over	5	will	produce	a	sound	that	is	unlikely	to	be	audible.	Well,	audible	to
humans,	at	least;	you	never	know	what	your	dog	might	think	of	it.

There’s	more
The	method	that	we	used	earlier	for	selecting	a	pitch	based	on	the	soundState	value	has
only	one	method	for	such	a	task.	When	selecting	an	outcome	based	on	the	value	of	a
variable,	you	can	also	use	the	switch	function.	To	get	the	same	results	with	fewer	lines	of
code,	replace	this:

if	soundState	=	0

{

				audio_sound_pitch(jump,	1.3);

}

if	soundState	=	1

{

				audio_sound_pitch(jump,	1);

}

if	soundState	=	2

{

				audio_sound_pitch(jump,	0.7);

}

With	this:

switch	(soundState)

{

				case	0:	audio_sound_pitch(jump,	1.3);

				break;

				case	1:	audio_sound_pitch(jump,	1);

				break;

				case	2:	audio_sound_pitch(jump,	0.7);

				break;

}

GameMaker	is	given	instructions	for	each	state	the	same	as	the	previous	method,	but	in	a
cleaner,	easier-to-read	way.	GameMaker	will	search	the	list	of	cases	until	it	finds	the
appropriate	one	and	then	it	will	run	it.	Keep	in	mind	that	you	need	to	use	break	after	each
case	to	prevent	GameMaker	from	continuing	to	run	each	subsequent	case	instead	of
ending	where	appropriate.

Adding	sound	emitters	and	listeners
With	its	updated	audio	engine,	GameMaker	has	added	the	ability	to	simulate	3D	sound.
This	doesn’t	mean	that	you	have	to	make	a	3D	game	to	utilize	it,	however;	you	can	use
this	feature	to	add	depth	(figurative	and	literal)	to	your	2D	world.	Let’s	take	a	look	at
some	basics	for	creating	location-dependent	audio.

Getting	ready
This	recipe	calls	one	sound	file	(I	used	a	13-second	loop	of	rushing	water;	it	is	a	public
domain	sound	I	downloaded	from	http://soundbible.com/):	a	player	object	(our	listener)
and	emitter	object.	Give	the	player	and	the	emitter	their	own	sprites.	Though	a	sprite	for
the	latter	isn’t	necessary,	we’re	going	to	make	it	visible	so	that	you	have	a	point	of
reference	when	you	test	it.	We’ll	call	the	emitter,	obj_water,	and	our	player	character
something	crazy	such	as	obj_player.	Create	a	room	and	place	both	the	objects	in	it	with
obj_water	near	the	center.

http://soundbible.com/

How	to	do	it
1.	 Click	on	the	Create	a	sound	icon	and	load	your	audio.
2.	 Call	the	sound	object,	snd_sfx_water,	and	set	the	compression	to	Compressed

(uncompress	on	load).
3.	 Under	the	Target	options,	set	the	audio	to	3D	(default	is	mono)	and	close	the	editor.
4.	 In	obj_player,	add	a	Create	event	and	drag	a	code	block	to	the	Actions	box.
5.	 Enter	the	following	code:

audio_listener_orientation(0,	1,	0,	0,	0,	1);

6.	 Add	a	Step	event.
7.	 Place	a	code	block	with	the	following	code:

if	keyboard_check(vk_left)

{

				x	-=	5;

}

if	keyboard_check(vk_right)

{

				x	+=	5;

}

if	keyboard_check(vk_up)

{

				y	-=	5;

}

if	keyboard_check(vk_down)

{

				y	+=	5;

}

audio_listener_position(x,	y,	0);

8.	 In	obj_water,	add	a	Create	event.
9.	 In	a	code	block,	enter	this	code:

snd_emit	=	audio_emitter_create();

audio_emitter_position(snd_emit,	x,	y,	0);

audio_falloff_set_model(audio_falloff_linear_distance);

audio_emitter_falloff(snd_emit,	100,	300,	1);

audio_play_sound_on(snd_emit,	snd_sfx_water,	true,	1);

10.	 Add	a	Room	End	event	(found	in	the	Other	event	category).
11.	 Place	a	code	block	in	the	Actions	box	with	the	following	code:

sound_stop(snd_sfx_water);

Once	this	is	complete,	you	can	test	your	scene.	Use	the	arrow	keys	to	move	your	player
around	the	room.	The	audio	should	change	depending	on	where	you	are	in	relation	to	the
emitter,	in	terms	of	both	distance	and	position.

How	it	works
Emitters	and	listeners	allow	you	to	easily	create	some	great	scenes.	Through	the	use	of
audio	falloff	and	listener	orientation,	GameMaker	can	add	a	great	deal	of	realism	and
polish	to	any	project.

What	we’ve	done	here	is	we’ve	created	an	audio	listener	that	follows	the	player’s	position.
GameMaker	takes	this	position	in	relation	to	any	emitters	in	the	room	and	alters	the	gain
of	the	audio	associated	with	each	emitter.	We	created	an	audio	emitter,	and	using
audio_emitter_position,	we	can	tell	GameMaker	where	this	emitter	is	situated	in	the
room.	We	then	used	audio_falloff_set_model	to	dictate	how	falloff	works	for	that
particular	sound	and	audio_emitter_falloff	to	set	where	falloff	begins	and	how	far	the
sound	should	reach,	in	terms	of	the	emitter’s	position.	Try	playing	around	with	the	values
used	for	the	falloff	reference,	maximum	falloff,	and	falloff	factor.	These	values	will	alter
how	and	where	the	audio	will	be	heard	by	the	listener.	Finally,	audio_play_sound_on
assigns	a	sound	object	to	the	emitter,	tells	it	whether	to	loop	or	not,	and	sets	the	sound’s
priority.	As	we’re	only	using	one	sound	here,	the	value	used	to	set	priority	is	essentially
inconsequential.

One	last,	but	very	important,	thing	is	to	stop	the	emitter	from	playing	a	sound	when	it	is
no	longer	needed.	In	our	case,	we	set	the	sound	file	to	stop	playing	when	we	exit	the	room.
If	you	attach	the	emitter	to	an	enemy,	you	can	also	accomplish	this	when	the	enemy
instance	is	destroyed.	If	the	emitter	no	longer	serves	a	purpose,	it	is	highly	recommended
that	you	get	rid	of	it.	This	is	because	the	emitter	will	keep	emitting	until	it	is	told	not	to.	If
left	alone,	this	can	result	in	high	CPU	usage	or	memory	leaks	and	can	cause	your	game	to
crash.	Keep	your	emitters	in	check!

There’s	more
In	this	recipe,	we	used	a	linear	falloff	model.	This	allows	the	emitter	to	set	the	audio’s	gain
to	0,	but	sacrifices	a	more	gradual	falloff.	If	you	use	audio_falloff_exponent_distance
or	audio_falloff_inverse_distance,	you	can	get	a	much	smoother	and	more	gradual
falloff,	but	the	audio	will	keep	growing	quieter	without	actually	becoming	inaudible.

Adjusting	the	listener	orientation
Let’s	say	you’re	making	a	top-down	shooter	and	you	want	the	player	to	really	get	into	the
role	of	the	characters	they’re	controlling.	You	would	want	them	to	experience	the
environment	in	the	same	way	and	this	includes	the	sounds	he/she	will	hear.	Since	we
already	have	our	emitter	and	listener,	let’s	take	a	look	at	how	we	can	affect	the	audio
based	on	the	orientation	of	the	player	(the	listener).

Getting	ready
You	can	use	the	code	and	setup	from	the	previous	recipe;	we’re	just	going	to	adjust	some
of	the	code	here	and	there.

How	to	do	it
1.	 Open	obj_player	and	delete	the	Create	event.
2.	 In	the	Step	event,	add	the	following	code	to	the	bottom	of	your	code	block:

image_angle	=	point_direction(x,	y,	mouse_x,	mouse_y);

audio_listener_orientation(lengthdir_x(1,	image_angle),	lengthdir_y(1,	

image_angle),	5,	0,	0,	-1);

Once	this	is	done	you	can	test	the	new	code.	Move	the	player	around	the	room	but	move
the	mouse	as	well.	The	player	will	rotate	around	based	on	the	mouse’s	position,	but	you’ll
notice	that	the	audio	is	affected	as	well.

Once	again,	I	used	a	public	domain	sound	from	http://soundbible.com/.	Use	your	sound	to
create	a	sound	in	GameMaker	with	the	same	settings	as	the	water	effect	in	the	previous
recipe.

http://soundbible.com/

How	it	works
All	we’ve	done	here	is	set	the	listener’s	orientation	to	match	the	direction	in	which	the
player	is	facing.	If	the	emitter	is	adjacent	to	the	player’s	right	ear,	the	audio	will	come	out
of	the	right	speaker	and	vice	versa.	Now,	we	need	to	make	a	note	of	a	few	things.	Firstly,
when	using	3D	audio	such	as	this,	you	must	account	for	the	z	vector.	Here,	we’ve	set	the
listener	to	sit	at	a	z	look	vector	of	5,	and	we’ve	pointed	it	to	face	up	by	setting	the	z	up
vector	to	-1.	This	ensures	that	the	player	character	is	oriented	appropriately	to	receive	the
audio	information.	Had	we	set	the	z	up	vector	to	1,	the	speakers	would	be	reversed,	as	the
player	would	be	flipped.	We’ve	also	used	lenghtdir_x	and	lengthdir_y	to	set	the	x	and	y
look	vectors	to	match	the	location	of	the	mouse.	This	way,	the	listener	always	faces	the
direction	of	the	mouse,	just	like	the	sprite.	As	a	result,	we	get	audio	that	matches	our
visuals.

Replicating	the	Doppler	effect	with
emitters
If	you’ve	ever	stood	by	the	side	of	a	road	as	cars	pass	by,	you’ve	experienced	the	Doppler
effect.	Without	getting	into	too	much	detail,	the	Doppler	effect	is	the	change	in	frequency
of	a	wave	(in	this	case,	a	sound	wave)	for	an	observer	moving	relative	to	its	source.	In	the
case	of	a	car	moving	by	a	stationary	observer	(that	is,	you),	the	sound	waves	caused	by	the
car’s	engine	are	being	emitted	closer	together	as	the	car	approaches	than	they	are	as	the
car	recedes.	That’s	why	a	car	emits	a	higher	pitch	noise	the	closer	it	gets	and	a	lower	pitch
noise	as	it	passes	by	and	drives	away.	With	the	help	of	GameMaker’s	3D	audio	functions,
we	can	actually	recreate	this	effect.

Getting	ready
Once	again,	we’ll	be	using	the	player	object	that	we	created	in	the	Adding	sound	emitters
and	listeners	recipe.	Make	sure	that	the	Create	event	for	obj_player	contains	the
following	code:

audio_listener_orientation(0,	1,	0,	0,	0,	1);

Make	sure	that	the	Step	event	does	not	contain	the	mouse-based	orientation	code,	as	we
will	not	be	using	it	here.	We	will,	however,	need	to	keep	the	audio_listener_position
line	of	code.	Also,	remove	the	emitter	object	(obj_water)	that	we	placed	in	the	room,	as
we’ll	be	creating	a	new	one.

Once	this	is	done,	create	an	object	(with	a	sprite)	called	obj_car.	You’ll	also	need	a	sound
file	of	a	car	driving.	Try	not	to	use	the	sound	of	a	car	passing	by,	as	this	is	the	effect	we’re
trying	to	reproduce.

How	to	do	it
1.	 In	obj_player,	add	a	Create	event.
2.	 Drag	a	code	block	to	the	Actions	box	and	add	the	following	code:

hspeed	=	global.carSpeed;

snd_emitCar	=	audio_emitter_create();

audio_falloff_set_model(audio_falloff_exponent_distance);

audio_emitter_falloff(snd_emitCar,	25,	200,	1.5);

audio_play_sound_on(snd_emitCar,	snd_sfx_car,	true,	1);

3.	 Add	a	Step	event	and	place	a	code	block	in	the	Actions	box.
4.	 Enter	the	following	code:

audio_emitter_position(snd_emitCar,	x,	y,	0);

audio_emitter_velocity(snd_emitCar,	hspeed,	vspeed,	0);

5.	 Add	an	Outside	Room	event,	which	is	under	the	Other	events.
6.	 Place	a	code	block	and	enter	the	following	code:

if	global.carSpeed	<	50

{

				global.carSpeed	=	(global.carSpeed	*	1.2);

}

sound_stop(snd_sfx_car);

instance_create(0,	room_height/2,	obj_car);

instance_destroy();

Once	these	steps	are	complete,	place	an	instance	of	obj_car	in	the	room	on	the	left-hand
side	about	half	way	down.	It	doesn’t	have	to	be	exact	as	it	will	correct	itself	on	the	second
pass	anyway.	You	are	now	ready	to	test	it.	Move	your	player	around	to	see	the	effects	from
different	positions	and	try	playing	with	the	falloff	settings	to	see	further	changes.

How	it	works
This	code	works	just	as	you	would	expect.	The	audio_emitter_velocity	function
simulates	how	your	selected	audio	file	would	sound	if	it	were	to	move	at	your	selected
speed.	There	are	four	values	to	set	when	using	this	function:	the	sound	file	to	be	played
and	the	x,	y,	and	z	velocities	in	pixels	per	step.	Here,	we’ve	set	the	x	and	y	velocities	to	be
set	by	the	car	object’s	speed.	Since	this	is	a	2D	test,	there	is	no	movement	on	the	z	axis,
and	therefore,	there’s	no	need	for	a	z	velocity	value.	By	telling	GameMaker	to	set	the
sound	emitter’s	velocity	to	be	that	of	the	car	object,	the	sound	is	altered	whenever	the	car
changes	speed.	Without	audio_emitter_velocity,	you	wouldn’t	get	the	same	effect;	you
could	make	the	emitter	move	with	the	car	object,	but	the	audio	wouldn’t	change.	One
thing	to	keep	in	mind	is	that	it	is	possible	for	the	emitter	to	go	too	fast.	You’ll	notice	that
we’ve	capped	the	car’s	speed	at	50.	This	is	because	once	the	car’s	velocity	gets	too	high,
the	audio	becomes	unintelligible.	If	you’re	using	this	function	for	an	object	that	moves	at	a
constant	speed	(say,	a	bullet),	you	can	set	the	velocity	variables	as	constants.	It’s	always	a
good	idea	to	play	around	with	the	values	until	it	sounds	right.

Chapter	6.	It’s	All	GUI!	-	Creating
Graphical	User	Interface	and	Menus
In	this	chapter,	we’ll	cover	the	following	topics:

Setting	up	a	basic	HUD	with	code
Making	your	HUD	scalable
Using	the	GUI	layer	in	full	screen	mode	with	views
Adding	a	title	screen
Creating	splash	pages
Adding	a	game	over	screen

Introduction
Of	all	the	game	terms	that	are	fun	to	say,	GUI	(often	pronounced	“gooey”)	is	probably	the
most	important.	Graphical	User	Interface	(GUI)	refers	to	any	on-screen	visual	cues	that
allow	the	user	to	control	the	software	directly.	This	is	usually	associated	with	images	and
texts	that	provide	information	and	points	of	interaction,	such	as	menus	and	icons.

GUIs	are	most	commonly	associated	with	software	applications,	as	opposed	to	video
games.	While	video	games	are	a	form	of	software,	many	prefer	this	differentiation.	In
video	games,	a	more	common	term	for	display	and	menu	items	would	be	HUD	(also	fun
to	say),	which	stands	for	Heads-Up	Display.	While	these	two	terms	mean	largely	the
same	thing,	HUD	is	viewed	by	most	as	the	preferred	term.	Having	said	this,	GameMaker
uses	GUI	to	describe	such	systems,	so	we’ll	stick	to	this.	With	these	formalities	out	of	the
way,	let’s	take	a	look	at	how	GameMaker	handles	menus,	game	screens,	and	the	GUI	in
general.

GUI	basics
In	Chapter	1,	Game	Plan	–	Creating	Basic	Gameplay,	we	made	a	basic	GUI	using
GameMaker’s	drag	and	drop	interface.	This	works	just	fine	but,	by	coding	it	yourself,	you
can	fine-tune	this	interface	to	your	needs.

Setting	up	a	basic	HUD	with	code
Making	your	HUD	scalable
Using	the	GUI	layer	in	full	screen	mode

Game	screens	and	menus
Having	a	game	that	starts	as	soon	as	you	open	it	is	fine	for	testing	or	for	a	proof	of	concept
but	it’s	not	ideal	for	making	an	actual	game	product.	We’ll	take	a	look	at	how	we	can
implement	various	game	screens:

Adding	a	title	screen
Creating	splash	pages
Adding	a	“Game	Over”	screen

Setting	up	a	basic	HUD	with	code
Have	you	ever	played	a	game	and	stopped	to	think,	“Gee,	I	wish	I	knew	what	my	score
was!”	No?	That’s	probably	because	your	score,	health,	and	other	important	pieces	of
information	are	presented	to	you	on	the	screen	at	any	given	moment.	Now,	this	isn’t	the
case	for	all	games;	of	course,	but	it’s	true	for	classic	and	arcade	games.	Pac-Man	and
Mario	will	always	tell	you	how	many	lives	you	have	left	with	because	it’s	important	to
have	this	information.	Let’s	take	a	look	at	how	we	can	display	such	information	by
making	a	simple	game.

Getting	ready
You’ll	need	a	few	things	before	we	can	really	begin.	Firstly,	you’ll	need	to	create	a	room
called	rm_game.	You’ll	also	need	four	objects:	obj_display,	obj_gameControl,	obj_base,
and	obj_enemy.	The	last	two	will	require	sprites.	You’ll	also	need	to	set	up	a	new	font.
This	does	not	need	to	be	a	custom	font	designed	by	you.	Simply,	click	on	the	Create	a
font	button	on	the	toolbar,	select	the	font	you	wish	to	use	to	display	health,	lives,	and
scores,	and	customize	the	style	and	size.

Name	the	font	fnt_HUD	in	order	to	reference	it	in	your	code.	Once	this	is	complete,	you’re
ready	to	go.

How	to	do	it
1.	 Open	obj_display	and	add	a	Create	event.
2.	 Drag	a	code	block	to	the	Actions	box	and	enter	the	following	code:

global.playerHealth	=	100;

global.playerLives	=	3;

global.playerScore	=	0;

global.gameOver	=	false;

draw_set_font(fnt_HUD);

3.	 Add	a	DrawGUI	event	(under	Draw)	and	place	a	code	block	in	the	Actions	box.
4.	 Enter	this	code:

draw_text(32,	32,	string("Health:	")	+	string(global.playerHealth));

draw_text(32,	64,	string("Lives:	")	+	string(global.playerLives));

scoreString	=	string(global.playerScore);

stringLength	=	6	-	string_length(scoreString);

stringTemp	=	"";

while(stringLength	>	0)

{

				stringTemp	+=	"0";

				stringLength	-=	1;

}

scoreString	=	stringTemp	+	scoreString;

draw_text(room_width	-	96,	32,	scoreString);

5.	 In	obj_gameControl,	add	a	Create	event.
6.	 Place	the	following	code	in	a	code	block:

global.enemy	=	0;

global.enemyMax	=	10;

alarm[0]	=	30;

instance_create(room_width/2,	room_height/2,	obj_base);

7.	 Add	an	event	to	Alarm	0	using	the	following	code:

spawn_point	=	choose(0,	1,	2,	3)

if	(spawn_point	=	0)

{

				instance_create(-64,random(room_height),	obj_enemy);

}

if	(spawn_point	=	1)

{

				instance_create((room_width+64),	random(room_height),	obj_enemy);

}

if	(spawn_point	=	2)

{

				instance_create(random(room_width),	-64,	obj_enemy);

}

if	(spawn_point	=	3)

{

				instance_create(random(room_width),	(room_height+64),	obj_enemy);

}

alarm[0]	=	45;

8.	 Add	a	Step	event	and	drag	a	code	block	to	the	Actions	box.
9.	 Enter	the	following	code:

if	global.playerHealth	<=	0

{

				global.playerLives	-=	1;

				global.playerHealth	=	100;

}

if	global.playerLives	<=	0

{

				global.gameOver	=	true;

}

if	global.gameOver

{

				game_restart();

}

10.	 In	obj_enemy,	add	a	Create	event	to	the	following	code:

move_towards_point(obj_base.x,	obj_base.y,	5);

11.	 Add	a	Step	event	and	place	a	code	block	in	the	Actions	box.
12.	 Enter	the	following	code:

if	mouse_check_button_pressed(mb_left)

{

				if	instance_position(mouse_x,	mouse_y,	obj_enemy)

				{

								global.playerScore	+=	10;

								instance_destroy();

				}

}

13.	 Add	a	Collision	event	to	obj_base	and	use	the	following	code:

global.playerHealth	-=	25;

instance_destroy();

Now,	simply	place	one	instance	each	of	obj_display	and	obj_gameControl	anywhere	in
the	room	and	you’re	set.	There	is	no	need	to	place	an	instance	of	obj_base,	as	this	will	be
handled	by	the	code	in	order	to	place	it	in	the	exact	center	of	the	room.	If	you	wish	to
place	the	base	elsewhere	in	the	room	or	in	multiple	places,	simply	adjust	the	code	or	erase
it	and	place	the	objects	manually.	When	you	test	the	game,	simply	click	on	the	enemies
before	they	reach	your	base	and	collect	points.	As	enemies	collide	with	your	base,	it	will
lose	health.	When	it	runs	out	of	health,	you’ll	lose	a	life.

How	it	works
This	simple	game	demonstrates	the	basics	of	GameMaker’s	GUI	layer	and	the	DrawGUI
event.	DrawGUI	renders	to	the	application	surface	outside	any	draw	events.	Essentially,	if
you	use	Draw	to	render	sprites	or	textures	within	the	game,	regardless	of	the	depth,
DrawGUI	will	render	items	on	top	of	them.	Not	only	that,	it	bases	positions	on	the	(0,	0)
coordinates	of	the	view,	as	opposed	to	the	room.	This	makes	it	ideal	for	your	HUD	as	it
will	follow	the	view	instead	staying	put	within	the	room.	Even	though	DrawGUI	events
will	supersede	standard	Draw	events,	you	can	still	use	layer	items	within	DrawGUI,	using
the	depth	value	as	you	would,	normally.

In	the	Create	event	of	obj_display,	we	used	draw_set_font	to	change	the	font	used
when	displaying	any	string	we	code.	This	prevents	you	from	relying	on	GameMaker’s
default	font	and	font	settings	and	allows	you	to	use	a	custom	font,	if	you	choose	to	create
one.	You’ll	notice	that,	when	we	set	the	font,	it	is	used	across	any	strings	displayed	on	the
screen.	Do	you	want	to	use	multiple	fonts?	You’ll	need	to	use	multiple	control	objects	and
set	a	different	font	for	each	of	them.	If	your	game	design	calls	for	multiple	fonts	or	styles,
make	sure	to	use	descriptive	naming	conventions	to	avoid	confusion.

In	order	to	display	health,	life,	and	score	values	on	the	screen,	we	first	need	to	convert
them	into	strings.	GameMaker	must	be	told	exactly	what	you	wish	to	display,	but	it	can
display	the	value	of	any	variable	as	a	string	alphanumerically.	Since	we	want	to	display
titles	(that	is,	health,	lives,	and	scores)	as	well	as	their	values,	we	have	to	tell	GameMaker
to	do	so	using	the	+	sign.	This	allows	us	to	display	multiple	titles	or	values	without	having
to	hardcode	the	positions	of	each	after	a	lot	of	thought	and	confusion.	You	may	also	have
noticed	the	use	of	the	classic	arcade	scoring	system	with	a	finite	number	of	potential
digits.	This	was	done	on	purpose	for	aesthetic	reasons.	By	assigning	the	score	value,	the
length	(in	digits)	of	that	value	and	strings	of	the	number	0,	we	were	able	to	replace	the
zeros	in	these	spaces	with	the	actual	score.	It’s	a	small	price	to	pay	for	the	layout	you
want.	When	your	base	runs	out	of	lives,	the	game	restarts,	as	we’ve	seen	in	recipes	from
previous	chapters.	This	isn’t	ideal	from	a	game	design	perspective,	but	we’ll	get	into
remedies	for	this	at	a	later	point	in	this	chapter.

These	are	some	of	the	basics	you	can	accomplish	in	terms	of	your	user	interface,	but	these
simple	functions	coupled	with	custom	graphics	and	your	own	creativity	can	make	a	great
user	experience.

Making	your	HUD	scalable
Have	you	ever	played	a	game	that	didn’t	quite	fit	your	screen?	It’s	frustrating,	isn’t	it?	In	a
perfect	world,	your	game	would	work	perfectly	on	any	device.	Since	that’s	not	the	case,
however,	you’ll	need	to	make	some	adjustments	if	you	want	to	create	a	game	that	will	fit
at	least	most	devices.	Let’s	see	what	it	takes	to	scale	your	game	to	fit	screens	of	different
sizes	and	ratios.

Getting	ready
For	this	recipe,	we’ll	use	the	game	that	we	created	previously.	Open	the	project	file	and
follow	the	given	steps,	but	make	sure	Allow	the	player	to	resize	the	game	window	is
activated	and	Keep	aspect	ratio	is	selected	under	Global	Game	Settings.

How	to	do	it
1.	 Open	obj_display.
2.	 Under	the	DrawGUI	event,	open	the	code	block.
3.	 Enter	the	following	code	above	the	existing	code:

display_w	=	1024;

display_h	=	768;

ratio	=	display_get_width()/display_get_height();

if	ratio	>	1

{

				adjust_w	=	display_h	*	ratio;

				adjust_h	=	display_h;

				display_set_gui_size(display_h	*	ratio,	display_h);

}

else

{				

				adjust_w	=	display_w;

				adjust_h	=	display_w/ratio;

				display_set_gui_size(display_w,	display_w/ratio);

}

4.	 Replace	the	last	line	of	code	with	this	code:

draw_text(adjust_w	-	96,	32,	scoreString);

Once	this	is	done,	test	the	game	and	try	resizing	the	player	window.

How	it	works
When	resizing	the	test	window,	you	will	notice	a	couple	of	things:	Firstly,	you	will	notice
that	the	game’s	aspect	ratio	remains	the	same	even	when	you	change	the	size	and	shape	of
the	player	window.	By	selecting	Keep	aspect	ratio	in	Global	Game	Settings,	you’re
telling	GameMaker	to	do	exactly	that.	Regardless	of	the	device	you’re	using	or	the	aspect
ratio	of	the	screen	on	which	you’re	displaying	your	game,	GameMaker	will	keep	the
game’s	aspect	ratio	intact.	Conversely,	if	you	select	Full	scale,	GameMaker	will	squash
and	stretch	the	image	to	fit	the	display.

Secondly,	you	will	notice	that,	as	you	resize	the	window	and	game	itself,	the	GUI	remains
in	its	place	in	conjunction	with	the	play	area.	To	achieve	this,	we	must	find	the	dimensions
of	the	display	being	used	and	use	this	information	to	resize	the	play	area	to	fit	the	screen
while	maintaining	the	game’s	aspect	ratio.	The	aspect	ratio	is	calculated	by	taking	the
width	of	the	window	or	displaying	and	dividing	it	by	its	height.	This	value	is	then	used	to
find	the	adjusted	width	(for	landscape	mode)	or	height	(for	portrait	mode).	To	find	the	new
width,	we	need	to	multiply	the	original	height	by	the	aspect	ratio;	in	order	to	find	the	new
height,	we	need	to	divide	the	original	width	by	the	aspect	ratio.	These	new	values	are	used
to	set	the	GUI	dimensions	using	display_set_gui_size(),	as	mentioned	earlier.	In	order
to	make	GameMaker	alter	the	proper	dimension,	we	must	check	the	value	of	the	ratio	that
we	calculated.	If	the	ratio	is	greater	than	1,	then	the	display’s	width	is	greater	than	its
height	and	the	display	is	therefore	in	landscape	mode.

We	can	then	use	the	original	height	and	find	the	adjusted	width	by	multiplying	the	original
height	by	the	value	of	the	ratio,	thus	ensuring	that	the	GUI	will	retain	the	original	aspect
ratio	but	with	new	dimensions.	If	the	ratio	is	one	or	less,	the	width	is	less	than	the	height,
which	means	that	the	display	is	in	portrait	mode.	Here,	we	keep	the	width	and	find	the
adjusted	height	by	dividing	the	original	width	by	the	calculated	value	of	the	ratio,	again
keeping	the	aspect	ratio	intact	while	finding	the	new	height.

Once	we’ve	found	the	adjusted	width	and	height,	we	can	then	use	them	to	draw	our	GUI.
In	our	code,	we	used	the	adjusted	width	to	place	the	score	counter	on	the	right-hand	side
of	the	screen,	relative	to	the	width	of	the	display.	Whenever	the	dimensions	of	the	display
area	are	altered,	their	positions	are	recalculated	and	the	score	is	moved	proportionately.

Using	the	GUI	layer	in	full	screen	mode
with	views
When	resizing	the	display,	in	order	to	keep	the	aspect	ratio	of	the	game	screen	(or
application	surface)	intact,	GameMaker	will	employ	a	letterbox	to	fill	the	rest	of	the
screen.	These	black	bars	may	be	appropriate	for	your	particular	game,	but	in	general	they
are	not	ideal;	the	black	bars	represent	potentially	wasted	space.	The	letterbox	is	likely	to
be	present	when	keeping	the	game’s	aspect	ratio,	unless	the	dimensions	of	the	screen
happen	to	match	that	of	the	room	you	created.	For	this	reason,	it	is	a	good	idea	to	employ
views	and	allow	GameMaker	to	change	the	size	of	these	views	depending	on	the	display
being	used.	Let’s	take	a	look	at	incorporating	views	for	use	in	full	screen	mode	in
GameMaker.

Getting	ready
Once	again,	we’ll	use	the	same	game	project	we’ve	been	working	with	in	this	chapter.
However,	in	order	to	ensure	that	every	line	of	code	ends	up	where	it	belongs,	it	will	be
easier	to	follow	along	from	start	to	finish.	Before	we	begin,	it’s	important	to	know	that,
when	adapting	the	view	to	fit	a	display	(such	as	various	mobile	devices	and	tablets),
unless	the	screen	is	exactly	the	same	size	as	the	room	being	displayed,	there	is	a	likelihood
that	the	viewable	area	will	either	expand	or	contract.	In	order	to	accommodate	this,	it’s
good	practice	to	use	views	that	are	slightly	smaller	than	the	rooms	themselves.

To	accomplish	this,	you	need	to	allow	the	use	of	views,	shrink	the	view	to	a	smaller	size
(preferably	with	the	same	aspect	ratio),	and	center	it	within	the	room.

How	to	do	it
1.	 In	rm_game,	under	the	Settings	tab,	click	on	the	Creation	code	button.
2.	 Enter	the	following	code:

display_w	=	1024;

display_h	=	768;

display_wMax	=	display_get_width();

display_hMax	=	display_get_height();

ratio	=	display_get_width()/display_get_height();

if	(display_wMax	<	display_hMax)

{

				view_w	=	min(display_w,	display_wMax);

				view_h	=	view_w/ratio;

}

else

{				

				view_h	=	min(display_h,	display_hMax);

				view_w	=	view_h*ratio;

}

view_wview[0]	=	floor(view_w);

view_hview[0]	=	floor(view_h);

view_wport[0]	=	display_wMax;

view_hport[0]	=	display_hMax;

surface_resize(application_surface,	view_wview[0],	view_hview[0]);

3.	 In	obj_display,	add	a	Create	event	and	drag	a	code	block	to	the	Actions	box.
4.	 Enter	the	following	code:

global.playerHealth	=	100;

global.playerLives	=	3;

global.playerScore	=	0;

global.gameOver	=	false;

draw_set_font(fnt_HUD);

5.	 Add	a	DrawGUI	event	and	enter	the	following	code	in	a	code	block:

draw_text(32,	32,	string("Health:	")	+	string(global.playerHealth));

draw_text(32,	64,	string("Lives:	")	+	string(global.playerLives));

scoreString	=	string(global.playerScore);

stringLength	=	6	-	string_length(scoreString);

stringTemp	=	"";

while(stringLength	>	0)

{

				stringTemp	+=	"0";

				stringLength	-=	1;

}

scoreString	=	stringTemp	+	scoreString;

draw_text(display_get_gui_width()	-	128,	32,	scoreString);

6.	 In	obj_gameControl,	add	a	Create	event	to	the	following	code	and	place	a	code
block	in	the	Actions	box:

global.enemy	=	0;

global.enemyMax	=	10;

alarm[0]	=	30;

instance_create(room_width/2,	room_height/2,	obj_base);

7.	 Add	an	event	to	Alarm[0]	and	drag	a	code	block	to	the	Actions	box.
8.	 Enter	this	code:

spawn_point	=	choose(0,	1,	2,	3)

if	(spawn_point	=	0)

{

				instance_create(-64,random(room_height),	obj_enemy);

}

if	(spawn_point	=	1)

{

				instance_create((room_width+64),	random(room_height),	obj_enemy);

}

if	(spawn_point	=	2)

{

				instance_create(random(room_width),	-64,	obj_enemy);

}

if	(spawn_point	=	3)

{

				instance_create(random(room_width),	(room_height+64),	obj_enemy);

}

alarm[0]	=	45;

9.	 Add	a	Step	event	to	the	following	code:

if	global.playerHealth	<=	0

{

				global.playerLives	-=	1;

				global.playerHealth	=	100;

}

if	global.playerLives	<=	0 {
				global.gameOver	=	true;

}

if	global.gameOver

{

				game_restart();

}

10.	 In	obj_enemy,	add	a	Create	event	and	place	a	code	block	in	the	Actions	box.
11.	 Enter	the	following	code:

move_towards_point(obj_base.x,	obj_base.y,	5);

12.	 Add	a	Step	event.
13.	 Drag	a	code	block	to	the	Actions	box	and	enter	the	following	code:

if	mouse_check_button_pressed(mb_left)

{

				if	instance_position(mouse_x,	mouse_y,	obj_enemy)

				{

								global.playerScore	+=	10;

								instance_destroy();

				}

}

14.	 Add	a	Collision	event	to	obj_base.

15.	 Place	a	code	block	in	the	Actions	box	and	enter	the	following	code:

global.playerHealth	-=	25;

instance_destroy();

You	can	now	test	the	game	and	play	it	by	clicking	on	the	enemies	before	they	reach	the
base,	but	make	sure	to	do	this	either	on	a	device	or	by	entering	full	screen	mode	(Alt	+
Enter)	when	you	are	testing	on	a	PC.

How	it	works
Much	of	the	code	in	this	recipe	works	as	it	did	in	previous	recipes;	the	game	has	enemies
approaching	your	base	and	you	must	click	on	them	to	destroy	them	before	they	reach	it.
The	score	and	player	information	are	still	displayed	on	the	GUI	layer,	though	in	a	slightly
different	way,	thanks	to	some	changes	made	to	the	display	code,	which	is	now	housed
within	the	room	creation	code.

As	mentioned	earlier,	this	code	is	used	to	allow	a	full	screen	gameplay	for	a	variety	of
devices	with	varying	aspect	ratios.	We	must	first	establish	the	base	dimensions	of	the
game.	In	this	case,	we	have	a	play	area	that	is	1024	px	wide	by	768	px	high.	This
information	is	used	in	conjunction	with	the	maximum	width	and	height	of	the	play	area,
which	are	the	dimensions	of	the	display	itself.	We	gather	this	information	using	the
display_get_width/height	functions.	The	width	of	the	display	is	then	divided	by	its
height	in	order	to	get	its	aspect	ratio,	which	is	used	in	several	places	to	alter	the
dimensions	of	the	view	and	play	area.	As	mentioned	earlier,	GameMaker	must	first
determine	whether	the	device	is	in	landscape	or	portrait	mode;	it	will	determine	which
dimension	to	alter	based	on	this	outcome.	We	use	the	min()	function	to	determine	the
lowest	of	a	given	set	of	values	in	order	to	scale	the	view.

In	the	case	of	a	portrait	view,	the	view	width	becomes	the	minimum	value	between	the
base	width	(the	one	we	established)	and	the	maximum	width	(the	actual	width	of	the
display).	This	value	is	then	divided	by	the	aspect	ratio	value	to	determine	the	view’s
height.	Conversely,	in	the	case	of	a	landscape	display,	we	can	find	the	view	height	by
calculating	the	minimum	value	between	the	base	height	and	maximum	height,	and	then
using	this	value	to	find	the	new	view	width	by	multiplying	the	view	height	by	the	aspect
ratio.	Once	the	view	width	and	height	are	found,	we	can	convert	them	into	actual	view
dimensions	using	the	floor	(the	given	number	rounded	down	to	the	nearest	integer)	of	the
returned	view	width	and	height.	The	view	port	is	the	area	of	the	display	where	the	view
will	be	projected	or	drawn.	Once	the	view	is	fully	established,	the	application	surface	(the
area	to	which	all	visuals	in	the	game	are	to	be	drawn)	is	resized	to	match.

There’s	more
By	creating	a	room	larger	than	the	view,	you	can	be	certain	that,	when	the	application
surface	is	resized,	no	area	will	be	drawn	beyond	what	you	created	in	the	room.	For
example,	my	laptop	screen	has	a	wider	aspect	ratio	than	1024	x	768.	In	fact,	it’s	closer	to
1280	x	768.	So,	when	I	run	this	code	and	enter	full	screen	mode,	GameMaker	resizes	the
application	surface	and	draws	an	area	beyond	the	size	of	the	room	I	initially	created,
leaving	a	blank	area	that	was	technically	part	of	the	game.	This	is	also	the	reason	why,
when	releasing	a	mobile	game,	testing	on	multiple	devices	is	very	important.	If	your	game
doesn’t	display	properly	on	a	popular	device,	you	probably	need	to	alter	the	room	size	as
well	as	the	views.

Adding	a	title	screen
Of	all	the	games	you’ve	ever	played	in	your	life,	how	many	of	them	have	jumped
immediately	to	gameplay?	Your	answer	is	likely	less	than	a	few,	if	any.	Any	game	that	I
can	remember	playing,	personally,	has	had	at	least	a	title	screen,	if	not	several	splash
screens	indicating	the	studios	and	publishers	involved	in	the	game’s	creation.	Now,	I
understand	why.	Jumping	right	into	gameplay	without	context	can	throw	you	into	the	mix
before	you’re	ready,	causing	confusion.	I	mean	that	you	likely	know	what	game	you’re
playing	at	the	time,	but	a	title	screen	can	at	least	set	the	mood	or	give	you	a	clue	as	to
what’s	about	to	happen	when	you	start	the	game.	In	addition	to	this,	title	screens	often
house,	or	at	least	lead	to,	the	main	menu	in	which	you	can	customize	your	experience,	but
we’ll	dive	into	this	in	the	next	chapter.	For	now,	let’s	take	a	look	at	how	to	create	a	title
screen.

Getting	ready
Again,	we	will	continue	to	use	the	game	project	in	this	chapter.	This	recipe	will	be	simple,
but	you’ll	need	a	few	things	before	we	begin.	We’re	going	to	make	a	title	screen	and	main
menu.	You’ll	need	a	background	image	and	sprites	for	the	game’s	title	(which	you	can
assign	to	obj_title)	and	menu	selections	such	as	settings,	back,	play,	and	quit.	You’ll
also	need	objects	(with	this	naming	scheme:	obj_btn_buttonName)	for	each	of	these
items,	as	well	as	obj_titleControl	and	obj_settings.	You’ll	also	need	two	new	rooms
called	rm_title	and	rm_settings,	and	the	room	creation	code	from	the	previous	recipe
should	be	the	same	across	every	room.	Since	GameMaker	starts	in	the	first	room	listed,
it’s	important	that	rm_title	is	first	listed	in	the	asset	explorer.

How	to	do	it
1.	 Open	obj_titleControl	and	add	a	Create	event.
2.	 Place	a	code	block	in	the	Actions	box	and	add	the	following	code:

instance_create(room_width/2,	280,	obj_title);

instance_create(room_width/2,	450,	obj_btn_play);

instance_create(room_width/2,	495,	obj_btn_settings);

instance_create(room_width/2,	540,	obj_btn_quit);

3.	 In	obj_settings,	add	a	Create	event	and	drag	a	code	block	to	the	Actions	box.
4.	 Enter	the	following	code:

instance_create(room_width/2,	400,	obj_btn_back);

5.	 Open	obj_btn_settings	and	add	a	Left	Mouse	Button	Pressed	event.
6.	 In	a	code	block,	enter	the	following	code:

room_goto(rm_settings);

7.	 Open	obj_btn_back	and	add	a	Left	Mouse	Button	Pressed	event.
8.	 Place	a	code	block	in	the	Actions	box	and	add	the	following	code:

room_goto(rm_title);

9.	 In	obj_btn_quit,	add	a	Left	Mouse	Button	Pressed	event	and	place	a	code	block	in
the	Actions	box.

10.	 Enter	the	following	code:

game_end();

11.	 In	obj_btn_play,	add	a	Left	Mouse	Button	Pressed	event.
12.	 Place	a	code	block	in	the	Actions	box	and	add	the	following	code:

room_goto(rm_game);

The	following	steps	should	be	completed	for	each	of	the	button	objects:

1.	 Add	a	Mouse	Enter	event	and	drag	a	code	block	to	the	Actions	box.
2.	 Enter	the	following	code:

image_xscale	+=	1;

image_yscale	+=	1;

3.	 Add	a	Mouse	Leave	event	with	a	code	block.
4.	 Enter	the	following	code:

image_xscale	-=	1;

image_yscale	-=	1;

Once	all	the	steps	are	completed,	test	the	program	and	play	around	with	the	buttons.	The
buttons	should	allow	you	to	navigate	to	and	from	the	Settings	menu,	play	the	game,	or
quit	the	program	altogether.

How	it	works
GameMaker	makes	creating	branching	screens	and	a	menu	system	quite	simple.	Thanks	to
the	use	of	rooms	and	code	embedded	within	objects,	moving	from	one	screen	to	another	is
a	snap.	As	you	can	see,	navigating	from	the	title	screen	to	the	settings	menu,	or	even	right
to	the	gameplay,	is	as	simple	as	calling	the	room_goto()	function	in	conjunction	with	the
room	to	which	you	wish	to	jump.	This	function	can	be	called	in	many	ways,	the	most
common	way	being	a	mouse	click	or	button	press.	One	thing	you	must	keep	in	mind	is
that,	when	you	move	from	one	room	to	another,	the	room	will	begin	fresh	from	the	start,
as	if	loaded	for	the	first	time.	This	happens	even	if	you’ve	been	to	that	room	previously.
When	you	go	from	the	title	screen	to	the	settings	screen,	the	title	screen	you	were	on	isn’t
saved;	rather,	it’s	destroyed	in	order	to	save	memory.	Then,	when	you	go	back	to	the	title
screen	by	clicking	on	the	Back	button,	the	title	screen	you	see	now	is	brand	new	and	runs
from	the	first	line	of	code.	This	can	be	an	issue	if	you	wish	to	have	gameplay	that	features
moving	from	one	room	to	another,	but	this	problem	can	be	circumvented	by	saving	and
recalling	the	game	data,	which	we’ll	discuss	in	the	next	chapter.

Creating	splash	pages
When	you	start	a	video	game,	especially	a	modern	game,	you’ll	often	be	greeted	by	one	or
several	images	or	animations	telling	you	who	made	the	game	(or	even	who	made	certain
engines	that	were	used	to	make	the	game).	These	splash	pages	are	important	to	the
developers	because	they	want	you	to	remember	them	when	choosing	your	next	game;	if
you	liked	the	game	they	made,	why	not	choose	another	by	the	same	developer/publisher?
Think	of	it	as	the	information	you	see	on	the	screen	at	the	beginning	of	a	movie;	this
recognition	is	important	for	everyone	involved	in	making	the	movie	happen.	Now,	some
splash	screens	are	simple	images,	such	as	the	studio’s	logo	or	even	simple	text	(though
images	are	certainly	more	effective,	in	my	opinion).	Others	involve	an	animated	version	of
the	studio’s	logo	or	even	audio.	Have	you	ever	played	an	EA	Sports	game?	When	the	EA
logo	shows	up,	you	get	an	intense	voice	telling	you	“EA	Sports.	It’s	in	the	game!”	It’s	the
same	across	all	EA	Sports	games	because	they	want	this	ingrained	in	your	head	so	that
you’ll	remember	it	the	next	time	you’re	looking	to	make	a	purchase.	Let’s	add	some
splash	screens	to	the	game	so	that	you	can	put	your	name	on	it.

Getting	ready
We’ll	continue	with	the	game	in	this	chapter,	so	make	sure	it’s	loaded	in	GameMaker.
You’ll	need	two	splash	screens:	one	with	an	image	(perhaps	your	logo	or	just	your	name)
and	one	with	an	animation.	The	image	could	be	a	sprite	attached	to	an	object,	but	for	this
recipe	we’ll	simply	make	the	object	the	background.	For	the	animation,	place	it	in	a	sprite
and	attach	this	sprite	to	an	object	called	obj_animLogo.	As	for	the	splash	screens
themselves,	they	should	each	be	rooms	called	rm_splash_01	and	rm_splash_02.	Order
them	in	the	asset	explorer	before	rm_title	(from	the	previous	recipe)	and	make	sure
rm_splash_01	has	the	logo	as	its	background.	You’ll	also	need	control	objects	called
obj_splashControl_01	and	obj_splashControl_02.

How	to	do	it
1.	 Open	obj_animLogo.
2.	 Add	a	Create	event	and	drag	a	code	block	to	the	Actions	box.
3.	 Enter	the	following	code:

image_speed	=	0.8;

4.	 Click	on	Add	Event,	then	Other,	and	select	Animation	End.
5.	 In	a	code	block,	add	the	following	code:

room_goto(rm_title);

6.	 Close	obj_animLogo	and	open	obj_splashControl_01.
7.	 Add	a	Create	event	and	drag	a	code	block	to	the	Actions	box.
8.	 Enter	the	following	code:

alarm[0]	=	180;

9.	 Add	an	event	to	Alarm	0.
10.	 Place	a	code	block	in	the	Actions	box	using	the	following	code:

room_goto(rm_splash_02);

11.	 Add	a	Step	event	and	place	a	code	block	in	the	Actions	box.
12.	 Enter	the	following	code:

if	keyboard_check_pressed(vk_space)

{

				room_goto(rm_splash_02);

}

13.	 In	obj_splashControl_02,	add	a	Create	event	to	the	following	code:

instance_create(room_width/2,	room_height/2,	obj_animLogo);

alarm[0]	=	180;

14.	 Add	an	event	to	Alarm	0	and	place	a	code	block	in	the	Actions	box.
15.	 Enter	the	following	code:

room_goto(rm_title);

16.	 Add	a	Step	event	to	the	following	code:

if	keyboard_check_pressed(vk_space)

{

				room_goto(rm_title);

}

Once	these	steps	are	complete,	make	sure	each	splash	page	has	its	respective	control
object	and	you’re	set.

How	it	works
For	this	recipe,	we	used	two	splash	pages	but	this	number	is	arbitrary.	You	can	add	as
many	as	you	like	with	whatever	you	want	on	each	one.	Do	you	remember	arcade
machines?	Many	of	them	had	splash	pages	with	legal	information	or	even	the	infamous
“Winners	don’t	use	drugs.”	page.	The	point	of	this	recipe	was	to	demonstrate	a	few	ways
to	transition	from	one	room	to	another.	Firstly,	we	set	a	timer	via	an	Alarm	event.	When
the	timer	hits	the	predetermined	value,	GameMaker	follows	the	instructions	which,	in	this
case,	are	to	move	on	to	the	next	room.	Secondly,	we	added	a	Step	event	whose	sole
instruction	is	to	check	whether	the	spacebar	has	been	pressed	or	not.	In	the	event	that	it
has	been	pressed,	GameMaker’s	instructions	are	to	move	on	the	next	room.	Essentially,
we	just	allow	the	player	to	skip	through	the	splash	page	(instead	of	waiting)	in	order	to	get
to	the	game.	Thirdly,	and	this	applies	only	to	animated	logos,	we	used	the	Animation	End
event	in	conjunction	with	the	animated	logo	object.	Again,	the	player	can	skip	through	this
using	the	spacebar,	but	instead	of	waiting	for	a	timer,	GameMaker	simply	waits	for	the
animation	to	end.	Once	the	last	frame	is	drawn,	GameMaker	follows	the	instructions	to
move	on	to	the	next	room	which,	in	this	case,	is	the	game’s	title	page.	Now,	something	to
keep	in	mind	here	is	that,	while	you	can	make	the	animation	as	short	or	as	long	as	you
want,	it	will	only	be	visible	as	long	as	it	is	playing.	In	order	to	ensure	that	the	player	sees
your	logo	(assuming	he/she	doesn’t	skip	it),	you	can	either	make	the	animation	long
enough	for	the	player	to	take	in	the	information,	or	you	can	combine	the	Animation	End
event	with	an	Alarm	event.	Instead	of	calling	the	room_goto()	function,	you	can	have
GameMaker	set	an	alarm,	at	the	end	of	which	GameMaker	will	finally	call	room_goto().
This	way	is	much	easier	as	it	does	not	involve	a	longer	animation,	which	is	more	work	for
the	artist	and	takes	up	more	memory.

There’s	more
The	methods	outlined	in	this	recipe	don’t	apply	only	to	splash	and	title	pages;	you	can	use
these	methods	in	the	game	as	well.	Imagine	a	puzzle	game	where,	once	the	final	event	of	a
puzzle	is	solved,	GameMaker	moves	on	to	another	room.	What	if,	once	a	certain	item	is
collected	or	a	specific	score	is	reached,	the	player	is	whisked	off	to	a	bonus	round?
Moving	from	one	room	to	another	allows	you	to	set	up	more	elaborate	gameplay	elements
that,	if	properly	utilized,	can	add	a	lot	of	depth	to	a	game.	Now,	in	order	to	properly
incorporate	these	methods	into	an	actual	gameplay	and	allow	the	player	to	move	from	one
room	to	another	and	back	again,	you’ll	need	to	know	how	to	save	and	recall	a	game’s	data
and/or	a	player’s	stats,	but	this	will	be	covered	in	the	next	chapter.	In	the	meantime,	think
of	this	when	designing	your	next	game	or	gameplay	mechanic.

Adding	a	game	over	screen
How	do	you	know	when	you’ve	lost	the	game	you’re	playing?	Well,	if	you’re	playing	the
game	we’ve	been	creating	in	this	chapter,	you	will	know	this	because	it	resets	itself.	Not
very	appealing	from	a	player’s	standpoint,	right?	Most	games	will	show	you	a	game	over
screen	that	will,	at	the	very	least,	tell	you	that	your	gameplay	session	has	finished.	Let’s
take	a	look	at	creating	a	game	over	screen	and	what	information	we	can	convey	to	the
player.

Getting	ready
We’re	going	to	finish	our	game	with	a	game	over	screen,	so	make	sure	that	the	project	file
is	open.	You’ll	need	a	few	things	before	we	begin,	so	let’s	take	a	look	at	the	list.	First,
you’ll	need	a	new	room	called	rm_gameOver.	You’ll	also	need	a	controller	object	called
obj_gameOverCtrl	as	well	as	objects	called	obj_btn_exit	and	obj_btn_restart.	We’ll
be	reusing	obj_btn_quit,	but	this	will	be	available	since	we’re	using	the	same	game
project.

How	to	do	it
1.	 In	rm_gameOver,	open	the	creation	code	and	enter	the	following	code:

ddisplay_w	=	1024;

display_h	=	768;

display_wMax	=	display_get_width();

display_hMax	=	display_get_height();

ratio	=	display_get_width()/display_get_height();

if	(display_wMax	<	display_hMax)

{

				view_w	=	min(display_w,	display_wMax);

				view_h	=	view_w/ratio;

}

else

{				

				view_h	=	min(display_h,	display_hMax);

				view_w	=	view_h*ratio;

}

view_wview[0]	=	floor(view_w);

view_hview[0]	=	floor(view_h);

view_wport[0]	=	display_wMax;

view_hport[0]	=	display_hMax;

surface_resize(application_surface,	view_wview[0],	view_hview[0]);

instance_create(view_w/2,	(view_h/2)-64,	obj_btn_restart);

instance_create(view_w/2,	view_h/2,	obj_btn_exit);

2.	 instance_create(view_w/2,	(view_h/2)+64,	obj_btn_quit); In	obj_gameOverCtrl,	add
a	DrawGUI	event.

3.	 Drag	a	code	block	to	the	Actions	box	and	enter	the	following	code:

draw_text((display_get_gui_width()/2)-64,	

(display_get_gui_height()/2)-200,	string("Score:	")	+	

string(global.playerScore));

4.	 In	obj_btn_restart,	add	a	Left	Mouse	Button	Pressed	event.
5.	 Place	a	code	block	in	the	Actions	box	using	the	following	code:

room_goto(rm_game);

6.	 In	obj_btn_exit,	add	a	Left	Mouse	Button	Pressed	event	and	drag	a	code	block	to
the	Actions	box.

7.	 Enter	the	following	code:

room_goto(rm_title);

The	following	steps	should	be	completed	for	each	of	the	new	button	objects:

1.	 Add	a	Mouse	Enter	event	and	drag	a	code	block	to	the	Actions	box.
2.	 Enter	the	following	code:

image_xscale	+=	1;

image_yscale	+=	1;

3.	 Add	a	Mouse	Leave	event.
4.	 Place	a	code	block	in	the	Actions	box	and	enter	the	following	code:

image_xscale	-=	1;

image_yscale	-=	1;

5.	 Finally,	in	the	Step	event	of	obj_gameControl,	locate	this	code:

if	global.gameOver

{

				game_restart();

}

6.	 Replace	the	preceding	code	with	this	code:

if	global.gameOver

{

				room_goto(rm_gameOver);

}

Once	these	steps	are	completed,	make	sure	that	an	instance	of	obj_gameOverCtrl	is
placed	in	rm_gameOver	and	you’re	all	set.	When	you	play	the	game,	if	you	allow	yourself
to	lose,	you’ll	see	your	score	for	the	game	as	well	as	a	few	options.	Play	for	a	few	times	to
try	each	of	the	buttons.

How	it	works
The	final	recipe	in	this	chapter	combines	elements	of	all	of	the	previous	recipes	involved
in	making	our	game.	The	code	we	entered	in	the	creation	code	for	rm_gameOver	is	largely
the	same	as	in	the	other	rooms,	but	here,	we’ve	added	a	few	extras.	By	piggybacking	on
this	code	with	the	instance_create	code	for	the	button	objects,	we	can	utilize	the
variables	created	here.	Using	the	view_w	and	view_h	variables,	we	can	ensure	that	the
objects	are	created	in	relation	to	what	will	be	viewed	on	the	screen	and	therefore	always	in
the	same	viewing	space.

The	real	purpose	of	the	game	over	room	is	to	tie	the	game	together	and	make	it	feel	like	an
actual	game.	The	Draw	GUI	event	called	in	the	control	object	displays	the	score	based	on
the	global	playerScore	variable	from	the	game	room.	This	shows	the	player	how	well
he/she	did	and	can	encourage	him/her	to	try	again	and	improve	the	score.	The	buttons
displayed	can	be	used	to	quit	the	game	by	calling	game_end,	jumping	to	the	title,	or	even
playing	again	by	reloading	the	game	room	with	room_goto	(rm_game).	All	of	the	game
elements	from	this	chapter	collaborate	to	create	a	cohesive	game	experience.	It	may	not	be
an	AAA	blockbuster	but	it’s	a	game	that	works.	The	next	few	chapters	will	be	dedicated	to
taking	a	simple	game	and	adding	polish	to	it.

Chapter	7.	Saving	the	Day	–	Saving	Game
Data
In	this	chapter,	we’ll	cover	the	following	topics:

Creating	game	settings
Making	a	pause	screen
Saving	player	selection	and	score
Encrypting	and	decrypting	save	data

Introduction
Even	though	they	work	mostly	in	the	background,	save	systems	play	a	huge	role	in	games.
Be	it	saving	your	game	progress,	tracking	your	object	positions,	or	even	keeping	your	high
score,	saving	data	is	crucial	to	game	development.	It	may	not	be	exciting	or	glamorous	but
it’s	the	truth.	Would	you	keep	playing	a	game	in	which	you	collect	weapons,	experience
points,	and	artifacts,	only	to	have	them	disappear	when	you	go	to	the	next	stage?	No,
you’d	likely	shut	it	off	and	go	back	to	playing	something	else.	Keeping	track	of
information	can	allow	your	players	to	save	their	progress	and	come	back	to	it	some	other
time,	or	even	compete	with	other	players	for	arcade	supremacy	(this	means	having	the
highest	score).	Let’s	see	what	it	takes	to	build	these	systems	and	implement	them	in	your
game.

Background	data
Okay,	let’s	start	with	the	boring,	behind-the-scenes	stuff.	Here,	we’ll	take	a	look	at	how	to
save	and	recall	bits	of	information	as	they	pertain	to	game	elements	and	settings:

Creating	game	settings
Making	a	pause	screen

Save	systems
Due	to	the	difficulty	or	amount	of	content,	sometimes	you	just	can’t	finish	a	game	in	one
sitting.	For	this	reason,	we	have	save	systems.	We’ll	take	a	look	at	how	to	save	and	recall
player	stats:

Saving	player	selection	and	score
Encrypting	and	decrypting	save	data

Creating	game	settings
I’ve	noticed	with	modern	games	that	I	don’t	always	like	the	default	settings	in	terms	of
sound,	visuals,	controls,	or	even	difficulty.	I	always	go	through	the	options	menu	to	adjust
everything	and	I	know	I’m	not	alone.	It	is	because	of	this	desire	to	customize	your	play
experience	that	game	developers	add	these	options	to	the	games	they	create.	Now,	this	can
be	something	as	simple	as	controlling	the	music	volume	or	as	complicated	as	setting
custom	control	macros,	but	I	find	how	I	play	to	be	important.	Let’s	take	a	look	at	how	we
can	create	a	simple	settings	menu	with	audio	options.

Getting	ready
For	this	recipe,	you	can	continue	with	the	game	from	the	previous	chapter,	or	you	can	start
with	a	new	one.	Either	way,	you’ll	need	three	rooms:	rm_splash,	rm_title,	and
rm_settings,	in	this	particular	order.	As	before,	set	rm_splash	to	move	on	to	rm_title
after	a	few	seconds	or	once	you	hit	the	Spacebar.	Your	title	screen	should	have	a	Settings
button	(obj_btn_settings)	that	leads	the	player	to	rm_settings.	In	the	settings	screen,
you	should	already	have	a	Back	button	(obj_btn_back)	that	leads	back	to	rm_title,	but
we	can	add	more	to	this	screen	for	reasons	that	should	be	obvious.

With	this	out	of	the	way,	you	can	begin	gathering	some	necessities.	You’ll	need	two	sound
files:	one	music	(snd_msc_background)	and	one	sound	effect	(snd_sfx_chime).	In	reality,
you	can	rename	these	sounds	to	whatever	you	think	is	relevant,	but	you’ll	need	to
remember	this	when	referencing	them	in	your	code.	You’ll	need	a	controller	object	called
obj_titleControl,	which	does	not	require	a	sprite.	You’ll	need	volume	control	buttons:
obj_btn_mscVolUp,	obj_btn_mscVolDown,	obj_btn_sfxVolUp,	and	obj_btn_sfxVolDown.
The	naming	scheme	may	seem	a	little	long-winded,	but	it’s	important	to	label	everything
as	descriptively	as	possible	to	avoid	confusion	when	debugging.	You’ll	also	need	a	Save
button	with	an	appropriate	sprite	(obj_btn_save).

To	represent	your	volume	levels,	you’ll	need	sound	effects	and	music	volume	bars
(obj_mscVol	and	obj_sfxVol).	The	sprites	for	each	of	these	will	be	very	similar	with	the
label	being	the	only	difference.	Each	should	have	11	frames	(0-10)	with	frame	0	being
nothing	more	than	the	label.	Frames	1-10	will	represent	the	volume	levels	visually:	frame
1	will	have	one	bar	and	frame	10	will	have	10	bars.	It	is	very	important	for	the	frame	with
zero	bars	to	be	represented	by	frame	0	of	the	sprite.

Finally,	you’ll	need	to	make	a	change	to	your	PC’s	filesystem;	you	need	to	disable	hiding
the	file	extension.	In	most	versions	of	Windows,	this	can	be	accomplished	by	opening
folder	options	(this	can	be	searched	for	from	the	Start	menu),	clicking	on	the	View	tab,
and	making	sure	Hide	extensions	for	known	file	types	is	not	checked.

With	all	of	this	prep	work	done,	we	can	begin	coding	our	settings	screen.

How	to	do	it
1.	 Open	GameMaker’s	local	storage	folder.	By	default,	this	is	located	at

C:/Users/<Username>/AppData/Local/<GameMaker	project	name>.
2.	 In	this	folder,	create	a	Notepad	file,	name	it	Settings.ini,	and	make	sure	that	the

file	type	has	changed	to	Configuration	settings.
3.	 Open	Settings.ini	and	add	the	following	code:

[Sound]

sfxVol=5

musicVol=5

4.	 In	GameMaker,	open	rm_splash.
5.	 In	the	Creation	code,	add	the	following	code:

global.music_emit	=	audio_emitter_create();

global.sfx_emit	=	audio_emitter_create();

6.	 Open	rm_title	and	rm_settings	and	enter	the	following	code	in	the	Creation	code
for	each	room:

ini_open('Settings.ini');

global.musicVol	=	ini_read_real('Sound',	'musicVol',	3);

global.sfxVol	=	ini_read_real('Sound',	'sfxVol',	3);

ini_close();

global.music_gain	=	global.musicVol*0.1;

global.sfx_gain	=	global.sfxVol*0.1;

audio_emitter_gain(global.music_emit,	global.music_gain)

audio_emitter_gain(global.sfx_emit,	global.music_gain);

7.	 In	obj_titleControl,	add	the	following	code	to	the	Create	event:

if	!audio_is_playing(snd_msc_background)

{

				audio_play_sound_on(global.music_emit,	snd_msc_background,	true,	

1);

}

8.	 Open	obj_mscVol	and	add	a	Create	event	using	the	following	code:

ini_open("Settings.ini");

image_index	=	ini_read_real("Sound",	"musicVol",1);

ini_close();

9.	 Add	a	Step	event	using	the	following	code	in	a	code	block:

image_index	=	global.musicVol;

10.	 Repeat	the	two	previous	steps	and	replace	musicVol	with	sfxVol.
11.	 In	obj_btn_mscVolUp,	add	a	Left	Mouse	Button	Pressed	event	using	the	following

code:

if	global.musicVol	<	10

{

				global.musicVol	+=	1;

				global.music_gain	=	global.musicVol*0.1;

				audio_emitter_gain(global.music_emit,	global.music_gain);	

}

12.	 In	obj_btn_mscVolDown,	add	a	Left	Mouse	Button	Pressed	event	using	this	code:

if	global.musicVol	>	0

{

				global.musicVol	-=	1;

				global.music_gain	=	global.musicVol*0.1;

				audio_emitter_gain(global.music_emit,	global.music_gain);

}

13.	 Repeat	the	last	two	steps	with	obj_btn_sfxVolUp	and	obj_btn_sfxVolDown,	replace
each	instance	of	the	word	music	with	sfx,	and	add	the	following	code	on	the	line
below	the	emitter	gain	function:

audio_play_sound_on(global.sfx_emit,	snd_sfx_chime,	false,	1);

14.	 In	obj_btn_save,	add	a	Left	Mouse	Button	Pressed	event	using	the	following	code:

ini_open('Settings.ini');

ini_write_real('Sound',	'musicVol',	global.musicVol);

ini_write_real('Sound',	'sfxVol',	global.sfxVol);

ini_close();

Once	these	steps	are	complete,	place	the	save	button	and	volume	buttons	and	bars	in
rm_settings,	and	make	sure	an	instance	of	obj_titleControl	is	in	rm_title.	You	can
now	test	your	settings	menu	and	play	around	with	the	sound	and	music	volumes.	Try
exiting	the	title	screen	with	and	without	saving.

How	it	works
This	code	may	seem	busy	but	we’re	going	to	focus	on	two	main	ideas:	reading	from	and
writing	to	the	.ini	files.	Using	variables,	GameMaker	stores	information	while	the	game
is	running.	Once	you	exit,	however,	this	information	is	lost.	You	can	use	the	.ini	files	to
store	and	load	the	information	you	want	GameMaker	to	use	even	if	you	stop	and	restart
the	application.	This	is	great	to	store	values	for	settings	such	as	we	did	here	with	volume
levels.

When	an	.ini	file	is	called	in	GameMaker,	if	the	file	does	not	yet	exist,	it	will	be	created
and	populated	with	the	information	as	it	is	set	in	the	function.	In	this	recipe,	we	created
our	own	.ini	settings	file	in	GameMaker’s	local	data	folder.	This	allows	you	to	have
greater	control	over	how	the	data	within	is	organized,	making	it	a	best	practice	in	my
opinion.	When	we	created	our	.ini	file,	we	entered	some	information	we	wished	to	use	in
our	project.	We	first	entered	the	section,	[Sound].	Sections	allow	you	to	organize	like
information.	Under	the	sound	section,	we	entered	two	keys:	musicVol	and	sfxVol.	Keys
are	where	we	store	the	actual	values	we	wish	to	load	and	save.

Once	our	Settings.ini	file	is	in	place,	GameMaker	can	reference	it	in	order	to	pull
values	for	our	variables.	In	our	case,	we	used	these	values	to	store	and	recall	volume
levels,	which	we	then	used	to	set	the	initial	gain	(volume)	for	our	audio	emitters.	To	read
these	values,	GameMaker	must	first	access	the	.ini	file.	To	do	this,	we	use	ini_open
(filename).	This	will	open	the	file,	giving	GameMaker	access	to	the	goodies	inside.	By
this,	of	course,	I	mean	the	data.	The	delicious	data.	Ahem,	where	was	I?	Right,	the	.ini
files.	Anyway,	with	the	file	open,	we	used	variable	=	ini_read_real("section",
"key",	default	value)	to	retrieve	the	specified	numerical	value	and	pass	it	to	the
variable	we	referenced.	Notice	that	the	section	and	key	are	in	quotation	marks.

This	is	because	you’re	telling	GameMaker	to	search	for	an	exact	string	so	that	it	can	locate
the	value	you	want.	While	GameMaker	reads	the	section	and	key	as	a	string,	with
ini_read_real,	it	cannot	pass	a	string	but	only	a	variable.	This	is	perfect	for	our	uses
here,	as	we	just	want	to	assign	a	new	value	to	our	volume	variables.	Lastly,	we	need	to
enter	a	default	value.	How	will	GameMaker	create	the	.ini	file	we	want	if	none	exists	in
the	appropriate	directory?	Well,	we	need	to	provide	a	default	value	that	GameMaker	can
assign	the	key	you’re	requesting	for	if	it	doesn’t	yet	exist.	This	eliminates	errors	stemming
from	nonexistent	data.

Now,	with	our	new	settings	menu,	we	can	raise	and	lower	the	volume	for	the	game’s
music	and	sound	effects.	If	you	were	to	alter	these	settings	and	simply	go	back	to	the	title
screen,	what	would	happen?	The	volume	levels	you	changed	would	revert	to	their	values
before	you	changed	them.	This	was	a	deliberate	decision	for	a	couple	of	reasons.	Firstly,
we	don’t	want	any	unwanted	changes	to	be	saved.	Secondly,	while	the	global	variables
will	remember	the	volume	levels	that	we	set	for	the	remainder	of	play,	what	we	really
want	is	to	have	the	game	remember	them	the	next	time	we	want	to	play,	so	that	we	don’t
have	to	mess	around	with	the	settings	again.	For	this,	we	must	write	the	new	values	to	the
.ini	file	to	be	recalled	the	next	time	we	play	it.	How	do	we	do	that?	We	use

ini_write_real.	Makes	sense,	right?	Good.	Now,	since	pressing	the	volume	buttons
alters	the	value	of	our	sound	effects	and	music	volume	variables,	we	need	to	write	these
same	variables	to	the	.ini	file	in	order	to	preserve	them.	Using
ini_write_real("section",	"key",	variable),	we	can	replace	the	former	value	of	the
key	with	the	new	value	of	the	appropriate	variable,	thus	saving	it	for	the	next	time	the
.ini	file	is	loaded.

Lastly,	when	we’re	done	reading	and/or	writing	to	and	from	the	.ini	file,	we	need	to	close
the	file	before	we	move	on.	If	the	file	is	left	open,	it	will	stay	open,	potentially	causing
memory	leaks	and	leading	to	a	slowdown	or	a	program	crash.	For	this,	we	simply	use
ini_close().	One	thing	to	remember	is	that	this	is	all	done	in	the	same	step.	You’re	not
going	to	notice	the	file	being	opened	and	closed,	but	leaving	a	file	open	will	take	its	toll.

There’s	more
In	this	recipe,	you	may	have	noticed	that	we	used	emitters	for	the	sound,	even	though	we
had	only	two	sounds.	Here	are	a	couple	of	things	in	this	topic:	firstly,	we	created	both	the
emitters	in	the	Creation	code	of	rm_splash.	The	reason	I	did	this	is	to	ensure	that	these
emitters	were	created	and	passed	on	to	global	variables	before	the	title	page	was	loaded,	as
they	would	be	used	right	away.	I	find	this	to	be	a	best	practice	when	something	needs	to	be
preloaded	to	ensure	that	it	is	ready	when	it	is	needed.	The	splash	screen	isn’t	doing	much
else,	right?	Why	not	put	it	to	work?

Secondly,	the	reason	we	used	emitters	is	because	we	had	two	different	types	of	sounds:
music	and	sound	effects.	If	you	want	one	volume	control	for	everything,	you	can	forego
the	emitters	altogether	and	simply	use	audio_master_gain(gain).	This	will	set	the	gain
for	all	sounds	of	any	kind,	globally,	within	your	game.	GameMaker	does	have	the	ability
to	set	audio	groups	(found	in	the	Global	Game	Settings	and	utilized	in	the	sound
properties	editor),	but	at	the	time	of	writing	this	book,	it	is	still	a	buggy	system.	In	my
experience,	audio	groups	can	allow	you	to	load	and	unload	groups	of	sounds,	as	well	as
set	their	properties	(such	as	gain),	but	the	audio	files	don’t	always	follow	the	rules	you	set.
For	this	reason,	I	chose	to	use	emitters,	as	you	can	set	their	properties	individually	and
assign	sound	files	to	them	on-the-fly.	Putting	together	a	sound	profile	for	your	game	gives
it	great	versatility.

Making	a	pause	screen
What’s	worse	than	having	someone	interrupt	you	while	you’re	playing	a	game	you	can’t
pause?	That’s	right,	nothing.	That’s	why	I’m	sure	that	you’d	like	to	add	a	game	pause
feature	to	the	game	you’re	working	on.	Let’s	take	a	look	at	a	simple	way	to	create	a	great
looking	pause	screen.

Getting	ready
We’re	just	going	to	take	a	look	at	the	functionality	of	this	feature,	so	you	won’t	need	much
for	this	recipe.	Before	I	began,	I	created	one	room	and	placed	several	ball	objects	in	it	that
move	in	random	directions	and	bounce	off	the	walls.	Why	did	I	do	this?	It’s	because	this
feature	is	best	demonstrated	with	moving	objects,	not	unlike	a	real	game.	Oh,	and	I	made
them	speed	up	whenever	they	bump	into	a	wall	or	each	other.	This	part	isn’t	important;	I
just	thought	it	was	more	fun.

What	you’ll	really	need	in	order	to	make	this	work	is	two	objects:	obj_control	and
obj_pause.	Neither	of	these	objects	requires	a	sprite,	as	they	are	both	control	objects,
working	in	the	background.

How	to	do	it
1.	 Open	obj_control	and	add	a	Step	event.
2.	 Place	a	code	block	in	the	Actions	box	and	enter	the	following	code:

if	keyboard_check_pressed(vk_escape)

{

				instance_create(x,	y,	obj_pause);

}

3.	 In	obj_pause,	add	a	Create	event	to	a	code	block	containing	the	following	code:

screen_save("pauseBackground.png");

instance_deactivate_all(true);

pauseBackground	=	sprite_add("pauseBackground.png",	1,	false,	false,	0,	

0);

4.	 Add	a	Draw	event	and	drag	a	code	block	to	the	Actions	box.
5.	 Enter	the	following	code:

draw_sprite(pauseBackground,	1,	0,	0);

draw_set_color(c_black);

draw_set_alpha(0.6);

draw_rectangle(0,	0,	room_width,	room_height,	0);

draw_set_alpha(1);

draw_set_color(c_white);

draw_text(room_width/2,	room_height/2,	"Paused");

draw_set_color(c_black);

6.	 Add	a	Step	event	to	the	following	code	in	a	code	block:

if	keyboard_check_pressed(vk_escape)

{				

				instance_activate_all();

				instance_destroy();

}

7.	 Add	a	Destroy	event	to	the	following	code:

if	file_exists("pauseBackground.png")

{

				file_delete("pauseBackground.png");

}

Once	these	steps	are	completed,	make	sure	an	instance	of	obj_control	(but	not
obj_pause)	is	placed	in	the	room	and	you’re	all	set	to	test.	You	can	pause	and	resume	the
game	using	the	Escape	key.

How	it	works
This	is	one	of	several	ways	to	create	a	pause	screen,	but	it’s	the	one	I	find	the	most	useful.
The	instance_deactive_all	(true)	and	instance_activate_all()	functions	are	really
all	that	you	need	to	pause	and	resume	your	game	but	they	leave	a	lot	to	be	desired.	On	its
own,	instance_deactivate_all	(true)	simply	shuts	everything	off	right	where	it	is;
you’re	left	with	nothing	but	the	background.	Using	instance_activate_all(),everything
starts	going	again,	right	from	where	you	left	off.

Handy,	yes,	but	terribly	boring.	In	order	to	make	the	pause	screen	more	appealing,	what
we’ve	done	is	used	screen_save	(filename)	to	take	a	screenshot	of	the	game	before
everything	was	deactivated	(while	it	was	still	visible)	and	saved	it	to	the	filesystem	as	a
.png.	This	image	was	then	loaded	into	a	sprite	and	displayed	onscreen	using	the	Draw
event.	This	is	a	simple	way	of	displaying	everything	that	was	onscreen	a	moment	ago	as
though	it	were	still	onscreen	in	a	frozen	state.	To	take	things	a	little	further,	we	then	faded
a	black	rectangle,	which	is	the	size	of	the	screen,	by	changing	the	alpha	value	and	printed
Paused	on	top	of	it,	all	in	the	same	Draw	event.	All	of	this	gives	the	illusion	that
everything	you	see	is	frozen	in	place	and	then	faded	into	the	background.	A	little	more
polish	and	you’ve	got	yourself	a	professional	looking	pause	screen!

One	important	piece	of	this	puzzle,	however,	is	that,	when	we	resume	the	game	after
pausing,	not	only	are	we	destroying	obj_pause	and	the	Draw	event,	but	we’re	also
checking	for	the	.png	file	that	we	created	using	screen_save()	and	deleting	it	using
file_delete	(filename).	This	serves	several	purposes;	most	importantly,	we’re	freeing	up
disc	space	and	preventing	file	errors	and	future	screenshots	from	being	renamed
improperly.

There’s	more
While	this	method	of	pausing	your	game	is	quite	functional,	there’s	actually	a	lot	more
you	can	do	with	it.	By	adding	a	pause	menu,	you	can	give	your	player	access	to	other
functions,	such	as	settings	and	options	or	even	a	quit	button	to	take	you	out	of	the	game.
All	you	need	to	do	is	have	the	menu	populate	in	the	Create	event	of	obj_pause	in	the
same	way	that	you	would	create	them	on	the	game’s	title	screen.

Saving	player	selection	and	score
I	personally	enjoy	games	with	a	lot	of	choice.	I	like	having	options	that	expand	the	game’s
scope	and	add	replay	value,	but	I	also	enjoy	being	able	to	play	a	game	the	way	I	want	to
play	it.	I’m	certainly	not	the	only	person	who	feels	this	way,	and	for	this	reason,	many
game	developers	add	appropriate	options.	Now,	once	I’ve	made	my	selection	and	get	into
the	game,	what	I	don’t	want	is	to	have	to	make	those	selections	again;	I	want	to	save	my
choice	and	pick	up	right	from	where	I	left	off.	Let’s	take	a	look	at	how	to	select	a	player
character	and	then	save	this	selection,	along	with	the	player’s	score.

Getting	ready
To	complete	this	recipe,	you’ll	need	several	objects,	sprites,	and	so	on.	You’ll	need	two
sprites	(or	skins,	as	they	can	be	called	in	such	scenarios)	to	represent	the	player’s	character
options.	I’ve	chosen	Red	(spr_charRed)	and	Blue	(spr_charBlue)	as	these	are	the	classic
choices	in	some	of	my	favorite	team-based	games.	Next	you’ll	need	your	player	character
(obj_player)	and	a	couple	of	controller	objects	(obj_controlGame	and	obj_init).	You’ll
need	a	coin	object	(obj_coin)	and	several	button	objects	(obj_btn_load,	obj_btn_play,
obj_btn_redSelect,	and	obj_btn_blueSelect),	all	with	appropriate	sprites.	You’ll	need
three	rooms	in	this	order:	rm_init,	rm_charSelect,	and	rm_game.	Lastly,	you’ll	need	to
create	a	Save.ini	file	with	a	section	called	Player	and	keys	called	Selected,	Score,
Character,	and	Display.

How	to	do	it
1.	 Open	obj_init	and	add	a	Create	event.
2.	 Drag	a	code	block	to	the	Actions	box	and	enter	the	following	code:

globalvar	playerSelect;

playerSelect	=	spr_charBlank;

globalvar	playerDisplay;

playerDisplay	=	"Please	select	a	character.";

globalvar	playerIsSelected;

playerIsSelected	=	false;

globalvar	playerScore;

playerScore	=	0;

alarm[0]	=	60;

3.	 Add	an	event	to	Alarm[0]	and	enter	the	following	code	in	a	code	block:

room_goto(rm_charSelect);

4.	 In	obj_btn_redSelect,	add	a	Left	Mouse	Button	Pressed	event	to	a	code	block.
5.	 Enter	the	following	code:

playerSelect	=	spr_charRed;

playerDisplay	=	"Red"

playerIsSelected	=	true;

6.	 Complete	the	previous	two	steps	with	obj_btn_blueSelect,	but	replace	the	code
with	the	following	code:

playerSelect	=	spr_charBlue;

playerDisplay	=	"Blue";

playerIsSelected	=	true;

7.	 In	obj_player,	add	a	Create	event	to	the	following	code:

sprite_index	=	playerSelect;

8.	 Add	a	Step	event	and	place	the	following	code	in	a	code	block:

if	keyboard_check(vk_left)

{

				x-=7;

}

if	keyboard_check(vk_right)

{

				x+=7;

}

if	keyboard_check(vk_up)

{

				y-=7;

}

if	keyboard_check(vk_down)

{

				y+=7;

}

9.	 Add	a	Collision	event	to	obj_coin.
10.	 Place	a	code	block	in	the	Actions	box	and	enter	the	following	code:

playerScore	+=1;

with	(other)

{

				instance_destroy();

}

instance_create(random(room_width),	random(room_height),	obj_coin);

11.	 In	obj_btn_load,	add	a	Left	Mouse	Button	Pressed	event	to	the	following	code:

ini_open("Save.ini");

playerScore	=	ini_read_real("Player",	"Score",	0);

playerSelect	=	ini_read_real("Player","Character",	-1);

playerDisplay	=	ini_read_string("Player",	"Display",	"Please	select	a	

character.");

playerIsSelected	=	ini_read_real("Player",	"Selected",	false);

ini_close();

12.	 In	obj_btn_play,	add	a	Left	Mouse	Button	Pressed	event	to	the	following	code	in	a
code	block:

if	playerIsSelected	=	true

{

				room_goto(rm_game);

}

else

{

				//do	nothing

}

13.	 In	obj_controlGame,	add	a	Create	event	and	place	a	code	block	in	the	Actions	box.
14.	 Enter	the	following	code:

instance_create(random(room_width),	random(room_height),	obj_coin);

15.	 Add	a	Step	event	to	the	following	code	in	a	code	block:

if	keyboard_check_pressed(ord('S'))

{

				ini_open("Save.ini");

				ini_write_real("Player",	"Score",	playerScore);

				ini_write_real("Player",	"Character",	playerSelect);

				ini_write_real("Player",	"Selected",	playerIsSelected);

				ini_write_string("Player",	"Display",	playerDisplay);

				ini_close();

}

16.	 Add	a	Draw	event	to	the	following	code:

draw_text(32,	64,	string("Score:	")	+	string(playerScore));

draw_text(32,	32,	string("Player:	")	+	string(playerDisplay));

Lastly,	place	obj_init	in	rm_init,	obj_controlGame	in	rm_game,	and	arrange	your	button
objects	in	rm_title.	You	are	now	ready	to	test	your	creation.	Try	using	the	character

selection	buttons,	then	play	the	game	and	collect	coins	to	increase	your	score.	You	can
save	your	character	selection	and	score	by	pressing	S	and	recall	it	the	next	time	you	run
the	program	using	the	Load	button.

How	it	works
This	recipe	is	mainly	used	to	demonstrate	two	elements	of	saving	with	.ini	files:	storing
strings	and	how	they	differ	from	storing	numbers	and	game	elements.	Here,	we’ve	written
the	code	in	order	to	save	four	different	values:	player	score,	player	character	selection,
whether	a	character	is	selected	or	not,	and	which	character	name	should	be	displayed.
You’ll	notice	that,	for	the	first	three	save	functions,	we	used	ini_write_real():	for	the
fourth	function,	we	used	ini_write_string().	To	understand	why	we	did	this,	let’s	take	a
look	at	the	information	we’re	trying	to	save.	Obviously,	when	we	save	the	player’s	score,
we’re	looking	at	numbers,	plain	and	simple.

As	with	saving	volume	levels,	when	we	create	the	audio	settings,	we	take	a	numerical
value	from	the	game	and	store	it	as	a	real	value	in	the	.ini	file.	When	saving	whether	a
character	has	been	selected	or	not,	we’re	using	a	true	or	false	statement.	GameMaker
views	this	as	a	binary	statement.	There	can	be	only	one	of	two	outcomes.	You	can	easily
store	this	information	as	0	(false)	or	1	(true),	so	it	is	therefore	stored	as	a	real	value.

Next,	when	the	player	selects	a	character,	we	ask	GameMaker	to	store	a	value	to	indicate
which	sprite	should	be	used	(how	the	player	will	be	skinned).	Like	the	true	or	false
statement	we	just	dealt	with,	this	information	is	saved	using	ini_write_real,	despite	the
fact	that	it	is	not	observably	recorded	as	a	numerical	value.	This	is	because,	when	you	call
a	sprite,	you’re	calling	the	sprite’s	index,	not	the	sprite’s	name.	Have	you	ever	noticed	that
when	you	use	code	to	assign	a	sprite	to	an	object,	you	use	the	sprite_index	variable?	It’s
because,	even	though	you’ve	given	it	a	name,	GameMaker	reads	your	sprite	as	a	number.
This	is	why	the	default	value	of	playerSelect	(if	no	previous	value	exists	in	the	given
file)	is	-1.	This	value,	if	recalled,	is	passed	on	to	obj_player	and	referenced	under
sprite_index.	If	the	value	of	sprite_index	is	read	as	-1,	there	is	no	sprite	assigned	to
the	object.

Lastly,	we	have	playerDisplay,	which	is	saved	using	ini_write_string.	As	the
function’s	name	implies,	we’ll	store	a	value	as	a	string	(words)	instead	of	a	real	value
(numbers	and	so	on).	Now,	there	are	some	things	to	remember	when	we	save	a	string.	As
with	all	uses	of	string	functions,	you	need	to	use	quotation	marks.	This	tells	GameMaker
to	read	the	value	exactly	as	it	is	shown.	GameMaker	doesn’t	actually	know	the	meaning	of
the	words	you’ve	written;	otherwise,	it	would	try	to	read	it	as	code.	Instead,	GameMaker
takes	whatever	is	in	the	quotation	marks	as	a	specific	chunk	and	passes	this	chunk	off	to
wherever	it	needs	to	go.	In	our	case,	we	pass	on	the	name	of	the	character	the	player	has
chosen	to	the	draw_text()	function	in	order	to	display	it	on	the	screen.	When	saving	and
loading	information	to	and	from	variables,	you	are	likely	to	use	ini_write_real()	in
most	cases.	The	ini_write_string()	method	is	most	useful	when	we	save	names	and
descriptors.	Specifically,	I	would	use	this	to	save	a	name	entered	by	the	player	or	to	save
the	status	of	a	character,	item,	and	so	on	in	the	game.	For	example,	if	a	player	unlocks	a
new	character,	you	can	change	the	information	in	the	.ini	file	from	locked	to	unlocked.
If	an	non-player	character	(NPC)	in	your	game	is	killed,	you	can	save	the	word	dead
under	the	status	key.	Just	remember	that,	especially	here,	spelling	counts!

There’s	more
You	may	have	noticed	that,	in	this	recipe,	we	used	an	object	called	obj_init.	This	is	an
initialization	object,	like	the	one	used	in	previous	recipes.	As	mentioned	earlier,	we	used
this	object	to	create	variables	that	we	needed	to	incorporate	right	away.	What	we	did
differently,	this	time,	is	use	globalvar	to	create	variables	instead	of	calling
global.variableName.	This,	effectively,	creates	a	global	variable	that	can	be	used	by	any
object	in	the	game,	just	like	adding	global	in	front	of	a	variable	name.	The	difference	is
that,	once	you’ve	initialized	a	variable	using	globalvar,	you	don’t	need	to	keep	adding
global	in	front	of	the	variable	for	the	rest	of	the	game;	it	is	already	recognized	as	a	global
variable.	Also,	when	initializing	a	variable	this	way,	you	don’t	have	to	assign	a	value	right
away.	You	simply	inform	GameMaker	of	its	existence	and	prepare	it	to	be	used	at	a	later
time.	This	is	why,	with	some	of	the	global	variables	used	in	this	recipe,	we	assign	a	value
to	the	new	variable	on	the	next	line.	In	these	specific	cases,	we	simply	need	to	assign	a
value	right	away.	Otherwise,	we	could	have	left	the	variable	blank	at	the	time.

One	important	thing	to	keep	in	mind	when	using	global	variables	is	that,	whichever
method	you	choose	for	a	particular	variable,	you	need	to	be	consistent.	If	you	initialize
using	globalvar	and	then	call	the	same	variable	using	global.variableName,	you	will
encounter	some	potentially	game-crashing	bugs.	GameMaker	will	not	view	them	as	the
same	variable	and	will	stop	compiling	the	code.

Encrypting	and	decrypting	save	data
Everybody	has	secrets,	right?	Well,	sometimes	secrets	can	be	helpful,	especially	when	you
want	to	prevent	anyone	playing	your	game	from	messing	with	save	and	setting	files.	If
you’re	reading	this,	then	you	have	a	healthy	interest	in	creating	games	and	programming.
If	you’re	interested	in	programming,	or	even	just	figuring	out	how	programs	work,	you
have	likely	browse	through	a	game	or	application’s	files	and	open	one	in	Notepad.	Was	it
all	nonsensical,	gibberish,	and	random	characters?	I	bet	it	was.	This	is	because	the	file	was
encrypted.	Developers	need	to	encrypt	the	code	in	a	program’s	files	to	make	it	unreadable
in	order	to	prevent	a	user	from	altering	the	code	in	any	way	and	thus	changing	how	the
program	works.	In	terms	of	games,	imagine	if,	instead	of	playing	the	game	as	intended,	a
player	changed	some	save	files	manually	in	order	to	unlock	every	item	and	achievement
you	worked	so	hard	to	code.	Where’s	the	fun	in	that?	Well,	you’re	in	luck	because
GameMaker	can	help	you	encrypt	your	code	and	prevent	those	cheaters	from	doing	what
they	do	best.	Let’s	take	a	look	at	encryption	and	decryption	in	GameMaker.

Getting	ready
Before	we	complete	this	recipe,	I	suggest	that	you	complete	the	previous	recipe	if	you
haven’t	already.	We’ll	use	the	same	code	with	some	alterations	to	see	how	the	save
function	works.

How	to	do	it
1.	 Open	obj_controlGame.
2.	 In	the	Step	event,	replace	the	existing	code	with	the	following	code:

if	keyboard_check_pressed(ord('S'))

{

				ini_open("Save.ini");

				saveScore	=	base64_encode(string(playerScore));

				saveSelect	=	base64_encode(string(playerSelect));

				saveSelected	=	base64_encode(string(playerIsSelected));

				saveDisplay	=	base64_encode(string(playerDisplay));

				ini_write_string("Player",	"Score",	saveScore);

				ini_write_string("Player",	"Character",	saveSelect);

				ini_write_string("Player",	"Selected",	saveSelected);

				ini_write_string("Player",	"Display",	saveDisplay);

				ini_close();

}

3.	 Open	obj_btn_load.
4.	 In	the	Left	Mouse	Button	Pressed	event,	replace	the	code	with	the	following	code:

ini_open("Save.ini");

loadScore	=	ini_read_string("Player",	"Score",	"0");

loadSelect	=	ini_read_string("Player","Character",	"spr_charBlank");

loadDisplay	=	ini_read_string("Player",	"Display",	"Please	select	a	

character.");

loadSelected	=	ini_read_string("Player",	"Selected",	"false");

playerScore	=	real(base64_decode(loadScore));

playerSelect	=	real(base64_decode(loadSelect));

playerDisplay	=	real(base64_decode(loadDisplay));

playerIsSelected	=	real(base64_decode(loadSelected));

ini_close();

Once	these	simple	steps	have	been	completed,	you	can	test	your	game	once	again.	Select	a
character,	enter	the	game,	collect	some	coins,	and	save.	Now,	open	Save.ini	and	check
out	the	new	values.	Can’t	read	it?	Good!

How	it	works
In	order	to	encrypt	your	code,	GameMaker	uses	the	Base64	methods.	Base64	is	a	name
given	to	any	of	the	several	binary-to-text	encoding	schemes	that	are	commonly	used	to
transmit	binary	data	as	a	string,	where	the	binary	data	cannot	be	read.	Simply	put,
GameMaker	takes	the	game’s	data	and	changes	each	character	to	one	of	64	characters,
most	often	represented	by	uppercase	and	lowercase	letters	(A-Z,	a-z),	single	digits	(0-9),
and	a	few	other	characters.	While	Base64	is	by	no	means	a	safe	way	to	encrypt	sensitive
data	(there	are	many	web-based	Base64	encoders/decoders	that	can	be	accessed	in
seconds)	it	is	a	deterrent	to	the	average	player.	Most	people	will	not	see	the	encoded	saved
files	and	say	“I’m	going	to	decode	this	and	mess	around	with	it.”	So,	while	I	wouldn’t	use
Base64	to	hide	my	banking	information,	I	would	certainly	use	it	to	keep	players	from
accessing	level	8	before	they’ve	earned	it.

In	order	to	encrypt	our	data,	we	must	initialize	more	variables	as	placeholders	and	call
them	when	loading.	Let’s	take	a	look	at	how	we	encrypt	the	player’s	score.	First,	we	create
the	saveScore	variable	and	declare	it	as	base64_encode(string(playerScore)).	This
function	will	take	the	value	of	the	playerScore	variable,	change	it	to	a	string,	and	encrypt
this	string	using	Base64	(which	changes	each	character,	even	spaces).	This	new	string	is
then	stored	as	the	value	of	saveScore.	We	can	then	write	this	value	to	our	.ini	file	but,	as
it	is	now	in	a	string	format,	we	must	do	so	using	ini_write_string(saveScore).	At	this
point,	you	can	open	Save.ini	and	check	your	score,	but	you	won’t	be	able	to	read	it
because	it’s	encrypted!

Now	in	order	to	load	these	values	back	into	GameMaker,	we	have	to	perform	the	process
in	reverse.	We	declare	a	new	variable	(loadScore)	as	ini_read_string("Player",
"Score",	"0").	This	takes	the	value	of	Score	(which	is	now	a	string,	not	a	number)	and
loads	it	into	the	new	loadScore	variable.	We	then	take	the	value	of	this	new	variable
(again,	a	string,	not	a	number)	and	decode	it	using	real(base64_decode(loadScore).
What	does	this	real	mean?	It	means	that	we	tell	GameMaker	to	take	the	decoded	string
and	turn	it	back	into	a	real	number.	This	number	is	then	passed	on	to	the	playerScore
variable,	which	is	then	displayed	for	all	to	see.

You	now	have	encryption	and	decryption	in	GameMaker.	If	you’re	still	uncertain	as	to
what	Base64	really	is,	I	highly	recommend	that	you	do	a	little	bit	of	research	on	its	history
and	check	out	some	of	the	online	encoders/decoders.

Chapter	8.	Light	‘em	up!	–	Enhancing
Your	Game	with	Lighting	Techniques
In	this	recipe,	we’ll	cover	the	following	topics:

Creating	a	room	with	a	light	switch
Lighting	objects	with	a	spot	light
Changing	day	to	night
Creating	a	flashlight
Making	a	flickering	torch

Introduction
Game	design	trends,	much	like	trends	in	fashion	and	music,	are	quite	cyclical.	There	is
currently	a	trend	in	game	art,	especially	in	indie	circles,	to	give	games	a	pixilated,	retro
feel	but	with	modern	game	mechanics	and	effects.	Many	developers	are	trying	to	capture
the	look	and	feel	of	classic	8-bit	and	16-bit	games	while	simultaneously	keeping	the
games	modern	using	certain	special	effects.	One	of	these	effects	is	to	give	games	lighting
systems	that	can	produce,	in	a	way,	realistic	light	effects,	watered	down	as	necessary	to
maintain	the	desired	look.

This	isn’t	entirely	a	new	concept;	some	games	from	the	16-bit	era	had	some	basic	lighting
effects,	though	they	were	presented	differently.	Consider	a	couple	of	very	popular	games,
such	as	the	Super	Nintendo	Entertainment	System:	Super	Mario	World	and	Legend	of
Zelda:	A	Link	to	the	Past.	Both	of	these	games	used	the	same	hardware	and	were	released
one	year	apart,	almost	to	the	day.

Super	Mario	World	contains	many	levels	that	take	place	underground	or	indoors.	This
would	be	a	perfect	situation	in	which	some	basic	lighting	effects	could	add	a	lot	of	depth.
Despite	this,	Mario	and	his	enemies	are	lit	(fairly	brightly)	consistently.

Conversely,	in	The	Legend	of	Zelda:	A	Link	to	the	Past,	Link	employs	a	lantern	to	light	up
dark	areas.	In	this	recipe,	we’ll	take	a	look	at	how	we	can	recreate	this	and	several	other
lighting	techniques	that	will	add	depth	to	your	game	and	draw	players	into	the	game’s
world.

Before	we	begin,	I	have	to	mention	that	the	effects	laid	out	in	this	chapter	are	not
examples	of	real	game	lighting.	GameMaker	does	not	come	stocked	with	an	advanced
lighting	engine.	These	recipes	demonstrate	ways	to	create	effects	that	give	the	illusion	of
in-game	objects	being	lit	by	an	external	source.	To	get	true,	real-time	lighting	in
GameMaker	requires	the	use	of	third-party	extensions	called	shaders,	which	can	be
purchased	from	the	GameMaker	Marketplace.

Basic	lighting
We	all	have	to	start	somewhere.	Luckily,	starting	here	will	set	the	pace	and	start	you	on
your	way	to	lighting	your	GameMaker	projects.	We’ll	begin	with	these	simple	effects:

Creating	a	room	with	a	light	switch
Lighting	objects	with	a	spot	light

Light	transitions
Have	you	ever	been	outside	for	an	extended	period	of	time	or	at	least	near	a	window?	If
you	have	(and	I’m	going	to	go	ahead	and	guess	that	you	have),	then	you	will	know	that
light	changes	as	the	day	goes	by.	Dim	lights	and	objects	in	the	world	around	you	take	on
new	appearances	as	less	light	reaches	them.

We’ll	take	a	look	at	how	to	recreate	this	effect	in	your	game:

Changing	day	to	night

Light	effects
What	do	you	do	when	the	power	goes	out	at	night?	If	you	say	“scream	and	then	cower	in
the	corner,	sobbing	quietly,”	then	don’t	worry,	I	know	how	you	feel.	Like	most	people,
you	would	probably	opt	to	light	a	candle	or	grab	a	flashlight.	Let’s	learn	how	to	add	these
options	in	GameMaker:

Creating	a	flashlight
Making	a	flickering	torch

Creating	a	room	with	a	light	switch
There	are	many	things	we	take	for	granted	in	our	day-to-day	lives.	One	of	those	things	is
being	able	to	light	up	a	room	at	the	flip	of	a	switch;	we	don’t	really	notice	when	it	works
as	expected.	It’s	not	until	we	go	to	turn	on	a	light	and	find	that	the	bulb	has	burnt	out,	that
we	realize	just	how	important	this	part	of	our	life	really	is.	The	same	can	be	said	about
lighting	in	games.	If	you	can	see	everything	in	the	game,	you	won’t	be	worried	about
lights.	If	everything	is	dark,	however,	you’ll	be	looking	for	a	way	to	light	up	the	play	area
so	that	you	can	navigate.	Before	we	start	creating	lighting	effects	in	GameMaker,	let’s	take
a	look	at	lighting	a	game	area,	as	simply	as	flipping	a	switch.

Getting	ready
For	this	recipe,	you’ll	need	a	room	(rm_game),	a	character	who	can	move	using	the	arrow
keys	(obj_player),	a	box	object	(obj_box),	and	a	controller	object	(obj_lightControl).

How	to	do	it
1.	 In	obj_lightControl,	add	a	Create	event.
2.	 Drag	a	code	block	to	the	Actions	box	and	enter	the	following	code:

alpha	=	0.95;

darkSurface	=	surface_create(room_width,	room_height);

3.	 Add	a	Draw	event	to	another	code	block.
4.	 Enter	the	following	code:

surface_set_target(darkSurface);

draw_clear(c_black);

surface_reset_target();

draw_surface_ext(darkSurface,	0,	0,	1,	1,	0,	c_white,	alpha);

5.	 Add	a	Step	event.
6.	 Place	a	code	block	in	the	Actions	box	using	this	code:

if	keyboard_check_pressed(vk_space)	&&	alpha	>	0

{

				alpha	=	0;

}

else	if	keyboard_check_pressed(vk_space)	&&	alpha	=	0

{

				alpha	=	0.95;

}

7.	 Set	the	depth	of	obj_lightControl	to	-1	(or	any	other	number	that	is	lower	than	all
the	other	objects	in	the	room).

Once	this	is	complete,	add	an	instance	each	of	obj_lightControl	and	obj_player	to
rm_game	and	place	instances	of	obj_box	in	various	places	around	the	room.	You	can	now
test	this	recipe	by	moving	your	player	around	the	obstacles	and	turning	the	lights	on	and
off	using	the	Spacebar	key.

How	it	works
In	this	recipe,	we’ve	mocked	up	having	a	light	turn	on	and	off	through	the	use	of	a	surface.
We	don’t	actually	see	any	light	source,	but	we	are	given	the	sense	that	the	room	is	being
darkened	or	illuminated	whenever	we	use	the	Spacebar	key.

We	created	the	darkSurface	variable	to	represent	surface_create(w,	h)	with	the	width
and	height	set	as	the	width	and	height	of	our	room.	This	way,	the	surface	will	cover	the
entire	room	without	existing	beyond	the	playable	area.	This	saves	a	great	deal	of	memory
when	implementing	surfaces.

In	the	Draw	event,	which	does	exactly	what	its	name	implies,	we	used
surface_set_target(index)	with	darkSurface,	which	is	set	as	the	target.	This	tells
GameMaker	that	we	wish	to	draw	to	darkSurface	rather	than	the	screen	itself.

We	used	draw_clear(colour)	to	clear	the	surface	of	everything	but	the	given	color,	for
which	we	chose	black	(called	in	GameMaker	c_black).	We	have	now	set	darkSurface	as
a	black	screen	and	set	it	on	top	of	everything	else	on	the	screen.

Next,	we	have	to	revert	the	draw	target	back	to	the	screen	itself	in	order	to	prevent
drawing	to	our	new	surface	any	further.	We	do	this	using	surface_reset_target(),
which	reverts	the	draw	target	back	to	the	screen	as	it	is	the	default	target.

We	redraw	our	surface	with	the	new	settings	by	calling	it	using
draw_surface_ext(index,	x,	y,	xscale,	yscale,	rot,	color,	alpha).	Here,	we	set
the	x	and	y	coordinates	of	the	surface	to	0,	which	means	that	it	will	draw	from	the	top-left
corner	of	the	screen.	We	also	set	the	x	scale	and	y	scale	to	1,	which	orients	the	surface
frontwards	(setting	them	to	-1	would	reverse	it)	and	sets	the	rotation	to	0.

Finally,	we	set	the	blend	color	to	white	and	set	the	alpha	to	the	value	of	our	alpha
variable.	With	these	last	two	values,	we	are	blending	the	black	color	of	the	surface	with
white,	thus	changing	the	opacity	in	accordance	with	the	alpha	value.

Now,	since	we	initially	set	the	alpha	variable	to	0.95,	the	room	will	start	out	very	dark,
but	not	pitch-black	but	if	you	wish	to	start	with	the	surface	completely	black,	you	can	set
alpha	to	1.	In	order	to	create	our	“light	switch,”	we	tell	GameMaker	to	check	the	value	of
alpha	whenever	we	press	the	Spacebar	key.	If	alpha	is	greater	than	0,	we	set	it	to	0;
otherwise,	we	set	it	back	to	0.95,	our	starting	value.	When	we	set	alpha	to	0,	the	surface’s
alpha	value	is	also	set	to	0,	making	the	instance	of	darkSurface	completely	translucent.
This	gives	the	impression	that	we’ve	turned	on	the	lights	in	the	room	as	you	can	now	see
your	player	and	all	obstacles	perfectly.

There’s	more
It’s	a	best	practice	to	play	around	with	the	alpha	values	in	order	to	get	the	right	feel	for
your	lighting	levels.	There	are	very	few	instances	in	which	you	will	find	yourself	in
perfect	darkness;	there	is	always	a	light	coming	from	somewhere.	Because	of	this,	it	might
not	be	a	good	idea	to	set	your	alpha	levels	to	1;	instead,	try	various	values	between	0	and
1	until	you	get	it	right.

Lighting	objects	with	a	spot	light
In	the	previous	recipe,	we	were	able	to	illuminate	an	entire	room	with	a	perfectly	even
light	with	the	push	of	a	button.	In	this	case,	that	button	was	the	spacebar	and	not	an	actual
light	switch,	but	you	get	the	idea,	right?	Now,	what	if	you	don’t	want	to	light	up	the	entire
room	at	once?	What	if	you	want	to	shine	a	light	on	a	smaller	area,	leaving	the	rest	of	the
room	in	cold,	scary	darkness?	Well,	you’re	in	luck!	Let’s	take	a	look	at	how	to	create	a
mouse-controlled	spotlight	to	investigate	a	dark	scene.

Getting	ready
We’re	going	to	continue	from	the	scene	that	we	created	previously,	so	if	you	haven’t
finished	it,	now	would	be	a	good	time.	You’ll	also	need	a	spot	light	sprite
(spr_spotLight),	which	should	be	nothing	more	than	a	white	circle	and	a	spot	light	object
(obj_spotLight,	but	do	not	assign	the	sprite	to	it).

How	to	do	it
1.	 Open	obj_spotLight	and	add	a	Create	event.
2.	 Drop	a	code	block	in	the	Actions	box	and	enter	the	following	code:

lightStrength	=	1;

3.	 Add	a	Step	event	and	place	a	code	block	in	the	Actions	box.
4.	 Enter	the	following	code:

x	=	mouse_x;

y	=	mouse_y;

5.	 In	obj_lightControl,	open	the	code	block	in	the	Draw	event.
6.	 Replace	the	code	with	the	following	code:

surface_set_target(darkSurface);

draw_clear(c_black);

with(obj_spotLight)

{

draw_set_blend_mode(bm_src_colour);

draw_sprite_ext(spr_spotLight,	0,	x,	y,	image_xscale,	image_yscale,	0,	

c_white,	lightStrength);

draw_set_blend_mode(bm_normal);

}

surface_reset_target();

draw_surface_ext(darkSurface,	0,	0,	1,	1,	0,	c_white,	alpha);

Place	an	instance	of	obj_spotLight	in	the	room	and	you’re	all	set.	Test	this	recipe	by
moving	the	mouse	around	to	see	what	you	can	find.

How	it	works
This	recipe	works	like	the	previous	one.	In	fact,	the	way	in	which	we	draw	the	initial
surface	is	the	same.	Here,	the	real	difference	is	that,	before	we	reset	the	target	surface	to
the	screen,	we	add	a	new	light	source	using	obj_spotLight.

Correlating	to	the	position	of	obj_spotLight	(which	correlates	to	the	position	of	the
mouse),	we	used	draw_set_blend_mode(mode)	and	a	sprite	(spr_spotLight)	to
essentially	create	a	window	through	the	darkness	of	our	surface.	We	did	this	by	changing
the	blend	mode	to	bm_src_color	(it	stands	for	blend	mode:	source	color),	which	is	one	of
the	many	blend	modes	provided	by	GameMaker.	This	worked	in	conjunction	with	the
white	circle	represented	in	spr_spotLight	to	change	the	opacity	of	the	darkened	surface
by	blending	the	black	and	white	colors,	which	is	similar	to	the	way	in	which	we
brightened	the	room	in	the	previous	recipe.

We	then	returned	the	blend	mode	to	bm_normal	before	resetting	the	surface	target.

You	can	get	the	same	result	using	draw_circle_color(),	but	using	a	sprite	you	can	have
greater	control	over	how	the	spotlight	looks	and	blends.	If	you	use	a	gradient	circle	(which
I	usually	create	using	third-party	software	such	as	Photoshop),	you	can	give	your	spotlight
softer	edges,	making	it	much	more	realistic	in	terms	of	light	diffusion.

There’s	more
Certain	blending	modes,	including	bm_src_color,	will	not	work	on	specific	platforms,
namely,	Android,	iOS,	Tizen,	and	HTML5	(without	WebGL	enabled).	GameMaker	offers
several	different	blend	modes	for	use	in	your	projects.	YoYo	Games	provides	a	visual
explanation	of	how	these	blend	modes	work	with	shapes	and	sprites	under
draw_blend_mode_ext,	which	can	be	found	at	http://docs.yoyogames.com/.

http://docs.yoyogames.com/

Changing	day	to	night
Though	it	has	been	done	before,	my	first	memory	of	a	game	with	an	active	day/night	cycle
was	Legend	of	Zelda:	Ocarina	of	Time.

While	running	around	most	outdoor	areas,	the	game’s	internal	clock	would	cycle	day	to
night	and	back	to	day	again.	Different	enemies	would	appear	between	day	and	night,	but
the	biggest	change	was	to	see	how	the	world	appeared.	Enemies	became	less	visible	and
the	draw	distance	(how	far	you	could	see)	was	affected.	Using	what	we’ve	learned	in	this
chapter	so	far,	let’s	create	a	day/night	cycle	in	GameMaker.

Getting	ready
We’ll	start	from	scratch	for	this	recipe	because	you	only	need	three	things:	A	room
(rm_game),	a	block	object	to	test	your	sight	(obj_block),	and	a	night	cycle	controller
object	(obj_cycle).	Give	obj_block	a	simple	sprite	and	place	it	in	random	places	around
the	room,	but	do	not	assign	a	sprite	to	obj_cycle.	Also,	make	sure	obj_cycle	has	a	depth
with	a	lower	value	than	everything	else	in	the	room.

How	to	do	it
1.	 In	obj_cycle,	add	a	Create	event.
2.	 Drag	a	code	block	to	the	Actions	box	and	enter	the	following	code:

alpha	=	0;

dayLength	=	5;

nightLength	=	3;

alarm[0]	=	room_speed*dayLength;

nightSurface	=	surface_create(room_width,	room_height);

3.	 Add	a	Draw	event	to	a	code	block.
4.	 Enter	the	following	code:

surface_set_target(nightSurface);

draw_clear(c_black);

surface_reset_target();

draw_surface_ext(nightSurface,	0,	0,	1,	1,	0,	c_white,	alpha);

5.	 Add	an	event	to	Alarm[0]	and	place	the	following	code	in	a	code	block:

if	alpha	<	0.95

{

alpha	+=	0.01;

alarm[0]	=	1;

}

else	if	alpha	>=	0.95

{

alarm[1]	=	room_speed*nightLength;

}

6.	 Repeat	the	previous	step	for	an	Alarm[1]	event	but	replace	the	code	with	the
following	code:

if	alpha	>	0

{

alpha	-=	0.01;

alarm[1]	=	1;

}

else	if	alpha	<=	0

{

alarm[0]	=	room_speed*dayLength;

}

Once	these	steps	are	complete,	place	an	instance	of	obj_cycle	in	the	room	and	test	it	out.
Wait	for	at	least	five	seconds	to	see	the	result.

How	it	works
The	lighting	elements	of	this	recipe	work	like	those	of	the	first	recipe	in	this	chapter.	We
essentially	cover	everything	in	the	room	with	an	almost	completely	opaque	black	surface.
This	time,	however,	instead	of	changing	the	opacity	of	this	sheet	from	one	extreme	to	the
other	at	the	touch	of	a	button,	we	allow	timers	to	gradually	change	the	surface’s	alpha,
much	like	real	life.	The	scene	starts	with	an	alpha	value	of	0,	making	the	black	surface
completely	transparent	(daytime).

The	Alarm[0]	is	set	as	the	room	speed	(the	framerate	or	number	of	steps	per	second)
multiplied	by	the	value	of	the	dayLength	variable.	This,	as	the	name	plainly	suggests,	is
how	you	decide	how	many	seconds	your	day	should	last.	We	tested	this	out	for	5	seconds.
If	you	want	your	day	to	last	for	a	minute,	you	should	change	this	value	to	60.

Once	Alarm[0]	goes	off,	the	code	runs	that	adds	0.01	to	the	value	of	the	alpha	variable,
which	then	sets	Alarm[0]	to	1,	which	means	that	in	one	step	the	same	thing	is	going	to
happen:	0.01	will	be	added	to	the	value	of	alpha	and	Alarm[0]	will	be	reset	to	1.	This
will	repeat	until	alpha	has	a	value	of	0.95.

At	this	point,	the	black	surface	will	be	almost	completely	opaque	and	GameMaker	will
stop	setting	Alarm[0]	and	set	Alarm[1]	to	the	room’s	speed	multiplied	by	the	value	of
nightLength.

Generally	speaking,	since	nights	are	shorter	than	days	in	most	parts	of	the	world,	this
value	will	be	less	than	dayLength.	A	similar	cycle	will	be	run	with	0.01	being	subtracted
from	the	value	of	alpha	until	it	reaches	0	and	the	cycle	begins	anew.

The	best	part	of	this	recipe	is	the	ease	with	which	you	can	customize	it.	You	can	manage
the	day	and	night	length	by	altering	their	respective	values	in	the	Create	event.	You	can
speed	up	or	slow	down	the	transition	from	day	to	night	and	back	by	altering	the	value
added	to	or	subtracted	from	alpha.	You	can	also	change	how	smoothly	this	transition	takes
place	by	changing	the	number	of	steps	in	both	the	alarms	once	the	transition	begins.	In	this
recipe,	we	set	this	value	to	the	lowest	possible	value	(1)	in	order	to	create	a	smooth
transition.	I	always	recommend	that	you	play	around	with	all	of	these	values	until	you	find
the	best	fit	for	your	game’s	style.

There’s	more
This	recipe	deals	with	changing	how	much	“light”	we	can	see	to	mimic	a	day/night	cycle.
This	isn’t	entirely	realistic,	as	many	changes	take	place	when	night	falls.	For	instance,	the
sky	takes	the	appearance	of	different	colors	when	the	sun	is	setting	or	rising.	This	can	be
mimicked	by	changing	the	background	along	with	the	timers	already	set	in	place.

In	addition	to	this,	you	can	also	set	different	states	during	the	night	and	day.	Once	alpha
reaches	a	certain	value	(such	as	when	night	falls),	you	can	change	the	ambient	sounds
(such	as	crickets	chirping	or	owls	hooting),	or	even	have	certain	enemies	spawn	that
wouldn’t	spawn	during	the	day	(just	set	a	Step	event	that	begins	spawning	those	pesky
skeletons	once	it’s	night	time).	There	are	many	changes	you	can	make	here	that	are	all
based	on	the	type	of	the	game	you’re	making,	so	go	ahead	and	try	something	new!

Creating	a	flashlight
Even	if	you’re	not	a	fan	of	the	genre,	you	need	to	be	aware	of	the	growing	number	of
survival	horror	games	on	the	market,	especially	the	ones	that	are	popular	with	indie
developers.	Many	of	these	games	(probably	even	most	of	them)	require	you	to	fumble
around	in	dark,	creepy	locales	as	you	attempt	to	solve	a	puzzle,	unlock	a	secret,	or	find
your	long	lost	dad	who	disappeared	under	suspicious	circumstances.	What	do	the
developers	give	you	to	aid	you	on	your	quest?	A	flashlight.	One	that	keeps	running	out	of
batteries.	Well,	I	have	good	news	for	you	if	you’re	looking	to	make	a	2D	survival	horror
game:	we’re	going	to	learn	how	to	create	a	flashlight	effect	in	GameMaker.

Getting	ready
Once	again,	you’ll	need	a	room	(rm_game),	a	controllable	player	object	(obj_player),	an
obstacle	(obj_block),	and	a	light	controller	object	(obj_lightControl).	Go	ahead	and
place	instances	of	obj_block	around	the	room	so	that	you	can	test	them	on	completion.
For	this	recipe,	you’ll	also	need	a	sprite	to	represent	the	flashlight’s	beam
(spr_lightBeam).	This	sprite	should	resemble	a	cone	of	light	that	expands	to	the	right
with	the	size	of	your	choice.	Again,	you	can	use	a	shape	with	solid	lines	if	it	suits	your	art
style.	I	prefer	a	softer,	more	realistic	light;	for	this,	you	would	need	to	import	an	image
(with	the	alpha	layer	intact)	from	third-party	software,	such	as	Photoshop.

How	to	do	it
1.	 In	obj_lightControl,	add	a	Create	event.
2.	 Drop	a	code	block	in	the	Actions	box	and	add	the	following	code:

alpha	=	0.95;

darkSurface	=	surface_create(room_width,	room_height);

3.	 Add	a	Draw	event.
4.	 Place	a	code	block	in	the	Actions	box	using	the	following	code:

surface_set_target(darkSurface);

draw_clear(c_black);

draw_set_blend_mode(bm_subtract);

draw_sprite_ext(spr_lightBeam,	0,	obj_player.x,	obj_player.y,	1,	1,	

dir,	c_white,	1);

surface_reset_target();

draw_set_blend_mode(bm_normal);

draw_surface_ext(darkSurface,	0,	0,	1,	1,	0,	c_black,	alpha);

5.	 Add	a	Step	event	to	a	code	block.
6.	 Enter	the	following	code:

dir	=	point_direction(obj_player.x,	obj_player.y,	mouse_x,	mouse_y);

Once	these	steps	are	complete,	place	an	instance	each	of	obj_lightControl	and
obj_player	in	the	room	and	test	them	out.	Move	your	character	around	the	room	and	use
your	mouse	to	shine	your	flashlight.

How	it	works
As	with	the	other	recipes	in	this	chapter,	we’re	creating	a	black	surface,	then	making	this
surface	transparent	to	the	desired	degree.	As	discussed	in	the	spotlight	recipe,	we’re	not
affecting	the	entire	surface,	but	rather	a	small	portion	of	it—specifically	the	shape	of	our
flashlight	beam.

The	difference	here	is	the	blend	mode	we’re	using.	Previously,	we	used	bm_src_colour	to
subtract	the	color	of	our	sprite	(white)	from	the	color	of	the	surface	(black).

With	bm_subtract,	the	shape	of	the	sprite	you	create	is	subtracted	from	the	surface	to
which	it	is	applied,	not	unlike	a	cut-out.	Any	transparencies	in	the	sprite	are	not	cut	out	so,
by	changing	the	alpha	level	of	the	sprite,	you’re	increasing	the	opacity	of	the	area	that	you
are	otherwise	trying	to	make	translucent.

This	is	great	for	creating	a	flashlight	effect	using	images	that	are	imported	with	alpha
layers.	Light	from	a	flashlight	isn’t	perfectly	distributed;	with	most	flashlight	types,	there
is	an	intense	beam	with	a	narrow	field	and	far	reach	coupled	with	a	wider	spread	light	that
doesn’t	reach	as	far.

Using	a	layered	image	(with	the	intense	beam	as	the	top	layer)	and	keeping	transparencies
intact	when	exporting,	you	can	have	a	sprite	with	two	different	opacities.

If	you’re	going	for	more	realism,	make	the	wide	angle	light	much	softer	and	make	the	tip
of	the	intense	beam	soft	and	round.

If	you	take	a	look	at	the	values	set	in	draw_sprite_ext(),	you’ll	notice	a	couple	of	things.
First,	you’ll	notice	that	the	x	and	y	coordinates	of	our	light	beam	sprite	are	set	to	those	of
obj_player.	This	is,	as	I’m	sure	you	guessed,	to	have	the	light	beam	follow	our	player,
giving	the	illusion	of	the	player	carrying	a	flashlight.	Second,	you	may	have	noticed	that
we	declare	the	dir	variable	in	the	Step	event	and	call	it	when	we	draw	our	sprite.

Here,	we’re	setting	the	sprite’s	rotation	to	be	constantly	updated	using
point_direction()	so	that	the	flashlight	is	always	pointing	toward	the	mouse.	This
creates	an	intuitively	controlled	light	beam;	you	point	your	mouse	to	whatever	you’d	like
to	illuminate.

Now,	one	important	thing	I	have	to	mention	here	is	that	it’s	imperative	that	you	reset	the
blend	mode	back	to	bm_normal	once	the	light	beam	sprite	has	been	drawn.	This	prevents
any	undesired	effects,	whereby	other	images	are	blended	incorrectly.

Making	a	flickering	torch
Flashlights	are	all	well	and	good	but	sometimes	you	need	to	go	for	a	classic.	That’s	where
the	torch	comes	in;	a	staple	of	dungeons	and	thatched-roof	cottages	alike.	What’s	the	main
difference	between	a	torch	and	flashlight?	Besides	the	technology,	a	torch	has	a	dynamic
light	source:	fire.

As	a	fire	burns,	the	flames	seem	to	dance	about,	seemingly	casting	a	moving	light.	In	this
recipe,	we’re	going	to	see	a	simple	way	to	mimic	this	effect.

Getting	ready
Let’s	start	with	the	project	from	a	previous	recipe	from	this	chapter:	changing	day	to	night.
We’re	going	to	add	a	torch	object	(obj_torch)	and	you’ll	want	to	give	it	an	appropriate
sprite	with	an	animated	flame	(spr_torch).	Most	importantly,	you’ll	need	a	second	sprite
to	represent	the	light	given	out	by	the	torch	(spr_torchLight).	This	sprite	looks	best	as	a
circular	gradient,	going	from	transparent	to	white.	Make	sure	you	place	instances	of
obj_torch	around	the	room.

How	to	do	it
1.	 In	obj_cycle,	open	the	Draw	event.
2.	 Make	some	space	right	after	the	draw_clear(c_black)	code.	If	you	exactly	follow

the	original	recipe,	this	space	should	begin	on	line	3.
3.	 Enter	the	following	code:

with(obj_torch)

{

				draw_set_blend_mode(bm_subtract);

				draw_sprite_ext(spr_torchLight,	0,	x,	y,	lightSize,	lightSize,	0,	

c_white,	1);

				draw_set_blend_mode(bm_normal);

}

4.	 In	obj_torch,	add	a	Create	event.
5.	 Drag	a	code	block	to	the	Actions	box	and	enter	the	following	code:

image_speed	=	0.4;

lightSize	=	1;

6.	 Add	a	Step	event	to	a	code	block.
7.	 Enter	the	following	code:

flicker	=	choose(0.01,	-0.01,	0);

lightSize	+=	flicker;

lightsize	=	clamp(lightSize,	0.95,	1.15);

Once	this	is	complete,	you	are	free	to	test	it.	Make	sure	to	play	around	with	the	values	in
the	Step	event	of	obj_torch	until	you	get	the	flicker	effect	you	desire.

How	it	works
Once	again,	we	used	the	bm_subtract	blend	mode	to	add	the	torch	light	to	our	scene.
Since	the	light	is	drawn	directly	on	top	of	the	torch	itself,	it	appears	as	though	the	torch	is
cutting	through	the	darkness.	The	flicker	gives	the	effect	that	the	fire	of	the	torch	is	really
burning.

This	is	accomplished	by	allowing	GameMaker	to	choose	one	of	the	three	values	(0.01,
-0.01,	or	0)	and	adding	it	to	the	value	of	the	lightSize	variable,	which	is	used	to
determine	the	size	of	the	sprite	(a	value	of	1	means	the	sprite	is	exactly	the	same	size	as	it
was	when	you	first	created	it).

One	thing	to	note	here	is	the	use	of	the	clamp()	function.	The	clamp()	function	is	used	to
control	the	range	of	the	given	value.

In	our	case,	we	used	clamp()	to	ensure	that	the	lightSize	variable	didn’t	get	any	smaller
than	0.85	times	its	original	size	and	didn’t	grow	beyond	1.15	times	its	original	size.
Without	this	function,	adding	and	subtracting	the	value	of	the	flicker	from	lightSize
could	cause	it	to	shrink	down	to	nothing	or	grow	larger	than	the	room	itself.

As	I	mentioned	earlier,	it’s	best	if	you	play	around	with	these	values	until	the	flicker	effect
works	the	way	you	want	it	to.

Chapter	9.	Particle	Man,	Particle	Man	–
Adding	Polish	to	Your	Game	with	Visual
Effects	and	Particles
In	this	chapter,	we’ll	cover	the	following	recipes:

Using	particles	to	simulate	kicking	up	dust
Simulating	rainfall
Creating	an	explosion
Adding	screen-shake
Using	slow	motion

Introduction
In	this	book,	so	far,	we’ve	seen	quite	a	bit	of	what	you	can	do	to	make	a	game	using
GameMaker.	Each	of	the	recipes	in	the	previous	chapters	can	be	followed	to	create	an
element	of	a	game,	be	it	the	control	scheme,	sound	system,	or	interface	element.	If	you	put
these	elements	together,	you	will	get	a	game.

Well,	technically,	it’s	a	game,	but	the	question	you	should	be	asking	is	“Is	it	fun?”	There’s
a	major	component	of	game	design	that	isn’t	always	obvious	and	that	many	(including
myself)	have	taken	to	calling	“game	feel.”

Game	feel	refers	mostly	to	(often)	minor	elements	of	a	game	that	contribute	to	the	fun	of
playing.	This	could	be	anything	to	do	with	controlling	the	game	(response	time),	any	type
of	feedback	(visual	or	audio	cues	related	to	game	progression),	or	any	number	of	other
aspects	related	to	engaging	the	player.	Game	feel,	to	me,	is	any	element	that	adds
excitement	to	the	game;	it’s	what	draws	you	in	and	keeps	you	there,	immersed	in	the
gameplay.	If	you’ve	ever	played	games	by	developers	such	as	Capy	Games	or	Vlambeer,
you	know	what	I’m	talking	about.	These	developers	and	others	have	mastered	the	art	of
driving	a	gameplay	with	frenetic,	flashy	effects	that	enthrall	rather	than	distract.	In	this
recipe,	we’ll	take	a	look	at	how	to	create	effects	that	keep	players	thinking	about	a	game
long	after	they’ve	put	down	the	controller.

Particles
When	referring	to	visual	effects	in	a	game,	particles	are	often	the	heart	of	the	discussion.
Particles	can	be	used	to	create	anything	from	weather	(rain)	to	clouds	(smoke,	dust,	and	so
on)	to	explosions	(fire	and	sparks).	GameMaker	has	a	handful	of	built-in	particle	effects	to
speak	of,	but	you	can	also	customize	them	to	fit	your	vision.	Here,	we’ll	take	a	look	at	the
various	uses	of	particles,	the	bread	and	butter	of	visual	effects	in	games.

Using	particles	to	simulate	kicking	up	dust
Simulating	rainfall
Creating	an	explosion

Game	feedback
There’s	nothing	as	satisfying	as	a	game	that	properly	telegraphs	what’s	happening	on
screen.	Some	games	will	play	corresponding	sounds	(as	we	discussed	in	Chapter	5,	Now
Hear	This!	–	Music	and	Sound	Effects)	but	others	will	go	the	extra	mile	and	throw	in	some
excellent	visual	cues	as	well.	You	might	take	these	elements	for	granted	when	playing
yourself,	but	the	following	section	will	show	you	how	to	implement	an	important	game
feedback	that	will	draw	the	player	into	your	game.

Adding	screen-shake
Using	slow	motion

Using	particles	to	simulate	kicking	up	dust
Even	if	your	game’s	art	style	isn’t	meant	to	be	photorealistic,	there	are	many	subtle	things
you	can	do	to	make	them	more	immersive.	One	such	thing	is	to	add	environmental	cues,
such	as	dust	clouds,	where	your	player	character	moves.	Have	you	ever	run	down	a	dirt
road?	If	so,	your	feet	have	certainly	kicked	up	quite	a	bit	of	dust	as	you	travelled	along.
Let’s	add	the	same	effect	to	your	game	to	give	more	depth	to	the	environment.

Getting	ready
To	start	with,	you’ll	need	the	following	objects:	two	separate	ground	parent	objects
(obj_grndParent_norm	and	obj_grndParent_dirt),	two	separate	ground	objects
(obj_ground_norm	and	obj_ground_dirt),	and	a	player	object	(obj_player).	Give	the
two	ground	objects	different	sprites	and	assign	their	respective	parent	objects,	as	we	did	in
Chapter	2,	It’s	Under	Control	–	Exploring	Various	Control	Schemes.	Set	up	a	room	with	a
long	platform	consisting	of	sections	of	each	type	of	ground	object	so	that	we	can	see	the
difference	between	running	over	one	versus	the	other	when	testing.	Once	this	is	complete,
we’re	ready	to	begin.

How	to	do	it…
1.	 In	obj_player,	add	a	Step	event.
2.	 Drag	two	code	blocks	to	the	Actions	box.
3.	 In	the	first	block,	add	the	following	code:

if	keyboard_check(vk_right)

{

				hspeed	=	10;

}

else	if	keyboard_check(vk_left)

{

				hspeed	=	-10;

}

else

{

				hspeed	=	0;

}

4.	 In	the	second	block,	add	the	following	code:

if	!place_meeting(x,	y,	obj_groundParent_norm)	&&	!place_meeting(x,	y,	

obj_groundParent_dirt)

{

				vspeed	=	5;

}

else

{

				vspeed	=	0;

}

if	place_meeting(x,	y,	obj_groundParent_dirt)	&&	(hspeed	>	0)

{

				effect_create_below(ef_smoke,	x,	y+8,	0,	c_white);

}

else	if	place_meeting(x,	y,	obj_groundParent_dirt)	&&	(hspeed	<	0)

{

				effect_create_below(ef_smoke,	x,	y+8,	0,	c_white);

}

Once	these	steps	are	complete,	add	an	instance	of	obj_player	anywhere	above	the	ground
objects	in	the	room	and	you’re	ready	to	test	it.	Use	the	right	and	left	arrow	keys	to	allow
the	player	run	back	and	forth	across	the	different	types	of	grounds	and	watch	the	dust	fly.

And	then	it	looks	like	this:

How	it	works…
This	recipe	introduces	you	to	one	of	GameMaker’s	built-in	particle	effects,	namely,
ef_smoke.	This	effect,	along	with	the	other	11	effects	(which	YoYo	Games	refers	to	as
Simple	Effects),	requires	little	to	incorporate	them	into	your	game.

Here,	we	used	the	effect_create_below()	function	that,	as	the	name	suggests,	creates	an
instance	of	the	particle	below	the	object	housing	the	code.	GameMaker	will	repeat	this	for
every	step	as	long	as	it	is	told	to	do	so.	We	instruct	GameMaker	to	create	an	instance	for
each	step,	so	as	long	as	the	player	moves	it	is	in	contact	with	obj_grndParent_dirt.	(This
is	especially	useful	because	it	is	unlikely	you’ll	want	your	player’s	footfalls	to	kick	up
dust	all	of	the	time.)

Using	the	requested	parameters,	we	set	the	coordinates	to	reflect	those	of	the	player
object,	but	we	add	eight	pixels	to	the	y	coordinate	to	make	it	seem	as	though	the	clouds	are
coming	from	the	player’s	feet.	We	also	set	the	size	as	the	default	size	and	set	the	colour	to
c_white.	The	default	size	(0)	is	the	smallest	size	required	to	make	the	particles,	but	you
can	make	them	larger	by	setting	this	value	to	1	or	2.

There’s	more…
If	you	want	to	make	this	a	little	more	fun,	try	playing	around	with	the	simple	effects	you
use.	Instead	of	ef_smoke,	try	ef_ring,	ef_firework,	or	ef_star,	play	around	with	the
particle	type,	color,	and	size	until	you	find	something	that	fits	your	game’s	style.

Simulating	rainfall
One	thing	I	enjoy	is	when	a	game	developer	adds	some	small	touches	to	increase	the
player’s	immersion	in	the	game’s	world.	How	can	you	go	about	doing	this?	Why	not	add
some	real-world	elements	to	start	with?	Let’s	try	making	it	rain.	By	this,	I	mean	simulating
drops	of	water	falling	from	the	sky,	not	tossing	dollar	bills	in	slow	motion;	though	this
would	also	be	cool.

Getting	ready
The	following	recipe	is	incredibly	easy	and	illustrates	another	way	in	which	you	can	use
GameMaker’s	built-in	simple	particle	effects.	We’re	going	to	continue	from	the	scene	that
we	created	in	the	previous	recipe,	and	we	only	need	to	add	one	thing:	a	rainmaker	object
called	obj_rain.	Seems	simple	enough,	right?	Let’s	take	a	look	at	how	it	can	work.

How	to	do	it…
1.	 In	obj_rain,	add	a	Step	event.
2.	 Drag	a	code	block	to	the	Actions	box	and	add	the	following	code:

effect_create_above(ef_rain,	0,	0,	0,	c_white);

3.	 Place	an	instance	of	obj_rain	anywhere	in	the	room.

That’s	it!	Once	these	steps	have	been	completed,	go	ahead	and	test	it	out.

How	it	works…
As	I	mentioned	earlier,	this	recipe	was	simply	used	to	demonstrate	the	second	form	of
GameMaker’s	simple	effects.	Here,	we	used	effect_create_above()	to	create	the
selected	effect	above	all	the	other	objects	in	the	room.

Now,	if	you	were	to	run	this	effect	once,	it	would	create	a	few	drops	of	rain.	Since	we
added	this	code	to	a	Step	event,	however,	it	is	repeated	for	every	step	until	we	tell	it	to
stop.	The	arguments	in	this	function	work	just	as	they	do	with	effect_create_below,	but
since	we	are	using	ef_rain	for	our	effect,	there	are	some	minor	changes.	Firstly,	the	x	and
y	coordinates	(that	we	set	to	0,	0)	are	inconsequential.	With	ef_rain,	no	matter	where	you
place	them	in	the	room	or	what	coordinates	you	provide,	the	rain	will	always	have	the
default	settings	of	the	top-left	corner	of	the	room	(0,	0).	This	is	to	ensure	that	the	rain
particles	fall	across	the	entire	room	and	do	not	begin	abruptly	in	one	place	or	another.

Secondly,	the	argument	that	deals	with	the	size	of	the	particle	does	not	affect	the	size	of
the	individual	rain	drops.	Instead,	changing	the	value	from	0	to	2	will	alter	the	frequency
at	which	the	drops	fall.	Do	you	want	heavier	rain?	Then,	you	need	to	change	this	value.

Unfortunately,	it’s	not	possible	to	change	the	speed	of	the	rainfall	or	the	size	of	the	drops
of	water.	However,	it	is	possible	to	add	some	depth.	What	I	would	like	to	do	is	add	a
second	line	of	code	to	the	Step	event,	thereby	creating	a	second	instance	of	the	rain
particles.	Below	the	first	line,	I	add	the	following	code:

effect_create_below(ef_rain,	0,	0,	0,	c_gray);

By	adding	a	second	rainfall	behind	everything	and	with	a	darker	color,	we	can	add	depth
to	the	scene	by	creating	the	illusion	of	the	rain	falling	from	a	distance.

There’s	more…
If	you’re	interested	in	creating	weather	in	a	colder	climate,	using	ef_snow	in	place	of
ef_rain	is	the	way	to	go.	This	effect	will	provide	snowflakes	of	varying	sizes	that	float
downward	slowly	in	a	randomized	pattern	instead	of	downward	in	a	straight	line.	Once
again,	by	creating	two	instances,	one	above	and	one	below,	you	can	add	more	depth	to	the
weather	effect	and	increase	the	immersion	in	the	game	world.

Creating	an	explosion
What	kind	of	a	game	doesn’t	have	any	explosions?	Well,	I’m	sure	there	are	some	out
there,	but	do	you	really	want	to	play	them?	I	doubt	it*	and	that’s	why	we’re	going	to	learn
a	little	bit	about	GameMaker’s	particle	systems	by	creating	explosions.	This	will	be	much
more	coding-intensive	than	our	previous	forays	into	particles	but,	once	we’re	done,	you’ll
have	plenty	to	play	around	with.	GameMaker’s	particle	systems	and	particle	emitters	can
make	some	pretty	interesting	effects	that	add	a	lot	of	polish	with	just	a	little	effort.

*I	don’t	actually	doubt	it	but	just	go	with	it.

Getting	ready
We’re	going	to	start	from	scratch	for	this	recipe.	Due	to	the	colors	we’ll	be	using	and	the
nature	of	the	recipe,	I	recommend	that	you	change	the	background	color	of	the	room	that
you	set	to	black.	You’ll	also	need	two	objects:	obj_control	(our	controller	object)	and
obj_partEmit_exp	(our	particle	emitter	object).	Place	an	instance	of	obj_control	in	the
room.

How	to	do	it…
1.	 In	obj_control,	add	a	Step	event.
2.	 Place	a	code	block	in	the	Actions	box	and	enter	the	following	code:

if	mouse_check_button_pressed(mb_left)

{

				instance_create(mouse_x,	mouse_y,	obj_partEmit_exp);

}

3.	 In	obj_partEmit_exp,	add	a	Create	event	to	a	code	block.
4.	 Enter	the	following	code:

alarm[0]	=	room_speed*3;

partExp_sys	=	part_system_create();

partExp	=	part_type_create();

part_type_shape(partExp,	pt_shape_explosion);

part_type_size(partExp,	0.8,	1,	-0.01,	0);

part_type_scale(partExp,	1,	1);

part_type_speed(partExp,	1,	1,	0,	0);

part_type_direction(partExp,	0,	359,	0,	0);

part_type_gravity(partExp,	0.05,	90);

part_type_colour3(partExp,	c_red,	c_orange,	c_white);

part_type_alpha3(partExp,	0.5,	1,	0.75);

part_type_blend(partExp,	true);

part_type_life(partExp,	room_speed,	room_speed*2);

partExp_emit	=	part_emitter_create(partExp_sys);

part_emitter_region(partExp_sys,	partExp_emit,	x-80,	x+80,	y-60,	y+60,	

ps_shape_ellipse,	ps_distr_linear);

part_emitter_burst(partExp_sys,	partExp_emit,	partExp,	50	+	

irandom(30));

5.	 Add	an	event	to	Alarm[0].
6.	 Drag	a	code	block	to	the	Actions	box	and	add	the	following	code:

instance_destroy();

7.	 Add	a	Destroy	event	to	a	code	block.
8.	 Enter	the	following	code:

part_system_destroy(partExp_sys);

Once	these	steps	are	complete,	you	are	free	to	test	your	particle	system.	Run	the	program
and	try	clicking	on	the	room.

Don’t	quite	like	the	results?	Keep	reading	to	find	out	how	it	works	so	that	you	can	fine-
tune	what	you’ve	created.

How	it	works…
The	first	piece	of	code	is	pretty	self-explanatory:	all	it	does	is	create	an	instance	of	our
particle	emitter	object	(not	the	emitter	itself)	whenever	we	click	on	the	left	mouse	button.
The	real	magic	happens	within	the	emitter	object	itself	and	is	complex	in	terms	of	how
much	code	is	necessary,	but	satisfying	in	how	easy	it	is	to	customize	your	particles	once
the	code	is	in	place.

We’re	going	to	break	this	code	down	line	by	line	in	order	to	see	how	GameMaker’s
particles	work.

The	first	line	allows	us	to	keep	the	time	in	check	regardless	of	the	room’s	speed;	one
second	will	be	equal	to	one	second	whether	you’re	running	at	30,	60,	or	more
steps/second.

Moving	on,	the	next	line	is	one	of	the	most	important	lines.	This	is	where	you	can	set	up
the	particle	system	that	will	allow	you	to	create	the	particles	themselves	as	well	as	the
emitter	that	will	use	them.	You’ll	need	to	insert	it	in	any	object	where	you	wish	to	create
particles.	Here,	you’ll	name	your	particle	system	any	way	you	wish.	I’ve	named	this	one
partExp_sys	so	that,	when	I	need	to	debug	it,	I	know	that	this	is	a	particle	system	for	an
explosion	effect	and	this	variable	refers	to	the	overall	system.	Normally,	I	would	type	out
the	full	name	(to	make	everything	transparent	in	terms	of	function)	but,	as	you	can	see,	the
variables	must	be	typed	out	several	times.	This	naming	convention	allows	you	to	label	it
properly	without	making	it	too	long-winded.

Next,	we	give	our	individual	particles	a	name	by	creating	the	partExp	variable	(again,	it	is
short	yet	descriptive)	and	assigning	it	the	part_type_create()	function,	which	does
exactly	what	it	says	and	creates	a	new	particle	type.	This	must	be	done	before	we	define
the	particles	because,	without	this	line	of	code,	GameMaker	has	no	point	of	reference.

From	here,	we	get	into	the	attributes	of	our	particles.	This	list	(which	I	will	describe	line
by	line)	represents	some,	but	not	all,	of	the	options	you	have	when	creating	particles.	The
attributes	I’ve	chosen	here	allow	me	to	have	the	particles	look	and	act	how	I	want	them	to.
Let’s	take	a	look	at	what	we	used	to	describe	our	explosion	particles.	Keep	in	mind	that
the	order	of	the	code	is	important	here.

part_type_shape(index,	shape):	This	line	describes	the	shape	the	particles	have	to
take.	Here,	we	instruct	GameMaker	as	to	the	index	of	the	particle	we	wish	to	use
(partExp)	as	well	as	which	particle	we	choose	from	the	list	of	14	built-in	particles
(pt_shape_explosion).	If	you	do	not	wish	to	use	a	particle	from	this	list,	you	can	use
part_type_sprite	in	order	to	use	a	sprite	of	your	choice.	With	this	function,	you	can
even	customize	how	the	animation	can	be	displayed.

Once	the	shape	(or	sprite)	has	been	selected,	we	can	move	on	to	describe	how	the
particles	should	look	and	act.

part_type_size(index,	minimum,	maximum,	increase,	wiggle):	Getting	the
particle	size	values	is	very	important.	Here,	we	set	the	particle’s	minimum	start	size,
maximum	start	size,	and	how	much	the	size	changes	with	each	step	of	the	particle’s

life,	as	well	as	how	much	can	be	randomly	added	or	subtracted	from	the	particle’s
size	per	step.	We	set	different	values	for	the	minimum	and	maximum,	which	means
the	particles	will	begin	their	lives	at	random	sizes	within	these	parameters.	We	set	a
negative	value	for	the	increase,	which	means	our	particles	will	shrink	a	little	bit	at
each	step.	When	coding	this,	I	only	wanted	the	particles	to	shrink,	not	fluctuate	in
size.	For	this	reason,	the	wiggle	is	set	to	0.
part_type_scale(index,	xscale,	yscale):	Setting	the	particle’s	scale	is
straightforward,	but	you	should	note	that	you	can	set	the	scale	of	x	and	y	separately.
part_type_speed(index,	minimum	start	speed,	maximum	start	speed,

increase,	wiggle):	The	speed	at	which	your	particles	travel	is	paramount,	so	you’ll
find	yourself	using	this	function	every	time.	With	part_type_speed,	you	can	set	the
minimum	and	maximum	speed	values	at	which	your	particles	can	begin	their	lives.
You	can	then	instruct	GameMaker	to	change	this	speed	incrementally	with	each	step,
be	it	increasing	the	speed	(positive	number)	or	slowing	it	down	(negative	number).
You	can	also	change	the	speed	randomly	using	wiggle.	This	value	will	be	added	or
subtracted	with	every	step.
part_type_direction(index,	minimum	direction,	maximum	directions,

increase,	wiggle):	This	function	works	in	a	similar	way	to	part_type_speed.
Here,	instead	of	setting	your	particle’s	speed,	you’re	setting	your	particle’s	direction
in	terms	of	degrees.	As	we	discussed	in	the	previous	chapters,	GameMaker	reads	the
direction	in	360	degrees	beginning	with	0	degrees	as	right	and	going	counter-
clockwise	from	there.	We	want	our	particles	to	travel	every	which	way	(explosions
radiate	outwards),	so	the	starting	direction	of	our	particles	is	anywhere	between	0	to
359	degrees	(a	full	circle).	The	particles	can	also	change	the	direction	at	every	step
by	adding	a	positive	or	negative	value	to	the	increase	argument.	This	will	cause	the
value	you	entered	to	be	added	to	the	particle’s	current	direction	at	every	step,	causing
it	to	move	in	a	circle.	By	adding	a	value	to	the	wiggle	argument,	you	can	change	the
direction	randomly	as	this	value	will	be	added	to	the	particle’s	direction	in
conjunction	with	any	value	added	by	the	increase	argument.	We	set	both	of	these
values	to	0,	which	means	that	our	particles	will	not	change	direction	at	each	step.
part_type_gravity(index,	gravity	strength,	and	gravity	direction):
Adding	gravity	to	your	particles	isn’t	necessary,	but	it	does	make	some	interesting
effects.	With	this	function,	you	can	set	the	strength	of	the	gravity	(a	effecting	only	the
indexed	particles)	and	from	which	direction	it	can	pull	your	particles.	Our	particles
are	being	affected	by	a	very	slight	gravitational	pull	(0.05)	coming	from	above	(90
degrees,	in	line	with	GameMaker’s	direction).	This	gives	the	illusion	of	the	explosion
dissipating	and	turning	into	clouds	of	smoke;	they	begin	to	gently	float	up.
part_type_colour3(index,	1st	color,	2nd	color,	and	3rd	color):	This	is	one
of	the	several	options	used	for	setting	the	color	of	your	particles.	This	function	will
have	your	particles	begin	their	lives	as	the	1st	color	and	transition	to	the	2nd	and	3rd
colors	at	the	halfway	point	and	end	of	their	lives,	respectively.	Using
part_type_colour2	will	do	the	same	with	only	two	colors,	while
part_type_colour1	has	the	particles	sticking	to	the	color	of	your	choice	throughout.
You	can	also	use	part_type_colour_mix	to	blend	selected	colors	but,	if	you	really

want	control	over	the	display	colors	and	transitions	of	your	particles,	I	suggest	that
you	try	part_type_colour_rgb	or	part_type_colour_hsv.	These	functions	allow
you	to	set	the	minimum	and	maximum	numbers	for	RGB	(red,	green,	and	blue)	or
HSV	(hue,	saturation,	and	value),	depending	on	which	one	you	choose.
part_type_alpha3(index,	1st	alpha,	2nd	alpha,	and	3rd	alpha):	This
function	works	just	like	part_type_colour3.	Here,	instead	of	a	color,	you	need	to
choose	the	alpha	values	for	the	beginning,	middle,	and	end	stages	of	your	particle’s
life.
part_type_blend(index,	additive	blending):	This	function	dictates	whether
your	particles	will	be	drawn	or	not	using	additive	blending.	Additive	blending	will
add	together	the	luminosity	of	overlapping	particles,	making	light	colors	brighter
(until	white)	and	darker	colors	more	transparent	(until	black).	This	is	perfect	for	our
explosion	effect,	as	areas	with	a	higher	concentration	of	particles	will	make	the
display	much	brighter,	giving	the	illusion	of	a	greater	intensity.	For	this	reason,	we
set	the	additive	blending	value	to	true.
part_type_life(index,	minimum	lifespan,	and	maximum	lifespan):	The
part_type_life	function	does	exactly	what	you	think	it	does.	Using	this	function,
we	can	instruct	GameMaker	to	decide	each	particle’s	lifespan	in	terms	of	steps.	You
can	have	all	your	particles	last	for	the	same	length	of	time	by	setting	the	same	value
for	the	minimum	and	maximum	lifespan,	or	you	can	set	different	values	and	have
GameMaker	choose	a	random	number	between	them.	In	order	to	allow	our	particles
to	live	between	one	and	two	seconds,	no	matter	what	the	room	speed	is,	our
minimum	and	maximum	values	are	set	to	the	room	speed	or	the	room	speed	is
multiplied	by	2.

Once	we’ve	instructed	GameMaker	on	the	look	and	actions	we	wish	our	particles	to
assume,	we	must	provide	the	means	for	them	to	be	created	in-game.	Enter	the	particle
emitter.	Particle	emitters	do	exactly	as	their	name	suggests;	they	emit	particles.	Before	our
emitter	can	do	so,	however,	we	must	provide	GameMaker	with	an	adequate	description	as
to	how	it	should	go	about	doing	its	duties.

First,	we	must	place	the	emitter	in	a	variable.	To	do	this,	we	use	part_emitter_create.
With	this	function,	the	emitter	will	be	created	within	the	particle	system	that	we	provide	as
an	argument	(in	our	case,	partExp_sys)	and	will	therefore	be	able	to	work	within	the
system’s	parameters.

Next,	we	need	to	set	the	area	in	which	the	emitter	can	display	particles.	This	is	important
as	your	particles	will	serve	a	specific	purpose	and	must	be	displayed	appropriately.	In
order	to	do	so,	we	use	the	part_emitter_region	function	(a	particle	system,	index,	x
minimum,	x	maximum,	y	minimum,	y	maximum,	region	shape,	and	particle	distribution).
This	function	is	vital	to	how	your	system	is	displayed.	Setting	the	x	and	y	minimum	and
maximum	values	sets	the	region	in	which	the	particle	emitter	works.	It	does	this	in
conjunction	with	the	particle	region	shape.	By	setting	the	region	shape	to
ps_shape_ellipse,	we’re	giving	our	particles	a	round	area	in	which	they	can	be	displayed
(a	rectangle,	diamond,	and	line	being	the	other	options).	The	x	and	y	values	that	precede
this	argument	provide	the	coordinates	and	ranges	for	this	elliptical	shape.	In	our	case,

wherever	you	click	the	mouse,	that’s	where	the	emitter	will	be	placed.	From	there,	the
particles	can	be	displayed	80	pixels	to	the	left	and	right	of	the	center	of	the	object,	and	60
pixels	above	and	below	it.

Within	this	area,	we	need	to	also	specify	how	the	particles	will	be	distributed.	We’re	using
ps_distr_gaussian,	which	concentrates	the	majority	of	the	particles	in	the	center.	We
could	also	have	chosen	ps_distr_invgaussian	(particles	concentrated	on	region	edges)
or	ps_distr_linear	(particles	distributed	evenly	throughout),	but	the	Gaussian
distribution	works	best	for	an	explosion	effect.

Finally,	we	must	provide	instructions	for	how	our	particles	will	be	emitted.	For	this,	there
are	two	options:	part_emitter_burst	and	part_emitter_stream.	The	latter	will	provide
a	constant	stream	of	particles	for	which	you	need	to	provide	the	number	of	particles	you
create	at	each	step.	The	former,	the	one	that	we’ve	chosen,	emits	a	set	number	of	particles
but	only	once.	In	order	to	make	each	explosion	unique,	we’ve	set	the	emitter	to	burst	50
particles	plus	a	random	number	of	particles	from	1	to	30.

This	takes	care	of	the	creation	and	display	of	our	particle	system,	but	there’s	one	more
extremely	important	thing	to	do.	Whenever	you	create	a	particle	system,	it	sticks	around
until	you	remove	it.	This	means	that,	even	if	you	move	to	another	room	or	to	the	end	of
the	game,	the	particle	system	remains.	If	you	leave	this	as	is,	it	can	lead	to	memory	leaks
and	even	crash	your	game.	To	prevent	this,	we	must	destroy	the	particle	system,	thereby
removing	it	from	memory.	This	can	be	done	in	many	ways,	such	as	when	an	enemy	is
destroyed,	when	a	room	ends,	or	when	the	player	quits	or	restarts	the	game.	In	our	case,
we	used	an	Alarm	event	to	kill	our	particle	system.	When	an	instance	of
obj_partEmit_exp	is	created,	the	first	thing	it	does	is	set	an	alarm	to	count	down	from	3
seconds	(room_speed*3).	This	allows	more	than	enough	time	for	each	and	every	particle
created	to	run	its	lifespan	(which	is,	at	most,	2	seconds).	When	this	alarm	goes	off,	the
object	is	destroyed.	As	it	is	destroyed,	the	Destroy	event	runs	the	part_system_destroy
function.	This	destroys	whichever	particle	system	is	indexed	in	the	argument	(since	you
can	have	more	than	one	particle	system	in	place	at	once).	With	the	particle	system
destroyed,	it	is	no	longer	a	drain	on	the	memory	and	you	can	avoid	nasty	memory	leaks.

As	long-winded	as	this	explanation	is,	it	is	important	to	understand	that	particle	systems
are	technically	complex	but	can	be	straightforward	when	you	understand	your	options.	As
with	many	elements	of	GameMaker,	I	highly	recommend	that	you	play	around	with	values
and	variables	if	you	want,	to	see	what	you	can	create.

There’s	more…
Despite	the	number	of	functions	described	in	this	recipe,	there	are	actually	many	more	to
see.	Make	sure	that	you	check	out	all	of	the	information	on	particles,	available	at
http://docs.yoyogames.com/.

http://docs.yoyogames.com/

Adding	screen-shake
One	of	my	favorite	effects,	screen-shake,	is	a	great	way	to	add	some	depth	and	excitement
to	your	game.	As	you	may	have	guessed,	I’m	referring	to	the	visual	effects	of	making	the
screen-shake	in	order	to	simulate	the	effect	of	a	shock	or	impact.	Game	developers,
Vlambeer,	know	how	to	add	excitement	to	games,	such	as	Luftrausers	and	Nuclear
Throne,	by	correlating	the	action	with	screen-shake;	if	you	get	hit	or	an	explosion	goes	off,
you’ll	know	it.	Let’s	see	how	we	can	add	screen-shake	using	GameMaker.

Getting	ready
Screen-shake	often	takes	place	when	an	explosion	occurs	on	screen,	making	this	recipe	a
perfect	follow	up	to	the	previous	one.	Let’s	add	on	to	the	particle	recipe	using	the	same
project	file.	In	order	to	show	off	the	effect,	you’ll	need	to	add	some	visible	objects	to	the
background.	This	will	allow	you	to	see	the	screen	moving	back	and	forth.	I	added	several
instances	of	obj_block,	which	has	a	simple	32	x	32	square	for	its	sprite.	There’s	no	need
to	make	changes	to	the	particle	object;	we’ll	be	working	solely	with	obj_control.	We
will,	however,	need	to	make	use	of	views	within	the	room,	so	let’s	start.

How	to	do	it…
1.	 In	your	room,	click	on	the	Views	tab	and	make	sure	Enable	the	use	of	views	is

checked.
2.	 Check	the	box	next	to	Visible	when	room	starts.
3.	 Under	View	in	room	and	Port	on	screen,	set	the	w	and	h	values	to	640	and	480,

respectively.	This	is	based	on	the	default	room	size	of	1024	by	768.	Keep	the	x	and	y
values	as	0.

4.	 Based	on	the	preview	of	your	new	view,	place	instances	of	obj_block	around	the
visible	area.

5.	 In	obj_control,	add	a	Create	event.
6.	 Place	a	code	block	in	the	Actions	box	and	enter	the	following	code:

shake	=	false;

7.	 Open	the	code	block	located	in	the	Step	event.
8.	 Within	the	code	for	the	Left	Mouse	Button	check,	add	the	following	code:

shake	=	true;

alarm[0]	=	room_speed*0.8;

9.	 After	the	Left	Mouse	Button	code,	enter	the	following	code:

if	shake

{

				view_xview[0]	=	random_range(-5,	5);

				view_yview[0]	=	random_range(-5,	5);

}

10.	 Add	an	event	to	Alarm[0]	and	place	a	code	block	in	the	Actions	box.
11.	 Enter	the	following	code:

shake	=	false;

view_xview[0]	=	0;

view_yview[0]	=	0;

You	can	now	test	your	new	and	improved	explosion	effect	with	the	combined	power	of
particles	and	screen-shake.

How	it	works…
This	method	of	creating	screen-shake	effect	is	fairly	straightforward.	Using	views,	we
don’t	have	to	worry	about	moving	anything	within	the	room	(which	would	be	incredibly
costly,	memory-wise),	we	just	have	to	move	what	is	essentially	a	rudimentary	camera.

If	you’ve	ever	seen	an	episode	of	Star	Trek,	you	know	that	when	the	ship	is	hit	everyone
in	the	scene	is	shaken.	What	really	happens	that	is	the	actors	move	as	though	they’re	in	an
earthquake	zone	while	the	camera	man	shakes	the	camera	back	and	forth	to	make	it	more
believable.	What	we’ve	done	here	isn’t	much	different.	Views	allow	you	to	present	an	area
on	screen	that	is	smaller	than	the	room	itself.	If	you	were	to	make	a	large	platformer	level
and	test	it	without	views,	you	would	see	the	entire	level	all	at	once	and	your	player
character	would	be	miniscule.	To	get	around	this,	you	need	to	use	views	in	order	to	shrink
the	viewable	area	while	maintaining	the	room	itself.	In	the	Views	tab	of	the	room	editor,
we	can	do	this	by	setting	the	viewable	area	to	640	x	480	while	the	room	itself	is	set	at
1024	x	768.

Note
The	difference	between	View	in	room	and	Port	on	screen	is	that	the	former	dictates	the
viewable	area	while	the	latter	dictates	the	resolution	at	which	it	is	displayed.	If	you	set	the
View	in	room	to	640	x	480	in	a	1024	x	768	room,	an	area	of	640	x	480	would	be	visible
and	the	rest	would	be	cut	off.	If	you	were	to	then	set	the	Port	on	screen	values	to	320	x
240,	the	same	area	would	be	viewable	but	it	would	be	displayed	at	a	resolution	of	320	x
240.

To	shake	the	screen,	we	had	to	create	a	new	shake	variable.	When	we	click	on	the	left
mouse	button,	an	instance	of	the	particle	object	(explosion)	is	created.	Since	we	want	the
screen	to	shake	when	the	explosion	takes	place,	we	set	shake	to	true	and	set	an	alarm.	The
length	of	the	alarm	represents	how	long	the	shake	variable	will	remain	true	and	therefore
how	long	the	screen	will	shake.	Next,	we	instructed	GameMaker	to	follow	some
instructions	while	shake	is	true.	In	order	to	make	the	screen	appear	to	shake,	GameMaker
can	change	the	x	and	y	origins	of	the	view[0].	We	can	accomplish	this	by	changing
view_xview[0]	and	view_yview[0]	to	a	random	value	within	the	range	of	-5	to	5.	This
happens	at	every	step.	The	result	is	the	viewport	jumping	around	within	5	pixels	in	any
direction	for	a	period	of	less	than	a	second.	At	the	end	of	this	period	(the	length	of	time	it
takes	the	alarm	to	count	down),	shake	once	again	becomes	false	and	the	view	is	returned
to	its	original	x	and	y	coordinates	of	0.

Using	slow	motion
John	Woo	had	it	right:	slow	motion	makes	things	look	way	cooler.	Well,	as	far	as	action
goes,	anyway.	How	many	games	since	the	late	90s	have	made	use	of	slow	motion	in	one
way	or	another?	It	often	comes	in	the	form	of	some	kind	of	power	up	or	usage	meter,	but
it’s	there	and	it’s	a	lot	of	fun.	Do	you	want	to	add	slow	motion	to	your	game?	Let’s	take	a
look	at	one	way	in	which	you	can	accomplish	this	using	GameMaker.

Getting	ready
To	make	things	simpler,	we’ll	continue	to	use	the	project	file	from	the	two	previous
recipes.	In	addition	to	this,	who	doesn’t	want	to	see	explosions	in	slow	motion?	You	won’t
need	to	create	any	new	objects	here,	but	we’ll	be	working	with	obj_control.

How	to	do	it…
1.	 In	the	Create	event	of	obj_control,	add	the	following	code:

globalvar	timeSpeed;

globalvar	slowMo;

slowMo	=	false;

timeSpeed	=	1;

2.	 In	the	Step	event,	add	the	following	code	before	the	first	line	of	code:

room_speed	=	round(60*timeSpeed);

3.	 In	the	same	code	block,	add	the	following	code	after	the	existing	code:

if	keyboard_check_pressed(vk_space)

{

				if	slowMo	==	false

				{								slowMo	=	true;

				}

				else

				{

								slowMo	=	false;

				}

}

4.	 Add	a	new	code	block	to	the	same	Step	event.
5.	 Enter	the	following	code:

if	slowMo	==	true

{

				if	(timeSpeed	>	0.2)

				{

								timeSpeed	-=	0.05;

				}

				else	

				{

								timeSpeed	=	0.2;

				}

}

else	

{

				if	(timeSpeed	<	1)

				{

								timeSpeed	+=	0.05;

				}

				else

				{

								timeSpeed	=	1;

				}

}

You	are	now	ready	to	experience	basic	slow	motion	effects.	You	can	turn	slow	motion	on
and	off	by	pressing	the	Spacebar	key.

How	it	works…
This	recipe	uses	some	shortcuts	but	demonstrates	the	basic	theory	behind	slowing	down
the	time	in	your	game.	Everything	in	your	game	uses	the	room	speed	to	determine	timing.
By	changing	the	room	speed,	we	can	control	this	timing	by	slowing	the	game	down	(as
we’ve	done	here)	or	even	speeding	things	up.	Now,	you’ll	notice	that	we’ve	altered	the
room	speed	using	room_speed	=	round	equation	(60*timeSpeed).	This	means	that	we
are	setting	the	room	speed	using	the	code	(instead	of	leaving	that	to	a	value	in	the	room
editor).

We	do	this	by	finding	the	nearest	integer	when	multiplying	60	(our	desired	normal	room
speed)	by	the	value	of	timeSpeed.	When	the	spacebar	is	pressed,	the	slowMo	variable	is
either	turned	on	or	turned	off.	If	slowMo	becomes	true,	the	value	of	timeSpeed	drops	by
0.05	every	step	until	it	reaches	0.2.	It	stays	at	this	value	until	slowMo	is	turned	off	again,
at	which	point	the	value	of	timeSpeed	is	increased	by	0.05	every	step	until	it	reaches	the
default	value	we	set,	which	is	1.

At	its	slowest,	the	room	speed	becomes	12	steps	per	second,	which	means	that	the	time
passes	at	1/5th	the	speed	it	normally	does.

There’s	more…
As	I	mentioned	earlier,	this	is	one	way	of	achieving	the	effect	of	slow	motion.	Another
way	is	to	alter	individual	properties,	such	as	the	movement	speed	and	timers.	This	allows
greater	customization	and	different	objects	to	operate	at	different	speeds.	While	this	would
be	accomplished	in	the	same	way	as	the	preceding	recipe,	it	could	be	a	far	more	daunting
task	to	code	and	debug,	depending	on	the	number	and	complexity	of	particles,	as	you
would	need	to	alter	one	or	more	variables	for	each	object	affected	by	the	time	change.

Chapter	10.	Hello,	World	–	Creating	New
Dimensions	of	Play	Through	Networking
In	this	recipe,	we’ll	cover	the	following	topics:

Basic	networks
Asynchronous	play

Introduction
Today’s	multiplayer	experiences	fall	into	two	main	categories:	real-time	online	and
asynchronous	online	play.	Gone	are	the	days	of	sitting	on	the	couch	with	your	friends	as
you	beat	each	other	up	on	screen.	This	statement	isn’t	entirely	accurate	with	games,	such
as	Super	Smash	Bros,	which	proves	the	exception	to	the	rule,	but	there	is	an	obvious	trend
toward	an	online	play.	Many	primarily	single-player	games	are	being	augmented	with
multiplayer	game	modes,	while	many	others,	such	as	multiplayer	online	battle	arena
games,	for	example,	League	of	Legends,	are	strictly	online	multiplayer	games	with	no
single-player	campaigns.	To	give	you	some	idea	of	where	this	trend	is	going,	Riot	Games
(whose	only	developed	games	as	of	2015	is	League	of	Legends)	generated	$624	million
USD	in	2013	and	was	poised	to	break	the	$1	billion	(with	a	“B”)	USD	mark	in	2014.	This
is	solely	from	micro	transactions,	as	the	game	is	primarily	free	to	play.	Clearly,	having
online	gameplay	makes	up	for	a	lot	of	time	invested	by	players	all	over	the	world.
Keeping	this	in	mind,	let’s	take	a	look	at	how	GameMaker	handles	online	play.

Basic	networking
You	must	learn	to	walk	before	you	can	run.	Similarly,	you	must	learn	to	connect	before
you	can	play	online.	This	section	will	teach	you	the	basics	of	creating	a	network	using
GameMaker.

Connecting	a	client	to	a	server

Online	play
Here,	we’ll	take	a	look	at	one	type	of	online	play:	asynchronous	turn-based	play.	Just	like
in	video	games,	this	style	appears	in	real	life.	Consider	playing	football	versus	playing
chess.	In	football,	everyone	on	the	field	is	playing	simultaneously;	there	is	no	waiting
involved,	except	between	plays,	when	everyone	is	waiting.	This	is	synchronous	play.
Conversely,	in	chess,	after	you	make	a	decision	and	move	a	piece	on	the	board,	you	cannot
do	so	again	until	your	opponent	has	done	the	same.	You	can	survey	the	board	and	devise
your	strategy,	but	until	it	is	your	turn	once	again,	you	cannot	play.	This	is	asynchronous
play.	Using	our	newfound	knowledge	of	networking,	let’s	use	GameMaker	to	simulate
some	turn-based	play.

Setting	up	asynchronous	play	for	a	turn-based	game

Connecting	a	client	to	a	server
In	order	to	play	a	game	online,	you	must	first	connect	to	other	players.	In	the	early	days	of
computer	gaming,	this	was	done	with	a	direct	connection	from	one	computer	to	another.
These	days,	it	is	far	more	common	for	all	players	involved	to	connect	to	a	server	in	order
to	enjoy	multiplayer	games.	Let’s	take	a	look	at	how	to	create	a	server/client	relationship
using	GameMaker.

Getting	ready
Since	we’re	going	to	learn	how	to	connect	a	client	to	a	server,	we’re	going	to	need	both	a
client	and	server.	For	this	purpose,	you’ll	need	two	different	projects	open	at	one	time:
network_test_server.gmx	and	network_test_client.gmx,	each	with	a	single	room.
You’ll	need	to	create	specific	objects	during	this	tutorial	instead	of	in	preparation	for	it,	so
make	sure	you	pay	attention	to	the	project	file	you’re	working	with	at	all	times.

How	to	do	it…
1.	 In	network_test_server.gmx,	create	an	object	called	obj_server.
2.	 Add	a	Create	event	and	drag	a	code	block	to	the	Actions	box.
3.	 Enter	the	following	code:

server	=	network_create_server(network_socket_tcp,	9001,	8);

socket	=	noone;

4.	 Add	a	Networking	event,	which	is	found	under	Asynchronous.
5.	 Place	a	code	block	in	the	Actions	box	and	add	the	following	code:

typeEvent	=	async_load[?	"type"];

switch	(typeEvent)	

{

				case	network_type_connect:

				if	(socket	==	noone)	

				{

								socket	=	async_load[?	"socket"];

				}

				break;

				

				case	network_type_disconnect:

				socket	=	noone;

				break;

				case	network_type_data:

				buffer	=	async_load[?	"buffer"];

				buffer_seek	(buffer,	buffer_seek_start,	0);

				scr_packetReceive	(buffer);

				break;

}

6.	 Add	a	Game	End	event,	which	is	found	under	Other.
7.	 Add	a	code	block	and	enter	the	following	code:

network_destroy(server);

8.	 Create	an	object	called	obj_signal	and	add	a	Draw	event.
9.	 Add	a	code	block	containing	the	following	code:

draw_text(x,	y,	"Hello,	world.");

10.	 Create	a	script	called	scr_packetReceive	and	enter	the	following	code:

buffer	=	argument[0];

message_id	=	buffer_read(buffer,	buffer_u8);

switch(message_id)

{

				case	1:

instance_create(random(room_width),random(room_height),	obj_signal);

				break;

}

11.	 Place	an	instance	of	obj_server	anywhere	in	the	room.

12.	 In	network_test_client.gmx,	create	an	object	called	obj_client.
13.	 Add	a	Create	event	and	place	a	code	block	in	the	Actions	box.
14.	 Enter	the	following	code:

ip	=	"xxx.xxx.x.xxx";	//Replace	with	your	own	IP	address

socket	=	network_create_socket(network_socket_tcp);

connect	=	network_connect(socket,	ip,	9001);

buffer	=	buffer_create(1024,	buffer_fixed,	1);

15.	 Add	a	Game	End	event.
16.	 Place	a	code	block	in	the	Actions	box	and	enter	the	following	code:

network_destroy(socket);

buffer_delete(buffer);

17.	 Create	an	object	called	obj_button	and	add	a	Left	Mouse	Button	Pressed	event.
18.	 Place	a	code	block	in	the	Actions	box	and	enter	the	following	code:

with(obj_client)

{

buffer_seek(buffer,	buffer_seek_start,	0);

buffer_write(buffer,	buffer_u8,	1);

network_send_packet(socket,	buffer,	buffer_tell(buffer));

}

19.	 Place	an	instance	each	of	obj_client	and	obj_button	in	the	room.

Once	these	steps	are	complete,	you	are	free	to	test	your	new	server/client	relationship.	Run
a	test	of	network_type_server.gmx	and,	while	it	is	still	running,	run	a	test	of
network_type_client.gmx.	Press	the	button	and	see	what	happens!

How	it	works…
Alright,	take	a	deep	breath	now.	GameMaker’s	networking	code	may	seem	a	little
daunting,	but	it	is	much	easier	to	understand	once	you	know	how	to	read	it.	Let’s	unpack
the	code	in	order	to	understand	what	is	really	going	on	here.	Just	a	heads	up;	we’re	going
to	discuss	several	terms	and	coding	methods	that	haven’t	been	discussed	in	the	previous
chapters,	but	these	methods	can	be	used	to	facilitate	the	creation	of	new	games	in	the
future.

To	start	with,	you’ll	notice	that	we’re	using	two	different	project	files	in	order	to	complete
our	task.	The	reason	for	this	is	that	we’re	essentially	creating	two	elements:	the	program
or	game	(the	client)	and	server.	The	server	is	a	program	that	acts	as	the	central	hub	for	the
overall	game.	Its	purpose	is	to	control	the	flow	of	data,	collect	information	from	a	single
or	multiple	sources	(the	clients),	and	store	and/or	distribute	it	to	the	appropriate	connected
client(s).	This	can	happen	in	one	of	the	two	ways:	a	server-to-client	connection	or	a	client-
to-client	connection.	In	this	recipe,	we’ll	focus	on	a	server-to-client	connection.

Beginning	with	the	Create	event	in	the	server	program,	we	will	initialize	two	elements:
the	server	and	socket.	To	simplify	things,	let’s	take	a	look	at	the	definitions	of	each	of
them	and	their	respective	options:

Server:	Before	we	can	even	consider	sending	information	across	a	network,	we	need
to	initialize	the	server.	To	do	so,	we	use	the	network_create_server	function	(server
type,	port,	and	max	clients).	Let’s	break	this	down	even	further.	The	server	type	will
be	either	network_socket_TCP	or	network_socket_UDP.	The
network_socket_bluetooth	argument	is	technically	packaged	in	GameMaker	but	is
not	actually	supported,	so	don’t	waste	your	time	there.

The	main	difference	between	the	Transmission	Control	Protocol	(TCP)	and	User
Datagram	Protocol	(UDP)	is	that	the	TCP	is	connection-oriented	whereas	the	UDP
is	connectionless.	What	this	means	is	that,	while	information	sent	via	the	TCP	travels
in	a	stream	directly	from	one	connection	to	another	(such	as	information	sent	over	the
Internet),	information	sent	via	the	UDP	is	sent	via	loads	of	packets	all	at	once,	after
which	the	affiliation	is	deemed	complete.	The	TCP	is	slower	but	the	data	sent	is
guaranteed	to	arrive	in	the	order	in	which	it	was	sent.	The	UDP,	on	the	other	hand,	is
much	faster	but	the	data	is	not	even	guaranteed	to	arrive	at	all.	Because	of	its	inherent
speed,	the	UDP	is	much	better	suited	for	online	games	but,	because	we’re	sending
small	amounts	of	data	guaranteed	to	be	received	in	sequence,	we’re	using	TCP	for
this	recipe.	The	port	is	a	window	through	which	data	obtained	is	identified	by	a
numerical	value	ranging	from	0	(which	means	no	port)	to	65535.

There	are	many	well-known	and	reserved	port	numbers,	a	list	of	which	can	be	found
on	Wikipedia,	so	it	is	best	to	use	a	higher	number	when	you	assign	your	port.	For	this
reason,	we’re	using	a	port	number	that	is	over	9000.	The	client	will	use	the	same	port
to	connect	to	the	server	and	begin	sending	and	receiving	data.	Last	(and	the	most
straightforward)	is	the	maximum	number	of	clients	allowed	by	the	server.	Here,
we’re	setting	this	value	to	8,	which	means	a	total	of	eight	users	can	connect	directly

to	the	server.	According	to	the	documentation,	this	number	tops	at	1000	(a	seemingly
arbitrary	number),	but	many	users	report	issues	with	anything	more	than	64
simultaneous	users.	I	recommend	that	you	use	a	lower	cap	for	maximum	users	as	the
more	users	on	the	server,	the	greater	the	memory	strain.	If,	however,	your	game
requires	more	users,	this	is	still	a	possibility.

Socket:	A	network	socket	is	an	endpoint	of	data	that	listens	for	connections	via	the
assigned	port.	If	the	port	is	a	window	for	receiving	data,	then	the	socket	is	someone
standing	at	the	said	window,	looking	for	the	right	data.	When	we	created	the	server
object,	there	was	no	one	connected.	Therefore,	we	assign	the	noone	value	to	the
socket	variable.	This	value	will	change	as	soon	as	a	client	connects.

In	the	Networking	event,	we	can	see	how	the	server	handles	client	connections,
disconnections,	and	incoming	data.	Before	we	try	to	understand	how	this	is	done,	we	first
need	to	know	a	bit	about	data	structures.	Data	structures	are	used	to	store	and	recall	pieces
of	information	in	a	precise	fashion,	such	as	in	a	certain	order	in	a	list	or	in	a	certain
position	on	a	grid.	While	you	can	use	an	array	in	the	same	fashion,	calling	and	storing
more	complex	information	in	this	way	will	require	large	chunks	of	code	that	will	use
valuable	system	resources	to	unpack	and	execute.	For	this	reason,	YoYo	Games	added	the
use	of	six	types	of	data	structures	to	streamline	the	whole	process:	stacks,	queues,	lists,
maps,	priority	queues,	and	grids.	In	our	case,	we’ll	require	the	use	of	data	structure	maps
or	ds_maps.	One	ds_map	function	in	particular,	async_load,	is	created	in	the	Networking
event	automatically	and	cannot	be	used	outside	this	event.	The	async_load	is	already
populated	with	specific	keys,	which	is	all	that	we	will	require	from	it.	Normally,	when
using	ds_maps,	you	will	need	to	initialize	the	ds_map	function,	populate	it	with	the
information	(keys),	and	call	or	manipulate	this	information	using	specific	functions.	Since
async_load	is	already	initialized	and	contains	our	prerequisite	data,	we	can	refer	to	it
without	using	all	of	the	ds_map	functions	we	would	use	otherwise.	The	async_load	is
called	an	accessor	and	works	like	a	one-dimensional	array	in	which	there	is	only	one	set	of
keys.	In	async_load,	we	can	call	seven	different	keys,	depending	on	which	network	event
is	taking	place.	The	type,	id,	ip,	and	port	keys	are	common	to	all	network	functions
received	during	this	event.	If,	however,	the	event	is	a	connection	or	disconnection,	you	can
access	the	socket	key,	which	will	hold	the	socket	ID.	If	you	are	receiving	data,	you	will
have	access	to	the	buffer	key,	which	contains	the	buffer	ID,	and	the	size	key,	which
correlates	to	the	size	of	the	buffer	data	being	received.

What	we	need	at	this	point	is	for	GameMaker	to	know	what	type	of	networking	event	will
take	place	whenever	this	code	is	run.	To	do	this,	we	need	to	access	the	type	key	in
async_load	by	packing	async_load[?	"type]	into	the	typeEvent	variable.	Here,	we
need	to	use	a	switch	statement.	A	switch	statement	will	check	a	specific	value	and	then
execute	the	code	based	on	the	results.	This	result	can	also	be	achieved	by	running	several
if	statements,	but	a	switch	statement	will	do	it	with	less	code	while	using	fewer
resources.	In	our	case,	we	check	the	value	of	the	type	key	in	async_load.	If	type	is	equal
to	network_type_connect	(a	client	is	connecting),	then	we	check	whether	the	value	of
socket	is	noone.	If	this	is	the	case,	then	we	assign	the	value	of	the	async_load	key
socket	to	the	socket	variable	after	which	the	code	is	complete.	If	type	is	not	a

connection,	we	move	on	to	check	whether	it	is	equal	to	network_type_disconnect	(a
disconnection).	If	this	is	the	case,	we	assign	the	socket	variable	the	value	of	noone	and
end	the	code.	Otherwise,	we	move	on	to	verify	that	the	type	is	equal	to
network_type_data,	which	means	that	data	has	been	sent.	If	the	data	is	sent,	we	want
GameMaker	to	take	the	value	of	the	async_load	key	buffer	and	assign	it	to	our	buffer
variable.

In	order	to	access	the	information	in	the	buffer	(in	order	to	read	from	it	or	write	to	it),	we
need	to	tell	GameMaker	to	access	it	and	from	what	point.	For	this,	we	use	buffer_seek.
The	buffer_seek	requires	three	arguments:	the	buffer	you	wish	to	access	(we’re	accessing
the	buffer	we	stored	in	the	buffer	variable),	the	position	at	which	you	would	like	to	begin
the	said	access	(we’re	using	buffer_seek_start	to	start	from	the	beginning),	and	the	data
offset	value	(you	can	use	this	to	access	more	specific	points	by	searching	for	an	adjacent
position	x	bytes	away	from	your	set	starting	point;	we’ve	chosen	0,	so	we	are	not	using	an
offset	value).	The	switch	statement	will	run	through	this	code	until	it	finds	a	match.
You’ll	notice	that	we’re	also	using	the	break	function.	This	is	to	ensure	that	GameMaker
does	not	keep	comparing	the	value	of	type	after	it	has	found	a	match.	Using	break	is	not
necessary;	you	can	leave	it	out	and	let	the	code	run	in	its	entirety	without	any	issues	in
many	cases.	We’re	using	it	here	because	we’re	dealing	with	data	being	sent	across	a
network	and	we	want	to	save	resources	wherever	we	can.

Once	we’ve	accessed	the	beginning	of	the	buffer	and	data	is	incoming	from	the	client,	the
next	line	of	code	will	allow	GameMaker	to	run	the	scr_packetReceive	script	with	our
buffer	being	passed	to	the	script.	Scripts	are	very	similar	to	the	code	blocks	we	use,	as
they	are	written	using	GML.	The	difference	is	that	scripts	work	more	like	a	function,
taking	the	name	you	give	the	script	in	the	script	editor.	Just	like	any	other	function	in
GML,	your	script	will	require	arguments	in	order	to	be	executed.	These	arguments	are
passed	to	the	script	itself,	which	is	to	be	used	in	the	code.	For	example,	our	script	has	one
argument	to	which	we	assign	the	contents	of	the	buffer	variable.	In	the	script	code,	this
becomes	argument[0],	as	it	is	the	first	(and	in	this	case	only)	argument	we	use.	Once	your
code	reaches	the	script,	it	will	be	run	just	like	a	standard	function	with	the	arguments	you
enter,	providing	the	data	necessary	to	execute.

Note
Scripts	can	be	saved	and	loaded	into	GameMaker	via	.txt	files,	making	scripts	incredibly
useful	by	allowing	you	to	create	prefab	code	blocks	that	can	be	used	in	future	projects.

To	understand	this	further,	let’s	take	a	look	at	the	script	we	created	here.	When	a	client
sends	data	to	the	server,	we	run	the	script	with	our	buffer,	which	is	provided	as
argument[0].	In	the	script,	we	pass	argument[0]	(our	buffer)	to	the	buffer	variable.
Next,	we	take	the	buffer_read	function	(which	should	be	self-explanatory)	and	pack	it
into	the	message_id	variable.	The	buffer_read	function	requires	two	arguments	of	its
own:	the	index	of	the	buffer	to	read	and	the	data	type	constant.	The	data	type	constant
used	here	is	buffer_u8,	which	is	an	unsigned,	8-bit	integer	that	ranges	from	0-255;	in	our
case,	it’s	1.	For	our	purposes,	this	simply	tells	the	server	that	the	button	has	been	pressed
(we’ll	take	a	look	at	why	in	a	moment).	The	message_id	is	then	used	for	another	switch

statement.	However,	for	our	recipe,	we’re	only	offering	one	outcome:	if	the	information
has	been	passed	from	the	client	(that	is,	the	button	has	been	pressed),	then	we	need	to
execute	this	code.	The	code	in	question	simply	creates	an	instance	of	obj_signal	in	a
random	place	on	the	screen	under	the	server	project.	The	only	thing	obj_signal	does	is
draw	the	text	Hello,	World,	wherever	it	is	created,	letting	us	know	that	we	were
successful	in	sending	data	across	the	network.

Taking	a	slight	step	back,	the	final	thing	we	must	do	is	destroy	the	server	whenever	the
game	ends.	This	is	done	to	kill	the	connection,	as	an	unchecked	server	connection	left
open	is	never	a	good	thing.	This	also	prevents	memory	leaks.	To	do	so,	we	use
network_destroy(server)	to	end	this	particular	connection	on	the	server	side.

Now,	let’s	create	a	client.	As	mentioned	earlier,	since	we’re	trying	to	establish	a
connection	between	two	programs,	we	need	to	create	a	separate	program	for	the	client.	As
with	any	Internet	connection,	our	connection	requires	an	IP	address,	specifically	yours.
For	the	purpose	of	learning	how	to	create	a	network	connection	in	GameMaker,	we	will
store	the	address	in	the	ip	variable.	There	are	different	ways	to	find	your	IP	address,
including	entering	What	is	my	IP	address?	in	a	Google	search.	One	caveat	is	that	you
need	to	know	the	difference	between	a	private	network	address	and	public	address.	Your
private	network	address	is	the	IP	address	of	the	particular	device	you	are	using,	as	it
pertains	to	your	network.	When	you	connect	to	your	router,	your	device	is	assigned	an	IP
address	that	will	likely	resemble	192.168.xxx.xxx	in	which	xxx	is	a	number	between	0
and	255.	Your	public	IP	address	is	the	number	assigned	to	your	Internet	access	point	(such
as	your	modem);	it	follows	the	same	layout	as	a	private	address,	but	it	is	unique	to	your
connection.	When	you	store	your	IP	address	in	the	ip	variable,	you	have	two	options:	you
can	connect	two	devices	to	the	same	private	network	by	entering	your	private	IP	address,
or	you	can	connect	two	devices	to	the	Internet	by	entering	your	public	IP	address.	Since
you	would	need	to	connect	to	two	separate	access	points	to	test	the	latter,	I	would
recommend	that	you	use	your	private	IP	address	for	the	moment.

Next,	we	need	to	create	a	network	socket	using,	you	guessed	it	right,
network_create_socket(network	type).	This	is	where	we	establish	the	client’s	point	of
connection	to	the	server.	This	is	followed	by	creating	the	connection	itself	using
network_connect(),	in	which	we	plug	the	socket,	IP	address,	and	port	information	in
order	to	connect	to	the	proper	server.	Once	this	is	complete,	we	can	use
buffer_create(size,	type,	and	alignment)	to	create	the	buffer	that	will	send	our	data
to	the	server.	The	arguments	required	to	use	this	function	are	quite	important	as	they
determine	how	the	buffer	data	is	stored	and	accessed.	The	buffer’s	size	is	fairly
straightforward.	This	is	the	size	of	the	buffer	itself	in	bytes.	We’ve	chosen	1024,	which	is
quite	small.	Keep	your	buffer	size	in	mind	when	you	program	network	connections;	use	a
large	enough	buffer	that	can	store	the	data	you	need	to	transmit	at	once	but	not	so	large
that	it	will	slow	down	or	crash	the	program.	The	buffer	type	can	be	of	four	different
varieties:	a	fixed	buffer,	grow	buffer,	wrap	buffer,	and	fast	buffer.	The	fixed	buffer,	as
the	name	implies,	has	a	fixed	buffer	size,	which	remains	constant.	If	there	is	more	data
than	your	buffer	has	room	for,	any	remaining	data	will	be	lost.	I	prefer	to	use	this	type
whenever	possible,	especially	if	there	is	little	data	being	sent.	The	grow	buffer	will	grow	to

accommodate	additional	data	but	comes	at	a	cost:	the	buffer	will	grow	until	it	reaches	a
capacity	that	can	handle	the	amount	of	data	you	want	to	store,	but	it	does	so	incrementally
and	copies	its	entire	contents	every	time	it	does.	This	can	prove	to	be	a	drain	on	the	CPU
and	is	likely	to	slow	down	your	game.	It	is	viable	to	use	this	type	of	buffer	in	your
projects,	but	make	sure	you	give	it	a	healthy	size	to	begin	with.

A	large	buffer	may	use	more	memory,	but	the	CPU	drain	to	increase	it	should	be	a	last
resort.	A	wrap	buffer	is	similar	to	a	grow	buffer	in	such	a	way	that	it	can	accommodate
more	incoming	data,	but	it	does	this	by	looping	to	the	start	of	the	buffer	and	overwriting
the	information	whenever	the	buffer’s	end	is	reached.	I	don’t	often	recommend	this	buffer
type	as	you	have	no	control	over	what	data	is	overwritten.	The	last	type	of	buffer	is	the
fast	buffer,	which	can	only	accommodate	8-bit	integers,	signed	or	unsigned,	and	nothing
more.	Finally,	the	buffer’s	alignment	tells	GameMaker	to	write	data	in	intervals.	An
alignment	of	1	byte	ensures	that	every	piece	of	data	will	remain	sequential,	with	no	gaps.
An	alignment	of	2	bytes,	however,	will	assign	a	space	in	groups	of	two.	This	means	that	a
1-byte	chunk	of	data	will	take	up	two	data	spaces,	with	the	second	one	being	empty.	A	4-
byte	chunk	of	data	will	fit	in	the	parameters,	which	means	that	it	will	take	up	two	sets	of
two	data	spaces	with	no	empty	spaces	between	them	and	the	next	chunk	of	data.	You	can
get	by	mostly	using	an	alignment	of	1	byte,	but	it	can	prove	to	be	faster	to	use	a	larger
alignment	if	some	data	is	sent	in	larger	chunks.	A	useful	analogy	I	once	heard	is,	“It’s
easier	to	read	separate	words	than	a	block	of	text	with	no	spaces.”	We’ve	created	our
buffer;	now,	it’s	time	to	use	it.

The	client’s	create	event	sets	up	the	connection	at	this	end,	but	the	button	object	is	where
the	action	is.	This	is	where	we	tell	GameMaker	to	take	some	data,	hand	it	to	the	buffer,
and	pass	it	to	the	server	to	take	action.	The	data	we’re	sending	in	this	example	is	minimal,
mind	you,	but	it	demonstrates	exactly	how	a	network-to-server	connection	works.	Given
that	the	connection	is	made	through	the	client	object,	we	first	need	to	tell	GameMaker	that
we’re	executing	the	code	using	the	client	object,	even	though	the	button	object	is	the	one
being	clicked.	For	this,	we	need	to	use	a	with()	construction.	As	we’ve	seen	in	the
previous	chapters,	a	with	construction	simply	executes	the	given	code	as	if	it	is	executed
by	the	client	object	itself.	Now	that	this	has	been	established,	we	need	to	find	the
beginning	of	the	buffer,	with	no	offset,	using	buffer_seek	and	then	begin	writing	to	it
using	buffer_write(buffer,	type,	value).	Here,	we	must	tell	GameMaker	which
buffer	we	wish	to	use	(the	one	we	packed	into	the	buffer	variable),	what	type	of	data
we’re	entering	(an	unsigned	8-bit	integer	between	0	and	255),	and	the	actual	contents	of
that	data	(in	our	case,	the	value	is	1).	We’re	writing	to	the	buffer	only	once,	but	you	can
write	several	pieces	of	data	using	buffer_write	multiple	times.	Since	we’re	using	a	TCP
connection,	however,	you	need	to	keep	in	mind	that	the	order	in	which	the	data	is	written
to	the	buffer	is	the	same	order	in	which	it	will	be	read	at	the	other	end.	We’re	now	ready	to
send	our	data	to	the	server.	For	this,	we’re	using	network_send_packet(the	socket,
buffer,	and	size).	The	socket	and	buffer	are	already	packed	into	their	respective
variables,	so	that	part	is	easy	to	read,	but	the	buffer	size	is	a	little	convoluted.	When	we
created	the	buffer,	we	set	its	size	to	1024.	This	was	the	maximum	size,	the	largest	amount
of	data	we	could	pack	at	once.	When	we	send	the	data	to	the	server,	it’s	not	so	much

interested	in	this	information	as	it	is	in	knowing	how	much	data	is	currently	packed	into
the	buffer.	What	buffer_tell	does	is	provides	the	seek	position	of	the	end	of	the	data.
When	you’re	driving	your	car,	you	don’t	want	to	know	how	much	gas	your	tank	can	hold,
you	want	to	know	how	much	is	in	it.	The	buffer_tell	is	your	gas	gauge.

Note
In	our	example,	buffer_tell	will	return	a	value	of	1,	since	we’re	only	sending	one	byte
of	data.	Now,	if	you	set	the	alignment	to	a	higher	value,	say	4,	and	pack	1-byte	of	data,
buffer_tell	will	still	return	1.	If	you’re	sending	two	pieces	of	data,	1-byte	and	4-bytes,
buffer_tell	will	return	8	because	it	takes	the	spaces	left	by	the	alignment	when	returning
the	seek	position.

Assuming	that	you	entered	your	private	network	IP	address	in	the	ip	variable,	you	can
actually	test	this	recipe	on	one	machine.	Simply,	open	both	the	projects	at	once,	run	the
server,	and	then	run	the	client.	Once	the	client	is	connected,	the	Compile	tab	at	the	bottom
of	the	screen	on	the	server	project	will	show	that	the	client	is	connected	successfully.	Once
the	connection	is	established,	clicking	on	the	button	on	the	client	object	will	pack	data	(in
this	case,	a	value	of	1)	into	the	buffer	and	send	it	to	the	server.	The	server	will	see	that	a
network	event	has	taken	place	and,	on	recognizing	that	the	data	has	been	sent,	it	will	run
the	script.	The	script	will	take	the	data	(again,	a	value	of	1)	and,	because	the	data	has	been
sent,	it	will	create	an	instance	of	obj_signal	in	a	random	place	on	the	screen	in	the
compiled	server	project,	demonstrating	that	the	connection	remains	successful.	As	I
mentioned	earlier,	you	can	pack	multiple	pieces	of	data	into	the	buffer	to	be	sent	at	once.
If	you	do	this,	the	script	will	read	all	of	it	and	act	accordingly	every	time	you	press	the
button.

In	a	very	large	nutshell,	this	is	how	GameMaker	handles	a	simple	client-to-server
connection.

Setting	up	asynchronous	play	for	a	turn-
based	game
I	have	a	confession	to	make:	Some	of	my	favorite	games	are	turn-based.	That’s	right,	I
said	it.	I	love	games	such	as	XCOM	and	Heroes	of	Might	and	Magic.	When	I	was	13,	I
would	unknowingly	spend	my	entire	day	playing	Sid	Meier’s	Civilization	II.	I	would	go	to
the	computer	room	(where	there	were	no	windows)	in	the	morning	and	not	come	out	until
dark.	I	would	mostly	play	against	the	game’s	AI	but	with	faster	Internet	speeds	and	a
greater	focus	on	social	gaming,	I	can	enjoy	these	games	with	anyone,	anywhere.	Let’s	take
a	look	at	how	to	create	a	2	two-player	turn-based	minesweeper	game	using	GameMaker.

Getting	ready
This	recipe	requires	only	one	project	file,	though	you’ll	need	to	run	it	twice	in	order	to	test
it.	Before	we	begin,	you’ll	need	a	few	objects:	obj_tileRed	and	obj_tileBlue	(each	with
their	respective	sprites	and	origins	set	to	0,0),	obj_connection,	obj_game,	and
obj_tileParent.	You	will	also	need	a	768	x	768	room.

How	to	do	it…
1.	 In	each	of	obj_tileRed	and	obj_tileBlue,	set	the	parent	to	obj_tileParent.
2.	 In	obj_tileParent,	add	a	Create	event.
3.	 Drag	a	code	block	to	the	Actions	box	and	add	the	following	code:

isBomb	=	false;

4.	 Add	a	Left	Mouse	Button	Pressed	event	to	a	code	block.
5.	 Enter	the	following	code:

if	myTurn	=	true

{

				if	!isBomb

				{

								buffer	=	buffer_create(1024,	buffer_fixed,	1);

								buffer_seek(buffer,	buffer_seek_start,	0);

								buffer_write(buffer,	buffer_u8,	1);

								receiver	=	noone;

								if	currentServer	=	true

								{

												receiver	=	obj_connection.client;

								}

								else

								{

												receiver	=	obj_connection.socket;

								}

								network_send_packet(receiver,	buffer,	buffer_tell(buffer));

								buffer_delete(buffer);

								myTurn	=	false;

								instance_destroy();

				}

				else

				{

								game_end()

				}

}

6.	 In	obj_game,	add	a	Create	event	and	drag	a	code	block	to	the	Actions	box.
7.	 Enter	the	following	code:

var	i,	j;

for	(i=0;	i<12;	i++)

				for	(j=0;	j<12;	j++)

				{

								if	((i	mod	2==0	&&	j	mod	2==0)||(i	mod	2==1	&&	j	mod	2==1))

								{

												instance_create(64*i,	64*j,	obj_tileRed);

								}

								else

								{

												instance_create(64*i,	64*j,	obj_tileBlue);

								}

				}

scr_dropBombs(10);

8.	 In	obj_connection,	add	a	Create	event.
9.	 Place	a	code	block	in	the	Actions	box	and	enter	the	following	code:

globalvar	currentServer;

globalvar	myTurn;

globalvar	player_id;

networkType	=	network_socket_tcp;

ip	=	"xxx.xxx.x.xxx";	//Replace	with	your	own	IP	address

socket	=	network_create_socket(networkType);

connection	=	network_connect(socket,	ip,	9001);

currentServer	=	false;

player_id	=	"Player	2";

myTurn	=	false;

if	(connection	<	0)

{

player_id	=	"Player	1";

myTurn	=	true;

server	=	network_create_server(networkType,	9001,	1);

network_destroy(socket);

currentServer	=	true;

client	=	noone;

}

10.	 Add	a	Networking	event.
11.	 Place	a	code	block	in	the	Actions	box	and	enter	the	following	code:

typeEvent	=	async_load[?	"type"];

switch(typeEvent)

{

case	network_type_connect:

if(!currentServer)	

break;

if	(client	==	noone)

{

client	=	async_load[?	"socket"];

}

break;

case	network_type_disconnect:

if	(!currentServer)	break;

client	=	noone;

break;

case	network_type_data:

var	buffer	=	async_load[?	"buffer"];

buffer_seek(buffer,	buffer_seek_start,	0);

scr_packetReceive(buffer);

break;

}

12.	 Add	a	Draw	event	to	a	code	block.
13.	 Enter	the	following	code:

draw_text(2,	0,	player_id);

if	myTurn	=	true

{

				draw_text(room_width/2,	0,	"Go!");

}

else

{

				draw_text(room_width/2,	0,	"Please	wait.");

}

14.	 Add	a	Game	End	event	and	drag	a	code	block	to	the	Actions	box.
15.	 Enter	the	following	code:

if	(currentServer)

{

				network_destroy(server);

}

else

{

				network_destroy(socket);

}

16.	 Create	a	script	called	scr_packetReceive	and	enter	the	following	code:

buffer	=	argument[0];

message_id		=	buffer_read(buffer,	buffer_u8);

myTurn	=	true;

17.	 Create	a	second	script	called	scr_dropBombs	and	enter	the	following	code:

var	bombs,	bombMax;

bombMax	=	argument[0];

bombs	=	ds_list_create();

ds_list_clear(bombs);

with(obj_tileParent)

{

				ds_list_add(bombs,	id);

}

ds_list_shuffle(bombs);

for	(i=0;	i<bombMax;	i++)

{

				with(ds_list_find_value(bombs,	i))

				{

								isBomb	=	true;

				}

}

ds_list_destroy(bombs);

18.	 Place	one	instance	each	of	obj_connection	and	obj_game	in	the	room.

Once	this	is	complete,	you	are	ready	to	test	it.	Open	two	instances	of	the	project	and	run
one	of	them.	Once	the	game	is	active	(and	the	board	has	been	generated),	run	the	second
one	and	you’re	ready	to	go.

How	it	works…
This	recipe	works	in	a	similar	manner	to	the	previous	recipe	with	one	major	difference:
instead	of	having	a	dedicated	server,	each	of	the	client	programs	takes	turns	to	act	as	the
server	for	the	other.	Let’s	take	a	look	at	how	this	can	be	accomplished.	Many	aspects	of
this	recipe	are	straightforward	or	have	been	discussed	in	the	previous	chapters,	so	we’ll
stick	to	the	heavier	stuff.

Let’s	begin	with	the	board	itself.	First,	we	need	to	lay	out	our	tiles	in	a	checkerboard
pattern.	To	accomplish	this,	we	use	nested	for	loops	to	establish	the	origin	points	for	each
object	in	our	grid	(the	objects	being	obj_tileRed	and	obj_tileBlue).	We	set	the	room	to
768	x	768	so	that	we	can	run	these	loops	until	both	i	and	j	equal	12.	During	these	loops,
GameMaker	will	check	for	instances	in	which	i	mod	2	and	j	mod	2	are	equal	to	0,	or	i
mod	2	and	j	mod	2	are	equal	to	1.	In	these	cases,	GameMaker	will	create	an	instance	of
obj_tileRed	in	which	the	x	and	y	coordinates	are	i	and	j	times	64,	respectively.
Otherwise,	GameMaker	will	create	an	instance	of	obj_tilBlue	using	the	same	equation
for	the	coordinates.	This	creates	a	pattern	that	alternates	between	the	two	objects,	thus
creating	a	checkerboard	effect.	After	this,	we	run	our	scr_dropBombs	script	in	order	to
place	bombs	in	random	places,	corresponding	to	this	grid,	with	the	argument	acting	as	the
maximum	number	of	bombs	to	be	placed	(10,	in	our	case).

If	you	take	a	look	at	the	bomb	script,	you	can	see	that	we	are	creating	a	data	structure	list
that	is	similar	to	the	one	that	we	discussed	in	Chapter	9,	Particle	Man,	Particle	Man	–
Adding	Polish	to	Your	Game	with	Visual	Effects	and	Particles.	Here,	we	must	initiate,
populate,	and	access	data	in	this	ds_list.	First,	we	use	ds_list_create	to	initialize	the
list	and	ds_list_clear	to	ensure	that	it	is	empty.	We	use	a	With	construction	in
conjunction	with	obj_tileParent	(which	is	connected	to	each	of	the	tiles)	and	we	add	the
object	ID	to	each	position	in	the	list.	The	ID	is	the	identification	number	assigned	to	every
object	in	the	room,	which	is	based	on	the	order	in	which	it	was	created.	Once	this	is
complete,	we	use	ds_list_shuffle	to	randomize	the	list	of	IDs	and	use	a	for	loop	to	take
the	first	10	and	turn	them	into	bombs	by	making	isBomb	true.	When	we’re	done	with	this,
we	use	ds_list_destroy	to	destroy	the	list	and	move	on.

Next,	we’ll	set	up	the	most	important	part	of	our	multiplayer	experience:	the	connection.
In	the	Create	event	of	our	connection	object,	you	will	see	some	familiar	functions.	As
mentioned	earlier,	we	must	create	our	connection,	but	things	are	a	little	different	this	time.
We	want	GameMaker	to	create	a	client	connection	and	search	for	a	server.	If	a	server	is
found,	the	currentServer	variable	becomes	false	(for	obvious	reasons),	the	player_id
variable	becomes	Player	2	(making	you	Player	2),	and	myTurn	becomes	false	(which
means	Player	1,	the	server,	goes	first).	Now,	if	there	is	no	server	running	when	this	takes
place,	GameMaker	will	return	a	value	of	less	than	0.	If	this	happens,	we	make	some
changes.	The	player_id	variable	becomes	Player	1,	myTurn	becomes	true,	we	create	a
server	and	destroy	the	socket	(client),	currentServer	becomes	true,	and	the	client
becomes	noone	because	there	is	no	client	connected	as	yet.	All	of	this	is	going	to	happen
when	you	run	the	first	instance	of	the	project	for	testing.	Because	of	this,	the	first	one	will
take	a	little	longer	to	fully	run,	and	you’ll	see	the	socket	timeout	before	it	stops	trying	to

connect	as	a	client	and	starts	as	a	server.

The	next	most	important	thing	to	know	is	what’s	going	on	in	the	Networking	event.	This
code	is	very	similar	to	the	code	found	in	the	server	project	of	the	previous	recipe.	This	is
where	we	use	async_load	ds_map	and	a	switch	event	to	determine	what	type	of	a
network	event	we’re	working	with	at	the	moment	and	how	it	should	be	handled.	Did	you
notice	what’s	different?	Because	the	role	of	the	server	alternates	between	what	is
essentially	the	two	instances	of	the	same	program,	when	connecting	or	disconnecting,	we
need	to	check	whether	we’re	currently	playing	the	server	or	not.	If	we’re	currently	playing
the	server,	we	hit	a	break.	We	don’t,	however,	need	to	do	this	if	the	network	event	is	the
incoming	data.	If	this	is	the	case,	we	know	for	sure	that	we’re	playing	the	server.	If	the
data	is	incoming,	we	need	to	run	our	Packet	Receive	script,	but	before	we	check	this	out,
let’s	take	a	look	at	what	happens	when	we	make	our	move	in	the	game.

If	we	take	a	look	at	the	Left	Mouse	Button	Pressed	event	in	obj_tileParent,	we	can	see
where	our	buffer	is	created.	First	things	first,	though,	GameMaker	needs	to	know	if	it’s	our
turn.	If	it’s	not	our	turn,	then	none	of	the	next	code	is	compiled.	Assuming	that	it	is,	we
need	to	send	some	data	through	the	buffer	to	the	server.	Once	again,	we	will	use	a	fixed
buffer	with	a	1024	byte	size.	There	is	more	than	enough	room	to	send	the	data	required.
Here,	we’re	only	packing	one	piece	of	data	into	the	buffer:	the	number	1,	which	will	act	as
our	argument.	Since	this	information	is	in	the	form	of	an	integer	between	0	and	255,	we
can	use	buffer_u8	to	send	it	to	the	other	side.	Once	we’ve	done	this,	we	must	then
determine	the	data’s	recipient.	Since	we	would	normally	send	this	from	the	client	to	the
server	via	the	socket	and	as	there	is	no	permanent	server,	we	need	to	establish	who	the
receiver	is	using	an	if/else	statement.	We	first	set	the	receiver	variable	to	noone	and	then
set	our	stipulations.	If	we’re	the	current	server,	the	receiver	becomes
obj_connection.client	otherwise,	it	becomes	obj_connection.socket.	Once	this	has
been	established,	we	can	use	network_send_packet	to	send	our	data	through.	Next,	we
must	delete	the	buffer,	remove	our	turn	(set	myTurn	to	false),	and	then	destroy	the	tile	that
was	clicked	in	the	first	place.	Now,	all	of	this	takes	place	only	if	the	tile	is	not	a	bomb.	If	it
is	a	bomb,	GameMaker	ignores	all	of	the	code	and	simply	ends	the	game	because	the
bomb	went	off.

Once	the	data	is	sent	to	the	acting	server,	the	server	must	then	read	the	data	and	act	upon
it.	In	this	case,	we	only	tell	GameMaker	that	a	network	event	has	taken	place,	at	which
point	we	set	myTurn	to	true	and	start	the	process	all	over	again.

There’s	more…
When	testing	this	recipe,	you	may	be	curious	to	know	whether	the	bombs	are	populating
properly	or	not,	or	where	they	are.	One	concern	could	be	whether	the	bombs	are
populating	in	the	same	tiles	from	client-to-client	or	not.	In	order	to	put	your	mind	at	ease,
you	need	to	perform	the	following	steps:

1.	 Create	a	64	x	64	sprite	of	a	black	circle	called	spr_bomb.
2.	 Add	a	Draw	event	to	obj_game.
3.	 Drop	a	code	block	in	the	Actions	box	and	add	the	following	code:

with(obj_tileParent)

{

				if	isBomb	=	true

				{

								draw_sprite(spr_bomb,	-1,	x,	y);

				}

}

This	will	draw	the	bomb	sprite	on	top	of	any	tile	in	which	isBomb	is	true,	which	means
that	the	tile	is	a	bomb.	Go	ahead	and	test	it	out!

Index
A

analogue	joystick	acceleration
utilizing	/	Utilizing	analogue	joystick	acceleration,	How	to	do	it…,	How	it
works…

asynchronous	play
setting	up,	for	turn-based	game	/	Setting	up	asynchronous	play	for	a	turn-based
game,	How	to	do	it…,	How	it	works…

audio	basics
about	/	Audio	basics

B
background	data

about	/	Background	data
background	music

importing	/	Importing	and	playing	background	music,	How	to	do	it,	How	it
works
playing	/	Importing	and	playing	background	music,	How	to	do	it,	How	it	works

basic	enemies
programming	/	Programming	basic	enemies,	How	to	do	it…,	How	it	works…

break	function	/	How	it	works…

C
character

making	jump	/	Getting	ready,	How	it	works…,	There’s	more…
moving,	on	grid	/	Moving	a	character	on	a	grid,	How	to	do	it,	How	it	works
controlling,	with	mouse	/	Controlling	a	character	with	a	mouse	and	keyboard,
Getting	ready,	How	to	do	it,	How	it	works,	There’s	more
controlling,	with	keyboard	/	Controlling	a	character	with	a	mouse	and	keyboard,
How	to	do	it,	How	it	works

characters
moving,	by	tilting	device	/	Getting	ready,	How	it	works…

clamp()	function	/	How	it	works
client

connecting,	to	server	/	Connecting	a	client	to	a	server,	How	to	do	it…,	How	it
works…

collision	options
density	/	How	it	works
restitution	/	How	it	works
collision	group	/	How	it	works
linear	damping	/	How	it	works
angular	damping	/	How	it	works
friction	/	How	it	works

controller
setting	up	/	Setting	up	a	controller,	How	it	works…

controls
keyboard	controls	/	Keyboard	controls
mouse	controls	/	Mouse	controls
gamepad	controls	/	Gamepad	controls
touch	controls	/	Touch	controls
Tilt	controls	/	Tilt	controls

cursor
following	/	Following	the	cursor,	See	also

D
2D	movement

creating	/	Creating	2D	movement,	How	to	do	it…,	How	it	works…
3D	audio

about	/	3D	audio
day/night	cycle

creating	/	Changing	day	to	night,	How	to	do	it,	How	it	works
Doppler	effect

replicating,	with	emitters	/	Replicating	the	Doppler	effect	with	emitters,	Getting
ready,	How	to	do	it

draw_text()	function	/	How	it	works

E
enemy	pathfinding

creating	/	Creating	enemy	pathfinding,	Getting	ready,	How	to	do	it,	How	it
works

explosion	effect
creating	/	Creating	an	explosion,	How	to	do	it…,	How	it	works…

F
flashlight

about	/	Creating	a	flashlight
creating	/	Getting	ready,	How	it	works

flickering	torch
about	/	Making	a	flickering	torch
creating	/	Getting	ready,	How	to	do	it,	How	it	works

force
applying,	via	magnets	/	Applying	force	via	magnets,	How	it	works

G
game	feedback

about	/	Game	feedback
GameMaker

about	/	Introduction
day/night	cycle,	creating	/	Changing	day	to	night

GameMaker	physics
about	/	Introduction
physics	engine	101	/	Physics	engine	101
gravity	and	force	/	Gravity	and	force
applying	/	Physics	in	the	environment
advanced	physics-based	objects	/	Advanced	physics-based	objects

game	over	screen
adding	/	Adding	a	game	over	screen,	Getting	ready,	How	to	do	it,	How	it	works

gamepad	controls
about	/	Gamepad	controls

game	screens	and	menus
defining	/	Game	screens	and	menus

game	settings
creating	/	Creating	game	settings,	Getting	ready,	How	to	do	it,	How	it	works

Graphical	User	Interface	(GUI)
about	/	Introduction

gravity
alternating	/	Alternating	gravity

grid
objects,	dragging	/	Dragging	objects	on	a	grid,	How	it	works
character,	moving	/	Moving	a	character	on	a	grid,	How	to	do	it,	How	it	works

grid-based	movements	/	Grid-based	movements
GUI

defining	/	GUI	basics
GUI	layer

used,	in	full	screen	mode	with	views	/	Using	the	GUI	layer	in	full	screen	mode
with	views,	Getting	ready,	How	to	do	it,	How	it	works

H
hazards

creating	/	Creating	hazards,	How	to	do	it…,	How	it	works…
HUD

setting	up,	with	code	/	Setting	up	a	basic	HUD	with	code,	How	to	do	it
making	scalabale	/	Making	your	HUD	scalable,	How	it	works

I
Image	Editor	/	How	to	do	it…
ini_write_string()	method	/	How	it	works
items/characters

dragging	/	Drag	and	drop	items/characters
dropping	/	Drag	and	drop	items/characters

K
keyboard

used,	for	controlling	character	/	Controlling	a	character	with	a	mouse	and
keyboard,	Getting	ready,	How	to	do	it,	There’s	more

keyboard	controls
about	/	Keyboard	controls

L
League	of	Legends	game	/	Introduction
light

transitions	/	Light	transitions
light	effects

about	/	Light	effects
flashlight,	creating	/	Creating	a	flashlight
flickering	torch,	creating	/	Making	a	flickering	torch

lighting	/	Basic	lighting
light	switch

used,	for	lighting	up	room	/	Creating	a	room	with	a	light	switch,	How	it	works,
There’s	more

listener	orientation
adjusting	/	Adjusting	the	listener	orientation

listeners
adding	/	Adding	sound	emitters	and	listeners,	How	to	do	it,	How	it	works

M
Motion	Planning

URL	/	See	also
mouse

used,	for	controlling	character	/	Controlling	a	character	with	a	mouse	and
keyboard,	How	to	do	it,	How	it	works,	There’s	more

mouse	controls
about	/	Mouse	controls

move_towards_point	function	/	How	it	works
moving	platform

creating	/	Creating	a	moving	platform,	How	it	works
multiple	inputs	/	Multiple	inputs

N
network	socket

about	/	How	it	works…
network_create_server	function	/	How	it	works…
non-player	character	(NPC)	/	How	it	works

O
objects

moving,	by	tilting	device	/	Getting	ready,	How	it	works…
dragging,	on	grid	/	Dragging	objects	on	a	grid,	How	it	works
lighting,	with	spot	light	/	Lighting	objects	with	a	spot	light,	How	it	works

objects,	that	use	physics
creating	/	Creating	objects	that	use	physics,	How	to	do	it,	How	it	works

online	play
about	/	Online	play

onscreen	objects
dragging	/	Dragging	onscreen	objects,	Getting	ready,	How	it	works

P
particles

about	/	Particles
used,	to	simulate	kicking	up	dust	/	Using	particles	to	simulate	kicking	up	dust,
Getting	ready,	How	to	do	it…
URL	/	There’s	more…

paths
using	/	Paths
setting	/	Setting	a	path,	Getting	ready,	There’s	more

pause	screen
creating	/	Making	a	pause	screen,	Getting	ready,	How	it	works

physics	engine	101
about	/	Physics	engine	101

player
moving	/	Moving	your	player,	Getting	ready,	How	to	do	it…,	How	it	works…

player	health
setting	up	/	Setting	up	player	health	and	lives,	How	to	do	it…,	How	it	works…

player	lives
setting	up	/	Setting	up	player	health	and	lives,	How	to	do	it…,	How	it	works…

player	selection
saving	/	Saving	player	selection	and	score,	How	to	do	it,	How	it	works

point-and-click	interface
using	/	Using	a	point-and-click	interface,	Getting	ready,	How	to	do	it…

point_direction	function	/	How	it	works,	There’s	more
projectiles

adding	/	Adding	projectiles,	How	to	do	it…,	How	it	works…

R
rainfall	effect

simulating	/	Simulating	rainfall,	Getting	ready,	There’s	more…
room

lighting,	with	light	switch	/	Creating	a	room	with	a	light	switch,	How	to	do	it,
There’s	more

rope
creating	/	Making	a	rope,	How	to	do	it,	How	it	works

Run	button
adding	/	Adding	a	Run	button,	How	it	works…

S
save	data

encrypting	/	Encrypting	and	decrypting	save	data,	How	to	do	it,	How	it	works
decrypting	/	Encrypting	and	decrypting	save	data,	How	to	do	it,	How	it	works

save	systems	/	Save	systems
score

saving	/	Saving	player	selection	and	score,	How	to	do	it,	How	it	works,	There’s
more

scoring	mechanism
creating	/	Creating	scoring	mechanism,	How	to	do	it…

screen	shake	effect
adding	/	Adding	screen-shake,	How	to	do	it…,	How	it	works…

server
client,	connecting	to	/	Connecting	a	client	to	a	server,	How	to	do	it…,	How	it
works…
about	/	How	it	works…

situational	sound	effects
implementing	/	Implementing	situational	sound	effects,	Getting	ready,	How	to
do	it,	There’s	more

slow	motion	effect
using	/	Using	slow	motion,	How	to	do	it…,	How	it	works…

sound	effects
about	/	Sound	effects

sound	emitters
adding	/	Adding	sound	emitters	and	listeners,	How	to	do	it,	How	it	works

splash	pages
creating	/	Creating	splash	pages,	How	to	do	it,	How	it	works

spot	light
used,	for	lighting	objects	/	Lighting	objects	with	a	spot	light,	How	it	works

sprite
animating	/	Animating	a	sprite,	How	to	do	it…,	How	it	works…

Super	Mario	World	game	/	Introduction
Super	Smash	Bros	game	/	Introduction
swipes

using	/	Using	swipes,	How	to	do	it…,	How	it	works…

T
tap	control

adding	/	Adding	tap	control,	How	it	works…
The	Legend	of	Zelda

A	Link	to	the	Past	game	/	Introduction
Tilt	controls

about	/	Tilt	controls
title	screen

adding	/	Adding	a	title	screen,	How	to	do	it,	How	it	works
touch	controls

about	/	Touch	controls
Transmission	Control	Protocol	(TCP)	/	How	it	works…
turn-based	game

asynchronous	play,	setting	up	/	Setting	up	asynchronous	play	for	a	turn-based
game,	How	to	do	it…,	How	it	works…,	There’s	more…

U
User	Datagram	Protocol	(UDP)	/	How	it	works…

W
win/lose	scenarios

creating	/	Creating	win/lose	scenarios,	See	also

Y
YoYo	Games

URL	/	There’s	more

	GameMaker Cookbook
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why Subscribe?
	Free Access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Sections
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Game Plan – Creating Basic Gameplay
	Introduction
	Animating a sprite
	Getting ready
	How to do it…
	How it works...
	There's more...
	See also
	Moving your player
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Adding projectiles
	Getting ready
	How to do it...
	How it works...
	See also
	Creating hazards
	Getting ready
	How to do it...
	How it works...
	Programming basic enemies
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Setting up player health and lives
	Getting ready
	How to do it...
	How it works...
	There's more...
	Creating scoring mechanism
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Creating win/lose scenarios
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	2. It's Under Control – Exploring Various Control Schemes
	Introduction
	Keyboard controls
	Mouse controls
	Gamepad controls
	Touch controls
	Tilt controls
	Creating 2D movement
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Adding a Run button
	Getting ready
	How to do it...
	How it works...
	Making your character jump
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Using a point-and-click interface
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Following the cursor
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Setting up a controller
	Getting ready
	How to do it...
	How it works...
	Utilizing analogue joystick acceleration
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Adding tap control
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using swipes
	Getting ready
	How to do it…
	How it works…
	There's more…
	Moving characters or objects by tilting a device
	Getting ready
	How to do it...
	How it works...
	There's more...
	3. Let's Move It – Advanced Movement and Layout
	Introduction
	Drag and drop items/characters
	Grid-based movements
	Paths
	Multiple inputs
	Dragging onscreen objects
	Getting ready
	How to do it
	How it works
	Dragging objects on a grid
	Getting ready
	How to do it
	How it works
	Moving a character on a grid
	Getting ready
	How to do it
	How it works
	There's more…
	Setting a path
	Getting ready
	How to do it
	How it works
	There's more
	Creating enemy pathfinding
	Getting ready
	How to do it
	How it works
	There's more…
	See also
	Controlling a character with a mouse and keyboard
	Getting ready
	How to do it
	How it works
	There's more
	See also
	4. Let's Get Physical – Using GameMaker's Physics System
	Introduction
	Physics engine 101
	Gravity and force
	Physics in the environment
	Advanced physics-based objects
	Creating objects that use physics
	Getting ready
	How to do it
	How it works
	Alternating gravity
	Getting ready
	How to do it
	How it works
	There's more
	Applying force via magnets
	Getting ready
	How to do it
	How it works
	Creating a moving platform
	Getting ready
	How to do it
	How it works
	Making a rope
	Getting ready
	How to do it
	How it works
	There's more
	5. Now Hear This! – Music and Sound Effects
	Introduction
	Audio basics
	Sound effects
	3D audio
	Importing and playing background music
	Getting ready
	How to do it
	How it works
	There's more
	Implementing situational sound effects
	Getting ready
	How to do it
	How it works
	There's more
	Adding sound emitters and listeners
	Getting ready
	How to do it
	How it works
	There's more
	Adjusting the listener orientation
	Getting ready
	How to do it
	How it works
	Replicating the Doppler effect with emitters
	Getting ready
	How to do it
	How it works
	6. It's All GUI! - Creating Graphical User Interface and Menus
	Introduction
	GUI basics
	Game screens and menus
	Setting up a basic HUD with code
	Getting ready
	How to do it
	How it works
	Making your HUD scalable
	Getting ready
	How to do it
	How it works
	Using the GUI layer in full screen mode with views
	Getting ready
	How to do it
	How it works
	There's more
	Adding a title screen
	Getting ready
	How to do it
	How it works
	Creating splash pages
	Getting ready
	How to do it
	How it works
	There's more
	Adding a game over screen
	Getting ready
	How to do it
	How it works
	7. Saving the Day – Saving Game Data
	Introduction
	Background data
	Save systems
	Creating game settings
	Getting ready
	How to do it
	How it works
	There's more
	Making a pause screen
	Getting ready
	How to do it
	How it works
	There's more
	Saving player selection and score
	Getting ready
	How to do it
	How it works
	There's more
	Encrypting and decrypting save data
	Getting ready
	How to do it
	How it works
	8. Light 'em up! – Enhancing Your Game with Lighting Techniques
	Introduction
	Basic lighting
	Light transitions
	Light effects
	Creating a room with a light switch
	Getting ready
	How to do it
	How it works
	There's more
	Lighting objects with a spot light
	Getting ready
	How to do it
	How it works
	There's more
	Changing day to night
	Getting ready
	How to do it
	How it works
	There's more
	Creating a flashlight
	Getting ready
	How to do it
	How it works
	Making a flickering torch
	Getting ready
	How to do it
	How it works
	9. Particle Man, Particle Man – Adding Polish to Your Game with Visual Effects and Particles
	Introduction
	Particles
	Game feedback
	Using particles to simulate kicking up dust
	Getting ready
	How to do it...
	How it works...
	There's more...
	Simulating rainfall
	Getting ready
	How to do it...
	How it works...
	There's more...
	Creating an explosion
	Getting ready
	How to do it...
	How it works...
	There's more...
	Adding screen-shake
	Getting ready
	How to do it...
	How it works...
	Using slow motion
	Getting ready
	How to do it...
	How it works...
	There's more...
	10. Hello, World – Creating New Dimensions of Play Through Networking
	Introduction
	Basic networking
	Online play
	Connecting a client to a server
	Getting ready
	How to do it...
	How it works...
	Setting up asynchronous play for a turn-based game
	Getting ready
	How to do it...
	How it works...
	There's more...
	Index

