
THE EXPERT’S VOICE® IN SQL SERVER

Expert
SQL Server
2008 Encryption

Michael Coles and Rodney Landrum

Design and manage encryption as part
of your total security solution

www.allitebooks.com

http://www.allitebooks.org

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Expert SQL Server 2008 Encryption
Dear Reader,

The barbarians are at the gate, and it's your job to keep them at bay. Encryption
is truly the last line of defense in your total security strategy. Customers are
demanding data security, governments are legislating it, and CIOs are order-
ing it. Fortunately SQL Server 2008 provides major improvements in database
encryption to help you fulfill your obligations to protect critical data.

Database encryption is a topic that seems to be misunderstood by many
professionals. I wrote this book to explain encryption in simple terms, help
clear away misconceptions about the role of encryption, and to help SQL Server
developers and DBAs implement encryption in the database as part of their
total security strategy. Encryption is a powerful defense, and not so difficult to
implement as you might think. I believe in encryption, apply it in my job, and
want you to have it as part of your “toolkit” too.

In this book you'll learn how to create and manage encryption keys, includ-
ing symmetric keys, asymmetric keys, and certificates. You'll learn how to take
full advantage of SQL Server's built-in encryption functionality, including cell-
level encryption, Extensible Key Management (EKM), and Transparent Data
Encryption (TDE). You'll learn how to set up and configure secure communi-
cations between your SQL Server and your client applications. You’ll explore
advanced SQL Server encryption functionality, like extending the core func-
tionality through use of the SQL CLR.

Along the way, you'll gain a better understanding of your obligations to pro-
tect sensitive data under your control and the basics of assessing threats to your
data and systems. As you learn the concepts in the book, you can test-drive SQL
Server's encryption features at the same time via the dozens of downloadable
code samples that follow the book closely.

Enjoy the journey!
Michael Coles

Rodney Landrum Author of

Pro SQL Server 2008
Reporting Services

Pro SQL Server 2005
Reporting Services

US $49.99

Shelve in
Databases / SQL Server

User level:
Intermediate–Advanced

THE APRESS ROADMAP
 Expert SQL Server

2008 Encryption

Pro Full-Text Search
in SQL Server 2008

Pro T-SQL 2008
Programmer’s Guide

Accelerated
SQL Server 2008

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details
on $10 eBook version

ISBN 978-1-4302-2464-8

9 781430 224648

54999

Michael Coles Author of

Pro T-SQL 2008
Programmer’s Guide

Pro SQL Server 2008 XML

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

i

Expert SQL Server 2008
Encryption

 ■ ■ ■

Michael Coles and Rodney Landrum

www.allitebooks.com

http://www.allitebooks.org

ii

Expert SQL Server 2008 Encryption

Copyright © 2009 by Michael Coles and Rodney Landrum

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2464-8

ISBN-13 (electronic): 978-1-4302-2465-5

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the benefit of
the trademark owner, with no intention of infringement of the trademark.

Lead Editor: Jonathan Gennick
Technical Reviewer: Steve Jones
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell, Gary

Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper,
Frank Pohlmann, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Managers: Beth Christmas and Debra Kelly
Copy Editor: Katie Stence
Compositor: folio 2
Indexer: Carol Burbo
Artist: April Milne

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please e-mail info@apress.com, or visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

www.allitebooks.com

http://www.allitebooks.org

iii

For Devoné and Rebecca

—Michael Coles

www.allitebooks.com

http://www.allitebooks.org

iv

Contents at a Glance

■Foreword .. xiii

■About the Authors... xiv

■About the Technical Reviewer ... xv

■Acknowledgments ... xv

■Introduction .. xvi

■Chapter 1: Introduction to Encryption ...1

■Chapter 2: Encryption Key Management ...21

■Chapter 3: Symmetric Encryption..47

■Chapter 4: Asymmetric Encryption..73

■Chapter 5: Extensible Key Management ..111

■Chapter 6: Transparent Data Encryption ...127

■Chapter 7: Hashing ..151

■Chapter 8: SQL CLR Cryptography ...167

■Chapter 9: Indexing Encrypted Data ..185

■Chapter 10: Encrypting Connections to SQL Server 2008....................................203

■Chapter 11: Regulatory Requirements ..231

■Appendix A: SQL Server 2008 Encryption Glossary ...243

■Appendix B: Encryption Checklist..259

■Appendix C: Luna EKM Setup...271

■Index..289

www.allitebooks.com

http://www.allitebooks.org

 v

Contents

■Foreword .. xiii
■About the Authors... xiv
■About the Technical Reviewer ... xv
■Acknowledgments ... xv
■Introduction .. xvi
■Chapter 1: Introduction to Encryption ...1

What Is Encryption? ...1
Do I Need Encryption? ...1

Are You Storing Confidential or Sensitive Business Information
 in Your Databases? ..2
Are You Subject to Laws and Regulations that
 Require You to Encrypt Your Data? ..2
Are You Under Contractual or Professional Obligation
 to Protect Your Data? ...2

A Security Mind-Set...3
Why Encrypt the Database?...3
Threat Modeling...4

A Short History of Information Security ...7
The First Ciphers ...7
The Rise of Cryptanalysis ..9
Bellaso Strikes Back..10
War and Security ...12
How to Share a Secret...14

www.allitebooks.com

http://www.allitebooks.org

■CONTENTS

vi

Weapons of Mass Encryption ..16
Official Ciphers of the US Government ..16

SQL Server Encryption Tools..18
Encryption in SQL Server 2000..18
Encryption in SQL Server 2005..18
Encryption in SQL Server 2008..19

Summary ...19
■Chapter 2: Encryption Key Management ...21

SQL Encryption Key Hierarchy ...21
Key Management...25
Key Distribution ...25

Service Master Key..26
Backing Up the SMK..26
Restoring the SMK...27
Altering the SMK..27

Database Master Key...29
Creating a DMK..29
Altering a DMK...29
Backing Up a DMK...31
Restoring a DMK..31
Dropping a DMK...32
Opening a DMK..32
Closing a DMK ...34

Other Keys and Certificates ...34
Permissions ...34
Catalog Views ..36

sys.asymmetric_keys..36
sys.certificates ..37
sys.credentials ..37
sys.cryptographic_providers ...38
sys.crypt_properties..39
sys.key_encryptions..39
sys.symmetric_keys..40

Dynamic Management Views and Functions...40
sys.dm_cryptographic_provider_algorithms...41

www.allitebooks.com

http://www.allitebooks.org

 ■CONTENTS

vii

sys.dm_cryptographic_provider_keys ..41
sys.dm_cryptographic_provider_properties ...42
sys.dm_cryptographic_provider_sessions..43
sys.dm_database_encryption_keys..44

Summary ...45
■Chapter 3: Symmetric Encryption..47

Symmetric Keys...47
Creating and Protecting Symmetric Keys..48
Encrypting Data ...49
Decrypting Data...53
Adding an Authenticator ..54
Automatic Key Management ...56
Duplicating Symmetric Keys..59
Temporary Keys...60
Layering Symmetric Keys..61

Encryption with Passphrases...66
Encryption Algorithms..67

AES Family...68
DES Family ..70
RC2 and RC4..71

Summary ...72
■Chapter 4: Asymmetric Encryption ...73

Asymmetric Keys ...73
Generating and Installing Asymmetric Keys..74
Encrypting Data ...78
Protecting Asymmetric Keys with Passwords ...82
Encrypting Data Directly with Asymmetric Keys ...83
Removing the Private Key..85

Certificates...85
Creating Certificates..85
Creating SQL Server Self-Signed Certificates ...88
Encrypting Data ...89
Encrypting Data Directly with Certificates...91
Backing Up Certificates ...93

Digital Signatures ..94

www.allitebooks.com

http://www.allitebooks.org

■CONTENTS

viii

Signing Modules ..96
Database-Level Permissions ...97
Server-Level Permissions..104

Summary ...109
■Chapter 5: Extensible Key Management ..111

What Is EKM?...111
Configuring EKM ..112
Creating Asymmetric Keys...115

Protecting Symmetric Keys ...116
Encrypting Data Directly ..117

Creating Symmetric Keys ..121
EKM Limitations...123
Summary ...125

■Chapter 6: Transparent Data Encryption...127
What Is TDE?..127

What Is Encrypted..129
What Isn’t Encrypted ...129
Advantages of TDE...130
Enabling TDE ...131

Using TDE with EKM ..133
Checking Status...134
Backups and Compression ..135
Windows-Based Encryption Options..137

Encrypting File System..137
BitLocker ...141

Summary ...150
■Chapter 7: Hashing ...151

Cryptographic Hash Functions...151
SHA Hash Function ..152

Using HashBytes SHA-1...153
HashBytes SHA-1 Limitations..155
Hash Function Extension ...156
SHA-1 Security ..158

Message Digest Family of Hash Functions ..158

 ■CONTENTS

ix

MD5 Hash Function ...158
MD5 Security ...161
MD4 and MD2..162

CHECKSUM Functions ..162
Summary ...166

■Chapter 8: SQL CLR Cryptography..167
Encrypting By Passphrase ...167

EncryptAesByPassPhrase Function ...168
DecryptAesByPassPhrase..173
Testing the Functions ..176

SQL CLR Hashing ...177
GetHash ...177
SaltedHash ..181

Additional SQL CLR Considerations ...184
Summary ...184

■Chapter 9: Indexing Encrypted Data ...185
The Problem of Searching Encrypted Data ..185
Storing Partial Plaintext Values..190
Storing Hashed Values...193
Storing Salted Hashed Values..196
Storing Hash-Based Message Authentication Codes...198
Range Queries ...201
Summary ...202

■Chapter 10: Encrypting Connections to SQL Server 2008....................................203
Encryption Concepts ..204
Network Monitor ..204
SQL Server Encryption Out of the Box ...206
Applying a Self-Signed Certificate...209
Requesting a Certificate from a Valid CA...214
Enforcing Encryption Between Server and Client ..218

Forcing Encryption at the Server ...219
Forcing Encryption from Clients with SQL Native Client..220

Creating and Testing Secure Connections...221
SQL Server Management Studio Example ...222

■CONTENTS

x

SQL Server Reporting Services Example ...226
Performance ..228
Summary ...229

■Chapter 11: Regulatory Requirements ..231
Regulations ..231

Health Insurance Portability and Accountability Act..232
Sarbanes-Oxley ...232
Fair and Accurate Credit Transactions Act ..232
Federal Information Security Management Act ...232
Personal Information Protection and Electronic Documents Act232
Data Protection Act..233
Data Protection Directive...233
California SB 1386 and AB 1298..233
Massachusetts Data Protection Law ...233
Other State Laws ...233

Contracts ...234
What to Encrypt ...234

Personal Identification...235
Personal Credit and Financial Data ...236
Health and Medical Records..236
Sensitive Corporate Data...237

Example: From $15 Billion to Bankruptcy..238
Some People Never Learn ...238
And It Goes On ...240

Summary ...241
■Appendix A: SQL Server 2008 Encryption Glossary ...243
■Appendix B: Encryption Checklist..259

Threat Modeling...259
Driving Encryption Design..263
Security Review...263
Encryption Planning Checklist ...269

■Appendix C: Luna EKM Setup...271
Prerequisites..271
Installing Client Software...272

 ■CONTENTS

xi

Configuring the HSM..272
Setting System Time ...274
Network Configuration...275
Generating a New Certificate...275
Creating Partitions...276

Configuring Client Access..278
Registering HSM Certificate ..278
Creating and Upload Client Certificate...279

Setting Up SQL Server EKM ...284
Configuring SQL Server ...285
Verifying EKM Provider Functionality...286

■Index..289

xiii

Foreword

“What do you think of encryption?” Michael Coles asked me this question at the Microsoft MVP Summit.
This began a discussion of public keys, private keys, symmetric keys, and encryption algorithms.

When Michael asked me if I had ever used database encryption in my career, I had to say no. He
suggested that I should not underestimate the power of encryption and suggested I might want to
explore the possibilities of it. Since then, I have implemented database encryption for many of my
clients–who are now much safer from unauthorized access to their data.

Every age creates its own methods of implementing information security. In simpler times, kings
sealed important letters with wax containing an impression of the royal seal. If the letter was opened the
seal would break, making it easy to determine that the message had been compromised. Presently, this
same concept has evolved into cryptographic hashing.

In the courier example, it is quite possible that even if the letter is properly sealed and safe with us,
once we send it along the courier can be compromised. SQL Server 2008 allows you to encrypt
communications between server and client.

To be quite honest, not many people know much about encryption beyond the usual public key and
private key story. Few database experts talk about symmetric and asymmetric keys, which are just the tip
of the iceberg. SQL Server has come a long way in this respect, with encryption taking on a whole new
meaning in SQL Server 2008. There are many new features to secure your data, like Extensible Key
Management, Transparent Data Encryption, cryptographic hashing, and access to SQL CLR
cryptographic functions.

In the case of Transparent Data Encryption, the whole database is encrypted, adding security at the
cost of some overhead to your SQL Server box. For the greatest efficiency, SQL Server allows you to
offload data encryption, decryption, and encryption key management to third-party hardware devices
with Extensible Key Management.

As I mentioned, data is everywhere–in fact, talking in Terabytes (TB) is a current reality. There are
two major challenges when large data is dealt with. First, encrypting it takes a good amount of resources.
Using it once it’s encrypted is another big challenge. Searching TB data takes a long time in a regular
database anyway–think about how much time it will take in an encrypted database.

Security is definitely one of the most important aspects of life in the Information Era. In fact,
information security is one of the most vital pillars of our Information Age. As an example of the
importance, consider the following questions: Do you leave the house unlocked when you have many
valuables at home? Or, more specifically, how much time, money, and effort would it take to undo the
damage if your identity was stolen? What kind of damage would it do to your customers if their
information was compromised?

Michael always touches on uncommon subjects. I think his background of serving as a sergeant in
the Army gives him the spirit to explore areas that have not been explored. I have not previously read a

■ FOREWORD

xiv

single book that addresses the subject of encryption for SQL Server 2008. Looking back, I do not know of
another book written specifically on this subject for SQL Server until this one.

Michael and I discussed all of the above when we were at the summit. I have always known him as
an excellent author. His expertise in XML and Full-Text Search is well known in the industry. He is an
expert who puts complex subjects into simple words. No matter how complicated and complex the topic
he is addressing, the outcome is always sweet like chocolate.

I especially like the manner in which the authors have explained the significance of encryption.
There are many concepts that are domain specific, but there are few topics which are common to all.
The book’s appendixes are a must read for anyone who is in the planning state of their security
strategies. What makes this book special is that each module is written independently, so one can just
start creating solutions by reading each one of them.

I am a hands-on developer, and I only like the books that have lots of workable examples. Besides
the first chapter, pretty much all of the chapters contain excellent examples and hands-on experiments.
Chapter 1 is kind of unique because it not only gives introduction to encryption but also covers the very
interesting history of encryption. Overall, the non-technical reader will enjoy this book as well.

It is my great pleasure to welcome this one of kind book into the SQL Server world. There is no
doubt that it is exceptional and can wake up the inner soul of everyone who is ready to take their current
security mechanism to the next level using encryption.

Pinal Dave
Founder http://blog.SQLAuthority.com

xv

About the Authors

■Michael Coles has over 15 years of experience in SQL database design, T-SQL
development, and client-server application programming. He has consulted in a
wide range of industries, including the insurance, financial, retail, and
manufacturing sectors, among others. Michael's specialty is developing and
performance-tuning high-profile SQL Server-based database solutions. He
currently works as a consultant for a business intelligence consulting firm. He
holds a degree in Information Technology and multiple Microsoft and other
certifications.

Michael is a Microsoft MVP (SQL) and has published dozens of highly rated
technical articles online and in print magazines, including SQL Server Central, ASP

Today, and SQL Server Standard magazines. Michael is the author of the books Pro T-SQL 2008
Programmer's Guide (Apress, 2009) and Pro SQL Server 2008 XML (Apress, 2008).

■Rodney Landrum, SQL MVP, has been architecting solutions for SQL Server for
over 10 years. He has worked with and written about many SQL Server
technologies, including Integration Services, Analysis Services, and Reporting
Services. He has authored three books on Reporting Services for Apress, the latest
being Pro SQL Server 2008 Reporting Services (2008). He is a regular contributor to
SQL Server magazine, sqlservercentral.com, and Simple-talk.com. His three past
articles in SQL Server magazine on building a DBA repository with SSIS and SSRS
have been well received and implemented widely by DBAs around the world.
Rodney’s most recent book is SQL Server Tacklebox: Essential Tools and Tips for the
Day–to-Day DBA. Rodney also speaks regularly on SQL topics at such events as
SQL Saturday and a local SQL user group. His day job finds him overseeing the
health and well-being of a large SQL Server infrastructure as manager of database
administration in Pensacola, Florida.

■ INTRODUCTION

xvi

About the Technical Reviewer

■Steve Jones is the founder and editor of SQLServerCentral. He has been working
with and writing about SQL Server since 1991.

xvii

Acknowledgments

The authors would like to start out the acknowledgments by thanking the team at Apress, beginning with
our editor Jonathan Gennick and our coordinating editor Debra Kelly. Thanks to our copyeditor Katie
Stence. And a special thank you to our technical reviewer, Microsoft MVP Steve Jones.

Michael would also like to say a special thank you to Microsoft MVP Erland Sommarskog and author
Alastair Aitchison of Beginning Spatial with SQL Server 2008 (Apress, 2009) for their invaluable insights. I
would also like to thank Microsoft’s own SQL Server security guru, SQL Database Security Team
Manager Il-Sung Lee for his patience and help. A very special thanks to SafeNet, Inc., for their support in
helping us develop the Extensible Key Management portions of the book, featuring the Luna hardware
security module.

Thank you to my family, Donna, Mom, Eric, Jennifer, Chris, Desmond, and Deja. Most importantly,
thank you to my angels, Devoné and Rebecca.

www.allitebooks.com

http://www.allitebooks.org

xix

Introduction

Information security is the new Wild West. It's full of bandits in black hats trying to rob the stagecoaches
at every turn. Your job, as the town sheriff, is to keep these bad guys at bay. SQL Server 2008 provides
much-needed encryption tools to help assist you in this task.

I've spoken with quite a few database professionals who don't understand the role of encryption in
the database. Many have misconceptions about what encryption provides, and how it provides its
services. A great number aren't concerned with encryption at all and see it as one more administrative
task imposed by some faceless government agency somewhere.

While encryption is no security panacea, it is a valuable tool in the overall security toolbox. When
used in support of a solid security strategy, encryption fulfills the role of a goalkeeper–it acts as a potent
last line of defense against adversaries. As with the other pieces of a good security strategy, offense
makes the best defense. That is to say, it is much easier and safer to build security into your databases
and software products from the ground up than it is to try to retrofit legacy systems with proper security.

In this book, we’ll cover the complete range of encryption tools available to SQL Server developers
and DBAs to help keep the bad guys out of your data. We’ll discuss the reasons for encrypting your data,
the options available, and we’ll talk about integrating encryption into your overall security strategy.

Who This Book Is For
This book was written by a SQL developer and a SQL DBA for security-minded developers and DBAs.
We've designed this book to be useful for any data stewards whose responsibilities include maintaining
the security of data stored in the database.

To help you effectively take advantage of the full range of SQL Server encryption tools available, we
discuss the wide range of encryption features available. We also discuss how encryption can be used as
part of your overall security strategy and the various levels of regulations and industry standards that
specifically require encryption of data at rest. In order to take advantage of SQL Server 2008's encryption
functionality, you will need to have knowledge of T-SQL. Most of the numerous code samples provided
in this book are in SQL Server's native language. In addition, there are a few code samples written in C#,
a .NET Framework-based language. While deep knowledge of C# and .NET is not required to use these
samples, an understanding of the C# language will only help in understanding how the code performs its
tasks.

■ INTRODUCTION

xx

How This Book Is Structured
This book is structured for use by two types of readers, namely:

• SQL developers who need to write code that takes advantage of SQL Server's built-
in encryption functionality.

• DBAs who may not write a lot of code, but who need to understand how SQL
Server's encryption functionality works.

Each chapter of the book addresses a different encryption-related topic, making it easy to locate
specific information if the book is used as a reference guide. In many chapters, we build on concepts
presented in prior chapters, so that reading the book from beginning to end will prove an engaging
exercise. Following are brief summaries for each chapter in the book.

Chapter 1: Introduction to Encryption
Chapter 1 is an introduction to encryption, including a very short history of encryption and a discussion
of cryptography and cryptanalysis. This chapter is designed to answer questions like “What is
encryption?” and “Do I need encryption?” Even for advanced readers who are well-versed in
cryptography, this chapter provides some interesting historical information and questions to ask and
answer when preparing to implement an encryption solution.

Chapter 2: Encryption Key Management
Encryption key management is one of the hardest tasks in encryption. In Chapter 2, we describe how
SQL Server handles encryption key management, with an introduction to the encryption key hierarchy.
We also discuss the T-SQL statements, catalog views, and dynamic management views and functions
available to manage encryption keys under the hierarchy.

Chapter 3: Symmetric Encryption
Symmetric encryption is the basic model that most people think of first when they hear the word
“encryption.” You have a piece of plaintext, you encrypt it with a key, and later you can decrypt it with
the same key. In Chapter 3, we begin the discussion of SQL Server's cell-level encryption by
demonstrating symmetric encryption functionality.

Chapter 4: Asymmetric Encryption
Asymmetric encryption is the type of encryption used to securely transmit your credit card number to
remote web sites when you shop online. More complex and significantly slower than symmetric
encryption, asymmetric encryption is used primarily in the SQL Server model to protect symmetric keys.
In Chapter 4, we discuss asymmetric encryption functionality available in SQL Server.

■ INTRODUCTION

xxi

Chapter 5: Extensible Key Management
In previous chapters we've discussed encryption functionality that is common to both SQL Server 2005
and SQL Server 2008. In Chapter 5, we begin the discussion of a SQL Server 2008-specific feature,
Extensible Key Management (EKM). EKM allows you to use third party hardware to manage your
encryption keys. You can also offload encryption and decryption functionality from your SQL Server box
to the third party hardware, which can free up considerable resources on the server itself.

Chapter 6: Transparent Data Encryption
Another SQL Server 2008-only feature is Transparent Data Encryption (TDE). TDE allows you to encrypt
an entire database at once, in a completely transparent fashion. You can use TDE to encrypt your
databases with no changes to the applications that use them. In Chapter 6, we demonstrate the use of
TDE to encrypt databases.

Chapter 7: Hashing
In addition to encryption and decryption functionality, SQL Server provides built-in access to closely-
related cryptographic hashing functionality. In Chapter 7, we look at how cryptographic hashing allows
you to “fingerprint” your data, to securely store and detect changes in passwords and other data.

Chapter 8: SQL CLR Cryptography
The SQL Common Language Runtime (SQL CLR) provides an unprecedented opportunity to expand on
SQL Server's native encryption functionality. In Chapter 8, we show how to use SQL CLR functionality to
overcome some of the limitations imposed on SQL Server's native encryption functions.

Chapter 9: Indexing Encrypted Data
Searching encrypted data is not an efficient proposition. Good encryption removes patterns from data
that are necessary for efficient indexing and searching. In Chapter 9, we discuss some strategies you can
use to make searches of encrypted data more efficient, to help give your applications a more user-
friendly experience.

Chapter 10: Encrypting Connections to SQL Server 2008
In the previous chapters, we focused exclusively on protecting your data “at rest” in the database. But
hackers are creatures of opportunity, and they have no qualms about grabbing your data in transit if it’s
easier for them. In Chapter 10, we explain how to set up SQL Server communications encryption, to
secure your data “over the wire,” between client applications and your SQL Server.

■ INTRODUCTION

xxii

Chapter 11: Regulatory Requirements
In Chapter 11, we give a high-level view of regulatory and contractual requirements, any of which may
drive a database encryption project. We provide a brief survey of selected privacy and data protection
regulations and laws that pertain to a wide range of industries.

Appendix A: SQL Server 2008 Encryption Glossary
Throughout this book we've introduced a large number of domain-specific terminology. Although we've
defined them along the way, we find it is sometimes useful to have a glossary of terms compiled in one
place. Appendix A is the SQL Server encryption glossary, with definitions for many encryption-specific
terms we've used in this book.

Appendix B: Encryption Checklist
Appendix B expands on some of the concepts, such as the comprehensive security strategy and threat
modeling, which we presented in Chapter 1. This appendix will prove particularly useful for those who
are in the planning stages of their security and encryption strategies.

Appendix C: Luna EKM Setup
In Chapter 5, we discussed EKM and demonstrated its use with the SafeNet Luna hardware security
module (HSM). In Appendix C, we talk about how to set and configure the SafeNet Luna appliance. This
appendix is specific to the Luna appliance used in the book.

Conventions
To help make reading this book a more enjoyable experience, and to help you get as much out of it as
possible, we've used standardized formatting conventions throughout the book.

T-SQL source code is shown in code font, with keywords capitalized. Data types in the T-SQL code
are consistently lowercased to help improve readability. Other portions of the T-SQL statements are
generally in mixed-case.

DECLARE @string nvarchar(max);

C# code is shown in code font as well. Note that C# code is case-sensitive.

while (i < 100)

XML is shown in code font, with attribute and element content shown in boldface for readability.
Some of the XML code samples and results in the book may have been reformatted for purposes of
readability. XML ignores insignificant whitespace, so the significant content of these samples and results
have not been altered.

<book publisher = "Apress">Expert SQL Server 2008 Encryption</book>

■ INTRODUCTION

xxiii

■Note Notes, tips, and warnings are displayed in a special font with solid bars placed over and under the
content.

Sidebars

Sidebars include additional information relevant to the current discussion, and other interesting
facts. Sidebars are shown on a gray background.

Prerequisites
To make the most of this book you should have access to SQL Server 2008 and SQL Server Management
Studio (SSMS). Alternatively, you can use the SQLCMD utility to execute the sample code provided in
this book, but we find that SSMS provides a superior user experience for running samples.

Unless otherwise stated, all of the code samples in this book were designed to run against the official
SQL Server 2008 AdventureWorksLT 2008 sample database, available for free download at
http://www.codeplex.com. We highly recommend downloading and installing the
AdventureWorksLT 2008 sample database if you would like to test the sample code in the book.

To run any sample client code, and to compile and deploy SQL CLR samples, you will need C# 2008.
Note that you will need the professional editions of Visual Studio to compile and deploy database
projects, such as SQL CLR stored procedures and user-defined functions. For the best user experience
we highly recommend using Visual Studio 2008 to compile and deploy sample C# code in this book.

Downloading the Code
We provide numerous code samples throughout this book to demonstrate the concepts and syntax
discussed in each section. All of these code samples are available for download in a single compressed
ZIP file from the Source Code section of the Apress website. To get the ZIP file, go to
http://www.apress.com, click on the Books option on the menu at the top, and then click on the
Source Code option of the pop-up menu.

Contacting the Authors
The authors and the Apress team have made every effort to ensure that this book is free from errors and
defects. Unfortunately, the occasional error does slip past us, despite our best efforts. In the event that
you find an error in the book, please let us know! You can submit errors to Apress by visiting
http://www.apress.com, locating the book page for this book, and clicking Submit Errata.
Alternatively, feel free to drop a line directly to the lead author, Michael Coles, at
michaelco@optonline.net.

C H A P T E R 1

■ ■ ■

1

Introduction to Encryption

SQL Server 2008 provides the most comprehensive set of encryption technologies of any SQL Server
release to date. The newest release of SQL Server implements encryption features that cover the
spectrum from column-level encryption to database-level encryption, with support for external
hardware security modules. In addition, Windows Vista and Windows Server 2008 provide encryption
support via Encrypting File System and BitLocker encryption. This combination of options provides a
complete toolset for securing your data at any storage granularity—cell-level, database-level, or an entire
volume. In this book, I’ll discuss all of these features for securing your SQL Server-based data.

Before I dive into the specific encryption tools available to SQL Server administrators and
developers, I’ll discuss the concept of encryption and put modern encryption in perspective by exploring
historical encryption technologies.

What Is Encryption?
Encryption is the process of obscuring information (known as plaintext) using an algorithm (a cipher) in
such a way that the information can only be recovered by someone possessing special knowledge (a key).

The plaintext consists of the raw data that you want to encrypt. This might be a document, a
message, or personal/confidential data stored in a database table. There are a wide variety of ciphers
available, from the extremely simple and insecure Caesar-shift style of cipher to the highly secure,
modern Advanced Encryption Standard (AES) cipher. The choice of cipher has a direct impact on the
security of your encryption, which is why I’ll discuss several ciphers throughout this book.

The key (or multiple keys, in some instances) is used to both encrypt your plaintext and to decrypt
your encrypted text. Modern encryption recognizes that, while a secure cipher is important, the
complete security of your encrypted data rests with the key. In fact, encryption key management and
distribution is one of the most complex problems in the world of encryption. I’ll discuss encryption key
management and distribution in Chapter 2 as well.

Do I Need Encryption?
The question, “Do I need encryption?” starts an investigative process that begins with your business
requirements. To answer this question, your organization must first answer other related questions. For
instance, you have to determine the level of confidentiality of the data you’re storing and whether you’re
subject to any laws concerning data privacy. The following sections describe some of the major
questions that have to be answered when deciding whether or not you need encryption.

CHAPTER 1 ■ INTRODUCTION TO ENCRYPTION

2

Are You Storing Confidential or Sensitive Business Information in Your
Databases?
If you are storing confidential information in your database, like social security numbers or credit
information, encryption is very likely a business requirement. Not encrypting this type of data could
potentially expose your organization to legal liability. If you are storing sensitive business information,
like high security business documents, not encrypting your data could open up your organization up to
hackers and industrial espionage.

According to a report issued by the California security firm McAfee, the damage caused by data theft
topped one trillion dollars in 2008. As an example of the damage compromised data can result in, TJX
Co. (the parent company of T.J. Maxx, Marshalls, and other department stores), reported in 2007 that
their systems were hacked. Reports indicated that data was stolen from unencrypted wireless network
transmissions as well as from their databases. The data stolen from TJX included 94 million credit and
debit card numbers and 455,000 customer return records. The customer return records included driver’s
license numbers, military ID numbers, and social security numbers, as well as name and address
information.

The fallout from TJX’s failure to secure its data included dozens of lawsuits from banks and
hundreds of millions of dollars in settlements with banks and state attorneys general. The total
estimated cost of failing to secure TJX customer data has been estimated between $500 million and $1
billion. In addition, TJX received a lot of bad publicity over the theft and they achieved the dubious
record of the worst data breach ever, until 2009 when Heartland Payment Systems set a new world
record. Properly securing confidential consumer data would have helped TJX prevent, or limit, the
damage caused by hackers.

Are You Subject to Laws and Regulations That Require You to Encrypt
YourData?
Since the 1990s, a flurry of laws, state and federal regulations, and rules have been put in place to protect
consumer data. Other countries have enacted tough legislation to protect confidential consumer
information. This includes credit information, medical records, and a wide array of personal consumer
data. Failure to comply with these laws and regulations, which generally involve taking steps like
encryption to protect the data, can result in bad publicity, criminal action, and civil liability.

One such regulation,: the Fair and Accurate Credit Transaction Act (FACTA), requires
implementation of appropriate information security as part of an identity theft prevention program.
Forcompanies that fall under the purview of FACTA, data encryption is one of the most basic tools of
compliance.

Are You Under Contractual or Professional Obligation to Protect Your Data?
As the numbers of attacks on private and confidential data increases, industries and individual
companies have begun including data protection as part of their standard contracts. It is not uncommon
for credit providers, credit card processing companies, and credit bureaus to spell out very specific
encryption requirements for the storage of confidential credit and consumer data. These contracts may
spell out, in excruciating detail, the specific encryption algorithms allowed, the minimum key size, and
other details surrounding security.

As an example, I recently reviewed the technical criteria in a standard contract between a credit card
processor and a credit provider. Over the course of ten pages, the credit provider specified the types of
security the credit card processor had to implement. The contract detailed which data had to be
encrypted, the encryption algorithm to be used, the minimum encryption key lengths, and acceptable

CHAPTER 1 ■ INTRODUCTION TO ENCRYPTION

3

methods of encryption key management, rotation, and distribution. The credit provider spelled out a
wide array of penalties if the credit card processor did not implement all of the security protocols spelled
out in the contract. The penalties included everything up to (and including) denying the credit card
processor the ability to perform their most basic function—processing credit card payments!

A Security Mind-Set
After you’ve decided you have a business need to implement encryption as part of your overall
encryption strategy, it’s time to get into a security mind-set. A strong security mind-set really borders on
the paranoid: as an information officer or technician you have to assume that your organizational data is
constantly under attack. Threats are all around—hackers on the outside trying to break in, disgruntled
employees on the inside trying to sneak information out, and a host of barbarians banging on the gates
of your network. The most effective security strategies begin with this most basic assumption.

Another aspect to keep in mind when getting into a security mind-set is that hackers, just like other
criminals, gravitate toward easy targets. The whole point of stealing (and most criminal activity) is to
maximize gain while minimizing work.

Picture an average house with a wooden door and a deadbolt lock. Will this keep a determined thief
out? Probably not—if you’ve ever watched an episode of COPS, you’ve probably seen wooden doors
kicked in and knocked down by the Sheriff’s office with relative ease. However, thieves like easy targets
and they’ll skip the house with the dead-bolted door in favor of the house where the door is wide open.

Every layer of security that you implement as part of your overall security plan acts as an additional
deterrent. This makes your organizational data less appealing to hackers. Even the most basic security
measures tend to keep honest people honest, quickly deter those who are looking for a quick and easy
score, and completely eliminate would-be hackers with inadequate skills from the equation.

I’ll discuss the implementation of encryption as part of a total security plan in greater detail in
Appendix B.

Why Encrypt the Database?
Network and database administrators generally recognize that highly secure and sensitive data should
be encrypted over the wire. Secure Sockets Layer (SSL), and its successor Transport Layer Security (TLS),
are often used to secure network communications. This is generally considered adequate to protect your
data while it’s in transit between clients and servers.

To make the difference between data in transit and data at rest a little more concrete, picture
thousands of prospectors panning for tiny gold nuggets along a fast-flowing river. Those prospectors
are hackers, and the gold nuggets are the packets of data you’re sending over your network and
across the Internet. Now that this image is firmly in your mind, picture your corporate databases—
mountains made of solid, pure gold. Believe me when I say this is not an overstatement of the value
of your corporate data. Many organizational databases represent well-organized collections of
confidential corporate information. Think about the types of data you store in your databases:
customer contact and credit information, contracts, purchase orders, confidential employee data,
sales forecasts, production plans, financials, and much more.

Corporate databases are well-defined, highly structured, substantial repositories of critical business
information. Consider the damage that would result if your competitors got their hands on all that
sensitive data you keep stored on your corporate network. Protecting your data in its transient form as it
zips around the network, but failing to properly protect it at its origin or its destination can represent a
serious flaw in your security policy.

This is not to give the impression that database encryption is the only security measure you should
implement. In fact, database encryption is your last line of defense—your fail-safe in the event that a
hacker actually defeats your front-line security measures to gain access to your database.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCTION TO ENCRYPTION

4

Threat Modeling
Threat modeling is a formalized process of describing security aspects of a system. The threat modeling
process often begins with a diagram of the system being modeled. For purposes of this book, I’ll start
with a very simple diagram of a single SQL Server instance on a network, as shown in Figure 1-1.

Figure 1-1. SQL Server on a network

This simplified diagram shows the network assets (like the SQL Server and clients) and their
interfaces to the local network and to the Internet. In a real-world threat modeling exercise, you would
model all individual hardware and software components that must be managed and their interfaces,
both internal and external.

As you can see in this simplified representation, SQL Server can be accessed on the local network
via network clients. The local network on which the SQL Server resides is also connected to the Internet.
This figure shows two potential threat origins: from clients on the local network and from external
sources on the Internet.

The next step is to identify threats that can cause harm to the identified assets. In identifying
threats, you should identify their type, origin, and potential targets. For this example, we’ll identify
selected threats to with the target being the data stored on the SQL Server instance. These threats
include the following intentional threats:

• Database Administrators (DBAs): Rogue DBAs are an internal threat. DBAs hold
the “keys to the kingdom,” with full access to everything within their area of
responsibility. DBAs often have access to other network resources outside of the
servers for which they are responsible—network shares, files, hardware, and
applications. Database encryption, when combined with other measures like
auditing, can act as a defense against a rogue DBA by making it difficult for him to
access sensitive information that is outside of the scope of his duties.

CHAPTER 1 ■ INTRODUCTION TO ENCRYPTION

5

• Business users: Business users are another internal threat. The primary defense
against threats from business users is to strictly limit their access to only the
information they need to do their jobs. Database encryption provides additional
security against so-called “power users” who are given greater access for specific
purposes and against normal business users who somehow acquire greater access
than they need.

• Developers: Rogue developers, like rogue DBAs, represent a threat that originates
internally. Developers design and implement applications that interact with the
database management system (DBMS). Your developers have detailed knowledge
of your databases and applications. Database encryption, combined with strict
access policies and audit controls, can help limit the damage that can be done by a
developer gone bad.

• Internet hackers: Hackers represent an external threat. Hackers have thousands of
tools at theirdisposal to help them find weaknesses in their target systems, and
the most experienced hackers know how to use them well. Strict access policies,
network communications encryption, protection of network interfaces (firewalls),
and database encryption can all be used to significantly reduce the risk of a
successful external attack.

■ Note This list of threats is not a comprehensive list, but rather an abbreviated list that highlights a few of the

most common types of threats.

You can use the intent of the threat to help determine what information to encrypt. The intent of
internal threats is generally quite simple: financial gain or to “get even” for some perceived slight.
External threats, however, have a wider range of intentions. A hacker might attack for financial gain, as
retribution for a grievance, to make a political statement, to gain notoriety, or possibly even just self-
edification. The goals of the threat, internal or external, might include stealing confidential corporate
information, destroying information, or possibly just manipulating corporate data without cutting an
easily detectible swath of destruction in the database.

Once you’ve identified the threats and the threatened assets, you can use that information to create
threat matrices. A threat matrix is a tool you can use to assess the severity of threats against your assets
in a summarized form. Figure 1-2 shows a simple threat matrix for the SQL Server instance in the
previous diagram.

CHAPTER 1 ■ INTRODUCTION TO ENCRYPTION

6

Figure 1-2. Sample threat matrix

The threats themselves are listed in rows and the seven columns in this threat matrix represent the
following:

Threat: The threat is the type of expected threat.

Source: The source of the threat can be internal to the company or it can originate from an external
source.

Estimated threat: The estimated threat indicates the amount of damage a threat can inflict on the
organization. I used the following scale (in order of increasing threat level):

• Low: The odds of a threat accessing an asset and causing harm is extremely
unlikely.

• Limited: The threat may be able to access an asset and could potentially cause
limited damage. Most often this would occur through means that are beyond your
control, such as flaws in off-the-shelf software or invention of new technologies.

• Moderate: The threat has some access to an asset and could potentially cause
damage. Often, this is the result of an inability to limit access to assets due to job
function.

• High: A high threat level indicates the threat can access an asset and could cause a
considerable amount of damage.

• Significant: A significant threat is one that has the means, motive, and opportunity
to access assets and cause severe or potentially crippling damage to an
organization. Your quickest route to remediation is to remove the opportunity by
hardening your assets.

Capabilities: This is a combined measure of a threat’s access to organizational assets and technical
abilities. I've used a scale of 1.0 (extremely low) to 5.0 (extremely high).

Data arsenal: This is a measure of a threat’s ability to obtain, install, and execute effective attacks
using tools like viruses, keyloggers, and other malware or hacker hardware. As with Capabilities the
scale is 1.0 (extremely low) to 5.0 (extremely high).

CHAPTER 1 ■ INTRODUCTION TO ENCRYPTION

7

Remediation: Steps that can be taken to lower the threat level. In this example, I limited the sample
to a few remediation steps per threat, but it’s often easy to come up with dozens of remediation
steps for most threats.

Remedial threat level: The estimated threat level after remediation steps have been implemented. In
this example, the “Hackers” estimated threat level was lowered from a significant threat to a limited
threat through a combination of securing the Internet connection, implementing a strong password
policy, and encryption.

The threat matrix is a simple tool you can use to evaluate your overall security situation for each of
your organization’s assets. Notice in the example that encryption alone doesn’t remediate threats, but
when used in combination with other remediation steps it can help reduce the potential damage any
given threat can inflict.

A Short History of Information Security
Encryption, codes, and ciphers have been the domain of militaries and governments for thousands of
years. In fact, secure encryption technology has only been available to the public at large since the end of
the 20th century.

Cryptology, the science of information security via codes and ciphers, consists of two major
branches. The first branch, cryptography, is concerned with the creation of codes and ciphers to ensure
information security. The second branch is cryptanalysis, which concerns itself with defeating the codes
and ciphers created by cryptographers. Modern cryptology is a direct result of the constant struggle
between cryptographers and cryptanalysts over the course of thousands of years.

To understand the current state of encryption technology it’s important to understand its history.
To that end, I’ll review some of the major accomplishments and milestones in securing information over
the past few thousand years.

The First Ciphers
One of the first known uses of a cipher to obscure messages dates to around 400 BCE. The Spartan
scytale (pronounced “sit-uh-lee”; rhymes with Italy), was used to communicate critical information
securely during military campaigns. The scytale was simply a rod around which a piece of leather was
wrapped.

To encipher a message the sender wrapped a strap of leather around a scytale and wrote his
message lengthwise across the bands of the leather. When unwrapped from the scytale, the leather
looked like a simple leather strap with random letters and symbols written on it. Upon delivery of the
message, the recipient simply wrapped the leather strap around a scytale of the same diameter as the
sender’s and the message was revealed.

Figure 1-3 shows a scytale in use, deciphering the message “_ ___ _ ___ ___.” This particular message
is attributed to Spartan mothers who admonished their sons going to war to come back either “with this
or on this,” victorious (with your shield) or dead (carried on your shield).

CHAPTER 1 ■ INTRODUCTION TO ENCRYPTION

8

Figure 1-3. Scytale used to decipher a message

The scytale is an example of a simple transposition cipher in which the characters of the plaintext
are simply methodically rearranged. The other prevalent method of enciphering information isvia
substitution ciphers. A substitution cipher systematically replaces plaintext with encrypted text. Julius
Caesar was recorded as having used a simple cipher, which has become known as the Caesar Shift
cipher. Caesar simply replaced each letter of his plaintext with the letter that occurs three places to its
right in the alphabet. Figure 1-4 shows an example of the Caesar Shift cipher in action.

Figure 1-4. Encrypting a message with the Caesar Shift cipher

As you can see in Figure 1-4, encrypting the message “ALEA IACTA EST” (“The die is cast,” aquote
attributed to Caesar himself) using the Caesar Shift cipher results in the ciphertext “DOHD LDFWD
HVW.” To decrypt the ciphertext, you simply replace each letter with the letter that occur three places
to its left in the alphabet. The Caesar Shift is an example of the simplest form of monoalphabetic
substitution cipher, since it relies on a simple one-for-one replacement strategy within the alphabet.

CHAPTER 1 ■ INTRODUCTION TO ENCRYPTION

9

Variations on Caesar Shift, including other monoalphabetic substitution ciphers, were used effectively
for over 800 years.

The Rise of Cryptanalysis
While monoalphabetic substitution ciphers proved effective against the largely uneducated adversaries
against whom Caesar fought, they proved no match for the Arab polymath al-Kindi. ::Around 850 CE,
al-Kindi published his monograph A Manuscript on Deciphering Cryptographic Messages, in which he
described a method for defeating monoalphabetic substitution ciphers. A scholar of many languages
and an expert in many different fields, al-Kindi is widely regarded as the founder of the science of
cryptanalysis. In his manuscript, al-Kindi exploits the weakness of monoalphabetic substitution
ciphers—namely, the frequency distribution of letters in the target language.

In the case of the monoalphabetic substitution cipher, al-Kindi realized that certain letters inany
given language will occur more frequently than others. The letters E, T, H, A, and O, for example, account
for nearly 50 percent of all written text in English. For a sufficiently lengthy text (al-Kindi suggested a
length of one sheet of text or more), the frequency of letter occurrences tend to approach thenormal
frequency distribution for the language in which it was written.

To test al-Kindi’s theory, I chose to analyze the King James Version (KJV) Bible. Containing more
than 3.2 million letters, the KJV Bible is of sufficient length to adequately test the frequency distribution
theory. Figure 1-5 shows a side-by-side comparison of the occurrences of letters in the KJV Bible text
and the normal frequency distribution of letters in English. Notice how close the distributions are,
particularly for letters whose occurrences are at the extremes; that is, letters that occur most frequently
and those that occur least frequently.

Figure 1-5. Frequency distribution of letters in the English language and the Bible (KJV)

CHAPTER 1 ■ INTRODUCTION TO ENCRYPTION

10

This revelation exposes the flaw in simple monoalphabetic substitution ciphers. In the Caesar Shift,
letters in the plaintext are replaced by other letters to obscure the information, but the frequency
distribution is not obscured. If you replace the letter E in your plaintext with the letter Z, for instance,
you can expect that Z will occur more frequently than any other letter. This makes it easy for a
cryptanalyst to attack your ciphertext. The cryptanalyst will quickly surmise that the letter Z occurs
mostfrequently in the ciphertext and will replace it with E. Likewise, other letters in the ciphertext will
be replaced according to the frequency of occurrence until the cryptanalyst uncovers some intelligible
information.

Consider the ciphertext “QEHXNOA LN OQX UXNO FESLIA—MQXH OQXDX LN GEHXA LH LO.” In
this short ciphertext, the letter X occurs most frequently, followed by the letter O. Frequency analysis
indicates we should replace these letters in the ciphertext with the most frequently occurring plaintext
letters, E and T, respectively. The result of this initial substitution is shown in Figure 1-6.

Figure 1-6. Initial steps of using frequency to recover an enciphered message

Shorter texts don’t necessarily follow the normal distribution, so the cryptanalyst might make
educated guesses of other enciphered letters based on his knowledge of the target language. In the
enciphered text, for instance, there are four different two-letter words, and they all begin with the
encrypted letter L. Based on knowledge of two-letter words in English, it’s probably a good bet that
theencrypted L represents the letter I in the plaintext.

There is also the matter of the three-letter encrypted word “OQX,” which we have so far mapped to
“T?E.” Again it’s probably safe to guess that the letter Q should be decrypted as H. The resultof applying
these guesses is shown in Figure 1-7.

Figure 1-7. Using knowledge of the target language to fill in the blanks

Continuing to use letter frequencies as a guide, along with knowledge of the target language,
you’ll eventually decipher the message: “HONESTY IS THE BEST POLICY—WHEN THERE IS MONEY
INIT,” a quote from humorist Mark Twain. This use of letter occurrence frequencies is the basis of
al-Kindi’s cryptanalysis strategy. This simple strategy laid the basis for modern cryptanalysis. Even
inmodern times, cryptanalysts search for patterns in ciphertext to uncover weaknesses. Al-Kindi’s
methodology gave cryptanalysts the upper hand for more than 700 years.

Bellaso Strikes Back
The next major advancement in cryptography came in the 16th century when Giovan Battista Bellaso
fully developed ideas from several sources into the first polyaphabetic substitution cipher. The
polyalphabetic cipher known as the Vigenère cipher (it was misattributed to Blaise de Vigenère, who
later modified Bellaso’s original invention) improved on the monoalphabetic ciphers (like the Caesar

CHAPTER 1 ■ INTRODUCTION TO ENCRYPTION

11

Shift) by applying multiple monoalphabetic cipher alphabets to encipher plaintext. This has the effect
ofremoving the frequency patterns that al-Kindi’s method of cryptanalysis depends on.

Bellaso’s system defined polyalphabetic ciphers using what he called reciprocal tables. Bellaso’s
tables were later reformatted into the tabula recta by Vigenère. Figure 1-8 shows the tabula recta.

Figure 1-8. The tabula recta

CHAPTER 1 ■ INTRODUCTION TO ENCRYPTION

12

Encrypting a message requires a key that was previously agreed upon by the sender and receiver.
The sender matches each letter of the plaintext with a letter of the key. The sender then locatesthe
letters at the intersection of each key letter and its associated plaintext letter. Figure 1-9 demonstrates
the encryption of a plaintext with the tabula recta, using a key of “BATMAN.”

Figure 1-9. A message encrypted with the tabula recta

To decrypt the message the receiver first matches each letter of the ciphertext with each letter
ofthe key. Then the receiver must locate each key letter that begins a row and identify the associated
ciphertext letter within that row. The letter that labels the column where the ciphertext letter appears is
the plaintext letter.

The important thing to notice about the tabula recta is that it again represents several
substitution ciphers. While it greatly increases the security of ciphers by eliminating simple frequency
analysis attacks, the polyalphabetic cipher was ahead of its time and didn’t gain widespread adoption
until the advent of the electromagnetic telegraph and Morse code in the 19th century. Charles
Babbage discovered a successful attack on the Vigenère cipher in 1854 (the same attack was
independently discovered by Freidrich Kasiski in 1869), rendering this generation of the
polyalphabetic cipher insecure, even as it had started gaining widespread acceptance.

War and Security
At the end of the 19th century and entering the early 20th century, several events conspired to push the
limits of cryptography. During this time period Italian inventor Guglielmo Marconi developed radio,
proving it a viable communications system. As governments and militaries began adopting radio
communications for increasing volumes of sensitive communications, increased security became
imperative.

Code making and code breaking became increasingly important as the world entered “the warto
end all wars,” World War I. The Germans’ infamous Zimmerman telegram underscored the importance
of cryptology during World War I. The Zimmerman telegram, an encrypted message from the German
empire, appealed to the Mexican government to form an alliance and declare war on the United States.
The Germans promised Mexico military support and reclamation of the former Mexican territory that
comprises the states of Texas, Arizona, and New Mexico. The interception and decryption of the
Zimmerman telegram, which was subsequently turned over to the US government, was a major factor in
the United States’ declaration of war against Germany in 1917.

World War I also ushered in the only perfectly secure encryption system known, the one-time pad. A
one-time pad contains random keys that are at least as long as the plaintext. The random keys are
combined with the plaintext via modulo arithmetic functions. The sender and receiver of the messages
must both have a copy of the same one-time pads, and they must agree in advance as to which key will
be used; possibly via a previously agreed-upon key schedule. The major problem with one-time pads is
distribution, which amounts to a massive logistical undertaking for large organizations like governments
and armies. It's nearly impossible for small and midsized companies. The classic Hollywood image of

CHAPTER 1 ■ INTRODUCTION TO ENCRYPTION

13

trusted secret agents with tamper-proof briefcases handcuffed to their wrists, as they deliver one-time
pads to high-ranking officials around the world actually isn’t too far from the truth.

World War II brought with it major advances in mechanical cryptography. The use of machines
to encrypt messages increased the efficiency of secure war-time messaging. Major advances in
mathematics, information theory, and engineering all contributed to great strides in the field of
cryptanalysis as well. To crack codes like the German Enigma (generated by the Enigma machine shown
in Figure 1-10), Lorenz ciphers, and the Japanese Purple cipher, cryptanalysts went back to their roots
and once again looked for patterns.

Figure 1-10. German Enigma machine

Strict military message structure and basic human nature (using the same keys multiple times, for
instance) provided the patterns that Allied cryptanalysts used during World War II to crack enemy codes.
German soldiers, for example, were trained to transmit the enciphered message key twice at the
beginning of each message. This procedure proved to be the first weakness that Polish cryptanalysts
identified and exploited to decipher Enigma messages. The cryptanalysts who cracked enemy ciphers
during World War II, including the Enigma, Lorenz, and Purple ciphers, are credited with saving tens of
thousands of lives by providing intelligence that shortened the war by as much as four years.

Prior to World War II cryptography and cryptanalysis were largely considered the domain of
linguists and lexicography experts. During the war, it was recognized that the search for patterns could
be effectively carried forward by mathematicians, statisticians, engineers, and a wide assortment of
problem solvers including Chess grandmasters and crossword puzzle enthusiasts. These problem

CHAPTER 1 ■ INTRODUCTION TO ENCRYPTION

14

solvers contributed their talents to make great advances in cryptanalysis. Progress made on several
academic fronts during the war contributed greatly to the body of cryptologic knowledge.

How to Share a Secret
After World War II ended, the governments of the world were still digesting the cryptographic and
cryptanalytic knowledge they acquired in the heat of battle. After the war was over, government and
military interest in cryptology dropped back down to its prewar levels. However, there were still
unresolved problems; the first (and toughest) of which was key distribution. Key distribution has long
been a vexing problem, introducing several potential points of failure along the way.

One of the modern principles of encryption, Kerckhoffs’ Assumption, also known as Kerckhoffs’
Principle, can be most simply stated (as it was by Claude Shannon, the Father of Information Theory)
as“The enemy knows the system.” This one statement represents a very basic assumption, and an
extremely valid one: assume that all cryptanalysts have access to your cryptographic algorithm. In
modern cryptography it’s generally recognized that security rests with the encryption key, and the
onlyassumption that’s made is that the enemy does not know the key. By introducing a flawed key
distribution model into an otherwise secure system you significantly increase the odds that the enemy
will obtain the key—creating a critical vulnerability.

In 1976, the team of Whitfield Diffie and Martin Hellman devised an ingenious solution to
theproblem of key distribution. The Diffie-Hellman key exchange protocol relies on passing shared
information in public to calculate secret keys. The strength of the protocol is in the formula used to
generate the secret keys, which is a one-way function. A one-way function in math is one which is hard
to reverse, such as a factoring function. The sidebar discusses Diffie-Hellman key exchange.

Alice Meets Bob

Using the classic example, assume Alice needs to send Bob a secure message. In order to decrypt Alice’s
message Bob needs her encryption key. How does Alice securely transfer the key to Bob? One option is for
Alice to meet with Bob somewhere and give him the key at that point; this might not be feasible if Alice
lives in New York and Bob is in California. Another option is for Alice to hire an agent to carry the key to
Bob for her. Unfortunately, this can be a costly and insecure option. Can the agent be trusted not to sell
the key or use it for his own nefarious purposes? Could the key be intercepted by a malicious third party
without the agent’s knowledge? What if Alice needs to send secure messages to 100 different people—
does she have the resources to hire 100 agents to distribute keys? If Alice had doubts about the
trustworthiness of one agent, 100 agents represents a security nightmare.

Whitfield Diffie had an epiphany one day while thinking about physical locks. Diffie’s revelation was in the
mind of a thought experiment. Diffie’s experiment begins with a simple question, “Alice wants to send Bob
a secret message securely; how can she do it?” Diffie’s answer follows:

1. Alice puts her message in a secure box and places her padlock on the box, locking
it. Then she sends the box to Bob. She keeps her key.

2. Bob receives the box and places his own padlock on it. Keeping his own key, he
sends the box back to Alice.

CHAPTER 1 ■ INTRODUCTION TO ENCRYPTION

15

Alice Meets Bob, continued

3. Alice receives the box and uses her key to take her padlock off it. She then sends
the box, secured only by Bob’s padlock, back to Bob.

4. Bob uses his key to unlock his padlock and retrieves the contents of the box.

Diffie’s answer involved a lot of overhead in sending, securing, and resending the same message back and
forth between Alice and Bob, but it proved that secret messages could be sent securely without sharing
keys. This thought experiment was the basis for Diffie-Hellman key exchange, in which Alice and Bob both
have their own secret keys. They can both calculate the same key using a one-way function. While some
information needs to be communicated between Alice and Bob, the one-way function used is very difficult
to reverse, making it secure. Consider the following scenario:

1. Alice and Bob both agree on a one-way function, YX (mod P). Then Alice and Bob
agree on shared values for Y and P, in this case Y = 11 and P = 13.

2. Our hacker, Eve, is listening in on the conversation and sees the values for Y and P
being communicated back and forth. It doesn’t matter that Eve sees these values,
as we’ll see.

3. Alice generates a secret value for X, let’s say 9. Bob generates a secret value for X
on his side, we'll say 19. Alice doesn’t know Bob’s secret X, Bob doesn’t know
Alice’s secret X, and Eve doesn’t know either secret value.

4. Alice plugs the shared values and her secret value into the one-way function
and gets the answer 119 (mod 13) = 8. Bob does the same and comes up with
1119 (mod 13) = 2.

5. Alice and Bob share the results of their calculations with one another. Eve, ever
vigilant, captures Alice’s result of 8 and Bob’s result of 2 in transit. Again, without
knowledge of Alice’s and Bob’s secret keys this information is useless to Eve.

6. Alice plugs Bob’s result and her secret key into the same function as before, but
replacing the Y with her secret key and the X variable with Bob's result. Alice ends
up with 92 (mod 13) = 3. Bob does the same, but uses his secret key for Y and
Alice's result for X. Bob ends up with 198 (mod 13) = 3. Now Alice and Bob have
both generated the same key that they can use to encrypt messages back and
forth securely.

In this scenario, Eve was able to see snippets of the communication between Alice and Bob, but she is
unable to determine what the encryption key is because of the one-way function used. The important thing
to note is that Eve doesn’t have access to Alice’s or Bob’s secret keys. Since Alice and Bob don’t need to
share this secret information, Eve never gets a chance to intercept it in transit.

CHAPTER 1 ■ INTRODUCTION TO ENCRYPTION

16

Weapons of Mass Encryption
During the last few decades of the 20th century, :computers became commonplace for both business
and home use. The launch of the Internet and its commercial application, the World Wide Web,
prompted a huge push for commercial-grade security. Businesses needed a means to convince
customers that they could securely transmit their credit card numbers and confidential information
tomake online purchases. Due to the problems involved in secure key distribution for symmetric key
algorithms, the market needed an efficient and secure method of communicating with customers.

In 1977, Ron Rivest, Adi Shamir,: and Leonard Adleman of MIT invented the most widely-adopted
asymmetric encryption algorithm in the world, the RSA algorithm. RSA encryption requires theuse of
very large prime numbers, the products of which are used to generate key pairs. The key pairs include a
public key, which is exposed to the world, and a private key, which must be kept secret. The public key
and private key have a mathematical relationship to one another, but one that is not easily derivable
without knowledge of both.

If Alice wants to send Bob an encrypted message using RSA, Bob would first need to expose
hispublic key. Alice could then encrypt her message using Bob’s public key and send it to him. Upon
receipt, Bob could use his private key to decrypt the message. RSA algorithm security is primarily based
on the mathematical difficulty of factoring very large numbers.

Since its introduction RSA has become a mainstay of Web-based security. It is used to secure
communications over the Internet and within corporate networks around the world. In 2000, RSA
Security released the RSA algorithm to the public domain.

Asymmetric key encryption, using algorithms like RSA, are considered very secure. RSA, and other
asymmetric key encryption algorithms, require a lot more processing power and are not as efficient as
symmetric key algorithms. In 1991, Phillip Zimmerman application: released an encryption application
known as PGP (Pretty Good Privacy). Zimmerman used the RSA algorithm to encrypt session keys, or
symmetric keys generated for a single message. The message itself was encrypted using the session keys.
PGP combined the strength of asymmetric encryption with the,: efficiency of symmetric encryption.

ARMS DEALERS

Throughout the 1990s, high security encryption algorithms were classified as munitions according to US
export regulations. Phillip Zimmerman was investigated from 1993 to 1996 for “munitions export without a
license” when PGP was obtained by individuals, governments, and groups outside of the United States. In
response to the investigation, Zimmerman released the full source code to PGP in the form of a book. The
Supreme Court had previously held that export of books was protected under the First Amendment right to
free speech. The government dropped the case against Zimmerman and PGP was subsequently bought by
Network Associates.

Official Ciphers of the US Government
During the Cold War in the early 1970s, the US government surveyed the state of security and
determined that a modernized encryption standard was required. In 1976, the :National Institute of
Standards and Technology or NIST (formerly the National Bureau of Standards or NBS), adopted a
modified version of IBM’s Lucifer cipher as the Data Encryption Standard (DES). The version of DES that
was implemented came under scrutiny from many quarters because it featured a 56-bit encryption key,
largely regarded as small enough for a government agency with high-powered computing resources
(such as the National Security Agency, or NSA) to crack within a relatively short amount of time.

CHAPTER 1 ■ INTRODUCTION TO ENCRYPTION

17

Nevertheless, DES was adopted as the official symmetric encryption algorithm of the US
government for more than two decades, until 1998 when a brute force attack by networked computers
demonstrated that cracking DES was practical. Theoretical attacks also began to spring up, and the DES
algorithm began to show cracks.

In response, the US government took two major steps: first DES was deprecated and a variant
known as Triple DES, with a larger effective key length, was authorized. Second, the government held a
public competition for a DES replacement algorithm. The winner of the contest was a cipher known as
Rijndael, produced by the Belgian team of Joan Daemen and Vincent Rijmen. Three encryption key
length variants of Rijndael, one with 128-bit keys, one with 192-bit keys, and one with 256-bit keys, were
formalized as the Advanced Encryption Standard (AES) in 2001. AES is authorized by the US government
for securing both Secret and Top Secret information.

What is Triple DES?

Two-key and three-key Triple DES were implemented as countermeasures against the vulnerabilities found
in the plain vanilla DES algorithm. The Triple DES variants were originally introduced to minimize the
changes required to government computers. Two-key Triple DES uses two separate keys, possibly derived
from the same keying material. The first key is used to encrypt data using DES; the second key is used to
decrypt the data; and finally the first key is used to reencrypt the data. This method is known as the
Encrypt-Decrypt-Encrypt (EDE) process.

Three-key Triple DES uses a similar methodology, but it extracts three separate keys from the keying
material. The first key is used to encrypt, the second key to decrypt, and the third key to encrypt again.

The investment to upgrade government computers that were programmed to use DES was significantly
less than it would have been to create a whole new algorithm and upgrade all government computers with
the new software. Triple DES essentially provided a “quick fix” for the government and for other
organizations that relied on DES for security. The two-key EDE methodology increases the key length of
DES from 56 bits to 112 bits, although the effective key length of two-key Triple DES is estimated at only
80 bits. Three-key Triple DES increases the key length of DES to 168 bits, but the effective key length is
estimated at around 116 bits. The National Security Agency (NSA) estimates that three-key Triple DES will
be provide adequate security until the year 2030.

Both AES and DES (and its variants) are block ciphers, which operate on fixed-length bit strings
known as blocks. DES operates on 64-bit blocks while AES is a 128-bit block cipher. All block ciphers
must support two main properties: confusion and diffusion. Confusion is primarily achieved through
theprocess of replacing plaintext symbols with other symbols, usually done with a so-called S-box. The
S-box is implemented in both AES and DES as static lookup arrays or tables, consisting of values with
statistically nonlinear properties. It’s a well-constructed S-box that prevents simple algebraic-based
attacks on a given block cipher.

Diffusion is the removal of statistical patterns from ciphertext during the encryption process. A
structure known as a P-box is often used by block ciphers to shuffle and transpose bits across ciphertext
during processing. This process of permutation results in diffusion of bits, and statistical patterns, across
the ciphertext. The diffusion process protects ciphertext from pattern-based statistical cryptanalysis,
including classic frequency analysis attacks.

SQL Server supports DES, Triple DES, and AES encryption, all of which will be discussed in detail in
Chapter 3.

CHAPTER 1 ■ INTRODUCTION TO ENCRYPTION

18

SQL Server Encryption Tools
As our discussion brings us to modern encryption technologies, it’s time to take a look at what
SQL Server 2008 offers in terms of encryption. Historically SQL Server didn’t provide any built-in
support for encryption. In fact, I had to create my own extended stored procedure (XP) based
encryption functionality for SQL Server 2000 (the DBA Toolkit, available with source code at
www.sqlservercentral.com). In the following sections, I'll quickly recount the history of SQL Server
database encryption.

Encryption in SQL Server 2000
Built-in cryptographic encryption functionality was nonexistent in SQL Server 2000 and prior versions.
In order to get server-side encryption in SQL Server you had to resort to purchasing or creating your own
SQL Server XPs. Creating your own cryptographic XPs could be a daunting task owing to the fact that XPs
had to be compiled as native DLLs (using a language like C or C++) and the XP application programming
interface (API) was poorly documented. In addition there were always concerns around creating well-
behaved XPs that “played nicely” with the SQL Server process.

Encryption in SQL Server 2005
Prior to the release of SQL Server 2005 there was a flurry of regulatory activity in response to accounting
scandals and attacks on repositories of confidential consumer data. Much of this regulation centered
onthe need for protecting and controlling access to sensitive financial and consumer information. With
the release of SQL Server 2005 Microsoft responded to the increasing demand for built-in encryption
byproviding the necessary tools to encrypt data at the column level. This functionality prominently
featured the following:

• Support for column-level encryption of data using symmetric keys or passphrases.
Chapter 3 details symmetric encryption methodologies.

• Built-in access to a variety of symmetric and asymmetric encryption algorithms,
including AES, DES, Triple DES, RC2, RC4, and RSA. These algorithms are
discussed in Chapters 3 and 4.

• Capability to create and manage symmetric keys. Key creation and management
are discussed in Chapter 2.

• Ability to generate asymmetric keys and self-signed certificates, or to install
external asymmetric keys and certificates. I will discuss asymmetric keys and
certificates in Chapter 4.

• Implementation of hierarchical model for encryption key management, similar to
the ANSI X9.17 standard model. I’ll discuss ANSI X9.17 in Chapter 2.

• SQL functions to generate one-way hash codes and digital signatures, including
SHA-1 and MD5 hashes. I’ll discuss hashing and digital signatures in Chapter 6.

• Additional SQL functions to encrypt and decrypt data.

CHAPTER 1 ■ INTRODUCTION TO ENCRYPTION

19

• Extensions to the SQL language to support creation, use, and administration of
encryption keys and certificates.

• SQL CLR extensions that provide access to .NET-based encryption functionality.
I’ll cover SQL CLR extensions and .NET-based encryption functions in Chapter 9.

All of these features provided much-needed encryption support to SQL Server. They are all
supported in SQL Server 2008 as well. While support for cell-level encryption is a very important feature,
and a large portion of this book is devoted to cell-level encryption functionality, there was still a need for
even more encryption features. To use cell-level encryption functionality, for instance, you might have
to refactor significant portions of your existing SQL and client code. For new databases and applications
you have to take cell-level encryption into consideration early in the process, during the requirements
gathering and design phases.

Encryption in SQL Server 2008
Encryption demands have increased over the past few years. For instance, there has been a demand for
the ability to store encryption keys “off-the-box,” physically separate from the database and the data it
contains. Also there is a recognized requirement for legacy databases and applications to take advantage
of encryption without changing the existing code base. To address these needs SQL Server 2008 adds the
following features to its encryption arsenal:

• Transparent Data Encryption (TDE): Allows you to encrypt an entire database,
including log files and the tempdb database, in such a way that it is transparent to
client applications. I’ll discuss TDE in detail in Chapter 5.

• Extensible Key Management (EKM): Allows you to store and manage your
encryption keys on an external device known as a hardware security module
(HSM). I’ll discuss EKM functionality in Chapter 7 with real examples that take
advantage of the first shipping SQL Server-enabled HSM, the SafeNet® Luna HSM
appliance.

• Cryptographic random number generation functionality.

• Additional cryptography-related catalog views and dynamic management views,
which I’ll cover in Chapter 10.

• SQL language extensions to support the new encryption functionality.

SQL Server 2008 represents the most advanced SQL Server encryption capability to date, and you
can leverage even more encryption functionality using other tools. For example, you can encrypt an
entire hard drive with SQL Server databases on it via Windows BitLocker technology. You can also use
SSL to encrypt your SQL Server communications, protecting your data in transit. I’ll discuss these
features and functionality in Chapter 11.

Summary
Cryptology is the science of hidden information. Two major branches of cryptology that have evolved
over thousands of years are cryptography, the science of obscuring information, and cryptanalysis, the
science of recovering encrypted information without access to the secret key used to encrypt it.

The state of modern cryptology represents the evolution of the struggle between these two
conflicting sciences. Over the centuries, cryptographers have created even more secure algorithms to
encrypt data and cryptanalysts have found increasingly sophisticated methods to destroy that security.

CHAPTER 1 ■ INTRODUCTION TO ENCRYPTION

20

Initially a code or cipher could be expected to provide security for hundreds of years. However, with the
ever-increasing computing power available to anyone, the life expectancy of a typical encryption
algorithm can be measured in mere decades or less.

Modern encryption algorithms include some of the most sophisticated to date. AES, Triple DES,
RSA, and other algorithms are all included in SQL Server 2008. In addition, you can use EKM to take
advantage of third-party HSM appliances. SQL Server 2008 provides answers for some of the toughest
challenges facing any cryptographic security system, including key management and encryption of
entire databases at a time.

While encryption alone is not the holy grail of security, it can be an indispensable tool in your total
security arsenal. In this chapter, I discussed one method of assessing threats to your organizational
assets. In the following chapters, you’ll begin an exploration of the encryption features and functionality
available. in SQL Server 2008 that will help you implement a total security solution.

C H A P T E R 2

■ ■ ■

21

Encryption Key Management

SQL Server 2008 includes a comprehensive suite of modern encryption technologies. SQL Server
provides access to encryption features, like cell-level encryption, database-level encryption, and built-in
encryption key management. In this chapter, I’ll introduce the basics of SQL Server encryption,
including the encryption hierarchy and encryption key management.

SQL Encryption Key Hierarchy
SQL Server uses a hierarchical model to manage keys and secure data. Figure 2-1 shows the SQL Server
2008 encryption hierarchy.

CHAPTER 2 ■ ENCRYPTION KEY MANAGEMENT

22

Figure 2-1. SQL Server 2008 encryption hierarchy

This model is similar to selected options from the ANSI X9.17 standard “Financial Institution
Key Management (Wholesale),” which is published by the American National Standards Institute
(ANSI).ANSI X9.17 describes a hierarchical structure for encryption key management. Figure 2-2 shows
the ANSI X9.17 encryption hierarchy.

CHAPTER 2 ■ ENCRYPTION KEY MANAGEMENT

23

Figure 2-2. ANSI X9.17 encryption hierarchy

At the highest level of the X9.17 hierarchy is the Master Key (KKM), which maps to the top level of
the SQL Server hierarchy. The KKM is roughly equivalent to the combination of the Windows Data
Protection API (DPAPI), Service Master Key (SMK), and Database Master Key (DMK) in the SQL Server
model. If you are using Extensible Key Management (EKM) then your Hardware Security Module (HSM)
is managing your DMK.

The next level of encryption keys in the X9.17 standard consists of Key Encrypting Keys (KEKs). The
KEKs are analogous to the middle layer of certificates, asymmetric keys, and symmetric keys in the SQL
Server encryption hierarchy. Again, if you are using EKM then your KEKs are managed by the external
HSM. The KEKs are encrypted by the KKM.

The final level of encryption keys in X9.17 consists of the Data Keys (KDs), equivalent to the
symmetric keys at the lowest level of the SQL Server hierarchy. The KDs are encrypted by the KEKs above
them in the hierarchy and they are used to encrypt user data, which sits below them in the hierarchy.

If you choose to use passwords to protect your keys or passphrases to protect your data directly you
assume the responsibility for key management yourself. I’ll discuss using passwords to secure
encryption keys and using passphrases to encrypt data in Chapter 3.

■ Note ANSI X9.17 was initially approved in 1985, reapproved in 1991 with no changes, and reapproved with
some modification in 1995. It has since been withdrawn. The current ISO 16609:2004 standard is based largely on
the ANSI X9.17 standard, though much of the literature available still references ANSI X9.17 because it is so widely

adopted.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ ENCRYPTION KEY MANAGEMENT

24

Key Security

Encryption key management is definitely one of the hardest tasks to implement in cryptography. The
problem ishow to secure the key you use to encrypt your data encryption key. The ANSI standard, and the
SQL Server implementation, use a key hierarchy to protect your data encryption keys, as described in this
section. Essentially, you use one encryption key to secure another. But the problem remains, how do you
secure the key that secures your data encryption key? SQL Server gives you the following three choices:

The encryption key hierarchy is a relatively simple concept, but it can be confusing when you first
encounter it. One of the questions that often comes up is how do you limit access to encrypt and decrypt
data if SQL Server isautomatically encrypting and decrypting the data encrypting keys? The answer is
simply “permissions.” If you deny users permission to a data encrypting key, or to any key or certificate
above it in the encryption hierarchy, they will not be able to encrypt or decrypt data with that key.

For example, assume you have a symmetric key called “DataKey1” that encrypts your data. Also assume
that this key is protected by a certificate, which in turn is protected by the DMK. In order to decrypt data
with “Data Key,” your user must have access to the symmetric key, the certificate that protects it, and the
DMK. Ifpermissions are denied on any of these, the user will not be able to decrypt data with “DataKey1.”
Keep theencryption key hierarchy in mind as we explore the keys that make up the hierarchy in greater
detail in the following sections.

• SQL Server will encrypt your entire key hierarchy, using the Service Master Key
(SMK) at the top to protect everything directly or indirectly. The SMK is protected
by the Data Protection API (DPAPI), which is a special API developed specifically for
Windows to securely protect encryption keys on an operating system-wide basis.
One of the issues people have with this approach is that it allows all administrators
to encrypt and decrypt data using your keys. In some instances, giving all of your
database administrators this kind of permission is not an ideal solution.

• Alternatively, you can use passwords to encrypt any key in your hierarchy. You can
short circuit the hierarchy by using a password to encrypt a symmetric data
encrypting key directly below another key inthe hierarchy. Using this method, you
can limit access only to users and applications that have the password. This lets
you specifically exclude database administrators from encrypting and decrypting
data using certain keys. The downside is that when you do this, you take on all the
responsibility for ensuring the security of your passwords.

• Finally, you can use EKM to offload the responsibility of securing your keys to a
third-party hardware appliance, an HSM. This has several advantages over the
other methods, including storage and management of your encryption keys off-box
and increased performance that comes from passing alongencryption
responsibility to the appliance. EKM can act as a replacement for your encryption
key hierarchy or it can work to supplement it. I’ll discuss EKM in greater detail in
Chapter 5.

CHAPTER 2 ■ ENCRYPTION KEY MANAGEMENT

25

Key Management
Encryption key management is one of the toughest tasks in cryptography. You can have the most secure
encryption algorithms in the world, but improperly managing your keys compromises your entire
security strategy. The basics of encryption key management include the following:

• Limit encryption key access to only those who really need it. Only those users who
actually need access to decrypt previously encrypted data should have access to
the encryption key.

• Back up your encryption keys and secure them. Encryption keys should be backed
up immediately after creation and secured in protected off-site storage. This is
important for two reasons: (1) you may need to restore an encryption key due to
corruption or other issue, and (2) in the event of a disaster you may need to restore
encryption keys to alternate servers as part of a disaster recovery plan.

• Rotate your encryption keys on a regular basis. Key rotation based on a regular
schedule should be part of every organization’s IT policy. If you leave the same
encryption key in place for lengthy periods of time, you give hackers and other
miscreants time to attack it. By rotating your keys regularly your keys become a
moving target—much harder to hit.

The ANSI X9.17 hierarchical model for key management has certain advantages over a flat single-
tier model for encryption keys, particularly in terms of key rotation. Consider this example: If you have a
terabyte of data encrypted by a given encryption key and you must change/rotate this encryption key
every month, you will have to decrypt and reencrypt then entire terabyte of data every time you change
the KD. The decryption and reencryption of all your data will take a considerable amount of processing
power, storage, and time. In the X9.17 model, you can instead set up a monthly KEK rotation in which
you simply change out the middle layer of KEKs. Since the KEKs only encrypt the KDs below them in the
hierarchy, the process of swapping out KEKs requires decrypting and reencrypting an insignificantly
small amount of symmetric key data. Using this model, you can relegate KD rotations toayearly or other
longer-term schedule without compromising the security of your encrypted data.

Key Distribution
ANSI X9.17 and equivalent ISO standards define a protocol for distribution of encryption keys. In
theX9.17 model, the highest level of keys, KKMs, are distributed manually. Lower levels of keys are
distributed securely in an automated fashion, over a network for instance. Using this standard as a basis,
assuming you had two SQL Server instances set up in different physical locations you would manually
transfer the SMK and DMK to the second instance. The middle and lower levels of keys (KKMs and KDs)
would be distributed online in a secure manner.

■ Note The X9.17 standard defines two-key Triple DES as the algorithm of choice for securely transferring
encryption keys. In practice, this method of distributing keys is being replaced with asymmetric algorithms, like

the Diffie-Hellman key exchange algorithm.

CHAPTER 2 ■ ENCRYPTION KEY MANAGEMENT

26

Because of the hierarchical structure defined by X9.17, middle-level KEKs are generally replaced on
a short and regular schedule. High-level KKMs and low-level KDs are replaced on much longer
schedules. This makes changing keys much more efficient.

Service Master Key
The Service Master Key (SMK) is a server-wide encryption key that sits at the top of the SQL Server
encryption hierarchy. The SMK is created automatically the first time it’s needed to encrypt a Database
Master Key or other secret. Because of this, there is no CREATE SERVICE MASTER KEY statement. SQL
Server does provide ALTER, BACKUP, and RESTORE statements to manage the SMK, all of which I’ll describe
in the following section.

Backing Up the SMK
As soon as you first create a DMK, credential, or linked server, SQL Server will create the SMK.
Youshould immediately make a backup of the SMK and secure the backup in a protected location.
Listing 2-1 shows the BACKUP statement in action.

Listing 2-1. Backing Up an SMK

BACKUP SERVICE MASTER KEY TO FILE = N'C:\MyServiceMasterKey.key'
ENCRYPTION BY PASSWORD = N'$45^ZeF&u';

The BACKUP statement exports your SMK to a binary file. In this example, it is exporting it to a
file named MyServiceMasterKey.key in the root directory of the C: drive on the server. Because it would be
unsafe to expose your SMK unencrypted in a file, SQL Server encrypts it using the password you specify in
the ENCRYPTION BY PASSWORD clause. When you secure the backup of the SMK, make sure you also secure
the password you used to encrypt the backup. The password you supply is subject to the operating system
password complexity requirements. You need to supply the same password at restore time.

Backup and restore of the SMK is particularly useful in an environment where you need identical
SQL Server instances or when migrating your SQL Server instance to a new machine. You can back up
your SMK and restore it to the new server to configure the servers identically. You must have CONTROL
SERVER permissions on the server in order to back up the SMK, and the SQL Server service account
must have access to the directory where you want to create the file.

■ Caution Even though SQL Server encrypts the SMK when you back it up, don’t leave the backup file lying
around on a hard drive. After running the example in Listing 2-1, I immediately burned the SMK onto a CD and

deleted the binary file from the hard drive. Your organizational IT policy may require multiple backups of encryption

keys for disaster recovery purposes—make sure they are all stored securely.

CHAPTER 2 ■ ENCRYPTION KEY MANAGEMENT

27

Restoring the SMK
If you find that you need to restore the SMK, you’ll need to use the RESTORE SERVICE MASTER KEY
statement. The RESTORE statement restores the SMK from a previously taken backup file. Listing 2-2
demonstrates the RESTORE statement that restores the previous backup of the SMK.

Listing 2-2. Restoring an SMK

RESTORE SERVICE MASTER KEY FROM FILE = N'C:\MyServiceMasterKey.key'
DECRYPTION BY PASSWORD = '$45^ZeF&u';

Notice that I had to specify the same password that I used in the BACKUP statement when restoring
the SMK. When you perform a restore of an SMK, the DMK and any other keys protected by the SMK, are
first decrypted and then reencrypted using the restored SMK. If any of the decryptions fails, theSMK
restore operation will also fail. You can force an SMK restore to complete by using the FORCE option of
the RESTORE statement. By adding the FORCE keyword you indicate to SQL Server that you want the
operation to succeed, regardless of any decryption errors. You must have CONTROL SERVER
permissions to restore an SMK on a server.

■ Caution Using the FORCE option could result in data loss, and it should be used only as a last resort.

Altering the SMK
When the SMK is created, a couple of things worth noting occur:

1. The SMK is tied to the SQL Server service account that created it. The DPAPI
uses the Windows credentials of the service account to encrypt the SMK. This
means only the service account, or an account with access to the service
account credentials, can decrypt the SMK.

2. A copy of the SMK is encrypted using the local machine key and stored
separately.

If you change the SQL Server service account username or password, you will need to also change
the service account information protecting the SMK to match. SQL Server provides an ALTER SERVICE
MASTER KEY statement that allows you to do this, as shown in Listing 2-3.

Listing 2-3. Changing the SMK Service Account

ALTER SERVICE MASTER KEY
WITH NEW_ACCOUNT = 'SQL2008Server\Michael',
 NEW_PASSWORD = '^&3h4l1xPr';

CHAPTER 2 ■ ENCRYPTION KEY MANAGEMENT

28

In this example, the SQL Server service account has already been changed, and the new service
account username and password are used to retrieve the account credentials used to protect the SMK.
Atsome point, you may have to rebuild a server. In that case, you can use the OLD_ACCOUNT and
OLD_PASSWORD options to specify the old service account credentials.

■ Note Altering the SMK account credentials works only with Windows credentials of domain or local user
accounts. The Local System, Local Service, and Network Service accounts cannot be used to recover the SMK

after an SQL Server service account change.

ENCRYPTION BY MACHINE KEY?

As of this writing SQL Server 2008 (and the 2005 release) both document ALTER SERVICE MASTER KEY
options to drop or add encryption by machine key. Theoretically this option would cause SQL Server to
store a redundant copy of the service master key encrypted by the machine encryption key. This feature
was designed to aid in rebuilding servers, allowing the service key to be recovered via the machine
encryption key and the SQL Server service account. In both SQL Server 2008 and 2005, the syntax for
these options is not recognized, and they may even be removed from SQL Server Books Online by the time
this book goes to print.

Finally the ALTER statement allows you to regenerate the SMK with the REGENERATE keyword. If you
encounter errors during regeneration, you can force it with the FORCE REGENERATE keywords. Listing 2-4
regenerates the SMK.

Listing 2-4. Regenerating the SMK

ALTER SERVICE MASTER KEY REGENERATE;

As with the RESTORE statement, SQL Server has to decrypt and reencrypt all keys, certificates, and
other secrets protected by the SMK when you regenerate. If you encounter decryption errors during the
regeneration, you can use the FORCE REGENERATE clause. If you have to use FORCE you could be faced with
data loss, due to the inability to decrypt.

You must have CONTROL SERVER permissions on the server to alter the SMK. To use the
OLD_ACCOUNT and OLD_PASSWORD options, you must have knowledge of the old SQL Server service account
logon username and password. To use the NEW_ACCOUNT and NEW_PASSWORD options, you must know the
new SQL Server service account username and password. After regeneration of an SMK, you should
immediately take a backup and secure it in a protected off-site storage facility.

CHAPTER 2 ■ ENCRYPTION KEY MANAGEMENT

29

Database Master Key
The second level of the SQL Server encryption hierarchy includes the Database Master Key. This key is
encrypted by the SMK and it is used to encrypt the certificates, asymmetric keys, and symmetric keys
beneath it in the hierarchy. Just as the SMK is limited to one per SQL Server instance, SQL Server limits
you to one DMK per database. In the following section, I’ll discuss the statements that SQL Server
provides to create, alter, backup, restore, and drop DMKs.

Creating a DMK
The DMK is created via the CREATE MASTER KEY statement. You must be in the target database when you
create a DMK. The CREATE statement is shown in Listing 2-5.

Listing 2-5. Create a DMK

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'a0*Ui)4x-f';

The CREATE statement includes a BY PASSWORD clause that causes the DMK to be encrypted by the
password supplied. The password supplied is used to encrypt the DMK using Triple DES. When you
create a DMK it is not only encrypted using the password you supplied, it is also encrypted by the SMK
and stored in the master database and the target database. The copy of the DMK stored in the master
database is automatically decrypted when issue an OPEN MASTER KEY statement to open the DMK without
supplying a password. You can turn off this behavior with the ALTER statement, which I’ll describe in the
next section.

■ Note The OPEN MASTER KEY statement is described in the Opening a DMK section of this chapter.

To create a DMK you must have CONTROL permission on the target database. Because you cannot
specify the database in the statement itself, you must execute a USE statement to switch to the target
database before creating a DMK.

Altering a DMK
Once you’ve created a DMK, you can use the ALTER statement to modify its properties. For example, you
can turn off the automatic decryption feature and force users to supply a password to open the DMK
with the DROP ENCRYPTION BY SERVICE MASTER KEY clause of the ALTER statement, as shown in Listing 2-6.

CHAPTER 2 ■ ENCRYPTION KEY MANAGEMENT

30

Listing 2-6. Removing DMK Automatic Decryption Feature

ALTER MASTER KEY DROP ENCRYPTION BY SERVICE MASTER KEY;

You can also add or drop encryption by password with ADD and DROP ENCRYPTION BY PASSWORD =
'password' clauses, respectively. The DMK must be encrypted by at least one password, so you can’t
remove all password encryptions from a given DMK. Listing 2-7 demonstrates both adding and
removing DMK encryption by password. You might want to add additional passwords to the DMK so
that different users, or different groups of users or applications, don’t have to share a single password
between them. You may also prefer to just use encryption by the SMK and avoid managing SMK
passwords yourself.

Listing 2-7. Adding and Removing DMK Encryption By Password

-- Add encryption by password
ALTER MASTER KEY ADD ENCRYPTION BY PASSWORD = '9(%^jQ!@#d';
GO
-- Remove encryption by password
ALTER MASTER KEY DROP ENCRYPTION BY PASSWORD = '9(%^jQ!@#d';
GO

You can also use the ALTER statement to regenerate a DMK in accordance with your key rotation
schedule. When you regenerate a DMK, all keys secured by the DMK are first decrypted, the DMK is
regenerated, and all of the keys it secures are then reencrypted. Listing 2-8 regenerates the DMK. The
regenerated DMK is protected by the password you specify in the REGENERATE WITH ENCRYPTION BY
PASSWORD clause of the statement.

■ Tip If you regenerate a DMK that has the SMK encryption option turned off, the SMK encryption option will
remain off after the regeneration is complete. Likewise, if the SMK encryption option was turned on for the DMK it
will remain on after regeneration. You can always execute an additional ALTER MASTER KEY statement to turn this

option on or off to suit your needs. If you used ALTER MASTER KEY to create additional DMK decryption passwords,
those passwords are lost after DMK regeneration. The newly regenerated DMK is protected only by the single

password you specify in the REGENERATE clause and the SMK (if that option was turned on).

CHAPTER 2 ■ ENCRYPTION KEY MANAGEMENT

31

Listing 2-8. Regenerating a DMK

ALTER MASTER KEY REGENERATE WITH ENCRYPTION BY PASSWORD = '$4yAxU%t7';

During the regeneration if a decryption error occurs, the ALTER statement will fail. You can use the
FORCE REGENERATE clause to force the regeneration. As with other FORCE options, if you use the FORCE
REGENERATE clause you may suffer data loss.

Altering a DMK requires CONTROL permission on the target database. If the DMK is protected by
password only, you also need to know the password to decrypt the DMK.

Backing Up a DMK
As with the SMKs, as soon as a DMK is created or altered you need to immediately get a backup of it
andstore it in a secure location. You can use the BACKUP MASTER KEY statement to back up your DMKs.
The syntax is similar to that of the SMK BACKUP statement. Listing 2-9 shows the DMK BACKUP statement.

Listing 2-9. Backing Up a DMK

BACKUP MASTER KEY TO FILE = N'C:\MyDatabaseMasterKey.key'
ENCRYPTION BY PASSWORD = N'0-!t4=Rtr=,';

The BACKUP statement backs up your DMK to a file. In this example, the file is
MyDatabaseMasterKey.key on the C: drive. As with the SMK BACKUP statement, make sure you
store the password used to encrypt the DMK in a secure location. You will need to supply this
password again at restore time.

Backing up a DMK requires CONTROL permission on the database. The SQL Server service account
must also have access to the destination directory where the output file will be created.

Restoring a DMK
You may have a need to restore your DMK at some point. If you experience a hardware failure, need to
recover from a disaster, or want to move a database to a new instance, you may need to restore a DMK.
The DMK RESTORE MASTER KEY statement is similar to, but slightly different from, the SMK RESTORE
statement. Listing 2-10 shows the RESTORE statement in action.

Listing 2-10. Restore a DMK

RESTORE MASTER KEY FROM FILE = 'C:\MyDatabaseMasterKey.key'
DECRYPTION BY PASSWORD = '0-!t4=Rtr=,'
ENCRYPTION BY PASSWORD = 'p#v8A0@+|';

CHAPTER 2 ■ ENCRYPTION KEY MANAGEMENT

32

The DECRYPTION BY PASSWORD = 'password' clause requires you to supply the same password you
used when you took the backup. The ENCRYPTION BY PASSWORD = 'password' clause is used to specify the
password you want SQL Server to use to encrypt the DMK when it is stored in the database.

■ Tip As with the ALTER MASTER KEY statement's REGENERATE clause, the restored DMK is protected by the
single password you specify and is only protected by the SMK if the current DMK is protected by SMK. Any

additional passwords you created to protect the DMK previously are lost when you perform a restore operation.

When you restore the DMK, all keys encrypted by the DMK are decrypted and reencrypted. As with
other encryption DDL statements, if the decryption process fails you can use the FORCE option to force
SQL Server to restore the DMK despite these errors. Again, if you have to use the FORCE option you may
suffer data loss.

You must have CONTROL permission on the target database when you restore a DMK. Also, you
must have knowledge of the password used to encrypt the DMK file you are importing.

■ Note You must specify a new password to encrypt the DMK on the server once it’s restored (via the
ENCRYPTION BY PASSWORD = 'password' clause). Make sure you record this new password and store it

in a secure location immediately after a restore operation.

Dropping a DMK
You can choose to drop a DMK with the DROP MASTER KEY statement, as shown in Listing 2-11. The DROP
statement will fail if there are any keys protected by the DMK in the database. You can use the
sys.certificates and sys.asymmetric_keys to determine if the DMK is being used to encrypt any
private keys.

Listing 2-11. Drop a DMK

DROP MASTER KEY;

Dropping a DMK requires CONTROL permission on the target database.

Opening a DMK
Before you can use a key or certificate that is secured by the DMK, you must first open the DMK. The
standard encryption usage pattern is shown in Figure 2-3. Notice the DMK must be opened before the
data-encrypting symmetric key it protects is opened.

CHAPTER 2 ■ ENCRYPTION KEY MANAGEMENT

33

Figure 2-3. Standard encryption key usage pattern in SQL Server 2008

You have two options for opening your DMK: (1) since the DMK is always protected by a password
you can supply the password in the OPEN MASTER KEY statement, or (2) if the DMK is also optionally
protected by the SMK, the DMK will automatically be opened and decrypted by the SMK on an
as-needed basis. An example of the OPEN MASTER KEY statement is shown in Listing 2-12.

Listing 2-12. Opening a DMK

OPEN MASTER KEY DECRYPTION BY PASSWORD = '$4yAxU%t7';

The OPEN MASTER KEY statement requires CONTROL permission on the target database. The OPEN
MASTER KEY statement always requires a password. You don’t need to issue OPEN MASTER KEY statements if
you’re using SMK protection for your DMK, and therefore won’t need the password. You also need to
know the password used to encrypt the DMK. I’ll demonstrate automatic opening of a DMK protected by
SMK in Chapter 3.

CHAPTER 2 ■ ENCRYPTION KEY MANAGEMENT

34

Closing a DMK
After you’ve opened a DMK and have finished using it, you should close the DMK with the CLOSE MASTER KEY
statement. You can only close the DMK when it was explicitly opened via the OPEN MASTER KEY statement in
the current session. If you try to close the DMK and it’s not open already, SQL Server ignores the statement
and returns without generating an error message. When the current session terminates, the DMK is
automatically closed. Listing 2-13 is an example of the CLOSE MASTER KEY statement.

Listing 2-13. Closing a DMK

CLOSE MASTER KEY;

The CLOSE MASTER KEY statement has no permission requirements.

Other Keys and Certificates
SQL Server 2008 supports creation and administration of other types of keys and certificates with
different purposes. This section provides a brief overview of these keys, including the Database
Encryption Key, Encryption Keys and Certificates, and Extensible Key Management. Administration
anduse of each of these is described in detail in relevant chapters, as indicated.

SQL Server 2008 introduces a new type of encryption key that wasn’t available in SQL Server 2005.
The Database Encryption Key (DEK) is an integral part of the new Transparent Data Encryption (TDE)
functionality, used to encrypt an entire SQL Server database at once. The DEK has very specific
functionality in relation to TDE, has additional prerequisites necessary for its creation, and also for
implementation of TDE functionality. I’ll discuss DEK creation and administration in detail in Chapter 6.

The remaining certificates and keys that can be created in SQL Server include symmetric keys,
asymmetric keys, and certificates. These additional keys and certificates can be used to encrypt still
other keys and data. The specific syntax for the statements to create and administer symmetric keys,
asymmetric keys, and certificates is detailed in Chapters 3 and 4.

EKM utilizes external hardware security modules to create, store, and manage keys and certificates.
The HSM appliance is integrated with SQL Server through SQL language extensions and HSM vendor-
supplied software drivers. Chapter 5 details EKM configuration and use with examples shown on the
SafeNet Luna appliance.

Permissions
You have to have specific permissions to create and administer keys and certificates. Table 2-1 lists the
permissions required to perform administrative actions on keys and certificates on SQL Server 2008.

Table 2-1. Encryption Administrative Task Permissions

Secret Type Action Permissions

Asymmetric Key ALTER CONTROL (Asymmetric Key)

-- CREATE CREATE ASYMMETRIC KEY (Database)

CHAPTER 2 ■ ENCRYPTION KEY MANAGEMENT

35

-- DROP CONTROL (Asymmetric Key)

Certificate ALTER ALTER (Certificate)

-- BACKUP CONTROL (Certificate)

-- CREATE CREATE CERTIFICATE (Database)

-- DROP CONTROL (Certificate)

Database Encryption Key ALTER CONTROL (Database)

-- CREATE CONTROL (Database)

-- DROP CONTROL (Database)

Database Master Key ALTER CONTROL (Database)

-- BACKUP CONTROL (Database)

-- CLOSE None

-- CREATE CONTROL (Database)

-- DROP CONTROL (Database)

-- OPEN CONTROL (Database)

-- RESTORE CONTROL (Database)

Service Master Key ALTER CONTROL SERVER

-- BACKUP CONTROL SERVER

-- RESTORE CONTROL SERVER

Symmetric Key ALTER ALTER (Symmetric Key)

-- CREATE ALTER ANY SYMMETRIC KEY (Database)

-- DROP CONTROL (Symmetric Key)

Some administrative actions require additional permissions on other objects. For example, if you
want to issue an ALTER statement against a symmetric key, and that symmetric key is protected by a
certificate, you must have VIEW DEFINITION permissions on the certificate. You may also need access to
the password used to protect the certificate.

CHAPTER 2 ■ ENCRYPTION KEY MANAGEMENT

36

If you’re importing or restoring a certificate or key from an external file, the SQL Server service
account must have permissions to access the file.

Opening, closing, and encrypting keys or data with symmetric keys, asymmetric keys, and
certificates requires additional permissions, which I’ll discuss in detail in Chapters 3 and 4.

Catalog Views
SQL Server 2008 provides several encryption-specific catalog views that provide information that’s
useful for key and certificate administration. The information about keys, certificates, and cryptographic
providers returned by these catalog views is useful for many management tasks. You can use these
catalog views to perform automated or manual comparisons of cryptographic configurations between
two databases, to keep a log of changes to cryptographic settings, or even to write cryptographic
administration applications. In this section, I’ll discuss these system views and how you can use them
tomanage your keys and certificates.

sys.asymmetric_keys
The sys.asymmetric_keys catalog view returns information about asymmetric keys in the current database.
This catalog view returns one row per asymmetric key. The information available includes the name and
GUID of the asymmetric key, the integer ID of the key, the public key of the asymmetric key pair, key
length, and algorithm and cryptographic provider information. Listing 2-14 queries the
sys.asymmetric_keys catalog view. Results are shown in Figure 2-4. There are additional columns returned
by this catalog view, which are not shown in the following sample.

Listing 2-14. Retrieving a List of Asymmetric Keys in the Current Database

SELECT
 name,
 asymmetric_key_id,
 pvt_key_encryption_type_desc,
 thumbprint,
 algorithm_desc,
 key_length,
 public_key
FROM sys.asymmetric_keys;

Figure 2-4. Asymmetric keys in the current database

CHAPTER 2 ■ ENCRYPTION KEY MANAGEMENT

37

sys.certificates
The sys.certificates catalog view retrieves information about certificates in the current database.
This catalog view consists of a single row for each certificate. The information returned includes the
nameand GUID of the certificate, certificate serial number, and certificate metadata, like subject and
expiration date. Listing 2-15 demonstrates how to retrieve certificate information, with results shown
inFigure 2-5. This catalog view returns additional columns that are not shown in the sample query.

Listing 2-15. Retrieving a List of Certificates Installed in the Current Database

SELECT
 name,
 certificate_id,
 pvt_key_encryption_type_desc,
 subject,
 cert_serial_number,
 start_date,
 expiry_date,
 thumbprint
FROM sys.certificates;

Figure 2-5. Certificates installed in a database

sys.credentials
The sys.credentials catalog view returns information about EKM provider credentials. The view returns
one row per credential. Information returned includes credential ID, credential name, and identity
name and information about the associated cryptographic provider. This view only returns information
if you have an EKM provider registered with SQL Server. Listing 2-16 retrieves credentials of EKM
providers that are registered with an instance of SQL Server. The results in Figure 2-6 show the
credentials of an EKM provider that I’ve registered with my development SQL Server instance.

Listing 2-16. Retrieving EKM Provider Credentials

SELECT
 credential_id,
 name,
 credential_identity,
 create_date,
 modify_date,
 target_type,
 target_id
FROM sys.credentials;

CHAPTER 2 ■ ENCRYPTION KEY MANAGEMENT

38

Figure 2-6. EKM provider credentials list

sys.cryptographic_providers
When you register an EKM cryptographic provider with SQL Server 2008 you have to install, and register,
a Dynamic Link Library (DLL) file with your SQL Server instance. The sys.cryptographic_providers
catalog view returns information about installed EKM cryptographic providers, with one row per
cryptographic provider. Information includes provider ID and name, provider GUID, version, DLL path,
and a flag indicating whether the provider is enabled or disabled. Listing 2-17 uses the
sys.cryptographic_providers catalog view to return information about registered cryptographic
providers. Results from my development SQL Server instance are shown in Figure 2-7.

Listing 2-17. Querying Registered Cryptographic Providers

SELECT
 provider_id,
 name,
 guid,
 version,
 dll_path,
 is_enabled
FROM sys.cryptographic_providers;

Figure 2-7. Registered cryptographic provider list

CHAPTER 2 ■ ENCRYPTION KEY MANAGEMENT

39

sys.crypt_properties
The sys.crypt_properties catalog view returns one row for each cryptographic property associated with
securables, with one row per property per securable. Results include whether the property exists on an
object or column, encryption type, and the property itself. Listing 2-18 demonstrates one possible use
ofthis catalog view by retrieving a list of all database columns and objects. Figure 2-8 shows that two
database objects—SQL Server stored procedures—were digitally signed using certificates installed in
thedatabase.

Listing 2-18. Retrieving Cryptographic Properties for Database Objects and Columns

SELECT
 o.name AS object_name,
 SCHEMA_NAME(o.schema_id) AS object_schema,
 cp.major_id,
 cp.class_desc,
 cp.crypt_type_desc,
 cp.thumbprint
FROM sys.crypt_properties cp
INNER JOIN sys.all_objects o
 ON cp.major_id = o.object_id;

Figure 2-8. List of stored procedures that are digitally signed by certificate

sys.key_encryptions
When a symmetric key is created with the CREATE SYMMETRIC KEY statement’s ENCRYPTION BY clause, a
reference is added to this view. The sys.key_encryptions catalog view returns information about all keys
and certificates used to encrypt symmetric keys. The information returned includes the ID of the
encrypted key and the type of the encryption. The sample query in Listing 2-19 returns a list of installed
symmetric keys that are encrypted by certificates. These symmetric keys, and the certificates that
encrypt them, are shown in the results in Figure 2-9.

CHAPTER 2 ■ ENCRYPTION KEY MANAGEMENT

40

Listing 2-19. Retrieving Symmetric Keys That are Encrypted By Certificates

SELECT
 sk.name AS key_name,
 ke.crypt_type_desc,
 ke.crypt_property,
 c.name AS cert_name,
 sk.algorithm_desc AS key_algorithm_desc,
 sk.key_length,
 ke.thumbprint
FROM sys.key_encryptions ke
INNER JOIN sys.symmetric_keys sk
 ON sk.symmetric_key_id = ke.key_id
INNER JOIN sys.certificates c
 ON ke.thumbprint = c.thumbprint;

Figure 2-9. List of symmetric keys and the certificates that encrypt them

sys.symmetric_keys
The sys.symmetric_keys catalog view retrieves information about symmetric keys that exist in the current
database. The view returns one row per symmetric key and the information returned includes symmetric
key name and GUID, key length, and encryption algorithm. The previous example in Listing 2-19 uses the
sys.symmetric_keys catalog view to return the list of symmetric keys that are encrypted by certificate.

Dynamic Management Views and Functions
Dynamic management views (DMVs) and functions (DMFs) return internal SQL Server state data. The
SQL Server state data is transient and often exists only for the length of a single SQL statement or until
the service is cycled. The information returned by the encryption-specific DMVs and DMFs is useful for
diagnosing cryptographic problems. Like the catalog views discussed in the previous section, DMVs and
DMFs provide extremely useful troubleshooting and administrative information. This section discusses
the cryptographic DMVs and DMFs available on SQL Server 2008.

CHAPTER 2 ■ ENCRYPTION KEY MANAGEMENT

41

sys.dm_cryptographic_provider_algorithms
The sys.dm_cryptographic_provider_algorithms DMF accepts the integer ID of an EKM provider as a
parameter. The DMF returns algorithm and key type information. You need to have an EKM provider
registered in order to use this DMF. Listing 2-20 uses the sys.dm_cryptographic_provider_algorithms
DMF toretrieve information about all the algorithms supported by a registered EKM provider. The
registered EKM provider in this example has a provider_id of 65536. Figure 2-10 shows the results of
this query.

Listing 2-20. Retrieving Algorithms Supported By a Registered Cryptographic Provider

SELECT
 algorithm_id,
 algorithm_tag,
 key_type,
 key_length
FROM sys.dm_cryptographic_provider_algorithms (65536);

Figure 2-10. List of encryption algorithms supported by a registered EKM provider

sys.dm_cryptographic_provider_keys
The sys.dm_cryptographic_provider_keys DMF also accepts the ID of an EKM provider as a parameter.
This DMF returns information about the keys available via an EKM provider, as shown in Listing 2-21.
The information returned includes key ID, name, algorithm, and key length information (see
Figure 2-11).

CHAPTER 2 ■ ENCRYPTION KEY MANAGEMENT

42

Listing 2-21. Querying the Keys Exposed By the EKM Provider

SELECT
 keyid,
 key_name,
 algorithm_tag,
 key_type,
 key_length,
 key_thumbprint
FROM sys.dm_cryptographic_provider_keys (65536);

Figure 2-11. Keys available through the sample EKM provider

sys.dm_cryptographic_provider_properties
The sys.dm_cryptographic_provider_properties DMV retrieves information about registered
cryptographic providers. The information returned includes provider ID and GUID, version,
authentication type, and flags indicating support for asymmetric and symmetric key functionality.
Listing 2-22 retrieves the EKMprovider properties and feature support flags with results shown in
Figure 2-12. This DMV returns additional flags not shown in the sample query.

Listing 2-22. Getting Properties and Feature Support Flags of the EKM Provider

SELECT
 provider_id,
 provider_version,
 sqlcrypt_version,
 friendly_name,
 authentication_type,
 symmetric_key_support,
 asymmetric_key_support
FROM sys.dm_cryptographic_provider_properties;

CHAPTER 2 ■ ENCRYPTION KEY MANAGEMENT

43

Figure 2-12. Properties and selected feature set for the EKM provider

sys.dm_cryptographic_provider_sessions
The sys.dm_cryptographic_provider_sessions DMF returns the set of current cryptographic provider
sessions. The DMF accepts a single parameter, which can be one of the following two values:

0 = Return session information for the current cryptographic connection only

1 = Return session information for all cryptographic connections

This information is useful for determining who has an open EKM session at any given point in time.
The information returned includes the provider ID, a cryptographic session handle, the identity used to
authenticate with the EKM, and the Server Process ID (SPID). The sample query in Listing 2-23 returns
information about all open cryptographic provider sessions. Results are shown in Figure 2-13.

Listing 2-23. Retrieving a List of Cryptographic Provider Sessions

SELECT
 provider_id,
 session_handle,
 identity,
 spid
FROM sys.dm_cryptographic_provider_sessions(1);

Figure 2-13. Current cryptographic provider sessions

CHAPTER 2 ■ ENCRYPTION KEY MANAGEMENT

44

sys.dm_database_encryption_keys
The sys.dm_database_encryption_keys DMV retrieves a list of database encryption keys and the
databases they protect using Transparent Data Encryption (TDE). Listing 2-24 queries the list of
database encryption keys, returning their current state, algorithm, key length, and the names of the
databases they protect. Figure 2-14 shows the results. The DMV and catalog view I used in this example
have additional columns that aren’t returned by the code sample.

Listing 2-24. Querying the List of Database Encryption Keys

SELECT
 d.name AS db_name,
 dbek.encryption_state,
 dbek.key_algorithm,
 dbek.key_length,
 dbek.percent_complete
FROM sys.dm_database_encryption_keys dbek
INNER JOIN sys.databases d
 ON dbek.database_id = d.database_id;

Figure 2-14. Databases protected by database encryption keys (TDE)

In this example, TDE is turned on in a database named Crypto. TDE automatically encrypts the
tempdb database when any database on the SQL Server instance is encrypted. I’ll discuss this feature of
TDE in greater detail in Chapter 6. Another notable feature of this DMV is the encryption_state column.
It can be any of the following values:

0 = No database encryption key is present; the database is not encrypted.

1 = Database is unencrypted.

2 = Database encryption is currently in progress.

3 = Database is encrypted.

4 = Database encryption key change is in progress.

5 = Database decryption is currently in progress.

The percent_complete column signal how far along the current database encryption change has
proceeded. This might return 50 when the database encryption process has reached the halfway point.
This column will be set to zero when no change is in progress.

CHAPTER 2 ■ ENCRYPTION KEY MANAGEMENT

45

Summary
SQL Server 2008 provides a comprehensive set of encryption tools to protect your data within the
database. One of the hardest problems in encryption is the issue of encryption key management. SQL
Server implements an encryption key hierarchy similar to the ANSI X9.17 standard to help simplify key
management. To help administer encryption keys and certificates, the SQL Server team has added
dozens of new extensions to T-SQL, SQL Server’s native tongue. Using the new extensions to the
language you can create, modify, and remove every type of encryption key SQL Server supports. In
addition, SQL Server 2008 provides several system views (catalog views, DMFs, and DMVs) to help
monitor and troubleshoot your database encryption.

In this chapter, I described the SQL Server encryption hierarchy and how it helps you to implement
an efficient encryption key rotation. I discussed the top layers of the encryption key hierarchy—the
master keys and key encrypting keys—and how to use T-SQL statements to administer them. I also
discussed the system views available to help you monitor encryption on your server.

In the next chapter, I’ll begin a deep dive into the internals of SQL Server’s implementation of
symmetric encryption.

C H A P T E R 3

■ ■ ■

47

Symmetric Encryption

Symmetric encryption is the class of encryption that involves using the same key (or two keys that are
trivially related, mathematically speaking) for encryption and decryption. SQL Server provides support
for symmetric encryption via a variety of algorithms, including AES, DES, Triple DES, RC2, and RC4. The
SQL Server encryption hierarchy uses symmetric encryption algorithms to encrypt both keys and data.
In this chapter, I’ll discuss how to create symmetric encryption keys and use symmetric encryption to
secure your data and other encryption keys.

■ Note Trivially related keys are keys whose relationship can be defined in simple mathematical terms. For
example, assume you have two keys, x and y. If the relationship between the two keys can be defined in terms

ofa simple relationship, such as y = x + 1, the keys are trivially related.

Symmetric Keys
SQL Server 2008 supports the creation and management of symmetric keys to encrypt data. Symmetric
keys are protected by asymmetric keys, certificates, passwords, or even other symmetric keys. I
discussed the encryption hierarchy, and where symmetric keys fit into it, in Chapter 2. In this chapter,
I’ll discuss the symmetric encryption algorithms that SQL Server supports and describe how to encrypt
data and other keys using symmetric keys.

For purposes of demonstration, I’ll be creating a table called SalesLT.EncryptedCustomer in the
AdventureWorksLT database. Listing 3-1 is the CREATE TABLE statement that creates this table.

■ Note You can download and install the sample AdventureWorksLT 2008 sample database from
http://msftdbprodsamples.codeplex.com to run the samples in the following sections and throughout

the rest of the book.

CHAPTER 3 ■ SYSTEMIC ENCRYPTION

48

Listing 3-1. Create SalesLT.EncryptedCustomer Table

CREATE TABLE SalesLT.EncryptedCustomer
(
 CustomerID int NOT NULL PRIMARY KEY,
 FirstName varbinary(200),
 MiddleName varbinary(200),
 LastName varbinary(200),
 EmailAddress varbinary(200),
 Phone varbinary(150),
 rowguid uniqueidentifier
);
GO

Creating and Protecting Symmetric Keys
Before you create a symmetric key to protect your data you first need to create an asymmetric key or
certificate to protect the symmetric key. Listing 3-2 shows how to create a self-signed certificate on SQL
Server to protect your symmetric keys.

■ Tip Instead of creating self-signed certificates, you can install an existing certificate or asymmetric key from an

external source. I’ll discuss this option in Chapter 4.

Listing 3-2. Creating a Certificate to Protect Symmetric Keys

CREATE CERTIFICATE Cert1_Sales
WITH SUBJECT = N'Sales Certificate',
START_DATE = N'2009-01-01',
EXPIRY_DATE = N'2018-12-31';
GO

This example creates a certificate named Cert1_Sales. Once the certificate is created, you can use it
to protect symmetric keys you create. Listing 3-3 creates an AES 256-bit symmetric key and uses the
certificate to protect it.

Listing 3-3. Creating the AES 256-Bit Symmetric Key

CREATE SYMMETRIC KEY SymKey1_Sales
WITH ALGORITHM = AES_256,
 IDENTITY_VALUE = N'Barbarians at the Gate',
 KEY_SOURCE = N'We will leave the light on for you'
ENCRYPTION BY CERTIFICATE Cert1_Sales;
GO

The WITH ALGORITHM clause specifies which encryption algorithm the symmetric key will be used
with. This clause assigns an encryption algorithm to the symmetric key. The key length can be either

CHAPTER 3 ■ SYSTEMIC ENCRYPTION

49

explicit in the algorithm name, as in AES_256, or implied as in RC4. Once you’ve created a symmetric
encryption key, it is stored permanently within the database (except in the case of temporary
symmetric keys, which are described later in this section). The IDENTITY_VALUE and KEY_SOURCE options
allow you to re-create the exact same key at a later time. I’ll discuss these options in the “Duplicating
Symmetric Keys” section of this chapter. For now it’s enough to know that you’ll generally want to use
these options since there is no way to back up or export a symmetric key.

Encrypting Data
Once you’ve created a symmetric key you have to open it to encrypt and decrypt data with it. Listing 3-4
uses the SymKey1_Sales key to create an encrypted copy of a table of contact information. If the upstream
DMK is protected by the SMK you don’t need to open the DMK. The sample in Listing 3-4 automatically
opens the DMK without an explicit OPEN MASTER KEY statement.

Listing 3-4. Encrypting Contact Data with a Symmetric Key

-- First wipe out the target table
TRUNCATE TABLE SalesLT.EncryptedCustomer;
GO

-- Open the key that's protected by certificate
OPEN SYMMETRIC KEY SymKey1_Sales
DECRYPTION BY CERTIFICATE Cert1_Sales;
GO

-- Encrypt the data
INSERT INTO SalesLT.EncryptedCustomer
(
 CustomerID,
 FirstName,
 MiddleName,
 LastName,
 EmailAddress,
 Phone,
 rowguid
)
SELECT
 CustomerID,
 EncryptByKey(Key_Guid(N'SymKey1_Sales'), FirstName),
 EncryptByKey(Key_Guid(N'SymKey1_Sales'), MiddleName),
 EncryptByKey(Key_Guid(N'SymKey1_Sales'), LastName),
 EncryptByKey(Key_Guid(N'SymKey1_Sales'), EmailAddress),
 EncryptByKey(Key_Guid(N'SymKey1_Sales'), Phone),
 rowguid
FROM SalesLT.Customer;
GO

-- Close the key
CLOSE SYMMETRIC KEY SymKey1_Sales;
GO

CHAPTER 3 ■ SYSTEMIC ENCRYPTION

50

The first step in the SQL Server symmetric encryption process is to open the symmetric key. Because
the symmetric key is protected by the Cert1_Sales certificate you have to specify this certificate in the
DECRYPTION BY clause of the OPEN SYMMETRIC KEY statement, as shown in the following code snippet.

OPEN SYMMETRIC KEY SymKey1_Sales
DECRYPTION BY CERTIFICATE Cert1_Sales;
GO

Keep in mind that every symmetric key has to maintain an internal state mechanism. This state is
subject to change during the encryption and decryption process. Therefore, it’s not technically feasible
for multiple users to use the same single symmetric key at the same time. However, SQL Server is able to
work around this limitation. When you open a symmetric key, SQL Server makes a copy of it and ties that
copy to your session. What this means for you is that several users can use the same key to encrypt and
decrypt data simultaneously. The amount of state information maintained internally by a symmetric
key depends entirely on the algorithm chosen, with some algorithms requiring a lot more state storage
than others.

■ Note There’s no easy way to quantify exactly how much memory SQL Server uses for state storage since it’s all
handled internally. However, based on the definitions of the algorithms themselves you can estimate it’s not more
than a few kilobytes to store substitution boxes (S-boxes), permutation boxes (P-boxes), and additional state

information for any given instance of a symmetric key.

After you open a symmetric key, the next step is to actually use that symmetric key to encrypt
your data. This task is performed with the EncryptByKey function. The basic no-frills version of the
EncryptByKey function accepts two parameters, the GUID of the symmetric key and the plaintext you
wish to encrypt. EncryptByKey returns a varbinary(8000) value, meaning the encrypted text can be no
longer than 8,000 bytes. If the ciphertext result of a symmetric encryption will be longer than 8,000 bytes,
EncryptByKey returns a null.

As you can see in the following code snippet taken from the previous listing, I’ve used the Key_Guid
system function to return the GUID for the symmetric key. Simply pass the Key_Guid function the name
of your symmetric key and it will do the work of retrieving the GUID for you. This is much simpler than
the alternative, which involves querying the sys.symmetric_keys table.

INSERT INTO SalesLT.EncryptedCustomer
(
 CustomerID,
 FirstName,
 MiddleName,
 LastName,
 EmailAddress,
 Phone,
 rowguid
)

CHAPTER 3 ■ SYSTEMIC ENCRYPTION

51

SELECT
 CustomerID,
 EncryptByKey(Key_Guid(N'SymKey1_Sales'), FirstName),
 EncryptByKey(Key_Guid(N'SymKey1_Sales'), MiddleName),
 EncryptByKey(Key_Guid(N'SymKey1_Sales'), LastName),
 EncryptByKey(Key_Guid(N'SymKey1_Sales'), EmailAddress),
 EncryptByKey(Key_Guid(N'SymKey1_Sales'), Phone),
 rowguid
FROM SalesLT.Customer;
GO

The final step, of course, is to close the symmetric key as shown in the following code.

CLOSE SYMMETRIC KEY SymKey1_Sales;
GO

It’s a good idea to manually close your symmetric keys, but if you’re disconnected before you can
close open symmetric keys for some reason, don’t worry. All open symmetric keys are automatically
closed as soon as the current session is disconnected.

You can query the SalesLT.EncryptedCustomer table after populating it with encrypted data, using a
query like the one in Listing 3-5. Essentially, the results will look like binary gibberish as shown in the
partial results of Figure 3-1. Note that when your run the sample on your server, your ciphertext will be
different from that shown in the figure.

Listing 3-5. Querying the Binary Encrypted Contact Data

SELECT
 CustomerID,
 FirstName
FROM SalesLT.EncryptedCustomer;

Figure 3-1. Looking at encrypted data stored in a table

CHAPTER 3 ■ SYSTEMIC ENCRYPTION

52

The Structure of Chaos

As mentioned, the encrypted data looks like a bunch of binary data type gibberish. From the perspective
of trying to secure your data, this is a good thing. When you look at the encrypted data, as you did in
Figure3-1, however, you might notice a pattern in the ciphertext. Specifically, the first several bytes of
binary data appear to be the same in every single row. In Chapter 1, I spent a good deal of time talking
about how cryptanalysts use patterns to attack your data, so the question you might be asking right now is
“Does this pattern compromise my encryption security?” The short answer is no, this particular pattern
does not pose a security risk.

To explain why this is, I need to describe the structure SQL Server imposes on encrypted data. Put simply,
SQL Server stores additional metadata with every encrypted value. This metadata includes information
about the version of SQL Server encryption being used, the GUID of the key used to encrypt the data, and
various other information. The encrypted data value can actually be viewed as an encrypted data record
with an exact structure. The encrypted data record structure for AES and other 128-bit block ciphers is
shown in the illustration below.

As you can see, the encrypted data record begins with a 16-byte reference to the GUID of the key used to
encrypt the data. This is followed by the 4-byte version, which in the current version of SQL Server is
hardwired as 0x01000000. Next is a 16-byte randomly generated initialization vector (IV). I’ll discuss the
purpose of the IV in the “Encryption Algorithms” section of this chapter. The final field, which can be up to
7,964 bytes in length, is the actual encrypted data. This encrypted data record structure is indicative of
128-bit block ciphers, like AES. For a 64-bit block cipher, like DES or Triple DES, the random IV will
actually be 8 bytes in length and the encrypted data can be 7,972 bytes.

There is one more variable that can affect the length of the final encrypted data record. If you use the
authenticator option, which I’ll describe in the “Adding an Authenticator” section of this chapter, SQL
Server will add an extra 32 bytes of metadata to your encrypted data when using a 128-bit block cipher
(24 bytes are added when using a 64-bit block cipher).

This additional metadata is placed between the random IV and your encrypted data. It consists of additional
header information plus a hash of your authenticator value. When the authenticator is used, the maximum
length of your encrypted data is reduced to 7,932 bytes for AES and other 128-bit block ciphers, and 7,944
bytes for 64-bit block ciphers like DES.

CHAPTER 3 ■ SYSTEMIC ENCRYPTION

53

Decrypting Data
Once you’ve encrypted your data using a symmetric key, you can use the DecryptByKey system function
to decrypt it on an as-needed basis. Listing 3-6 uses DecryptByKey to decrypt the first names of the
contacts that I previously encrypted in Listing 3-4. Partial results are shown in Figure 3-2.

Listing 3-6. Decrypting Previously Encrypted Data

-- Open the key that's protected by certificate
OPEN SYMMETRIC KEY SymKey1_Sales
DECRYPTION BY CERTIFICATE Cert1_Sales;
GO

-- Decrypt the data
SELECT
 CustomerID,
 CAST(DecryptByKey(FirstName) AS nvarchar(100)) AS DecryptedFirstName,
 FirstName
FROM SalesLT.EncryptedCustomer;
GO

-- Close the key
CLOSE SYMMETRIC KEY SymKey1_Sales;
GO

Figure 3-2. Decrypted sample data

CHAPTER 3 ■ SYSTEMIC ENCRYPTION

54

As with the encryption process, the first step in decryption is to open the symmetric key. This is
shown in the code snippet that follows.

OPEN SYMMETRIC KEY SymKey1_Sales
DECRYPTION BY CERTIFICATE Cert1_Sales;
GO

Next the DecryptByKey function is called to decrypt a column of data. The DecryptByKey function call
is shown in the following code snippet.

SELECT
 ContactID,
 CAST(DecryptByKey(FirstName) AS nvarchar(100)) AS DecryptedFirstName,
 FirstName
FROM SalesLT.EncryptedCustomer;
GO

Notice that, unlike EncryptByKey, the DecryptByKey system function requires only one parameter:
the encrypted data. You don’t have to supply the GUID of the key used to encrypt the data—but why this
difference? Recall from the previous section that the GUID of the symmetric key is stored with the
encrypted data itself (see the sidebar The Structure of Chaos in the previous section). The DecryptByKey
function simply retrieves the symmetric key’s GUID from the encrypted data record itself.

Of course, to decrypt the data you still need permissions to the symmetric key used to encrypt the
data, permissions to the asymmetric key or certificate used to encrypt the symmetric key (or you need to
know the password used to encrypt the symmetric key), and permissions to the DMK if it wasused to
encrypt the asymmetric key or certificate protecting the symmetric key. If you don’t have permissions to
all of the necessary keys and certificates, and knowledge of the passwords if passwords were used to
protect them, you won’t be able to decrypt previously encrypted data. Also, this is all predicated on your
having permissions to access the table containing the encrypted data.

Notice also that I wrapped the DecryptByKey function inside a CAST function call. This is because
DecryptByKey returns a varbinary result. Because I started with nvarchar data, I have to explicitly cast the
result back to nvarchar.

■ Caution If you initially encrypted nvarchar data, you must cast it back to nvarchar. If you cast it back to

varchar instead, you could lose data.

Adding an Authenticator
So far I’ve talked about the basic parameters that symmetric encryption functions accept: The
EncryptByKey function takes a symmetric key GUID and plaintext to encrypt, and the DecryptByKey
function accepts the encrypted ciphertext. In addition to the basic parameters, these functions can
accept an additional authenticator flag and authenticator string value. When the authenticator flag
issetto 1 the encryption and decryption functions apply the authenticator value to further obfuscate
yourciphertext.

Consider Figure 3-3, which represents a table of bank account information, but with account
balance information encrypted.

CHAPTER 3 ■ SYSTEMIC ENCRYPTION

55

Figure 3-3. Table with encrypted bank account balances

For this example, we’ll just say that our hacker, John Smith, has accessed this information. He
recognizes some of the names on the other accounts and realizes that there’s a very high probability that
their account balances are larger than his (which currently sits at a hefty $3.99). John decides to copy Bill
Gates’ encrypted account balance over to his account balance. This is a whole-value substitution attack,
and authenticators help mitigate this risk.

The purpose of the authenticator is to prevent this type of whole-value substitution attacks onyour
data, in which an attacker replaces an encrypted value with another encrypted value. The authenticator
can be used to tie your encrypted ciphertext value to a given row, so the encrypted data can’t be copied
to another row. You’ll generally want to use a different authenticator for every row (probably a value
from another column in the same row).

Listing 3-7 modifies the code in Listing 3-4 to encrypt the same data, but with the addition of an
authenticator, which is the fourth parameter passed to the EncryptByKey function.

Listing 3-7. Encrypting with an Authenticator

-- First wipe out the target table
TRUNCATE TABLE SalesLT.EncryptedCustomer;
GO

-- Open the key that's protected by certificate
OPEN SYMMETRIC KEY SymKey1_Sales
DECRYPTION BY CERTIFICATE Cert1_Sales;
GO

-- Encrypt the data with authenticator
INSERT INTO SalesLT.EncryptedCustomer
(
 CustomerID,
 FirstName,
 MiddleName,
 LastName,
 EmailAddress,
 Phone,
 rowguid
)

CHAPTER 3 ■ SYSTEMIC ENCRYPTION

56

SELECT
 CustomerID,
 EncryptByKey(Key_Guid(N'SymKey1_Sales'), FirstName, 1,
 CAST(rowguid AS nvarchar(100))),
 EncryptByKey(Key_Guid(N'SymKey1_Sales'), MiddleName, 1,
 CAST(rowguid AS nvarchar(100))),
 EncryptByKey(Key_Guid(N'SymKey1_Sales'), LastName, 1,
 CAST(rowguid AS nvarchar(100))),
 EncryptByKey(Key_Guid(N'SymKey1_Sales'), EmailAddress, 1,
 CAST(rowguid AS nvarchar(100))),
 EncryptByKey(Key_Guid(N'SymKey1_Sales'), Phone, 1,
 CAST(rowguid AS nvarchar(100))),
 rowguid
FROM SalesLT.Customer;
GO

-- Close the key
CLOSE SYMMETRIC KEY SymKey1_Sales;
GO

To decrypt the data, you’ll need to apply the same authenticator you used to encrypt it, as shown in
Listing 3-8. The DecryptByKey function accepts the authenticator as its third parameter.

Listing 3-8. Decryption with an Authenticator

-- Open the data key that's protected by certificate
OPEN SYMMETRIC KEY SymKey1_Sales
DECRYPTION BY CERTIFICATE Cert1_Sales;
GO

-- Decrypt the data with authenticator
SELECT
 CustomerID,
 CAST
 (
 DecryptByKey(FirstName, 1, CAST(rowguid AS nvarchar(100))
) AS nvarchar(100)) AS DecryptedFirstName,
 FirstName
FROM SalesLT.EncryptedCustomer;
GO

-- Close the symmetric key
CLOSE SYMMETRIC KEY SymKey1_Sales;
GO

Automatic Key Management
My examples of encryption and decryption so far have assumed that the Database Master Key (DMK) is
encrypted by the Service Master Key (SMK). This is referred to by Microsoft as automatic key management.
It simply means that you don’t have to manually open the DMK when you want to use the keys and
certificates protected by it.

CHAPTER 3 ■ SYSTEMIC ENCRYPTION

57

When you have automatic key management turned on, all your database administrators (DBAs)
have access to decrypt all data encrypted by the keys and certificates that are in turn protected by the
DMK. In some cases, you might want to limit the access DBAs have to encrypted data. You can turn off
automatic key management by using the ALTER MASTER KEY statement, as shown in Listing 3-9.

Listing 3-9. Turning Off Automatic Key Management

ALTER MASTER KEY
DROP ENCRYPTION BY SERVICE MASTER KEY;

Now, to encrypt and decrypt data using certificates and keys that are protected by the DMK you first
have to issue an OPEN MASTER KEY statement. After turning off automatic key management, you’ll get an
error like the following if you try to encrypt or decrypt data without first manually opening the DMK.

Msg 15581, Level 16, State 3, Line 1

Please create a master key in the database or open the master key in the

session before performing this operation.

(847 row(s) affected)

Msg 15315, Level 16, State 1, Line 2

The key 'SymKey1_Sales' is not open. Please open the key before using it.

Listing 3-10 revises the encryption example in Listing 3-6 to properly decrypt the data without
automatic key management. Notice the DMK must be opened first, as indicated in bold text in Listing 3-10.

Listing 3-10. Decrypting Data Without Automatic Key Management

-- Open the DMK that's protected by password; necessary because
-- the certificate is protected by the DMK
OPEN MASTER KEY
DECRYPTION BY PASSWORD = N'a0*Ui)4x-f';
GO

-- Open the symmetric key that's protected by certificate
OPEN SYMMETRIC KEY SymKey1_Sales
DECRYPTION BY CERTIFICATE Cert1_Sales;
GO

CHAPTER 3 ■ SYSTEMIC ENCRYPTION

58

-- Decrypt the data
SELECT
 CustomerID,
 CAST(DecryptByKey(FirstName) AS nvarchar(100)) AS DecryptedFirstName,
 FirstName
FROM SalesLT.EncryptedCustomer;
GO

-- Close the key and DMK
CLOSE SYMMETRIC KEY SymKey1_Sales;
GO

CLOSE MASTER KEY;
GO

You can also protect your certificates, asymmetric keys, and symmetric keys with passwords instead
of the DMK. If you’ve been executing the samples as you read the chapter, then you’ve already removed
automatic key management from your DMK.

In Listing 3-11, I’ll take it a step farther. In this listing, I’ll add password encryption to, and remove
certificate encryption from, the SymKey1_Sales symmetric key. This removes the symmetric key from the
scope of SQL Server’s built-in key management hierarchy, effectively shifting the responsibility for key
management back to you. Note that if you want to alter the symmetric key you have to open it first, as
I’ve done in the example.

Listing 3-11. Using Encryption By Password to Protect a Symmetric Key

-- Open the DMK that's protected by password
OPEN MASTER KEY
DECRYPTION BY PASSWORD = N'a0*Ui)4x-f';
GO

-- Open the data encrypting key
OPEN SYMMETRIC KEY SymKey1_Sales
DECRYPTION BY CERTIFICATE Cert1_Sales;
GO

-- Add encryption by password to the key
ALTER SYMMETRIC KEY SymKey1_Sales
ADD ENCRYPTION BY PASSWORD = N'~@~*&a1B4!';
GO

-- Drop certificate protection from the key
ALTER SYMMETRIC KEY SymKey1_Sales
DROP ENCRYPTION BY CERTIFICATE Cert1_Sales;
GO

-- Close the key and DMK
CLOSE SYMMETRIC KEY SymKey1_Sales;
GO

CLOSE MASTER KEY;
GO

CHAPTER 3 ■ SYSTEMIC ENCRYPTION

59

After this change, whenever you want to use the symmetric key SymKey1_Sales, you’ll need to specify
the password in the DECRYPTION BY clause of the OPEN SYMMETRIC KEY statement. This is shown in
Listing3-12, which modifies Listing 3-4 yet again.

Listing 3-12. Decrypting Data with a Symmetric Key, Protected By Password

-- Open the symmetric key that's protected by password
OPEN SYMMETRIC KEY SymKey1_Sales
DECRYPTION BY PASSWORD = N'~@~*&a1B4!';
GO

-- Decrypt the data
SELECT
 CustomerID,
 CAST(DecryptByKey(FirstName) AS nvarchar(100)) AS DecryptedFirstName,
 FirstName
FROM SalesLT.EncryptedCustomer;
GO

-- Close the symmetric key
CLOSE SYMMETRIC KEY SymKey1_Sales;
GO

Taking Over Key Management

Now that I’ve shown you how to remove your symmetric keys from the standard SQL Server key hierarchy,
I’d like to address the “why.” That is, why would you want to do this? As mentioned, when you remove the
encryption by certificate (or by asymmetric key) you shift the responsibility for key management from SQL
Server to yourself.

While it’s not necessarily easy to manually manage your symmetric keys, there could be valid reasons for
doing so. You might have an organizational IT policy that requires symmetric keys to be managed manually,
for instance. Or you might already have a key management infrastructure in place and the SQL Server key
management hierarchy might not fit into your structure. For example, you might need to manually manage
your keys for security reasons—to guarantee a strict separation of access by DBAs and developers.

If you find that you need to protect your symmetric keys by password, for whatever reason, ensure that you
have the proper safeguards and policies in place to keep them secure.

Duplicating Symmetric Keys
When you create a symmetric key using the syntax I’ve shown so far, SQL Server randomly generates the
key material—the base data from which the key is built. An important point to mention here is that there
is no way to back up a symmetric key. You can’t make a backup and restore it later, or export it and
import it to another machine. So how do you reinstall a symmetric key after a server rebuild, or duplicate
it on another machine?

CHAPTER 3 ■ SYSTEMIC ENCRYPTION

60

The answer is to duplicate it through re-creation with the KEY_SOURCE and IDENTITY_VALUE options.
You can use KEY_SOURCE to specify a passphrase that will be used as the source key material that SQL
Server uses to generate the encryption key. The IDENTITY_VALUE option is used by SQL Server to generate
the GUID for the key.

When you create two or more symmetric keys with the same KEY_SOURCE passphrase,
IDENTITY_VALUE and encryption algorithm SQL Server guarantees it will generate identical keys. This
means you can generate duplicates of a key on multiple servers, or regenerate a key from scratch, by
specifying the same KEY_SOURCE, IDENTITY_VALUE, and algorithm. Listing 3-13 demonstrates how to
create a 192-bit AES key with the KEY_SOURCE and IDENTITY_VALUE options.

Listing 3-13. Creating an AES Key with the KEY_SOURCE Option

CREATE SYMMETRIC KEY SymKey5_Sales
WITH ALGORITHM = AES_192,
KEY_SOURCE = N'She sells sea shells by the seashore.',
IDENTITY_VALUE = N'My identity is a shared secret.'
ENCRYPTION BY CERTIFICATE Cert1_Sales;
GO

If you needed to re-create this key in the future you could by executing the CREATE SYMMETRIC KEY
statement, specifying the exact same options. When you don’t specify a KEY_SOURCE SQL Server
generates a random key. If you don’t specify an IDENTITY_VALUE SQL Server generates a random GUID.
If you specify KEY_SOURCE and IDENTITY_VALUE when creating a symmetric key, be sure to record and
store this information securely so you can re-create the same key in the future. It’s critical to secure
this information since anyone with these values can re-create your symmetric keys on their own
servers.

Temporary Keys
In addition to permanent symmetric encryption keys, you can also create temporary symmetric
encryption keys. You use the CREATE SYMMETRIC KEY statement, just like when you create any other
symmetric key. The difference is that you prefix the symmetric key name with a pound sign (#) as you
would when creating a temporary table. While a permanent encryption key is accessible to all sessions
connected to your SQL Server instance, a temporary key is accessible only on the connection on which it
was created.

The business uses for a temporary symmetric key might include situations in which you can’tstore
permanent symmetric keys in the database for security reasons, or when you only need totemporarily
encrypt data that’s being stored for the duration of your session. When you create a temporary key that
will be used to encrypt and decrypt data that’s stored permanently you need to create it with the
KEY_SOURCE and IDENTITY_VALUE options to ensure you can re-create it later. Listing 3-14 demonstrates
creation of a temporary symmetric key in the database.

CHAPTER 3 ■ SYSTEMIC ENCRYPTION

61

Listing 3-14. Creating a Temporary Symmetric Key

CREATE SYMMETRIC KEY #TempAESKey
WITH ALGORITHM = AES_128,
KEY_SOURCE = N'I am the very model of a modern major general',
IDENTITY_VALUE = N'I think therefore I am'
ENCRYPTION BY CERTIFICATE Cert1_Sales;
GO

As with permanent symmetric keys you can use the Key_GUID function to retrieve the GUID for a
temporary key. You can use the DROP SYMMETRIC KEY to dispose of a temporary symmetric key, or you can
simply disconnect your session. As soon as the current session which owns the temporary key is closed,
the temporary key is closed and dropped.

Layering Symmetric Keys
Another feature of the SQL Server encryption key hierarchy is the ability to protect symmetric keys
withother symmetric keys. You can use symmetric keys to create multiple levels of key encrypting
keysin the middle layer of your encryption key hierarchy. This could prove very useful in an enterprise
environment where large amounts of data are protected by your lowest-level data keys. The advantage
oflayering symmetric keys is that you can significantly lengthen your key rotation schedule for several
layers of keys, and maximize the efficiency of your key rotations.

Before I go on, I want to turn automatic key management back on using the script in Listing 3-15, just
to make things simpler in the samples that follow.

Listing 3-15. Turning Automatic Key Encryption Back On

-- Open the DMK
OPEN MASTER KEY
DECRYPTION BY PASSWORD = 'a0*Ui)4x-f';
GO

-- Add encryption by SMK
ALTER MASTER KEY
ADD ENCRYPTION BY SERVICE MASTER KEY;
GO

-- Close the DMK
CLOSE MASTER KEY;
GO

CHAPTER 3 ■ SYSTEMIC ENCRYPTION

62

Now that automatic key management is turned on, I’ll use the SQL Server encryption hierarchy to
encrypt multiple levels of symmetric keys with other symmetric keys in Listing 3-16. The multiple levels
of symmetric keys encrypting other keys are shown in Figure 3-4.

Listing 3-16. Layering Symmetric Keys

-- Create a symmetric key, protect it with a certificate
CREATE SYMMETRIC KEY SymKey2_Sales
WITH ALGORITHM = AES_256
ENCRYPTION BY CERTIFICATE Cert1_Sales;
GO

-- Open top-level symmetric key
OPEN SYMMETRIC KEY SymKey2_Sales
DECRYPTION BY CERTIFICATE Cert1_Sales;
GO

-- Create the next symmetric key, protect it with the top-level symmetric key
CREATE SYMMETRIC KEY SymKey3_Sales
WITH ALGORITHM = AES_192
ENCRYPTION BY SYMMETRIC KEY SymKey2_Sales;
GO

-- Open the previously created symmetric key
OPEN SYMMETRIC KEY SymKey3_Sales
DECRYPTION BY SYMMETRIC KEY SymKey2_Sales;
GO

-- Create the bottom-level symmetric key, protect it with the previous key
CREATE SYMMETRIC KEY SymKey4_Sales
WITH ALGORITHM = AES_128
ENCRYPTION BY SYMMETRIC KEY SymKey3_Sales;
GO

-- Close all open keys
CLOSE SYMMETRIC KEY SymKey3_Sales;
GO

CLOSE SYMMETRIC KEY SymKey2_Sales;
GO

CHAPTER 3 ■ SYSTEMIC ENCRYPTION

63

Figure 3-4. Layered symmetric keys in the SQL Server encryption key hierarchy

In this example, the SymKey4_Sales symmetric key is the data encrypting key. This key is encrypted
by the SymKey3_Sales symmetric key, which is in turn protected by the SymKey2_Sales symmetric key.
The SymKey2_Sales key is protected by a certificate, and so on up the key management hierarchy.

You may notice that all the symmetric keys in this example use the AES encryption algorithm. The
higher-level symmetric keys are more secure than the lower-level keys. The SymKey2_Sales key uses a
256-bit key, for instance, while the lower-level SymKey4_Sales key uses a 128-bit key. Best practices
indicate that you should use an algorithm and a key that are as strong as, or stronger than, the keys
theysecure.

The downside of layering symmetric keys is that you have to open all levels of keys to encrypt or
decrypt your data. Listing 3-17 demonstrates the encryption process.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ SYSTEMIC ENCRYPTION

64

Listing 3-17. Encrypting Data with Layered Symmetric Keys

-- First wipe out the target table
TRUNCATE TABLE SalesLT.EncryptedCustomer;
GO

-- Open the multiple levels of symmetric keys
OPEN SYMMETRIC KEY SymKey2_Sales
DECRYPTION BY CERTIFICATE Cert1_Sales;
GO

OPEN SYMMETRIC KEY SymKey3_Sales
DECRYPTION BY SYMMETRIC KEY SymKey2_Sales;
GO

OPEN SYMMETRIC KEY SymKey4_Sales
DECRYPTION BY SYMMETRIC KEY SymKey3_Sales;
GO

-- Encrypt the data
INSERT INTO SalesLT.EncryptedCustomer
(
 CustomerID,
 FirstName,
 MiddleName,
 LastName,
 EmailAddress,
 Phone,
 rowguid
)
SELECT
 CustomerID,
 EncryptByKey(Key_GUID(N'SymKey4_Sales'), FirstName),
 EncryptByKey(Key_GUID(N'SymKey4_Sales'), MiddleName),
 EncryptByKey(Key_GUID(N'SymKey4_Sales'), LastName),
 EncryptByKey(Key_GUID(N'SymKey4_Sales'), EmailAddress),
 EncryptByKey(Key_GUID(N'SymKey4_Sales'), Phone),
 rowguid
FROM SalesLT.Customer;
GO

-- Close the symmetric keys
CLOSE ALL SYMMETRIC KEYS;
GO

You might have noticed the introduction of a new statement in the sample code. The CLOSE ALL
SYMMETRIC KEYS statement closes all currently open symmetric keys and the DMK (in the current
session) at once. As with encryption, decryption requires you to open all levels of symmetric keysas
demonstrated in Listing 3-18. Partial results are shown in Figure 3-5.

CHAPTER 3 ■ SYSTEMIC ENCRYPTION

65

Listing 3-18. Decrypting Data with Layered Symmetric Keys

-- Open the top-level symmetric key that's protected by certificate
OPEN SYMMETRIC KEY SymKey2_Sales
DECRYPTION BY CERTIFICATE Cert1_Sales;
GO

-- Open the key that's protected by the top-level key
OPEN SYMMETRIC KEY SymKey3_Sales
DECRYPTION BY SYMMETRIC KEY SymKey2_Sales;
GO

-- Open the data encrypting key that's protected by the previous key
OPEN SYMMETRIC KEY SymKey4_Sales
DECRYPTION BY SYMMETRIC KEY SymKey3_Sales;
GO

-- Decrypt the data
SELECT
 CustomerID,
 CAST(DecryptByKey(FirstName) AS nvarchar(100)) AS DecryptedFirstName,
 FirstName
FROM SalesLT.EncryptedCustomer;
GO

-- Close all the keys
CLOSE ALL SYMMETRIC KEYS;
GO

Figure 3-5. Results of decryption with layered symmetric keys

CHAPTER 3 ■ SYSTEMIC ENCRYPTION

66

Encryption with Passphrases
You can also encrypt your data without encryption keys, using passphrases. A passphrase is essentially
the same thing as a password, but you can use an entire phrase instead of a single word. SQL Server 2008
supplies two functions to support this feature: EncryptByPassPhrase and DecryptByPassPhrase.

The EncryptByPassPhrase function accepts a passphrase and your plaintext. It uses the passphrase to
encrypt your plaintext, and returns a varbinary result. DecryptByPassPhrase accepts a passphrase and your
previously encrypted ciphertext. The result is a varbinary representation of your decrypted ciphertext.
Listing 3-19 encrypts a plaintext message using a passphrase. The result is shown in Figure 3-6.

Listing 3-19. Encrypting and Decrypting By Passphrase

-- Define the plaintext
DECLARE @plaintext nvarchar(100) = N'Four score and seven years ago our
fathers brought forth, upon this continent, a new nation...';

-- Encrypt the data with a passphrase
DECLARE @encryptedtext varbinary(300);

SET @encryptedtext = EncryptByPassPhrase(N'Quick brown fox', @plaintext);

-- Decrypt the data with the same passphrase
SELECT CAST
 (
 DecryptByPassPhrase(N'Quick brown fox', @encryptedtext) AS nvarchar(100)
) AS DecryptedData;
GO

Figure 3-6. Result of encryption and decryption by passphrase

Behind the scenes the EncryptByPassPhrase and DecryptByPassPhrase functions use the passphrase
you supply to generate a symmetric encryption key. The Triple DES algorithm is used toencrypt or
decrypt your data with the generated key. When you use these functions you take responsibility for your
own key management, just like when you secure your symmetric keys with passwords.

CHAPTER 3 ■ SYSTEMIC ENCRYPTION

67

Encryption Algorithms
SQL Server 2008 supports several symmetric encryption algorithms. Which one should you use? The
answer to that depends partially on your requirements, which might be driven by regulatory agencies
and laws, contractual obligations, or other business needs. One of the factors I’ll address in this section
is overall security—some algorithms are more secure than others. Figure 3-7 is a list of algorithms SQL
Server supports (in order from most secure to least secure).

Figure 3-7. SQL Server supported symmetric encryption algorithms

■ Caution SQL Server also has a DESX keyword, which is misleading. The DESX algorithm was misnamed
andactually represents the Triple DES (3-Key) algorithm in SQL Server. Avoid using the DESX keyword; it is

deprecated and will be removed in a future version of SQL Server.

In the following sections, I’ll explore each of these algorithms and explain why each is more (or less)
secure than others.

CHAPTER 3 ■ SYSTEMIC ENCRYPTION

68

AES Family
AES was selected by the National Institute of Standards and Technology (NIST) as a Federal Information
Processing Standard (FIPS) in May 2002. It is generally regarded as one of the most secure symmetric
encryption algorithms available today—with its 192-bit and 256-bit key lengths it is even authorized to
secure government information classified as Top Secret.

AES is a 128-bit block cipher with key lengths of 128, 192, and 256 bits. SQL Server supports all three
AES encryption key lengths. Input plaintext is padded out to a length that is a multiple of 16 bytes using
PKCS #7 style padding. The data is encrypted using cipher block chaining mode (CBC), with a random
initialization vector (IV, or sometimes referred to as “salt”) generated prior to encryption.

Padding and Chaining Mode

Encryption algorithms require you to pad out your plaintext data to the block length of the algorithm. For a
128-bit block cipher like AES this means the plaintext must be padded to a multiple of 16 bytes. If the
plaintext is already a multiple of 16 bytes another 16 bytes of padding are added to the plaintext. There are
several standard methods of padding plaintext, but the method used by SQL Server is known as PKCS #7.
This method is described in RFC 2315. PKCS #7 works by first determining how many bytes short of a
block length multiple you are. If you’re using AES (block length = 128 bits or 16 bytes) and your plaintext is
13 bytes long, PKCS #7 pads the remaining 3 bytes with the value 0x03. This is shown in the illustration
below.

When SQL Server decrypts the ciphertext it automatically strips the padding values from the end of
the data.

Cipher block chaining mode (CBC) refers to the method SQL Server uses to further obfuscate your
encrypted text. In CBC encryption mode, SQL Server combines the previously encrypted ciphertext block
with the current plaintext block (using reversible exclusive-or operations) before it encrypts the current
block. The first block doesn’t have a previous block to be combined with; instead, the random IV is
combined with the first block. CBC mode helps further obfuscate your ciphertext.

Although the CryptoAPI that SQL Server relies on offers several padding options and block chaining modes,
you cannot override, or turn off, the default modes that SQL Server uses.

You can use the AES_256, AES_192, or AES_128 keywords in the ALGORITHM clause of the CREATE
SYMMETRIC KEY statement to create AES 256, 192, or 128-bit keys, respectively. The AES algorithm is fast
and operates efficiently in memory.

CHAPTER 3 ■ SYSTEMIC ENCRYPTION

69

AES performs a variable number of transformation rounds that convert plaintext into ciphertext.
Each round consists of combinations of the following processing steps:

• AddRoundKey: each byte of a 4 4 matrix of bytes (the state) is combined with the
round key, which is derived from the key using a key schedule.

• SubBytes: each byte is replaced with bytes in a lookup table in a nonlinear fashion.

• ShiftRows: each row of the state is shifted cyclically a specified number of steps.

• MixColumns: an operation that combines the four bytes in each column of
the state.

Figure 3-8 shows a high-level overview of AES algorithm encryption.

Figure 3-8. High-level AES encryption process

There are no known direct attacks on AES. In fact, the only successful attacks mounted against
AES are so-called “side-channel” attacks. These attacks rely on information leaked by an AES
implementation, such as timing information. Most known side-channel attacks require an intruder to
install a virus or Trojan horse on your server to watch processes in real-time, or to have access to various
metadata related to cache timings and so forth. To date, the integrity of the AES algorithm has not been
compromised.

CHAPTER 3 ■ SYSTEMIC ENCRYPTION

70

DES Family
The Data Encryption Standard (DES) algorithm was a US Government FIPS standard for nearly two
decades, from 1976 to 2002. In the late 1990s, DES began to show its age as cryptanalysts began
mounting successful attacks against it. DES is a 64-bit block cipher with a 56-bit key length—far shorter
than the AES family of algorithms.

In 1999, Triple DES was introduced as a relatively quick fix for the flaws found in DES. Triple DES
comes in two varieties, 2-key and 3-key. Triple DES implements an Encrypt-Decrypt-Encrypt pattern, in
which the plaintext is first encrypted with a 56-bit key. Next, the ciphertext is decrypted with asecond
56-bit key. The final step is to encrypt the data again, with the first 56-bit key in the case of the 2-key
algorithm, or with a third key when the 3-key variety is used.

You can use the TRIPLE_DES, TRIPLE_DES_3KEY, and DES keywords in the ALGORITHM clause of the
CREATE SYMMETRIC KEY statement to choose the Triple DES 2-key, Triple DES 3-key, orDES algorithms.

■ Caution SQL Server also uses the keyword DESX, which is another DES variant algorithm invented by Ron
Rivest of RSA fame. However, the keyword in SQL Server was misnamed, and actually represents Triple DES

(3-key). The DESX keyword is deprecated and will be removed in a future version of SQL Server.

Triple DES 3-key has an actual key length of 168 bits, but its effective key security is estimated
much lower, at around 112 bits. The 2-key version has an actual key length of 112 bits, but its effective
key security is estimated at around 80 bits. Plain vanilla DES has a key length of 56 bits, but its
effective key security has been estimated as low as 47 bits. Triple DES (2-key and 3-key) and DES all
use CBC mode and PCKS #7 padding, as described in the Padding and Chaining Mode sidebar. DES
and its variants operate quickly in hardware, but are less efficient in software implementations.

DES is a complex algorithm that relies on a Feistel function, which features encryption operations
on alternating halves of a block of data in a crisscross fashion. DES processing consists of 16rounds of
processing through the Feistel function. The Feistel function consists of the following steps:

• Expansion: a half-block (32-bits) is expanded to 48 bits using an expansion
permutation.

• Key mixing: the result of the expansion step is combined with a subkey using a
reversible exclusive-or operation. Sixteen 48-bit subkeys are derived from the
main key using a key schedule.

• Substitution: the block is divided into eight 6-bit pieces and processed through the
substitution boxes, or S-boxes. Each of the S-boxes replaces six input bits with four
output bits via a nonlinear transformation.

• Permutation: the final step is to rearrange the 32 S-box outputs according to a
fixed permutation box, or P-box.

Figure 3-9 provides a high-level overview of DES encryption processing. Triple DES requires three
passes through the 16-round Feistel network.

CHAPTER 3 ■ SYSTEMIC ENCRYPTION

71

Figure 3-9. High-level DES encryption process

DES has proven vulnerable to direct attacks, including differential cryptanalysis, linear
cryptanalysis, and even large-scale brute force attacks. I highly recommend avoiding plain old DES.
TheTriple DES algorithms are considered much more secure. The NSA believes the 2-key variant
willremain secure until 2030, and the 3-key variant beyond that date. If you must use a DES family
algorithm, I highly recommend you use one of the Triple DES algorithms.

RC2 and RC4
The RC2 and RC4 algorithms were created by Ron Rivest of RSA Security in the late 1980s. RC2 is a 64-bit
block cipher and RC4 is a stream cipher. You can specify these algorithms via the RC2, RC4, and RC4_128
keywords in the ALGORITHM clause of the CREATE SYMMETRIC KEY statement to choose RC2, RC4, or RC4
with a 128-bit key, respectively.

RC2 and RC4 are simple, and fast, encryption algorithms. Their speed does come with a price,
however. RC4 is susceptible to a wide range of attacks and is not recommended for new development. In
addition, the implementation of RC4 in SQL Server does not apply a random IV to each new encryption
value, making it extremely vulnerable to attack. RC2 has proven vulnerable to related-key attacks. In

CHAPTER 3 ■ SYSTEMIC ENCRYPTION

72

light of the security considerations, I recommend avoiding the use of RC2 and RC4 encryption in your
database.

■ Caution Microsoft has issued a warning not to use the RC4 and RC4_128 algorithms. These algorithms are

currently deprecated and will be removed in a future version of SQL Server.

Summary
SQL Server 2008 provides access to several encryption algorithms, including support for AES, Triple
DES,DES, and the RC2 and RC4 family of algorithms. The first step to using symmetric encryption in
SQL Server is the creation of symmetric keys. In this chapter, I explained how to create and manage
symmetric encryption keys.

SQL Server provides symmetric encryption functions, including EncryptByKey, DecryptByKey,
EncryptByPassPhrase, and DecryptByPassPhrase. I spent most of the chapter discussing the use of these
functions and their options to secure your data. In addition to protecting your data, I described how
symmetric keys can be used to secure additional symmetric keys.

To round out the chapter, I discussed the various symmetric encryption algorithms available through
SQL Server. I gave a brief history of each algorithm, provided an overview of the AES and DES algorithm
processing, and explained the security concerns with using the RC2 and RC4 algorithms. In addition, I
talked briefly about performance and security implications of the various algorithms available. . In the next
chapter I’ll begin an exploration of SQL Server asymmetric encryption

C H A P T E R 4

■ ■ ■

73

Asymmetric Encryption

While symmetric encryption involves using the same key, or trivially related keys, for both encryption
and decryption, asymmetric encryption uses two completely separate keys that are not trivially related.
SQL Server supports asymmetric encryption through the widely used RSA algorithm. SQL Server
implements asymmetric encryption through the use of asymmetric keys and certificates, both of which
can be created on the server or created by an external source and then registered on the server. You can
use asymmetric encryption to encrypt data, but Microsoft recommends the use of asymmetric keys and
certificates to encrypt symmetric keys that encrypt data. In this chapter, I’ll talk about how to create
asymmetric keys and certificates to secure both your data and symmetric encryption keys.

Asymmetric Keys
SQL Server 2008 allows you to create and manage asymmetric keys to encrypt symmetric keys or data.
Asymmetric keys, or more appropriately asymmetric key pairs, consist of two separate keys: a public key
that is exposed to the world and a private key that is protected. The public key is the key that anyone can
use to encrypt data with, while the mathematically-related private key is used to decrypt the same data.
As I discussed in Chapter 1, the security of asymmetric encryption is dependent on the difficulty of
calculating the relationship between the public and private keys. When you create an asymmetric key
pair the private key is automatically protected by the DMK by default.

■ Note If the DMK does not exist, you must supply a password to protect the private key of the asymmetric key

pair. If a DMK does exist, protection by password is optional.

CHAPTER 4 ■ ASYMMETRIC ENCRYPTION

74

Generating and Installing Asymmetric Keys
SQL Server allows you to install asymmetric key pairs that were generated outside of the server. You can
install asymmetric keys from Strong-Name Key (SNK) files and executable files. As the first step to
installing an asymmetric key on SQL Server, I’ll generate an SNK file from the command-line using the
sn.exe utility, as shown in Figure 4-1. The sn.exe utility is distributed with Visual Studio, and can be
found in the bin subdirectory of the Visual Studio Software Development Kit (SDK).

Figure 4-1. Creating a strong-name key file from the command-line

The SNK file generated by this statement at the command-line is named AsymKey1_Sales.snk. After
you create this, the SNK file can use the CREATE ASYMMETRIC KEY statement to register its asymmetric key
pair with SQL Server, as shown in Listing 4-1.

Listing 4-1. Creating an Asymmetric Key from an SNK File

CREATE ASYMMETRIC KEY AsymKey1_Sales
FROM FILE = N'c:\AsymKey1_Sales.snk';

■ Tip The CREATE ASYMMETRIC KEY statement in Listing 4-1 looks for the source file on the SQL Server box.
That is to say the AsymKey1_Sales.snk file must exist on the same computer on which the SQL Server service is

running.

CHAPTER 4 ■ ASYMMETRIC ENCRYPTION

75

Generating Asymmetric Keys on the Server

You can generate asymmetric keys directly on SQL Server, as shown in the code snippet below.

CREATE ASYMMETRIC KEY AsymKey2_Sales

WITH ALGORITHM = RSA_1024;

The WITH ALGORITHM clause allows you to specify RSA_512, RSA_1024, or RSA_2048, indicating the RSA
algorithm with a private key length of 512, 1024, or 2048 bits, respectively. One interesting thing you’ll
notice about SQL Server asymmetric key functionality is the complete lack of statements to perform
backups and restores of this type of key. Oddly, SQL Server provides no DML statements to export
asymmetric keys generated on the server.

What this means is that using SQL Server DML to generate asymmetric keys on the server could conflict
with your business interruption and disaster recovery plans. Why would you want to do this? The main
reason would seem to be to allow developers to develop and test asymmetric key-based code without
granting them direct access to your secure production asymmetric keys.

Because of this lack of ability to backup and restore individual asymmetric keys, I have to recommend
against using SQL Server-generated asymmetric keys in a production environment or on any critical
server. Registering externally-generated asymmetric key pairs with SQL Server is not a problem, however,
since you can always backup the external asymmetric key pair source files.

■ Tip While you can’t backup and restore individual asymmetric key pairs, you can backup and restore
certificates. I’ll discuss certificates in the Certificates section of this chapter. If you need to generate asymmetric

key pairs within SQL Server for encryption, generate a certificate instead of an asymmetric key pair.

In addition to SNK files, you can register key pairs from executable files and public keys from
registered CLR assemblies. Once the asymmetric key is created, you can use it to protect a symmetric
key, as shown in Listing 4-2.

Listing 4-2. Protecting Symmetric Key with an Asymmetric Key

CREATE SYMMETRIC KEY SymKey6_Sales
WITH ALGORITHM = AES_256
ENCRYPTION BY ASYMMETRIC KEY AsymKey1_Sales;

CHAPTER 4 ■ ASYMMETRIC ENCRYPTION

76

As shown in Chapter 3, you can use the symmetric key to encrypt data. Listing 4-3 creates two
sample tables that will hold customer credit card information—very important data to encrypt. The first
table, SalesLT.CreditCardInfo, will be used to store unencrypted randomly generated credit card data.
The second table, SalesLT.EncryptedCreditCardInfo, will hold encrypted versions of the same data.

Listing 4-3. Sample Table to Hold Credit Card Information

-- Nonencrypted credit card info
CREATE TABLE SalesLT. CreditCardInfo
(
 SalesOrderID int not null primary key,
 CreditCardNumber nvarchar(50),
 CreditCardExpirationDate datetime,
 TotalCharge money
);

-- Encrypted credit card info
CREATE TABLE SalesLT.EncryptedCreditCardInfo
(
 SalesOrderID int not null primary key,
 CreditCardNumber varbinary(150),
 CreditCardExpirationDate varbinary(150),
 TotalCharge varbinary(150)
);

Listing 4-4 populates the SalesLT.CreditCardInfo table with unencrypted randomly generated
credit card data.

Listing 4-4. Generating Random Credit Card Information

WITH Generate4Digits /* Generate 4 random digits */
AS
(
 SELECT SUBSTRING
 (
 CAST
 (
 ABS(CHECKSUM(NEWID())) % 10000 AS NVARCHAR(4)
) + N'0000', 1, 4
) AS Digits
),
CardNum /* Generate a 16 digit random credit card number */
AS
(
 SELECT N'0999-' +
 (
 SELECT Digits
 FROM Generate4Digits
) + N'-' +

CHAPTER 4 ■ ASYMMETRIC ENCRYPTION

77

 (
 SELECT Digits
 FROM Generate4Digits
) + N'-' +
 (
 SELECT Digits
 FROM Generate4Digits
) AS CardNumber
),
AS
(
 SELECT ABS(CHECKSUM(NEWID()) % 700) AS Days
)
INSERT INTO SalesLT.CreditCardInfo
(
 SalesOrderID,
 CreditCardNumber,
 CreditCardExpirationDate,
 TotalCharge
)
SELECT
 SalesOrderID,
 CardNumber,
 DATEADD(DAY, Days, OrderDate),
 TotalDue
FROM SalesLT.SalesOrderHeader
CROSS APPLY CardNum
CROSS APPLY DaysToExpire;

The INSERT statement features common table expressions (CTEs) that use some interesting code to
generate random sixteen digit credit card numbers and expiration dates. I won’t dive deeply into the
details of the CTEs, since they’re just a vehicle to move the example forward. Just keep in mind that if
you’re interested in generating random test data, a combination of the CHECKSUM and NEWID functions is
hard to beat. A quick query of the SalesLT.CreditCardInfo table shows that the confidential credit card
data stored in it is not properly secured. Listing 4-5 queries the table and Figure 4-2 shows the unsecured
result. Note that since this data is randomly generated your results from the following code samples will
differ from those I produced.

Listing 4-5. Querying the Unsecured Credit Card Information

SELECT
 SalesOrderID,
 CreditCardNumber,
 CreditCardExpirationDate,
 TotalCharge
FROM SalesLT.CreditCardInfo;

CHAPTER 4 ■ ASYMMETRIC ENCRYPTION

78

Figure 4-2. Unencrypted credit card data stored in the database

Now that I’ve registered the asymmetric key pair with SQL Server, created a symmetric key that is
protected by this asymmetric key, and populated a table with random sample data it’s time to secure the
customers’ sensitive credit card data.

Encrypting Data
After the setup in the previous section, it’s time to encrypt the sample data. Listing 4-6 populates
thesample table with encrypted random credit card information using the previously created
SymKey6_Sales symmetric key, which is protected by the AsymKey1_Sales asymmetric key.

Listing 4-6. Populate the Table with Encrypted Credit Card Data

-- Wipe out the sample data in the table
TRUNCATE TABLE SalesLT.EncryptedCreditCardInfo;
GO

-- Open symmetric data encrypting key
OPEN SYMMETRIC KEY SymKey6_Sales
DECRYPTION BY ASYMMETRIC KEY AsymKey1_Sales;

-- Encrypt sample random credit card data
INSERT INTO SalesLT.EncryptedCreditCardInfo

CHAPTER 4 ■ ASYMMETRIC ENCRYPTION

79

(
 SalesOrderID,
 CreditCardNumber,
 CreditCardExpirationDate,
 TotalCharge
)
SELECT
 SalesOrderID,
 EncryptByKey(Key_Guid(N'SymKey6_Sales'), CreditCardNumber),
 EncryptByKey(Key_Guid(N'SymKey6_Sales'), CAST
 (
 CreditCardExpirationDate AS varbinary(10)
)
),
 EncryptByKey(Key_Guid(N'SymKey6_Sales'), CAST
 (
 TotalCharge AS varbinary(10)
)
)
FROM SalesLT.CreditCardInfo;

-- Close data encrypting key
CLOSE SYMMETRIC KEY SymKey6_Sales;

This sample first truncates the target table and then opens the symmetric key I’m going to use to
encrypt the test data, as shown in the following code snippet.

-- Wipe out the sample data in the table
TRUNCATE TABLE SalesLT.EncryptedCreditCardInfo;
GO

-- Open symmetric data encrypting key
OPEN SYMMETRIC KEY SymKey6_Sales
DECRYPTION BY ASYMMETRIC KEY AsymKey1_Sales;

■ Note Opening the encryption key before you attempt to use it is very important. If you don’t first open the
encryption key you won’t get an error message, but you will get NULL as a result of every encryption or decryption

performed with that key.

CHAPTER 4 ■ ASYMMETRIC ENCRYPTION

80

Next is the INSERT statement that encrypts the source credit card data and stores it in the
SalesLT.EncryptedCardInfo table, as shown in the following code.

-- Encrypt sample random credit card data
INSERT INTO SalesLT.EncryptedCreditCardInfo
(
 SalesOrderID,
 CreditCardNumber,
 CreditCardExpirationDate,
 TotalCharge
)
SELECT
 SalesOrderID,
 EncryptByKey(Key_Guid(N'SymKey6_Sales'), CreditCardNumber),
 EncryptByKey(Key_Guid(N'SymKey6_Sales'), CAST
 (
 CreditCardExpirationDate AS varbinary(10)
)
),
 EncryptByKey(Key_Guid(N'SymKey6_Sales'), CAST
 (
 TotalCharge AS varbinary(10)
)
)
FROM SalesLT.CreditCardInfo;

One important thing to notice about this query is that the EncryptByKey function cannot accept
columns, variables, or values of the integer, money, or datetime data types for its second parameter (the
plaintext to encrypt). Just keep in mind that the EncryptByKey function’s second parameter is actually a
varbinary parameter. If you want to encrypt data that is of a data type that cannot be implicitly
converted to varbinary you must explicitly cast it to varbinary yourself, as shown in the sample.

In this example, I encrypted not only the credit card identifying information, but also the
TotalCharge column. While you don’t necessarily have to encrypt every column in a table, my purpose
for encrypting this column is twofold. First, I wanted to demonstrate that you can encrypt almost any
data type (in this case the money data type) by first casting it to varbinary. The second purpose was to
demonstrate that in some cases you might want to encrypt additional columns that might “leak”
information to cryptanalysts. A cryptanalyst might have knowledge of a particular credit card number
and a specific total charge amount associated with it in advance. In this case, he would have a known
plaintext and he could use the TotalCharge values to considerably narrow the potential ciphertexts he
needs to attack. Whether the additional data in a table leaks useful information to a cryptanalyst is
something that should be considered carefully when designing your encryption solution.

In the final step of the encryption example, the symmetric key is closed, as shown in the following
code snippet.

-- Close data encrypting key
CLOSE SYMMETRIC KEY SymKey6_Sales;

After executing the sample code in Listing 4-6, you can query the table to see the encrypted data, as
shown in Figure 4-3.

CHAPTER 4 ■ ASYMMETRIC ENCRYPTION

81

Figure 4-3. Encrypted credit card data

As you can see, the encryption process has rendered the sensitive credit card information
unreadable. To decrypt the credit card information, you have to open the symmetric key again,
specifying the asymmetric key in the DECRYPTION BY clause. Then, as in Chapter 3, simply use the
DecryptByKey function (with some explicit data type casting) to decrypt the result and make it readable
again. Listing 4-7 demonstrates the decryption process.

Listing 4-7. Decrypting Sensitive Credit Card Information

-- Open symmetric data encrypting key
OPEN SYMMETRIC KEY SymKey6_Sales
DECRYPTION BY ASYMMETRIC KEY AsymKey1_Sales;

-- Decrypt previously encrypted credit card data
SELECT
 SalesOrderID,
 CAST
 (
 DecryptByKey(CreditCardNumber) AS nvarchar(100)
) AS CreditCardNumber,
 CAST
 (
 DecryptByKey(CreditCardExpirationDate) AS datetime
) AS CreditCardExpirationDate,
 CAST
 (
 DecryptByKey(TotalCharge) AS money
) AS TotalDue
FROM SalesLT.EncryptedCreditCardInfo;

-- Close data encrypting key
CLOSE SYMMETRIC KEY SymKey6_Sales;

CHAPTER 4 ■ ASYMMETRIC ENCRYPTION

82

Protecting Asymmetric Keys with Passwords
By default when you create an asymmetric key, SQL Server uses the DMK to protect the private key of
theasymmetric key pair. You can optionally add protection by password to your asymmetric key pair’s
private key, in the CREATE ASYMMETRIC KEY statement or with the ALTER ASYMMETRIC KEY statement.
Listing 4-8 uses ALTER ASYMMETRIC KEY to add password encryption to the AsymKey1_Sales private key.

Listing 4-8. Adding Password Encryption to the Asymmetric Key

ALTER ASYMMETRIC KEY AsymKey1_Sales
WITH PRIVATE KEY (ENCRYPTION BY PASSWORD = N'%ui!@90~p');

Using Password-Protected Asymmetric Keys

If you add encryption by password to your asymmetric key, you can specify the password as a third
parameter in calls to the DecryptByAsymKey function. You can’t specify the password in calls to the
EncryptByAsymKey function though. This means SQL Server still has to protect the private key of the
asymmetric key pair with the DMK. It was an unusual choice to provide password protection for your
asymmetric keys, yet disallow use of the password during the encryption process.

When you secure an asymmetric key by password you can use the DecryptByKeyAutoAsymKey
function to decrypt data that is protected by symmetric key when the asymmetric key is protected by
password. The DecryptByAutoKeyAsymKey function is like the DecryptByAsymKey function, except that it
automatically opens and closes the necessary symmetric key for you. Listing 4-9 demonstrates the use of
this function.

Listing 4-9. Decrypting By Symmetric Key with Auto Asymmetric Key

-- Decrypt previously encrypted credit card data
SELECT
 SalesOrderID,
 CAST
 (
 DecryptByKeyAutoAsymKey
 (
 AsymKey_ID(N'AsymKey1_Sales'),
 N'%ui!@90~p',
 CreditCardNumber
) AS nvarchar(100)
) AS CreditCardNumber
FROM SalesLT.EncryptedCreditCardInfo;

You can also remove the encryption by password by using the DECRYPTION BY PASSWORD clause of the
ALTER ASYMMETRIC KEY statement, without the ENCRYPTION BY PASSWORD clause, as shown in Listing 4-10.
When you use the DECRYPTION BY PASSWORD clause you specify the old password that was used to protect the
private key. By not including a new ENCRYPTION BY PASSWORD clause, SQL Server removes password
protection from the private key.

CHAPTER 4 ■ ASYMMETRIC ENCRYPTION

83

Listing 4-10. Removing Password Encryption from the Asymmetric Key

ALTER ASYMMETRIC KEY AsymKey1_Sales
WITH PRIVATE KEY (DECRYPTION BY PASSWORD = N'%ui!@90~p')

Encrypting Data Directly with Asymmetric Keys
Asymmetric keys are designed to protect symmetric keys, which in turn protect your data. As discussed
in Chapter 1, the reason is that asymmetric encryption is resource intensive and relatively slow when
compared with symmetric encryption. Encrypting large chunks of data with asymmetric encryption can
be a long and slow process. For completeness in its encryption toolset, however, SQL Server does
provide this capability. You may have reason to encrypt small amounts of data using asymmetric
encryption, though it’s recommended that you save asymmetric keys for protecting symmetric keys.
Listing 4-11 modifies Listing 4-6 to use the EncryptByAutoAsymKey function to encrypt the random credit
card data.

Listing 4-11. Encrypting Data with an Asymmetric Key

-- Wipe out the sample data in the table
TRUNCATE TABLE SalesLT.EncryptedCreditCardInfo;
GO

-- Encrypt sample random credit card data
INSERT INTO SalesLT.EncryptedCreditCardInfo
(
 SalesOrderID,
 CreditCardNumber,
 CreditCardExpirationDate,
 TotalCharge
)
SELECT
 SalesOrderID,
 EncryptByAsymKey(AsymKey_ID(N'AsymKey1_Sales'), CreditCardNumber),
 EncryptByAsymKey(AsymKey_ID(N'AsymKey1_Sales'), CAST
 (
 CreditCardExpirationDate AS varbinary(10)
)
),
 EncryptByAsymKey(AsymKey_ID(N'AsymKey1_Sales'), CAST
 (
 TotalCharge AS varbinary(10)
)
)
FROM SalesLT.CreditCardInfo;

When comparing this code to Listing 4-6, one of the first things you might notice is the lack of OPEN
and CLOSE statements for the asymmetric key. They’re not necessary. The partial code snippet that
follows is the SELECT query that performs the actual encryption.

CHAPTER 4 ■ ASYMMETRIC ENCRYPTION

84

...
SELECT
 SalesOrderID,
 EncryptByAsymKey(AsymKey_ID(N'AsymKey1_Sales'), CreditCardNumber),
 EncryptByAsymKey(AsymKey_ID(N'AsymKey1_Sales'), CAST
 (
 CreditCardExpirationDate AS varbinary(10)
)
),
 EncryptByAsymKey(AsymKey_ID(N'AsymKey1_Sales'), CAST
 (
 TotalCharge AS varbinary(10)
)
)
FROM SalesLT.CreditCardInfo;

You’ll notice that Listing 4-11, unlike Listing 4-6, uses the EncryptByAsymKey function to encrypt the
data directly using the asymmetric key. The EncryptByAsymKey function accepts the ID of the asymmetric
key and the plaintext to encrypt. The asymmetric key ID is retrieved in the code sample by passing the
name of the key to the Asymkey_Id function. As with the EncryptByKey symmetric encryption function,
the second parameter of the EncryptByAsymKey function is the plaintext to encrypt in varbinary format.

SQL Server supplies the DecryptByAsymKey function to decrypt data that was previously encrypted by
asymmetric key. Unlike the symmetric key DecryptByKey function where you only have to pass in the
encrypted ciphertext to get a decryption, with DecryptByAsymKey you must pass in both the asymmetric
key ID and the encrypted ciphertext, as shown in Listing 4-12 (modifying Listing 4-7).

Listing 4-12. Decrypting Sensitive Credit Card Data with an Asymmetric Key

-- Decrypt the credit card info with asymmetric key
SELECT
 SalesOrderID,
 CAST
 (
 DecryptByAsymKey
 (
 Asymkey_Id(N'AsymKey1_Sales'), CreditCardNumber
) AS nvarchar(100)
) AS CreditCardNumber,
 CAST
 (
 DecryptByAsymKey
 (
 Asymkey_Id(N'AsymKey1_Sales'), CreditCardExpirationDate
) AS datetime
) AS CreditCardExpirationDate,
 CAST
 (
 DecryptByAsymKey

CHAPTER 4 ■ ASYMMETRIC ENCRYPTION

85

 (
 Asymkey_Id(N'AsymKey1_Sales'), TotalCharge
) AS money
) AS TotalCharge
FROM SalesLT.EncryptedCreditCardInfo;

Removing the Private Key
You can use the ALTER ASYMMETRIC KEY statement to remove the private key from your asymmetric key
pair. The implication is that you’ll be able to encrypt data with your asymmetric key, but you won’t be
able to decrypt it. Why would you want to do this? One scenario is if you want to encrypt data for storage
on a server, but you don’t want it decrypted on the same server. In those cases, you can use the same
asymmetric key pair (with private key, of course) on a different server—possibly another SQL Server,
web server, or application server—to decrypt the data away from the SQL Server where the data is
actually stored. Listing 4-13 removes the private key from the previously created asymmetric key.

Listing 4-13. Removing the Private Key from an Asymmetric Key Pair

ALTER ASYMMETRIC KEY AsymKey1_Sales
REMOVE PRIVATE KEY;

■ Tip You can use the asymmetric key pair's public key, which is not encrypted by password or the DMK, to
encrypt data. To encrypt data with the public key you don’t even have to open the asymmetric key first. To decrypt
the data, however, you have to access the private key of the asymmetric, which means you have to open the

asymmetric key.

Certificates
A certificate is simply an asymmetric public key or public and private key pair with additional metadata
attached. Certificates have a standardized format, as defined by the X.509 standard. SQL Server provides
the ability to install certificates issued by a certification authority (CA) or to generate self-signed
certificates. I’ve already used a self-signed certificate in sample code from Chapter 3 so now I’ll discuss
SQL Server certificate support in detail.

Creating Certificates
Before I begin the discussion of creating and registering certificates, I’ll set up a table to hold encrypted
customer address information. Listing 4-14 creates this table.

CHAPTER 4 ■ ASYMMETRIC ENCRYPTION

86

Listing 4-14. Create a Table to Hold Encrypted Address Information

CREATE TABLE SalesLT.EncryptedAddress
(
 AddressID int NOT NULL PRIMARY KEY,
 AddressLine1 varbinary(256) NOT NULL,
 AddressLine2 varbinary(256) NULL,
 City varbinary(256) NOT NULL,
 StateProvince varbinary(256) NOT NULL,
 CountryRegion varbinary(256) NOT NULL,
 PostalCode varbinary(256) NOT NULL,
 rowguid uniqueidentifier NOT NULL,
 ModifiedDate datetime NOT NULL
);

The next step is to create and register your certificate with SQL Server. You can register certificates
issued from outside of SQL Server with a SQL Server instance. Figure 4-4 uses the Visual Studio
makecert.exe utility to create a self-signed certificate from the command-line. Table 1-1 lists the
command-line options I used with the utility to generate the certificate.

Figure 4-4. Using makecert.exe to create a self-signed certificate

CHAPTER 4 ■ ASYMMETRIC ENCRYPTION

87

Table 4-1. Commonly Used Options for makecert.exe

Option Description

-sv Specifies the private key file. If the private key file doesn’t exist it is created automatically.

-pe Makes the private key exportable.

-a Specifies the signature algorithm. This must be sha1 or md5, with a default of md5.

-b Sets the beginning or start date of the certificate’s validity period.

-e Sets the end date of the certificate’s validity period.

-len Specifies the generated private key length.

-r Creates a self-signed certificate.

-n Sets the certificate name (SQL Server uses this as the certificate subject).

filename Name of the certificate file.

■ Tip The makecert utility is a separate .NET SDK utility, and its command-line options are subject to change
without warning. For an up-to-date list of makecert options, see the “Certificate Creation Tool (Makecert.exe)”

topic in the MSDN library at http://msdn.microsoft.com.

In the example makecert.exe call, I produced a self-signed certificate named Sales2_Cert.cer with
its private key stored in a file named Sales2_Cert.pvk. When you create a certificate with makecert.exe
and export a private key, the utility will ask you to enter a password. The password is used to encrypt the
private key. For this example, I used a password of ‘t$%0p}gI’. You’ll need the password you use to
encrypt the private key again when you register the certificate with SQL Server.

Once you’ve created a self-signed certificate (or once you’ve had a certificate issued by a CA), you’ll
need to register it with SQL Server. Listing 4-15 is the CREATE CERTIFICATE statement needed to register
the newly created certificate with SQL Server.

CHAPTER 4 ■ ASYMMETRIC ENCRYPTION

88

Listing 4-15. Registering a Certificate File with SQL Server

CREATE CERTIFICATE Cert2_Sales
FROM FILE = N'c:\Cert2_Sales.cer'
WITH PRIVATE KEY
(
 FILE = N'c:\Cert2_Sales.pvk',
 DECRYPTION BY PASSWORD = N't$%0p}gI'
);

This CREATE CERTIFICATE statement specifies the certificate file as the source for the publickey and
certificate metadata (Cert2_Sales.cer) and the private key file (Cert2_Sales.pvk). The DECRYPTION BY
PASSWORD clause contains the password previously entered to encrypt the private key file. Once you’ve
created or acquired your certificate and private key files, you should immediately store a backup in a
secure off-site facility.

■ Tip Private keys imported from external sources must have a length between 384 and 3,456 bits, in multiples

of 64 bits.

Creating SQL Server Self-Signed Certificates
In addition to registering externally issued certificates with SQL Server, you can also create self-signed
certificates directly inside SQL Server with the CREATE CERTIFICATE statement. SQL Server self-signed
certificates are a much better option than SQL Server-generated asymmetric keys. Certificates provide
all of the asymmetric encryption functionality of asymmetric keys, but have the advantage of backup
and restore capabilities built right into T-SQL. To create a self-signed certificate on SQL Server you can
issue a CREATE CERTIFICATE statement, like the one in Listing 4-16.

Listing 4-16. Creating a Self-Signed Certificate in SQL Server

CREATE CERTIFICATE Cert3_Sales
WITH SUBJECT = N'SQL Server 2008 Test Certificate 3',
START_DATE = '20090101',
EXPIRY_DATE = '20201231';

Self-signed certificates generated in this way always automatically have a 1024-bit private key. By
default the private key is protected by the DMK, although you can override this behavior with the
ENCRYPTION BY PASSWORD clause. If you don’t have a DMK installed, you have to specify a password.

■ Tip You can set the start and expiration dates of the certificate, but the built-in encryption functions don’t
enforce these time limits. It’s up to the administrators and developers to determine whether an encryption

operation should or should not occur based on the specified time limits.

CHAPTER 4 ■ ASYMMETRIC ENCRYPTION

89

Encrypting Data
The primary need for certificates in SQL Server data encryption, as with asymmetric keys, is to secure
symmetric keys. Listing 4-17 creates a symmetric key protected by the certificate I created in the
previous section.

Listing 4-17. Protecting a Symmetric Key with a Certificate

CREATE SYMMETRIC KEY SymKey7_Sales
WITH ALGORITHM = AES_256
ENCRYPTION BY CERTIFICATE Cert2_Sales;

Using a symmetric key that’s protected by a certificate is very similar to using one that’s protected
by asymmetric key. Listing 4-18 uses the SymKey7_Sales key to encrypt the random customer address
data from the SalesLT.Address table.

Listing 4-18. Encrypting Data with a Symmetric Key Protected by Certificate

-- Wipe out the sample data in the table
TRUNCATE TABLE SalesLT.EncryptedAddress;
GO

-- Open symmetric data encrypting key
OPEN SYMMETRIC KEY SymKey7_Sales
DECRYPTION BY CERTIFICATE Cert2_Sales;

-- Encrypt sample random credit card data
INSERT INTO SalesLT.EncryptedAddress
(
 AddressID,
 AddressLine1,
 AddressLine2,
 City,
 StateProvince,
 CountryRegion,
 PostalCode,
 rowguid,
 ModifiedDate
)
SELECT
 AddressID,
 EncryptByKey(Key_Guid(N'SymKey7_Sales'), AddressLine1),
 EncryptByKey(Key_Guid(N'SymKey7_Sales'), AddressLine2),
 EncryptByKey(Key_Guid(N'SymKey7_Sales'), City),
 EncryptByKey(Key_Guid(N'SymKey7_Sales'), StateProvince),
 EncryptByKey(Key_Guid(N'SymKey7_Sales'), CountryRegion),
 EncryptByKey(Key_Guid(N'SymKey7_Sales'), PostalCode),
 rowguid,
 ModifiedDate
FROM SalesLT.Address;

CHAPTER 4 ■ ASYMMETRIC ENCRYPTION

90

-- Close data encrypting key
CLOSE SYMMETRIC KEY SymKey7_Sales;

As with the asymmetric key examples, you simply open the symmetric key that’s protected by
certificate and use the EncryptByKey function to encrypt the data. Listing 4-19 queries the encrypted
data, so you can verify the encryption worked properly, as shown in Figure 4-5.

Listing 4-19. Querying the Encrypted Addresses

SELECT
 AddressID,
 AddressLine1,
 AddressLine2,
 City,
 StateProvince,
 CountryRegion,
 PostalCode,
 rowguid,
 ModifiedDate
FROM SalesLT.EncryptedAddress;

Figure 4-5. Previewing encrypted customer address data

Decrypting the encrypted data requires the DecryptByKey function, as shown in Listing 4-20. Results
are shown in Figure 4-6.

Listing 4-20. Decrypting Customer Address Data

-- Open symmetric data encrypting key
OPEN SYMMETRIC KEY SymKey7_Sales
DECRYPTION BY CERTIFICATE Cert2_Sales;

-- Decrypt sample random credit card data
SELECT

CHAPTER 4 ■ ASYMMETRIC ENCRYPTION

91

 AddressID,
 CAST(DecryptByKey(AddressLine1) AS nvarchar(60)),
 CAST(DecryptByKey(AddressLine2) AS nvarchar(60)),
 CAST(DecryptByKey(City) AS nvarchar(30)),
 CAST(DecryptByKey(StateProvince) AS nvarchar(50)),
 CAST(DecryptByKey(CountryRegion) AS nvarchar(50)),
 CAST(DecryptByKey(PostalCode) AS nvarchar(15)),
 rowguid,
 ModifiedDate
FROM SalesLT.EncryptedAddress;

-- Close data encrypting key
CLOSE SYMMETRIC KEY SymKey7_Sales;

Figure 4-6. Decrypted customer address data

As with asymmetric keys, certificates also provide an auto-decryption function:
DecryptByKeyAutoCert. This function accepts the certificate ID, plaintext, and a certificate password
for certificates that are protected by password. The advantage of this function is that it eliminates the
need to explicitly open and close your symmetric key.

Encrypting Data Directly with Certificates
You can use certificates to encrypt data directly, although it’s not recommended. Because certificates
implement asymmetric encryption, it’s a costly operation on large quantities of data. However, as with
asymmetric keys, SQL Server provides the option for those times when it might be necessary. Listing 4-21
encrypts the customer address data directly with the previously created certificate.

Listing 4-21. Encrypting Data Directly with a Certificate

-- Wipe out the sample data in the table
TRUNCATE TABLE SalesLT.EncryptedAddress;
GO

CHAPTER 4 ■ ASYMMETRIC ENCRYPTION

92

-- Encrypt sample random credit card data
INSERT INTO SalesLT.EncryptedAddress
(
 AddressID,
 AddressLine1,
 AddressLine2,
 City,
 StateProvince,
 CountryRegion,
 PostalCode,
 rowguid,
 ModifiedDate
)
SELECT
 AddressID,
 EncryptByCert(Cert_ID(N'Cert2_Sales'), AddressLine1),
 EncryptByCert(Cert_ID(N'Cert2_Sales'), AddressLine2),
 EncryptByCert(Cert_ID(N'Cert2_Sales'), City),
 EncryptByCert(Cert_ID(N'Cert2_Sales'), StateProvince),
 EncryptByCert(Cert_ID(N'Cert2_Sales'), CountryRegion),
 EncryptByCert(Cert_ID(N'Cert2_Sales'), PostalCode),
 rowguid,
 ModifiedDate
FROM SalesLT.Address;

The EncryptByCert function accepts a certificate ID and plaintext to encrypt. The Cert_ID function
retrieves the ID of a certificate by name. As with encryption by asymmetric key, you don’t have to open
and close a certificate to perform encryption and decryption with it. The DecryptByCert function will
decrypt the data for you, as shown in Listing 4-22.

Listing 4-22. Decryption by Certificate

SELECT
 AddressID,
 CAST
 (
 DecryptByCert(Cert_ID(N'Cert2_Sales'), AddressLine1) AS nvarchar(60)
),
 CAST
 (
 DecryptByCert(Cert_ID(N'Cert2_Sales'), AddressLine2) AS nvarchar(60)
),
 CAST
 (
 DecryptByCert(Cert_ID(N'Cert2_Sales'), City) AS nvarchar(30)
),
 CAST
 (
 DecryptByCert(Cert_ID(N'Cert2_Sales'), StateProvince) AS nvarchar(50)
),
 CAST

CHAPTER 4 ■ ASYMMETRIC ENCRYPTION

93

 (
 DecryptByCert(Cert_ID(N'Cert2_Sales'), CountryRegion) AS nvarchar(50)
),
 CAST
 (
 DecryptByCert(Cert_ID(N'Cert2_Sales'), PostalCode) AS nvarchar(15)
),
 rowguid,
 ModifiedDate
FROM SalesLT.EncryptedAddress;

■ Tip You may notice when running the decryption query that it can take a considerable amount of time to
decrypt just a few hundred rows of data. This is normal for asymmetric encryption and decryption, which is why

it’s not recommended for large amounts of data.

As with asymmetric keys, you can remove the private key from the certificate’s asymmetric keypair
with the ALTER CERTIFICATE statement. If you do this, you’ll be able to encrypt data with the certificate,
but you won’t be able to decrypt the data with the same certificate on the same SQL Server. You’ll have
to decrypt data away from the SQL server, possibly in a client application or on another server with the
private key.

You can also use ALTER CERTIFICATE to configure your certificate for use with SQL Server Service
Broker with the WITH ACTIVE FOR BEGIN_DIALOG clause. You can also add encryption by password to your
certificate with the ENCRYPTION BY PASSWORD clause.

Backing Up Certificates
From an administrative perspective, perhaps the biggest advantage that server-generated self-signed
certificates have over asymmetric keys is the ability to perform backups and restores. SQL Server
provides the BACKUP CERTIFICATE statement to export a self-signed certificate to a backup file.
Listing 4-23 demonstrates how to backup the Cert3_Sales certificate previously created in this chapter.

Listing 4-23. Backing Up a Certificate

BACKUP CERTIFICATE Cert3_Sales
TO FILE = N'c:\Cert3_Sales.cer'
WITH PRIVATE KEY
(
 FILE = N'c:\Cert3_Sales.pvk',
 ENCRYPTION BY PASSWORD = N'@oo$k3-9!'
);

The BACKUP CERTIFICATE statement takes the name of the file to export the certificate public key and
metadata to in the TO FILE clause. The WITH PRIVATE KEY clause allows you to specify a file to export the
certificate’s private key to. If you export the private key you must also specify the password you want to
use to encrypt the file in the ENCRYPTION BY PASSWORD clause. You’ll need to store this password securely
since you’ll need it to restore the certificate later.

CHAPTER 4 ■ ASYMMETRIC ENCRYPTION

94

After you make a backup of your certificate and private key, get it onto external backup media and
store it in a secure off-site facility. Delete the backup files from your local computer immediately.

There is no dedicated restore statement for certificates, per se. To restore a previously backed-up
certificate use the CREATE CERTIFICATE statement, as shown in Listing 4-24. The statement in this listing
restores the previously backed-up certificate. In order for this certificate to be restored as Cert3_Sales, you
need to first drop the existing certificate.

Listing 4-24. Restoring a Backedup Certificate

DROP CERTIFICATE Cert3_Sales;
GO

CREATE CERTIFICATE Cert3_Sales
FROM FILE = N'c:\Cert3_Sales.cer'
WITH PRIVATE KEY
(
 FILE = N'c:\Cert3_Sales.pvk',
 DECRYPTION BY PASSWORD = N'@oo$k3-9!'
);

Digital Signatures
One of the challenges of storing digital data is validating its authenticity. How can you be certain that the
data hasn’t been tampered with? SQL Server provides two functions to digitally sign your data. The
SignByCert function accepts a certificate ID and varbinary data to be signed. The function returns a
varbinary signature. Listing 4-25 uses the previously created Cert1_Sales certificate to sign the product
descriptions stored in the SalesLT.ProductDescription table. The Cert1_Sales certificate used in this
example was created in Chapter 3.

Listing 4-25. Signing Data in the Database with a Certificate

CREATE TABLE SalesLT.ProductDecriptionSigs
(
 ProductDescriptionID int not null primary key,
 Signature varbinary(256)
);
GO

INSERT INTO SalesLT.ProductDecriptionSigs
(
 ProductDescriptionID,
 Signature
)
SELECT
 ProductDescriptionID,
 SignByCert(Cert_ID(N'Cert1_Sales'), Description)
FROM SalesLT.ProductDescription;
GO

CHAPTER 4 ■ ASYMMETRIC ENCRYPTION

95

The sample code first creates a table to hold the generated signatures for each product description
entry. Then the INSERT statement uses the SignByCert function to sign the product descriptions and store
the signatures in the table. The example uses the simplest form of the SignByCert function, which
requires the certificate ID and the plaintext to sign. You can also specify a third parameter, password,
which is the password used to protect the certificate’s private key. Only use the password parameter if
your certificate’s private key is protected by password as opposed to protection by the DMK.

The SignByCert function will sign up to 8,000 bytes of data. If you pass a larger LOB data type value to
the function, everything after the first 8,000 bytes will be ignored during the signing process. Anything
altered after the first 8,000 bytes of data will not be detected by this function. Listing 4-26 queries the
product descriptions and their associated signatures, with partial results shown in Figure 4-7.

Listing 4-26. Querying the Product Descriptions and Their Signatures

SELECT
 pd.ProductDescriptionID,
 pd.Description,
 s.Signature
FROM SalesLT.ProductDescription pd
INNER JOIN SalesLT.ProductDecriptionSigs s
ON pd.ProductDescriptionID = s.ProductDescriptionID;

Figure 4-7. Product descriptions and their signatures

To verify that your data hasn’t been tampered with, simply pass in the certificate ID, the previously
signed data, and the previously generated signature. The VerifySignedByCert function generates a new
signature for the current data and compares it to the existing signature to determine if it’s been
tampered with. The function returns 1 if no tampering has occurred and 0 if the data does not match the
existing signature. Listing 4-27 verifies that the signatures match the signed data. Partial results are
shown in Figure 4-8.

CHAPTER 4 ■ ASYMMETRIC ENCRYPTION

96

Listing 4-27. Verifying the Certificate Signatures on Product Descriptions

SELECT
 pd.ProductDescriptionID,
 pd.Description,
 s.Signature,
 VerifySignedByCert
 (
 Cert_ID(N'Cert1_Sales'), pd.Description, s.Signature
) AS Verified
FROM SalesLT.ProductDescription pd
INNER JOIN SalesLT.ProductDecriptionSigs s
ON pd.ProductDescriptionID = s.ProductDescriptionID;

Figure 4-8. Results of signature verification

In addition to signing data with certificates and verifying certificate-signed data, SQL Server
provides the SignByAsymKey and VerifySignedByAsymKey functions. These functions operate similarly to
the SignByCert and VerifySignedByCert functions, but using asymmetric keys.

Signing Modules
You can use certificates to sign code modules, including stored procedures and user-defined functions.
This is a feature that’s useful for assigning permissions to stored procedures and functions without
explicitly granting your users those rights.

CHAPTER 4 ■ ASYMMETRIC ENCRYPTION

97

Database-Level Permissions
You can create database users for certificates and sign procedures to propagate permissions. For the
example of stored procedure signing, I’ll build on previous examples to force users to call a stored
procedure to decrypt the previously encrypted credit card data. I’ll also generate a log entry every time
a user calls the stored procedure to decrypt the data. Listing 4-11 performs the initial setup by creating a
logging table and populating the source table with encrypted credit card data (see Listing 4-28).

Listing 4-28. Create a Logging Table and Encrypt Credit Card Data

-- Create a logging table
CREATE TABLE SalesLT.DecryptCreditCardInfoLog
(
 LogID int not null identity(1, 1) primary key,
 SalesOrderID int,
 LogDate datetime,
 LogUser sysname
);
GO
-- Wipe out the sample data in the table
TRUNCATE TABLE SalesLT.EncryptedCreditCardInfo;
GO

OPEN SYMMETRIC KEY SymKey7_Sales
DECRYPTION BY CERTIFICATE Cert2_Sales;

-- Encrypt sample random credit card data
INSERT INTO SalesLT.EncryptedCreditCardInfo
(
 SalesOrderID,
 CreditCardNumber,
 CreditCardExpirationDate,
 TotalCharge
)
SELECT
 SalesOrderID,
 EncryptByKey(Key_GUID(N'SymKey7_Sales'), CreditCardNumber),
 EncryptByKey(Key_GUID(N'SymKey7_Sales'), CAST
 (
 CreditCardExpirationDate AS varbinary(10)
)
),
 EncryptByKey(Key_GUID(N'SymKey7_Sales'), CAST

CHAPTER 4 ■ ASYMMETRIC ENCRYPTION

98

 (
 TotalCharge AS varbinary(10)
)
)
FROM SalesLT.CreditCardInfo;

CLOSE SYMMETRIC KEY SymKey7_Sales;
GO

The next step is to create a stored procedure that accesses the encrypted data. The
SalesLT.GetOrderSummary procedure will accept a sales order ID number and return summary
information about the order with the decrypted credit card information for that order. Listing 4-29
creates this procedure.

Listing 4-29. Sample Procedure to Decrypt Credit Card Information

CREATE PROCEDURE SalesLT.GetOrderSummary @SalesOrderID int
AS
BEGIN
 OPEN SYMMETRIC KEY SymKey7_Sales
 DECRYPTION BY CERTIFICATE Cert2_Sales;

 SELECT
 soh.SalesOrderID,
 soh.OrderDate,
 soh.ShipDate,
 soh.Status,
 soh.TotalDue,
 sod.ProductID,
 p.Name AS ProductName,
 CAST
 (
 DecryptByKey (ecc.CreditCardNumber) AS nvarchar(100)
) AS CreditCardNumber,
 CAST
 (
 DecryptByKey (ecc.CreditCardExpirationDate) AS datetime
) AS CreditCardExp
 FROM SalesLT.SalesOrderHeader soh
 INNER JOIN SalesLT.SalesOrderDetail sod
 ON soh.SalesOrderID = sod.SalesOrderID
 INNER JOIN SalesLT.Product p
 ON sod.ProductID = p.ProductID
 INNER JOIN SalesLT.EncryptedCreditCardInfo ecc
 ON soh.SalesOrderID = ecc.SalesOrderID
 WHERE soh.SalesOrderID = @SalesOrderID;

CHAPTER 4 ■ ASYMMETRIC ENCRYPTION

99

 INSERT INTO SalesLT.DecryptCreditCardInfoLog
 (
 SalesOrderID,
 LogUser,
 LogDate
)
 VALUES
 (
 @SalesOrderID,
 USER_NAME(),
 GETDATE()
);

 CLOSE SYMMETRIC KEY SymKey7_Sales;
END;
GO

Next we’ll create a certificate named Cert_SignModules and a database user named CCDecryptor based
on this certificate. Listing 4-30 creates the certificate and the database user based on it.

Listing 4-30. Create a Certificate and User Based on the Certificate

CREATE CERTIFICATE Cert_SignModules
WITH SUBJECT = N'Certificate to sign modules',
START_DATE = '20090101',
EXPIRY_DATE = '20201231';
GO

CREATE USER CCDecryptor
FOR CERTIFICATE Cert_SignModules;
GO

Now that I’ve created a user based on a certificate, it’s time to grant that user some rights.
Specifically, I’m going to grant this user rights to execute the stored procedure and to open and
utilizethe symmetric key and the certificate protecting the symmetric key. Listing 4-31 grants these
permissions to the CCDecryptor user.

Listing 4-31. Granting Permissions to the CCDecryptor User

GRANT CONTROL ON SYMMETRIC KEY::SymKey7_Sales
TO CCDecryptor;
GO

GRANT CONTROL ON CERTIFICATE::Cert2_Sales
TO CCDecryptor;
GO

CHAPTER 4 ■ ASYMMETRIC ENCRYPTION

100

These are the permissions that are necessary to access the keys used to encrypt the credit card data
in the SalesLT.EncryptedCreditCardInfo table. Next, we’ll create a database user named Bob and assign
him rights to execute the SalesLT.GetOrderSummary procedure. The WITHOUT LOGIN clause of the CREATE
USER statement indicates that Bob’s user account should not be mapped to a server login account (see
Listing 4-32).

Listing 4-32. Giving User Bob Permissions to Execute the Procedure

CREATE USER Bob
WITHOUT LOGIN;
GO

GRANT EXECUTE ON SalesLT.GetOrderSummary
TO Bob;
GO

Bob won’t have direct access to the SalesLT.EncryptedCreditCardInfo table and he doesn’t
yet have the ability to decrypt the data in this table, even when executing the stored procedure, as
demonstrated in Listing 4-33. This code sample uses the EXECUTE AS USER statement to change the
context to the Bob user.

Listing 4-33. Bob Tries to Query the Source Table and Execute the Procedure

EXECUTE AS USER = N'Bob';
SELECT *
FROM SalesLT.EncryptedCreditCardInfo;
REVERT;
GO

EXECUTE AS USER = N'Bob';
EXEC SalesLT.GetOrderSummary 71774;
REVERT;
GO

The SELECT query in Listing 4-33 results in the following error message.

Msg 229, Level 14, State 5, Line 2

The SELECT permission was denied on the object 'EncryptedCreditCardInfo',

database 'AdventureWorksLT2008', schema 'SalesLT'.

CHAPTER 4 ■ ASYMMETRIC ENCRYPTION

101

The EXEC statement returns some order information, but the credit card information is not
decrypted. The credit card number and expiration date are returned as NULL, as shown in Figure 4-9.

Figure 4-9. Executing the SalesLT.GetOrderSummary procedure

You can see why the decryption didn’t work by taking a look at the error message displayed on the
Management Studio Messages tab, as shown in the following code.

Msg 15151, Level 16, State 1, Procedure GetOrderSummary, Line 4

Cannot find the symmetric key 'SymKey7_Sales', because it does not exist or

you do not have permission.

(2 row(s) affected)

(1 row(s) affected)

Msg 15315, Level 16, State 1, Procedure GetOrderSummary, Line 45

The key 'SymKey7_Sales' is not open. Please open the key before using it.

Msg 15151, Level 16, State 1, Procedure GetOrderSummary, Line 4

Cannot find the symmetric key 'SymKey7_Sales', because it does not exist

or you do not have permission.

CHAPTER 4 ■ ASYMMETRIC ENCRYPTION

102

As you can see, even though Bob has permissions to execute the SalesLT.GetOrderSummary he doesn’t
yet have permission to access the symmetric key and the certificate protecting it. Rather than granting
Bob explicit permissions to control the symmetric key and its certificate, we can propagate the
permissions that are already assigned to CCDecryptor to Bob through the certificate used to sign the
stored procedure. The concept of propagating user permissions through certificates was introduced in
SQL Server 2005, and it might be new to many DBAs and developers. Figure 4-10 shows how the
permissions propagate from users through a signed procedure.

Figure 4-10. Propagation of permissions through a signed procedure

As you can see in Figure 4-10, the permissions of the CCDecryptor user, which was created from the
Cert_SignModules certificate, flow through the certificate and certificate-signed procedure and to users
like Bob, who have permissions to execute the signed procedure.

The way I implement this permission propagation is by signing the stored procedure with thesame
Cert_SignModules certificate that I used to create the CCDecryptor user. Listing 4-34 signs the procedure
with this certificate.

Listing 4-34. Signing a Stored Procedure with a Certificate

ADD SIGNATURE TO SalesLT.GetOrderSummary
BY CERTIFICATE Cert_SignModules;
GO

Now when Bob executes the stored procedure, as shown in Listing 4-35, the CCDecryptor user
permissions are propagated back through the certificate and to the other users with permissions to
execute it, like Bob. The results, including properly decrypted credit card information, are shown in
Figure 4-11.

Listing 4-35. Executing the Stored Procedure As Bob

EXECUTE AS USER = N'Bob';
EXEC SalesLT.GetOrderSummary 71774;
REVERT;
GO

CHAPTER 4 ■ ASYMMETRIC ENCRYPTION

103

Figure 4-11. Results after signing the procedure with a certificate

You can see that the stored procedure run was logged in the SalesLT.DecryptCreditCardInfoLog
table by running the query shown in Listing 4-36. Results are shown in Figure 4-12.

Listing 4-36. Querying the Log Table

SELECT
 LogID,
 SalesOrderID,
 LogDate,
 LogUser
FROM SalesLT.DecryptCreditCardInfoLog;

Figure 4-12. Contents of the log table

Ownership Chaining and the Execute As Clause

Ownership chaining can be a complex subject, and the details are outside the scope of this book. I mention
it here because signing procedures with certificates provides an alternative method of giving users access
to stored procedures, access, and other permissions within the database. Ownership chaining has been
written about extensively, and there are many good treatments of the subject available. One of my favorite
introductions to the topic is MVP Erland Sommarskog’s whitepaper, “Giving Permissions Through Stored
Procedures,” available at www.sommarskog.se/grantperm.html.

The EXECUTE AS clause in the CREATE PROCEDURE statement allows you to execute a stored procedure
using the context of a different user, and with it you can accomplish a result that is similar to what I’ve
demonstrated in this section with certificates and signed procedures. However, because it changes the
security context during execution, the EXECUTE AS clause would change the user name being logged into
the table in these examples. It’s very important to understand these, and other, subtle differences when
deciding which methods fit best into your overall security strategy.

CHAPTER 4 ■ ASYMMETRIC ENCRYPTION

104

A side effect of signing a procedure with a certificate is that the signature is dropped if you alter or
drop and recreate the procedure. This means if you issue an ALTER PROCEDURE statement against the
SalesLT.GetOrderSummary procedure, the CCDecryptor user will no longer be able to propagate its
permissions to Bob. In terms of this example, Bob won’t be able to access the symmetric key used to
encrypt the credit card data. To reestablish the link between Bob and the CCDecryptor user’s permissions,
you’ll need to sign the procedure again with the ADD SIGNATURE statement.

Server-Level Permissions
You can also assign server-level permissions by creating a login from a certificate created in the master
database. To grant both server and database-level permissions through a certificate, you need to install
the same certificate in both the master database and in the user database. For example, you can use
server-level permissions to grant users bulk insert permissions. Finally, you can sign a procedure with
more than one certificate if the users of the procedure need rights assigned to users created with
different certificates.

Erland Sommarskog provides one of the best examples of this I’ve encountered in his white paper
“Giving Permissions Through Stored Procedures,” available at http://www.sommarskog.se/grantperm.html.
The code sample in this section is derived from his example in that paper. The code in Listing 4-37 builds a
simple table called State, which will contain information about US states.

Listing 4-37. Building the State Table

USE AdventureWorksLT2008;
GO

CREATE TABLE dbo.State
(
 abbreviation nvarchar(2) not null primary key,
 name nvarchar(100) not null,
 capital nvarchar(100) not null,
 flag_graphic nvarchar(20) not null,
 entry_date date not null,
 fact nvarchar(2000) not null,
 capital_address nvarchar(50) not null,
 zip_code nvarchar(5) not null,
 longitude float not null,
 latitude float not null
);
GO

This table will be populated from an XML file called State-List.xml. This XML file is located in the
sample download file in the Source code section of the Apress web site at http://www.apress.com. The
file looks like the snippet shown in Listing 4-38, with one entry for each of the 50 states.

CHAPTER 4 ■ ASYMMETRIC ENCRYPTION

105

Listing 4-38. State-List.xml File Snippet

<capitals>
 <state name = "Alabama"
 Abbreviation = "AL"
 capital = "Montgomery"
 flag = "AL.gif"
 date = "December 14, 1819"
 fact = "Rosa Parks refused to give up her seat ..."
 address = "600 Dexter Ave"
 zip = "36130"
 long = "-86.301963"
 lat = "32.377189" />
 . . .
</capitals>

To assign server-level permissions through a certificate, you need to first create a certificate
in the master database. Then you need to create a login for the certificate and assign server-level
permissions to the login. In this case, I’ve assigned Administer Bulk Operations permissions, the
permissions required for bulk insert. Finally, you need to backup the certificate with the BACKUP
CERTIFICATE statement. Listing 4-39 performs all of these steps.

Listing 4-39. Creating a Certificate and Login in the Master Database

-- Create certificate in master database
USE master;
GO

CREATE CERTIFICATE LoadStates_Cert
 ENCRYPTION BY PASSWORD = N'l0a8p3rm$'
 WITH SUBJECT = N'Load states permissions',
 START_DATE = '20090101',
 EXPIRY_DATE = '20160101'
GO

-- Create a login for the certificate
CREATE LOGIN LoadStates_Login
FROM CERTIFICATE LoadStates_Cert;
GO

-- Assign "Administer Bulk Operations" permissions to the login
GRANT ADMINISTER BULK OPERATIONS
TO LoadStates_Login;
GO

CHAPTER 4 ■ ASYMMETRIC ENCRYPTION

106

-- Backup the certificate to a file
BACKUP CERTIFICATE LoadStates_Cert
TO FILE = N'C:\Windows\Temp\LoadStates_Cert.cer'
WITH PRIVATE KEY
(
 FILE = N'C:\Windows\Temp\LoadStates_Cert.pvk' ,
 ENCRYPTION BY PASSWORD = N'f!133nc#',
 DECRYPTION BY PASSWORD = N'l0a8p3rm$'
);
GO

In order for this assignment of server-level permissions through a certificate to work, you haveto
recreate the certificate in the target database. In this case, I’ve used the backup of the certificate, created
in Listing 4-39, to create the exact same certificate in the AdventureWorksLT2008 database.
Listing 4-40 re-creates the certificate in the target database.

■ Caution Be sure to delete the certificate backup files from the local storage when you are done. Don’t leave

them lying around unsecured on your hard drive.

Listing 4-40. Re-create Certificate in Target Database

-- Recreate the certificate in AdventureWorksLT 2008 database
-- from the backup. Be sure to delete the backup files from
-- the local hard drive after you recreate the certificate!
USE AdventureWorksLT2008;
GO

CREATE CERTIFICATE LoadStates_Cert
FROM FILE = N'C:\Windows\Temp\LoadStates_Cert.cer'
WITH PRIVATE KEY
(
 FILE = N'C:\Windows\Temp\LoadStates_Cert.pvk',
 DECRYPTION BY PASSWORD = N'f!133nc#',
 ENCRYPTION BY PASSWORD = N'l0a8p3rm$'
)
GO

Listing 4-41 creates the stored procedure that uses SQL Server’s OPENROWSET with BULK option to load
the XML file into an xml variable and populates the target table. This code listing also signs the stored
procedure with the LoadStates_Cert certificate.

CHAPTER 4 ■ ASYMMETRIC ENCRYPTION

107

Listing 4-41. Create and Sign the LoadStates Stored Procedure

-- Now create the LoadStates procedure to bulk load an XML file
-- and shred into a relational table
CREATE PROCEDURE dbo.LoadStates
AS
BEGIN
 DECLARE @x xml;

 EXEC dbo.sp_executesql N'SELECT @x = BulkColumn
 FROM OPENROWSET
 (
 BULK N''c:\state-list.xml'', SINGLE_BLOB
) AS x;',
 N'@x xml OUTPUT',
 @x = @x OUTPUT;

 INSERT INTO dbo.State
 (
 abbreviation,
 name,
 capital,
 flag_graphic,
 entry_date,
 fact,
 capital_address,
 zip_code,
 longitude,
 latitude
)
 SELECT c.value(N'@abbreviation[1]', N'nvarchar(2)'),
 c.value(N'@name[1]', N'nvarchar(100)'),
 c.value(N'@capital[1]', N'nvarchar(100)'),
 c.value(N'@flag[1]', N'nvarchar(20)'),
 c.value(N'@date[1]', N'date'),
 c.value(N'@fact[1]', N'nvarchar(2000)'),
 c.value(N'@address[1]', N'nvarchar(50)'),
 c.value(N'@zip[1]', N'nvarchar(5)'),
 c.value(N'@long[1]', N'float'),
 c.value(N'@lat[1]', N'float')
 FROM @x.nodes(N'//state') t(c);
END;
GO

-- Sign the test procedure with the certificate
ADD SIGNATURE TO LoadStates
BY CERTIFICATE LoadStates_Cert
WITH PASSWORD = N'l0a8p3rm$';
GO

CHAPTER 4 ■ ASYMMETRIC ENCRYPTION

108

After the procedure is signed, you can create logins and users and assign them permissions to
execute the signed stored procedure. In Listing 4-42, I create a login and an associated database user,
both named Joe. Permissions are granted to Joe the user to execute the LoadStates procedure.

Listing 4-42. Creating a Login and User to Execute the Procedure

CREATE LOGIN Joe
WITH PASSWORD = 'p@$$w0rd';
GO

CREATE USER Joe
FOR LOGIN Joe;
GO

GRANT EXECUTE ON dbo.LoadStates
TO Joe;
GO

You’ve now created two server logins and one database user. Here’s how they interact with one
another:

• LoadStates_Login is a login based on the certificate. This login has been assigned
Administer Bulk Operations permissions.

• The Joe login is a login that is not assigned any permissions.

• The Joe database user is based on the Joe login, and is assigned permissions to
execute the LoadStates stored procedure.

Since the LoadStates_Login was created for a certificate, its server-level permissions are passed
through to any login that is signed with the certificate, but only in the context of the signed procedure.
In this case, the Administer Bulk Operations permissions are passed to any login that has execute
permission on the LoadStates procedure, but only when executing the procedure. So the Joe login gets
the Administer Bulk Operations permissions, but only when running the procedure. The Joe user
provides database access for the Joe login. Listing 4-43 uses the Joe login to execute the procedure.

Listing 4-43. Executing the Procedure Using the Joe Login

-- Execute as Joe
EXECUTE AS LOGIN = N'Joe';
GO

EXEC dbo.LoadStates;
GO

REVERT;
GO

CHAPTER 4 ■ ASYMMETRIC ENCRYPTION

109

Notice that when executing the procedure in Listing 4-43, I used EXECUTE AS LOGIN, not EXECUTE AS
USER. This is because server-level permissions are available through the certificate at thelogin level. If
you try to execute as Joe the user, the statement will fail with an error message like the following:

Msg 4834, Level 16, State 1, Line 5

You do not have permission to use the bulk load statement.

You can verify the results of running the stored procedure with a SELECT query, like the one shown in
Listing 4-44. Partial results are shown in Figure 4-13.

Listing 4-44. Verifying the Results of the LoadStates Procedure

SELECT abbreviation,
 name,
 capital,
 flag_graphic,
 entry_date,
 fact,
 capital_address,
 zip_code,
 longitude,
 latitude
FROM dbo.State;

Figure 4-13. Results of executing LoadStates procedure

Summary
Asymmetric encryption within the database was first introduced in SQL Server 2005 and continued in
SQL Server 2008. SQL Server provides several options for creating and managing asymmetric keys and
certificates on the server. While asymmetric encryption is designed specifically to protect symmetric
keys that encrypt data through the encryption hierarchy, SQL Server also exposes functions to encrypt
data with certificates and asymmetric keys.

CHAPTER 4 ■ ASYMMETRIC ENCRYPTION

110

In addition to protecting symmetric keys and data, asymmetric keys and certificates can be used to
digitally sign data and verify previously generated signatures. This can be useful in protecting against
unauthorized data tampering.

Finally, you can use asymmetric keys and certificates to sign procedures and propagate database-
level and server-level permissions to users of the procedure. This can prove a very powerful alternative
to classic ownership chaining methods of assigning implicit permissions.

In the next chapter, I’ll discuss how you can take advantage of one of the exciting new encryption
features available in SQL Server 2008, Extensible Key Management (EKM).

C H A P T E R 5

■ ■ ■

111

Extensible Key Management

In very high security situations laws, regulations and IT policies impose very strict prohibitions
againststoring encryption keys in the same database (or even on the same physical device) as the
datawhich it protects. To address this need, SQL Server 2008 provides an option known as extensible
keymanagement (EKM). EKM allows you to create, store, manage, and access encryption keys on
dedicated encryption appliances separate from your SQL Server databases. In this chapter, I will use
theLuna SA hardware security module (HSM) provided by SafeNet to demonstrate EKM, although
theconcepts and tools apply to all SQL Server-enabled HSMs. SQL Server 2008 introduces new T-SQL
statements, and new options for existing statements, designed to take advantage of EKM functionality.
I’ll discuss these T-SQL language extensions in this chapter.

What Is EKM?
EKM is an interface that Microsoft has defined for third-party vendors to extend the capabilities of SQL
Server 2008 encryption through dedicated hardware and T-SQL language extensions. The EKM vendor
must supply two things in order for EKM to work: a dedicated encryption appliance, known as a
hardware security module (HSM), and a dynamic link library (DLL) file that conforms to the Microsoft-
defined EKM provider interface. Figure 5-1 shows how these EKM components logically fit within the
SQL Server 2008 EKM framework.

Figure 5-1. Relationship between SQL Server and EKM components

CHAPTER 5 ■ EXTENSIBLE KEY MANAGEMENT

112

The role of the HSM appliance is to create, store, and manage encryption keys, and to perform
encryption and decryption of data. The EKM provider’s DLL file allows SQL Server to communicate with
the HSM. Figure 5-2 shows the SafeNet Luna SA HSM that I used to test the examples in this chapter.

Figure 5-2. SafeNet Luna SA HSM appliance

■ Note You can find out more about the SafeNet Luna SA at the SafeNet website, http://www.safenet-inc.com.

Why would you want to use EKM and an HSM appliance? There are two key benefits:

• The HSM manages its own encryption keys, so you can store encryption keys away
from the data it protects. In some cases, this is a mandatory requirement.

• The HSM is dedicated encryption hardware, so SQL Server can offload the tasks of
encryption and decryption to the appliance. This can result in a significant
performance boost and free up resources on your SQL Server instance.

Either one of these benefits could be justification enough to move toward an off-server encryption
appliance, but with the SQL Server EKM implementation you get both. You can use EKM toeffectively
replace the default encryption hierarchy key management functionality in SQL Server, or you can use it
to supplement existing functionality.

In this chapter, I’ll discuss how to configure and use your EKM-enabled HSM with SQL Server 2008.
Because HSM setup is vendor-specific I assume in this chapter that your HSM appliance is already
configured. In Appendix C, I’ll walk you through setup and configuration of the SafeNet Luna SA HSM
that I use throughout this chapter.

Configuring EKM
The first step to take advantage of SQL Server 2008’s EKM functionality is to turn it on in SQL Server via
the sp_configure system stored procedure. Listing 5-1 enables EKM provider functionality in SQL Server.

CHAPTER 5 ■ EXTENSIBLE KEY MANAGEMENT

113

Listing 5-1. Enabling EKM Functionality in SQL Server

EXEC sp_configure 'show advanced options', 1;
GO

RECONFIGURE;
GO

EXEC sp_configure 'EKM provider enabled', 1;
GO

RECONFIGURE;
GO

The next steps assume that you’ve already set up and configured you HSM. I won’t go into the
details here, since the individual steps will be different for every HSM vendor. I do document the process
of setting up the SafeNet Luna SA HSM in Appendix C, including the necessary steps to set up and
configure the encryption appliance.

After you’ve enabled SQL Server 2008 EKM functionality with sp_configure and your HSM has been
set up and configured, you need to register a vendor-supplied DLL with SQL Server. This is done through
the CREATE CRYPTOGRAPHIC PROVIDER statement. Simply take the vendor’s DLL and place it where your
SQL Server instance can access it. Then specify the full path to the file in the CREATE CRYPTOGRAPHIC
PROVIDER statement. In Listing 5-2, I’ve placed the SafeNet-provided LunaEKM.DLL file in a local folder
named c:\LunaSA\EKM.

Listing 5-2. Registering the Luna SA Cryptographic Provider with SQL Server

CREATE CRYPTOGRAPHIC PROVIDER LunaEKMProvider
FROM FILE = N'c:\LunaSA\EKM\LunaEKM.dll';

■ Note SQL Server verifies the cryptographic signature on the vendor’s DLL. You may have to install the

necessary certificates from the DLL on the local server during the HSM setup. I describe this in Appendix C.

The next step is to create a credential for the cryptographic provider. The credential you create is
used by SQL Server to authenticate with the HSM. You can create this credential with the CREATE
CREDENTIAL statement, as shown in Listing 5-3.

Listing 5-3. Creating an EKM Credential

CREATE CREDENTIAL LunaEKMCredential
WITH IDENTITY = 'SQL2008\Michael',
SECRET = 'x9SP-PH9C-L/FK-q/TW'
FOR CRYPTOGRAPHIC PROVIDER LunaEKMProvider;
GO

CHAPTER 5 ■ EXTENSIBLE KEY MANAGEMENT

114

ALTER LOGIN [SQL2008\Michael]
ADD CREDENTIAL LunaEKMCredential;
GO

When you create a credential using the code in Listing 5-3, you’ll want to replace my Windows login in
the WITH IDENTITY clause (SQL2008\Michael) with your own. You’ll also want to replace the login secret
in the SECRET clause (x9SP-PH9C-L/FK-q/TW) with your own. This secret authentication value is assigned by
your HSM appliance during the hardware setup process. The ALTER LOGIN statement adds the newly
created credential to a login. If you don’t execute this statement the EKM provider won’t recognize your
ability to access the HSM appliance.

After you’ve registered your HSM with SQL Server, you can verify that everything went smoothly by
looking under Security in the Management Studio’s Object Explorer, as shown in Figure 5-3.

Figure 5-3. Viewing cryptographic providers and credentials in Management Studio

You can also query the sys.cryptographic_providers, sys.credentials, and
sys.dm_cryptographic_provider_properties cryptographic system views to validate your EKM
registration. Listing 5-4 demonstrates querying these views with results shown in Figure 5-4.

Listing 5-4. Querying Catalog Views and DMVs to Validate EKM Registration

SELECT provider_id,
 name,
 guid,
 version,
 dll_path,
 is_enabled
FROM sys.cryptographic_providers;

CHAPTER 5 ■ EXTENSIBLE KEY MANAGEMENT

115

SELECT
 credential_id,
 name,
 credential_identity,
 create_date,
 target_type,
 target_id
FROM sys.credentials;

SELECT
 provider_id,
 guid,
 provider_version,
 sqlcrypt_version,
 friendly_name,
 authentication_type,
 symmetric_key_support,
 asymmetric_key_support
FROM sys.dm_cryptographic_provider_properties;

Figure 5-4. Using system views to validate EKM registration

Creating Asymmetric Keys
You can create asymmetric keys on HSMs that support asymmetric key creation and management,
likethe Luna SA. Unlike T-SQL on SQL Server 2008, EKM providers generally support asymmetric key
backup and other management functions through built-in HSM support. You won’t be able to access
thebackup and restore functionality directly through T-SQL statements, however.

When you create an asymmetric key through EKM, you have to use a slight variation on the CREATE
ASYMMETRIC KEY syntax. This different form of the statement indicates a provider and has some options
specific to EKM. Listing 5-5 generates an asymmetric encryption key on the HSM.

Listing 5-5. Creating an Asymmetric Key on the HSM

CREATE ASYMMETRIC KEY Luna_RSA2048_Key
FROM PROVIDER LunaEKMProvider
WITH ALGORITHM = RSA_2048,
PROVIDER_KEY_NAME = 'Luna_RSA2048_Key',
CREATION_DISPOSITION = CREATE_NEW;

CHAPTER 5 ■ EXTENSIBLE KEY MANAGEMENT

116

This CREATE ASYMMETRIC KEY statement creates an RSA key with a 2048-bit private key on the HSM.
This variation of the statement requires you to specify the EKM provider name in the FROM PROVIDER
clause. You also need to specify the key name on the provider (which can be different from the SQL
Server identifier) with the PROVIDER_KEY_NAME option. The CREATION_DISPOSITION canbe set to CREATE_NEW
if you are creating a new asymmetric key on the HSM, or OPEN_EXISTING if the asymmetric key already
exists on the HSM. You can verify that the asymmetric key creation succeeded by querying the
sys.asymmetric_keys system view, as shown in Listing 5-6. Results are shown in Figure 5-5.

Listing 5-6. Verifying Asymmetric Key Creation Success

SELECT
 name,
 asymmetric_key_id,
 pvt_key_encryption_type_desc,
 algorithm_desc,
 key_length,
 provider_type
FROM sys.asymmetric_keys
WHERE pvt_key_encryption_type = N'CP';

Figure 5-5. Contents of sys.asymmetric_keys system view after key creation

Protecting Symmetric Keys
Asymmetric keys that are created on the HSM are not protected by the SQL Server service master key. The
HSM itself provides security for the asymmetric keys it contains. You can, however, use asymmetric keys on
the HSM to protect symmetric keys you create on the server. Listing 5-7 creates a new symmetric key on the
SQL Server instance and protects it using the asymmetric key I previously created on the HSM.

Listing 5-7. Creating a Symmetric Key Protected by an HSM Asymmetric Key

CREATE SYMMETRIC KEY SymKey_ProtectedByLunaKey
WITH ALGORITHM = AES_256
ENCRYPTION BY ASYMMETRIC KEY Luna_RSA2048_Key;

This statement uses the HSM-managed asymmetric Luna_RSA2048_Key to protect a SQL Server-
managed 256-bit AES symmetric encryption key, SymKey_ProtectedByLunaKey. Notice that even though it’s
protected by an asymmetric key on the Luna SA HSM, the newly created symmetric key is created in the
database and is itself managed by SQL Server. You can verify that this key was created and that it’s
protected by an asymmetric key stored on the cryptographic provider by joining the sys.symmetric_keys,
sys.key_encryptions and sys.asymmetric_keys system views as shown in Listing 5-8 with results shown in
Figure 5-6.

CHAPTER 5 ■ EXTENSIBLE KEY MANAGEMENT

117

Listing 5-8. Verifying Symmetric Key Protection by an HSM Asymmetric Key

SELECT
 sk.name AS sym_name,
 sk.symmetric_key_id AS sym_id,
 sk.key_length AS sym_len,
 sk.algorithm_desc AS sym_algo,
 ke.crypt_type_desc AS sym_crypt_type,
 ak.name AS asym_key_name,
 ak.algorithm_desc As asym_algo,
 ak.key_length AS asym_len,
 ak.provider_type AS asym_key_provider
FROM sys.symmetric_keys sk
INNER JOIN sys.key_encryptions ke
 ON sk.symmetric_key_id = ke.key_id
INNER JOIN sys.asymmetric_keys ak
 ON ke.thumbprint = ak.thumbprint
WHERE ak.pvt_key_encryption_type = N'CP';

Figure 5-6. List of symmetric keys protected by asymmetric key

This query simply determines which symmetric keys are encrypted by asymmetric keys and then
narrows the results to the asymmetric keys that are protected by an EKM cryptographic provider
(asindicated by the WHERE ak.pvt_key_encryption_type = N'CP' clause).

An asymmetric key created and managed by an HSM through an EKM provider can be used just like
other asymmetric keys on SQL Server. You can use it to protect SQL Server-managed symmetric keys in
the encryption key hierarchy or you can use it to encrypt data directly.

Encrypting Data Directly
EKM providers offload the encryption and decryption responsibilities to the dedicated HSM hardware.
Encryption and decryption by dedicated hardware is significantly faster than it is in the local SQL Server
instance’s CryptoAPI-based software implementations. In some simple performance testing, I found
theLuna SA hardware implementation was able to decrypt data that was previously encrypted with a
2048-bit RSA key over 200 times faster than the CryptoAPI software implementation in SQL Server. This
performance enhancement makes direct asymmetric encryption of data much more palatable when
using EKM than it is when using a SQL Server-managed asymmetric key.

■ Note The performance results I achieved are specific to my hardware and network configuration. Your
performance may vary, but in general you can expect dedicated encryption hardware will outperform software

implementations like the CryptoAPI in almost every case.

CHAPTER 5 ■ EXTENSIBLE KEY MANAGEMENT

118

Listing 5-9 creates a table, SalesLT.EncryptedSalesOrderDetail, to hold data encrypted with the
previously created HSM-based asymmetric key.

Listing 5-9. Create a Table to Hold Encrypted Sales Order Detail Information

CREATE TABLE SalesLT.EncryptedSalesOrderDetail
(
 SalesOrderID int not null,
 SalesOrderDetailID int not null,
 OrderQty varbinary(256) not null,
 ProductID varbinary(256) not null,
 UnitPrice varbinary(256) not null,
 UnitPriceDiscount varbinary(256) not null,
 PRIMARY KEY (SalesOrderID, SalesOrderDetailID)
);
GO

In Listing 5-10, I use the previously created HSM-managed RSA key to encrypt selected sales order
to detail data from the SalesLT.SalesOrderDetail table.

Listing 5-10. Encrypting Data with an HSM Asymmetric Key

INSERT INTO SalesLT.EncryptedSalesOrderDetail
(
 SalesOrderID,
 SalesOrderDetailID,
 OrderQty,
 ProductID,
 UnitPrice,
 UnitPriceDiscount
)
SELECT
 SalesOrderID,
 SalesOrderDetailID,
 EncryptByAsymKey(AsymKey_ID(N'Luna_RSA2048_Key'), CAST
 (
 OrderQty AS varbinary(10)
)
),
 EncryptByAsymKey(AsymKey_ID(N'Luna_RSA2048_Key'), CAST
 (
 ProductID AS varbinary(10)
)
),
 EncryptByAsymKey(AsymKey_ID(N'Luna_RSA2048_Key'), CAST
 (
 UnitPrice AS varbinary(40)
)
),
 EncryptByAsymKey(AsymKey_ID(N'Luna_RSA2048_Key'), CAST

CHAPTER 5 ■ EXTENSIBLE KEY MANAGEMENT

119

 (
 UnitPriceDiscount AS varbinary(40)
)
)
FROM SalesLT.SalesOrderDetail;
GO

You can verify the encryption succeeded with a simple query like the one in Listing 5-11. Partial
results are shown in Figure 5-7.

Listing 5-11. Querying the Encrypted Sales Order Detail Data

SELECT
 SalesOrderID,
 SalesOrderDetailID,
 OrderQty,
 ProductID,
 UnitPrice,
 UnitPriceDiscount
FROM SalesLT.EncryptedSalesOrderDetail;

Figure 5-7. Encrypted sales order detail data

Decrypting the encrypted data is simply a matter of calling the DecryptByAsymKey function with the
HSM-enabled asymmetric encryption key, as shown in Listing 5-12. Partial results are shown in
Figure 5-8.

Listing 5-12. Decrypting Data with an HSM-enabled Asymmetric Key

SELECT
 SalesOrderID,
 SalesOrderDetailID,
 CAST

CHAPTER 5 ■ EXTENSIBLE KEY MANAGEMENT

120

 (
 DecryptByAsymKey(AsymKey_ID(N'Luna_RSA2048_Key'),
 OrderQty) AS smallint
) AS OrderQty,
 CAST
 (
 DecryptByAsymKey(AsymKey_ID(N'Luna_RSA2048_Key'),
 ProductID) AS int
) AS ProductID,
 CAST
 (
 DecryptByAsymKey(AsymKey_ID(N'Luna_RSA2048_Key'),
 UnitPrice) AS money
) AS UnitPrice,
 CAST
 (
 DecryptByAsymKey(AsymKey_ID(N'Luna_RSA2048_Key'),
 UnitPriceDiscount) AS money
) AS UnitPriceDiscount
FROM SalesLT.EncryptedSalesOrderDetail;

Figure 5-8. Result of HSM-enabled asymmetric decryption

CHAPTER 5 ■ EXTENSIBLE KEY MANAGEMENT

121

Creating Symmetric Keys
In addition to creation and management of asymmetric keys, EKM providers can also create and
manage symmetric keys on HSMs that support it. When you create a symmetric key on an HSM it’s
protected and managed by the HSM. This means you don’t need to specify that the symmetric key will
be encrypted by certificate, asymmetric key, or password. Listing 5-13 creates a symmetric key directly
on the HSM appliance.

Listing 5-13. Creating a Symmetric Key on the HSM

CREATE SYMMETRIC KEY Luna_AES256_Key
FROM PROVIDER LunaEKMProvider
WITH PROVIDER_KEY_NAME='Luna_AES256_Key',
CREATION_DISPOSITION = CREATE_NEW,
ALGORITHM = AES_256;

You can verify that the 256-bit AES key was successfully created by querying the sys.symmetric_keys
system view as shown in Listing 5-14. The result is shown in Figure 5-9.

Listing 5-14. Querying sys.symmetric_keys to Verify Key Creation

SELECT
 name,
 symmetric_key_id,
 key_length,
 algorithm_desc,
 provider_type
FROM sys.symmetric_keys
WHERE provider_type = N'CRYPTOGRAPHIC PROVIDER';

Figure 5-9. Verification the encryption key was created on the HSM

CHAPTER 5 ■ EXTENSIBLE KEY MANAGEMENT

122

As I mentioned previously, because the symmetric encryption key was created on the HSM, you
don’t need to specify an asymmetric key, password, or certificate to protect it. The HSM handles the
details of securing the symmetric key. Another nice feature of HSM-protected symmetric keys is that you
don’t have to explicitly open and close the symmetric key when you want to use it. Listing 5-15 creates a
table called SalesLT.EncryptedProduct that will hold encrypted product pricing information from the
SalesLT.ProductTable.

Listing 5-15. Creating Table to Hold Encrypted Product Price Information

CREATE TABLE SalesLT.EncryptedProduct
(
 ProductID int not null primary key,
 Name nvarchar(50),
 StandardCost varbinary(80),
 ListPrice varbinary(80)
);
GO

The next step is to populate the table with encrypted data. For this task, I’ll use the 256-bit AES key I
previously created on the HSM appliance. Listing 5-16 performs the encryption and queries the result to
demonstrate the data is encrypted. Partial results are shown in Figure 5-10.

Listing 5-16. Encrypting Data with an HSM Symmetric Key

INSERT INTO SalesLT.EncryptedProduct
(
 ProductID,
 Name,
 StandardCost,
 ListPrice
)
SELECT
 ProductID,
 Name,
 EncryptByKey(Key_GUID(N'Luna_AES256_Key'),
 CAST
 (
 StandardCost AS varbinary(40)
)
),
 EncryptByKey(Key_GUID(N'Luna_AES256_Key'),
 CAST
 (
 ListPrice AS varbinary(40)
)
)
FROM SalesLT.Product;
GO

CHAPTER 5 ■ EXTENSIBLE KEY MANAGEMENT

123

SELECT
 ProductID,
 Name,
 StandardCost,
 ListPrice
FROM SalesLT.EncryptedProduct;

Figure 5-10. Encrypted product pricing data

Notice that you don’t need to use the OPEN SYMMETRIC KEY and CLOSE SYMMETRIC KEY statements to
open and close the symmetric key for use. The HSM handles key opening and closing of keys for you
automatically. You also don’t need to open or close symmetric keys when decrypting data, as shown in
Listing 5-17.

Listing 5-17. Decrypting Data with an HSM Symmetric Key

SELECT
 ProductID,
 Name,
 CAST(DecryptByKey(StandardCost) AS money) AS StandardCost,
 CAST(DecryptByKey(ListPrice) AS money) AS ListPrice
FROM SalesLT.EncryptedProduct;

EKM Limitations
EKM inherits some limitations from the SQL Server-defined interface. For instance, even though an
HSM is a dedicated hardware encryption appliance, EKM limits the amount of data that can be
encrypted at once. Specifically, the result of your encryption can’t be larger than 8,000 bytes in length.

EKM may also have other limitations created by a combination of adherence to the EKM interface
standards and the implementation of the HSM hardware and firmware. As an example, when testing the
Luna SA I was unable to create an HSM-based encryption key hierarchy in which HSM-based symmetric
keys could be used to encrypt other symmetric keys. The fact of the matter is that this is not a
particularly problematic limitation since the HSM provides adequate security for your symmetric keys.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5 ■ EXTENSIBLE KEY MANAGEMENT

124

Basically, the encryption key hierarchy is unnecessary to secure your keys when you have an HSM to
protect them.

The T-SQL extensions for EKM do not support HSM-based certificates. While you can use
asymmetric keys on HSMs that support them, you cannot create or utilize certificates stored on the
HSMfrom within T-SQL. Additionally, you can’t use EKM provider-generated asymmetric keys to sign
procedures or database objects with the ADD SIGNATURE statement. You also can’t use EKM asymmetric
keys to generate digital signatures for data with the SignByAsymKey function.

Finally, you are limited in whatever the HSM hardware and firmware supports for encryption key
management and encryption/decryption functionality. Only algorithms supported by the HSM can be
used through the EKM provider. If your HSM supports algorithms that the SQL Server EKM interface
doesn’t recognize, you won’t be able to utilize them. As an example, the Luna SA appliance supports
algorithms like CAST-128 and Elliptical Curve Cryptography (ECC) that the SQL Server T-SQL language
extensions can’t access.

While the Luna SA HSM I’m using implements all of the encryption algorithms and key lengths
currently supported by SQL Server 2008, other EKM providers may not provide support for some
algorithms or options. You can query the sys.dm_cryptographic_provider_algorithms DMF to get a list
of algorithms that your EKM provider supports, as shown in Listing 5-18. Results for the Luna SA HSM
are shown in Figure 5-11.

Listing 5-18. Querying the List of Cryptographic Provider Algorithms

SELECT
 algorithm_id,
 algorithm_tag,
 key_type,
 key_length
FROM sys.dm_cryptographic_provider_algorithms (65535);

Figure 5-11. List of Luna SA-supported algorithms

You can also query the sys.dm_cryptographic_provider_properties DMV to determine if your EKM
provider supports symmetric encryption, asymmetric encryption, and additional related options.
Idiscussed the sys.dm_cryptographic_provider_properties DMV in Chapter 2. Additionally, you can get
a list of keys being stored on the HSM by querying the sys.dm_cryptographic_provider_keys DMF.

CHAPTER 5 ■ EXTENSIBLE KEY MANAGEMENT

125

Summary
The SQL Server 2008 EKM implementation includes new T-SQL language extensions that provide access
to third-party dedicated encryption hardware, like the SafeNet Luna SA. In this chapter, I discussed the
advantages of EKM, which include the ability to physically separate your encryption keys from the data
they protect. You can also gain performance advantages in hardware implementations of cryptographic
algorithms.

The Microsoft-defined EKM interface allows you to access key management and encryption
functionality exposed by dedicated HSMs. Although the features provided by a given HSM is vendor-
specific, EKM supports creation, management, storage, and security of asymmetric keys and symmetric
keys through HSMs. EKM also supports HSM-enabled data encryption and decryption, allowing you to
offload these responsibilities to dedicated encryption hardware.

In this chapter, I’ve reviewed the functionality available through third party EKM providers that you
register with SQL Server with code samples demonstrating the use of these features. In the next chapter,
I’ll look at another new SQL Server

2008 encryption feature—Transparent Data Encryption (TDE).

C H A P T E R 6

■ ■ ■

127

Transparent Data Encryption

Up to this point, I’ve focused on cell-level encryption, which represents a significant portion of
SQL Server’s encryption functionality. Cell-level encryption can be an extremely useful tool for targeted
data encryption, but it does have some drawbacks. For one thing, a proper strategy involving cell-
level encryption requires careful planning to balance the needs of security and performance. Cell-level
encryption can be difficult, or impossible in some cases, to implement when you already have a
database in production. The cost of refactoring a complex database (and its dependent applications)
can be a significant deterrent to implementing cell-level encryption.

SQL Server 2008 provides a new option to handle these situations—Transparent Data Encryption
(TDE). TDE allows you to encrypt an entire database at once, significantly improving the feasibility of
adding encryption to legacy databases. In this chapter, I’ll discuss the features and functionality of TDE.

What Is TDE?
TDE is a new feature of SQL Server 2008 that allows you to transparently encrypt your databases. It is
available only on the Enterprise and Developer editions of SQL Server. TDE operates at SQL Server’s I/O
level, essentially sitting between your physical storage devices and the transient storage (RAM, virtual
memory) that SQL Server uses. Figure 6-1 shows a simplified logical representation of TDE.

CHAPTER 6 ■ TRANSPARENT DATA ENCRYPTION

128

Figure 6-1. Logical representation of TDE

As you can see in the figure, TDE encrypts data before committing it to physical storage and
decrypts it after fetching it for the buffer pool. The buffer pool is the transient memory that SQL Server
uses to store data in 8 KB blocks of the virtual address space. This has two big implications worth
considering when implementing TDE:

1. TDE allows the SQL Server query optimizer to take advantage of the entire
class of efficient query operators, including index seeks, that it can’t use on
encrypted cell-level data.

2. As data is pulled from physical storage, it’s stored in memory in unencrypted
form. Cell-level encryption has a similar implication, except that with TDE
entire 8 KB pages of data are stored in memory unencrypted, including
physically adjacent data that might not be part of your query’s result set.

As the figure also shows, plaintext in the buffer pool moves through TDE and is encrypted before it
is committed to physical storage. When SQL Server requests encrypted data pages from physical storage,
they’re passed back through TDE and decrypted before being delivered to the buffer pool. It is TDE’s
positioning between physical storage and the SQL Server buffer pool that allows it to operate with
seeming invisibility to clients.

CHAPTER 6 ■ TRANSPARENT DATA ENCRYPTION

129

What Is Encrypted
In addition to encrypting the designated database in physical storage, TDE also automatically encrypts
the tempdb system database. This means that data stored in tempdb must be encrypted when written and
decrypted when read, for every database on the same SQL Server instance. For this reason, TDE can
affect performance of non-encrypted databases residing on the same SQL Server instance as an
encrypted database, especially those that make heavy use of tempdb.

Unencrypted Data on the Wire

TDE, like cell-level encryption, is designed to encrypt your data at rest on your physical storage devices.
However, it does not protect your data in transit or “over-the-wire.” To protect data being transmitted over
your network you need to secure your SQL Server communications channels by enabling Secure Sockets
Layer (SSL) connections on your SQL Server instance. Keep in mind that, like cell-level encryption, TDE is
designed strictly to encrypt your data “at rest.”

TDE encrypts all of a database’s data pages in physical storage, and as I mentioned it also
automatically encrypts the tempdb database that SQL Server uses for temporary storage of result sets. In
addition, TDE prevents data leakage by encrypting the log files associated with a database. Database
snapshots, backups, and memory dumps for a TDE-encrypted database are also automatically
encrypted by TDE.

■ Note TDE does not go back and encrypt log file data that was already written in unencrypted plaintext. TDE
does force the log writer to cycle back to the beginning of the log file, and overwrites existing entries over time.

Your log files may contain unencrypted artifacts until they are overwritten.

What Isn’t Encrypted
There are some things that TDE does not automatically protect, however. For instance, SQL Server also
does not encrypt data in the server’s transient storage—the buffer pool I referenced earlier—even when
TDE is turned on. This means that your data will be unencrypted in memory and portions may even spill
over to disk when SQL Server pages out memory. TDE also does not encrypt header information, such as
cyclic redundancy check (CRC) data corruption checksums, database version, and other status
information. All other data in each data page is fully encrypted by TDE in physical storage.

Because TDE operates between the buffer pool and physical storage, only data that’s written
through the buffer pool is encrypted. SQL Server features that bypass the buffer pool and interact
directly with physical storage, like the new filestream feature, do not encrypt their data. If you are using
TDE on a database used for mirroring or log shipping, both databases are encrypted and the log
transactions transferred between databases is encrypted over the wire.

CHAPTER 6 ■ TRANSPARENT DATA ENCRYPTION

130

■ Caution As pointed out, data stored with the filestream feature is not encrypted by TDE. Data stored in full-text
indexed columns will be stored on disk temporarily as unencrypted plaintext during full-text index scans.

Replicated data is not encrypted by default.

Advantages of TDE
TDE has some definite advantages over cell-level encryption, a couple of which I’ve already visited. The
advantages of TDE include the following:

• Ease of implementation: TDE is essentially a “flip-the-switch” solution that allows
you to encrypt your entire database at once, without any database rework.

• Transparency: TDE has the advantage of being transparent. You can turn it on
with no refactoring of client applications. It represents the ultimate in
convenience in that regard.

• Additional security: TDE automatically encrypts tempdb and the database
transaction log to prevent data leakage.

• Use any data type: TDE allows you to store data using any native data type,
including large object data types. Cell-level encryption operates on the varbinary
data type, and limits the amount of data that can be encrypted at once to 8,000
bytes or less.

• Speed: Because it decrypts data in the buffer pool, TDE allows SQL Server to take
advantage of indexes to improve query performance. Cell-level encryption
requires a performance tradeoff, which can be very hard to overcome in some
instances, to protect your data. Implementing any encryption option will add
overhead above and beyond storing and accessing non-encrypted data.

Of course, TDE also has some limitations when compared to cell-level encryption. There are some
instances when cell-level encryption might make a better choice for your encryption needs, including
the following:

• When you only need to encrypt a small amount of data: When you encrypt the
entire database using TDE you add an estimated 3 to 5 percent overhead. This
overhead can be lower for mostly memory access, but possibly much higher if you
already have a heavy load on the server’s CPU. If you are only encrypting a few
columns in a large database, it might make sense to target your encryption efforts
to avoid a performance penalty for the entire database.

• When you need to maintain fine-grained control over access: TDE is designed to
provide transparent encryption of your entire database, so it does not provide
options to limit access to sensitive data to particular users. Cell-level encryption
can be limited by allowing or denying access to the keys that encrypt data on a
very granular column, row, or cell level.

CHAPTER 6 ■ TRANSPARENT DATA ENCRYPTION

131

• When you need to protect data against potential intruders on your servers: TDE
protects your data from physical theft—a malicious thief who steals a database
backup, MDF database files, or LDF log files won’t be able to restore or attach
them to their SQL Server installation and access the data within. Cell-level
encryption provides another level of protection, making encrypted data
inaccessible to any intruder who gains access to your servers without permissions
to access the encryption keys.

TDE is not necessarily a replacement for cell-level encryption. TDE provides very broad protection
through encryption, and it can act as a complement to cell-level encryption in order to boost your
overall security.

TDE protects you from wholesale database theft, including scenarios in which MDF or LDF
database and log files or database backup files are lost or stolen. Cell-level encryption protects your data
at the individual element level, protecting your data from attackers who gain access to your servers.

Enabling TDE
The TDE model uses a new specialized symmetric key called the database encryption key (DEK) to
encrypt your database. The DEK is protected by a server certificate—a certificate created in the master
database. The server certificate is protected by the master database DMK, which must be protected in
turn by the SMK.

The first step to enabling TDE is to create a DMK in the master database (if one doesn’t already
exist), as shown in Listing 6-1.

Listing 6-1. Create DMK in the Master Database

USE master;
GO

CREATE MASTER KEY
ENCRYPTION BY PASSWORD = N'm*1u~p0a92+';
GO

After you’ve created the master database DMK you need to create a server certificate in the master
database, as shown in Listing 6-2. This is the certificate that will protect the DEK that you’ll create in
subsequent steps.

Listing 6-2. Create a Server Certificate

USE master;
GO

CREATE CERTIFICATE TDE_Certificate
WITH SUBJECT = N'TDE Encryption Server Certificate';
GO

After you create your server certificate, you should immediately back it up using the BACKUP
CERTIFICATE statement, as demonstrated in Listing 6-3. Immediately store the certificate backup in
a secure facility. You’ll need the server certificate if you want to restore the encrypted database from a
backup or attach the database files to a different server in the future.

CHAPTER 6 ■ TRANSPARENT DATA ENCRYPTION

132

Listing 6-3. Backing Up the Server Certificate

USE master;
GO

BACKUP CERTIFICATE TDE_Certificate
TO FILE = N'c:\Server_Certificate.cer'
WITH PRIVATE KEY
(
 FILE = N'c:\Server_Certificate.pvk',
 ENCRYPTION BY PASSWORD = N'$$um)3l0q:'
);
GO

Now that you have a server certificate you can switch back to your user database and create a DEK
with the CREATE DATABASE ENCRYPTION KEY statement. You can only create one DEK per user database.
Listing 6-4 creates an AES 256 bit DEK in the AdventureWorksLT2008 database I’ve been using throughout
the book.

Listing 6-4. Create a Database Encryption Key

USE AdventureWorksLT2008;
GO

CREATE DATABASE ENCRYPTION KEY
WITH ALGORITHM = AES_256
ENCRYPTION BY SERVER CERTIFICATE TDE_Certificate;
GO

You can specify any of the following encryption algorithms in the CREATE DATABASE ENCRYPTION KEY
statement’s ALGORITHM clause:

• AES_256 = AES with a 256-bit key

• AES_192 = AES with a 192-bit key

• AES_128 = AES with a 128-bit key

• TRIPLE_DES_3KEY = Triple DES (3 Key)

You can use the ALTER DATABASE ENCRYPTION KEY statement to regenerate the DEK using the same or
different algorithm. You can also use the DROP DATABASE ENCRYPTION KEY statement to drop the DEK. If you
decide to drop the DEK, you’ll need to turn database encryption off first and wait until the database is
completely decrypted.

The final step is to enable TDE in the target database with the ALTER DATABASE statement, as shown
in Listing 6-5.

CHAPTER 6 ■ TRANSPARENT DATA ENCRYPTION

133

Listing 6-5. Turning on TDE

USE AdventureWorksLT2008;
GO

ALTER DATABASE AdventureWorksLT2008
SET ENCRYPTION ON;
GO

You can turn TDE off at any time with the ALTER DATABASE statement’s SET ENCRYPTION OFF clause.

Using TDE with EKM
You can use TDE in conjunction with EKM by creating an asymmetric key in the master database
through your EKM provider’s HSM. A server asymmetric key on an HSM, as opposed to a server
certificate stored on the local server, can be used to secure your database encryption key. Listing 6-6
begins by creating a server asymmetric key in the master database.

■ Note You’ll have to remove the existing DEK and turn off TDE in the AdventureWorksLT2008 database to run

the following code samples.

Listing 6-6. Using DEK with EKM

USE master;
GO

CREATE ASYMMETRIC KEY TDE_Luna_AsymKey
FROM PROVIDER LunaEKMProvider
WITH ALGORITHM = RSA_2048,
PROVIDER_KEY_NAME = N'TDE_Luna_AsymKey',
CREATION_DISPOSITION = CREATE_NEW;
GO

To use EKM with TDE, you need to create a credential and a login for the asymmetric key. You then
have to assign the credential to the login you created, as demonstrated in Listing 6-7.

CHAPTER 6 ■ TRANSPARENT DATA ENCRYPTION

134

Listing 6-7. Creating a Credential and a Login for the EKM

CREATE CREDENTIAL TDE_Luna_Credential
WITH IDENTITY = 'SQL2008\Michael',
SECRET = 'x9SP-PH9C-L/FK-q/TW'
FOR CRYPTOGRAPHIC PROVIDER LunaEKMProvider;
GO

CREATE LOGIN TDE_Luna_Login
FROM ASYMMETRIC KEY TDE_Luna_AsymKey;
GO

ALTER LOGIN TDE_Luna_Login
ADD CREDENTIAL TDE_Luna_Credential;
GO

You must then create a DEK in the AdventureWorksLT2008 database and turn TDE back on, as shown
in Listing 6-8.

Listing 6-8. Creating a DEK and Turning on TDE

USE AdventureWorksLT2008;
GO

CREATE DATABASE ENCRYPTION KEY
WITH ALGORITHM = AES_256
ENCRYPTION BY SERVER ASYMMETRIC KEY TDE_Luna_AsymKey;
GO

ALTER DATABASE AdventureWorksLT2008
SET ENCRYPTION ON;

Using TDE with an EKM-managed server asymmetric key provides an elegant and secure solution
for full-database encryption.

Checking Status
At any point, you can use the sys.dm_database_encryption_keys DMV to determine which databases
are currently encrypted (or in the process of being encrypted) on your server. This DMV also gives
you the status of the encryption process on newly encrypted databases. Listing 6-9 queries
sys.dm_database_encryption_keys on my local server instance. Results are shown in Figure 6-2.

CHAPTER 6 ■ TRANSPARENT DATA ENCRYPTION

135

Listing 6-9. Listing Encrypted Databases

SELECT
 DB_NAME(database_id) AS database_name,
 database_id,
 CASE encryption_state
 WHEN 0 THEN N'No database encryption key present, no encryption'
 WHEN 1 THEN N'Unencrypted'
 WHEN 2 THEN N'Encryption in progress'
 WHEN 3 THEN N'Encrypted'
 WHEN 4 THEN N'Key change in progress'
 WHEN 5 THEN N'Decryption in progress'
 END AS encryption_state,
 key_algorithm,
 key_length,
 percent_complete
FROM sys.dm_database_encryption_keys;

Figure 6-2. Encrypted databases and statuses

Backups and Compression
When you encrypt an entire database with TDE activated, database backups are also encrypted. This
ensures that your backups are protected from nefarious hackers who could otherwise steal them and
restore them to their own SQL Server instances to browse your confidential data at will.

To restore a TDE-encrypted database to a SQL Server instance, the server certificate or server
asymmetric key used to protect the DEK must be installed on the instance. This means that before you
restore a TDE-protected database backup to a different SQL Server instance you need to first install the
server certificate or server asymmetric key used to protect the DEK.

■ Tip As I mentioned earlier in this chapter in the “Enabling TDE” section, once you create a server certificate you

should immediately take a backup.

CHAPTER 6 ■ TRANSPARENT DATA ENCRYPTION

136

In addition, if you set up log shipping or replication between encrypted databases you need to have
the same server certificate or server asymmetric key installed on both SQL Server instances.

As discussed in Chapter 1, a goal of any good encryption algorithm is to remove recognizable
patterns from the encrypted ciphertext. This is completely at odds with the needs of a good compression
algorithm—namely to identify patterns in uncompressed data. The simplest compression algorithms try
to identify patterns of duplicated data and replace those patterns with considerably smaller tokens.
Consider the very simple example in Figure 6-3.

Figure 6-3. Very simple compression example

In this simple example, with uncompressed text courtesy of Dr. Seuss, the compression algorithm
has determined a pattern consisting of two repetitive strings of characters that can be replaced with
much smaller tokens. The character strings are replaced with the tokens “1” and “2” resulting in highly
compressed text.

The point is that encrypted ciphertext removes these patterns, considerably diminishing the ability
to compress the data after encryption. As you can see in Figure 6-4, which represents the sizes
of backups of the AdventureWorksLT 2008 database on my local machine, a compressed backup of
a database with no TDE can result in a significant reduction in backup file size. A backup of the same
database with TDE turned on does not compress well.

Figure 6-4. Effects of encryption on backup compression

You might want to take the effect that encryption has on compression before you turn on TDE,
particularly if your databases are very large.

CHAPTER 6 ■ TRANSPARENT DATA ENCRYPTION

137

Windows-Based Encryption Options
In addition to SQL Server’s TDE option, Windows provides file system-level encryption built into the
operating system. The two main options available to secure your data through Windows are the
Encrypting File System (EFS) and BitLocker. I’ll discuss both of these options in the following sections.

Encrypting File System
Since Windows 2000 Microsoft’s flagship operating system has included the EFS option to encrypt files
or folders at the filesystem level on NTFS. This feature has seen some improvements since then, like the
addition of file sharing for encrypted files and support for more encryption algorithms. This feature is
available in Windows XP, Windows 2003, Windows Vista, Windows Server 2008, and Windows 7.

EFS operates at the OS level, encrypting and decrypting data as it is read from and written to
physical storage. Like TDE, EFS does not encrypt your data in memory and it does not encrypt data as
it’s transmitted across the network.

EFS as an option is similar in functionality to TDE, except that EFS does not automatically
encompass the many database-specific files that SQL Server might use. If you use EFS to encrypt a single
database MDF file, for instance, it won’t automatically encrypt tempdb, log files, backups, etc. EFS can be
used in conjunction with TDE, to encrypt filestream data, for instance. TDE is also only available in the
enterprise and developer editions of SQL Server 2008. If you’re using a different edition of SQL Server
TDE might not be an option, but EFS is available through the OS.

EFS require exclusive access to files to encrypt them. What this means in SQL Server terms is that
you first have to detach a database or take it offline to encrypt it with EFS. You can take a database offline
via the ALTER DATABASE statement or from within Management Studio, as shown in Figure 6-5. If you
don’t first detach the database or take it offline, EFS won’t be able to encrypt the file since SQL Server is
using it.

CHAPTER 6 ■ TRANSPARENT DATA ENCRYPTION

138

Figure 6-5. Taking a database offline

Once detached or offline, you can encrypt a database file or a folder containing a database file by
right-clicking on the object in Windows Explorer and clicking the Advanced button on the Attributes tab.
Then check the Encrypt contents to secure data checkbox, as shown in Figure 6-6.

CHAPTER 6 ■ TRANSPARENT DATA ENCRYPTION

139

Figure 6-6. Enabling EFS on a folder

Once you select OK, Windows gives you additional options. For a folder, the OS will ask if you want
to encrypt only the current folder or the folder, subfolders and files, as shown in Figure 6-7.

CHAPTER 6 ■ TRANSPARENT DATA ENCRYPTION

140

Figure 6-7. Additional encryption options

If you choose to encrypt a single file, Windows will give you the option to encrypt the file’s parent
folder or just the file you’ve selected. After you encrypt a file or folder with EFS, Windows Explorer shows
it in a different color to indicate it’s encrypted. You can put your database back online (or reattach it)
once the files are encrypted.

■ Caution EFS can’t be used to encrypt operating system files. Attempting to encrypt operating system files can

result in boot failure or other malfunctions.

EFS supports the Triple DES, DESX, and AES algorithms as provided through the Windows
CryptoAPI and Data Protection API (DPAPI). Some operating systems may require you to install service
packs or additional high encryption upgrades in order to take advantage of all of these algorithms. Using
a different algorithm from the default may also require you to edit registry settings.

To encrypt your files EFS generates a file encryption key (FEK) for each file you wish to encrypt. The
FEK is protected by a certificate that’s tied to the currently logged in user’s login credentials. When you
use EFS, Windows attempts to obtain a certificate from a certificate authority (CA). If you’re not in an
enterprise CA or Public Key Infrastructure (PKI) environment, Windows will issue a self-signed EFS
certificate. Although an in-depth discussion of the inner workings of EFS are beyond the scope of this
book, here are some general hints and tips for a good EFS implementation:

• Ensure that you back up your EFS certificates immediately. If you obtain your
certificates from a trusted third-party CA, they should be able to supply you with
replacement certificates in the event something happens.

• Trusted third-party CA certificates are considered more secure than self-signed
certificates. You should use CA-issues certificates when possible, particularly in a
domain.

• Because the certificates are tied to a user’s login credentials ensure that you don’t
delete a domain user without first recovering all of that user’s EFS encrypted data.

CHAPTER 6 ■ TRANSPARENT DATA ENCRYPTION

141

• EFS can use a domain recovery agent certificate to recover encrypted data in the
event something happens to a domain user account.

• You can use the Microsoft Management Console (MMC) Certificates add-in to
export your EFS certificates and private keys to back them up.

• During the initial file encryption process EFS might store the plaintext in
temporary files. The temporary files are automatically deleted, but there’s no
guarantee that artifacts of the plaintext might remain on the hard drive in
unallocated space until they are overwritten.

■ Tip More information about implementing EFS file encryption solutions in general can be found by searching for “EFS” on

Microsoft TechNet at http://technet.microsoft.com and on MSDN at http://msdn.microsoft.com

BitLocker
With the introduction of Windows Vista, Microsoft introduced complete volume encryption via the
BitLocker Drive Encryption option. The name is a bit misleading, since BitLocker actually operates on
logical volumes, which may be defined as a portion of a physical drive or even span multiple drives.
BitLocker is available in Windows Vista Enterprise, Windows Vista Ultimate, Windows Server 2008, and
in prerelease versions of Windows 7 Ultimate.

Currently, BitLocker is only available in a limited number of Windows OS editions. If you’re running
an edition of Windows that doesn’t include BitLocker support, you’ll have to go with another encryption
option like EFS. BitLocker is particularly useful for protecting entire laptop volumes that carry sensitive
information, which may include SQL Server databases on any edition of SQL Server. BitLocker also
includes Trusted Platform Module support, described later in this section, which ensures the integrity of
your computer’s boot path. As with other encryption options, BitLocker adds additional overhead to file
access.

While EFS protects files and folders from unauthorized access by people who can access other
resources on the computer, BitLocker protects entire volumes against thieves who gain physical control
of a computer or its hard drives. Also unlike EFS, BitLocker encrypts operating system files, including the
system swap file. In fact, BitLocker and EFS complement each other well.

When used with a computer that has a Trusted Platform Module (TPM) version 1.2 chip installed,
BitLocker ensures the integrity of the trusted boot path. The TPM 1.2 is a chip installed in a computer
that holds boot-time information about the system. It accomplishes this via Static Root of Trust for
Measurement (SRTM). In SRTM, each component required to boot is brought online in a predetermined
order, and each component measures the next component in the chain. The TPM 1.2 chip is brought up
and measures the BIOS, for instance. Then the BIOS measures the MBR, and so on.

■ Note When these components “measure” one another, they calculate hash values for each component to
determine if the component has been altered since BitLocker was activated. As each component is measured, the
hash value returned is used to “extend” the TPM chip’s platform configuration registers (PCRs). The extension
process involves appending the new hash value to a PCR’s existing hash value and generating a new hash from

the combined contents of the PCR.

CHAPTER 6 ■ TRANSPARENT DATA ENCRYPTION

142

As the components measure one another in the chain, they extend one of the TPM module’s
platform configuration registers (PCRs). If the PCRs do not match the values calculated when BitLocker
was activated, the TPM know that something has been altered (such as a hacker swapping out a BIOS
chip) and the system cannot be trusted. If BitLocker determines that the system can’t be trusted it boots
to recovery mode and requires an authorized user to enter a recovery password.

When used with or without a TPM 1.2 chip, BitLocker encrypts all data on a logical volume.
BitLocker can be configured to require authorized users to supply a USB key or PIN to gain access to the
system and the encrypted volume. To install BitLocker on Windows Vista, you should install the
BitLocker and EFS enhancements from Windows Update, as shown in Figure 6-8. These enhancements
include the BitLocker Drive Preparation Tool to prepare your computer for BitLocker activation.

Figure 6-8. Installing the BitLocker and EFS enhancements from Windows Update

CHAPTER 6 ■ TRANSPARENT DATA ENCRYPTION

143

Once you’ve installed the BitLocker and EFS enhancements for Windows Vista, you can run the
BitLocker Drive Preparation Tool from the start menu. This utility prepares your computer for BitLocker
activation by creating a 1.5 GB partition for a split-load configuration. The split-load configuration
separates the primary operating system partition from the active system partition. The drive preparation
tool shrinks the primary partition if necessary, creates a new active partition, and copies the boot files to
the new partition. Figure 6-9 shows the BitLocker Drive Preparation Tool in action.

■ Caution The new partition created for BitLocker use is not encrypted. You should not store anything on this

partition, as it will not be protected by BitLocker.

Figure 6-9. Preparing a drive for BitLocker

The changes made by the drive preparation tool require a reboot to take effect. After the reboot, you
can change the default BitLocker settings in the Group Policy Editor. To access the Group Policy Editor,
go to the start menu and enter gpedit.msc, as shown in Figure 6-10.

Figure 6-10. Accessing the Group Policy Editor

CHAPTER 6 ■ TRANSPARENT DATA ENCRYPTION

144

Once in the Group Policy Editor, you can access the BitLocker options by navigating to Computer
Configuration Administrative Templates Windows Components BitLocker Drive Encryption
menu, as shown in Figure 6-11.

Figure 6-11. Viewing BitLocker options in the Group Policy Editor

Although you can configure several BitLocker options in the Group Policy Editor, such as Active
Directory Domain support and recovery options, the options I’ll discuss here are advanced startup and
encryption method.

■ Tip Although many of the BitLocker options are beyond the scope of a detailed discussion in this book, you can find

detailed information about them by searching for "BitLocker" on TechNet at http://technet.microsoft.com.

CHAPTER 6 ■ TRANSPARENT DATA ENCRYPTION

145

The advanced startup options allow you to install BitLocker on “unsupported” hardware—
computers without a TPM chip. To install BitLocker on a computer without a TPM chip, simply double-
click Control Panel Setup: Enable advanced startup options in the Group Policy Editor and check the
Allow BitLocker without a compatible TPM option, as shown in Figure 6-12.

Figure 6-12. Configuring BitLocker to run on a computer with no TPM chip

The second option, Configure encryption method, allows you to choose the type of encryption
BitLocker will use. The default is AES encryption with a 128-bit key and a diffuser. The diffuser option
mixes up the bits of a sector prior to encryption, further obfuscating your data, and providing additional
protection against attacks on the data. As shown in Figure 6-13, you can choose from four different
options for BitLocker encryption.

CHAPTER 6 ■ TRANSPARENT DATA ENCRYPTION

146

Figure 6-13. Selecting a BitLocker encryption method

After you’ve configured BitLocker options to fit your requirements, simply open up the BitLocker
Drive Encryption item in your Control Panel. You’ll then need to set the startup preferences. If you don’t
have a TPM chip, your only option is to require a USB key at startup, as shown in Figure 6-14.

CHAPTER 6 ■ TRANSPARENT DATA ENCRYPTION

147

Figure 6-14. Setting BitLocker startup preferences

You’ll be prompted to insert a USB device to save your startup key, as Figure 6-15 illustrates.

Figure 6-15. Saving a startup key on a USB memory device

CHAPTER 6 ■ TRANSPARENT DATA ENCRYPTION

148

If for some reason you need to recover your system, you’ll need a copy of the recovery
password. BitLocker will prompt you to save or print a recovery password during the setup
process, as Figure 6-16 shows.

Figure 6-16. Save a recovery password

Once you’ve completed the setup, BitLocker encrypts the volume. As you can see in Figure 6-17, the
BitLocker drive encryption process displays a status box indicating the percent of the encryption process
completed.

Figure 6-17. BitLocker encrypting a volume

CHAPTER 6 ■ TRANSPARENT DATA ENCRYPTION

149

Working While Encrypting

The encryption process can take a considerable amount of time—several hours, in fact. Your computer is
accessible and usable during the encryption process. You can run other programs while the encryption is
taking place, but your computer may be less responsive than usual. In addition to the CPU usage and the
constant physical disk read and write activity during encryption, BitLocker consumes almost your entire
hard drive leaving very little free space to perform other activities.

Rather than trying to locate all free space on the volume and encrypting it, BitLocker passes this task on to
the underlying OS by creating a single file that takes up most of the free space on the drive. Because of
this, you may encounter an out of disk space error while running other applications during the encryption
process. For this reason, I would advise against running other applications, particularly those that are
resource intensive, during the encryption process.

BitLocker will inform you with a message once the encryption is complete. Once BitLocker has been
enabled, you’ll need to supply the key storage media or enter the access PIN (depending on the options
you chose at configuration) every time you turn your computer on. Figure 6-18 shows the boot screen
requesting the key storage media for my laptop with BitLocker enabled.

Figure 6-18. Boot screen requesting drive encryption key

CHAPTER 6 ■ TRANSPARENT DATA ENCRYPTION

150

If you lose the key storage media or encounter other access problems, you may have to enter
recovery mode, in which case you’ll need the recovery password. As with other encryption technologies,
make sure you keep your BitLocker key storage media, PIN numbers, and recovery keys secure.

Summary
As laptop computers become more powerful, they are increasingly used to store and process sensitive
data with powerful applications like SQL Server. This makes these computers a prime target for data
thieves who would otherwise have difficulty penetrating a secure corporate network to steal data.
Encrypting data at rest is particularly important on laptop computers and on other computers that
process sensitive data. This is particularly true for computers that aren’t physically secured, such as
desktop computers in open work areas.

SQL Server 2008 provides the new TDE feature to encrypt entire databases at once. This feature
provides encryption security to SQL Server at the I/O level. TDE complements the functionality of SQL
Server’s extensive cell-level encryption and protects against theft of database files, log files, and backups.

In addition to SQL Server’s new TDE functionality, Windows provides built-in encryption
functionality that can be used to protect your data at rest. Windows’s EFS option allows you to encrypt
individual files and folders on a computer, while BitLocker encrypts an entire volume at once. BitLocker,
when used with TPM 1.2 chips, can also ensure the integrity of critical components of your computer at
boot time. While these technologies aren’t SQL Server-specific, they can be used to protect databases,
system files, and other data stored on your computers.

In this chapter, I discussed TDE and gave an overview of EFS and BitLocker. Additional information
about EFS and BitLocker configuration and administration can be found on the Microsoft TechNet
website at http://technet.microsoft.com and MSDN at http://msdn.microsoft.com. In the next chapter,
I’ll discuss one-way hash functions provided by SQL Server 2008.

C H A P T E R 7

■ ■ ■

151

Hashing

In addition to the extensive cell-level encryption and TDE functionality that I discussed in previous
chapters, SQL Server provides the ability to “fingerprint” your data via collision-free, one-way
cryptographic hash functions. Cryptographic hash functions are also used to securely store login
passwords, so you can avoid sending plaintext passwords over the wire. In this chapter, I’ll explain
cryptographic hash functions in general and discuss the hashing functionality available in SQL Server 2008.

Cryptographic Hash Functions
A cryptographic hash function is a well-defined procedure that accepts a block of data and generates a
fixed-length bit string known as the hash value or digest. A good cryptographic hash function is defined
by its properties, including the following:

• A cryptographic hash function is deterministic, so that a given block of input data
will generate the same hash value no matter how many times it is run through the
same hash function.

• A hash function is one-way, meaning the hash function procedure is irreversible.
There is no function to derive the plain source data from the hash value.

• A small change in the source data should generate a substantial change in the
hash value. This is known as a cascading effect.

• A hash function should be collision-free, so that the odds of two different
blocks of source data generating the same hash value should be extremely
unlikely. When two different source data blocks generate the same hash value
it’s known as a collision.

Cryptographic hash functions are used in a variety of applications, including secure password
authentication procedures and change detection processes.

CHAPTER 7 ■ HASHING

152

Hash Collisions

One of the main goals of a good cryptographic hash function is to eliminate hash collisions, or two different
blocks of data generating the same hash value. A general hash collision can be generated by totally
random data.

As an example, a general hash collision might be generated by a random block of data with no inherent
meaning or structure. This is often the type of hash collision hackers look for when they are trying to
access secure systems where hashes of the login passwords are stored, instead of the actual passwords
themselves.

A more specific type of hash collision is known as a meaningful hash collision. A meaningful hash collision
can be generated by a block of data that appears to have some structure and inherent meaning. Consider a
situation in which Alice generates an asymmetric encryption certificate and she generates a hash value for
the certificate. Now imagine that Eve acquires Alice’s hash value and generates a modified certificate of
her own. Eve’s certificate would have the same structure as Alice’s, but would contain different data. Eve
then generates the same hash value for this certificate that Alice generated for hers. A system relying on
the hash value of the certificate as a verification of authenticity will be fooled, possibly with disastrous
results. The fact that Eve generated the same hash value as Alice, and both hash values were generated
based on different data contained in structurally similar certificates, results in a meaningful hash collision.

Table 7-1 provides a quick comparison of the hash algorithms available through SQL Server 2008’s
HashBytes function.

Table 7-1. HashBytes-Supported Hash Functions

Algorithm Name Digest Length

SHA-1 SHA, SHA1 160 bits

MD5 MD5 128 bits

MD4 MD4 128 bits

MD2 MD2 128 bits

SHA Hash Function
The Secure Hash Algorithm (SHA) hash functions come in several varieties. The SHA-1 algorithm, the
only SHA-family algorithm supported natively by SQL Server, operates on 32-bit words at a time.
Figure 7-1 illustrates a single round of SHA-1 hashing.

CHAPTER 7 ■ HASHING

153

Figure 7-1. One iteration of the SHA-1 hash algorithm

As you can see from the figure, hashing is a convoluted enterprise that involves a lot of logical
operations and shifting bits to generate a hash value from your plaintext. The boxes marked A through E
represent 32-bit words in the SHA-1 internal state. The box marked F represents a varying nonlinear
function. The “<< 5” and “<< 30” boxes represent left bit rotations of 5 bits and 30 bits, respectively.
Wi and Ki represent the expanded message word and round constant of round i. Finally, the symbol
represents addition modulo 232. Fortunately, all of this calculation is abstracted away and performed
under the covers, so all we have to worry about is passing the plaintext to the algorithm.

SHA-1 represents an improvement over the SHA-0 algorithm (often referred to simply as SHA) that
it was designed to supersede. SHA-1 returns a 160-bit (20 byte) digest from a message with a maximum
length of 264 – 1 bits (approximately 261 – 1 bytes). By comparison, SQL Server’s LOB data types hold a
maximum of 231, or approximately 2.1 billion, bytes of data. Although the SHA-1 algorithm can generate
hashes of extremely large messages, the SQL Server implementation can hash only up to 8,000 bytes
(slightly less than 213 bytes) at a time.

Using HashBytes SHA-1
The SQL Server HashBytes function accepts two parameters: an algorithm name and a varbinary block
ofdata to hash. The block of data to hash can be other data types, such as varchar or nvarchar, but it
must be either implicitly convertible to varbinary or you must explicitly convert it. Listing 7-1 uses the
HashBytes function to generate an SHA-1 hash of a name with results shown in Figure 7-2.

Listing 7-1. Generating an SHA-1 Hash of a Name in SQL Server

SELECT HashBytes('SHA1', 'Galileo Galilei');

CHAPTER 7 ■ HASHING

154

Figure 7-2. SHA-1 hash value of Galileo Galilei

In this example, the string Galileo Galilei is implicitly converted to a varbinary value and then
hashed using the SHA-1 algorithm. A slight change, like adding a couple of characters to the end of the
string to hash, results in a significantly different hash value. Listing 7-2 adds the characters IV to the end
of Galileo Galilei’s name, with the significantly different hash value shown in Figure 7-3.

Listing 7-2. SHA-1 Hash of a Slightly Modified Name

SELECT HashBytes('SHA1', 'Galileo Galilei IV');

Figure 7-3. SHA-1 hash value of Galileo Galilei IV

Because the string data is implicitly converted to varbinary before the hash value is generated, the
same string represented as nvarchar will produce a different result from its varchar representation.
Listing 7-3 demonstrates the different hash values produced by the same string represented using the
varchar and nvarchar data types. Results are shown in Figure 7-4.

Listing 7-3. Hashing the Same String As varchar and nvarchar

SELECT
 'varchar' AS Type,
 HashBytes('SHA1', 'Albert Einstein') AS HashValue

UNION ALL

SELECT
 'nvarchar',
 HashBytes('SHA1', N'Albert Einstein');

CHAPTER 7 ■ HASHING

155

Figure 7-4. Differences between varchar and nvarchar hash values

HashBytes SHA-1 Limitations
One thing you may notice about the HashBytes function is that the only SHA-family hash function it
supports is the SHA-1 function. You can use the hash function name SHA or SHA1 to generate an SHA-1
hash value with HashBytes.

Also important is that the HashBytes function supports only 8,000 bytes of input plaintext data. If
you use a large object (LOB) data type, like varchar(max), and it contains a string of more than 8,000
bytes of data the HashBytes function truncates the data to 8,000 bytes before hashing it. Listing 7-4
demonstrates by hashing two strings, one of them greater than 8,000 bytes. The result is shown in
Figure7-5.

Listing 7-4. Comparing SHA-1 Hashes of an 8,000 Byte String and a 9,000 Byte String

DECLARE
 @string8000 varchar(max) = REPLICATE('A', 8000),
 @string9000 varchar(max) = REPLICATE('A', 8000) + REPLICATE('Z', 1000);

SELECT
 '8,000 bytes' AS Length,
 HashBytes('SHA1', @string8000) AS HashValue
UNION ALL
SELECT
 '9,000 bytes',
 HashBytes('SHA1', @string9000);

Figure 7-5. Comparison of SHA-1 hashes of 8,000 and 9,000 byte input strings

The input data to the HashBytes function calls in Listing 7-4 consists of an input string consisting of
8,000 letter A’s and an input string consisting of 8,000 letter A’s concatenated with 1,000 letter Z’s.
Obviously the two strings are different, but they produce the same hash value, as you can see in
Figure 7-5. The reason they produce the same hash values is simple: the HashBytes function truncates
the 9,000 character input string to a mere 8,000 bytes. Since the first 8,000 bytes of both strings are
equivalent (8,000 letter A’s), the hash values generated are identical.

CHAPTER 7 ■ HASHING

156

Hash Function Extension
You can circumvent the SQL Server 8,000-byte limit on the HashBytes function input data with a user-
defined function to implement SHA-1 hash function extension. The idea behind hash function extension
is relatively simple: You simply break your LOB data up into chunks and hash each chunk. You then
calculate the SHA-1 hash value for the chunks one at a time and concatenate the hash values together.
After generating hash values for two chunks of data, you generate the hash value of the concatenated
hash values. Figure 7-6 shows a simplified representation of the process of calculating an extended
hash value.

Figure 7-6. Calculating an extended hash for LOB data

They key to this figure is that, after the hash is generated for an 8,000 byte chunk of data, the hash
value generated is concatenated with the previous hash value. Then a new hash is generated for the
concatenated hash values and the process repeats until you run out of 8,000-byte chunks of plaintext.
Listing 7-5 is an implementation of the SHA-1 hash extension shown in Figure 7-6. This implementation
is a simple user-defined function named Sha1ExtendedHash.

CHAPTER 7 ■ HASHING

157

Listing 7-5. User-Defined Function to Generate an Extended SHA-1 Hash

CREATE FUNCTION dbo.Sha1ExtendedHash (@input varchar(max))
RETURNS varbinary(20)
AS
BEGIN
 DECLARE
 @hashRegister1 varbinary(20) = NULL,
 @hashRegister2 varbinary(40) = NULL,
 @i int = 1;

 SELECT @hashRegister1 = HashBytes('SHA1', SUBSTRING(@input, @i, 8000));
 SET @i = @i + 8000;

 WHILE @i < DATALENGTH(@input)
 BEGIN
 SET @hashRegister2 = @hashRegister1 +
 HashBytes ('SHA1', SUBSTRING(@input, @i, 8000));
 SET @hashRegister1 = HashBytes('SHA1', @hashRegister2);
 SET @i = @i + 8000;
 END;

 RETURN @hashRegister1;
END;
GO

Listing 7-6 is a sample run of the Sha1ExtendedHash function with results shown in Figure 7-7.
As you can see in the results, the Sha1ExtendedHash function accounts for the input data beyond the
8,000-byte HashBytes limit.

Listing 7-6. Testing the Extended Hash Function

DECLARE
 @string8000 varchar(max) = CAST(REPLICATE('A', 8000) AS varchar(max)),
 @string9000 varchar(max) = CAST(REPLICATE('A', 8000) AS varchar(max)) + REPLICATE('Z',
1000);

SELECT
 '8,000 bytes, normal' AS Length,
 HashBytes('SHA1', @string8000) AS HashValue

UNION ALL

SELECT
 '8,000 bytes, extended',
 dbo.Sha1ExtendedHash(@string8000)

CHAPTER 7 ■ HASHING

158

UNION ALL

SELECT
 '9,000 bytes, extended',
 dbo.Sha1ExtendedHash(@string9000);

Figure 7-7. Results of extended hash function

SHA-1 Security
A brute force attack requires time complexity of 280, meaning you would need over 1024 operations to
find a collision. There has been a published theoretical attack on SHA-1 with time complexity 263 (less
than 1019 operations), which is significantly lower than a brute force attack on SHA-1. Currently, most
cryptanalyst attacks on SHA-1 concern themselves with finding collisions in early rounds of
computation, which is an important step in mounting successful attacks against the full algorithm.
Because of the similarity of the algorithms, successful attacks on SHA-1’s predecessor (SHA-0) have
also raised concerns about the collision-resistance of SHA-1.

The end result of all this cryptanalysis is that the National Institute of Standards and Technology
(NIST) has dictated that Federal agencies will use SHA-2 hash functions in place of SHA-1 after 2010. For
now, however, SHA-1 is the most secure and collision-resistant hash algorithm available directly
through the SQL Server HashBytes function.

Message Digest Family of Hash Functions
The Message Digest family of hash functions includes MD5, MD4, and MD2—all algorithms invented
by Ron Rivest. These hash functions are available through the SQL Server HashBytes function. Like the
SHA-1 hash functionality, HashBytes restricts the input data to hash to 8,000 bytes. I’ll begin this section
with a discussion of the once-popular MD5 hash function.

MD5 Hash Function
The MD5 hash function was designed as a replacement for Ron Rivest’s MD4 hash function. This MD5
function uses a combination of nonlinear functions and rotation operations performed in rounds.
Figure 7-8 illustrates a single round of MD5 hashing.

CHAPTER 7 ■ HASHING

159

Figure 7-8. MD5 hashing round

As you can see in the figure, the Message Digest (MD) family of algorithms is somewhat convoluted,
but still simpler than the SHA family of algorithms. The boxes marked A through D indicate the 32-bit
words of the hash state. The box marked F is a nonlinear function that varies per round. The <<n box
represents a left bit rotation operation, with the number of bits shifted varying per round. Mi and Ki

represent a 32-bit block of the message and a round constant, respectively. The symbol represents
addition modulo 32. As with the SHA algorithms, the processing and calculations required to implement
MD family algorithms is abstracted by the HashBytes function, so you don’t have to deal with it directly.

The MD5 algorithm can accept an arbitrarily long block of input data, although SQL Server
limits the input data to 8,000 bytes. The algorithm always returns a 128-bit (16-byte) hash value.
Listing 7-7 generates MD5 hash values of rows stored in the SalesLT.Address table, storing them in a
new table called SalesLT.AddressHash, with partial results shown in Figure 7-9. Notice the COALESCE
function is used to eliminate NULL from the input source, since the string concatenation with NULL
returns NULL.

Listing 7-7. MD5 Hashing of Rows in a Table

SELECT
 AddressID,
 AddressLine1,
 AddressLine2,
 City,
 StateProvince,
 CountryRegion,
 PostalCode,
 HashBytes

CHAPTER 7 ■ HASHING

160

(
 'MD5',
 COALESCE(AddressLine1, 0x00) + '|' +
 COALESCE(AddressLine2, 0x00) + '|' +
 COALESCE(City, 0x00) + '|' +
 COALESCE(StateProvince, 0x00) + '|' +
 COALESCE(CountryRegion, 0x00) + '|' +
 COALESCE(PostalCode, 0x00) + '|'
) AS AddressHash
INTO SalesLT.AddressHash
FROM SalesLT.Address;
GO

SELECT
 AddressID,
 AddressLine1,
 AddressLine2,
 City,
 StateProvince,
 CountryRegion,
 PostalCode,
 AddressHash
FROM SalesLT.AddressHash;
GO

Figure 7-9. Address data with hash values for each row

As in the SHA sample code, the HashBytes function in this example accepts only two
parameters—the algorithm name and the block of data to hash. The algorithm name for MD5 is,
of course, MD5. The data block in this instance consists of the concatenated values of the columns in
the table.

■ Tip When concatenating columns, use the COALESCE function to handle NULL since passing NULL to the

HashBytes function results in a NULL hash value.

CHAPTER 7 ■ HASHING

161

This particular example demonstrates a useful feature of hash values. You can use them to
detect changes in data. You can recalculate hash values later to determine if any of the rows’ content has
changes. By comparing the previously generated hash values with the newly generated hash values for
each row, you can easily detect even the slightest change without performing value comparisons across
several columns. This can provide a nice performance benefit at comparison time for very large tables.

■ Tip Using hash values to detect changes is a particularly useful method for increasing efficiency of Extract,
Transform and Load (ETL) applications that support enterprise data warehousing. This is particularly important for
reducing network traffic by transmitting hash values over the network instead of raw data when resources like

network bandwidth are at a premium.

MD5 Security
Although MD5 was one of the most widely used hash algorithms throughout the 1990s and into the early
2000s, it has recently fallen prey to ingenious attacks that have compromised its security. Cryptanalysts
have been able to come up with methods to quickly generate MD5 hash collisions, and have even
created high-quality meaningful collisions like fake certificates.

These exploits are widely known and MD5 is definitely not the hash algorithm of choice for high-
security applications. If you are hashing passwords or using a hash function for other applications that
require heightened levels of security, use an SHA-family algorithm instead of MD5.

Attacking the Hash

When we talk about cryptanalysts attacking an encryption algorithm the meaning is pretty clear. Basically,
the attacker is trying to find a way to decrypt data without knowledge of the secret key used to encrypt the
data. When we talk about attacking a hash algorithm the meaning is slightly different. The point of
attacking a hash algorithm is to find one or more blocks of different source data that generate the same
hash value—generating a hash collision.

The security of a hash algorithm is initially estimated by the number of bits in the resulting hash values.
The SHA-1 algorithm, for instance, generates a 160-bit hash value. Finding a value that generates a
specific hash value through brute force would be expected to have an estimated complexity of 280

operations. To compromise the security of a hash algorithm cryptanalysts try to find a shortcut to generate
hash collisions.

With SHA-1, this shortcut was discovered in 2005 when Chinese researchers discovered a way to lower
the complexity to 269 operations to find a collision. This was refined about six months later and a reduced
complexity of 263 operations to find a collision was determined. Collisions are the primary threat to
cryptographic hash functions, since the security of a hash function relies on its ability to generate unique
values for given input data blocks.

CHAPTER 7 ■ HASHING

162

MD4 and MD2
The MD4 algorithm was invented by Ron Rivest in 1990. Flaws in its security were quickly discovered,
and it was almost immediately replaced with the improved MD5 algorithm in 1991. MD4 has proven
vulnerable to cryptanalysis attacks and should not be used for secure applications. The SQL Server
HashBytes function exposes the MD4 algorithm with the algorithm name MD4.

The MD2 algorithm, invented by Rivest in 1989, is still in use today in various applications. Because
it has been shown to vulnerability to specific types of attacks by cryptanalysts, MD2 is no longer
considered viable for secure applications. MD2 is exposed with the algorithm name MD2 by the HashBytes
function.

It’s highly recommended that you avoid using MD2 and MD4 hash functions, particularly for secure
applications.

CHECKSUM Functions
The HashBytes function was introduced in SQL Server 2005 and continued in SQL Server 2008, but SQL
Server has long had the ability to generate hashes of data in tables through the CHECKSUM function (and
other related functions). CHECKSUM takes a variable number of values as parameters and generates a
32-bit hash value (an int) of the data. Listing 7-8 generates CHECKSUM values for the rows in the
SalesLT.Address table. Partial results are shown in Figure 7-10.

Listing 7-8. Generating Checksum Hash Values for a Table

SELECT
 AddressID,
 CHECKSUM
 (
 AddressLine1,
 AddressLine2,
 City,
 StateProvince,
 CountryRegion,
 PostalCode
) AS AddressChecksums
FROM SalesLT.Address;

CHAPTER 7 ■ HASHING

163

Figure 7-10. Checksum hash values on SalesLT.Address rows

Unfortunately the CHECKSUM family of functions has a couple of serious shortcomings. First, they
generate only 32-bit int hash values, meaning collisions are extremely likely. In fact, a brute force search
for collisions requires only 216 operations without a shortcut.

The other problem is that the algorithm used is extremely simple. The simplicity of the algorithm
means that collisions are not only possible, they’re extremely likely. For one thing, the CHECKSUM algorithm
seems to cycle after every 16 characters as shown in Listing 7-9. The results are shown in Figure 7-11.

Listing 7-9. CHECKSUM Function 16-Character Cycle

SELECT
 'LE' AS String,
 CHECKSUM('LE') AS CheckSumHash

UNION ALL

SELECT
 'AAAAAAAAAAAAAAAALE',
 CHECKSUM('AAAAAAAAAAAAAAAALE');

Figure 7-11. Results of CHECKSUM 16-character cycle query

CHAPTER 7 ■ HASHING

164

The 16-character cyclic nature of the CHECKSUM algorithm isn’t the only shortcoming in the
algorithm. We can achieve the same result with two characters, as shown in Listing 7-10 and with results
shown in Figure 7-12.

Listing 7-10. Two-Character Collisions with CHECKSUM

SELECT
 'LE' AS String,
 CHECKSUM('LE') AS CheckSumHash

UNION ALL

SELECT
 'MU',
 CHECKSUM('MU');

Figure 7-12. Two-character CHECKSUM collisions

Some simple tests prove that simple collisions like this with CHECKSUM aren’t the exception, but
rather they are the rule. In fact, of the 676 possible two-letter combinations of the letters A–Z (“AA,”
“AB,” etc.) the CHECKSUM function generates 244 collisions. By definition this is not even close to
“collision-free.”

A variant of CHECKSUM, the BINARY_CHECKSUM function, takes case-sensitivity into account. You would
think that a case-sensitive hash function would provide greater collision-resistance than a case-
insensitive version of the same function. But that’s actually not the case. Listing 7-11 shows how to
generate collisions with the case-sensitive BINARY_CHECKSUM function. Results are shown in Figure 7-13.

Listing 7-11. BINARY_CHECKSUM Collisions

SELECT
 'LE' AS String,
 BINARY_CHECKSUM('LE') AS CheckSumHash

UNION ALL

SELECT
 'MU',
 BINARY_CHECKSUM('MU')

UNION ALL

SELECT
 'Ne',
 BINARY_CHECKSUM('Ne')

CHAPTER 7 ■ HASHING

165

UNION ALL

SELECT
 'Ou',
 BINARY_CHECKSUM('Ou');

Figure 7-13. Two-character collisions with BINARY_CHECKSUM

While the CHECKSUM and BINARY_CHECKSUM functions generate 32-bit checksums across rows of data
and individual values, SQL Server also provides the CHECKSUM_AGG function which can supposedly detect
changes in integer columns of a table. The simplicity of the similar algorithm behind the CHECKSUM_AGG
function means it’s not all that useful either.

Books Online indicates that for these hash functions “there is a small chance the checksum will not
change.” Microsoft advises against using CHECKSUM and related functions to try to detect change in tables.
I’ll go one step further and advise against using them to detect any type of data change anywhere,
because there is a very high probability that you will miss some changes to your data. The probability
of missing data changes increases significantly as your data set grows. And when hash code security is
an issue, such as hashing passwords, don’t even think about using the CHECKSUM family of hash functions.
I would advise everyone not to use the CHECKSUM family of functions for cryptographic hashing
applications. CHECKSUM is, however, handy for generating “random” numbers when used with the NEWID
function, as demonstrated in Chapter 4.

■ Note My warning against CHECKSUM is not just theoretical. I’ve seen it fail to detect changes in production
database tables with as few as 10,000 rows in them. I’ve also tested it against data sources, such as the common
names lists distributed by the US Census Bureau. In some instances, with real data, the collision rate was as high

as 10 percent. That’s a lot of potential data changes to miss.

As you can tell, I am thoroughly convinced that CHECKSUM and its related functions are nearly useless.
The only useful purpose I’ve found for them at this point is for use in generating somewhat random
numbers with the NEWID function (as demonstrated in the random credit card number generation code
in Chapter 4).

CHAPTER 7 ■ HASHING

166

Summary
Hash algorithms and the hash values they generate are a useful tool for fingerprinting your data and
detecting change. Hashes can be used to detect both expected changes during the normal course of
business and changes introduced for more nefarious purposes. Hashes also provide a means of storing
passwords, so that the plaintext passwords do not have to be stored or transmitted across an open
network.

Your choice of hash algorithm should depend on your security needs as well as your need to avoid
hash collisions. SHA-1 is the most secure and collision-free hash function available with SQL Server’s
built-in hashing functionality. Other hash functions, such as MD5, MD4, and MD2, are less secure and
should be avoided when security is a primary determining factor. The CHECKSUM family of built-in
functions should be avoided for change detection or for secure applications.

In the next chapter, I’ll discuss how to access additional encryption functionality via SQL CLR. This
includes even more powerful and more secure hash algorithms exposed by the .NET Framework. In
Chapter 9, I’ll revisit hashing and talk about more secure methods of generating hash codes in a
discussion of indexing your data encrypted at the cell level.

C H A P T E R 8

■ ■ ■

167

SQL CLR Cryptography

Until this point, I’ve discussed the wide assortment of cryptographic functionality built in to SQL Server.
The tools I’ve talked about include symmetric and asymmetric encryption functions, encryption key
management, hashing, EKM, and TDE. These tools provide an impressive level of cryptographic
functionality that can help make SQL Server databases more secure than ever.

Even as I’ve discussed the power of these built-in SQL Server encryption functions, however, I’ve
also discussed their limitations. The symmetric encryption and hash functions can encrypt only 8,000
bytes of data, for instance. In this chapter, I’ll talk about how you can use the SQL Server Common
Language Runtime (SQL CLR) to overcome some of these limitations by accessing functions in the .NET
Framework’s System.Security.Cryptography namespace from T-SQL.

Encrypting By Passphrase
As I explained in Chapter 3, SQL Server’s built-in EncryptByPassphrase function accepts a passphrase
and a block of data. This function uses the passphrase to generate an encryption key and then uses the
key to encrypt the data with the Triple DES algorithm. There are two limitations with this method of
encryption—you can’t specify a different algorithm and you can’t encrypt more than 8,000 bytes at
one time.

Fortunately, SQL CLR allows you to work around these limitations, as I’ll demonstrate
in the code samples in this section. These C# code samples implement two new functions,
EncryptAesByPassPhrase and DecryptAesByPassPhrase. These two functions mirror the functionality
of SQL Server’s built-in EncryptByPassPhrase and DecryptByPassPhrase functions. The signatures of
the new SQL CLR functions are shown in the following:

EncryptAesByPassPhrase (PassPhrase, Plaintext, AddAuthenticator, Authenticator)
DecryptAesByPassPhrase (PassPhrase, Ciphertext, AddAuthenticator, Authenticator)

The functions share three parameters in common: PassPhrase is the password or passphrase used to
internally generate an AES encryption key. AddAuthenticator is a bit value, which should be 1, if you
want to use an authenticator to encrypt the text, or it can be 0 or NULL if you don’t want to use an
authenticator. The Authenticator parameter is an nvarchar string that can be used to further obfuscate
your ciphertext (assuming you set AddAuthenticator to 1). The SHA-1 hash value of the Authenticator
value is appended to your PassPhrase prior to encryption key generation.

CHAPTER 8 ■ SQL CLR CRYPTOGRAPHY

168

EncryptAesByPassPhrase Function
The EncryptAesByPassPhrase function accepts a varbinary(max) value for its Plaintext parameter. This
plaintext is encrypted with the AES algorithm with a 256-bit encryption key. The result is an encrypted
varbinary(max). Listing 8-1 is the C# source code listing for the EncryptByPassPhrase function.

■ Note The result of EncryptAesByPassPhrase has a 16-byte random initialization vector (IV)/salt value

prepended to the encrypted ciphertext. The ciphertext is encrypted in CBC mode, which I described in Chapter 3.

Listing 8-1. EncryptByPassPhrase Source Code

[Microsoft.SqlServer.Server.SqlFunction
(
 IsDeterministic = false,
 DataAccess = DataAccessKind.None
)]
[return: SqlFacet(MaxSize = -1)]
public static SqlBytes EncryptAesByPassPhrase
(
 SqlString PassPhrase,
 [SqlFacet(MaxSize = -1)] SqlBytes Plaintext,
 SqlBoolean AddAuthenticator,
 SqlString Authenticator
)
{
 try
 {
 // Automatically return NULL if passphrase or plaintext is NULL
 if (PassPhrase.IsNull || Plaintext.IsNull)
 return SqlBytes.Null;

 // Generate hash for authenticator
 SHA1Managed Sha1 = new SHA1Managed();
 string AuthHash = ""; // If authenticator not used, use empty string
 // Convert the authenticator hash to Base64 to avoid conversion problems
 if (AddAuthenticator.IsTrue && !Authenticator.IsNull)
 AuthHash = Convert.ToBase64String
 (
 Sha1.ComputeHash
 (
 Encoding.Unicode.GetBytes(Authenticator.Value)
)
);
 // Append authenticator to passphrase
 string AuthPass = PassPhrase.Value + AuthHash;

CHAPTER 8 ■ SQL CLR CRYPTOGRAPHY

169

 // Next derive a key from the passphrase + authenticator
 // with random 16 byte Salt
 Rfc2898DeriveBytes KeyGenerator = new Rfc2898DeriveBytes(AuthPass, 16);

 // Create a Rijndael/AES encryption object
 Rijndael Aes = Rijndael.Create();
 Aes.KeySize = 256;
 Aes.Mode = CipherMode.CBC;
 Aes.IV = KeyGenerator.GetBytes(Aes.BlockSize >> 3); // Assign the IV
 Aes.Key = KeyGenerator.GetBytes(Aes.KeySize >> 3); // Assign the Key

 // Now get the raw plain text
 byte[] rawData = Plaintext.Value;

 // Use a MemoryStream wrapping a CryptoStream with a Rijndael encryptor
 // to encrypt the data
 using (MemoryStream memoryStream = new MemoryStream())
 {
 using
 (
 CryptoStream cryptoStream = new CryptoStream
 (
 memoryStream,
 Aes.CreateEncryptor(),
 CryptoStreamMode.Write
)
)
 {
 // First write out the 16 byte salt so we can regenerate the same
 // key next time
 memoryStream.Write(KeyGenerator.Salt, 0, 16);
 // Now write out the encrypted data
 cryptoStream.Write(rawData, 0, rawData.Length);
 cryptoStream.Close();

 // Convert the encrypted data in memory to an array and return
 // as a SqlBytes object
 byte[] encrypted = memoryStream.ToArray();
 return new SqlBytes(encrypted);
 }
 }
 }
 catch

 {
 // Return NULL if an encryption error occurs
 return SqlBytes.Null;
 }
}

CHAPTER 8 ■ SQL CLR CRYPTOGRAPHY

170

The first part of this listing is the function declaration, as shown in the following code snippet.

[Microsoft.SqlServer.Server.SqlFunction
(
 IsDeterministic = false,
 DataAccess = DataAccessKind.None
)]
[return: SqlFacet(MaxSize = -1)]
public static SqlBytes EncryptAesByPassPhrase
(
 SqlString PassPhrase,
 [SqlFacet(MaxSize = -1)] SqlBytes Plaintext,
 SqlBoolean AddAuthenticator,
 SqlString Authenticator
)

The declaration begins with the Microsoft.SqlServer.Server.SqlFunction attribute. Since this
function doesn’t access data, the DataAccess property is set to DataAccessKind.None. Also, since the
encryption algorithm generates a random Salt/IV internally the result is nondeterministic, which is
reflected by setting the IsDeterministic property to false. Setting the SqlFacet attribute’s MaxSize
property to -1 allows the function to return a varbinary(max) result. The parameters are declared as
described previously in this section.

As the following code shows, the main body of the function is surrounded by a try...catch block.

try
{
 ...
}
catch
{
 // Return NULL if an encryption error occurs
 return SqlBytes.Null;
}

The try...catch block ensures that if an exception is thrown during the encryption process the
function returns a NULL result. This is important and ensures that if an error occurs the function will
degrade gracefully.

■ Tip You should always use try...catch blocks in your SQL CLR code to gracefully handle exceptions in

your code.

The main body of the function that performs the actual encryption is based in the try block. As the
following code shows, the first step is to degrade gracefully if NULL is passed in as either the PassPhrase or
the Plaintext.

// Automatically return NULL if passphrase or plaintext is NULL
if (PassPhrase.IsNull || Plaintext.IsNull)
 return SqlBytes.Null;

CHAPTER 8 ■ SQL CLR CRYPTOGRAPHY

171

The next step generates an SHA-1 hash for the Authenticator value, if one was supplied, and
appends the hash value to the PassPhrase. Because the PassPhrase is a string value the SHA-1 hash is
converted to a Base64 string to avoid binary to string conversion issues. The hash generation and
PassPhrase/Authenticator combination is shown in the following code snippet.

// Generate hash for authenticator
SHA1Managed Sha1 = new SHA1Managed();
string AuthHash = ""; // If authenticator not used, use empty string
// Convert the authenticator hash to Base64 to avoid conversion problems
if (AddAuthenticator.IsTrue && !Authenticator.IsNull)
 AuthHash = Convert.ToBase64String
 (
 Sha1.ComputeHash
 (
 Encoding.Unicode.GetBytes(Authenticator.Value)
)
);
// Append authenticator to passphrase
string AuthPass = PassPhrase.Value + AuthHash;

The PassPhrase/Authenticator hash combination string is used by a .NET class called
Rfc2898DeriveBytes to generate an encryption key and IV with a 16-byte salt, as shown in the following.

// Next derive a key from the passphrase + authenticator
// with random 16-bit Salt
Rfc2898DeriveBytes KeyGenerator = new Rfc2898DeriveBytes(AuthPass, 16);

Deriving Encryption Keys

The Rfc2898DeriveBytes function uses the Password-Based Key Derivation Function (PBKDF2) to
generate encryption keys. The PBKDF2 algorithm applies a cryptographic function, such as a hash or
HMAC, and a salt value in a repetitive process, to generate a cryptographically secure encryption key. The
Rfc2898DeriveBytes class replaces the older PasswordDeriveBytes class.

Once the function derives an encryption key, it creates a Rijndael encryption object. Rijndael is the
encryption algorithm known as AES. In fact, Rijndael supports more key size options than the approved
AES version of the algorithm. Thus, AES is a subset of Rijndael. The IV and Key properties for the
encryption object are assigned from the Rfc2898DeriveBytes key generation object created previously.
The encryption object exposes the IV and key lengths in terms of bits, so I have to divide by eight
(equivalent to a shift of three bits right) to calculate the length in bytes. This is shown in the following
code snippet.

// Create a Rijndael/AES encryption object
Rijndael Aes = Rijndael.Create();
Aes.KeySize = 256;
Aes.Mode = CipherMode.CBC;
Aes.IV = KeyGenerator.GetBytes(Aes.BlockSize >> 3); // Assign the IV
Aes.Key = KeyGenerator.GetBytes(Aes.KeySize >> 3); // Assign the Key

CHAPTER 8 ■ SQL CLR CRYPTOGRAPHY

172

The next step is to assign the raw Plaintext to a byte array.

// Now get the raw plain text
byte[] rawData = Plaintext.Value;

Up to now, everything in the function has revolved around setup for the actual encryption process.
At this point, all that’s left to do is perform the actual encryption. The encryption process wraps a .NET
MemoryStream around a CryptoStream, using the Rijndael encryption object created previously. This is
the wrapper around the actual encryption process, as shown in the following code snippet.

// Use a MemoryStream wrapping a CryptoStream with a Rijndael encryptor
// to encrypt the data
using (MemoryStream memoryStream = new MemoryStream())
{
 using
 (
 CryptoStream cryptoStream = new CryptoStream
 (
 memoryStream,
 Aes.CreateEncryptor(),
 CryptoStreamMode.Write
)
)
 {
 ...
 }
}

Once the MemoryStream and CryptoStream are created, the first step to returning an encrypted result
is to output the unencrypted salt value directly to the MemoryStream. The next step is to write the plain
text of the raw data out to the CryptoStream, which automatically encrypts as it writes.

// First write out the 16-byte salt so we can regenerate the same
// key next time
memoryStream.Write(KeyGenerator.Salt, 0, 16);
// Now write out the encrypted data
cryptoStream.Write(rawData, 0, rawData.Length);
cryptoStream.Close();

The last step is to convert the MemoryStream to a byte array in memory, convert the byte array to a
SqlBytes object, and finally return it to SQL Server.

// Convert the encrypted data in memory to an array and return
// as a SqlBytes object
byte[] encrypted = memoryStream.ToArray();
return new SqlBytes(encrypted);

CHAPTER 8 ■ SQL CLR CRYPTOGRAPHY

173

DecryptAesByPassPhrase
The DecryptAesByPassPhrase function is the inverse of the EncryptAesByPassPhrase function. It accepts
the varbinary(max) output of the EncryptAesByPassPhrase function as its Ciphertext parameter. You
also need to supply the matching PassPhrase, AddAuthenticator, and Authenticator values you used
with EncryptAesByPassPhrase at encryption time. If these values don’t match, the decrypted result
won’t be correct—and will probably be NULL, in fact. Listing 8-2 is the complete C# listing for the
DecryptAesByPassPhrase function.

Listing 8-2. DecryptAesByPassPhrase Source Code

[Microsoft.SqlServer.Server.SqlFunction
(
 IsDeterministic = true,
 DataAccess = DataAccessKind.None
)]
[return: SqlFacet(MaxSize = -1)]
public static SqlBytes DecryptAesByPassPhrase
(
 SqlString PassPhrase,
 [SqlFacet(MaxSize = -1)] SqlBytes Ciphertext,
 SqlBoolean AddAuthenticator,
 SqlString Authenticator
)
{
 try
 {
 // Automatically return NULL if passphrase or plaintext is NULL
 if (PassPhrase.IsNull || Ciphertext.IsNull)
 return SqlBytes.Null;

 // Get the ciphertext into a byte array
 byte[] rawData = Ciphertext.Value;

 // Get the 16-byte salt from the byte array
 byte[] Salt = new byte[16];
 for (int i = 0; i < 16; i++)
 Salt[i] = rawData[i];

 // Generate hash for authenticator
 SHA1Managed Sha1 = new SHA1Managed();
 string AuthHash = ""; // If no authenticator, use empty string
 // Convert the authenticator hash to Base64 to avoid conversion problems
 if (AddAuthenticator.IsTrue && !Authenticator.IsNull)
 AuthHash = Convert.ToBase64String
 (
 Sha1.ComputeHash(Encoding.Unicode.GetBytes(Authenticator.Value))
);
 // Append authenticator to passphrase
 string AuthPass = PassPhrase.Value + AuthHash;

CHAPTER 8 ■ SQL CLR CRYPTOGRAPHY

174

 // Next derive a key from the passphrase + authenticator, with 16-bit Salt
 Rfc2898DeriveBytes keyGenerator = new Rfc2898DeriveBytes(AuthPass, Salt);

 // Create a Rijndael/AES encryption object
 Rijndael Aes = Rijndael.Create();
 Aes.KeySize = 256;
 Aes.Mode = CipherMode.CBC;
 Aes.IV = keyGenerator.GetBytes(Aes.BlockSize >> 3); // Assign the IV
 Aes.Key = keyGenerator.GetBytes(Aes.KeySize >> 3); // Assign the key

 // Wrap a CryptoStream in a MemoryStream to decrypt the data
 using (MemoryStream memoryStream = new MemoryStream())
 {
 using
 (
 CryptoStream cryptoStream = new CryptoStream
 (
 memoryStream,
 Aes.CreateDecryptor(),
 CryptoStreamMode.Write
)
)
 {
 // Decrypt and write out the decrypted data with the CryptoStream
 // ...ignore the leading 16 bytes, the Salt
 cryptoStream.Write(rawData, 16, rawData.Length - 16);
 cryptoStream.Close();

 // Put the decrypted MemoryStream in a byte array and return as SqlBytes
 byte[] decrypted = memoryStream.ToArray();
 return new SqlBytes(decrypted);
 }
 }
 }
 catch
 {
 // If there's an exception return NULL
 return SqlBytes.Null;
 }
}

The DecryptAesByPassPhrase function listing is similar to the EncryptAesByPassPhrase function in
many regards. There are some differences, though. Consider the declaration, shown below, which
defines the function as deterministic with no data access.

[Microsoft.SqlServer.Server.SqlFunction
(
 IsDeterministic = true,
 DataAccess = DataAccessKind.None
)]
[return: SqlFacet(MaxSize = -1)]
public static SqlBytes DecryptAesByPassPhrase

CHAPTER 8 ■ SQL CLR CRYPTOGRAPHY

175

(
 SqlString PassPhrase,
 [SqlFacet(MaxSize = -1)] SqlBytes Ciphertext,
 SqlBoolean AddAuthenticator,
 SqlString Authenticator
)

The decryption function is deterministic because its output is always determined entirely by
the input parameters, with no random elements introduced by the function. Like its sister function, the
body of the DecryptAesByPassPhrase function is wrapped in a try...catch block. This is particularly
important for decryption since passing in a bad PassPhrase or Authenticator can result in an exception
during the decryption process. The try...catch block ensures the function degrades gracefully, returning
NULL, if an exception occurs.

While the encryption function setup generates a random salt for encryption key generation, the
decryption function needs to use the previously generated salt to generate the same encryption key. This
is shown in the following code snippet.

// Get the 16-byte salt from the byte array
byte[] Salt = new byte[16];
for (int i = 0; i < 16; i++)
 Salt[i] = rawData[i];

...

// Next derive a key from the passphrase + authenticator, with 16-bit Salt
Rfc2898DeriveBytes keyGenerator = new Rfc2898DeriveBytes(AuthPass, Salt);

Also, like the encryption function, the decryption function has its main functionality in a
MemoryStream wrapping a CryptoStream. The difference is that the decryption function CryptoStream
creates a Rijndael decryptor instead of an encryptor, as shown in the following snippet.

using (MemoryStream memoryStream = new MemoryStream())
{
 using
 (
 CryptoStream cryptoStream = new CryptoStream
 (
 memoryStream,
 Aes.CreateDecryptor(),
 CryptoStreamMode.Write
)
)
 {
 ...
 }
}

To decrypt the function simply writes the encrypted ciphertext to the CryptoStream. The write
ignores the first 16 bytes of the ciphertext since that’s where the EncryptAesByPassPhrase function stores
the random salt/IV generated at encryption time. The heart of the decryption code is shown in the
following code.

CHAPTER 8 ■ SQL CLR CRYPTOGRAPHY

176

// Decrypt and write out the decrypted data with the CryptoStream
// ...ignore the leading 16 bytes, the Salt
cryptoStream.Write(rawData, 16, rawData.Length - 16);
cryptoStream.Close();

// Put the decrypted MemoryStream in a byte array and return as SqlBytes
byte[] decrypted = memoryStream.ToArray();
return new SqlBytes(decrypted);

Testing the Functions
One of the advantages of the EncryptAesByPassPhrase and DecryptAesByPassPhrase functions are that
they can encrypt and decrypt binary large object (BLOB) data, up to 2.1 GB in size. The standard
EncryptByPassPhrase and DecryptByPassPhrase functions are limited to encrypting and decrypting less
than 8,000 bytes of data. Listing 8-3 demonstrates how to encrypt and decrypt a 20,000 byte string using
the new functions. The results are shown in Figure 8-1.

Listing 8-3. Encrypting and Decrypting BLOB Data

-- Generate a 20,000 byte (10 chars X 2000 = 20,000 chars) character string
DECLARE @plaintext varchar(max);
SET @plaintext = REPLICATE(CAST('ABCDEFGHIJ' AS varchar(max)), 2000);

-- Encrypt the BLOB
DECLARE @encrypted varbinary(max);
SET @encrypted = dbo.EncryptAesByPassPhrase
 (
 'This is my passphrase',
 CAST(@plaintext AS varbinary(max)),
 1,
 'This is my authenticator'
);

-- Decrypt the BLOB
DECLARE @decrypted varbinary(max);
SET @decrypted = dbo.DecryptAesByPassPhrase
 (
 'This is my passphrase',
 @encrypted,
 1,
 'This is my authenticator'
);

-- Compare decrypted string and plaintext lengths
SELECT
 DATALENGTH(@decrypted) AS decrypted_len,
 DATALENGTH(@plaintext) AS plaintext_len;

CHAPTER 8 ■ SQL CLR CRYPTOGRAPHY

177

-- Compare decrypted string and plaintext contents
SELECT
 CASE WHEN @decrypted = @plaintext
 THEN 'Decrypted value is equal to plaintext'
 ELSE 'Decrypted value is not equal to plaintext'
 END AS equal;

Figure 8-1. Comparison of results of encryption and decryption with SQL CLR functions

When using SQL CLR functions that act on LOB data, the SQL Server may not be able to take full
advantage of parallelization in its query plan. Keep this in mind when performance is critical.

SQL CLR Hashing
SQL Server introduces another useful feature that I discussed in Chapter 7—cryptographic hashing. SQL
Server exposes this data through the HashBytes function. HashBytes accepts the name of a hash algorithm and
a varbinary value to hash. The HashBytes function has two limitations:

• The function can only hash using the SHA-1, MD2, MD4, or MD5 hash algorithms.
The result is always 160 bits for SHA-1 or 128 bits for the other algorithms.

• The function can only hash up to 8,000 bytes of data. If you pass more than 8,000
bytes of data into the HashBytes function using an LOB data type the function will
truncate the string. This can result in some unexpected results.

As I discussed in Chapter 7, the MD2, MD4, and MD5 hash algorithms are not recommended for
cryptographically secure applications. The good news is that the .NET framework provides access to
even more secure cryptographic hash functions from the SHA-2 series.

GetHash
Through the SQL CLR, you can access the SHA-256, SHA-384, and SHA-512 hash functions which return
256, 384, or 512 bit hash values, respectively. The improved SQL CLR GetHash function has the following
signature:

GetHash (Algorithm, Plaintext)

Listing 8-4 is the C# source for the improved SQL CLR GetHash function.

CHAPTER 8 ■ SQL CLR CRYPTOGRAPHY

178

Listing 8-4. Improved GetHash Cryptographic Hash Function

[Microsoft.SqlServer.Server.SqlFunction
(
 IsDeterministic = true,
 DataAccess = DataAccessKind.None
)]
public static SqlBytes GetHash
(
 SqlString Algorithm,
 [SqlFacet(MaxSize = -1)] SqlBytes Plaintext
)
{
 // Return NULL if Algorithm or Plaintext is NULL
 if (Algorithm.IsNull || Plaintext.IsNull)
 return SqlBytes.Null;

 bool HashDefined = true;
 HashAlgorithm Hash = null;
 switch (Algorithm.Value.ToUpper())
 {
 case "SHA256":
 Hash = new SHA256Managed();
 break;

 case "SHA384":
 Hash = new SHA384Managed();
 break;

 case "SHA512":
 Hash = new SHA512Managed();
 break;

 default:
 HashDefined = false;
 break;
 }
 if (!HashDefined)
 throw new Exception
 ("Unsupported hash algorithm - use SHA256, SHA384 or SHA512");

 // Generate the hash value
 byte[] HashBytes = Hash.ComputeHash(Plaintext.Value);
 // Convert result into a SqlBytes result
 return new SqlBytes(HashBytes);
}

The following function declaration defines the two parameters required to call the function and the
return type. The GetHash function accepts the nvarchar name of an algorithm, one of SHA256, SHA384, or
SHA512 and a varbinary(max) parameter named Plaintext.

CHAPTER 8 ■ SQL CLR CRYPTOGRAPHY

179

[Microsoft.SqlServer.Server.SqlFunction
(
 IsDeterministic = true,
 DataAccess = DataAccessKind.None
)]
public static SqlBytes GetHash
(
 SqlString Algorithm,
 [SqlFacet(MaxSize = -1)] SqlBytes Plaintext
)

The first step in the main body of the function is to check for a NULL parameter value for either
Algorithm or Plaintext. If either parameter is NULL, the result is automatically NULL as shown in the
following code.

// Return NULL if Algorithm or Plaintext is NULL
if (Algorithm.IsNull || Plaintext.IsNull)
 return SqlBytes.Null;

The next step consists of a bit of setup code that determines which algorithm you specified in the
function call. If you specify an unrecognized algorithm name, the function throws an exception as
shown in the following code snippet.

bool HashDefined = true;
HashAlgorithm Hash = null;
switch (Algorithm.Value.ToUpper())
{
 case "SHA256":
 Hash = new SHA256Managed();
 break;

 case "SHA384":
 Hash = new SHA384Managed();
 break;

 case "SHA512":
 Hash = new SHA512Managed();
 break;

 default:
 HashDefined = false;
 break;
}
if (!HashDefined)
 throw new Exception
 ("Unsupported hash algorithm - use SHA256, SHA384 or SHA512");

Finally, the function generates a hash value using the algorithm you specified and returns the result
as a SqlBytes value.

CHAPTER 8 ■ SQL CLR CRYPTOGRAPHY

180

// Generate the hash value
byte[] HashBytes = Hash.ComputeHash(Plaintext.Value);
// Convert result into a SqlBytes result
return new SqlBytes(HashBytes);

You can test the GetHash function as shown in Listing 8-5, with results shown in Figure 8-2.

Listing 8-5. Testing the GetHash Function

-- Generate a 20,000 byte (10 chars X 2000) character string
DECLARE @plaintext varchar(max);
SET @plaintext = REPLICATE(CAST('ABCDEFGHIJ' AS varchar(max)), 2000);

-- Generate hash values using all three algorithms
DECLARE
 @sha256 varbinary(32),
 @sha384 varbinary(48),
 @sha512 varbinary(64);

SELECT
 @sha256 = dbo.GetHash('SHA256', CAST(@plaintext AS varbinary(max))),
 @sha384 = dbo.GetHash('SHA384', CAST(@plaintext AS varbinary(max))),
 @sha512 = dbo.GetHash('SHA512', CAST(@plaintext AS varbinary(max)));

-- Show results
SELECT
 'SHA-256' AS algorithm,
 @sha256 AS hash

UNION ALL

SELECT
 'SHA-384',
 @sha384

UNION ALL

SELECT
 'SHA-512',
 @sha512;

Figure 8-2. Result of improved hash function test

CHAPTER 8 ■ SQL CLR CRYPTOGRAPHY

181

SaltedHash
Regardless of the hash algorithm you use, clever hackers have invented improved methods of attacking
them. One tool that hackers use is a rainbow table, which is essentially a lookup table of hash values.
Rainbow tables can provide hackers with a shortcut to attack hashed passwords, for instance.

The best defense against rainbow table attacks of your hash codes is to include a salt/IV value in
your hashes. Salting your hash with a secret salt value renders the current generation of rainbow table
attacks against your hashed data useless. The SaltedHash function presented in Listing 8-6 modifies the
GetHash function to create salted hash values.

Listing 8-6. SaltedHash Cryptographic Hash Function

[Microsoft.SqlServer.Server.SqlFunction
(
 IsDeterministic = true,
 DataAccess = DataAccessKind.None
)]
public static SqlBytes SaltedHash
(
 SqlString Algorithm,
 [SqlFacet(MaxSize = -1)] SqlBytes PlainText,
 SqlBytes Salt
)
{
 // Return NULL if any of the parameters is NULL
 if (Algorithm.IsNull || PlainText.IsNull || Salt.IsNull)
 return SqlBytes.Null;

 // Determine which algorithm to use
 bool HashDefined = true;
 HashAlgorithm Hash = null;
 switch (Algorithm.Value.ToUpper())
 {
 case "SHA256":
 Hash = new SHA256Managed();
 break;

 case "SHA384":
 Hash = new SHA384Managed();
 break;

 case "SHA512":
 Hash = new SHA512Managed();
 break;

 default:
 HashDefined = false;
 break;
 }

CHAPTER 8 ■ SQL CLR CRYPTOGRAPHY

182

 if (!HashDefined)
 throw new Exception
 ("Unsupported hash algorithm - use SHA256, SHA384 or SHA512");

 // Combine the plaintext with the salt
 byte[] PlainTextWithSalt = new byte[PlainText.Length + Salt.Length];
 for (long i = 0; i < Salt.Length; i++)
 PlainTextWithSalt[i] = Salt[i];
 for (long i = Salt.Length; i < PlainText.Length; i++)
 PlainTextWithSalt[i] = PlainText.Value[i - Salt.Length];

 // Generate the hash and return the result
 byte[] HashBytes = Hash.ComputeHash(PlainTextWithSalt);
 return new SqlBytes(HashBytes);
}

The SaltedHash function accepts three parameters—an Algorithm, a varbinary(max) Plaintext, and
a Salt. The salted hash is created by combining the Salt with the Plaintext prior to generating the hash
value. The code snippet below shows the modified function declaration.

public static SqlBytes SaltedHash
(
 SqlString Algorithm,
 [SqlFacet(MaxSize = -1)] SqlBytes PlainText,
 SqlBytes Salt
)

The majority of the function setup is just like the GetHash function. SaltedHash differs from GetHash
by combining the salt with the plaintext just before it generates a hash value. The differing code is shown
in the following.

...
// Combine the plaintext with the salt
byte[] PlainTextWithSalt = new byte[PlainText.Length + Salt.Length];
for (long i = 0; i < Salt.Length; i++)
 PlainTextWithSalt[i] = Salt[i];
for (long i = Salt.Length; i < PlainText.Length; i++)
 PlainTextWithSalt[i] = PlainText.Value[i - Salt.Length];

// Generate the hash and return the result
byte[] HashBytes = Hash.ComputeHash(PlainTextWithSalt);
return new SqlBytes(HashBytes);

You can test the SaltedHash function using queries like those shown in Listing 8-7. The results are
shown in Figure 8-3.

Listing 8-7. Generating Salted Hashes

-- Generate a 20,000 byte (10 chars X 2000) character string
DECLARE @plaintext varchar(max);
SET @plaintext = REPLICATE(CAST('ABCDEFGHIJ' AS varchar(max)), 2000);

CHAPTER 8 ■ SQL CLR CRYPTOGRAPHY

183

DECLARE @salt varbinary(16);
SET @salt = Crypt_Gen_Random(16);

DECLARE
 @sha256 varbinary(32),
 @sha384 varbinary(48),
 @sha512 varbinary(64);

SELECT
 @sha256 = dbo.SaltedHash('SHA256', CAST(@plaintext AS varbinary(max)), @salt),
 @sha384 = dbo.SaltedHash('SHA384', CAST(@plaintext AS varbinary(max)), @salt),
 @sha512 = dbo.SaltedHash('SHA512', CAST(@plaintext AS varbinary(max)), @salt);

SELECT
 'SHA-256' AS algorithm,
 @sha256 AS hash

UNION ALL

SELECT
 'SHA-384',
 @sha384

UNION ALL

SELECT
 'SHA-512',
 @sha512;

Figure 8-3. Result of salted hash function

Crypt_Gen_Random

In Listing 8-7, I introduced a new standard SQL Server 2008 cryptographic function, Crypt_Gen_Random.
This function accepts up to two parameters—the number of bytes for the result and an optional random
binary seed. The Crypt_Gen_Random function returns a random cryptographic binary string. In this
example, I’ve used the binary string returned by this function as the salt value for the SaltedHash function.
In a real-world application, you would need to store this salt value somewhere, possibly stored encrypted
in a table, to regenerate the same salted hash value at a later time. To keep the code in this sample
simple, I skipped the salt value storage here. I’ll discuss this idea in greater detail in Chapter 9.

CHAPTER 8 ■ SQL CLR CRYPTOGRAPHY

184

Additional SQL CLR Considerations
You may encounter a need to encrypt or hash data that is even larger than SQL Server’s 2.1 GB large
object (LOB) data type limit. For instance, you may store a 10 GB file with SQL Server using the
filestream option. You can use SQL CLR to circumvent the 2.1 GB limitation in cases like this as well.
In fact, when using SQL CLR for encryption, decryption, and hashing your only limitations are the
limitations of the .NET framework.

One thing to keep in mind when using SQL CLR for encrypting, decrypting, and hashing LOB data
the query optimizer cannot take advantage of parallel processing in a plan that uses the SQL CLR
routine. Of course, this isn’t an issue if you only have a single processor or don’t rely on parallel
processing. It should definitely be a consideration if you are heavily reliant on parallel processing for
encryption and decryption functionality.

Summary
The hash functions that SQL Server exposes by default are useful for fingerprinting small quantities of data
(8,000 bytes or less), but aren’t as useful for LOB data. In this chapter, I described three enhancements to
SQL Server cryptographic hash functionality that you can achieve through SQL CLR integration:

• You can use SQL CLR functions to get around the 8,000 byte limitation of the
standard HashBytes function and hash up to 2.1 GB of LOB data at once.

• SQL CLR allows you to use additional hash algorithms like the SHA-2 hash family
in the .NET framework.

• With SQL CLR you can implement more secure hashes, like the salted hashes
demonstrated in this chapter.

Hackers have improved methods of attacking hashes with small hash values (like the 128-but MD5
hash algorithm) and better tools to attack hash algorithms in general, like rainbow tables. In many
applications, it’s important to use cryptographically secure algorithms and methods to hash your data.

In the next chapter, I’ll discuss performance implications of encryption and how to maximize
performance when searching encrypted data.

C H A P T E R 9

■ ■ ■

185

Indexing Encrypted Data

Indexing, searching, and sorting data are related functions that all have requirements that contradict the
needs of secure data encryption. Indexing, searching, and related functionality requires you to assign
order to your data. Order, in turn, depends on recognizing patterns in your data. As I discussed in
Chapter 1, the security of encryption algorithms depends on eliminating recognizable patterns from
your data. This renders encrypted data essentially useless in terms of efficient search and sort.

In this chapter, I’ll talk about the effects of encryption on database searches and queries, and
discuss some methods for improving performance when searching encrypted data is unavoidable.

The Problem of Searching Encrypted Data
Normally, you’ll want to avoid encrypting data on a cell-level when it needs to be searched. For instance,
if you need to store encrypted social security numbers in a database you’ll want to try to avoid allowing
users to search or sort based on that data element. I’ll discuss some of the problems you’ll encounter
when searching encrypted data in this section.

When you have a requirement to search confidential or sensitive encrypted data, one question to
ask is whether or not searching for an entire encrypted data element is the “real” requirement. In
many cases, the requirement might be able to be further refined. Let me give an example to explain what
I mean.

Consider a requirement to search an encrypted credit card number data column. Consider
Listing9-1, which combines listings from Chapters 2 and 3 to create the DMK, asymmetric key,
symmetric key, and sample data. If you’ve already run the samples from Chapters 2 and 3, you’ll already
have these keys and sample tables created and populated in the database, and you won’t need to run
this listing.

Listing 9-1. Creating Encryption Keys and Sample Data

-- Create DMK, asymmetric key, symmetric key
CREATE MASTER KEY
ENCRYPTION BY PASSWORD = 'a0*Ui)4x-f';
GO

CHAPTER 9 ■ INDEXING ENCRYPTED DATA

186

CREATE ASYMMETRIC KEY AsymKey1_Sales
FROM FILE = N'c:\AsymKey1_Sales.snk';
GO

CREATE SYMMETRIC KEY SymKey6_Sales
WITH ALGORITHM = AES_256
ENCRYPTION BY ASYMMETRIC KEY AsymKey1_Sales;
GO

-- Nonencrypted credit card info
CREATE TABLE SalesLT.CreditCardInfo
(
 SalesOrderID int not null primary key,
 CreditCardNumber nvarchar(50),
 CreditCardExpirationDate datetime,
 TotalCharge money
);

-- Encrypted credit card info
CREATE TABLE SalesLT.EncryptedCreditCardInfo
(
 SalesOrderID int not null primary key,
 CreditCardNumber varbinary(150),
 CreditCardExpirationDate varbinary(150),
 TotalCharge varbinary(150)
);
GO

-- Generate plaintext sample data
WITH Generate4Digits /* Generate 4 random digits */
AS
(
 SELECT SUBSTRING
 (
 CAST
 (
 ABS(CHECKSUM(NEWID())) % 10000 AS NVARCHAR(4)
) + N'0000', 1, 4
) AS Digits
),
CardNum /* Generate a 16 digit random credit card number */
AS
(
 SELECT N'0999-' +
 (
 SELECT Digits
 FROM Generate4Digits
) + N'-' +
 (
 SELECT Digits
 FROM Generate4Digits
) + N'-' +

CHAPTER 9 ■ INDEXING ENCRYPTED DATA

187

 (
 SELECT Digits
 FROM Generate4Digits
) AS CardNumber
),
DaysToExpire /* Get a random amount of days to expiration */
AS
(
 SELECT ABS(CHECKSUM(NEWID()) % 700) AS Days
)
INSERT INTO SalesLT.CreditCardInfo
(
 SalesOrderID,
 CreditCardNumber,
 CreditCardExpirationDate,
 TotalCharge
)
SELECT
 SalesOrderID,
 CardNumber,
 DATEADD(DAY, Days, OrderDate),
 TotalDue
FROM SalesLT.SalesOrderHeader
CROSS APPLY CardNum
CROSS APPLY DaysToExpire;
GO

-- Wipe out the sample data in the table
TRUNCATE TABLE SalesLT.EncryptedCreditCardInfo;
GO

-- Open symmetric data encrypting key
OPEN SYMMETRIC KEY SymKey6_Sales
DECRYPTION BY ASYMMETRIC KEY AsymKey1_Sales;

-- Encrypt sample random credit card data
INSERT INTO SalesLT.EncryptedCreditCardInfo
(
 SalesOrderID,
 CreditCardNumber,
 CreditCardExpirationDate,
 TotalCharge
)
SELECT
 SalesOrderID,
 EncryptByKey(Key_Guid(N'SymKey6_Sales'), CreditCardNumber),
 EncryptByKey(Key_Guid(N'SymKey6_Sales'), CAST
 (
 CreditCardExpirationDate AS varbinary(10)
)
),
 EncryptByKey(Key_Guid(N'SymKey6_Sales'), CAST

CHAPTER 9 ■ INDEXING ENCRYPTED DATA

188

 (
 TotalCharge AS varbinary(10)
)
)
FROM SalesLT.CreditCardInfo;

-- Close data encrypting key
CLOSE SYMMETRIC KEY SymKey6_Sales;
GO

Once your sample encrypted data is ready, you can use it to test the performance of encrypted data
search. Listing 9-2 performs a simple search of the encrypted credit card number column looking for
matches. Figure 9-1 shows sample results from this query.

Listing 9-2. Simple Encrypted Data Search

-- First get a decrypted credit card number from the plaintext table
DECLARE @n nvarchar(50);

SELECT @n = CreditCardNumber
FROM SalesLT.CreditCardInfo
WHERE SalesOrderID = 71780;

-- Open the symmetric key
OPEN SYMMETRIC KEY SymKey6_Sales
DECRYPTION BY ASYMMETRIC KEY AsymKey1_Sales;

-- Perform the search and return the result
SELECT
 SalesOrderID,
 CAST(DecryptByKey(CreditCardNumber) AS nvarchar(50)) AS DecCreditCardNumber
FROM SalesLT.EncryptedCreditCardInfo
WHERE DecryptByKey(CreditCardNumber) = @n;

-- Close symmetric key
CLOSE SYMMETRIC KEY SymKey6_Sales;

Figure 9-1. Result of simple encrypted credit card search

CHAPTER 9 ■ INDEXING ENCRYPTED DATA

189

■ Note Because the data is randomly generated, your results will vary from those shown in this chapter.

Figure 9-2 shows the query plan. You can see that the simple query from Listing 9-2 uses a Clustered
Index Scan operator to locate the encrypted data. Essentially, SQL Server has to look at every single row
in the table and decrypt every single CreditCardNumber value to fulfill the query predicate: WHERE
DecryptByKey(CreditCardNumber) = @n. This business of decrypting each value can be a very expensive
proposition if you have a large number of rows (think tens of thousands, hundreds of thousands, or even
millions) in the table.

Figure 9-2. Query plan for simple encrypted credit card search

You might assume the fact that SQL Server has to look at every single row in the table can be
attributed to poor indexing—there is no nonclustered index defined on the CreditCardNumber column of
the table, after all. To test this theory, we can add a nonclustered index to the table on this column, as
shown in Listing 9-3.

Listing 9-3. Create a Nonclustered Index on the CreditCardNumber Column

CREATE NONCLUSTERED INDEX IX_EncryptedCreditCardInfo
ON SalesLT.EncryptedCreditCardInfo
 (
 CreditCardNumber
);

If you execute the query from Listing 9-2 again, with the new nonclustered index in place, you’ll get
the result in the query plan shown in Figure 9-3.

CHAPTER 9 ■ INDEXING ENCRYPTED DATA

190

Figure 9-3. Query plan for simple encrypted column search with nonclustered index in place

The Clustered Index Scan in this example has been replaced by the Index Scan (Nonclustered)
operator. SQL Server still has to access and decrypt every single credit card number in the entire table to
see if there’s a match, so the index hasn’t provided any tangible benefit over the Clustered Index Scan.

Storing Partial Plaintext Values
One of the questions you need to ask when you get an encrypted column search is whether the
requirement is to search the entire encrypted data element. In many cases, a search on a partial value
(like the last four digits of a credit card number or social security number, for instance) might be
adequate. If this is the case, you may be able to improve performance by simply adding a column to the
table with the plaintext of the partial value. In this example, I’ll add a column with the last four digits of
the credit card number in it. Listing 9-4 begins by adding a CreditCardLast4 column to the
SalesLT.EncryptedCreditCardInfo table and populates the column.

Listing 9-4. Adding a Column to Hold the Credit Card Number Last Four Digits

ALTER TABLE SalesLT.EncryptedCreditCardInfo
ADD CreditCardLast4 nvarchar(4);
GO

OPEN SYMMETRIC KEY SymKey6_Sales
DECRYPTION BY ASYMMETRIC KEY AsymKey1_Sales;

UPDATE SalesLT.EncryptedCreditCardInfo
SET CreditCardLast4 = RIGHT
 (
 CAST
 (
 DecryptByKey(CreditCardNumber) AS nvarchar(50)
), 4
);

CLOSE SYMMETRIC KEY SymKey6_Sales;
GO

CHAPTER 9 ■ INDEXING ENCRYPTED DATA

191

As shown in Listing 9-5, if you now query the table you’ll see results similar to those shown in
Figure 9-4.

Listing 9-5. Querying the Sample Data with the Last Four Credit Card Digits

SELECT
 SalesOrderID,
 CreditCardLast4,
 CreditCardNumber,
 CreditCardExpirationDate,
 TotalCharge
FROM SalesLT.EncryptedCreditCardInfo;

Figure 9-4. Encrypted credit card data with last 4 digits plain text column

Now that I’ve added the CreditCardLast4 column to the table, I’ll recreate the nonclustered index on
this column as shown in Listing 9-6.

Listing 9-6. Create Nonclustered Index on Last Four Digits of Credit Card Column

CREATE NONCLUSTERED INDEX IX_EncryptedCreditCardInfo
ON SalesLT.EncryptedCreditCardInfo
 (
 CreditCardLast4,
 CreditCardNumber
)
WITH (DROP_EXISTING = ON);

CHAPTER 9 ■ INDEXING ENCRYPTED DATA

192

The new nonclustered index is a covering index on the CreditCardLast4 and CreditCardNumber
columns. Listing 9-7 shows the modified version of the query that uses the new CreditCardLast4 column
to significantly narrow down the potential results before applying the DecryptByKey function.

Listing 9-7. Modified Query to Utilize the CreditCardLast4 Column

-- First get a decrypted credit card number from the plaintext table
DECLARE @n nvarchar(50);

SELECT @n = CreditCardNumber
FROM SalesLT.CreditCardInfo
WHERE SalesOrderID = 71780;

-- Open the symmetric key
OPEN SYMMETRIC KEY SymKey6_Sales
DECRYPTION BY ASYMMETRIC KEY AsymKey1_Sales;

-- Perform the search and return the result
SELECT
 SalesOrderID,
 CAST(DecryptByKey(CreditCardNumber) AS nvarchar(50)) AS DecCreditCardNumber
FROM SalesLT.EncryptedCreditCardInfo
WHERE CreditCardLast4 = RIGHT(@n, 4)
 AND DecryptByKey(CreditCardNumber) = @n;

-- Close symmetric key
CLOSE SYMMETRIC KEY SymKey6_Sales;

The results are the same as previously shown, but this time you’ll notice an Index Seek
(Nonclustered) in the query plan, as shown in Figure 9-5.

Figure 9-5. Revised query plan with index seek

CHAPTER 9 ■ INDEXING ENCRYPTED DATA

193

The revised query plan is much more efficient because SQL Server can use the nonclustered index to
quickly seek out the relatively few rows where the last four digits of the credit card numbers match the
search criteria. Then it can decrypt those values and compare, instead of decrypting every single credit
card number in the table.

The problem with this method, of course, is that you expose partial plaintext data in the database.
While the complete data is protected, exposing even partial plaintext could present a security risk. Many
cryptanalysis methods rely on the concept of a known-plaintext, and even a small amount of known-
plaintext could provide a talented cryptanalyst with enough information to begin attacking your
encrypted data.

Storing Hashed Values
In order to better protect your data while achieving the same performance as when storing partial
plaintext, you can store hashes of your plaintext values. As described in Chapter 7, when you store
a cryptographic hash of a value you are essentially fingerprinting your data. The advantage of
cryptographic hashing is that the data is thoroughly obfuscated and can’t be reverse-engineered.
Listing 9-8 modifies the table created in the previous example to add an SHA-1 hash of the plaintext
credit card number to the table.

Listing 9-8. Adding a Cryptographic Hash of the Plaintext Credit Card Number

-- Drop nonclustered index
DROP INDEX IX_EncryptedCreditCardInfo
ON SalesLT.EncryptedCreditCardInfo;
GO

-- Drop credit card last 4 digits column
ALTER TABLE SalesLT.EncryptedCreditCardInfo
DROP COLUMN CreditCardLast4;
GO

-- Add a credit card hash column
ALTER TABLE SalesLT.EncryptedCreditCardInfo
ADD CreditCardHash varbinary(64);
GO

-- Populate the credit card hash
OPEN SYMMETRIC KEY SymKey6_Sales
DECRYPTION BY ASYMMETRIC KEY AsymKey1_Sales;

CHAPTER 9 ■ INDEXING ENCRYPTED DATA

194

UPDATE SalesLT.EncryptedCreditCardInfo
SET CreditCardHash = HashBytes
 (
 'SHA1',
 CAST(DecryptByKey(CreditCardNumber) AS nvarchar(50))
);

CLOSE SYMMETRIC KEY SymKey6_Sales;
GO

-- Recreate nonclustered index
CREATE NONCLUSTERED INDEX IX_EncryptedCreditCardInfo
ON SalesLT.EncryptedCreditCardInfo
 (
 CreditCardHash,
 CreditCardNumber
);

As shown in Listing 9-9, you can query this table to view the contents. An example of the contents is
shown in Figure 9-6.

Listing 9-9. Querying the Encrypted Credit Card Info with Credit Card Hash

SELECT
 SalesOrderID,
 CreditCardHash,
 CreditCardNumber,
 CreditCardExpirationDate,
 TotalCharge
FROM SalesLT.EncryptedCreditCardInfo;

Figure 9-6. Sample data with CreditCardHash column included

CHAPTER 9 ■ INDEXING ENCRYPTED DATA

195

The CreditCardHash column in this example is a cryptographic SHA-1 hash of the entire plaintext
credit card number. You can query this column by looking for the SHA-1 hash of the credit
card number you’re seeking as shown in Listing 9-10. The query plan is shown in Figure 9-7.

Listing 9-10. Hash-Based Searching for Credit Card Numbers

-- First get a decrypted credit card number from the plaintext table
DECLARE @n nvarchar(50);

SELECT @n = CreditCardNumber
FROM SalesLT.CreditCardInfo
WHERE SalesOrderID = 71780;

-- Open the symmetric key
OPEN SYMMETRIC KEY SymKey6_Sales
DECRYPTION BY ASYMMETRIC KEY AsymKey1_Sales;

-- Perform the search and return the result
SELECT
 SalesOrderID,
 CAST(DecryptByKey(CreditCardNumber) AS nvarchar(50)) AS DecCreditCardNumber
FROM SalesLT.EncryptedCreditCardInfo
WHERE CreditCardHash = HashBytes('SHA1', @n)
 AND DecryptByKey(CreditCardNumber) = @n;

-- Close symmetric key
CLOSE SYMMETRIC KEY SymKey6_Sales;

Figure 9-7. Query plan for search of hashed credit card number

As you can see from a review of the query plan, the hashed value method gives you the efficiency of
the Index Seek (NonClustered) operator. Notice that in this example I hashed the entire credit card
number, although you could also hash a portion of the data (like the last four digits) to make the example
more comparable to the previous code sample.

CHAPTER 9 ■ INDEXING ENCRYPTED DATA

196

Somewhere Over The Rainbow

I discussed rainbow table attacks in Chapter 8. For data that consists of a very specific static structure and
contains a very limited set of characters (such as credit card numbers or social security numbers) the
rainbow table attack is particularly effective.

Consider hashes of social security numbers, which would make a relatively easy target for rainbow table
attacks. To begin with, social security numbers have a regular form, consisting of three groups of the
numbers zero through nine, as listed in the following:

An example of a social security number is 987-65-4321. Don’t worry—I wouldn’t use a real social security
number in an example. All social security numbers in the range 987-65-4320 to 987-65-4329 are
reserved by the Social Security Administration for use in advertising and for other unofficial purposes.

The social security number essentially requires a rainbow table with one billion entries to provide a lookup
for every possible combination of digits that can be hashed. This is not an infeasible task. But on top of
that, a clever hacker who knows the rules of social security number assignment can easily narrow even
that number down further. For instance, no social security number has ever been issued with an area
number (first three digits) in the range 800–999. This means a hacker can automatically eliminate 200
million combinations of numbers from his rainbow table. With a little more work, a clever hacker can
quickly pare this down to just a few hundred million possible combinations by incorporating additional
social security number assignment rules. Attacking a few hundred million hashed values is a lot easier
than attacking a billion.

Note that in the code example for this section I hashed an entire credit card number instead of just the last
four digits. If you hashed only the last four digits your hacker would only need a rainbow table with 10,000
entries to recover the plaintext of your hashed values.

Plaintext hashing suffers from the susceptibility to rainbow table attacks, as discussed in the sidebar
“Somewhere Over the Rainbow.” Essentially, a hacker could potentially derive the plaintext of a data
element through hash value lookup tables, particularly if the structure and content of the data elements
are strictly constrained and well-defined as they are in the case of credit card numbers and social
security numbers.

Storing Salted Hashed Values
While the idea of storing hashed plaintext values to increase search efficiency has some merit, it suffers
from a couple of issues. One issue is that simple cryptographic hashing doesn’t protect you from the
rainbow table attacks described in the previous section.

Another issue is that it introduces a pattern from which outsiders can infer statistical information
and open your data up to statistical attacks. Consider the SHA-1 hash for the money data
type value $1,000,000.00, which is 0x8F1617F0536ACD0DDB1107A5CE504F8E72C3C6EA. Knowing this
information a hacker can locate all $1,000,000.00 entries in a database. If a hacker is attacking a table

• The first group, or area number, is three digits in length.

• The second group, or group number, consists of two digits.

• The third group, or serial number, consists of four digits.

CHAPTER 9 ■ INDEXING ENCRYPTED DATA

197

with employee compensation information, she might be able to infer which employees are highly
compensated and target those employees’ records for further cryptanalysis.

As I described in Chapter 8, you can use salted hash values to protect against rainbow table attack
and to make it even harder for intruders to infer significant information through statistical analysis.
The built-in HashBytes function does not natively support salted hashes, so I’ll use the SQL CLR
function, SaltedHash, from Chapter 8 to generate salted hash values. Listing 9-11 demonstrates the use
of the SaltedHash function to generate salted hash values of the last four digits of the credit card number.

Listing 9-11. Generating Salted Hashes of Credit Card Numbers

-- Populate the credit card hash
OPEN SYMMETRIC KEY SymKey6_Sales
DECRYPTION BY ASYMMETRIC KEY AsymKey1_Sales;

UPDATE SalesLT.EncryptedCreditCardInfo
SET CreditCardHash = dbo.SaltedHash
 (
 'SHA256',
 DecryptByKey(CreditCardNumber),
 0x359a82109cfe
);

CLOSE SYMMETRIC KEY SymKey6_Sales;
GO

The SaltedHash function uses a salt value that you supply, in this case 0x359a82109cfe, to further
obfuscate the hash value. A hash salted with a secret value is infeasible for a hacker to attack using
current technology and methods, even rainbow tables.

The salted hash can still be used in combination with other data in the table to try to infer statistical
information, but the secret hash value makes it nearly impossible to recover the plaintext data that was
hashed. You can query the table using the salted hash using a query like the one shown in Listing 9-12.
The query plan generated for this query is shown in Figure 9-8.

Listing 9-12. Salted Hash-Based Searching for Credit Card Numbers

-- First get a decrypted credit card number from the plaintext table
DECLARE @n nvarchar(50);

SELECT @n = CreditCardNumber
FROM SalesLT.CreditCardInfo
WHERE SalesOrderID = 71780;

-- Open the symmetric key
OPEN SYMMETRIC KEY SymKey6_Sales
DECRYPTION BY ASYMMETRIC KEY AsymKey1_Sales;

-- Perform the search and return the result
SELECT
 SalesOrderID,
 CAST(DecryptByKey(CreditCardNumber) AS nvarchar(50)) AS DecCreditCardNumber
FROM SalesLT.EncryptedCreditCardInfo
WHERE CreditCardHash = dbo.SaltedHash

CHAPTER 9 ■ INDEXING ENCRYPTED DATA

198

 (
 'SHA256',
 CAST(@n AS varbinary(100)),
 0x359a82109cfe
)
 AND DecryptByKey(CreditCardNumber) = @n;

-- Close symmetric key
CLOSE SYMMETRIC KEY SymKey6_Sales;

Figure 9-8. Query plan for salted hash search on encrypted data

Notice that the salted hash search query plan is highly optimized like the hash search, with an
efficient Index Seek (NonClustered) operator. When you use a salted hash you can also safely use a
smaller portion of the data, such as the last four digits of a social security number or credit card number.
The secret salt value protects the hash values from rainbow table attacks and reverse lookups that would
be devastating for short plaintext values.

Storing Hash-Based Message Authentication Codes
In Chapter 8, I explained how to create salted hash values using a trivial mechanism for combining a
secret salt value with the plaintext prior to generating the hash. I implemented this mechanism in a SQL
CLR user-defined function called SaltedHash.

The .NET Framework includes built-in functionality to generate hash-based message authentication
codes (HMACs) using a more complex algorithm for combining a secret key value with your plaintext to
generate keyed hash values. While the HMAC mechanism for generating keyed hash values uses a more
complex mechanism than the simple salted hash I presented in Chapter 8, it serves the same function
and returns a similar result.

The SQL CLR GetHmac function I introduce in this section uses the .NET Framework HMAC class to
generate an HMAC using the specified hashing algorithm. The signature for this function is shown in the
following:

GetHmac
(
 Algorithm nvarchar(4000),
 PlainText varbinary(max),
 Key varbinary(8000)
)

CHAPTER 9 ■ INDEXING ENCRYPTED DATA

199

This function returns a varbinary hash value as its result. The valid algorithms you can specify in the
first parameter include the following:

• SHA256 returns a 256-bit HMAC using the SHA-256 hash algorithm.

• SHA384 returns a 384-bit HMAC using the SHA-384 hash algorithm.

• SHA512 returns a 512-bit HMAC using the SHA-512 hash algorithm.

• RIPEMD160 returns a 160-bit HMAC using the RIPEMD-160 hash algorithm.

Listing 9-13 is the C# source for the SQL CLR GetHmac function that uses .NET Framework classes to
generate an HMAC based on your input parameters.

Listing 9-13. SQL CLR GetHmac Function Source Listing

[Microsoft.SqlServer.Server.SqlFunction
(
 IsDeterministic = true,
 DataAccess = DataAccessKind.None
)]
public static SqlBytes GetHmac
(
 SqlString Algorithm,
 [SqlFacet(MaxSize = -1)] SqlBytes PlainText,
 SqlBytes Key
)
{
 if (Algorithm.IsNull || PlainText.IsNull || Key.IsNull)
 return SqlBytes.Null;
 bool HmacDefined = true;
 HMAC Hmac = null;
 switch (Algorithm.Value.ToUpper())
 {
 case "SHA256":
 Hmac = new HMACSHA256(Key.Value);
 break;

 case "SHA384":
 Hmac = new HMACSHA384(Key.Value);
 break;

 case "SHA512":
 Hmac = new HMACSHA512(Key.Value);
 break;

 case "RIPEMD160":
 Hmac = new HMACRIPEMD160(Key.Value);
 break;

CHAPTER 9 ■ INDEXING ENCRYPTED DATA

200

 default:
 HmacDefined = false;
 break;
 }
 if (!HmacDefined)
 throw new Exception
 (
 "Unsupported hash algorithm - use SHA256, SHA384, SHA512 or RIPEMD160"
);
 byte[] HmacBytes = Hmac.ComputeHash(PlainText.Value);
 return new SqlBytes(HmacBytes);
}

The code for this function is very similar to the source for the SaltedHash function presented
in Chapter 8. The major differences are that the object being created is an HMAC object instead of a Hash
object and the HMAC class combines the secret key value into the HMAC. When you use the HMAC class,
you don’t have to worry about combining the secret value as I did in the SaltedHash function.

Populating the sample table with HMACs using this function is relatively simple, as shown in
Listing9-14.

Listing 9-14. Populating the Sample Table with HMACs

-- Populate the credit card hash
OPEN SYMMETRIC KEY SymKey6_Sales
DECRYPTION BY ASYMMETRIC KEY AsymKey1_Sales;

UPDATE SalesLT.EncryptedCreditCardInfo
SET CreditCardHash = dbo.GetHmac
 (
 'SHA256',
 DecryptByKey(CreditCardNumber),
 0x359a82109cfe
);

CLOSE SYMMETRIC KEY SymKey6_Sales;
GO

You can query with this function in the same way that you might use the SaltedHash function.
Listing 9-15 queries the encrypted credit card data, using HMACs to efficiently retrieve the results.
Figure 9-9 shows the query plan generated by Listing 9-15.

Listing 9-15. Querying Encrypted Data with an HMAC Column

-- First get a decrypted credit card number from the plaintext table
DECLARE @n nvarchar(50);

SELECT @n = CreditCardNumber
FROM SalesLT.CreditCardInfo
WHERE SalesOrderID = 71780;

CHAPTER 9 ■ INDEXING ENCRYPTED DATA

201

-- Open the symmetric key
OPEN SYMMETRIC KEY SymKey6_Sales
DECRYPTION BY ASYMMETRIC KEY AsymKey1_Sales;

-- Perform the search and return the result
SELECT
 SalesOrderID,
 CAST(DecryptByKey(CreditCardNumber) AS nvarchar(50)) AS DecCreditCardNumber
FROM SalesLT.EncryptedCreditCardInfo
WHERE CreditCardHash = dbo.GetHmac
 (
 'SHA256',
 CAST(@n AS varbinary(100)),
 0x359a82109cfe
)
 AND DecryptByKey(CreditCardNumber) = @n;

-- Close symmetric key
CLOSE SYMMETRIC KEY SymKey6_Sales;

Figure 9-9. Query plan produced by HMAC search of encrypted data

■ Caution When using the HMAC or salted hash mechanisms, you absolutely have to protect the secret IV or key

value. Much like encryption keys used to encrypt your data, the security of your HMACs and salted hashes rests on

protecting this secret value.

Range Queries
All of the examples in this chapter have been focused on optimizing the efficiency of exact match
queries. This is because range queries and pattern match queries rely on certain well-established
patterns in the data in order to efficiently return results.

CHAPTER 9 ■ INDEXING ENCRYPTED DATA

202

■ Tip Range queries and pattern match queries are those that use >, <, >=, <=, BETWEEN, LIKE and related

operators in the WHERE clause predicate. Exact match queries use = in the WHERE clause.

Consider a sample query like the one shown in the following code snippet:

SELECT *
FROM SalesLT.CreditCardInfo
WHERE CreditCardNum >= '5' AND CreditCardNumber <= '6';

This query takes advantage of well-established patterns in character data. In this case, the character
digit for the numeral 5 comes before 6. When you encrypt your data these patterns are eliminated,
making range searches extremely inefficient.

How can you encrypt your data and still obtain efficient queries of data using range and pattern
matching predicates? Well, this brings us to a good news/bad news fork in the road. The bad news is that
when you’re talking about cell-level encryption there’s no way to get around SQL Server looking at every
single row of the table. The good news is that you can encrypt at the I/O level and get efficient queries on
encrypted data.

You can encrypt at the I/O level by using TDE, BitLocker, or Windows EFS to encrypt an entire
database at once, an entire volume at once, or individual files or folders in the file system, respectively.

When you encrypt at the I/O level the data encryption and decryption is handled by the SQL Server
or Windows I/O subsystems. Because it is handled at such a low level, close to physical storage, SQL
Server can still optimize queries on your encrypted data independent of the encryption. Note that you
will still take a performance hit when you encrypt at the I/O level, but it is slight when compared to table
scans of large tables encrypted at the cell level. In fact, the general rule is that encryption at the I/O level
will impact performance by a small percentage—estimated at around 3 to 5 percent.

Summary
A common question that’s often asked is, “How do I efficiently search encrypted data?” The answer, as
with most things SQL Server, is “it depends.” When you encrypt data, you remove the patterns from your
data that efficient searching, indexing, and sorting all rely on.

When encrypting data at the cell level your first—and best—option is to avoid searching on your
encrypted data. But there are circumstances where it becomes unavoidable, and you absolutely have to
search on data encrypted at the cell level. In those cases, you will have to expose some information
about your encrypted data in order to achieve efficient exact match searches on your encrypted data.
There’s no way around that. However, you can control and limit the type and amount of data you
expose. Mechanisms like the SQL CLR HMAC generation function introduced in this chapter allow you
to severely limit the type of information you expose to prevent hackers from retrieving useful
information from your secure data.

When you have to perform range queries or pattern matching queries against data encrypted at the
cell level there’s no way to work around inefficient queries without exposing substantial patterns in your
data, once again making it insecure. However, you do have the option of applying encryption at the I/O
level via TDE, BitLocker, and Windows EFS. When data is encrypted at the I/O level, it’s decrypted before
it reaches the SQL Server query engine. What this means is SQL Server can optimize your queries
without regard for encryption at the I/O level.

In the next chapter, I’ll discuss additional encryption considerations, including configuring SQL
Server SSL encryption to protect your data over the wire.

C H A P T E R 10

■ ■ ■

203

Encrypting Connections
to SQL Server 2008

As we have seen, encrypting sensitive data in SQL Server 2008 can be done at many different levels. Data
can be encrypted on disk via an encrypted backup file. Data can also be encrypted where it is stored in a
table or index via Transparent Data Encryption (TDE) that will be accessed via a stored procedure. You
can even encrypt the stored procedure itself. These encryption techniques work primarily with data at
rest. It goes without saying that this “resting” data will be accessed and the methods described thus far
for encrypting and decrypting this data afford you a layer of protection at the instance level and on disk.
It will not be easy for hackers to restore or otherwise interrogate an encrypted backup file, for example.

The questions we will address in this chapter do not deal with the secure storage of data, however.
Here we are concerned with the full-flowing data across the ubiquitous wire where transmitting plain text
would be tantamount to leaving the keys in your ignition. We will introduce some tools herein, such as
network sniffers and certificate store management consoles that may be unorthodox to the DBA who is
charged with configuring secure connections to the SQL Server infrastructure. However, these are tools
that you must be familiar with to both set up and test secure communications to your SQL Server
infrastructure.

CHAPTER 10 ■ ENCYRYPTING CONNECTIONS TO SQL SERVER 2008

204

Encryption Concepts
Before diving into the specifics of SQL Server-based network encryption and security, I’ll introduce
some of the key concepts that I’ll cover in this chapter. Though some of these concepts were already
introduced, particularily in reference to securing your data at rest, they are worth revisiting here in
relation to their use for encrypting data over the wire.

• Public Key Infrastructure (PKI): Provides a means of private and secure
communication between computers and users via the use of digital certificates. In
a PKI, public and private cryptographic keys issued by a Certificate Authority
provide authentication, guarantee the certificate owner’s identity, and are used to
encrypt and decrypt messages between parties.

• Certificate Authority (CA): Services that are part of a PKI that manage the
distribution, allocation, and revocation of digital certificates that identify entities
such as users and computers. The CA validates primarily via the public key
certificates that it distributes that
an entity is who it claims to be.

• SSL/TLS-Secure Sockets Layer and Transport Layer Security: These two security
protocols are used to secure network data packets transmitted between client and
server connections to application services such as Internet Information Services
(IIS) and SQL Server. SSL is the precursor to TLS and both protocols are included
in the Secure Channel (SChannel) security package and Cryptographic APIs for
Windows operating systems. Windows will choose which protocol to be used in
secure communications between applications based on compatibility between
server and client systems, opting for the most secure protocol that both are
capable of using. In this chapter when we refer to SSL or TSL, it is not always easy
to determine which protocol is actually being used for communications for SQL
Server as this responsibility is passed to Windows from SQL Server for determining
the secure communications. Thus, we can say that SSL and TLS can both be used
in secure communications with the certificate that is provisioned for SQL Server
that we will demonstrate herein.

• Packet sniffer (Network Monitor): A packet sniffer is a network administrator’s tool
that captures data packets on a network segment. In this chapter, we will use one
such packet sniffer, Network Monitor, to capture and analyze packets sent to and
from a SQL Server instance. Specifically, we will be looking to verify that the
packets transmitted across the wire between SQL Server and client applications,
such as SQL Server Management Studio, are encrypted and not sent across as
plain text from which confidential information could be harvested.

Network Monitor
Network Monitor has been in existence for as long as I can remember, available either via a Windows
Resource Kit or Systems Management Studio (SMS). There have been historically two releases of the
application, the paired down version which captures packets to and from your local network interface and
the other, more powerful sibling, which could be put in “promiscuous” mode to capture all traffic on the
network segment. While I have used both versions in my career, the former version, updated over the years,
will suffice for capturing and analyzing network packets for SQL Server encryption testing. Fortunately,

CHAPTER 10 ■ ENCYRYPTING CONNECTIONS TO SQL SERVER 2008

205

there is an updated version of Network Monitor that we will use for this chapter, which incidentally does
now support promiscuous mode, version 3.3, available from Microsoft at http://www.microsoft.com/
downloads/details.aspx?displaylang=en&FamilyID=983b941d-06cb-4658-b7f6-3088333d062f.

Network Monitor is a fairly straightforward application, full of features for whittling down the
potentially hundreds of thousands of packets to a handful that will aid you in your network
investigations. All that you really need to do is select a network interface on which to capture packets,
apply a capture filter (if required), and click on the start button. Since the version we are running here
captures only packets on the local network interface, you will need to install and run Network Monitor
on your SQL Server, the required disclaimer stating that you should build a test environment for this
type of analysis and not run it directly in production unless absolutely essential.

While there are many other network monitoring applications out there in the world, such as Snort,
Ethereal, and Wireshark, I chose Network Monitor for its simplicity, familiarity, and because it is a free
Microsoft product.

Figure 10-1 shows a sample capture using Network Monitor on a wireless network (so much
for data on the wire). We will use Network Monitor throughout this chapter to capture and analyze
connections to SQL Server 2008.

Figure 10-1. Sample capture using Network Monitor

CHAPTER 10 ■ ENCYRYPTING CONNECTIONS TO SQL SERVER 2008

206

There are three main tabs that are important to note while we are working with Network Monitor in
this chapter: Capture Filter, Display Filter, and Select Networks. Within these tabs are four windows that
will be of utmost importance to packet sleuthing DBAs. These windows are: Network Conversations,
Frame Summary, Frame Details, and Hex Details.

It is within the Network Conversations that we will be able to determine what application
the network traffic we are looking at is initiated from or destined for, such as sqlsever.exe. The Frame
Summary window displays all of the captured packets on the network segment we are monitoring and
the Frame Details and Hex Details allow us to further drill down into each packet to see not only packet-
specific information, such as the packet header, source, and destination of the Frame Details window,
but the actual hex payload of the packet, which could include plain text data, the kind we are ultimately
concerned with. In this chapter, we will not configure a capture filter, which would allow us to only see
packets sent from or received by SQL Server, for example, but will instead capture all packets. This is
sometimes useful in analyzing packets that you really had no idea were received by your SQL Server,
such as broadcast storms, which obviously could impact performance. After the capture is completed for
each test, we will issue a display filter to limit the results, looking for SQL Server specific packets.

SQL Server Encryption Out of the Box
Let’s assume for a minute that you have in your organization users who have been tasked with writing
ad-hoc queries to analyze financial data for my publicly traded company. They have gone through the
process of requesting access and that access has been granted to a reporting database where the
financial data is refreshed daily (running ad-hoc queries against production databases is generally
frowned upon). For the sake of argument, also assume that the users have been given SQL authenticated
usernames and passwords to access the data as opposed to using their Windows account or AD group
association for access. As DBA, can you be confident that their account credentials cannot be
compromised with a tool such as Network Monitor? How about the financial data they are querying?
What would you discover if you trained a packet sniffer on the SQL Server instance where the ad hoc
queries are being executed?

If you are using SQL Server 2005 or higher, you can rest assured that at least the login process for the
financial data analysts will be encrypted. This is because at startup, SQL Server 2005 and 2008 willcreate
(if no other certificates exist) a self-generated certificate that it uses primarily to encrypt authentication
requests. You might ask, how do I know that SQL Server generates this certificate, and furthermore, can I
use it to encrypt other data such as the financial results, that most likely includes my salary? Both are
very good questions. First, how do I know that this self-generated certificate exists?

The SQL Server Error log holds much pertinent information for the DBA. One such piece of
information it contains is an entry at every startup that relays that SQL Server has created a self-
generated certificate, shown in Figure 10-2.

CHAPTER 10 ■ ENCYRYPTING CONNECTIONS TO SQL SERVER 2008

207

Figure 10-2. Self generated certificate in SQL Server error logs

There are a couple of caveats regarding this self-generated certificate. For one, since it is used
primarily for login encryption, it is not intended for use to provide full channel encryption from server
toclient. In other words, the public key is not exportable and therefore not available to clients to
specifically request encryption because it cannot be trusted. If a client explicitly requests encryption
from the SQL Server an error message will be generated like the one in Figure 10-3. You will notice the
error is self-evident, “The certificate’s CN does not match the passed value.” You will receive this error
anytime you try to connect to a SQL Server instance from a client that forces encryption when SQL
Server has a self-generated certificate.

Figure 10-3. Error connecting to SQL Server self-generated certificate from client

CHAPTER 10 ■ ENCYRYPTING CONNECTIONS TO SQL SERVER 2008

208

It should be noted, though, that there is a circumstance where this self-generated certificate can be
used to encrypt transferred data, which we will demonstrate in a later section on forcing encryption for
server and client connections. For now, however, just know that using this self-generated certificate for
anything other than login authentication encryption is not recommended as a sound security practice.

Prior to moving on to creating your own certificate to apply to SQL Server, one important nuance to
mention here is that SQL Server will attempt to create and/or use certificates based on the service
account that is set to start the SQL Server service. In other words, if you have a service account
for SQL Server, the self-generated certificate will be generated in this accounts profile on the local server.
Figure 10-4 shows the path of the self-generated certificates, in this case Network Service, which is
configured as the logon account of the SQL Server service: C:\Documents and Settings\NetworkService\
Application Data\Microsoft\Crypto\RSA\S-1-5-20.

Figure 10-4. Default location of self-generated certificate

While there is not much you can do with the self-generated certificate, knowing its location could be
important if for any reason access is revoked for this folder. If SQL Server cannot generate a certificate,
then the SQL Server service will not be able to start successfully.

CHAPTER 10 ■ ENCYRYPTING CONNECTIONS TO SQL SERVER 2008

209

Applying a Self-Signed Certificate
We showed in the previous section how SQL Server creates a self-generated certificate if no other
certificate exists that can be used. While this self-generated certificate will be used to encrypt sensitive
information like login passwords otherwise passed as plain text, it is limited in scope on how a client
can request encryption for other data transfers. What we really need is a certificate that can be used to
encrypt all packets. There exists a chain of trust with certificates whereby the client application, such as
a Web browser, trusts a certificate being used by a server. This can be most evident when applying a
certificate to a Web server such as Internet Information Server (IIS). If the Web browser connects to a
web site hosted by IIS with a certificate that does not follow the chain of trust back to a root certificate
authority, you will receive a warning message stating that the certificate, though valid, cannot be verified
as trusted. This will be the case for a self-signed certificate that we will use in this section for creating a
self-signed certificate purely for the sake of testing secure connections to SQL Server 2008. Self-signed
certificates differ from the self-generated certificate that SQL Server 2005 and beyond will use natively.
First, you have the ability to create an exportable private key with the self-signed certificate we will
create here. Secondly, you can specify the Fully Qualified Domain Name (FQDN) for the SQL Server
where you will apply the self-signed certificate; this is a crucial requirement as otherwise you will not be
able to assign the certificate to your SQL Server instance.

Self-signed certificates should be used for testing purposes only and not ever in a production
environment because of the innate lack of trust of a valid root CA, such as those issued by a Windows
Certificate Authority server for example, which we will cover in the next section. Without this chain of
trust, the client has to trust that the SQL Server that is presenting the certificate is the server it claims to
be and vice versa. With self-signed certificates, attacks like Man in the Middle attacks can be executed. In
Man in the Middle attacks the public key of the SQL Server can be intercepted and used to impersonate
the server and exploit the client.

There are several ways to create your own self-signed certificate for use in testing secure channel
connections from client to server applications. Tools such as OpenSSL (http://www.openssl.org) and
SelfSSL distributed with the IIS 6.0 Toolkit provide a fast and easy way to create a self-signed SSL certificate.
Another tool that we will show here is the command makecert.exe. You can acquire makecert.exe from
either the .Net Framework SDK or the Windows Server Platform SDK (http://msdn.microsoft.com/
en-us/library/aa386968(VS.85).aspx). The version of makecert.exe used here is compatible with both
Windows XP and Windows Server 2003. An example of makecert.exe that we will use to generate a self-
signed certificate for use with a SQL Server 2008 instance is:

makecert -pe -n "CN=knrlt.apress.com" -ss my -sr Localmachine -a sha1
-eku 1.3.6.1.5.5.7.3.2,1.3.6.1.5.5.7.3.1 -r "sql_2008.cer"

Some important command-line options of note for the makecert.exe command are:

• -pe: Mark the private key as exportable.

• -n: Name of the certificate, which in this case will assign the CN (Common Name)
as the fully qualified name of the SQL Server.

• -ss: Name of the certificate store.

• -sr: Registry location for the certificate store.

• -a: Hash algorithm to use, in this case, sha1. MD5; the default is the other valid
choice.

CHAPTER 10 ■ ENCYRYPTING CONNECTIONS TO SQL SERVER 2008

210

• -eku: Specifies the insertion of enhanced key usage object identifiers (OID), such
as 1.3.6.1.5.5.7.3.1, which sets the certificate as “server authentication,” again a
requirement for applying the certificate to be used by SQL Server.

• -r: Creates the certificate file as certificatename.cer.

Executing the makecert command in a Command Prompt window will create the certificate and
deploy it to the certificate store specified. As you can see in Figure 10-5, though the output is minimal by
way of a “Succeeded” message, at least we know it worked.

Figure 10-5. Creating a self-signed certificate with makecert.exe

Next we will want to verify the creation of the ticket in the certificate store. This can be
accomplished in a number of ways, but the easiest way is to the use the Certificates snap-in for
Microsoft Management Console (MMC). To view the certificate store via MMC, follow these steps:

1. Click Start Run and type MMC.

2. From the File menu on the Console select Add/Remove Snap-in.

3. Select the Add button in the Add/Remove Snap-In Dialogue box.

4. Next select the Certificates Snap-in and click Add. Choose Computer Account
and click Next. (You have the option of selecting My user account. SQL Server
can use certificates from either stores, a user account or a computer account.)

5. Select Local computer and then click Finish.

6. Finally, click Close on the Add Snap-in Dialogue and then click OK. You should
now see the certificate store for the local computer. If we expand the Personal
folder and click Certificates, we can see the deployed certificate from the
makecert.exe command, as shown in Figure 10-6.

CHAPTER 10 ■ ENCYRYPTING CONNECTIONS TO SQL SERVER 2008

211

Figure 10-6. Deployed self-signed certificate in MMC

With the certificate now in place, we have several more options for secure channel communications
with SQL Server than we have using the self-generated key SQL Server will create with each service
restart. When SQL Server starts, it looks in the certificate store of the Windows system on which it runs
for a valid certificate that can be applied in lieu of the self-generated certificate. If it finds one, it will
apply it with no other options configured, which we will get to in the section “Enforcing Encryption
between Server and Client.”

With nothing more than the self-signed certificate deployed on the local server, let’s restart SQL
Server and see what happens. Since we will be using the SQL Server Configuration Manager throughout
the chapter, it is a good time to go ahead and launch it. Click Start All Programs Microsoft SQL
Server 2008 Configuration Tools SQL Server Configuration Manager. You can see in Figure 10-7 all
of the services that are currently installed for one or more instances. Notice that the MSSQLSERVER
instance of SQL Server is set to Logon as LocalSystem. I will discuss the importance of the logon account
for SQL Server and how it works with different types of installed certificates next.

CHAPTER 10 ■ ENCYRYPTING CONNECTIONS TO SQL SERVER 2008

212

Figure 10-7. SQL Server configuration manager

Simply right-click on the SQL Server service for the default instance and select Restart. You can
assign the certificate to more than one SQL instance per server. After the service has restarted, let’s check
the SQL Server Error Logs again to see if the newly provisioned certificate created via makecert.exe has
been discovered and loaded by the default SQL Server instance. Figure 10-8 shows the new certificate
SQL Server chosen from the local machines personal certificate store.

CHAPTER 10 ■ ENCYRYPTING CONNECTIONS TO SQL SERVER 2008

213

Figure 10-8. SQL Server errror log showing certificate

With this certificate now being used by SQL Server, we can be assured that, like with the self-
generated certificate, all logon authentication attempts will be encrypted using the cipher strength of the
certificate. You can see the actual hash code for the certificate listed in the SQL Server Error Logs as well.
Though we did not explicitly select this certificate for use with SQL Server, it still loaded as a valid
certificate. Later, we will explicitly select a certificate and show how to confirm the certificate that we
specified is the one actually loaded by SQL Server. For now, know that with the self-signed certificate has
been successfully applied. It is worth a look with Network Monitor to see what a logon packet may look
like on the wire. Figure 10-9 shows a sample capture of a SQL Server logon attempt, encrypted as
expected. Notice, too, the description of the captured packet is TDS: TLS SSL, which is the secure
channel protocol we expect to see based on the cipher suite negotiated between the server and client.

CHAPTER 10 ■ ENCYRYPTING CONNECTIONS TO SQL SERVER 2008

214

Figure 10-9. Encrypted SQL Server logon connection

At this point, we could dive in and start forcing encryption for either the server or the client
application, but that would be getting ahead of ourselves. We have successfully provisioned a self-signed
certificate which we have verified is doing its job in securing logon authentication requests. The next
step before utilizing certificate-based encryption to its fullest potential is to acquire a legitimate
certificate from a certificate authority. The end result will be the same, in the sense that we will have a
certificate provisioned for use with SQL Server. However, the biggest advantage is that by acquiring the
key from a valid CA, the chain of trust will be established. After we acquire a valid certificate from a CA,
we will then move on to testing client/server secure channel communications with and without
certificates.

Requesting a Certificate from a Valid CA
Provisioning a server to use a certificate from a trusted CA is quite easy, assuming you have a CA sever
inyour organization, which many do. By having a certificate that every client can validate by following
the chain of trust back to the issuing authority, you can be assured that the connections to your SQL

CHAPTER 10 ■ ENCYRYPTING CONNECTIONS TO SQL SERVER 2008

215

Server, once configured to use this certificate, will be secure as all of the clients that connect to the
server, assuming the server is internal to your private network, will trust the identity of the SQL Server
and can establish secure channel communications without issue. For public connections to SQL Server
via the Internet, a practice that is not as common, you can request a certificate from a trusted certificate
authority such as Verisign or Thawte for a price. Both companies offer a free SSL trial certificate,
generally for 14 days, for testing. While these certificates are often provisioned for web site security,
applying a certificate for SQL Server secure channel communications would be just as important if the
SQL Server instance was publicly facing on the Internet.

In this section, we are going to request a certificate from a Windows CA server. The first step in
requesting a certificate is to open the Certificates MMC that we walked through in the previous section.
This time, however, instead of reviewing the installed certificates, we are going to request one. Right
click the Personal Certificates folder and select All Tasks Request New Certificate, as seen in
Figure 10-10.

Figure 10-10. Requesting new certificate from CA

This will launch the Certificate Request Wizard, as seen in Figure 10-11.

CHAPTER 10 ■ ENCYRYPTING CONNECTIONS TO SQL SERVER 2008

216

Figure 10-11. Certificate request wizard

The wizard will walk you through the process of requesting a certificate from your domain CA. You
can select the type of certificate you want and the key length of that key. The longer the key length, the
more overhead via CPU utilization will be incurred, which we will cover in the “Performance” section.
For our purpose, a key strength of 1024 is acceptable from the Microsoft RSA SChannel Cryptographic
Provider (see Figure 10-12).

CHAPTER 10 ■ ENCYRYPTING CONNECTIONS TO SQL SERVER 2008

217

Figure 10-12. Requesting RSA X.509 certificate

Once you select the CA Server from the next dialogue, you have the option of selecting a friendly
name for your certificate. Friendly names are useful when working with many similar types of
certificates. These friendly names, by default, will show up in drop down list of certificates, for example,
when assigning the certificate to SQL Server, which we will show next. We will name the requested
certificate 4SQL_Dom, which Figure 10-13 shows.

CHAPTER 10 ■ ENCYRYPTING CONNECTIONS TO SQL SERVER 2008

218

Figure 10-13. Naming requested certificate

When you click Finish, you should see the final message of the certificate request, which, if all
worked, will be successful and we can then move onto applying the newly issued certificate to SQL
Server, much like we did for the self-signed certificate with makecert. However, in this case, we are going
to use the CA-issued certificate in the next section to demonstrate how to configure the SQL Server
instance to utilize the provisioned certificate and enforce encryption for network requests other than for
logons; there might be packets of data that contain employee salaries after all and we cannot have that
floating about the network in plain view.

Enforcing Encryption Between Server and Client
To this point, we have provisioned out SQL Server for three different certificates: the self-generated
certificate that SQL Server 2005 and beyond will use natively if no other “server authenticated”
certificates have been loaded, a self-signed certificate using makecert.exe, and a certificate acquired
from a CA server in the domain. What we have not done yet is enable secure channel encryption for
anything other than logon negotiation whereby plain text passwords will be encrypted on the wire when
authenticating from a client application. It is now time to explain the different options that are available
to you for forcing encryption between server and client connections.

There are two basic scenarios that will force SSL/TLS connections to be made to SQL Server, either
by forcing all connections to be encrypted at the server level or forcing connections at the client level. It
is also possible for a user to simply request an encrypted connection from the client application, such as
SQL Server Management Studio or a web application, but that is not a mandated process and relies upon
the user or application owner to set the connection properly. We will cover the different types of

CHAPTER 10 ■ ENCYRYPTING CONNECTIONS TO SQL SERVER 2008

219

applications and connections in the next section. For now, let’s show how to configure both basic ways
to force encrypted connections to SQL Server.

Forcing Encryption at the Server
SQL Server can be configured to force all connection packets to be encrypted. We will perform this step
in the SQL Server Configuration Manger, which we previously used to restart SQL Services. In SQL Server
Configuration Manger you will see SQL Server Network Configuration, which contains the different
protocols that can be used for connections, like Shared Memory, Named Pipes, TCP/IP, and VIA (Virtual
Interface Adapter). Of the four, the most commonly used protocols are Shared Memory and TCP/IP, the
latter of which we are primarily concerned with. However, we will configure encryption at the individual
protocol level but for all protocols. Right-click on “Protocols for <instancename>” and select Properties.
As seen in Figure 10-14, the Force Encryption flag is shown, which by default is set to “No.”

Figure 10-14. Setting force encryption flag

To force encryption, we will simply drop down on the Force Encryption flag value and
select “Yes.”

CHAPTER 10 ■ ENCYRYPTING CONNECTIONS TO SQL SERVER 2008

220

Also, in this Property windows you will see the Certificate tab. As we know, SQL Server will use a
certificate if it has been provisioned on the server, even without specifying the certificate directly on the
Certificate tab. However, you may have more than one certificate and can specify which one to use.
Clicking on the Certificate tab, we can drop down and see the provisioned certificates for the server. You
may recall that we had given the CA assigned certificate a friendly name of 4SQL_Dom. If a friendly
name exists, we will see the image shown in Figure 10-15. We will select this certificate and click OK,
which will prompt us to restart SQL Server for the changes to take effect.

Figure 10-15. Selecting friendly named certificate

With SQL Server restarted, we can be assured that all packets issued from and sent to SQL Server
will be encrypted, right? We could assume that, but of course being thorough DBAs, we will test that
and all of the myriad configurations available to us for encryption. Then, you may decide that you do
not want to force secure channel encrypted packets for all SQL Server connections due to the potential
performance overhead. Instead, you may make it a policy that a specific application or user base should
be forced to use encryption. In that case, you have the option of enforcing encryption via the SQL Native
Client 10.0 Configuration, also located in SQL Server Configuration Manager.

Forcing Encryption from Clients with SQL Native Client
To force encryption from client connections, we will stay in SQL Server Configuration Manager but
instead of forcing the server network configuration we will right-click on the SQL Native Client 10.0
Configuration and select Properties. You can see that the options are similar to the server network

CHAPTER 10 ■ ENCYRYPTING CONNECTIONS TO SQL SERVER 2008

221

configuration with the ability selected to the Force Protocol Encryption flag as “Yes.” The key distinction
is the “Trust Server Certificate” flag, as you can see in Figure 10-16. When enabled, this flag will allow the
client to force encryption to a server even when the client does not have a chain of trust via a public key,
such as it would have in a domain where a valid domain CA issued the certificate or if the certificate is
self-generated. I had stated earlier in the chapter that it was possible to use the self-generated certificate,
the default for SQL Server, to encrypt more than just logon credentials. The “Trust Server Certificate”
combined with “Force Protocol Encryption” will accommodate that particular scenario.

Figure 10-16. SQL Native Client Properties

Creating and Testing Secure Connections
Now that we have taken the time to provision various types of SSL certificates for our SQL Server
instance and started, restarted, and verified that indeed we can expect secure connections from our
applications, either by forcing encryption via server or client, it is time to undo it all and start from
scratch to show what can be expected from non-secure network communications. I think you will be
surprised at what you see. Now, let’s go back to default, no certificates provisioned and no forced
encryption to where only a self-generated certificate exists for the sake of encrypting logon packets. This
is what you can expect out of the box. As we all know, there are several types of applications that can
connect to your SQL Servers. In this section, I will cover two: SQL Server Management Studio and SQL
Server Reporting Services for demonstration. Both of these applications, like others you may be familiar
with, share a common property and that is a connection string. We will build up from no encryption to

CHAPTER 10 ■ ENCYRYPTING CONNECTIONS TO SQL SERVER 2008

222

full-blown secure channel enforcement via these application demos, which will lead to the final section
on performance.

SQL Server Management Studio Example
Let’s assume that we have sensitive data that is not encrypted by any other means. This could be the
salary information mentioned earlier or credit card numbers or social security. Whatever data that you
do not want to be passing about in unencrypted form counts. For sake of demonstration, let’s look at
the AdventureWorks2008 database, employee information. I have always wanted to work for Adventure
Works and make an exceptional salary, but I doubt that will ever happen. The least I can do is protect
the fake employees’ salaries that work for the company fictitiously. So, back at default, self-generated
certificate I open SSMS and issue the following query, with Network Monitor diligently capturing the
packets.

SELECT TOP 1000 [BusinessEntityID]
 ,[NationalIDNumber]
 ,[LoginID]
 ,[OrganizationNode]
 ,[OrganizationLevel]
 ,[JobTitle]
 ,[BirthDate]
 ,[MaritalStatus]
 ,[Gender]
 ,[HireDate]
 ,[SalariedFlag]
 ,[VacationHours]
 ,[SickLeaveHours]
 ,[CurrentFlag]
 ,[rowguid]
 ,[ModifiedDate]
 FROM [AdventureWorks2008].[HumanResources].[Employee]

What I find is just salary information after all, though that can certainly be gleaned with a bit more
probing. What we were able to capture, as you can see in Figure 10-17, is actually a username, among
other data like the user’s title, “Sales Representative.” The bottom line is that the data was transferred
across the wire with plain text. Also notice that in the Network Monitor capture, the protocol is TCP.
Jillian0 is mine.

CHAPTER 10 ■ ENCYRYPTING CONNECTIONS TO SQL SERVER 2008

223

Figure 10-17. Capturing usernames in plain text with Network Monitor

The same query when issued form an application with encryption enabled will return much
different results in the Network Monitor capture. Let’s assume now that the Force Encryption option for
the Server Network Configuration is set to “No,” however a valid certificate has been applied to the
server on the Certificate tab of SQL Server Configuration Manager. This will allow for a requested, not
forced, encrypted connection to SQL Server. When connecting to the SQL Server within SSMS, you have
the option of selecting “Encrypt Connection” from the Options menu, seen in Figure 10-18.

CHAPTER 10 ■ ENCYRYPTING CONNECTIONS TO SQL SERVER 2008

224

Figure 10-18. SSMS force encryption option

With the encrypted connection established, issuing the same query produces different results,
whereby the former plain text results, captured in Network Monitor, now shown as encrypted,
unintelligible packets (see Figure 10-19). Also notice that the protocol, while still TCP, now shows
TLSSSL data, which proves the connection is being encrypted via secure channel communications.

CHAPTER 10 ■ ENCYRYPTING CONNECTIONS TO SQL SERVER 2008

225

Figure 10-19. Encrypted employee information

There are other scenarios whereby encryption can be configured for SQL Server, either enforced
or requested; SSMS only being one such application. All applications will request or be forced into
encryption by SQL Server or the client configuration or connection strings.

CHAPTER 10 ■ ENCYRYPTING CONNECTIONS TO SQL SERVER 2008

226

SQL Server Reporting Services Example
Of course SSMS, a DBAs best friend, is not the only application or service that will request secure
channel communications to a SQL Server instance. Other services that connect to SQL Server should be
able to utilize the encryption algorithms to secure transmitted packets between the application and
backend SQL Server. One such application is SQL Server Reporting Services (SSRS). SSRS is a good
example of an application that can be secured in more than one location and protocol. It is a Web-based
application at the front end, using the standard HTTP protocol to deliver reports to end users. However,
another part of the SSRS report is the data source that will ultimately connect to a database, presumably
on a SQL Server instance. While you may have applied a certificate to the SSRS Web portion the data
source connection to provide HTTPS secure connections to the Web-based portion on SSRS, that does
not mean that the data that is delivered to SSRS for rendering to the client will be secure.

In order to secure the data source, you will need to instruct the data source to request encryption.
You do that via the connection string. As a DBA or developer you will be familiar with connection strings.
Connection strings are values that define how to connect to a data source, such as a server name,
database name, often called a catalog, and a type of authentication. Other values can be concatenated
on the connection string to instruct the application on how to connect to the data source. Encrypting a
connection is another such property value you can set on the connection string.

In the example of SSRS, it is quite easy to request an encrypted connection. In design mode for
SSRS, you will have to create a data source that the report is going to use. Previously we used the
AdventureWorks2008 database as a source to demonstrate confidential data transmitted on the wire by
way of a username. We will use the same query here for SSRS. Notice in Figure 10-20, the SSRS report has
a data source called Encrypt_Test. The data source defines the server and database that the query, or
data set, will use to feed data to the report. The data set is called Emp_Confidential. You can have
multiple data sets per data source. All encryption is controlled at the level of the data source. You can
also see that the Login ID is included in the report. Without encryption, as we have seen, this
information could be compromised.

Figure 10-20. SSRS data source

CHAPTER 10 ■ ENCYRYPTING CONNECTIONS TO SQL SERVER 2008

227

To secure the data that is being fed to the report from the SQL Server instance, all that we need to do
is configure the connection string that makes up the Encrypt_Test data source. Looking at the default
properties of the Encrypt Test data source, it is not immediately evident how to force encryption from
the report to the SQL Server instance. Figure 10-21 shows the default properties for the data source.

Figure 10-21. Default data source properties in SSRS

If we click on the Advanced tab of the Connection Properties, two additional property values
become available, Encryption and TrustServerCertificate. These options, as discussed previously, will
force an encrypted session and trust the server certificate on the SQL Server. You set the Encrypt value to
True to force the encryption. However, if you select TrustServerCertificate, you must also select Encrypt
to be True. Figure 10-22 shows the Advanced Properties of the data source connection.

CHAPTER 10 ■ ENCYRYPTING CONNECTIONS TO SQL SERVER 2008

228

Figure 10-22. Advanced properties of a data source connection for SSRS

Ultimately, the options you select in the graphical properties for the connection will comprise the
actual connection string, which will be represented in text. The connection string for the Encrypt_Test
data source with Encrypt = True and TrustServerCertificate = True will look like:

Data Source=Server1;Initial Catalog=AdventureWorks2008;Integrated
Security=True;Encrypt=True;TrustServerCertificate=True

Performance
Encrypting connections between the SQL Server instance and client application will require additional
CPU resources. How much CPU will be required and the performance impact is dependent, as you can
imagine, on the amount of data that is being encrypted as well as the cipher strength of the certificate. A
1024-bit RAS Public key, for example, is going to incur less processing overhead than an 8192-bit key.
Another important factor is the number of connections requiring encryption as well as the amount of
data transferred. The impact will not be relegated to the SQL Server, but will also appear on the client
application which itself must participate in encrypting and decrypting packets sent to and from the SQL
Server. Also, an additional round trip is required when connecting to SQL Server that is configured to use
encryption. All of these combined may make DBAs think twice about configuring encryption. We would
recommend that before enabling SSL/TSL encryption for SQL Server that you thoroughly test the
circumstances that you may encounter in a non-production system. This way, you can be certain that
the encryption levels you choose meet expectations for both application security as well as performance.

CHAPTER 10 ■ ENCYRYPTING CONNECTIONS TO SQL SERVER 2008

229

Summary
In this chapter, we focused on securing communications that occur between SQL Server client
applications and SQL Server itself. By provisioning a server with a trusted certificate or even when a
certificate is not available, it is possible to enforce secure channel communications so that there is not
fear that a hacker may eavesdrop on your network and glean sensitive data, like we saw with user logon
information. Differing form the physical storage of encrypted data, SSL and TLS, part of the overall
Cryptographic Suite for network protocol security available in Windows Operating Systems, offers
another level of security for confidential data.

C H A P T E R 11

■ ■ ■

231

Regulatory Requirements

Over the past decade, encryption of data at rest has quickly moved from being a tool reserved for
governments and large organizations to a day-to-day business requirement for organizations of all sizes.
As malicious hackers have increased their ability to steal sensitive information from database servers
and laptop computers, pressure has increased on governments and businesses to counter the threat.

Increasing demands for better security has been met with a slew of new laws and regulations to
force implementation of encryption and other countermeasures against data theft. Many industries have
adopted, or are in the process of adopting, increased security standards. In some industries, it’s not
uncommon to see mandatory security measures and compliance steps detailed explicitly in contracts.

In this chapter, I’ll discuss some of the different types of regulations, laws, and contractual
obligations that you may face as a security officer, administrator, or data steward.

■ Caution Bear in mind that the penalties for noncompliance with laws, regulations, and contractual
requirements are constantly changing and specific to the locales and industries involved. This is where I insert

mydisclaimer: I am not a lawyer. For specific information about compliance and noncompliance penalties,

consultqualified legal counsel.

Regulations
There are dozens of laws and regulations about data protection on the books, with more being added
every day. In the United States alone, there are laws and rules being enforced by regulatory agencies at
the federal level, laws at the state level, and the potential for even more regulation at the local level. In
other countries, laws concerning data protection are in different stages of implementation at any given
point in time. For companies that do business internationally the result can be a maze of regulations to
navigate to ensure compliance. The following sections provide an overview of laws and regulations that
require businesses to take steps to protect confidential data. While not comprehensive in depth, this
survey gives an idea of the sweep and reach of these confidentiality laws. For specific answers about your
organization’s compliance obligations with these and other laws and regulations, consult professional
legal counsel.

CHAPTER 11 ■ REGULATORY REQUIREMENTS

232

Health Insurance Portability and Accountability Act
The Health Insurance Portability and Accountability Act (HIPAA) is a federal law in the United States
that pertains to the health care industry. HIPAA has two rules that are of interest to those charged
withprotecting healthcare data. The first rule, the HIPAA Privacy Rule, requires certain “covered
entities”—health plans, most health care providers, and health care clearinghouses—to put safeguards
in place to protect health care information. These safeguards generally include some form of encryption
of health care data, which includes health status, provision of health care, and payment for health care.
Generally speaking, this is interpreted to include medical records, payment records, and other patient
identifying information.

The HIPAA Security Rule requires encryption of certain electronically stored health care data, and
also requires data corroboration (or data integrity validation). The data corroboration can be
implemented via digital signatures, cryptographic hashing, and checksums.

Sarbanes-Oxley
The Sarbanes-Oxley Act (SOX) is a United States federal law that was enacted in response to several
corporate accounting scandals that broke at the dawn of the 21st century. SOX was introduced to restore
confidence in the securities markets after investors lost billions as a result of these scandals.

Two sections of SOX are of primary interest to those who must protect data. Sections 302 (Internal
controls) and 404 (Assessment of internal controls) require implementation and auditing of internal
controls. These sections of the act are meant to ensure effective internal control over financial reporting
is exercised by management. Internal controls include those which are designed to prevent ordetect
fraud. Encryption and cryptographic functions (such as digital signatures and cryptographic hashes) can
be employed to prevent and detect tampering with financial data.

Fair and Accurate Credit Transactions Act
The Fair and Accurate Credit Transactions Act (FACTA) is a United States federal law that charges
various government agencies with the task of instituting new rules and regulations for the protection
ofconsumer credit data. These rules may require safeguarding confidential consumer information and
credit data through a variety of methods, including encryption.

Federal Information Security Management Act
The Federal Information Security Management Act (FISMA) is specific to Federal government agencies
and those vendors who work with government agencies. FISMA indicates that the security requirements
of FIPS Publication 200 (“Minimum Security Requirements for Federal Information and Information
Systems”) must be followed. This publication defines rules that cover the areas of “media protection,”
“system and communications protection,” and “system and information integrity.”

Personal Information Protection and Electronic Documents Act
The Personal Information Protection and Electronic Documents Act (PIPEDA) is a Canadian federal law
that requires private-sector organizations to take appropriate security measures to protect the personal
information of individuals. Encryption is often considered an appropriate security measure when
storage of personal information is involved. In addition to the federal PIPEDA law, Canada has
provincial laws that may also mandate additional security of personal information.

CHAPTER 11 ■ REGULATORY REQUIREMENTS

233

Data Protection Act
The Data Protection Act of 1998 (DPA) is a United Kingdom law that requires appropriate technical and
organizational measures be taken against unauthorized or unlawful processing of personal data. It also
requires steps be taken to protect against “accidental loss, destruction, or damage to personal data.” The
appropriate technical measures often include encryption of personal data.

Data Protection Directive
One of the core principles of the Data Protection Directive (DPD, or Directive 95/46/EC) of the European
Union (EU) is that collected personal data should be “kept secure from potential abuses.” The Directive
applies to all personal information collection and processing, whether done manually or via automation.
Implementation specifics are implemented on a country-by-country basis, the DPD does require
implementation of security measures which may include encryption. Transfer of personal data from
within the EU to outside countries requires the country guarantee an “adequate level of protection.”

California SB 1386 and AB 1298
In the United States, you may have to deal not only with federal laws, but also with state and local
lawsconcerning privacy and consumer protection. California is notable because privacy is a right
guaranteed under the state Constitution, and the right to privacy strongly shapes consumer privacy
anddata protection laws there. California law SB 1386 requires reasonable protections for personal data,
primarily to protect against identity theft. AB 1298 expands the definition of “personal information” in
SB 1386 to include medical information and health insurance information. California also has
requirements for notification of individuals in the event of a data breach.

Massachusetts Data Protection Law
The Massachusetts Data Protection Law is known as one of the toughest state data protection laws in the
country. This law explicitly spells out that a minimum level of 128-bit encryption must be used for the
encryption of personal data. The Massachusetts law also requires individual notification in the event of
breaches or corruption of personal data.

Other State Laws
I mentioned California and Massachusetts state laws in this section because they are notable in their
scope and toughness. However, every state in the United States has its own combination of consumer
protection, data privacy, and notification laws. Likewise, Canadian provinces have their own provincial
laws concerning consumer protection and personal data security. Data stewards should familiarize
themselves with applicable laws to ensure compliance.

■ Tip When in doubt about the applicability or specifics of federal, state, or local laws governing data protection,

consult with an attorney who specializes in the field.

CHAPTER 11 ■ REGULATORY REQUIREMENTS

234

The Cost of Data Loss

The cost of noncompliance with applicable laws that require personal, medical, and credit data protection
can be very steep—and not just in dollars. Consider the following generalized costs that can be incurred
by an organization in the event of a data breach:

None of this includes the additional incidental costs associated with a data breach, such as consulting
costs associated with bringing in third-party auditors to investigate after the fact, business interruption
costs, loss of hardware (such as stolen laptops), and lost productivity after a data loss incident.

Contracts
Many industries have enacted standards that they implement through contracts. Credit card companies
include standard security clauses in their contracts with credit card processing companies, for instance.
The security clauses mandate what data pertaining to credit card processing can be stored, what data
needs to be encrypted, and often the encryption algorithm that has to be used.

Government contractors often have to implement mandated encryption standards as well. When
you do contract work for government departments, such as the Department of Defense (DoD), you have
to comply with federal rules and departmental regulations concerning data protection. No matter what
industry you’re in, it’s important to research your contractual obligations and industry-wide standards
for data protection.

What to Encrypt
How do you know what data to encrypt? Although there are some data elements that you should always
encrypt, such as social security numbers and credit card numbers, the data elements that require
encryption are not always so clear-cut. There are, however, data elements that should serve as “red flag”
indicators—meaning you should consider them as candidates for encryption and additional protection
whenever you see them.

• Many states, countries, and local governments have implemented laws that require
notification of individuals in the event of a data breach. California law, for instance,
requires notification of consumers in the event of breaches in security,
confidentiality, or integrity of confidential data.

• Data breaches can result in lowered customer confidence in your ability to protect
personal information, resulting in fewer customers willing to do business with your
organization. When CardSystems Solutions, a credit-card processing company,
exposed 40 million credit card numbers to hackers they were dropped by Visa and
American Express as a processor. CardSystems Solutions no longer exists.

• Data loss can cause injured parties, including individuals, organizations that you do
business with, and even state Attorneys General to launch civil suits against your
organization. A class-action lawsuit was brought against TD Ameritrade in 2007
when it became clear that account holders’ personal information was leaked.

CHAPTER 11 ■ REGULATORY REQUIREMENTS

235

As a general rule, the data elements you need to encrypt can be divided into four categories:
(1)personal identification, (2) personal credit and financial data, (3) health and medical records, and
(4)sensitive corporate data. Protection of data that falls into the first three categories of data is dictated
by laws and regulations. The following sections discuss some of the data elements that should serve as
red flag indicators whenever you store them.

■ Note This list is not exhaustive. There are often many industry-specific data elements that can be identified, but

which require specific knowledge of the business.

Personal Identification
Data elements that can be used to personally identify an individual should always be treated as
sensitive. In some instances, a single data element should be treated as confidential, while in other
cases combinations of elements are required to identify a person. The following is a list of data
elements that can be used for personal identification.

• Social Security Number/Tax Identification Number: Social security numbers, tax
identification numbers, and equivalents from non-U.S. countries, should always
be encrypted whenever they need to be stored. Generally speaking, you will not
need to search on these ID numbers and only rarely will you need to report
specifically on these numbers. When these ID numbers are retrieved from a
database it’s usually for identity verification or tax reporting purposes.

• Drivers License Number/Government ID Number: Encryption is strongly
recommended for government-assigned ID numbers, such as driver’s license
numbers. This information can be used in concert with other data elements to
personally identify individuals.

• Name and address: These data elements are often left unencrypted in databases;
however, these two elements combined can be used with other elements to piece
together a complete identity of a person. Whether these elements are encrypted or
not, care should be taken to protect this information from unauthorized persons.

• Email address: Like name and address, email addresses are often left unencrypted.
You should also protect this data to prevent unauthorized access. Remember,
many a spammer would love to get access to your corporate email list to contact
your customers directly.

• Identity verification questions: Many web sites ask questions to verify the identity
of a user prior to sending or resetting a password. These questions, like “What’s
your mother’s maiden name?” and their associated answers should always be
secured.

CHAPTER 11 ■ REGULATORY REQUIREMENTS

236

Personal Credit and Financial Data
Data elements that include personal credit and financial data are always strong candidates for
encryption.

• Credit card numbers: Whenever you see a business requirement to store credit and
debit card numbers, you should first ask whether you really need to store this
information. If you use a credit card processor you may not even need to deal with
the responsibility of storing credit card numbers in your database. If you
absolutely do need to store credit card data, it always needs to be encrypted.
Although some people store the last 4 or 5 digits of credit card numbers in an
unencrypted field, for display or search purposes, this is not a good practice. This
may also be a violation of your contractual or regulatory requirements. If you need
to store the last 4or 5 digits in another field for searches, consider using a keyed
hash to secure it.

• Bank account number: How many times have you received a spam email from a
scammer asking you to send your bank account number, so you could help them
sneak millions of dollars out of their country? There’s a reason they want your
bank account number—it makes it a lot easier for them to steal your money.
Always encrypt bank account numbers.

Health and Medical Records
Health and medical records are, without a doubt, sensitive information. Depending on the type of
business you are in and the state in which you’re doing business, the requirements for data protection
may vary by country and state.

• Medical records: Medical records generally are broadly defined to include any
treatment records, medical test results, and other related records. Medical records
should, as a rule, always be treated as confidential. The level of security that must
be applied to these types of records depends on applicable laws of the countries
and states in which you do business.

• Health payment records: Records and receipts for payment of medical services
and treatment must be treated as confidential as well. Again, the level of security
that must be applied depends on applicable laws.

• Health insurance information/applications: Health insurance information and
health insurance applications must be treated as confidential in a variety of cases.
The level of security that must be applied depends on applicable federal and
state laws.

CHAPTER 11 ■ REGULATORY REQUIREMENTS

237

Sensitive Corporate Data
Protection of sensitive corporate data is a safeguard against corporate espionage. Taking adequate
precautions with your sensitive data will help your organization maintain its competitive edge. To
determine which data elements fall into this category, just answer the simple question “Which data, if it
were obtained by our competitors, would give them a competitive advantage?” Determining which data
elements would hurt your company if they were exposed to the competition is the key to rounding out
your security requirements.

• Compensation data: The competition could do serious damage if they were to get
hold of your organization’s complete compensation data, including salary, wage,
and bonus information. Compensation records are considered sensitive
information and should be treated as such by your organization.

• Financial data: Sensitive organizational financial data can be a damaging tool if it
leaked out of your company and got into the hands of miscreants and corporate
spies. This data should be protected. Note that this is considered separate from
consumer financial data, the exposure of which could lead you afoul of the
regulators.

• Client lists: Lists of clients and customers in the wrong hands can deal a serious
blow to your competitive advantage. These should be protected like other
corporate secrets.

• Contracts: Corporate contracts often contain sensitive information and should be
encrypted when stored electronically, to guard against unauthorized access.

• Secret formulas: Some companies have been built on the success of their secret
formulas. Consider Coca-Cola and Kentucky Fried Chicken (KFC). If the success of
your company is dependent on guarding secret formulas like KFC’s “11 secret
herbs and spices,” encryption is a no-brainer.

• Plans and schematics: Plans and schematic drawings are often extremely sensitive
confidential corporate property. When these are stored, they should be encrypted
to guard against corporate espionage.

• Performance tests: Performance test data, particularly during development stages,
is often considered extremely sensitive. Again, these should be encrypted to
protect against theft and unauthorized dissemination.

CHAPTER 11 ■ REGULATORY REQUIREMENTS

238

Example: From $15 Billion to Bankruptcy
In 2001, the major credit card companies began incorporating compliance with a standard known as
Payment Card Industry Data Security Standard (PCI DSS) into their standard contracts for credit card
processors. PCI DSS is the credit card industry security standard, created to “proactively protect
customer account data”1. In June 2004, Visa Inc. certified CardSystems Solutions, a large credit card
processor, as compliant with PCI DSS.

A year later CardSystems Solutions’ network was hacked, exposing 40 million credit card and debit
card numbers2. CardSystems went from processing $15 billion worth of credit card transactions per year
to bankruptcy when both Visa and MasterCard denied CardSystems the ability to process credit card
transactions. Less than six months after the incident, CardSystems’ assets were bought by another
doomed company, Pay By Touch, which went out of business in 20083.

PCI DSS

The PCI DSS is a 70 plus page standard that details security requirements for merchants and processors.
The centerpieces of this standard include 12 requirements that cover everything from building and
maintaining a secure network to encrypting cardholder data at rest and in transit. You can access
the full PCI DSS version 1.2 at https://www.pcisecuritystandards.org/security_standards/
pci_dss_download.html.

Some People Never Learn
You might think the security failures of CardSystems Solutions, which ultimately drove it out of business,
would have served as sufficient warning to other companies. The Princeton, N.J.-based credit-card
processor Heartland Payment Systems, however, was hacked in January 2009—a mere seven months

1 PCI DSS—PCI Security Standards Council web site: https://www.pcisecuritystandards.org/
security_standards/pci_dss.shtml

2 Wired.com, “Card Systems’ Data Left Unsecured,” 6/22/2009, http://www.wired.com/science/discoveries/
news/2005/06/67980

3 New York Times, “Card Center Hit By Thieves Agrees to Sale,” 10/17/2005, http://query.nytimes.com/gst/
fullpage.html?res=9B07E2DF153FF934A25753C1A9639C8B63

CHAPTER 11 ■ REGULATORY REQUIREMENTS

239

after the American Business Awards conferred the honor of “Best Sales Organization in America” on
them4, 5. The fallout from the Heartland Payment Systems breach included the following:

• Plenty of negative publicity surrounding what many speculated might be “the
largest security breach in the [credit card] industry’s history,”6 possibly eclipsing the
massive TJX breach of 2007.

• Investigations by federal government agencies, including the Securities and
Exchange Commission and the Federal Trade Commission.7

• A class-action lawsuit filed by Heartland Payment Systems’ own shareholders,
who cited “failure to disclose” and misrepresentation of “materially adverse facts”
relating to the security of Heartland’s systems.8

• Lawsuits by banks and credit unions affected by the data breach for “violating the
state’s [New Jersey’s] consumer protection laws” and for “breach of implied
contract.”9

• Even more lawsuits from affected consumers for failure to promptly notify
individuals of the data breach in a timely manner.10

In addition, the attorney general from several states began requesting information from Heartland
Payment Systems concerning the data breach and its handling. Only recently has Heartland Payment
Systems been added back into Visa’s Global List of PCI DSS Validated Service Providers11, with an
indication that their annual “report on compliance” is between one and sixty days late.

In all, Heartland Payment Systems appears to be in the early stages of recovery mode. And they
appear to be making progress in regaining the confidence of Visa; but as of this writing it’s still too early
to tell if they will regain the trust of investors, banks, credit unions, and most importantly, customers.

CardSystems Solutions and Heartland Payment Systems both could have avoided their security
nightmares and minimized their legal exposure by properly implementing the industry security
standards. At best, both of these utter failures of security management should serve as high profile
warnings to other organizations.

4 Heartland Payment Systems, “Heartland Payment Systems Named Best Sales Organization in America by
American Business Awards,” 6/23/2008, http://www.heartlandpaymentsystems.com/article.aspx?id=438

5 Information Week, “Heartland Payment Systems Hit By Data Security Breach,” 1/20/2009,
http://www.informationweek.com/news/security/attacks/showArticle.jhtml?articleID=212901505&pgno=
1&queryText=&isPrev=present

6 Columbus Dispatch, “Breach Prompts Reissue of Bank Cards,” 2/25/2009,
http://www.columbusdispatch.com/live/content/local_news/stories/2009/02/25/CREDIT_CARD_REI
SSUE.ART_ART_02-25-09_A1_V2D1ENE.html?sid=101

7 PC World, “SEC, FTC Investigating Heartland After Data Theft,” 2/25/2009, http://www.pcworld.com/
businesscenter/article/160264/sec_ftc_investigating_heartland_after_data_theft.html

8 MarketWatch, “Shareholder Class Action Filed Against Heartland Payment Systems Inc.,” 4/3/2009,
http://www.marketwatch.com/story/shareholder-class-action-filed-against-heartland

9 PC World, “Banks, Credit Unions Begin to Sue Heartland Over Data Breach,” 3/3/2009, http://www.pcworld.com/
businesscenter/article/160543/banks_credit_unions_begin_to_sue_heartland_over_data_breach.html

10 cnet News, “Heartland Sued Over Data Breach,” 1/28/2009, http://news.cnet.com/
8301-1009_3-10151961-83.html?tag=mncol;txt

11 Visa Inc., “Global List of PCI DSS Validated Service Providers,” as of 6/4/2009,
http://usa.visa.com/download/merchants/cisp-list-of-pcidss-compliant-service-providers.pdf

CHAPTER 11 ■ REGULATORY REQUIREMENTS

240

And It Goes On
In between the time that CardSystems Solutions and Heartland Payment Systems each dropped the
balland exposed millions of credit card numbers to hackers, several other organizations failed their
customers. In 2007, for example, TJX (the parent company of TJ Maxx stores) exposed 45 plus million
customer credit and debit cards to hackers.12 Their failure to properly secure sensitive communications
from the point of sale, and their policy of collection “too much personal information” from customers,
resulted in one of the worst retail hacks in history.

In 2006, a laptop containing names and social security numbers of 230,000 customers and advisers
was stolen from Ameriprise Financial, an investment advisory company spun off from American
Express. Though Ameriprise had previously instituted a policy of encrypting personal data stored on
laptops, the policy went unenforced in this case. All of the customer data on the computer’s hard drive
was unencrypted.13

In 2009, a data storage company lost NY Mellon Bank’s unencrypted backup data tapes with
information including customer names, birth dates, bank account information, and social security
numbers. In a strange case of déjà vu, NY Mellon Bank lost another unencrypted backup tape with
customer financial and personal data on it just a couple of months later.14

I mention these shining security failures not to beleaguer the point or to dredge up news stories
these companies probably wish would just go away. Rather, these examples of utter failure are great
learning tools, and are notable for a variety of reasons, including the following:

• These failures were fairly large, exposing tens of millions of these organizations’
customers to potential fraud and abuse.

• Many security failures of this type result in the additional expenses associated
with legal defense in civil court, payment for customer credit monitoring, and
additional compensation settlements.

• These well-known organizations hurt their reputations and in some cases are still
trying to rebuild trust and confidence around their brands.

• All of these failures were not just technical failures of data stewards; they were also
complete and utter failures of every level of organizational management, from the
top down.

• Every one of these organizations should have seen themselves as potential targets.
Any organization that stores, transmits, or processes large amounts of personal,
credit, financial, ormedical data is automatically a high-value target for hackers.
Organizations that engage inthe handling of large volumes of this type of
information need to keep this in mind when designing a security strategy.

• All of these security failures fall into the category of “they should have known.” At
the very least these organizations had access to the same news stories of the
security failures of their competitors and sister organizations to study.

12 USA Today, “Encryption Faulted in TJX Hacking,” 9/26/2007,
http://www.usatoday.com/tech/news/computersecurity/infotheft/2007-09-26-tjx-encryption-breach_N.htm

13 NY Times, “Ameriprise Says Stolen Laptop Had Data On 230,000 People,” 1/6/2006, http://query.nytimes.com/
gst/fullpage.html?res=9F02E6D9103FF935A15752C0A9609C8B63

14 Pittsburgh Post-Gazette, “Another Breach at Mellon,” 5/31/2008, http://www.post-gazette.com/pg/
08152/886254-28.stm

CHAPTER 11 ■ REGULATORY REQUIREMENTS

241

The most shocking aspect to all of these security failures is that every single one of these security
failures was 100% preventable. Simply by defining a proper security strategy, defining organizational
security policies, and proper enforcement would have prevented every single one ofthesehacks.
Remember, when your organization implements proper security the vast majority of hackers will give up
on you as a target and move on to search for softer targets.

Summary
The first decade of the 21st century is literally oozing with the security failures of hundreds of
organizations. This includes small businesses, national firms that we trust with our personal and
creditdata, and large international firms with brand names we see on commercials every night. Many
businesses don’t take the threat seriously, even when it happens to their competition. Others don’t take
it seriously until it happens to them. There are even those who don’t consider taking precautions until it
happens to them twice.

Any organization that processes personal information, credit information, or financial information
tied to a person or medical data needs to protect itself. This first step is to recognize thatyour company
is a potential target. Even if you have a small business, keep in mind that as larger organizations harden
their systems hackers will move on to smaller, softer targets. As I mentioned in Chapter 1, encrypting
your data at rest is the last line of defense in hardening your company infrastructure. Encryption is not a
complete security solution by itself, but it works well to complement a total security strategy.

A P P E N D I X A

■ ■ ■

243

SQL Server 2008 Encryption
Glossary

In this book, I’ve introduced several concepts and used terminology that may be new to many readers.
In this appendix, I’ve rounded up many of the terms used to provide a quick reference to their
definitions.

A
AES

AES, the Advanced Encryption Standard, is the encryption standard adopted by the National
Institute of Standards and Technology (NIST) for use by the US government for use in securing
information classified as Secret and Top Secret. AES is a 128-bit block symmetric encryption cipher
with key lengths of 128, 192, or 256 bits. AES is a subset of the Rijndael algorithm, which supports a
larger number of key lengths. AES was selected to be a Federal Information Processing Standard
(FIPS) in FIPS PUB 197 on November 26, 2001. AES replaced the older DES.

algorithm
An algorithm is a finite sequence of instructions for solving a particular problem or performing a
task. In terms of cryptography, an algorithm is a step-by-step procedure for encrypting, decrypting,
or calculating cryptographic hashes from data.

asymmetric encryption
Asymmetric encryption is an encryption model in which the encryption and decryption processes
use different keys. Modern asymmetric encryption algorithms are based on the public key/private
key pairs, in which the encryption and decryption keys are different but nontrivially related. The
public key is widely known and distributed for encryption while the private key is kept secret and
used for decryption. Although the keys are related, it is considered infeasible to try to derive the
private key from the public key.

APPENDIX A ■ SQL SERVER 2008 ENCRYPTION GLOSSARY

244

authenticator
The authenticator is a binary string that is combined with the encryption key or plaintext during
encryption to further obfuscate the resulting ciphertext. Authenticators are used with SQL Server
encryption functions to prevent wholesale substitution attacks of encrypted data in a table.

B
Base64

Base64 is a character encoding designed for transfer of Multipurpose Internet Mail Extensions
(MIME) content. It is designed to use a subset of symbols that can be represented using printable
7-bit characters. It was originally designed to prevent problems with modification of email data in
transit. Base64 uses the letters A–Z, a–z, 0–9, and the special symbols + and / to represent a 6 bit
group from an input stream. The symbol = is used to pad the result.

binary
Binary data is computer data that is encoded in binary form for storage and processing purposes.
SQL Server stores binary data using the binary and varbinary data types.

BitLocker Drive Encryption
BitLocker Drive Encryption is a feature introduced in Windows Vista and Windows Server 2008 to
provide full volume encryption and integrity checking when a TPM is present.

BLOB
Binary large object (BLOB) data is data that is stored using the varbinary(max) data type. A BLOB
column or variable can hold up to 2.1 GB of data, as opposed to a regular non-LOB varbinary or
binary column or variable, which can max out at 8,000 bytes of data.

block
A block is a fixed-length group of bits that an encryption algorithm operates on at a given time. The
DES family of ciphers operate on 64 bit blocks. AES operates on 128-bit blocks.

brute force attack
A brute force attack attempts to defeat a cryptographic algorithm by trying a large number of
possibilities. A brute force attack on a cipher might include trying a large number of keys in the key
space to decrypt a message. Brute force attack is the most inefficient method of attacking a cipher,
and most cryptanalysis is concerned with finding more efficient means of defeating ciphers.

C
Caesar Cipher

The Caesar cipher is one of the simplest known monoalphabetic substitution ciphers. In this type of
cipher, each letter of a plaintext is replaced by another letter that is a fixed number of positions

APPENDIX A ■ SQL SERVER 2008 ENCRYPTION GLOSSARY

245

down the alphabet. Because of its simplicity, Caesar cipher is considered insecure and, in modern
times, it is generally only used in games and toys.

CAST
CAST is a 64-bit block symmetric encryption algorithm with support for key sizes that range from 40
bits up to 256 bits, depending on which variant of CAST is used. CAST gained popularity initially as
the symmetric cipher used in PGP.

CBC
Cipher Block Chaining is a mode of operation in which each block of plaintext is combined (via
exclusive-OR operations) with the previous block of ciphertext prior to its being encrypted.

certificate
A certificate is an electronic document that uses a digital signature to bind an asymmetric key with a
public identity. In its simplest form, a certificate is essentially an asymmetric key which can have
additional metadata, like a certificate name, subject, and expiration date. A certificate can be self-
signed or issued by a certificate authority.

certificate authority
A certificate authority (CA) is an entity that issues digital certificates for encryption and identity
verification. CAs can also provide verification services for certificates that they issue.

checksum
A checksum is a fixed-length value generated from an arbitrary block of data by a checksum or hash
function. A checksum is used to verify the integrity of a block of data.

cipher
A cipher is an algorithm that performs encryption and decryption of data. Although a cipher
operates by systematically rearranging and obfuscating text on a character-by-character basis, in
nontechnical usage the term cipher is often used interchangeably with the term code.

Cipher Block Chaining
Cipher Block Chaining (CBC) mode defines a block cipher mode of operation in which each block of
plaintext is combined with the previous block of encrypted ciphertext prior to encryption. CBC
mode requires an initialization vector to combine with the first block of plaintext.

Cipher Feedback
Cipher Feedback (CFB) mode is a block cipher mode of operation that turns a block cipher into a
self-synchronizing stream cipher. The operation of CFB is similar to CBC mode.

cipher mode
A block cipher mode, or mode of operation, helps provide additional obfuscation for messages of
arbitrary length. Cipher modes, like CBC, define methods for using previously encrypted blocks of

APPENDIX A ■ SQL SERVER 2008 ENCRYPTION GLOSSARY

246

data to obfuscate subsequent blocks of data. This makes it less likely that the same block of data
contained in the same plaintext will encrypt to different ciphertext blocks.

ciphertext
Ciphertext is the enciphered data that results from an encryption operation. Compare plaintext.

CLR
The Common Language Runtime (CLR) is the core component of the Microsoft .NET Framework.
The CLR uses just-in-time compilation to convert the Common Intermediate Language (CIL)
instructions into native code at runtime. SQL Server provides CLR integration via the SQL CLR.

compression
Compression is the science of encoding data to use fewer bits than a noncompressed encoding of
the same data would require. When compressing data which cannot handle a loss of fidelity or
integrity (database backups, for instance) methods of lossless compression are used. Generally
when compressing textual data compression algorithms utilize redundancies to reduce the amount
of space required to store the same information.

confusion
Confusion is a property of secure cipher systems as defined in Information Theory. Confusion
makes the relationship between the plaintext and the encryption key as complex as possible. The
concept of confusion makes it difficult to reverse engineer the key from the ciphertext, even when
presented with plaintext and ciphertext pairs produced by the same key.

countermeasures
Countermeasures are steps that can be taken, and systems that can be implemented, to prevent
internal and external threats from accessing your data and causing issues.

CRC
Cyclic Redundancy Check (CRC) is a type of hash function often used to detect integrity issues in
stored data.

cryptanalysis
Cryptanalysis is the science of analyzing cryptographic methods and algorithms, generally probing
them for weaknesses. Cryptanalysts devise new methods of defeating cryptographic algorithms.

CryptoAPI
The Cryptographic Applications Programming Interface (CryptoAPI or CAPI) provides access to
Windows-based cryptographic and security services.

cryptography
Cryptography is the science of hiding information through ciphers and codes. Cryptographers
devise new cryptographic algorithms.

APPENDIX A ■ SQL SERVER 2008 ENCRYPTION GLOSSARY

247

cryptology
Cryptology is the science of hidden information, and encompasses cryptography, cryptanalysis, and
other methods of obfuscating plaintext.

D
data key

A data key (KD) is an encryption key used to encrypt data directly. Compare to key encrypting key
and master key.

database encryption key
A database encryption key (DEK) is a symmetric key used by SQL Server to encrypt an entire
database when transparent data encryption (TDE) is used.

DBA
A database administrator (DBA) is a person responsible for the installation, maintenance, security,
and other administrative concerns relating to databases.

DBMS
A database management system (DBMS) is a software program, or set of programs, designed to
control organization, management, security, updates, and retrieval of data from organized storage
structures.

DES
DES, the Data Encryption Standard, is a 64-bit block cipher that was adopted by the National
Bureau of Standards (NBS; now NIST) as a FIPS in 1976. DES is a symmetric encryption cipher that
uses a 56-bit key. The DES algorithm is based on the Lucifer cipher, developed at IBM in the 1970s.
The DES family of algorithms relies on a Feistel network to encrypt and decrypt data. DES opened
the door to a greater understanding of block ciphers and cryptanalysis due to widespread academic
scrutiny of the algorithm. DES is now considered inadequate for secure applications, and has been
replaced by Triple DES and AES.

DES-X
DES-X is a variant of the DES block cipher that was devised to increase the complexity of brute force
attacks. The DES-X algorithm combines additional key material to blocks of plaintext before
encryption and to ciphertext blocks after encryption.

deterministic function
A deterministic function is one which, given a specific set of inputs, will always produce the same
result. The SQL Server decryption functions are an example of deterministic functions. SQL Server’s
symmetric encryption functions, however, generate a random IV so the result is nondeterministic.

APPENDIX A ■ SQL SERVER 2008 ENCRYPTION GLOSSARY

248

differential cryptanalysis
Differential cryptanalysis is primarily concerned with the study of how differences in input affect
the output of a cryptographic algorithm. The key to differential cryptanalysis is discovering where
an algorithm exhibits nonrandom properties or predictable behaviors that can be exploited.

Diffie-Hellman Key Exchange
Diffie-Hellman (D-H) Key Exchange is a cryptographic protocol that allows two parties with no
shared information to establish a shared secret key over an open communications channel. The key
can subsequently be used to encrypt communications between the parties.

diffusion
Diffusion is one of the properties of a secure cryptographic algorithm as defined in Information
Theory. Diffusion refers to dissipating non-uniform statistical distributions of letters in a given
plaintext. Diffusion provides protection against statistical analysis of ciphertext.

digest
See hash.

DLL
A dynamic link library (DLL) is a file that consists of a shared executable library of functions. SQL
Server uses a DLL to allow access to third-party hardware security modules (HSMs) through
extensible key management (EKM).

DMF
Dynamic Management Functions (DMF) are system functions that provide access to SQL Server
state information.

DMK
A Database Master Key (DMK) is a symmetric key that is used to encrypt other keys within a
database. Each database can have only one DMK.

DMV
Dynamic Management Views (DMV) are system views that provide access to SQL Server state
information.

DPAPI
The Data Protection Application Programming Interface (DPAPI) is a cryptographic API that is
designed to use Windows user credentials or machine keys to protect asymmetric private keys.

APPENDIX A ■ SQL SERVER 2008 ENCRYPTION GLOSSARY

249

E
EDE

Encrypt-Decrypt-Encrypt (EDE) indicates a strategy for increasing the strength of an encryption
algorithm by applying multiple passes to a plaintext. Triple DES uses an EDE strategy in which one
key is used to encrypt a plaintext using DES, a second key is used to decrypt the encrypted data, and
a third key (or the first key again) is used to perform another encryption on the data. This type of
strategy can effectively double or triple the effective key length without changing the underlying
algorithm.

EFS
Encrypting File System (EFS) is a Microsoft Windows feature that performs encryption of files and
folders at the operating system level.

elliptical curve cryptography
Elliptical curve cryptography (ECC) is an efficient public key encryption technique based on elliptic
curve theory. SQL Server does not support ECC.

encipher
To encipher means to convert plaintext into an unintelligible form using cryptographic encryption
algorithms.

encode
To encode means to convert data from one format to another. The purpose of encoding is not to
hide information, but rather to convert it to another form, such as converting text from UTF-8
format to Unicode format.

encrypt
See encipher.

Enigma
Enigma was the cipher used by the German military during World War II to encrypt sensitive
communications. The Enigma machine was used to encrypt and decrypt secret messages.

ETL
Extract, Transform, and Load (ETL) is the name of a process by which data is extracted from source
systems or files, put through various transformation processes, and loaded into a destination
database.

APPENDIX A ■ SQL SERVER 2008 ENCRYPTION GLOSSARY

250

extended stored procedures
Extended stored procedures, or XPs, are functions exposed through unmanaged binary DLLs that
are designed to run within the SQL Server process space. XPs were used in SQL Server 2000 and
prior to programmatically extend the functionality of SQL Server using languages like C and C++
that compile to native code. XPs have been deprecated and SQL CLR functions and procedures are
preferred over XPs.

Extensible Key Management
Extensible Key Management (EKM) is a SQL Server 2008 feature that allows you to take advantage of
third-party hardware security modules (HSMs) to perform off-box encryption, decryption, and key
management.

F
FACTA

FACTA is the Fair and Accurate Credit Transactions Act of 2003, a US federal law that amends the
previously enacted Fair Credit Reporting Act (FCRA). FACTA, in addition to other laws and
regulations, requires organizations to implement special handling of sensitive consumer credit data.

factor
A factor is a non-trivial divisor of a composite number. The presumed difficulty of factoring large
numbers (breaking large composite numbers into their factors) is critical to the security of many
common asymmetric encryption algorithms. Large semiprime numbers (the product of two prime
numbers) are considered to be among the hardest to factor.

Feistel network
Feistel networks are iterated symmetric encryption structures that contain an internal round
function. The DES family of algorithms, and related algorithms, use Feistel networks to perform
encryption and decryption. A Feistel network has the advantage that encryption and decryption
operations are very similar, often identical to one another.

filestream
The filestream option allows developers to store, manipulate, and query large object (LOB) data in
the file system. Filestream leverages the efficiency of Windows NTFS file streaming technology for
storage and management of large files.

fingerprint
Collision-free, one-way hash codes are often compared to human fingerprints, as the odds of two
different source texts generating the same hash codes are extremely small.

APPENDIX A ■ SQL SERVER 2008 ENCRYPTION GLOSSARY

251

FIPS
Federal Information Processing Standards (FIPS) are standards adopted by the United States
government for use by government agencies and government contractors. Adopted FIPS include
information management, information security, data standardization, and other aspects
of information processing and intragovernmental communications.

firewall
A firewall is part of a computer network or system that is designed to block unauthorized access
over communications lines.

frequency analysis
Frequency analysis was one of the first published methods for defeating classical cipher-based
security. Frequency analysis relies on statistical patterns based on the relative occurrences of letters
in large bodies of text.

G
GUID

A GUID is a globally unique identifier, which is a special type of identifier that has an infinitesimally
small probability of being generated more than once in any circumstance.

H
hash

A cryptographic hash is a fixed-size bit string that is generated by applying a hash function to a
block of data. Secure cryptographic hash functions are collision-free, meaning there is a very small
possibility of generating the same hash for two different blocks of data. A secure cryptographic hash
function should also be one-way, meaning it is infeasible to retrieve the original text from the hash.

hierarchy
SQL Server 2008 has a built-in encryption key hierarchy, in which all encryption keys and
certificates can be protected by higher level keys. The highest level key in the SQL Server encryption
key hierarchy is the Service Master Key (SMK), which is secured by the DPAPI.

HMAC
A hash message authentication code (HMAC) is a special code used to validate the integrity of data.
An HMAC is generated via application of a cryptographic hash function, combined with a secret key,
to a block of data.

HSM
Hardware Security Modules (HSMs) are third-party hardware devices that provide encryption,
decryption, and key management services.

APPENDIX A ■ SQL SERVER 2008 ENCRYPTION GLOSSARY

252

I
initialization vector

An initialization vector (IV) is a block of bits required for many block cipher modes of operation. The
IV is combined with the initial block of plaintext prior to encryption in modes like CBC, after which
each encrypted block is combined with the subsequent block of plaintext.

ISO
The International Organization for Standardization (ISO) is an international standards body
composed of representatives from standards organizations from several countries. ISO promotes
standards that include the SQL standard and information security and management standards.

iteration
An iteration is a repetitive process in an algorithm. Cryptographic algorithms often employ many
successive iterations to encipher plaintext.

K
key encrypting key

A key encrypting key (KEK) is an encryption key used to encrypt other keys in an encryption key
hierarchy. Compare to data key and master key.

key expansion
Key expansion is a process by which a larger key, or a set of sub-keys, is made from a smaller key via
a cryptographic algorithm’s key schedule.

keyed hash
A hash generated by applying a hash algorithm with a secret key to a block of data. See HMAC.

key length
The length of encryption keys is measured in bits. The security of an algorithm cannot exceed its key
length, although the effective security of an algorithm can be smaller than its key length.

key schedule
A key schedule is an algorithm that calculates a set of sub-keys from a given source key material.

L
leakage

Leakage in cryptography is a phenomenon that occurs when statistical or other information about
encrypted data is exposed. Leakage can occur when data is decrypted and artifacts of the data are

APPENDIX A ■ SQL SERVER 2008 ENCRYPTION GLOSSARY

253

left in memory, in durable storage, or when other methods, such as non-keyed hashes of plaintext
are used to make searches of encrypted data more efficient.

Lucifer
Lucifer was the name of one of the first modern civilian block ciphers. It was developed by Horst
Feistel of IBM in the 1970s for commercial use in banking applications. DES is a direct descendant
of Lucifer.

M
master key

A master key (KKM) is the highest-level key in an encryption key hierarchy. The master key protects
all lower-level keys in the hierarchy, either directly or indirectly. Compare to key encrypting key and
data key.

Message Digest Algorithms
The Message Digest Algorithms are a family of related cryptographic hash algorithms invented by
Ron Rivest. The Message Digest Algorithms include MD2, MD4, MD5, and others.

monoalphabetic cipher
A monoalphabetic cipher is a simple substitution cipher using only one substitution alphabet.
Monoalphabetic ciphers, like the Caesar Cipher, are considered insecure by modern cryptographic
standards. Compare polyalphabetic cipher.

Morse Code
Samuel Morse invented Morse code in the 1840s as a means of transmitting information over
telegraph lines. Morse code uses a standardized sequence of short and long elements (dots and
dashes) to encode alphabetic messages.

N
Null

Null is a special marker used to indicate an unknown value or the absence of a value within a
database.

O
Ouput Feedback

Output Feedback (OFB) mode is a block cipher mode that essentially turns a block cipher into a
synchronous stream cipher. OFB generates keystream blocks which are combined with plaintext
blocks to generate ciphertext.

APPENDIX A ■ SQL SERVER 2008 ENCRYPTION GLOSSARY

254

P
padding

Because block ciphers encrypt only fixed-length blocks of data, plaintext must often be padded to
the proper length. There are several methods of padding, but all include adding additional bytes of
data to the end of a plaintext and stripping those additional bytes from the data during decryption.

PBKDF2
The Password-Based Key Derivation Function #2 (PBKDF2) iteratively applies a cryptographic keyed
hash or other function to a password in order to generate a cryptographic encryption key.

Pin Entry Device
A Pin Entry Device (PED) allows users to authenticate themselves by entering a PIN code via an
input device. Some hardware security modules or other security devices may require a PED to be
used. See hardware security module.

PGP
Pretty Good Privacy (PGP) is a program created by Philip Zimmerman to provide personal security,
privacy, and authentication services. PGP is often used to encrypt email and other personal
communications.

PIN
A Personal Identification Number (PIN) is a secret, often numeric, code that is often used to
authenticate a person in the context of multifactor authentication. Generally, when a PIN is used
to for personal authentication it is done in conjunction with another form of authentication. For
instance, bank automated teller machines (ATMs) require both an ATM card and a PIN.

PKCS
PKCS represents a set of Public Key Cryptography Standards that are published by RSA Security.

plaintext
Plaintext is data which is not encrypted. Compare ciphertext.

polyalphabetic cipher
A polyalphabetic cipher is a substitution cipher that relies on multiple substitution alphabets. The
Vigenère cipher is an example of a polyalphabetic cipher. Compare monoalphabetic cipher.

public key
A public key is an asymmetric encryption key that is publicly known and may be widely distributed
without compromising the security of an asymmetric encryption algorithm. See asymmetric
encryption.

APPENDIX A ■ SQL SERVER 2008 ENCRYPTION GLOSSARY

255

private key
A private key is an asymmetric decryption key that is kept secret and is nontrivially related to the
public key. The security of the asymmetric encryption relies on maintaining the secrecy of the
private key. See asymmetric encryption.

R
RACE

RACE is the Research and Development in Advanced Communications Technologies in Europe
program. This program was launched in 1988 to promote high speed communications services in
Europe. RACE created the RIPEMD family of hash algorithms.

RC2
RC2, Rivest Cipher 2, is 64-bit block cipher designed by Ron Rivest in 1987. RC2 was originally
supposed to be incorporated into Lotus Notes software for export. The National Security Agency
(NSA) approved a 40-bit version of RC2 for export to foreign countries. RC2 uses a variable size key
with 18 rounds arranged in a Feistel network. RC2 has proven vulnerable to various cryptanalytic
attacks.

RC4
RC4, Rivest Cipher 4, is a stream cipher used in protocols, such as Secure Sockets Layer (SSL) and
Wired Equivalent Privacy (WEP). RC4 is simple and fast, but it suffers from known weaknesses that
can compromise security.

refactor
To clarify and simplify computer code.

register
A register is a specially designated storage area for binary data in a computer. TPM chips have
special registers that are used for hardware validation calculations.

RFC
An RFC is a Request for Comments, as published by the Internet Engineering Task Force (IETF). The
RFC format is used to innovations, research, and behaviors of applications which provide Internet
connectivity. RFC 2898, for instance, describes password-based cryptography methods for Internet
applications.

Rijndael
Rijndael is a 128-bit block cipher that supports key lengths of 128, 160, 192, 224, and 256 bits. A
subset of Rijndael, consisting of the algorithm with 128, 192, and 256-bit key lengths was selected as
the AES in 2001. The Rijndael algorithm consists of a specific number of repetitions, determined by
the key length, of transformation rounds that encipher plaintext.

APPENDIX A ■ SQL SERVER 2008 ENCRYPTION GLOSSARY

256

RIPEMD
RIPEMD (RACE Integrity Primitives Evaluation Message Digest) is a cryptographic hash
algorithm. RIPEMD comes in several forms, including RIPEMD-128, RIPEMD-160, RIPEMD-256,
and RIPEMD-320, which represent 128, 160, 256, and 320-bit versions, respectively. RIPEMD was
originally based on the design of the MD4 hash algorithm.

RSA
RSA is a widely used asymmetric encryption algorithm. The name RSA is derived from the surnames
of the men who first published a paper describing the algorithm: Rivest, Shamir, and Adleman.
British mathematician Clifford Cocks invented asymmetric encryption independently prior to the
Rivest, Shamir and Adleman discovery; however, Cocks’s work was classified Top Secret and his
work was not published until decades later.

S
salt

Salt is a string of bits provided as input to a key derivation function. A salt can be a randomly
generated value, or in many cases it can be a previously generated initialization vector bit string.

session
A cryptographic session is a SQL Server session in which an encryption key is accessed.

SHA
The Secure Hash Algorithm (SHA) family of cryptographic hash functions were designed by the
National Security Agency (NSA) and published by NIST as a FIPS. SHA-0 and SHA-1 are very similar
hash functions that return 160-bit hash values for any given block of input data. The SHA-2 group
of hash functions generate a 224, 256, 384, or 512-bit hash for any given block of input data.

SMK
The Service Master Key (SMK) is the encryption key that sits at the top of the SQL Server encryption
key hierarchy. The SMK is protected by the DPAPI.

SQL
SQL is the basis for the query language supported by SQL Server. SQL is defined as an ISO standard.

SSH
Secure Shell (SSH) is a network protocol that allows devices to communicate securely.

SSL
SSL, or Secure Sockets Layer, is a protocol used to provide security and ensure data integrity over
networks and on the Internet. See TLS.

APPENDIX A ■ SQL SERVER 2008 ENCRYPTION GLOSSARY

257

T
temporary key

A temporary key, sometimes called a session key, is a transient key that exists only temporarily to
perform encryption and decryption functions. Temporary keys are dropped once they are no longer
needed, often at the end of the current session.

TLS
Transport Layer Security, or TLS, is an updated cryptographic protocol that provides security and
ensures data integrity for network or Internet-based communications. TLS provides additional
options over its predecessor, SSL. See SSL.

trie
A trie is an ordered tree-like data structure that is used to store an associative array.

Triple DES
Triple DES was developed as a low-cost interim replacement for the DES algorithm. Triple DES
increases the key size, and security, of DES without requiring a complete overhaul of the algorithm.
Triple DES works by performing three DES passes on the same data, using either 2 or 3 different
keys. Triple DES commonly uses an encrypt-decrypt-encrypt strategy to effectively increase the
encryption key length.

trivial
In mathematics, trivial often refers to the simple and obvious solutions to mathematical problems.
Asymmetric encryption algorithms rely on mathematical problems with no trivial solutions.

trust
Trust is central to the authentication and verification of identity and bindings between public keys
and private keys in asymmetric encryption. Certificates may be validated via a trusted third party
(TTP) like an issuing certificate authority (CA), or identity can be validated using a Web of Trust
methodology, in which each user identifies core groups of people whom they trust. The Web of
Trust methodology was implemented in PGP.

Z
Zimmerman Telegram

The Zimmerman Telegram was an enciphered telegram sent by the Foreign Secretary of the German
Empire prior to the United States’ entry into World War I. The Zimmerman Telegram advised the
Mexico government that Germany would materially support Mexico in a declaration of war against
the United States, including reclamation of territories lost to the United States during the Mexican-
American War. The telegram was intercepted and decrypted by British cryptanalysts. It was later
made public and caused an outcry that precipitated the United States’ entry into World War I.

A P P E N D I X B

■ ■ ■

259

Encryption Checklist

I briefly discussed threat modeling as a means of mitigating the risks to your databases and other critical
assets back in Chapter 1. In this chapter, I’ll explore this concept more fully and provide a checklist for
determining whether your organization could benefit from implementing encryption.

Threat Modeling
The first step to determining your security risks is to identify threats to your corporate assets. You can
use the threat modeling worksheet shown in Figure B-1 as a starting point to identifying those threats.

APPENDIX B ■ ENCRYPTION CHECKLIST

260

Figure B-1. Threat modeling worksheet

APPENDIX B ■ ENCRYPTION CHECKLIST

261

When completing this worksheet you identify one distinct threat per row, with the following
information in each column:

1. The Threat column of the worksheet is the name of the threat you’re
identifying. DBAs, developers, business users, and hackers are some of the
examples I gave back in Chapter 1. You can refine these to a more granular
level if you choose, identifying different levels of business users or different
communities of hackers.

2. The Source column indicates whether the threat is an internal threat, an
external threat, or possibly a mixed source-type threat. An employee might be
an internal threat while a hacker would be considered an external threat. A
subcontractor for your company with systems that interface directly with your
internal network might represent a mixed internal/external threat.

3. The Estimated Threat is your estimate of the level of danger the specified threat
poses to your assets. The estimated threat level should reflect several variables,
such as the following:

a. Criticality of the assets that are at risk: The question to ask here is whether or
not the asset is mission-critical. When hacked, a database that stores customer
orders could potentially bring business to a screeching halt while a
management reporting database might not be
so critical.

b. The likelihood that the asset will be targeted: The simple fact is that some assets
make juicier targets than others. A database with millions of credit card
numbers stored in it might make a much more enticing target to a broader
audience than a database containing bills of materials for your products.

c. The security precautions currently employed to protect the asset: A production
database that is already properly firewalled and on which accounts and
permissions are tightly controlled already will represent a lower risk than a
development database that is not so strictly managed.

d. Paths of access from the asset to other assets: A given noncritical asset might be
interconnected via your organizational network to several far more critical
assets. A knowledgeable hacker will seek out the weakest link in the chain and
exploit it to launch attacks on other more critical interconnected systems.

I use a threat level scale that includes the following threat levels:

• Low: The odds of the threat accessing the asset and causing harm are
extremely unlikely.

• Limited: The threat may be able to access an asset and could potentially
cause limited damage to noncritical systems. This might represent
situations that are beyond your control, like flaws in off-the-shelf software
or invention of new hacker tools.

• Moderate: The threat has some access to an asset and could potentially
cause damage. A DBA with administrative access might represent a
moderate threat level, for instance.

APPENDIX B ■ ENCRYPTION CHECKLIST

262

• High: The threat can access an asset and could cause a considerable amount
of damage to the asset and to the organization as a whole.

• Significant: A significant threat is one with the means, motive, and
opportunity to access assets and cause severe damage that could cause
crippling damage to your organization. Significant threats represent the
worst of the worst and need to be dealt with immediately.

Again, this column represents your best estimates as to the level of danger
posed to your assets by a particular threat based on the best available data at
the time.

4. The Capabilities column is intended to measure the skill with which a threat
can attack your organizational asset as well as the level of access the threat has
to your asset. A highly-skilled DBA might represent a level of 5.0 (extremely
high) in this column since the DBA has access and the skill to carry out threats
against your assets. A less skilled end user with highly restricted access,
however, might represent a significantly lower level of access (1.0, extremely
low). The scale goes from 1.0 to 5.0.

5. The Data Arsenal column represents the threat’s ability to obtain and utilize
automated and high-tech weapons to attack your databases. An internet-based
hacker might rate a high 5.0 (extremely high) on this scale since she would be
able to obtain the most high-tech tools available and employ them with skill
and precision. A less-sophisticated business user, on the other hand, might be
able to obtain high-tech hacking tools, but probably won’t have the training
and experience to use them to great effect against your assets. This scale also
goes from 1.0 to 5.0.

6. The Remediation column represents a summarized plan of action, steps you
can take to lower the ability of a threat to access and cause damage to your
assets. The remediation steps might include hardening your servers by
tightening down access and permissions, adding hardware to increase
security, implementing new security protocols, adding auditing and other
controls, employee background checks, training, encryption, and numerous
other possible steps.

7. The Remediated Threat Level column is another estimate of the threat level.
While the Estimated Threat column represents the current threat level, under
existing circumstances, the Remediated Threat Level represents your estimate
of the reduced threat level after implementing the plan of action outlined in
the Remediation column.

After you’ve identified the threats to your organizational assets and identified overarching steps you
can take to remediate them, you’ll need to drill deeper into each step to drive the specific
implementation details.

For instance, if database encryption is one of your remediation steps for a specific threat you’ll need
to determine the granularity of encryption, the algorithms you’ll use and other details. There may be
external factors driving these decisions, as we’ll discuss in the following section.

APPENDIX B ■ ENCRYPTION CHECKLIST

263

Driving Encryption Design
If you determine that encryption is a remediation step that will benefit your organization, you’ll need to
drive a detailed design. Some of the factors you’ll need to consider include the following:

• Internal organizational policies: You may already have IT policies indicating which
data needs to be encrypted and which algorithms are acceptable, for example.

• Regulatory requirements and contractual obligations: As discussed in Chapter 11,
you may have regulatory requirements or contractual obligations requiring you to
encrypt certain data. Government contractors and subcontractors who work on
Department of Defense projects, for instance, have stringent contractual
obligations to encrypt data stored on their systems.

• Determining which data needs to be encrypted: Depending on your business you
may be storing classified government information on your systems, sensitive
medical records, consumer credit data, or any of a wide variety of other sensitive
data. You may only need to encrypt a small portion of your data or you may need
to encrypt the majority of the data you’re storing. In many cases, you’ll need to do
an element-by-element analysis of your data to determine which data elements
need to be encrypted and which don’t.

• Deciding the granularity at which to encrypt your data: If you have very small
amounts of data to encrypt you may be able to effectively utilize cell-level
encryption. If you need to encrypt large amounts of data, database-level or file-
level encryption might be a better option. In some instances, a combination of the
two might be most effective.

• Estimating the effort to implement encryption: It’s definitely a lot easier to build
security, including encryption, into new systems when they’re still in the design
stage than to add it to legacy systems retroactively. In many cases though, you’ll
face the task of retrofitting encryption into existing databases and applications.
The effort required may determine, to some extent, the prioritization of elements
to be encrypted as well as the overall strategy for implementing encryption. You
might, for instance, implement database-level encryption immediately for some
systems and address cell-level encryption using a strategy of iterative refinement.

• Encryption key management: Your encryption key management policies and
procedures play an integral role in your encryption planning. You will have to
ensure that your encryption key management plan offers proper levels of security
and that it aligns with company policies, regulatory requirements, and contractual
obligations.

Security Review
The Department of Defense’s Defense Information System Agency (DISA) has issued some of the most
comprehensive security auditing checklists and guidelines available anywhere. In particular, their
database security checklists are designed to target “conditions that undermine the integrity of security,
contribute to inefficient security operations and administration, or may lead to interruption of
production operations.” The DISA review process also “ensures the site has properly installed and

APPENDIX B ■ ENCRYPTION CHECKLIST

264

implemented the database environment and that it is being managed in a way that is secure, efficient,
and effective. (Database Security Readiness Review Checklist, DISA, 2007).”

The Abbreviated Security Review checklist in Table B-1 consists of a summarized version of the
DISA Database Security Readiness Review (DSRR) checklist targeted specifically for SQL Server 2008. You
can leverage this checklist to review your SQL Server system security.

■ Note This is not a replacement for the full DISA DSRR. If you do business with the Department of Defense or

other government agencies, you will need to properly apply their complete review and audit processes.

The Abbreviated Security Review checklist in Table B-1 consists of five columns, listed as follows:

1. Test Method: This column indicates the method used to test. It can be one of
the following:

• Auto for automated testing, which can be performed using the DISA SRR
automated testing script available from http://iase.disa.mil.

• Interview for results gathered through interviews with information
assurance managers (IAMs), DBAs and others, as well as reviews of available
documentation.

• Manual for results gathered through manual technical procedures.

• Verify for results returned by the SRR test script that must be verified by the
reviewer.

2. Pass/Fail/NA: This column is a simple pass/fail indicator for each test. Simply
circle P for pass, F for fail, or NA for not applicable as necessary for each item.

3. Group: The Group column is a grouping I’ve applied to bring together related
checklist items.

4. Details: This column is a summary description of the checklist item being
reviewed.

5. Category: The Category column indicates the ranking applied by DISA as a
severity level of the vulnerability. The categories assigned by DISA include the
following:

• Category 1 findings are the highest risk vulnerabilities that DISA feels
“provide an attacker immediate access into a machine, superuser access, or
access that bypasses a firewall.”

• Category 2 findings encompass vulnerabilities that “provide information
that has a high potential of giving access to an intruder.”

• Category 3 findings are the remaining “vulnerabilities that provide
information that potentially could lead to compromise.”

Although the checklist in Table B-1 is based largely on the DISA SRCC, I’ve adapted items to be SQL
Server specific, added some additional SQL Server-specific security items, and grouped the items. Note
that this abbreviated security review checklist is not exhaustive, nor is it encryption-specific although
there are several encryption-related items listed.

APPENDIX B ■ ENCRYPTION CHECKLIST

265

Table B-1. Abbreviated Security Review Checklist

Test

Method Pass/Fail/NA Group Details Category

Auto P F NA Accounts sa account has been renamed. CAT 3

Auto P F NA Accounts sa password has been changed from default. CAT 1

Interview P F NA Accounts All DBA accounts that are used to support non-
DBA activity are documented.

CAT 2

Interview P F NA Accounts DBMS installation account is restricted to
authorized users.

CAT 2

Interview P F NA Accounts No unapproved inactive or expired user accounts
have been found in the database.

CAT 2

Interview P F NA Accounts Privileges assigned to DBA roles are monitored to
detect assignment of unauthorized or excess
privileges.

CAT 2

Interview P F NA Accounts Use of the DBMS installation account is logged. CAT 2

Interview P F NA Accounts Use of the DBMS software installation account is
restricted to DBMS software installation, upgrade,
and maintenance.

CAT 2

Interview P F NA Accounts User privilege assignment is reviewed monthly or
more frequently to ensure compliance with least
privilege and documented policy.

CAT 2

Manual P F NA Accounts DBMS processes and services run under custom,
dedicated accounts.

CAT 2

Manual P F NA Applications Database applications are restricted from using
static DDL statements to modify the application
schema.

CAT 3

Interview P F NA Audit Audit trail data is reviewed daily or more
frequently.

CAT 2

Interview P F NA Audit Audit trail is reviewed regularly to detect
unauthorized database access.

CAT 2

Interview P F NA Audit Automated tools are used to provide audit trail
reports.

CAT 2

APPENDIX B ■ ENCRYPTION CHECKLIST

266

Table B-1. Continued

Interview P F NA Audit Automated tools to monitor audit data and
immediately report suspicious activity has been
employed for the DBMS.

CAT 2

Interview P F NA Audit The DBMS is periodically tested for vulnerability
management and IA compliance.

CAT 3

Manual P F NA Audit Audit records are restricted to authorized
individuals.

CAT 2

Manual P F NA Audit DBMS audit logs are included in backup
operations.

CAT 2

Verify P F NA Authentication SQL Server authentication mode is set to Windows
authentication.

CAT 2

Auto P F NA Encryption Asymmetric private key encryption uses an
authorized encryption type.

CAT 2

Auto P F NA Encryption Symmetric keys are protected with approved key
management methodologies, such as NIST or NSA
approved methods.

CAT 2

Auto P F NA Encryption Symmetric keys use only approved encryption
algorithms. No use of RC2, RC4, or plain DES.

CAT 2

Interview P F NA Encryption All sensitive data stored in the database has been
identified in the AIS Functional Architecture.

Interview P F NA Encryption Certificates and asymmetric keys are backed up
and stored securely off-site.

CAT 2

Interview P F NA Encryption Database Master Keys are backed up and stored
securely off-site.

CAT 2

Interview P F NA Encryption Symmetric keys can be recreated; key material
and key generation process are documented and
stored securely off-site.

CAT 2

Interview P F NA Encryption The Service Master Key is backed up and stored
securely off-site.

CAT 2

Manual P F NA Encryption Database data files are encrypted. CAT 2

APPENDIX B ■ ENCRYPTION CHECKLIST

267

Manual P F NA Encryption Sensitive data, as identified by the Information
Owner, is encrypted within the database.

CAT 2

Manual P F NA Encryption Sensitive information stored in the database has
been identified and protected by encryption.

CAT 2

Verify P F NA Encryption Database Encryption Key is backed up and stored
securely off-site.

CAT 2

Verify P F NA Encryption Database Master Key access is granted only to
authorized users.

CAT 2

Verify P F NA Encryption Database Master Key encryption password meets
complexity requirements.

CAT 2

Verify P F NA Encryption Symmetric keys do not use a master key,
certificate or asymmetric key to encrypt the key.

CAT 2

Verify P F NA Endpoints No unauthorized HTTP SOAP endpoints are
configured on the server.

CAT 2

Verify P F NA Endpoints No unauthorized Service Broker endpoints are
configured on the server.

CAT 2

Interview P F NA Extensions No undocumented/unsupported DBMS
procedures and features are used in code that
accesses the database.

CAT 2

Manual P F NA Extensions If SQL CLR is in use, only properly signed modules
with least privileges are installed.

CAT 3

Manual P F NA Extensions No third-party extended procedures are used. CAT 2

Manual P F NA Extensions SQL CLR is disabled; if enabled, only CLR modules
approved by the Information Assurance Officer
are installed.

CAT 3

Manual P F NA Extensions xp_cmdshell extended procedure is disabled. CAT 2

Verify P F NA Extensions Access to registry extended stored procedures are
restricted to sysadmin access.

CAT 2

Verify P F NA Extensions Database TRUSTWORTHY status bit is set to off. CAT 2

Verify P F NA Extensions OLE Automation extended procedures are
restricted to sysadmin access.

CAT 2

APPENDIX B ■ ENCRYPTION CHECKLIST

268

Table B-1. Continued

Manual P F NA Network Sensitive data accepted and returned by the
DBMS is protected by encryption when
transmitted across the network.

CAT 1

Auto P F NA Password Account passwords expire every 60 days or more
frequently.

CAT 2

Auto P F NA Password Account passwords meet complexity
requirements.

CAT 2

Auto P F NA Password No accounts have blank passwords. CAT 1

Interview P F NA Password Applications that access the database do not echo
or display the clear text of passwords.

CAT 2

Interview P F NA Password Applications that access the database do not
transmit passwords over the network in cleartext.

CAT 2

Interview P F NA Password Database passwords used by batch and/or job
processes are stored in encrypted format.

CAT 1

Interview P F NA Planning The DBMS is included in, and hasdefined for it, a
System SecurityPlan.

CAT 3

Interview P F NA Policy DBMS Information Assurance policies and
procedures are viewed annually or more
frequently.

CAT 3

Manual P F NA Policy Procedures and restrictions for importing
production data to development databases are
well-defined, implemented, and followed.

CAT 2

Interview P F NA Privileges Privileges assigned to developers onshared
production and development DBMS hosts and the
DBMS are monitored every three months or more
frequently for unauthorized changes.

CAT 2

Manual P F NA Privileges No unnecessary privileges to the host system have
been granted to DBA OS accounts.

CAT 2

Manual P F NA Privileges Sensitive information stored in the database has
been identified and protected through access
restrictions.

CAT 2

APPENDIX B ■ ENCRYPTION CHECKLIST

269

Manual P F NA Production Developers are not assigned excess privileges on
production databases.

CAT 3

Manual P F NA Production Production databases are protected from
unauthorized access bydevelopers on shared
production/development host systems.

CAT 2

Interview P F NA Remote Access Remote administrative access to the database is
monitored by the Information Assurance Officer
or the Information Assurance Manager.

CAT 2

Interview P F NA Remote Access Remote administrative connections to the
database are encrypted.

CAT 2

Interview P F NA Remote Access The database is accessible to internet users and is
not located in a DMZ.

CAT 2

Interview P F NA Roles Information Assurance Manager reviews changes
to DBA role assignments.

CAT 2

Interview P F NA Roles Information Assurance Officer assigns and
authorizes DBA roles and assignments.

CAT 3

Encryption Planning Checklist
Figure B-2 is a representative high-level encryption checklist that can be used as a quick reference to
help plan encryption implementations. Note that this checklist is not exhaustive, but it is representative
of the factors affecting encryption implementations that I’ve discussed throughout this book.

APPENDIX B ■ ENCRYPTION CHECKLIST

270

Figure B-2. Quick encryption checklist

A P P E N D I X C

■ ■ ■

271

Luna EKM Setup

In Chapter 5, I described how SQL Server 2008 EKM works to extend the functionality of SQL Server
encryption by offloading encryption key management and data encryption and decryption duties to a
dedicated HSM appliance. The HSM I used in developing that chapter was the SafeNet Luna SA, one of
the first EKM providers approved for use with SQL Server 2008. In this appendix, I’ll describe the vendor-
specific setup and configuration required to prepare the Luna SA for use with SQL Server 2008. This
appendix is specific to the Luna SA appliance that we used to demonstrate EKM in Chapter 5, but also
provides an idea of the level of detail involved in setting up and configuring an HSM in general.

Prerequisites
The Luna SA HSM is a rackmount device with a 1U (or 2U in some models) profile. The hardware setup
instructions are provided with the CD that comes with the appliance, so I won’t go into detail here other
than to point out a few key components. The Luna SA appliance comes with a PED (Pin Entry Device),
USB PED keys, and cables. Once you’ve set up the hardware, the PED and PED keys are used to log into
the HSM. The Luna SA PED and USB PED keys are shown in Figure C-1.

■ Note You can find out more about the SafeNet Luna SA HSM at www.safenet-inc.com.

APPENDIX C ■ LUNA EKM SETUP

272

Figure C-1. Luna SA PED and USB PED keys

The Luna SA HSM (v4.3.2) requires the following software to work with SQL Server 2008 EKM:

• SQL Server 2008 Enterprise Edition

• Windows XP (SP3), Windows Server 2003 (SP2), Windows Vista, or Windows
Server 2008

• Luna SA client and EKM client software (distributed with HSM)

Installing Client Software
When using EKM your SQL Server instance acts as a client to the HSM. To prepare your SQL Server
toaccess the Luna HSM, you’ll need to install the Luna SA client software on the client computer.
The32-bit and 64-bit versions of the setup.exe file for the Luna SA client software is located in the
windows\32 and windows\64 directories, respectively.

After following the onscreen prompts and completing the client installation, the Luna SA client
software will be located in a directory on your machine. The default installation directory is Program
Files\LunaSA. Various utility programs, like the Putty terminal client and the vtl utility are located in
this directory.

Configuring the HSM
You will need to follow the Luna SA setup steps outlined in the documentation to configure your HSM to
communicate over the network with your server. Initially, you’ll want to connect via serial connection
using the supplied null modem serial cable that comes with the device. This ensures that your server
maintains a connection while configuring the device for network use. You can use any terminal

APPENDIX C ■ LUNA EKM SETUP

273

emulation package, including the Windows-supplied HyperTerminal, or the Putty application supplied
with the Luna SA.

■ Tip The terminal settings for this connection are 115200 serial port baud rate, no parity/8 bits/1 stop bit,

VT-100 terminal emulation and hardware flow control.

Once you’ve connected to the Luna SA appliance, you’ll be faced with a login screen, as shown in
Figure C-1. On the first login, you’ll use a username of admin and the initial password which is supplied
in the Luna SA documentation. You will be immediately prompted to change the password from the
factory default on the first admin login.

Figure C-2. Luna SA appliance login screen

APPENDIX C ■ LUNA EKM SETUP

274

The Luna SA provides a Unix-style command-line shell interface for performing administrative
tasks. Once you’ve logged in, you’ll use the command-line to perform the initial setup, which includes
setting system time, network configuration, and partition setup. The following sections describe this
process.

Setting System Time
Your first task after logging in for the first time and changing the admin password is to set the system
date and time for the Luna SA. You can use the status date command to see if the date, time, or time
zone settings need to change. Figure C-3 shows the status date command.

Figure C-3. Checking the Luna SA date, time, and time zone settings

If you do need to change these settings, use the sysconf command to make the necessary changes.
The sysconf command has options to set the date, time, time zone, and to set a network time protocol
(NTP) server to keep your appliance time in sync automatically.

■ Tip Use the help command at any time to get help about all commands or a specific command.

APPENDIX C ■ LUNA EKM SETUP

275

Network Configuration
The next step in the Luna SA setup is the network configuration. You’ll need to configure your HSM to
communicate with your local network. This means binding the network interface cards, setting the
hostname, name servers, and so forth. You can use the net show statement to get the initial settings from
the device. In Figure C-4, I’ve already set the HSM for configuration on my local network and am using
the net show command to show my settings.

Figure C-4. Reviewing network settings with the net show command

You can use the net hostname, net dns, and net interface commands to configure your network
settings. You can use the net show command at any time to verify your settings. Once you are satisfied
with the settings, connect your HSM to the network with an Ethernet cable and open an SSH connection
to it from your server.

Generating a New Certificate
After you’ve connected your HSM to the network, you can use the sysconf regenCert command to
regenerate a new certificate for your HSM and bind the Network Trust Link (NTLS) service to an adapter
with the ntls bind command. The sysconf regenCert command is shown in Figure C-5.

APPENDIX C ■ LUNA EKM SETUP

276

Figure C-5. Regenerating the HSM certificate

The next step is to run the hsm-init command, which will initialize the HSM and allow you to
configure various settings, as documented in the Luna SA documentation. Most of these settings will be
set via the PED during the initialization process. It’s during this process that you’ll initialize a “blue PED
key,” the administrator’s USB PED key. You’ll also have the option to set a PIN for each PED key that
youcreate.

Finally, you can view and set individual HSM policies at this point. Use the hsm showPolicies
command to view the currently active policies, and use hsm changePolicy to set specific policies.

Creating Partitions
The Luna SA HSM subdivides its resources into separate workspaces called partitions. When you
configure SQL Server to communicate with the HSM via the EKM interface, the appliance will perform
cryptographic tasks within the confines of designated partitions. To create a partition you’ll need to first
connect to the HSM using SSH. Then you’ll need to issue the hsm login command and login using the
PED and the blue administrator’s PED key. This lets you login as an administrator, allowing you to
perform administrative tasks like creating and managing partitions.

To create a partition, you’ll enter the partition create command at the command prompt, as
shown in Figure C-6.

APPENDIX C ■ LUNA EKM SETUP

277

Figure C-6. Creating a new partition on the HSM

During the partition creation step the Luna SA will prompt you to enter a “black PED key,” or
partition owner key, into the PED. You’ll have an opportunity to assign a PIN to the PED key and to make
duplicates of the black PED key at this time.

After you create a new partition the PED display on the HSM will display a secret value, the client
partition password. You’ll need to write the client partition password down somewhere and secure it—it
will never be displayed again. This password is vital to connecting to the Luna SA from SQL Server.
Figure C-7 shows an example PED displaying the client partition password.

Figure C-7. PED display with secret value

On the Luna SA, there are a couple of partition policies that you’ll need to change upon setup.
You’ll want to turn on the Allow activation and Allow auto-activation policies using the partition
changePolicy command, as shown in Figure C-8.

APPENDIX C ■ LUNA EKM SETUP

278

Figure C-8. Changing partition policies

Configuring Client Access
After you create one or more partitions on the Luna SA, you’ll need to configure your SQL Server to
access the HSM. You’ll need to prepare your server to create a network trust link between it and the HSM
by exchanging certificates.

Registering HSM Certificate
You can use the ctp utility in the Program Files\LunaSA directory to copy the HSM’s server certificate to
the SQL Server computer. Then use the vtl utility’s addServer command to register the certificate with
your SQL Server. Figure C-9 demonstrates copying the HSM server certificate and registering it on the
SQL Server with the ctp and vtl utilities.

APPENDIX C ■ LUNA EKM SETUP

279

Figure C-9. Using ctp utility to copy HSM certificate to SQL Server

Creating and Upload Client Certificate
The next step to preparing the client for the network trust link is to create a client certificate and upload
it to the HSM. The vtl utility’s createCert command generates a client certificate and places it in the
cert\client subdirectory. The ctp utility can be used to upload the client certificate to the HSM.
Creation and upload of the client certificate with these utilities is shown in Figure C-10.

APPENDIX C ■ LUNA EKM SETUP

280

Figure C-10. Create and upload a client certificate

After you’ve uploaded the client certificate to the Luna SA, you have to register the client certificate
with the HSM. For this, you’ll need to use your terminal emulation utility to log back into the Luna SA
shell. Use the client register command on the HSM, as shown in Figure C-11, to register theclient
certificate. You can use the client list command, also shown in the figure, to verify the client was
successfully registered.

APPENDIX C ■ LUNA EKM SETUP

281

Figure C-11. Registering the client with the HSM

After you’ve registered a client, you can assign it to the previously created Luna SA partition with the
client assignPartition command, as shown in Figure C-12.

APPENDIX C ■ LUNA EKM SETUP

282

Figure C-12. Assigning a client to a partition on the HSM

Once you’ve completed the installation and configuration steps for the Luna SA and have set up the
network trust link between the SQL Server computer and the HSM, you can verify the installation at the
Windows command prompt with the vtl verify command. The vtl verify command will report the
Luna SA partitions accessible to your client, as shown in Figure C-13.

APPENDIX C ■ LUNA EKM SETUP

283

Figure C-13. Verifying configuration and network trust link setup

Once you’ve completed the Luna SA and client configuration on your SQL Server computer, and
established the network trust link between them, you’re ready to configure SQL Server to communicate
with the HSM.

APPENDIX C ■ LUNA EKM SETUP

284

Setting Up SQL Server EKM
Once the HSM is configured correctly and you’ve established secure communication between the SQL
Server machine and the Luna SA, setting up your SQL Server instance to utilize the EKM provider is
rather simple. The first step is to install the Luna SA EKM provider. At the time of this writing, the Luna
SA EKM provider DLL was not distributed on the installation CD, it had to be requested from SafeNet
support at www.safenet-inc.com.

■ Note Also at the time of this writing, the Luna SA 64-bit EKM provider for SQL Server was still under

development and not available for general distribution.

After running the installation, the Luna SA EKM provider file, LunaEKM.dll, will be stored on the
server. The default installation directory is LunaSA\EKM. From the command-line, run the LunaEKMConfig
utility located in the installation directory. From inside the utility, execute the RegisterSlots command
and enter the Luna SA slot number you want SQL Server to access, as shown in Figure C-14. This will
update the LunaEKMConfig.ini configuration file in the same directory. Use the Quit command to exit
theutility.

Figure C-14. Registering a Luna SA slot with the EKM provider

APPENDIX C ■ LUNA EKM SETUP

285

Configuring SQL Server
The remaining configuration is performed using T-SQL statements and can be performed from within
Management Studio or sqlcmd. EKM is disabled by default in SQL Server 2008. To enable it, you must use
the sp_configure system stored procedure to change the EKM provider enabled server configuration
setting, as shown in Listing C-1.

Listing C-1. Enabling SQL Server EKM Provider Support

-- 'EKM provider enabled' is an advanced option in SQL Server
EXEC sp_configure 'show advanced options', 1;
GO
RECONFIGURE;
GO

EXEC sp_configure 'EKM provider enabled', 1;
GO
RECONFIGURE;
GO

■ Note The EKM provider enabled option is available only in the Enterprise and Developer editions of SQL

Server 2008.

Once you’ve enabled the EKM provider capabilities of SQL Server, you need to register the EKM
provider with the SQL Server instance to allow it to communicate with the HSM. Listing C-2 uses the
LunaEKM.dll library to create a SQL Server cryptographic provider.

Listing C-2. Creating a Cryptographic Provider on SQL Server

CREATE CRYPTOGRAPHIC PROVIDER LunaEKMProvider
FROM FILE = N'c:\LunaSA\EKM\LunaEKM.dll';

The next step is to create a SQL Server credential for the cryptographic provider with the CREATE
CREDENTIAL statement. You’ll give this credential access to the client partition password you generated
earlier in the HSM setup so that it can access the partition on the HSM. You’ll also need to assign the
credential to a login using the ALTER LOGIN statement, as shown in Listing C-3.

Listing C-3. Creating an EKM Credential

CREATE CREDENTIAL LunaEKMCredential
WITH IDENTITY = 'SQL2008\Michael',
SECRET = 'x9SP-PH9C-L/FK-q/TW'
FOR CRYPTOGRAPHIC PROVIDER LunaEKMProvider;
GO

APPENDIX C ■ LUNA EKM SETUP

286

ALTER LOGIN [SQL2008\Michael]
ADD CREDENTIAL LunaEKMCredential;
GO

At this point, you can verify that your cryptographic provider and its associated credential are
properly set up with a query like the one shown in Listing C-4. Results are shown in Figure C-15.

Listing C-4. Verifying Cryptographic Provider and Credential

SELECT
 cp.provider_id,
 cp.name AS provider_name,
 cp.version,
 cp.dll_path,
 c.name AS credential_name,
 c.credential_identity
FROM sys.cryptographic_providers cp
INNER JOIN sys.credentials c
 ON cp.provider_id = c.target_id;

Figure C-15. Verification that the EKM provider is properly registered

Verifying EKM Provider Functionality
After the EKM provider is registered as a cryptographic provider with SQL Server you can test the
encryption and decryption functionality by creating a symmetric key and encrypting and decrypting
data with it. Listing C-5 uses the EKM provider to create a symmetric key on the HSM, encrypt sample
data from the spt_values system table in the master database, and decrypts the encrypted data. Partial
results are shown in Figure C-16.

■ Note When you first initiate an EKM function after initializing the Luna SA, or after the HSM has been restarted,

you’ll need to use your black PED key and your assigned PIN to log into it with the PED.

APPENDIX C ■ LUNA EKM SETUP

287

Listing C-5. Use EKM to Create a Symmetric Key, Encrypt and Decrypt Data

-- Create an AES 128 symmetric key on the HSM
CREATE SYMMETRIC KEY Luna_AES128_Key
FROM PROVIDER LunaEKMProvider
WITH PROVIDER_KEY_NAME='Luna_AES128_Key',
CREATION_DISPOSITION = CREATE_NEW,
ALGORITHM = AES_128;
GO

--Create a temp table to hold results
CREATE TABLE #TestEncryption
(
 number int not null,
 name varbinary(120),
 type varbinary(120)
);

-- Encrypt some sample values from the dbo.spt_values
-- system table in the master database
INSERT INTO #TestEncryption
(
 number,
 name,
 type
)
SELECT
 number,
 EncryptByKey(Key_GUID(N'Luna_AES128_Key'), sv.name),
 EncryptByKey(Key_GUID(N'Luna_AES128_Key'), sv.type)
FROM master.dbo.spt_values sv
WHERE type = N'EOD';

-- Decrypt the previously encrypted values
SELECT
 number,
 CAST(DecryptByKey(te.name) AS nvarchar(35)) AS DecryptName,
 CAST(DecryptByKey(te.type) AS nvarchar(3)) DecryptType,
 te.name AS EncryptName,
 te.type AS EncryptType
FROM #TestEncryption te;

-- Clean up
DROP TABLE #TestEncryption;
GO

DROP SYMMETRIC KEY Luna_AES128_Key
REMOVE PROVIDER KEY;
GO

APPENDIX C ■ LUNA EKM SETUP

288

Figure C-16. Results of test EKM encryption and decryption

This is a very simple test that demonstrates the Luna’s basic symmetric key creation, key deletion,
and data encryption and decryption capabilities. Chapter 5 provides several additional code samples to
demonstrate symmetric and asymmetric encryption as well as alternative methods to validate your EKM
configuration and settings within SQL Server Management Studio.

289

Index

Numbers and Symbols
16-character cycle, of CHECKSUM

functions, 163
(pound sign), designating temporary

keys with, 60

A
A Manuscript on Deciphering

Cryptographic Messages, by
al-Kindi, 9

AB 1298. See California SB 1386
and AB 1298

Abbreviate Security Review checklist, 264—
269

Advanced Encryption Standard,
formalization of by US
Government, 17

AdventureWorksLT 2008 sample database,
downloading and installing, 47

AES 256-bit symmetric key, creating, 48
AES algorithms, 68—69
algorithms. See encryption algorithms
Alice meets Bob, sending secure messages

between, 14—15
al-Kindi, A Manuscript on Deciphering

Cryptographic Messages by, 9
ALTER ASYMMETRIC KEY statement, 85
ALTER CERTIFICATE statement, using, 93

ALTER DATABASE ENCRYPTION KEY
statement, 132

ALTER DATABASE statement, taking
database offline with, 137—140

ALTER LOGIN statement, 114, 285
ALTER MASTER KEY statement, 57
ALTER SERVICE MASTER KEY statement,

provided by SQL Server, 27
Ameriprise Financial, stolen laptop with

customer data problem, 240
ANSI X9.17 encryption key hierarchy, 22—

23
Apress, website address, 104
asymmetric encryption algorithm,

created by Rivest, Shamir, and
Adleman, 16

asymmetric key pairs
removing private key from, 85
generating and installing, 74—78

asymmetric keys, 73—85
adding password encryption to, 82
creating from SNK file, 74
creating through EKM, 115—121
decrypting sensitive credit card data

with, 84—85
encrypting data directly with, 83—85
encrypting data with, 83—84
protecting with passwords, 82
removing password encryption from,

82

 INDEX

290

using password-protected, 82
verifying creation success, 116

authenticator
adding, 54—59
encrypting and decryption with, 55—56

automatic key encryption, turning on, 61—
62

automatic key management, 56—59

B
backing up, Database Master Key

(DMK), 31
BACKUP CERTIFICATE statement, 131

provided by SQL Server, 93—94
BACKUP MASTER KEY statement, 31
BACKUP statement, for backing up Service

Master Key, 26
backups and compression, 135—136
bank account numbers, need for

encryption of, 236
Bellaso, Giovan Battosta, polyalphabetic

substitution cipher by, 10—12
binary large object (BLOB) data,

encrypting and decrypting, 176
BINARY_CHECKSUM function, generating

collisions with, 164
BitLocker, 137, 141—150

accessing options, 144
boot screen requesting drive

encryption key, 149
changing default settings, 143—146
configuring encryption method for,

145—146
encrypting volume after completing

setup, 148—150
installing on computer without TPM

chip, 145
installing on Windows Vista, 142—143
introduced in Windows Vista, 141
preparing drive for, 143
saving recovery password, 148
setting startup preferences for, 146—148
vs. Encryption File System (EFS), 141

Windows OSs available on, 141
BitLocker Drive Encryption option,

introduced in Windows Vista, 141
BitLocker Drive Preparation Tool, in

action, 142—143
block ciphers, 17
BY PASSWORD clause, in CREATE

statement, 29

C
Caesar Shift cipher, 8—9
California privacy acts, 233
California SB 1386 and AB 1298, 233
catalog views, encryption-specific

provided by SQL Server, 35—40
CCDecryptor user, granting permissions

to, 99—100
Certificate Request Wizard, 215—218
certificate signatures, verifying on product

descriptions, 95—96
certificates, 85—94. See also symmetric keys

applying self-signed, 209—214
backing up, 93—94
creating and registering, 85—87
creating and user based on it, 99
creating with login in master database,

105—106
encrypting data directly with, 91—93
re-creating in target database, 106
registering with SQL Server, 87
requesting from a valid CA, 214—218
requesting from a Windows CA server,

215
restoring backed up, 94
selecting friendly name for, 217—218,

220
signing data in the database with, 94—95

Certification Authority (CA)
in encryption, 204
requesting a certificate from, 214—218

chaos, the structure of, 52
CHECKSUM functions, 162—165

shortcomings of, 163

 INDEX

291

two-character collisions with, 164
CHECKSUM hash values, generating for a

table, 162—163
CHECKSUM_AGG function, 165
Cipher block chaining mode (CBC), 68
ciphers

encryption of messages with, 8—9
history of first, 7—9
official of the US Government, 16—17

client assignPartition command, 281—282
client certificate

creating and uploading to HSM, 279—
283

registering with the HSM, 280
client list command, verifying client was

registered with, 280
client lists (corporate), need for encryption

of, 237
client register command, registering client

certificate with, 280
client software, installing, 272
CLOSE ALL SYMMETRIC KEYS

statement, 64
Clustered Index Scan Operator, locating

encrypted data with, 188—189
COALESCE function, 159
code making and code breaking, in WWI,

12—13
common table expressions (CTEs), in

INSERT statement, 77
compensation data (corporate), need for

encryption of, 237
compression, simple example, 136
compression and backups, 135—136
confidentiality, of stored data, 1
confusion property, of block ciphers, 17
consumer protections, other state

laws, 233
contact data. See also data

encrypting with a symmetric key, 49—51
querying binary encrypted, 51

contracts, for security protection, 234
contracts (corporate), need for data

encryption of, 237

CREATE ASYMMETRIC KEY statement, 74
RSA key created on HSM with, 116

CREATE CERTIFICATE statement, 88
CREATE CREDENTIAL statement, 285
CREATE CRYPTOGRAPHIC PROVIDER

statement, registering a vendor
supplied DLL with SQL Server
in, 113

CREATE DATABASE ENCRYPTION KEY
statement, specifying encryption
algorithms in, 132

CREATE statement, creating a DMK
with, 29

CREATE SYMMETRIC KEY statement, 60
CREATE TABLE statement, creating

SalesLT.EncryptedCustomer table
with, 47—48

CREATE USER statement, WITHOUT
LOGIN clause of, 100

createCert command, vtl utility's, 279
credential, creating for EKM, 113
credit card data

decrypting with asymmetric keys, 84—
85

encrypted, 80
populating a table with, 78—80

credit card hash, 194—195
credit card information

creating sample table to hold, 76
decrypting sensitive, 81—82
querying encrypted with credit card

hash, 194—195
querying unsecured, 77—78

credit card numbers
hash based searching for, 195—196
need for encryption of, 236

CreditCard Solutions, bankruptcy of, 238
CreditCardLast4 column, 192
Crypt_Gen_Random function, 183
cryptoanalysis

as second branch of cryptology, 7
rise of, 9

cryptographic hash functions, 151—152

 INDEX

292

cryptographic provider
algorithms, querying list of, 124
verifying EKM credential and, 286

cryptographic random number
generation, in SQL Server, 19

cryptography
as branch of cryptology, 7
encryption key management, 25

cryptology, 7
CryptoStream, 172
CTEs. See common table expressions

(CTEs)
ctp utility, 278—279

D
Daemen, Joan, Rijndael cipher by, 17
data

contractual or professional obligation
to protect, 2

decrypting with symmetric key
protected by password, 59

decrypting without automatic key
management, 57—58

decrypting, 53—54
encrypting, 49—51, 78, 89—91
encrypting directly, 117—121
encrypting directly with certificates,

91—93
encrypting with HSM asymmetric

key, 118
querying encrypted sales order detail

data, 119
querying table to see encrypted, 80

Data Encryption Key (DEK)
new in SQL Server 2008, 34
securing, 24

Data Encryption Standard (DES)
adoption of by NIST, 16
algorithms, 69—71
brute force attack on, 17
contest for replacement of, 17

data loss, cost of, 234
Data Protection Act of 1998 (DPA), 233

Data Protection Directive (DPD, or
Directive 95/46/EC), 233

data protection regulations, 231—233
DataAccess property, setting in

EncryptAesByPassPhrase
function, 170

database, taking offline, 137—140
database encryption keys, querying a list

of, 44
Database Master Key (DMK), 29—34

altering, 29—31
backing up, 31
closing, 34
creating, 29
dropping, 32
opening, 32—33
restoring, 31—32
databases, 1—2
effects of encryption on searches and

queries, 185
need for encryption in, 2—3

DBA Toolkit, availability of, 18
DecryptAesByPassPhrase function, 173—

176
in SQL CLR, 167
testing, 176—177
vs. DecryptByPassPhrase, 176—177

DecryptByAsymKey function, 82
DecryptByCert function, 92—93
DecryptByKey system function, 53—54
DecryptByKeyAutoAsymKey function, 82
DecryptByPassPhrase, 66

vs. DecryptAesByPassPhrase, 176—177
decrypting

credit card information, 98—99
encrypted data, 53—54

DECRYPTION BY clause, 81
DEK (database encryption key)

creating and turning on TDE, 134
DEK (database encryption key)

(continued)
creating in AdventureWorksLT2008

database, 132

 INDEX

293

used by TDE model, 131—133
DES

algorithms, 69—71
contest to replace, 17

DESX keyword, in SQL Server, 67
Diffie, Whitfield, secret key experiment, 14
Diffie-Hellman key exchange, 15
diffusion property, of block ciphers, 17
digital certificates, 94—96
DMK (Database Master Key), creating in

the master database, 131
DPA (Data Protection Act of 1998), 233
DPD, or Directive 95/46/EC. See Data

Protection Directive (DPD, or
Directive 95/46/EC)

drivers license/government ID number,
need for encryption of, 235

DROP DATABASE ENCRYPTION KEY
statement, dropping DEK
with, 132

DROP MASTER KEY statement, 32
dynamic management functions (DMFs).

See dynamic management views
(DMVs), and functions

dynamic management views (DMVs) and
functions (DMFs), 40—44

E
EFS (Encryption File System). See

Encrypting File System (EFS)
EKM (Extensible Key Management). See

also Extensible Key Management
(EKM)

creating credential and login for, 133
using DEK with, 133
using TDE with, 133—134

EKM credential
creating, 285—286
verifying cryptographic provider

and, 286
EKM provider, creating symmetric key,

encrypt, and decrypt data for, 286—
288

EKM provider enabled option, 285
EKM registration, querying catalog views

and DVMs to validate, 114
email addresses, need for encryption

of, 235
employee information, encrypted, 224
EncryptAesByPassPhrase function, 168—

172
function declaration, 170
in SQL CLR, 167
source code, 168—170
testing, 176—177
vs. EncryptByPassPhrase, 176—177

EncryptByAsymKey function, encrypting
data directly with, 84

EncryptByKey function, 50
EncryptByPassphrase function, 66, 167

vs. EncryptAesByPassPhrase, 176—177
encrypted data

decrypting, 53—54, 90—91
indexing, 185—202
problem of searching, 185—190
querying, 90—91
simple search of, 188—189

encrypted databases, listing, 134—135
encrypted product price information,

creating table for, 122
encrypting, connections to SQL Server

2008, 203—229
Encrypting File System (EFS), 137—141

algorithms supported by, 140
general hints and tips for

implementation, 140—141
vs. BitLocker, 141

encryption, 1—3
by machine key, 28—28
categories of data you need to

encrypt, 235
checking status, 134—135
checklist, 259—269
concepts, 204
deciding what data to encrypt, 234—237
definitions, 243—257

 INDEX

294

effect of on performance, 228
effects of on backup compression, 136
enforcing between server and client,

218—221
forcing at the server, 219—220
forcing from clients with SQL Native

Client, 220—221
history of first ciphers, 7—9, 20
introduction to, 1
of databases, 3
Windows-based options, 137—150
with passphrases, 66
working during process of, 149

encryption algorithms, 67—72
classified as munitions in the 1990's, 16
padding and chaining mode, 68
supported by SQL Server, 67

encryption design, driving, 263
encryption glossary, 243—257
encryption keys

ANSI X9.17 hierarchy, 22, 23
basics of management of, 25
creating sample data and, 185—188
distribution of, 25—26
management, 21, 25, 45
security, 23—24
SQL Server 2008 hierarchy, 21

encryption planning checklist, 269
encryption tools, SQL Server, 18—19
Enigma machine, 13
example, From $15 Billion to Bankruptcy,

238—241
EXECUTE AS clause, ownership chaining

and, 103
EXECUTE AS USER statement, 100
extended SHA-1 hash, user-defined

function for generating, 156—157
Extensible Key Management (EKM), 111—

125
configuring, 112—115
creating a credential for, 113

Extensible Key Management (EKM)
(continued)

enabling functionality in SQL Server,
112—113

in SQL Server 2008, 19
limitations of, 123—124
relationship between SQL Server and,

111—112
Extract, Transform and Load (ETL)

applications, increasing efficiency
of, 161

F
Fair and Accurate Credit Transaction Act

(FACTA), regulation for data
security, 2, 232

Federal Information Security Management
Act (FISMA), 232

Feistal function, steps for, 70—71
file encryption key (FEK), generating, 140
financial data (corporate), need for

encryption of, 237
FISMA (Federal Information Security

Management Act), 232
Force Encryption flag, setting, 219
FORCE option, RESTORE SERVICE

MASTER KEY statement, 27
formulas (corporate secret), need for

encryption of, 237
friendly name certificate, selecting, 220

G
Galileo Galilei, SHA-1 hash value of, 154
German Enigma machine. see Enigma

machine
GetHash function, 177—181

defining two parameters for, 178—180
improved cryptographic hash function,

177—181
signature, 177
testing, 180—181
vs. SaltedHash function, 182

GetHmac function
C# source listing for, 199—200
signature of, 198

 INDEX

295

vs. SaltedHash function, 200
Group Policy Editor

accessing, 143
changing BitLocker default settings in,

143—146
hash, attacking, 161
hash collisions, 152
hash function extension, 156—158
hash functions, message digest family of,

158—162
hash values (or digest), 151

calculating extended for LOB data, 156
storing salted, 196—198

hash-based message authentication codes
(HMACs), storing, 198—201

HashBytes function
limitations of, 177
parameters accepted by, 153
SHA-1 limitations, 155
SQL Server hash algorithms available

through, 152
using its SHA-1, 153—155

HashBytes SHA-1, using, 153—155
hashed values, storing, 193—196
hashing, 151—166
health and medical records, need for

encryption of, 236
health insurance

information/applications, need for
encryption of, 236

Health Insurance Portability and
Accountability Act (HIPAA), 232

health payment records, need for
encryption of, 236

Heartland Payment systems, security
breach at, 2

Heartland Payment Systems, fallout from
hacking of, 238—239

HIPAA Privacy and Security rules, 232
HMACs. See also hash-based message

authentication codes (HMACs)
populating sample table with, 200
querying encrypted data with HMAC

column, 200—201

HSM (Hardware Security Module)
certificate, registering, 278—279
changePolicy command, 276
configuring, 272—278
creating new partition on, 276
generating new certificate for, 275—276
login command, 276
terminal settings for, 273

HSM appliance
benefits of using with EKM, 112
creating asymmetric key on, 115
creating symmetric key on, 121
role of, 112

HSM asymmetric key
creating symmetric key protected

by, 116
decrypting data with, 119—121
verifying symmetric key protection by,

116—117
HSM secret value, importance of

recording, 277
HSM symmetric key, encrypting and

decrypting data with, 122—123
hsm-init command, 276

I
identity identification questions, need for

encryption of, 235
IDENTITY_SOURCE option, creating AES

key with, 60
IDENTITY_VALUE option, creating

temporary keys with, 60
Index Seek (Nonclustered) operator, 190

revised query plan with, 192—193
INSERT statement

common table expressions (CTEs)
featured in, 77

that encrypts and stores credit card
data, 80

IsDeterministic property, setting in
EncryptAesByPassPhrase
function, 170

 INDEX

296

J
Japanese Purple cipher, 13

K
key management, 59
Key_Guid system function, 50, 61
KEY_SOURCE option, 60
keys and certificates

permissions for creating and
administering, 34—36

supported by SQL Server 2008, 34
King James Version (KJV) Bible, testing al-

Kindi's theory on, 9—10

L
laws and regulations, requiring encryption

of data, 2
Leonard Adleman, asymmetric encryption

algorithm by, 16
LoadStates stored procedure

creating a login and user to execute,
108

creating and signing, 106—108
executing using the Joe login, 108
verifying the results of, 109

log table, querying, 103
logging table, creating and encrypting

credit card data, 97—98
Lorenz ciphers, 13
Luna SA

appliance login screen, 273—274
configuring client access, 278—283
EKM provider DLL, web site address for

requesting, 284
installing the client software, 272
network configuration, 275
PED, 271
registering Cryptographic provider with

SQL Server, 113
setting system time, 274

Luna SA hardware security module (HSM),
creating partitions in, 276—278

prerequisites, 271—272
provided by SafeNet, 111
software required to work with SQL

Server 2008 EKM, 272
Luna SA-supported algorithms, 124
LunaEKMConfig utility, running, 284

M
machine key, encryption by, 28
makecert.exe utility (Visual Studio)

command-line options for, 209
commonly used options for, 86
creating self-signed certificate with, 86
website address for option updates, 87

Management Studio, viewing
cryptographic providers/
credentials in, 114

Massachusetts Data Protection Law, 233
master database, creating certificate and

login in, 105—106
MD2 algorithm, by Ron Rivest, 162
MD4 algorithm, by Ron Rivest, 162
MD5 hash function, 158—161
MD5 hashing, of rows in a table, 159—161
meaningful hash collision, 152
medical records, need for encryption

of, 236
MemoryStream, 172
message digest family, of hash functions,

158—162
Microsoft TechNet, web site address, 141
Microsoft.SqlServer.Server.SqlFunction

attribute, 170
modules, signing, 96—109
monoalphabetic substitution cipher,

example of, 8
MSDN, web site address, 141, 150
MSDN library, website address, 87

N
name and address information, need for

encryption of, 235

 INDEX

297

National Institute of Standards and
Technology or NIST, adoption of
Data Encryption Standard (DES)
by, 16

net dns command, configuring network
setting with, 275

net hostname command, configuring
network setting with, 275

net interface command, configuring
network setting with, 275

net show command, showing settings
with, 275

Network Associates, purchase of PGP
by, 16

Network Monitor, 204—206
capturing usernames in plain text with,

222
sample capture using, 205—206
web site address, 205

Network Trust Link (NTLS) service, 275
Nonclustered Index

creating on last four digits of credit
card, 191—192

creating on the CreditCardNumber
column, 189—190

ntls bind command, 275
nvarchar and varchar, hashing same string

as, 154
nvarchar data, decrypting, 54
NY Mellon Bank, loss of backup data

tapes, 240

O
one-time pad, 12—13
OPEN MASTER KEY statement, 33, 57

automatically decrypting DMK with, 29
OpenSSL tool, web site address, 209
ownership chaining, and EXECUTE AS

clause, 103

P
packet sniffer (Network Monitor), in

encryption, 204

padding and chaining mode, encryption
algorithms, 68

partial plaintext values, storing, 190—193
partition changePolicy command, 277
partition create command, 276
partitions, creating, 276—278
passphrases

encrypting by, 167—177
encryption with, 66

Payment Card Industry Data Security
Standard (PCI DSS), 238

P-box, 17
PCI DSS (Payment Card Industry Data

Security Standard), 238
PCI Security Standards Council, web site

address, 238
performance, effect of encryption on , 228
performance test data (corporate), need

for encryption of, 237
permissions

database-level, 97—104
for keys and certificates, 34—36
giving to user Bob to execute the

procedure, 100
granting to CCDecryptor user, 99—100
propagation of through a signed

procedure, 102
server-level, 104—109
table of for encryption administrative

tasks, 34—35
personal credit and financial data, need for

encryption of, 236
personal identification, need for

encryption of, 235
Personal Information Protection and

Electronic Documents Act
(PIPEDA), 232

PGP (Pretty Good Privacy) application, by
Phillip Zimmerman, 16

PIPEDA (Personal Information Protection
and Electronic Documents
Act), 232

PKI. See Public Key Infrastructure (PKI)

 INDEX

298

plaintext credit card, adding a
cryptographic hash of, 193—194

plaintext values, storing partial, 190—193
plans and schematic drawings (corporate),

need for encryption of, 237
platform configuration registers (PCRs),

TPM module's, 141
polyalphabetic substitution cipher,

developed by Giovan Battista
Bellaso, 10—12

pound (#) sign, designating temporary
keys with, 60

private key, removing from asymmetric
key pair, 85

Public Key Infrastructure (PKI), in
encryption, 204

Purple cipher. See Japanese Purple cipher

Q
query plan, for simple encrypted credit

card search, 189
querying, product descriptions and their

signatures, 95
Quit command, exiting LunaEKMConfig

utility with, 284

R
rainbow table attacks, 196
range queries, 201—202
RC2 and RC4 algorithms, by Ron Rivest of

RSA Security, 71
reciprical tables, used by Bellaso's

polyalphabetic ciphers, 11
RegisterSlots command, entering Luna SA

slot number with, 284
regulations, overview of, 231—233
regulatory requirements, 231—241
RESTORE MASTER KEY statement, 31
RESTORE SERVICE MASTER KEY

statement, for restoring the
SMK, 27

restoring, Database Master Key (DMK),
31—32

Rfc2898DeriveBytes class, 171

Rijmen, Vincent, Rijndael cipher by, 17
Rijndael encryption object, creation of,

171—172
Rivest, Ron

asymmetric encryption algorithm by,
16

RC2 and RC4 algorithms by, 71
RSA X.509 certificate, requesting, 216—217

S
SafeNet

support web site address, 284
website address, 112

SafeNet Luna SA HSM, 112
web site address, 271

SalesLT.CreditCardInfo table, populating,
76—77

SalesLT.EncryptedCreditCardInfo table,
adding CreditCardLast4 column
to, 190—191

SalesLT.EncryptedCustomer table,
querying, 51

SalesLT.GetOrderSummary procedure,
executing, 101—102

salt value, outputting unencrypted to
MemoryStream, 172

salted hash values
generating of credit card numbers, 197
statistical attacks on, 196—197

salted hash-based searching, for credit
card numbers, 197—198

salted hashed values, storing, 196—198
SaltedHash function, 181—184

vs. GetHmac function, 200
Sarbanes-Oxley Act (SOX), 232
SB 1386. See California SB 1386 and

AB 1298
S-box, 17
scytale, as first cipher, 7—9
searching, hash based for credit card

numbers, 195—196
SECRET clause, replacing login secret

with, 114

 INDEX

299

secure channel communications, option
for in SQL Server, 211

secure connections, creating and testing,
221—228

Secure Hash Algorithm (SHA) hash
functions. See SHA hash functions

security
getting into mind-set for, 3
history of, 7—17
how to share secrets, 144
identifying intentional threats, 4—5
war and, 12—15
WWII and, 13

security auditing checklists, issued by
DISA, 263—269

security breaches, continuing problems
with, 240—241

security review, 263—269
self-generated certificate

default location of, 208
error connecting to/from client, 207—

208
self-signed certificates

applying, 209—214
creating in SQL Server, 88
creating with makecert.exe, 210
creating your own for testing, 209—214
to protect symmetric keys, 48

self-signed certificates (continued)
using Certification snap-in to

create, 210
SelfSSL tool, distributed with the IIS 6.0

Toolkit, 209
sensitive corporate data, need for

encryption of, 237
server asymmetric key, on an HSM, 133
server certificate, 131
server-level permissions, 104—109

assigning through a certificate, 105
Service Master Key (SMK), 24, 26—28

altering, 27—28
backing up, 26
restoring, 27

SET ENCRYPTION OFF clause, ALTER
DATABASE statement's, 133

SHA hash functions, 152—158
SHA-1 hash, generating for Authenticator

value, 171
SHA-1 hash algorithm

one iteration of, 152—153
vs. SHA-0 algorithm, 153

SHA-1 hash value
of Galileo Galilei, 154
of modified Galileo Galilei IV, 154—155

SHA-1 hashes
comparing 8K and 9K byte strings, 155
security of, 158

Sha1ExtendedHash function, 156
testing, 157—158

Shamir,Adi, asymmetric encryption
algorithm by, 16

SignByAsymKey function, 96
SignByCert function, 95
SMK (Service Master Key). See Service

Master Key (SMK)
sn.exe utility, generating SNK file with, 74
SNK (Strong Name Key) files. See Strong

Name Key (SNK) files
social security number/tax ID number,

need for encryption of, 235
Sommarskog, Erland, whitepaper by, 103
SOX (Sarbanes-Oxley Act), 232
Spartan scytale. See scytale
SQL CLR,

additional considerations, 184
hashing, 177—184

SQL encryption key. See encryption key
SQL language extensions, in SQL Server

2008, 19
SQL Native Client, forcing encryption from

clients with, 220—221
SQL Server, 18

configuring, 285
creating cryptographic provider on, 285
creating self-signed certificates in, 88
DESX keyword in, 67

 INDEX

300

enabling EKM functionality in, 112—113
enabling EKM provider support, 285
encrypted logon connection, 213
encryption out of the box, 206—208
encryption supported by, 17—19
generating/installing asymmetric keys

on, 74—78
generating on the SQL Server, 75
generating SHA-1 hash of name in, 153
layered symmetric keys in hierarchy, 62
on a network, 4
registering certificate file with, 87
registering vendor supplied DLL in, 113
registering Luna SA Cryptographic

provider with, 113
SQL Server 2000, encryption in, 18
SQL Server 2005, encryption in, 18—19
SQL Server 2008

encrypting connections to, 203—229
encryption in, 19
encryption key hierarchy, 21—23
hash algorithms available through

HashBytes function, 152
other keys and certificates supported

by, 34
SQL Server Configuration Manager,

launching, 211—214
SQL Server EKM, setting up, 284—288
SQL Server error logs, self-generated

certificate in, 206—207
SQL Server Management Studio, example,

222—225
SQL Server Reporting Services (SSRS), 226—

228
advanced properties of data source

connection for, 227—228
data source, 226—227
default data source properties in, 227

SQL SLR GetHash function. See GetHash
function

SqlFacet attribute, setting MaxSize
property with, 170

SRTM (Static Root of Trust for
Measurement). See Static Root of
Trust for Measurement (SRTM)

SSL/TLS-Secure Sockets Layer and
Transport Layer Security, in
encryption, 204

SSMS force encryption option, 223
State table, building, 104
State-List.xml, file snippet, 104
Static Root of Trust for Measurement

(SRTM), 141
stored procedure, 102
storing

hash-based message authentication
codes, 198—201

hashed values, 193—196
partial plaintext values, 190—193
salted hashed values, 196—198

Strong Name Key (SNK) files, 74
symmetric encrypiton, 47—72
symmetric keys, 47—66

closing, 51, 80
creating a certificate to protect, 48
creating and protecting, 48—49
creating one protected by an HSM

asymmetric key, 116
creating temporary, 60—61
creating, 121—123
decrypting data with layered, 64—66
decrypting data with protected by

password, 59
downside of layering, 63—64
duplicating, 59—60
layering, 61—66

symmetric keys (continued)
protecting with certificate, 89—91
protecting with asymmetric key, 75
protecting, 116—117
retrieving those encrypted by

certificates, 39
using encryption by password to

protect, 58—59
using to encrypt your data, 50—51
verifying key creation, 121

 INDEX

301

sys.asymmetric_keys catalog view, 36
sys.certificates catalog view, 37
sys.credentials catalog view, 37
sys.crypt_properties catalog view, 39
sys.cryptographic_providers catalog

view, 38
sys.cryptographic_providers

(sys.credentials view), querying,
114—115

sys.dm_cryptographic_provider_
algorithms, 41

sys.dm_cryptographic_provider_keys, 41
sys.dm_cryptographic_provider_

properties, 42
sys.dm_cryptographic_provider_propertie

s (cryptographic system view),
querying, 114—115

sys.dm_cryptographic_provider_
sessions, 43

sys.dm_database_encryption_keys, 44—45
sys.dm_database_encryption_keys DMV,

determining encryption status
with, 134—135

sys.key_encryptions catalog view, 39
sys.symmetric_keys, querying to verify key

creation, 121
sys.symmetric_keys catalog view, 40
sysconf command, changing settings

with, 274
sysconf regenCert command, generating

new certificate with, 275—276
system time, setting for Luna SA, 274

T
tables

creating for credit card information, 76
creating for encrypted address

information, 85
creating for encrypted sales order

information, 118
tabula recta, by Vigenère, 11—12
target database, re-creating certificate

in, 106

TDE (Transparent Data Encryption), 127—
150

advantages of, 130
considerations when

implementing, 128
data protection over-the-wire, 129
enabling, 131—133
enabling in target database, 132
encryption of tempdb system

database, 129
limitations of, 130—131
logical representation of, 127—128
using with EKM, 133—134

TDE-encrypted database, restoring to SQL
Server instance, 135

TechNet, web site address for BitLocker
information, 144

temporary symmetric keys, creating, 60—61
testing

functions, 176—177
GetHash function, 180—181

threat matrices, creating, 5—7
threat modeling, 4, 259—262

identifying intentional threats, 4—5
threat level scale, 261—262
worksheet, 7, 259—261

threats. See threat modeling
time. See system time
TJX Co., security breach at, 2, 240
Transparent Data Encryption (TDE), 127—

150
Data Encryption Key (DEK) as part

of, 34
in SQL Server 2008, 19

Triple DES, 17. See also Data Encryption
Standard (DES) algorithms

Trusted Platform Module (TPM) 1.2 chip,
141—142

try...catch block
DecryptAesByPassPhrase function

wrapped in, 175
in EncryptAesByPassPhrase

function, 170

 INDEX

302

U
USB PED keys, 271

V
varbinary hash value, returned by

GetHmac function, 199
varchar and nvarchar, hashing the same

string as, 154
VerifySignedByAsymKey function, 96
VIEW DEFINITION permissions, 35
Vigenère cipher. See polyalphabetic

substitution cipher
Visual Studio Software Development Kit

(SDK), sn.exe utility in, 74
vtl utility, 278
vtl verify command, 282

W
web site addresses

AdventureWorksLT 2008 sample
database, 47

Apress, 104
EKM provider DLL, 284
for requesting Luna SA EKM provider

DLL, 284
"Giving Permissions Through Stored

Procedures" whitepaper, 103
makecert.exe utility, 87
Microsoft TechNet, 141
MSDN, 141, 150
MSDN library, 87
Network Monitor, 205
of PCI DSS (Payment Card Industry

Data Security Standard), 238
OpenSSL tool, 209
PCI Security Standards Council, 238
SafeNet Luna SA HSM, 271
SafeNet Luna SA information, 112, 284
TechNet for BitLocker information, 144
Wired.com,, 238

whole-value substitution attacks,
mitigated by authenticators, 54

Windows Update, installing BitLocker and
EFS enhancements from, 142

Windows-based encryption options, 137—
150

Wired.com, 238
WITH IDENTITY clause, replacing

Windows login with, 114

XYZ
Zimmerman telegram, 12
Zimmerman, Phillip, PGP encryption

application by, 16

233 Spring Street, New York, NY 10013

	Apress - Expert SQL Server 2008 Encryption (October 2009) (ATTiCA)
	Contents
	Contents at a Glance
	Books for Professionals
	Foreword
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Who This Book Is For
	How This Book Is Structured

	Introduction to Encryption
	What Is Encryption?
	Do I Need Encryption?
	Are You Storing Confidential or Sensitive Business Information in Your Databases?
	Are You Subject to Laws and Regulations That Require You to Encrypt Your Data?
	Are You Under Contractual or Professional Obligation to Protect Your Data?
	A Security Mind-Set
	Why Encrypt the Database?
	Threat Modeling

	A Short History of Information Security
	The First Ciphers
	The Rise of Cryptanalysis
	Bellaso Strikes Back
	War and Security
	How to Share a Secret
	Weapons of Mass Encryption
	Official Ciphers of the US Government

	SQL Server Encryption Tools
	Encryption in SQL Server 2000
	Encryption in SQL Server 2005
	Encryption in SQL Server 2008

	Summary

	Encryption Key Management
	SQL Encryption Key Hierarchy
	Key Management
	Key Distribution

	Service Master Key
	Backing Up the SMK
	Restoring the SMK
	Altering the SMK

	Database Master Key
	Creating a DMK
	Altering a DMK
	Backing Up a DMK
	Restoring a DMK
	Dropping a DMK
	Opening a DMK
	Closing a DMK

	Other Keys and Certificates
	Permissions
	Catalog Views
	Dynamic Management Views and Functions
	Summary

	Symmetric Encryption
	Symmetric Keys
	Creating and Protecting Symmetric Keys
	Encrypting Data
	Decrypting Data
	Adding an Authenticator
	Automatic Key Management
	Temporary Keys
	Layering Symmetric Keys

	Encryption with Passphrases
	Encryption Algorithms
	AES Family
	DES Family
	RC2 and RC4

	Summary

	Asymmetric Encryption
	Asymmetric Keys
	Generating and Installing Asymmetric Keys
	Encrypting Data
	Protecting Asymmetric Keys with Passwords
	Encrypting Data Directly with Asymmetric Keys
	Removing the Private Key

	Certificates
	Creating Certificates
	Creating SQL Server Self-Signed Certificates
	Encrypting Data
	Encrypting Data Directly with Certificates
	Backing Up Certificates

	Digital Signatures
	Database-Level Permissions
	Server-Level Permissions

	Signing Modules
	Summary

	Extensible Key Management
	What Is EKM?
	Configuring EKM
	Creating Asymmetric Keys
	Protecting Symmetric Keys
	Encrypting Data Directly

	Creating Symmetric Keys
	EKM Limitations
	Summary

	Transparent Data Encryption
	What Is TDE?
	What Is Encrypted
	What Isn’t Encrypted
	Advantages of TDE
	Enabling TDE

	Using TDE with EKM
	Checking Status
	Backups and Compression
	Windows-Based Encryption Options
	Summary

	Hashing
	Cryptographic Hash Functions
	SHA Hash Function
	Using HashBytes SHA-1
	HashBytes SHA-1 Limitations
	Hash Function Extension
	SHA-1 Security

	Message Digest Family of Hash Functions
	MD5 Hash Function
	MD5 Security
	MD4 and MD2

	CHECKSUM Functions
	Summary

	SQL CLR Cryptography
	Encrypting By Passphrase
	EncryptAesByPassPhrase Function
	Deriving Encryption Keys
	DecryptAesByPassPhrase
	Testing the Functions

	SQL CLR Hashing
	GetHash
	SaltedHash

	Additional SQL CLR Considerations
	Summary

	Indexing Encrypted Data
	The Problem of Searching Encrypted Data
	Storing Partial Plaintext Values
	Storing Hashed Values
	Storing Salted Hashed Values
	Storing Hash-Based Message Authentication Codes
	Range Queries
	Summary

	Encrypting Connections toSQLServer 2008
	Encryption Concepts
	Network Monitor
	SQL Server Encryption Out of the Box
	Applying a Self-Signed Certificate
	Requesting a Certificate from a Valid CA
	Enforcing Encryption Between Server and Client
	Forcing Encryption at the Server
	Forcing Encryption from Clients with SQL Native Client

	Creating and Testing Secure Connections
	SQL Server Management Studio Example
	SQL Server Reporting Services Example

	Performance
	Summary

	Regulatory Requirements
	Regulations
	Contracts
	What to Encrypt
	Example: From $15 Billion to Bankruptcy
	Summary

	Appendix
	SQL Server 2008 EncryptionGlossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	Z

	Encryption Checklist
	Threat Modeling
	Driving Encryption Design
	Security Review
	Encryption Planning Checklist

	Luna EKM Setup
	Prerequisites
	Installing Client Software
	Configuring the HSM
	Configuring Client Access
	Setting Up SQL Server EKM

	Index

