
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 02/26/2015 Page i

EXCEL® VBA 24-HOUR TRAINER

INTRODUCTION . xxvii

 ▸ PART I: UNDERSTANDING THE BASICS

LESSON 1: Introducing VBA . 3

LESSON 2: Getting Started with Macros . 11

LESSON 3: Introducing the Visual Basic Editor . 25

LESSON 4: Working in the VBE . 33

 ▸ PART II: DIVING DEEPER INTO VBA

LESSON 5: Object-Oriented Programming: An Overview 49

LESSON 6: Variables, Data Types, and Constants . 55

LESSON 7: Understanding Objects and Collections . 67

LESSON 8: Working with Ranges . 75

LESSON 9: Making Decisions with VBA . 85

 ▸ PART III: BEYOND THE MACRO RECORDER:
WRITING YOUR OWN CODE

LESSON 10: Repeating Actions with Loops . 101

LESSON 11: Programming Formulas . 113

LESSON 12: Working with Arrays . 127

LESSON 13: Automating Procedures with Worksheet Events 137

LESSON 14: Automating Procedures with Workbook Events 149

LESSON 15: Handling Duplicate Items and Records . 161

LESSON 16: Using Embedded Controls . 181

LESSON 17: Programming Charts . 199

LESSON 18: Programming PivotTables and PivotCharts 213

LESSON 19: User-Defi ned Functions . 237

LESSON 20: Debugging Your Code . 251

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 02/26/2015 Page ii

 ▸ PART IV: ADVANCED PROGRAMMING TECHNIQUES

LESSON 21: Creating UserForms . 271

LESSON 22: UserForm Controls and Their Functions . 285

LESSON 23: Advanced UserForms . 305

LESSON 24: Class Modules . 321

LESSON 25: Add-Ins . 335

LESSON 26: Managing External Data . 353

LESSON 27: Data Access with ActiveX Data Objects . 365

LESSON 28: Impressing Your Boss (or at Least Your Friends) 373

 ▸ PART V: INTERACTING WITH OTHER OFFICE APPLICATIONS

LESSON 29: Overview of Offi ce Automation from Excel 391

LESSON 30: Working with Word from Excel . 399

LESSON 31: Working with Outlook from Excel . 409

LESSON 32: Working with Access from Excel . 419

LESSON 33: Working with PowerPoint from Excel . 431

INDEX . 441

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 02/26/2015 Page iii

Excel® VBA
24-Hour Trainer

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 02/26/2015 Page v

Excel® VBA
24-Hour Trainer

Second Edition

Tom Urtis

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 02/26/2015 Page vi

Excel® VBA 24-Hour Trainer, Second Edition

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-99137-4
ISBN: 978-1-118-99140-4 (ebk)
ISBN: 978-1-118-99141-1 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-
6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media
such as a CD or DVD that is not included in the version you purchased, you may download this material at http://
booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2015930536

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other
countries, and may not be used without written permission. Excel is a registered trademark of Microsoft Corporation. All
other trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product
or vendor mentioned in this book.

www.allitebooks.com

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://booksupport.wiley.com
http://www.wiley.com
http://www.allitebooks.org

ffi rs.indd 02/26/2015 Page vii

To my father, Bill Urtis.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 02/26/2015 Page ix

ABOUT THE AUTHOR

TOM URTIS is a Microsoft Excel MVP who has been using Excel since
1994. Tom owns Atlas Programming Management (www.atlaspm.com), a
Microsoft Offi ce solutions company specializing in Excel programming,
development, testing, and training for an international clientele. As an
Excel trainer, Tom created the Excel Aptitude Test (XAT®,
http://xat.atlaspm.com), an innovative test that measures knowledge
and aptitude of Excel for individuals and businesses.

Tom has co-authored Don’t Fear The Spreadsheet (Holy Macro! Books,
2012) and Holy Macro, It’s 2500 Excel VBA Examples (Holy Macro! Books, 2005), and he has
served as technical editor and consultant for other Excel books and training material. Tom actively
contributes to the Excel community through his blog, in forums, and with his daily Excel tips and
examples on social media.

Tom is a graduate of Michigan State University. He has lived in the San Francisco Bay Area since
1983, where he enjoys the outdoor life that California offers. Tom is an avid fan of college and
 professional sports, and a collector of rare sports memorabilia. Tom can be reached by e-mail at
tom@atlaspm.com.

ABOUT THE TECHNICAL EDITOR

Mike Alexander is a Microsoft Certifi ed Application Developer (MCAD) and author of more than a
dozen books on advanced business analysis with Microsoft Access and Excel. He has more than 16
years experience consulting and developing Offi ce solutions. Michael has been named a Microsoft
MVP for his ongoing contributions to the Excel community.

http://www.atlaspm.com
http://xat.atlaspm.com
mailto:tom@atlaspm.com

ffi rs.indd 02/26/2015 Page xi

EXECUTIVE EDITOR
Carol Long

PROJECT EDITOR
Charlotte Kughen

TECHNICAL EDITOR
Michael Alexander

PRODUCTION EDITOR
Christine O’Connor

COPY EDITOR
Kim Cofer

MANAGER OF CONTENT DEVELOPMENT AND
ASSEMBLY
Mary Beth Wakefi eld

MARKETING DIRECTOR
David Mayhew

MARKETING MANAGER
Carrie Sherrill

PROFESSIONAL TECHNOLOGY & STRATEGY
DIRECTOR
Barry Pruett

BUSINESS MANAGER
Amy Knies

ASSOCIATE PUBLISHER
Jim Minatel

PROJECT COORDINATOR, COVER
Brent Savage

PROOFREADER
Josh Chase, Word One New York

INDEXER
Ted Laux

COVER DESIGNER
Wiley

COVER IMAGE
Wiley

CREDITS

ffi rs.indd 02/26/2015 Page xiii

ACKNOWLEDGMENTS

 THE PRODUCTION OF THIS BOOK WAS made possible by the combined efforts of highly talented
people, starting with the entire Wiley Publishing team, all of whom are a pleasure to work with.
Thanks to Carol Long, the executive editor who got the project approved, and kept the process mov-
ing from start to fi nish. Thanks to Technical Editor Mike Alexander, who introduced me to Wiley
Publishing in 2010 when I wrote the fi rst edition to this book. Thanks to Charlotte Kughen, the
project editor; to Kim Cofer, the copy editor; and to Christine O’Connor, the production editor.

Thank you to my family and friends for your understanding and support of my book-writing
schedule, and of my everyday drive for working with Excel and teaching it to others. Many thanks
to the Excel development team at Microsoft Corporation for improving Excel with each new release
of Offi ce, while considering suggestions from Excel users. A special thanks to the global Excel
community. You’ve shown me creative ways to use Excel over the years, and taught me how to
explain technical concepts to beginning Excel users.

Finally, I want to thank you for buying this book. Please tell us what you think about it, including
what you liked so we keep doing it, or what you think can be improved. After all, this is your book.

ftoc.indd 02/26/2015 Page xv

CONTENTS

INTRODUCTION xxvii

PART I: UNDERSTANDING THE BASICS

LESSON 1: INTRODUCING VBA 3

What Is VBA? 3
A Brief History of VBA 4
What VBA Can Do for You 5

Automating a Recurring Task 5
Automating a Repetitive Task 5
Running a Macro Automatically if Another Action Takes Place 5
Creating Your Own Worksheet Functions 7
Simplifying the Workbook’s Look and Feel for Other Users 7
Controlling Other Offi ce Applications from Excel 7

Liabilities of VBA 8
Try It 9

LESSON 2: GETTING STARTED WITH MACROS 11

Composing Your First Macro 11
Accessing the VBA Environment 11
Using the Macro Recorder 16

Running a Macro 21
The Macro Dialog Box 21
Shortcut Key 22

Try It 22
Lesson Requirements 22
Hints 22
Step-by-Step 23

LESSON 3: INTRODUCING THE VISUAL BASIC EDITOR 25

What Is the VBE? 25
How to Get Into the VBE 25
Understanding the VBE 26
Understanding Modules 28

xvi

CONTENTS

ftoc.indd 02/26/2015 Page xvi

Using the Object Browser 28
Exiting the VBE 30

Try It 30

LESSON 4: WORKING IN THE VBE 33

Toolbars in the VBE 33
Macros and Modules 33

Locating Your Macros 33
Understanding the Code 36
Editing a Macro with Comments and Improvements to the Code 37

Deleting a Macro 39
Inserting a Module 39
Renaming a Module 41
Deleting a Module 42
Locking and Protecting the VBE 43

Try It 44
Lesson Requirements 44
Hints 44
Step-by-Step 45

PART II: DIVING DEEPER INTO VBA

LESSON 5: OBJECT-ORIENTED PROGRAMMING: AN OVERVIEW 49

What “Object-Oriented Programming” Means 49
The Object Model 50

Properties 51
Methods 51
Collections 52

Try It 53

LESSON 6: VARIABLES, DATA TYPES,
AND CONSTANTS 55

What Is a Variable? 55
Assigning Values to Variables 56
Why You Need Variables 56
Data Types 57

Understanding the Different Data Types 57
Declaring a Variable for Dates and Times 58
Declaring a Variable with the Proper Data Type 59

xvii

CONTENTS

ftoc.indd 02/26/2015 Page xvii

Forcing Variable Declaration 59
Understanding a Variable’s Scope 61

Local Macro Level Only 62
Module Level 62
Application Level 63
Constants 63

Try It 64
Lesson Requirements 64
Step-by-Step 64

LESSON 7: UNDERSTANDING OBJECTS AND COLLECTIONS 67

Workbooks 67
Cells and Ranges 69

SpecialCells 70
Try It 71

Lesson Requirements 71
Step-by-Step 71

LESSON 8: WORKING WITH RANGES 75

Working with Contiguously Populated Ranges 75
Using the Cells Property 76
Using CurrentRegion 76

Working with Noncontiguously Populated Ranges 77
Using Range with Several Cells 77
Using OFFSET 78
Using RESIZE 78
Identifying a Data Range 79
Identifying the UsedRange 79
Finding the Dynamic Last Rows and Columns 80
Identifying Where the Range Starts and Ends When
No Start or End Point Is Known 81

 Try It 82
Lesson Requirements 82
Hints 82
Step-by-Step 82

LESSON 9: MAKING DECISIONS WITH VBA 85

Understanding Logical Operators 85
AND 86
OR 86
NOT 87

xviii

CONTENTS

ftoc.indd 02/26/2015 Page xviii

Choosing Between This or That 88
If…Then 88
If…Then…Else 89
If…Then…ElseIf 90
IIF 90
Select Case 91

Getting Users to Make Decisions 92
Message Boxes 93
Input Boxes 94

Try It 94
Lesson Requirements 95
Hints 95
Step-by-Step 95

PART III: BEYOND THE MACRO RECORDER: WRITING YOUR
OWN CODE

LESSON 10: REPEATING ACTIONS WITH LOOPS 101

What Is a Loop? 101
Types of Loops 102
Do…While 106
Do…Until 107
Do…Loop While 109
Do…Loop Until 109
While…Wend 110

Nesting Loops 110
Try It 111

Lesson Requirements 111
Hints 111
Step-by-Step 111

LESSON 11: PROGRAMMING FORMULAS 113

Understanding A1 and R1C1 References 113
Getting Started with a Few One-Liners 114
Comparing the Interface of A1 and R1C1 Styles 115
Toggling between A1 and R1C1 Style Views 116

Programming Your Formula Solutions with VBA 118
Using a Mixed Reference to Fill Empty Cells with the
Value from Above 118
Using a Named Range with Relative, Mixed, and
Absolute References 119

www.allitebooks.com

http://www.allitebooks.org

xix

CONTENTS

ftoc.indd 02/26/2015 Page xix

Programming an Array Formula 120
Summing Lists of Different Sizes along a Single Row 122

Try It 124
Lesson Requirements 124
Step-by-Step 125

LESSON 12: WORKING WITH ARRAYS 127

What Is an Array? 127
What Arrays Can Do for You 128
Declaring Arrays 129

The Option Base Statement 130
Boundaries in Arrays 132
Declaring Arrays with Fixed Elements 132
Declaring Dynamic Arrays with ReDim and Preserve 133
Try It 134

Lesson Requirements 134
Step-by-Step 135

LESSON 13: AUTOMATING PROCEDURES
WITH WORKSHEET EVENTS 137

What Is an Event? 137
Worksheet Events: An Overview 138

Where Does the Worksheet Event Code Go? 138
Enabling and Disabling Events 140

Examples of Common Worksheet Events 141
Worksheet_Change Event 141
Worksheet_SelectionChange Event 141
Worksheet_BeforeDoubleClick Event 142
Worksheet_Before RightClick Event 142
Worksheet_FollowHyperlink Event 142
Worksheet_Activate Event 143
Worksheet_Deactivate Event 144
Worksheet_Calculate Event 144
Worksheet_PivotTableUpdate Event 144

Try It 144
Lesson Requirements 145
Step-by-Step 145

LESSON 14: AUTOMATING PROCEDURES
WITH WORKBOOK EVENTS 149

Workbook Events: An Overview 149
Where Does the Workbook Event Code Go? 149

xx

CONTENTS

ftoc.indd 02/26/2015 Page xx

Entering Workbook Event Code 151
Examples of Common Workbook Events 153

Workbook_Open Event 153
Workbook_BeforeClose Event 154
Workbook_Activate Event 154
Workbook_Deactivate Event 154
Workbook_SheetChange Event 154
Workbook_SheetSelectionChange Event 155
Workbook_SheetBeforeDoubleClick Event 155
Workbook_SheetBeforeRightClick Event 156
Workbook_SheetPivotTableUpdate Event 156
Workbook_NewSheet Event 156
Workbook_BeforePrint Event 157
Workbook_SheetActivate Event 157
Workbook_SheetDeactivate Event 157
Workbook_BeforeSave Event 158

Try It 158
Lesson Requirements 158
Step-by-Step 158

LESSON 15: HANDLING DUPLICATE ITEMS AND RECORDS 161

Deleting Rows Containing Duplicate Entries 161
Deleting Rows with Duplicates in a Single Column 161
Deleting Rows with Duplicates in More Than One Column 164
Deleting Some Duplicates and Keeping Others 165

Working with Duplicate Data 167
 Compiling a Unique List from Multiple Columns 167
Updating a Comment to List Unique Items 169
Selecting a Range of Duplicate Items 171
Inserting an Empty Row at Each Change in Items 172

Try It 173
Lesson Requirements 174
Hints 174
Step-by-Step 174

LESSON 16: USING EMBEDDED CONTROLS 181

Working with Form Controls and
ActiveX Controls 181

The Forms Toolbar 182
Buttons 183
Using Application.Caller with Form Controls 184

xxi

CONTENTS

ftoc.indd 02/26/2015 Page xxi

The Control Toolbox 186
CommandButtons 187

Try It 191
Lesson Requirements 192
Step-by-Step 192

LESSON 17: PROGRAMMING CHARTS 199

Adding a Chart to a Chart Sheet 200
Adding an Embedded Chart to a Worksheet 202
Moving a Chart 204
Looping Through All Embedded Charts 206
Deleting Charts 207
Renaming a Chart 208

Try It 208
Lesson Requirements 208
Step-by-Step 209

LESSON 18: PROGRAMMING PIVOTTABLES AND PIVOTCHARTS 213

Creating a PivotTable Report 213
Hiding the PivotTable Field List 217
Formatting Numbers in the Values Area 219
Pivoting Your Data 222
Creating a PivotChart 223

Understanding PivotCaches 226
Manipulating PivotFields in VBA 230
Manipulating PivotItems with VBA 231
Creating a PivotTables Collection 231
Try It 232

Lesson Requirements 232
Step-by-Step 233

LESSON 19: USER-DEFINED FUNCTIONS 237

What Is a User-Defi ned Function? 237
Characteristics of User-Defi ned Functions 237
Anatomy of a UDF 238

UDF Examples That Solve Common Tasks 239
Summing Numbers in Colored Cells 239
Extracting Numbers or Letters from an Alphanumeric String 241
Extracting the Address from a Hyperlink 242

xxii

CONTENTS

ftoc.indd 02/26/2015 Page xxii

Volatile Functions 243
Returning the Name of the Active Worksheet and Workbook 243
UDFs with Conditional Formatting 244
Calling Your UDF from a Macro 245
Adding a Description to the Insert Function Dialog Box 246

Try It 248
Lesson Requirements 248
Step-by-Step 249

LESSON 20: DEBUGGING YOUR CODE 251

What Is Debugging? 251
What Causes Errors? 252
Weapons of Mass Debugging 254

The Debug Toolbar 254
Trapping Errors 264

Error Handler 264
Bypassing Errors 265

Try It 266
Lesson Requirements 267
Hints 267
Step-by-Step 267

PART IV: ADVANCED PROGRAMMING TECHNIQUES

LESSON 21: CREATING USERFORMS 271

What Is a UserForm? 271
Creating a UserForm 272
Designing a UserForm 273
Adding Controls to a UserForm 274
Showing a UserForm 280
Where Does the UserForm’s Code Go? 281
Closing a UserForm 281

Unloading a UserForm 282
Hiding a UserForm 283

Try It 283
Lesson Requirements 283
Step-by-Step 283

LESSON 22: USERFORM CONTROLS AND THEIR FUNCTIONS 285

Understanding the Frequently Used UserForm Controls 285
CommandButtons 286
Labels 287

xxiii

CONTENTS

ftoc.indd 02/26/2015 Page xxiii

TextBoxes 288
ListBoxes 290
ComboBoxes 292
CheckBoxes 295
OptionButtons 296
Frames 298
MultiPages 300

Try It 301
Lesson Requirements 301
Step-by-Step 301

LESSON 23: ADVANCED USERFORMS 305

The UserForm Toolbar 305
Modal versus Modeless 306
Disabling the UserForm’s Close Button 307
Maximizing Your UserForm’s Size 308
Selecting and Displaying Photographs on a UserForm 308
Unloading a UserForm Automatically 309
Pre-sorting the ListBox and ComboBox Items 310
Populating ListBoxes and ComboBoxes with Unique Items 312
Displaying a Real-Time Chart in a UserForm 314
Try It 315

Lesson Requirements 315
Step-by-Step 315

LESSON 24: CLASS MODULES 321

What Is a Class? 321
What Is a Class Module? 322
Creating Your Own Objects 323
An Important Benefi t of Class Modules 323
Creating Collections 326
Class Modules for Embedded Objects 326
Try It 330

Lesson Requirements 330
Step-by-Step 330

LESSON 25: ADD-INS 335

What Is an Excel Add-In? 335
Creating an Add-In 336
Converting a File to an Add-In 341
Installing an Add-In 342

xxiv

CONTENTS

ftoc.indd 02/26/2015 Page xxiv

Creating a User Interface for Your Add-In 346
Changing the Add-In’s Code 348

Closing Add-Ins 349
Removing an Add-In from the Add-Ins List 349
Try It 350

Lesson Requirements 350
Step-by-Step 350

LESSON 26: MANAGING EXTERNAL DATA 353

Creating QueryTables from Web Queries 353
Creating a QueryTable for Access 356
Using Text Files to Store External Data 359
Try It 361

Lesson Requirements 362
Step-by-Step 362

LESSON 27: DATA ACCESS WITH ACTIVEX DATA OBJECTS 365

Introducing ADO 365
The Connection Object 367
The Recordset Object 367
The Command Object 368

An Introduction to Structured Query Language (SQL) 368
The SELECT Statement 369
The INSERT Statement 369
The UPDATE Statement 370
The DELETE Statement 370

Try It 371

LESSON 28: IMPRESSING YOUR BOSS
(OR AT LEAST YOUR FRIENDS) 373

Selecting Cells and Ranges 373
Coloring the Active Cell, Row, or Column 373
Coloring the Current and Prior Selected Cells 375

Filtering Dates 376
Filtering between Dates 376
Filtering for Dates before Today’s Date 378
Filtering for Dates after Today’s Date 378
Deleting Rows for Filtered Dates More Than Three Years Ago 378

Setting Page Breaks for Specifi ed Areas 379
Using a Comment to Log Changes in a Cell 380

xxv

CONTENTS

ftoc.indd 02/26/2015 Page xxv

Using the Windows API with VBA 381
Clearing the Clipboard 381
Emptying the Recycle Bin 382

Scheduling Your Workbook for Suicide 382
Try It 382

Lesson Requirements 383
Hints 383
Step-by-Step 383

PART V: INTERACTING WITH OTHER OFFICE APPLICATIONS

LESSON 29: OVERVIEW OF OFFICE
AUTOMATION FROM EXCEL 391

Why Automate Another Application? 391
Understanding Offi ce Automation 392

Early Binding 392
Late Binding 394
Which One Is Better? 394

Try It 395
Lesson Requirements 395
Hints 395
Step-by-Step 395

LESSON 30: WORKING WITH WORD FROM EXCEL 399

Activating a Word Document 399
Activating the Word Application 399
Opening and Activating a Word Document 400

Creating a New Word Document 402
Copying an Excel Range to a Word Document 402
Printing a Word Document from Excel 403
Importing a Word Document to Excel 404
Try It 405

Lesson Requirements 406
Step-by-Step 406

LESSON 31: WORKING WITH OUTLOOK FROM EXCEL 409

Opening Outlook 409
Composing an E-mail in Outlook from Excel 410

Creating a MailItem Object 410
Transferring an Excel Range to the Body of Your E-mail 411

xxvi

CONTENTS

ftoc.indd 02/26/2015 Page xxvi

Putting It All Together 413
E-mailing a Single Worksheet 415
Try It 415

Lesson Requirements 415
Step-by-Step 415

LESSON 32: WORKING WITH ACCESS FROM EXCEL 419

Adding a Record to an Access Table 419
Exporting an Access Table to an Excel Spreadsheet 423
Creating a New Table in Access 426
Try It 427

Lesson Requirements 427
Step-by-Step 427

LESSON 33: WORKING WITH POWERPOINT FROM EXCEL 431

Creating a New PowerPoint Presentation 431
Copying a Worksheet Range to a PowerPoint Slide 432
Copying Chart Sheets to PowerPoint Slides 433
Running a PowerPoint Presentation from Excel 435
Try It 436

Lesson Requirements 436
Step-by-Step 436

INDEX 441

fl ast.indd 02/26/2015 Page xxvii

 INTRODUCTION

CONGRATULATIONS ON MAKING TWO EXCELLENT CHOICES! You want to learn programming for
Microsoft Excel with Visual Basic for Applications (VBA), and you’ve purchased this book to teach
you. Excel is the most powerful and widely used spreadsheet application in the world. VBA enables
you to become much more productive and effi cient, while getting your everyday Excel tasks done
more quickly and with fewer errors. You’ll gain a programming skill that is in high demand, which
will improve your value in the workplace and your marketability when searching for employment.

This book covers VBA from the ground up, and assumes you have never programmed Excel before.
If you’ve never recorded or written an Excel macro, this book shows you how. If you’ve worked
with VBA before, this book has examples of programming techniques you might not have seen. The
instruction and examples in this book teach VBA concepts that range in levels from fundamental to
advanced. The techniques in this book apply just as well to the Excel business power user as to the
keeper of the family budget.

VBA is the programming language for Microsoft’s popular Offi ce suite of applications, including
Excel, Word, Access, PowerPoint, and Outlook. A full section of this book explains how to control
each of those applications from Excel with VBA. By the time you complete this book, you will have
learned how to record, write, and run your own macros. You’ll learn how to make VBA run itself by
programming Excel to monitor and respond to users’ actions, and how to create friendly, custom-
ized interfaces that the users of your workbooks will enjoy.

The future of VBA is solid. Microsoft has confi rmed time and again that VBA will be supported
in versions of Excel into the foreseeable future, and the programming skills you learn in this book
will serve you throughout your career. You’ll be able to apply the principles you learn in this book
to other tasks that can be automated in Excel and Microsoft’s other Offi ce applications. VBA is an
enormous programming language, and when combined with Excel, using it is an ongoing, rewarding
process of learning something new every day. With this book as your entry into the world of VBA
programming, you are well on your way.

WHO THIS BOOK IS FOR

This book is for Excel users who have never programmed Excel before. You are an Excel user who
has been doing a frequent task manually, and you are ready to automate the task with VBA. You
might also be a job seeker, and you want to improve your chances of being hired in this diffi cult job
market by learning a valuable skill. Whether your Excel tasks are large or small, this book is for
you. You fi nd out how to use VBA to automate your work by doing anything from recording a sim-
ple one-line macro to writing a complex program with a customized, user-friendly interface that will
look nothing like Excel. This book has something for everyone, but especially for the person who
wants to dive right into VBA from square one and learn to use its powerful programming tools.

xxviii

INTRODUCTION

fl ast.indd 02/26/2015 Page xxviii

WHAT THIS BOOK COVERS

This book contains 33 lessons, which are broken into fi ve parts:

 ➤ Part I, Understanding the BASICs: Part I includes Lessons 1 to 4, introducing you to VBA by
providing a historical background and a discussion of what VBA is and what it can do for
you. This part familiarizes you with the Macro Recorder and the Visual Basic Editor, where
VBA code is maintained.

 ➤ Part II, Diving Deeper Into VBA: Part II includes Lessons 5 to 9, which discuss VBA topics
including an overview of object-oriented programming, variable declaration, objects and
collections, arrays, and options for decision-making.

 ➤ Part III, Beyond the Macro Recorder: Writing Your Own Code: Part III includes Lessons
10 to 20. You learn how to write your own macros without help from the Macro Recorder.
You become familiar with loops, event programming at the workbook and worksheet levels,
charts, PivotTables, user-defi ned functions, and embedded controls. You learn to program
formulas and how to debug your VBA code.

 ➤ Part IV, Advanced Programming Techniques: Part IV includes Lessons 21 to 28, and deals
with the more advanced topics of UserForms, class modules, add-ins, retrieving external data,
and various examples of programming Excel to achieve solutions you might not have thought
possible.

 ➤ Part V, Interacting with Other Offi ce Applications: Part V includes Lessons 29 to 33, dealing
with how to control Word, Outlook, Access, and PowerPoint from Excel.

HOW THIS BOOK IS STRUCTURED

My main principle in this book is to teach you what you need to know in VBA. I tried to write this
book as if you and I were sitting down in front of your computer, and I was explaining Excel and
VBA’s technical concepts in an informal tutorial session. The book is structured such that each
lesson teaches you the theory of a topic, followed by one or more coded examples, with plenty of
screenshots and notes to help you follow along. To avoid redundancy of instruction, the lessons
build on each other, so the later chapters assume you’ve read, or are already familiar with, the mate-
rial discussed in earlier lessons. I strongly recommend that you watch the videos, which you can
fi nd at www.wrox.com/go/excelvba24hour. You will get more out of them than you might imagine
because they include bonus information about Excel, such as tips and tricks that will help you man-
age your workbooks with greater ease and effi ciency.

WHAT YOU NEED TO USE THIS BOOK

What you need is this book and a fully installed version of Microsoft Offi ce. If you only have Excel
installed, that will suffi ce for lessons up to and including Lesson 28. Lessons 29 to 33 deal with

www.allitebooks.com

http://www.wrox.com/go/excelvba24hour
http://www.allitebooks.org

xxix

INTRODUCTION

fl ast.indd 02/26/2015 Page xxix

controlling other Offi ce applications from Excel. VBA ships with Excel, so you already have all the
programming tools you need when you installed VBA with Offi ce. The version of your Windows
operating system is not important.

In many examples, different versions of Excel are represented, with Excel’s latest version at this
writing—version 2013—shown most frequently. If you are using Excel version 2003 or before, you
can complete almost all the examples in this book, but it will be easier for you to follow along by
using a version starting with 2007—ideally with 2010 or 2013. Almost everything discussed in this
book has VBA example code to go along with it, with comments in the code (lines of text in VBA
code that start with an apostrophe) that explain what the code is doing, and why. Plenty of screen-
shots help you see beforehand what to expect, and help you after you’ve tested your code to confi rm
you followed the steps correctly.

You need one other thing, which only you can control, and that is a quiet period of time for your-
self so you can read this book and view its video Try It lessons uninterrupted. Everyone studies and
retains new material differently, and we all live in a busy world. But do what you can to carve out
some “you time” as you make your way through the book. You’ll fi nd a lot of useful material that
will lead you to think of other situations you typically encounter in Excel that can be solved with
the concepts you’ll be learning.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

WARNING Boxes like this one hold important, not-to-be forgotten information
that is directly relevant to the surrounding text.

NOTE Notes, tips, hints, tricks, and asides to the current discussion are offset
and placed in italic like this.

As for styles in the text:

 ➤ We highlight new terms and important words when we introduce them.

 ➤ We show fi lenames, URLs, and code within the text like so: persistence.properties.

 ➤ We present code like this:

We use a monofont type with no highlighting for most code examples.

xxx

INTRODUCTION

fl ast.indd 02/26/2015 Page xxx

We use bold to emphasize code that’s particularly important in the present
context.

 ➤ Text that you need to enter as you work through the Try It sections is written as bold code,
as shown here:

Name it cmdExit and caption it as Exit.

Source Code
As you work through the examples in this book, you may choose either to type in all the code
manually or to use the source code fi les that accompany the book. All of the source code used in this
book is available for download at www.wrox.com/go/excelvba24hour. The code snippets from the
source code are accompanied by a download icon and note indicating the name of the program so
you know it’s available for download and can easily locate it in the download fi le. Once at the site,
simply locate the book’s title (either by using the Search box or by using one of the title lists) and
click the Download Code link on the book’s detail page to obtain all the source code for the book.

After you download the code, just unzip the fi le using WinZip or a similar tool. Alternatively, you
can go to the main Wrox code download page at http://www.wrox.com/dynamic/books
/download.aspx to see the code available for this book and all other Wrox books.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake or
faulty piece of code, we would be very grateful for your feedback. By sending in errata you may save
another reader hours of frustration and at the same time you will be helping us provide even higher
quality information.

To fi nd the errata page for this book, go to http://www.wrox.com and locate the title using the
Search box or one of the title lists. Then, on the book details page, click the Book Errata link. On
this page you can view all errata that has been submitted for this book and posted by Wrox editors.
A complete book list including links to each book’s errata is also available at www.wrox.com
/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact
/techsupport.shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fi x the problem in
subsequent editions of the book.

http://www.wrox.com/go/excelvba24hour
http://www.wrox.com/dynamic/books
http://www.wrox.com
http://www.wrox.com
http://www.wrox.com/contact

xxxi

INTRODUCTION

fl ast.indd 02/26/2015 Page xxxi

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com you will fi nd a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

NOTE You can read messages in the forums without joining P2P but in order to
post your own messages, you must join.

 Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

http://p2p.wrox.com

fl ast.indd 02/26/2015 Page xxxiii

Excel® VBA
24-Hour Trainer

c01.indd 02/24/2015 Page 1

 PART I
Understanding the BASICs

 ▸ LESSON 1: Introducing VBA

 ▸ LESSON 2: Getting Started with Macros

 ▸ LESSON 3: Introducing the Visual Basic Editor

 ▸ LESSON 4: Working in the VBE

c01.indd 02/24/2015 Page 3

Introducing VBA
Welcome to your fi rst lesson in Excel VBA 24-Hour Trainer! A good place to start is at
the beginning, where you’ll fi nd it useful to get an understanding of where Visual Basic for
Applications (VBA) comes from and what VBA is today. After you get a feel for how VBA fi ts
into the overall Excel universe, you fi nd out how to use VBA to manipulate Excel in ways you
might never have thought possible.

WHAT IS VBA?

VBA is a programming language created by Microsoft to automate operations in applications
that support it, such as Excel. VBA is an enormously powerful tool that enables you to control
Excel in countless ways that you cannot do—or would not want to do—manually.

In fact, VBA is also the language that manipulates Microsoft Offi ce applications in Access, Word,
PowerPoint, and Outlook. For the purposes here, VBA is the tool you use to develop macros and
manipulate objects to control Excel and to control other Offi ce applications from Excel.

You do not need to purchase anything more than the Offi ce suite (or the individual application)
to also own VBA. If you have Excel on your computer, you have VBA on your computer.

WHAT IS A “MACRO,” ANYWAY?

Back in the day, a programming language was often called a “macro language” if its
capabilities included the automation of a sequence of commands in spreadsheet or
word-processing applications. With Microsoft’s release of Offi ce 5, VBA set a new
bar for how robust a programming language can be, with capabilities extending far
beyond those of earlier programming languages, such as the ability to create and
control objects within Excel or to have access to disk drives and networks.

1

continues

4 ❘ LESSON 1 INTRODUCING VBA

c01.indd 02/24/2015 Page 4

So VBA is a programming language, and it is also a macro language. Confusion
of terminology arises when referring to VBA code that is a series of commands
written and executed in Excel. Is it a macro, a procedure, or a program? Microsoft
commonly refers to its VBA procedures as macros, so that’s good enough for me
to call them macros also. Outside of a few exceptions that I explain when the time
comes, I refer to VBA procedures as macros.

A BRIEF HISTORY OF VBA

VBA is a present-day dialect of the BASIC (Beginner’s All-purpose Symbolic Instruction Code)
 programming language that was developed in the 1960s. BASIC became widely used in many
 software applications throughout the next two decades because it was easy to learn and understand.

Over the years, BASIC has evolved and improved in response to advancing technology and increased
demands by its users for greater programming fl exibility. In 1985, Microsoft released a much
richer version of BASIC, named QuickBASIC, which boasted the most up-to-date features found in
 programming languages of the day. In 1992, Microsoft released Visual Basic for Windows, designed
to work within the burgeoning Windows environment.

Meanwhile, various software publishers were making their own enhancements to BASIC for their
products’ programming languages, resulting in a wide and confusing range of functionality and
commands among software applications that were using BASIC. Microsoft recognized the need
for developing a standardized programming language for its software products, and created Visual
Basic for Applications.

VBA was fi rst released by Microsoft with Excel 5 in the Offi ce 1995 suite. Since then, VBA has
become the programming language for Microsoft’s other popular Offi ce applications, as well as for
external software customers of Microsoft to whom VBA has been licensed for use.

THERE’S A BIG DIFFERENCE BETWEEN VB AND VBA!

With all the acronyms bandied about in the world of computing, it’s easy to get
some terms confused. VB stands for Visual Basic, and it is not the same as VBA.
Though both VB and VBA are programming languages derived from BASIC and
created by Microsoft, they are otherwise very different.

VB is a language that enables you to create standalone executable applications that
do not even require its users to have Offi ce or Excel loaded onto their computers.
VBA cannot create standalone applications, and it exists within a host application
such as Excel and the workbook containing the VBA code. For a VBA macro to
run, its host application workbook must be open. This book is about VBA and how
it controls Excel.

continued

www.allitebooks.com

http://www.allitebooks.org

What VBA Can Do for You ❘ 5

c01.indd 02/24/2015 Page 5

WHAT VBA CAN DO FOR YOU

Everyone reading this book uses Excel for their own needs, such as fi nancial budgeting, forecasting,
analyzing scientifi c data, creating invoices, or charting the progress of their favorite football team.
One thing all readers have in common is the need to automate some kind of frequently encountered
task that is either too time-consuming or too cumbersome to continue doing manually. That’s where
VBA comes in.

The good news is that utilizing VBA does not mandate that you fi rst become a world-class
 professional programmer. Many VBA commands are at your disposal, and are relatively easy to
implement and customize for your everyday purposes.

Anything you can do manually you can do with VBA, but VBA enables you to do it faster and with a
minimized risk of human error. Many things that Excel does not allow you to do manually, you can
do with VBA. The following sections describe a handful of examples of what VBA can do for you.

Automating a Recurring Task
If you fi nd yourself needing to produce weekly or monthly sales and expense reports, a macro can
create them in no time fl at, in a style and format you (and more importantly, your boss) will be
thrilled with. And if the source data changes later that day and you need to produce the updated
report again, no problem—just run the macro again!

Automating a Repetitive Task
When faced with needing to perform the same task on every worksheet in your workbook, or in
every workbook in a particular fi le folder, you can create a macro to “loop” through each object
and do the deed. You fi nd out how to repeat actions with various looping methods in Lesson 10.
Figure 1-1 shows an example of worksheets that were sorted in alphabetical order by a macro that
looped through each tab name, repositioning each sheet in the process.

Running a Macro Automatically if Another Action Takes Place
In some situations, you want a macro to run automatically so you don’t have to worry about
remembering to run it yourself. For example, to automatically refresh a pivot table the moment
its source data changes, you can monitor those changes with VBA, ensuring that your pivot table
always displays real-time results. This is called “event” programming, which is cool stuff, and is
discussed in Lessons 13 and 14.

An event can also be triggered and programmed anytime a cell or range of cells is selected. A com-
mon request I’ve received from Excel users is to highlight the active cell, or the row and column
belonging to the active cell, automatically when a cell is selected. Figure 1-2 shows three options to
easily locate your active cell as you traverse your worksheet.

6 ❘ LESSON 1 INTRODUCING VBA

c01.indd 02/24/2015 Page 6

FIGURE 1-1

FIGURE 1-2

What VBA Can Do for You ❘ 7

c01.indd 02/24/2015 Page 7

Creating Your Own Worksheet Functions
You can create your own worksheet functions, known as user-defi ned functions, to handle custom
calculations that Excel’s built-in functions do not provide, or would be too complicated to use even
if such native functions were available. For example, later in the book you see how to add up num-
bers in cells that are formatted a certain color. UDFs, as these custom functions are called, are cov-
ered in Lesson 19, “User-Defi ned Functions.”

Simplifying the Workbook’s Look and Feel for Other Users
When you create a workbook for others to use, there will inevitably be users who know little
to nothing about Excel, but who will still need to work in that fi le. You can build a customized
interface with user-friendly menus and informational pop-up boxes to guide your novice users
throughout their activities in the workbook. You might be surprised at how un-Excel-looking an
Excel workbook can be, with VBA providing a visually comfortable and interactive experience for
users unfamiliar with Excel, enabling them to get their work done. Figure 1-3 shows an example of
accomplishing this with UserForms, which are discussed in Lessons 21, 22, and 23.

FIGURE 1-3

Controlling Other Offi ce Applications from Excel
If you create narrative reports in Word that require an embedded list of data from Excel, or if you
need to import a table from Access into an Excel worksheet, VBA can automate the process. VBA is
the programming language for Microsoft’s other Offi ce applications, enabling you to write macros

8 ❘ LESSON 1 INTRODUCING VBA

c01.indd 02/24/2015 Page 8

in Excel to perform tasks in those other applications, with the users being none the wiser that they
ever left Excel while the macro was running.

As you might imagine, the list of advantages to using VBA could fi ll the capacity of your average
fl ash drive. The point is, you are sure to have tasks in your everyday dealings with Excel that can be
accomplished more quickly and effi ciently with VBA, and this book shows you how.

LIABILITIES OF VBA

Although VBA is a tremendously useful and versatile tool, it is not a 100 percent perfect program-
ming language—but then, no programming language anywhere can truthfully claim infallibility.
The pros of VBA far outweigh its cons, but learning and using VBA does come with a few objective
caveats that you should be aware of:

 ➤ With each version release of Excel, Microsoft may add new VBA commands or stop supporting
existing VBA commands, sometimes without advance warning. Surprises do happen, as was
especially the case when Offi ce 2007 was released with all its added features. Such is life in the
world of Excel VBA. You will probably learn of coding errors from people who have upgraded
to a newer version and are using the workbook you created in an earlier version.

 ➤ VBA does not run uniformly in all computer operating environments. Sometimes, no matter
how extensively you test your code and how fl awlessly the macros run on your computer as
you develop a project, there will be users of your workbook who will eventually report an
error in your code. It won’t be your fault or VBA’s fault, it’s just the idiosyncrasies of how
programming languages such as VBA mix with various operating systems, Offi ce versions,
and network confi gurations. Debugging your code is the subject of Lesson 20.

 ➤ Programming languages, including VBA, are not warmly received by all workplace IT depart-
ments. Many companies have set internal policies that forbid employees from downloading
malicious software onto workplace computers. This is an understandable concern, but the
corporate safety nets are sometimes cast far and wide to include Excel workbooks with VBA
code. The tug of war in companies between the security interests of IT and the work effi -
ciency needs of management can determine whether the VBA code you install will actually be
allowed for use in some company venues.

 ➤ Finally, VBA is a large program. It has thousands of keywords and the language library is only
getting larger. Actually, I see this as a good thing, because the more VBA you learn, the more
productivity and control you will have with Excel. Just as with any language, be it spoken or
programming, there is a level of rolling-up-your-shirtsleeves commitment that’ll be needed to
learn VBA. Even the longest journey starts with a fi rst step, and this book gets you on your way.

NOTE VBA has a bright, stable future. An occasional rumor makes the rounds
on the Internet, claiming the imminent demise of VBA. Do not believe it. VBA is
here to stay, and Microsoft has publicly said so, time and again. The facts are, in
2007, Microsoft closed its VBA licensing program to new customers, and VBA
was not supported in the 2008 version of Offi ce for the Mac, though VBA has
been supported by Mac versions after that. Microsoft has consistently made very
clear its plan for supporting VBA in future versions of Excel for Windows.

Try It ❘ 9

c01.indd 02/24/2015 Page 9

TRY IT

With the introductory nature of this fi rst lesson, there’s nothing specifi c to try with VBA. What you
can do is to get a jump on the rest of the lessons in this book by making a list of some of your most
frequent everyday manual Excel tasks, especially the dreaded, time-consuming ones you wish would
go away. Tasks such as those will become good candidates for you to apply the VBA macros and
automated solutions skills that the following lessons will teach you.

REFERENCE There is no video to accompany this lesson.

c02.indd 02/23/2015 Page 11

Getting Started with Macros
In Lesson 1, you read that VBA is the programming language of Microsoft Excel and that a
macro is a sequence of VBA commands to run a task automatically instead of manually. In
this lesson, you fi nd out how to create a simple macro, what its code looks like, and a few
options for how you can run the macro.

COMPOSING YOUR FIRST MACRO

This lesson leads you through the process of composing a macro to sort and format a range
of data. But even before the fi rst line of programming code is written, you need to set up
shop by giving yourself easy access to the VBA-related tools you’ll be using. The following
 housekeeping items usually need to be done only once, and it’s worth taking the time to do
them now if you haven’t already done so.

Accessing the VBA Environment
At the time of this writing, Excel is at a unique stage in its ongoing evolution because four of its
versions are being used with signifi cant popularity in the Microsoft Offi ce suite of applications.
Version 2003 (also known as version 11) was the fi nal Excel version with the traditional
menu bar interface of File, Edit, View, and so on. Then came version 2007 (also known as
version 12), blazing the trail for Offi ce’s new Ribbon interface. Three years later, version 2010
(also known as version 14) was the next release from Redmond. Most recently, version 2013
(also known as version 15) has taken its place among the community of Excel versions that are
being used around the world.

As with other tasks you typically do in Excel, the actions you take to create, view, edit, or run
VBA code usually start by clicking the on-screen icon relating to that task. Exactly what those
VBA-related icons look like, and what you need to do to make them easily accessible to you,
depends on the particular version of Excel you are working with.

2

12 ❘ LESSON 2 GETTING STARTED WITH MACROS

c02.indd 02/23/2015 Page 12

WHY IS THERE NO VERSION 13?

You probably noticed that the version numbers went from 12 in 2007 to 14 in
2010, making the number 13 conspicuously absent as a version number. This was
not an accident; Microsoft purposely skipped the number 13. You’ll often notice in
elevators of high-rise offi ce buildings and hotels that the fl oor buttons go from 12
to 14, without a fl oor number 13. Microsoft recognizes that its Offi ce applications
are used globally, and in some cultures, 13 is thought to be an unlucky number.
It made good business sense to avoid issues of possible reluctance from consumers
upgrading to “Offi ce 13,” or blame for inevitable version bugs by people who
believe that 13 is an unlucky number.

To save yourself time and extra mouse clicks, start by making sure that the VBA-related icons you’ll
be using most frequently are already displayed whenever you open Excel. The following steps are
shown for each of today’s four most popular versions.

Version 2003 continues to be used by a measurable percentage of individuals and employers
 worldwide. For versions of Excel up to and including 2003, from your worksheet menu, click
View ➪ Toolbars ➪ Visual Basic, as shown in Figure 2-1. This displays the Visual Basic toolbar, as
shown in Figure 2-2, which you can dock just as you do with your other toolbars.

FIGURE 2-1

FIGURE 2-2

Composing Your First Macro ❘ 13

c02.indd 02/23/2015 Page 13

For versions of Excel after 2003 (that is, starting with Excel 2007), the Ribbon user interface has
replaced the menu interface, resulting in a different look to the VBA-related icons and a different set
of steps required to see them.

In versions 2007, 2010, and 2013, these VBA icons are located on the Developer tab. By default,
the Developer tab is not automatically displayed along with the other Ribbon tabs. You need to
complete a set of one-time steps to show the Developer tab and to keep it visible whenever you open
Excel. Although the steps to do this are easy, they are different for each version.

In Excel 2007, do the following:

 1. Click the round Offi ce button near the top-left corner of your screen.

 2. Click the Excel Options button located at the bottom of that menu, as shown
in Figure 2-3.

FIGURE 2-3

 3. In the Excel Options dialog box, click the Popular item at the upper left, and select the
Show Developer tab in the Ribbon option, as shown in Figure 2-4.

14 ❘ LESSON 2 GETTING STARTED WITH MACROS

c02.indd 02/23/2015 Page 14

FIGURE 2-4

In Excel versions 2010 and 2013, showing the Developer tab is a bit different. A new Ribbon tab
named File has supplanted the Offi ce button. Use the following steps to make the Developer tab visible:

 1. Click the File tab and then click the Options button, as shown in Figure 2-5. The Options
 dialog box opens.

FIGURE 2-5

www.allitebooks.com

http://www.allitebooks.org

Composing Your First Macro ❘ 15

c02.indd 02/23/2015 Page 15

 2. Click the Customize Ribbon item at the left, which displays two vertical lists, as shown in
Figure 2-6. Notice that the list on the right has a drop-down menu above it called Customize
the Ribbon.

FIGURE 2-6

 3. Select the Main Tabs item from the Customize the Ribbon drop-down.

 4. In the list of Main Tabs, select Developer and click OK. You will see the Developer tab in
your Ribbon, as shown in Figure 2-7.

FIGURE 2-7

16 ❘ LESSON 2 GETTING STARTED WITH MACROS

c02.indd 02/23/2015 Page 16

Using the Macro Recorder
The easiest way to create a macro is to record your worksheet actions using a valuable tool
called the Macro Recorder. All you need to do is turn on the Macro Recorder, perform the
actions that comprise the task you want to automate, and then turn off the Macro Recorder
when you have fi nished your task. While the Macro Recorder is turned on, every action you
do—selecting a cell, entering a number, formatting a range, pretty much everything—is
recorded and represented as VBA code in a new macro. As you see later, when you run the
macro created by the Macro Recorder, your task is completed automatically, just as if you had
done it manually.

The Macro Recorder comes in handy for repetitive (and sometimes mundane) common tasks that
you’d rather not have to keep manually doing over and over. For example, say you manage a table of
data every day, such as the one shown in Figure 2-8, that shows how many items your company sold
in its East, West, North, and South regions.

FIGURE 2-8

The everyday task at hand is to sort the table primarily by Region, then by Item, then by Count.
Your boss wants the Item and Region columns to switch places, so that Region occupies column
A and Item occupies column B. To improve readability, the numbers in the Count column must be
 formatted with the thousands comma separator, and the headers for Region, Item, and Count must
be bolded. Figure 2-9 shows the fi nished table, the way your boss wants it.

This is normally a six-step process, which is quite boring, but it’s part of your job
responsibilities.

Composing Your First Macro ❘ 17

c02.indd 02/23/2015 Page 17

FIGURE 2-9

To complete the task you might do this:

 1. Insert a new column at column A.

 2. Select the Region column, cut it, and paste it to empty column A, to the left of the Item
column.

 3. Delete the now-empty column from where the Region column was cut.

 4. Select range A1:C13 and sort in ascending order by Region, Item, and Count.

 5. Select range C2:C13 and format the numbers with the thousands comma separator.

 6. Select range A1:C1 and format those cells as Bold.

Not only are these steps monotonous, but also a risk for making honest mistakes due to eventual
human error. The good news is that if you perform the necessary steps perfectly for the Macro
Recorder, the task can be reduced to a simple mouse click or keyboard shortcut, with VBA doing the
grunt work for you.

NOTE Anytime you create a macro, it’s wise to plan ahead about why you
are creating the macro, and what you want the macro to do. This is especially
important with complex macros, because you want your macros to operate
effi ciently and accurately, with just the code that’s necessary to get the job done
properly. By avoiding excessive code, your macros will run faster and be easier
to edit or troubleshoot. For example, get your workbook ready beforehand to
avoid unnecessary coded actions. Have the worksheet that you’ll be working
on active, with the range of interest already visible. Mistakes are recorded too!
Practice the steps fi rst, so your macro’s recorded code is not lengthier than it
needs to be.

18 ❘ LESSON 2 GETTING STARTED WITH MACROS

c02.indd 02/23/2015 Page 18

Because you know what manual steps are required for this daily task,
you are ready to create your macro. The fi rst thing to do is turn on the
Macro Recorder. In Excel versions 2003 or before, click the Record
Macro button on the Visual Basic toolbar, as shown in Figure 2-10.
For later Excel versions, click the Record Macro button in the Code
section of the Developer tab on the Ribbon, as shown in Figure 2-11.

FIGURE 2-11

What you see next looks much like Figure 2-12. A small Record Macro dialog box displays, with
default information that only needs your approval by clicking OK to start recording your macro.
Resist the temptation to accept the defaults, because now’s the time to get into a few good habits.

FIGURE 2-12

FIGURE 2-10

Composing Your First Macro ❘ 19

c02.indd 02/23/2015 Page 19

The Macro Recorder is an excellent teaching tool, and hardly a day goes by when I do not use it
in some way. VBA is just too voluminous a programming language to memorize its every keyword
and nuance. Often as not, I’ll record a macro just to look at the code it produces to learn the proper
syntax of a task dealing with some larger macro I am working on. You will fi nd yourself using the
Macro Recorder in the same way; it’s a terrifi c source for learning VBA code, as Excel developers of
any skill level will attest.

For this example, the macro you are creating is one you will want to keep and use often. A little
 customization is strongly recommended to help you down the road, when you’ll want to remember
what the macro does, why you created it, and what optional keyboard shortcut you assigned to
run it.

In the Record Macro dialog box, give the macro a meaningful name. Macro names cannot contain
spaces, and they cannot begin with a numeral. Because you are the person doing the sorting, and
you don’t want to make the macro name too long, naming it mySort gives the macro more meaning
than the default name of Macro1.

In Figure 2-12, notice the small box to the right of Ctrl+ in the Shortcut Key section. You can place
any letter of the alphabet in that fi eld, which, when pressed with the Ctrl key, will be one method
(and a convenient one at that) by which you can run the macro.

NOTE A shortcut key is not mandatory; in fact, most of your macros will
not have one or need one. But if you do want to assign a shortcut key, get
into the good habit of assigning it with the Ctrl+Shift combination rather
than with just the Ctrl key. Excel has assigned all 26 letters of the alphabet to
serve as built-in shortcuts with the Ctrl key for various tasks, and you will do
well to avoid overriding that native functionality. For example, Ctrl+C is the
key combination to copy text. However, if you assign the shortcut key Ctrl+C
to your macro, you will override the default for that key combination, and
will not be able to use Ctrl+C to copy text in the workbook containing
the macro.

To take advantage of the Shortcut Key option, click in the Shortcut Key fi eld, press the Shift
key, and also press an alphabet key such as the letter S. You will have created the keyboard
shortcut Ctrl+Shift+S, which will not interfere with any of Excel’s signifi cant built-in
keyboard shortcuts.

Most macros you record are stored in the workbook you are working with. For now, you can keep
the default selection of This Workbook in the Store Macro In fi eld.

Finally, in the Description fi eld, enter a brief but meaningful explanation of what the macro does.
When you are fi nished making these minor changes to the Record Macro dialog box, it looks
 similar to Figure 2-13. Go ahead and click OK, which turns on the Macro Recorder, and you can
proceed to manually perform the steps you want to automate.

20 ❘ LESSON 2 GETTING STARTED WITH MACROS

c02.indd 02/23/2015 Page 20

FIGURE 2-13

In versions 2003 and earlier, you will see a tiny fl oating toolbar while the
Macro Recorder is on. That is the Stop Recording toolbar, with a Stop
Recording button you click when you are fi nished recording your actions.
When you have completed the steps to your task, turn off the Macro Recorder
in version 2003 by clicking the Stop Recording button, as shown in Figure 2-14.

If you are working in a later version of Excel, click the Stop Recording button on the Developer
tab in the Ribbon, as shown in Figure 2-15. Clicking the Stop Recording button ends the recording
 session, and you have created your macro.

FIGURE 2-15

FIGURE 2-14

Running a Macro ❘ 21

c02.indd 02/23/2015 Page 21

HEY, MY STOP RECORDING BUTTON DISAPPEARED!

If you are using Excel version 2003 or earlier, the Stop Recording toolbar might
seem to suddenly disappear from time to time. This is almost always due to
 unwittingly closing that toolbar by clicking the X close button on its title bar
instead of the Stop Recording button. It has happened to the best of us. To
show the Stop Recording toolbar again, start to record a new macro, then from
the worksheet menu click View ➪ Toolbars ➪ Stop Recording. Click the Stop
Recording button to end the macro, and the next time you record a macro, the Stop
Recording toolbar will be its normal visible self.

If you are working in version 2007 or later, no worries. The Stop Recording button
on the Ribbon does not disappear; it only reverts to Record Macro when clicked.

RUNNING A MACRO

You have many ways to run a macro, most of which are demonstrated in later lessons. As you will
see, the method(s) you choose for running your macros may depend on complex reasons such as
the workbook design, or may be based on a simpler factor such as what feels most intuitive and
 convenient for you. To wrap up this lesson, following are a couple of commonly used options for
running your macros.

The Macro Dialog Box
When you create recorded macros, their names will appear listed in
a dialog box called, appropriately enough, the Macro dialog box. To
show the Macro dialog box in version 2003 or earlier, click the Run
Macro button on the Visual Basic toolbar, as shown in Figure 2-16.
The title of that button, Run Macro, is something of a misnomer because you are not actually
 running a macro when you’ve clicked the button. All you’re doing is displaying the Macro dialog
box, from which you can run a macro but also edit and examine macros.

In versions later than 2003, the button to click is more logically labeled Macros, as shown in Figure 2-17.

FIGURE 2-17

FIGURE 2-16

22 ❘ LESSON 2 GETTING STARTED WITH MACROS

c02.indd 02/23/2015 Page 22

NOTE Regardless of the Excel version, pressing Alt+F8 displays the Macro dialog
box—no mouse clicks needed.

Figure 2-18 shows the Macro dialog box with the one and only mySort macro listed. As you create
more macros in this workbook, their names are listed in the Macro dialog box in alphabetical order.
To run your macro, select its name in the list and click the Run button, as indicated by the arrows.
You could also run the macro by double-clicking its name in the list.

FIGURE 2-18

Shortcut Key
Recall that you assigned the shortcut key Ctrl+Shift+S to this macro at the start of the macro
 recording process. Because you did that, you do not need to bother with the Macro dialog box if
you don’t want to; you can run the mySort macro simply by pressing Ctrl+Shift+S.

TRY IT

In this lesson, you practice creating a recorded macro.

Lesson Requirements
To get the sample workbook fi le, you can download Lesson 2 from the book’s website at
www.wrox.com/go/excelvba24hour.

Hints
Name your macros with a word or concise phrase that is easy to read and gives an idea about
what the macro does. For example, a macro named Print_Expense_Report is more descriptive
than Macro5.

http://www.wrox.com/go/excelvba24hour

Try It ❘ 23

c02.indd 02/23/2015 Page 23

Step-by-Step
Start with a worksheet on which some cells contain numbers that were manually entered, and other
cells contain numbers produced by formulas, such as in the downloadable budget workbook shown
in the video for this lesson. I have a number of steps in this “Try It” lesson to help demonstrate
the value of a macro that can automatically perform tedious, recurring manual tasks with a simple
 keyboard shortcut or click of a button.

Create a macro that fi lls the manually entered numeric cells with one color, and the formula-
containing numeric cells with another color:

 1. Click the Record Macro button to turn on the Macro Recorder.

 2. In the Record Macro dialog box, name the macro My_Macro and assign it the
shortcut Ctrl+Shift+W.

 3. Click OK to start recording your My_Macro macro.

 4. Click the button above row 1 and to the left of column A to select the all the worksheet cells.

 5. Show the Format Cells dialog box. Right-click any selected cell and select Format Cells from
the menu, or press the Alt+O+E keyboard shortcut.

 6. In the Format Cells dialog box, click the Fill tab. Click the No Color button and click OK to
remove the fi ll colors from all cells.

 7. With all the worksheet cells still selected, press the F5 key to show the Go To dialog box.
Click the Special button.

 8. In the Go To Special dialog box, select the option button for Constants, leave the Numbers
check box selected, and deselect the check boxes for Text, Logicals, and Errors. Click OK.

 9. Repeat Step 5 to show the Format Cells dialog box.

 10. In the Format Cells dialog box, click the Fill tab, select a color from the palette, and click OK.

 11. Repeat Step 4 to select all the worksheet cells.

 12. Repeat Step 7 to show the Go To Special dialog box.

 13. In the Go To Special dialog box, select the option button for Formulas, leave the Numbers
check box selected, and deselect the check boxes for Text, Logicals, and Errors. Click OK.

 14. Repeat Step 5 to show the Format Cells dialog box.

 15. In the Format Cells dialog box, click the Fill tab, select a color from the palette that is
 different from the color you selected for Constants in Step 10, and click OK.

 16. Select any cell on the worksheet to deselect all the selected special cells.

 17. Turn off the Macro Recorder by clicking the Stop Recording button.

 18. Before running your new macro to see it in action, repeat Steps 4, 5, and 6 to remove the fi ll
color from all cells.

24 ❘ LESSON 2 GETTING STARTED WITH MACROS

c02.indd 02/23/2015 Page 24

 19. Show the Macro dialog box to run your macro. You can either click the Developer tab on
the Ribbon and then click the Macros icon in the Code panel, or you can press the Alt+F8
 keyboard shortcut.

 20. To run your My_Macro macro from the Macro dialog box, select its name in the list box and
click the Run button, or double-click its name in the list box.

 21. To run your My_Macro macro using your keyboard, press the Ctrl+Shift+W shortcut keys you
assigned in Step 2.

REFERENCE Please select the video for Lesson 2 online at www.wrox.com/go
/excelvba24hour. You will also be able to download the code and resources
for this lesson from the website.

www.allitebooks.com

http://www.wrox.com/go
http://www.allitebooks.org

c03.indd 02/19/2015 Page 25

Introducing the Visual
Basic Editor

Lesson 2 explains how to create a macro, and you saw a couple of easy ways to run the macro you
created. Now it’s time to view your macro and have a look at the environment called the Visual
Basic Editor (VBE), within which all macros and VBA procedures are stored. Seeing where macros
live and breathe improves your understanding of the VBA programming process, especially when
you start to edit existing macros or create new macros without the Macro Recorder.

WHAT IS THE VBE?

It’s fair to say that for many users of Excel, the worksheets, pivot tables, charts, and hundreds
of formula functions are all the tools they need to satisfactorily handle their spreadsheet
activities. For them, the familiar workbook environment is the only side of Excel they see, and
understandably the only side of Excel they are probably aware of.

But Excel has a separate, less visible environment working behind the scenes—the Visual Basic
Editor—which is interconnected with the workbook environment even if no programming
code exists in the workbook. Both environments are constantly but quietly working together,
sharing information back and forth about the entire workbook. The Visual Basic Editor is a
user-friendly development environment where programmed instructions are maintained in
order to make your spreadsheet applications work.

How to Get Into the VBE
With Excel open, a fast and easy way to get into the Visual
Basic Editor is to press Alt+F11 on your keyboard. You can
do this from any worksheet. It’s just as quick with your
mouse, too; you click the Visual Basic Editor icon on the
Visual Basic toolbar in versions up to 2003, as shown in
Figure 3-1, or the Visual Basic button from the Developer tab on the Ribbon in later versions,
as shown in Figure 3-2.

3

FIGURE 3-1

26 ❘ LESSON 3 INTRODUCING THE VISUAL BASIC EDITOR

c03.indd 02/19/2015 Page 26

FIGURE 3-2

NOTE If you don’t see the Developer tab on your Ribbon, see the steps to show
it in Lesson 2, in the section “Accessing the VBA Environment.”

CAREFUL, THAT WAS ALT+F11!

The Ctrl key is commonly used in conjunction with other keys for keyboard
shortcuts. By force of habit, you might mistakenly press Ctrl+F11 instead of
Alt+F11 when attempting to go to the VBE. However, pressing Ctrl+F11 has a
curious result: Instead of being taken to the VBE, you will have created an outdated
type of sheet called a macro sheet, with the strange tab name of Macro1. Prior to
Excel version 97, macros were stored on macro sheets, which you can still create,
though they have no practical use with today’s Excel, and they no longer hold any
programming code. It’s OK to just delete the macro sheet if you create one, and
take another stab at the Alt key with F11 to get into the VBE.

Understanding the VBE
The Visual Basic Editor can show a number of different windows, depending on what you want to
see or do. For the majority of work you do with the help of this book, you want to eventually become
familiar with four windows: the Project Explorer window, the Code window, the Properties window,
and the Immediate window. Figure 3-3 shows what the VBE looks like with these four windows.

The Project Explorer Window
The Project Explorer is a vertical pane on the left side of the VBE. It behaves similarly to Windows
Explorer, with folder icons that expand and collapse when clicked. If you do not see the Project Explorer
window in your VBE, press Ctrl+R, or from the VBE menu bar, click View ➪ Project Explorer. As
indicated by the fi rst item at the top of the Project Explorer window in Figure 3-3, the name of the
workbook I am using (in Excel terms, the VBAProject) is MacroExamples.xlsm.

What Is the VBE? ❘ 27

c03.indd 02/19/2015 Page 27

Project Explorer
window

Code window

Properties window

Immediate window

FIGURE 3-3

VBA code is kept in objects known as modules, which are discussed later in further detail.
Figure 3-3 shows one module called Module1. Double-clicking a module name in the Project
Explorer displays that module’s VBA code contents in the Code window, as you see in Figure 3-3.

The Code Window
The Code window is where the code for macros and VBA procedures are located. The VBE provides
separate code windows for each module. A good way to think of this is, for every object (worksheet,
module, and so on) you see listed in the Project Explorer, the VBE has provided a Code window.
Note that the drop-down in the upper right-hand corner of Figure 3-3 displays the name of the
macro that is currently showing in the Code window (mySort). As you create multiple macros, you
can use this drop-down to quickly move from one macro to another.

The Properties Window
The Properties window is located in the left vertical pane near the bottom of the VBE. If you
do not see the Properties window in your VBE, press F4, or from the VBE menu bar click
View ➪ Properties Window. This window displays a list of the properties and their assigned values
of whatever object is selected in the Project Explorer window. For example, in Figure 3-3, Sheet1 has
been selected and the Properties window shows you, among other details, that the Name property
for the selected object is Sheet1.

28 ❘ LESSON 3 INTRODUCING THE VISUAL BASIC EDITOR

c03.indd 02/19/2015 Page 28

The Immediate Window
The Immediate window is located at the bottom of the VBE, usually below the Code window, as
shown in Figure 3-3. If you do not see the Immediate window in your VBE, press Ctrl+G, or from
the VBE menu bar click View ➪ Immediate Window. The name “Immediate” has nothing to do
with urgency, but rather with the notion that you can query a line of code and immediately obtain
its returned result, without having to run a macro to see what that code line does. This comes in
handy for code debugging tactics in Lesson 20, but for now I just wanted to point out the Immediate
window to familiarize you with its name and location.

Understanding Modules
I touched on modules earlier, but they are worth another mention. A module is a container for
your code. A single module may hold one or many macros, depending on the workbook and your
 preference for how you manage your code. For smaller projects with maybe two or three macros,
just one module is suffi cient. If you develop larger projects with dozens of macros, it’s a good idea to
organize them among several modules by theme or purpose.

Several types of modules exist:

 ➤ Standard modules: These are the kind you have seen already, which hold macros you create
from scratch on your own or from the Macro Recorder.

 ➤ UserForm modules: These belong to a custom user interface object called a UserForm, which
is covered in Lessons 21, 22, and 23.

 ➤ Class modules: These contain the kind of VBA code that enables you to create your own
objects programmatically. Creating your own classes is very cool, and you learn about that
in Lesson 24.

 ➤ Worksheet modules: These hold VBA code that looks and acts like macros, but to make
things interesting Microsoft refers to that code as a procedure instead of as a macro.
Worksheet-level procedures are tied to various actions called events, such as selecting a range
or entering a value in a cell.

 ➤ Workbook module: Not to be outdone, the workbook itself has its own module, named by
default as ThisWorkbook, where code is maintained for handling workbook-level events.

The point is, several types of modules exist, but the concept is the same—modules hold code for the
object(s) they serve.

Using the Object Browser
One useful tool the VBE offers is the Object Browser. This section gives some background on
the Object Browser and how you can use it to familiarize yourself with locating objects and their
 associated properties and methods.

The ability to program Excel is based on tapping into any of several libraries of objects in the
Microsoft Offi ce objects model. For example, there is an Offi ce library, a VBA library, and of
course, an Excel library. Some libraries have hundreds of objects, and each object has many

What Is the VBE? ❘ 29

c03.indd 02/19/2015 Page 29

properties, methods, and, in some cases, associated events. The interwoven collection of object
libraries and their keyword kin is enormous. Fortunately, there is the Object Browser to guide
your search for information about objects and their properties for whatever library you are
interested in.

To see the Object Browser in the VBE, press the F2 key or click View ➪ Object Browser. Figure 3-4
shows the Object Browser—it covers the area normally occupied by the Code window.

This pane lists all properties and methods
that apply to whichever class item you select.

List of all classes available for Excel
that you can select to browse.

FIGURE 3-4

To get a feel for the Object Browser, click the drop-down arrow next to <All Libraries> and
select Excel. When you do that, in the Classes pane you see the classes belonging to Excel.
Click the Application class and you see the larger Members pane display the properties and
methods relating to the Application object. Click the ActiveWorkbook member and look at
the bottom of the Object Browser. You see that ActiveWorkbook is a property that itself is a
Workbook object.

After you follow the preceding steps, the Object Browser looks like Figure 3-5; the arrows point to
what you clicked. If you click the green Workbook link at the bottom, the Object Browser takes you
to the Workbook class and displays the properties and methods for Workbook.

30 ❘ LESSON 3 INTRODUCING THE VISUAL BASIC EDITOR

c03.indd 02/19/2015 Page 30

FIGURE 3-5

With a class or member item selected, you can click the yellow question mark icon at the top of the
Object Browser to be taken to the Help fi le for that selected item.

The Object Browser has a Search feature in the drop-down fi eld to the left of the binoculars icon. If
you type a term you are interested in and click the binoculars icon, the associated members of that
term will be displayed for the selected library.

To exit the Object Browser, click the lower of the two X close buttons near the top-right corner of
the VBE.

Exiting the VBE
To exit the VBE and return to the worksheets, you can either press Alt+Q, or click the topmost X
close button at the top-right corner of the VBE.

TRY IT

Because this lesson is an introduction to the Visual Basic Editor environment, there are no
 programming techniques to try, but you can get a jump on your familiarity with the VBE by
 considering these items:

Try It ❘ 31

c03.indd 02/19/2015 Page 31

 ➤ You have several ways to get into the VBE, but which way works best for you? As you’ve
seen, Alt+F11 works on all Excel versions, but if you are more of a mouse user than a
 keyboard user, you have several options depending on what’s easiest for you:

 ➤ In version 2003 you can click Tools ➪ Macro ➪ Visual Basic Editor, or you can keep
the Visual Basic toolbar visible, and click the Visual Basic Editor icon. You can also
right-click the workbook icon near the upper-left corner of the Excel window (just
to the left of the File menu item), and select View Code, which takes you to that
 workbook’s module in the VBE.

 ➤ In versions 2007, 2010, and 2013, you can click the Visual Basic Editor icon on the
Developer tab.

 ➤ In any version of Excel, you can right-click a worksheet tab and select View Code,
which takes you to that worksheet’s module in the VBE.

 ➤ Take another look at the Object Browser and click around its classes and members. The VBA
object model is a vast library of information that no one would attempt to memorize, but the
idea here is to get a feel for the interwoven relationships among objects’ classes, properties,
and methods.

 ➤ In the Project Explorer window, if you double-click an object such as a worksheet,
 workbook, or module name, you go directly to that object’s Code window. But also notice
the pop-up menu when you right-click an object’s name in the Project Explorer. Go ahead
and click any of those menu items to get the gist of where they lead you and what purpose
they serve.

 ➤ Get a bit of practice in with the Immediate window. If you were to enter some value into cell
A1, and then format cell A1 in bold font, you can enter these expressions in the Immediate
window and press Enter for each one:

 ➤ ? Range("A1").Value returns whatever value you entered into A1.

 ➤ ? Range("A1").Font.Bold returns True if you bolded A1, or False if you did not.

 ➤ ? Range("A1").ClearContents returns True and clears the contents of cell A1.

REFERENCE There is no video or code download to accompany this less on.

c04.indd 02/23/2015 Page 33

Working in the VBE
In Lesson 3, you took a bird’s eye view of the Visual Basic Editor, and you became familiar
with the names and locations of its most frequently used windows. In this lesson, you navigate
through those VBE windows for the purpose of demonstrating how to handle the kinds of
maintenance tasks you will often encounter in the VBE.

TOOLBARS IN THE VBE

The fi rst thing you may have noticed about the VBE interface is that there is no Ribbon. The
traditional VBE menu bar is pretty much the same interface for all versions of Excel since 1997.

Because you will be spending more time in the VBE, you’ll want convenient access to the
 toolbar icons relating to the work you’ll be doing. If you have not already done so, press
Alt+F11 to get into the VBE, and show the Edit and Standard toolbars whose icons will soon
come in handy. From the menu bar at the top of the VBE, click View ➪ Toolbars ➪ Edit and
again View ➪ Toolbars ➪ Standard, as depicted in Figure 4-1.

MACROS AND MODULES

In Lesson 2, you used the Macro Recorder to create a macro named mySort. You learned how
to assign a shortcut key to the macro, and how to enter a brief description of what the macro
does. You also learned about a couple of ways to run the macro, by using either the shortcut
key or the Macro dialog box. One thing you have not been shown yet is the macro itself, or
even how to fi nd it.

Locating Your Macros
When the Macro Recorder created the mySort macro in Lesson 2, it also created a module in
which to store the macro. If this module happens to be the fi rst module of the workbook, as
was the case for mySort, the Macro Recorder names the new module Module1 by default. If
the Macro Recorder creates another module after that and the workbook still holds a module
named Module1, the Macro Recorder assigns the default name of Module2, and so on.

4

34 ❘ LESSON 4 WORKING IN THE VBE

c04.indd 02/23/2015 Page 34

FIGURE 4-1

In the Project Explorer window, expand the bolded VBAProject title (my Project workbook name is
MacroExamples.xlsm) and expand the yellow Modules folder to show the module named Module1.
To see the VBA code in that module, you can double-click the module name, or you can right-click
the module name and choose View Code, as shown in Figure 4-2.

The mySort macro appears in the Code window for Module1. Based on the steps you took while
recording the mySort macro in Lesson 2, Figure 4-3 shows the exact code that was produced by the
Macro Recorder in Excel version 2003.

NOTE If you record (or manually compose, as you see in later lessons) a macro
in a version of Excel after 2003, and you run that macro in a 2003 version, you
might experience an error in that code’s execution, depending on what the code is
trying to do. VBA code plays well together among versions after 2003, but those
later versions of Excel contain newer features, such as Sparklines and an updated
object model for charts and pivot tables, that a 2003 version would not recognize.
VBA code produced by the Macro Recorder in version 2003 usually works just
fi ne in later versions, but be aware that backward compatibility has its limitations
when running code in a 2003 version that was produced in a later version.

www.allitebooks.com

http://www.allitebooks.org

Macros and Modules ❘ 35

c04.indd 02/23/2015 Page 35

To show a module’s contents,
double-click the module name,
or
right-click the module name, and select View Code.

FIGURE 4-2

FIGURE 4-3

36 ❘ LESSON 4 WORKING IN THE VBE

c04.indd 02/23/2015 Page 36

UNDERSTANDING THE CODE

All macros start with a Sub statement (Sub is short for Subroutine, commonly referred to as a
macro) that includes the name of the macro, followed by a pair of parentheses. For the example
macro you see in Figures 4-3 and 4-4, the Sub statement is simply Sub mySort().

Because this macro was recorded, there is a series of comment lines below the Sub statement that the
Macro Recorder wants you to know about. For example, you see the macro name, the description
of the macro you entered into the Record Macro dialog box, and the notation that the shortcut
Ctrl+Shift+S has been assigned to this macro.

Comment lines start with an apostrophe, are green in color to help you identify them, and are not
executed as VBA code, as opposed to the other lines of VBA code that actually do something when
the macro is running.

NOTE The comments you see in a recorded macro directly refl ect the
 information entered in the Record Macro dialog box. For example, if you assign
a shortcut key, or you enter text in the Description fi eld of the Record Macro
dialog box as shown in Lesson 2, Figure 2-13, that information will be seen as
comments in your recorded macro’s code, as shown in Figure 4-3.

The remaining lines in the macro are VBA statements, and they represent every action that was
taken while the Macro Recorder was on:

 1. The fi rst thing you did was select column A.

 2. Next, you inserted a new column at column A.

 3. Next, you selected column C, cut that column, and pasted it to column A.

 4. Next, you went back to select column C because it was empty, and you deleted it.

 5. Next, you selected range A1:C13 where the table of data was.

 6. Next, you sorted the selected range.

 7. Next, you selected range C2:C13, which contained numbers you wanted to format.

 8. Next, you formatted the selected cells with the thousands comma separator and no decimal
places.

 9. Next, you selected range A1:C1 where the column labels were.

 10. Next, you formatted the selected range in order to Bold the font of those label cells.

 11. Finally, you turned off the Macro Recorder, which produced the End Sub line. All macros
end with the End Sub statement.

That’s quite a few “Nexts” in the explanation for what is going on! Fortunately, you can edit a
macro by typing your own descriptive comments, and you can consolidate a lot of the code so it
runs faster and looks cleaner.

Editing a Macro with Comments and Improvements to the Code ❘ 37

c04.indd 02/23/2015 Page 37

EDITING A MACRO WITH COMMENTS AND IMPROVEMENTS
TO THE CODE

As good as the Macro Recorder is at teaching VBA code, it is woefully lacking in the effi ciency
department with the volume of code it produces. To be fair, the Macro Recorder was never meant
to be a lean, mean coding machine. Its primary function, which it performs fl awlessly, is to produce
VBA code that represents your every on-screen action.

It should be said that there is no law in the universe dictating that you must modify your every
recorded macro. Sometimes, for simple macros that do the job, leaving them in their original
recorded state is fi ne—if they work the way you want them to, you’ve won that round.

However, for the majority of VBA code that gets produced by the Macro Recorder, the superfl uous
and ineffi cient nature of its excessive code will be impossible to ignore. Besides, when you send
your VBA workbook masterpieces to other users, you’ll want your code to look and act beyond the
beginner stage of recorded code.

NOTE You will fi nd that editing a macro in the Code window is very similar
to editing a Word document. Of course, rules exist for proper syntax of VBA
code lines, but the principles of typing text, selecting words and deleting them
with the Delete key, pressing Enter to go to the next line down—all these
 word-processor kinds of behaviors with which you are familiar—will help make
the macro edit process an intuitive one.

A rule of thumb in VBA development is, don’t select or activate objects unless you need to. The
methods of Select and Activate are among the biggest culprits of slow, meandering macro
 execution. For example, the fi rst two lines of code in the recorded macro are:

Columns("A:A").Select
Selection.Insert Shift:=xlToRight

Those two lines can and should be consolidated into one line, bypassing the Selection activity:

Columns("A").Insert Shift:=xlToRight

Same with the next two statements:

Columns("C:C").Select
Selection.Cut Destination:=Columns("A:A")

which can be expressed more succinctly as:

Columns("C").Cut Destination:=Columns("A")

You can see where I am going with this. In VBA, you can act directly upon most objects, most of the
time, without needing to select them. When you deleted column C, you never needed to touch it in
order for VBA to do the work for you, because the following statement:

Columns("C:C").Select
Selection.Delete Shift:=xlToLeft

38 ❘ LESSON 4 WORKING IN THE VBE

c04.indd 02/23/2015 Page 38

can become this:

Columns("C").Delete Shift:=xlToLeft

Figure 4-4 shows how the original 13 lines of code in the mySort macro have been reduced to a
much more readable and highly effi cient six lines. Also notice how comments can be added for the
purpose of enhancing the organized look of the macro. Your comments will help you, and anyone
reading the macro, to understand what the code lines are doing, and why they are doing it.

FIGURE 4-4

NOTE You’ve now seen plenty of comments in the example macros, and how
useful comments can be in your VBA code. To enter a comment line of text,
simply type the apostrophe character, and everything you type after that, on
that same line, will be regarded as a comment and not executed as VBA code.
Usually, comments are written as standalone lines of text, meaning the very fi rst
character on that line is the apostrophe. However, some programmers prefer to
place comments on the same line as actual VBA code. For example:

Range("A1").Clear 'Make cell A1 be empty for the next user.

In any case, comments will be green in color by default, and will not be executed
as VBA code.

Editing a Macro with Comments and Improvements to the Code ❘ 39

c04.indd 02/23/2015 Page 39

Another way you can speed up your macros is to use the With statement when you are performing
multiple actions to the same object, such as to a range of cells. Suppose as part of your macro you
need to clear a range of cells and format the range for the next user. If you use the Macro Recorder
to do this, here is the code you might get:

Range("A1:D8").Select
Selection.Clear
Selection.Locked = False
Selection.FormulaHidden = False
Selection.Font.Bold = True
Selection.Font.Italic = True

Notice there are fi ve lines of code that all start with the Selection object, which refers to the
selected range of A1:D8. If this code were to run as the Macro Recorder produced it, VBA would
need to resolve the Selection object for each line of code.

You can do two key edits to these lines of code by avoiding the Select method altogether and
 referring to the range object only once at the beginning of a With structure. Between the With and
End With statements, every line of code that starts with a dot is evaluated by VBA as belonging
to the same range object, meaning the range reference need only be resolved once. Here is the
 condensed code using a With structure for greater effi ciency:

With Range("A1:D8")
.Clear
.Locked = False
.FormulaHidden = False
.Font.Bold = True
.Font.Italic = True
End With

Deleting a Macro
There will be many times when you have recorded or composed a macro that you don’t need any
more. Instead of having a useless macro hanging around doing no good, it’s better to delete it. To
delete a macro, you can select its entire code in the Code window (be sure you only select from and
including the Sub line to and including the End Sub line) and press the Delete key.

NOTE You can delete a macro from outside the VBE. While on any worksheet,
if you press Alt+F8 to call the Macro dialog box, you can select the macro name
in the list and click the Delete button.

Inserting a Module
With larger VBA projects, you’ll want to distribute your macros among two or more modules. With
large projects, you’ll be organizing your macros by some kind of theme or purpose. For example,
the macros in your company’s budget workbook that deal with reports might be placed in their
own module. Sometimes you will have no choice in the matter, because modules do have a limit as
to how much code they can individually support. To insert a new module, from the VBE menu bar,
select Insert ➪ Module, as shown in Figure 4-5.

40 ❘ LESSON 4 WORKING IN THE VBE

c04.indd 02/23/2015 Page 40

FIGURE 4-5

You’ll see that your new module appears in the Project Explorer window. The entry cursor will be
blinking in the new Code window, all primed and ready for you to enter VBA code into your new
module, as depicted in Figure 4-6.

FIGURE 4-6

Editing a Macro with Comments and Improvements to the Code ❘ 41

c04.indd 02/23/2015 Page 41

Renaming a Module
You’ve noticed that the Macro Recorder assigned the default name of Module1 to the module it
 created, and just now with Module2 you see how Excel continues to assign a sequential default
name to subsequent modules you insert. Yep, defi nitely a pattern going on here with the module
names, but it doesn’t mean those names need to stay that way.

You can change a module name, and it makes a lot of sense to do so. This is especially true when
you have a complex workbook containing many macros that are organized in several modules, and
you want the module names to describe the themes of the macros they contain.

To change a module name, select it by clicking its original name in the Project Explorer. Notice in
the Properties window that the Name property of the selected module object is, as you would expect,
Module2. In the Properties window, use your mouse to select the entire module name property, such
as you see in Figure 4-7.

FIGURE 4-7

Now, it’s a simple task of typing over the selected Module2 text in the Properties window as
you enter whatever new name you want to give to that module. For this demonstration, name
the module Test. Just type the word Test and press Enter. The successful result is shown in
Figure 4-8.

42 ❘ LESSON 4 WORKING IN THE VBE

c04.indd 02/23/2015 Page 42

FIGURE 4-8

Deleting a Module
You can delete an entire module, and it’s wise to keep your projects uncluttered of unused module
objects if they have served their purpose and will no longer hold any macros. To delete a module,
right-click the module name in the Project Explorer, and from the pop-up menu, click Remove
[module name], as shown in Figure 4-9.

Right-click module name,
and select Remove [module name].

FIGURE 4-9

Editing a Macro with Comments and Improvements to the Code ❘ 43

c04.indd 02/23/2015 Page 43

You’re prompted with a message to confi rm your intentions, along with a question as to whether
you want to export your module elsewhere. In very remote instances you will need to export a mod-
ule, but I have never come across a need to do that. Although the default button on the message is
Yes, you will usually click the No button, as shown in Figure 4-10, to confi rm the deletion of that
module.

In most cases you will click No.

FIGURE 4-10

Locking and Protecting the VBE
The beauty of macros is that when they are properly constructed, you can count on them to do their
job. The last thing you want is for another user of your workbook to wander into the Visual Basic
Editor and make any kind of keystroke in a Code window. Especially when other people are using
your workbook, you will want to protect your code from uninvited guests.

To limit access to the VBE, click Tools ➪ VBAProject Properties, which calls the VBAProject - Project
Properties dialog box. Click to select the Protection tab. Place a checkmark in the box next to Lock
Project for Viewing. Enter a password you will remember, and confi rm it, as shown in Figure 4-11.

Click OK to exit the dialog box. For the locked protection to take effect, you need to save the work-
book and close it. Now, each time the workbook is reopened, the Visual Basic Editor will require
your password if you or anyone tries to gain access to the VBE.

WARNING Excel passwords are case sensitive. If your password attempt to
access a locked VBE is rejected, the reason might be due to an incorrect upper- or
 lowercase entry.

44 ❘ LESSON 4 WORKING IN THE VBE

c04.indd 02/23/2015 Page 44

FIGURE 4-11

TRY IT

In this lesson, you practice inserting a new module into the VBE, and pasting a macro that you copy
from a website into the new module.

Lesson Requirements
For this lesson, you need access to the Internet.

To get the sample workbook fi le, you can download Lesson 4 from the book’s website at www.wrox
.com/go/excelvba24hour.

Hints
In Step 2, and in the video that accompanies this lesson, I use my website as the source for the
macro that gets copied. There are many excellent websites with more VBA examples, some of which
I list on my Links page at www.atlaspm.com/excel/#Links.

www.allitebooks.com

http://www.wrox
http://www.atlaspm.com/excel/#Links
http://www.allitebooks.org

Try It ❘ 45

c04.indd 02/23/2015 Page 45

Step-by-Step
Place a macro from an external source into a new Excel module. In this exercise, a website is being
used as the external source of the macro you want to copy and put into your workbook.

 1. Open Excel, and open the workbook that will hold the macro you’ll be importing.

 2. Open your web browser and go to the website holding the macro you want to copy. In
this example, my website at www.atlaspm.com is the source for the macro being copied
for import. Enter the search keyword(s) in the Search fi eld to reveal the link(s) that show a
macro example that handles the task you want to solve.

 3. Copy the macro from that source page onto your clipboard.

 4. Return to your workbook.

 5. Go to the Visual Basic Editor by pressing your keyboard’s Alt+F11 keys, or by clicking the
Developer tab on the Ribbon and selecting the Visual Basic icon.

 6. From the menu bar in the VBE, click Insert ➪ Module

 7. In your new module, you can paste the macro you copied in Step 3 by pressing Ctrl+V on
your keyboard, or you can right-click anywhere in your new module and select Paste.

 8. Return to your worksheet by pressing the Alt+Q keys or by clicking the Close button in the
top-right corner of the VBE.

 9 To run your macro from the Macro dialog box, press the Alt+F8 keys or click the Macros
icon on the Developer tab.

REFERENCE Please select the video for Lesson 4 online at www.wrox.com/go
/excelvba24hour. You will also be able to download the code and resources
for this lesson from the website.

http://www.atlaspm.com
http://www.wrox.com/go

c05.indd 02/19/2015 Page 47

 PART II
Diving Deeper into VBA

 ▸ LESSON 5: Object-Oriented Programming: An Overview

 ▸ LESSON 6: Variables, Data Types, and Constants

 ▸ LESSON 7: Understanding Objects and Collections

 ▸ LESSON 8: Working with Ranges

 ▸ LESSON 9: Making Decisions with VBA

c05.indd 02/19/2015 Page 49

Object-Oriented Programming:
An Overview

In Lesson 1, you saw a brief historical synopsis of VBA. One particular facet of VBA’s evolu-
tion that is worth more explanation is object-oriented programming, or OOP.

Object-oriented programming came about in the 1980s as a new concept in computer pro-
gramming. Its popularity grew over time and with good reason—OOP’s original precepts
are at the core of today’s VBA programming language for Excel.

WHAT “OBJECT-ORIENTED PROGRAMMING” MEANS

Visual Basic for Applications is an object-oriented programming language. The basic concept
of object-oriented programming is that a software application (Excel in this case) consists
of various individual objects, each of which has its own set of features and uses. An Excel
application contains cells, worksheets, charts, pivot tables, drawing shapes—the list of Excel’s
objects is seemingly endless. Each object has its own set of features, which are called proper-
ties, and its own set of uses, called methods.

You can think of this concept just as you would the objects you encounter every day, such as
your computer, your car, or the refrigerator in your kitchen. Each of those objects has identify-
ing qualities, such as height, weight, and color. They each have their own distinct uses, such
as your computer for working with Excel, your car to transport you over long distances, and
your refrigerator to keep your perishable foods cold.

VBA objects also have their identifi able properties and methods of use. A worksheet cell is an
object, and among its describable features (its properties) are its address, its height, its format-
ted fi ll color, and so on. A workbook is also a VBA object, and among its usable features (its
methods) are its abilities to be opened, closed, and have a chart or pivot table added to it.

Therefore, we can say that object-oriented programming, upon which VBA is based, is a style
of programming language that cares primarily about objects, and how those objects can be
manipulated based on their intrinsic qualities.

5

50 ❘ LESSON 5 OBJECT-ORIENTED PROGRAMMING: AN OVERVIEW

c05.indd 02/19/2015 Page 50

THE OBJECT MODEL

The Excel object model is the heart and soul of how VBA is used in Excel. Although VBA is the pro-
gramming language for Excel, it is also the programming language for Offi ce applications in Word,
Access, PowerPoint, and Outlook. Even though all these applications are programmable with VBA,
they have their own programming needs because they are different software applications, and hence
are designed to serve different functions. Excel does not receive e-mails as Outlook does, and Word
does not produce reports from its own database tables as Access does.

Every VBA action you take in your Excel workbook sends a command through the Excel object
model. The object model is a large list of objects that relate to Excel, such as worksheets, cells,
ranges, and charts. The VBA code in your macro that adds a worksheet to the workbook will make
sense to Excel because it is communicating with the objects that are recognized to be present in the
Excel object model. For example, that same macro to add a worksheet would not work in Outlook.
The Outlook object model does not include worksheets, because Outlook is an application that
maintains e-mails and appointment calendars, not worksheets.

The object model of any VBA application is hierarchical by design. In the Excel object model, the
Application object is at the top of the model because it is the entire Excel application. Under
the Application object is a whole host of other objects, one of them being the Workbook object.
Under Workbook is the Worksheet object, among many others, and under the Worksheet object are
Range and Cell objects, and so on.

The result of this hierarchy is what drives the proper syntax for your VBA macros. For example, if
you want to enter the word “Hello” in cell A1 of Sheet1 of the workbook you are currently working
in, the line of code to handle that could be the following:

Application.ActiveWorkbook.Worksheets("Sheet1").Range("A1").Value = "Hello"

VBA is a smart language. It knows you are working in Excel if you are specifying a Workbook
object. It also knows you are doing something in a workbook if you are specifying a Worksheet
object. Therefore, the preceding line of code can be shortened to this:

Worksheets("Sheet1").Range("A1").Value = "Hello"

That can be shortened further if you are working on Sheet1 (that is, if Sheet1 is the active sheet)
when the code line is executed. If the parent Worksheet object is not specifi ed, VBA’s default
assumption is that you want the active worksheet to receive the word “Hello” in cell A1, and in that
scenario the line of code would simply be this:

Range("A1").Value = "Hello"

A bit of theory on the subject of objects. In an object-oriented programming environment, VBA
regards as an Excel object pretty much any element of the Excel application you can think of,
whether it is a button, or a row, or a window—even the Excel application itself.

When you add an object to your workbook with VBA—for example, if you run a macro that
creates a chart—VBA is at work behind the scenes, storing information about that Chart object,
and assigning default values to its properties that were not specifi ed in the macro. I mention this as a
piece of good news, because with VBA fi lling in the blanks as it does, it’s that much less about VBA

The Object Model ❘ 51

c05.indd 02/19/2015 Page 51

you need to learn to start writing advanced macros. This advantage will become clearer as you prog-
ress into more complex programming techniques.

Properties
As noted earlier, VBA objects have inherent qualities, called properties, similar to any objects you
may deal with in the real world. Properties defi ne what the object looks like and how it acts. If you
own a red bicycle, you can change its Color property by painting the bicycle a different color. For a
Cell object on a worksheet, you can change its Color property by formatting the cell with a differ-
ent fi ll color.

In VBA code, you refer to the property of an object by fi rst referring to the object, then the property,
separated by a dot. Following are examples of a few of the many properties belonging to the Cell,
Worksheet, and Workbook objects.

This line of code would format the active cell’s Locked property:

ActiveCell.Locked = True

The Name property of the Worksheet object represents the worksheet’s tab name. For example, this
expression in the Immediate window would return the name of the active worksheet:

? ActiveSheet.Name

This expression would change the Name property of the active worksheet to "Hello", and when
executed would result in “Hello” being the active worksheet’s new tab name:

ActiveSheet.Name = "Hello"

The following expression will change the Color property of the active worksheet’s tab to yellow:

ActiveSheet.Tab.Color = vbYellow

Workbooks have a Saved property that indicates if the workbook has been saved since its most
recent change. For example, if you save your workbook and then enter the following expression in
the Immediate window, VBA will return True:

? ThisWorkbook.Saved

If you were to make some change to the workbook, such as entering a number in a cell, and imme-
diately re-evaluate the expression ? ThisWorkbook.Saved, False would be returned because VBA
knows that the workbook has not been saved since it was last changed.

Methods
Methods are actions that can be performed by objects. VBA objects have inherent behavioral abili-
ties. Following are examples of Excel objects and some of their methods.

The Range object of A1:D10 can have its cells’ contents cleared with the ClearContents method:

Range("A1:D10").ClearContents

52 ❘ LESSON 5 OBJECT-ORIENTED PROGRAMMING: AN OVERVIEW

c05.indd 02/19/2015 Page 52

Workbooks and worksheets can be activated with the Activate method:

Workbooks("Book1.xlsx").Activate
Worksheets("Sheet2").Activate

Here’s a more complicated example, to call your attention to the fact that objects can contain
objects, not just properties. Suppose you have three pivot tables on Sheet1, and you only want to
refresh the pivot table named PivotTable2. As far as VBA is concerned, what you really want to
refresh is the PivotCache object of the PivotTable2 object of the Sheet1 worksheet object. This
line of code would accomplish that, using the Refresh method:

Worksheets("Sheet1").PivotTables("PivotTable2").PivotCache.Refresh

NOTE This multiple-object syntax might look daunting at fi rst, but you can
take some comfort in knowing that you’ve been writing VBA code in this man-
ner since Day 1. All objects (except the Application object, which is Excel
itself) have a Parent property—that is, another object to which they belong. In
many cases, you don’t need to specify the Parent object because it is inferred
by default. For example, if you are referring to cell A1 on your active work-
sheet, you do not need to (though you could) express it as ActiveSheet
.Range("A1")—you only need to express it as Range("A1"). In the preceding
example, however, pivot tables are embedded objects for which VBA requires
you to specify the parent worksheet object. If all this talk of properties and meth-
ods is not clear yet, don’t worry, it will all make perfect sense when you see the
theory in action.

Collections
Some of the VBA programming you learn in later lessons involves the concept of collections, and
it is a topic I’m touching on here. In object-oriented programming, a Collection is an object that
contains a group of like objects. For example, there is a Worksheets collection object that is the
entire group of Worksheet objects in your workbook. Even if one worksheet contains hundreds of
formulas and another worksheet is totally empty, both those worksheets are like objects because
they are both worksheets, and therefore they both are a part of the Worksheets collection.

As you’ll see, invoking the Collection object in your code is a terrifi c way to take some action
on all the objects in that collection, without needing to know anything specifi c about the collected
objects. For example, say you want to add some boilerplate text to every comment on your work-
sheet. Employing a For . . . Each loop (loops are covered in Lesson 10) to edit every comment in
the Comments collection would make the task simple because each comment would belong to the
Comments collection, and you’d be confi dent knowing you hit all comments without needing to
know what cells they are in.

Try It ❘ 53

c05.indd 02/19/2015 Page 53

NOTE A good rule of thumb in recognizing a Collections object is to notice
that its name ends with the letter s, as a pluralized form of its singular object
item name. Examples of this are the Names collection of individual Name objects,
the Charts collection of individual Chart objects, the Workbooks collection of
individual Workbook objects, and so on.

TRY IT

This lesson provided an overview of object-oriented programming. There are no programming
techniques to try based on the material in this lesson, but here are some important concepts to keep
in mind:

 1. Excel is replete with objects, such as workbooks, worksheets, and cells, and each object has
its own set of properties that can be altered to suit your application project’s design.

 2. If you should need to refer to an object’s container, such as when you refer to a worksheet in
another workbook, just use the object’s Parent property. All objects (except Application)
have a Parent property that is the object within which they are contained. For example, if
your active workbook object is Book2 but you want to refer to Sheet1 in Book1, you’d pre-
cede the Sheet1 object with its parent Book1 object name, like this:

Workbooks("Book1.xlsm").Worksheets("Sheet1").Range("A1").Value = "Hello"

 3. The Application object indeed holds the highest order of Excel’s objects, but as you will
see, it also offers many useful methods and properties. The Application object provides the
ability to insert worksheet functions (SUM, AVERAGE, VLOOKUP, and so on), as well as
commands to control Excel’s display options for worksheet gridlines, tabs, and window sizes.

REFERENCE There is no video or code download to accompany this lesson.

www.allitebooks.com

http://www.allitebooks.org

c06.indd 02/23/2015 Page 55

Variables, Data Types,
and Constants

Many of the macros you develop will involve the need for referencing an item you are working
on without specifying that item by its name, amount, or location. This concept may sound
strange at fi rst, but you will quickly discover with your macros that in many situations it
makes sense, and indeed is necessary, to manipulate or analyze data in one part of your
macro, and hold the results in virtual memory for later use.

WHAT IS A VARIABLE?

VBA stores data in memory using a variable. A variable is a name given by you, to which
you assign a piece of data that is stored in an area of the computer’s memory, allowing you
to refer to that data when you need to later in the macro. VBA handles the task of fi nding an
 appropriate place in the computer’s memory to store your variable data, and dutifully retrieves
the data when you ask for it by its variable name.

Variables hold values of different data types (more on this later) that are specifi ed when the
variable is declared. When you declare a variable, you do so by entering a declaration state-
ment that includes four keywords in a particular order:

 1. The Dim statement (VBA’s abbreviation for Dimension), which all variable declarations
start with.

 2. The name of your variable, which you create, such as myValue.

 3. The word As.

 4. The type of data being stored.

One common data type is called Integer, which, as you see in Table 6-1, refers to whole num-
bers within a certain range. Using the preceding four steps as a sequential construction guide,
here is a typical-looking variable declaration statement:

Dim myValue As Integer

6

56 ❘ LESSON 6 VARIABLES, DATA TYPES, AND CONSTANTS

c06.indd 02/23/2015 Page 56

NOTE A few rules in VBA for variable names:

 ➤ Cannot be greater than 255 characters in length.

 ➤ Cannot contain a space.

 ➤ Cannot contain mathematical operation characters +, -, /, *, =, <, >, or ^.

 ➤ Cannot contain punctuation characters, such as a comma, period, question
mark, or exclamation.

 ➤ Cannot contain characters @, #, $, %, &, (,), {, }, [,], \, :, “, ‘, `, ~, or |.

 ➤ Cannot be terms reserved in VBA, for example Dim, Sub, or Function.

 ➤ Must be unique in the macro or procedure that uses it.

 ➤ May contain, but cannot start with, a number or an underscore character.

Basically, when it comes to naming your variables, keep it simple. Use only
letters (and maybe numbers after the fi rst character) for a name that is concise
and gives a clue as to the general purpose of the variable.

You’ll soon see the enormous benefi t that this kind of innocent-looking statement can have in your
macro. Although a few wrinkles exist in the variable declaration process, a variable declaration
statement will often look no more complicated than this.

ASSIGNING VALUES TO VARIABLES

After the variable declaration statement, which might be the next code line or 100 code lines later in your
macro, depending on what you are doing, you will have a statement that assigns some value or attribute
to the myValue variable. Here’s an example of assigning the number in cell A1 to the myValue variable:

myValue = Range("A1").Value

The value you assign might be an actual value that is stored in a cell, as in the preceding example,
or it might be a value you create or defi ne in some way, again, depending on the task at hand. This
notion will become clearer with more examples you’ll be seeing throughout the book.

WHY YOU NEED VARIABLES

I mentioned earlier that in some situations, employing a variable will be a sensible option. Suppose
you have a number in cell A1 that you are referring to for several analytical purposes throughout your
macro. You could retrieve that number by referring to its A1 cell address every time, but that would
force Excel to look for the same cell address and to recommit the same number to memory every time.

As a simplifi ed example, here is a macro with four commands, all invoking the value in cell A1:

Sub WithoutVariable()
Range("C3").Value = Range("A1").Value
Range("D5").Value = Range("A1").Value / 12

Data Types ❘ 57

c06.indd 02/23/2015 Page 57

Range("E7").Value = Range("A1").Value * 365
MsgBox "The original value is " & Range("A1").Value
End Sub

For VBA to execute this macro, it must go through the same behind-the-scenes gyrations four
 separate times to satisfy each of the four commands that reference range A1. And if your workbook
design changes, where you move the number of interest from cell A1 to cell K5, you need to go into
the code, fi nd each related code line, and change the cell reference from A1 to K5.

Fortunately, there is a better way to handle this kind of situation—by declaring a variable to refer to
the value in cell A1 just once, like this:

Sub WithVariable()
Dim myValue As Integer
myValue = Range("A1").Value
Range("C3").Value = myValue
Range("D5").Value = myValue / 12
Range("E7").Value = myValue * 365
MsgBox "The original value is " & myValue
End Sub

By assigning the number value in cell A1 to the myValue variable, you’ve increased your code’s
effi ciency and its readability, and VBA will keep the number value in memory without having to
reevaluate cell A1. Also, if your cell of interest changes from A1 to some other cell, say cell K5, you
only need to edit the cell address in the assignment code line to refer to cell K5, like so:

myValue = Range("K5").Value

As you’ve probably noticed in this situational example, a variable declaration is advisable, but it
is not an absolute requirement for the WithoutVariable macro to function. However, as you will
see in the upcoming lessons, variable declaration will be a necessary practice for handling more
 complex tasks that involve loops, object manipulation, and conditional decision-making. Don’t
worry—after you see a few examples of variables in action and start practicing with them on your
own, you’ll quickly get the hang of when and how to declare variables.

DATA TYPES

Simply stated, VBA’s role in life is to manipulate data in a way your computer can understand it. A
computer sees information only as a series of binary numbers such as 0s and 1s—very differently
than how humans see information as numerals, symbols, and letters of the alphabet.

Your macros will inevitably manipulate data of varying types, such as text, numbers, or Range
objects. Part of VBA’s job is to bridge the communication gap between humans and computers, by
providing a method for telling the computer what type of data is being referred to in code. When you
specify a data type in VBA, you help the computer to know how it should regard your data so that
your macros will produce the results you’d expect, based on the types of data you are manipulating.

Understanding the Different Data Types
Data types are the different kinds of ways you can store data in memory. Table 6-1 shows a list of
common data types with their descriptions and memory usage.

58 ❘ LESSON 6 VARIABLES, DATA TYPES, AND CONSTANTS

c06.indd 02/23/2015 Page 58

TABLE 6-1: Data Types

DATA TYPE DESCRIPTION MEMORY

Boolean True or False; 1 or 0; On or Off. 2 bytes

Byte An integer from 0 to 255. 1 byte

Currency A positive or negative number with up to 15 digits to the
left of the decimal point and up to 4 digits to the right of it.

8 bytes

Date A fl oating-point number with the date to the left of the
decimal point and the time to the right of it.

8 bytes

Decimal An unsigned integer scaled to the power of 10. The
power of 10 scaling factor specifi es the number of digits
to the right of the decimal point, and ranges from 0 to 28.

12 bytes

Double A fl oating-point number ranging in value from
–1.79769313486231E308 to –4.94065645841247E-324
for negative values and from 4.94065645841247E-324 to
1.79769313486232E308 for positive values.

8 bytes

Integer An integer ranging from –32,768 to 32,767. 2 bytes

Long An integer ranging from –2,147,483,648 to 2,147,483,647. 4 bytes

Object A reference to an object, such as a range of cells, a chart,
a pivot table, a workbook, a worksheet, or any one of the
many other objects that are a part of the Excel application.

4 bytes

Single A fl oating-point number ranging in value from
–3.402823E38 to –1.401298E-45 for negative values and
from 1.401298E-45 to 3.402823E38 for positive values.

4 bytes

String There are two kinds of strings: variable-length and
fi xed-length. A variable-length string can contain up to
approximately 2 billion characters. A fi xed-length string
can contain 1 to approximately 64,000 characters.

For a variable-length
string, 10 bytes plus
storage for the string.
For a fi xed-length string,
the storage for the string.

Variant Data type for all variables that are not explicitly declared
as some other type, which can contain any kind of data
except fi xed-length string data.

For containing numbers,
16 bytes. For containing
characters, 22 bytes plus
storage for the characters.

Declaring a Variable for Dates and Times
The Date data type is worth an extra look because it is the data type with which variables for both dates
and times can be declared. You can assign values to a date variable by enclosing them in the # (number
sign) character, with the value being recognizable to Excel as either a date or time. For example:

Forcing Variable Declaration ❘ 59

c06.indd 02/23/2015 Page 59

myDate = #09 October 1958#

or

myDate = #October 9, 1958#

or

myTime = #9:10 PM#

or

myTime = #10/9/1958 9:10:00 PM#

NOTE When entering dates, get into the good habit of entering the year as a full
four-digit number. The year 2029 is the dividing line in VBA for two-digit years
belonging to either the twentieth or twenty-fi rst centuries. All two-digit years from
00 to and including 29 are regarded as belonging to the 2000s, and 30 to 99 are
regarded as belonging to the 1900s. For example, the expression 10/10/29 in Excel
is October 10, 2029, but 10/10/30 is regarded by Excel as October 10, 1930.

Declaring a Variable with the Proper Data Type
As you become more familiar with VBA, you’ll notice that different developers have their preferred
writing styles when declaring variables. For example, you can declare several variables on one line,
each separated by a comma, like this:

Dim myValue1 as Integer, myValue2 as Integer, myValue3 as Integer

There is nothing wrong with that construction, but be careful not to make this common mistake:

Dim myValue1, myValue2, myValue3 as Integer

If you do not specify a data type after a variable name, such as in the latter case with myValue1
and myValue2, VBA assigns the default Variant data type. Only the Value3 variable has been
specifi ed the Integer data type. Variant is a catch-all data type that is the most memory-
intensive, and the least helpful in understanding the purpose of its associated variables if anyone
else should read your code.

The Variant data type does have its place, for instance when dealing with arrays or conversions
of data types, but you should take care to specify the appropriate data types of all your variables.
In so doing, your macros will run faster, they’ll be easier to read, and they’ll be more reliable.

FORCING VARIABLE DECLARATION

Declaring your variables can only be a good thing. It takes a little extra thought and effort, but not
declaring your variables can cause a lot more trouble when reading or debugging your code. Macros
run faster and use less memory when all variables are properly declared.

You can tell if variable declaration is being enforced by seeing if the statement Option Explicit is
at the top of your module. If you do see the Option Explicit statement, write a quick macro that
tries to call an undeclared variable, such as you see depicted in Figure 6-1. When you attempt to

60 ❘ LESSON 6 VARIABLES, DATA TYPES, AND CONSTANTS

c06.indd 02/23/2015 Page 60

run the macro, you receive a compile error as shown in Figure 6-1, informing you a variable is not
defi ned. In this scenario, the error occurred because the myName variable was not declared with a
statement such as Dim myName as String.

FIGURE 6-1

If you do not see the Option Explicit statement at the top of your modules, go into the VBE and
from the menu bar, select Tools ➪ Options, as shown in Figure 6-2.

FIGURE 6-2

Understanding a Variable’s Scope ❘ 61

c06.indd 02/23/2015 Page 61

You see the Options dialog box. On the Editor tab, select the option Require Variable Declaration,
as shown in Figure 6-3, and click OK.

FIGURE 6-3

Figure 6-4 shows the Option Explicit statement at the top of the module. The statement appears
in every new module you insert thereafter.

FIGURE 6-4

UNDERSTANDING A VARIABLE’S SCOPE

Variables and constants (explained in the next section) do not live forever in memory. They have
a set lifetime and visibility within macros and modules. A variable’s lifetime begins when it is
declared, and ends when the macro that declared the variable completes its execution.

62 ❘ LESSON 6 VARIABLES, DATA TYPES, AND CONSTANTS

c06.indd 02/23/2015 Page 62

Local Macro Level Only
The visibility of a variable or constant also depends on how it is declared. If declared within a
macro, a variable can only be used by that macro. For example, when Macro1 is run, the intSum
variable would be calculated to a result of 41 (by adding 10 to the intAdd variable of 31), and that is
what the message box would show:

Sub Macro1()
Dim intAdd As Integer, intSum As Integer
intAdd = 31
intSum = intAdd + 10
MsgBox intSum
End Sub

If you attempted to run another macro with same-looking but undeclared variables, you would
receive a message box with the Compile error prompt, as shown in Figure 6-5 for Macro2. Just
because a variable is declared in a macro elsewhere does not mean that VBA will recognize that
same-looking variable in another macro.

FIGURE 6-5

Module Level
It is possible for a variable to be usable in the same module by more than one macro, by having the
declaration statement at the top of the module instead of inside a particular macro. In Figure 6-6,
both Macro1 and Macro2 can utilize the intSum and intAdd variables.

Understanding a Variable’s Scope ❘ 63

c06.indd 02/23/2015 Page 63

FIGURE 6-6

Application Level
Finally, you can declare the variables as Public, which will make them visible to all macros in all
modules. You only need to place the statements at the top of one standard module, like so:

Public intAdd As Integer
Public intSum As Integer

Constants
A variable’s value may often change during a macro’s execution, but some macros are better served
with a reference to a particular value that will not change. A constant is a value in your macro that
does not change while the macro is running. Essentially, constants are variables that do not change.

When you declare a constant, you do so by entering a declaration statement that starts with the
Const statement, followed by the constant’s name you specify, then the data type, and fi nally the
value, all on one line. Here is an example:

Const myMonths as Integer = 12

It’s a good practice to use constants for the same reasons you would use a variable. Instead of hard-
coding the same value in your macro over and over, you defi ne the constant just once and use the
reference as you need to. For example, your macro may be analyzing the company’s sales amounts,
and needing to factor in the sales tax at various points in the macro. This constant statement at the
start of the macro would allow you to reference the 8.25% sales tax:

Const SalesTax as Double = .0825

64 ❘ LESSON 6 VARIABLES, DATA TYPES, AND CONSTANTS

c06.indd 02/23/2015 Page 64

NOTE After you declare a constant in the macro, you cannot assign a different
value to it later in the macro. If you need the value to change during the macro,
what you really need is a variable instead of a constant.

Choosing the Scope and Lifetime of Your Constants
The scope and lifetime of constants are much the same as for variables:

 ➤ For the constant to be available only to a particular macro, declare the constant within
that macro.

 ➤ For the constant to be available only to the macros that are housed in the same module,
declare the constant at the top of that module, above and outside all macros.

 ➤ For the constant to be available to all macros in all modules, prefi x the constant declaration
with the Public statement, and set it at the top of a standard module, above and outside all
macros. For example:

Public Const SalesTax as Double = .0825

TRY IT

In this lesson you practice creating a macro that includes a declared variable.

Lesson Requirements
To get the sample workbook fi le, you can download Lesson 6 from the book’s website at www.wrox
.com/go/excelvba24hour.

Step-by-Step
For this lesson you create a macro, without using the Macro Recorder, in which you declare a variable
for the String data type, and you manipulate the string text with a few lines of practice code.

 1. Create a macro that includes the following actions:

 a. Declare a String type variable.

 b. Assign text to the String variable.

 c. Populate a range of cells with the String variable’s text.

 2. Open Excel and add a new workbook.

 3. In your active worksheet, enter the text Hello in cell A1.

http://www.wrox

Try It ❘ 65

c06.indd 02/23/2015 Page 65

 4. Press Alt+F11 to get into the Visual Basic Editor.

 5. From the VBE menu, click Insert ➪ Module.

 6. In the new module, type in the name of your macro as Sub Test6.

 7. Press the Enter key, which will cause Excel to place a set of parentheses after the Test6
macro name, and also will create the End Sub statement. Your macro so far will look
like this:

Sub Test6()

End Sub

 8. In the empty line between Sub Test6() and End Sub, type Dim myString As String and
press Enter.

 9. Now is the time to defi ne the myString variable by telling VBA that it will be equal to
the value in cell A1, which is the word Hello you entered in Step 3. To do that, type the
 following line of code into your macro and press Enter:

myString = Range("A1").Value

 10. With your String variable defi ned, try entering its defi ned text into a few cells, starting with
cell B3. If you combine the variable with a space and the word “World,” you can program-
matically enter the text “Hello World” into B3. To do that, type this line of code into your
macro and press Enter:

Range("B3").Value = myString & " World!"

 11. Just for fun, repeat the variable’s text three times in succession, which would be
HelloHelloHello, and tell VBA to enter that into cell B4. For the next line in your macro,
type Range(“B4”).Value = myString & myString & myString and press Enter.

 12. As a third and fi nal entry, show the text Hello and Goodbye in cell B5 by typing this last line
of code into your macro:

Range("B5").Value = myString & " and Goodbye".

At this point, your macro is completed, and it will look like this:

Sub Test6()
Dim myString As String
myString = Range("A1").Value
Range("B3").Value = myString & " World!"
Range("B4").Value = myString & myString & myString
Range("B5").Value = myString & " and Goodbye"
End Sub

 13. Press Alt+Q to return to your worksheet.

 14. Watch your new macro in action. Press Alt+F8 to display the Macro dialog box.

66 ❘ LESSON 6 VARIABLES, DATA TYPES, AND CONSTANTS

c06.indd 02/23/2015 Page 66

 15. Select the Test6 macro name in the large window, as shown in Figure 6-7, and click the
Run button.

FIGURE 6-7

REFERENCE Please select the video for Lesson 6 at www.wrox.com/go
/ excelvba24hour. You will also be able to download the code and resources
for this lesson from the website.

http://www.wrox.com/go

c07.indd 02/24/2015 Page 67

Understanding Objects
and Collections

Lesson 5 introduced the topic of collections, which are objects that contain a group of like
objects. This lesson adds some detail to the topic and goes over some programming techniques
to deal with the most common types of object collections you will encounter: workbooks,
worksheets, cells, and ranges.

WORKBOOKS

An Excel fi le is a Workbook object. You might wonder how workbooks have a collection,
 seeing as you can only work in one workbook at a time, and even then you are usually
 manipulating objects at a lower level, such as worksheets or cells.

NOTE Do not confuse the Application object with the Workbook object. In
VBA, the Application object is at the very top of the food chain; there is nothing
higher than Application in the Excel object model. Application represents the
entire Excel program, whereas Workbook represents an individual Excel fi le.

The Workbooks collection contains the references to every Workbook object that is open in the
same instance of Excel. You need to call upon the Workbooks collection when you want to
do some task in every open workbook, or when you want to activate a particular workbook
whose name is not known.

Here is an example. In VBA, the following command adds a new workbook:

Workbooks.Add

When this code line is executed, the active workbook becomes the new workbook you added,
same as the effect of manually adding a new workbook from your existing one, when the
workbook you added becomes the active workbook.

7

68 ❘ LESSON 7 UNDERSTANDING OBJECTS AND COLLECTIONS

c07.indd 02/24/2015 Page 68

What if your project calls for you to add two workbooks to the existing one, and you want to end
the macro with the fi rst added workbook being the active one, instead of the last added workbook
being the active one? In your Workbooks collection, how do you specify which Workbook object you
want to do something with when you don’t know the names of any open workbooks?

VBA offers several methods to solve this problem, one being an ability to assign a variable to each
workbook you add, and then to activate the workbook whose variable you care about. For example,
the following macro adds two workbooks and ends with the fi rst added workbook being the active one:

Sub AddWorkbooks()
Dim WorkbookAdd1 As Workbook
Dim WorkbookAdd2 As Workbook
Set WorkbookAdd1 = Workbooks.Add
Set WorkbookAdd2 = Workbooks.Add
WorkbookAdd1.Activate
End Sub

Workbook objects have a number of methods, such as Open, Save, and Close. Lesson 10 delves into the
practice of repeating actions with loops, but here’s a sneak peek at a loop that saves and closes every
workbook that is currently open in your instance of Excel, except for the workbook you are working
in. Notice what you don’t see, which is a concern about how many workbooks are open, or what their
names are. You only need to tell VBA to look for Workbook objects in the Workbooks collection:

Sub CloseAllOtherWorkbooks()
Dim wkb As Workbook
For Each wkb In Workbooks
If wkb.Name <> ThisWorkbook.Name Then
wkb.Close SaveChanges:=True
End If
Next wkb
End Sub

The Worksheets collection enables you to refer to the Worksheet objects’ names or index numbers,
which is the numerical position of worksheets as you see their tabs in order from left to right.
Referring to names tends to be a safer practice, but as you saw with workbooks, and as you will
learn with looping techniques, a variable can be assigned to each Worksheet object to access all
worksheets without caring where they are in the workbook or what their tab names are.

Say you want to add a new worksheet, and give it the name Test1. No problem there, but now you
are asked to add the new worksheet such that its placement will be the last (rightmost) worksheet
in the workbook. You have no idea how many sheets exist already. You don’t know the name of
the last worksheet in order to reference its location but even if you did know that today, there could
 easily be a differently named worksheet in that index position tomorrow.

The following one-line macro adds a new worksheet, names it as you specify, and places it at the
far right end of the worksheets, which is the highest worksheet index number based on the count of
existing worksheets:

Sub WorksheetTest1()
Worksheets.Add(After:=Worksheets(Worksheets.Count)).Name = "Test1"
End Sub

Cells and Ranges ❘ 69

c07.indd 02/24/2015 Page 69

You can place a worksheet relative to another worksheet’s name, this time adding a worksheet, and
placing it before Sheet2:

Sub WorksheetTest2()
Worksheets.Add(Before:=Worksheets("Sheet2")).Name = "Test2"
End Sub

NOTE The preceding examples work without any problem as long as the
 workbook does not already contain a worksheet with the name Test1 or Test2.
Excel does not allow worksheets to be given duplicate names in the same
 workbook, and attempting to do so will result in an error. You learn about
 handling VBA errors in Lesson 20.

You may want to relocate an existing worksheet from its current position to a particular index
 position for the convenience of your workbook’s users. Suppose that during the course of your macro,
you want the active worksheet to occupy the number two worksheet index position—that is, to be the
worksheet that is located second from the left as you see the worksheet tabs. To accomplish this, you
can place the active worksheet after the fi rst index worksheet, as shown in the following example:

ActiveSheet.Move After:=Sheets(1)

NOTE A word of caution about the Worksheets collection: There is a
difference between the Sheets collection and the Worksheets collection. You
probably know about chart sheets, and if your workbook has one, you need to
be mindful to cycle through the Worksheets collection only if you are interested
in manipulating worksheets. If you cycle through the Sheets collection, all
sheets, including a chart sheet (or outmoded dialog sheets or macro sheets) are
included in the procedure. If you only want to act on worksheets, specify the
Worksheets collection.

CELLS AND RANGES

The Range object is probably the most utilized object in VBA. A range can be a single cell or a range
of cells that spans any size area. A Range object, then, is a cell or block of cells that is contained
on a Worksheet object. Though a Range object can be a union of several noncontiguous blocks of
cells, it is always the case that a VBA Range object is contained on a single parent worksheet. That
parent worksheet can be the active worksheet or some other worksheet, but there is no such thing as
a Range object that includes cells on different worksheets.

A single cell is a range as far as VBA is concerned, and ActiveCell is the object name in VBA of the
single active cell on the active worksheet. There is no such object as ActiveRange, but many ways
exist to identify particular ranges, one of the most common being the Selection object.

70 ❘ LESSON 7 UNDERSTANDING OBJECTS AND COLLECTIONS

c07.indd 02/24/2015 Page 70

If you were to select any range of cells, and execute this line of code, all cells in that selected range
would immediately contain the word “Hello”:

Selection.Value = "Hello"

You may be interested to know that named ranges are fair game for VBA to refer to and manipulate,
just like any other range. In fact there is a Names collection object for named ranges.

As an example, say you have previously named a range myRange. This line of code in a VBA macro
would place the word “Hello” in all cells in your named range:

Range("myRange").Value = "Hello"

As you have seen, you do not need to select your range in order to work with it. For most operations
on cells or ranges, you can refer to the range and its parent worksheet. You can execute the follow-
ing line of code from any worksheet in your workbook, as an example of establishing a bold format
for a range of cells on Sheet1:

Worksheets("Sheet1").Range("A1:D25").Font.Bold = True

At times you will want to refer to all the cells on a worksheet instead of limiting your operation to
a particular range. For example, suppose as part of your macro you want to clear the contents of
every cell on the worksheet. Starting with version 2007, clearing the contents of the entire grid of
worksheet cells can be expressed as Range("A1:XFD1048576").ClearContents. However, if the
workbook is being used in a version of Excel prior to 2007, that same operation could be expressed
as Range("A1:IV65536").ClearContents. Fortunately, you can avoid errors and confusion by
using the Cells object as shown in the following example, which refers to all worksheet cells in
whichever version of Excel is being used at the moment:

Cells.ClearContents

You can do some useful operations using the Cells object when you want to involve the entire
worksheet. Suppose you have set up Sheet1 as a template with formatted ranges, labels, values, and
formulas, and you want Sheet2 to be established the same way. The following line of code copies the
Sheet1 cells and pastes them to Sheet2:

Worksheets("Sheet1").Cells.Copy Worksheets("Sheet2").Cells

SpecialCells
An interesting brand of range objects is Excel’s group of SpecialCells, which I touched upon in the
Try It section and video for Lesson 2. Press the F5 key to show the Go To dialog box. Click the
Special button, and you see more than a dozen types of SpecialCells.

SpecialCells is the name of the method in VBA that returns a range object of a specifi c cell
type. For example, cells on your worksheet that contain comments are regarded by VBA as
SpecialCells. So are cells containing data validation, or cells that contain formulas, or cells
that contain constants, such as text or data you have manually entered. With the combinations of
SpecialCells, the possibilities are enormous for identifying various kinds of ranges based on all
sorts of criteria.

Try It ❘ 71

c07.indd 02/24/2015 Page 71

Say in range A1:A10 you have some cells that contain formulas, some cells that contain numbers
you have manually entered, and some cells that contain nothing. If you want to select all individual
cells in range A1:A10 that contain formulas, and not include in your selection any of the other cells
in that range, this macro would do that:

Sub FindFormulas()
Range("A1:A10").SpecialCells(xlCellTypeFormulas).Select
End Sub

TRY IT

In this lesson you practice with the useful IntelliSense tool to help you become familiar with VBA
syntax. Using IntelliSense can help improve your effi ciency and accuracy, with its drop-down list of
properties and methods when writing code.

Lesson Requirements
None

Step-by-Step
VBA’s IntelliSense feature is an incredibly useful tool that helps you write your macros faster and
smarter. I use it all the time to help me write code in the proper VBA syntax. As mentioned, VBA
has hundreds of objects and each object can have dozens of methods and properties. IntelliSense
can display a list of an object’s methods and properties while you are typing your code, and it can
quickly call the Help feature for a topic you select.

 1. Open Excel and press Alt+F11 to go to the Visual Basic Editor.

 2. If you have not already done so, from the VBE menu bar, click Tools ➪ Options as shown in
Figure 7-1.

FIGURE 7-1

 3. In the Options dialog box on the Editor tab, make sure there is a check mark in the box next
to Auto List Members as shown in Figure 7-2, and click OK.

72 ❘ LESSON 7 UNDERSTANDING OBJECTS AND COLLECTIONS

c07.indd 02/24/2015 Page 72

FIGURE 7-2

 4. Press Ctrl+G to be taken into the Immediate window.

 5. Type in the question mark character, then press the spacebar, type the word Application,
and press the dot key on your keyboard. A list of the Application object’s members,
 properties, and methods is displayed, as shown in Figure 7-3.

FIGURE 7-3

 6. Now, practice using IntelliSense. Press the N key and you are taken to the fi rst item in the
Application object’s list of members that begins with the letter N. In this case, that member
happens to be the Name property, which will be highlighted by selection as shown in Figure 7-4.

 7. With the Name property item selected, either double-click it or press the Alt key to accept
and enter the Name property for the Application object, and then press the Enter key. The
Immediate window returns the result Microsoft Excel as shown in Figure 7-5.

Try It ❘ 73

c07.indd 02/24/2015 Page 73

FIGURE 7-4

FIGURE 7-5

 8. Continue to explore on your own. Press the Enter key in the Immediate window to start
a new line, enter the question mark character and press the spacebar, and scroll through
the member list of other objects such as ActiveWorkbook or Range. Keep in mind that
many objects are parents of other objects, so you can go two or more members deep to
gather some information. For example, the ActiveWorkbook object has a Worksheets
collection, and the Worksheets collection has a Count property. Therefore, if you type the
line ? activeworkbook.Worksheets.Count into the Immediate window, VBA returns the
number of worksheets the active workbook contains.

REFERENCE Please select the videos for Lesson 7 online at www.wrox.com/go
/excelvba24hour. You will also be able to download the code and resources
for this lesson from the website.

http://www.wrox.com/go

c08.indd 02/23/2015 Page 75

Working with Ranges
The Range object is probably the most frequently used object in VBA. Almost anything
you do in a worksheet where VBA is concerned involves either a cell (or range of cells), or a
reference of some kind to a range location that helps to direct whatever action your macro is
undertaking. When you programmatically create a chart, modify a pivot table’s source data,
or insert picture fi les or comments, you are working with ranges.

Because ranges are so commonly referred to in code, this lesson introduces you to various
syntaxes you will soon become familiar with, and in fact depend on, to refer to or manipulate
Range objects. My approach with this lesson is to demonstrate basic code lines with pictures
to show how ranges can be identifi ed or selected.

As you’ll hear over and over in VBA programming circles, you need not, and normally will
not, actually select a range in order to work with it. You can refer to and manipulate (such
as by editing or formatting) ranges of cells on other worksheets or other workbooks without
leaving your active worksheet. The pictures in this lesson show the selection of ranges for
visual confi rmation of the code at work, but after this lesson, you will rarely see code that
selects or activates an object.

WORKING WITH CONTIGUOUSLY POPULATED RANGES

The simplest ranges to deal with are those that have all cells fi lled with data or formulas, and
no empty cells within that range. Figure 8-1 shows a typical-looking list of data for which
you can easily identify its last row, its last column, and its address. Based on Figure 8-1, the
variables in the following macro yield 6 for the LastRow variable, and 3 (column C, the third
column in the spreadsheet grid) for the LastColumn variable:

Sub Find_LastRow_LastColumn()
Dim LastRow As Long, LastColumn As Long
LastRow = Cells(Rows.Count, 1).End(xlUp).Row
LastColumn = Cells(2, Columns.Count).End(xlToLeft).Column
MsgBox _
"The last row is: " & LastRow & vbCrLf & _
"The last column is: " & LastColumn
End Sub

8

76 ❘ LESSON 8 WORKING WITH RANGES

c08.indd 02/23/2015 Page 76

FIGURE 8-1

Using the Cells Property
You have seen with the previous example and in other VBA expressions that the Cells property
can select or refer to a range. The Cells range syntax is Cells(RowIndex, ColumnIndex).
Therefore, the expression Cells(2, 5) refers to cell E2 because that is the same as row 2 of
column 5. For the Cells property, the row component must be a numeral, but the column can
be a letter that must be in quotes, for example Cells(2, "E"). Therefore, in practice, either of
these expressions bold cell E2:

Cells(2, 5).Font.Bold = True
Cells(2, "E").Font.Bold = True

You can incorporate two Cells properties within the Range statement to refer to a range larger than
just one cell. Using the example variables for LastRow and LastColumn, the following line of code
tells you the range address of the list shown in Figure 8-1:

MsgBox Range(cells(1, 1), Cells(LastRow, LastColumn)).Address

As a fi nal example, you can use Cells to select a particular range of cells, such as D3:F5
in Figure 8-2:

Range(cells(3, 4), cells(5, 6)).select

FIGURE 8-2

Using CurrentRegion
The CurrentRegion property refers to a localized range of contiguous data that may exist among
other ranges on that worksheet containing a mix of fi lled and empty cells. Suppose you have
disjointed data on your worksheet, as depicted in Figure 8-3. With the active cell in the local

Working with Noncontiguously Populated Ranges ❘ 77

c08.indd 02/23/2015 Page 77

(CurrentRegion) area of the range of data you want to work with, the following line of code will
select that active cell’s CurrentRegion, as shown in Figure 8-4.

ActiveCell.CurrentRegion.Select

FIGURE 8-3

FIGURE 8-4

WORKING WITH NONCONTIGUOUSLY POPULATED RANGES

You will often need to locate or refer to ranges that are broken up by empty cells, usually referred to
as noncontiguous ranges. VBA offers some clever options for taming the noncontiguous range beast.

Using Range with Several Cells
As shown in Figure 8-5, you can select various cells in a union with this example code line:

Range("B2, D5, F1:F4").Select

Notice the construction has cell addresses, or ranges, separated by a comma and a space, enclosed
in quotes.

FIGURE 8-5

78 ❘ LESSON 8 WORKING WITH RANGES

c08.indd 02/23/2015 Page 78

Using OFFSET
The OFFSET property refers to a range by adding or subtracting (offsetting) row and column
numbers from a relative reference to refer to a new range. In Figure 8-6, the active cell is B4.

FIGURE 8-6

If you want to select a range that is relative to the active cell by extending the range upward 2 rows
and outward 4 columns, you can use the following code line. The result is shown in Figure 8-7.

Range(activecell, activecell.Offset(-2, 4)).Select

FIGURE 8-7

Using RESIZE
The RESIZE property changes the size of a range, based on a cell of interest as the reference point.
In this example, range B3 is resized by 4 rows and 5 columns, thereby selecting range B3:F6. (See
Figure 8-8.) The code line that is used in this example is

Range("B3").Resize(4, 5).Select

FIGURE 8-8

Working with Noncontiguously Populated Ranges ❘ 79

c08.indd 02/23/2015 Page 79

Identifying a Data Range
In some cases you will only want to identify a range of cells that contain data or formulas, but not
formatting. In Figure 8-9, cell H3 is a lonely soul, apart from the data range but formatted with red
fi ll color for demonstration purposes.

This example shows how to select a data range on the current sheet, starting at cell A1, and display
the address of the range to the user. The data range does not include cells that are formatted that
do not contain data. To get the data range, this example fi nds the last row and the last column that
contain actual data by using the Find method of the Range object:

Sub SelectDataRange()
Dim LastRow As Long, LastColumn As Long
LastRow = Cells.Find(What:="*", SearchDirection:=xlPrevious, _
SearchOrder:=xlByRows).Row
LastColumn = Cells.Find(What:="*", SearchDirection:=xlPrevious, _
SearchOrder:=xlByColumns).Column
Range("A1").Resize(LastRow, LastColumn).Select
MsgBox "The data range address is " & Selection.Address(0, 0) & ".", _
vbInformation, "Data-containing range address:"
End Sub

FIGURE 8-9

Identifying the UsedRange
The UsedRange property represents cells on a worksheet that are currently being used or have
been used. This includes formatted cells that do not contain data, such as what’s shown in
Figure 8-10.

This example shows how to select the UsedRange on the current worksheet by using the UsedRange
property of the Worksheet object and the Select method of the Range object. The selected address
of the worksheet’s UsedRange is displayed in a message box:

Sub SelectUsedRange()
ActiveSheet.UsedRange.Select
MsgBox "The used range address is " & _
ActiveSheet.UsedRange.Address(0, 0) & ".", 64, "Used range address:"
End Sub

80 ❘ LESSON 8 WORKING WITH RANGES

c08.indd 02/23/2015 Page 80

FIGURE 8-10

Finding the Dynamic Last Rows and Columns
This section includes a collection of several dynamic row and column locations wrapped into one
macro example. You may need to not only fi nd the last row of data, but limit your search to a
particular set of columns. The same goes for the last used column, based on one row, all rows, or
a specifi c range of rows. Figure 8-11 shows the versatility of the following macro for handling all
these scenarios:

Sub DataRangeLastRowsColumns()

'Declare variables for last rows and columns
Dim LastRow As Long, LastColumn As Long
Dim LastRowSingleColumn As Long, LastRowSomeColumns As Long
Dim LastColumnSingleRow As Long, LastColumnSomeRows As Long

'Last row of data considering all columns.
LastRow = Cells.Find(What:="*", After:=Range("A1"), _
SearchOrder:=xlByRows, SearchDirection:=xlPrevious).Row
'Last row of data considering just column D.
LastRowSingleColumn = Cells(Rows.Count, 4).End(xlUp).Row
'Last row of data considering just columns B, C, and D.
LastRowSomeColumns = Range("B:D").Find(What:="*", After:=Range("B1"), _
SearchOrder:=xlByRows, SearchDirection:=xlPrevious).Row

'Last column of data considering all rows.
LastColumn = Cells.Find(What:="*", After:=Range("A1"), _
SearchOrder:=xlByColumns, SearchDirection:=xlPrevious).Column
'Last column of data considering just row 3.
LastColumnSingleRow = Cells(3, Cells.Columns.Count).End(xlToLeft).Column
'Last column of data considering just rows 1, 2, and 3.
LastColumnSomeRows = Rows("1:3").Find(What:="*", _
After:=Cells(1, Cells.Columns.Count), _
SearchOrder:=xlByColumns, SearchDirection:=xlPrevious).Column

'Advise the user of last row and column information.
MsgBox _
"Last row of data anywhere: " & LastRow & vbCrLf & _
"Last row of data in column D: " & LastRowSingleColumn & vbCrLf & _
"Last row of data among columns B, C, and D: " & _

Working with Noncontiguously Populated Ranges ❘ 81

c08.indd 02/23/2015 Page 81

LastRowSomeColumns & vbCrLf & vbCrLf & _
"Last column of data anywhere: " & LastColumn & vbCrLf & _
"Last column of data in row 3: " & LastColumnSingleRow & vbCrLf & _
"Last column of data among rows 1, 2, and 3: " & LastColumnSomeRows, , _
"Last row and last column information:"

End Sub

FIGURE 8-11

Identifying Where the Range Starts and Ends When No Start
or End Point Is Known

It probably seems that cell A1 is where data starts on a worksheet. Row 1 is popular for header
labels in a list, and column A is the leftmost column on the spreadsheet grid, prominently visible.
But sometimes data fi nds itself on a worksheet in areas you would not expect, and the next day, that
same worksheet can hold data somewhere totally different. You need a catch-all macro to fi nd the
range of data, from wherever it starts to wherever it ends.

This example shows how to select a data range on the current sheet when you do not know the
starting or ending location and display the range address in a message box. The data range does not
include cells that are formatted. This example fi nds the fi rst and last row and column that contain
actual data by using the Find method of the Range object. The result is shown in Figure 8-12.

Sub UnknownRange()
Dim FirstRow As Long, FirstCol As Long, LastRow As Long, LastCol As Long
Dim myUsedRange As Range

FirstRow = _
Cells.Find(What:="*", SearchDirection:=xlNext, SearchOrder:=xlByRows).Row
FirstCol = _
Cells.Find(What:="*", SearchDirection:=xlNext, SearchOrder:=xlByColumns).Column
LastRow = _
Cells.Find(What:="*", SearchDirection:=xlPrevious, SearchOrder:=xlByRows).Row
LastCol = _

82 ❘ LESSON 8 WORKING WITH RANGES

c08.indd 02/23/2015 Page 82

Cells.Find(What:="*", SearchDirection:=xlPrevious, SearchOrder:=xlByColumns).Column

Set myUsedRange = Range(Cells(FirstRow, FirstCol), Cells(LastRow, LastCol))
myUsedRange.Select
MsgBox _
"The data range on this worksheet is " & _
myUsedRange.Address(0, 0) & ".", vbInformation, "Range address:"
End Sub

FIGURE 8-12

 TRY IT

In this lesson, you see how to create a macro that identifi es the location of a chart on a worksheet.
The purpose of the exercise is to demonstrate how to identify an object’s location without selecting
or activating any ranges or objects. The value of the exercise is to know with confi dence where else
on a worksheet (that is, below or to the right of an object) you can insert a new object, edit a cell, or
take some action on the worksheet without coming into contact with the existing object of interest.

Lesson Requirements
To get the sample workbook fi le, you can download Lesson 8 from the book’s website at www.wrox.
com/go/excelvba24hour.

Hints
Using the Index property of the embedded chart helps avoid needing to know the Chart
object’s name.

The Cells property is especially useful in this example, when variables are declared to identify row
and column locations.

Step-by-Step
 1. Open an Excel workbook in which you have a Chart object on a worksheet. If you don’t

have such a workbook, in a new worksheet, construct a simple table and insert a chart
similar to Figure 8-13.

http://www.wrox

 Try It ❘ 83

c08.indd 02/23/2015 Page 83

FIGURE 8-13

 2. Compose a macro to tell you the location of the chart on your worksheet. You will want to
identify the top and bottom rows, and the left and right columns that the Chart object covers.

 3. From the Developer tab on the Ribbon, click the Visual Basic icon, or press Alt+F11 on your
keyboard to go to the Visual Basic Editor.

 4. From the VBE menu bar, click Insert ➪ Module.

 5. In your new module, type the name of the macro. In this example, the macro is named Sub
ChartLocation().

 6. Declare variables for the top and bottom rows, and left and right columns that the chart
touches:

Dim TopRow As Long, BottomRow As Long
Dim LeftColumn As Long, RightColumn As Long

 7. Open a With structure for the ChartObject. Because there is only one chart on the
 worksheet, its Index property is 1 and you can refer to it in code with this statement:

With ActiveSheet.ChartObjects(1)

 8. Declare your row and column variables like so:

TopRow = .TopLeftCell.Row
BottomRow = .BottomRightCell.Row
LeftColumn = .TopLeftCell.Column
RightColumn = .BottomRightCell.Column

 9. Close the With structure:

End With

 10. Utilizing the variables to show an example of changing a cell outside the range occupied by
the chart, this line of code enters the word Hello into a cell two rows below and two columns
to the right of the bottom-right corner of the chart:

Cells(BottomRow + 2, RightColumn + 2).Value = "Hello"

84 ❘ LESSON 8 WORKING WITH RANGES

c08.indd 02/23/2015 Page 84

 11. For demonstration purposes, an optional enhancement to this macro is the following message
box code that confi rms the chart’s location when the macro is run, as shown in Figure 8-14:

MsgBox "Top row: " & TopRow & vbCrLf & _
"Bottom row: " & BottomRow & vbCrLf & _
"Left column: " & LeftColumn & vbCrLf & _
"RightColumn: " & RightColumn, , "ChartLocation"

FIGURE 8-14

 12. End the macro with the End Sub line.

 13. Go ahead and test your macro. Press Alt+Q to exit the VBE, and from your worksheet press
Alt+F8 to show the Macro dialog box. Select the macro name and click the Run button. The
ChartLocation macro looks like this in its entirety:

Sub ChartLocation()
Dim TopRow As Long, BottomRow As Long
Dim LeftColumn As Long, RightColumn As Long
With ActiveSheet.ChartObjects(1)
TopRow = .TopLeftCell.Row
BottomRow = .BottomRightCell.Row
LeftColumn = .TopLeftCell.Column
RightColumn = .BottomRightCell.Column
End With
Cells(BottomRow + 2, RightColumn + 2).Value = "Hello"
MsgBox "Top row: " & TopRow & vbCrLf & _
"Bottom row: " & BottomRow & vbCrLf & _
"Left column: " & LeftColumn & vbCrLf & _
"RightColumn: " & RightColumn, , "ChartLocation"
End Sub

REFERENCE Please select the video for Lesson 8 at www.wrox.com/go
/excelvba24hour. You will also be able to download the code and resources
for this lesson from the website.

http://www.wrox.com/go

c09.indd 02/26/2015 Page 85

Making Decisions with VBA
So far, all the macros you’ve created share a common trait of being executed line by line,
starting with the very fi rst line of code below the Sub name, and ending at the End Sub line.
You might think that this is the very purpose of a VBA macro, for all its code lines to be
run in sequence from start to fi nish. After all, isn’t that why VBA code is in a macro in the
fi rst place?

It turns out that VBA can do a lot more with your macros than just serve the purpose of
executing every line of code in them. You will encounter many instances when you’ll need to
guide the user into making a decision about whether to do one thing or another. There are
also times when you will want VBA to just go ahead and make a decision about something,
without any input from the user.

Depending on the decisions that get made during the course of a macro, you’ll want VBA to
execute only the code relating to the selected choice, while bypassing the alternative code relating
to which choice was not selected. This lesson shows you how to ask the user for information
when the situation calls for it, and also how to simply let VBA do the decision-making on the fl y,
in circumstances when the user does not even need to be involved in the decision process.

UNDERSTANDING LOGICAL OPERATORS

Logical operators are terms in VBA that you can use for evaluating or comparing a combination
of individual expressions in order to make a decision in your macro, and for VBA to carry out the
code relating to that decision. The three most commonly used logical operators are AND, OR, and
NOT, and all three have the same logical effect in VBA as they do in Excel’s worksheet functions.

To understand how and why to use these logical operators in your macro, it’s important
to take a look at the conditions under which each one will yield a positive (True) result or
a negative (False) result. A truth table is a good way to illustrate each logical operator’s
True or False outcome, depending on the combinations of all possible results from the VBA
expressions being compared. After you understand the theory of logical operators, you will see
how to put them to practical use when your macros call for decisions to be made.

9

86 ❘ LESSON 9 MAKING DECISIONS WITH VBA

c09.indd 02/26/2015 Page 86

AND
The AND logical operator performs a conjunction by comparing two expressions. The result of the
AND operation is True only if both conditions are True. If either or both conditions are False, the And
operation evaluates to False.

For example, say you enter the number 500 in cell A1, and you enter the number 850 in cell B1. The
following statement with the AND operator evaluates to True because both conditions are true at the
same time:

Range("A1").Value > 300 AND Range("B1").Value > 700

Keeping the same numbers in cells A1:B1, the following statement would evaluate to False because,
even though the fi rst condition is True, the second condition is False:

Range("A1").Value > 300 AND Range("B1").Value > 900

This next statement would also evaluate to False, because even though the second condition is True,
the fi rst condition is False:

Range("A1").Value > 620 AND Range("B1").Value > 700

The fi nal possibility is if both conditions are False, with this statement for example, which would
evaluate to False:

Range("A1").Value < 200 AND Range("B1").Value < 700

Table 9-1 summarizes each possible result of the AND logical operator more succinctly.

TABLE 9-1: Truth Table for the AND Logical Operator

EXPRESSION 1 EXPRESSION 2 LOGICAL RESULT

True True True

True False False

False True False

False False False

OR
The OR operator performs a logical disjunction, whereby if either condition is True, or if both
conditions are True, the result is True. If both conditions are False, the OR operation results in False.
For example, using the same cell values as the previous AND example, with 500 in cell A1 and 850 in
cell B1, you can see how differently the four statements will evaluate, using OR instead of AND as the
logical operator.

The fi rst statement evaluates to True, not necessarily because both conditions are True, but because
at least one condition is True:

Range("A1").Value > 300 OR Range("B1").Value > 700

Understanding Logical Operators ❘ 87

c09.indd 02/26/2015 Page 87

The following statement would evaluate to True on the strength of the fi rst condition being True,
even though the second condition is False:

Range("A1").Value > 300 OR Range("B1").Value > 900

This next statement would also evaluate to True because, despite the fi rst condition being False, the
second condition is True:

Range("A1").Value > 620 OR Range("B1").Value > 700

The fi nal possibility is if both conditions are False, meaning that in this case, because neither
condition is True, the statement would evaluate to False:

Range("A1").Value < 200 OR Range("B1").Value < 700

Table 9-2 summarizes each possible result of the OR logical operator.

TABLE 9-2: Truth Table for the OR Logical Operator

EXPRESSION 1 EXPRESSION 2 LOGICAL RESULT

True True True

True False True

False True True

False False False

NOTE Careful! Comparing logical expressions does not mean you can compare
the impossible. Consider the following example:

Dim intNumber As Integer
intNumber = 0
MsgBox intNumber <= 5 Or 10 / intNumber > 5

Because it is impossible to divide a number by zero, this code produces an error
even though the fi rst condition evaluated to True.

NOT
The NOT operator performs logical negation. Similar to the negative sign in front of a worksheet
 formula, the NOT operator inverts an expression’s True or False evaluation. For example, the
 following line of code toggles as on or off the display of gridlines on the active worksheet:

ActiveWindow.DisplayGridlines = Not ActiveWindow.DisplayGridlines

The logic behind this use of the NOT operator is to make the status of an object’s property be
opposite of whatever its current status is. In this case, the DisplayGridlines property of the
ActiveWindow object can only be True (show the gridlines) or False (do not show the gridlines).
Therefore, using the NOT operator in this way, you get the effect of toggling between showing and
not showing the active worksheet’s gridlines at each re-execution of this line of code.

88 ❘ LESSON 9 MAKING DECISIONS WITH VBA

c09.indd 02/26/2015 Page 88

Table 9-3 summarizes each possible result of the NOT logical operator.

TABLE 9-3: Truth Table for the NOT Logical Operator

EXPRESSION LOGICAL RESULT

True False

False True

CHOOSING BETWEEN THIS OR THAT

This lesson began by mentioning that some code in your macros will need to be purposely bypassed.
Most computer programming languages, VBA included, provide for the fl exibility of structuring
your code so that every command does not need to be run in every case. Many times, you will write
macros wherein you will want the program to run certain commands if the user clicks Yes and
alternative commands if the user clicks No. All of the commands are a part of the macro code, but
only one set of them will execute.

If…Then
Among VBA’s arsenal of decision-making commands, the If…Then statement is probably the
simplest and most commonly utilized approach to structure your conditional scenarios. Consider
this line of code:

If Weekday(VBA.Date) = 6 Then MsgBox "Have a nice weekend!", , "Today is Friday!"

If you have worked with Excel’s WEEKDAY worksheet function, you may recall to Excel, weekday
number 1 is Sunday, weekday number 2 is Monday, and so on. VBA would look at this line of code
and display the message box only if the line of code is being executed on a Friday because Friday is
weekday number 6. If the weekday is any day other than Friday, VBA bypasses this line of code.

NOTE In your prior VBA travels, you might have only seen an If statement
with an accompanying End If statement below it, and you might be wondering
why and how the previous example can be successfully executed without having
or needing an End If statement. The previous example could have been written
in “block” style like this:

If Weekday(VBA.Date) = 6 Then
MsgBox "Have a nice weekend!", , "Today is Friday!"
End If

When evaluating for a single condition, and the conditional code is one task as
shown in this example, you can write the entire If…Then statement in a single
line of code. Some programmers prefer a single If line for their one-condition
evaluations, and other programmers prefer the block style. It comes down to a
personal preference and whatever feels more intuitive to you.

Choosing Between This or That ❘ 89

c09.indd 02/26/2015 Page 89

If…Then…Else
More often than not, your evaluations will involve two or more conditions instead of just one. When
you have two conditions and each has its own set of tasks to carry out, you need to separate the two
conditions with the Else statement in a block If structure.

Expanding on the previous example, say you want to display a message box if today is Friday, but a
different message box if today is not Friday. Here is the format you would use in your macro:

If Weekday(VBA.Date) = 6 Then
MsgBox "Have a nice weekend!", , "Today is Friday!"
Else
MsgBox "Alas, today is not Friday.", , "Not Friday yet!"
End If

Notice that the Else statement stands alone on its own dedicated line, separating the two
conditions’ respective commands. Only one condition can possibly evaluate to True in this example,
because today is either Friday or it is some day other than Friday. This block of code is designed to
always be executed such that only one of the message box commands would appear, but never both
during the same run.

NOTE Here’s a design tip to speed up your programs. In a block If structure
with multiple conditions, VBA looks at each condition in turn, and basically
stops at and executes the conditional code for the fi rst condition that is found
to evaluate to True. With two or three conditions, it might not be a big deal in
which order you set your conditions in the If structure. But sometimes you will
be programming for multiple conditions, and the point is, you will want VBA
to execute its process as effi ciently as possible. A good habit to get into is to
design your If structures by setting the fi rst condition to be the one that’s most
likely to be the case. That way, most of the time, the fi rst condition will be the
True condition and VBA will not waste time evaluating the alternative unlikelier
scenarios. With this in mind, the previous example is a good opportunity to
show how to make your code run faster. You can see that the fi rst condition dealt
with the current weekday being Friday. If you think about it, there is only one
chance in seven that will be the case. Mostly, the macro will be run on one of the
other days of the week. A better way to write the If code is to consider which
condition will be True more often than the other condition(s). Six out of seven
days will not be a Friday, so that condition should be placed fi rst, as shown in
this example:

If Weekday(VBA.Date) <> 6 Then
MsgBox "Alas, today is not Friday.", , "Not Friday yet!"
Else
MsgBox "Have a nice weekend!", , "Today is Friday!"
End If

90 ❘ LESSON 9 MAKING DECISIONS WITH VBA

c09.indd 02/26/2015 Page 90

If…Then…ElseIf
VBA provides an extended way to utilize the If…Then…Else conditional structure when more than
two conditions must be evaluated. Say you want to display a custom message for every day of the
traditional fi ve-day work week. You need a way to express your conditions in a single If structure
with fi ve possible courses of action, depending on which day of the week the macro is run.

One way you can accomplish this is with an If…Then…ElseIf structure as shown in the following
example. Recall from the discussion about logical operators at the beginning of this lesson that you
can evaluate two or more conditions in one line of code. Notice that the fi rst fi ve conditions coincide
with the fi ve workdays from Monday to Friday. The fi nal condition uses the OR operator to identify a
weekend day of either Saturday or Sunday:

Sub WeekdayTest()
'Monday
If Weekday(VBA.Date) = 2 Then
MsgBox "Ugghhh - - Back to work.", , "Today is Monday"
'Tuesday
ElseIf Weekday(VBA.Date) = 3 Then
MsgBox "At least it's not Monday anymore!", , "Today is Tuesday"
'Wednesday
ElseIf Weekday(VBA.Date) = 4 Then
MsgBox "Hey, we're halfway through the work week!", , "Today is Wednesday"
'Thursday
ElseIf Weekday(VBA.Date) = 5 Then
MsgBox "Looking forward to the weekend.", , "Today is Thursday"
'Friday
ElseIf Weekday(VBA.Date) = 6 Then
MsgBox "Have a nice weekend!", , "Today is Friday!"
'Saturday or Sunday
ElseIf Weekday(VBA.Date) = 7 Or Weekday(VBA.Date) = 1 Then
MsgBox "Hey, it's currently the weekend!", , "Today is a weekend day!"
End If
End Sub

IIF
Yes, you read that correctly, that’s an IF with an extra I, spelled IIF. Though it is similar in syntax
to the familiar IF worksheet function, IIF is a lesser known and lesser utilized conditional function
in VBA.

Why did Microsoft develop the IIF function? For the same reason elite swimming champions have
swum the English Channel—because they could. You’ll see IIF being used about as many times as
the English Channel has been swum, which is not many, but I am including it here so you can say
you know about it if the subject should come up at the water cooler.

The syntax for the IIF construction is IIF(Expression, TruePart, FalsePart).

Recall from earlier in this lesson that my example for If…Then…Else was this fi ve-line construction:

If Weekday(VBA.Date) = 6 Then
MsgBox "Have a nice weekend!", , "Today is Friday!"
Else

Choosing Between This or That ❘ 91

c09.indd 02/26/2015 Page 91

MsgBox "Alas, today is not Friday.", , "Not Friday yet!"
End If

The IIF function can handle all that in one line, like this:

MsgBox IIf(Weekday(VBA.Date) = 6, "Today is Friday!", "Not Friday yet!")

Getting used to IIF’s syntax and appearance is an acquired taste that most VBA programmers don’t
pursue. Beyond that, however, is the risky and ineffi cient nature of IIF whereby both the TruePart
and FalsePart statements are evaluated, even if the TruePart evaluates to True. Also, if your
FalsePart statement should evaluate to an error, such as dividing a number by zero or referring
to a named range that does not exist, the entire IIF statement will result in an error, even if the
TruePart statement is True.

Select Case
As you are fully aware, the world is a complicated place and your macros will sometimes need to
take into consideration not just one, two, or fi ve courses of action, but possibly ten, hundreds, or
even thousands depending on the situation. There are also times when several possible different
conditions will require the same course of action. For these complex evaluations, the Select Case
statement is a perfect solution.

You will want to become familiar with Select Case. It is simple to use, and it is easier to follow in
your code than an extensive If structure. Similar to the If and ElseIf keywords, you use the Case
keyword in a Select Case structure to test for the True evaluation of a particular condition or set
of conditions. You can have as many Case statements as you want, and only the code associated
with the fi rst Case that evaluates to True will be executed.

The best way to understand Select Case is to see it in action with a few examples. The following
macro named WeekdayTestSelectCase is actually the previous WeekdayTest macro, which
accomplishes the same result, but uses Select Case structure instead of If…Then…ElseIf:

Sub WeekdayTestSelectCase()
Select Case Weekday(VBA.Date)
Case 2 'Monday
MsgBox "Ugghhh - - Back to work.", , "Today is Monday"
Case 3 'Tuesday
MsgBox "At least it's not Monday anymore!", , "Today is Tuesday"
Case 4 'Wednesday
MsgBox "Hey, we're halfway through the work week!", , "Today is Wednesday"
Case 5 'Thursday
MsgBox "Looking forward to the weekend.", , "Today is Thursday"
Case 6 'Friday
MsgBox "Have a nice weekend!", , "Today is Friday!"
Case 1, 7 'Saturday or Sunday
MsgBox "Hey, it's currently the weekend!", , "Today is a weekend day!"
End Select
End Sub

You’ll notice less redundancy of each condition (each Case), because the primary item of interest,
Weekday(VBA.Date), needs to be named only once in the Select Case statement, instead of in
every ElseIf statement. Also, each Case is very clear, and the entire macro is just easier to read.

92 ❘ LESSON 9 MAKING DECISIONS WITH VBA

c09.indd 02/26/2015 Page 92

A useful tactic with Select Case is the ability to group several different conditions into a single
Case if it satisfi es a particular test. For example, if your company operates its budget on a calendar-
year basis, that means the months of January, February, and March belong to Quarter 1; April,
May, and June belong to Quarter 2, and so on.

With the Select Case structure, you can group different conditions into the same Case to arrive
at a common result. It is not just that January has a one-to-one association with Quarter 1, because
the months of February and March also comprise Quarter 1. If you want to produce a message box
that displays the current quarter, this macro shows how to group the months into cases:

Sub CurrentQuarter()
Select Case Month(VBA.Date)
Case 1 To 3: MsgBox "Quarter 1"
Case 4 To 6: MsgBox "Quarter 2"
Case 7 To 9: MsgBox "Quarter 3"
Case 10 To 12: MsgBox "Quarter 4"
End Select
End Sub

As you can see, you don’t need 12 separate statements to handle each conditional month; you can
simply state the range of months using the To statement in each Case. I put a new wrinkle in that
macro to point out a VBA feature, that being the colon character (:), which can be used to separate
multiple statements on the same Case line that would otherwise each require their own line. I don’t
usually use the colon character this way, but sometimes it comes in handy by helping the readability
of small macros like this.

Here’s a fi nal example while we’re on this topic, to show how useful the Select Case structure
is when the cases can include thousands of items that can all satisfy a Case criteria. Suppose the
management of a football squad wants to enter the paid attendance of today’s game into cell A1,
and run a macro to assess the fans’ paid attendance. You can see how valuable Select Case can
be, if, say 85,000 people attended the game, with that situation being handled with mathematical
operators in your Case statements:

Sub SelectCaseExample()
Dim PaidAttendance As Long
PaidAttendance = Range("A1").Value
Select Case PaidAttendance
Case Is < 1000: MsgBox "Small-sized crowd!"
Case Is < 5000: MsgBox "Medium-sized crowd!"
Case Is >= 5000: MsgBox "WOW! Excellent! Huge crowd!"
End Select
End Sub

GETTING USERS TO MAKE DECISIONS

Thus far you have seen examples of VBA’s decision-making abilities that have not required any
input from the user. The time will come when you’ll either want or need information from the user
in order for decisions to be made that only the user can provide. Message boxes and input boxes are
excellent tools to interact with your users in such situations.

Getting Users to Make Decisions ❘ 93

c09.indd 02/26/2015 Page 93

Message Boxes
Up to this point in the book, you have seen many examples of code that include a message box. In
all those examples, the message box was a simple pop-up box that displayed an informational text
message, with an OK button for you to acknowledge the information.

Message boxes are fl exible tools that allow you to customize
the buttons while asking questions directly to the users that
will force them to select one option or the other. Instead of
OK, you can display a Yes button and a No button on your
message box, and write the code that will be followed if the
user clicks Yes or the user clicks No. An example of such a
message box is shown in Figure 9-1.

Say you have a macro to perform a task that your users
should confi rm they really want to do as a fi nal OK. Some
macros are quite large and virtually irreversible, or the task at hand will alter the workbook in a
signifi cant way. In the following simplifi ed example, the active worksheet will be copied and placed
before Sheet1, but only if the user fi rst clicks the Yes button to confi rm his intention for this to
happen. If the user clicks No, a friendly message box advises the user that the macro will not run
because No was clicked:

Sub ConfirmExample()
Select Case MsgBox(_
"Do you really want to copy this worksheet?", _
vbYesNo + vbQuestion, _
"Please confirm...")

Case vbNo
MsgBox _
"No problem, this worksheet will not be copied.", _
vbInformation, _
"You clicked No."
Exit Sub
Case vbYes
MsgBox _
"Great - - click OK to run the macro.", _
vbInformation, _
"Thanks for confirming."
ActiveSheet.Copy Before:=Sheets("Sheet1")
End Select
End Sub

As you look at the MsgBox line, note that the message box arguments are contained within
 parentheses. A message box has two mandatory arguments: the prompt, which is the text you
place in the body of the message box, and the button confi guration. Other combinations of buttons
include OKCancel, YesNoCancel, and AbortRetryIgnore. The title of the message box is optional,
but I always enter it to offer a more customized experience for the user.

FIGURE 9-1

94 ❘ LESSON 9 MAKING DECISIONS WITH VBA

c09.indd 02/26/2015 Page 94

NOTE In the Try It section at the end of Lesson 7, you worked with VBA’s
IntelliSense feature. I recommend you activate IntelliSense if you have not
already done so, because when composing message boxes, you’ll be reminded of
the available arguments and their proper syntax while you are writing your code.

Input Boxes
When you need a piece of specifi c information from the user, such as a text string or a number, an
InputBox was made for the job. An input box looks like a distant cousin of a message box, with the
prompted text that tells the user what to do, OK and Cancel buttons (which cannot be reconfi gured
as a message box’s buttons can), and an optional title argument.

An InputBox requires a prompt argument, and it provides a fi eld wherein the user would enter the
kind of information as needed for the macro to continue. The entry would return a String type
variable. If no entry is made, that is, the text fi eld is
left empty, the InputBox would return a null string,
which is usually regarded by VBA the same as if the
user clicked the Cancel button.

The following example uses an input box to ask
the user to enter a number to represent how many
rows will be inserted below the active cell’s row.
Figure 9-2 shows what the input box looks like for
this macro.

Sub InsertRows()
'Declare the string variable for the InputBox entry.
Dim CountInsertRows As String
'Define the String variable as the InputBox entry.
CountInsertRows = InputBox(_
"Enter the number of rows to be inserted:", _
"Insert how many rows below the active cell?")
'Verify that a number was entered.
'The Val function returns the numbers contained in a string as a numeric value.
If CountInsertRows = "" Or Val(CountInsertRows) < 1 Then Exit Sub
'Insert as many rows as the number that was entered.
'The Resize property returns a Range object based on the number of rows
'and columns in the new range. The number that was entered in the InputBox
'represents how many rows shall be inserted. The count of columns, which is
'the other optional argument for Resize, need not be specified because it is
'only rows being inserted.
Rows(ActiveCell.Row + 1).Resize(Val(CountInsertRows)).Insert
End Sub

TRY IT

For this lesson, the active worksheet is currently protected with a password, and you ask
the workbook’s users if they want to unprotect the worksheet. If they answer No, the macro
terminates. If they answer Yes, the macro proceeds to ask them for the password. If the

FIGURE 9-2

Try It ❘ 95

c09.indd 02/26/2015 Page 95

attempted password is incorrect, the user is informed of that, the worksheet remains protected,
and the macro terminates. If the attempted password is correct, the user is then allowed to
unprotect the worksheet.

Lesson Requirements
To get the sample workbook fi le you can download Lesson 9 from the book’s website at www.wrox.
com/go/excelvba24hour.

Hints
It’s a wise practice to ask the user to confi rm her intention to proceed with the macro. There are
plenty of instances when a user mistakenly clicks a button or triggers a macro that she had no
 intention of running.

In Step 5, vbQuestion adds a user-friendly touch of a question mark icon in your
message boxes that ask the user a question.

Step 9 shows this example of the single line If statement:

If myPassword = "" Then Exit Sub

Some VBA programmers (me included) fi nd that syntax more effi cient than the following three-line
syntax. Try both styles yourself and see what works best for you.

If myPassword = "" Then
Exit Sub
End If

Step-by-Step
 1. Start by opening a new workbook and password protecting Sheet1 with the password hello

(without quotes, all lowercase just as you see it here).

 2. With your Sheet1 worksheet protected, press Alt+F11 to go to the Visual Basic Editor.

 3. From the menu bar at the top of the VBE, click Insert ➪ Module.

 4. In the module you just created, type Sub PasswordTest and press Enter. VBA automatically
places a pair of empty parentheses at the end of the Sub line, followed by an empty line, and
the End Sub line below that. Your macro should look like this so far:

Sub PasswordTest()

End Sub

 5. Begin a Select Case structure with a Yes No Question message box to ask the users to con-
fi rm their intention to unprotect the worksheet:

Select Case MsgBox(_
"Do you want to unprotect the worksheet?", _
vbYesNo + vbQuestion, _
"Please confirm your intentions.")

http://www.wrox

96 ❘ LESSON 9 MAKING DECISIONS WITH VBA

c09.indd 02/26/2015 Page 96

 6. Handle the case for a No answer by informing the user that the macro will not continue, and
then exit the macro with the Exit Sub statement:

Case vbNo
MsgBox "No problem -- this macro will end.", vbInformation, "You clicked No."
Exit Sub

 7. Handle the case for a Yes answer:

Case vbYes

 8. Provide an InputBox for the user to enter the password. Declare a String type variable, and
defi ne it as the text that will be entered into the InputBox:

Dim myPassword As String
myPassword = _
InputBox("Please enter the case-sensitive password:", _
"A password is required to unprotect this worksheet.")

 9. Here is an opportunity to add a single-line If statement to end the macro if the user clicks
Cancel, or clicks OK without entering anything into the InputBox. The pair of double quotes
with nothing between them is interpreted by VBA as a zero-length string:

If myPassword = "" Then Exit Sub

 10. Begin an If…Then structure to determine if the InputBox entry matches the password hello
that was used to protect the worksheet:

If myPassword <> "hello" Then

 11. If the InputBox entry is anything other than hello, enter the code you would want to be
executed when an incorrect password is entered, which you can do with a friendly message box:

MsgBox _
"Sorry, " & myPassword & " is not the correct Password.", _
vbCritical, _
"Incorrect."

 12. Enter your Else statement and supply the code to be executed only if the correct password
is entered:

Else
MsgBox _
"Thank you. Please click OK to unprotect the worksheet.", _
vbInformation, _
"You entered the correct password!!"
ActiveSheet.Unprotect "hello"

 13. End the If structure that determined if the InputBox entry matched the password hello:

End If

 14. End the Select Case structure for the users to confi rm their intention of unprotecting the
worksheet:

End Select

Try It ❘ 97

c09.indd 02/26/2015 Page 97

 15. Here is what the complete macro would look like:

Sub PasswordTest()
'Ask the user if they want to unprotect the worksheet.
Select Case MsgBox(_
"Do you want to unprotect the worksheet?", _
vbYesNo + vbQuestion, _
"Please confirm your intentions.")
'Handle the case for a No answer by informing the user
'that the macro will not continue,
'and then exit the subroutine with the Exit Sub statement.
Case vbNo
MsgBox "No problem -- this macro will end.", vbInformation, "You clicked No."
Exit Sub
'Handle the case for a Yes answer by providing an InputBox
'for the user to enter the password.
Case vbYes
'Declare a String type variable.
Dim myPassword As String
'Define the String variable as the text that will be entered into the InputBox.
myPassword = _
InputBox("Please enter the case-sensitive password:", _
"A password is required to unprotect this worksheet.")
'A one-line If statement to end the macro if the user clicks Cancel,
'or clicks OK without entering anything into the InputBox.
If myPassword = "" Then Exit Sub
'If structure to determine if the InputBox entry matches the password "hello"
'that was used to protect the worksheet.
If myPassword <> "hello" Then
'The code line to be executed if an incorrect password is entered.
MsgBox _
"Sorry, " & myPassword & " is not the correct Password.", _
vbCritical, _
"Incorrect."
Else
'The code to execute only if the correct password is entered.
MsgBox _
"Thank you. Please click OK to unprotect the worksheet.", _
vbInformation, _
"You entered the correct password!!"
ActiveSheet.Unprotect "hello"
'End the If structure that determined if the InputBox entry
'matched the password "hello".
End If
'End the Select Case structure for the users to confirm their intention
'of unprotecting the worksheet.
End Select
End Sub

REFERENCE Please select the video for Lesson 9 online at www.wrox.com/go
/excelvba24hour. You will also be able to download the code and resources for
this lesson from the website.

http://www.wrox.com/go

c10.indd 02/23/2015 Page 99

 PART III
Beyond the Macro Recorder:
Writing Your Own Code

 ▸ LESSON 10: Repeating Actions with Loops

 ▸ LESSON 11: Programming Formulas

 ▸ LESSON 12: Working with Arrays

 ▸ LESSON 13: Automating Procedures with Worksheet Events

 ▸ LESSON 14: Automating Procedures with Workbook Events

 ▸ LESSON 15: Handling Duplicate Items and Records

 ▸ LESSON 16: Using Embedded Controls

 ▸ LESSON 17: Programming Charts

 ▸ LESSON 18: Programming PivotTables and PivotCharts

 ▸ LESSON 19: User-Defi ned Functions

 ▸ LESSON 20: Debugging Your Code

c10.indd 02/23/2015 Page 101

Repeating Actions with Loops
Suppose you need to perform the same action, or the same sequence of several actions, many
times in your macro. For example, you may need to unhide all worksheets that are hidden, or
you need to add 12 worksheets to your workbook and name them for each month of the year.

The fact is, you’ll encounter many circumstances for which a repetition of similar commands
is a necessary part of the job. In most cases it will be impractical, and sometimes downright
impossible, to write an individual command for each performance of the action. The need for
handling a repetitive set of commands effi ciently is exactly what loops are made for.

WHAT IS A LOOP?

A loop is a method of performing a task more than once. You may need to copy each
worksheet in your workbook and save it as the only worksheet in its own separate workbook.
Or, you may have a list of thousands of records and you want to insert an empty row where
the value of a cell in column A is different than the value of the cell below it. Maybe your
worksheet has dozens of cells that contain comments, and you want to add the same preceding
text to every comment’s existing text without having to edit every comment one at a time.

Instead of doing these kinds of tasks manually, or recording an impractical (and sometimes
impossible) macro to handle the repetition, you can use loops to get the job done with less
code while keeping more fl exible control over the number of necessary repetitions. In VBA, a
loop is a structure that executes one or more commands, and then cycles through the process
again within the structure, for as many times as you specify. Each cycle of executing the loop
structure’s command(s) is called an iteration.

NOTE Loops are great, but you’re not obligated to use one just because you need
to repeat an action two or three times. You’ll come across situations that you know
will always require the same commands to be repeated the same way, for the same
number of times. If you feel like coding each action separately, and you can live
with the longer code, go ahead and hard-code the separate commands if that’s what
works for you. Beyond three potential iterations, however, you really should go the
loop route. It’ll save you a lot of work, and the code will be easier to maintain.

10

102 ❘ LESSON 10 REPEATING ACTIONS WITH LOOPS

c10.indd 02/23/2015 Page 102

The number of a loop’s iterations depends on the nature of the task at hand. All loops fall into one
of two categories. A fi xed-iteration loop executes a specifi ed number of times that you hard-code
directly as a numeric expression. An indefi nite loop executes a fl exible number of times that is
 usually defi ned by a logical expression.

For example, a fi xed iteration loop dealing with a year’s worth of data might need to cycle through
12 iterations, one for each month. An indefi nite loop might need to cycle through every worksheet
in your workbook, taking into consideration that because worksheets can be added or deleted at any
time, the exact count of worksheets can never be known in advance.

Types of Loops
VBA provides several different looping structures, and at least one of them will be suited for any
looping requirement you’ll encounter. Table 10-1 shows an overview of the types of loops in VBA.

TABLE 10-1: Types of Loops in VBA

LOOP STRUCTURE CATEGORY EXPLANATION

For…Next Fixed Repeats an action for a specifi ed number of times.

For Each…Next Fixed Repeats an action upon an object in a Collection. For
example, you can perform a task for each worksheet in the
workbook.

Do While Indefi nite Executes an action if the condition is True, and repeats the
action until the condition is False.

Do Until Indefi nite Executes an action if the condition is False, and repeats the
action until the condition is True.

Do…Loop While Indefi nite Executes an action once, and repeats the action while the
 condition is True, until it is False.

Do…Loop Until Indefi nite Executes an action once, and repeats the action while the
 condition is False, until it is True.

While…Wend Indefi nite Same as the Do While loop structure, still supported by VBA
but obsolete.

For…Next
The For…Next loop structure is a simple and effective way to repeat an action for a specifi ed number
of times. For example, if you want to add fi ve new worksheets to your workbook, you could declare
an Integer type variable and repeat the action fi ve times, like this:

Sub AddFiveWorksheets()
'Declare your Integer or Long variable.
Dim intCounter As Integer
'Open the For loop structure.

What Is a Loop? ❘ 103

c10.indd 02/23/2015 Page 103

For intCounter = 1 To 5
'Enter the command(s)that will be repeated.
Worksheets.Add
'Loop to the next iteration.
Next intCounter
End Sub

NOTE Although it is technically correct that the Next statement can stand alone,
do yourself a favor by getting into the good habit of including the variable in the
Next statement. For example, writing your code as Next intCounter instead of
just as Next makes it easier for you to read and for other people to understand.

When VBA executes a For…Next loop, by default it increments by 1 the value of the declared
Integer or Long type variable. Because the objective was to add fi ve worksheets, the easiest way
to keep a running count of the process is to iterate fi ve times, just as if you were counting the
 occurrence of each action from 1 to 5.

You can take advantage of the fi xed nature of a For…Next loop by asking for the number of
 worksheets that are to be added. In the following example, an InputBox engages the user by asking
for a number that represents how many worksheets will be added:

Sub ForNextExample2()
'Declare your Integer or Long variables.
Dim MoreSheets As Integer, intCounter As Integer
'Define the MoreSheets variable with an InputBox.
MoreSheets = InputBox(_
"How many worksheets do you want to add?", _
"Enter a number")
'Open the For loop structure.
For intCounter = 1 To MoreSheets
'Enter the command(s)that will be repeated.
Worksheets.Add
'Loop to the next iteration.
Next intCounter
End Sub

You don’t always need to start counting from the number 1 in a For…Next loop; you can pretty
much count from any number to any number. Suppose you want to hide rows 6, 7, and 8. A
For…Next loop to accomplish that task could look like this:

Sub ForNextExample3()
'Declare your Integer or Long variable.
Dim intCounter As Integer
'Open the For loop structure.
For intCounter = 6 To 8
'Enter the command(s)that will be repeated.
Rows(intCounter).Hidden = True
'Loop to the next iteration.
Next intCounter
End Sub

104 ❘ LESSON 10 REPEATING ACTIONS WITH LOOPS

c10.indd 02/23/2015 Page 104

For Each…Next
The For Each…Next loop executes an action for a fi xed number of times just as the For…Next
 construct does, but unlike For…Next, For Each…Next does not keep a count along the way of how
many iterations it performs. The count of iterations is not important with For Each…Next because
the objective is to execute an action for however many objects exist in a specifi ed VBA collection.
Maybe there will be hundreds of iterations to occur; maybe there will be none.

Suppose that as part of your workbook project’s design, a particularly lengthy macro will run faster
and less confusingly for the user if all other Excel workbooks are closed. Naturally, you can never
know in advance whether the user will have 10 other workbooks open in addition to yours, or
whether your workbook is the only open workbook. A For Each…Next loop would be the perfect
way to save and close all other workbooks that might be open, such as with this example:

Sub CloseWorkbooks()
'Declare your object variable.
Dim wb As Workbook
'Open the For loop structure.
For Each wb In Workbooks
'Enter the command(s)that will be repeated.
If wb.Name <> ThisWorkbook.Name Then
wb.Save
wb.Close
End If
'Loop to the next iteration.
Next wb
End Sub

Notice that an object variable is declared for Workbook, and the Workbooks collection is being evalu-
ated with an If structure for the presence of any and all workbooks that are named differently than
your workbook. The code will complete its mission with the same result of your workbook being the
only one that’s open, regardless of whether it was the only one open from the start, or whether 50
other workbooks had also been open at the time.

One of Excel’s oddities is that you can hide any number of worksheets at the same time, but if you
have multiple worksheets that are hidden, you can unhide only one worksheet at a time. With this
macro as another example of a For Each…Next loop, you can quickly unhide all worksheets at once:

Sub UnhideSheets()
'Declare your object variable.
Dim ws As Worksheet
'Open a For Each…Next loop.
For Each ws In Worksheets
'Command(s) to be executed.
ws.Visible = xlSheetVisible
'Loop to the next iteration.
Next ws
End Sub

Exiting a For…Loop
Suppose your macro requires that you determine whether a particular workbook named Test.xlsx
happens to be open, and if so, you must close it. You might compose a macro with a loop that looks
like this:

What Is a Loop? ❘ 105

c10.indd 02/23/2015 Page 105

Sub CloseOneWorkbook()
'Declare your object variable.
Dim wb As Workbook
'Open a For Each loop.
For Each wb In Workbooks
'Command(s) to be executed.
If wb.Name = "Test.xlsx" Then
wb.Save
wb.Close
End If
'Loop to the next iteration.
Next wb
End Sub

Strictly speaking, the macro works. But think for a moment—what if a few dozen workbooks are
open? In this case, you’d want the loop to do its job only up to the point of encountering the Test
.xlsx workbook.

In the preceding CloseOneWorkbook example, even if the Test.xlsx workbook is found to be open
and then closed, the loop still continues its appointed rounds after that by unnecessarily evaluat-
ing each open workbook. This would be a waste of time and system resources. Instead, you should
insert the Exit For statement to stop the looping process in a For…Next or For Each…Next loop
when a condition has been met and dealt with, and cannot be met thereafter.

Here is an example of how that macro should look, with the Exit For statement placed immedi-
ately before the End If statement:

Sub CloseOneWorkbookFaster()
'Declare your object variable.
Dim wb As Workbook
For Each wb In Workbooks
'Command(s) to be executed.
If wb.Name = "Test.xlsx" Then
wb.Save
wb.Close
'Exit For statement to avoid needless iterations if the condition is met.
Exit For
End If
'Loop to the next iteration.
Next wb
End Sub

Looping in Reverse with Step
A common request that Excel users have is to insert an empty row when the value of a cell in some
particular column does not equal the value of the cell below it. In Figure 10-1, the table of data is
sorted by Region in column A, and the request is to visually separate the regions with an empty row
at each change in Region name.

When inserting a series of rows like this, it’s best to start looping from the bottom of the table, and
work your way up to the top. That means your numeric row reference in the loop will be decreasing
and not increasing, because your starting point is row 18 (the last row of data) and your ending
point is row 2 (the fi rst row of data).

106 ❘ LESSON 10 REPEATING ACTIONS WITH LOOPS

c10.indd 02/23/2015 Page 106

FIGURE 10-1

Recall that when VBA executes a For Next loop, by default it increments by 1 the value of your
declared Integer or Long type variable. With For…Next loops, you can specify an alternative
 increment or decrement value by using the optional Step keyword. You can step forward or
 backward by as large a numeric value as you like.

In this example, each cell in column A is being evaluated one by one, from row 18 to row 2, so the
loop will step by a numeric factor of negative 1. Here is a macro that makes the “Before” image look
like the “After” image in Figure 10-1:

Sub InsertRows()
'Declare your Integer or Long variable.
Dim xRow As Long
'Open a For Each loop.
For xRow = 18 To 3 Step -1
'Command(s) to be executed.
If Range("A" & xRow).Value <> Range("A" & xRow - 1) Then
Rows(xRow).Resize(1).Insert
End If
'Loop to the next iteration.
Next xRow
End Sub

Do While
The Do statement is an extremely powerful tool with which to gain more fl exibility in your looping
structures. In a Do While loop, you test for a condition that must be True before the loop will
 execute. When the condition is True, the command(s) within the loop are executed.

What Is a Loop? ❘ 107

c10.indd 02/23/2015 Page 107

As a simple example, the DoWhileExample macro produces fi ve message boxes because the Do While
loop tests for the condition that an Integer variable (named iCounter) has not exceeded the number 5.
Notice that the iCounter variable starts at 1 outside the loop and is increased by 1 inside the loop:

Sub DoWhileExample()
Dim iCounter As Integer
iCounter = 1
Do While iCounter <= 5
MsgBox "Hello world!", , iCounter
iCounter = iCounter + 1
Loop
End Sub

Let’s apply this concept to a more practical activity; suppose you want to open all Excel workbooks
that are in a particular fi le path. The macro named OpenAllFiles does that using a Do Loop
structure. The Dir function returns the fi rst fi lename that matches the combination of the specifi ed
pathname and an Excel workbook extension containing .xls. Calling the Dir function again opens
additional fi lenames until a fi lename is encountered that does not match the combination:

Sub OpenAllFiles()
Dim myFile As String, myPath As String
myPath = "C:\Your File Path\"
myFile = Dir(myPath & "*.xls*")
Do While myFile <> ""
Workbooks.Open myPath & myFile
myFile = Dir()
Loop
End Sub

Do Until
When VBA runs a Do Until loop, it tests the logical condition you supply and executes the
 commands within the loop as long as the condition evaluates to False. When VBA reaches the Loop
statement, it re-evaluates the condition and executes the looping commands only if the condition is
still False.

This example demonstrates Do Until by selecting the next worksheet based on the index number
from whatever current worksheet you are on. The wrinkle that is taken into consideration by the loop
is that the next highest index number worksheet might be hidden, and because you cannot select a
hidden worksheet, the loop selects the next highest index number of a worksheet that is also visible:

Sub SelectSheet()
'Declare an Integer type variable to handle the Index number property
'of whichever worksheet(s) are being evaluated in the current iteration.
Dim intWS As Integer
'Because you want to activate the next visible worksheet,
'as a starting point you need to know the next highest Index position
'from whatever worksheet is active at the time.
intWS = ActiveSheet.Index + 1
'If you are on the last worksheet, you'll have reached the end of the line,
'so define the intWS as the first Index worksheet.
If intWS>Worksheets.Count Then intWS = 1
'Open a Do Until loop that determines the next Index number,
'only considering visible worksheets.

108 ❘ LESSON 10 REPEATING ACTIONS WITH LOOPS

c10.indd 02/23/2015 Page 108

Do Until Worksheets(intWS).Visible = True
'Add a 1 to the intWS variable as you iterate to the next highest Index number.
intWS = intWS + 1
'If it turns out that the intWS Index variable reaches a number
'that is greater than the count of worksheets in the workbook,
'the intWS number is set back to 1, which is the first Index position
If intWS > Worksheets.Count Then intWS = 1
'Loop to start evaluation again, until the proper Index number is found.
Loop
'Select the worksheet whose Index property matches the index number
'that has met all the criteria.
Worksheets(intWS).Select
End Sub

For another example, suppose you want to update your AutoCorrect list easily and quickly. Say you
have a two-column table on your worksheet that occupies columns A and B. In column A, you have
listed frequently misspelled words, and in column B are the corrected words that you want Excel
to automatically display if you misspell any of those words. For example, in cell A1 you have
entered teh and in cell B1 you have entered the correction of the. The following macro uses a
Do Until loop to handle each entry in column A and continues to do so until the fi rst empty cell is
 encountered, indicating the end of the list:

Sub AddCorrection()
'Declare a Long type variable to help looping through rows
'of the two-column list.
Dim i As Long
'Declare two String type variables:
'one for thr original entry, and the other for the text string replacement.
Dim myMistake As String, myCorrection As String
'Establish the number 1 for the Long Variable, representing row 1
'which is the first row in the example list.
i = 1
'Open a Do Until loop, telling VBA to stop looping when an empty cell
'is encountered in column A, indicating the end of the list.
Do Until IsEmpty(Cells(i, 1))
'Define the myMistake variable as the text contents of the cell in column A
myMistake = Cells(i, 1).Value
'Define the myCorrection variable as the text contents of the cell in column B.
myCorrection = Cells(i, 2).Value
'VBA tells the Excel Application's AutoCorrect property to update itself with
'the two strings from columns A and B.
Application.AutoCorrect.AddReplacement What:=myMistake, Replacement:=myCorrection
'Add a 1 to the i variable in preparation for evaluating the next row in the list.
i = i + 1
'The Loop statement starts the process again for the next row in the list.
Loop
End Sub

NOTE This example utilizes the Cells range method, which to some VBA
 newcomers can take a little getting used to. If you need a reminder for the use of
Cells, an explanation is in Lesson 8, in the section “Using the Cells Property.”
You’ll be seeing an increased use of the Cells method in this book because it is
such an easier and more effi cient method of referring to dynamic ranges in VBA.

What Is a Loop? ❘ 109

c10.indd 02/23/2015 Page 109

Do…Loop While
To have VBA test the conditional statement after executing the commands within the loop, you
 simply place the conditional statement after the Loop keyword. The Do…Loop While syntax is

Do
Command statements to be executed within the loop.
Loop While condition

When VBA executes the command(s) in a Do…Loop While structure, it does so fi rst, and then at the
Loop While line, it tests the logical condition. If the condition is True at that point, the loop iterates
again, and so on, until the condition evaluates to False.

A common request is to locate all cells in a worksheet that contain a particular value, similar to
clicking the Find Next button on the Find dialog box, and then do something to that cell or to the
cells around it. Suppose you have a worksheet fi lled with data and you want to fi nd all cells that
contain the word “Hello.” These cells can be in any row or column.

For each of those cells where “Hello” is found, you want to place the word “Goodbye” in the cell of
the column to the immediate right. The following macro does just that using a Do…Loop While con-
struction that fi nds every cell containing “Hello” and identifi es its address, so the loop can perform
only as many iterations as there are cells containing “Hello”:

Sub FindHello()
Dim HelloCell As Range, BeginningAddress As String
Set HelloCell = ActiveSheet.UsedRange.Find("Hello", LookIn:=xlValues)
If Not HelloCell Is Nothing Then
BeginningAddress = HelloCell.Address
Do
HelloCell.Offset(0, 1).Value = "Goodbye"
Set HelloCell = ActiveSheet.UsedRange.FindNext(HelloCell)
Loop While Not HelloCell Is Nothing And HelloCell.Address<>BeginningAddress
End If
End Sub

Do…Loop Until
Similar in approach to the Do…Loop While construct, the Do…Loop Until loop tests its condition
after executing the loop’s statements. The Until keyword tells VBA that the statements within
the loop will be executed again for as long as the logical condition evaluates to False. After VBA
tests the condition as True, the loop’s iterations stop, and the macro resumes with the line of code
 following the Loop keyword.

This macro shows an example of a Do…Loop Until structure, which creates 365 new worksheets, all
named with dates starting from the day you run the macro:

Sub YearSheets()
Dim i As Integer
i = 0
Do
Sheets.Add(After:=Sheets(Sheets.Count)).Name = Format(VBA.Date + i, "MM-DD-YYYY")
i = i + 1
Loop Until i = 365
End Sub

110 ❘ LESSON 10 REPEATING ACTIONS WITH LOOPS

c10.indd 02/23/2015 Page 110

While…Wend
While…Wend loops have become obsolete and are rarely used because they are not as robust as Do
and For loops. VBA still supports While…Wend loops for backward compatibility with prior versions
of Excel, and I am not aware of any plans by Microsoft to stop supporting While…Wend.

So, though I recommend you not bother learning how to build a While…Wend loop, the fact is, they
are rather uncomplicated constructs and you should have some familiarity with how they look if you
should see them in code written by others. Here is an example of While…Wend that uses an InputBox
that asks for a password, and keeps asking until the correct password is entered, or the message box
is canceled:

Sub InputPassword()
While InputBox("Please enter password:", "Password required") < > "MyPassword"
If MsgBox(_
"Sorry, that is not correct.", _
vbOKCancel, _
"Wrong password") _
= vbCancel Then End
Wend
MsgBox "Yes!! You entered the correct password!", vbOKOnly, "Thank you!"
End Sub

NESTING LOOPS

Your macros will eventually require that you enclose one loop structure inside another loop
 structure, referred to as nesting loops. For example, you may need to loop through a set of rows in
a data table, and each completed set of looped-through rows will represent a single iteration for a
larger loop construct for the columns in the table.

When you nest loops, you need to be aware of a few important points:

 ➤ When you nest For…Next loops, each loop must have its own uniquely named
counter variable.

 ➤ When you nest For Each…Next loops, each loop must have its own uniquely named object
(or element) variable.

 ➤ If you use an Exit For or Exit Do statement, only the loop that is currently executing will
terminate. If that loop is nested within a larger loop, the larger loop still continues to execute
its iterations.

 ➤ I mentioned it earlier in this lesson, but it especially holds true with nested loops: I strongly
recommend you include the variable name in your Next statements.

Here is an example of a macro with a Do loop nested inside a For Each…Next loop. The following
macro produces a list of six unique random numbers between 1 and 54, similar to a lottery drawing:

Sub PickSixLottery()
'Declare the Range variables for the entire six-cell range,
'and for each individual cell in the six-cell range.
Dim RandomRange As Range, RandomCell As Range

Try It ❘ 111

c10.indd 02/23/2015 Page 111

'Identify the six-cell range where the randomly selected numbers will be listed.
Set RandomRange = Range("A1:A6")
'Before populating the six-cell list range, make sure all its cells are empty.
RandomRange.Clear
'Open a For…Each loop to cycle through each cell in range A1:A6.
For Each RandomCell In RandomRange
'Open a Do…Loop that enters a unique random number between 1 and 54
Do
RandomCell.Value = Int(54 * Rnd + 1)
Loop Until WorksheetFunction.CountIf(RandomRange, RandomCell.Value) = 1
'Iterate to the next cell until all six cells have been populated.
Next RandomCell
End Sub

TRY IT

For this lesson, you write a macro that uses a For…Next loop with an Integer type variable that adds
12 worksheets to your workbook, names each worksheet by calendar month (“January,” “February,”
and so on), and places the worksheets’ tabs in order of calendar month from left to right.

Lesson Requirements
To get the sample workbook fi le you can download Lesson 10 from the book’s website at www.wrox
.com/go/excelvba24hour.

Hints
In Step 6, the DateSerial function requires three arguments, in the sequence of the year, the
month, and the day. When the task at hand is to list the 12 calendar months, any year number will
do. The day should be a basic number every month has, making the number 1 a good choice.

This macro adds new worksheets with month names. Running the macro again without deleting
the same worksheets it created would cause the macro to error because a workbook cannot contain
duplicate worksheet names. Lesson 20 shows how to handle errors.

Step-by-Step
 1. Open a new workbook and press Alt+F11 to go to the Visual Basic Editor.

 2. From the menu bar at the top of the VBE, select Insert ➪ Module.

 3. In the module you just created, type Sub LoopTwelveMonths and press Enter. VBA auto-
matically places a pair of empty parentheses at the end of the Sub line, followed by an empty
line, and the End Sub line below that. Your macro looks like this so far:

Sub LoopTwelveMonths ()

End Sub

 4. Declare an Integer type variable that iterates 12 times, one for each month of the year:

Dim intMonth As Integer

http://www.wrox

112 ❘ LESSON 10 REPEATING ACTIONS WITH LOOPS

c10.indd 02/23/2015 Page 112

 5. Open a For…Next loop that starts from 1 and ends at 12:

For intMonth = 1 To 12

 6. With a one-line command, you can add each of the 12 worksheets in turn, while placing
their tabs one after another from left to right, and naming each tab by calendar month. The
DateSerial function is a good way to cycle through month names because it requires integer
values for the arguments of Year, Month, and Day, just like the DATE worksheet function.
You can use any year, and any day that is not a number greater than 28. For the Month
 argument, the intMonth variable is a perfect fi t because it was declared as an Integer type:

Sheets.Add(After:=Sheets(Sheets.Count)).Name = _
Format(DateSerial(2011, intMonth, 1), "MMMM")

 7. Enter the Next statement for the intMonth variable that produces and names the next
month’s worksheet up to and including December:

Next intMonth

 8. When completed, the macro looks like this, with comments that have been added to explain
each step:

Sub LoopTwelveMonths()
'Declare an Integer type variable to iterate twelve times,
'one for each month of the year.
Dim intMonth As Integer
'Open a For…Next loop that starts from one and ends at twelve.
For intMonth = 1 To 12
'With a one-line command, you can add each of the twelve worksheets in turn,
'while placing their tabs one after another from left to right.
Sheets.Add(After:=Sheets(Sheets.Count)).Name = _
Format(DateSerial(2011, intMonth, 1), "MMMM")
'The Next statement for the intMonth variable
'produces and names the next month worksheet.
Next intMonth
End Sub

REFERENCE Please select the video for Lesson 10 online at www.wrox.com/go
/excelvba24hour. You will also be able to download the code and resources
for this lesson from the website.

http://www.wrox.com/go

c11.indd 02/19/2015 Page 113

Programming Formulas
Spreadsheets are a popular choice for managing information because mathematical
 calculations and data analysis are, and always will be, a requirement of education, business,
and personal record-keeping. If there were no need to compile numeric data with formulas,
there’d be no need for spreadsheets as we know them—an unfathomable thought in our
 information-ravenous, digital world.

As you’ve seen, VBA enables you to programmatically manipulate Excel’s objects, methods,
and properties. You can interact with users to make decisions and establish conditions. Just
as importantly, you need to understand how to program formulas, starting with how Excel
regards locations of cells and ranges by their row and column references.

UNDERSTANDING A1 AND R1C1 REFERENCES

Most people who use Excel—most being around 99.9 percent—view Excel worksheets with
rows headed from the top as numbers 1, 2, 3 and continuing downward, and columns headed
from the left as letters A, B, C and continuing to the right. The top-left cell address on the
Excel grid is commonly seen as cell A1. The cell immediately below A1 is A2, the cell to the
right of A2 is B2, and so on.

Behind the scenes, Excel does not refer to its rows and columns in A1 style; that is, not in
the sequence of column letter and row number. Rather, Excel regards rows and columns
as numbers, in R1C1 style, expressing a cell address in the sequence of its intersecting row
 number and column number.

NOTE If you are wondering if understanding R1C1 style is really important
enough to stay with this lesson, the answer is yes, it really is important enough.
As concepts go, understanding R1C1 style gives you the most bang for your
buck in terms of the long-term benefi t you get from spending the few minutes
to read this lesson. Your VBA programming skills will advance much faster and
easier once you get a handle on R1C1 references.

11

114 ❘ LESSON 11 PROGRAMMING FORMULAS

c11.indd 02/19/2015 Page 114

In R1C1 style, “R” stands for row and “C” stands for column. For example, cell D7 is identifi ed
by Excel as the address at the intersection of row 7 and column 4 (because column D is the
fourth column from the left on the worksheet grid), which Excel interprets as R7C4. Cell M92 is
 interpreted as R92C13, and so on. As you might guess, the R1C1 address of cell A1 is R1C1.

Getting Started with a Few One-Liners
As you will see on the following pages, R1C1 cell references do not always look as clean as just a
number for a row and a number for a column. The R1C1 style uses a starting reference point, and
without one specifi ed, assumes cell A1 as the default reference. For example, suppose your active
cell is H22. To refer to a cell 3 rows up and 5 columns to the right, which is cell M19, then with
cell H22 as the reference point (that is, as far as cell H22 is concerned), cell M19 would be referred
to as =R[-3]C[5].

NOTE You can plug the following four examples of single code lines into a
macro, or you can quickly execute them in the Immediate window. You may
recall from Lesson 3 that you can access the Immediate window easily by
 pressing Alt+F11 to go to the Visual Basic Editor, then pressing Ctrl+G to enter
the Immediate window. Just copy and paste any of these single code lines into the
Immediate window and press Enter. To see the results, press Alt+Q to return to
the worksheet.

To enter a formula programmatically in cell H22 that shows the value in cell M19, your line of code
would be this, using a relative reference to cell M19:

Range("H22").FormulaR1C1 = "=R[-3]C[5]"

As another example, if you want the formula in cell H22 to return the value in cell H26, which is 4
rows greater than row number 22 and in the same column H, that code line would be as follows:

Range("H22").FormulaR1C1 = "=R[4]C"

If you want the formula in cell H22 to return the value in cell A22, which is on the same row but 7
columns less than column number 8 (Excel and VBA regard column H as column 8), that code line
would be:

Range("H22").FormulaR1C1 = "=RC[-7]"

Finally, if you want to enter a formula in cell H22, or any cell for that matter, to return the value in
cell F3, such that the formula’s row and column references are absolute (making the formula look
like =F3), this line of code would do that:

Range("H22").FormulaR1C1 = "=R3C6"

Understanding A1 and R1C1 References ❘ 115

c11.indd 02/19/2015 Page 115

NOTE You have probably noticed that Excel and VBA rarely regard cell addresses
by column letter and row number. It can be a challenge at fi rst to stray from the
familiar thought process of referencing cell addresses in A1 style, considering
the alpha column headers and worksheet formulas that are almost always how
worksheets are viewed. Recall from Lesson 8 that the Cells property refers to
addresses in R1C1 style, by their row number and column number. For example,
the statement Cells(5, 2).Select would select cell B5 of the active worksheet,
which is a syntax you have already seen. The more you work with VBA, the more
you will see how useful the R1C1 style is, and how limiting the A1 style will be.

Comparing the Interface of A1 and R1C1 Styles
It’s been said that a picture is worth a thousand words. Take a look at the next several fi gures to
see worksheets from an R1C1 point of view. The comparison fi gures help you to see formulas and
 worksheets the way Excel and VBA sees them.

NOTE There’s a pro-R1C1 tone to this chapter, but I’m not suggesting you
change your worksheet viewing habits to the R1C1 view if you’ve been working
in A1 view. In fact, I always work in A1 view, just as most Excel users do. The
goal in this chapter is to explain what R1C1 is and how it works.

Figure 11-1 shows a side-by-side comparison of A1 and R1C1 styles for the same spreadsheet.
Notice the active cell address in the name box, the column headers, and the formula as displayed in
the formula bar vary between the two styles.

The name box
displays the active
cell address in
R1C1 style.

Column headers are
displayed as numbers.

Example of a relative
reference formula in
R1C1 style.

FIGURE 11-1

116 ❘ LESSON 11 PROGRAMMING FORMULAS

c11.indd 02/19/2015 Page 116

Toggling between A1 and R1C1 Style Views
Occasionally on Excel forums, or in e-mails I receive from people who follow my work, the question
comes up about how and why their worksheets inexplicably show column headers as numbers. The
reason is that someone unwittingly changed the view in that workbook from A1 to R1C1 style, and
forgot how to undo the mysterious deed.

NOTE Your workbook doesn’t need to be in R1C1 style to use .FormulaR1C1 in
your code. This is just an exercise to show how to get in and out of R1C1 style,
and what that style looks like.

Here’s how to toggle between the two views. Start by clicking the File tab so that you go to the
backstage view. Click the Options item on the vertical menu, as shown in Figure 11-2 when using
Excel version 2013.

FIGURE 11-2

In the Excel Options dialog box, click the Formulas item in the menu pane at the left. Select the
check box for R1C1 Reference Style in the Working with Formulas section, and click OK, as shown
in Figure 11-3.

Understanding A1 and R1C1 References ❘ 117

c11.indd 02/19/2015 Page 117

FIGURE 11-3

If you are using Excel 2003, click the Tools item on the menu bar, and select Options, as shown in
Figure 11-4. In the Options dialog box, click the General tab, select R1C1 Reference Style in the
Settings section, and click OK, as shown in Figure 11-5.

FIGURE 11-4 FIGURE 11-5

118 ❘ LESSON 11 PROGRAMMING FORMULAS

c11.indd 02/19/2015 Page 118

Here’s another comparison of the two styles side by side. Figure 11-6 shows an example of an
 absolute reference formula in cell B10 (or if you prefer, in cell R10C2). To return to A1 style,
simply repeat the preceding steps and deselect the option for R1C1 Reference Style.

FIGURE 11-6

PROGRAMMING YOUR FORMULA SOLUTIONS WITH VBA

The following examples can give you some insight for designing formulas in macros to solve
 common situations. With VBA you can include variable names and named ranges in your formulas,
providing creative ways to get your work done.

NOTE If and when you use the Macro Recorder to produce formulas to plug
into your macros, you’ll notice that formulas are recorded in R1C1 style, in
whichever style you are in.

Using a Mixed Reference to Fill Empty Cells with the
Value from Above

Figure 11-7 shows a before-and-after look at how you can use a mixed reference formula (as shown in
the following snippet) to fi ll empty cells with the preceding constant value. Using the SpecialCells
property, the same formula is entered into every blank cell in column A that is associated with the list:

Sub FillBlankCellsFromAbove()
Application.ScreenUpdating = False
With Columns(1)
.SpecialCells(xlCellTypeBlanks).Formula = "=R[-1]C"
'Convert formulas into static values.
.Value = .Value
End With
Application.ScreenUpdating = True
End Sub

Programming Your Formula Solutions with VBA ❘ 119

c11.indd 02/19/2015 Page 119

FIGURE 11-7

NOTE With Columns(1) refers to column A. If you were working with column
H, you would have written the code as With Columns(8).

Using a Named Range with Relative, Mixed, and
Absolute References

This example shows how to deal with several issues you might encounter. In Figure 11-8, a payroll
worksheet needs a conditional formula in range D5:D12 to calculate the weekly salaries for each
employee. Eligibility for overtime pay is based on the criteria of 40 maximum regular hours in cell
B1. The overtime multiplication factor in cell B2 is the named range OvertimeFactor, which is
 multiplied for each hour past the 40-hour ceiling.

FIGURE 11-8

120 ❘ LESSON 11 PROGRAMMING FORMULAS

c11.indd 02/19/2015 Page 120

The formula in cell D5 and copied to cell D12 is =IF(B5<=B1,B5*C5,SUM((B5-B1)
*OvertimeFactor,B1)*C5), which you can see in the formula bar in Figure 11-9. In the
 following macro, notice the syntax for relative, mixed, and absolute references, along with the
 inclusion of a named range, the If statement, and a nested SUM function:

Sub CalculateSalary()
Range("D5:D12").FormulaR1C1 = _
"=IF(RC[-2]<=R1C2,RC[-2]*RC[-1],SUM((RC[-2]-R1C2)*OvertimeFactor,R1C2)*RC[-1])"
End Sub

FIGURE 11-9

Programming an Array Formula
As you know, when you compose an array formula manually, you must commit it to a worksheet
cell by pressing the Ctrl+Shift+Enter keys, not just the Enter key. Similarly, when you want to install
an array formula programmatically, you must use the FormulaArray method, not just the Formula
or Formula R1C1 methods. The FormulaArray method is VBA’s way of differentiating between an
array and a non-array formula.

In Figure 11-10, array formulas are entered into destination cells B19, B20, and B21 with the
 following macro that averages scores for each of three lanes at a bowling alley. For a bit of variety to
show an alternative cell reference syntax, I looped through each of the three destination cells (where
the array formulas will go) using the Range statement that shows column letter B followed by the
row numbers represented by a Long type variable named lngRow:

Sub AverageBowlingScores()
Dim lngRow As Long
For lngRow = 19 To 21
Range("B" & lngRow).FormulaArray = _
"=AVERAGE(IF(R4C1:R16C1=RC[-1],R4C3:R16C6))"
Next lngRow
End Sub

Programming Your Formula Solutions with VBA ❘ 121

c11.indd 02/19/2015 Page 121

FIGURE 11-10

WARNING When you have a lot of formulas on a worksheet for which you
want to convert all cell and range references from relative to absolute, this macro
can do the job:

Sub ConvertRelativeToAbsolute()
Dim cell As Range, strFormulaOld As String, strFormulaNew As String
For Each cell In Cells.SpecialCells(xlCellTypeFormulas)
strFormulaOld = cell.Formula
strFormulaNew = _
Application.ConvertFormula _
(Formula:=strFormulaOld, fromReferenceStyle:=xlA1, _
toReferenceStyle:=xlA1, toAbsolute:=xlAbsolute)
cell.Formula = strFormulaNew
Next cell
End Sub

And here’s how you can convert absolute reference formulas to relative refer-
ences on a worksheet:

Sub ConvertAbsoluteToRelative()
Dim cell As Range, strFormulaOld As String, strFormulaNew As String
For Each cell In Cells.SpecialCells(xlCellTypeFormulas)
strFormulaOld = cell.Formula
strFormulaNew = _
Application.ConvertFormula _
(Formula:=strFormulaOld, fromReferenceStyle:=xlA1, _
toReferenceStyle:=xlA1, toAbsolute:=xlAbsolute)
cell.Formula = WorksheetFunction.Substitute(strFormulaNew, "$", "")
Next cell
End Sub

122 ❘ LESSON 11 PROGRAMMING FORMULAS

c11.indd 02/19/2015 Page 122

NOTE Here’s a quick way to count your workbook’s formulas, and show the
total count in a message box subtotaled by worksheet name. The statements On
Error Resume Next, Err.Number, and Err.Clear help to bypass potential stop-
pages of the macro, known as runtime errors, if (in this example) a worksheet
does not contain any formulas. In Lesson 20, you become familiar with these
and other error-related terms, along with techniques for handling errors in
your code.

Sub CountFormulas()
Dim SheetFormulaCount As Long, TotalFormulaCount As Long
Dim myList As String, WS As Worksheet
SheetFormulaCount = 0: TotalFormulaCount = 0: myList = ""
For Each WS In Worksheets
'optional if your sheets are protected
'WS.Unprotect ("YourPassword")
On Error Resume Next
SheetFormulaCount = WS.Cells.SpecialCells(xlCellTypeFormulas).Count
If Err.Number <> 0 Then
Err.Clear
SheetFormulaCount = 0
End If
TotalFormulaCount = TotalFormulaCount + SheetFormulaCount
myList = myList & "Formula count in ''" & WS.Name & "'': " & _
Format(SheetFormulaCount, "#,##0") & vbCrLf
'optional reprotect your sheets
'WS.Protect ("YourPassword")
Next WS
MsgBox myList & vbCrLf & "Total formulas in " & _
ThisWorkbook.Name & ": " & _
Format(TotalFormulaCount, "#,##0"), , "Workbook formula count"
End Sub

Summing Lists of Different Sizes along a Single Row
In Figure 11-11, a table has several columns, each containing a varying count of numeric entries
needing to be summed. When you want to show the sums of each column along a single row, you
fi rst need to identify the last used row among all the columns, and install your sum formulas in the
next row below that. The idea is to place the sums for each column in the fi rst available row that has
no data in any column.

Programming Your Formula Solutions with VBA ❘ 123

c11.indd 02/19/2015 Page 123

FIGURE 11-11

In Figure 11-11, the last used row is 13 because column C contains entries that extend to cell C13.
Tomorrow, you might get a similar table, maybe with more columns, where the last used row will be
128 in column K. This is where VBA really shines when you program formulas in R1C1 style when
dealing with dynamic ranges. No matter how many columns the table has, or which column has the
most entries, the following macro named SumAlongOneRow sums each column’s numbers along the
fi rst unused row. The result is shown in Figure 11-12.

Sub SumAlongOneRow()
'Declare and define a Long type variable for the next available row
'where all the SUM formulas will go.
Dim NextRow As Long
NextRow = _
Cells.Find(What:="*", After:=Range("A1"), _
SearchOrder:=xlByRows, SearchDirection:=xlPrevious).Row + 1
'Declare and define a Long type variable to identify the last column
'in the used range.
Dim LastColumn As Long
LastColumn = _
Cells.Find(What:="*", After:=Range("A1"), _
SearchOrder:=xlByColumns, SearchDirection:=xlPrevious).Column

'The used range starts in column A which is Column 1 in VBA.
'The sales numbers in the table start on row 4.
'Therefore, sum the numbers with a formula that starts at
'row 4 and ends at the last used row, which is one row above
'(numerically 1 less than) the last used row.
Range(Cells(NextRow, 1), Cells(NextRow, LastColumn)).FormulaR1C1 _
= "=SUM(R4C:R" & NextRow - 1 & "C)"
End Sub

124 ❘ LESSON 11 PROGRAMMING FORMULAS

c11.indd 02/19/2015 Page 124

FIGURE 11-12

NOTE You probably know that the RAND worksheet function enters a random
number in a cell. RAND is among a group of functions called volatile functions.
Volatile functions recalculate whenever another cell in the workbook is changed,
or some event takes place such as opening the workbook. You might want to
enter a random number and keep it static—that is, for the random number to
not change unless you want to change it again, if ever. You can enter a static
random number using the following line of code, executable in the Immediate
window or as part of a macro. This is an example of how to enter a static ran-
dom number between 1 and 100 in cell A1. Notice that a value, not actually a
formula, is being entered:

Range("A1").Value = Format(Rnd() * 99 + 1, "000")

TRY IT

For this lesson, you install formulas to sum the numbers in each column of a sales report table.
Each column has a varying count of entries, and you want the sum formulas to be placed in the fi rst
empty cell below each column’s last numeric entry.

Lesson Requirements
To get the sample workbook, you can download Lesson 11 from the book’s website at
www.wrox.com/go/excelvba24hour.

http://www.wrox.com/go/excelvba24hour

Try It ❘ 125

c11.indd 02/19/2015 Page 125

Step-by-Step
 1. In your Excel workbook, press Alt+F11 to go to the Visual Basic Editor.

 2. From the VBE menu bar, click Insert ➪ Module.

 3. In the new module, type the name of your macro: SumEachColumnNextRow. Press Enter, and
VBA automatically places a pair of parentheses after the macro name, followed by an empty
line, followed by the End Sub statement. Your code looks as follows:

Sub SumEachColumnNextRow ()

End Sub

 4. Declare a Long type variable to identify the last column in the used range, a Long type variable
for the last row of numbers present in each column (below which each column’s SUM formula
will go), and a Long type variable for the column numbers that will be looped through:

Dim LastColumn As Long, lngColumn As Long, LastRow As Long

 5. Use the LastColumn variable inside a loop at each iteration:

LastColumn = Cells.Find(What:="*", After:=Range("A1"), _
SearchOrder:=xlByColumns, SearchDirection:=xlPrevious).Column

 6. Loop through each column in the used range. The used range starts in column A, which
VBA sees as column number 1. Loop through each column and install the formula in the fi rst
unused row. While you’re at it, bold those sum formula cells to make them easier to see:

For lngColumn = 1 To LastColumn
LastRow = Cells(Rows.Count, lngColumn).End(xlUp).Row
With Cells(LastRow + 1, lngColumn)
.FormulaR1C1 = "=SUM(R4C:R" & LastRow & "C)"
.Font.Bold = True
End With
Next lngColumn

 7. Press Alt+Q to return to the worksheet and test your macro. After you run the macro, the
result looks like Figure 11-13. Here’s the macro named SumEachColumnNextRow in its entirety:

Sub SumEachColumnNextRow()
'Declare a Long type variable to identify the last column
'in the used range.
'Declare a Long type variable for the last row of numbers present
'in each column, below which each column's SUM formula will go.
'Declare a Long type variable for the column numbers that
'will be looped through.
Dim LastColumn As Long, lngColumn As Long, LastRow As Long

'You will use this variable in a loop at each iteration.
LastColumn = _
Cells.Find(What:="*", After:=Range("A1"), _
SearchOrder:=xlByColumns, SearchDirection:=xlPrevious).Column

126 ❘ LESSON 11 PROGRAMMING FORMULAS

c11.indd 02/19/2015 Page 126

'Loop through each column in the used range.
'The used range starts in column A which is Column 1 in VBA.
'Loop through each column and install the formula in the first
'unused row. While we are at it, bold those sum formula cells
'to make them easier to see.
For lngColumn = 1 To LastColumn
LastRow = Cells(Rows.Count, lngColumn).End(xlUp).Row
With Cells(LastRow + 1, lngColumn)
.FormulaR1C1 = "=SUM(R4C:R" & LastRow & "C)"
.Font.Bold = True
End With
Next lngColumn

End Sub

FIGURE 11-13

REFERENCE Please select the videos for Lesson 11 online at www.wrox.com/
go/excelvba24hour. You will also be able to download the code and resources
for this lesson from the website.

http://www.wrox.com

c12.indd 02/19/2015 Page 127

Working with Arrays
This lesson introduces you to arrays in VBA. As you will see, arrays are a very useful way to
programmatically group and store many items of related data. After you’ve collected your
array of data items, you can access any of the items individually, or access the group as a
whole. Arrays can help you accomplish various tasks in a logical and effi cient manner, which
is important to remember when you fi nd yourself faced with some tasks for which arrays are
the only alternative.

WHAT IS AN ARRAY?

An array is like a variable on steroids. In addition to being a variable, an array also serves as a
holding container for a group of individual values, called elements, that are of the same data
type. You can populate the array yourself by specifying the known elements in your macro,
or you can let VBA populate the array during the course of the macro if you don’t know how
many elements the array will end up containing.

The concept of arrays can be challenging to grasp at fi rst, so a real-world analogy might
help. Suppose you are a fan of classic movies, and you keep a library at home of perhaps
100 movies. Among those 100 movies are 5 that are your favorite classics. You can declare a
 variable named myFavoriteMovies, and create a String array with this macro:

Sub FavoriteMovies()
Dim myFavoriteMovies(1 to 5) as String
myFavoriteMovies (1) = "Gone With The Wind"
myFavoriteMovies (2) = "Casablanca"
myFavoriteMovies (3) = "Citizen Kane"
myFavoriteMovies (4) = "Sunset Boulevard"
myFavoriteMovies (5) = "Modern Times"
MsgBox myFavoriteMovies(3)
End Sub

Elements in an array are variables, and you can refer to a specifi c element by its index number
inside the array. Because the array name is myFavoriteMovies, and the message box is referring to
the third element in that array, when you run this macro, the message box displays Citizen Kane.

12

128 ❘ LESSON 12 WORKING WITH ARRAYS

c12.indd 02/19/2015 Page 128

You have created an array that is a collection of your favorite classic movies. You can loop through
each element in that collection—that is, each movie title—by referring to its index number inside the
myFavoriteMovies array. The following macro shows how to display each movie title element in a
message box:

Sub FavoriteMoviesLoop()

Dim myFavoriteMovies(1 To 5) As String
Dim intCounter As Integer

myFavoriteMovies(1) = "Gone With The Wind"
myFavoriteMovies(2) = "Casablanca"
myFavoriteMovies(3) = "Citizen Kane"
myFavoriteMovies(4) = "Sunset Boulevard"
myFavoriteMovies(5) = "Modern Times"

For intCounter = 1 To 5
MsgBox myFavoriteMovies(intCounter), , "Favorite #" & intCounter
Next intCounter

End Sub

If you would like to populate a range of cells with the elements of your array, the following macro
demonstrates how to do that, listing the movie titles in range A1:A5:

Sub FavoriteMoviesRange()

Dim myFavoriteMovies(1 To 5) As String
Dim intCounter As Integer

myFavoriteMovies(1) = "Gone With The Wind"
myFavoriteMovies(2) = "Casablanca"
myFavoriteMovies(3) = "Citizen Kane"
myFavoriteMovies(4) = "Sunset Boulevard"
myFavoriteMovies(5) = "Modern Times"

For intCounter = 1 To 5
Cells(intCounter, 1).Value = myFavoriteMovies(intCounter)
Next intCounter

End Sub

VBA regards the array itself as one variable, but inside the array is a group of two or more elements
that you can work with separately. You can, and often will, refer to each element by its index
 number, which is its position in the array. This way, you can pick a particular element in the array
to work with based on its index number, or you can loop through all the index numbers one after
the other, in case your project calls for every element to be worked on.

What Arrays Can Do for You
Arrays are often used for representing data in lists or tables, where each item in the list is of the
same data type. Some examples might be a list of your friends’ names, all of which would be
String data types, or a table of your city’s average daily temperatures by month, all of which

What Is an Array? ❘ 129

c12.indd 02/19/2015 Page 129

might be Double data types. Arrays offer you the versatility of storing and manipulating data
items through one array variable, which is much more effi cient than assigning variables to every
element in the array.

Say you want to count how many Excel workbook fi lenames reside in a particular folder. You don’t
know how many total fi les are in that folder, or how many of those total fi les are Excel fi les. With
an array doing the job, you don’t need any worksheet cells to store the fi lenames. Instead, you can
programmatically compile into memory the count of Excel fi les, and the individual fi lenames too, all
of which you can retrieve later in your macro if need be.

The previous arrays of movie titles are an example of one-dimensional arrays. In the macro
named FavoriteMoviesRange, the fi ve movies were listed in range A1:A5. VBA regards this as a
 one-dimensional array because the array elements stand by themselves in a table that is fi ve rows
deep and one column wide.

Many arrays you deal with will have more than one
dimension. Figure 12-1 expands on this list of classic movies
by adding a second column that lists the year each movie was
released. This table is composed of fi ve rows and two
 columns. You can create a two-dimensional String array by
 associating the movie title elements with their respective year
of release elements.

The fi rst item of business is to declare a String type variable
for the array. The size of the array is specifi ed with the variable,
to include the span of rows and columns that make up the array. For example, with fi ve rows and
two columns, a variable named Classics is declared with the statement Dim Classics(1 To 5,
1 To 2) As String. The following macro loops through rows 1 to 5 in column A and rows 1
to 5 in column B. Each value in the array is stored in memory with two Integer type variables
for collecting row and column data. Based on Figure 12-1, the message box returns 1941 because
Classics(3, 2) returns the string value of the element that occupies the location of the array’s
third row and second column:

Sub TwoDimensionalArray()
Dim Classics(1 To 5, 1 To 2) As String
Dim intRow As Integer, intColumn As Integer
For intRow = 1 To 5
For intColumn = 1 To 2
Classics(intRow, intColumn) = Cells(intRow, intColumn).Value
Next intColumn
Next intRow
MsgBox Classics(3, 2)
End Sub

Declaring Arrays
You declare an array the same way you typically declare variables. The variable declaration starts
with the Dim statement, followed by the array name and the data type. The array name ends with a
pair of parentheses to indicate that it’s an array with the count of elements, if known, placed inside
the parentheses.

FIGURE 12-1

130 ❘ LESSON 12 WORKING WITH ARRAYS

c12.indd 02/19/2015 Page 130

For example, the following statement declares an array named myDays, which is populated with all
seven days of the week. Notice the data type is String, because weekday names are text values,
such as “Sunday,” Monday,” and so on:

Dim myDays(6) As String

You can also declare arrays using the Public, Private, and Static keywords, just as you can with
other variables, with the same results in terms of scope and visibility.

To declare an array as Public, place a statement at the top of your module. With the Public
 declaration at the top of your module, you can share an array across procedures. For example, if you
run either of the following two macros, the array elements of Hello and Goodbye will be displayed
in a message box:

Public MyArray(1) As String

Sub PublicArrayExample()
'Fill the array MyArray with values.
MyArray(0) = "Hello"
MyArray(1) = "Goodbye"
'Run the TestPublicArrayExample macro to display MyArray.
Run "TestPublicArrayExample"
End Sub

Sub TestPublicArrayExample()
'Display the values contained in the array MyArray.
Dim i As Integer
For i = 0 To UBound(MyArray, 1)
MsgBox MyArray(i)
Next i
End Sub

NOTE You may have noticed the UBound statement in the preceding macro. You
read more about upper and lower boundaries in the upcoming section named
“Boundaries in Arrays.”

A Static array is an array that is sized in the declaration statement. For example, the following
 declaration statement declares an Integer array that has 11 rows and 11 columns:

Dim MyArray(10, 10) as Integer

THE OPTION BASE STATEMENT

When learning arrays, it’s common for some head-scratching and confusion to accompany the
 concept of zero-based numbering. In the declaration statement Dim myDays(6) As String, you
might wonder why the array shows the number 6 in parentheses, when there are seven days
in a week.

The Option Base Statement ❘ 131

c12.indd 02/19/2015 Page 131

In zero-based numbering, the fi rst element of any array is represented by the default number of
0. The second element is represented by the number 1, and so on. That is why an array of seven
 weekday elements is represented by the number 6 in the statement Dim myDays(6) As String.

VBA does provide a way for specifying that the fi rst element of the array be number 1, which is
more intuitive for most people. You can do this by placing the statement Option Base 1 at the top
of the module.

NOTE Most advanced-level VBA programmers exclusively use the default
 zero-based numbering style. I recommend that you resist the temptation to go
the Option Base 1 route in your learning progression. Sooner or later, you
will inherit array code that will be zero-based, and you’ll be glad you became
 accustomed to that popular style from the get-go.

Here’s a visual look at zero-based numbering in action.
Figure 12-2 shows fi ve text elements that you might manually
place into an array macro.

Note the element index numbers starting with the default of 0. In
the following macro, the array named FamilyArray is populated
in the order of the pictured elements. Further, a variable named
FamilyMember is assigned the element 2 item, which is actually the
third item in the list of names because the list starts at number 0.
Therefore, when the MsgBox FamilyMember command is executed, Tom is displayed in the message
box because Tom occupies the element 2 position in the array named FamilyArray:

Sub ArrayTest()
Dim FamilyArray() As Variant
Dim FamilyMember As String
FamilyArray = Array("Bill", "Bob", "Tom", "Mike", "Jim")
FamilyMember = FamilyArray(2)
MsgBox FamilyMember
End Sub

To test this concept a bit further, enter the statement Option Base 1 at the very top of the module.
When you run the ArrayTest macro again, you see that FamilyArray(2) returns Bob, because the
array elements were counted starting at base number 1.

NOTE It’s a fair question to ask why VBA uses zero-based numbering in the
fi rst place. Most other programming languages use zero-based numbering for
their arrays because of the way arrays are stored in memory. The topic is rather
complicated, but in simple English, the subscript (the numbers in the parentheses
following the array’s variable name) refers to an offset position in memory from
the array’s starting position. Therefore, the fi rst element has a starting position
of 1, but the array’s subscript is translated into the offset memory address of 0.
The second element is offset at 1, and so on.

BillElement 0

Element 1

Element 2

Element 3

Element 4

Bob

Tom

Mike

Jim

FIGURE 12-2

132 ❘ LESSON 12 WORKING WITH ARRAYS

c12.indd 02/19/2015 Page 132

BOUNDARIES IN ARRAYS

Arrays have two boundaries: a lower boundary, which is the position of the fi rst data element,
and an upper boundary representing the count of elements in the array. VBA keeps track of both
 boundaries’ values automatically, with the LBound and UBound functions.

NOTE When you declare an array, you can specify only the upper index boundary.
In the example, you have Dim myDays(6) As String but it could have been
 written as Dim myDays(0 to 6) As String. The 0 to does not need to be present
because the lower index boundary is always assumed to be 0 (or 1 if Option Base
1 has been stated at the top of the module). Under the default setting of Option
Base 0, the number you include in the declaration (which was 6 in this example) is
the upper index number of the array, not the actual number of elements.

Here is an example to demonstrate the LBound and UBound functions in practice. In this example,
you fi ll an array with a number of cell addresses, and the macro enters the word Hello in that array
of cell ranges:

Sub ArraySheets()
'Declare your variables
Dim sheetName As Variant, i As Integer, TargetCell as Variant
'Populate the array yourself with the known cell addresses.
TargetCell = Array("A1", "B5", "B7", "C1", "C12", "D13", "A12")
'Loop from the lower boundary (the first array element)
'to the upper boundary (last element) of your sheetName array.
For i = LBound(TargetCell) To UBound(TargetCell)
Range(TargetCell(i)).Value = "Hello"
'Continue looping through the array elements to completion.
Next i
'End the macro.
End Sub

DECLARING ARRAYS WITH FIXED ELEMENTS

Early in this lesson you saw this array declaration:

Dim myDays(6) As String

The ultimate objective of that declaration was to build an array
containing the seven days of the week and to transfer that list into
range A1:A7, as shown in Figure 12-3.

The macro to do that could look like the following one named
ArrayWeekdays. Characteristics of a fi xed array include a set of
 elements that remain constant, such as days of the week, where
there will always be seven and their names will never change. The
WEEKDAY function returns an integer from 1 to 7 that represents a
day of the week. For example, 1 represents Sunday, 2 represents FIGURE 12-3

Declaring Dynamic Arrays with ReDim and Preserve ❘ 133

c12.indd 02/19/2015 Page 133

Monday, and so on. If you enter the function =WEEKDAY(5) in a cell, and custom format the cell
as DDDD, the cell displays Thursday.

The comments in the code explain what is happening, and why:

Sub ArrayWeekdays()
'Declare the array variable for seven elements (from 0 to 6).
Dim myDays(6) As String
'Declare an Integer type variable to handle the seven indexed elements.
Dim intDay As Integer
'Start to loop through each array element starting at the default 0 lower boundary.
For intDay = 0 To 6
'For each array element, define the myDays String variable
'with its corresponding day of the week.
'There is no such thing as "Weekday 0", because Excel's Weekday function
'is numbered from 1 to 7,so the "+ 1" notation adds 1 to the intDays Integer
'variable which started at the lower bound of 0.
myDays(intDay) = Format(Weekday(intDay + 1), "DDDD")
'Cells in range A1:A7 are populated in turn with the weekday.
Range("A" & intDay + 1).Value = myDays(intDay)
'The loop is continued through to conclusion.
Next intDay
'End of the macro.
End Sub

DECLARING DYNAMIC ARRAYS WITH REDIM AND PRESERVE

Unlike an array with a known fi xed set of elements, some arrays are built programmatically during
the macro. These arrays are called dynamic. Earlier you read about populating an array with the
count of Excel workbook fi les that exist in a folder. In that case you’d have a dynamic array because
the fi le count is subject to change; you would not know ahead of time what the array’s size will be.
With a dynamic array, you can create an array that is as large or as small as you need to make it.

To attack that problem of an unknown count of elements, you can change the size of an array on the
fl y with a pair of keywords called ReDim and Preserve. The ReDim statement is short for redimension,
a fancy term for resizing the array. When ReDim is used by itself to place an element in the array, it
releases whatever data was in the array at the time, and simply adds the element to a new empty array.

The Preserve statement is necessary to keep (preserve) the data that was in the array, and have the
incoming element be added to the existing data. In VBA terms, ReDim Preserve raises the array’s
upper boundary, while keeping the array elements you’ve accumulated.

The following macro named SelectedWorksheets demonstrates ReDim Preserve in action. The
purpose of the array in this example is to collect the names of all worksheets that are concurrently
selected, such as when you press the Ctrl key and select a few worksheet tabs.

The comments in the code explain what each line of code is doing, so you can get a feel for how to
populate a dynamic array and display its elements (the worksheet names) in a message box:

Sub SelectedWorksheets()
'Declare the array variable for an unknown count of elements.
Dim WhatSelected() As Variant

134 ❘ LESSON 12 WORKING WITH ARRAYS

c12.indd 02/19/2015 Page 134

'Declare a variable for the Worksheet data type.
Dim wks As Worksheet
'Declare an Integer variable to handle the unknown count of selected worksheets.
Dim intSheet As Integer
'Start to loop through each selected worksheet.
For Each wks In ActiveWindow.SelectedSheets
'An index array element is assigned to each selected worksheet.
intSheet = intSheet + 1
'This macro is building an array as each selected worksheet is encountered.
'The Redim statement adds the newest selected worksheet to the growing array.
'The Preserve statement keeps (preserves) the existing array data,
'allowing the array to be resized with the addition of the next element.
ReDim Preserve WhatSelected(intSheet)
'The corresponding worksheet's tab name is identified with each selected sheet,
'and placed in the "WhatSelected" array for later retrieval.
WhatSelected(intSheet) = wks.Name
'The loop is continued to completion.
Next wks
'Looping through each element in the "WhatSelected" array that was just built,
'a message box displays the name of each corresponding selected worksheet.
For intSheet = 1 To UBound(WhatSelected)
MsgBox WhatSelected(intSheet)
Next intSheet
'End of the macro.
End Sub

TRY IT

In this lesson you verify whether a certain string element is part of an array. You test if a certain
string element is in an array. At the end of the macro, you show a message box to confi rm that the
string element either was or was not found to exist in the array.

Like the example earlier in this lesson, say you have this list of names:

 ➤ Bill

 ➤ Bob

 ➤ Tom

 ➤ Mike

 ➤ Jim

Now, say you want to test whether a certain string element is in that array, which in this example
you enter into a worksheet cell. Enter a good-looking name like Tom into cell A1 of Sheet1. Put the
list of names in an array, and test to see whether “Tom” is among the elements in that list.

Lesson Requirements
To get the sample workbook you can download Lesson 12 from the book’s website at
www.wrox.com/go/excelvba24hour.

http://www.wrox.com/go/excelvba24hour

Try It ❘ 135

c12.indd 02/19/2015 Page 135

Step-by-Step
 1. Open Excel and add a new workbook.

 2. Press Alt+F11 to get into the Visual Basic Editor.

 3. From the VBE menu, select Insert ➪ Module.

 4. In the new module, type the name of your macro:

Sub TestArray

 5. Press the Enter key, which causes Excel to place a set of parentheses after the TestArray
macro name and also creates the End Sub statement. Your macro so far looks like this:

Sub TestArray()

End Sub

 6. For the fi rst line of code, establish that Sheet2 is VeryHidden, as an example to demonstrate
the result of an element being found, or not found, in an array. If the element is found,
Sheet2 will be unhidden:

Worksheets("Sheet2").Visible = xlSheetVeryHidden

 7. For the second line of code, declare a variable for the array of names you’ll be creating, and
name the variable myArray. For the next line of code, assign the variable name to the array.
In this case, you know what the list of names contains so you can build the array yourself
by simply entering the individual names inside the parentheses. The two lines of code look
like this:

Dim myArray As Variant
myArray = Array("Bill", "Bob", "Tom", "Mike", "Jim")

 8. The next two lines of code show the String type variable to represent the string element you
are attempting to verify, and then code to assign the string to that variable. The String vari-
able, named strVerify, refers to a name you would enter into cell A1 of Sheet1 to test the
macro. For example:

Dim strVerify as String
strVerify = Worksheets("Sheet1").Range("A1").Value

 9. You need to declare two more variables. One of these variables is an Integer type variable,
which helps you loop through each of the fi ve elements in the array. The other variable is a
Boolean data type, which helps to characterize as True or False that the string in cell A1 of
Sheet1 is among the elements in the array:

Dim i as Integer, blnVerify as Boolean

 10. Enter Tom in cell A1 of Sheet1.

 11. Now, to see whether “Tom” exists in the array, loop through each element and compare it to
the String variable. If there is a match, exit the loop and alert the user by unhiding Sheet2.
If the string variable is not found, let the user know that as well, and keep Sheet2 hidden:

For i = LBound(myArray) To UBound(myArray)
If strVerify = myArray(i) Then

136 ❘ LESSON 12 WORKING WITH ARRAYS

c12.indd 02/19/2015 Page 136

blnVerify = True
MsgBox "Yes! " & myArray(i) & " is in the array!", , "Verified"
Worksheets("Sheet2").Visible = xlSheetVisible
Exit For
End If
Next i
If blnVerify = False Then _
MsgBox strVerify & " is not in the array.", , "No such animal."

 12. Putting it all together, the macro looks like this:

Sub TestArray ()
'Establish that Sheet2 is VeryHidden.
Worksheets("Sheet2").Visible = xlSheetVeryHidden
'Declare and assign a Variant type variable for the array.
Dim myArray As Variant
myArray = Array("Bill", "Bob", "Tom", "Mike", "Jim")
'Declare and assign a String type variable for the element being evaluated.
Dim strVerify as String
strVerify = Worksheets("Sheet1").Range("A1").Value
'Declare the Integer and Boolean data type variables.
Dim i as Integer, blnVerify as Boolean
'Loop through each element starting with the first one (LBound)
'and continue as necessary through to the last element (UBound).
'If "Tom" is found, exit the loop and alert the user.
'If "Tom" is not found, alert the user of that as well.
For i = LBound(myArray) To UBound(myArray)
If strVerify = myArray(i) Then
blnVerify = True
MsgBox "Yes! " & myArray(i) & " is in the array!", , "Verified"
Worksheets("Sheet2").Visible = xlSheetVisible
Exit For
End If
Next i
If blnVerify = False Then _
MsgBox strVerify & " is not in the array.", , "No such animal."
'End the macro.
End Sub

REFERENCE Please select the videos for Lesson 12 online at www.wrox.com/
go/excelvba24hour. You will also be able to download the code and resources
for this lesson from the website.

http://www.wrox.com

c13.indd 02/23/2015 Page 137

Automating Procedures
with Worksheet Events

For the most part, you have run the macros you have seen in this book by pressing a set of
shortcut keys, or by going to the Macro dialog box, selecting the macro name, and clicking the
Run button. You can take several other actions to run a macro, as you learn in future lessons.
The common theme of all these actions is that you have to manually do something, whatever it
may be, to run a macro.

The question becomes, can a VBA procedure simply know on its own when to run itself, and
then just go ahead and do so automatically, without you needing to “do something” to make
it run? The answer is yes, and it leads to the subject of event programming, which can greatly
enhance the customization and control of your workbooks.

NOTE So far, this book has used the term “macro” to refer to VBA subroutines.
When referring to event code, the term “procedure” is used to differentiate it
from macro code.

WHAT IS AN EVENT?

In the Excel object model, an event is something that happens to an object and is recognized
by the computer so an appropriate action can be taken. Recall that the Excel application is
made up of objects, such as workbooks, worksheets, cells, charts, pivot tables, and so on. Even
the entire Excel application is an object.

Virtually everything you do in Excel is in some way invoking an event upon an object. A few
examples of events are as follows:

 ➤ Double-clicking a cell

 ➤ Adding a worksheet

13

138 ❘ LESSON 13 AUTOMATING PROCEDURES WITH WORKSHEET EVENTS

c13.indd 02/23/2015 Page 138

 ➤ Changing a cell value

 ➤ Clicking a hyperlink

 ➤ Right-clicking a cell

 ➤ Calculating a formula

With VBA’s event programming capabilities, you can tap into Excel’s recognition of when an event
occurs and what kind of event it is. This enables you to write VBA code that will execute based on
whichever event(s) occur that you want to monitor. This book primarily concentrates on events at
two levels:

 ➤ Worksheet-level events, which are introduced in this lesson.

 ➤ Workbook-level events, which are introduced in the next lesson.

WORKSHEET EVENTS: AN OVERVIEW

Worksheet-level events occur for a particular worksheet. As you might imagine, events occur
when something happens to a worksheet, such as entry of new data into a cell, or a formula being
 calculated, or the worksheet being activated or deactivated. Event code that is associated with any
 particular worksheet has no direct effect on events that take place on other worksheets in that or
any other workbook.

Where Does the Worksheet Event Code Go?
You’ve become familiar with the concept of modules as being containers for the macros that you or
the Macro Recorder create. You’ll be pleased to know that each worksheet already comes with its
own built-in module, so you never need to create a module for any worksheet- or workbook-level
procedure code.

Worksheet event code always goes into the module of the worksheet for which you are monitoring
the event(s). Regardless of the Excel version you are using, the quickest and easiest way to go straight
to a worksheet’s module is to right-click its sheet tab and select View Code, as shown in Figure 13-1.

To access the worksheet’s module
quickly, right-click the worksheet
tab and select View Code.

FIGURE 13-1

Worksheet Events: An Overview ❘ 139

c13.indd 02/23/2015 Page 139

Immediately after you select View Code, you are taken directly into the Visual Basic Editor, as
shown in Figure 13-2. Your mouse cursor will be blinking in the worksheet module’s Code window,
ready for you to start entering your event procedure code.

This is the Sheet1 worksheet
module’s code window.

FIGURE 13-2

Immediately above the Code window are two fi elds with drop-down arrows. The fi eld on the left is
the Object fi eld, and when you click its drop-down arrow, you select the Worksheet object item, as
shown in Figure 13-3.

FIGURE 13-3

The fi eld above the worksheet module’s Code window, and to the right of the Object fi eld, is the
Procedure fi eld. Click the Procedure fi eld’s drop-down arrow for a list of the worksheet-level events
available to you, as shown in Figure 13-4.

FIGURE 13-4

140 ❘ LESSON 13 AUTOMATING PROCEDURES WITH WORKSHEET EVENTS

c13.indd 02/23/2015 Page 140

NOTE When you select an event from the Procedure fi eld’s drop-down list, VBA
performs the valuable service of entering the procedure statement, with all its
argument parameters and an associated End Sub statement, right there in the
worksheet module for you.

Enabling and Disabling Events
The Excel Application object has an EnableEvents property that is enabled by default. In some
cases you will need to temporarily disable events in your event procedure code, and then re-enable
them before the end of the procedure. This may sound strange at fi rst, but the reason is that some
events can trigger themselves, and an infi nite loop can occur if that happens.

For example, if you are monitoring data entry in a cell and you only want a number to be entered,
but a non-numeric entry is attempted, you would use the Worksheet_Change event to undo that
wrong entry by clearing the cell’s contents. However, VBA regards a cell’s contents being cleared as
a change having occurred to that cell, which would trigger another round of the same Worksheet_
Change event procedure that was already running. To avoid this, you sandwich the relevant code in
between statements that disable and enable events, as shown in the following syntax example:

Application.EnableEvents = False
'your relevant code
Application.EnableEvents = True

NOTE Check out the Try It section at the end of this lesson; it includes two
 specifi c examples of disabling and enabling events!

NOTE In the preceding syntax example, the EnableEvents property of the
Application object was temporarily set to False with the statement

Application.EnableEvents = False

and then set back to True at the end of the macro with the statement

Application.EnableEvents = True

Keep in mind that the Application object covers all of Excel. For example,
while a macro is running with the EnableEvents property of the Application
object set to False, EnableEvents is disabled for all open workbooks in that
instance of Excel, not just for the workbook where the VBA code is being
 executed. Whatever properties of the Application object you temporarily
change, remember to reset those properties to their original settings before you
exit your macro or procedure.

Examples of Common Worksheet Events ❘ 141

c13.indd 02/23/2015 Page 141

EXAMPLES OF COMMON WORKSHEET EVENTS

At the worksheet level, Excel version 2003 has 9 events, and 5 more than that (associated with pivot
tables) for a total of 14 in versions 2007 and 2010. Version 2013 has 3 more events still, for a total of 17.

The additional event procedures in newer versions might be useful for you to learn down the road,
but they involve a wider and more specialized instruction of VBA development than the intended
introductory scope of VBA in this book. The most commonly used worksheet events are the
 following nine that are common to all versions of Excel from 2000 to 2013:

 ➤ Worksheet_Change

 ➤ Worksheet_SelectionChange

 ➤ Worksheet_BeforeDoubleClick

 ➤ Worksheet_BeforeRightClick

 ➤ Worksheet_FollowHyperlink

 ➤ Worksheet_Activate

 ➤ Worksheet_Deactivate

 ➤ Worksheet_Calculate

 ➤ Worksheet_PivotTableUpdate

Worksheet_Change Event
The Worksheet_Change event occurs when cells on the worksheet are changed by the user or by
an external link, such as a new value being entered into a cell, or the cell’s value being deleted. The
 following example places the current date in column C next to a changed cell in column B:

Private Sub Worksheet_Change(ByVal Target As Range)
If Target.Column <> 2 Then Exit Sub
Target.Offset(0, 1).Value = Format(VBA.Date, "MM/DD/YYYY")
End Sub

NOTE The Worksheet_Change event is not triggered by a calculation change,
such as a formula returning a different value. Use the Worksheet_Calculate
event to capture the changes to values in cells that contain formulas.

Worksheet_SelectionChange Event
The Worksheet_SelectionChange event occurs when a cell is selected. The following code high-
lights the active cell with a yellow color every time a different cell is selected:

Private Sub Worksheet_SelectionChange(ByVal Target As Range)
Cells.Interior.ColorIndex = 0
Target.Interior.Color = vbYellow
End Sub

142 ❘ LESSON 13 AUTOMATING PROCEDURES WITH WORKSHEET EVENTS

c13.indd 02/23/2015 Page 142

NOTE A word to the wise! This kind of code is fun and has its uses, but with
each change in cell selection, the Undo stack will be eliminated, negating the
Undo feature.

Worksheet_BeforeDoubleClick Event
The Worksheet_BeforeDoubleClick event is triggered by double-clicking a worksheet cell.
The Cancel argument is optional and halts the ability to go into Edit mode for that cell from a
double-click.

In this example, if you double-click a cell in range A1:C8, and the cell already contains a
 number or is empty, the numeric value of that cell increases by 1. All other cells in the worksheet
are unaffected:

Private Sub Worksheet_BeforeDoubleClick(ByVal Target As Range, _
Cancel As Boolean)
If Intersect(Target, Range("A1:C8")) Is Nothing Then Exit Sub
If IsNumeric(Target.Value) = True Then
Cancel = True
Target.Value = Target.Value + 1
End If
End Sub

NOTE This event does not occur if you double-click the active cell’s edge, or its
fi ll handle.

Worksheet_Before RightClick Event
The Worksheet_BeforeRightClick event occurs when you right-click a worksheet cell. The
optional Cancel argument halts the right-click pop-up menu from appearing. In the following
example, when you right-click a cell in column E, the current date and time are entered into that cell
and column E’s width is autofi tted:

Private Sub Worksheet_BeforeRightClick(ByVal Target As Range, _
Cancel As Boolean)
If Target.Column <> 5 Then Exit Sub
Cancel = True
Target.Value = Format(VBA.Now, "MMM DD, YYYY, hh:mm AM/PM")
Columns(Target.Column).AutoFit
End Sub

Worksheet_FollowHyperlink Event
The Worksheet_FollowHyperlink event occurs when you click any hyperlink on the worksheet.
You learn more about command buttons in later lessons, but as a sneak preview, Figure 13-5 shows

Examples of Common Worksheet Events ❘ 143

c13.indd 02/23/2015 Page 143

a command button embedded onto a worksheet. The button is captioned with a website address but
the caption itself is plain text, not actually a hyperlink. With the following code, when you click the
command button, you are taken to that caption’s website:

Private Sub CommandButton1_Click()
CommandButton1.Parent.Parent.FollowHyperlink CommandButton1.Caption
End Sub

FIGURE 13-5

NOTE The Worksheet_FollowHyperlink event is available as a worksheet-level
event, but in reality, it is more of a function of the entire workbook. Notice the
fi rst three items in the statement: CommandButton1.Parent.Parent. The parent
of the CommandButton is the worksheet upon which it resides, and the parent of
that worksheet is the workbook itself.

A CommandButton as it is referenced in this section is an ActiveX object created
from the control toolbox. Another type of button is a Form Button, created from
the Form toolbar. ActiveX objects are more complex than Form objects, whereas
Form objects are simpler to use and are directly integrated with Excel. ActiveX
and Form objects are covered in Lesson 16.

Worksheet_Activate Event
The Worksheet_Activate event occurs when you go to a particular worksheet, typically by clicking
the worksheet’s tab, although any of the other methods of arriving at a worksheet will trigger the
Worksheet_Activate event. Suppose you have a worksheet with one or more pivot tables on it, and
every time you go to that worksheet, you want to know that the pivot tables are all refreshed and up
to date. The following event code accomplishes that task:

Private Sub Worksheet_Activate()
Dim intCounter As Integer
For intCounter = 1 To ActiveSheet.PivotTables.Count
ActiveSheet.PivotTables(intCounter).PivotCache.Refresh
Next intCounter
End Sub

144 ❘ LESSON 13 AUTOMATING PROCEDURES WITH WORKSHEET EVENTS

c13.indd 02/23/2015 Page 144

Worksheet_Deactivate Event
The Worksheet_Deactivate event occurs when you activate a different worksheet than the one
you were on. Suppose there is a particular cell in a worksheet that you strongly prefer to have some
value entered into it before the users exit that worksheet. The following Worksheet_Deactivate
event code checks to see if cell A1 contains a value. If it does not, a message box alerts the users as a
reminder of that fact when they deactivate the worksheet:

Private Sub Worksheet_Deactivate()
If Len(Me.Range("A1").Value) = 0 Then _
MsgBox "FYI and reminder: you did not enter a value in cell A1" _
& vbCrLf & _
"in the worksheet named " & Me.Name & ".", _
vbExclamation, _
"Cell A1 should have some value in it!"
End Sub

Worksheet_Calculate Event
The Worksheet_Calculate event occurs when the worksheet is recalculated. Suppose you have a
budget model and you want to monitor the bottom-line number for profi t and loss, which is derived
by a formula in cell Z135. You could conditionally format the cell when its returned value is outside
an acceptable range, but chances are no one will see the formatting due to the location of the cell.

To give the budget model’s bottom-line Profi t/Loss number a boost in awareness, utilize the
Worksheet_Calculate event to make a message box pop up as a warning when the number in cell
Z135 becomes lower than $1,000. Also, to make it fun, have a congratulatory message appear if the
profi t number is greater than or equal to $5,000:

Private Sub Worksheet_Calculate()
If Range("Z135").Value < 1000 Then
MsgBox "Profits are too low!!", vbExclamation, "Warning!!"
ElseIf Range("Z135").Value >= 5000 Then
MsgBox "Profits are TERRIFIC!!", vbExclamation, "Wow, good news!!"
End If
End Sub

Worksheet_PivotTableUpdate Event
The Worksheet_PivotTableUpdate event occurs after a pivot table is updated on a worksheet, such
as after a refresh. The following procedure is a simple example of the syntax for this event:

Private Sub Worksheet_PivotTableUpdate(ByVal Target As PivotTable)
MsgBox "The pivot table on this worksheet was just updated.", vbInformation, "FYI"
End Sub

TRY IT

In this lesson, you write a Worksheet_Change event that enables you to sum numbers as they are
entered into the same cell. Your Worksheet_Change event enables any cell in column A, except
for cell A1, to accept a number you enter, add it to whatever number was already in that cell, and

Try It ❘ 145

c13.indd 02/23/2015 Page 145

 display the resulting sum. For example, if cell A9 currently holds the number 2 and you enter the
number 3 in that cell, the resulting value of cell A9 will be 5.

Lesson Requirements
To get the sample workbook you can download Lesson 13 from the book’s website at
www.wrox.com/go/excelvba24hour.

Step-by-Step
 1. Open a new workbook, right-click the Sheet1 tab, and select View Code.

 2. Your cursor will be blinking in the Sheet1 worksheet module. Directly above that, click the
down arrow belonging to the Object list, and select Worksheet. This produces the following
default lines of code in your worksheet module:

Private Sub Worksheet_SelectionChange(ByVal Target As Range)

End Sub

 3. It is really the Change event you are interested in composing, so take one of two actions:
either manually edit the Private Sub Worksheet_SelectionChange(ByVal TargetAs
Range) statement by deleting the word Selection, or click the down arrow above the
module for the Procedures list, select the Change item, and delete the default Private Sub
Worksheet_SelectionChange(ByVal Target As Range) statement and its accompanying
End Sub statement. At this point, the only procedure code you see in your worksheet
module is this:

Private Sub Worksheet_Change(ByVal Target As Range)

End Sub

 4. The event code monitors column A but you want the ability to enter some kind of header
label into cell A1. Begin the procedure by writing a line of code to exclude cell A1 from the
Change event:

If Target.Address = "A1" Then Exit Sub

 5. Your next consideration is to limit the Change event to column A, to avoid imposing the
Change event onto the entire worksheet. Also, you want the Change event to be in effect for
only one cell at a time in column A. One statement can handle both considerations:

If Target.Column <> 1 Or Target.Cells.Count > 1 Then Exit Sub

NOTE Note that column A is the fi rst (leftmost) column on the worksheet grid
and is easily referred to in VBA as Columns(1). If you had been working with
column H, which is the eighth column from the left on the worksheet grid, you
would have written this step’s line of code as

If Target.Column <> 8 Or Target.Cells.Count > 1 Then Exit Sub

http://www.wrox.com/go/excelvba24hour

146 ❘ LESSON 13 AUTOMATING PROCEDURES WITH WORKSHEET EVENTS

c13.indd 02/23/2015 Page 146

 6. Pressing the Delete key triggers the Change event. You might want to delete a cell’s contents
and start entering a new set of numbers in an empty cell, so allow yourself the luxury of exit-
ing the Change event if the Delete key is pressed:

If IsEmpty(Target) Then Exit Sub

 7. Even though a number is supposed to be entered into column A, never assume that it
will always happen that way, because people make mistakes. Provide for the attempt at a
 non-numeric entry and disallow it:

If IsNumeric(Target.Value) = False Then

 8. Disable events because you are about to undo the non-numeric value; the Undo command
also triggers the Change event:

Application.EnableEvents = False

 9. Execute the Undo action so the non-numeric entry is deleted:

Application.Undo

 10. Enable events again:

Application.EnableEvents = True

 11. Remind the user with a message box that only numbers are allowed, and exit the Change
event procedure with the Exit Sub statement:

MsgBox "You entered a non-numeric value.", _
vbExclamation, _
"Please: numbers only in column A!"
Exit Sub
End If

 12. Now that all the reasonable safeguards have been met, declare two Double type variables: one
named OldVal for the numeric value that was in the cell before it was changed, and the other
named NewVal for the numeric value that was just entered that triggered this Change event:

Dim OldVal As Double, NewVal As Double

 13. Defi ne the NewVal variable fi rst because it is the number that was just entered into the cell:

NewVal = Target.Value

 14. Undo the entry to display the old (preceding) value. Again, this requires that you disable
events so you do not re-trigger the Change event while you are already in a Change event:

Application.EnableEvents = False

 15. Execute Undo so the previous value is re-established:

Application.Undo

 16. Defi ne the OldVal variable, which is possible to do now that the previous value has been
restored:

OldVal = Target.Value

Try It ❘ 147

c13.indd 02/23/2015 Page 147

 17. Programmatically enter into the cell the sum of the previous value, plus the new last-entered
value, by referring to those two variables in an arithmetic equation just as you would if they
were numbers:

Target.Value = OldVal + NewVal

 18. Enable events now that all the changes to the cell have been made:

Application.EnableEvents = True

 19. When completed, the entire procedure looks like this, with comments that have been added
to explain each step:

Private Sub Worksheet_Change(ByVal Target As Range)
'Allow for a header label to be placed in cell A1.
If Target.Address = "A1" Then Exit Sub
'Only apply this effect to column A (column 1 in VBA-Speak).
'At the same time, only allow one cell at a time to be changed.
If Target.Column <> 1 Or Target.Cells.Count > 1 Then Exit Sub
'Pressing the Delete key triggers the Change event.
'You might want to delete the cell's contents and start with
'an empty cell, so exit the Change event if the Delete key is pressed.
If IsEmpty(Target) Then Exit Sub

'Even though a number is *supposed* to be entered into column A,
'never assume that will always happen because users do make mistakes.
'Provide for the attempt at a non-numeric entry and disallow it.
If IsNumeric(Target.Value) = False Then
'Disable events because you are about to undo the non-numeric value,
'and Undo also triggers the Change event.
Application.EnableEvents = False
'Execute the Undo so the non-numeric entry is deleted.
Application.Undo
'Enable events again.
Application.EnableEvents = True
'Remind the user with a Message Box that only numbers are allowed,
'and exit the Change event procedure with the Exit Sub statement.
MsgBox "You entered a non-numeric value.", _
vbExclamation, _
"Please: numbers only in column A!"
Exit Sub
End If

'Now that all the reasonable safeguards have been met,
'Declare two Double type variables:
'one named OldVal for the numeric value that was in the cell
'before it got changed,
'and the other variable named NewVal for the numeric value
'that was just entered that triggered this Change event.
Dim OldVal As Double, NewVal As Double
'Define the NewVal variable first, as it is the number that
'was just entered into the cell.

148 ❘ LESSON 13 AUTOMATING PROCEDURES WITH WORKSHEET EVENTS

c13.indd 02/23/2015 Page 148

NewVal = Target.Value
'Undo the entry in order to display the old (preceding) value.
'Again, this requires that you disable events in order to not
're-trigger the Change event while you are already in a Change event.
Application.EnableEvents = False
'Execute Undo so the previous value is re-established.
Application.Undo
'Define the OldVal variable which is possible to do now that
'the previous value has been restored.
OldVal = Target.Value
'Programmatically enter into the cell the sum of the old previous value,
'plus the new last-entered value, by referring to those two variables
'in an arithmetic equation just as you would if they were numbers.
Target.Value = OldVal + NewVal
'Enable events now that all the changes to the cell have been made.
Application.EnableEvents = True
End Sub

 20. Press Alt+Q to return to the worksheet. Test the code by entering a series of numbers in any
single cell in column A other than cell A1.

REFERENCE Please select the video for Lesson 13 at www.wrox.com/go
/excelvba24hour. You will also be able to download the code and resources
for this lesson from the website.

http://www.wrox.com/go

c14.indd 02/23/2015 Page 149

Automating Procedures
with Workbook Events

In Lesson 13, you learned about worksheet-level events and how they are triggered by actions
relating to individual worksheets. Workbooks themselves can also recognize and respond
to a number of events that take place at the workbook level. This lesson describes how you
can further customize your workbooks with VBA procedures for the most commonly used
 workbook events.

WORKBOOK EVENTS: AN OVERVIEW

Workbook events occur within a particular workbook. Many workbook events occur because
something happened to an object in the workbook, such as a worksheet—any worksheet—that
was activated, or a cell—any cell—that was changed. Other workbook events occur because the
workbook was imposed upon to do something, such as to open or close, or to be saved or printed.

NOTE Unless the VBA code itself purposely refers to other workbooks, event
procedures at the workbook level affect only the workbook within which the
code resides.

Where Does the Workbook Event Code Go?
You saw in Lesson 13 that each individual worksheet has its own module. Workbooks are
similar to worksheets in this respect because a workbook is also an Excel object, and it has its
own module already present and accounted for when the workbook is created.

14

150 ❘ LESSON 14 AUTOMATING PROCEDURES WITH WORKBOOK EVENTS

c14.indd 02/23/2015 Page 150

NOTE Workbook-level event code always goes into the workbook module. You
never need to create a workbook module or a worksheet module; Excel creates
those modules automatically with every new workbook. If a workbook-level
event procedure is not in the workbook module (same as if a worksheet-level
event procedure is not in a worksheet module), VBA will not be able to execute
the event code.

To arrive at the Code window for your workbook’s module, with whatever version of Excel you
are using, you can press Alt+F11 to get into the Visual Basic Editor. If you are using a version of
Excel prior to 2007, such as version 2003, you can also access the workbook module quickly by
 right-clicking the Excel workbook icon near the top-left corner of the workbook window and
 selecting View Code. This option is shown in Figure 14-1.

In Excel versions prior to 2007,
to quickly access the workbook module,

right-click the workbook icon to the left of
the File menu item, and select View Code.

FIGURE 14-1

In the VBE, if you do not see the Project Explorer window, go ahead and make it visible by
 pressing Ctrl+R. In the Project Explorer, fi nd your workbook name; it is in bold font, with the
text VBAProject (YourWorkbookName.xlsm). Directly below that will be a yellow folder named
Microsoft Excel Objects. When you expand that folder, the last item at the bottom of the list is your
workbook object, identifi ed by its default name of ThisWorkbook.

NOTE You saw in Lesson 4 how to change the name of a module. You can change
the name of the workbook module, but do yourself a favor and leave the workbook
module’s default name alone. The ThisWorkbook module name is consistent with
99.99 percent of VBA workbook projects you’ll likely encounter. There’s almost
never a benefi t to be gained by changing the workbook module’s name.

As shown in Figure 14-2, to get into the Code window of the workbook module, either double-click
the ThisWorkbook object, or right-click it and select View Code. As soon as you do that, your

Workbook Events: An Overview ❘ 151

c14.indd 02/23/2015 Page 151

mouse cursor will be blinking in the workbook module’s Code window, ready for you to start
 entering your workbook-level event procedure code.

To access the workbook’s code module, either...
...double-click the ThisWorkbook object
or
...right-click the ThisWorkbook object and select View Code.

FIGURE 14-2

Entering Workbook Event Code
Similar to the worksheet module Code window you saw in Lesson 13, two fi elds with drop-down
arrows are located above the workbook module’s Code window. The fi eld on the left is the Object
fi eld, and when you click its drop-down arrow, you select the Workbook object item, as shown in
Figure 14-3.

The fi eld above the workbook module’s Code window, and to the right of the Object fi eld, is the
Procedure fi eld. Click the Procedure fi eld’s drop-down arrow for a list of the workbook-level events
available to you, as shown in Figure 14-4.

NOTE For convenience, just as with selecting worksheet-level event names,
VBA places the complete workbook-level event statement, with all its arguments
and the accompanying End Sub statement, when you select a workbook-level
event name from the Procedure fi eld.

152 ❘ LESSON 14 AUTOMATING PROCEDURES WITH WORKBOOK EVENTS

c14.indd 02/23/2015 Page 152

FIGURE 14-3

FIGURE 14-4

Examples of Common Workbook Events ❘ 153

c14.indd 02/23/2015 Page 153

EXAMPLES OF COMMON WORKBOOK EVENTS

At the workbook level, Excel version 2003 has 28 events, and 8 more than that (mostly associated
with pivot tables) for a total of 36 in versions 2007 and 2010. Microsoft added 4 more events to
 version 2013 for a total of 40. The most commonly used workbook-level events across all versions of
Excel are listed here, with examples of each on the following pages:

 ➤ Workbook_Open

 ➤ Workbook_BeforeClose

 ➤ Workbook_Activate

 ➤ Workbook_Deactivate

 ➤ Workbook_SheetChange

 ➤ Workbook_SheetSelectionChange

 ➤ Workbook_SheetBeforeDoubleClick

 ➤ Workbook_SheetBeforeRightClick

 ➤ Workbook_SheetPivotTableUpdate

 ➤ Workbook_NewSheet

 ➤ Workbook_BeforePrint

 ➤ Workbook_SheetActivate

 ➤ Workbook_SheetDeactivate

 ➤ Workbook_BeforeSave

Workbook_Open Event
The Workbook_Open event is triggered when the workbook opens, and is among the most popular
and useful of all workbook-level events. The Workbook_Open event is perfect for such tasks as
informing users about important features of your workbook, or generating a running list of users
who have accessed the workbook, or establishing a particular format setting that would be reset to
its original state with the Workbook_BeforeClose event.

In the Try It section of Lesson 13, you saw an example of how to enter a number in a cell and
have that number be added to whatever number was previously in that cell. The users of this
 workbook might appreciate knowing about, or being reminded of, that capability when they open
the workbook. You can use the Workbook_Open event, such as with the following procedure, for
 example, to show a message box that informs the users of that workbook’s special capability:

Private Sub Workbook_Open()
MsgBox _
"FYI, when you enter a number in a cell in column A" & vbCrLf & _
"of Sheet3, it will automatically be added to the" & vbCrLf & _
"number previously in that cell, and display the sum.", _
vbInformation, _

154 ❘ LESSON 14 AUTOMATING PROCEDURES WITH WORKBOOK EVENTS

c14.indd 02/23/2015 Page 154

"Welcome! Here's a tip for this workbook:"
End Sub

Workbook_BeforeClose Event
The Workbook_BeforeClose event is triggered just before the workbook closes. This event is often
used in conjunction with the Workbook_Open event, to set a workbook back to its original state if
the Workbook_Open event temporarily changed the user’s Excel settings.

The following example is one way to apply the Workbook_BeforeClose event’s usefulness. You can
tell Excel to save your workbook automatically when you close it, to avoid Excel’s prompt that asks
you if you want to save your changes (and losing your work if you mistakenly were to click No!):

Private Sub Workbook_BeforeClose(Cancel As Boolean)
ThisWorkbook.Save
End Sub

Workbook_Activate Event
The Workbook_Activate event is triggered when the workbook is activated, such as when the
 workbook is opened, or when you switch between that workbook and other open workbooks. In this
example, the following procedure maximizes the Excel window when you activate the workbook:

Private Sub Workbook_Activate()
ActiveWindow.WindowState = xlMaximized
End Sub

Workbook_Deactivate Event
The Workbook_Deactivate event is triggered when the workbook loses focus, such as when a
 different Excel workbook is activated or when the workbook is closed. The following example
prompts a message box to alert you when the workbook is deactivated:

Private Sub Workbook_Deactivate()
MsgBox "You are leaving " & Me.Name & "!!", _
vbInformation, _
"Just saying..."
End Sub

Workbook_SheetChange Event
The Workbook_SheetChange event is triggered when any cell’s contents are changed on any
 worksheet in the workbook. If you would like to keep a log of the date, time, sheet name, and
address of any cell that gets changed, this procedure accomplishes that by listing information on a
worksheet named Log:

Private Sub Workbook_SheetChange(ByVal Sh As Object, ByVal Target As Range)
'The log sheet will hold the record of each sheet change,
'so halt the event if a cell is changed on the Log sheet.
If Sh.Name = "Log" Then Exit Sub
'Declare a Long variable for the next available row on the Log sheet.
Dim NextRow As Long

Examples of Common Workbook Events ❘ 155

c14.indd 02/23/2015 Page 155

'Assign the row number to the next empty row below that last row of data
'in column A.
NextRow = Worksheets("Log").Cells(Rows.Count, 1).End(xlUp).Row + 1
'In column A, enter the date of the changed cell.
Worksheets("Log").Cells(NextRow, 1).Value = VBA.Date
'In column B, enter the time of the changed cell.
Worksheets("Log").Cells(NextRow, 2).Value = VBA.Time
'In column C, enter the name of the worksheet holding the changed cell.
Worksheets("Log").Cells(NextRow, 3).Value = Sh.Name
'In column D, enter the address of the changed cell.
Worksheets("Log").Cells(NextRow, 4).Value = Target.Address
'Autofit the columns on the Log sheet, to make the information readable.
Worksheets("Log").Columns.AutoFit
End Sub

Workbook_SheetSelectionChange Event
The Workbook_SheetSelectionChange event is triggered when a different cell is selected
on any worksheet in the workbook. In Lesson 13, you saw an example of the Worksheet_
SelectionChange event whereby the active cell was continuously highlighted. If you are navigating
through large ranges of data on your worksheets, such as budgets or fi nancial reports, you might
fi nd it useful to visually identify more than just the active cell. The following procedure highlights
the entire row and column at each new cell selection:

Private Sub Workbook_SheetSelectionChange(ByVal Sh As Object, _
ByVal Target As Range)
Dim myRow As Long, myColumn As Long
myRow = Target.Row
myColumn = Target.Column
Sh.Cells.Interior.ColorIndex = 0
Sh.Rows(myRow).Interior.Color = vbGreen
Sh.Columns(myColumn).Interior.Color = vbGreen
End Sub

Workbook_SheetBeforeDoubleClick Event
The Workbook_SheetBeforeDoubleClick event is triggered when a cell on any worksheet is about
to be double-clicked. The double-click effect (usually getting into Edit mode) can be canceled with
the Cancel parameter.

Suppose you have a workbook wherein column A of every worksheet is reserved for the purpose
of placing check marks in cells. You do not want to deal with embedding possibly hundreds of real
check box objects, so a check mark–looking character in a cell would suffi ce.

You can utilize the Workbook_DoubleClick event that would apply only to column A for any
 worksheet. The following procedure toggles the effect of placing a check mark in column A. If the
cell is empty, a check mark is entered, and if a check mark is present when the cell is double-clicked
again, the check mark is removed. As you can see in the code, the “check mark” is really a lowercase
letter “a” formatted in Marlett font:

Private Sub Workbook_SheetBeforeDoubleClick(ByVal Sh As Object, _
ByVal Target As Range, Cancel As Boolean)

156 ❘ LESSON 14 AUTOMATING PROCEDURES WITH WORKBOOK EVENTS

c14.indd 02/23/2015 Page 156

If Target.Column <> 1 Then Exit Sub
Cancel = True
Target.Font.Name = "Marlett"
Target.HorizontalAlignment = xlCenter
If IsEmpty(Target) = True Then
Target.Value = "a"
Else
Target.Clear
End If
End Sub

Workbook_SheetBeforeRightClick Event
The Workbook_SheetBeforeRightClick event is triggered when a cell on any worksheet is about to
be right-clicked. You can cancel the right-click effect of the pop-up menu with the Cancel parameter.

Suppose you want to add a utility to your workbook that would enable you to quickly and easily
insert a row above any cell you right-click. A message box could ask if you want to insert a row, and
if you answer yes, a row would be inserted. The following procedure is an example of how you can
handle that:

Private Sub Workbook_SheetBeforeRightClick(ByVal Sh As Object, _
ByVal Target As Range, Cancel As Boolean)
If MsgBox("Do you want to insert a row here?", _
vbQuestion + vbYesNo, _
"Please confirm...") = vbYes Then
Cancel = True
ActiveCell.EntireRow.Insert
End If
End Sub

Workbook_SheetPivotTableUpdate Event
The SheetPivotTableUpdate event monitors all worksheets in the workbook that hold pivot tables.
In the following event code, when a pivot table is updated, the name of its worksheet appears in a
message box.

Private Sub Workbook_SheetPivotTableUpdate(ByVal Sh As Object, _
ByVal Target As PivotTable)
MsgBox "The pivot table on sheet " & Sh.Name & " was updated.", , "FYI"
End Sub

Workbook_NewSheet Event
The Workbook_NewSheet event is triggered when a new sheet is added to the workbook. To see
this event in action, suppose you do not want to formally protect the workbook, but you want to
 disallow the addition of any new worksheets. This event procedure promptly deletes a new sheet as
soon as it is added, with a message box informing the user that adding new sheets is not permitted:

Private Sub Workbook_NewSheet(ByVal Sh As Object)
Dim asn As String
asn = ActiveSheet.Name

Examples of Common Workbook Events ❘ 157

c14.indd 02/23/2015 Page 157

Application.EnableEvents = False
Application.DisplayAlerts = False
Sheets(ActiveSheet.Name).Delete
MsgBox "Sorry, new sheets are not allowed to be added.", vbCritical, " FYI"
Application.DisplayAlerts = True
Application.EnableEvents = True
End Sub

Workbook_BeforePrint Event
The Workbook_BeforePrint event is triggered before a user attempts to print any portion of the
workbook. You can cancel the print job by setting the Cancel parameter to True. If you want to
ensure that anything printed from that workbook will have the workbook’s full name in the footer
of every printed page, the following procedure accomplishes that:

Private Sub Workbook_BeforePrint(Cancel As Boolean)
Dim sht As Worksheet
For Each sht In ThisWorkbook.Sheets
sht.PageSetup.CenterFooter = ThisWorkbook.FullName
Next sht
End Sub

Workbook_SheetActivate Event
The Workbook_SheetActivate event is triggered when a sheet is activated in the workbook.
Suppose you want to always return to cell A1 whenever you activate any worksheet, regardless of
what cell you had selected the last time you were in that worksheet. The following procedure using
the Application.GoTo statement does just that:

Private Sub Workbook_SheetActivate(ByVal Sh As Object)
If TypeName(Sh) = "Worksheet" Then Application.Goto Range("A1"), True
End Sub

NOTE This example illustrates the distinction between a Sheet object and a
Worksheet object—they are not necessarily the same things. Excel has several
types of Sheet objects: worksheets, chart sheets, outdated dialog sheets, and the
obsolete macro sheets. In this example, a chart sheet would create confusion for
VBA because chart sheets do not contain cells. Only worksheets contain cells,
which is why the TypeName of Worksheet is the only Sheet object at which this
procedure’s code is directed.

Workbook_SheetDeactivate Event
The Workbook_SheetDeactivate event is triggered when a sheet loses focus, such as when a
 different sheet in the workbook is activated. If you have a workbook with tables of data on every
worksheet, and you want the tables to be sorted automatically by column A whenever you leave the
worksheet, this procedure does that:

158 ❘ LESSON 14 AUTOMATING PROCEDURES WITH WORKBOOK EVENTS

c14.indd 02/23/2015 Page 158

Private Sub Workbook_SheetDeActivate(ByVal Sh As Object)
If TypeName(Sh) = "Worksheet" Then
Sh.Range("A1").CurrentRegion.Sort Key1:=Sh.Range("A2"), _
Order1:=xlAscending, Header:=xlYes
End If
End Sub

Workbook_BeforeSave Event
The Workbook_BeforeSave event is triggered just before the workbook is saved. You can set the
Cancel parameter to True to stop the workbook from being saved.

Suppose you want to limit the time period for a workbook to be saved. The following procedure
allows the workbook to be saved only between 9:00 AM and 5:00 PM:

Private Sub Workbook_BeforeSave(ByVal SaveAsUI As Boolean, Cancel As Boolean)
If VBA.Time < TimeValue("09:00") _
Or VBA.Time > TimeValue("17:00") Then Cancel = True
End Sub

TRY IT

In this lesson you write a Workbook_BeforePrint workbook-level event that instructs Excel not to
print a particular range of confi dential data that resides on a particular worksheet.

Lesson Requirements
To get the sample database fi les you can download Lesson 14 from the book’s website at
www.wrox.com/go/excelvba24hour.

Step-by-Step
 1. Open a new workbook and activate Sheet3. To prepare the worksheet for this

 demonstration, populate range A1:E20 with some sample data by selecting the range, typing
the word Hello, and pressing Ctrl+Enter.

 2. On your keyboard, press Alt+F11 to go to the Visual Basic Editor, and then press Ctrl+R to
ensure that the Project Explorer window is visible.

 3. Find the name of your workbook in the Project Explorer, and expand the folder named
Microsoft Excel Objects.

 4. The last item at the bottom of the list of Microsoft Excel Objects is the workbook object, and
it is called ThisWorkbook. You’ll want to access the Code window for the ThisWorkbook
module, and to do that, you can either double-click the ThisWorkbook object name or
 right-click it and select View Code.

 5. The cursor will be blinking in the Code window of your workbook module. Directly above
that, click the down arrow belonging to the Object list, and select Workbook, which pro-
duces the following default lines of code in your workbook module:

http://www.wrox.com/go/excelvba24hour

Try It ❘ 159

c14.indd 02/23/2015 Page 159

Private Sub Workbook_Open()

End Sub

 6. In this example you write a BeforePrint procedure, so click the other down arrow above
the Code window for the Procedure fi eld, and select BeforePrint. VBA produces these lines
of code, which is just what you want:

Private Sub Workbook_BeforePrint(Cancel As Boolean)

End Sub

 7. Though not imperative, unless you are planning to employ the Workbook_Open event, there’s
no reason to keep the default Private Sub Workbook_Open() and End Sub statements, so
go ahead and delete them if you like.

 8. In this example, you have confi dential data on Sheet3 only, so instruct Excel that it’s okay to
print anything on any worksheet other than Sheet3:

If ActiveSheet.Name <> "Sheet3" Then Exit Sub

 9. Invoke the Cancel argument to halt the print process when an attempt is made to print Sheet3:

Cancel = True

 10. Disable events because you actually will be printing something, but you don’t want to
 re-trigger the BeforePrint event while you are already in it:

Application.EnableEvents = False

 11. Your confi dential data resides in range B5:D12. Temporarily format that range with three
semicolons to make those cells unable to display their contents:

Range("B5:D12").NumberFormat = ";;;"

 12. Print the worksheet:

ActiveSheet.PrintOut

NOTE When you test the Workbook_BeforePrint procedure, you can use the
PrintPreview method instead of the PrintOut method, which can save you
costs in paper and printer toner.

 13. Restore the General format to the confi dential range so the cells will be able to show their
contents after the print job:

Range("B5:D12").NumberFormat = "General"

 14. Enable events again, now that the print job has been executed:

Application.EnableEvents = True

 15. When completed, the entire procedure looks like this, with comments that have been added
to explain each step:

Private Sub Workbook_BeforePrint(Cancel As Boolean)

160 ❘ LESSON 14 AUTOMATING PROCEDURES WITH WORKBOOK EVENTS

c14.indd 02/23/2015 Page 160

'You have confidential data on Sheet3 only,
'so any other sheet is OK to print anything.
If ActiveSheet.Name <> "Sheet3" Then Exit Sub
'Invoke the Cancel argument to halt the print process.
Cancel = True
'Disable events because you actually will print something
'but you don't want the BeforePrint event to kick in.
Application.EnableEvents = False
'Your confidential data resides in range B5:D12.
'Temporarily format that range with three semicolons
'to make those cells unable to display their contents.
Range("B5:D12").NumberFormat = ";;;"
'Print the worksheet.
ActiveSheet.PrintOut 'demo with PrintPreview
'Restore the General format to the confidential range
'so the cells will be able to show their contents
'after the print job.
Range("B5:D12").NumberFormat = "General"
'Enable events again, now that the print job has been executed.
Application.EnableEvents = True
End Sub

 16. Press Alt+Q to return to the worksheet. Test the code by printing Sheet3, noting that the
printout shows an empty range of cells, representing the range of confi dential data that did
not get printed.

REFERENCE Please select the video for Lesson 14 online at www.wrox.com/go
/excelvba24hour. You will also be able to download the code and resources
for this lesson from the website.

http://www.wrox.com/go

c15.indd 02/24/2015 Page 161

Handling Duplicate Items
and Records

When you work with data in tables or lists, it is common for some items to appear more than
once. Two situations usually arise when duplicate items exist, depending on the nature of the
work at hand:

 ➤ The repeated items are unwanted and need to be deleted. For example, if you are
 compiling a list of e-mail addresses, or you are gathering a list of people’s names for
invitation to an event, you would only want a list of unique items.

 ➤ Items are expected to be repeated in the list and need to be maintained for analysis
or record-keeping. For example, a list of monthly payments made to a vendor would
show that vendor’s name with each transaction.

DELETING ROWS CONTAINING DUPLICATE ENTRIES

Suppose a table of data contains duplicate items in one or more columns. To delete rows
 containing duplicate items, the fi rst step is to determine if the table contains duplicates in just
one column, or if several (maybe all) columns contain duplicate data.

Deleting Rows with Duplicates in a Single Column
Suppose you have a list of items that are repeated in column A. The macro named
DeleteDupesColumnA uses AdvancedFilter to expose the fi rst instance of every item in column
A. The exposed rows are marked with a value (the numeral 1 in this example, but it could be
any value) in a helper column. All rows with empty cells in the helper column are deleted.

NOTE For my money, AdvancedFilter is the second-most powerful tool in
Excel, behind pivot tables. One of AdvancedFilter’s capabilities is to fi lter for
unique items in a large list at lightning speed.

15

162 ❘ LESSON 15 HANDLING DUPLICATE ITEMS AND RECORDS

c15.indd 02/24/2015 Page 162

The macro executes in the blink of an eye, even for a list with tens of thousands of rows. There are
comments at each step to explain the deletion process using AdvancedFilter:

Sub DeleteDupesColumnA()
'Long variable for last used column.
Dim LastColumn As Long
With Application
.ScreenUpdating = False
'Determine last column number of table, and add a 1 to it
'to establish a helper column that is the column after
'the last column in the data table.
LastColumn = _
Cells.Find(What:="*", After:=Range("A1"), SearchOrder:=xlByColumns, _
SearchDirection:=xlPrevious).Column + 1
'AdvancedFilter exposes unique entries and enters a 1 in the helper
'column on the same row of items that first appear in the list.
With Range("A1:A" & Cells(Rows.Count, 1).End(xlUp).Row)
.AdvancedFilter Action:=xlFilterInPlace, Unique:=True
.SpecialCells(xlCellTypeVisible).Offset(0, LastColumn - 1).Value = 1
'Error bypass that is explained in Lesson 20.
'This is to avoid the macro stopping if no duplicate values existed.
On Error Resume Next
'Show all rows by exiting AdvancedFilter.
ActiveSheet.ShowAllData
'Delete rows where empty cells exist in the helper column,
'indicating that the value in column A is a duplicate.
Columns(LastColumn).SpecialCells(xlCellTypeBlanks).EntireRow.Delete
Err.Clear
End With
'Clear the helper column.
Columns(LastColumn).Clear
.ScreenUpdating = True
End With
End Sub

Your lists will not always have its duplicate entries in column A. The next list you receive might
have its duplicate entries in a different column, say column D. The DeleteDupesColumnD macro is a
modifi cation of the previous macro, with comments showing where and how to change the relevant
column references:

Sub DeleteDupesColumnD()

'Ask the user to confirm their intention of deleting
'the duplicate items in column D.
Dim myConfirmation As Integer
myConfirmation = _
MsgBox("Do you want to delete the duplicates" & vbCrLf & _
"in column D?" & vbCrLf & vbCrLf & _
"Once the duplicates are deleted," & vbCrLf & _
"the macro cannot undo that action.", _
vbQuestion + vbYesNo, _
"Please confirm:")

Deleting Rows Containing Duplicate Entries ❘ 163

c15.indd 02/24/2015 Page 163

'If the answer is no, exit the macro.
If myConfirmation = vbNo Then
MsgBox "That's fine, nothing will be deleted.", _
vbInformation, _
"You clicked No."
Exit Sub

Else

'If the answer is yes, continue with the deletion.
MsgBox "Please click OK to delete the duplicates.", _
vbInformation, _
"Thanks for confirming!"

End If

With Application
.ScreenUpdating = False
Dim LastColumn As Long
LastColumn = _
Cells.Find(What:="*", After:=Range("A1"), SearchOrder:=xlByColumns, _
SearchDirection:=xlPrevious).Column + 1

'In the next line you specify column D.
'If this were for column L instead of column D, the code would read
'With Range("L1:L" & Cells(Rows.Count, 12).End(xlUp).Row)
With Range("D1:D" & Cells(Rows.Count, 4).End(xlUp).Row)
.AdvancedFilter Action:=xlFilterInPlace, Unique:=True
'In the next line, notice the number 4 in the Cells property,
'which is column D. If this were for column L instead of column D,
'number 4 would be 12, example .Offset(0, LastColumn - 12).Value = 1
.SpecialCells(xlCellTypeVisible).Offset(0, LastColumn - 4).Value = 1

On Error Resume Next
ActiveSheet.ShowAllData
Columns(LastColumn).SpecialCells(xlCellTypeBlanks).EntireRow.Delete
Err.Clear
End With
Columns(LastColumn).Clear
.ScreenUpdating = True
End With
End Sub

NOTE Notice in these macros that no cell or row is selected, which would have
slowed things down, and a fi lter is utilized for the entire range instead of a loop
for each row. When deleting rows, use a fi lter when you can because it is much
faster than looping through cells one by one.

Please keep in mind that there is not an undo option after a macro runs. It’s a
wise practice to let the users of your projects know the consequence of running
a macro that deletes data. For example, the DeleteDupesColumnD macro begins
with a message box to inform the user that the macro’s actions cannot be
undone, and to confi rm their intention to delete the duplicate items.

164 ❘ LESSON 15 HANDLING DUPLICATE ITEMS AND RECORDS

c15.indd 02/24/2015 Page 164

Deleting Rows with Duplicates in More Than One Column
When you have a list of data, sometimes it is not enough to simply delete rows with duplicated
information based only on the items in one column. Multicolumn lists can have duplicated records
when every item in every column of a row’s data matches that of another row’s entire data. In those
cases, you need to compare a concatenated string of each record’s (row’s) data, and compare that to
the concatenated strings of all the other rows.

Take a close look at Figure 15-1. In the original list, every item in rows 5 and 7 match, as do
all the items in rows 3 and 10. This is a short list for demonstration purposes. If your list were
 thousands of rows long, you would need a quick way to delete duplicate records. The macro named
DeleteDuplicateRecords is one way to do the job, with comments at each step.

FIGURE 15-1

NOTE There is an error bypass method in some of these macros that might be
unfamiliar to you. Lesson 20 covers the topic of error handling.

Sub DeleteDuplicateRecords()

'Turn off ScreenUpdating to speed up the macro.
Application.ScreenUpdating = False

'Declare a range variable for the helper column being used.
Dim FilterRange As Range
'Define the range variable's dynamic range.
Set FilterRange = Range("E1:E" & Cells(Rows.Count, 1).End(xlUp).Row)

'For efficiency, open a With structure for the FilterRange variable.
With FilterRange

Deleting Rows Containing Duplicate Entries ❘ 165

c15.indd 02/24/2015 Page 165

'Enter the formula
'=SUMPRODUCT((A1:$A1=$A1)*(B1:$B1=$B1)*(C1:$C1=$C1)*(D1:$D1=$D1))>1
'in all cells in column E (the helper column) that returns either TRUE
'if the record is a duplicate of a previous one, or FALSE if the record
'is unique among the records in all previous rows in the list.
.FormulaR1C1 = _
"=SUMPRODUCT((R1C1:RC1=RC1)*(R1C2:RC2=RC2)*(R1C3:RC3=RC3)*(R1C4:RC4=RC4))>1"
'Turn the formulas into static values because they will be filtered,
'and maybe deleted if any return TRUE.
.Value = .Value
'AutoFilter the helper column for TRUE.
.AutoFilter Field:=1, Criteria1:="TRUE"
'Error bypass in case no TRUEs exist in the helper column.
On Error Resume Next
'This next line resizes the FilterRange variable to exclude the first row.
'Then, it deletes all visible filtered rows.
.Offset(1).Resize(.Rows.Count - 1).SpecialCells(xlCellTypeVisible).EntireRow.Delete
'Clear the Error object in case a run time error would have occurred,
'that is, if no TRUEs existed in the helper column to be deleted.
Err.Clear
'Close the With structure for the FilterRange variable object.
End With

'Exit (stop using) AutoFilter.
ActiveSheet.AutoFilterMode = False

'Clear all helper values (there would only be FALSEs at this moment).
'Note that Columns(5) means column E which is the fifth column from the left
'on an Excel spreadsheet.
Columns(5).Clear

'Clear the range object variable to restore system memory.
Set FilterRange = Nothing

'Turn ScreenUpdating back on.
Application.ScreenUpdating = True

End Sub

Deleting Some Duplicates and Keeping Others
This section shows a “this way or that way” pair of macros that use an array to hold a set of items
to determine which rows you want to keep or delete. In Figure 15-2, an original list has clothing
items in column A that are accompanied by various colors of those items in column B.

Both macros hold the same array items of Red, White, and Blue. The macro named
KeepOnlyArrayColors keeps all rows where Red, White, or Blue are found in column B, while
deleting all the other rows. The macro named DeleteArrayColors does the opposite: It deletes all
rows where Red, White, or Blue are found in column B, but keeps all the other rows.

166 ❘ LESSON 15 HANDLING DUPLICATE ITEMS AND RECORDS

c15.indd 02/24/2015 Page 166

FIGURE 15-2

Sub KeepOnlyArrayColors()
Application.ScreenUpdating = False
Dim LastRow as Long, rng As Range
LastRow = Cells(Rows.Count, 1).End(xlUp).Row
Set rng = Range("B2:B" & LastRow)
Dim ColorList As Variant, ColorItem As Variant
ColorList = Array("Red", "White", "Blue")
For Each ColorItem In ColorList
rng.Replace What:=ColorItem, Replacement:=ColorItem & "|", LookAt:=xlWhole
Next ColorItem
rng.AutoFilter Field:=1, Criteria1:="<>*|"
On Error Resume Next
rng.SpecialCells(xlCellTypeVisible).EntireRow.Delete
Err.Clear
rng.Replace What:="|", Replacement:="", LookAt:=xlPart
Set rng = Nothing
ActiveSheet.AutoFilterMode = False

Working with Duplicate Data ❘ 167

c15.indd 02/24/2015 Page 167

Application.ScreenUpdating = True
End Sub

Sub DeleteArrayColors()
Application.ScreenUpdating = False
Dim LastRow as Long, rng As Range
LastRow = Cells(Rows.Count, 1).End(xlUp).Row
Set rng = Range("B2:B" & LastRow)
Dim ColorList As Variant, ColorItem As Variant
ColorList = Array("Red", "White", "Blue")
For Each ColorItem In ColorList
rng.Replace What:=ColorItem, Replacement:="", LookAt:=xlWhole
Next ColorItem
On Error Resume Next
rng.SpecialCells(xlCellTypeBlanks).EntireRow.Delete
Err.Clear
Set rng = Nothing
Application.ScreenUpdating = True
End Sub

WORKING WITH DUPLICATE DATA

As I wrote at the beginning of this lesson, the nature of some projects is to expect duplicated data
and to work with it in some way. The following examples show how VBA can make duplicated data
work to your advantage.

 Compiling a Unique List from Multiple Columns
From a single-column list containing repeated items, you can extract a list of unique items using
AdvancedFilter. For example, the following line of code copies a unique list of items from column
A into column B:

Range("A1").CurrentRegion.AdvancedFilter Action:=xlFilterCopy, _
CopyToRange:=Range("B1"), Unique:=True

The question becomes, what if you want to extract a unique list from a table that has many columns
of repeatedly listed items? In Figure 15-3, a fi ctional quarterly survey ranks the top-10 vacation
 destinations. Many of those destinations are repeated among the four quarterly columns. The macro
named UniqueList lists all unique vacation destinations from the table in column G:

Sub UniqueList()
'Turn off ScreenUpdating
Application.ScreenUpdating = False

'Declare and define variables
Dim cell As Range, TableRange As Range
Dim xRow As Long, varCell As Variant
Set TableRange = Range("B4:E13")
xRow = 2

'Clear column G (column #7) where the unique list will go.
Columns(7).Clear

168 ❘ LESSON 15 HANDLING DUPLICATE ITEMS AND RECORDS

c15.indd 02/24/2015 Page 168

'Enter the header label in cell G1 and bold cell G1.
With Range("G1")
.Value = "Unique list:"
.Font.Bold = True
End With

'Loop through each cell in the table range,
'and add that cell's value to the list if it
'does not exist in the list yet.
For Each cell In TableRange
varCell = Application.Match(cell.Value, Columns(7), 0)
If IsError(varCell) Then
Err.Clear
Cells(xRow, 7).Value = cell.Value
xRow = xRow + 1
End If
Next cell

'Clear the TableRange object variable from system memory.
Set TableRange = Nothing

'Optional, sort the list in alphabetical order.
Range("G1").CurrentRegion.Sort Key1:=Range("G2"), _
Order1:=xlAscending, Header:=xlYes
'Autofit column G.
Columns(7).AutoFit

'Turn ScreenUpdating back on.
Application.ScreenUpdating = True
End Sub

FIGURE 15-3

Working with Duplicate Data ❘ 169

c15.indd 02/24/2015 Page 169

Updating a Comment to List Unique Items
This section shows how you can automatically update a comment to show unique items in sorted
order from a list containing repeated items. When a new unique item is added to the list, the
 comment is immediately updated in real time.

In Figure 15-4, a company keeps an ongoing list of its clients and dates of transactions. When a new
client is added to the list, such as what is happening in cell A20, the comment in cell A1 is updated
to show that new client name in a sorted list.

FIGURE 15-4

NOTE This example uses a Worksheet_Change event procedure. The code goes
into the module of your worksheet. Lesson 13 covers event coding, including
how and where to place this code.

Private Sub Worksheet_Change(ByVal Target As Range)

'Limit the event to monitor only changes in column A.
If Target.Column <> 1 Then Exit Sub

'Prepare Excel's application settings.
With Application
.ScreenUpdating = False
.DisplayAlerts = False

170 ❘ LESSON 15 HANDLING DUPLICATE ITEMS AND RECORDS

c15.indd 02/24/2015 Page 170

.EnableEvents = False

'Declare variables.
Dim HelperColumn As Long, cell As Range, strCommentText As String

'Define the helper column which is the last used column + 2,
'to use for listing the unique client names and sorting them.
HelperColumn = _
Cells.Find(What:="*", After:=Range("A1"), _
SearchOrder:=xlByColumns, _
SearchDirection:=xlPrevious).Column + 2

'List the unique client names in the helper column.
Range("A1:A" & Cells(Rows.Count, 1).End(xlUp).Row).AdvancedFilter _
Action:=xlFilterCopy, CopyToRange:=Cells(1, HelperColumn), Unique:=True

'Sort the unique client list in ascending order.
Cells(1, HelperColumn).Sort _
Key1:=Cells(2, HelperColumn), _
Order1:=xlAscending, _
Header:=xlYes

'Build the comment's text string, comprised by each unique client name
'in a vertical list. To do that, separate each name with the ascii 10
'carriage return character.
strCommentText = ""
For Each cell In Cells(1, HelperColumn).CurrentRegion
'Bypass the header cell in row 1.
If cell.Row <> 1 Then _
strCommentText = strCommentText & Chr(10) & cell.Value
Next cell
strCommentText = "Unique client names:" & Chr(10) & strCommentText

'You are maintaining your comment in cell A1 that lists the unique
'client names whenever a new one is added to column A in the table.
With Range("A1")
If Not .Comment Is Nothing Then .Comment.Delete
.AddComment
With .Comment
.Visible = False
.Text Text:=strCommentText
.Shape.TextFrame.AutoSize = True
End With
End With

'Clear the helper column's unique list which now is represented
'in the comment.
Columns(HelperColumn).Clear

'Reset Excel's application settings.
.EnableEvents = True
.DisplayAlerts = True
.ScreenUpdating = True
End With

End Sub

Working with Duplicate Data ❘ 171

c15.indd 02/24/2015 Page 171

Selecting a Range of Duplicate Items
This section shows is a convenient way to select a range of cells with duplicate items in a column. In
this example, Figure 15-5 shows a list that is sorted by column A. When you double-click any cell in
the table, rows are selected that have the same item in column A as the cell in column A of the row
you double-clicked.

FIGURE 15-5

NOTE Although this example shows the Select method, you can change the
code to a different method, such as to copy or format the range.

One of the conveniences of selecting the relevant range, as shown in Figure 15-5, is to quickly view
the selection’s calculated information on the status bar. This is a worksheet-level event procedure, so
the following code goes into the module of your worksheet:

Private Sub Worksheet_BeforeDoubleClick(ByVal Target As Range, Cancel As Boolean)

172 ❘ LESSON 15 HANDLING DUPLICATE ITEMS AND RECORDS

c15.indd 02/24/2015 Page 172

'Program only for rows in the list, excluding row 1.
If Target.Row = 1 Then Exit Sub
If Intersect(Target, Range("A1").CurrentRegion) Is Nothing Then Exit Sub
Cancel = True

'Declare variables
Dim myVal As String, LastColumn As Long
Dim Add1 As Long, Add2 As Long
Dim xRow As Long, LastRow As Long

'Define variables
myVal = Cells(Target.Row, 1).Value
LastRow = Cells(Rows.Count, 1).End(xlUp).Row
LastColumn = _
Cells.Find(What:="*", After:=Range("A1"), SearchOrder:=xlByColumns, _
SearchDirection:=xlPrevious).Column
Add1 = Columns(1).Find(What:=myVal, LookIn:=xlValues, LookAt:=xlWhole).Row
xRow = Add1

'Identify the range of rows having the same values in column A.
Do

If Cells(xRow + 1, 1).Value <> myVal Then
Add2 = xRow + 1
Exit Do
Else
xRow = xRow + 1
End If
Loop Until xRow = LastRow
Add2 = xRow

'Select (or copy or format) records having the same values in column A.
Range(Cells(Add1, 1), Cells(Add2, LastColumn)).Select
End Sub

Inserting an Empty Row at Each Change in Items
A common request is how to insert an empty row at each change of data in a column. In Figure 15-6,
a table is preferred to be sorted by the Client Name column with an empty row at each change in
Client Name. The macro named Sort_Separate_ClientName does that, with comments along the
way to explain the process:

Sub Sort_Separate_ClientName()
'Turn off ScreenUpdating.
Application.ScreenUpdating = False
'Sort the table by ClientName in ascending order.
Range("A3").CurrentRegion.Sort _
Key1:=Range("A4"), Order1:=xlAscending, Header:=xlYes
'Declare a Long type variable for the last row in column A.
Dim LastRow As Long
'Determine the last row of data.
LastRow = Cells(Rows.Count, 1).End(xlUp).Row
'Declare a Long type variable for evaluating each row.
Dim xRow As Long

Try It ❘ 173

c15.indd 02/24/2015 Page 173

'Loop through each ClientName item in column A of the table.
'When the item being evaluated is not the same as the item
'in the row above it, that means the client name is different.
'Insert an empty row at that change.
'Notice, work from the bottom row upwards because you are
'inserting rows.
For xRow = LastRow To 5 Step -1
If Cells(xRow, 1).Value <> Cells(xRow - 1, 1).Value Then _
Rows(xRow).Resize(1).Insert
Next xRow
'Turn ScreenUpdating on again.
Application.ScreenUpdating = True
End Sub

FIGURE 15-6

TRY IT

For this lesson, a table of data includes names of stores in column A that are repeated elsewhere in
the column. A macro is requested to copy the individual rows of data for each unique store name,
and paste those rows into their own workbook.

174 ❘ LESSON 15 HANDLING DUPLICATE ITEMS AND RECORDS

c15.indd 02/24/2015 Page 174

The workbooks are named by the name of the store, appended with the date and time the macro was
run. The workbooks are saved in the same folder path as the workbook holding the original data.

Lesson Requirements
To get the sample workbook, you can download Lesson 15 from the book’s website at
www.wrox.com/go/excelvba24hour.

Hints
The following hints might help you as you complete this Try It:

 ➤ Your list of data need not be too lengthy; a couple dozen rows of data would suffi ce.

 ➤ In the downloadable workbook for this lesson, column A contains a list of store names,
which is why you see the references to “Store” in the Step-by-Step code.

 ➤ Repeat each item at least once (as mentioned in Step 1), but feel free to repeat each item as
many times in column A as you want.

 ➤ For convenience, the destination path where the new workbooks will be saved is the same as
the path of the workbook holding the original data.

 ➤ When you use a helper column or row, be sure to leave at least one empty column or row
between it and the data table you are working with. Without the empty column or row, VBA
might assume your helper data is a part of the original table.

 ➤ When your macros involve creating or working in other workbooks while you refer to a
worksheet in your workbook holding the macro, be sure to qualify your worksheet’s parent
name with the ThisWorkbook object.

 ➤ When your macros create potentially dozens or hundreds of new workbooks, close the
 workbooks after you name them as shown in Step 24. It’s rare for a user to want that many
workbooks open at the same time after the macro has completed.

Step-by-Step
 1. Start by opening a new workbook and copy or enter a table of data that includes a few

 columns. Put column labels in row 1, and repeat each of the entries in column A at least once.

 2. Save your workbook as a macro-enabled type with the extension .xlsm.

 3. Press Alt+F11 to go to the Visual Basic Editor.

 4. From the VBE menu bar, click Insert ➪ Module.

 5. In the module you just created, type Sub UniqueStoresToWorkbooks and press Enter. VBA
automatically places a pair of empty parentheses at the end of the Sub line, followed by an
empty line, and the End Sub line below that. Your macro should look like this so far:

Sub UniqueStoresToWorkbooks()

End Sub

http://www.wrox.com/go/excelvba24hour

Try It ❘ 175

c15.indd 02/24/2015 Page 175

 6. Turn off ScreenUpdating to speed up the macro when you run it, and to keep your screen
from fl ickering, which happens during macros that manipulate row, column, and workbook
objects as this macro does:

Application.ScreenUpdating = False

 7. Declare variables:

'Identify and count each row of a unique list of items in column A.
Dim UniqueRow As Long, lngUniqueCount As Long
'String variables for each unique item name and its workbook name.
Dim strUniqueStore As String, strUniqueStoreWBname As String
'Number of the data table's last row; next available column one column removed
'from the rightmost column of the data table; range occupied by the data table.
Dim LastRow As Long, NextColumn As Long, FilterRange As Range
'Path to receive the new workbooks; name of sheet where the data table resides.
Dim strDestinationFolderPath As String, asn As String

 8. Defi ne the destination path that will receive the new workbooks, which is the same path of
the active workbook holding this macro:

strDestinationFolderPath = ThisWorkbook.Path & "\"

 9. Defi ne the sheet name holding the original list:

asn = ActiveSheet.Name

 10. Identify the last row in the list, using column A:

LastRow = Cells(Rows.Count, 1).End(xlUp).Row

 11. Identify the column that is two columns removed from the right-most column in the list. This
column will hold the unique store names, with one empty column separating it from the list:

NextColumn = Cells.Find(What:="*", After:=Range("A1"), _
SearchOrder:=xlByColumns, SearchDirection:=xlPrevious).Column + 2

 12. Defi ne the range (which is column A of the list) that will be fi ltered for each unique store name:

Set FilterRange = _
ThisWorkbook.Worksheets(asn).Range("A1:A" & LastRow)

 13. List all unique store names using AdvancedFilter:

FilterRange.AdvancedFilter _
Action:=xlFilterCopy, CopyToRange:=Cells(1, NextColumn), Unique:=True

 14. Count the unique store names, not including the header cell. This is a service to the users to
let them know in a message box at the end of the macro how many unique items were found,
hence how many new workbooks were created:

lngUniqueCount = WorksheetFunction.CountA(Columns(NextColumn)) - 1

 15. Open a For...Next loop to loop through all unique store names to be fi ltered for exposing
their respective data:

For UniqueRow = 2 To Cells(Rows.Count, NextColumn).End(xlUp).Row

176 ❘ LESSON 15 HANDLING DUPLICATE ITEMS AND RECORDS

c15.indd 02/24/2015 Page 176

 16. Create the workbook to hold the next unique store name. The 1 in this syntax refers to a
standard Excel worksheet:

Workbooks.Add 1

 17. Assign the name of the next unique store to the strUniqueStore variable. Turn off
AutoFilter fi rst to expose all rows on the worksheet:

With ThisWorkbook.Worksheets(asn)
.AutoFilterMode = False
strUniqueStore = .Cells(UniqueRow, NextColumn).Value
End With

 18. Defi ne the full workbook name of the next unique store name, including the extension.
The workbook name’s date and time suffi x helps to reference the creation date at a glance
when the workbooks are viewed in Windows File Explorer, and to avoid overriding existing
 workbook names:

strUniqueStoreWBname = strUniqueStore & "_" & _
Format(VBA.Now, "YYYYMMDD_HHMMSS") & ".xlsx"

 19. AutoFilter the list for the next unique store name:

FilterRange.AutoFilter Field:=1, Criteria1:=strUniqueStore

 20. Copy the visible (fi ltered) rows for this unique store name, and paste them to the workbook
you created for it in Step 16:

FilterRange.SpecialCells(xlCellTypeVisible).EntireRow.Copy Range("A1")

 21. Keep in mind that the active workbook at this moment is the new workbook you created for
it. The unique list of store names is still visible and not wanted, so clear that column:

Columns(NextColumn).Clear

 22. Autofit the columns in this new workbook for readability as a service to the user:

Cells.Columns.AutoFit

 23. Save the new workbook:

ActiveWorkbook.SaveAs _
Filename:=strDestinationFolderPath & _
strUniqueStoreWBname, FileFormat:=51

NOTE In Step 18, the workbooks are saved with the .xlsx extension, which
is why the statement FileFormat:=51 is required when naming the fi les. If you
save a workbook with the .xlsm extension, the statement FileFormat:=52
would be required.

 24. Close the new workbook:

ActiveWorkbook.Close

Try It ❘ 177

c15.indd 02/24/2015 Page 177

 25. Continue the loop for all the unique store names:

Next UniqueRow

 26. Reactivate this workbook and the worksheet holding the original data table:

ThisWorkbook.Activate
Worksheets(asn).Activate

 27. Turn off AutoFilter:

ActiveSheet.AutoFilterMode = False

 28. Clear the unique list that you created in Step 13:

Columns(NextColumn).Clear

 29. Release the FilterRange object variable from system memory:

Set FilterRange = Nothing

 30. Turn ScreenUpdating back on:

Application.ScreenUpdating = True

 31. With a message box, confi rm for the user that the task is completed:

MsgBox _
"There were " & lngUniqueCount & " different Stores." & vbCrLf & _
"Their respective data has been consolidated into" & vbCrLf & _
"individual workbooks, all saved in the path" & vbCrLf & _
strDestinationFolderPath & ".", vbInformation, "Done!"
End Sub

 32. With your macro completed, press Alt+Q to return to the worksheet. To test the macro, press
Alt+F8 to show the Macro dialog box. Select the macro named UniqueStoresToWorkbooks
and click Run. Here is what the macro looks like in its entirety:

Sub UniqueStoresToWorkbooks()

'Turn off screen updating.
Application.ScreenUpdating = False

'Declare and define variables.
'Identify and count each row of a unique list of items in column A.
Dim UniqueRow As Long, lngUniqueCount As Long
'String variables for each unique item name and its workbook name.
Dim strUniqueStore As String, strUniqueStoreWBname As String
'Number of the data table's last row; next available column one column removed
'from the rightmost column of the data table; range occupied by the data table.
Dim LastRow As Long, NextColumn As Long, FilterRange As Range
'Path to receive the new workbooks; name of sheet where the data table resides.
Dim strDestinationFolderPath As String, asn As String

'Define variables.
'The destination path that will receive these new workbooks
'is the same path as the active workbook.
strDestinationFolderPath = ThisWorkbook.Path & "\"
'Start from the sheet name holding the original list.

178 ❘ LESSON 15 HANDLING DUPLICATE ITEMS AND RECORDS

c15.indd 02/24/2015 Page 178

asn = ActiveSheet.Name
'Identify the last cell row of the data table.
LastRow = Cells(Rows.Count, 1).End(xlUp).Row
'Identify the column that is 2 columns removed from
'the right-most column in the list.
NextColumn = Cells.Find(What:="*", After:=Range("A1"), _
SearchOrder:=xlByColumns, _
SearchDirection:=xlPrevious).Column + 2
'The range (which is column A of the list) that will be
'filtered for each unique store name.
Set FilterRange = _
ThisWorkbook.Worksheets(asn).Range("A1:A" & LastRow)

'List all unique Store Names using AdvancedFilter.
FilterRange.AdvancedFilter Action:=xlFilterCopy, _
CopyToRange:=Cells(1, NextColumn), Unique:=True

'Count the unique Stores, not including the header cell.
'This is a service to the user to let them know in a message box
'at the end of the macro how many unique items were found,
'meaning how many new workbooks were created.
lngUniqueCount = WorksheetFunction.CountA(Columns(NextColumn)) - 1

'Open a For...Next loop, to loop through all
'unique store names, filter for them, and paste their data to a
'new workbook, saved with creation date and time.
For UniqueRow = 2 To Cells(Rows.Count, NextColumn).End(xlUp).Row

'Create the workbook to hold the next unique store name.
Workbooks.Add 1

'Assign the name of the next unique store to
'the strUniqueStore variable.
'AutoFilter is turned off first to expose all rows on the sheet.
With ThisWorkbook.Worksheets(asn)
.AutoFilterMode = False
strUniqueStore = .Cells(UniqueRow, NextColumn).Value
End With

'Define the full workbook name of the next
'unique store name, including extension.
'The workbook name's date and time suffix helps to
'reference the creation date at a glance when the
'workbooks are viewed in Windows File Explorer,
'and to avoid overriding existing workbook names.
strUniqueStoreWBname = strUniqueStore & "_" & _
Format(VBA.Now, "YYYYMMDD_HHMMSS") & ".xlsx"

'Filter the list for that next unique store name.
FilterRange.AutoFilter Field:=1, Criteria1:=strUniqueStore

'Copy the visible (filtered) rows for this unique
'store name, and paste them to their new workbook.
FilterRange.SpecialCells(xlCellTypeVisible).EntireRow.Copy Range("A1")

Try It ❘ 179

c15.indd 02/24/2015 Page 179

'Keep in mind that the active workbook at this moment
'is the new workbook you created for it. The unique list of
'store names is still visible and not needed, so clear that column.
Columns(NextColumn).Clear
'Autofit the columns in this new workbook for readability.
Cells.Columns.AutoFit

'Save and close the new workbook.
ActiveWorkbook.SaveAs _
Filename:=strDestinationFolderPath & _
strUniqueStoreWBname, FileFormat:=51
'Close the new workbook.
ActiveWorkbook.Close

 'Continue the loop through all the unique store names.
Next UniqueRow

'Re-activate this workbook and the source worksheet.
ThisWorkbook.Activate
Worksheets(asn).Activate
'Turn off autofilter.
ActiveSheet.AutoFilterMode = False
'Clear the unique list.
Columns(NextColumn).Clear

'Release the object variable from system memory.
Set FilterRange = Nothing
'Turn screen updating back on.
Application.ScreenUpdating = True

'Confirm for the user that the parsing is completed.
MsgBox _
"There were " & lngUniqueCount & " different Stores." _
& vbCrLf & _
"Their respective data has been consolidated into" & _
vbCrLf & _
"individual workbooks, all saved in the path" & vbCrLf & _
strDestinationFolderPath & ".", vbInformation, "Done!"

End Sub

REFERENCE Please select the video for Lesson 15 at www.wrox.com/go
/excelvba24hour. You will also be able to download the code and resources
for this lesson from the website.

http://www.wrox.com/go

c16.indd 02/26/2015 Page 181

Using Embedded Controls
You’ve seen many ways to run macros, including using keyboard shortcuts, the Macro dialog
box, and the Visual Basic Editor. This lesson shows you how to execute VBA code by clicking a
button or other object that you can place onto your worksheet to make your macros easier to run.

WORKING WITH FORM CONTROLS AND
ACTIVEX CONTROLS

A control is an object such as a Button, Label, TextBox, OptionButton, or CheckBox that you
can place onto a UserForm (covered in Lessons 21, 22, and 23) or embed onto a worksheet.
VBA supports these and more controls, which provide an intuitive way for you to run your
macros quickly and with minimal effort.

Excel supports two generations of controls. Form controls are the original controls that came
with Excel, starting with version 5. Form controls are still fully supported in all later versions
of Excel, including Excel 2013. Form controls are more stable, simpler to use, and more
 integrated with Excel. For example, you can place a Form control onto a chart sheet, but you
cannot do that with an ActiveX control.

Generally, ActiveX controls from the Control Toolbox are more fl exible with their extensive
properties and events. You can customize their appearance, behavior, fonts, and other
 characteristics. You can also control how different events are responded to when an ActiveX
control is associated with those events.

Form controls have macros that are assigned to them. ActiveX controls run procedures
that are based on whatever event(s) they have been programmed to monitor. ActiveX
 controls don’t look all that scintillating, but Form controls have an even more elementary
 appearance that will never win them fi rst prize in a beauty contest. However, both kinds
of controls serve their purposes well as Microsoft intended, and they are here to stay with
Excel for the foreseeable future.

16

182 ❘ LESSON 16 USING EMBEDDED CONTROLS

c16.indd 02/26/2015 Page 182

CHOOSING BETWEEN FORM CONTROLS AND ACTIVEX CONTROLS

The primary differences between the two kinds of controls are in formatting and
events. You use Form controls when you need simple interaction with VBA, such as
running a macro by clicking a button. They are also a good choice when you don’t
need VBA at all, but you want an option button or check box on your sheet that
will be linked to a cell. If you need to color your control, or format its font type,
or trigger a procedure based on mouse movement or keyboard activity, ActiveX
 controls are the better choice.

Be aware that ActiveX controls have a well-deserved reputation for being buggy and
not behaving as reliably as do Form controls. Form controls will give you minimal
problems, if any, but they are limited in what they can do. As you experiment and work
with each type, you’ll decide which kind of control works best for your purposes.

The Forms Toolbar
The easiest way to access Form controls is through the Forms toolbar. How you get to the Forms
toolbar depends on your version of Excel. For versions prior to Excel 2007, from the worksheet
menu, click View ➪ Toolbars ➪ Forms, as shown in Figure 16-1.

FIGURE 16-1

The Forms toolbar is like any other toolbar that you can
dock at the top or sides of the window, or have fl oating
on the window above the worksheet. Figure 16-2 shows
the Forms toolbar and its control icons.

If you are using Excel version 2007, 2010, or 2013, you
get to the Forms and ActiveX controls by clicking the Insert
icon on the Developer tab of the Ribbon, as shown in
Figure 16-3.

Group Box

Check Box

List Box

Scroll Box

Combo Box

Label

Button

Option Button Spinner

FIGURE 16-2

Working with Form Controls and ActiveX Controls ❘ 183

c16.indd 02/26/2015 Page 183

FIGURE 16-3

NOTE The Developer tab is a very useful item to place on your Ribbon. See the
“Accessing the VBA Environment” section in Lesson 2 for the steps to display
the Developer tab.

Buttons
The most commonly used Form control is the Button. When you use a Button, you have a macro in
mind that you have either already written or will write, which will be attached to the Button. The
following steps are a common sequence of actions when using a Form Button:

 1. Create the macro that will be attached to the Button. Suppose you are negotiating rents, and
you need to frequently clear the range C4:F4 on a company budget sheet. The macro you’d
write is

Sub ClearData()
Range("C4:F4").Clear
End Sub

 2. To make it easy to run that macro, you can assign it to a Form Button. On the Forms
 toolbar, click the Button icon. Press down your mouse’s left button, then draw the Button
into cell B4. As soon as you do, the Assign Macro dialog box appears, as shown in
Figure 16-4. Select the macro to be assigned to the Button, and click OK.

 3. With your new Button selected, click it and delete the entire default caption. Type the caption
Clear Cells, as shown in Figure 16-5.

 4. Select any worksheet cell to deselect the Button. Go ahead and click the Button to verify that
it clears the cells in range C4:F4 as expected.

184 ❘ LESSON 16 USING EMBEDDED CONTROLS

c16.indd 02/26/2015 Page 184

FIGURE 16-4

FIGURE 16-5

Using Application.Caller with Form Controls
One of the cool things about Form controls is that you can apply a single macro to all of them and
gain information about which control was clicked. When you know which Button was clicked, you
can take a specifi c action relating to that Button.

Expanding on the previous example, suppose you want to place a Button on each row of data, so
that when you click a Button, the cells are cleared in columns C:F of the row where the Button resides.

Working with Form Controls and ActiveX Controls ❘ 185

c16.indd 02/26/2015 Page 185

It’s obvious that the original macro applies only to the fi rst Button in the Rent row, so here are the
steps to have one macro serve many controls:

 1. Modify the ClearData macro as follows. For the Button that was clicked, the cell holding
that Button’s top-left corner is identifi ed. The macro can now be a customization tool for
each individual Button to which it is attached:

Sub ClearData()
Dim myRow As Long
myRow = _
ActiveSheet.Buttons(Application.Caller).TopLeftCell.Row
Range(Cells(myRow, 3), Cells(myRow, 6)).Clear
End Sub

 2. Recall that the original macro name is still attached to that Button. Return to your worksheet
and right-click the Button. Select Copy because you are copying the Button and the macro to
which it is attached.

 3. Select cell B5 and press Ctrl+V. Repeat that step for cells B6, B7, B8, and B9. Your
 worksheet will resemble Figure 16-6.

FIGURE 16-6

 4. Test the macro by clicking the Button on the Offi ce Supplies row. When you click that
Button, the macro clears the cells in row 7, columns C:F, as shown in Figure 16-7.

NOTE Attaching a macro to an embedded object is not limited to Form
 controls. You can attach a macro to pretty much any Drawing shape or picture
that you want to embed onto your worksheet.

186 ❘ LESSON 16 USING EMBEDDED CONTROLS

c16.indd 02/26/2015 Page 186

FIGURE 16-7

The Control Toolbox
Similar to the Forms toolbar, the Control Toolbox can be accessed in versions prior to Excel 2007
from the worksheet menu bar. Click View ➪ Toolbars ➪ Control Toolbox, as shown in Figure 16-8.

FIGURE 16-8

The Control Toolbox itself is shown in Figure 16-9. If you are using version 2007, 2010, or 2013,
you can fi nd the Forms and ActiveX controls by clicking the Insert icon on the Developer tab of the
Ribbon, shown in Figure 16-9.

Working with Form Controls and ActiveX Controls ❘ 187

c16.indd 02/26/2015 Page 187

List Box

Command Button

Text Box

Toggle Button

Scroll Bar

Image

Spin ButtonView Code

Properties

Combo Box LabelCheck Box

Option Button

Design Mode

FIGURE 16-9

More than 100 additional ActiveX controls beyond what you see on the Control Toolbox are
 available. You might notice an icon named More Controls at the far right of the Control Toolbox
toolbar, and in the lower-right corner of the Insert icon’s drop-down display in Excel 2007, 2010,
and 2013. When expanded, that icon (see Figure 16-10), reveals the additional ActiveX controls
available for you to embed, as indicated in Figure 16-11.

NOTE The odds are you’ll never need most of those controls, but it gives you a
sense of the expansive functionality that is available to you with ActiveX objects.

ActiveX controls in the circled area, first row, left to right:
Command Button, Combo Box, Check Box, List Box, Text Box, Scroll Bar
Second row, left to right:
Spin Button, Option Button, Label, Image, Toggle Button, More Controls

FIGURE 16-10

CommandButtons
The ActiveX CommandButton is the counterpart to the Form control button. As with virtually
every ActiveX object, the CommandButton has numerous properties through which you can
customize its appearance. Unlike Form controls, an ActiveX object such as a CommandButton
responds to event code. There is no such thing as a macro being attached to a CommandButton.

188 ❘ LESSON 16 USING EMBEDDED CONTROLS

c16.indd 02/26/2015 Page 188

FIGURE 16-11

From the Control Toolbox, draw a CommandButton onto your worksheet. Excel defaults to
Design Mode, allowing you to work with the ActiveX object you just created. Right-click the
CommandButton and select Properties, as shown in Figure 16-12. You can see the Design Mode
icon is active.

FIGURE 16-12

You will see the Properties window for the CommandButton, where you can modify a number of
properties. Change the Caption property of the CommandButton to CheckBox Checker, as shown
in Figure 16-13.

Working with Form Controls and ActiveX Controls ❘ 189

c16.indd 02/26/2015 Page 189

FIGURE 16-13

Draw a Label control and four CheckBoxes from the Control Toolbox below the CommandButton.
In Figure 16-14, I changed the Label’s caption to Check Your Favorite Activities. I changed each
CheckBox’s caption to a different leisure activity.

Either double-click the CommandButton, or right-click it and select View Code. Either way, you go
to the worksheet module and the default Click event is started for you with the following entry:

Private Sub CommandButton1_Click()

End Sub

FIGURE 16-14

190 ❘ LESSON 16 USING EMBEDDED CONTROLS

c16.indd 02/26/2015 Page 190

NOTE VBA code for embedded ActiveX objects is almost always in the module
of the worksheet upon which the objects are embedded.

For this demonstration, when the CommandButton is clicked, it evaluates every embedded object
on the worksheet. When the code comes across an ActiveX CheckBox, it determines whether the
CheckBox is checked. At the end of the procedure, a message box appears, confi rming how many
(if any) CheckBoxes were checked, and their captions. The entire code looks as follows:

Private Sub CommandButton1_Click()
'Evaluate which checkboxes are checked.

'Declare an Integer type variable to help
'count through the CheckBoxes,'and an Object
'type variable to identify the kind of ActiveX control
'(checkboxes in this example) that are selected.
Dim intCounter As Integer, xObj As OLEObject
'Declare a String variable to list the captions
'of selected checkboxes.
Dim strObj As String

'Start the Integer and String variables.
intCounter = 0
strObj = ""

For Each xObj In ActiveSheet.OLEObjects
If TypeName(xObj.Object) = "CheckBox" Then

If xObj.Object.Value = True Then
intCounter = intCounter + 1
strObj = strObj & xObj.Object.Caption & Chr(10)
End If

End If
Next xObj

'Advise the user of your findings.
If intCounter = 0 Then
MsgBox "No CheckBoxes were selected.", , "Try to get out more often!"
Else
MsgBox "You selected " & intCounter & " CheckBox(es):" & vbCrLf & vbCrLf & _
strobj, , "Here is what you checked:"
End If

End Sub

Try It ❘ 191

c16.indd 02/26/2015 Page 191

Leave the VBE and return to the worksheet by pressing Alt+Q. Click the Design Mode button to
exit Design Mode. Figure 16-15 shows where the Design Mode icon is on the Developer tab.

FIGURE 16-15

With Design Mode now off, you can test the Click event code for the ActiveX CommandButton.
Figure 16-16 shows an example of the confi rming message box when you click the
CommandButton.

FIGURE 16-16

TRY IT

For this lesson, you place a Form Button on a worksheet that contains a hypothetical table of
monthly income activity for a department store’s clothing items. You attach a macro to the Button
that, when clicked, toggles columns or rows as being hidden or visible, depending on how you want

192 ❘ LESSON 16 USING EMBEDDED CONTROLS

c16.indd 02/26/2015 Page 192

to see the data. Upon each click of the Button, the cycle of views will be to see the entire table’s
detail, see totals only by clothing item, or see totals only by month. This lesson also includes tips on
fast data entry by using the fi ll handle and shortcut keys.

Lesson Requirements
To get the sample workbook you can download Lesson 16 from the book’s website at
www.wrox.com/go/excelvba24hour.

Step-by-Step
 1. Open Excel and open a new workbook.

 2. On your active worksheet, list the months of the year in range A6:A17. You can do this
quickly by entering January in cell A6, then selecting A6, and pointing your mouse over the
fi ll handle, which is the small black square in the lower-right corner of the selected cell. You
know your mouse is hovering over the fi ll handle when the cursor changes to a crosshairs, as
indicated in Figure 16-17. Press your left mouse button onto the fi ll handle, and drag your
mouse down to cell A17 as indicated in Figure 16-18. Release the mouse button, and the 12
months of the year fi ll into range A6:A17 as shown in Figure 16-19.

FIGURE 16-17

 3. Enter some clothing items into range B5:F5.

FIGURE 16-19FIGURE 16-18

http://www.wrox.com/go/excelvba24hour

Try It ❘ 193

c16.indd 02/26/2015 Page 193

 4. Enter sample numbers in range B6:F17. There is nothing special about the numbers; they are
just for demonstration purposes. To enter the numbers quickly, as shown in Figure 16-20, do
the following:

 ➤ Select range B6:F17.

 ➤ Type the formula =INT(RAND()*1000).

 ➤ Press Ctrl+Enter.

 ➤ Press Ctrl+C to copy the range.

 ➤ Right-click somewhere in the range B6:F17, and select Paste Special ➪ Values ➪ OK.

 ➤ Press the Esc key to exit Copy mode.

 5. In cell G5 enter Total and in cell A18 enter Total.

 6. Select the column A header, which selects all of column A. Right-click any cell in column A,
select Column Width, enter 20, and click OK.

 7. Quickly enter Sum functions for all rows and columns. Select range B6:G18, as shown in
Figure 16-21, and either double-click the Sum function icon or press Alt+=.

 8. With range B6:G18 currently selected, right-click anywhere in the selection, select Format
Cells, and click the Number tab in the Format Cells dialog box. In the category pane select
Currency, set Decimal Places to 0, and click OK as indicated in Figure 16-22. Your fi nal
result should resemble Figure 16-23, with different numbers because they were produced
with the RAND function, but all good enough for this lesson.

FIGURE 16-20

194 ❘ LESSON 16 USING EMBEDDED CONTROLS

c16.indd 02/26/2015 Page 194

FIGURE 16-21

FIGURE 16-22

Try It ❘ 195

c16.indd 02/26/2015 Page 195

FIGURE 16-23

 9. The task at hand is to create a macro that will be attached to a Form Button. Each time you
click the Button, the macro toggles to the next of three different views of the table: seeing the
entire table’s detail, seeing totals only by clothing item, or seeing totals only by month. To
get started, press Alt+F11 to go to the Visual Basic Editor.

 10. From the VBE menu bar, click Insert ➪ Module.

 11. In your new module, type Sub ToggleViews and press Enter. VBA produces the following
two lines of code, with an empty row between them:

Sub ToggleViews()

End Sub

 12. Because the macro hides and unhides rows and columns, turn off ScreenUpdating to keep
the screen from fl ickering:

Application.ScreenUpdating = False

 13. Open a With structure that uses Application.Caller to identify the Form Button that
was clicked:

With ActiveSheet.Buttons(Application.Caller)

 14. Toggle between views based on the Button’s captions to determine which view is next in
the cycle:

If .Caption = "SHOW ALL" Then
With Range("A5:G18")
.EntireColumn.Hidden = False
.EntireRow.Hidden = False
End With
.Caption = "MONTH TOTALS"

196 ❘ LESSON 16 USING EMBEDDED CONTROLS

c16.indd 02/26/2015 Page 196

ElseIf .Caption = "MONTH TOTALS" Then
Range("B:F").EntireColumn.Hidden = True
.Caption = "ITEM TOTALS"
ElseIf .Caption = "ITEM TOTALS" Then
Range("B:F").EntireColumn.Hidden = False
Rows("6:17").Hidden = True
.Caption = "SHOW ALL"
End If 'for evaluating the button caption.

 15. Close the With structure for Application.Caller:

End With

 16. Turn ScreenUpdating on again:

Application.ScreenUpdating = True

 17. Your entire macro looks like this:

Sub ToggleViews()

'Turn off ScreenUpdating.
Application.ScreenUpdating = False

'Open a With structure that uses Application.Caller
'to identify the Form Button that was clicked.
With ActiveSheet.Buttons(Application.Caller)

'Toggle between views based on the Button's captions
'to determine which view is next in the cycle.
If .Caption = "SHOW ALL" Then
With Range("A5:G18")
.EntireColumn.Hidden = False
.EntireRow.Hidden = False
End With
.Caption = "MONTH TOTALS"

ElseIf .Caption = "MONTH TOTALS" Then
Range("B:F").EntireColumn.Hidden = True
.Caption = "ITEM TOTALS"

ElseIf .Caption = "ITEM TOTALS" Then
Range("B:F").EntireColumn.Hidden = False
Rows("6:17").Hidden = True
.Caption = "SHOW ALL"

End If 'for evaluating the Button caption.

'Close the With structure for Application.Caller.
End With

'Turn ScreenUpdating on again.
Application.ScreenUpdating = True

End Sub

Try It ❘ 197

c16.indd 02/26/2015 Page 197

 18. Press Alt+Q to return to the worksheet.

 19. Draw a Form Button on your worksheet at the top of column A. When you release the mouse
button you see the Assign Macro dialog box. Select the macro named ToggleViews and click
OK, as shown in Figure 16-24.

FIGURE 16-24

 20. Make sure the Button is totally within column A, as indicated in Figure 16-25. Right-click
the Button and select Edit Text.

FIGURE 16-25

 21. Change the Button’s caption to SHOW ALL, as shown in Figure 16-26.

198 ❘ LESSON 16 USING EMBEDDED CONTROLS

c16.indd 02/26/2015 Page 198

FIGURE 16-26

 22. Select any cell to deselect the Button. Click the Button once and nothing changes on the
sheet because all the columns and rows are already visible. You see that the Button’s caption
changed to MONTH TOTALS. If you click the Button again, you see the month names listed
in column A, and their totals listed in column G. The Button’s caption reads ITEM TOTALS.
Click the Button again to see the clothing items named in row 5, and their totals listed in row
18. The Button’s caption reads SHOW ALL, and if you click the Button again, all rows and
columns are shown.

 23. You can continue cycling through the table’s views by clicking the Form Button for each view
that you coded into the ToggleViews macro.

REFERENCE Please select the video for Lesson 16 at www.wrox.com/go
/excelvba24hour. You will also be to download the code and resources for
this lesson from the website.

http://www.wrox.com/go

c17.indd 02/24/2015 Page 199

Programming Charts
When I started to program Excel in the early 1990s, I remember being impressed with the
charting tools that came with Excel. They were very good back then, and today’s chart
 features in Excel are downright awesome, rivaling—and usually surpassing—the charting
packages of any software application.

Because you are reading this book, chances are pretty good that you’ve manually created your
share of charts in Excel using the Chart Wizard or by selecting a chart type from the dozens
of choices on the Ribbon. You might also have played with the Macro Recorder to do some
 automation of chart creation. This lesson takes you past the Macro Recorder’s capabilities to
show how to create and manipulate embedded charts and chart sheets.

The topic of charting is one that can, and does, fi ll entire books. The myriad chart types and
features that Excel makes available to you goes well beyond the scope of this lesson. What this
lesson does is show you the syntaxes for several methods that work for embedded charts and
chart sheets, with a few different features and chart types represented in the programming
code. From the VBA examples in this lesson, you can expand your chart programming skills
by substituting the chart types and features shown for others that may be more suited to the
kinds of charts you want to develop.

NOTE In the examples, you might notice that the charts being created are
declared as a Chart type object variable, which makes it easier to refer to the
charts when you want to manipulate them in code. In any case, Excel has
two separate object models for charts. For a chart on its own chart sheet, it
is a Chart object. For a chart embedded on a worksheet, it is a ChartObject
object. Chart sheets are members of the workbook’s Charts collection,
and each ChartObject on a worksheet is a member of the worksheet’s
ChartObjects collection.

17

200 ❘ LESSON 17 PROGRAMMING CHARTS

c17.indd 02/24/2015 Page 200

ADDING A CHART TO A CHART SHEET

As you know, a chart sheet is a special kind of sheet in your workbook that contains only a chart. If
the chart is destined to be large and complicated, users often prefer such a chart be on its own sheet
so they can view its detail more easily.

Figure 17-1 shows a table of sales by month for a company that is the source data for this chart
example. The table is on Sheet1, and although you can correctly refer to the source range in your
code as A1:B13, I prefer using the CurrentRegion property to reduce the chances of entering the
wrong range reference in my code.

The following macro creates a column chart for a new chart sheet based on the data in Figure 17-1. If
the Location property of your Chart object has not been specifi ed, as it has not been in this macro,
your chart is created in its own chart sheet. The result of this new chart sheet is shown in Figure 17-2.

Sub CreateChartSheet()
'Declare your chart type object variable.
Dim myChart1 As Chart
'Set your variable to add a chart.
Set myChart1 = Charts.Add
'Define the new chart's source data.
myChart1.SetSourceData _
Source:=Worksheets("Sheet1").Range("A1").CurrentRegion, _
PlotBy:=xlColumns
'Define the type of chart.
myChart1.ChartType = xlColumnClustered
'Delete the legend because it is redundant with the chart title.
ActiveChart.Legend.Delete
End Sub

FIGURE 17-1

NOTE To change your default type of chart, right-click any chart in your work-
book and select Change Chart Type. In the Change Chart Type dialog box, select
a chart type, click the Set as Default Chart button, and click OK. In version
2013, right-click a chart type and select Set as Default Chart.

Adding a Chart to a Chart Sheet ❘ 201

c17.indd 02/24/2015 Page 201

FIGURE 17-2

Simply executing the code line Charts.Add in the Immediate window creates a new chart sheet.
If the active cell were within a table of data, your default type chart would occupy the new chart
sheet, representing the table, or more precisely, the data within the CurrentRegion property of
the selected cell. If you did not have any data selected at the time, a new chart sheet would still
be created, with a blank Chart object looking like an empty canvas waiting to be supplied with
source data.

202 ❘ LESSON 17 PROGRAMMING CHARTS

c17.indd 02/24/2015 Page 202

DID YOU KNOW…

If the active cell is within a table of data, or you have a range of data selected, and
you press the F11 key, a new chart sheet is added to hold a chart that represents
the selected data. Some people fi nd this to be an annoyance because they have no
 interest in charts, and may not be aware they touched the F11 key when a chart
sheet has appeared out of nowhere.

If you want to negate the effect of pressing the F11 key, you can place the following
OnKey procedures into the ThisWorkbook module. Some Excel users who frequently
use the F2 key to get into Edit mode sometimes press the F1 Help key by mistake
and nullify the F1 key in this fashion as well:

Private Sub Workbook_Open()
Application.OnKey "{F11}", ""
End Sub

Private Sub Workbook_Activate()
Application.OnKey "{F11}", ""
End Sub

Private Sub Workbook_Deactivate()
Application.OnKey "{F11}"
End Sub

Private Sub Workbook_BeforeClose(Cancel As Boolean)
Application.OnKey "{F11}"

End Sub

ADDING AN EMBEDDED CHART TO A WORKSHEET

When you embed a chart in a worksheet, there is more to consider than when you create a chart for
its own chart sheet. When you embed a chart, you need to specify which worksheet you want the
chart to be on (handled by the Location property), and where on the worksheet you want the chart
to be placed. The following macro is an example of how to place a column chart into range D3:J20
of the active worksheet, close to the source range, as shown in Figure 17-3:

Sub CreateChartSameSheet()
'Declare an Object variable for the chart
'and for the embedded ChartObject.
Dim myChart1 As Chart, cht1 As ChartObject
'Declare a Range variable to specify what range
'the chart will occupy, and on what worksheet.
Dim rngChart1 As Range, DestinationSheet As String

'The chart will be placed on the active worksheet.
DestinationSheet = ActiveSheet.Name

'Add a new chart

Adding an Embedded Chart to a Worksheet ❘ 203

c17.indd 02/24/2015 Page 203

Set myChart1 = Charts.Add

'Specify the chart's location as the active worksheet.
Set myChart1 = _
myChart1.Location _
(Where:=xlLocationAsObject, Name:=DestinationSheet)

'Define the new chart's source data
myChart1.SetSourceData _
Source:=Range("A1").CurrentRegion, PlotBy:=xlColumns

'Define the type of chart, in this case, a Column chart.
myChart1.ChartType = xlColumnClustered

'Activate the chart to identify its ChartObject.
'The (1) assumes this is the first (index #1) chart object
'on the worksheet.
ActiveSheet.ChartObjects(1).Activate
Set cht1 = ActiveChart.Parent

'Specify the range you want the chart to occupy.
Set rngChart1 = Range("D3:J20")
cht1.Left = rngChart1.Left
cht1.Width = rngChart1.Width
cht1.Top = rngChart1.Top
cht1.Height = rngChart1.Height

'Deselect the chart by selecting a cell.
Range("A1").Select
End Sub

FIGURE 17-3

204 ❘ LESSON 17 PROGRAMMING CHARTS

c17.indd 02/24/2015 Page 204

WARNING Here’s a cool tip: Starting with version 2010, you can select any
cell in a table of data, then press Alt+F1 to embed a chart of that data onto your
worksheet. From there, you can drag the chart to your preferred location on
the worksheet.

NOTE One of the best practice items in VBA programming that I mention
throughout the book, and you will see posted in newsgroups ad nauseam, is to
avoid selecting or activating objects in your VBA code. Most of the time that
is good advice. However, sometimes you need to select objects to refer reliably
to them or to manipulate them, and the preceding macro demonstrated two
 examples. The ChartObject was activated to derive the actual name of the
chart. Also, the macro ended with cell A1 being selected. You could select any
cell or any object, but a cell—any cell—is the safest object to select after creating
a new embedded chart. Any code that is executed after adding a new chart might
not execute correctly if the ChartObject is still selected. The most reliable way
to deselect a chart at the end of your macro is to select a cell.

MOVING A CHART

You can change the location of any chart, which you might be familiar with if you’ve right-clicked
a chart’s area and noticed the Move Chart menu item. The following scenarios show how to do this
with VBA.

To move a chart from a chart sheet to a worksheet, select the chart sheet programmatically and
specify the worksheet where you want the chart to be relocated. It’s usually a good idea to tell VBA
where on the worksheet you want the chart to go; otherwise, the chart is plopped down on the
sheet wherever VBA decides. That is why the code in the With structure specifi es that cell C3 be the
 top-left corner of the relocated chart:

Sub ChartSheetToWorksheet()

'Chart1 is the name of the chart sheet.
Sheets("Chart1").Select
'Move the chart to Sheet1.
ActiveChart.Location Where:=xlLocationAsObject, Name:="Sheet1"

'Cell C3 is the top left corner location of the chart.
With Worksheets("Sheet1")
ActiveChart.Parent.Left = .Range("C3").Left
ActiveChart.Parent.Top = .Range("C3").Top
End With

'Deselect the chart.
Range("A1").Select

End Sub

Moving a Chart ❘ 205

c17.indd 02/24/2015 Page 205

To move a chart from a worksheet to a chart sheet, you need to determine the name or index
 number of your chart. If you have only one chart on your worksheet, you know that chart’s index
property is 1, but specifying the chart by its name is a safe way to go. The code is much simpler
because a chart sheet can contain only one chart, so you don’t need to specify a location on the
chart sheet itself:

Sub EmbeddedChartToChartSheet()
ActiveSheet.ChartObjects("Chart 1").Activate
ActiveChart.Location Where:=xlLocationAsNewSheet, Name:="Chart1"
End Sub

NOTE You can determine the name of any embedded chart quickly by selecting
it to see its name in the Name box.

To move an embedded chart from one worksheet to another, it’s the same concept of specifying
which chart to move, and which worksheet to move it to:

Sub EmbeddedChartToAnotherWorksheet()

'Chart 5 is the name of the chart to move to Sheet2.
ActiveSheet.ChartObjects("Chart 5").Activate
ActiveChart.Location Where:=xlLocationAsObject, Name:="Sheet2"

'Cell B6 is the top left corner location of the chart.
With Worksheets("Sheet2")
ActiveChart.Parent.Left = .Range("B6").Left
ActiveChart.Parent.Top = .Range("B6").Top
End With

'Deselect the chart.
Range("A1").Select

End Sub

You can quickly move all chart sheets to their own workbook. For example, check out the
 following example that creates a new workbook and relocates the chart sheets before Sheet1 in
that new workbook:

Sub ChartSheetsToWorkbook()
'Declare variable for your active workbook name.
Dim myName As String
'Define the name of your workbook.
myName = ActiveWorkbook.Name
'Add a new Excel workbook.
Workbooks.Add 1
'Copy the chart sheets from your source workbook
'to the new workbook.
Workbooks(myName).Charts.Move before:=Sheets(1)
End Sub

206 ❘ LESSON 17 PROGRAMMING CHARTS

c17.indd 02/24/2015 Page 206

LOOPING THROUGH ALL EMBEDDED CHARTS

Suppose you want to do something to every embedded chart in your workbook. For example,
if some charts were originally created with different background colors, you might want to
 standardize the look of all charts to have the same color scheme. The following macro shows
how to loop through every chart on every worksheet to format the chart area with a standard
color of cyan:

Sub LoopAllEmbeddedCharts()

'Turn off ScreenUpdating.
Application.ScreenUpdating = False

'Declare variables for worksheet and chart objects.
Dim wks As Worksheet, ChObj As ChartObject

'Open loop for every worksheet.
For Each wks In Worksheets

'Determine if the worksheet has at least one chart.
If wks.ChartObjects.Count > 0 Then

'If the worksheet has a chart, activate the worksheet.
wks.Activate

'Loop through each chart object.
For Each ChObj In ActiveSheet.ChartObjects

'Activate the chart.
ChObj.Activate

'Color the chart area cyan.
ActiveChart.ChartArea.Interior.ColorIndex = 8

'Deselect the active chart before proceeding to the
'next chart or the next worksheet.
Range("A1").Select

'Continue and close the loop for every chart on that sheet.
Next ChObj

'Close the If structure if the worksheet had no chart.
End If

'Continue and close the loop for every worksheet.
Next wks

'Turn on ScreenUpdating.
Application.ScreenUpdating = True

End Sub

Looping Through All Embedded Charts ❘ 207

c17.indd 02/24/2015 Page 207

If you have chart sheets to be looped through, the code must be different to take into account the
type of sheet to look for, because a chart sheet is a different type of sheet than a worksheet. This
macro accomplishes the same task of coloring the chart area, but for charts on chart sheets:

Sub LoopAllChartSheets()

'Turn off ScreenUpdating.
Application.ScreenUpdating = False

'Declare an object variable for the Sheets collection.
Dim objSheet As Object

'Loop through all sheets, only looking for a chart sheet.
For Each objSheet In ActiveWorkbook.Sheets
If TypeOf objSheet Is Excel.Chart Then

'Activate the chart sheet.
objSheet.Activate

'Color the chart area cyan.
ActiveChart.ChartArea.Interior.ColorIndex = 8

'Close the If structure and move on to the next sheet.
End If
Next objSheet

'Turn on ScreenUpdating.
Application.ScreenUpdating = True

End Sub

Deleting Charts
To delete all charts on a worksheet, you can execute this code line in the Immediate window, or as
part of a macro:

If activesheet.ChartObjects.Count > 0 Then ActiveSheet.ChartObjects.Delete

To delete chart sheets, loop through each sheet starting with the last sheet, determine whether the
sheet is a chart sheet, and if so, delete it.

NOTE This loop starts from the last sheet and moves backward using the
Step -1 statement. It’s a wise practice to loop backward when deleting sheets,
rows, or columns. Behind the scenes, VBA relies on the counts of objects in
collections, and where the objects are located relative to the others. Deleting
objects starting at the end and working your way to the beginning keeps VBA’s
management of those objects in order.

208 ❘ LESSON 17 PROGRAMMING CHARTS

c17.indd 02/24/2015 Page 208

Sub DeleteChartSheets()

'Turn off ScreenUpdating. Also turn off the Alerts feature,
'so when you delete a sheet VBA does not warn you.
With Application
.ScreenUpdating = False
.DisplayAlerts = False

'Declare an Integer variable for the count of all Sheets.
Dim intSheet As Integer
'Loop through all sheets, only looking for a chart sheet.
For intSheet = Sheets.Count To 1 Step -1
If TypeName(Sheets(intSheet)) = "Chart" Then Sheets(intSheet).Delete
Next intSheet

'Turn on ScreenUpdating and DisplayAlerts.
.DisplayAlerts = True
.ScreenUpdating = True
End With

End Sub

Renaming a Chart
As you have surely noticed when creating objects such as charts, pivot tables, or drawing objects,
Excel has a refi ned knack for giving those objects the blandest default names imaginable. Suppose
you have three embedded charts on your worksheet. The following macro changes the names of
those charts to something more meaningful:

Sub RenameCharts()
With ActiveSheet
.ChartObjects(1).Name = "Monthly Income"
.ChartObjects(2).Name = "Monthly Expense"
.ChartObjects(3).Name = "Net Profit"
End With
End Sub

TRY IT

In this lesson you create an embedded pie chart, position it near the source data, and give each
 legend key a unique color. The pie has four slices; each has a unique color and displays its respective
data label.

Lesson Requirements
To get the sample database fi les you can download Lesson 17 from the book’s website at
www.wrox.com/go/excelvba24hour.

http://www.wrox.com/go/excelvba24hour

Try It ❘ 209

c17.indd 02/24/2015 Page 209

Step-by-Step
 1. Insert a new worksheet and construct the simple table, as shown in Figure 17-4.

FIGURE 17-4

 2. From your worksheet, press Alt+F11 to go to the Visual Basic Editor.

 3. From the VBE menu bar, click Insert ➪ Module.

 4. In your new module, enter the name of this macro, which I am calling TryItPieChart. Type
Sub TryItPieChart, press Enter, and VBA produces the following code:

Sub TryItPieChart()

End Sub

 5. Declare the ChartObject variable:

Dim chtQuarters As ChartObject

 6. Set the variable to the chart being added. Position the chart near the source data:

Set chtQuarters = _
ActiveSheet.ChartObjects.Add _
(Left:=240, Width:=340, Top:=5, Height:=240)

NOTE The data components inside the parentheses tell VBA where to position
your new chart on the worksheet.

The Left parameter defi nes the position in points of the left edge of
the ChartObject relative to the left edge of the worksheet.

The Top parameter defi nes the position in points of the top of the
ChartObject relative to the top of the worksheet.

The Width parameter defi nes the ChartObject’s width, in points.

The Height parameter defi nes the ChartObject’s height, in points.

A point is a small unit of measurement (an inch is approximately 72
points).

210 ❘ LESSON 17 PROGRAMMING CHARTS

c17.indd 02/24/2015 Page 210

 7. Defi ne the range for this pie chart:

chtQuarters.Chart.SetSourceData Source:=Range("A3:B7")

 8. Defi ne the type of chart, which is a pie:

chtQuarters.Chart.ChartType = xlPie

 9. Activate the new chart to work with it:

ActiveSheet.ChartObjects(1).Activate

 10 Color the legend entries to identify each pie piece:

With ActiveChart.Legend
.LegendEntries(1).LegendKey.Interior.Color = vbYellow
.LegendEntries(2).LegendKey.Interior.Color = vbCyan
.LegendEntries(3).LegendKey.Interior.Color = vbRed
.LegendEntries(4).LegendKey.Interior.Color = vbGreen
End With

 11. Add data labels to see the numbers in the pie slices:

ActiveChart.SeriesCollection(1).ApplyDataLabels

 12. Edit the chart title’s text:

ActiveChart.ChartTitle.Text = "Quarterly Sales"

 13. Format the legend:

ActiveChart.Legend.Select
With Selection.Font
.Name = "Arial"
.FontStyle = "Bold"
.Size = 14
End With

 14. Deselect the chart by selecting a cell:

Range("A1").Select

 15. Press Alt+Q to return to the worksheet, and test your macro, which in its entirety looks like
the following code. The result looks like Figure 17-5, with a pie chart positioned near the
source data.

Sub TryItPieChart()

'Declare the ChartObject variable.
Dim chtQuarters As ChartObject

'Set the variable to the chart being added.
'Position the chart near the source data.
Set chtQuarters = _
ActiveSheet.ChartObjects.Add _
(Left:=240, Width:=340, Top:=5, Height:=240)

'Define the range for this pie chart.
chtQuarters.Chart.SetSourceData Source:=Range("A3:B7")

'Define the type of chart, which is a pie.

Try It ❘ 211

c17.indd 02/24/2015 Page 211

chtQuarters.Chart.ChartType = xlPie

'Activate the new chart to work with it.
ActiveSheet.ChartObjects(1).Activate

'Color the legend entries to identify each pie piece.
With ActiveChart.Legend
.LegendEntries(1).LegendKey.Interior.Color = vbYellow
.LegendEntries(2).LegendKey.Interior.Color = vbCyan
.LegendEntries(3).LegendKey.Interior.Color = vbRed
.LegendEntries(4).LegendKey.Interior.Color = vbGreen
End With

'Add data labels to see the numbers in the pie slices.
ActiveChart.SeriesCollection(1).ApplyDataLabels

'Edit the chart's title text.
ActiveChart.ChartTitle.Text = "Quarterly Sales"

'Format the legend.
ActiveChart.Legend.Select
With Selection.Font
.Name = "Arial"
.FontStyle = "Bold"
.Size = 14
End With

'Deselect the chart by selecting a cell.
Range("A1").Select

End Sub

FIGURE 17-5

REFERENCE Please select the video for Lesson 17 online at www.wrox.com/go
/excelvba24hour. You will also be able to download the code and resources
for this lesson from the website.

http://www.wrox.com/go

c17.indd 02/24/2015 Page 212

c18.indd 02/24/2015 Page 213

Programming PivotTables and
PivotCharts

PivotTables are Excel’s most powerful feature. They are an amazing tool that can summarize
more than a million rows of data into concise, meaningful reports in a matter of seconds.
You can format the reports in many ways, and include an interactive chart to complement the
reports at no extra cost of time.

If you are not familiar with PivotTables, you are not alone. Surveys of Excel users worldwide
have consistently indicated that far less than half of those surveyed said they use PivotTables,
including people who use Excel throughout their entire workday. Because PivotTables
are worth becoming familiar with, this lesson starts with an overview of PivotTables and
PivotCharts, followed by examples of how to create and manipulate them programmatically
with VBA.

CREATING A PIVOTTABLE REPORT

Suppose you manage the clothing sales department for a national department store. You
receive tens of thousands of sales records from your stores all over the country, with lists
that look similar to Figure 18-1. With lists this large, it’s impossible to gain any meaningful
insight into trends or marketing opportunities unless you can organize the data in a
summarized fashion.

If you select a single cell anywhere in the list, such as cell E7, which is selected in Figure 18-2,
you can create a PivotTable by selecting the Insert tab and clicking the PivotTable icon. The
Create PivotTable dialog box appears with the Table/Range fi eld already fi lled in, as shown in
Figure 18-3. I chose to keep the PivotTable on the same worksheet as the source data, and for
the PivotTable’s top-left corner to occupy cell H4.

18

214 ❘ LESSON 18 PROGRAMMING PIVOTTABLES AND PIVOTCHARTS

c18.indd 02/24/2015 Page 214

FIGURE 18-1

NOTE When placing a PivotTable on the same worksheet alongside the source
table, it’s best to have at least one empty column between the source table and
your PivotTable. It’s also a good idea to leave a few empty rows above the
PivotTable to make room for the Filters area (what was called the Page area in
Excel version 2003).

Creating a PivotTable Report ❘ 215

c18.indd 02/24/2015 Page 215

FIGURE 18-2

FIGURE 18-3

Using Excel version 2013, when you click OK you see an image similar to Figure 18-4, with the rep-
resentation of where the PivotTable will be, and the Field List at the right.

216 ❘ LESSON 18 PROGRAMMING PIVOTTABLES AND PIVOTCHARTS

c18.indd 02/24/2015 Page 216

FIGURE 18-4

To create a PivotTable, complete the following steps:

 1. Drag the Item fi eld name from the Choose Fields to Add to Report pane down to the
Filters pane.

 2. Drag the Region fi eld name from the Choose Fields to Add to Report pane down to the
Rows pane.

 3. Drag the Store ID fi eld name from the Choose Fields to Add to Report pane down to the
Rows pane, below the Region fi eld name.

 4. Drag the When fi eld name from the Choose Fields to Add to Report pane down to the
Columns pane.

 5. Drag the Revenue fi eld name from the Choose Fields to Add to Report pane down to the
Values pane.

Your worksheet should look similar to Figure 18-5, with a PivotTable that shows the summary of
Revenue by Quarter for each Region, with each Region showing the detail of its stores’ activities.
The source list could have been more than a million rows deep, and the process would still have
taken Excel only a couple of moments to produce the PivotTable report.

Creating a PivotTable Report ❘ 217

c18.indd 02/24/2015 Page 217

FIGURE 18-5

Hiding the PivotTable Field List
For now, you are done with the PivotTable Field List, so to clear it off your screen, you can click
the X close button on its title bar, click its Ribbon icon on the PivotTable Tools Option tab, or you
can right-click anywhere on the PivotTable area and select Hide Field List, as shown in Figure 18-6.
When you want to see the Field List again, click the Field List Ribbon icon, or right-click anywhere
on the PivotTable again and select Show Field List.

Above the PivotTable’s report area, you see a small fi lter-looking icon in cell I2 (see Figure 18-8),
in what is called the Filters area. The Item fi eld name was dragged to that area in Step 1 of the
process that created this PivotTable. If you click the fi lter icon, you’ll see a unique list of clothing
items, of which you can select one or several to have the PivotTable show only the data relating to
the item(s) you select. In Figure 18-7, I selected the Hats item, and in Figure 18-8, you can see
how the PivotTable adjusts itself to show only the columns and rows where data is present for the
sale of hats.

218 ❘ LESSON 18 PROGRAMMING PIVOTTABLES AND PIVOTCHARTS

c18.indd 02/24/2015 Page 218

FIGURE 18-6

FIGURE 18-7

Creating a PivotTable Report ❘ 219

c18.indd 02/24/2015 Page 219

FIGURE 18-8

Formatting Numbers in the Values Area
You can see that the numbers in the PivotTable’s Values area are unformatted. As an example of for-
matting them as Currency, right-click any cell in the Values area and select Value Field Settings, as
indicated in Figure 18-9. In the Value Field Settings dialog box, click the Number Format button, as
shown in Figure 18-10.

FIGURE 18-9

220 ❘ LESSON 18 PROGRAMMING PIVOTTABLES AND PIVOTCHARTS

c18.indd 02/24/2015 Page 220

FIGURE 18-10

The familiar Format Cells dialog box appears. In Figure 18-11, I selected Currency with the dollar
sign symbol and no decimal places. After you click OK in the Format Cells dialog box, you then
need to click OK in the Value Field Settings dialog box, as shown in Figure 18-12.

The cells in the Values area are now formatted as Currency. Recall that earlier, the Item named
Hats was selected in the Filters area. Go ahead and click the fi lter icon in cell I2, select the All item,
and click OK, as indicated in Figure 18-13. The PivotTable report is now fully displayed with all
the Values area cells formatted as Currency, including the cells that had been hidden while the Hats
item was fi ltered.

Creating a PivotTable Report ❘ 221

c18.indd 02/24/2015 Page 221

FIGURE 18-11

FIGURE 18-12

222 ❘ LESSON 18 PROGRAMMING PIVOTTABLES AND PIVOTCHARTS

c18.indd 02/24/2015 Page 222

FIGURE 18-13

Pivoting Your Data
One of the most attractive features of a PivotTable is its ability to display the same data in whatever
row-and-column arrangement of your fi eld names that you prefer. Just as the essence of a pivot is
to allow for the rotation or maneuver from a central point, you can rearrange your source data by
varying the location of your fi eld names in the row and column areas of your PivotTable.

For example, because you have summarized the clothing stores by Revenue for each Region by
Quarter, you now want to look at the Quantity of each Item that was sold by Region. Reopen the
PivotTable Field List and pivot your data by dragging the Item fi eld name out of the Filters pane and
into the Row Labels pane. Relocate the Region fi eld into the Columns pane. Finally, in the Choose
Fields To Add To Report pane, deselect Revenue and select Quantity. Your new PivotTable report
looks like Figure 18-14.

FIGURE 18-14

Creating a PivotTable Report ❘ 223

c18.indd 02/24/2015 Page 223

Creating a PivotChart
Creating a PivotChart is very easy, using either of two methods. With one method you create the
chart right from the start, when you fi rst indicate to Excel that you want to create a new PivotTable.
With the other method you create a PivotChart after you have already created a PivotTable.

In Excel version 2010—shown in Figure 18-15—you can click the arrow on the lower half of the
PivotTable icon on the Ribbon’s Insert tab, where an option is there for you to select PivotChart.
If you want a PivotChart with your new PivotTable, just select the PivotChart option, and a
PivotChart is created as you build your PivotTable in the PivotTable Field List.

To create a PivotChart as you create a new PivotTable in version 2013, from the Insert tab on the
Ribbon, click the down arrow on the PivotChart icon in the Charts section. Select PivotChart &
PivotTable, as shown in Figure 18-16.

FIGURE 18-15

FIGURE 18-16

224 ❘ LESSON 18 PROGRAMMING PIVOTTABLES AND PIVOTCHARTS

c18.indd 02/24/2015 Page 224

If you create a PivotTable and later decide you’d like a PivotChart to go along with it, you can start
by selecting any cell in the PivotTable. In Excel version 2010, click the Options tab in the PivotTable
Tools section of the Ribbon, and click the PivotChart icon, as shown in Figure 18-17. In version
2013, click the Analyze tab in the PivotTable Tools section of the Ribbon, and click the PivotChart
icon, as shown in Figure 18-18.

FIGURE 18-17

FIGURE 18-18

Creating a PivotTable Report ❘ 225

c18.indd 02/24/2015 Page 225

The Insert Chart dialog box opens, and you select your preferred chart type. Figure 18-19 shows the
result after I selected the Clustered Column chart type and clicked OK. The result is a PivotChart
tied to the PivotTable as shown in Figure 18-20.

FIGURE 18-19

As you can see, when it comes to PivotCharts, Excel does almost all the grunt work for you. All you
need to do is tell Excel that you want a PivotChart and what type of chart you want, and your chart
is produced with its accompanying PivotTable.

NOTE There is a lot more you can do with PivotCharts and PivotTables; like
many other topics, it’s one that can fi ll an entire book. My objective so far in the
lesson is to cover the basics of creating and working with PivotTables as a foun-
dation for the VBA examples in the next sections.

PivotCharts are great—they are equipped with Field buttons so you can choose which items in
which fi elds you want to see. Whatever fi eld setting you select on a PivotChart makes the same
change to its PivotTable. The following macro toggles between showing and hiding the Field buttons
on your PivotChart:

Sub ShowHidePivotChartFieldButtons()
ActiveSheet.ChartObjects(1).Activate

226 ❘ LESSON 18 PROGRAMMING PIVOTTABLES AND PIVOTCHARTS

c18.indd 02/24/2015 Page 226

With ActiveChart
.HasPivotFields = Not .HasPivotFields
End With
Range("A1").Select
End Sub

FIGURE 18-20

UNDERSTANDING PIVOTCACHES

A PivotCache is an object that you do not see, because it is working behind the scenes when a new
PivotTable is created directly from the source data. The PivotCache is a container that holds a static
copy of the source data in memory.

PivotTables do not summarize data directly from the source data, but rather from the PivotCache
that memorized a snapshot of the data. That is why, in the native Excel environment not enhanced
with VBA, if you change a piece of existing data in the source data range, the PivotTable report does
not refl ect that change until you refresh the PivotTable.

Figure 18-21 shows the Refresh menu item when you right-click a cell that is part of a PivotTable.
The Refresh button actually refreshes the PivotCache.

The PivotCache, though not seen, maintains the source data beforehand in a static go-to container.
Keeping the data in PivotCache memory makes pivoting and recalculations a snap, but the downside
is extra workbook size and less memory for other tasks.

Understanding PivotCaches ❘ 227

c18.indd 02/24/2015 Page 227

FIGURE 18-21

When you create a PivotTable manually, Excel does not bother you with the PivotCache details. If
you were to create a PivotTable in VBA, you’d need to address the PivotCache issue in code. Suppose
you are creating a new PivotTable based on the original source data that has been shown in this
lesson. Your fi rst step would be to program VBA to tell Excel four pieces of information:

 1. You want to add a PivotCache to the workbook.

 2. The location of the source data.

 3. Based on items 1 and 2, create the PivotTable.

 4. Specify where the PivotTable will be placed.

Assuming that the worksheet holding the source data is the active sheet, and that you want
the PivotTable to be located next to the source data, the following macro would handle all
those instructions:

Sub CreatePivot()
ThisWorkbook.PivotCaches.Add _
(SourceType:=xlDatabase, _
SourceData:=Range("A1").CurrentRegion).CreatePivotTable _
TableDestination:="R4C" & Range("A1").CurrentRegion.Columns.Count + 2
End Sub

228 ❘ LESSON 18 PROGRAMMING PIVOTTABLES AND PIVOTCHARTS

c18.indd 02/24/2015 Page 228

NOTE The notation "R4C" & Range("A1").CurrentRegion.Columns.Count
+ 2 is translated as the worksheet cell that is on row 4 of the column that is two
columns to the right of the last column in the source range. Recall from earlier in
the lesson that I recommend placing the top-left corner of the PivotTable on row
4, and with an empty column separating the source data and the new PivotTable.

The result you get is a PivotTable, but you’d never know by its appearance at the moment—a curious
range of four cells look as if they were formatted for thin borders. In this example, the four cells are
in range H4:I5, as shown in Figure 18-22.

FIGURE 18-22

The macro is just getting started, but I wanted to show you in slow motion what is taking place
under the radar when a new PivotTable is created. Actually, with the preceding macro executed, you
could select one of those four cells and the PivotTable Field List would appear, inviting you to drag
fi elds to your desired location, as shown in Figure 18-23. In Figure 18-24, the Item fi eld was moved
to the Rows area and the When fi eld was moved to the Columns area.

FIGURE 18-23

Understanding PivotCaches ❘ 229

c18.indd 02/24/2015 Page 229

When a numerical fi eld is moved into the Values area, the PivotTable becomes more recognizable.
For example, Figure 18-25 shows the result of moving the Revenue fi eld into the Values area.

NOTE If you want your PivotTable’s PivotCache to refresh automatically when
a cell in your source list changes, the following Worksheet_Change event handles
that. Note that the code uses the PivotTable’s Index property for the fi rst or only
PivotTable on the worksheet to be refreshed:

Private Sub Worksheet_Change(ByVal Target As Range)
If Intersect(Target, Range("A1").CurrentRegion) Is Nothing _
Or Target.Cells.Count > 1 Then Exit Sub
ActiveSheet.PivotTables(1).PivotCache.Refresh
End Sub

FIGURE 18-24

FIGURE 18-25

230 ❘ LESSON 18 PROGRAMMING PIVOTTABLES AND PIVOTCHARTS

c18.indd 02/24/2015 Page 230

MANIPULATING PIVOTFIELDS IN VBA

PivotFields are the row and column areas that you place your fi eld names into, depending on how
you want the PivotTable to display your data. The following pieces of VBA code perform the place-
ment of PivotFields as they were for the PivotTable that you created manually earlier in the lesson.
Two fi elds (Region and Store ID) are placed as row labels, and one fi eld (When) is placed as a col-
umn label. The Revenue fi eld is placed in the Values area, and the Filters area is populated by the
Items fi eld:

With ActiveSheet.PivotTables(1)

'First (outer) row field.
With .PivotFields("Region")
.Orientation = xlRowField
.Position = 1
End With

'Second (inner) row field.
With .PivotFields("Store ID")
.Orientation = xlRowField
.Position = 2
End With

'Column field.
With .PivotFields("When")
.Orientation = xlColumnField
.Position = 1
End With

'Filters area.
With .PivotFields("Item")
.Orientation = xlPageField
.Position = 1
End With

'Revenue in the Values field.
.AddDataField ActiveSheet.PivotTables(1).PivotFields("Revenue"), _
"Sum of Amount", xlSum

End With

NOTE Be sure to name your PivotFields correctly! They must be spelled the
same way in your code as they are in the header cells of your source list. If you
misspell the fi eld names in your code, VBA lets you know with a runtime error
because the fi eld names you’re instructing VBA to manipulate do not exist.

Creating a PivotTables Collection ❘ 231

c18.indd 02/24/2015 Page 231

MANIPULATING PIVOTITEMS WITH VBA

PivotItems are programmable in PivotTables, and as an example, you can arrange to see just one
particular PivotItem in a fi eld. In a PivotTable that you created earlier in the lesson, you added a
Region fi eld. Suppose you want to see activity only for the North PivotItem and hide the South,
East, and West PivotItems. The following macro accomplishes that:

Sub ShowSingleItem()
Dim objPivotField As PivotField
Dim objPivotItem As PivotItem
Set objPivotField = _
ActiveSheet.PivotTables(1).PivotFields(Index:="Region")
For Each objPivotItem In objPivotField.PivotItems
If objPivotItem.Name = "North" Then
objPivotItem.Visible = True
Else
objPivotItem.Visible = False
End If
Next objPivotItem
End Sub

The following macro shows all the PivotItems:

Sub ShowAllItems()
Dim objPivotField As PivotField
Dim objPivotItem As PivotItem
Set objPivotField = _
ActiveSheet.PivotTables(1).PivotFields(Index:="Region")
For Each objPivotItem In objPivotField.PivotItems
objPivotItem.Visible = True
Next objPivotItem
End Sub

CREATING A PIVOTTABLES COLLECTION

PivotTables are objects for which there is a Collection object, just as there is for worksheets
and workbooks. As you might guess, the name of the Collection object for PivotTables is
PivotTables, and you can loop through every PivotTable on a worksheet or throughout the work-
book if you need to.

For example, if you have more than one PivotTable on a worksheet and they are tied to the same
source list that starts in cell A1, this Worksheet_Change event refreshes all PivotTables on that
worksheet automatically when the source data is changed:

Private Sub Worksheet_Change(ByVal Target As Range)
If Intersect(Target, Range("A1").CurrentRegion) Is Nothing _
Or Target.Cells.Count > 1 Then Exit Sub

232 ❘ LESSON 18 PROGRAMMING PIVOTTABLES AND PIVOTCHARTS

c18.indd 02/24/2015 Page 232

Dim PT As PivotTable
For Each PT In ActiveSheet.PivotTables
PT.RefreshTable
Next PT
End Sub

Suppose you have several PivotTables on many different worksheets and you want to be confi -
dent that every PivotTable displays the current data from its respective source lists. The following
Workbook_Open procedure refreshes every PivotTable in the workbook when the workbook opens:

Private Sub Workbook_Open()
Dim wks As Worksheet, PT As PivotTable
For Each wks In Worksheets
For Each PT In wks.PivotTables
PT.RefreshTable
Next PT
Next wks
End Sub

NOTE You can avoid looping through all your PivotTables by using VBA’s
RefreshAll method to refresh all PivotTables at once. The single line of code
would be ActiveWorkbook.RefreshAll. Just be aware that the RefreshAll
method also refreshes all external data ranges, such as web queries, for the speci-
fi ed workbook.

You might need to delete all the PivotTables on a worksheet. When you delete a PivotTable, what
you are really doing is clearing the cells that are occupied by the PivotTable. The following macro
deletes all the PivotTables on the active worksheet:

Sub DeleteAllPivotTablest()
Dim objPT As PivotTable, iCount As Integer
For iCount = ActiveSheet.PivotTables.Count To 1 Step -1
Set objPT = ActiveSheet.PivotTables(iCount)
objPT.PivotSelect ""
Selection.Clear
Next iCount
End Sub

TRY IT

In this lesson, you write a macro that adds a PivotChart to accompany an existing PivotTable. Your
new PivotChart will be located below the PivotTable on that same worksheet.

Lesson Requirements
Your worksheet contains a list of source data, and you already have a PivotTable on your worksheet,
as shown in Figure 18-26. To get the sample workbook, you can download Lesson 18 from the
book’s website at www.wrox.com/go/excelvba24hour.

http://www.wrox.com/go/excelvba24hour

Try It ❘ 233

c18.indd 02/24/2015 Page 233

FIGURE 18-26

Step-by-Step
 1. Activate the worksheet that contains the source data list and PivotTable.

 2. Press Alt+F11 to go to the Visual Basic Editor.

 3. From the menu bar, click Insert ➪ Module.

 4. In the new module, type Sub CreatePivotChart and press Enter. VBA produces the
following lines of code for you:

Sub CreatePivotChart()

End Sub

 5. Turn off ScreenUpdating to help your macro run faster by not refreshing the screen as
objects in the code are created and manipulated:

Application.ScreenUpdating = False

 6. Declare an Object variable for the existing PivotTable:

Dim objPT As PivotTable

234 ❘ LESSON 18 PROGRAMMING PIVOTTABLES AND PIVOTCHARTS

c18.indd 02/24/2015 Page 234

 7. Set the Object variable for the fi rst (index #1) PivotTable:

Set objPT = ActiveSheet.PivotTables(1)

 8. Select the PivotTable:

objPT.PivotSelect ""

 9. Add the chart:

Charts.Add

 10. Place the chart onto the PivotTable’s worksheet:

ActiveChart.Location Where:=xlLocationAsObject, _
Name:=objPT.Parent.Name

 11. Position the PivotChart so its top-left corner occupies cell H23, a few rows below the
PivotTable:

ActiveChart.Parent.Left = Range("H23").Left
ActiveChart.Parent.Top = Range("H23").Top

 12. Deselect the PivotChart:

Range("A1").Select

 13. Turn on ScreenUpdating:

Application.ScreenUpdating = True

 14. When you complete the macro, it looks as follows:

Sub CreatePivotChart()

'Turn off ScreenUpdating.
Application.ScreenUpdating = False

'Declare an Object variable for the existing PivotTable.
Dim objPT As PivotTable
'Set the Object variable for the first (index #1) PivotTable.
Set objPT = ActiveSheet.PivotTables(1)

'Select the PivotTable.
objPT.PivotSelect ""

'Add the chart.
Charts.Add

'Place it on the PivotTable's worksheet.
ActiveChart.Location Where:=xlLocationAsObject, _
Name:=objPT.Parent.Name

'Position the PivotChart so its top left corner
'occupies cell H23, a few rows below the PivotTable.
ActiveChart.Parent.Left = Range("H23").Left

Try It ❘ 235

c18.indd 02/24/2015 Page 235

ActiveChart.Parent.Top = Range("H23").Top

'Deselect the PivotChart.
Range("A1").Select

'Turn on ScreenUpdating.
Application.ScreenUpdating = True

End Sub

 15. Press Alt+Q to return to your worksheet and test your macro. Figure 18-27 shows what the
worksheet should look like with the PivotChart added, right where it was specifi ed in VBA.

FIGURE 18-27

REFERENCE Please select the video for Lesson 18 at www.wrox.com/go
/excelvba24hour. You will also be able to download the code and resources
for this lesson from the website.

http://www.wrox.com/go

c19.indd 02/24/2015 Page 237

User-Defi ned Functions
Most Excel users who are not absolute beginners use worksheet functions in their formulas.
The most common worksheet function is the SUM function, and hundreds more exist.

Basically, a function performs a calculation or evaluation and then returns a value. Functions
used in your VBA expressions act the same way; they do what they are programmed to do and
then return a result.

With VBA, you can write (“defi ne”) your own custom function (a user-defi ned function or
UDF) that looks, acts, and feels like a built-in function, but with a lot more power and versa-
tility. After you get the hang of UDFs, you’ll wonder how you ever got along without them.

WHAT IS A USER-DEFINED FUNCTION?

You are already familiar with many of Excel’s built-in worksheet functions such as SUM,
AVERAGE, and VLOOKUP, but sometimes you need to perform calculations or get information
that none of Excel’s built-in functions can accomplish. A user-defi ned function (UDF) is a
function in VBA that you create with arguments you specify. You use it as a worksheet func-
tion or as part of a macro procedure when a task is otherwise impossible or too cumbersome
to achieve with Excel’s built-in formulas and functions.

For example, you may need a formula to sum a range of numbers depending on a cell’s interior
color; to extract only numbers or letters from an alphanumeric string; to place an unchanging
random number in a cell; or to test whether a particular worksheet exists or another work-
book is open. UDFs are an excellent option for handling tasks when regular worksheet func-
tions cannot or should not be used.

Characteristics of User-Defi ned Functions
When used as a worksheet function, the purpose of a UDF is to return a number, string, array,
or boolean (true or false) value to the cell it occupies. UDFs cannot change the Excel environ-
ment in any way, meaning they cannot place a value in another cell, change the interior color

19

238 ❘ LESSON 19 USER-DEFINED FUNCTIONS

c19.indd 02/24/2015 Page 238

of any cell including the cell they are in, rename a worksheet, or do anything other than return a
value to their own cell.

That said, it’s important to note that a UDF can be called by a macro. This allows the calling pro-
cedure (the macro) to take advantage of the UDF while still retaining the ability to change the Excel
environment. This makes your UDF a versatile tool when integrated with macros.

UDFs cannot be composed by the Macro Recorder. Although in some cases you can record a macro
and turn it into a UDF by editing the code, most of the time you create a UDF by writing the code
yourself directly into a standard module.

NOTE UDFs are always located in a standard module, though they can neither
appear in, nor be run from, the Macro dialog box. UDFs do not work if placed in any
other type of module, such as a worksheet, workbook, UserForm, or class module.

NOTE Whichever way the UDF is called, be aware that it always compiles
slower than built-in functions. Honestly, you would barely notice the differ-
ence yourself, but Excel notices and spends an extra moment to think things
over when compiling code of any kind, including user-defi ned functions. Avoid
reinventing the wheel by using worksheet functions wherever practical and using
UDFs only for things worksheet functions cannot or should not do.

Anatomy of a UDF
When designing a UDF, it helps to consider three questions:

 ➤ What is the function’s purpose; that is, what do you want it to accomplish?

 ➤ What arguments, if any, does the function need?

 ➤ What will the function return as a formula or provide to its caller in a macro?

A UDF always begins with the Function statement and ends with the End Function statement.
Unless you want your function to be visible only to other code in the same module, it’s best to
declare the function as Public, or omit the Public/Private qualifi er altogether, which defaults the
function’s scope to Public. When you declare a UDF as Public, it appears in the list of functions in
the Insert Function dialog box.

Here is an example of the general syntax of a UDF:

Function name([argument list]) as type
'VBA statements that make up the Function
[name = returned expression]
End Function

UDF Examples That Solve Common Tasks ❘ 239

c19.indd 02/24/2015 Page 239

NOTE Function names must begin with a letter, and cannot contain spaces or
illegal naming characters such as the slash, colon, comma, bracket, or any arith-
metic operator symbols. It’s always a good practice to give your UDF a simple,
meaningful name, just as you would for a macro.

After the function’s name is the argument list, which is enclosed by parentheses. If you have two or
more arguments, each is separated by a comma and a space. Not every UDF requires arguments, but
the parentheses are still required immediately after the function name. Following the argument list
is the optional (but strongly recommended) specifi cation of the data type, depending on the func-
tion’s purpose.

Here’s an example of a UDF that does not require any arguments. It returns the complete path of the
Microsoft Excel application on your computer:

Function xlPath() As String
xlPath = Application.Path
End Function

On my computer, using Microsoft Offi ce 2013 and entering the formula =xlPath() into a work-
sheet cell, this UDF returns the path C:\ProgramFiles\Microsoft Office 15\root\office15.

UDF EXAMPLES THAT SOLVE COMMON TASKS

User-defi ned functions can simplify your work by enabling you to use shorter and more readable
formulas. After you create the UDF, all the user needs to know is the function name and its argu-
ments. User-defi ned functions are very useful for handling everyday tasks that you might have
thought—or are known to be impossible to solve with a native worksheet formula. Following are a
few examples of UDFs that can solve such tasks.

Summing Numbers in Colored Cells
A question that frequently arises is how to add up the numbers that are only in colored cells of a
certain range. If the cells were colored by conditional formatting, the solution could be to sum that
range of cells based on the condition, such as by using the SUMIF function. However, evaluating the
property of a cell—in this case its actual interior color—is more of a challenge because no built-in
worksheet function is able to do that.

As an example, Figure 19-1 shows a list of numbers in range A2:A15, where some cells are colored
gray and some are not. The task is to sum the numbers in gray-colored cells.

Outside the range, cell C1 serves the dual purpose of receiving the UDF, and also displaying the
color you need to sum by. With this approach, the UDF only needs one argument to specify the
range to sum:

240 ❘ LESSON 19 USER-DEFINED FUNCTIONS

c19.indd 02/24/2015 Page 240

Function SumColor(RangeToSum As Range) As Long
'Declare the necessary variables.
Dim ColorID As Integer, ColorCell As Range, mySum As Long
'Identify the ColorID variable so you know what color to look for.
ColorID = Range(Application.Caller.Address).Interior.ColorIndex
'Loop through each cell in the range.
For Each ColorCell In RangeToSum
'If the cell's color matches the color you are looking for,
'keep a running subtotal by adding the cell's number value
'to the mySum variable.
If ColorCell.Interior.ColorIndex = ColorID Then mySum = mySum + ColorCell.Value
Next ColorCell
'The cells have all been evaluated, so you can define the SumColor function
'by setting it equal to the mySum variable.
SumColor = mySum
End Function

The UDF in cell C1 is
=SumColor(A2:A15)

FIGURE 19-1

The entry in cell C1 is =SumColor(A2:A15). The UDF loops through each cell in range A2:A15,
and along the way keeps a running total with the mySum variable when a gray cell is encountered.
At the end of the UDF code, the function’s name of SumColor is set to equal the mySum variable,
and that enables the UDF to return 16 as the sum of gray-colored cells. Notice that because you
were expecting the result to be a whole number, the Long variable type was specifi ed for the
function’s name.

NOTE This example also demonstrates another useful way to employ the
Application.Caller statement that’s introduced in Lesson 16. Here, the
object calling the function is cell C1, which was colored gray before the UDF
was entered.

UDF Examples That Solve Common Tasks ❘ 241

c19.indd 02/24/2015 Page 241

Extracting Numbers or Letters from an Alphanumeric String
Another common question is how to extract numbers or letters from a string that contains a
mixture of alphanumeric characters. If the numbers or letters are all in predictable places or consis-
tently grouped in some way, built-in formulas might do the job. But it gets dicey if the string has an
unpredictable mishmash of characters similar to what is in column A in Figure 19-2.

The UDF in cell B2 and copied down is
=ExtractNumbers(A2)

The UDF in cell C2 and copied down is
=ExtractLetters(A2)

FIGURE 19-2

Following are two similar UDFs: one that extracts just the numbers from an alphanumeric string
and one that extracts just the letters. Figure 19-2 shows how the formulas should be entered.

NOTE Remember that you can copy and paste a UDF just as you can a built-in
formula or function. You can also use the fi ll handle to copy the UDF down
or across.

Function ExtractNumbers(strText As String)
'Declare the necessary variables.
Dim i As Integer, strDbl As String
'Loop through each character in the cell.
For i = 1 To Len(strText)
'If the character is a digit, append it to the strDbl variable.
If IsNumeric(Mid(strText, i, 1)) Then
strDbl = strDbl & Mid(strText, i, 1)
End If
Next i
'Each character in the cell has been evaluated, so you can define the
'ExtractNumbers function by setting it equal to the strDbl variable.
'The purpose of the CDbl function is to coerce the strDbl expression
'into a numeric Double data type.
ExtractNumbers = CDbl(strDbl)
End Function

Function ExtractLetters(strText As String)
'Declare the necessary variables.
Dim x As Integer, strTemp As String
'Loop through each character in the cell.
For x = 1 To Len(strText)

242 ❘ LESSON 19 USER-DEFINED FUNCTIONS

c19.indd 02/24/2015 Page 242

'If the character is not numeric, it must be a letter,
'so append it to the strTemp variable.
If Not IsNumeric(Mid(strText, x, 1)) Then
strTemp = strTemp & Mid(strText, x, 1)
End If
Next x
'Each character in the cell has been evaluated, so you can define the
'ExtractLetters function by setting it equal to the strTemp variable.
ExtractLetters = strTemp
End Function

Extracting the Address from a Hyperlink
Here is an example of how to return the actual underlying address of a hyperlink. In Figure 19-3,
hyperlinks are in column A but the display text in those cells describes the link’s destination. This
UDF returns the actual hyperlink address; the "mailto" portion of the code deals with the possibil-
ity of a link being an e-mail address:

Function Link(HyperlinkCell As Range)
Link = Replace(HyperlinkCell.Hyperlinks(1).Address, "mailto:", "")
End Function

The UDF in cell B2 and copied down is
=Link(A2)

FIGURE 19-3

 USER-DEFINED FUNCTIONS AND ERRORS

You might wonder what happens if an error occurs with a UDF. For example, what
if the SumColor function is entered into a cell with an illogical range argument
address such as =SUMCOLOR(A2:WXYZ)? Or, what if a UDF attempts to divide a
number by zero?

When a UDF attempts to do what it cannot do, the cell displays a #VALUE! error.
Whereas a failed macro results in a runtime error with an imposing message box
to announce the error and a debug option to identify the offending code line, such
is not the case with a failed UDF. Even though it is a VBA item, a failed UDF only
returns the #VALUE! error. With larger UDFs, fi nding the cause of the error can be
a real chore. Therefore, it’s a good idea to test each code line in the Immediate win-
dow as you write your larger UDFs.

Volatile Functions ❘ 243

c19.indd 02/24/2015 Page 243

VOLATILE FUNCTIONS

Sometimes, you want a UDF to return a value and then do nothing else until you purposely cause
it to recalculate. An example is if you want to produce a random number in a cell but keep that
number constant until you decide to change it again, if ever. The worksheet function RAND() returns
a random number, but it recalculates whenever the worksheet recalculates or any cell in that work-
sheet is edited. This UDF returns an unchanging (static) random number between 1 and 100:

Function StaticRandom() As Double
StaticRandom = Int(Rnd() * 100)
End Function

The function entry for the cell is =StaticRandom().

NOTE Notice that the StaticRandom UDF does not require an argument. Even
so, the empty parentheses must immediately follow the function’s name in the
fi rst code line. Also, when you enter a non-argument UDF in a cell, the paren-
theses must be included, as you see in this example.

Now with the StaticRand UDF in its current state, its returned random number does not change
unless you purposely call the UDF, such as if you select the cell, press the F2 key, and press Enter, or
if you press Ctrl+Alt+F9 to force a calculation on all cells.

If you prefer to have the UDF act as the built-in RAND function would, that is, to recalculate when-
ever another worksheet formula is recalculated or a cell is edited, you can insert the statement
Application.Volatile like so:

Function StaticRandom() As Double
Application.Volatile
StaticRandom = Int(Rnd() * 100)
End Function

NOTE Be aware that if the UDF is used in a lot of cells, Application.Volatile
adds to the workbook’s overall calculation effort, possibly resulting in longer
recalculation times.

Returning the Name of the Active Worksheet and Workbook
A very common request is for a formula to return the name of the active worksheet or workbook.
This is a case where a UDF is still a worthy alternative even though formulas can handle this
request, and the Application.Volatile statement would be included.

For the worksheet name, this formula is an option but it’s not easy to memorize or to enter correctly:

=MID(CELL("filename",A1),FIND("]",CELL("filename",A1))+1,32)

244 ❘ LESSON 19 USER-DEFINED FUNCTIONS

c19.indd 02/24/2015 Page 244

Although the formula automatically updates itself when a sheet tab name changes, the workbook
must be named (saved at least once) or the formula returns a #VALUE! error.

The following code shows a UDF with the Application.Volatile statement that covers all the
bases. It updates itself when the worksheet tab changes, and the workbook does not need to be
named or saved for the UDF to work. Another advantage is that the formula =SheetName() is easy
to remember and to enter:

Function SheetName() As String
Application.Volatile
SheetName = ActiveSheet.Name
End Function

For the formula that returns the active workbook’s name, the following is a lengthier and more dif-
fi cult one to enter properly:

=MID(CELL("filename",A1),FIND("[",CELL("filename",A1))+1,FIND("]",
CELL("filename",A1))-FIND("[",CELL("filename",A1))-1)

The workbook needs to be saved at least once for this formula to work.

The NameWB() function is much easier to remember and enter, and it’ll also do the job whether or
not the workbook has been saved:

=NameWB()

Its UDF is the following:

Function NameWB() As String
Application.Volatile
NameWB = ActiveWorkbook.Name
End Function

UDFs with Conditional Formatting
One of the less-utilized but powerful applications of a UDF is to combine it with conditional format-
ting. Let’s say you want to identify cells that contain a comment in a workbook where the option to
show comment indicators is turned off. It’s true that cells containing comments fall into the category
of SpecialCells and you can select them through the Go To Special dialog box; you can maybe
format the selected comment-containing cells from there. However, you’d need to repeat those steps
anytime a cell obtains or deletes a comment, and there’s no telling if or when that might happen.

A better way to go is with a UDF as the formula rule with conditional formatting, to format the
comment-containing cells in real time as comments are added or deleted. For example, place this
UDF into a standard module:

Public Function TestComment(rng As Range) As Boolean
TestComment = Not rng.Comment Is Nothing
End Function

Volatile Functions ❘ 245

c19.indd 02/24/2015 Page 245

Back on your worksheet, select the range of interest—in this example starting from cell A1. In
the New Formatting Rule dialog box for Excel versions starting with 2007, or the Conditional
Formatting dialog box for versions prior to 2007, enter this formula:

=TestComment(A1)

Choose your formatting style, click OK, and all comment-containing cells in that range
are formatted.

Calling Your UDF from a Macro
As mentioned earlier, functions that you create need not only serve as worksheet formulas. A func-
tion can also be called by a macro, which does not limit the macro’s ability to do whatever needs to
be done. In the following code, the OpenTest function is set apart from the OpenOrClosed macro,
which gives you the best of both worlds for testing whether a particular workbook is open or closed.

To test by formula if a workbook named YourWorkbookName.xlsm is open or closed, you can enter
the following in a worksheet cell, which returns TRUE (the workbook is open) or FALSE (the work-
book is closed):

=OpenTest("YourWorkbookName.xlsm")

To test by macro, you can expand the functionality by asking with a Yes/No message box if you’d
like to open that workbook if it is not already open, and open it if Yes is selected, or keep the work-
book closed if No is selected. Here’s the code:

Function OpenTest(wb) As Boolean
'Declare a Workbook variable.
Dim wkb As Workbook
'Employ the On Error Resume Next statement to check for, and bypass,
'a run time error in case the workbook is not open.
On Error Resume Next
Set wkb = Workbooks(wb)
'If there is no error, the workbook is open.
If Err = 0 Then
Err.Clear
OpenTest = True
Else
'An error was raised, meaning the workbook is not open.
OpenTest = False
End If
End Function

Sub OpenOrClosed()

'Declare a String type variable that will be the workbook name.
Dim strFileName As String
strFileName = "YourWorkbookName.xlsm"

'Call the OpenTest UDF to evaluate whether or not the workbook is open.
If OpenTest(strFileName) = True Then

'For demo purposes, this message box informs you if the workbook is open.
MsgBox strFileName & " is open.", vbInformation, "FYI..."

246 ❘ LESSON 19 USER-DEFINED FUNCTIONS

c19.indd 02/24/2015 Page 246

Else
'The OpenTest UDF determines that the workbook is closed.
'A message box asks if you want to open that workbook.
Dim OpenQuestion As Integer
OpenQuestion = _
MsgBox(strFileName & " is not open, do you want to open it?", _
vbYesNo, _
"Your choice")

'Example code if you answer No, meaning you want to keep the workbook closed.
If OpenQuestion = vbNo Then
MsgBox "No problem, it'll stay closed.", , "You clicked No."

Else
'Example code if you answer Yes, meaning you want to open the workbook.
'You need to tell the macro what the full path is for this workbook,
'so another String type variable is declared for the path.
Dim strFileFullName As String
strFileFullName = "C:\Your\File\Path\" & strFileName
'Open the workbook.
Workbooks.Open Filename:=strFileFullName
End If

End If

End Sub

Adding a Description to the Insert Function Dialog Box
Chances are, the more VBA you learn, the more popular you’ll be at your workplace as the Excel
go-to person. Soon if not already, you’ll be building workbooks for other people to use, and it’s a
nice touch to add a helpful description to your UDFs for the benefi t of those other users. The Insert
Function dialog box is a good place to help people understand how to enter your UDFs, especially
because this dialog box is how some users enter functions, and each UDF has its own unique entry
requirements.

Figure 19-4 shows a typical Insert Function dialog box, where your publicly declared or non-
declared UDFs appear in the Select a Function pane when the User Defi ned category is selected. I’ve
selected the ExtractNumbers function, but no help is available for someone who has never seen this
UDF and would not know how to properly enter the function.

In two easy steps, here’s how you can provide a helpful tip for entering a UDF from the Insert
Function dialog box:

 1. Press Alt+F8 to call the Macro dialog box. In the Macro Name fi eld, enter the function name;
for example, ExtractNumbers, as shown in Figure 19-5. Click the Options button.

Volatile Functions ❘ 247

c19.indd 02/24/2015 Page 247

FIGURE 19-4

FIGURE 19-5

 2. In the Description fi eld of the Macro Options dialog box, enter a brief description of how
to enter this UDF. As partially shown in Figure 19-6, I entered Example UDF entry:
=ExtractNumbers(A2), where cell A2 contains the original alphanumeric

string. as the description and confi rmed it by clicking OK and exiting the Macro
dialog box.

And that’s all there is to it. Now if you go back to the Insert Function dialog box and select the
ExtractNumbers UDF, a description appears, as shown in Figure 19-7, providing the users with a
useful tip for how to enter the UDF.

248 ❘ LESSON 19 USER-DEFINED FUNCTIONS

c19.indd 02/24/2015 Page 248

FIGURE 19-6

FIGURE 19-7

TRY IT

In this lesson you practice creating a user-defi ned function that tests whether a particular cell
contains a comment. If so, the UDF returns the text of that comment; if not, the UDF returns
"No comment".

Lesson Requirements
To get the sample workbook, you can download Lesson 19 from the book’s website at
www.wrox.com/go/excelvba24hour.

http://www.wrox.com/go/excelvba24hour

Try It ❘ 249

c19.indd 02/24/2015 Page 249

Step-by-Step
 1. From your keyboard press Alt+F11 to get into the VBE, and from the menu bar click

Insert ➪ Module.

 2. Enter the function name, declare an argument variable for a Range type because a cell will
be evaluated, and declare the Function type as String because the UDF returns text of some
kind. For example:

Function GetComment(rng As Range) As String

 3. Declare a String type variable to handle either the comment text or the "No comment"
statement:

Dim strText As String

 4. Using an If structure, evaluate the target cell for the existence of a comment. If there is no
comment, defi ne the strText variable as "No comment":

If rng.Comment Is Nothing Then
strText = "No comment"

 5. Complete the If structure for the condition of the target cell containing a comment:

Else
strText = rng.Comment.Text
End If

 6. Set the name of the function equal to the strText string expression:

GetComment = strText

 7. Close the function with the End Function statement. The entire UDF looks like this:

Function GetComment(rng As Range) As String
Dim strText As String
If rng.Comment Is Nothing Then
strText = "No comment"
Else
strText = rng.Comment.Text
End If
GetComment = strText
End Function

 8. Press Alt+Q to return to the worksheet. Test your UDF to evaluate the existence of a com-
ment in cell A1 and return the conditional string with this formula in a worksheet cell:

=GetComment(A1)

REFERENCE Please select the video for Lesson 19 online at www.wrox.com/go
/excelvba24hour. You will also be able to download the code and resources
for this lesson from the website.

http://www.wrox.com/go

c20.indd 02/24/2015 Page 251

Debugging Your Code
Despite what you’ve always heard, there are actually three sure things in life: death, taxes, and
errors in computer programs. There’s no avoiding it—errors happen and they need to be fi xed,
whether the length of your VBA programming experience is 10 days or 10 years.

You need to learn the tools and techniques for debugging your code, so that when things go wrong
you’re familiar with the resources that are at your disposal for fi nding and fi xing errors. Excel has
many good built-in debugging tools. In addition, this lesson covers other techniques for avoiding
errors in the fi rst place, and, believe it or not, getting errors to work for you instead of against you.

WHAT IS DEBUGGING?

A bug is an error in your code that can produce erroneous results, or, depending on the nature
of the bug, stop the code from executing altogether. In programming, the term debugging
refers to correcting an error in code, or the process of testing a procedure for the possible
 existence of bugs that would need to be fi xed if found.

YOU CAN DO EVERYTHING RIGHT AND STILL HAVE A BUG

The next section covers three causes of errors in VBA programming. Actually, there
is a fourth cause, over which you have absolutely no control, and that is a bug in a
software application itself. This is not in any way a specifi c reference to a particular
software company or to Microsoft. It’s a software-industry reality that new prod-
ucts are sometimes released with bugs, including known bugs that are deemed to be
benign but turn out to be a problem when used with Excel.

In your future development projects, you’ll encounter many external data storage
and management applications that mostly play well with Excel, but sometimes might
not when by all rights they should. It’s never in any reputable software company’s
best interests to impose nuisance bugs on its users. The point is, if you fi nd that you
have all your bases covered and are still scratching your head about an error that
has no rhyme or reason, you might have stumbled onto a bug that other users of that
product, and especially the software manufacturer, would want to know about.

20

252 ❘ LESSON 20 DEBUGGING YOUR CODE

c20.indd 02/24/2015 Page 252

The process of debugging is a combination of art and science. The science is covered by some terrifi c
debugging tools that come with Excel VBA. The art is owing to the skills and experience you gain
when you build VBA projects with a mindset for anticipating potential minefi elds based on the
intended use—and users—of your projects.

WHAT CAUSES ERRORS?

The world of computer programming enjoys no exemption from Murphy’s Law, which states that
if something can go wrong, it will go wrong. Three primary types of errors can infect your VBA
 programming code. To avoid errors, your fi rst line of defense is anticipating problems as you write
your code, especially considering how the project will be used in real practice. Eventually, however,
one of three types of errors will impose their nuisance selves.

One type is the syntax error, such as misspelling a VBA keyword or not declaring a variable while
requiring variable declaration (as was outlined in Lesson 6). This causes a compile error as shown
in Figure 20-1, because the LastRow variable was not declared in that example. If an error can be
classifi ed as friendly, it’d be a compile error because it is VBA’s way of telling you what’s wrong, and
sometimes showing you exactly where the problem is.

FIGURE 20-1

Another syntax error that can result in a compilation failure is the absence of an End If, End With,
or loop continuation keyword such as Next or Loop. For example, the macro shown in Figure 20-2
produces a compile error because it is missing an End With statement.

FIGURE 20-2

What Causes Errors? ❘ 253

c20.indd 02/24/2015 Page 253

A second type of error is the runtime error, because they occur while the macro is running. These
errors usually stop the procedure dead in its tracks with a runtime error message such as the one in
Figure 20-3. Notice the reason for the error: In the Project Explorer window, you can see that the
workbook has only three worksheets, named Sheet1, Sheet2, and Sheet3.

FIGURE 20-3

The runtime error is VBA’s way of protesting that it is being told to do something it cannot do,
as in this case because a worksheet named Sheet4 does not exist. If the Visual Basic Editor is
 unprotected, and you click the Debug button on a runtime error message, VBA takes you to the
related module and highlights the offending line of code, as shown in Figure 20-4.

FIGURE 20-4

The third type of error is the logical error. These errors are the most nefarious because they come with
no message warnings that something is wrong. An example of a logical error is an incorrectly coded

254 ❘ LESSON 20 DEBUGGING YOUR CODE

c20.indd 02/24/2015 Page 254

mathematical calculation that yields incorrect results. Suppose your project is a large VBA effort with
macros that calculate fi nancial data that end users and investment clients are depending on for their per-
sonal investment strategies. Your macros run without getting interrupted by compile or runtime errors,
but the results are still fl awed. People tend not to fi x what they think isn’t broken, so unless you (or an
angry client) discovers the math bug, it can go undetected for a long time, and it may never be detected.

NOTE When programming mathematical and logical operations, it’s always a
good idea to test your code by comparing the output of your VBA results with
the output from an independent source.

WEAPONS OF MASS DEBUGGING

Now that you know what kinds of bugs are lurking in the shadows and how they can bite your code,
you can fi ght back with several excellent debugging tools that are in the Visual Basic Editor. Your best
defense starts with information about the weapons in your debugging arsenal and how they are used.

The Debug Toolbar
The Debug toolbar is a handy item to display and keep docked onto your VBE menu bar. To show
the Debug toolbar, from the VBE menu click View ➪ Toolbars ➪ Debug as shown in Figure 20-5.

The Debug toolbar typically contains 13 icons, some of which you are already familiar with.
Figure 20-6 shows the toolbar and the names of the icons, and the following sections describe
their uses.

FIGURE 20-5

Design
Mode

Break

Run Reset

Step
Into

Step
Out

Step
Over

Watch
Window

Quick
Watch

Toggle
Breakpoint

Locals
Window

Call
Stack

Immediate
Window

FIGURE 20-6

Weapons of Mass Debugging ❘ 255

c20.indd 02/24/2015 Page 255

NOTE There are four VBE toolbars—Debug, Edit, Standard, and UserForm—each
of which can remain visible in your VBE by dragging and docking them above or
below the menu bar.

Design Mode
The Design Mode button turns Design Mode on and off in the active workbook. Design Mode is
the time during which no code from the project is currently running. You can leave Design Mode by
clicking the Design Mode icon again, or by running a macro or using the Immediate window. When
you have an ActiveX object on your worksheet, such as a CommandButton, Design Mode enables you
to view the object’s properties or to double-click the object to quickly access its module in the VBE.

Run
Clicking the Run button has one of two effects. If your cursor happens to be blinking in the Code win-
dow within a macro, clicking the Run button or pressing the F5 key runs the macro. Otherwise, clicking
the Run button calls the Macro dialog box, just as if you were on a worksheet and you pressed Alt+F8.

Break
Clicking the Break button is the same as pressing Ctrl+Break, which halts macro execution. Break
mode is a special mode of operation in the Visual Basic Editor that enables you to run one line of
code at a time without having to run the entire macro. Examining one line of code at a time is a way
to pinpoint the exact whereabouts of the error. You can edit code in Break mode.

Reset
Clicking the Reset button clears the call stack and clears the module-level variables. This ends Break
mode, ends all program execution, and closes the Debug window if it is open.

Stepping through Code
On the Debug toolbar, three icons—Step Into, Step Over, and Step Out—are related to a process
known as stepping through code. Sometimes you want to examine each statement in your macro
if you suspect a bug is somewhere in your code but you’re not sure where. Even large macros can
run quickly, so it’s diffi cult, and often impossible, to isolate the specifi c command that is not
executing the way you would have planned. Stepping through your VBA statements enables you to
execute one or more lines of code at your own pace to see for yourself what every VBA statement
is really doing.

Suppose you oversee a region of 10 hardware stores, and you receive a table of each store’s quarterly
sales activity. Your table is in a raw form, downloaded into Excel from your company’s database,
resembling Figure 20-7.

256 ❘ LESSON 20 DEBUGGING YOUR CODE

c20.indd 02/24/2015 Page 256

FIGURE 20-7

You have a macro such as the one pictured in Figure 20-8 that formats the table and sorts the Net
Income column in descending order so you can quickly list the most profi table stores. When you
run the macro, you do not get a compile or runtime error. However, the code did not sort the Net
Income in descending order after the macro completed its full execution, as shown in Figure 20-9.

FIGURE 20-8

Weapons of Mass Debugging ❘ 257

c20.indd 02/24/2015 Page 257

FIGURE 20-9

Using the Step Into Command
To examine line by line where the problem lies, click your mouse anywhere inside the macro and
then click the Step Into button. The macro’s Sub line is highlighted in yellow, indicating to you that
it’s that particular macro you are about to step into.

NOTE When you “step into” a macro, you are traversing step-by-step (code line
by code line), in a single-step process to execute each line in turn.

Click the Step Into button again and the fi rst line of code—which in this example is Range("A1").
Value = "XYZ Widgets, Inc."—is highlighted in yellow, as shown in Figure 20-10. If you
click the Step Into button again, the code line Range("A1").Value = "XYZ Widgets, Inc." is
 executed, and the next line of code—Range("A2").Value = "Quarterly Report"—is highlighted
in yellow, ready to be executed with your next Step Into command.

Each time you click the Step Into button, the line of code that is highlighted is executed, and the
next line is highlighted, and so on until you reach the end of the macro. Because you suspect a bug
somewhere in the code, you’d be looking at your worksheet after each Step Into command to make
sure that what the code is supposed to be doing is what it truly is doing.

In this example, all the cell values and formatting were correctly executed when you stepped
into each one, until the very last section of code that executes the Sort method. You fi nd when
 stepping into that section that the range of cells being sorted is not correct. Your table occupies
range B4:E14 but the VBA code is sorting only up to row 13. Your suspicions were correct about
the fi nal result on the worksheet looking peculiar, so you make a quick adjustment to the sort
range address after you’ve verifi ed that each of the other lines of code were properly written and
being properly executed.

258 ❘ LESSON 20 DEBUGGING YOUR CODE

c20.indd 02/24/2015 Page 258

FIGURE 20-10

Using the Step Over Command
The Step Over command is similar to the Step Into command, with the difference between the two
commands occurring at the point of a call to another macro. You may have noticed in the macro the
code line Call myChartMaker, where in this hypothetical example the myChartMaker macro creates
a chart sheet from the table data. Figure 20-11 shows that Call statement highlighted during the
Step Into process.

In this situation, if you click the Step Over button, the Call myChartMaker command is executed but
you are not taken through it line by line as if it were stepped into. You would prefer to do this when you
know for sure that the myChartMaker macro works without any problems and cannot be the cause of
whatever bug you are trying to fi x in the current macro. The Step Over command executes the myChart-
Maker macro, and the next line of code in your macro is highlighted for the next Step Into command.

NOTE Did you notice a tiny arrow in the margin to the left of the macro being
stepped into? When a line of code is highlighted during a stepping process, a
 yellow arrow in the Code window’s left margin helps to indicate your place in
the process. With your mouse, you can select and drag the arrow upward or
downward, dropping it at whichever line of code you want to execute next.

Weapons of Mass Debugging ❘ 259

c20.indd 02/24/2015 Page 259

FIGURE 20-11

Using the Step Out Command
The Step Out command executes the remaining lines of code between and including the current
highlighted execution point and the End Sub line. You might think by the name Step Out that it
refers to simply exiting the Step Into command, but that is not exactly the case. Though it does
result in exiting the step-through process, it does so by executing the rest of the macro to get to the
end. If you want to exit any of the step-through process, click the Reset button.

Toggle Breakpoint
One of VBA’s convenient features is the ability to set a breakpoint, where you can specify a line
of code that is the point up to which the macro will run at full speed. When the macro’s execution
reaches the breakpoint code line, VBA switches to Break mode and halts the execution process.

NOTE Stepping through your macro is a good way to examine each line of code,
but when your macros are hundreds of lines long, a line-by-line examination
process is tedious and time-consuming. There will be many statements in your
code that won’t need to be examined, and there’s no reason to inch your way
to the section of your macro where the error probably resides. This is where
 breakpoints come in handy.

260 ❘ LESSON 20 DEBUGGING YOUR CODE

c20.indd 02/24/2015 Page 260

To set a breakpoint in your code, click your mouse into the line of code where you want the
 breakpoint to start. Click the Toggle Breakpoint button or press the F9 key, and the breakpoint is
set at that line. VBA clearly identifi es a breakpoint with a large brown dot in the Code window’s left
margin, and the code line itself is shaded brown.

For example, if you suspect a bug in a macro but you know that the majority of the macro runs
without any problems, you can set a breakpoint starting at a section in the program where you
want to examine the code more closely. In Figure 20-12, I clicked my mouse into the code line With
ActiveSheet.Sort and clicked the Toggle Breakpoint button. If the macro were to be run now, it
would execute all lines of code up to, but not including, that breakpoint line. Now, you can step
through the subsequent lines of code to verify that each line is doing what you’d expect.

FIGURE 20-12

NOTE You can set a breakpoint only on an executable line. Commented lines in
your code, or empty lines, cannot be set as breakpoints.

True to its name, you can click the Toggle Breakpoint button again to clear the current breakpoint
with any portion of that line selected, or you can click the large dot in the Code window’s margin.

Weapons of Mass Debugging ❘ 261

c20.indd 02/24/2015 Page 261

If you have already set a breakpoint and you click the Toggle Breakpoint button or press F9, you
set another breakpoint if you have any other line of code selected. You can set more than one
 breakpoint, so to quickly clear all breakpoints at once, press Ctrl+Shift+F9.

Locals Window
The Locals window can help you in situations in which you get a runtime error and the offending
line of code involves a variable. The Locals window displays the variables and their values for the
macro(s) you are currently running.

Figure 20-13 shows a very simple macro that attempted to activate a worksheet based on the object
variable mySheet. Because that variable was never set with an identifying worksheet, a runtime
error occurred because VBA could not determine which sheet the mySheet variable was referring
to. While in Break mode in this example, the Locals window shows that mySheet is set to Nothing,
telling you that you forgot to include a Set statement for mySheet.

FIGURE 20-13

Immediate Window
The Immediate window enables you to type in or paste a line of VBA code, which executes when
you press the Enter key. To see the Immediate window, you can click its icon on the Debug toolbar,
select View ➪ Immediate Window, or press Ctrl+G.

If it hasn't happened already, you'll soon fi nd yourself using the Immediate window for reasons having
nothing to do with errors. The Immediate window is a great way to execute commands quickly
 without needing to create a formal macro to get the task done, such as in the following examples.

To eliminate leading apostrophes in cell values, which can occur when manually entered
or imported from external source data, you can type Activesheet.UsedRange.Value =
Activesheet.UsedRange.Value and press Enter. To delete hyperlinks but keep the underlying cell
value, you can type ActiveSheet.Hyperlinks.Delete and press Enter.

When querying some fact or condition, precede your statement with a leading question mark. If you
want to know the version of Excel you are using, type ? Application.Version and press the Enter
key. As shown in Figure 20-14, when I entered that statement into the Immediate window, the value
15.0 was returned, which is Excel’s version 2013.

262 ❘ LESSON 20 DEBUGGING YOUR CODE

c20.indd 02/24/2015 Page 262

FIGURE 20-14

The point to be made about the Immediate window is that it is a proactive tool. If you are
 wondering whether a line of code will fail, or whether it will produce the result you have envisioned,
you can test that code line in the Immediate window and see the results before taking your chances
and putting it into your code.

Watch Window
The Watch window enables you to watch a variable or an expression change as your code executes.
You’d normally do this with values that are associated with runtime errors, so you can see at what
point the VBA expressions produced a value that might have caused the error.

Select the expression you want to watch, right-click that selection, and choose Add Watch from the pop-
up menu. Figure 20-15 shows the process for adding the variable strValue to the Watch list. The Add
Watch dialog box displays, as shown in Figure 20-16, for you to confi rm your settings and click OK.

FIGURE 20-15

When you step into code after setting a watch expression, you see the expression’s value change
 during execution. Figure 20-17 shows the strValue variable’s value change with each iteration of
the For Next loop. Notice that the value at one point in the loop is a number, yet the strValue
variable was declared as a String type. It’s that kind of attention that the Watch window brings to
your awareness of what your variables are actually returning, if you suspect a particular expression
to be the cause of an error.

FIGURE 20-16

Weapons of Mass Debugging ❘ 263

c20.indd 02/24/2015 Page 263

FIGURE 20-17

Quick Watch
The Quick Watch window enables you to get a look at the current value of an expression or
 variable for which you have not defi ned a watch expression. While you are in Break mode, select
your expression in the module and click the Quick Watch button, or press Shift+F9. For example,
in Figure 20-18, the intCounter variable was selected during a step-through process, and the
Watch window displays 3 in the Value fi eld, indicating that the For Next loop is currently in its
third iteration.

FIGURE 20-18

Call Stack
The Call Stack dialog box shows the list of currently active procedure calls in Break mode. Unless
you write macros that involve a maze of calls to other macros, that themselves call other procedures,
you won’t need the Call Stack dialog box. A word to the wise: Keep your macros simple and limit
their procedure calls to a reasonable level, and you won’t have to worry about relying on a dialog
box to tell you which macro is in error in Break mode.

264 ❘ LESSON 20 DEBUGGING YOUR CODE

c20.indd 02/24/2015 Page 264

TRAPPING ERRORS

When you encounter a runtime error and you’ve fi gured out the cause, it might be that you need to keep
the error-prone code in place because it is such an important component of the larger macro. Actually,
you will come across this situation a lot, so you’ll need to know how to handle errors programmatically
behind the scenes, in a way that the users of your projects will not be bothered by runtime errors.

Error Handler
One of the more common tasks in development projects is to add a worksheet to the workbook.
Your project might involve building a report onto a new worksheet, or copying various sections of a
master worksheet and pasting those individual sections to their own new worksheets that you create.
Say you provide an InputBox for users to enter the name of a worksheet they want to add. What hap-
pens if a user already has a worksheet by that name in the workbook? Two worksheets cannot have
the same name in the same workbook, but the macro still needs to complete its appointed task.

One approach is using an On Error GoTo statement that traps the error and points to a certain
 section in your macro that should be executed next to handle the error. Suppose your macro calls for
a new worksheet to be added and named by the user as Sheet3. If a worksheet already exists in the
workbook named Sheet3, a 1004 type runtime error message would occur as shown in Figure 20-19.

FIGURE 20-19

With the following syntax, you can use an error handler to avoid getting a runtime error message if
an attempt is made to give a new worksheet the same name another worksheet already has. In this
example macro, the user is provided an InputBox to name the new sheet, and informed if the sheet is
added, or if it is not added because duplicate names are not allowed:

Sub AddSheetTest()
Dim mySheetName As String
mySheetName = _
InputBox("Enter the worksheet name:", _
"Add and name a new worksheet")
If mySheetName = "" Then Exit Sub
On Error GoTo ErrorHandler
Worksheets.Add.Name = mySheetName
MsgBox _
"Worksheet " & mySheetName & " was added.", , "Thank you."
Exit Sub
ErrorHandler:
MsgBox _

Trapping Errors ❘ 265

c20.indd 02/24/2015 Page 265

"A worksheet named " & mySheetName & " already exists.", _
vbCritical, _
"Duplicate sheet names are not allowed."
End Sub

Bypassing Errors
My preference for most situations where runtime errors can occur is to avoid the error handler
route because the GoTo statement makes the macro more diffi cult to follow. Using an error-bypass
approach with the On Error Resume Next statement, you can test for the condition of the Error
object and use an If structure to deal with either possibility.

When it comes to naming a sheet, you need to monitor several considerations:

 ➤ Does the sheet name already exist in the workbook? Duplicate sheet names are not allowed.

 ➤ Is the proposed sheet name more than the maximum allowable 31 characters in length?

 ➤ Are any illegal sheet-naming characters included in the proposed name? Sheet tab names
 cannot contain the characters /, \, [,], *, ?, or :. If you try to type any of those characters
into your sheet tab, Excel disallows the entry.

The following macro takes these possibilities into consideration. If all conditions are met, a new
sheet is added. If any condition is not met, a new worksheet is not created, and a message box
informs you of the reason why:

Sub TestSheetCreate()

'Declare String type variables for naming and testing the sheet.
Dim mySheetName As String, mySheetNameTest As String

'Use an InputBox to ask the user to propose a new sheet name.
mySheetName = _
InputBox("Enter the worksheet name:", _
"Add and name a new worksheet")

'Exit if nothing was entered or the Cancel button was clicked.
If mySheetName = "" Then Exit Sub

'Error bypass if the proposed sheet name already exists
'in the workbook.
On Error Resume Next
mySheetNameTest = Worksheets(mySheetName).Name
If Err.Number = 0 Then
MsgBox _
"The sheet named " & mySheetName & " already exists.", _
vbInformation, _
"A new sheet was not added."
Exit Sub
End If

'If the length of the proposed sheet name exceeds 31 characters,
'disallow the attempt.
If Len(mySheetName) > 31 Then
MsgBox _
"Worksheet tab names cannot exceed 31 characters." & vbCrLf & _

266 ❘ LESSON 20 DEBUGGING YOUR CODE

c20.indd 02/24/2015 Page 266

"You entered " & mySheetName & ", which has " & vbCrLf & _
Len(mySheetName) & " characters.", vbInformation, _
"Please use no more than 31 characters."
Exit Sub
End If
'Sheet tab names cannot contain
'the characters /, \, [,], *, ?, or :.
'Verify that none of these characters
'are present in the cell's entry.
Dim IllegalCharacter(1 To 7) As String, i As Integer
IllegalCharacter(1) = "/"
IllegalCharacter(2) = "\"
IllegalCharacter(3) = "["
IllegalCharacter(4) = "]"
IllegalCharacter(5) = "*"
IllegalCharacter(6) = "?"
IllegalCharacter(7) = ":"
'Loop through each character in the proposed sheet name.
For i = 1 To 7
If InStr(mySheetName, (IllegalCharacter(i))) > 0 Then
MsgBox _
"You included a character that Excel does not allow" & vbCrLf & _
"when naming a sheet. Please re-enter a sheet name" & vbCrLf & _
"without the ''" & IllegalCharacter(i) & "'' character.", _
vbCritical, _
"Sheet not added."
Exit Sub
End If
Next i
'History is a reserved word, so a sheet cannot be named History.
If UCase(mySheetName) = "HISTORY" Then
MsgBox "A sheet cannot be named " & mySheetName & vbCrLf & _
"because it is a reserved word in Excel.", vbInformation, _
"History is a reserved word."
Exit Sub
End If

'Inform the user that a new sheet has been added.
Worksheets.Add.Name = mySheetName
MsgBox "A new sheet named " & mySheetName & " has been added!", _
vbInformation, _
"Thank you!"
End Sub

TRY IT

In this lesson, you create a macro that avoids a runtime error while using the Find method to locate
a value on your worksheet. If the value is found, its cell address is displayed in a message box.

If you were to record a macro to fi nd the word Hello on a worksheet, the recorded code would look
like this:

Cells.Find(What:="Hello", After:=ActiveCell, LookIn:=xlFormulas, _
LookAt:=xlPart, SearchOrder:=xlByRows, SearchDirection:=xlNext,_
MatchCase:=False, SearchFormat:=False).Activate

Try It ❘ 267

c20.indd 02/24/2015 Page 267

If the word Hello is not found on the worksheet, a runtime error would result because the recorded
code is instructing VBA to activate a cell that contains a value that does not exist. The purpose of
this lesson is to avoid a runtime error if the value being looked for does not exist on the worksheet.

Lesson Requirements
To get the sample workbook, you can download Lesson 20 from the book’s website at
www.wrox.com/go/excelvba24hour.

Hints
It is not practical to loop through potentially millions of cells, so you use the Find method with an
error bypass structure.

Step-by-Step
 1. Open a workbook and activate a worksheet that contains a relatively large amount of data.

This is an exercise in fi nding a value if it exists on the worksheet, so the more complex the
worksheet, the better.

 2. From your worksheet press Alt+F11 to get into the Visual Basic Editor.

 3. From the menu bar, click Insert ➪ Module.

 4. In your new module, type the name of your macro as Sub FindTest and press Enter. VBA
displays your entry and new macro as follows:

Sub FindTest()

End Sub

 5. For your fi rst line of code, declare a Variant type variable for the value you want to locate.
In this example, simply call it varFind:

Dim varFind as Variant

 6. Declare a String type variable for the value to be located:

Dim FindWhat As String

 7. Defi ne the FindWhat variable as an InputBox entry:

FindWhat = _
InputBox("What do you want to find?", "Find what?")

 8. If the Cancel button is clicked, or nothing is entered in the InputBox, exit the macro:

If FindWhat = "" Then Exit Sub

 9. Set the varFind variable to the Find method:

Set varFind = _
Cells.Find(What:=FindWhat, LookIn:=xlFormulas, lookat:=xlWhole)

 10. If varFind is Nothing, inform the user that the value being looked for was not found. Also,
exit the macro:

If varFind Is Nothing Then
MsgBox _

http://www.wrox.com/go/excelvba24hour

268 ❘ LESSON 20 DEBUGGING YOUR CODE

c20.indd 02/24/2015 Page 268

FindWhat& " was not found.", _
vbInformation, _
"No such animal."
Exit Sub
Else

 11. A message box informs the user that the value was found, and in what cell:

MsgBox FindWhat& " was found in cell " & varFind.Address, , "Found"

 12. Enter the End If statement:

End If

 13. Press Alt+Q to return to the worksheet and test your macro. The entire macro when it is
completed looks like this:

Sub FindTest()

'Declare a variant type variable for the value to locate.
Dim varFind As Variant
Dim FindWhat As String

'Define the FindWhat variable as an InputBox entry.
FindWhat = _
InputBox("What do you want to find?", "Find what?")

'If the Cancel button is clicked, or nothing is entered
'in the InputBox, exit the macro.
If FindWhat = "" Then Exit Sub

'Set the varFind variable to the Find method.
Set varFind = _
Cells.Find(What:=FindWhat, LookIn:=xlFormulas, lookat:=xlWhole)

'If varFind = Nothing, inform the user that the value being
'looked for was not found. Also, exit the macro.
If varFind Is Nothing Then
MsgBox _
FindWhat& " was not found.", _
vbInformation, _
"No such animal."
Exit Sub
Else

'A message box informs the user that the value was found,
'and in what cell.
MsgBox FindWhat& " was found in cell " & varFind.Address, , "Found"
End If
End Sub

REFERENCE Please select the video for Lesson 20 online at www.wrox.com/go
/excelvba24hour. You will also be able to download the code and resources
for this lesson from the website.

http://www.wrox.com/go

c21.indd 02/24/2015 Page 269

 PART IV
Advanced Programming
Techniques

 ▸ LESSON 21: Creating UserForms

 ▸ LESSON 22: UserForm Controls and Their Functions

 ▸ LESSON 23: Advanced UserForms

 ▸ LESSON 24: Class Modules

 ▸ LESSON 25: Add-Ins

 ▸ LESSON 26: Managing External Data

 ▸ LESSON 27: Data Access with ActiveX Data Objects

 ▸ LESSON 28: Impressing Your Boss (or at Least Your Friends)

c21.indd 02/24/2015 Page 271

Creating UserForms
In previous lessons, you have seen examples of how your workbook can interact with its users
to make decisions by employing such methods as InputBoxes and Message Boxes. Although
these interactive tools are very useful for the situations they are meant to serve, they have
 limited usefulness in more complex applications.

Some of your projects will require a more versatile approach to asking for and gathering many
kinds of information from users, all within a dedicated interface that’s convenient and easy to
use. Perhaps you have seen attempts to accomplish this on a neatly arranged worksheet where
certain cells are color-shaded or unprotected for data input, maybe with drop-down lists and
embedded check boxes or option buttons. A UserForm in VBA is a more effi cient method for
collecting and recording such information.

WHAT IS A USERFORM?

A UserForm is essentially a custom-built dialog box, but that description does not do justice
to the immense complexity and diversity with which UserForms can be built and be made
to function. A UserForm is created in the Visual Basic Editor, with controls and associated
VBA code, usually meant for the end user to be advised of some information or to enter data,
 generate reports, or perform some action.

NOTE Think of UserForms as electronic versions of the different forms you fi ll
out on your computer, such as when you make an online purchase, or with paper
and pen in a business offi ce. Some information on most forms is required and
some information is optional. A UserForm is a dynamic object, with VBA code
working behind the scenes to guide your users toward telling your workbook
what it needs to know.

21

272 ❘ LESSON 21 CREATING USERFORMS

c21.indd 02/24/2015 Page 272

CREATING A USERFORM

The fi rst step in creating a new UserForm is to insert one into the Visual Basic Editor. To do that,
press Alt+F11 to get into the VBE, and select your workbook name in the Project Explorer as shown
in Figure 21-1.

FIGURE 21-1

NOTE Be careful to select the workbook you have in mind before adding a
UserForm to it! In Figure 21-1, a couple other workbooks are open to help make
the point that the workbook of interest (Lesson21.xlsm in this example) is the
workbook selected in the Project Explorer.

With the workbook name selected, from the menu bar click Insert ➪ UserForm as shown in
Figure 21-2.

A new UserForm opens in its design window as shown in Figure 21-3.

FIGURE 21-2

Designing a UserForm ❘ 273

c21.indd 02/24/2015 Page 273

FIGURE 21-3

DESIGNING A USERFORM

UserForms have a variety of properties. You can show the Properties window for the UserForm
itself, or for any of its controls, by selecting the object and clicking its Properties icon, or clicking
View ➪ Properties Window as shown in Figure 21-4.

FIGURE 21-4

274 ❘ LESSON 21 CREATING USERFORMS

c21.indd 02/24/2015 Page 274

Below the Project Explorer is where you’ll see the Properties window, partially visible in Figure 21-5.

For the workbook’s fi rst UserForm, VBA assigns a default value of UserForm1 to its Name and
Caption properties, as you can see in Figure 21-5. If you were to create a second UserForm, its
default Name and Caption properties would be UserForm2, and so on. To help distinguish between
the Name and Caption properties, Figure 21-6 shows where the Name property has been changed to
frmEmployees, and the Caption property, which is displayed in the UserForm’s title bar, has been
changed to Employee Information.

NOTE When naming UserForms, or any object for that matter, it’s best to
assign a name that is relevant to the theme of the object. When I name a
UserForm, I use the prefi x frm (for UserForm) followed by a simple, intuitive
term (such as Employees in this example) that represents the basic idea of the
UserForm object.

FIGURE 21-5

ADDING CONTROLS TO A USERFORM

A control is an object such as a Label, TextBox, OptionButton, or CheckBox in a UserForm or
embedded onto a worksheet that allows users to view or manipulate information. VBA supports
these and more controls, which are accessible to you from the VBE Toolbox. To show the Toolbox

Adding Controls to a UserForm ❘ 275

c21.indd 02/24/2015 Page 275

so you can easily grab whatever controls you want from it, you can click the Toolbox icon, or click
View ➪ Toolbox as shown in Figure 21-7.

FIGURE 21-6

FIGURE 21-7

276 ❘ LESSON 21 CREATING USERFORMS

c21.indd 02/24/2015 Page 276

The control(s) you place onto your UserForm depend on its purpose. If you want to design a simple
form to gather employee information for your company, you’d at least want to know the employees’
names and their titles. It would be useful to display a TextBox to enter the employee name, and then
a list of the company’s position titles so the user can effortlessly select one. Figure 21-8 shows the
Toolbox with the mouse hovering over the Label control icon.

You place a control onto your UserForm by drawing the control onto your UserForm’s design
area. All you need to do is click whatever Toolbox control icon you’re interested in adding to the
UserForm, and draw it as you would draw a Shape object onto a worksheet. Figure 21-9 shows a
Label control that was just drawn, showing its default caption of Label1.

Notice in Figure 21-9 that the Label’s Caption property is selected in the Properties window, so
a more meaningful caption can be added to the Label. Because the Label will be directly above
the TextBox, and the purpose of the TextBox is to enter an employee name, the Label’s caption
is changed to Employee name as shown in Figure 21-10. Notice further in Figure 21-10 that the
TextBox icon is about to be selected in the Toolbox, as you get ready to draw a TextBox control
onto the UserForm below the Label.

FIGURE 21-8

After you click the Toolbox’s TextBox icon, you add a TextBox control by drawing it onto the
UserForm’s design area, just as you did when you added the Label control. Figure 21-11 shows the
drawn TextBox, positioned below the Label, and having a reasonably suffi cient width to accept and
display a person’s name. Meanwhile, as you can see in Figure 21-11, the Frame icon is about to be
selected in preparation for placing a Frame control onto your UserForm.

Figure 21-12 shows your just-drawn Frame control with its default caption of Frame1. Frames are a
good way to group other controls visually by containment, usually with an underlying theme. In the
case of this UserForm example, the company’s position titles will be contained in such a way that
the user can select only one.

The caption of a Frame control is an effi cient way to describe the purpose of the Frame, just as
the Label’s caption of Employee Name describes the purpose of the TextBox. In Figure 21-12, the
Caption property of your new Frame is selected so you can change the meaningless default caption
of Frame1 to a more useful description.

Adding Controls to a UserForm ❘ 277

c21.indd 02/24/2015 Page 277

FIGURE 21-9

FIGURE 21-10

In Figure 21-13, the Frame’s default caption of Frame1 has been changed to Position Title. Now
that the Frame’s caption is taken care of, Figure 21-13 also shows that the OptionButton icon in the
Toolbox is about to be selected. Because an employee would hold only one particular job position
title at a time, you can arrange a series of OptionButtons inside the Frame to represent the com-
pany’s various position titles, where only one can be selected.

278 ❘ LESSON 21 CREATING USERFORMS

c21.indd 02/24/2015 Page 278

FIGURE 21-11

FIGURE 21-12

In this basic UserForm example, Figure 21-14 shows four position titles from which to choose,
each as a caption among the four OptionButton controls that were placed inside the Frame. The
OptionButtons were added and captioned one at a time. Planning ahead, Figure 21-14 also shows
the CommandButton icon in the Toolbox, which is about to be selected so you can add a couple of
buttons as the last step in building the UserForm’s front-end design.

Adding Controls to a UserForm ❘ 279

c21.indd 02/24/2015 Page 279

FIGURE 21-13

In Figure 21-15, two CommandButtons have been added, which completes the UserForm’s interface
design. One of the CommandButtons is captioned OK, which is a common and intuitive caption for
users to click their confi rmation of data entries. The other CommandButton is a Cancel button to
allow users to quit the UserForm altogether, if they so choose.

NOTE A standard of proper UserForm design is to always allow your users an
escape route out of the UserForm. This is commonly done with a Cancel or Exit
button that users can click when they want to leave the form.

FIGURE 21-14

280 ❘ LESSON 21 CREATING USERFORMS

c21.indd 02/24/2015 Page 280

FIGURE 21-15

SHOWING A USERFORM

To show a UserForm, you execute the VBA Show command in a statement with the syntax
UserFormName Show. For example, if you had performed the same steps as you’ve seen in this lesson
to create the frmEmployees UserForm, you may have a simple macro like this to call the UserForm:

Sub EmployeeForm()
frmEmployees.Show
End Sub

If you’d like to see how the UserForm looks when it is called in the actual worksheet
 environment, without having to write a formal macro for yourself, you can type frmEmployees.
Show into the Immediate window and press Enter. Figure 21-16 shows how you and your users
see the example UserForm.

FIGURE 21-16

Closing a UserForm ❘ 281

c21.indd 02/24/2015 Page 281

WHERE DOES THE USERFORM’S CODE GO?

This lesson introduced UserForms and led you through the steps to create a basic form that contains
various controls. In Lessons 22 and 23 you see examples of how those and other UserForm controls
are programmable with event-driven VBA code.

A UserForm is a class of VBA objects that has its own module. Similar to the notion that each
worksheet has its own module, each UserForm you add to your workbook is automatically created
with its own module. Accessing a UserForm’s module is easy: In the VBE, you can double-click the
UserForm itself in the design pane; or in the Project Explorer, you can right-click the UserForm
name and select View Code, as shown in Figure 21-17.

FIGURE 21-17

CLOSING A USERFORM

You have two ways to close a UserForm. One way is with the Unload method and the other way is
with the Hide method. Though both methods make the UserForm look as if it has gone away, they
each carry out different instructions. This can be a point of confusion for beginning programmers,
so it’s important to understand the distinction between Unload and Hide.

282 ❘ LESSON 21 CREATING USERFORMS

c21.indd 02/24/2015 Page 282

Unloading a UserForm
When you unload a UserForm, the form closes and its entries are cleared from memory. In most
cases, that is what you want—for the data that was entered to be recorded in some way, or passed
to Public variables, and then closed. The statement that unloads a UserForm is simply Unload Me,
and it is commonly associated with a CommandButton for that purpose, such as the Cancel button
that was placed on this lesson’s example UserForm.

Suppose you want to unload the UserForm when the Cancel button is clicked. A quick and easy way
to do that is to double-click the CommandButton in the UserForm’s design, as shown in Figure 21-18.

Double-click the selected control
to quickly access its Click event
in the UserForm’s module.

FIGURE 21-18

When you double-click the CommandButton, you see these lines of code in the UserForm’s module:

Private Sub CommandButton2_Click()

End Sub

To complete the Click procedure, type Unload Me. When the Cancel button is clicked, the
UserForm unloads—that is, it closes and releases from memory the data that was entered—with this
Click event for that button:

Private Sub CommandButton2_Click()
Unload Me
End Sub

Try It ❘ 283

c21.indd 02/24/2015 Page 283

Hiding a UserForm
The Hide method makes the UserForm invisible, but the data that was in the UserForm is still
there, remaining in memory and able to be viewed when the form is shown again. In some
situations you will want this to be the case, such as if you are interacting with two or more
UserForms and you want the user to focus on only one form at a time. The statement to hide a
UserForm is Me.Hide.

NOTE To summarize the difference between Unload and Hide, the method you
choose depends on why you don’t want the UserForm to be seen. Most of the
time, you’ll want the form cleared from memory, but sometimes, information
that was entered into the form needs to be referred to the next time you show
the form while the workbook has remained open. Closing the workbook
 automatically unloads a UserForm only if it was hidden.

TRY IT

In this lesson, you design a simple UserForm with a Label control, a TextBox control, a CheckBox
control, and two CommandButton controls.

Lesson Requirements
To get the sample workbook, you can download Lesson 21 from the book’s website at
www.wrox.com/go/excelvba24hour.

Step-by-Step
 1. Press Alt+F11 to go to the Visual Basic Editor.

 2. Select the workbook name in the Project Explorer window, and from the menu bar at the top
of the VBE click Insert ➪ UserForm.

 3. Select the UserForm in its design window, and press the F4 key (or click View ➪ Properties
Window) to show the Properties window.

 4. Change the Name property to frmClients and change the Caption property to Clients.

 5. Size the UserForm by setting its Height property to 240 and its Width property to 190.

 6. From the menu bar at the top of the VBE, click View ➪ Toolbox.

 7. From the Toolbox, click the Label control icon and draw a Label across the top of the
UserForm. With the Label control selected, change its Caption property to Company Name.

 8. From the Toolbox, click the TextBox control icon and draw a TextBox directly below the Label.

http://www.wrox.com/go/excelvba24hour

284 ❘ LESSON 21 CREATING USERFORMS

c21.indd 02/24/2015 Page 284

 9. From the Toolbox, click the Label control icon again, and draw a Label a little bit below
the TextBox. With that Label control selected, change its Caption property to Client's
 business — check all that apply:.

 10. Directly below the Label from Step 9, from the Toolbox, click the CheckBox control
icon and draw a CheckBox that is wide enough for you to have its Caption property be
Agriculture.

 11. Repeat Step 10 four more times, meaning you’ll draw a total of fi ve CheckBoxes that are
stacked one above the other in a vertical fashion. Change the Caption labels on the four
other CheckBoxes to Manufacturing, Medical, Retail, and Technology.

 12. From the Toolbox, click the CommandButton icon control and draw a CommandButton in
the lower-left corner of your UserForm. Change its Caption property to OK.

 13. Draw a second CommandButton in the lower-right corner of your UserForm. Change its
Caption property to Cancel.

 14. Take a look at your completed UserForm as it would appear when called. While you are still
in the VBE, press Ctrl+G to get into the Immediate window. Type frmClients.Show and
press Enter. Your UserForm should look like the one shown in Figure 21-19.There is no code
behind the CommandButtons, so to close this UserForm, click the X Close button at the top-
right corner.

FIGURE 21-19

REFERENCE Please select the video for Lesson 21 online at www.wrox.com/go
/excelvba24hour. You will also be able to download the code and resources
for this lesson from the website.

http://www.wrox.com/go

c22.indd 02/24/2015 Page 285

UserForm Controls and Their
Functions

UserForms enable you to interact with your users in ways that you can’t when using standard
Message Boxes, InputBoxes, or controls embedded onto your worksheet. With UserForms, you
can control the input of information by validating the kind of data that gets entered, the order
in which it is entered, and, if your workbook requires it, the exact location where the informa-
tion should be stored and how it should be recalled. This lesson leads you through the design
of various UserForms, with examples of how to program an assortment of controls that you’ll
utilize most frequently.

UNDERSTANDING THE FREQUENTLY USED USERFORM
CONTROLS

As demonstrated in Lesson 21, when you add a UserForm to your workbook, the fi rst thing
you see is the empty UserForm in its design window, not unlike a blank canvas upon which
you’ll strategically place your controls. The controls you utilize depend upon the task at hand,
and you’ll come across countless sets of circumstances for which a UserForm is the right tool
for the job.

Still, you’ll fi nd that a core group of frequently used controls can handle most of your
UserForm requirements. The fun part is tapping into the events each control supports to create
a customizable UserForm that’s user-friendly and, most importantly, gets the job done.

NOTE As you see in Lesson 23, you are not limited to the relatively few controls
shown by default on the Toolbox. Dozens more Toolbox controls are available
to you, many of which you’ll probably never use, but some you eventually will.

22

286 ❘ LESSON 22 USERFORM CONTROLS AND THEIR FUNCTIONS

c22.indd 02/24/2015 Page 286

CommandButtons
The CommandButton is a basic staple of just about any UserForm. The combination of a Caption
property and Click event make CommandButtons an effi cient way to convey an objective and then
carry it out with a mouse click. And if for no other reason, a Cancel or Exit button is about as basic
a need as any form will have.

Suppose you want to provide your users with a quick way to print a worksheet in either portrait or
landscape orientation. You can make it easy for your users to click a button to indicate their deci-
sion, and then just go ahead and execute the print job. Figure 22-1 shows an example of how you
can do this, followed by the code behind each of the CommandButtons.

FIGURE 22-1

Private Sub cmdPortrait_Click()
With ActiveSheet
.PageSetup.Orientation = xlPortrait
.PrintPreview
End With
End Sub

Private Sub cmdLandscape_Click()
With ActiveSheet
.PageSetup.Orientation = Landscape
.PrintPreview
End With
End Sub

Private Sub cmdCancel_Click()
Unload Me
End Sub

NOTE As you can see in the preceding code, each of the CommandButtons has
been named using the prefi x cmd followed by a notation that gives a clue as to
the purpose of the button (see cmdPortrait_Click(), cmdLandscape_Click(),
and cmdCancel_Click()). There is nothing sacred about the cmd prefi x for
CommandButtons, or about the lbl prefi x when naming Labels, or about any
naming prefi x for that matter. Still, it’s wise to name your controls in some intui-
tive and consistent way so you and others recognize the control and its purpose
when reviewing your VBA code.

Understanding the Frequently Used UserForm Controls ❘ 287

c22.indd 02/24/2015 Page 287

Labels
You’ve seen Label controls, such as the examples in Lesson 21, where the Label’s Caption property
is set to always display the same text. Sometimes, a Label can serve to display dynamic information
that is not a static piece of text, and in that case, you’d leave the Caption property empty.

UserForms have an Initialize event that is triggered when you call the UserForm, which can help
you take action on your UserForm or workbook. Suppose you want to enhance the customized look
of your form with a welcome greeting that changes to refl ect the time of day. For example, if the
UserForm were to be opened in the morning, the message would include the text Good morning, and
so on for the afternoon and evening. The following code achieves the effect shown in Figure 22-2:

Private Sub UserForm_Initialize()
Dim TymeOfDay As String
If Time < 0.5 Then
TymeOfDay = "Good Morning ! "
ElseIf Time >= 0.5 And Time < 0.75 Then
TymeOfDay = "Good Afternoon ! "
Else
TymeOfDay = "Good Evening ! "
End If
Label1.Caption = TymeOfDay & "Welcome to the company workbook."
End Sub

FIGURE 22-2

TIMES IN VBA

Even after studying the preceding code, you might wonder why a number less
than .5 translates to morning, why a number greater than or equal to .5 and less
than .75 translates to afternoon, and why a number greater than or equal to .75
translates to evening. The reason is that VBA regards a time of day as a completed
percentage of the calendar day. For example, 12:00 noon is the halfway mark of a
calendar day, and one-half of something can be mathematically represented by the
expression .5. The Time function in VBA interprets a number less than .5 as morn-
ing because by defi nition, half the day would not yet have completed. Afternoon is
between .5 (12:00 noon) and up to just before 6:00 PM, which the Time function
interprets as .75, being at the three-fourths mark of the 24-hour calendar day. A
Time number greater than or equal to .75 is evening because it is at or past 6:00 PM
and before the Time number of 0, which is 12:00 midnight of the next day.

288 ❘ LESSON 22 USERFORM CONTROLS AND THEIR FUNCTIONS

c22.indd 02/24/2015 Page 288

You can also populate a Label’s caption from another control’s event procedure. Suppose your
UserForm provides a CommandButton that when clicked, toggles column C as being visible or hid-
den, such as with this line of code in the CommandButton’s Click event:

Columns(3).Hidden = Not Columns(3).Hidden

NOTE Columns(3) is another way of expressing Columns("C:C"). The 3 refers
to C being the third letter in the alphabet, which corresponds to the third column
from the left in the worksheet grid. If it were column D, the syntax notation
would be Columns(4) and so on. There is no schematic advantage to using one
style of expression over the other, but I included the numeric expression here so
you can be aware of it, and use it in your macros if it feels more intuitive for you
to do so.

It’s a good practice when constructing UserForms to give the users an indication that confi rms what
they’ve just done. In this example, a Label control can be near the CommandButton that confi rms
the visible or hidden status of column C, with the following code:

Private Sub CommandButton1_Click()
Columns(3).Hidden = Not Columns(3).Hidden
Label1.Caption = "Column C is " & _
IIf(Columns(3).Hidden = True, "hidden", "visible")
End Sub

TextBoxes
A TextBox is most commonly used to display information that is entered by a user, or is associated
with a cell through the TextBox’s ControlSource property, or is entered programmatically, such
as to display a calculation result or a piece of data from a worksheet table. You have probably seen
TextBoxes when you’ve entered information on electronic forms, such as when you’ve entered your
name, address, and credit card number when making a purchase online.

Figure 22-3 shows a UserForm with three TextBox controls. In this example, I’ve entered my fi rst
and last name, and a password that is represented in the fi gure as a series of asterisks. UserForms
are a good way to greet your user and ask for a password with a TextBox, and with the TextBox’s
PasswordChar property, you can set any character (in this case an asterisk) to appear instead of the
password, so no one else sees the password as it is being typed.

NOTE Formatting of TextBoxes is limited to the entire TextBox entry. For
example, if you want any portion of the TextBox’s contents to be bold, the entire
contents must be bold.

Understanding the Frequently Used UserForm Controls ❘ 289

c22.indd 02/24/2015 Page 289

FIGURE 22-3

Sometimes you will want a TextBox to accept only numeric entries, such as a dollar fi gure, a
calendar year, or a person’s age in years. The following code monitors each keystroke entry into
TextBox1, and disallows any character that is not a number. As a courtesy to the user, a message
appears to immediately inform the user that an improper character was attempted and disallowed:

Private Sub TextBox1_KeyPress(ByVal KeyAscii As MSForms.ReturnInteger)
Select Case KeyAscii
Case 48 To 57
Case Else
KeyAscii = 0
MsgBox "You typed a non-numeric character", _
vbExclamation, _
"Numbers only, please!"
End Select
End Sub

NOTE In the preceding code example, you might not be familiar with the term
“ASCII” (pronounced “askee”), which is an acronym for American Standard
Code for Information Interchange. Computers can only understand numbers,
so a numerical representation is needed for alphanumeric characters and other
symbols such as # and @. In the preceding code, numbers 0–9 are recognized by
virtue of their ASCII representation of 48–57. If you’d like to see a list of all 255
ASCII and Extended ASCII characters, you can produce it yourself on an Excel
worksheet by entering the formula =CHAR(ROW()) in cell A1, and copying it
down to cell A255. Each cell holds a character (some characters will not be vis-
ible) whose ASCII number corresponds to the cell’s row number.

TextBoxes can display calculated results, and when using numbers for mathematical operations, you
need to use the Val function, which returns the numbers contained in a TextBox string as a numeric
value. Suppose your UserForm contains seven TextBoxes into which you enter the sales dollars for

290 ❘ LESSON 22 USERFORM CONTROLS AND THEIR FUNCTIONS

c22.indd 02/24/2015 Page 290

each day of the week. As shown in Figure 22-4, an eighth TextBox can display the sum of those
seven numbers when a CommandButton is clicked, with the following code:

Private Sub CommandButton1_Click()
Dim intTextBox As Integer, dblSum As Double
dblSum = 0
For intTextBox = 1 To 7
dblSum = dblSum + Val(Controls("TextBox" & intTextBox).Value)
Next intTextBox
TextBox8.Value = Format(dblSum, "#,###")
End Sub

FIGURE 22-4

ListBoxes
A ListBox displays a list of items and lets you select one or more. ListBoxes are fairly versatile in their
display of information and their options for allowing you to select one, many, or all listed items.

Suppose you want to list all 12 months of the year, so any particular month can be selected to per-
haps run a report for income and expenses during that month. You might also want the fl exibility
to run a single report that includes activity for any combinations of months. The ListBox control
is an excellent choice because you can set its MultiSelect property to allow just one item, or mul-
tiple items, to be selected. Figure 22-5 shows an example of how you can control the way the items
appear with the ListStyle property, and selection options for your ListBox (allow only one or
more than one item to be selected) with the MultiSelect property.

Understanding the Frequently Used UserForm Controls ❘ 291

c22.indd 02/24/2015 Page 291

FIGURE 22-5

You can use two common methods to populate a ListBox with items. In the preceding example, the 12
months of the year could be listed on a worksheet, say on Sheet2 in range A1:A12. To have the ListBox
display the list of months, you can enter Sheet2!A1:A12 as the RowSource property for that ListBox.

In many cases, however, you’ll want to populate your ListBox without having to store the items
on a worksheet. The UserForm’s Initialize event is perfect for populating your ListBox with a
dynamic or static list of items. Suppose you want to list the names of various countries. The follow-
ing code does that using the AddItem method in the UserForm’s Initialize event, which you can
easily append when you want to add or omit a country name:

Private Sub UserForm_Initialize()
With ListBox1
.RowSource = ""
.AddItem "England"
.AddItem "Spain"
.AddItem "France"
.AddItem "Japan"
.AddItem "Australia"
.AddItem "United States"
End With
End Sub

NOTE When you populate a ListBox programmatically (or, as you see later, a
ComboBox), be sure to clear the control’s RowSource property or you will get a
runtime error when you call (initialize) the UserForm. This was done in the pre-
ceding code by setting RowSource equal to an empty string.

292 ❘ LESSON 22 USERFORM CONTROLS AND THEIR FUNCTIONS

c22.indd 02/24/2015 Page 292

The following code lists all the visible worksheets in your workbook, and excludes the worksheets
that are hidden:

Private Sub UserForm_Initialize()
With ListBox1
.Clear
Dim wks As Worksheet
For Each wks In Worksheets
If wks.Visible = xlSheetVisible Then .AddItem wks.Name
Next wks
End With
End Sub

ListBoxes support many events, and using the Click event, for example, this code acti-
vates the worksheet whose name you click, with the ListBox’s MultiSelect property set to
0-fmMultiSelectSingle:

Private Sub ListBox1_Click()
Worksheets(ListBox1.Value).Activate
End Sub

ComboBoxes
A ComboBox combines the features of a ListBox and a TextBox, in that you can select an item from
its drop-down list, or you can type an item into the ComboBox that is not included in its list. Most
of the time, you’ll use the ComboBox the same way you’d use data validation, where a drop-down
arrow is visible for revealing the list of items that are available for selection.

NOTE If you want to limit the ComboBox to only accept items from the drop-
down list, set its Style property to 2 - fmStyleDropDownList.

ComboBoxes allow only one item to be selected; you cannot select multiple items in a ComboBox
the way you can with a ListBox. However, ComboBoxes are populated much the same way as
ListBoxes, with a RowSource property and an AddItem method.

Suppose you want to guide the users of your workbook to select a year that is within three
years—past or future—of the current year. The following code could accomplish that, with Figure
22-6 showing the ComboBox’s list after the drop-down arrow was clicked, assuming the current
year is 2015:

Private Sub UserForm_Initialize()
With ComboBox1
.Clear
Dim iYear As Integer, jYear As Integer
jYear = Format(Date, "YYYY")
For iYear = 1 To 7
ComboBox1.AddItem jYear - 3

Understanding the Frequently Used UserForm Controls ❘ 293

c22.indd 02/24/2015 Page 293

jYear = jYear + 1
Next iYear
End With
End Sub

FIGURE 22-6

As with a ListBox, if the items needed to populate the ComboBox are listed on a worksheet, it does
not mean you must refer to them with the RowSource property. You can leave the RowSource prop-
erty empty, and populate the ComboBox (same concept applies to a ListBox) with the following
code example, assuming the values are listed in range A1:A8 with no blank cells in that range:

Private Sub UserForm_Initialize()
ComboBox1.List = Range("A1:A8").Value
End Sub

NOTE If you want the fi rst item in the drop-down list to be automatically vis-
ible in your ComboBox, you can add the following line before the End Sub line,
assuming the ComboBox is named ComboBox1:

ComboBox1.ListIndex = 0

Sometimes you need to populate the ComboBox (or ListBox) with items listed in a range that
also contains blank cells. Figure 22-7 shows how horrible that makes the drop-down list look if
you attempted to populate the ComboBox with the line of code ComboBox1.List =
Range("A1:A8").Value.

Much nicer looking is Figure 22-8, which does not show empty spaces in its drop-down list even
though empty cells exist among the list of names. The code to do that is shown here, which uses the
LEN function to disregard cells that have no value in them:

294 ❘ LESSON 22 USERFORM CONTROLS AND THEIR FUNCTIONS

c22.indd 02/24/2015 Page 294

Private Sub UserForm_Initialize()
Dim LastRow As Long, cboCell As Range
LastRow = Cells(Rows.Count, 1).End(xlUp).Row
For Each cboCell In Range("A1:A" & LastRow)
If Len(cboCell) > 0 Then ComboBox1.AddItem cboCell.Value
Next cboCell
End Sub

FIGURE 22-7

FIGURE 22-8

Understanding the Frequently Used UserForm Controls ❘ 295

c22.indd 02/24/2015 Page 295

CheckBoxes
A CheckBox on your UserForm can serve one of two purposes: to provide users with an option that
is of the Yes/No variety, without a superfl uous message box to present the option, or to provide a
pair of OptionButtons (covered in the next section). Simply, a single CheckBox is inferred to mean
Yes or OK if it is checked, and No if it is not checked.

As you develop more complex UserForms, you will want to provide your users with convenient
options for viewing—or not viewing—interface objects that might be useful to them in some
cases, and irrelevant in others. For example, Figure 22-9 shows the same UserForm in two situ-
ations, where the user can check or uncheck the CheckBox captioned Show List of Months. If
the CheckBox is unchecked, neither the ListBox nor the Label above it will be visible, but if the
CheckBox is checked, those controls do appear. The code associated with the CheckBox follows:

Private Sub CheckBox1_Click()
With CheckBox1

If .Value = True Then
Label1.Visible = True
ListBox1.Visible = True

Else

Label1.Visible = False
ListBox1.Visible = False

End If

End With
End Sub

FIGURE 22-9

296 ❘ LESSON 22 USERFORM CONTROLS AND THEIR FUNCTIONS

c22.indd 02/24/2015 Page 296

NOTE Users appreciate having a say as to what they see on a form, which
helps give them some control over the form’s navigation process. However, as
the workbook’s developer, your primary objective is to design a smart form.
In this example, if the selection of a month name is a mandatory action in the
UserForm’s overall process, you would not consider building in the option
of hiding a ListBox of month names. You’ll often see a single CheckBox on a
UserForm when a simple preference is to be indicated, such as including a header
on all printed pages, or performing the same action on all worksheets.

Another popular use of CheckBoxes is to provide the user with several options at the same time.
Figure 22-10 shows a UserForm that asks for users to indicate which regions a company report
should include. When the OK button is clicked, you can assign variables to each CheckBox that was
checked, and incorporate those variables later in a VBA decision process that recognizes only the
checked regions. One way to accomplish that is to loop through each CheckBox and identify the
selected CheckBox(es), as shown in the following code:

Private Sub cmdOK_Click()
'Declare an Integer type variable for the five CheckBoxes.
Dim intCheckBox As Integer
'Declare a String type variable for the list of selected Checkboxes.
Dim strCheckBoxNames As String
'Open a For next loop to examine each of the 5 CheckBoxes.
For intCheckBox = 1 To 5
'If the CheckBox is selected, meaning its value is True,
'build the strCheckBoxNames string with the caption of the
'selected CheckBox, followed by a Chr(10) new line character
'for readability in the confirming MsgBox.
If Controls("CheckBox" & intCheckBox).Value = True Then
strCheckBoxNames = strCheckBoxNames & _
Controls("CheckBox" & intCheckBox).Caption & Chr(10)
End If
'Continue the loop until all 5 CheckBoxes have been examined.
Next intCheckBox
'Display a Message Box to advise the users what they selected.
MsgBox strCheckBoxNames, , "Regions that were checked:"
End Sub

OptionButtons
An OptionButton is used when you want the user to select one choice from a group of optional
choices. You would use a group of OptionButtons to show the single item that was selected among
the group’s set of choices. For example, on a college application form, in the gender section, an
applicant could select only Male or Female.

In Figure 22-11, a menu for running a fi nancial report might ask the user to select the month of
activity upon which the report should be based. A group of 12 OptionButtons limits the user to only
one selection. Each OptionButton’s Caption property was fi lled in with the name of a month.

Understanding the Frequently Used UserForm Controls ❘ 297

c22.indd 02/24/2015 Page 297

FIGURE 22-10

FIGURE 22-11

Figure 22-11 shows that the month of August was selected, and in real practice, you’d identify that
selection in your code with a variable that refers to the selected month name, and produces the
report for that month. One way to do that is to loop through each of the OptionButtons and stop
when you encounter the selected OptionButton whose value would be True.

To help make the point, there is a button on the form with the caption ID Selected Option,
and when you click the button, a message box appears, telling you the name of the selected
OptionButton and its caption. The following code examines the status of the OptionButtons and
then produces the message box:

Private Sub CommandButton1_Click()
Dim intOption As Integer, optName As String, optCaption As String
For intOption = 1 To 12

298 ❘ LESSON 22 USERFORM CONTROLS AND THEIR FUNCTIONS

c22.indd 02/24/2015 Page 298

If Controls("OptionButton" & intOption) = True Then
optName = Controls("OptionButton" & intOption).Name
optCaption = Controls("OptionButton" & intOption).Caption
MsgBox _
"Name: " & optName & vbCrLf & _
"Caption: " & optCaption, , _
"Info about the OptionButton you selected:"
Exit For
End If
Next intOption
End Sub

OptionButtons have a useful property called GroupName that you should be aware of. In Figure
22-11, a simple UserForm lists 12 OptionButtons, all with the same objective of eliciting a selection
for a particular month. But what if your UserForm has other sections for user options that require
OptionButtons, such as to select a day of the week, or a print orientation preference of Landscape
or Portrait? You’ll fi nd many reasons to apply OptionButtons to your UserForms, and you need each
set of options to be a mutually exclusive group.

You have two ways to create a group of mutually exclusive OptionButton controls. You can
place the group inside a Frame (a control that is covered in the next section), or you can use the
GroupName property of the related OptionButtons to group them together. In Figure 22-12, the
OptionButtons have been selected in the UserForm’s design window, and the GroupName property
has been defi ned with the name Months.

NOTE Whether organized by GroupName or a Frame control, clicking
an OptionButton sets its value to True and automatically sets the other
OptionButtons in the group (or in the Frame) to False.

Frames
Frame controls group related controls together to provide an organized look and feel when the
UserForm calls for many controls. Figure 22-13 illustrates an example of employing a Frame.

When you place controls within a Frame control, manipulating the Frame’s properties can affect all
the controls inside the Frame. For example, assuming the Frame control shown in Figure 22-13 is
named Frame1, this line of code would hide that frame along with all the controls inside it:

Frame1.Visible= False

Sometimes you want your Frame to be visible, but you want all the controls inside the Frame to be
temporarily disabled. You can disable the Frame and render its controls unusable with the following
line of code:

Frame1.Enabled = False

Understanding the Frequently Used UserForm Controls ❘ 299

c22.indd 02/24/2015 Page 299

FIGURE 22-12

If you test that, you see a curious result, which is the controls inside the Frame are not “grayed
out” but are essentially disabled because they are rendered useless by virtue of the Frame being
disabled. The controls themselves appear to be enabled, which can fool your users into wonder-
ing what’s wrong with perfectly normal-looking controls that do not respond to any keystrokes or
mouse clicks.

If you want to disable the actual controls inside the Frame and make them look disabled, you must
loop through each of the controls inside the Frame with the following example code. Note that this
code does not disable Frame1, only the controls inside it:

Dim FrmControl As Control
For Each FrmControl In Frame1.Controls
FrmControl.Enabled = False
Next FrmControl

300 ❘ LESSON 22 USERFORM CONTROLS AND THEIR FUNCTIONS

c22.indd 02/24/2015 Page 300

The controls for Contact Information
are contained within the borders of
this Frame control.

FIGURE 22-13

Naturally, to enable a control that’s been disabled, change the False statement to True, which you
can handle in a separate procedure, or in one single procedure with a line of code that toggles the
Enabled property using the Not statement. The following example shows how to do this:

Private Sub CommandButton4_Click()
Dim FrmControl As Control
For Each FrmControl In Frame1.Controls
FrmControl.Enabled = Not FrmControl.Enabled
Next FrmControl
End Sub

MultiPages
A MultiPage control is like having a set of tabbed folders that each contain information and con-
trols that would be too voluminous to fi t comfortably within the UserForm’s interface. Figure 22-14
shows an example of how a MultiPage control can come in handy when a lot of information is being
sought from the workbook’s users about their viewing preferences.

Try It ❘ 301

c22.indd 02/24/2015 Page 301

FIGURE 22-14

The MultiPage control has a collection of Page objects that are each dedicated to a theme. You can
right-click a tab to add a new page, delete the page you right-clicked, rename the page’s caption, or
move the page. MultiPage controls are a terrifi c way to maximize the space on your UserForm with
a smart, organized look and feel.

TRY IT

In this lesson, you design a UserForm with several controls, including a ListBox that is populated
dynamically with the ability to select multiple items.

Lesson Requirements
To get the sample workbook, you can download Lesson 22 from the book’s website at
www.wrox.com/go/excelvba24hour.

Step-by-Step
 1. Open a new workbook and activate Sheet1.

 2. In column A, enter the items in the cells as you see them displayed in Figure 22-15.

http://www.wrox.com/go/excelvba24hour

302 ❘ LESSON 22 USERFORM CONTROLS AND THEIR FUNCTIONS

c22.indd 02/24/2015 Page 302

FIGURE 22-15

 3. Press Alt+F11 to get into the Visual Basic Editor.

 4. Select your workbook name in the Project Explorer, and from the menu bar click Insert ➪
UserForm and accept its default name of UserForm1.

 5. Change the UserForm’s Caption property to Shopping List.

 6. Select the UserForm in its design window, and if the Toolbox is not visible, click View ➪
Toolbox.

 7. Draw a ListBox on the UserForm and accept its default name of ListBox1. Set its
MultiSelect property to 1 - fmMultiSelectMulti.

 8. Draw a CommandButton on the UserForm below the ListBox and accept its default name of
CommandButton1. Change its Caption property to Transfer selected items to Sheet2
column E.

 9. Draw another CommandButton on the UserForm below the fi rst CommandButton, and
change its Caption property to Exit. That completes the design of the UserForm, which
should resemble Figure 22-16 when it is called.

 10. Double-click the UserForm to go to its module. Type the code under the UserForm’s
Initialize event that populates the ListBox with items in column A of Sheet1, ignoring the
empty cells:

Private Sub UserForm_Initialize()
Dim LastRow As Long, ShoppingListCell As Range
With Worksheets("Sheet1")
LastRow = .Cells(Rows.Count, 1).End(xlUp).Row
For Each ShoppingListCell In .Range("A1:A" & LastRow)
If Len(ShoppingListCell) > 0 Then ListBox1.AddItem ShoppingList
Cell.Value
Next ShoppingListCell
End With
End Sub

Try It ❘ 303

c22.indd 02/24/2015 Page 303

FIGURE 22-16

 11. While in the UserForm’s module, type the code for CommandButton2 that is the Exit button:

Private Sub CommandButton2_Click()
Unload Me
End Sub

 12. Immediately above the Code window are two drop-down lists. Click the drop-down arrow
at the left belonging to the Object fi eld, and select CommandButton1 to place these two state-
ments in the UserForm’s module:

Private Sub CommandButton1_Click()

End Sub

 13. For the fi rst line of code in the CommandButton1 Click event, open a With structure for
Sheet2, which is the destination sheet for selected items:

With Worksheets("Sheet2")

 14. Declare variables for the ListBox’s items and NextRow:

Dim intItem As Integer, NextRow As Long

 15. Clear column E of Sheet2 to start your shopping list with a clean slate:

.Columns(5).Clear

 16. Put a header in cell E1 of Sheet2, to start the list:

.Range("E1").Value = "Shopping List"

 17. Defi ne the NextRow variable as 2, because column E was just cleared and the Shopping List
header is in cell E1 with nothing below it:

NextRow = 2

304 ❘ LESSON 22 USERFORM CONTROLS AND THEIR FUNCTIONS

c22.indd 02/24/2015 Page 304

 18. Loop through all items in ListBox1 and if any are selected, list them in turn in column E of
Sheet2:

For intItem = 0 To ListBox1.ListCount - 1
If ListBox1.Selected(intItem) = True Then
.Range("E" & NextRow).Value = ListBox1.List(intItem)

 19. Add 1 to the NextRow variable to prepare for the next selected item:

NextRow = NextRow + 1
End If

 20. Continue the loop until all ListBox items have been examined:

Next intItem

 21. Close the With structure for Sheet2:

End With

 22. Your fi nal CommandButton1 code looks like this:

Private Sub CommandButton1_Click()
'Open a With structure for Sheet2
With Worksheets("Sheet2")

'Declare variables for ListBox items and NextRow
Dim intItem As Integer, NextRow As Long
'Clear column E of Sheet2
.Columns(5).Clear
'Put a header in cell E1
.Range("E1").Value = "Shopping List"
'Define the NextRow variable as 2
'because column E was just cleared and the Shopping List
'header is in cell E1 with nothing below it.
NextRow = 2

'Loop through all items in ListBox 1 and if any are selected,
'list them in turn in column E of Sheet2.
For intItem = 0 To ListBox1.ListCount - 1
If ListBox1.Selected(intItem) = True Then
.Range("E" & NextRow).Value = ListBox1.List(intItem)
'Add 1 to the NextRow variable to prepare for the next selected item.
NextRow = NextRow + 1
End If
'Continue the loop until all ListBox items have been examined.
Next intItem
'Close the With structure for Sheet2.
End With
End Sub

REFERENCE Please select the video for Lesson 22 online at www.wrox.com/go/
excelvba24hour. You will also be able to download the code and resources for
this lesson from the website.

http://www.wrox.com/go

c23.indd 02/19/2015 Page 305

Advanced UserForms
Lesson 21 introduces UserForms and shows you how to add controls to your form. Lesson
22 provides several examples of UserForms with frequently used controls to help you gather
and store information. This lesson takes an expanded look at how you can get more out of
UserForms by tapping into their capacity for supporting some interesting and useful operations.

THE USERFORM TOOLBAR

The Visual Basic Editor has a handy toolbar for working with UserForms, aptly named the
UserForm toolbar, shown in Figure 23-1. To display it in the VBE, from the menu bar click
View ➪ Toolbars ➪ UserForm.

Group

Ungroup

Centering

Same SizeAlignmentsBring to
Front Send to

Back

Zoom

FIGURE 23-1

23

306 ❘ LESSON 23 ADVANCED USERFORMS

c23.indd 02/19/2015 Page 306

The UserForm toolbar has eight buttons:

 ➤ Bring to Front: Brings the selected control to the front of the other controls.

 ➤ Send to Back: Sends the selected control to the back of the other controls.

 ➤ Group: Groups the selected controls.

 ➤ Ungroup: Ungroups the selected grouped controls.

 ➤ Alignments: The small drop-down arrow to the right of the Alignments icon provides options
for aligning the selected controls by their Rights, Lefts, Centers, Tops, Middles, Bottoms, and
To Grid.

 ➤ Centering: Centers the selected controls horizontally or vertically on the
UserForm.

 ➤ Same Size: Sizes the selected controls to be of the same Height, Width, or Both.

 ➤ Zoom: Displays the UserForm as a zoomed percentage of its normal size.

NOTE If you’re working in a UserForm module and you forget the names of
controls and you’ve selected the Require Variable Declaration option (on the
Editor tab when you click Tools ➪ Options in the VBE), type Me followed by a
dot. You see a list of all the methods and properties for the UserForm, including
the list of control names belonging to the UserForm.

MODAL VERSUS MODELESS

Beginning with Excel version 2000, UserForms became equipped with a new property called
ShowModal. When a UserForm’s ShowModal property is set to True—that is, when it is shown
as Modal—it means that while the UserForm is visible, you cannot select a worksheet cell,
another worksheet tab, or any of the Ribbon or menu icons until you close the UserForm. Most
of the time, this is what you want—for the UserForm to command all focus and attention while
it is visible.

At times the users of your project will benefi t from the ability to select cells and generally to navigate
worksheets while a UserForm is visible. When that’s what you need, call the UserForm by specifying
the ShowModal property as False. For example:

Sub ShowUserForm1()
UserForm1.Show vbModeless
End Sub

You can also write the preceding code line as UserForm1.Show 0. The default setting for the
ShowModal property is vbModal (or the numeral 1), which you don’t need to specify when calling a
UserForm if you want it to be modal. The code line UserForm1.Show vbModal, UserForm1.Show 1,
or (which you have typically been using all along) UserForm1.Show shows the UserForm as modal.

Disabling the UserForm’s Close Button ❘ 307

c23.indd 02/19/2015 Page 307

NOTE Here’s a neat trick that might interest you. When you call a UserForm
as modeless, the UserForm is the active object and an extra mouse click is
required to actually activate the worksheet. If you want the worksheet itself to
be the active object without manual intervention, add the line AppActivate
("Microsoft Excel") below the Show line; here is a full macro example:

Sub ShowUserForm2()
UserForm2.Show vbModeless
AppActivate ("Microsoft Excel")
End Sub

DISABLING THE USERFORM’S CLOSE BUTTON

Some of your UserForms might require input before the user can proceed further. To enforce user
input, you can disable the Close button, usually located at the far right of the UserForm’s title bar.
This is not an everyday happenstance but when your project requires input at a critical point in a
process, you need a way to keep the UserForm active until the required information is input.

UserForms have a QueryClose event that can help you control such situations. In Figure 23-2, a
message box appears if the “X” Close button is clicked in an attempt to close the UserForm without
selecting a name from the drop-down list. The code associated with that follows Figure 23-2.

FIGURE 23-2

Private Sub UserForm_QueryClose(Cancel As Integer, CloseMode As Integer)
'Prevents use of the Close button if a name has not been selected.
If CloseMode = vbFormControlMenu And Len(ComboBox1.Value) = 0 Then
Cancel = True
MsgBox "You must select a name to continue.", , "Name is required"
'Set Focus to the ComboBox for the user.
ComboBox1.SetFocus
End If
End Sub

308 ❘ LESSON 23 ADVANCED USERFORMS

c23.indd 02/19/2015 Page 308

Keep in mind that you want to monitor the input requirement through the other controls on the
UserForm as well. The following example is associated with the Continue button:

Private Sub cmdContinue_Click()
If Len(ComboBox1.Value) = 0 Then
MsgBox "You must select a name to continue.", , "Name is required"
'Set Focus to the ComboBox for the user.
ComboBox1.SetFocus
Exit Sub
Else
Unload Me
End If
End Sub

MAXIMIZING YOUR USERFORM’S SIZE

If you want to fi ll the screen with just your UserForm and nothing else, the following code in the
Initialize event can help you do that. Be aware that some adjustment to the code might be needed
with the Zoom property, in case the UserForm is so small to begin with that its fully expanded size
exceeds the window’s Zoom capacity.

Private Sub UserForm_Initialize()
With Application
.WindowState = xlMaximized
Zoom = Int(.Width / Me.Width * 100)
Width = .Width
Height = .Height
End With
End Sub

NOTE You don’t need to settle for the UserForm loading in the center of your
screen. You can specify the location, such as with the following example that
shows the UserForm in the top-left corner of the screen:

Private Sub UserForm_Initialize()
Me.StartUpPosition = 0
Me.Top = Application.Top
Me.Left = Application.Left
End Sub

SELECTING AND DISPLAYING PHOTOGRAPHS
ON A USERFORM

An Image control helps you display a graphic object, such as a picture, on a UserForm. You
have three ways to place a picture onto an Image control—two are manual methods and one is
a VBA method.

Unloading a UserForm Automatically ❘ 309

c23.indd 02/19/2015 Page 309

Suppose you have a picture fi le on your computer, such as your company’s logo, that you want to
show for a customized look on your UserForm. You can use VBA’s LoadPicture method to load the
picture fi le onto the Image control when you call the UserForm, with the following example:

Private Sub UserForm_Initialize()
Image1.Picture = LoadPicture("C:\CompanyPictures\CompanyLogo.jpg")
End Sub

This method works great, so long as the picture fi le exists in that folder path for every computer
on which the UserForm will ever be opened, which is not likely. As you develop UserForms for
 others’ use outside a shared network environment, you want to load a picture onto an Image control
manually, and forego the VBA route.

You can load an Image control manually in two ways. In the UserForm’s design window, place the
Image control where you want it on the UserForm. Activate the Image control’s Properties window
and locate the Picture property. Placing your cursor inside the Picture property exposes a small
ellipsis button, as shown in Figure 23-3. Click that button to show the Load Picture dialog box. From
the Load Picture dialog box, navigate to the picture fi le you want to load, select it, and click Open.

The other manual alternative is even simpler. After you’ve added your Image control, select your
 picture object and press Ctrl+C to place it on the clipboard. Select the Image control on the
UserForm, select its Picture property in the Properties window, click inside the Picture property,
and press Ctrl+V to paste the picture into the Image control.

FIGURE 23-3

UNLOADING A USERFORM AUTOMATICALLY

Have you ever wanted to show a UserForm for a limited period of time, and then unload it without
user intervention? UserForms need not serve the sole purpose of user input. Sometimes they can be
opportunistically employed as a mechanism for a specialized greeting, or, if tastefully designed, an
informative splash screen.

310 ❘ LESSON 23 ADVANCED USERFORMS

c23.indd 02/19/2015 Page 310

Personally, I do not appreciate most of the splash screens I see when opening various software
applications; many look like cheap advertisements that waste the user’s time. However, a nice
opening welcome message to customize the look and feel of your workbook can be a good thing if
designed well, but do keep the visible time to a maximum of fi ve seconds; any longer than that is an
annoyance.

Call the UserForm as you normally would. The following code goes into the UserForm module, in
this example for a fi ve-second appearance:

Private Sub UserForm_Activate()
Application.Wait (Now + TimeValue("0:00:05"))
Unload Me
End Sub

PRE-SORTING THE LISTBOX AND COMBOBOX ITEMS

Suppose you want to import a list of items into your ListBox (or ComboBox) such as a list of cities
in range A1:A20 as shown in Figure 23-4. You can do that easily with this event code for a ListBox:

Private Sub UserForm_Initialize()
ListBox1.List = Range("A1:A20").Value
End Sub

FIGURE 23-4

Pre-sorting the ListBox and ComboBox Items ❘ 311

c23.indd 02/19/2015 Page 311

Lists tend to be easier to work with when they are alphabetized. To handle that seamlessly for
the user, the following amendment to the preceding code is a series of loops with variables that
examine each element in the ListBox, and sorts it in ascending alphabetical order. The result is
shown in Figure 23-4.

Private Sub UserForm_Initialize()
ListBox1.List = Range("A1:A20").Value
Dim x As Integer, y As Integer, z As String
With ListBox1
For x = 0 To .ListCount - 2
For y = x + 1 To .ListCount - 1
If .List(x) > .List(y) Then
z = .List(y)
.List(y) = .List(x)
.List(x) = z
End If
Next y
Next x
End With
End Sub

Notice two additional CommandButtons near the bottom of the UserForm. One is captioned
Sort Up and the other is captioned Sort Down. Users appreciate the ability to customize the look
of their interface. If it is easier for some people to read a list from Z to A, and others from A to
Z, so be it. The following code shows an example of how each button, when clicked, sorts the
ListBox. First, ascending:

Private Sub cmdSortUp_Click()
Dim x As Integer, y As Integer, z As String
'Sort ascending
With ListBox1
For x = 0 To .ListCount - 2
For y = x + 1 To .ListCount - 1
If .List(x) > .List(y) Then
z = .List(y)
.List(y) = .List(x)
.List(x) = z
End If
Next y
Next x
End With
End Sub

Then, descending:

Private Sub cmdSortDown_Click()
Dim x As Integer, y As Integer, z As String
'Sort descending
With ListBox1
For x = 0 To .ListCount - 2
For y = x + 1 To .ListCount - 1
If .List(x) < .List(y) Then

312 ❘ LESSON 23 ADVANCED USERFORMS

c23.indd 02/19/2015 Page 312

z = .List(y)
.List(y) = .List(x)
.List(x) = z
End If
Next y
Next x
End With
End Sub

NOTE If you were to do this in real practice, you’d eliminate the redundancy of
declaring the same variables for each event, and instead publicly declare them once.

POPULATING LISTBOXES AND COMBOBOXES WITH
UNIQUE ITEMS

As often as not, when you load a ListBox or ComboBox with a source list of items from a
 worksheet, the range is dynamic, meaning the length of the list varies. Also, chances are pretty good
that the source list contains duplicate entries, and there is no need to place more than one unique
item in a ListBox or ComboBox.

In Figure 23-5, column A contains a list of clothing items that were sold in a department store. A
unique list of these items was compiled in a ComboBox as shown in Figure 23-5, with the following
code to demonstrate how to populate the ComboBox in this manner when the length of the source
list is not known, and some cells in the source list might have no entry.

FIGURE 23-5

Populating ListBoxes and ComboBoxes with Unique Items ❘ 313

c23.indd 02/19/2015 Page 313

Private Sub UserForm_Initialize()
'Declare variables for a Collection and cell range.
Dim myCollection As Collection, cell As Range

'Error bypass to set a new collection.
On Error Resume Next
Set myCollection = New Collection

'Open a With structure for the ComboBox
With ComboBox1
'Clear the ComboBox
.Clear

'Open a For Next loop to examine every cell starting with A2
'and down to the last used cell in column A.
For Each cell In Range("A2:A" & Cells(Rows.Count, 1).End(xlUp).Row)

'If the cell is not blank...
If Len(cell) <> 0 Then
'Clear the possible error for a Collection
'possibly not having been established yet.
Err.Clear
'Add the cell's value to the Collection.
myCollection.Add cell.Value, cell.Value
'If there is no error, that is, if the value does not
'already exist in the Collection, add the item to the ComboBox.
If Err.Number = 0 Then .AddItem cell.Value
End If

'Loop to the next cell.
Next cell

'Close the With structure for the ComboBox.
End With
End Sub

NOTE If you want the fi rst item in the ComboBox’s list to be visible when the
UserForm is called, add this line before the End Sub line:

ComboBox1.ListIndex = 0

To expand a bit on the possible usefulness of listing unique items in a ComboBox, see the example
in Figure 23-6, where two Label controls were added (named Label2 and Label3) to the right of
the ComboBox. When the ComboBox value is changed with the following code, Label2’s caption
refl ects the value item, and Label3’s caption sums the items sold in column B for the item that was
selected in the ComboBox.

Private Sub ComboBox1_Change()
Label2.Caption = _
"Total " & ComboBox1.Value & " Sold:"
Label3.Caption = _
WorksheetFunction.SumIf(Columns(1), ComboBox1.Value, Columns(2))
End Sub

314 ❘ LESSON 23 ADVANCED USERFORMS

c23.indd 02/19/2015 Page 314

FIGURE 23-6

DISPLAYING A REAL-TIME CHART IN A USERFORM

Earlier in this lesson you saw how to load a picture into an Image control. You can also create
a temporary graphic fi le on the fl y, load that fi le into a UserForm’s Image control, and delete the
temporary graphic fi le, all with the user being none the wiser.

Figure 23-7 shows a list of cities, ranked by their approximate population. Elsewhere in the
workbook is a chart sheet named Chart1 with a bar chart of this city population data. You can
 represent the Chart1 sheet’s chart in real time by exporting its image as a .gif fi le and loading it
onto an Image control when the UserForm is called. Figure 23-7 shows the result and following that
is the Initialize event code that handles this task.

Private Sub UserForm_Initialize()
ActiveWorkbook.Charts("Chart1").Export "CityPopulation.gif"
Image1.Picture = LoadPicture("CityPopulation.gif")
Image1.PictureSizeMode = fmPictureSizeModeZoom
Kill "CityPopulation.gif"
End Sub

NOTE You can print a UserForm, even if it is not open, with the following line:

UserForm1.PrintForm

Try It ❘ 315

c23.indd 02/19/2015 Page 315

FIGURE 23-7

TRY IT

For this lesson, you design a UserForm to have the basic functionality of a web browser, including
the ability to navigate to the websites of your choice, go backward and forward to websites, and set
the initial website when the UserForm is initialized.

Lesson Requirements
To get the workbook, you can download Lesson 23 from the book’s website at www.wrox.com/go/
excelvba24hour.

Step-by-Step
 1. Open a new workbook and press Alt+F11 to get into the Visual Basic Editor.

 2. If the Project Explorer window is not visible, press Ctrl+R, and if the Properties window is
not visible, press the F4 key.

 3. In the Project Explorer window, select your workbook name, and from the menu bar click
Insert ➪ UserForm.

 4. In the Properties window for that UserForm, accept the default Name property of UserForm1,
set the Height property to 540 and the Width property to 852.

http://www.wrox.com/go

316 ❘ LESSON 23 ADVANCED USERFORMS

c23.indd 02/19/2015 Page 316

 5. Click the Toolbox icon, or from the menu bar click View ➪ Toolbox.

 6. Draw a TextBox near the upper-left corner of the UserForm. Accept the default Name prop-
erty of TextBox1, set its Height property to 24, and its Width property to 252.

 7. Draw four CommandButtons along the top of the UserForm to the right of the TextBox.
Each CommandButton should be the same size, with its Height property set at 24 and its
Width property set at 120.

 8. Name the fi rst CommandButton cmdNavigate and label its Caption property as Navigate.
Set its Default property to True.

 9. Name the second CommandButton cmdBack and label its Caption property as Back.

 10. Name the third CommandButton cmdForward and label its Caption property as Forward.

 11. Name the fourth CommandButton cmdExit and label its Caption property as Exit.

 12. The fi nal control is a WebBrowser, and chances are its icon is not on your Toolbox’s Cover tab. If
that’s the case, right-click the Cover tab and select Additional Controls as shown in Figure 23-8.

FIGURE 23-8

 13. Scroll down the list of available controls and select Microsoft Web Browser as shown in
Figure 23-9. Click OK to place the WebBrowser icon on your Toolbox’s Cover tab as shown
in the lower-left corner of Figure 23-10.

FIGURE 23-9

Try It ❘ 317

c23.indd 02/19/2015 Page 317

FIGURE 23-10

 14. Click to select the WebBrowser icon on the Toolbox just as you would with any control, and
draw a WebBrowser control onto the open area of the UserForm. Accept the default Name
property of WebBrowser1, and then set its Height property to 450 and its Width property to
816. This completes the design of the UserForm, which in the VBE looks like Figure 23-11.

FIGURE 23-11

 15. The code associated with this UserForm is surprisingly simple. Double-click the UserForm
to access its module. In the Object drop-down list, select UserForm and in the Procedure
drop-down list select Initialize. The Initialize event is a single line of code that tells the
WebBrowser which website to navigate to when the UserForm initializes, similar to the
homepage setting on your web browser. In this example, I entered the website for Microsoft,
at www.microsoft.com. Here is the entire Initialize event with that navigation command:

Private Sub UserForm_Initialize()
WebBrowser1.Navigate "http://www.microsoft.com"
End Sub

http://www.microsoft.com
http://www.microsoft.com

318 ❘ LESSON 23 ADVANCED USERFORMS

c23.indd 02/19/2015 Page 318

 16. You have an Exit button named cmdExit, so use the Unload Me command for that:

Private Sub cmdExit_Click()
Unload Me
End Sub

 17. Regarding the CommandButton for navigation, the process starts by the user entering a
 website address in the TextBox. The user can then either click the cmdNavigate button,
or press the Enter key because you set the Default property to True for the cmdNavigate
button in Step 8. Thinking ahead for more convenience, you can structure the cmdNavigate’s
Click event to assume that all web addresses start with “http://www.” which saves the user
time and effort by just entering the web address’s domain name. For example, instead of
entering http://www.somwhere.com in the TextBox, a user need only enter somewhere.com
with this code for the cmdNavigate button:

Private Sub cmdNavigate_Click()
WebBrowser1.Navigate "http://www." & TextBox1.Text
End Sub

 18. All that’s left are the two buttons for Back and Forward, easily handled with the WebBrowser
control’s GoBack and GoForward methods. For both methods, On Error Resume Next is utilized
to avoid a possible runtime error if the browsing session is at its starting or ending point when the
cmdBack or cmdForward button is clicked. Here is the code for the Back CommandButton:

Private Sub cmdBack_Click()
On Error Resume Next
WebBrowser1.GoBack
Err.Clear
End Sub

 Here is the code for the Forward CommandButton:

Private Sub cmdForward_Click()
On Error Resume Next
WebBrowser1.GoForward
Err.Clear
End Sub

 19. When you call the UserForm, Figure 23-12 shows an example that is similar to what you see.

http://www.%E2%80%9D
http://www.somwhere.com
http://www

Try It ❘ 319

c23.indd 02/19/2015 Page 319

FIGURE 23-12

REFERENCE Please select the video for Lesson 23 online at www.wrox.com/go/
excelvba24hour. You will also be able to download the code and resources for
this lesson from the website.

http://www.wrox.com/go

c23.indd 02/19/2015 Page 320

c24.indd 02/19/2015 Page 321

Class Modules
Class modules—the very name has caused many a burgeoning Excel VBA programmer to turn
toward other areas of VBA study. For some reason, the use of class modules is not a skill held
by many otherwise knowledgeable VBA programmers, despite the power and fl exibility class
modules can provide to your workbook projects.

Class modules are not rocket science, but they are a different kind of VBA animal that takes
some extra attention to grasp. I want to express three objectives in this lesson:

 ➤ Explain what classes and class modules are.

 ➤ Describe what class modules can do for you.

 ➤ Provide examples of class modules applied to UserForm and embedded worksheet controls.

Here is an opportunity for you to set yourself apart from the VBA crowd and learn a valuable
skill that has actually been available in Excel since Offi ce 97. Though you won’t need class
modules for most of your projects, this lesson helps you recognize when the time is right to use
class modules, and most importantly, how to program them.

WHAT IS A CLASS?

A class is the formalized defi nition of an object that you create. Your fi rst reaction might be
to wonder why you’d ever need to create yet another object in Excel, which seemingly has no
shortage of objects. Actually, you normally don’t need to, but there will be times when your
workbook will be better off if you do.

A new class (as in classifi cation) is like a blueprint for your created object and its properties,
methods, and events. In Lesson 19 you learned about user-defi ned functions; where class mod-
ules are concerned, you can think of a class as a user-defi ned model for an object that you cre-
ate. You see examples later in the lesson that help clarify the theory.

24

322 ❘ LESSON 24 CLASS MODULES

c24.indd 02/19/2015 Page 322

NOTE It’s easy to get lost on any new topic if the emphasis on learning it is
based on defi nitions and theory. That is why most of this lesson relies on real-
world examples to show what class modules are all about. Though kept to a
minimum, the defi nitions and theory in this lesson are useful for you to gain a
perspective on class modules. If you don’t fully comprehend all defi nitions the
fi rst time around, don’t worry—the VBA examples will be your biggest ally in
helping you understand the process of developing class modules.

WHAT IS A CLASS MODULE?

A class module is a special module in the Visual Basic Editor whose purpose is to hold VBA code
that defi nes classes. A class module looks like any other kind of module you have seen, and in its
own way acts like one, too. For example, whereas the code for worksheet event procedures goes into
worksheet modules, the code for creating and defi ning classes goes into class modules.

You create a class module in the VBE by choosing Insert ➪ Class Module from the menu bar as
shown in Figure 24-1. A class module is created with the default name of Class1 as shown in
Figure 24-2.

FIGURE 24-1

FIGURE 24-2

An Important Benefi t of Class Modules ❘ 323

c24.indd 02/19/2015 Page 323

NOTE There is a one-to-one relationship between a class and a class module.
A class module provides for only one class to be defi ned. If you need to defi ne
three classes in your workbook, you need three class modules, one for each
class. For example, suppose you have several CheckBox controls on your
UserForm, and you want to color the CheckBoxes green when they are checked
and red when they are unchecked. Instead of coding this functionality for
every CheckBox’s Click event, you can use a class module that groups all the
CheckBoxes as a single collection object. That way, all CheckBoxes respond to
the same Click event, with one VBA class procedure. If you also want some
(or all) of the CommandButtons on a UserForm in that same workbook to
respond to, say, a MouseMove event, you’d create another class module for that.

CREATING YOUR OWN OBJECTS

I started this lesson saying that many VBA programmers have avoided the topic of class modules,
and it wouldn’t surprise me if a primary culprit is VBA’s intentionally vague concept of class objects.
Seeing actual VBA examples of class modules in everyday situations is the best way to pick up the
concept of class objects.

Here’s the theoretical synopsis: A class is defi ned in a class module, and you can think of a class as
a blueprint or template for an object. In the context of class modules, the term object can be almost
any object in Excel whose functionality you want to expand. This concept becomes clearer with
VBA examples in this lesson that deal with controls that are embedded in a worksheet or are placed
onto UserForms. You can have those controls all respond to one single event, instead of needing to
write numerous redundant procedures for each control.

A class module only serves the purpose of holding the code that defi nes (but does not create) a class
object. In some other module that is not a class module, such as a UserForm module or workbook
module (depending on the task you are solving), you can declare a variable of the class type and
create an instance of that class (known as instantiating the class) with the New keyword. Upon
instantiation, your declared variable becomes an object whose events, properties, and methods are
defi ned by your code in the class module.

AN IMPORTANT BENEFIT OF CLASS MODULES

Suppose you have a UserForm with 12 TextBoxes, into which a dollar fi gure for budgeted expenses
is to be entered for each month of the year, as in the example shown in Figure 24-3.

It’s important that only numbers are entered, so you want to validate every TextBox entry to be
numeric, while disallowing entry of an alphabetic letter, symbol, or any character other than a
number. The following example can handle that for TextBox1 in the UserForm module:

Private Sub TextBox1_KeyPress(ByVal KeyAscii As MSForms.ReturnInteger)
Select Case KeyAscii
Case 48 To 57 'numbers 0-9
Case Else

324 ❘ LESSON 24 CLASS MODULES

c24.indd 02/19/2015 Page 324

KeyAscii = 0
MsgBox "You made a non-numeric entry.", vbCritical, "Numbers only please."
End Select
End Sub

FIGURE 24-3

You can maybe get away with the redundancy of writing 12 separate events to monitor the entries in
each TextBox. But what happens if your project requires 100 TextBoxes, or if the numeric validation
process expands to allow decimals or negative numbers? You’d have to do a lot of updates for each
TextBox, and the volume of redundant code creates a bad design that’s destined for human error and
runtime failure.

If you insert a class module instead, you can defi ne an object that would be a group of 12
TextBoxes. You can name your group object TxtGroup and indicate that the objects in that group
are TextBoxes. There is nothing special about the name TxtGroup. I chose it because the idea is to
group TextBoxes, but whatever object name makes sense to you works just as well.

The following VBA declaration statement is a common example that is placed at the top of your
class module. It defi nes the class object and includes the WithEvents keyword, which exposes the
events associated with TextBoxes:

Public WithEvents TxtGroup As MSForms.TextBox

Now that you have established the TxtGroup object as a group of TextBoxes, you can invoke it to
handle the same KeyPress event that you might have written individually for all 12 TextBoxes. As
shown in the following code, you now make the TxtGroup object recognize the KeyPress event trig-
gered by keyboard data entry upon any one of its 12 TextBoxes. The code to handle an event for all
12 TextBoxes is the same for TxtGroup as it is for TextBox1, except for the name of the object:

An Important Benefi t of Class Modules ❘ 325

c24.indd 02/19/2015 Page 325

Private Sub TxtGroup_KeyPress(ByVal KeyAscii As MSForms.ReturnInteger)
Select Case KeyAscii
Case 48 To 57 'numbers 0-9
Case Else
KeyAscii = 0
MsgBox "You made a non-numeric entry.", vbCritical, "Numbers only please."
End Select
End Sub

Keep in mind that, so far, all you have done is defi ne the object, but it still exists only as a concept.
The next step is to create your defi ned object (formally known as instantiating it) to make it a work-
ing object that responds to events, and becomes associated with methods and properties. At this
moment, with the UserForm created and the class module selected with the preceding code in it,
your work in the class module is complete. Your VBE window should look similar to Figure 24-4.

The fi nal step is to go into the UserForm module and instantiate the TxtGroup object that is a group
of 12 TextBoxes. At the top of the UserForm module, declare a variable for 12 TextBoxes to instan-
tiate the TxtGroup class object, with the New keyword for the Class1 module name:

Dim txtBoxes(1 To 12) As New Class1

Using the Initialize event, declare an Integer type variable that assists in looping through the 12
TextBoxes. Set each TextBox as a member of the TxtGroup class:

Private Sub UserForm_Initialize()
Dim intCounterTextBox As Integer
For intCounterTextBox = 1 To 12
Set txtBoxes(intCounterTextBox).TxtGroup = _
Controls("TextBox" & intCounterTextBox)
Next intCounterTextBox
End Sub

Your entire coding process relating to the class module is complete, and it is quite a bit shorter than
all the code you’d have amassed if you coded the KeyPress event for every TextBox! If you were to
open the UserForm and attempt a non-numeric character in any of the 12 TextBoxes, that character
would be disallowed and the message box would appear, looking like Figure 24-5.

FIGURE 24-4

326 ❘ LESSON 24 CLASS MODULES

c24.indd 02/19/2015 Page 326

FIGURE 24-5

CREATING COLLECTIONS

In the preceding example, you created a class for 12 TextBoxes. You knew ahead of time the num-
ber of TextBoxes was 12 because there was a TextBox for each of the 12 calendar months. The
question becomes, what do you do if the count of inclusive TextBoxes is not known? What if your
project is so wide in scope that TextBoxes are being frequently added and subtracted from the
UserForm, and you don’t want to keep modifying the code with every change in TextBox count?

The answer is to create a collection of TextBoxes by looping through all the controls in the
UserForm. Then, when a TextBox is encountered in the loop, it is automatically added to the
collection, which is then transferred to the class object. Assuming the event code you placed in the
class module has not changed, all you need to adjust is the code in the UserForm module using the
previous example. The fi rst item of business is to prepare a declaration statement at the top of the
module that does not specify a count of TextBox names, such as the following example:

Dim TxtGroup() As New Class1

Next, the following code in the UserForm’s Initialize event wraps up all the TextBoxes into one array
package using the ReDim Preserve keywords. This method does not depend on how many TextBoxes
are present on the UserForm it simply collects all the ones into the TxtGroup object that it fi nds:

Private Sub UserForm_Initialize()
Dim intCounterTextBox As Integer, ctl As Control
intCounterTextBox = 0
For Each ctl In Controls
If TypeName(ctl) = "TextBox" Then
intCounterTextBox = intCounterTextBox + 1
ReDim Preserve TxtGroup(1 To intCounterTextBox)
Set TxtGroup(intCounterTextBox).TxtGroup = ctl
End If
Next ctl
End Sub

CLASS MODULES FOR EMBEDDED OBJECTS

So far, UserForms have been the backdrop for objects in a class module. You can also create a class
of objects embedded on worksheets, such as charts, pivot tables, and ActiveX controls. In the case of
ActiveX controls, it’s worth mentioning a syntax difference when referring to them.

Suppose you have an unknown number of CommandButtons on Sheet1 and you want to create a class
module to determine which button was clicked, without having to program every CommandButton’s
Click event. This example of code in a class module named Class1 demonstrates how to extract the

Class Modules for Embedded Objects ❘ 327

c24.indd 02/19/2015 Page 327

name, caption, and address of the cell being touched by the top-left corner of the CommandButton
object. Figure 24-6 shows the message box that appears when you click one of the CommandButtons.

FIGURE 24-6

Public WithEvents cmdButtonGroup As CommandButton
Private Sub cmdButtonGroup_Click()
MsgBox _
"Hello, my name is ''" & _
cmdButtonGroup.Name & "''." & vbCrLf & _
"My caption is ''" & _
cmdButtonGroup.Caption & "''." & vbCrLf & _
"My top left corner is set in cell " & _
cmdButtonGroup.TopLeftCell.Address(0, 0) & ".", _
64, "You just clicked me, here's my info :"
End Sub

You can also tap into other events in the same class module. All that’s required is that you use the
same class object (cmdButtonGroup in this example), and that the event is supported by the object.
With CommandButtons, the MouseOver event can help you identify which button you are hovering
your mouse over by shading it orange, while all other CommandButtons on the sheet are colored gray.

NOTE I used hex codes in this example for the buttons’ BackColor property,
to show how you’d use hex in code to refer to colors. These hex values are
always shown in the Properties window of ActiveX controls for BackColor and
ForeColor properties, and I personally fi nd them very reliable in VBA code with
any version of Excel.

Private Sub cmdButtonGroup_MouseMove(ByVal Button As Integer, _
ByVal Shift As Integer, ByVal X As Single, ByVal Y As Single)
Dim myBtn As Object
For Each myBtn In ActiveSheet.OLEObjects
If TypeName(myBtn.Object) = "CommandButton" Then _
myBtn.Object.BackColor = &HC0C0C0 'turn all to gray
Next myBtn
cmdButtonGroup.BackColor = &H80FF& 'orange
End Sub

328 ❘ LESSON 24 CLASS MODULES

c24.indd 02/19/2015 Page 328

NOTE As you can probably tell, despite the appearance of differently shaped
CommandButtons with comical captions, the larger point of this example is that
you can capture various properties of class objects, assign them to a variable,
and utilize that variable information in other macros, or even as part of the class
module’s event code. For example, in real practice, you don’t need or want a
message box to pop up and tell you which button you just clicked; you already
know that. If, for example, your project is such that the CommandButtons’
captions have a word or phrase to be used as a criterion for automatically fi lter-
ing a table of data, this application of fl exible class module coding will save you
a lot of work.

For embedded ActiveX controls, you can instantiate the collection of OLE objects, in this
example for CommandButtons, with the following code that goes into the ThisWorkbook
module. Be sure to place this example declaration statement at the top of the ThisWorkbook
module:

Dim cmdButtonHandler() As New Class1

Finally, utilize the Open event to collect the CommandButtons that are only on Sheet1. Notice
the references to the OLEObject and OLEObjects keywords when dealing with embedded
ActiveX controls:

Private Sub Workbook_Open()
Dim cmdButtonQuantity As Integer, MYcmdButton As OLEObject
cmdButtonQuantity = 0
With ThisWorkbook
For Each MYcmdButton In .Worksheets("Sheet1").OLEObjects
If TypeName(MYcmdButton.Object) = "CommandButton" Then
cmdButtonQuantity = cmdButtonQuantity + 1
ReDim Preserve cmdButtonHandler(1 To cmdButtonQuantity)
Set cmdButtonHandler(cmdButtonQuantity).cmdButtonGroup _
= MYcmdButton.Object
End If
Next MYcmdButton
End With
End Sub

Not all controls recognize the same event types, though, so you’d need to set a class event that the
object type can recognize.

There is another technique using the Collection keyword for grouping the same types of objects
into a class. In this example, Sheet1 has a number of embedded CheckBox controls, and you want to
write one small piece of VBA code that applies to all CheckBoxes.

The visual effect you want is for any CheckBox on Sheet1 to be shaded black if it is checked, and
white if it is unchecked. Figure 24-7 shows the differences in color shading depending on the status
of the CheckBoxes.

Class Modules for Embedded Objects ❘ 329

c24.indd 02/19/2015 Page 329

FIGURE 24-7

The code to do this is surprisingly minimal. Insert a new class module, and assuming it is named Class2
because you already have a Class1 module established, this code goes into the Class2 module:

Public WithEvents grpCBX As MSForms.CheckBox

Private Sub grpCBX_Click()
With grpCBX

If .Value = True Then
.BackColor = &H0& 'Black background
.ForeColor = &HFFFFFF 'White font

Else

.BackColor = &HFFFFFF 'White background

.ForeColor = &H0& 'Black font

End If

End With
End Sub

The rest of the code goes into the ThisWorkbook module. It instantiates the grpCBX object and is
refreshed each time the workbook opens by utilizing the Workbook_Open event:

Public myControls As Collection
Private Sub Workbook_Open()
Dim oleCtl As OLEObject, ctl As Class2
Set myControls = New Collection
For Each oleCtl In Worksheets("Sheet1").OLEObjects
If TypeOf oleCtl.Object Is MSForms.CheckBox Then
Set ctl = New Class1

330 ❘ LESSON 24 CLASS MODULES

c24.indd 02/19/2015 Page 330

Set ctl.grpCBX = oleCtl.Object
myControls.Add ctl
End If
Next
End Sub

TRY IT

For this lesson, you create a class module to handle the Click event of some of the OptionButtons
on a UserForm. You design a simple UserForm with eight OptionButtons, of which only fi ve
are a part of the class module that identifi es by name which OptionButton and caption
was clicked.

Lesson Requirements
To get the sample workbook, you can download Lesson 24 from the book’s website at
www.wrox.com/go/excelvba24hour.

Step-by-Step
 1. Open a new workbook.

 2. Press Alt+F11 to get into the Visual Basic Editor.

 3. From the menu bar, click Insert ➪ UserForm, and size the UserForm to a Height of 200 and
a Width of 400.

 4. Draw a Label control near the top-left corner of your UserForm, and caption it as
OptionButtons In Class Module.

 5. Draw a Label control near the top-right corner of your UserForm and caption it as Other
OptionButtons. Figure 24-8 shows how your UserForm should look so far.

FIGURE 24-8

http://www.wrox.com/go/excelvba24hour

Try It ❘ 331

c24.indd 02/19/2015 Page 331

 6. Under the fi rst Label control, draw a vertical column of fi ve OptionButtons. A fast way to do
this is to draw one OptionButton and then copy and paste it four times. Change the captions
of those fi ve OptionButtons to Apples, Bananas, Peaches, Grapes, and Oranges, as shown
in Figure 24-9.

FIGURE 24-9

 7. Paste three more OptionButtons below the second Label control. Change the captions
of those three OptionButtons to Plums, Pears, and Tangerines. You now have eight
OptionButtons on your UserForm, all with different captions that are the names of fruits.
The actual VBA names of the eight OptionButtons have not changed; they all are still named
by default as OptionButton1, OptionButton2, and so on, to OptionButton8. For example,
if you were to select the OptionButton that is captioned Oranges, you would see in its
Properties window that it is named OptionButton5. Figure 24-10 shows how your UserForm
looks at this point.

FIGURE 24-10

 8. Draw a CommandButton in the lower-right corner of the UserForm. Name it cmdExit and
caption it as Exit.

332 ❘ LESSON 24 CLASS MODULES

c24.indd 02/19/2015 Page 332

 9. Double-click the cmdExit button, which takes you into the UserForm’s module, with the
cmdExit button’s Click event ready for your code. Type Unload Me, and your UserForm
module in the VBE looks like Figure 24-11.

FIGURE 24-11

 10. Insert a class module. From the menu bar, click Insert ➪ Class Module and accept the default
name of Class1. Your cursor is blinking in the Class1 module’s Code window.

 11. The purpose of this particular class module is to capture an event that is associated with
OptionButton controls. At the top of the Class1 module, publicly declare a variable that
refers to the group of OptionButtons you will involve in the class module code. In that same
statement, expose the events associated with OptionButtons using the WithEvents keyword.
The following statement accomplishes this task:

Public WithEvents OptGroup As msforms.OptionButton

NOTE There is nothing special about the OptGroup variable name; you can give
your class module variable whatever name makes sense to you. What makes
sense to me is that I am grouping some OptionButton controls for a demonstra-
tion, so OptGroup is an intuitive name.

 12. To demonstrate the point of this lesson, you can use the Click event for your OptGroup
class. A message box displays the name and caption of the OptionButton that was clicked
if that OptionButton is included in the class. Figure 24-12 shows how the VBE looks after
inputting the following class module code.

Private Sub OptGroup_Click()
MsgBox "Hello, my name is " & OptGroup.Name & "." & vbCrLf & _
"My caption is " & OptGroup.Caption & ".", vbInformation, _
"You just clicked me, here is my info:"
End Sub

Try It ❘ 333

c24.indd 02/19/2015 Page 333

FIGURE 24-12

NOTE If this were an actual workbook project, you would not need a message
box to tell you which OptionButton was just clicked. More realistically, you
might assign a String type variable to the selected OptGroup.Caption if that
caption string is needed as part of an operation elsewhere in your project.

 13. Return to the UserForm module. At the top of the module, identify which OptionButtons you
want to be grouped into the OptGroup class. For this example, the fi rst fi ve OptionButtons
are grouped, so create an instance of the OptGroup class with the New keyword for the
Class1 module name:

Dim optButtons(1 To 5) As New Class1

 14. The UserForm’s Initialize event is a good opportunity to do the actual grouping of the
fi ve OptionButtons. From the Object drop-down list select UserForm, and in the Procedure
drop-down list select Initialize. VBA enters the UserForm_Initialize and End Sub
 statements with an empty space between the two lines, as follows:

Private Sub UserForm_Initialize()

End Sub

 15. Declare an Integer type variable that helps loop through the fi ve OptionButtons that
become a part of the class module:

Dim intCounterOptionButton As Integer

 16. Open a For Next loop to loop through the fi ve OptionButtons:

For intCounterOptionButton = 1 To 5

 17. Set each of the fi ve OptionButtons as members of the OptGroup class:

Set optButtons(intCounterOptionButton).OptGroup = _
Controls("OptionButton" & intCounterOptionButton)

 18. Continue and close the For Next loop with the Next statement:

Next intCounterOptionButton

334 ❘ LESSON 24 CLASS MODULES

c24.indd 02/19/2015 Page 334

 19. All of your coding is complete. The entire UserForm module contains the following VBA code:

Option Explicit

Dim optButtons(1 To 5) As New Class1
Private Sub UserForm_Initialize()
Dim intCounterOptionButton As Integer
For intCounterOptionButton = 1 To 5
Set optButtons(intCounterOptionButton).OptGroup = _
Controls("OptionButton" & intCounterOptionButton)
Next intCounterOptionButton
End Sub

Private Sub cmdExit_Click()
Unload Me
End Sub

 20. Test your class module by showing the UserForm. Press Ctrl+G to open the Immediate
 window, type the statement UserForm1.Show, and then press Enter.

 21. Click any of the fi ve OptionButtons on the left to display the message box that identifi es the
name and caption of the OptionButton you click. In Figure 24-13 I clicked OptionButton4,
which has the caption Grapes. The OptionButtons on the right side of the UserForm are not
included in the class, and if clicked do not invoke a message box.

FIGURE 24-13

REFERENCE Please select the video for Lesson 24 online at www.wrox.com/go/
excelvba24hour. You will also be able to download the code and resources for
this lesson from the website.

http://www.wrox.com/go

c25.indd 02/24/2015 Page 335

Add-Ins
Add-ins are a useful feature in Excel, considered by many Excel developers to be an
 indispensable tool when distributing their custom projects to a wider audience. Anyone can
create an add-in—it’s the kind of thing that’s easy to do once you know how. This lesson
 discusses the concept of add-ins and how to incorporate them into your Excel projects.

NOTE This lesson discusses standard Excel add-ins. Two other types of add-ins
exist that are not developed with VBA and are not discussed in this lesson. One
of the other types is called COM add-ins, developed with languages such as
Visual Basic, C++, and J++ that support component object model components.
The other type is DLL add-ins, which are Windows fi les known as Dynamic
Link Library fi les.

WHAT IS AN EXCEL ADD-IN?

An Excel add-in is a special type of Excel workbook that has been converted to an add-in fi le.
There is no magic to the add-in conversion process, but after you create an add-in fi le, you’ll
notice its unique characteristics:

 ➤ The fi le extension is .xla for Excel versions prior to 2007, and .xlam for Excel
 versions 2007 through 2013.

 ➤ Add-ins are always hidden; you do not open and view them as you would an
Excel workbook.

 ➤ You cannot show sheets of any kind belonging to the add-in fi le.

 ➤ The add-in fi le is not recognized as an open workbook in the
Workbooks collection.

25

336 ❘ LESSON 25 ADD-INS

c25.indd 02/24/2015 Page 336

WHY CREATE AN EXCEL ADD-IN?

Add-ins commonly use VBA macros, event procedures, user-defi ned functions, and
UserForms to make everyday tasks faster and easier to accomplish. Many Excel
users don’t fi nd the need to create an add-in, but here are some reasons why you
might want to:

 ➤ Add-in fi les are hidden and therefore provide seamless integration to open
Excel workbooks. Novice Excel users don’t need to worry about opening an
add-in after it’s been loaded, and they won’t wonder about an extra open
Excel fi le because add-ins cannot be seen or unhidden.

 ➤ Even if the macro security is set to its most restrictive level, the VBA
 programming for an installed add-in can still run.

 ➤ Add-ins open automatically when Excel starts.

 ➤ The custom feature(s) contained within the add-in fi le are usually available to
any of the open workbooks.

 ➤ The programming code is contained in the add-in fi le itself, and does not travel
with the workbooks that use it. This gives you more control over how the fi le
is distributed and who can access its code.

 ➤ Add-ins really shine in their ability to perform actions on several objects, such
as cells or sheets, that if done manually would be cumbersome, time- consuming,
and require some knowledge of Excel for the user to complete. Novice Excel
users will especially appreciate the ease of clicking a button to do tasks that
they might not know how to do manually, or might not know the most effi cient
methods by which to handle those tasks quickly.

CREATING AN ADD-IN

You create an Excel add-in fi le manually, but you make its features available by using VBA. To
create an add-in, the fi rst thing you do is open a new workbook. Because you add VBA code that
becomes the add-in’s functionality, you should test and retest your code before releasing the add-in
for others to use. I mention this obvious point because if your add-in deals with manipulating
worksheets in the active fi le, you need to observe the code’s effect on those worksheets to make
sure everything is working properly. After you convert the workbook to an add-in, you’re no longer
able to view the worksheets, so you want to construct and test all your code before converting your
workbook as an add-in.

Suppose you want to create an add-in that offers the options to hide, unhide, protect, or unprotect
multiple worksheets. A novice Excel user might perform these tasks one sheet at a time—quite an
undertaking if the workbook contains dozens or hundreds of worksheets and the tasks are a
frequent chore.

Creating an Add-In ❘ 337

c25.indd 02/24/2015 Page 337

PLAN AHEAD FOR BEST RESULTS

You can convert any workbook to an add-in fi le, but not every workbook is a good
candidate as an add-in. When I create an add-in, I know in advance what features I
want the add-in to have, and what kind of code to avoid. This is important, because
the add-in fi le is a hidden workbook that cannot contain code for activating a sheet
or a range of cells.

You can write data to your add-in fi le, but you cannot activate the add-in fi le at any
time. If you want to keep any data you’ve written to the add-in fi le, you need to
save the fi le in the Workbook_BeforeClose event, because when an add-in closes, it
does not prompt the user to save unsaved changes.

In your new workbook that is destined to become an add-in, press Alt+F11 to go to the Visual Basic
Editor. From the VBE menu bar, click Insert ➪ UserForm. If the Properties window is not visible,
press the F4 key. Follow these steps to create the add-in:

 1. Select your new UserForm in its design area. In the Properties window, name the UserForm
frmSheetManager, enter its caption as Sheet Manager, and set its Height property to 210
and its Width property to 276.

 2. Place the following controls on your UserForm:

 ➤ A Label control near the top, setting its Width property to 228 and its Caption
property to Please select your action:.

 ➤ An OptionButton control below the Label control, keeping the default name
OptionButton1, setting its BackColor property to white, its Width property to 228,
and its Caption property to Unhide all sheets.

 ➤ A second OptionButton control below OptionButton1, keeping the default name
OptionButton2, setting its BackColor property to white, its Width property to 228,
and its Caption property to Hide all sheets except active sheet.

 ➤ A third OptionButton control below OptionButton2, keeping the default name
OptionButton3, setting its BackColor property to white, its Width property to 228,
and its Caption property to Protect all sheets.

 ➤ A fourth OptionButton control below OptionButton3, keeping the default name
OptionButton3, setting its BackColor property to white, its Width property to 228,
and its Caption property to Unprotect all sheets.

 ➤ A CommandButton near the bottom-left corner of the UserForm, setting its Name
property to cmdOK, and its Caption property to OK.

 ➤ A CommandButton near the bottom-right corner of the UserForm, setting its Name
property to cmdExit, and its Caption property to Exit.

Your UserForm ends up looking like Figure 25-1.

338 ❘ LESSON 25 ADD-INS

c25.indd 02/24/2015 Page 338

FIGURE 25-1

The design work is complete for your UserForm. In the UserForm module, enter the following
code, which is mostly triggered by the cmdOK button’s Click event. The requested task is performed
depending on which OptionButton was selected:

Private Sub cmdOK_Click()

'Declare an Integer type variable to help loop through the worksheets.
Dim intSheet As Integer

'Open a Select Case structure to evaluate each OptionButton.
Select Case True

'If OptionButton1 was selected to unhide all sheets:
Case OptionButton1.Value = True
For intSheet = 1 To Sheets.Count
Sheets(intSheet).Visible = xlSheetVisible
Next intSheet

'If OptionButton2 was selected to hide all sheets except active sheet:
Case OptionButton2.Value = True
For intSheet = 1 To Sheets.Count
If Sheets(intSheet).Name <> ActiveSheet.Name Then
Sheets(intSheet).Visible = xlSheetHidden
End If
Next intSheet

'If OptionButton3 was selected to protect all sheets.
Case OptionButton3.Value = True
For intSheet = 1 To Sheets.Count
Sheets(intSheet).Protect
Next intSheet

'If OptionButton4 was selected to unprotect all sheets.
Case OptionButton4.Value = True
For intSheet = 1 To Sheets.Count
Sheets(intSheet).Unprotect
Next intSheet

Creating an Add-In ❘ 339

c25.indd 02/24/2015 Page 339

'If no OptionButton was selected:
Case Else
MsgBox "No Action option was selected", , "Please select an option"

'Close the Select Case structure.
End Select

End Sub

Private Sub cmdExit_Click()
Unload Me
End Sub

Create a small macro to call the UserForm. From the VBE menu bar, click Insert ➪ Module and
enter the following macro:

Private Sub SheetManager()
frmSheetmanager.Show
End Sub

After completing the VBA functionality that your add-in provides to its users, it’s almost time to
convert the workbook to an add-in. There is an additional step you can take to add a description to
the fi le’s Properties information. It’s purely optional that you do this, but it’s a good habit to get into
because it helps the add-in’s users know what the add-in does.

The process for accessing the fi le’s Properties information depends on your version of Excel. To
access the Properties dialog box in Excel versions prior to 2007, click File ➪ Properties from the
worksheet menu bar as shown in Figure 25-2. In the Properties dialog box, some fi elds may already
be entered for you by default. As you see later in this lesson, the most useful information to enter
is the Title and Comments fi elds, as indicated
in Figure 25-3.

To reach the Properties information in Excel version
2007, click the round Offi ce button near the top-left
corner of your window. You see a vertical pane on
the left side of the window. Click Prepare, and then
in the pane on the right, click Properties, as shown
in Figure 25-4.

To reach the Properties information in Excel version
2010 and 2013, click the File tab on the Ribbon, and
in the vertical pane at the left, click Info. At the far
right, you see a Properties label with a drop-down
arrow. As indicated in Figure 25-5, selecting the
Advanced Properties item in the drop-down list
displays the Properties dialog box.

FIGURE 25-2

340 ❘ LESSON 25 ADD-INS

c25.indd 02/24/2015 Page 340

FIGURE 25-3

FIGURE 25-5

FIGURE 25-4

Converting a File to an Add-In ❘ 341

c25.indd 02/24/2015 Page 341

CONVERTING A FILE TO AN ADD-IN

The easiest way to convert a fi le to an add-in is to save the fi le as an Excel Add-in type. In versions
of Excel prior to 2007, from the worksheet menu click File ➪ Save As. In the Save As dialog
box, navigate to the folder where you want the add-in to reside. In Figure 25-6, I named the
fi le SheetManager, and I created a subfolder named My Addins. From the Save As Type fi eld’s
 drop-down list, select Microsoft Offi ce Excel Add-In as shown in Figure 25-6, and click Save.

For version 2007, click the Offi ce button and select Save As. For versions 2010 and 2013, click the
File tab and select Save As. In the Save As dialog box, navigate to the folder where you want the
add-in to reside and give the fi le a name. As shown in Figure 25-7, select Excel Add-In from the Save
As Type drop-down list and click Save.

FIGURE 25-6

NOTE While saving a fi le as an add-in, you must have a worksheet be the active
sheet. If by chance you have a chart sheet in your fi le and it is the active sheet,
the Save As Type drop-down list won’t include an Add-in fi le type.

342 ❘ LESSON 25 ADD-INS

c25.indd 02/24/2015 Page 342

FIGURE 25-7

INSTALLING AN ADD-IN

If your add-in is being distributed to other users, the fi rst thing you do is to deliver the add-in fi le to
them in some way, such as by e-mail, or on a fl ash drive if by hand delivery. In any case, your users
would save the add-in fi le to whatever folder they prefer, similar to how you saved your add-in fi le
into a folder on your computer.

Installing an Add-In ❘ 343

c25.indd 02/24/2015 Page 343

The easiest way to install an add-in is to use the Add-Ins dialog box, which you can do from any
open workbook. In versions of Excel prior to 2007, from the worksheet menu click Tools ➪ Add-Ins
as shown in Figure 25-8. In versions 2007 to 2013, click the Developer tab on the Ribbon, and
select the Add-Ins icon as shown in Figure 25-9. An example of the Add-Ins dialog box is shown in
Figure 25-10.

The Add-Ins dialog box shows a list of all the add-ins that Excel is aware of. An add-in is open if a
check mark is next to its name in the list. Notice in Figure 25-10 that no add-ins are selected, and
that the SheetManager add-in is not listed in the Add-Ins dialog box.

When a new add-in is created, it does not automatically appear in the Add-Ins dialog box. To install
a new add-in, you fi rst need to list it in the Add-Ins dialog box, and then select it in the list.

FIGURE 25-8

FIGURE 25-9

344 ❘ LESSON 25 ADD-INS

c25.indd 02/24/2015 Page 344

FIGURE 25-10

NOTE The Developer tab is a very useful item to place on your Ribbon. See the
section named “Accessing the VBA Environment” in Lesson 2 for the steps to
display the Developer tab.

NOTE A quick way to open the Add-Ins dialog box from any version of Excel
is to press Alt+T+I—that is, hold down the Alt key and with your other hand
press the T key and the I key. If you prefer to work with a mouse instead of
the keyboard, and you prefer not to show the Developer tab, you can access
the Add-Ins dialog box another way. In Excel version 2007, click the Offi ce
button, then click the Excel Options button. In Excel versions 2010 and
2013, click the File tab, click the Options menu item, and select the
Add-Ins menu item. At the bottom of the window, select Excel Add-Ins from
the Manage drop-down list, and click Go.

To include an add-in on the Add-Ins list, click the Browse button on the Add-Ins dialog box.
Navigate to the folder where you saved the add-in fi le, select the fi lename, and click OK to exit the
Browse dialog box as indicated in Figure 25-11.

You now see your selected fi le listed in the Add-Ins dialog box. By default, Excel places a check
mark next to the selected add-in’s name. If you don’t want the add-in to be open—that is, for its
 features to be available to you—simply deselect the add-in by unchecking the box next to
its name.

Installing an Add-In ❘ 345

c25.indd 02/24/2015 Page 345

If and when you do select your new add-in, you and the users of that add-in will appreciate the extra
time you spent in the Properties window before you converted the original fi le to an add-in. Notice
that the selected add-in’s fi lename and comments appear at the bottom of the Add-Ins dialog box,
informing the user what the add-in does. In any case, now that you’ve listed the add-in fi le, click OK
to exit the Add-Ins dialog box as indicated in Figure 25-12.

FIGURE 25-11

FIGURE 25-12

346 ❘ LESSON 25 ADD-INS

c25.indd 02/24/2015 Page 346

WHERE DID THOSE OTHER ADD-INS COME FROM?

Even before you created your fi rst add-in, you saw some add-ins already listed in
the Add-Ins dialog box. Excel ships with four available add-ins, which are not open
until you select them in the Add-Ins dialog box:

 ➤ The Analysis ToolPak add-in, which provides an expanded set of analysis tools
not available in standard worksheet functions and features

 ➤ The Analysis ToolPak VBA add-in, which provides an expanded set of
 functions for your VBA programming code

 ➤ The Euro Currency Tools add-in, which is a tool for converting and formatting
the euro currency

 ➤ The Solver add-in, which is a what-if analysis tool that attempts to fi nd an
optimal value for a formula in one cell while considering constraints placed on
the values in other cells

CREATING A USER INTERFACE FOR YOUR ADD-IN

Now that the add-in has been created and installed, you need to provide your users with the
ability to access the functionality. As it stands right now, all that’s happened is the add-in is
available behind the scenes. However, because the SheetManager add-in’s functionality is tied
to a UserForm, you need to establish a way for users to click a link of some kind that calls the
UserForm.

Before the Ribbon came along, a custom worksheet menu item was created using the CommandBar
object. For this example, I named the menu item SheetManager, and it appears on the Tools menu.
The good news is, Excel versions 2007 through 2013 still support CommandBars, and you can use the
same code to achieve a user-friendly custom menu interface that is compatible with every version of
Excel starting with Excel 97.

For versions of Excel prior to 2007, a menu item named Sheet Manager is in the Tools menu, as
shown in Figure 25-13. For versions 2007, 2010, and 2013, the menu item named Sheet Manager
is in the Menu Commands section of a new tab on the Ribbon named Add-Ins. The Add-Ins tab
appears when you apply custom add-in code. In any case, clicking the Sheet Manager menu item
executes the macro that calls the UserForm, as shown in Figure 25-14.

Creating a User Interface for Your Add-In ❘ 347

c25.indd 02/24/2015 Page 347

FIGURE 25-13

FIGURE 25-14

348 ❘ LESSON 25 ADD-INS

c25.indd 02/24/2015 Page 348

The following event code, found in the ThisWorkbook module of the add-in fi le, establishes the
 custom user interface:

Private Sub Workbook_Open()

'Declare a CBC variable for the custom menu item.
Dim objCmdControl As CommandBarControl
'The custom menu item will be named "Sheet Manager"
'and it will go onto the Tools menu for versions before 2007.
Set objCmdControl = _
Application.CommandBars("Worksheet Menu Bar") _
.Controls("Tools").Controls.Add

'For the new menu item, give it a meaningful caption,
'help it to clearly stand out by starting a BeginGroup.
'The OnAction method will call the UserForm.
'The Face ID is a small icon next to the menu item
'that is optional, but adds a feeling of customization.
With objCmdControl
.Caption = "Sheet Manager"
.BeginGroup = True
.OnAction = "SheetManager"
.FaceId = 144
End With

End Sub

Private Sub Workbook_BeforeClose(Cancel As Boolean)
'Delete the custom menu item from the Tools menu.
'The error bypass is for cases when the "Sheet Manager"
'item is not listed on the Tools menu.
On Error Resume Next
Application.CommandBars("Worksheet Menu Bar") _
.Controls("Tools").Controls("Sheet Manager").Delete
Err.Clear
End Sub

Changing the Add-In’s Code
You’ll fi nd that some of your add-ins are a work in progress. Users will enjoy the ease of performing
add-in tasks, and you’ll be requested to make enhancements to the add-in for more functionality. As
you pick up more VBA programming skills, you’ll want to improve your original code by making
edits for speed and effi ciency.

You make any changes to your add-in fi le in the Visual Basic Editor. Open your add-in fi le, and all you
see is an empty-looking Excel fi le because all the sheets in an add-in are hidden and cannot be viewed.
Press Alt+F11 to go to the VBE, and just as if it were any Excel workbook, make whatever changes to
the code you need to make. When you are done, save your changes in the VBE and close the add-in fi le.

NOTE For add-ins that you distribute to other users, you want to protect the
code from being inadvertently changed or viewed by others. The process for
 protecting your add-in code is the same as with any Excel workbook, and that is
to lock and protect the project in the Visual Basic Editor. The steps to do this are
discussed in Lesson 4, in the section “Locking and Protecting the VBE.”

Removing an Add-In from the Add-Ins List ❘ 349

c25.indd 02/24/2015 Page 349

CLOSING ADD-INS

As you saw in the section “Changing the Add-In’s Code,” you can open an add-in fi le, but you
might like to know how to close an add-in fi le because it cannot be closed the same way you close a
workbook. You have three ways to close an add-in fi le:

 ➤ Deselect (uncheck) the add-in’s name in the Add-Ins dialog box.

 ➤ Go into the VBE and press Ctrl+G to ensure that the Immediate window is open. In the
Immediate window, enter a line of code that closes the add-in fi le and press Enter. An exam-
ple of such code for the SheetManager add-in is as follows:

Workbooks("SheetManager.xlam").Close

 ➤ Close Excel, which closes all fi les, including add-ins.

REMOVING AN ADD-IN FROM THE ADD-INS LIST

At some point in the future, you might want to remove the add-in from the list of available add-ins
in the Add-Ins dialog box, if the add-in is outdated or you just don’t need it anymore. To accomplish
this is an example of how science meets art, because Excel does not have a built-in way to remove an
add-in’s name from the list. Here are the steps to make this happen:

 1. Close Excel.

 2. Open Windows Explorer and navigate to the folder that holds your add-in fi le.

 3. Select the add-in fi lename, and without opening the fi le, either change its name, drag the fi le
to a different folder, or, if you really no longer need the add-in, delete the fi le altogether.

 4. Open Excel, and when you do, you receive a message telling you that the add-in fi le cannot
be found. Click OK as indicated in Figure 25-15.

FIGURE 25-15

 5. Open the Add-Ins dialog box and uncheck the name of the add-in you want to remove. Excel
reminds you that the fi le cannot be found, and asks for confi rmation that you want to delete
the fi le from the list of available add-ins. Click Yes as indicated in Figure 25-16.

350 ❘ LESSON 25 ADD-INS

c25.indd 02/24/2015 Page 350

FIGURE 25-16

TRY IT

For this lesson, you create, install, and test an add-in that contains a user-defi ned function to return
the text of another cell’s comment.

Lesson Requirements
To get the sample workbook, you can download Lesson 25 from the book’s website at
www.wrox.com/go/excelvba24hour.

Step-by-Step
 1. Open a new workbook.

 2. Go to the Properties window. In the Title fi eld enter Comment Text and in the Comments
fi eld enter Return text of comments in other cells.

 3. Exit the Properties window and press Alt+F11 to go into the Visual Basic Editor.

 4. From the menu bar in the VBE, click Insert ➪ Module. Copy the following user-defi ned
 function into the module:

Function GetComment(rng As Range) As String
Dim strText As String
If rng.Comment Is Nothing Then
strText = "No comment"
Else
strText = rng.Comment.Text
End If
GetComment = strText
End Function

 5. Press Ctrl+S to display the Save As dialog box. Navigate to the folder into which you want to
save this fi le. Name the fi le CommentText and select Excel Add-In in the Save As Type fi eld,
as indicated in Figure 25-17. Click Save, which converts this workbook as a new add-in fi le
named CommentText.xlam.

http://www.wrox.com/go/excelvba24hour

Try It ❘ 351

c25.indd 02/24/2015 Page 351

FIGURE 25-17

 6. Close Excel.

 7. Restart Excel and open a new workbook.

 8. Right-click cell B2 of the active worksheet, and select Insert Comment. Enter some text in
your comment.

 9. Select cell G1.

 10. Press Alt+T+I to show the Add-Ins dialog box.

 11. Click Browse and navigate to the folder where you saved the CommentText add-in fi le. Select
the CommentText fi le and click OK. Your Add-Ins dialog box looks like Figure 25-18, with
the CommentText add-in loaded. Recall that the fi le is named CommentText but the Add-Ins
dialog box shows it as Comment Text, and also shows the description of the add-in, because
that is the information you entered in Step 2 about the add-in fi le in its Properties dialog box.
Click OK to exit the Add-Ins dialog box.

FIGURE 25-18

352 ❘ LESSON 25 ADD-INS

c25.indd 02/24/2015 Page 352

 12. In cell G1, enter the user-defi ned function =GetComment(B1) and press Enter. Copy the
formula down to cell G2. You see that the UDF returned No comment in cell G1 because no
comment exists in cell B1. However, you did enter a comment into cell B2 in Step 8, so the
UDF in cell G2 returns the text of the comment from cell B2. Your worksheet looks similar
to Figure 25-19.

FIGURE 25-19

 13. Note that the workbook you are looking at does not contain the GetComment UDF code.
You can utilize that UDF because its code belongs to the CommentText add-in fi le that you
installed for the active workbook.

REFERENCE Please select the video for Lesson 25 at www.wrox.com/go/
excelvba24hour. You will also be able to download the code and resources for
this lesson from the website.

http://www.wrox.com/go

c26.indd 02/19/2015 Page 353

Managing External Data
One of the most versatile and useful benefi ts of Excel is its ability to import data from external
sources. Lessons 29–33 include examples of sharing data back and forth with other Microsoft
Offi ce applications from Excel.

Prior to Excel 97, data in an Excel workbook was entered manually. An Excel workbook was
essentially a self-contained object, having almost no contact with the outside world except for
the person working in the project.

Starting with Offi ce 97, Microsoft became devoted to providing more and better tools for
importing and exporting data to the Internet, database programs, and text-related software
applications. Excel leads the way in this effort among all Offi ce applications. In this lesson,
you learn how to use VBA to share data between Excel and other external sources, including
Access, the Internet, and text fi les.

CREATING QUERYTABLES FROM WEB QUERIES

The Internet as we know it has only been around since the mid-1990s—not that long ago
really—but it’s hard to imagine what life would be like today without the World Wide Web.
The public’s desire is only increasing for access to the galaxy of information that is stored on
the web. With each new release of its Offi ce suite, Microsoft has improved the capacity of its
applications to interact with web-based information.

NOTE When you connect Excel to an external source such as the Internet, you
add a QueryTable to your worksheet. Objects that can connect to external data
sources include a cell range, an Excel table, a pivot table, a text fi le, and a web
query. In this case, you are adding a QueryTable to a worksheet because you are
querying the web for information that will be displayed on your worksheet.

Suppose you are interested in monitoring the stock prices of a half-dozen or so technology
companies. If you want to avoid the monotony of going to a fi nancial website and entering the

26

354 ❘ LESSON 26 MANAGING EXTERNAL DATA

c26.indd 02/19/2015 Page 354

same stock symbols every time, you can automate the process with a web query, and refresh the data
anytime you like.

When you build a web query, you need to tell Excel the website from which to extract the informa-
tion, and the cell address on the destination sheet where you want the QueryTable to be located.
Some background information about URLs and their parameters might be helpful for you to under-
stand what is going on.

If you open your web browser and enter the URL http://money.cnn.com/quote/quote.
html?symb=YHOO+GOOG, you reach a site that provides a table of stock quotes for Yahoo! and
Google. With this URL, you are essentially passing URL parameters that enable you to pass infor-
mation such as search criteria to a website. In this case, the URL parameters being used are the sym-
bols for Yahoo! (YHOO) and Google (GOOG).

The following macro places the QueryTable on cell A1, and points to one of the bevy of websites out
there that provide current stock quotes. For demonstration purposes, I chose a few companies that
are all headquartered in the Silicon Valley area where I live and own my Excel development com-
pany. The stock symbols of those companies are the criteria that apply URL parameters through the
code to gather the stock quote information that populates the QueryTable. Figure 26-1 shows what
the result looked like when I ran this macro in November 2014:

Sub ImportStocks()

'Declare variables for destination worksheet,
'and two halves of the connection string:
'one half for the URL, and the other half for
'the quotes, to make it easier for you to edit.
Dim wsDestination As Worksheet
Dim strURL As String, strStocks As String

'Set your preferred destination worksheet; here it is Sheet2.
Set wsDestination = Worksheets("Sheet2")

'Define the URL for getting your stock quotes.
'There are many websites where you can do this.
strURL = "http://money.cnn.com/quote/quote.html?symb="

'Define your stocks of interest. I only selected these
'as an example of nearby Silicon Valley businesses.
strStocks = "AAPL,CSCO,EBAY,GOOG,INTC,ORCL,YHOO"

'My preference is to activate the destination worksheet
'and select cell A1.
Application.Goto wsDestination.Range("A1"), True

'Clear the cells in the worksheet so you know the data
'being imported will not be confused with other data
'you may have imported previously and not yet deleted.
Cells.Clear

'Add your QueryTable with the connection string
'and other useful methods you see in the With structure.
With wsDestination.QueryTables.Add _
(Connection:="URL;" & strURL & strStocks, _
Destination:=Range("A1"))

http://money.cnn.com/quote/quote
http://money.cnn.com/quote/quote.html?symb=

Creating QueryTables from Web Queries ❘ 355

c26.indd 02/19/2015 Page 355

.BackgroundQuery = True

.SaveData = True

.AdjustColumnWidth = True

.WebSelectionType = xlSpecifiedTables

.WebFormatting = xlWebFormattingNone

.WebTables = """wsod_multiquoteTable"""

.Refresh BackgroundQuery:=False
End With

'Release object variable memory.
Set wsDestination = Nothing
End Sub

FIGURE 26-1

With the worksheet active, you can refresh the data by right-clicking cell A1 and selecting
Refresh, as shown in Figure 26-2. Alternatively, you can execute the VBA expression Range("A1").
QueryTable.Refresh in the Immediate window or in a macro. Each time you refresh the data, you
see the most recent version of the information in the data source, including any changes that were
made to the data.

FIGURE 26-2

356 ❘ LESSON 26 MANAGING EXTERNAL DATA

c26.indd 02/19/2015 Page 356

NOTE Does your web query take too long to refresh? You can cancel the
Refresh method if it’s running longer than you want to wait with this block of
code:

If Application.Wait(Now + TimeValue("0:00:10")) Then
With Worksheets(1).QueryTables(1)
If .Refreshing Then
.CancelRefresh
MsgBox "Refresh was cancelled.", , "FYI..."
End If
End With
End If

While on the subject of corporate performance, the following macro opens a .csv fi le for you,
depending on which stock symbol you are searching for, and copies several years of historical stock
price activity to Sheet3 of your workbook:

Sub ImportHistory()
Dim strStockSymbol As String
Dim strURL1 As String, strURL2 As String

'Download the past years' stock price activity.
strURL1 = "http://ichart.finance.yahoo.com/table.csv?s="
strURL2 = "&d=2&e=18&f=2010&g=d&a=2&b=13&c=1986&ignore=.csv"
strStockSymbol = "EBAY"

Workbooks.Open Filename:=strURL1 & strStockSymbol & strURL2

'Copy data from the csv file to your worksheet.
Range("A1").CurrentRegion.Copy _
ThisWorkbook.Worksheets("Sheet3").Range("A1")

'Close the csv file without saving it.
ActiveWorkbook.Close False

'Autofit the columns.
Columns.AutoFit
End Sub

NOTE Another example in the Try It section leads you in a step-by-step process
of creating a web query.

CREATING A QUERYTABLE FOR ACCESS

In upcoming lessons you learn about importing and exporting data between Excel and Access, using
VBA and a technology called Structured Query Language, or SQL. Because this lesson deals with
external data, you might be interested to know how to quickly, albeit manually, import an Access
table directly to your worksheet.

http://ichart.finance.yahoo.com/table.csv?s=

Creating a QueryTable for Access ❘ 357

c26.indd 02/19/2015 Page 357

Click the Data tab on the Ribbon, and fi nd the Get External Data section at the far left. Click the
leftmost icon that is labeled From Access as shown in Figure 26-3.

You see the Select Data Source dialog box. Navigate to the folder holding your Access database,
select the folder, and also select the name of the database fi le. Click Open as shown in Figure 26-4.

FIGURE 26-3

FIGURE 26-4

The Select Table dialog box displays, so all you need to do is click to select the name of the table,
and then click OK as shown in Figure 26-5. After that, the Import dialog box displays. I chose to
keep the imported table as a Table format, placed onto my worksheet, starting in cell A1 as shown

358 ❘ LESSON 26 MANAGING EXTERNAL DATA

c26.indd 02/19/2015 Page 358

in Figure 26-6. Your Access table loads onto your worksheet as shown in Figure 26-7, with the top
row having AutoFilter buttons to help you with your future searches.

FIGURE 26-5

FIGURE 26-6

FIGURE 26-7

Using Text Files to Store External Data ❘ 359

c26.indd 02/19/2015 Page 359

NOTE The Select Table dialog box may contain tables and queries, and you can
import data from either of them. You might want to be aware that parameter
queries do not appear in this dialog box.

USING TEXT FILES TO STORE EXTERNAL DATA

Hail the text fi le, the true foot soldier interface for transferring information between two or more
otherwise disparate platforms. In the modern age of computing, it’s always been the text fi le that
could be relied on for one application downloading its information in a comma-delimited or fi xed-
length fi le, and another application like Excel being able to accept the data.

Text fi les are not pretty, they are almost never formatted, and they are not easy to read. But when all
else fails, they come through and are fairly easy to program. The following examples show how text
fi les can help you in your everyday work.

Suppose you want Excel to add a new record to a text fi le that records the date and time a particular
Excel workbook was saved. Let’s say your C drive has a folder named YourFilePath, which holds a
text fi le named LogFile.txt. The following VBA code goes into the ThisWorkbook module of the
Excel fi le you are monitoring. Modify the macro as needed for your folder path and/or name of your
text fi le.

Private Sub Workbook_BeforeSave(ByVal SaveAsUI As Boolean, Cancel As Boolean)
Dim intCounter As Integer, myFileName As String
myFileName = "C:\YourFilePath\LogFile.txt"
intCounter = FreeFile
Open myFileName For Append As #intCounter
Write #intCounter, ThisWorkbook.FullName, Now, Application.UserName
Close #intCounter
End Sub

This macro creates four new text fi les, naming each with the prefi x MyFile, followed by a num-
ber suffi x in order from 1 to 4. For example, the fi rst fi le is named MyFile001.txt, the second
fi le is named MyFile002.txt, and so on. The starting number of 1 is derived by the code line
For intCounter = 1 to 4. If you wanted to create four new text fi les starting with the name
MyFile038.txt, you’d establish the starting number of 38 by specifying it with the line of code For
intCounter = 38 to 41.

Sub CreateTextFiles()
Dim intCounter As Integer, strFile As String
For intCounter = 1 To 4
strFile = "MyFile" & Format(intCounter, "000")
strFile = "C:\YourFilePath\" & strFile & ".txt"
Open strFile For Output As #1
Close
Next intCounter
End Sub

The following macro copies the text of your comments in your worksheet’s used range into
a text fi le, where they are listed along with the cell values in that range. This is a very
fast macro.

360 ❘ LESSON 26 MANAGING EXTERNAL DATA

c26.indd 02/19/2015 Page 360

Sub Comment2Text()
Dim cmt As Comment, rng As Range
Dim iRow As Long, iCol As Long
Dim strText As String
Set rng = Range("A1").CurrentRegion
Open "C:\YourFilePath\YourFileName.txt" For Output As #1
For iRow = 1 To rng.Rows.Count
For iCol = 1 To rng.Columns.Count
If Not Cells(iRow, iCol).Comment Is Nothing Then
strText = strText & Cells(iRow, iCol).Text & _
"(" & Cells(iRow, iCol).Comment.Text & ")" & ";"

Else

strText = strText & Cells(iRow, iCol).Text & ";"
End If
Next iCol
strText = Left(strText, Len(strText) - 1)
Print #1, strText
strText = ""
Next iRow
Close
End Sub

If you want to know how many lines a particular text fi le has, the following macro tells you:

Sub Test1()
Dim MyObject As Object, LineCount As Variant
Set MyObject = _
CreateObject("Scripting.FileSystemObject")
With MyObject.OpenTextFile("C:\YourFilePath\YourFileName.txt", 1)
LineCount = Split(.ReadAll, vbNewLine)
End With
MsgBox UBound(LineCount) - LBound(LineCount) + 1
End Sub

Export each sheet in this workbook as a text fi le, with each fi le named as the sheet tab name. Text
fi le macros compile very quickly.

Sub TextExport()
Dim rng As Range
Dim iWks As Integer, LRow As Long, iCol As Long
Dim sTxt As String, sPath As String
sPath = "C:\YourFilePath\"

For iWks = 1 To Worksheets.Count
Open sPath & Worksheets(iWks).Name & ".txt" For Output As #1
Set rng = Worksheets(iWks).Range("A1").CurrentRegion
For LRow = 1 To rng.Rows.Count
For iCol = 1 To rng.Columns.Count
sTxt = sTx t& Worksheets(iWks).Cells(LRow, iCol).Value & vbTab
Next iCol
Print #1, Left(sTxt, Len(sTxt) - 1)
sTxt = ""
Next LRow
Close #1

Try It ❘ 361

c26.indd 02/19/2015 Page 361

Next iWks
MsgBox "The text files can be found in " & Left(sPath, Len(sPath) - 1)
End Sub

If you would like to see a text fi le’s contents in a message box, you can use the following code:

Sub GetTextMessage()
Dim sTxt As String, sText As String, sPath As String
sPath = "C:\YourFilePath\YourFileName.txt"
If Dir(sPath) = "" Then
MsgBox "File was not found."
Exit Sub
End If
Close
Open sPath For Input As #1
Do Until EOF(1)
Line Input #1, sTxt
sText = sText & sTxt & vbLf
Loop
Close
sText = Left(sText, Len(sText) - 1)
MsgBox sText
End Sub

Suppose you want to save the contents of cell A1 on Sheet1 as a text fi le. The following example
shows how you can do that:

Sub SaveCellValue()
Open "C:\YourFilePath\YourFileName.txt" For Append As #1
Print #1, Sheets("Sheet1").Range("A1").Value
Close #1
End Sub

Finally, this macro demonstrates how to delete a text fi le if it exists, and replaces it with a new text
fi le of the same name. If the text fi le does not exist, the macro creates a new text fi le:

Sub DeleteAndCreate()
Dim strFile As String, intFactor As Integer
On Error Resume Next
strFile = "C:\YourFilePath\YourFileName.txt"
Kill strFile
Err.Clear
intFactor = FreeFile
Open strFile For Output Access Write As #intFactor
Close #intFactor
End Sub

TRY IT

What is today’s date, and what is the current time of day? In this lesson you create a web query to
access the website of the United States Naval Observatory, where the day and time are recorded on
the Master Clock of the United States Navy. The web query imports a display of the current day and
time for several North American time zones.

362 ❘ LESSON 26 MANAGING EXTERNAL DATA

c26.indd 02/19/2015 Page 362

Lesson Requirements
To get the sample workbook, you can download Lesson 26 from the book’s website at
www.wrox.com/go/excelvba24hour.

Step-by-Step
 1. Open a new workbook.

 2. From your worksheet, press Alt+F11 to go to the Visual Basic Editor.

 3. From the menu bar in the VBE, click Insert ➪ Module.

 4. In your new module, type Sub TimeAfterTime and press Enter. VBA produces the following
two lines of code, separated by an empty line:

Sub TimeAfterTime()

End Sub

 5. Open a With structure for the destination worksheet:

With Worksheets("Sheet1")

 6. Declare a String type variable for the website address:

Dim strURL As String

 7. Defi ne the website address from which the information will be imported to your worksheet:

strURL = _
"http://tycho.usno.navy.mil/cgi-bin/timer.pl"

 8. For consistency, I prefer to activate the worksheet that will receive the web data. Cell A1 is a
convenient cell to start with:

Application.Goto .Range("A1"), True

 9. Clear the cells in the worksheet so you know the data being imported will not be confused
with other data you may have imported previously and not yet deleted:

Cells.Clear

 10. Open a With structure for the Add method of your new QueryTable. You must specify the
connection, URL, destination sheet, and other information that follows:

With .QueryTables.Add _
(Connection:="URL;" &strURL, Destination:=.Range("A1"))
.BackgroundQuery = True
.TablesOnlyFromHTML = False
.Refresh BackgroundQuery:=False
.SaveData = True

 11. Close the With structure of the QueryTable’s Add method:

End With

http://www.wrox.com/go/excelvba24hour
http://tycho.usno.navy.mil/cgi-bin/timer.pl

Try It ❘ 363

c26.indd 02/19/2015 Page 363

 12. Close the With structure for the destination worksheet:

End With

 13. Your entire macro looks as follows:

Sub TimeAfterTime()

'Open a With structure for the destination worksheet.
With Worksheets("Sheet1")

'Declare a String type variable for the website address.
Dim strURL As String
'Define the website address, from which the information
'will be imported to your worksheet.
strURL = _
"http://tycho.usno.navy.mil/cgi-bin/timer.pl"

'For consistency, I prefer to activate the worksheet
'that will receive the web data.
'Cell A1 is a convenient cell to situate yourself.
Application.Goto .Range("A1"), True

'Clear the cells in the worksheet so you know the data
'being imported will not be confused with other data
'you may have imported previously and not yet deleted.
Cells.Clear

'Open a With structure for the Add method of your new
'QueryTable. The connection, URL, and destination sheet,
'and other information that follows, must be specified.
With .QueryTables.Add _
(Connection:="URL;" &strURL, Destination:=.Range("A1"))
.BackgroundQuery = True
.TablesOnlyFromHTML = False
.Refresh BackgroundQuery:=False
.SaveData = True

'Close the With structure of the QueryTable's Add method.
End With

'Close the With structure for the destination worksheet.
End With

End Sub

 14. Press Alt+Q to return to the worksheet.

 15. You can test the macro by pressing Alt+F8 to display the Macro dialog box as
shown in Figure 26-8. Run the macro named TimeAfterTime. The result resembles
Figure 26-9.

http://tycho.usno.navy.mil/cgi-bin/timer.pl

364 ❘ LESSON 26 MANAGING EXTERNAL DATA

c26.indd 02/19/2015 Page 364

FIGURE 26-8

FIGURE 26-9

REFERENCE Please select the video for Lesson 26 online at www.wrox.com/go/
excelvba24hour. You will also be able to download the code and resources for
this lesson from the website.

http://www.wrox.com/go

c27.indd 02/19/2015 Page 365

Data Access with ActiveX
Data Objects

The topic of data access has become one of the most intensive forces in driving the recent
development of commercial software applications. Data storage and search engine companies
have become the face of the worldwide voracious demand for accessing information.

Excel is without peer in its powerful features for calculating and analyzing data, and in its ability
to produce customized reports in an instant with VBA. For users who deal with extremely large
volumes of source data, Excel can still fall short as a data storage application. Microsoft has
built Excel with some robust methods for importing external data into your workbooks, making
Excel a terrifi c front-end application that analyzes data it does not need to store.

INTRODUCING ADO

ADO is an acronym for ActiveX Data Objects, which is the technology Microsoft recommends
for accessing data in external databases. Excel’s spreadsheets, being tabular row and column
objects, share common features with database tables, providing a natural environment for
data to be transferred between Excel and relational databases.

From Excel, using ADO you can do the following:

 ➤ Connect to most any external database in the Windows operating system, as long as
that database has, as many do, an ODBC (Open Database Connectivity) or OLE DB
(Object Linking and Embedding Database) driver.

 ➤ Add, delete, and edit records from a database to your workbook, or from your
 workbook to a database.

 ➤ Query data to return a recordset, enabling you to import some or all records from a
database table directly to your worksheet, for whatever analysis you want to perform,
just as if the data was already in Excel.

27

366 ❘ LESSON 27 DATA ACCESS WITH ACTIVEX DATA OBJECTS

c27.indd 02/19/2015 Page 366

DEFINITIONS OF DATABASE TERMS

Because this lesson introduces concepts for external data access, it contains more
descriptive theory about databases than actual code examples. In Lesson 32, you see
several working examples of how Excel utilizes ADO and SQL in conjunction with
Access databases. If you are unfamiliar with database terminology, the following
defi nitions for common database terms might help you throughout this lesson.

A database is an organized collection of related information.

DAO (Data Access Objects) is a library of objects and their associated methods
and properties that can be used to represent objects in databases, enabling Excel to
interact directly with databases through VBA.

DBMS is an abbreviation for database management system. Popular examples of
database management systems include dBASE, Paradox, and Microsoft Access.

A fi eld is a column in a list such as in an Excel worksheet or Access database that
describes a characteristic about records, such as fi rst name or city.

ODBC (Open Database Connectivity) is a database standard that allows a
 program to connect to and manipulate a data source, enabling a single user to
access many different databases.

A primary key is one or more fi elds that determine the uniqueness of each record in
a database.

A query is a series of statements written in Structured Query Language to specify
the tables and fi elds you want to work with that add, modify, remove, or return
data from a database.

A record is a row of data in a table.

A recordset is one or more records (rows) of data derived from a table.

A relational database is a collection of data items organized as a set of formally
described tables from which data can be accessed or reassembled in many ways.

NOTE Prior to ADO, Microsoft’s primary recommended tool for accessing
external data was an interface called DAO, or Data Access Objects. The DAO
interface has become all but obsolete due to its limitations as compared to ADO,
though DAO is still supported by ADO. The two technologies share many of
the same code syntaxes but they are not the same in terms of fl exibility and
 performance. You still do have a choice between the two, but you’ll be much
 better served by ADO, which is why it is covered in this book.

Introducing ADO ❘ 367

c27.indd 02/19/2015 Page 367

With entire books devoted to database integration with ADO, there is much more complexity to the
topic than this lesson is meant to cover. The best way to start becoming familiar with ADO is to
examine the three primary tools in its object model: the Connection object, the Recordset object,
and the Command object.

The Connection Object
The Connection object establishes a path that connects Excel and the database. With ADO from
Excel, you normally issue commands that pass information back and forth through the Connection
object. Among the key methods belonging to the Connection object are Open, which establishes
the database connection, and Close, which closes the connection. The Connection object’s
ConnectionString property defi nes how to connect to the database.

You connect to the database with the Provider keyword. The following line of code is a common
syntax for Excel versions 2007 through 2013:

Provider = "Microsoft.ACE.OLEDB.12.0;Data Source= _
C:\YourFilePath\Database1.accdb";Persist Security Info=False;"

In versions of Excel prior to 2007, the Provider would have been specifi ed as the Microsoft Jet
database engine of Access:

Provider = "Microsoft.Jet.OLEDB.4.0;" & _
"Data Source=C:\YourFilePath\Database1.accdb; Extended Properties=Excel 8.0;"

Or, depending on the circumstance, more simply:

Provider = "Microsoft.Jet.OLEDB.4.0"

NOTE When working with databases, you almost always connect to them,
meaning you do not open them in the way you’d open a Word document if you
were working with Word from Excel. The Connection object is like a conduit
between Excel and your database.

The Recordset Object
The Recordset object is probably the most commonly used object in ADO. When you instruct
ADO to retrieve a single record or the entire count of records from a database table, you use the
Recordset object to do that.

Among the key members of the Recordset object are the following:

 ➤ The ActiveConnection property, which is a connection string or a Connection object
that identifi es the connection being used to access the database. As with this property for
the Command object, where objRecordset and objConnection are object variables, the
ActiveConnection syntax is

Set objRecordset.ActiveConnection = objConnection

368 ❘ LESSON 27 DATA ACCESS WITH ACTIVEX DATA OBJECTS

c27.indd 02/19/2015 Page 368

 ➤ The Open method opens the Recordset object so you can access the data. Its syntax is

Recordset.Open Source, ActiveConnection, CursorType, LockType, Options

Note that the Source argument is often a string that names the table from which the
 recordset should be retrieved.

 ➤ The Close method closes an open Recordset object. With the Recordset object declared as
dbRecordset, the syntax for Close would be

dbRecordset.Close

The Command Object
The Command object holds information about the kind of task being run, which is usually related
to action queries in Access, or procedures in SQL, which are described in the next section. A
Command object can also return a list of data records, and is most often run with a combination of
 parameters, of which there are more than this lesson can possibly cover.

The Command object has three important properties:

 ➤ The ActiveConnection property, which, like the ActiveConnection property for
the Recordset object, is a connection string or a Connection object that identifi es the
 connection being used to access the database. For example, this syntax assigns a Connection
object to the ActiveConnection property, where objRecordset and objConnection are
object variables:

Set objRecordset.ActiveConnection = objConnection

 ➤ The CommandText property, which sets the command that will be executed by the database
and will usually be an SQL string.

 ➤ The CommandType property, which tells the database how to interpret and execute the
CommandText’s instructions.

AN INTRODUCTION TO STRUCTURED
QUERY LANGUAGE (SQL)

Structured Query Language (SQL) is a database language used for querying, updating, and
 managing relational databases. SQL is used to communicate with the vast majority of databases that
are commonly in use today.

SQL is a complex language in response to the rigid nature of table design in relational database
 construction. This lesson covers SQL’s four basic operations of SELECT, INSERT, UPDATE, and
DELETE. As a reminder of what I mentioned at the beginning of this lesson, you’ll fi nd several
 examples of these operations in Lesson 32 that show how to work with Access from Excel.

An Introduction to Structured Query Language (SQL) ❘ 369

c27.indd 02/19/2015 Page 369

NOTE Notice that SQL statements, such as SELECT and INSERT, are shown in
uppercase. This is a standard SQL programming practice and a good habit to
get into from the start. The SQL code examples in this book are relatively small,
but SQL code can be very large and complex. SQL is easier to read when its
statements are shown in uppercase, which distinguishes them from the clauses of
code with which they are associated.

The SELECT Statement
The SELECT statement retrieves data in the form of one or more rows (records) from one or more
tables. The SELECT statement is probably SQL’s most commonly used operation, because it tells the
data source what fi eld(s) you want to return from what table(s).

If you want to retrieve all columns and all rows from the Vendors table, the expression in SQL is
as follows:

SELECT *
FROM Vendors

Sometimes you might not want to retrieve all columns. The following example retrieves the State
column from the Vendors table, if you want to know the count of your vendors per state:

SELECT State
FROM Vendors

If you want to see a list of vendors and the names of their contact people, but only for vendors
in California, the following example accomplishes that. Note that the literal string criterion
California is in single quotes, which is SQL’s required syntax:

SELECT VendorName, ContactName
FROM Vendors
WHERE State 'California'

If you want to retrieve the previous recordset by having it already sorted by the VendorName fi eld,
you could add the ORDER BY statement and specify the fi eld name as follows:

SELECT VendorName, ContactName
FROM Vendors
WHERE State 'California'
ORDER BY VendorName

The INSERT Statement
The INSERT statement adds a new row (record) to a table. You need to specify the name of the table
where the row will be added. You can optionally omit the fi eld names from the INSERT statement,
but it is advisable that you name them anyway because it helps you to see that the values you are
entering are in the same order as the fi eld names.

370 ❘ LESSON 27 DATA ACCESS WITH ACTIVEX DATA OBJECTS

c27.indd 02/19/2015 Page 370

An example of using INSERT is this fi ctional pair of statements that respectively place the values
5432, Doe, John, Male into a table named Employees, for fi elds named EmployeeID, LastName,
FirstName, and Gender:

INSERT INTO Employees (EmployeeID, LastName, FirstName, Gender)
VALUES ('5432', 'Doe', 'John', 'Male')

NOTE It’s standard SQL programming practice to enter the statements in
uppercase. It is mandatory SQL programming practice to place the string literal
VALUES within single quotes, just as you see it here.

If you had opted to enter the preceding SQL code without naming each fi eld, the syntax example for
that same procedure would have been as follows:

INSERT INTO Employees
VALUES ('5432', 'Doe', 'John', 'Male')

The UPDATE Statement
The UPDATE statement enables you to change the values in one or more columns (fi elds) in a table.
UPDATE is most commonly used to modify the value of a specifi c record that you identify with the
WHERE clause. You also need to specify each column you want to change, and what each column’s
new value should be.

The following example shows how you could update the contact name of one of your company’s
vendors in the ContactName column of the Vendors table. You need to be careful to specify the
WHERE clause so that only one record is changed, and that it is the correct record.

In the Vendors table, you have a fi eld named VendorID that lists unique vendor identifi cation
 numbers. The vendor name itself is Widgets, Inc., but that is not as important as its vendor
 identifi cation number. Suppose that the vendor identifi cation number for Widgets, Inc. is 1234. The
new contact name is John Doe, executed with these three statements in SQL:

UPDATE Vendors
SET ContactName = 'John Doe'
WHERE VendorID = '1234'

If the ContactName fi eld had many empty (referred to as Null) values, and you wanted to fi ll those
empty spaces with the word Unknown, the following example would accomplish that:

UPDATE Vendors
SET ContactName = 'Unknown'
WHERE ContactName IS NULL

The DELETE Statement
The DELETE statement deletes one or more rows from a table. If you want to delete the vendor
named Widgets, Inc., you would use the WHERE statement to specify which value in which column
should identify the record for Widgets, Inc. The VendorID column is the perfect column for this task
because a large company might have two vendors with the same name.

Try It ❘ 371

c27.indd 02/19/2015 Page 371

The following SQL statements would delete the record from the Vendors table that has the value
1234 in the VendorID column:

DELETE FROM Vendors
WHERE VendorID = '1234'

NOTE Make absolutely certain you specify the WHERE clause, because if you do
not, every row from the Vendors table would be deleted. If an empty table is
what you want, this fi ctional sequence would accomplish that:

DELETE FROM Vendors

Odds are, you don’t want an empty table with all rows deleted from it. The
kicker is that after the rows are deleted, you cannot undo that action as you can
in Excel. Unless you are good friends with an experienced database programmer
who might (or might not) be able to recover your unintentionally deleted rows,
take heed and always specify the WHERE clause in your SQL DELETE actions.

TRY IT

This lesson introduced the fundamentals of ADO and SQL. You see several examples in Lesson 32 of
VBA macros that show how to program ADO with SQL to interact with Access databases from Excel.

Here is a way to get a head start on the instruction in Lesson 32 to become familiar with database
tables. Open Access and create a new database. Create a new table and enter some fi ctional data
such as a mailing list with fi elds for FirstName, LastName, StreetAddress, City, State, Country,
and Postal Code. Make a dozen or so entries and get a feel for navigating and editing a database
table. For example, Figure 27-1 shows a table in Access being populated with hypothetical employee
 information, such as you might see in a company’s personnel database.

FIGURE 27-1

372 ❘ LESSON 27 DATA ACCESS WITH ACTIVEX DATA OBJECTS

c27.indd 02/19/2015 Page 372

You’ll notice an important distinction between an Access table and an Excel worksheet. Database
tables do not have row headers as numbers, or columns designated by letters. Columns (called
fi elds in a database environment) rely on being identifi ed by their fi eld headers such as FirstName,
LastName, and so on. Rows (called records) rely on being identifi ed by one or more key fi elds, or
certain properties of other fi elds such as being empty (Null) or having date entries between a start
date and an end date.

You might also want to surf the Web for sites that list SQL objects and their associated properties
and methods. Keep in mind that SQL’s capacity for database interaction goes far beyond what
you’ll need it to do for your Excel projects, so stick with the basics for now when perusing SQL
 instructional material.

REFERENCE There is no video or code download to accompany this lesson.

c28.indd 02/24/2015 Page 373

Impressing Your Boss (or at
Least Your Friends)

Microsoft estimates that Excel is loaded onto some 600 million computers worldwide. One
trait all Excel users have in common is that no one knows all there is to know about Excel.
The power and diversity of Excel’s native capabilities alone are more than enough to master.
With VBA for Excel—each new version having more features than the one before—the capa-
bilities for performance, object programming, and data management are virtually limitless.

The theme of this lesson is to show a variety of examples of what Excel can achieve with VBA.
I encourage you to continue advancing your VBA skills after reading this book, and hopefully,
being inspired by the more advanced examples in this lesson.

NOTE In general, the examples in this lesson are a bit more advanced than what
you’ve seen in the book so far. Be sure to watch the 15 videos of advanced VBA
examples that accompany this book!

SELECTING CELLS AND RANGES

A common request I have received from Excel users is how to show the current location on a
worksheet by highlighting the active cell, row, or column. It is easier to maintain your bear-
ings in worksheets such as budgets and fi nancial statements when a color stands out to show
where you are.

Coloring the Active Cell, Row, or Column
In Figure 28-1, three examples are shown that format either the active cell only, the active
cell’s entire row and column, or the row and column within the active cell’s current region.

28

374 ❘ LESSON 28 IMPRESSING YOUR BOSS (OR AT LEAST YOUR FRIENDS)

c28.indd 02/24/2015 Page 374

FIGURE 28-1

These are Worksheet_SelectionChange events. To install this behavior for a worksheet, right-click
that worksheet tab, select View Code, and paste either of the following procedures (but not more
than one at a time per worksheet) into the large white area that is the worksheet module. Press
Alt+Q to return to the worksheet. Then, select a few cells to see the effects of the code.

To format the active cell only:

Private Sub Worksheet_SelectionChange(ByVal Target As Range)
Application.ScreenUpdating = False
Cells.Interior.ColorIndex = 0
Target.Interior.Color = vbCyan
Application.ScreenUpdating = True
End Sub

To format the entire row and column of the active cell:

Private Sub Worksheet_SelectionChange(ByVal Target As Range)
If Target.Cells.Count > 1 Then Exit Sub
Application.ScreenUpdating = False
Cells.Interior.ColorIndex = 0
With Target
.EntireColumn.Interior.Color = vbCyan
.EntireRow.Interior.Color = vbCyan
End With
Application.ScreenUpdating = True
End Sub

Selecting Cells and Ranges ❘ 375

c28.indd 02/24/2015 Page 375

To format the row and column within the current region of the active cell:

Private Sub Worksheet_SelectionChange(ByVal Target As Range)
Cells.Interior.ColorIndex = 0
If IsEmpty(Target) Or Target.Cells.Count > 1 Then Exit Sub
Application.ScreenUpdating = False
With ActiveCell
Range(Cells(.Row, .CurrentRegion.Column), _
Cells(.Row, .CurrentRegion.Columns.Count + .CurrentRegion.Column - 1)) _
.Interior.Color = vbCyan
Range(Cells(.CurrentRegion.Row, .Column), _
Cells(.CurrentRegion.Rows.Count + .CurrentRegion.Row - 1, .Column)) _
.Interior.Color = vbCyan
End With
Application.ScreenUpdating = True
End Sub

Coloring the Current and Prior Selected Cells
This section explains how you can highlight not only the current cell but also the cell you selected
before you selected your current cell. To make it easy to distinguish between the two cells, the cur-
rently selected cell is colored cyan, and the prior selected cell is colored magenta.

In Figure 28-2, cell C5 is the active (currently selected) cell, indicated by its cyan color when
you install the following code into your workbook. You can also see its address in the address bar.
Before the image of Figure 28-2 was created, cell H12 had been selected, evidenced by its
magenta color.

FIGURE 28-2

In Figure 28-3, the currently selected cell is L18, colored cyan. Now cell C5, which was selected
before as seen in Figure 28-2, is colored magenta.

376 ❘ LESSON 28 IMPRESSING YOUR BOSS (OR AT LEAST YOUR FRIENDS)

c28.indd 02/24/2015 Page 376

FIGURE 28-3

The following procedure that produces this functionality is a Selection_Change event. Place it into
your worksheet module and test the code by selecting a few cells:

Private Sub Worksheet_SelectionChange(ByVal Target As Range)
Cells.Interior.ColorIndex = 0
Static PriorCell As Range
If Not PriorCell Is Nothing Then _
PriorCell.Interior.Color = vbMagenta
Target.Interior.Color = vbCyan
Set PriorCell = Target
End Sub

FILTERING DATES

When it comes to fi ltering dates, a little VBA goes a long way in dealing with the nemesis of seem-
ingly countless different formats in which a date can be represented in Excel. The key to fi ltering
dates is to treat them as the numeric value they are, and to use the DateSerial function for an
unambiguous date reference. No matter what the date formatting gods throw at you, the following
macros fi lter your dates.

Filtering between Dates
On the left in Figure 28-4, dates are shown in many formats in column A. To make it more chal-
lenging, cells B2 and B3 contain the start and end date criteria that are formatted the same as only
one cell in the list being fi ltered. The macro named FilterBetweenDates fi lters the dates as shown
on the right in Figure 28-4.

Filtering Dates ❘ 377

c28.indd 02/24/2015 Page 377

FIGURE 28-4

Sub FilterBetweenDates()
Application.ScreenUpdating = False
ActiveSheet.AutoFilterMode = False

Dim StartDate As Date, EndDate As Date
Dim FilterStartDate As Date, FilterEndDate As Date
Dim LastRow As Long
Dim FilterRange As Range

StartDate = Range("B2").Value
EndDate = Range("B3").Value
LastRow = _
Cells.Find(What:="*", After:=Range("A1"), _
SearchOrder:=xlByRows, SearchDirection:=xlPrevious).Row
Set FilterRange = Range("A5:A" & LastRow)
FilterStartDate = _
DateSerial(Year(StartDate), Month(StartDate), Day(StartDate) - 1)
FilterEndDate = _
DateSerial(Year(EndDate), Month(EndDate), Day(EndDate) + 1)

FilterRange.AutoFilter _
Field:=1, Criteria1:=">" & CDbl(FilterStartDate), _
Operator:=xlAnd, _

378 ❘ LESSON 28 IMPRESSING YOUR BOSS (OR AT LEAST YOUR FRIENDS)

c28.indd 02/24/2015 Page 378

Criteria2:="<" & CDbl(FilterEndDate)

Set FilterRange = Nothing
Application.ScreenUpdating = True
End Sub

Filtering for Dates before Today’s Date
The macro named FilterDateBeforeToday fi lters for dates before today’s date. The reference to
where the data table begins is the same as what is shown in Figure 28-4.

Sub FilterDateBeforeToday()
Application.ScreenUpdating = False
ActiveSheet.AutoFilterMode = False
Dim LastRow As Long, FilterRange As Range
LastRow = _
Cells.Find(What:="*", After:=Range("A1"), _
SearchOrder:=xlByRows, SearchDirection:=xlPrevious).Row
Set FilterRange = Range("A5:A" & LastRow)
FilterRange.AutoFilter Field:=1, Criteria1:="<" & CDbl(Date)
Set FilterRange = Nothing
Application.ScreenUpdating = True
End Sub

Filtering for Dates after Today’s Date
The macro named FilterDateAfterToday fi lters for dates after today’s date. The reference to
where the data table begins is the same as what is shown in Figure 28-4.

Sub FilterDateAfterToday()
Application.ScreenUpdating = False
ActiveSheet.AutoFilterMode = False
Dim LastRow As Long, FilterRange As Range
LastRow = Cells.Find(What:="*", After:=Range("A1"), _
SearchOrder:=xlByRows, SearchDirection:=xlPrevious).Row
Set FilterRange = Range("A5:A" & LastRow)
FilterRange.AutoFilter Field:=1, Criteria1:=">" & CDbl(Date)
Set FilterRange = Nothing
Application.ScreenUpdating = True
End Sub

Deleting Rows for Filtered Dates More Than Three Years Ago
The macro named DeleteRows3YearsOld fi lters for dates that are three years ago from today’s date:

Sub DeleteRows3YearsOld()
Application.ScreenUpdating = False
ActiveSheet.AutoFilterMode = False
Dim FilterRange As Range, myDate As Date
myDate = DateSerial(Year(Date) - 3, Month(Date), Day(Date))
Set FilterRange = _
Range("A5:A" & Cells(Rows.Count, 1).End(xlUp).Row)
FilterRange.AutoFilter Field:=1, Criteria1:="<" & CDbl(myDate)
On Error Resume Next
With FilterRange
.Offset(1).Resize(.Rows.Count - 1).SpecialCells(xlCellTypeVisible).EntireRow.Delete
End With

Setting Page Breaks for Specifi ed Areas ❘ 379

c28.indd 02/24/2015 Page 379

Err.Clear
Set FilterRange = Nothing
ActiveSheet.AutoFilterMode = False
Application.ScreenUpdating = True
End Sub

SETTING PAGE BREAKS FOR SPECIFIED AREAS

If your worksheet has areas of data that you want to print on separate pages, you can establish page
breaks based on a wide choice of cell properties or text values. With the following macro named
PageBreakInsert, page breaks are set below each cell in column A that starts with Total, as shown
in Figure 28-5.

Sub PageBreakInsert()
Cells.PageBreak = xlPageBreakNone
Dim cell As Range
For Each cell In Columns(1).SpecialCells(xlCellTypeConstants)
If Left(cell.Value, 5) = "Total" Then
With ActiveSheet
.HPageBreaks.Add Cells(cell.Row + 1, 1)
.DisplayAutomaticPageBreaks = True
End With
End If
Next cell
End Sub

FIGURE 28-5

380 ❘ LESSON 28 IMPRESSING YOUR BOSS (OR AT LEAST YOUR FRIENDS)

c28.indd 02/24/2015 Page 380

USING A COMMENT TO LOG CHANGES IN A CELL

This section shows how you can keep a running log of changes to a cell’s text. Suppose you want
your employees to enter an explanation or description into a cell regarding a topic on your spread-
sheet. Maybe there’s a new product being developed and you’ll utilize cell A1 for team members to
enter their ideas during production. You want to keep a record of everything entered, without bur-
dening anyone with how to edit existing text or how to add a new comment to a cell.

In Figure 28-6, new entries are made into cell A1 on an ongoing basis. Although each new entry over-
rides preexisting text, the following procedure captures all the text that has been previously entered.
There’s also a date and time stamp for each new entry, and an empty line between entries in the com-
ment for readability. This is a Worksheet_Change procedure, which goes into your worksheet module:

Private Sub Worksheet_Change(ByVal Target As Range)
With Target
If .Address <> "A1" Then Exit Sub
If IsEmpty(Target) Then Exit Sub
Dim strNewText$, strCommentOld$, strCommentNew$
strNewText = .Text
If Not .Comment Is Nothing Then
strCommentOld = .Comment.Text & Chr(10) & Chr(10)
Else
strCommentOld = ""
End If
On Error Resume Next
.Comment.Delete
Err.Clear
.AddComment
.Comment.Visible = False
.Comment.Text Text:=strCommentOld & _
Format(VBA.Now, "MM/DD/YYYY at h:MM AM/PM") & Chr(10) & strNewText
.Comment.Shape.TextFrame.AutoSize = True
End With
End Sub

FIGURE 28-6

Using the Windows API with VBA ❘ 381

c28.indd 02/24/2015 Page 381

USING THE WINDOWS API WITH VBA

With the Windows API (application programming interface), you can program Windows objects
that are not specifi c to Excel. Examples of Windows objects are the browser window, the status bar,
and, as the following two macros demonstrate, the clipboard and the recycle bin.

NOTE Starting in version 2010 and continuing with version 2013, you can
install Excel as a 64-bit application if you are running a 64-bit version of
Windows. Many Excel users, including myself, prefer the 32-bit version because
it provides all the power needed while supporting ActiveX controls. Other Excel
users prefer the 64-bit version if they work with enormous amounts of data.

The examples in this section are 32-bit API declarations and might not work in
64-bit versions. This raises the larger point that if your workbooks will be shared
among both versions, your code must be compatible for either version to run it.

In most cases, your 32-bit API declarations will be compatible with 64-bit versions
by inserting PtrSafe after the Declare key word. Fortunately, you don’t need to
create two workbooks, but you do need to declare your API functions twice, using
an If...Then…Else statement to establish the API calls for both versions. Lesson 32
shows this construction for an example that opens an Access database fi le.

The introduction of 64-bit Excel is relatively new, and it can be diffi cult to
remember the nuances, as well as the syntaxes. For example, versions of Excel
before 2010, including version 2007, do not recognize the PtrSafe keyword.
For an excellent resource about this topic, Jan Karel Pieterse of JKP Application
Development Services (http://www.jkp-ads.com) maintains an ongoing list of
proper syntax for API declarations in 32-bit and 64-bit versions. You can visit Jan
Karel’s web page at http://www.jkp-ads.com/articles/apideclarations.asp.

Clearing the Clipboard
The Windows clipboard is a temporary storage area for information that you have copied or moved
from one place and plan to use somewhere else. You cannot see or touch the clipboard but you can
work with it to copy, cut, paste, and clear data.

You can copy some 30 types of data onto your clipboard beyond just text and formulas, such as
graphics, charts, and hyperlinks. To truly empty the clipboard requires more than just pressing the
Esc key or executing the VBA statement Application.CutCopyMode = False.

With the Windows API, the macro named ClearClipboard clears all data types on your clipboard.
The API function calls that precede the macro go at the top of your module, above and outside of
the macro itself:

Public Declare Function OpenClipboard Lib "user32" _
(ByVal hwnd As Long) As Long
Public Declare Function CloseClipboard Lib "user32" () As Long
Public Declare Function EmptyClipboard Lib "user32" () As Long

http://www.jkp-ads.com
http://www.jkp-ads.com/articles/apideclarations.asp

382 ❘ LESSON 28 IMPRESSING YOUR BOSS (OR AT LEAST YOUR FRIENDS)

c28.indd 02/24/2015 Page 382

Sub ClearClipboard()
OpenClipboard (0&)
EmptyClipboard
CloseClipboard
End Sub

Emptying the Recycle Bin
This macro named RecycleBinEmpty empties the recycle bin. The API function call named
EmptyRecycleBin goes at the top of your module, above and outside of the macro itself:

Declare Function EmptyRecycleBin _
Lib "shell32.dll" Alias "SHEmptyRecycleBinA" _
(ByVal hwnd As Long, _
ByVal pszRootPath As String, _
ByVal dwFlags As Long) As Long

Sub RecycleBinEmpty()
Dim rbEmpty As Long
rbEmpty = EmptyRecycleBin(0&, vbNullString, 1&)
End Sub

SCHEDULING YOUR WORKBOOK FOR SUICIDE

If you have developed a workbook that you want to self-expire by a certain date, such as a dem-
onstration model or one that contains information or usefulness that will be outdated, you can
program the workbook to delete itself. In this example, the workbook’s suicide date is scheduled for
December 31, 2015.

In actual practice, you might want to have a message box—say, seven days prior to the suicide date—to
let the workbook’s users know what to expect on the upcoming date of demise. You would also lock and
password-protect the Visual Basic Editor to reduce the chance for the code to be altered or deleted.

Please be careful when employing this code. When it executes, the recycle bin is bypassed, so your
workbook is gone forever. The code goes into the workbook module and is evaluated every time the
workbook opens.

Sub Workbook_Open()
If Date <= #12/31/2015# Then Exit Sub
MsgBox "This workbook has expired.", vbExclamation, "Goodbye."
With ThisWorkbook
.Saved = True
.ChangeFileAccess xlReadOnly
Kill .FullName
.Close False
End With
End Sub

TRY IT

For this lesson, you establish data validation in a cell, for which the allowable entries are the items
in a custom list. Data validation by itself cannot directly access custom lists, but with VBA you can
establish data validation to access a custom list in your Excel application.

Try It ❘ 383

c28.indd 02/24/2015 Page 383

Custom lists are identifi ed in VBA by their index number. In the collection of custom lists on my
computer, a fi fth one will be added and used for this example.

Lesson Requirements
If you have not already done so, please establish a fi fth custom list in your Excel application. You
probably already have four that came with your Excel version. Otherwise, you will need to edit the
number 5 in Step 11 to a lower number representing an existing custom list that you prefer to use.

To get the sample workbook, you can download Lesson 28 from the book’s website at
www.wrox.com/go/excelvba24hour.

Hints
The macro for this example uses the fi fth custom list in an Excel application. If you are not familiar
with custom lists, Steps 2 to 6 explain how to add a custom list.

You can add, delete, or edit the items in your custom list. When you run the macro again, those
changes show in the data validation drop-down list.

Step-by-Step
 1. Start by opening a new workbook.

 2. If you are not familiar with adding a custom list, click the File tab and select the Options
menu item as shown in Figure 28-7.

FIGURE 28-7

http://www.wrox.com/go/excelvba24hour

384 ❘ LESSON 28 IMPRESSING YOUR BOSS (OR AT LEAST YOUR FRIENDS)

c28.indd 02/24/2015 Page 384

 3. In the Excel Options dialog box, click the Advanced menu item. Scroll down to the General
section, and click the Edit Custom Lists button as shown in Figure 28-8.

FIGURE 28-8

 4. Click NEW LIST in the list box at the left, enter your list items in the list box at the right,
and click Add as shown in Figure 28-9.

FIGURE 28-9

 5. You see your new list of items in the list box at the left. Click OK as shown in Figure 28-10.

Try It ❘ 385

c28.indd 02/24/2015 Page 385

FIGURE 28-10

 6. Click OK to exit the Excel Options dialog box as shown in Figure 28-11.

FIGURE 28-11

 7. Press Alt+F11 to go to the Visual Basic Editor.

 8. From the VBE menu bar, click Insert ➪ Module.

 9. In the module you just created, type Sub CustomListDV and press Enter. VBA automatically
places a pair of empty parentheses at the end of the Sub line, followed by an empty line, and
the End Sub line below that. Your macro should look like this so far:

386 ❘ LESSON 28 IMPRESSING YOUR BOSS (OR AT LEAST YOUR FRIENDS)

c28.indd 02/24/2015 Page 386

Sub CustomListDV()

End Sub

 10. Declare a String type variable for custom items to be allowed by data validation, an
Integer type variable to iterate through the array of items in your custom list, and a
Variant type for the array itself:

Dim strCustomItems As String, intArray As Integer
Dim myCustomList As Variant

 11. Identify your custom list by its index number:

myCustomList = Application.GetCustomListContents(5)

 12. Open a For…Next loop to iterate through each element in your custom list:

For intArray = LBound(myCustomList) To UBound(myCustomList)

 13. Build the string for each custom item, separated by a comma:

strCustomItems = strCustomItems & myCustomList(intArray) & ","

 14. Continue the loop until completion:

Next intArray

 15. Delete the trailing comma after the last custom list item:

strCustomItems = Mid(strCustomItems, 1, Len(strCustomItems) - 1)

 16. Establish data validation for the cell of interest:

With Range("B7").Validation
'Delete the existing data validation.
.Delete
'Add the string of items from your custom list.
.Add Type:=xlValidateList, _
AlertStyle:=xlValidAlertStop, _
Operator:=xlBetween, _
Formula1:=strCustomItems
'Error title if an invalid entry is attempted.
.ErrorTitle = "Invalid entry !"
'Error message if an invalid entry is attempted.
'Note the ascii 10 character which is for a line break.
.ErrorMessage = "Please enter an item" & Chr(10) & _
"from the drop-down list."
'Show the error icon in the message for invalid entries.
.ShowError = True
End With

End Sub

Try It ❘ 387

c28.indd 02/24/2015 Page 387

 17. With your macro completed, press Alt+Q to return to the worksheet. To test the macro, press
Alt+F8 to show the Macro dialog box. Select the macro named CustomListDV and click
Run. Here is what the macro looks like in its entirety:

Sub CustomListDV()

'Declare variables:
'Custom items to be allowed by data validation,
'a counter for the array elements in the custom list,
'and your custom list.
Dim strCustomItems As String, intArray As Integer
Dim myCustomList As Variant

'Identify your custom list by its index number.
myCustomList = Application.GetCustomListContents(5)

'Loop through each element in your custom list.
For intArray = LBound(myCustomList) To UBound(myCustomList)
'Build the string for each custom item, separated by a comma.
strCustomItems = strCustomItems & myCustomList(intArray) & ","
'Continue the loop until completion.
Next intArray

'Delete the trailing comma after the last custom list item.
strCustomItems = Mid(strCustomItems, 1, Len(strCustomItems) - 1)

'Establish data validation for the cell(s) of interest.
With Range("B7").Validation
'Delete the existing data validation.
.Delete
'Add the string of items from your custom list.
.Add Type:=xlValidateList, _
AlertStyle:=xlValidAlertStop, _
Operator:=xlBetween, _
Formula1:=strCustomItems
'Error title if an invalid entry is attempted.
.ErrorTitle = "Invalid entry !"
'Error message if an invalid entry is attempted.
'Note the ascii 10 character which is for a line break.
.ErrorMessage = "Please enter an item" & Chr(10) & _
"from the drop-down list."
'Show the error icon in the message for invalid entries.
.ShowError = True
End With

End Sub

REFERENCE Please select the video for Lesson 28 online at www.wrox.com/go
/excelvba24hour. You will also be able to download the code and resources
for this lesson from the website.

http://www.wrox.com/go

c29.indd 02/24/2015 Page 389

PART V
Interacting with Other Offi ce
Applications

 ▸ LESSON 29: Overview of Offi ce Automation from Excel

 ▸ LESSON 30: Working with Word from Excel

 ▸ LESSON 31: Working with Outlook from Excel

 ▸ LESSON 32: Working with Access from Excel

 ▸ LESSON 33: Working with PowerPoint from Excel

c29.indd 02/24/2015 Page 391

Overview of Offi ce Automation
from Excel

As you may recall from Lesson 1, Visual Basic for Applications is a programming language
created by Microsoft to automate operations in applications that support it, such as Excel.
VBA is also the language that manipulates Microsoft Offi ce applications in Access, Word,
PowerPoint, and Outlook. So far, the focus of this book has been on running VBA from Excel,
for the purpose of acting directly upon Excel in some way.

This section shows how to control other Offi ce applications from Excel, using the same
VBA programming language with which you are now familiar, but using a different set
of methods and statements with which those other Offi ce applications are familiar. The
 reasons for interacting with other Offi ce applications might not be for the purpose of
changing your Excel workbook application, but they will always be for the purpose
of making your workbook projects more robust, versatile, and easier to use when the
situation calls for it.

WHY AUTOMATE ANOTHER APPLICATION?

In the dawn of this modern era of personal computers, it was rare that two or more separate
applications were able to communicate with each other. For two applications to share the same
information, you usually had to retype the information manually into the other application
that needed it. Today, thanks to the advances of drag and drop, and copy and paste, it has
become a simple matter to share data across many applications.

The business of Excel is to perform calculations and analyze data. You can enter and edit text
in Excel, but it is not a word processor. You can build data tables and compare their informa-
tion, but Excel is not a relational database application. You can create charts and graphics in
Excel but they cannot be presented in a sophisticated slideshow format. You can send a work-
book through e-mail but Excel cannot manage your calendar or incoming e-mails the way an
e-mail client can.

29

392 ❘ LESSON 29 OVERVIEW OF OFFICE AUTOMATION FROM EXCEL

c29.indd 02/24/2015 Page 392

You get the idea—sooner or later you’ll need to perform some kind of operation that another appli-
cation was specially made to handle. This lesson lays the groundwork for you to understand Offi ce
automation from Excel, and the theory behind some best practices in doing so.

UNDERSTANDING OFFICE AUTOMATION

Where VBA is concerned, the only difference between Excel, Word, Access, PowerPoint, and
Outlook lies in their object models. Each of these applications can access another’s object model,
so long as the target application has been properly installed on the host computer. Controlling one
Offi ce application from another becomes a simple matter of knowing how to link to the object
model of the Offi ce application you want to control.

The term “automation” is an Offi ce programmer’s way of referring to the VBA technology that
provides the ability to manipulate another application’s objects. Though VBA is the common lan-
guage among Offi ce applications, the respective object models differ in their objects’ names, meth-
ods, and properties. Both Excel and Word have a Range object but with different properties. Excel
has a Workbooks object, which is the counterpart to PowerPoint’s Presentations object.

For Excel to access another Offi ce application’s object model, a connection needs to be established
to that target application. Two options for doing this exist: One option is called early binding, and
the other option is called late binding. The term “binding” refers to the verifi cation that an object
exists, and that the command to manipulate that object’s methods and properties is valid.

Early Binding
With early binding, you establish a reference with the target application’s object library before
you write your macro, so that the application’s objects, methods, and properties can be accessed
in your code. For example, if you are using Offi ce 2013 and you want to write a macro to open
Word and edit a document, you would fi rst need to establish a reference to the Microsoft Word
15.0 Object Library. To do that, you can go to the Visual Basic Editor, and from the menu bar click
Tools ➪ References. Scroll to select the reference and click OK, as shown in Figure 29-1.

NOTE VBA sees versions of Microsoft Offi ce as numbers, not names. For
example, VBA knows Offi ce 2003 as version 11, Offi ce 2007 as version 12,
Offi ce 2010 as version 14 (Microsoft knowingly skipped unlucky number 13),
and Offi ce 2013 as version 15. Therefore, if you are working with Offi ce 2010
at home, you’d have Word 14 listed in your VBA References, but if you are using
Offi ce 2013 at work, you’d see Word 15 listed.

After you have established the proper reference, you can write a macro using early binding that will,
for example, open a Word document in Offi ce 2013. Suppose you already have a Word document
named myWordDoc.docx that you keep in the path C:\Your\File\Path\. The following macro
opens that document, using early binding:

Understanding Offi ce Automation ❘ 393

c29.indd 02/24/2015 Page 393

Sub EarlyBindingTest()
Dim wdapp As Word.Application, wddoc As Word.Document
Set wdapp = New Word.Application
wdapp.Visible = True
Set wddoc = wdapp.Documents.Open(Filename:="C:\Your\File\Path\myWordDoc.docx")
End Sub

FIGURE 29-1

When you attempt to run this macro, you would immediately know if you did not properly establish
the Word 15.0 library reference because you would be prompted by a compile error message, as
shown in Figure 29-2.

FIGURE 29-2

As you compose a macro using early binding, you will have the benefi t of VBA’s IntelliSense feature,
where objects and properties pop up as you type your code’s object references. And macros with

394 ❘ LESSON 29 OVERVIEW OF OFFICE AUTOMATION FROM EXCEL

c29.indd 02/24/2015 Page 394

early binding run faster than macros performing the same task with late binding, because a refer-
ence has already been established to the target application’s objects, methods, and properties.

NOTE If your macro runs without errors but you don’t see a Word document,
or you don’t even see Word on your taskbar, it could be that you really did cre-
ate a new instance of Word, but it is not visible. In the Immediate window, type
Word.Application.Visible = True and press Enter.

So then, why would you ever not want to use early binding? Actually, there is a very good reason
why not: The referenced object (Word 15.0 in this example) must exist on the computer. If it does
not exist, an error occurs such as the one shown in Figure 29-2.

The concern is, unless you are composing your Offi ce automation macros to be run on a system
that you know for a fact will (a) be installed with the target application and (b) have the proper
object library reference established in advance, chances are pretty good the macro will fail using
early binding. And with new Offi ce versions being released every few years, when you upgrade your
Offi ce version you need to edit all the macros in which you utilized early binding so that they don’t
refer to an outdated earlier version.

Late Binding
With late binding, you declare an object variable that refers to the target application, just as you
would with early binding. However, instead of setting the variable to a specifi c (in this case) Word
object, you create an object called a Word application.

If you use late binding, you do not use Tools ➪ References to set a reference (as is required for early
binding) because you do not know which Word object library version will be on a user's machine.
Instead, you use code to create the object. The following macro named LateBindingTest accom-
plishes the same task as the EarlyBindingTest by opening a specifi c Word document:

Sub LateBindingTest()
Dim WdApp As Object, wddoc As Object
Set WdApp = CreateObject("Word.Application")
WdApp.Visible = True
Set wddoc = WdApp.Documents.Open(Filename:="C:\Your\File\Path\myWordDoc.docx")
End Sub

In a nutshell, when you declare a variable As Object and set it as CreateObject, VBA doesn’t
know whether the object is a cell, a worksheet, a Word application, or any other object. The code
goes through a series of tests behind the scenes until it fi nds the correct application for the use
intended by your code. That’s the essential reason why late binding takes longer to execute.

Which One Is Better?
For my money, even with moderately sized macros, the extra seconds of run time due to late binding
make up for the headaches of trying to accommodate every version of your target Offi ce application,
from 2000 through 2013. You will fi nd that the VBA skills you are acquiring will lead to composing

Try It ❘ 395

c29.indd 02/24/2015 Page 395

macros that others will use, and you’ll never know what Offi ce versions are installed on users’ sys-
tems. People have varying opinions on the merits of early versus late binding, so consider the pros
and cons of both methods to decide which approach is best for you.

NOTE I said that late binding code “takes longer” to execute than early bind-
ing. Depending on the task at hand, this should not dissuade you from using late
binding. In fact, I use late binding exclusively in all my cross-application Offi ce
programming because of the benefi ts I mentioned.

As you become more involved with programming, you’ll fi nd yourself identify-
ing opportunities for effi ciency in code execution. In the case of early versus late
binding, or any set of programmable alternatives when the difference of execu-
tion is only a second or two, keep in mind that the project and its users are best
served by code that gets the job done with minimal risk for error. No one notices
an extra second or two of macro execution. Everyone notices runtime or perfor-
mance errors.

TRY IT

In this lesson, you compose a macro using late binding that opens a presentation fi le in PowerPoint.

Lesson Requirements
For this lesson, you fi rst create a PowerPoint presentation, name that fi le PowerPointExample1, and
save it into the folder path C:\Your\File\Path\.

To get the sample Excel workbook and PowerPoint presentation fi les, you can download Lesson 29
from the book’s website at www.wrox.com/go/excelvba24hour.

Hints
Late binding is a useful approach in cases like this, when the Offi ce version is unknown.

If you want to refer to a sample PowerPoint presentation with a different name than
PowerPointExample1, or a folder path other than C:\Your\File\Path\, be sure to modify those
 references in the following code.

Step-by-Step
 1. Open a new workbook and press Alt+F11 to go to the Visual Basic Editor.

 2. From the menu at the top of the VBE, click Insert ➪ Module.

 3. In the module you just created, type Sub OpenPowerPoint and press Enter. VBA automati-
cally places a pair of empty parentheses at the end of the Sub line, followed by an empty line,
and the End Sub line below that. Your macro looks like this so far:

http://www.wrox.com/go/excelvba24hour

396 ❘ LESSON 29 OVERVIEW OF OFFICE AUTOMATION FROM EXCEL

c29.indd 02/24/2015 Page 396

Sub OpenPowerPoint()

End Sub

 4. Declare variables for the fi le path, the PowerPoint fi lename, and the fi le extension. The
reason for the variable extension is that starting with Offi ce version 2007, PowerPoint fi le
extensions are commonly .pptx or .pptm. Prior to 2007, the extension for PowerPoint fi les
was simply .ppt.

Dim myPath As String, myFileName As String, myExtension As String

 5. Defi ne the variables for myPath and myFileName:

myPath = "C:\Your\File\Path\"
myFileName = "PowerPointExample1"

 6. Use an If structure to defi ne the extension String variable. Note the Val statement, which
ensures the Offi ce application version is regarded as a number for the logical evaluation of
being less than or equal to version 11, which is Offi ce 2003:

If Val(Application.Version) <= 11 Then
myExtension = ".ppt"
Else
myExtension = ".pptx"
End If

 7. Declare the PowerPoint application object and set it using the CreateObject method for late
binding:

Dim appPPT As Object
Set appPPT = CreateObject("PowerPoint.Application")

 8. When opening other applications, don’t forget to make them visible:

appPPT.Visible = True

 9. Compose the Open statement for PowerPoint that combines the myPath, myFileName, and
myExtension variables:

appPPT.Presentations.Open Filename:=myPath & myFileName & myExtension

 10. When completed, the macro looks like this, with comments that have been added to explain
each step:

Sub OpenPowerPoint()
'Declare variables for path, file name and file extension.
Dim myPath As String, myFileName As String, myExtension As String
'Define the myPath and myFileName variables.
myPath = "C:\Your\File\Path\"
myFileName = "PowerPointExample1"

'Using an If structure and depending on the host computer's Office version,
'define the extension of the PowerPoint file.
If Val(Application.Version) = 11 Then
myExtension = ".ppt"
Else

Try It ❘ 397

c29.indd 02/24/2015 Page 397

myExtension = ".pptx"
End If

'Declare a variable for what will be the PowerPoint object.
'Set the object to late binding by using the CreateObject method.
Dim appPPT As Object
Set appPPT = CreateObject("PowerPoint.Application")

'Make sure you include the command to make the application visible.
appPPT.Visible = True
'Open the PowerPoint file.
appPPT.Presentations.Open Filename:=myPath & myFileName & myExtension
End Sub

 11. Press Alt+Q to return to the worksheet. Press Alt+F8 to show the Macro dialog box, and test
the macro by selecting the macro name and clicking the Run button.

REFERENCE Please select the video for Lesson 29 online at www.wrox.com/go
/excelvba24hour. You will also be able to download the code and resources
for this lesson from the website.

http://www.wrox.com/go

c30.indd 02/26/2015 Page 399

Working with Word from Excel
With the ubiquitous presence of Microsoft Offi ce, a common task is to create and maintain
documents in Microsoft Word that either accompany, or include as part of their narrative
 content, data and information from Excel workbooks. From your own experience, you have
probably seen situations that call for information from Word documents to be appended,
printed, or exported from Word into your Excel workbook.

Word and Excel work very well together in sharing data across their respective applications.
You can automate these tasks with VBA macros right from Excel, to provide your workbook
projects with robust and user-friendly methods of integrating data with Word.

ACTIVATING A WORD DOCUMENT

In Lesson 29, you saw a macro named LateBindingTest that opened a Word document
named myWordDoc.docx. However, in this complicated world of ours, a seemingly simple task
like activating a Word document involves a few considerations:

 ➤ Word might not be open.

 ➤ Word is open but the document itself is not open.

 ➤ The Word document is already open.

 ➤ The Word document you want to open does not exist.

For such tasks that have multiple considerations, the “divide and conquer” approach is a good
way to cover your bases. If you take each consideration in turn, you can craft a single macro
to handle the entire process seamlessly.

Activating the Word Application
The basic premise of activating Word is that you must tell Excel you are leaving Excel
 altogether for a totally different application destination. The GetObject function is a reliable
way to do this, as shown in the following macro:

30

400 ❘ LESSON 30 WORKING WITH WORD FROM EXCEL

c30.indd 02/26/2015 Page 400

Sub ActivateWord()
Dim wdApp As Object
Set wdApp = GetObject(, "Word.Application")
wdApp.Activate
End Sub

The GetObject function has two arguments, the fi rst of which is an optional pathname argument
that tells VBA where to look for a specifi ed object. Because the pathname is not specifi ed (which it
need not be because it is optional), GetObject activates Word, because Word.Application is the
object being specifi ed in the second argument.

But what if Word is not open? If you try running the ActivateWord macro without Word being
open, a runtime error occurs because VBA is being told to activate an object that can’t be activated.
You need to insert an error bypass in your macro to tell VBA to activate Word only if Word is open,
and to open and then activate Word only if Word is closed.

You can accomplish this with the On Error Resume Next statement that monitors runtime error
number 429, which is the VBA error number that occurs with the GetObject function if Word is
not open. In that case, VBA opens a new instance of Word, as shown in the following modifi ed
ActivateWord macro:

Sub ActivateWord()
Dim wdApp As Object
On Error Resume Next
Set wdApp = GetObject(, "Word.Application")
If Err.Number = 429 Then
Err.Clear
Set wdApp = CreateObject("Word.Application")
wdApp.Visible = True
End If
wdApp.Activate
End Sub

Opening and Activating a Word Document
Now that you have Word open, it’s reasonable to assume that the next item on your agenda is to
open an existing Word document or to create a new Word document. If the plan is to open an
existing document, a wise programming practice is to account for the possibility that the document
does not exist in the specifi ed folder path.

NOTE You never know—fi les get deleted, have their names changed, or
get moved from one folder to another. A VBA runtime error will eventually
come back to bite you when a command is given to open a fi le that has an
unrecognized name or location.

For demonstration purposes, say you maintain a Word document named myWordDoc.docx in the
folder path C:\Your\File\Path\. Before you attempt to open the document, check the directory
to make sure it resides in the expected folder path. If the Word document is not where your macro

Activating a Word Document ❘ 401

c30.indd 02/26/2015 Page 401

thinks it should be, exit the macro with a message box informing the user why the process could not
be completed.

Finally, your macro needs to keep its eyes on the prize (that being the Word document), which might
already be open if Word is already open. You can see there’s a lot to remember, but this is what mac-
ros are for... tell them once and they’ll do what they’re told. Here is the complete modifi cation of the
ActivateWord macro that wraps it all up into a single package:

Sub ActivateWord()
'Declare Object variables for the Word application and document.
Dim WdApp As Object, wddoc As Object
'Declare a String variable for the example document's name and folder path.
Dim strDocName As String

'On Error statement if Word is not already open.
On Error Resume Next
'Activate Word if it is already open.
Set WdApp = GetObject(, "Word.Application")
If Err.Number = 429 Then
Err.Clear
'Create a Word application if Word is not already open.
Set WdApp = CreateObject("Word.Application")
End If

'Make sure the Word application is visible.
WdApp.Visible = True

'Define the strDocName String variable.
strDocName = "C:\Your\File\Path\myWordDoc.docx"
'Check the directory for the presence of the document
'name in the folder path.
'If it is not recognized, inform the user and exit the macro.
If Dir(strDocName) = "" Then
MsgBox "The file myWordDoc.docx" & vbCrLf & _
"was not found in the folder path" & vbCrLf & _
"C:\Your\File\Path\.", _
vbExclamation, _
"Sorry, that document name does not exist."
Exit Sub
End If

'Activate the Word application.
WdApp.Activate
'Set the Object variable for the Word document's full name and folder path.
Set wddoc = WdApp.Documents(strDocName)
'If the Word document is not already open, then open it.
If wddoc Is Nothing Then Set wddoc = WdApp.Documents.Open(strDocName)
'The document is open, so activate it.
wddoc.Activate

'Release system memory that was reserved for the two Object variables.
Set wddoc = Nothing
Set WdApp = Nothing
End Sub

402 ❘ LESSON 30 WORKING WITH WORD FROM EXCEL

c30.indd 02/26/2015 Page 402

CREATING A NEW WORD DOCUMENT

You can easily create a new Word document from scratch with the Documents.Add method state-
ment associated with your Word application Object variable. For example, in the previous macro
named ActivateWord, the Word application was declared as Dim WdApp As Object. Toward the
end of that macro, before the wddoc and WdApp Object variables were set to Nothing, you could
insert this line to add a new document to that open instance of Word:

WdApp.Documents.Add

You’ll typically create a new Word document for the purpose of holding some kind of narrative or
data, which means you want to save your new document. Tapping into many of the same processes
that were covered in the ActivateWord macro, here is an example of a macro that creates and saves
a new Word document:

Sub CreateWordDoc()

'Declare Object variables for the Word application and new document.
Dim objWordApp As Object, objWordDoc As Object

'On Error statement if Word is not already open.
On Error Resume Next
'Activate Word if it is already open.
Set objWordApp = GetObject(, "Word.Application")
If Err.Number = 429 Then
Err.Clear
'Create a Word application if Word is not already open.
Set objWordApp = CreateObject("Word.Application")
End If

'Make sure the Word application is visible.
objWordApp.Visible = True

'Activate the Word application.
objWordApp.Activate

'Create your new Word document.
Set objWordDoc = objWordApp.Documents.Add
'Save your new Word document in a folder path.
objWordDoc.SaveAs "C:\Your\File\Path\myNewWordDoc.docx"

'Release system memory that was reserved for the two Object variables.
Set objWordApp = Nothing
Set objWordDoc = Nothing

End Sub

COPYING AN EXCEL RANGE TO A WORD DOCUMENT

Suppose you have a table of data in your Excel workbook on Sheet1 in range A1:H25. You want to
export the table into an existing Word document named myWordDoc.docx, which you know exists
and you know is closed. To make it interesting, say the task calls for the following set of actions:

Printing a Word Document from Excel ❘ 403

c30.indd 02/26/2015 Page 403

 1. Open Word.

 2. Open myWordDoc.docx.

 3. Export the data table from Excel into the myWordDoc.docx document.

 4. Save myWordDoc.docx.

 5. Close myWordDoc.docx.

The following macro accomplishes this task very quickly. Note that you can copy a worksheet’s
used range or current region of a cell; you do not need to refer to a specifi c range address as this
example does:

Sub ExportFromExcelToWord()
'Turn off ScreenUpdating.
Application.ScreenUpdating = False

'Copy the Excel range to be exported.
Worksheets("Sheet1").Range("A1:H25").Copy

'Declare object variables.
Dim WdApp As Object, wddoc As Object

'Open Word
Set WdApp = CreateObject("Word.Application")
'Open the Word document that will accept the exported data.
Set wddoc = WdApp.Documents.Open(Filename:="C:\Your\File\Path\myWordDoc.docx")
'Paste the copied data from Excel to the Word document.
wddoc.Range.Paste
'Close the Word document and save changes.
wddoc.Close savechanges:=True
'Quit the Word application.
WdApp.Quit

'Set the Object variables to Nothing to release system memory.
Set wddoc = Nothing
Set WdApp = Nothing

'Exit Copy mode.
Application.CutCopyMode = False
'Turn ScreenUpdating back on.
Application.ScreenUpdating = True
End Sub

PRINTING A WORD DOCUMENT FROM EXCEL

To print a Word document, you can use the PrintOut method to print the entire document, or only
a portion of the document if you so choose. The following macro shows an example of opening and
printing a Word document:

Sub PrintWordDoc()

'Declare object variables.

404 ❘ LESSON 30 WORKING WITH WORD FROM EXCEL

c30.indd 02/26/2015 Page 404

Dim WdApp As Object, wddoc As Object

'Open Word
Set WdApp = CreateObject("Word.Application")
'Open the Word document to be printed.
Set wddoc = WdApp.Documents.Open(Filename:="C:\Your\File\Path\myWordDoc.docx")
'Print the entire Word document.
WdApp.ActiveDocument.PrintOut
'Give the print job 5 seconds to complete before closing Word.
Application.Wait Now + TimeSerial(0, 0, 5)
'Close the Word document, no need to save changes.
wddoc.Close savechanges:=False
'Quit the Word application.
WdApp.Quit

'Set the Object variables to Nothing to release system memory.
Set wddoc = Nothing
Set WdApp = Nothing
End Sub

NOTE You might have noticed that this macro—and a couple of others in this
lesson—do not include the statement to make the Word application visible. It’s
easy to forget that you have an open application if you cannot see it. The point
is, remember to include the Close and Quit statements in your macros when
opening applications and fi les that you intend to be closed when the macro is
completed. Otherwise, when you rerun the macro, you get read-only messages
and error messages, because VBA interprets your coded instructions as an
attempt to re-open a fi le that is already open.

If you want to print only a portion of the Word document, for example only page 2, then in the
preceding PrintWordDoc macro, substitute the statement

WdApp.ActiveDocument.PrintOut

with

WdApp.ActiveDocument.PrintOut pages:="2"

IMPORTING A WORD DOCUMENT TO EXCEL

There may be times when you want to import some text from Word into Excel. Admittedly this is
not a common task, because Excel cells are not meant to serve as word processing instruments for
extensive amounts of text. But because it’s possible, here’s a macro that opens a Word document,
copies the second paragraph, and pastes that text into the active cell of your workbook:

Sub ImportToExcelFromWord()
'Declare Object variables for the Word application and document.
Dim WdApp As Object, wddoc As Object

Try It ❘ 405

c30.indd 02/26/2015 Page 405

'Declare a String variable for the example document's name and folder path.
Dim strDocName As String

'On Error statement if Word is not already open.
On Error Resume Next
'Activate Word if it is already open.
Set WdApp = GetObject(, "Word.Application")
If Err.Number = 429 Then
Err.Clear
'Create a Word application if Word is not already open.
Set WdApp = CreateObject("Word.Application")
End If

'Make sure the Word application is visible.
WdApp.Visible = True

'Define the strDocName String variable.
strDocName = "C:\Your\File\Path\myWordDoc.docx"

'Activate the Word application.
WdApp.Activate

'Set the Object variable for the Word document's full name and folder path.
Set wddoc = WdApp.Documents(strDocName)
'If the Word document is not already open, then open it.
If wddoc Is Nothing Then Set wddoc = WdApp.Documents.Open(strDocName)

'The document is open, so activate it.
wddoc.Activate

'Copy paragraph 2
wddoc.Paragraphs(2).Range.Copy
'Activate your workbook and paste the copied text into the active cell.
ThisWorkbook.Activate
'Paste paragraph 2 from the Word document.
ActiveSheet.Paste
'Close the Word document, no need to save changes.
wddoc.Close Savechanges:=False
'Quit the Word application.
WdApp.Quit

'Release the system memory that was reserved for the two Object variables.
Set wddoc = Nothing
Set WdApp = Nothing
End Sub

TRY IT

For this lesson, you write a macro that uses an InputBox to ask for the name of a Word document
to be opened from a predetermined folder. If the Word document exists, it is opened, but if it does
not exist, the user is advised of that.

406 ❘ LESSON 30 WORKING WITH WORD FROM EXCEL

c30.indd 02/26/2015 Page 406

Lesson Requirements
To get the sample workbook you can download Lesson 30 from the book’s website at
www.wrox.com/excelvba24hour.

Step-by-Step
 1. From any worksheet in your Excel workbook, press Alt+F11 to go to the Visual Basic Editor.

 2. From the VBE menu bar, click Insert ➪ Module.

 3. In the module you just created, type Sub OpenRequestedWordDoc and press Enter. VBA
automatically places a pair of empty parentheses at the end of the Sub line, followed by an
empty line, and the End Sub line below that. Your macro looks like this so far:

Sub OpenRequestedWordDoc()

End Sub

 4. Declare a String type variable for the predetermined folder path:

Dim myPath As String

 5. Defi ne the String type variable for the example folder path:

myPath = "C:\Your\File\Path\"

 6. Declare a String type variable for the anticipated InputBox entry:

Dim myFileName As String

 7. Defi ne the myFileName variable with an InputBox to ask the user for the name of the Word
document to be opened from the predetermined folder path. Note the opportunity to use the
InputBox’s optional third argument to show an example entry of a document’s full name
including its extension:

myFileName = InputBox _
("Enter the full Word document name to be opened" & Chr(10) & _
"from the folder path " & myPath & ":", _
"What file name with extension do you wish to open?", _
"YourDocumentName.docx")

 8. Exit the macro if nothing is entered or if the Cancel button is clicked:

If myFileName = "" Then Exit Sub

 9. Declare a String type variable for the combined folder path and document name:

Dim myDocName As String

 10. Defi ne the String type variable for the combined folder path and document name:

myDocName = myPath & myFileName

http://www.wrox.com/excelvba24hour

Try It ❘ 407

c30.indd 02/26/2015 Page 407

 11. Check to see whether the Word document name exists in the folder path. If it does not,
advise the user and exit the macro. Notice that you are providing a piece of user-friendly
information in the message box that reminds the user that the document name entered was
not found:

If Dir(myDocName) = "" Then
MsgBox "The file " & myFileName & vbCrLf & _
"was not found in the folder path" & vbCrLf & _
myPath & ".", _
vbExclamation, _
"No such animal."
Exit Sub
End If

 12. At this point, the Word document would be determined to exist in the folder. Declare Object
variables for the Word application and the Word document:

Dim appWord As Object, wdDoc As Object

 13. Using late binding, create a Word application:

Set appWord = CreateObject("Word.Application")

 14. Make the created Word application visible:

appWord.Visible = True

 15. Open the requested Word document name using the Set statement for your wdDoc variable:

Set wdDoc = appWord.Documents.Open(myDocName)

 16. Release the reserved memory in VBA for the declared Object type variables now that they
have served their purpose and are no longer needed:

Set wdDoc = Nothing
Set appWord = Nothing

 17. Go ahead and test your macro, which looks like this in its entirety:

Sub OpenRequestedWordDoc()

'Declare a String variable for the predetermined folder path.
Dim myPath As String
'Define the String variable with the example folder path.
myPath = "C:\Your\File\Path\"

'Declare a String variable for the anticipated InputBox entry.
Dim myFileName As String

'Show the InputBox to ask the user for the name of the Word
'document they want to open from the predetermined folder path.
myFileName = InputBox _
("Enter the full Word document name to be opened" & Chr(10) & _

408 ❘ LESSON 30 WORKING WITH WORD FROM EXCEL

c30.indd 02/26/2015 Page 408

"from the folder path " & myPath & ":", _
"What file name with extension do you wish to open?", _
"YourDocumentName.docx")

'Exit the macro if nothing is entered or the Cancel button is clicked.
If myFileName = "" Then Exit Sub

'Declare a String variable for the combined folder path
'and document name.
Dim myDocName As String
'Define the String variable for the combined folder path
'and document name.
myDocName = myPath & myFileName

'Check to see if the Word document name actually exists
'in the folder path.
'If it does not, then advise the user and exit the macro.
If Dir(myDocName) = "" Then
MsgBox "The file " & myFileName & vbCrLf & _
"was not found in the folder path" & vbCrLf & _
myPath & ".", _
vbExclamation, _
"No such animal."
Exit Sub
End If

'At this point, the Word document is determined to exist
'in the folder.
'Declare Object variables for the Word application and
'the Word document.
Dim appWord As Object, wdDoc As Object

'Using late binding in this example, create a Word application.
Set appWord = CreateObject("Word.Application")
'Make the created Word application visible.
appWord.Visible = True
'Open the requested Word document name.
Set wdDoc = appWord.Documents.Open(myDocName)

'Release the reserved memory in VBA for the declared Object variables
'now that they have served their purpose and are no longer needed.
Set wdDoc = Nothing
Set appWord = Nothing

End Sub

REFERENCE Please select the video for Lesson 30 online at www.wrox.com/go
/excelvba24hour. You will also be able to download the code and resources for
this lesson from the website.

http://www.wrox.com/go

c31.indd 02/24/2015 Page 409

Working with Outlook
from Excel

Microsoft Outlook is the e-mail client application that is included in Microsoft’s Offi ce suite.
In addition to e-mail management, Outlook also provides personal information management
capabilities with its Calendar, Contacts, and Task Manager features. Each of these compo-
nents in Outlook can be controlled from Excel with VBA.

NOTE With all the competing e-mail clients to choose from, Outlook continues
to be far and away the world’s most popular e-mail application. Chances are
pretty good that Outlook is your e-mail client at work or at home, or it is being
used by the recipients of e-mails you send.

OPENING OUTLOOK

Before diving into the programming of Outlook from Excel, it’s worth noting that Outlook
is different than Excel, Word, Access, and PowerPoint in one key respect. Unlike those other
Offi ce applications for which you might create multiple instances in your work, Outlook is not
the kind of application for doing that. When it comes to handling e-mails, tasks, and calen-
dars, it’s just common sense to have only a single instance of Outlook open at any one time.

The following macro fi rst checks to see if Outlook is already open, and if so, allows your
macro to continue. If Outlook happens to be closed, the macro terminates, with a message box
alerting you to please open Outlook in order to continue:

Sub OpenOutlook()
Dim objOutlook As Object
On Error Resume Next
Set objOutlook = GetObject(, "Outlook.Application")
If objOutlook Is Nothing Then
Err.Clear

31

410 ❘ LESSON 31 WORKING WITH OUTLOOK FROM EXCEL

c31.indd 02/24/2015 Page 410

MsgBox "Cannot continue, Outlook is not open.", , _
"Please open Outlook and try again."
Exit Sub
Else
MsgBox "The rest of your code goes here.", , "Outlook is open!"
End If
End Sub

NOTE You might have noticed that my OpenOutlook macro does not follow the
same process of opening Outlook if it is not already open, such as I have shown
how to do for Word and PowerPoint. The reason is that Outlook is a different
animal than other Offi ce applications with regard to how it opens using late
binding. The programming code with late binding to open Outlook, without it
already being open, involves VBA methods beyond the scope of this introductory
lesson. That’s OK, because in everyday practice, it’s not uncommon to show
user-friendly messages, such as the OpenOutlook macro does, to request a simple
manual step be performed before proceeding.

COMPOSING AN E-MAIL IN OUTLOOK FROM EXCEL

Most of the time, when you open Outlook, whether manually or with VBA, it’s for the purpose of
doing something, such as to receive or send e-mails, but also to update your calendar or manage
your task list. Building upon the previous code that opens or activates Outlook, this section explains
how to compose and send a complete e-mail message from Excel.

Creating a MailItem Object
Where VBA is concerned, MailItem is an Outlook object that you know quite well as a typical
e-mail message that arrives in your Inbox. The MailItem object is made up of the familiar fi elds To,
CC, and Subject. The other components of the MailItem object are the Body where you type the
text of your message, an optional level of Importance, and maybe an attachment.

When you want to compose an e-mail with VBA, you declare a variable for the MailItem object and
set it as a created item of the Outlook application object. For example, the following macro creates
an e-mail message with a workbook attachment. Figure 31-1 shows the e-mail that is created.

Sub SendEmail()

'Declare the Object variables for Outlook.
Dim objOutlook As Object
'Verify Outlook is open.
On Error Resume Next
Set objOutlook = GetObject(, "Outlook.Application")

'If Outlook is not open, end the Sub.
If objOutlook Is Nothing Then

Err.Clear

Composing an E-mail in Outlook from Excel ❘ 411

c31.indd 02/24/2015 Page 411

MsgBox _
"Cannot continue, Outlook is not open.", , _
"Please open Outlook and try again."
Exit Sub

'Outlook is determined to be open, so OK to proceed.
Else

'Establish an Object variable for a mailitem.
Dim objMailItem As Object
Set objMailItem = objOutlook.CreateItem(0)

'Build the mailitem.
With objMailItem
.To = "tom@atlaspm.com"
.CC = "tomurtis@gmail.com"
.Subject = "Testing Lesson 31 email code"
.Importance = 1 'Sets it as Normal importance (Low = 0 and High = 2)
.Body = "Hello, this is a test." & vbNewLine & "Have a nice day."
.Attachments.Add "C:\Your\File\Path\YourFileName.xlsx"
'Change the Display command to Send without reviewing the email.
.Display
End With

'Close the If block.
End If

End Sub

FIGURE 31-1

NOTE The Importance property is optional; you don’t need to include it. If
you do include it as I did with this example, the 1 is a reference to Normal
Importance. Low Importance would be 0 and High Importance would be 2.
Also, in all the e-mail examples in this lesson, Display is utilized rather than
Send, so that when you test these examples, you can actually see the resulting
MailItem object without sending it.

Transferring an Excel Range to the Body of Your E-mail
In the preceding example of composing a MailItem object, the body of the e-mail message was
hard-coded into the macro, with this statement:

.Body = "Hello, this is a test." & vbNewLine & "Have a nice day."

mailto:tom@atlaspm.com
mailto:tomurtis@gmail.com

412 ❘ LESSON 31 WORKING WITH OUTLOOK FROM EXCEL

c31.indd 02/24/2015 Page 412

You might be interested to know that you can represent a range of worksheet data in the body of
an e-mail message. One way to accomplish that is to loop through the cells and create a text string,
with a line break character to simulate each row item. Figure 31-2 shows a simple list that is referred
to in this example.

FIGURE 31-2

To copy the list, declare a String variable for the text values as you loop through each cell in the
list, and declare Long variables for the count of rows and columns in the range you are copying. In
this example, two columns are being copied. However, the range you want to copy might have an
unknown number of rows and columns to be represented in your e-mail.

The following macro named BuildDynamicString builds a continuous string, taking into consider-
ation a dynamic range based on the CurrentRegion property of cell A1 that is shown in Figure 31-2.
This next macro demonstrates how to build a string that will be placed in the body of an e-mail. The
message box shown in Figure 31-3 gives you a quick glance at this code’s immediate result.

Sub BuildDynamicString()
'Declare a String variable for the worksheet data.
Dim strtext As String
'Declare Long variables for the range's Row and Columns.
Dim xRow As Long, xColumn As Long
'Build the string that is the text inside the range
'you want to represent in the Body of the email.
For xRow = 1 To Range("A1").CurrentRegion.Rows.Count
For xColumn = 1 To Range("A1").CurrentRegion.Columns.Count
strtext = strtext & Range("A1").Cells(xRow, xColumn).Value & vbTab
Next xColumn
strtext = strtext & Chr(10)
Next xRow
'Show the string in a message box, just for demo purposes.
MsgBox strtext, , "Example"
End Sub

Putting It All Together ❘ 413

c31.indd 02/24/2015 Page 413

FIGURE 31-3

PUTTING IT ALL TOGETHER

The following macro ties together all the previous code examples in this lesson. Figure 31-4 shows
what your e-mail would look like in Outlook 2013 after running the macro named ExampleEmail.

Sub ExampleEmail()

'Declare the Object variables for Outlook.
Dim objOutlook As Object
'Verify Outlook is open.
On Error Resume Next
Set objOutlook = GetObject(, "Outlook.Application")

'If Outlook is not open, end the Sub.
If objOutlook Is Nothing Then

Err.Clear
MsgBox "Cannot continue -- Outlook is not open.", , _
"Please open Outlook and try again."
Exit Sub

'Outlook is determined to be open, so OK to proceed.
Else

'Declare a String variable for the worksheet data.
Dim strtext As String
'Declare Long variables for the range's row and columns.
Dim xRow As Long, xColumn As Long
'Build the string that is the text inside the range
'you want to represent in the Body of the email.
For xRow = 1 To Range("A1").CurrentRegion.Rows.Count
For xColumn = 1 To Range("A1").CurrentRegion.Columns.Count
strtext = strtext & Range("A1").Cells(xRow, xColumn).Value & vbTab
Next xColumn

414 ❘ LESSON 31 WORKING WITH OUTLOOK FROM EXCEL

c31.indd 02/24/2015 Page 414

strtext = strtext & Chr(10)
Next xRow

'Establish an Object variable for a mailitem.
Dim objMailItem As Object
Set objMailItem = objOutlook.CreateItem(0)

'Build the mailitem and attach a workbook.
With objMailItem
.To = "tom@atlaspm.com"
.CC = "tomurtis@gmail.com"
.Subject = "Testing Lesson 31 email code"
.Importance = 1 'Sets it as Normal importance (Low = 0 and High = 2)
.Body = "List of employees and positions:" & vbNewLine & vbNewLine & strtext
'Change the Display command to Send without reviewing the email.
.Display
End With

'Close the If block.
End If

'Release object variables from system memory.
Set objOutlook = Nothing
Set objMailItem = Nothing

End Sub

NOTE Before testing the ExampleEmail macro, you probably need to modify the
folder path and fi lename of the attachment. If you want to test the macro with-
out attaching a fi le, you can simply delete or comment out the Attachments.Add
statement.

FIGURE 31-4

mailto:tom@atlaspm.com
mailto:tomurtis@gmail.com

Try It ❘ 415

c31.indd 02/24/2015 Page 415

E-MAILING A SINGLE WORKSHEET

You can e-mail a single worksheet using SendMail with Microsoft Outlook. The following macro
copies the active worksheet and sends it as the lone worksheet in its own workbook:

Sub EmailSingleSheet()
ActiveSheet.Copy
On Error Resume Next
ActiveWorkbook.SendMail "tom@atlaspm.com", "Test of single sheet."
Err.Clear
ActiveWorkbook.Close False
End Sub

NOTE SendMail can send a single worksheet as an attachment by housing that
worksheet in its own workbook and e-mailing it. SendMail does not require
specifying a Simple Mail Transport Protocol (SMTP) server; it sends the mail
using your installed mail system. This has the advantage of bypassing much of
the Outlook-related code you’ve seen so far, but it comes with disadvantages,
such as limited ability to attach fi les, and no available CC argument.

NOTE A worksheet in Excel cannot exist on its own; a worksheet must be
housed in a parent Excel workbook.

TRY IT

In this lesson, you write a macro in Excel that creates an e-mail in Microsoft Outlook for multiple
recipients whose addresses are listed in column A of your worksheet. The macro populates the
e-mail’s To fi eld with the recipients’ names, and attaches the active Excel workbook to that e-mail.

Lesson Requirements
To get the sample workbook, you can download Lesson 31 from the book’s website at
www.wrox.com/excelvba24hour.

Step-by-Step
 1. In column A of your worksheet, list a few sample recipient names. For example:

 ➤ In cell A1 enter no_one@nowhere.com.

 ➤ In cell A2 enter anyone@anywhere.com.

 ➤ In cell A3 enter someone@somewhere.com.

mailto:tom@atlaspm.com
http://www.wrox.com/excelvba24hour
mailto:one@nowhere.com
mailto:anyone@anywhere.com
mailto:someone@somewhere.com

416 ❘ LESSON 31 WORKING WITH OUTLOOK FROM EXCEL

c31.indd 02/24/2015 Page 416

 2. Press Alt+F11 to go to the Visual Basic Editor.

 3. From the menu bar at the top of the VBE, click Insert ➪ Module.

 4. In the module you just created, type Sub EmailAttachmentRecipients and press Enter.
VBA automatically places a pair of empty parentheses at the end of the Sub line, followed by
an empty line, and the End Sub line below that. Your macro looks like this so far:

Sub EmailAttachmentRecipients ()

End Sub

 5. Establish the Object variable for Outlook:

Dim objOutlook As Object

 6. Verify whether Outlook is open:

On Error Resume Next
Set objOutlook = GetObject(, "Outlook.Application")

 7. If Outlook is not open, end the macro:

If objOutlook Is Nothing Then
Err.Clear
MsgBox "Cannot continue -- Outlook is not open.", , _
"Please open Outlook and try again."
Exit Sub

 8. At this point, Outlook is verifi ed to be open. Establish an Object variable for a mailitem:

Else
Dim objMailItem As Object
Set objMailItem = objOutlook.CreateItem(0)

 9. Declare a String variable for the recipient list, and a Long variable for the count of cells in
column A that contain e-mail addresses:

Dim strTo As String
Dim i As Integer
strTo = ""
i = 1

 10. Loop through the recipient e-mail addresses you entered from Step 1 to build a continuous
string where each recipient address is separated by a semicolon and a space, just as it would
appear in an Outlook To fi eld:

Do
strTo = strTo & Cells(i, 1).Value & "; "
i = i + 1
Loop Until IsEmpty(Cells(i, 1))
'Remove the last two characters from the string,
'which are an unneeded semicolon and space.
strTo = Mid(strTo, 1, Len(strTo) - 2)

Try It ❘ 417

c31.indd 02/24/2015 Page 417

 11. Display the e-mail message, including the attachment of the active workbook:

With objMailItem
.To = strTo
.Subject = "Test of multiple recipients"
.Body = _
"Hello everyone, testing multiple recipients with a workbook attachment."
.Attachments.Add ActiveWorkbook.FullName
.Display 'Change to Send
End With

NOTE The active workbook you are attaching must be an actual work-
book that has been named and saved, or the code line .Attachments.Add
ActiveWorkbook.FullName will fail.

 12. Release Object variables from system memory:

Set objOutlook = Nothing
Set objMailItem = Nothing

 13. Close the If structure:

End If

 14. When your macro is complete, it should look like this:

Sub EmailAttachmentRecipients()

'Declare the Object variable for Outlook.
Dim objOutlook As Object
'Verify Outlook is open.
On Error Resume Next
Set objOutlook = GetObject(, "Outlook.Application")

'If Outlook is not open, end the Sub.
If objOutlook Is Nothing Then
Err.Clear
MsgBox "Cannot continue -- Outlook is not open.", , _
"Please open Outlook and try again."
Exit Sub

'Outlook is determined to be open, so OK to proceed.
Else

'Establish an Object variable for a mailitem.
Dim objMailItem As Object
Set objMailItem = objOutlook.CreateItem(0)

'Declare a String variable for the recipient list,
'and a Long variable for the count of cells in column A
'that contain email addresses.

418 ❘ LESSON 31 WORKING WITH OUTLOOK FROM EXCEL

c31.indd 02/24/2015 Page 418

Dim strTo As String
Dim i As Integer
strTo = ""
i = 1

'Loop through the recipient email addresses you entered from Step 1,
'in order to build a continuous string where each recipient address
'is separated by a semicolon and a space, just as it would appear
'in an Outlook "To" field.
Do
strTo = strTo & Cells(i, 1).Value & "; "
i = i + 1
Loop Until IsEmpty(Cells(i, 1))
'Remove the last two characters from the string,
'which are an unneeded semicolon and space.
strTo = Mid(strTo, 1, Len(strTo) - 2)

'Display the email message, including the attachment of the active workbook.
With objMailItem
.To = strTo
.Subject = "Test of multiple recipients"
.Body = _
"Hello everyone, testing multiple recipients with a workbook attachment."
.Attachments.Add ActiveWorkbook.FullName
.Display 'Change to Send
End With

'Release object variables from system memory.
Set objOutlook = Nothing
Set objMailItem = Nothing

'Close the If structure.
End If

End Sub

 15. Press Alt+Q to return to the worksheet. Press Alt+F8 to show the Macro dialog box, and test
the macro by selecting its name and clicking the Run button.

REFERENCE Please select the video for Lesson 31 online at www.wrox.com/go
/excelvba24hour. You will also be able to download the code and resources
for this lesson from the website.

http://www.wrox.com/go

c32.indd 02/24/2015 Page 419

Working with Access
from Excel

As terrifi c a product as Excel is, there can come a point when the volume of data you are
working with will exceed Excel’s capacity for storing records. Even with more than one
 million available rows starting with version 2007, some projects require a larger data man-
agement platform with Microsoft Access. If you plan to develop projects for business clients,
sooner or later you’ll encounter a client that uses Access for its relational database capabilities.

Using Excel VBA with the storage capabilities of an Access relational database is a powerful
combination for front-end data management. This lesson offers examples for adding,
 retrieving, and updating records in Access data tables from the familiar comfort of your
Excel workbook.

ADDING A RECORD TO AN ACCESS TABLE

Among the more common actions you’ll do when interacting with Access from Excel is to
transfer records from an Excel worksheet to an Access database table, and vice versa. Suppose
there is an Access database named Database2.accdb that contains a table named Table1
with six fi elds. In Sheet5 of your Excel workbook, you amass records during the day that are
added to Table1 at the end of the workday.

NOTE A reference to the Microsoft ActiveX Data Objects 2.8 Library is
required for the code in this lesson to run. Before attempting to run the macros,
get into the VBE and from the menu bar, click Tools ➪ References. Navigate
to the reference for Microsoft ActiveX Data Objects 2.8 Library (or the highest
Data Objects Library number you see starting with the number 2), select it as
indicated in Figure 32-1, and click OK.

32

420 ❘ LESSON 32 WORKING WITH ACCESS FROM EXCEL

c32.indd 02/24/2015 Page 420

FIGURE 32-1

Suppose you have a table named Table1 in an Access database fi le to maintain a list of employees at
your company, as shown in Figure 32-2. As the company hires new employees, the information is fi rst
recorded in an Excel workbook for other internal business purposes. Figure 32-3 shows that two new
employees were hired in 2015, whose information needs to be appended to the existing table in Access.

To automate the task of updating a table in Access with records from Excel, you would maintain
the Excel table with the fi elds in the same order, and the fi eld headers spelled exactly the same way
as they are found in the Access table you will update. Notice that the fi eld headers are identical in
Figures 32-2 and 32-3.

NOTE In the previous paragraph, I wrote that fi eld headers on your spreadsheet
and in your Access table must be identical, in the same order and spelled exactly
the same. I’m using this tip as a reminder that any difference, such as a stray
spacebar character or misspelling, will cause the following macro to fail. If you
get a runtime error number 3265, your fi rst move should be to check for any
 differences in how your fi eld headers are arranged and/or spelled.

Adding a Record to an Access Table ❘ 421

c32.indd 02/24/2015 Page 421

FIGURE 32-2

FIGURE 32-3

The following Excel macro named AppendRecords appends the two new employee records from the
Excel worksheet into Table1 of the Database2 fi le. Figure 32-4 shows how Table1 looks after the
AppendRecords macro adds the two new employee records.

Sub AppendRecords()

'Declare variables.
Dim dbConnection As ADODB.Connection
Dim dbFileName As String
Dim dbRecordset As ADODB.Recordset
Dim xRow As Long, xColumn As Long
Dim LastRow As Long

'Go to the worksheet containing the records you want to transfer.
Worksheets("Sheet5").Activate
'Determine the last row of data based on column A.
LastRow = Cells(Rows.Count, 1).End(xlUp).Row

'Create the connection to the database.
Set dbConnection = New ADODB.Connection
'Define the database file name.
dbFileName = "C:\Your\File\Path\Database2.accdb"

'Define the Provider and open the connection.
With dbConnection
.Provider = "Microsoft.ACE.OLEDB.12.0;Data Source=" & dbFileName & _
";Persist Security Info=False;"
.Open dbFileName

422 ❘ LESSON 32 WORKING WITH ACCESS FROM EXCEL

c32.indd 02/24/2015 Page 422

End With

'Create the recordset.
Set dbRecordset = New ADODB.Recordset
dbRecordset.CursorLocation = adUseServer
dbRecordset.Open Source:="Table1", _
ActiveConnection:=dbConnection, _
CursorType:=adOpenDynamic, _
LockType:=adLockOptimistic, _
Options:=adCmdTable

'Load the records from Excel to Access, by looping through the rows and columns.
'Assume row 1 is the header row, so start at row 2.
For xRow = 2 To LastRow
dbRecordset.AddNew
'Assume this is an 6-column (field) table starting with column A.
For xColumn = 1 To 6
dbRecordset(Cells(1, xColumn).Value) = Cells(xRow, xColumn).Value

NOTE The preceding line of code will fail and result in a runtime error if any
fi eld in your Excel table contains data that is in confl ict with the specifi ed data
type of its corresponding fi eld in the Access table. For example, if the second
fi eld in your Access table is specifi ed to be a Number data type, and in your
Excel worksheet, column B has a text value in it, the macro will fail at this point
because the code is attempting to place a text value into an Access fi eld meant to
accept only numbers.

Next xColumn
dbRecordset.Update
Next xRow

'Close the connections.
dbRecordset.Close
dbConnection.Close

'Release Object variable memory.
Set dbRecordset = Nothing
Set dbConnection = Nothing

'Alert the user that the process is complete.
MsgBox "Transfer complete!", , "Done!"

End Sub

Exporting an Access Table to an Excel Spreadsheet ❘ 423

c32.indd 02/24/2015 Page 423

FIGURE 32-4

NOTE You are probably aware that beginning with the release of Offi ce 97,
extensions changed for Microsoft applications. For example, Excel workbooks
that had the extension .xls now are either .xlsx or .xlsm. Access extensions
also changed, from .mdb to .accdb, as shown in the preceding macro.

Take note of the version(s) of Excel and Access when the time comes to imple-
ment this code. Especially, the Provider line in the code is

.Provider = "Microsoft.ACE.OLEDB.12.0;Data Source=" _
& dbFileName & ";Persist Security Info=False;".

Had this been a version of Offi ce prior to 2007, that same line might have been

.Provider = "Microsoft.Jet.OLEDB.4.0"

or

.Provider = "Microsoft.Jet.OLEDB.4.0;" & "Data Source=" _
& dbFileName & ";" & "Extended Properties=Excel 8.0;".

EXPORTING AN ACCESS TABLE TO AN EXCEL SPREADSHEET

As mentioned earlier, you will commonly need to import a table from an Access database into an
Excel worksheet to take advantage of Excel’s versatile formatting and data manipulation capabili-
ties. To export the database’s Table1 data, you defi ne the recordset while passing an SQL string to
the connection. In this example, the entire count of records in Table1 is copied to Sheet2 in your
Excel workbook:

Sub AccessToExcel()

'Declare variables.
Dim dbConnection As ADODB.Connection

424 ❘ LESSON 32 WORKING WITH ACCESS FROM EXCEL

c32.indd 02/24/2015 Page 424

WHAT IF YOU ONLY WANT TO OPEN AN ACCESS DATABASE
FILE FROM EXCEL?

A common theme you’ll notice with the examples in this lesson is that Excel is acting
upon the Access fi les by connecting to them, rather than by opening and closing them
as you see in the lessons for working with Word, Outlook, and PowerPoint. You will
rarely need Excel to open an Access database just for the sake of opening it.

If the situation arises where you do need to open an Access database from Excel, the
following example is what I use. It works by incorporating a ShellExecute command
in conjunction with the declaration of the ShellExecute function from the Windows
API. The ShellExecute function in the Windows API performs an operation on
a specifi ed fi le. In this case, the specifi ed fi le is the one you want to open (named
Database1.accdb in the hypothetical directory path C:\Your\File\Path), and the
operation is to open that database fi le, using the parameters in the declaration state-
ment. This code is placed in a standard Excel VBA module just as any macro would
be, and works with Windows versions from XP through Windows 8.1. If you are run-
ning Excel with the 64-bit version of Offi ce, there is an explanation of the PtrSafe
keyword in Lesson 28 in the section “Using the Windows API with VBA.”

#If VBA7 Then

Public Declare PtrSafe Function _
ShellExecute Lib "shell32.dll" Alias "ShellExecuteA" (_
ByVal hwnd As LongPtr, ByVal lpOperation As String, _
ByVal lpFile As String, ByVal lpParameters As String, _
ByVal lpDirectory As String, ByVal nShowCmd As Long) As LongPtr

#Else

Public Declare Function _
ShellExecute Lib "shell32.dll" Alias "ShellExecuteA" (_
ByVal hwnd As Long, ByVal lpOperation As String, _
ByVal lpFile As String, ByVal lpParameters As String, _
ByVal lpDirectory As String, ByVal nShowCmd As Long) As Long

#End If

Sub OpenAccessDB()
Call ShellExecute(0, "Open", "Database1.accdb", "", _
"C:\Your\File\Path", 1)
End Sub

Dim dbRecordset As ADODB.Recordset
Dim dbFileName As String
Dim strSQL As String
Dim DestinationSheet As Worksheet

'Set the assignments to the Object variables.

Exporting an Access Table to an Excel Spreadsheet ❘ 425

c32.indd 02/24/2015 Page 425

Set dbConnection = New ADODB.Connection
Set dbRecordset = New ADODB.Recordset
Set DestinationSheet = Worksheets("Sheet2")

'Define the Access database path and name.
dbFileName = "C:\Your\File\Path\Database2.accdb"
'Define the Provider for post-2007 database files.
dbConnection.Provider = "Microsoft.ACE.OLEDB.12.0;Data Source=" _
& dbFileName & ";Persist Security Info=False;"

'Use SQL's SELECT and FROM statements for importing Table1.
strSQL = "SELECT Table1.* FROM Table1;"

'Clear the destination worksheet.
DestinationSheet.Cells.Clear

With dbConnection
'Open the connection.
.Open
'The purpose of this line is to disconnect the recordset.
.CursorLocation = adUseClient
End With

With dbRecordset
'Create the recordset.
.Open strSQL, dbConnection
'Disconnect the recordset.
Set .ActiveConnection = Nothing
End With

'Copy the table1 recordset to Sheet2 starting in cell A2.
'Row 1 contains headers that will be populated at the next step.
DestinationSheet.Range("A2").CopyFromRecordset dbRecordset

'Reinstate field headers (assumes a 6-column table).
'Note that the ID field will also transfer into column A,
'so you can optionally delete column A.
DestinationSheet.Range("A1:G1").Value = _
Array("ID", "FirstName", "LastName", "Gender", "Title", "Region", "YearHired")

'Close the recordset.
dbRecordset.Close
'Close the connection.
dbConnection.Close

'Release Object variable memory.
Set dbRecordset = Nothing
Set dbConnection = Nothing
Set DestinationSheet = Nothing

End Sub

426 ❘ LESSON 32 WORKING WITH ACCESS FROM EXCEL

c32.indd 02/24/2015 Page 426

NOTE Here’s a tip to import a database table into your spreadsheet manually.
It’ll come with the alternating shaded rows and fi eld header drop-down arrows,
but it’s fast and easy! With the database fi le closed, the keyboard shortcut
Alt+D+D+D shows the Select Data Source window. Navigate to your database
fi le, select its name, and click Open. In the Select Table dialog box, select the
name of the table you want to import and click OK. In the Import Data dialog
box, select the option for Table. Finally, select the option for Existing Worksheet
and specify the cell address, or the option for New Worksheet, and click OK.

CREATING A NEW TABLE IN ACCESS

Suppose you are managing a project that involves both Excel and Access, and you need to add a new
table to the Access database. You can do that with the following macro, and from there if need be,
using the fi rst macro in this lesson named AppendRecords, you can transfer any records you may
have accumulated for that new table.

In this example, you create a simple three-fi eld table to maintain a company’s Employee
Identifi cation Number, which is a Primary Field, and the employees’ last names and fi rst names. The
new table is named tblEmployees, and it is added to the Database2.accdb fi le that’s been the sub-
ject of this lesson. Figure 32-5 shows Database2.accdb with the new table added after running the
following macro named CreateAccessTable:

Sub CreateAccessTable()
'Create a three-column table in an existing Access database:
'EmployeeID
'LastName
'FirstName

'Declare variables.
Dim dbConnection As ADODB.Connection
Dim dbCommand As ADODB.Command
Dim dbFileName As String
'Define the Access database path and name.
dbFileName = "C:\Your\File\Path\Database2.accdb"
'Set the assignment to open the connection.
Set dbConnection = New ADODB.Connection

'Define the Provider and open the connection.
With dbConnection
.Provider = "Microsoft.ACE.OLEDB.12.0;Data Source=" & dbFileName & _
";Persist Security Info=False;"
.Open dbFileName
End With

'Set the Command variables.
Set dbCommand = New ADODB.Command
Set dbCommand.ActiveConnection = dbConnection

'Create the table, which will be named tblEmployees.

Try It ❘ 427

c32.indd 02/24/2015 Page 427

dbCommand.CommandText = _
"CREATE TABLE tblEmployees (EmployeeID Char(10) " & _
"Primary Key, LastName text, FirstName text)"

'Execute the command to create the table.
dbCommand.Execute , , adCmdText

'Release Object variable memory.
Set dbCommand = Nothing
Set dbConnection = Nothing
End Sub

FIGURE 32-5

NOTE The text reference following the fi eld names in the CommandText state-
ment is to advise Access that the fi elds’ data type will be Text. As you may
know, with Access tables, other fi eld types are Memo, Number, Date/Time,
Currency, Yes/No, OLE Object, Hyperlink, and Attachment.

TRY IT

For this lesson, you maintain an Access database named Database2.accdb. In that database is a
table named tblEmployees, for which you write a macro that adds a new fi eld to hold the middle
names of employees.

Lesson Requirements
To get the sample Excel workbook and Access database, you can download Lesson 32 from the
book’s website at www.wrox.com/go/excelvba24hour.

Step-by-Step
 1. In your Excel workbook, press Alt+F11 to go to the Visual Basic Editor.

http://www.wrox.com/go/excelvba24hour

428 ❘ LESSON 32 WORKING WITH ACCESS FROM EXCEL

c32.indd 02/24/2015 Page 428

 2. From the VBE menu bar, click Insert ➪ Module.

 3. In the new module, type the name of your macro: AddNewField. Press Enter, and VBA
automatically places a pair of parentheses after the macro name, followed by an empty line,
followed by the End Sub statement. Your code looks as follows:

Sub AddNewField()

End Sub

 4. Similar to what you have seen in this lesson’s macros, declare three variables: one for the
ADO connection, one for the ADO command, and one for the full path and name of the
Access database you are working with:

Dim dbConnection As ADODB.Connection
Dim dbCommand As ADODB.Command
Dim dbFileName As String

 5. Defi ne the Access database path and name:

dbFileName = "C:\Your\File\Path\Database2.accdb"

 6. Set the assignment to open the connection:

Set dbConnection = New ADODB.Connection

 7. Defi ne the Provider and open the connection:

With dbConnection
.Provider = "Microsoft.ACE.OLEDB.12.0;Data Source=" & dbFileName & _
";Persist Security Info=False;"
.Open dbFileName
End With

 8. Set the Command variables:

Set dbCommand = New ADODB.Command
Set dbCommand.ActiveConnection = dbConnection

 9. Establish the command that adds a fi eld for a middle name:

dbCommand.CommandText = _
"ALTER TABLE tblEmployees Add Column MiddleName text)"

 10. Execute the command to create the new fi eld:

dbCommand.Execute , , adCmdText

 11. Release Object variable memory:

Set dbCommand = Nothing
Set dbConnection = Nothing

 12. Examine the Database2.accdb fi le to confi rm the existence of your new fi eld for a middle
name. Figure 32-6 shows what you should see, and the following code shows the complete
macro.

Try It ❘ 429

c32.indd 02/24/2015 Page 429

FIGURE 32-6

Sub AddNewField()

'Declare variables
Dim dbConnection As ADODB.Connection
Dim dbCommand As ADODB.Command
Dim dbFileName As String

'Define the Access database path and name.
dbFileName = "C:\Your\File\Path\Database2.accdb"

'Set the assignment to open the connection.
Set dbConnection = New ADODB.Connection

'Define the Provider and open the connection.
With dbConnection
.Provider = "Microsoft.ACE.OLEDB.12.0;Data Source=" & dbFileName & _
";Persist Security Info=False;"
.Open dbFileName
End With

'Set the Command variables.
Set dbCommand = New ADODB.Command
Set dbCommand.ActiveConnection = dbConnection

'Establish the command that adds a field for a middle name.
dbCommand.CommandText = _
"ALTER TABLE tblEmployees Add Column MiddleName text)"

'Execute the command to create the new field.
dbCommand.Execute , , adCmdText

'Release Object variable memory.
Set dbCommand = Nothing
Set dbConnection = Nothing

End Sub

REFERENCE Please select the video for Lesson 32 online at www.wrox.com/go
/excelvba24hour. You will also be able to download the code and resources
for this lesson from the website.

http://www.wrox.com/go

c32.indd 02/24/2015 Page 430

c33.indd 02/24/2015 Page 431

Working with PowerPoint
from Excel

With each new release of its Offi ce suite, Microsoft has made it increasingly easier to share
information between applications. Copying data from Excel, such as a worksheet range or
chart, and pasting it into a PowerPoint slide is as simple as copying and pasting from Excel
into a Word document.

Still, PowerPoint is a unique animal in that its primary purpose is not to manipulate
data but to display images of data for presentation purposes. When you need to transfer
data from Excel to PowerPoint, such as a chart or a range of cells, I recommend you use
VBA’s CopyPicture method, which pastes an image of the data—not the data itself—into
PowerPoint.

CREATING A NEW POWERPOINT PRESENTATION

Creating a new PowerPoint presentation fi le is an uncomplicated process; all you do is follow
the usual steps for creating the PowerPoint application and then add a presentation with the
expression Presentations.Add. Here’s an example from start to fi nish, ending up with a new
presentation fi le and an initial slide:

Sub CreateNewPresentation()

'Declare Object variables for the PowerPoint application
'and for the PowerPoint presentation file.
Dim ppApp As Object, ppPres As Object
'Declare Object variable for a PowerPoint slide.
Dim ppSlide As Object

'Open PowerPoint.
Set ppApp = CreateObject("PowerPoint.Application")
'Make the PowerPoint application visible.
ppApp.Visible = msoTrue

33

432 ❘ LESSON 33 WORKING WITH POWERPOINT FROM EXCEL

c33.indd 02/24/2015 Page 432

'Create a new Presentation and add a slide.
Set ppPres = ppApp.Presentations.Add
With ppPres.Slides
'11 is the numeric Constant for ppLayoutTitleOnly.
'The Constant is used with late binding.
Set ppSlide = .Add(.Count + 1, 11)
End With

'Save your new file.
ppPres.SaveAs Filename:=ThisWorkbook.Path & "\CreateTest.pptx"

'Release system memory reserved for the Object variables.
Set ppApp = Nothing
Set ppPres = Nothing
Set ppSlide = Nothing

End Sub

COPYING A WORKSHEET RANGE TO A POWERPOINT SLIDE

Now that you have just created a PowerPoint presentation fi le, while it’s still open, suppose you
want to copy a worksheet range into that presentation’s fi rst slide. The following macro uses an
InputBox for the user to select a range to be copied.

NOTE Please note that this macro relies on the PowerPoint presentation
fi le to be open. The code will not copy an Excel worksheet range to a closed
PowerPoint presentation.

Sub CopyRange()
'Declare a Range type variable.
Dim rng As Range

'Use an Application InputBox to have the user select the desired range.
'Exit the macro if the user cancels.
On Error Resume Next
Set rng = Application.InputBox("Select a range to be copied:", Type:=8)
If Err.Number <> 0 Then
Err.Clear
MsgBox "You did not enter a range.", vbInformation, "Cancelled"
Exit Sub
End If

'Monitor the size of the range so an unreasonably large range is not attempted.
If rng.Columns.Count > 6 Or rng.Rows.Count > 20 Then
MsgBox "You selected a range that is too large." & vbCrLf & _
"Please select a range that has no more than" & vbCrLf & _
"6 columns and/or 20 rows.", vbCritical, "Range too large!"
Exit Sub
End If

Copying Chart Sheets to PowerPoint Slides ❘ 433

c33.indd 02/24/2015 Page 433

'Declare Object variables.
Dim ppApp As Object, ppPres As Object, ppSlide As Object
'Assign the PowerPoint application you are working in to the ppApp variable.
Set ppApp = GetObject(, "Powerpoint.Application")
'Assign the presentation file you are working in.
Set ppPres = ppApp.ActivePresentation
Set ppSlide = ppPres.Slides(ppApp.ActiveWindow.Selection.SlideRange.SlideIndex)

'Copy the range as a picture.
rng.CopyPicture Appearance:=xlScreen, Format:=xlPicture
'Paste the picture of the range onto the slide.
ppSlide.Shapes.Paste.Select
'Align the range picture to be centered in the slide.
With ppApp.ActiveWindow.Selection.ShapeRange
.Align msoAlignCenters, msoTrue
.Align msoAlignMiddles, msoTrue
End With

'Release system memory reserved for the Object variables.
Set rng = Nothing
Set ppApp = Nothing
Set ppPres = Nothing
Set ppSlide = Nothing
End Sub

NOTE One consideration to monitor is the selected size of a range, as you can
see in the code. My column and row limitations are just for example purposes.
Whatever limit, if any, that you decide, the objective should be to place a clear,
concise image on the slide.

COPYING CHART SHEETS TO POWERPOINT SLIDES

The Try It section of this lesson discusses how to copy an embedded chart into PowerPoint. If you
have a choice between copying embedded charts or chart sheets, choose embedded charts—they
provide you with greater control over how well they can be sized to fi t a PowerPoint slide. This is
because the ChartObject object is the container for an embedded chart, and it has properties that
you can control for height, width, and location (where you can place it on the worksheet). Charts on
chart sheets do not allow you to control their size.

Sometimes you won’t have a choice, such as when a project calls for chart sheets to be copied into
PowerPoint, and that is what the following macro accomplishes. To take things a step further, this
macro does the following:

 1. Creates a new PowerPoint presentation.

 2. Adds an initial title slide.

434 ❘ LESSON 33 WORKING WITH POWERPOINT FROM EXCEL

c33.indd 02/24/2015 Page 434

 3. Loops through all chart sheets, and with each one, copies its image and pastes it into
a new slide.

 4. Places a header title on each slide, then populates it with the chart name and formats
the text.

 5. Saves the fi le.

Sub CopyChartSheets()
'Declare Object variables for the PowerPoint application
'and for the PowerPoint presentation file.
Dim ppApp As Object, pptPres As Object
'Declare Object variable for a PowerPoint slide.
Dim pptSlide As Object
'Declare variables for the Charts you will copy.
Dim ch As Chart
'Declare an Integer type variable for a running count of slides
'as each chart sheet is added to the new presentation file.
Dim SlideCount As Integer

'Open PowerPoint.
Set ppApp = CreateObject("PowerPoint.Application")
'Make the PowerPoint application visible.
ppApp.Visible = msoTrue

'Create a new Presentation and add a title slide.
Set pptPres = ppApp.Presentations.Add
With pptPres.Slides
Set pptSlide = .Add(.Count + 1, 11)
End With
pptSlide.Shapes.Title.TextFrame.TextRange.Text = "Chart sheet copy test"

'Open a For…Next loop to place each Chart sheet in a slide.
For Each ch in ThisWorkbook.Charts
ch.CopyPicture Appearance:=xlScreen, Format:=xlPicture, Size:=xlScreen

'Add a new slide.
SlideCount = pptPres.Slides.Count
Set pptSlide = pptPres.Slides.Add(SlideCount + 1, 11)
ppApp.ActiveWindow.View.GotoSlide pptSlide.SlideIndex
'Paste and select the chart picture.
pptSlide.Shapes.Paste

'Select the pasted shape.
pptSlide.Shapes(1).Select

'Align the chart to be centered in the slide.
With ppApp.ActiveWindow.Selection.ShapeRange
.Align msoAlignCenters, msoTrue
.Align msoAlignMiddles, msoTrue
End With

'Set the position of the slide's header label.
With ppApp.ActiveWindow.Selection
.SlideRange.Shapes.AddLabel _

Running a PowerPoint Presentation from Excel ❘ 435

c33.indd 02/24/2015 Page 435

(msoTextOrientationHorizontal, 300, 20, 500, 50).Select
.ShapeRange.TextFrame.WordWrap = msoFalse
'Format the header label.
With .ShapeRange.TextFrame.TextRange
.Characters(Start:=1, Length:=0).Select
.Text = "This is " & ch.Name
With .Font
.Name = "Arial"
.Size = 12
.Bold = msoTrue
End With
End With
End With

'Continue the loop until all chart sheets have been copied.
Next ch

'End the macro by activating the first slide.
ppApp.ActiveWindow.View.GotoSlide 1

'Save your new file.
pptPres.SaveAs Filename:=ThisWorkbook.Path & "\ChartSheetTest.pptx"

'Release system memory reserved for the Object variables.
Set ppApp = Nothing
Set pptSlide = Nothing
Set pptPres = Nothing
Set ppApp = Nothing

End Sub

RUNNING A POWERPOINT PRESENTATION FROM EXCEL

Running a PowerPoint presentation from Excel provides a dynamic effect to your Excel project.
Unlike Word, Outlook, or Access, just opening a presentation fi le in PowerPoint is not enough
if you want to show what that fi le contains. You can cycle through the slides with the slide-
showsettings.Run statement. Notice the With structure that demonstrates a method of setting
the amount of time (three seconds of the advancetime property in this example) that each slide is
shown, without affecting the user’s local PowerPoint slide transition settings:

Sub PowerPointSlideshow()

'Declare Object variables for the PowerPoint application
'and for the PowerPoint presentation file.
Dim ppApp As Object, ppPres As Object
'Declare String variables for folder path and name of file.
Dim strFilePath As String, strFileName As String
'Define the String variables with the directory path and name.
strFilePath = "C:\Your\File\Path\"
strFileName = "PowerPointExample1.pptx"

'Verify if the path and filename really exist.
'If not, exit the macro and advise the user.

436 ❘ LESSON 33 WORKING WITH POWERPOINT FROM EXCEL

c33.indd 02/24/2015 Page 436

If Dir(strFilePath & strFileName) = "" Then
MsgBox _
"The PowerPoint file " & strFileName & vbCrLf & _
"does not exist in the folder path" & vbCrLf & _
strFilePath & ".", _
vbInformation, "No such animal."
Exit Sub
End If

'Open PowerPoint.
Set ppApp = CreateObject("PowerPoint.Application")
'Make the PowerPoint application visible.
ppApp.Visible = msoTrue
'Open the PowerPoint presentation you want to run.
Set ppPres = ppApp.Presentations.Open(strFilePath & strFileName)

'Establish the amount of time each slide should be shown
'which in this example is 3 seconds.
With ppPres.slides.Range.slideshowtransition
.advanceontime = True
.advancetime = 3
End With

'Run the PowerPoint presentation.
ppPres.slideshowsettings.Run
'When the presentation is completed, have VBA regard it as saved
'so you are not prompted to save the presentation when you close it.
ppPres.Saved = True
'Quit Powerpoint (optional)
'ppApp.Quit

'Release memory taken from the Object variables.
Set ppPres = Nothing
Set ppApp = Nothing

End Sub

TRY IT

In this lesson, you copy an embedded chart from a worksheet and paste its picture image into an
empty slide in an open PowerPoint presentation.

Lesson Requirements
To get the sample workbook you can download Lesson 33 from the book’s website at
www.wrox.com/go/excelvba24hour.

Step-by-Step
 1. From your workbook, press Alt+F11 to go to the Visual Basic Editor.

 2. From the menu bar at the top of the VBE, click Insert ➪ Module.

http://www.wrox.com/go/excelvba24hour

Try It ❘ 437

c33.indd 02/24/2015 Page 437

 3. In the module you just created, type Sub CopyEmbeddedChart and press Enter. VBA
automatically places a pair of empty parentheses at the end of the Sub line, followed by an
empty line, and the End Sub line below that. Your macro looks like this so far:

Sub CopyEmbeddedChart()

End Sub

 4. This example assumes you have PowerPoint open, with your destination presentation fi le
open, and your destination slide selected. Declare variables for the PowerPoint application,
presentation fi lename, and Slide object:

Dim ppApp As Object, ppPres As Object, ppSlide As Object

 5. For this example, you want to copy the fi rst chart on your worksheet. Select the chart pro-
grammatically by its index number 1:

ActiveSheet.ChartObjects(1).Select

 6. Establish the identity of the open PowerPoint application:

'Establish the identity of the open PowerPoint application.
'Check to make sure PowerPoint is open.
'If PowerPoint is not open, halt the macro and inform the user.
On Error Resume Next
Set ppApp = GetObject(, "Powerpoint.Application")
If Err.Number = 429 Then
Err.Clear
MsgBox "Please open PowerPoint first," & vbCrLf & _
"and open the presentation where" & vbCrLf & _
"you want to paste the copied chart.", 48, "Cannot continue."
Range("A1").Select
Exit Sub
End If

 7. Establish the identity of the open PowerPoint presentation:

Set ppPres = ppApp.ActivePresentation

 8. Establish a reference to the destination slide you have manually selected:

Set ppSlide = ppPres.Slides(ppApp.ActiveWindow.Selection.SlideRange.SlideIndex)

 9. Copy the selected chart:

ActiveChart.CopyPicture Appearance:=xlScreen, Size:=xlScreen, Format:=xlPicture

 10. Paste the chart into the PowerPoint slide:

ppSlide.Shapes.Paste

 11. Select the picture of the chart you just pasted onto the PowerPoint slide:

ppSlide.Shapes(1).Select

438 ❘ LESSON 33 WORKING WITH POWERPOINT FROM EXCEL

c33.indd 02/24/2015 Page 438

 12. Align the chart picture to be centered in the slide:

With ppApp.ActiveWindow.Selection.ShapeRange
.Align msoAlignCenters, msoTrue
.Align msoAlignMiddles, msoTrue
End With

 13. Deselect the selected chart:

Range("A1").Select

 14. Release system memory reserved for the Object variables:

Set ppApp = Nothing
Set ppPres = Nothing
Set ppSlide = Nothing

 15. When completed, the macro looks like this, with comments that have been added to explain
each step:

Sub CopyEmbeddedChart()
'This example assumes you have PowerPoint open,
'with your destination presentation file open,
'and your destination slide selected.

'Declare variables for the PowerPoint application,
'presentation filename, and Slide object.
Dim ppApp As Object, ppPres As Object, ppSlide As Object

'For this example, you want to copy the first chart on your worksheet.
'Select the chart by its index number one.
ActiveSheet.ChartObjects(1).Select

'Establish the identity of the open PowerPoint application.
'Check to make sure PowerPoint is open.
'If PowerPoint is not open, halt the macro and inform the user.
On Error Resume Next
Set ppApp = GetObject(, "Powerpoint.Application")
If Err.Number = 429 Then
Err.Clear
MsgBox "Please open PowerPoint first," & vbCrLf & _
"and open the presentation where" & vbCrLf & _
"you want to paste the copied chart.", 48, "Cannot continue."
Range("A1").Select
Exit Sub
End If

'Establish the identity of the open PowerPoint presentation.
Set ppPres = ppApp.ActivePresentation
'Establish a reference to the destination slide you have manually selected.
Set ppSlide = ppPres.Slides(ppApp.ActiveWindow.Selection.SlideRange.SlideIndex)

'Copy the selected chart.
ActiveChart.CopyPicture Appearance:=xlScreen, Size:=xlScreen, Format:=xlPicture

Try It ❘ 439

c33.indd 02/24/2015 Page 439

'Paste the chart into the PowerPoint slide.
ppSlide.Shapes.Paste
'Select the picture of the chart you just pasted onto the PowerPoint slide.
ppSlide.Shapes(1).Select

'Align the range picture to be centered in the slide.
With ppApp.ActiveWindow.Selection.ShapeRange
.Align msoAlignCenters, msoTrue
.Align msoAlignMiddles, msoTrue
End With

'Deselect the selected chart.
Range("A1").Select

'Release system memory reserved for the Object variables.
Set ppApp = Nothing
Set ppPres = Nothing
Set ppSlide = Nothing

End Sub

 16. Press Alt+Q to return to the worksheet. Press Alt+F8 to show the Macro dialog box, and test
the macro by selecting the macro name and clicking the Run button.

REFERENCE Please select the video for Lesson 33 online at www.wrox.com/go
/excelvba24hour. You will also be able to download the code and resources
for this lesson from the website.

http://www.wrox.com/go

441

bindex.indd 02/26/2015 Page 441

INDEX

A

A1 references in formulas, 113–115
 vs. R1C1, 115
 toggling with R1C1, 116–118

absolute references
 converting to relative, 121–122
 named ranges with, 119–120

Access application and tables
 adding records to, 419–423
 creating, 426–427
 exporting, 423–426
 QueryTables for, 356–358
 step-by-step example, 427–429

accessing
 UserForms, 281
 VBA environment, 11–15

AccessToExcel macro, 423–426
activate events

 workbooks, 154, 157
 worksheet, 143

Activate method, 37, 52
ActivateWord macro, 400–401
activating

 objects, 37
 Word documents, 399–401
 workbooks, 67–68
 worksheets, 52

active elements, coloring,
373–375

active worksheet and workbook names,
243–244

ActiveCell object, 69
ActiveConnection property

 Command object, 368
 Recordset object, 367

ActiveX controls
 collections of, 328
 CommandButtons, 187–191
 Control Toolbox, 186–187
 vs. Form controls, 182
 overview, 181

ActiveX Data Objects (ADO)
 Command object, 368
 Connection object, 367
 introduction, 365–367
 Recordset object, 367–368
 with SQL, 368–372

add-ins
 benefi ts, 336
 closing, 349
 code changes, 348
 converting fi les to, 341–342
 creating, 336–340
 description, 335
 installing, 342–346
 removing, 349–350
 step-by-step example, 350–352
 user interface, 346–348

Add-Ins dialog box, 343–346, 349, 351

442

Add method – Break button

bindex.indd 02/26/2015 Page 442

Add method
 charts, 201
 PowerPoint presentations, 431
 Word documents, 402
 workbooks, 67
 worksheets, 68–69

Add Watch dialog box, 262
AddCorrection macro, 108
AddFiveWorksheets macro, 102–103
AddItem method

 ComboBox controls, 292
 ListBox controls, 291

AddNewField macro, 428–429
addresses, extracting from hyperlinks, 242
AddSheetTest macro, 264–265
AddWorkbooks macro, 68
ADO. See ActiveX Data Objects (ADO)
AdvancedFilter

 deleting rows with duplicates, 161–164
 unique lists from columns, 167–168

Alignments button, 306
Alt+= keys, 193
Alt+D keys, 426
Alt+F1 keys, 204
Alt+F8 keys, 22, 39, 246
Alt+F11 keys, 25–26
Alt+O+E keys, 204
Alt+Q keys, 30
Alt+T+I keys, 344
American Standard Code for Information

Interchange (ASCII), 289
Analysis ToolPak add-in, 346
Analysis ToolPak VBA add-in, 346
AND logical operators, 86
apostrophes (') for comments, 36, 38
AppendRecords macro, 421–423
Application.Caller statement

 Form controls, 184–186
 UDFs, 240

Application object, 50, 67

Application.Volatile statement, 243–244
applications, variable scope in, 63
arguments in UDFs, 239
arrays

 benefi ts, 128–129
 boundaries, 132
 declaring, 129–130

 dynamic, 133–134
 with fi xed elements, 132–133

 formulas, 120–122
 Option Base statement, 130–131
 overview, 127–128
 step-by-step example, 134–136

ArraySheets macro, 132
ArrayTest macro, 131
ArrayWeekdays macro, 132–133
As keyword, 55
ASCII (American Standard Code for

Information Interchange), 289
Assign Macro dialog box, 183–184, 197–198
assigning

 shortcut keys, 19, 36
 values to variables, 56–57

asterisks (*) in SELECT statement, 369
Auto List Members option, 71–72
AutoCorrect list, updating, 108
automatically run macros, 5–6
automation, Offi ce. See Offi ce automation
AverageBowlingScores macro, 120

B

BackColor property, 327
BASIC (Beginner’s All-purpose Symbolic

Instruction Code) programming
language, 4

binding in Offi ce automation, 392–394
Boolean data type, 58
boundaries for arrays, 132
Break button, 255

443

breakpoints – clearing

bindex.indd 02/26/2015 Page 443

breakpoints, 259–261
Bring to Front button, 306
bugs. See debugging code
BuildDynamicString macro, 412
buttons

 Form controls, 183–184
 message boxes, 93

bypassing errors, 265–266
Byte data type, 58

C

calculate events, 144
CalculateSalary macro, 120
Call Stack dialog box, 263
calling UDFs from macros,

245–246
Caption property

 CommandButtons, 188, 286
 Label controls, 276, 287
 UserForms, 274

Case keyword, 91–92
Cell object, 50, 51
cells

 clearing, 70
 color, 23–24
 coloring, 373–376
 data validation, 383–387
 fi lling, 118–119
 logging changes to, 380
 ranges. See ranges and Range object
 summing numbers in, 239–240

Cells property, 76
Centering button, 306
centuries, entering, 59
Change Chart Type dialog box, 200
change events

 workbooks, 154–155
 worksheets, 141–142, 144–148

CHAR function, 289

characters, extracting from strings, 241–242
Chart object, 199
chart sheets

 adding charts to, 200–202
 copying to slides, 433–435

ChartLocation macro, 84
ChartObject object, 199
charts, 199

 adding to chart sheets, 200–202
 adding to worksheets, 202–204
 deleting, 207–208
 locating, 82–84, 209
 looping through, 206–207
 moving, 204–205
 PivotCharts, 223–226
 renaming, 208
 step-by-step example, 208–211
 UserForms, 314–315

Charts collection, 53, 199
ChartSheetsToWorkbook macro, 205
ChartSheetToWorksheet macro, 204–205
CheckBox controls

 color, 329–330
 overview, 294–295

CheckBox1_Click macro, 295
class modules, 28, 321

 benefi ts, 323–326
 classes, 321–322
 collections, 326
 description, 322–323
 objects

 creating, 323
 embedded, 326–330

 step-by-step example, 330–334
ClearClipboard macro, 381–382
ClearContents method, 51–52, 70
ClearData macro, 183, 185
clearing

 clipboard, 381–382
 ranges, 51–52, 70

444

click events – CommandType property

bindex.indd 02/26/2015 Page 444

click events
 CommandButtons, 286
 workbooks, 155–156
 worksheets, 142

clipboard, clearing, 381–382
Close button, disabling, 307–308
close events, 154
Close method

 Connection object, 367
 Recordset object, 368

CloseAllOtherWorkbooks macro, 68
CloseOneWorkbook macro, 105
CloseOneWorkbookFaster macro, 105
CloseWorkbooks macro, 104
closing

 add-ins, 349
 connections, 367
 Recordset objects, 368
 UserForms, 281–283
 workbooks, 68, 104–105
 worksheets, 104

cmdButtonGroup_Click macro, 327
cmdButtonGroup_MouseMove macro, 327
cmdCancel_Click macro, 286
cmdContinue_Click macro, 308
cmdLandscape_Click macro, 286
cmdOK_Click macro

 add-in example, 338–339
 checkboxes, 296

cmdPortrait_Click macro, 286
cmdSortDown_Click macro, 311–312
cmdSortUp_Click macro, 311
code

 debugging. See debugging code
 macros, 36
 UserForms, 281

Code window, 27
Collection object, 52–53
collections

 ActiveX controls, 328

 creating, 326
 For…Each…Next loops, 104
 object model, 52–53
 step-by-step example, 71–73
 workbooks, 67–69

colon character (:) in Select Case structure, 92
color

 cells, 23–24
 CheckBox controls, 329–330
 comments, 36, 38
 hex codes, 327

Color property, 51
colored cells, summing numbers in, 239–240
coloring

 active elements, 373–375
 cells, 375–376

columns
 coloring, 373–375
 last, 80–81

ComboBox controls
 overview, 292–294
 populating, 312–314
 pre-sorting items in, 310–311

ComboBox1_Change macro, 313
Command object, 368
CommandBar object, 346
CommandButton controls

 ActiveX controls, 187–191
 adding, 278–280
 overview, 286

CommandButton1_Click macro
 ActiveX controls, 190
 hiding columns, 288
 OptionButtons, 297–298
 summing numbers, 290

CommandButton4_Click macro, 300
CommandText property

 Access fi elds, 427
 Command object, 368

CommandType property, 368

445

commas – Customize Ribbon option

bindex.indd 02/26/2015 Page 445

commas (,)
 arguments, 239
 ranges, 77
 thousands separators, 16
 variable declarations, 59

Comment2Text macro, 360
comments

 cell change logs, 380
 conditional formatting for, 244–245
 listing unique items, 169–170
 in macros, 36–39

Comments collection, 52
compatibility of macros, 34
conditional formatting in UDFs, 244–245
Confi rmExample macro, 93
Connection object, 367
ConnectionString property, 367
constants, 63–64
continuously populated ranges, 75–77
Control Toolbox, 186–187
controls, 274–280

 Application.Caller for, 184–186
 Buttons, 183–184
 CheckBox, 294–295
 ComboBox, 292–294
 CommandButton, 187–191, 286
 Control Toolbox, 186–187
 Form and ActiveX, 181–182
 Forms toolbar, 182–183
 Frame, 298–300
 frequently used, 285
 Label, 287–288
 ListBox, 290–292
 MultiPage, 300–301
 OptionButton, 296–298
 step-by-step examples, 191–198,

301–304
 TextBox, 288–290

ControlSource property, 288
ConvertAbsoluteToRelative macro, 121–122

converting
 absolute and relative references, 121–122
 fi les to add-ins, 341–342

ConvertRelativeToAbsolute macro, 121
CopyChartSheets macro, 434–435
CopyEmbeddedChart macro, 437–439
copying

 chart sheets to slides, 433–435
 to clipboard, 381–382
 ranges

 to PowerPoint presentations,
432–433

 to Word documents, 402–403
CopyRange macro, 432–433
CountFormulas macro, 122
Create PivotTable dialog box, 213
CreateAccessTable macro, 426–427
CreateChartSameSheet macro, 202–203
CreateChartSheet macro, 200
CreateNewPresentation macro, 431–432
CreatePivot macro, 227
CreatePivotChart macro, 234–235
CreateTextFiles macro, 359
CreateWordDoc macro, 402
Ctrl+Alt+F9 keys, 243
Ctrl+Break keys, 243
Ctrl+F11 keys, 26
Ctrl+G keys, 28, 72
Ctrl+R keys, 26, 150
Ctrl+S keys, 350
Ctrl+Shift+Enter keys, 120
Ctrl+Shift+F9 keys, 261
Currency data type, 58
current cells, coloring, 375–376
CurrentQuarter macro, 92
CurrentRegion property

 charts, 200–201
 overview, 76–77

Custom Lists dialog box, 384–385
Customize Ribbon option, 15

446

CustomListDV macro – DeleteRows3YearsOld macro

bindex.indd 02/26/2015 Page 446

CustomListDV macro, 385–387
CutCopyMode property, 381

D

DAO (Data Access Objects) library, 366
data access, ADO. See ActiveX Data Objects

(ADO)
data ranges, identifying, 79
data types, 55

 arrays, 127
 dates and time, 58–59
 declaring, 59–61
 overview, 57–58

data validation in cells, 383–387
database management system (DBMSs), 366
databases

 Access. See Access application and tables
 terms, 366

DataRangeLastRowsColumns macro, 80–81
dates and Date data type

 declaring, 58–59
 description, 58
 fi ltering, 376–379
 querying, 361–364

DateSerial function, 111, 376
DBMSs (database management system), 366
deactivate events

 workbooks, 154, 157–158
 worksheet, 144

Debug toolbar, 254–255
 Break button, 255
 Design Mode button, 255
 Reset button, 255
 Run button, 255
 stepping through code, 255–256

 Step Into button, 257–258
 Step Out button, 259
 Step Over button, 258–259

 Toggle Breakpoint button, 259–261
debugging code

 Call Stack dialog box, 263
 Debug toolbar. See Debug toolbar
 errors

 bypassing, 265–266
 causes, 252–254
 handling, 264–265

 Immediate window, 261–262
 Locals window, 261
 overview, 251–252
 Quick Watch window, 263
 step-by-step example, 266–268
 Watch window, 262–263

Decimal data type, 58
decisions, 85

 If…Then statements, 88
 If…Then…Else statements, 89
 If…Then…ElseIf statements, 90
 IIF statements, 90–91
 logical operators, 85–88
 Select Case structure, 91–92
 step-by-step example, 94–97
 user, 92–94

declaring
 arrays, 129–130

 dynamic, 133–134
 with fi xed elements, 132–133

 constants, 63–64
 variables, 55–56, 59–61

DELETE statement in SQL, 370–371
DeleteAllPivotTablest macro, 232
DeleteAndCreate macro, 361
DeleteArrayColors macro, 167
DeleteChartSheets macro, 208
DeleteDupesColumnA macro, 162
DeleteDupesColumnD macro, 162–163
DeleteDuplicateRecords macro, 164–165
DeleteRows3YearsOld macro, 378–379

447

deleting – end of ranges

bindex.indd 02/26/2015 Page 447

deleting
 charts, 207–208
 hyperlinks, 261
 macros, 39
 modules, 42–43
 PivotTables, 232
 rows

 with duplicates, 161–167
 fi ltered dates, 378–379
 in SQL, 370–371

descriptions
 in Insert Function dialog box, 246–248
 for macros, 19

Design Mode button, 255
Design mode in Control Toolbox, 188, 191
Developer tab, 13–15
Dim statement, 129–130
dimensions, arrays, 129
Dir function, 107
disabling

 Close button, 307–308
 Frames, 298–299
 worksheet events, 139–140

DisplayGridlines property, 88
displaying

 photographs, 308–309
 real-time charts, 314–315

Do…Loop Until loops, 109
Do…Loop While loops, 109
Do Until loops, 107–108
Do While loops, 106–107
double-click events

 workbooks, 155–156
 worksheets, 142

Double data type, 58
DoWhileExample macro, 107
duplicates

 deleting rows with, 161–167
 selecting range of, 171–172

 step-by-step example, 173–179
 unique lists from multiple columns,

167–170
dynamic arrays, 133–134
dynamic last rows and columns, 80–81

E

e-mail
 creating, 410–411
 example, 413–414
 step-by-step example, 415–418
 transferring ranges to, 411–413
 worksheets, 415

early binding, 392–395
EarlyBindingTest macro, 393
editing macros, 37–39
effi ciency, variables for, 57
elements, array, 127
EmailAttachmentRecipients macro,

416–418
EmailSingleSheet macro, 415
embedded charts

 adding to worksheets, 202–204
 copying to PowerPoint, 436–439
 looping through, 206–207
 moving, 204–205

embedded form controls. See Form controls
embedded objects, class modules for,

326–330
EmbeddedChartToAnotherWorksheet macro,

205
EmbeddedChartToChartSheet macro, 205
EmptyRecycleBin function, 382
EnableEvents property, 139–140
enabling worksheet events, 139–140
End Function statements, 238
End If statements, 88
end of ranges, 81–82

448

errors – ForeColor property

bindex.indd 02/26/2015 Page 448

errors
 debugging. See debugging code
 UDFs, 242
 Word applications, 400

Euro Currency Tools add-in, 346
events, 137

 automatically run macros, 5–6
 CommandButton, 187–191
 Object Browser, 29
 workbook. See workbook events
 worksheet. See worksheet events

ExampleEmail macro, 413–414
Excel Options dialog box

 add-ins, 344
 for Developer tab, 13–14
 formulas, 116
 lists, 384–385
 Option Explicit statement, 61

Exit For statements, 105
exiting

 For loops, 104–105
 VBE, 30

ExportFromExcelToWord macro, 403
exporting Access tables, 423–426
expressions in Watch window, 262–263
Extended ASCII characters, 289
external data, 353

 ADO. See ActiveX Data Objects (ADO)
 QueryTables

 for Access, 356–358
 from web queries, 353–356

 step-by-step example, 361–364
 text fi les for, 359–361

extracting
 addresses from hyperlinks, 242
 characters from strings, 241–242

ExtractLetters UDF, 241–242
ExtractNumbers UDF, 241, 246–247

F

F2 key, 23, 243
F4 key, 337
F5 key, 23, 70
F9 key, 260
F11 key, 202
False value in truth tables, 85–88
FavoriteMovies macro, 127
FavoriteMoviesLoop macro, 128
FavoriteMoviesRange macro, 128–129
fi eld lists in PivotTables, hiding, 217–219
fi elds, database, 366
fi les, converting to add-ins, 341–342
FillBlankCellsFromAbove macro,

118–119
FilterBetweenDates macro, 376–378
FilterDateAfterToday macro, 378
FilterDateBeforeToday macro, 378
fi lters

 AdvancedFilter, 161–164, 167–168
 dates, 376–379
 deleting rows with duplicates, 161–164
 PivotTables, 214

Find_LastRow_LastColumn macro, 75
Find method

 error bypass structure for, 266–268
 ranges, 79

FindFormulas macro, 71
FindHello macro, 109
FindTest macro, 268
fi xed elements, declaring arrays with,

132–133
fi xed-iteration loops, 102
For…Next loops, 102–103
For…Each…Next loops, 104
forcing variable declarations, 59–61
ForeColor property, 327

449

Form controls – Image controls

bindex.indd 02/26/2015 Page 449

Form controls
 vs. ActiveX, 182
 Application.Caller, 184–186
 buttons, 183–184
 Control Toolbox, 186–187
 Forms toolbar, 182–183
 overview, 181
 step-by-step example, 191–198

Format Cells dialog box
 color, 23
 numbers, 193–194
 PivotTables, 220–221

formatting
 PivotTable numbers, 219–222
 UDFs, 244–245

forms. See UserForms
Forms toolbar, 182–183
FormulaArray method, 120
FormulaR1C1 method, 114, 116
formulas, 113

 array, 120–122
 counting, 122
 entering, 114–115
 references, 113–115

 A1 vs. R1C1, 115
 converting absolute and relative,

121–122
 mixed, in fi lling empty cells,

118–119
 named ranges, 119–120
 toggling between style views,

116–118
 step-by-step example, 124–126
 summing lists, 122–124

ForNextExample2 macro, 103
ForNextExample3 macro, 103
Frame controls, 276–277, 298–300
FROM clause in SELECT statements, 369

Function statement, 238
functions. See user-defi ned functions (UDFs)

G

GetComment UDF, 249, 350
GetObject function, 399–400
GetTextMessage macro, 361
Go To dialog box

 accessing, 23
 SpecialCells, 70, 244

Go To Special dialog box, 23
GroupName property, 298
Groups button, 306
grpCBX_Click macro, 329

H

Height parameter for charts, 209
hex codes for color, 327
Hide method for UserForms, 281
hiding

 PivotTable fi eld lists, 217–219
 UserForms, 283

history of VBA, 4
hyperlinks

 deleting, 261
 events, 142–143
 extracting addresses from, 242

I

icons, displaying, 12–13
identifying ranges, 79–80
If…Then statements, 88
If…Then…Else statements, 89
If…Then…ElseIf statements, 90
IIF statements, 90–91
Image controls, 309

450

Immediate window – ListBox1_Click macro

bindex.indd 02/26/2015 Page 450

Immediate window, 28, 31, 261–262
Import Data dialog box, 426
Importance property for e-mail, 411
ImportHistory macro, 356
importing

 Access tables, 423–426
 Word documents, 404–405

ImportStocks macro, 354–355
ImportToExcelFromWord macro, 404–405
indefi nite loops, 102
index numbers

 arrays, 127–128, 131–132
 charts, 205
 lists, 383
 worksheets, 68–69, 107

Index property
 charts, 82
 PivotTables, 229

infi nite loops, 140
Initialize events

 labels, 287
 ListBox controls, 291

input boxes, 94
InputPassword macro, 110
Insert Chart dialog box, 225
Insert Function dialog box, descriptions in,

246–248
inserting

 modules, 39–40
 rows

 on data changes, 172–173
 databases, 369–370
 input boxes for, 94
 loops for, 106

InsertRows macro, 94, 106
installing add-ins, 342–346
instantiating

 classes, 323
 objects, 325

Integer data type
 description, 58

 variables, 55
IntelliSense tool, 71–73
interface for add-ins, 346–348
IsNumeric function, 146
iterations in loops, 101–102

J

JKP Application Development Services,
381

K

KeepOnlyArrayColors macro, 166–167

L

Label controls
 OptionButtons, 330–331
 overview, 287–288
 UserForms, 276–277

last rows and columns, fi nding, 80–81
late binding

 description, 394
 vs. early, 394–395
 step-by-step example, 395–397

LateBindingTest macro, 394
LBound function, 132
Left parameter for charts, 209
LEN function, 293
letters, extracting from strings, 241–242
liabilities of VBA, 8
libraries in Object Browser, 28–30
lifetime

 constants, 64
 variables, 61–63

Link UDF, 242
ListBox controls

 overview, 290–292
 populating, 312–314
 pre-sorting items in, 310–311

ListBox1_Click macro, 292

451

lists – modeless UserForms

bindex.indd 02/26/2015 Page 451

lists
 arrays as, 128–129
 custom, 385–387
 from multiple columns,

167–170
 summing, 122–124

ListStyle property, 290
LoadPicture dialog box, 309
local macro scope, 62
Locals window, 261
Location property, 200
Locked property, 51
locking VBE, 43–44
logging cell changes, 380
logical errors, 253–254
logical operators, 85

 AND, 86
 NOT, 87–88
 OR, 86–87

Long data type, 58
look and feel, simplifying, 7
LoopAllChartSheets macro, 207
LoopAllEmbeddedCharts macro,

206
loops

 description, 101–102
 Do…Loop Until, 109
 Do…Loop While, 109
 Do Until, 107–108
 Do While, 106–107
 embedded charts, 206–207
 exiting, 104–105
 For…Each…Next, 104
 For…Next, 102–103
 infi nite, 140
 nesting, 110–111
 reverse, 105–106
 step-by-step example, 111–112
 types, 102
 While…Wend, 110

LoopTwelveMonths macro, 112

M

Macro dialog box, 21–22
Macro Options dialog box,

247–248
Macro Recorder limitations, 37
macros

 automatically running, 5–6
 buttons, 183–184
 calling UDFs from, 245–246
 code, 36
 compatibility, 34
 deleting, 39
 description, 3–4
 editing, 37–39
 Form controls, 181
 locating, 33–35
 Macro Recorder, 16–21
 names, 19, 22
 running, 21–22
 step-by-step example, 22–24
 UDFs called by, 238
 variable scope in, 62
 VBA environment access,

11–15
MailItem objects, 410–411
maximizing UserForms, 308
Me keyword, 306
message boxes, 92–93
methods

 IntelliSense for, 71–73
 Object Browser, 29
 object model, 49, 51–52

MID function, 243–244
mixed references

 fi lling empty cells,
118–119

 named ranges with,
119–120

modal UserForms, 306–307
modeless UserForms, 306–307

452

modules – Open Database Connectivity

bindex.indd 02/26/2015 Page 452

modules
 class. See class modules
 deleting, 42–43
 inserting, 39–40
 renaming, 41–42
 types, 28
 UDFs, 238
 UserForms, 281
 variable scope in, 62–63
 VBE, 34–35

moving charts, 204–205
MultiPage controls, 300–301
multiple columns

 deleting rows with duplicates, 164–167
 unique lists from, 167–170

MultiSelect property, 290, 292

N

Name property
 UserForms, 274
 worksheets, 51

named ranges, 119–120
names

 active worksheets and workbooks, 243–244
 charts, 205, 208
 macros, 19, 22
 modules, 41–42
 PivotFields, 230
 testing, 265–266
 UDFs, 239
 variables, 55–56

Names collection, 53, 70
NameWB UDF, 244
Naval Observatory, querying, 361–364
nesting loops, 110–111
New Formatting Rule dialog box, 245
new sheet events, 156–157
Next statements, 103
non-Excel applications, controlling, 7–8
noncontinuously populated ranges, 77

NOT logical operators, 87–88
number signs (#) for dates and time, 58–59
numbers

 extracting from strings, 241–242
 formatting in PivotTables, 219–222
 summing, 239–240

O

Object Browser, 28–30
Object data type, 58
object-oriented programming

 introduction, 49
 object model

 collections, 52–53
 methods, 51–52
 overview, 50–51
 properties, 51

 summary, 53
objects

 creating, 323
 embedded, 326–330
 IntelliSense for, 71–73

ODBC (Open Database Connectivity), 366
Offi ce automation, 391

 Access. See Access application and tables
 benefi ts, 391–392
 binding, 392–395
 Outlook. See Outlook application and

e-mail
 PowerPoint. See PowerPoint presentations
 step-by-step example, 395–397
 Word. See Word application and

documents
OFFSET property, 78
OLEObject keyword, 328
OLEObjects keyword, 328
On Error GoTo statements, 264
On Error Resume Next statements, 265, 400
OnKey procedures, 202
Open Database Connectivity (ODBC), 366

453

open events – populating ListBox and ComboBox items

bindex.indd 02/26/2015 Page 453

open events, 153–154
Open method

 Connection object, 367
 Recordset object, 368

OpenAllFiles macro, 107
opening

 databases, 367, 424
 Outlook, 409–410
 PowerPoint, 395–397
 Recordset objects, 368
 Word documents, 400–401, 406–408
 workbooks, 107

OpenOrClosed UDF, 245–246
OpenOutlook macro, 409–410
OpenPowerPoint macro, 395–397
OpenRequestedWordDoc macro, 406–408
OpenTest UDF, 245
OptGroup_Click macro, 332
Option Base statement, 130–131
Option Explicit statement, 59–61
OptionButton controls

 adding, 277–278
 overview, 296–298
 step-by-step example, 330–334

Options dialog box
 Auto List Members, 71–72
 view style, 116–117

OR logical operators, 86–87
ORDER BY statement, 369
Outlook application and e-mail, 409

 creating, 410–411
 example, 413–414
 opening, 409–410
 step-by-step example, 415–418
 transferring ranges to, 411–413
 worksheets, 415

P

page breaks, 379
PageBreakInsert macro, 379

Parent property, 52
parentheses ()

 arrays, 129–130
 message boxes, 93
 Sub statement, 36
 UDFs, 239

PasswordChar property, 288
passwords

 entering, 110
 step-by-step example, 94–97
 UserForms, 288
 VBE, 43

PasswordTest macro, 97
photographs, 308–309
PickSixLottery macro,

110–111
Picture property, 309
pie charts, 210–211
Pieterse, Jan Karel, 381
PivotCaches, 226–230
PivotCharts, 223–226
PivotFields, 230
PivotItems, 231
PivotTables, 52, 213

 creating, 213–217
 fi eld list hiding, 217–219
 formatting numbers in,

219–222
 PivotCaches, 226–230
 PivotCharts, 223–226
 PivotFields, 230
 pivoting data in, 222
 PivotItems, 231
 refreshing, 226, 232
 step-by-step example, 232–235
 workbook events, 156
 worksheet events, 144

PivotTables collections, 231–232
points, 209
populating ListBox and ComboBox items,

312–314

454

PowerPoint presentations – real-time charts

bindex.indd 02/26/2015 Page 454

PowerPoint presentations
 binding, 395–397
 copying chart sheets to, 433–435
 copying ranges to, 432–433
 creating, 431–432
 running, 435–436

PowerPointSlideshow macro, 435–436
pre-sorting ListBox and ComboBox items,

310–311
prefi xes for control names, 286
Preserve statements, 133–134
primary keys for databases, 366
print events, 157–160
printing Word documents, 403–404
PrintWordDoc macro, 403–404
prior selected cells, coloring, 375–376
Project Explorer window, 26–27, 150
prompts

 input boxes, 94
 message boxes, 93

properties and Property Window, 27
 accessing, 339
 IntelliSense for, 71–73
 module names, 41
 Object Browser, 29
 object model, 49, 51
 UserForms, 273–274

protecting
 add-in code, 348
 VBE, 43–44

PtrSafe keyword, 381, 424
Public scope

 arrays, 130
 UDFs, 238

PublicArrayExample macro, 130

Q

queries, database, 366
QueryClose events, 307
QueryTables

 for Access, 356–358
 from web queries, 353–356

question marks (?) for Immediate window,
261–262

Quick Watch window, 263
QuickBASIC language, 4
quotes (“)

 column references, 76
 ranges, 77
 VALUES clause, 370

R

R1C1 references in formulas, 113–115
 vs. A1, 115
 toggling with A1, 116–118

RAND function, 124, 243
random numbers

 lottery example, 110–111
 volatility of, 124, 243

ranges and Range object, 50, 75
 continuously populated, 75–77
 copying

 to PowerPoint presentations,
432–433

 to Word documents,
402–403

 with duplicates, 171–172
 identifying, 79–80
 last rows and columns, 80–81
 named, 119–120
 noncontinuously populated, 77
 OFFSET property, 78
 overview, 69–70
 RESIZE property, 78
 SpecialCells, 70–71
 start and end, 81–82
 step-by-step example, 82–84
 transferring to e-mail, 411–413

readability, variables for, 57
real-time charts, 314–315

455

recalculating – Select method

bindex.indd 02/26/2015 Page 455

recalculating
 calculate events for, 144
 Volatile functions, 124, 243

Record Macro dialog box, 18
recording macros, 16–21
records

 adding to Access, 419–423
 databases, 366

Recordset object, 367–368
recurring tasks, 5
RecycleBinEmpty macro, 382
ReDim statements, 133–134
references in formulas, 113–115

 A1 vs. R1C1, 115
 converting absolute and relative,

121–122
 mixed, for fi lling empty cells, 118–119
 named ranges with, 119–120
 toggling between style views, 116–118

Refresh method, 52
RefreshAll method, 232
refreshing

 PivotCaches, 226
 PivotTables, 232
 QueryTables, 355–356

relational databases, 366
relative references

 converting to absolute, 121–122
 named ranges with, 119–120

removing add-in list items, 349–350
RenameCharts macro, 208
renaming

 charts, 208
 modules, 41–42

repeating actions with loops. See loops
repetitive tasks, 5
Require Variable Declaration option, 61, 68
Reset button, 255
RESIZE property, 78
reverse loops, 105–106
Ribbon interface, 11, 13

right click events
 workbooks, 156
 worksheets, 142

rows
 coloring, 373–375
 deleting

 with duplicates, 161–167
 fi ltered dates, 378–379
 in SQL, 370–371

 inserting
 on data changes, 172–173
 in databases, 369–370
 input boxes for, 94
 loops for, 106

 last, 80–81
RowSource property

 ComboBox controls, 292–293
 ListBox controls, 291

Run button, 255
Run Macro button, 21
running macros, 21–22
runtime errors, 253

S

Same Size button, 306
Save As dialog box, 341, 349–350
save events, 158
SaveCellValue macro, 361
Saved property, 51
scope

 arrays, 130
 constants, 63–64
 variables, 61–63

ScreenUpdating, 175
searching

 loops for, 109
 in Object Browser, 30

Select Case structure, 91–92
Select Data Source dialog box, 357
Select method, 37

456

SELECT statement in SQL – syntax errors

bindex.indd 02/26/2015 Page 456

SELECT statement in SQL, 369
Select Table dialog box, 357–359, 426
SelectCaseExample macro, 92
SelectDataRange macro, 79
selected cells, coloring, 375–376
SelectedWorksheets macro, 133–134
selecting

 photographs, 308–309
 range of duplicates, 171–172
 worksheets, 107–108

selection change events
 workbooks, 155
 worksheets, 141–142

Selection object, 69
SelectSheet macro, 107–108
SelectUsedRange macro, 79
self-expiring workbooks, 382
Send to Back button, 306
SendEmail macro, 410–411
SendMail, 415
Set as Default Chart option, 200
SheetManager macro, 339, 346–347
SheetName UDF, 244
SheetPivotTableUpdate events, 156
Sheets collection, 69
ShellExecute function, 424
Shift+F9 keys, 263
shortcut keys for macros, 19, 22
Show Developer tab, 13–14
ShowAllItems macro, 231
ShowHidePivotChartFieldButtons macro,

225–226
ShowModal property, 306
ShowSingleItem macro, 231
ShowUserForm1 macro, 306
ShowUserForm2 macro, 307
Single data type, 58
64-bit version, 381
size

 arrays, 129, 133–134
 UserForms, 308

slides in PowerPoint presentations
 copying chart sheets to, 433–435
 copying ranges to, 432–433

Solver add-in, 346
Sort_Separate_ClientName macro, 172–173
SpecialCells method, 70–71, 118
splash screens, 309–310
SQL. See Structured Query Language (SQL)
standard modules

 description, 28
 UDFs, 238

start of ranges, 81–82
static random numbers, 124
Static scope of arrays, 130
StaticRandom UDF, 243
Step statements, 105–106
stepping through code, 255–256

 Step Into button, 257–258
 Step Out button, 259
 Step Over button, 258–259

stock quotes QueryTables example, 353–356
Stop Recording toolbar, 20–21
strings and String data type

 description, 58
 extracting characters from, 241–242

Structured Query Language (SQL),
356, 368

 DELETE statement, 370–371
 examples, 371–372
 INSERT statement, 369–370
 SELECT statement, 369
 UPDATE statement, 370
 uppercase for statements, 369

Sub statement, 36
SumAlongOneRow macro, 123–124
SumColor UDF, 240
SUMIF function, 239
summing

 lists, 122–124
 numbers in colored cells, 239–240

syntax errors, 252

457

tables – user-defi ned functions

bindex.indd 02/26/2015 Page 457

T

tables
 Access. See Access application and tables
 arrays as, 128–129
 PivotTables. See PivotTables

TestComment UDF, 244–245
TestPublicArrayExample macro, 130
TestSheetCreate macro, 265–266
text fi les for external data, 359–361
TextBox controls

 adding, 276–277
 collections of, 326
 input fi ltering, 323–326
 overview, 288–290

TextBox1_KeyPress macro, 289, 323–324
TextExport macro, 360–361
32-bit version, 381
ThisWorkbook module, 28, 150, 158, 202
time

 declaring, 58–59
 fractional values with, 287
 querying, 361–364

Time function, 287
TimeAfterTime macro, 363
titles in message boxes, 93
Toggle Breakpoint button, 259–261
ToggleViews macro, 195–197
toolbars

 Control Toolbox, 186–187
 Debug. See Debug toolbar
 Forms, 143, 182–183
 Macro Recorder, 20
 Stop Recording, 21
 UserForms, 305–306
 VB, 12–13
 VBE, 33–34

Toolbox in VBE, 274–276
Top parameter for charts, 209
trapping errors, 264–266
triggers

 for automatically run macros, 5–6
 events. See events

True value in truth tables, 85–88
truth tables, 85–88
TryItPieChart macro, 209–211
two-dimensional arrays, 129
TwoDimensionalArray macro, 129
TxtGroup_KeyPress macro, 324

U

UBound function, 130, 132
UDFs. See user-defi ned functions (UDFs)
Ungroup button, 306
UnhideSheets macro, 104
unhiding worksheets, 104
unique lists from multiple columns, 167–170
UniqueList macro, 167–168
UniqueStoresToWorkbooks macro, 174–179
Unload method, 281
unloading UserForms, 282, 309–310
UPDATE statement in SQL, 370
UsedRange property, 79–80
user decisions, 92

 input boxes, 94
 message boxes, 92–93

user-defi ned functions (UDFs)
 anatomy, 238–239
 calling from macros, 245–246
 characteristics, 237–238
 conditional formatting, 244–245
 creating, 7
 description, 237
 extracting addresses from hyperlinks, 242
 extracting characters from strings, 241–242
 Insert Function dialog box, 246–248
 returning active worksheet and workbook

names, 243–244
 step-by-step example, 248–249
 summing numbers, 239–240
 volatile, 243

458

user interface for add-ins – Visual Basic Editor icon

bindex.indd 02/26/2015 Page 458

user interface for add-ins, 346–348
UserForm_Initialize macro

 charts, 314
 ComboBoxes, 292–294
 labels, 287
 ListBoxes, 291, 310–311, 313
 TextBoxes, 325–326
 UserForm size, 308–309

UserForm_QueryClose macro, 307
UserForms

 add-ins, 346
 Close button, 307–308
 closing, 281–283
 code, 280–281
 controls. See controls
 creating, 272–273
 description, 271
 designing, 273–274
 hiding, 283
 ListBox and ComboBox items

 populating, 312–314
 pre-sorting, 310–311

 modal vs. modeless, 306–307
 modules, 28
 photographs, 308–309
 real-time charts, 314–315
 showing, 280
 size, 308
 step-by-step examples, 283–284, 315–319
 toolbar, 305–306
 unloading, 282, 309–310

V

Val function, 289
Value Field Settings dialog box, 219–221
values, assigning to variables, 56
VALUES clause in INSERT statement, 370

variables
 assigning values to, 56
 data types

 dates and time, 58–59
 declaring, 59–61
 overview, 57–58

 declaring, 55–56, 59–61
 names, 55–56
 need for, 56–57
 overview, 55–56
 scope, 61–63
 step-by-step example, 64–66
 Watch window, 262–263
 workbooks, 68

Variant data type
 as default type, 59
 description, 58

VB (Visual Basic) vs. VBA, 4
VBA overview, 3

 benefi ts, 5–6
 controlling non-Excel applications, 7–8
 environment access, 11–15
 history, 4
 liabilities, 8
 UDFs, 7
 workbook look and feel, 7

VBAProject - Project Properties dialog box,
43

VBE. See Visual Basic Editor (VBE)
vbModal value, 306
versions

 Offi ce, 392
 VBA, 11–12

View Code option, 138
visibility

 arrays, 130
 variables, 61–64

Visual Basic Editor icon, 31

459

Visual Basic Editor – Workbook_SheetSelectionChange events

bindex.indd 02/26/2015 Page 459

Visual Basic Editor (VBE)
 description, 25
 exiting, 30
 getting into, 25–26
 locking and protecting, 43–44
 macros

 code, 36
 deleting, 39
 editing, 37–39
 locating, 33–35

 modules, 28
 deleting, 42–43
 inserting, 39–40
 renaming, 41–42

 Object Browser, 28–30
 step-by-step example, 30–31, 44–45
 toolbars, 33–34
 UserForms. See UserForms
 windows, 26–28

Visual Basic toolbar, 12–13
volatile functions, 124, 243

W

Watch window, 262–263
web queries, QueryTables from, 353–356
WEEKDAY function, 88, 133
WeekdayTest macro, 90
WHERE clause

 DELETE statement, 370–371
 SELECT statement, 369

While…Wend loops, 110
Width parameter for charts, 209
Windows API, 381–382
With statements, 39
WithEvents keyword, 324
WithoutVariable macro, 56–57

WithVariable macro, 57
Word application and documents

 activating, 399–401
 copying ranges to, 402–403
 creating, 402
 early binding, 392–394
 importing, 404–405
 opening, 400–401
 printing, 403–404
 step-by-step example, 405–408

Workbook_Activate events, 154
Workbook_BeforeClose events, 154, 347
Workbook_BeforePrint events, 157
Workbook_BeforeSave events, 158, 359
Workbook_Deactivate events, 154
workbook events

 code for, 151–152
 common, 153–158
 modules for, 149–151
 overview, 149
 step-by-step example, 158–160

Workbook_NewSheet events, 156–157
Workbook object, 50, 67
Workbook_Open events

 ActiveX controls, 328
 add-ins, 347
 CheckBox controls, 329–330
 overview, 153–154
 PivotTables, 232

Workbook_SheetActivate events, 157
Workbook_SheetBeforeDoubleClick events,

155–156
Workbook_SheetBeforeRightClick events,

156
Workbook_SheetChange events, 154–155
Workbook_SheetDeactivate events, 157–158
Workbook_SheetSelectionChange events, 155

460

workbooks – Zoom button

bindex.indd 02/26/2015 Page 460

workbooks
 closing, 105
 events. See workbook events
 look and feel, 7
 modules, 28
 opening, 107
 self-expiring, 382
 working with, 67–69

Workbooks collection, 53, 67–69
Worksheet_Activate events, 143
Worksheet_BeforeDoubleClick events, 142,

171–172
Worksheet_BeforeRightClick events, 142
Worksheet_Calculate events, 144
Worksheet_Change events, 140

 cell change logs, 380
 overview, 140
 PivotCharts, 229
 PivotTables, 231–232
 summing numbers, 144–148
 unique items, 169–170

Worksheet_Deactivate events, 144
worksheet events, 137

 common, 141–144
 description, 137–138
 enabling and disabling, 139–140
 modules for, 138–139
 step-by-step example, 144–148
 Worksheet_Change, 141

Worksheet_FollowHyperlink events, 142–143
Worksheet object, 50
Worksheet_PivotTableUpdate events, 144
Worksheet_SelectionChange events

 coloring active elements, 373–375
 coloring cells, 376
 overview, 141–142

worksheets
 adding, 68–69
 adding embedded charts to, 202–204
 closing, 104
 creating, 109
 e-mailing, 415
 events. See worksheet events
 modules, 28
 selecting, 107–108
 unhiding, 104

Worksheets collection, 52, 69
WorksheetTest1 macro, 68
WorksheetTest2 macro, 69

X

.xla extension, 335

.xlam extension, 335
xlPath UDF, 239
.xlsx extension, 176

Y

years, entering, 59
YearSheets macro, 109

Z

zero-based array numbering, 130–131
Zoom button, 306

Try Safari Books Online FREE
for 15 days and take 15% off

for up to 6 Months*
Gain unlimited subscription access to thousands of books and videos.

START YOUR FREE TRIAL TODAY!

Visit: www.safaribooksonline.com/wrox

*Discount applies to new Safari Library subscribers only

and is valid for the fi rst 6 consecutive monthly billing

cycles. Safari Library is not available in all countries.

With Safari Books Online, learn without limits
from thousands of technology, digital media and
professional development books and videos from
hundreds of leading publishers. With a monthly
or annual unlimited access subscription, you get:

• Anytime, anywhere mobile access with Safari
To Go apps for iPad, iPhone and Android

• Hundreds of expert-led instructional videos on
today’s hottest topics

• Sample code to help accelerate a wide variety
of software projects

• Robust organizing features including favorites,
highlights, tags, notes, mash-ups and more

• Rough Cuts pre-published manuscripts

http://www.safaribooksonline.com/wrox

Programmer to Programmer™

Contact Us.
We love feedback! Have a book idea? Need community support?

Let us know by e-mailing wrox-partnerwithus@wrox.com

Connect with Wrox.
PPPPPPararartartiarticrticiticipicipcipacipatpatpatatteeee
TTaTaTaakkeke ake ae an an an acactactivtivevee rroroollele ononlonlineine ne bby by papartiarticipcipatinatingng

ininin on ouour our Pr P2P2P 2P fP forforuorumums ms @@@ p2p2p.wp.wrwroox.cx.coomm

WWWrWrWrroxoxox Bx BBloBloxloxox
DDoDownownlwnloaoadad sh shortort int infoformrmatioational nal pieceeces and cod code

toto to keo keekeep yep youyou uu up top to do dateate andand out out of troububle

JoJoinoin in ththe he Ce Comommumunittyy
SSign ign upup fop for ourour free ee monthlnthly newsletter

att nneewwslettetter.wwrrr ox.coomm

WrWroxox.comm
Brrowowse the he vast selection of Wrox titleitles,es,s, ee-be-bo-bookooksoks,ks,

and bloblogs and find exactly what yot you you nu neneedneeded

UsUser Gr Group Program
Becoecome a member and take advadvanvantantantagetage oge of of aof alalll

tthe benefits

Wr nox on
Follow @wrox ox ononn TTwTwwitittetter er ar andnd bd bebe ibe in in th thethe ke knoknownowoww

on the latestest nst nenewewsws ins in tn ththe whe wwoworldorld od ofof f WWrWrrooxox

WrWrrooxox x ox ononn
JoJoinoin in thn thehee WWrWrroxox Fox FaFaacceebbobookook ok papagpage ge ae atat

ffacfacebaceboeboobook.ok.cok.comcomom/wm/wwrrorooxxpprereessssss an andand gd geget get upt updupdapdateateess

onon non newnewew bw bobookooks oks aks anand pnd pud pubpubliublicalicaticatiotionsons ans as as ws wewellell

asas uas upupcoupcomcomiomingming ng pr prproogoggrarammmmmmermer cer coconfonfenfererenencnceess

anandand und ususeruser ger grgrrooupoupup eveevenventntsts

n

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover������������
	Title Page�����������������
	Copyright����������������
	Contents���������������
	Part I: Understanding the BASICs���������������������������������������
	Lesson 1: Introducing VBA��������������������������������
	What Is VBA?�������������������
	A Brief History of VBA�����������������������������
	What VBA Can Do for You������������������������������
	Automating a Recurring Task����������������������������������
	Automating a Repetitive Task�����������������������������������
	Running a Macro Automatically if Another Action Takes Place��
	Creating Your Own Worksheet Functions��
	Simplifying the Workbook’s Look and Feel for Other Users���
	Controlling Other Office Applications from Excel���

	Liabilities of VBA�������������������������
	Try It�������������

	Lesson 2: Getting Started with Macros��
	Composing Your First Macro���������������������������������
	Accessing the VBA Environment������������������������������������
	Using the Macro Recorder�������������������������������

	Running a Macro����������������������
	The Macro Dialog Box���������������������������
	Shortcut Key�������������������

	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 3: Introducing the Visual Basic Editor��
	What Is the VBE?�����������������������
	How to Get Into the VBE������������������������������
	Understanding the VBE����������������������������
	Understanding Modules����������������������������
	Using the Object Browser�������������������������������
	Exiting the VBE����������������������

	Try It�������������

	Lesson 4: Working in the VBE�����������������������������������
	Toolbars in the VBE��������������������������
	Macros and Modules�������������������������
	Locating Your Macros���������������������������

	Understanding the Code�����������������������������
	Editing a Macro with Comments and Improvements to the Code���
	Deleting a Macro�����������������������
	Inserting a Module�������������������������
	Renaming a Module������������������������
	Deleting a Module������������������������
	Locking and Protecting the VBE�������������������������������������

	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Part II: Diving Deeper into VBA��������������������������������������
	Lesson 5: Object-Oriented Programming: An Overview���
	What “Object-Oriented Programming” Means���
	The Object Model�����������������������
	Properties�����������������
	Methods��������������
	Collections������������������

	Try It�������������

	Lesson 6: Variables, Data Types, and Constants���
	What Is a Variable?��������������������������
	Assigning Values to Variables������������������������������������
	Why You Need Variables�����������������������������
	Data Types�����������������
	Understanding the Different Data Types���
	Declaring a Variable for Dates and Times���
	Declaring a Variable with the Proper Data Type���

	Forcing Variable Declaration�����������������������������������
	Understanding a Variable’s Scope���������������������������������������
	Local Macro Level Only�����������������������������
	Module Level�������������������
	Application Level������������������������
	Constants����������������

	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 7: Understanding Objects and Collections��
	Workbooks����������������
	Cells and Ranges�����������������������
	SpecialCells�������������������

	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 8: Working with Ranges������������������������������������
	Working with Contiguously Populated Ranges���
	Using the Cells Property�������������������������������
	Using CurrentRegion��������������������������

	Working with Noncontiguously Populated Ranges��
	Using Range with Several Cells�������������������������������������
	Using OFFSET�������������������
	Using RESIZE�������������������
	Identifying a Data Range�������������������������������
	Identifying the UsedRange��������������������������������
	Finding the Dynamic Last Rows and Columns��
	Identifying Where the Range Starts and Ends When No Start or End Point Is Known��
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 9: Making Decisions with VBA��
	Understanding Logical Operators��������������������������������������
	AND����������
	OR���������
	NOT����������

	Choosing Between This or That������������������������������������
	If…Then��������������
	If…Then…Else�������������������
	If…Then…ElseIf���������������������
	IIF����������
	Select Case������������������

	Getting Users to Make Decisions��������������������������������������
	Message Boxes��������������������
	Input Boxes������������������

	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Part III: Beyond the Macro Recorder: Writing Your Own Code���
	Lesson 10: Repeating Actions with Loops��
	What Is a Loop?����������������������
	Types of Loops���������������������
	Do…While���������������
	Do…Until���������������
	Do…Loop While��������������������
	Do…Loop Until��������������������
	While…Wend�����������������

	Nesting Loops��������������������
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 11: Programming Formulas��������������������������������������
	Understanding A1 and R1C1 References���
	Getting Started with a Few One-Liners��
	Comparing the Interface of A1 and R1C1 Styles��
	Toggling between A1 and R1C1 Style Views���

	Programming Your Formula Solutions with VBA��
	Using a Mixed Reference to Fill Empty Cells with the Value from Above��
	Using a Named Range with Relative, Mixed, and Absolute References��
	Programming an Array Formula�����������������������������������
	Summing Lists of Different Sizes along a Single Row��

	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 12: Working with Arrays�������������������������������������
	What Is an Array?������������������������
	What Arrays Can Do for You���������������������������������
	Declaring Arrays�����������������������

	The Option Base Statement��������������������������������
	Boundaries in Arrays���������������������������
	Declaring Arrays with Fixed Elements���
	Declaring Dynamic Arrays with ReDim and Preserve���
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 13: Automating Procedures with Worksheet Events���
	What Is an Event?������������������������
	Worksheet Events: An Overview������������������������������������
	Where Does the Worksheet Event Code Go?��
	Enabling and Disabling Events������������������������������������

	Examples of Common Worksheet Events��
	Worksheet_Change Event�����������������������������
	Worksheet_SelectionChange Event��������������������������������������
	Worksheet_BeforeDoubleClick Event��
	Worksheet_Before RightClick Event��
	Worksheet_FollowHyperlink Event��������������������������������������
	Worksheet_Activate Event�������������������������������
	Worksheet_Deactivate Event���������������������������������
	Worksheet_Calculate Event��������������������������������
	Worksheet_PivotTableUpdate Event���������������������������������������

	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 14: Automating Procedures with Workbook Events��
	Workbook Events: An Overview�����������������������������������
	Where Does the Workbook Event Code Go?���
	Entering Workbook Event Code�����������������������������������

	Examples of Common Workbook Events���
	Workbook_Open Event��������������������������
	Workbook_BeforeClose Event���������������������������������
	Workbook_Activate Event������������������������������
	Workbook_Deactivate Event��������������������������������
	Workbook_SheetChange Event���������������������������������
	Workbook_SheetSelectionChange Event��
	Workbook_SheetBeforeDoubleClick Event��
	Workbook_SheetBeforeRightClick Event���
	Workbook_SheetPivotTableUpdate Event���
	Workbook_NewSheet Event������������������������������
	Workbook_BeforePrint Event���������������������������������
	Workbook_SheetActivate Event�����������������������������������
	Workbook_SheetDeactivate Event�������������������������������������
	Workbook_BeforeSave Event��������������������������������

	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 15: Handling Duplicate Items and Records��
	Deleting Rows Containing Duplicate Entries���
	Deleting Rows with Duplicates in a Single Column���
	Deleting Rows with Duplicates in More Than One Column��
	Deleting Some Duplicates and Keeping Others��

	Working with Duplicate Data����������������������������������
	Compiling a Unique List from Multiple Columns��
	Updating a Comment to List Unique Items��
	Selecting a Range of Duplicate Items���
	Inserting an Empty Row at Each Change in Items���

	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 16: Using Embedded Controls���
	Working with Form Controls and ActiveX Controls��
	The Forms Toolbar������������������������
	Buttons��������������
	Using Application.Caller with Form Controls��
	The Control Toolbox��������������������������
	CommandButtons���������������������

	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 17: Programming Charts������������������������������������
	Adding a Chart to a Chart Sheet��������������������������������������
	Adding an Embedded Chart to a Worksheet��
	Moving a Chart���������������������
	Looping Through All Embedded Charts��
	Deleting Charts����������������������
	Renaming a Chart�����������������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 18: Programming PivotTables and PivotCharts���
	Creating a PivotTable Report�����������������������������������
	Hiding the PivotTable Field List���������������������������������������
	Formatting Numbers in the Values Area��
	Pivoting Your Data�������������������������
	Creating a PivotChart����������������������������

	Understanding PivotCaches��������������������������������
	Manipulating PivotFields in VBA��������������������������������������
	Manipulating PivotItems with VBA���������������������������������������
	Creating a PivotTables Collection��
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 19: User-Defined Functions��
	What Is a User-Defined Function?���������������������������������������
	Characteristics of User-Defined Functions��
	Anatomy of a UDF�����������������������

	UDF Examples That Solve Common Tasks���
	Summing Numbers in Colored Cells���������������������������������������
	Extracting Numbers or Letters from an Alphanumeric String��
	Extracting the Address from a Hyperlink��

	Volatile Functions�������������������������
	Returning the Name of the Active Worksheet and Workbook��
	UDFs with Conditional Formatting���������������������������������������
	Calling Your UDF from a Macro������������������������������������
	Adding a Description to the Insert Function Dialog Box���

	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 20: Debugging Your Code�������������������������������������
	What Is Debugging?�������������������������
	What Causes Errors?��������������������������
	Weapons of Mass Debugging��������������������������������
	The Debug Toolbar������������������������

	Trapping Errors����������������������
	Error Handler��������������������
	Bypassing Errors�����������������������

	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Part IV: Advanced Programming Techniques���
	Lesson 21: Creating UserForms������������������������������������
	What Is a UserForm?��������������������������
	Creating a UserForm��������������������������
	Designing a UserForm���������������������������
	Adding Controls to a UserForm������������������������������������
	Showing a UserForm�������������������������
	Where Does the UserForm’s Code Go?���
	Closing a UserForm�������������������������
	Unloading a UserForm���������������������������
	Hiding a UserForm������������������������

	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 22: UserForm Controls and Their Functions���
	Understanding the Frequently Used UserForm Controls��
	CommandButtons���������������������
	Labels�������������
	TextBoxes����������������
	ListBoxes����������������
	ComboBoxes�����������������
	CheckBoxes�����������������
	OptionButtons��������������������
	Frames�������������
	MultiPages�����������������

	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 23: Advanced UserForms������������������������������������
	The UserForm Toolbar���������������������������
	Modal versus Modeless����������������������������
	Disabling the UserForm’s Close Button��
	Maximizing Your UserForm’s Size��������������������������������������
	Selecting and Displaying Photographs on a UserForm���
	Unloading a UserForm Automatically���
	Pre-sorting the ListBox and ComboBox Items���
	Populating ListBoxes and ComboBoxes with Unique Items��
	Displaying a Real-Time Chart in a UserForm���
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 24: Class Modules�������������������������������
	What Is a Class?�����������������������
	What Is a Class Module?������������������������������
	Creating Your Own Objects��������������������������������
	An Important Benefit of Class Modules��
	Creating Collections���������������������������
	Class Modules for Embedded Objects���
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 25: Add-Ins�������������������������
	What Is an Excel Add-In?�������������������������������
	Creating an Add-In�������������������������
	Converting a File to an Add-In�������������������������������������
	Installing an Add-In���������������������������
	Creating a User Interface for Your Add-In��
	Changing the Add-In’s Code���������������������������������

	Closing Add-Ins����������������������
	Removing an Add-In from the Add-Ins List���
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 26: Managing External Data��
	Creating QueryTables from Web Queries��
	Creating a QueryTable for Access���������������������������������������
	Using Text Files to Store External Data��
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 27: Data Access with ActiveX Data Objects���
	Introducing ADO����������������������
	The Connection Object����������������������������
	The Recordset Object���������������������������
	The Command Object�������������������������

	An Introduction to Structured Query Language (SQL)���
	The SELECT Statement���������������������������
	The INSERT Statement���������������������������
	The UPDATE Statement���������������������������
	The DELETE Statement���������������������������

	Try It�������������

	Lesson 28: Impressing Your Boss (or at Least Your Friends)���
	Selecting Cells and Ranges���������������������������������
	Coloring the Active Cell, Row, or Column���
	Coloring the Current and Prior Selected Cells��

	Filtering Dates����������������������
	Filtering between Dates������������������������������
	Filtering for Dates before Today’s Date��
	Filtering for Dates after Today’s Date���
	Deleting Rows for Filtered Dates More Than Three Years Ago���

	Setting Page Breaks for Specified Areas��
	Using a Comment to Log Changes in a Cell���
	Using the Windows API with VBA�������������������������������������
	Clearing the Clipboard�����������������������������
	Emptying the Recycle Bin�������������������������������

	Scheduling Your Workbook for Suicide���
	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Part V: Interacting with Other Office Applications���
	Lesson 29: Overview of Office Automation from Excel��
	Why Automate Another Application?��
	Understanding Office Automation��������������������������������������
	Early Binding��������������������
	Late Binding�������������������
	Which One Is Better?���������������������������

	Try It�������������
	Lesson Requirements��������������������������
	Hints������������
	Step-by-Step�������������������

	Lesson 30: Working with Word from Excel��
	Activating a Word Document���������������������������������
	Activating the Word Application��������������������������������������
	Opening and Activating a Word Document���

	Creating a New Word Document�����������������������������������
	Copying an Excel Range to a Word Document��
	Printing a Word Document from Excel��
	Importing a Word Document to Excel���
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 31: Working with Outlook from Excel���
	Opening Outlook����������������������
	Composing an E-mail in Outlook from Excel��
	Creating a MailItem Object���������������������������������
	Transferring an Excel Range to the Body of Your E-mail���

	Putting It All Together������������������������������
	E-mailing a Single Worksheet�����������������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 32: Working with Access from Excel��
	Adding a Record to an Access Table���
	Exporting an Access Table to an Excel Spreadsheet��
	Creating a New Table in Access�������������������������������������
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Lesson 33: Working with PowerPoint from Excel��
	Creating a New PowerPoint Presentation���
	Copying a Worksheet Range to a PowerPoint Slide��
	Copying Chart Sheets to PowerPoint Slides��
	Running a PowerPoint Presentation from Excel���
	Try It�������������
	Lesson Requirements��������������������������
	Step-by-Step�������������������

	Index
	Advertisement
	EULA

