
www.allitebooks.com

http://www.allitebooks.org

Elasticsearch Indexing

Improve search experiences with Elasticsearch's
powerful indexing functionality – learn how with this
practical Elasticsearch tutorial packed with tips!

Hüseyin Akdoğan

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Elasticsearch Indexing

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2015

Production reference: 1171215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-702-3

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Hüseyin Akdoğan

Reviewer
John M. Petrone

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Shaon Basu

Content Development Editor
Anish Dhurat

Technical Editor
Pranjali Mistry

Copy Editor
Neha Vyas

Project Coordinator
Bijal Patel

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Graphics
Disha Haria

Production Coordinator
Nilesh Mohite

Cover Work
Nilesh Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Author

Hüseyin Akdoğan began his software adventure with the GwBasic programming
language. He started learning the Visual Basic language after QuickBasic and
developed many applications until 2000, after which he stepped into the world of
Web with PHP. After this, he came across Java! In addition to counseling and training
activities since 2005, he developed enterprise applications with JavaEE technologies.
His areas of expertise are JavaServer Faces, Spring Frameworks, and big data
technologies such as NoSQL and Elasticsearch. Along with these, he is also trying
to specialize in other big data technologies. Hüseyin also writes articles on Java and
big data technologies and works as a technical reviewer of big data books. He was a
reviewer of one of the bestselling books, Mastering Elasticsearch – Second Edition.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

John M. Petrone is a veteran technology leader and innovator who has over
20 years of experience in leading software development and technical operations
at organizations ranging in size and scope from early-stage start-ups to public
companies and large system integrators. He's passionate about the strategic
application of leading-edge technologies to solve real-world problems.

John is currently the CTO of LaunchPad Central, a SaaS platform company offering
end-to-end solutions that help organizations innovate more efficiently and accelerate
time to market new products. He runs the the engineering and product groups,
where he heads the ongoing design, development, and operation of their SaaS
products that enable high throughput innovation at scale.

Previously, John was the first CTO of Zignal Labs, a leader in delivering data-driven
insights from real-time media monitoring and big data analytics. He recruited the
original engineering team and designed, architected, and led the building of a real-
time analytics platform. This platform ingests tens of millions of news stories, blog
entries, and social media posts every day.

Prior to Zignal, John served as the SVP and CTO of Autobytel Inc (ABTL) from 2003-
2008 and again from 2010-2012. He is the awarding-winning pioneer of online car
buying and automotive marketing services, and he has led all technology activities
and initiatives, including new product development, technical operations, and
integration of acquired technologies. He was selected as one of the Premier 100 IT
Leaders of 2006 by Computerworld Magazine.

John was also EVP and CTO of Preview Travel, Inc. from 1995 to 1999, where he built
the team and platform and led them through a successful IPO in November 1997. Prior
to Preview, he held senior technology positions at Oracle, Lotus Consulting, Price
Waterhouse, and Andersen Consulting. John attended the University of Maryland,
where he received a BS degree in aerospace engineering. He is also a graduate of the
Executive Education Program at the UCLA Anderson School of Management.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents
Preface	 v
Chapter 1: Introduction to Efficient Indexing	 1

Getting started	 2
Understanding the document storage strategy	 2

The _source field	 3
The difference between the storable and searchable field	 6

Analysis	 10
Summary	 15

Chapter 2: What is an Elasticsearch Index	 17
Nature of the Elasticsearch index	 17

Indices	 17
Mapping	 19
Types	 19

Document	 20
Denormalization	 21
Inverted index	 23

Summary	 25
Chapter 3: Basic Concepts of Mapping	 27

Basic concepts and definitions	 27
Metadata fields	 28

_source	 28
_all	 28
_timestamp	 30
_ttl	 32

Types	 33
Object type	 33

Root object type	 37
Attachment type	 38

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

The relationship between mapping and relevant search results	 38
Understanding the schema-less	 43
Summary	 45

Chapter 4: Analysis and Analyzers	 47
Introducing analysis	 47
Process of analysis	 49
Built-in analyzers	 50

Building blocks of Analyzer	 51
Character filters	 51

HTML Strip Char filter	 51
Pattern Replace Char filter	 53

Tokenizer	 53
Token filters	 54

What's text normalization?	 55
ICU analysis plugin	 56

ASCII Folding Token filter	 56
An Analyzer Pipeline	 60
Specifying the analyzer for a field in the mapping	 60

Creating a custom analyzer	 64
Summary	 65

Chapter 5: Anatomy of an Elasticsearch Cluster	 67
Basic concepts	 67
Node	 68

Non-data nodes	 68
Dedicated master nodes	 68
Client nodes	 68

Tribe node	 69
Shards	 69
Replicas	 69
Explaining the architecture of distribution	 70
Correctly configuring the cluster	 73
Choosing the right amount of shards and replicas	 76
Summary	 77

Chapter 6: Improving Indexing Performance	 79
Configuration	 80

Memory configuration	 80
The ES_HEAP_SIZE environment variable	 81

Avoiding swapping	 82
Mlockall property	 83

Garbage collector	 84
The structure of JVM memory	 84

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

What is the problem?	 86
Monitoring garbage collection	 86
VisualVM	 87
Different strategies among garbage collectors	 89
Process of deallocating memory	 89
Types of garbage collector	 89

File descriptors	 91
Increasing FD limit on Unix systems	 91

Optimization of mapping definition	 94
Norms	 94
Feature index_option of string type	 95
Exclude unnecessary fields	 96
Extension of the automatic index refresh time	 97

Segments and merging policies	 98
Choosing the right merge policy	 100

Tiered policy	 100
log_byte_size policy	 102
Log_doc policy	 103

The optimize API	 103
Store module	 104

Store types	 104
Simple filesystem store	 104
New IO filesystem store	 105
MMap filesystem store	 105
Hybrid filesystem store	 106

Throttling I/O operations	 106
Throttling type	 106

Bulk API	 107
Bulk sizing	 108

Notes	 108
Summary	 109

Chapter 7: Snapshot and Restore	 111
Snapshot repository	 111

Repository types	 112
Shared filesystem repository	 112
URL repository	 113
Cloud repository	 114
HDFS filesystem repository	 114

Snapshot	 114
Restore	 118

Overriding index settings during restore	 119
How does the snapshot process works?	 120
Summary	 122

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Chapter 8: Improving the User Search Experience	 123
Correction of users' spelling mistakes	 124

Suggesters	 125
Using the _suggest REST endpoint	 125

Suggest object inclusion in the query	 127
Term suggester	 128

Configuring the term suggester	 129
The phrase suggester	 131

Configuring the phrase suggester	 133
The completion suggester	 136

Mapping the configuration for the completion suggester	 137
Indexing on completion field	 138

Get suggestions	 139
Improving the relevancy of search results	 140

Boosting the query	 140
Bool query	 144
Synonyms	 147
Be careful about the _all field	 149

Summary	 150
Index	 151

[v]

Preface
The world that we live in is hungry for speed, efficiency, and accuracy. We want quick
results and faster without compromising the accuracy. This is exactly why I have
written this book. I have penned down my years of experience in this book to give
you an insight into how to use Elasticsearch more efficiently in today's big data world.
This book is targeted at experienced developers who have used Elasticsearch before
and want to extend their knowledge about how to effectively perform Elasticsearch
indexing. While reading this book, you'll explore different topics, all of which connect
to efficient indexing and relevant search results in Elasticsearch. We will focus on
understanding the document storage strategy and analysis process in Elasticsearch.
This book will help you understand what is going on behind the scenes when you send
a document for indexing or make a query. In addition, this book will ensure correct
understanding of the meaning of schemaless by asking the question—is the claim that
Elasticsearch stands for the schema-free model always true? After this, you will learn
the analysis process and about analyzers. More importantly, this book will elaborate the
relationship between data analysis and relevant search results. By the end of this book, I
believe you will be in a position to master and unleash this beast of a technology.

What this book covers
Chapter 1, Introduction to Efficient Indexing, will introduce you to the document
storage strategy and the basic concepts related to the analysis process.

Chapter 2, What is an Elasticsearch Index, describes the concept of Elasticsearch
Index, how the inverted index mechanism works, why you should use data
denormalization, and what its benefits. In addition to this, it explains dynamic
mapping and index flexibility.

Chapter 3, Basic Concepts of Mapping, describes the basic concepts and definitions of
mapping. It answers the question what is the relationship between mapping and
relevant search results questions. It explains the meaning of schemaless. It also
covers metadata fields and data types.

Preface

[vi]

Chapter 4, Analysis and Analyzers, describes analyzers and the analysis process of
Elasticsearch, what tokenizers, the character and token filters, how to configure a
custom analyzer and what text normalization is. This chapter also describes the
relationship between data analysis and relevant search results.

Chapter 5, Anatomy of an Elasticsearch Cluster, covers techniques to choose the right
number of shards and replicas and describes a node, the shard concept, replicas, and
how shard allocation works. It also explains the architecture of data distribution.

Chapter 6, Improving Indexing Performance, covers how to configure memory, how
JVM garbage collector works, why garbage collector is so important for performance,
and how to start tuning garbage collector. It also describes how to control the
amount of I/O operations that Elasticsearch uses for segment merging and to
store modules.

Chapter 7, Snapshot and Restore, covers the Elasticsearch snapshot and restore module,
how to define a snapshot repository, different repository types, the process of
snapshot and restore, and how to configure them. It also describes how the snapshot
process works.

Chapter 8, Improving the User Search Experience, introduces Elasticsearch suggesters,
which allow us to correct spelling mistakes and build efficient autocomplete
mechanisms. It also covers how to improve query relevance by using different
Elasticsearch functionalities such as boosting and synonyms.

What you need for this book
You need a stable version of Elasticsearch. The code of the book is compatible with
Elasticsearch version 1 and later. You can examine the code of the book using cURL
(that is, Client URL Library) on Linux and MacOS X. Plus, if you need a user-friendly
query interface, you can use the sense plugin running on Chrome (https://chrome.
google.com/webstore/detail/sense-beta/lhjgkmllcaadmopgmanpapmpjgmfcfi
g?hl=en).

Who this book is for
If you understand the importance of a great search experience, this book will
show you exactly how to build one with Elasticsearch—one of the world's leading
search servers.

https://chrome.google.com/webstore/detail/sense-beta/lhjgkmllcaadmopgmanpapmpjgmfcfig?hl=en
https://chrome.google.com/webstore/detail/sense-beta/lhjgkmllcaadmopgmanpapmpjgmfcfig?hl=en
https://chrome.google.com/webstore/detail/sense-beta/lhjgkmllcaadmopgmanpapmpjgmfcfig?hl=en

Preface

[vii]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

curl -XPOST localhost:9200/company/employee -d '{
 "firstname": "Joe Jeffers",
 "lastname": "Hoffman",
 "age": 30
}'
{"_index":"company","_type":"employee","_id":"AU7GIEQeR7spPlxvqlud","_
version":1,"created":true}

Any command-line input or output is written as follows:

curl -XGET 'localhost:9200/_cat/health?pretty'

1448644024 19:07:04 elasticsearch yellow 1 1 6 6 0 0 6 0

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Elasticsearch allows us to use the Suggest API functionality."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[viii]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[ix]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Introduction to Efficient
Indexing

Elasticsearch is an open source full text search engine and data analysis tool that
was developed in Java, is Apache Lucene-based, and scalable. A huge scale of
data is produced at every moment in today's world of information technologies, in
social media, in video sharing sites, and in medium and large-sized companies that
provide services in communication, health, security, and other areas. Here we are
talking about an information/data ocean, and we call this ocean briefly as big data in
the world of information technology. An important part of this world of big data is
unstructured, scattered, and insignificant when it is in isolation.

For this reason, some requirements such as recording, accessing, analyzing, and
processing of data are significant. Like similar search engines, Elasticsearch is one of
the tools that have been developed to deal with the problems mentioned previously,
which belong to the world of big data.

What should I look for—high efficiency and/or performance—when Elasticsearch is
used for the purposes mentioned earlier?

Introduction to Efficient Indexing

[2]

This book will target experienced developers who have used Elasticsearch before
and want to extend their knowledge about how to effectively perform Elasticsearch
indexing. Therefore, this book assumes that the reader already knows the basic
issues and concepts of Elasticsearch. For example, what is Elasticsearch, how to
install it, what purposes it serves, and so on. This book in your hand is intended
to assist you with technical information and concrete applications about efficient
indexing and relevant search result in Elasticsearch. This chapter aims to introduce
and discuss the main topics for the purposes mentioned previously. To this end,
we will look closely at how to store data by Elasticsearch and try to understand
the document storage strategy. The relevant search result is closely related to data
analysis. Hence, we will do an introduction to understanding the analysis process. In
other chapters of this book, you will find the necessary discussions and examples for
a better understanding of the following main issues:

•	 How to store documents
•	 The difference between the storable and searchable field
•	 What the function of the analyzer is
•	 How to improve relevant search results

Getting started
How does Elasticsearch store date and how does Elasticsearch store access data?
These should be the first questions that come to mind when it comes to efficient
indexing. The first thing to understand is how the documents are stored and accessed
by Elasticsearch for efficient indexing and to improve the querying experience.

The purpose of this chapter is to prepare your mind for the topics that will be
discussed throughout the book in more detail.

Understanding the document storage
strategy
First of all, we need to depict the question: what is an Elasticsearch index?

The short answer is that an index is like a database in a relational database.
Elasticsearch is a document-oriented search and analytics engine. Each record in
Elasticsearch is a structured JSON document. In other words, each piece of data that
is sent to Elasticsearch for indexing is a JSON document. All fields of the documents
are indexed by default, and these indexed fields can be used in a single query. More
information about this can be found in the next chapter.

Chapter 1

[3]

Elasticsearch uses the Apache Lucene library for writing and reading the data from
the index. In fact, Apache Lucene is at the heart of Elasticsearch.

Apache Lucene is a high-performance, full-featured text
search engine library written entirely in Java. If you want to
more information, please refer to
https://lucene.apache.org/core/.

Every document sent to Elasticsearch is stored in Apache Lucene and the library
stores all data in a data structure called an inverted index. An inverted index is a
data structure that is mapped documents and terms. That means that an inverted
index has a list of all the unique words that appear in any document. Also, it has a
list of documents in which the collected unique word appears. Intended with this
data structure, the performance of fast full-text searching is performed at low cost.
The inverted index is a basic indexing algorithm used by search engines.

The inverted index will be discussed in depth in the next chapter.

The _source field
As mentioned earlier, all fields of the documents are indexed by default in
Elasticsearch, and these fields can be used in a single query. We usually send data to
Elasticsearch because we want to either search or retrieve them.

The _source field is a metadata field automatically generated during indexing within
Lucene that stores the actual JSON document. When executing search requests, the
_source field is returned by default as shown in the following code snippet:

curl -XPUT localhost:9200/my_index/article/1 -d '{
 "title": "What is an Elasticsearch Index",
 "category": "Elasticsearch",
 "content": "An index is like a...",
 "date": "2015-07-18",
 "tags": ["bigdata", "elasticsearch"]
}'
{"_index":"my_index","_type":"article","_id":"1","_
version":1,"created":true}

curl -XGET localhost:9200/my_index/_search?pretty
{
 "took": 2,
 "timed_out": false,

www.allitebooks.com

https://lucene.apache.org/core/
http://www.allitebooks.org

Introduction to Efficient Indexing

[4]

 "_shards": {
 "total": 5,
 "successful": 5,
 "failed": 0
 },
 "hits": {
 "total": 1,
 "max_score": 1,
 "hits": [
 {
 "_index": "my_index",
 "_type": "article",
 "_id": "1",
 "_score": 1,
 "_source": {
 "title": "What is an Elasticsearch Index",
 "category": "Elasticsearch",
 "content": "An index is like a...",
 "date": "2015-07-18",
 "tags": [
"bigdata",
"elasticsearch"
]
 }
 }
]
 }
}

More information about the metadata fields can be found
in Chapter 3, Basic Concepts of Mapping.

We sent a document to Elasticsearch that contains title, category, content, date,
and tags fields for indexing. Then we ran the search command. The result of the
search command is shown in the preceding snippet.

Because it is always able to return everything you send to Elasticsearch as a search
result, Elasticsearch stores every document field within the _source field by
default, which you send to it.

Chapter 1

[5]

You can change this behavior if you want. This can be a preferred option because in
some cases you may not need all fields to be returned in the search results. Also, it
does not require a field to be stored in the _source field while it is searchable:

curl -XPUT localhost:9200/my_index/_mapping/article -d '{
 "article": {
 "_source": {
 "excludes": [
"date"
]
 }
 }
}'
{"acknowledged":true}

curl -XPUT localhost:9200/my_index/article/1 -d '{
 "title": "What is an Elasticsearch Index",
 "category": "Elasticsearch",
 "content": "An index is like a...",
 "date": "2015-07-18",
 "tags": ["bigdata", "elasticsearch"]
}'
{"_index":"my_index","_type":"article","_id":"1","_
version":2,"created":false}

What did we do?

Firstly, we removed the date field from the _source field by changing the dynamic
mapping. Then we sent the same document to Elasticsearch again for reindexing. In
the next step, we will try to list the records that are greater than or equal to July 18,
2015 using the range query. The pretty parameter used in the following query tells
Elasticsearch to return pretty-printed JSON results:

curl -XGET localhost:9200/my_index/_search?pretty -d '{
 "query": {
 "range": {
 "date": {
 "gte": "2015-07-18"
 }
 }
 }
}'
{
 "took": 2,
 "timed_out": false,

Introduction to Efficient Indexing

[6]

 "_shards": {
 "total": 5,
 "successful": 5,
 "failed": 0
 },
 "hits": {
 "total": 1,
 "max_score": 1,
 "hits": [
 {
 "_index": "my_index",
 "_type": "article",
 "_id": "1",
 "_score": 1,
 "_source": {
 "title": "What is an Elasticsearch Index",
 "category": "Elasticsearch",
 "content": "An index is like a...",
 "tags": [
"bigdata",
"elasticsearch"
]
 }
 }
]
 }
}

As you can see, we can search in the date field that although is not returned. This is
because, as previously mentioned, all fields of the documents are indexed as default
by Elasticsearch.

The difference between the storable and
searchable field
Elasticsearch allows you to separately manage fields that can be searchable and/or
storable. This is useful because in some cases we may want to index a field but may
not want to store it or vice versa. In some cases, we might not want to do either.

On behalf of a better understanding of the subject, let's change the preceding
example. Let's create the my_index again with the explicit mapping and disable
the _source field:

curl -XDELETE localhost:9200/my_index
{"acknowledged": true}

Chapter 1

[7]

curl -XPUT localhost:9200/my_index -d '{
 "mappings": {
 "article": {
 "_source": {
 "enabled": false
 },
 "properties": {
 "title": {"type": "string", "store": true},
 "category": {"type": "string"},
 "content": {"type": "string"},
 "date": {"type": "date", "index": "no"},
 "tags": {"type": "string", "index": "no", "store": true}
 }
 }
 }
}'

Firstly, we disabled the _source field for the article type. In this case, unless
otherwise stated, any fields of the article type are not stored/returned. However,
we would like to store some fields. In this case, we want to store only the title and
tags fields using the store feature. If we enable the store option, we let Elasticsearch
store the specified fields. Therefore, we explicitly specify which fields we want to
store for future scenarios.

In addition, we don't want some fields to be indexed. This means that such fields
will not be searchable. The date and the tags fields will not be searchable with the
preceding configuration but, if requested, the tags field can be returned.

Keep in mind that after disabling the _source field, you cannot
make use of a number of features that come with the _source
field, for example, the update API and highlighting.

Now, let's see the effect of the preceding configuration in practice:

curl -XPUT localhost:9200/my_index/article/1 -d '{
 "title": "What is an Elasticsearch Index",
 "category": "Elasticsearch",
 "content": "An index is like a...",
 "date": "2015-07-18",
 "tags": ["bigdata", "elasticsearch"]
}'
{"_index":"my_index","_type":"article","_id":"1","_
version":1,"created":true}

curl -XGET localhost:9200/my_index/_search?pretty

Introduction to Efficient Indexing

[8]

{
 "took" : 2,
 "timed_out" : false,
 "_shards" : {
 "total" : 5,
 "successful" : 5,
 "failed" : 0
 },
 "hits" : {
 "total" : 1,
 "max_score" : 1.0,
 "hits" : [{
 "_index" : "my_index",
 "_type" : "article",
 "_id" : "1",
 "_score" : 1.0
 }]
 }
}

curl -XGET localhost:9200/my_index/_search?pretty -d '{
 "query": {
 "range": {
 "date": {
 "gte": "2015-07-18"
 }
 }
 }
}'
{
 "took": 6,
 "timed_out": false,
 "_shards": {
 "total": 5,
 "successful": 5,
 "failed": 0
 },
 "hits": {
 "total": 0,
 "max_score": null,
 "hits": []
 }
}

Chapter 1

[9]

Firstly, we sent a document containing the date field value that is 2015-07-18 for
indexing, and we ran the match_all query after (The search request does not have a
body) and we did not see the _source field within hits.

Then we ran a range query on the date field because we want the documents where
the date is greater than and equal to July 18, 2015. Elasticsearch did not return any
documents to us because the date field does not have a default configuration. In
other words, the date field was not indexed, therefore not searchable, so we do not
see any retrieved documents.

Now let's run another scenario with following command:

curl -XGET localhost:9200/my_index/_search?pretty -d '{
 "fields": ["title", "content", "tags"],
 "query": {
 "match": {
 "content": "like"
 }
 }
}'
{
 "took": 6,
 "timed_out": false,
 "_shards": {
 "total": 5,
 "successful": 5,
 "failed": 0
 },
 "hits": {
 "total": 1,
 "max_score": 0.13424811,
 "hits": [
 {
 "_index": "my_index",
 "_type": "article",
 "_id": "1",
 "_score": 0.13424811,
 "fields": {
 "title": [
"What is an Elasticsearch Index"
],
 "tags": [
"bigdata",
"elasticsearch"

Introduction to Efficient Indexing

[10]

]
 }
 }
]
 }
}

The document is returned to us as a result of the preceding query because the content
field is searchable; but the field is not returned because it was not stored in Lucene.

Understanding the difference between storable and searchable (indexed) fields is
important for indexing performance and relevant search results. It offers significant
advantages for high-level users.

Analysis
We mentioned earlier that all of Apache Lucene's data is stored in an inverted index.
This transformation is required for successful response by Elasticsearch to search
requests. The process of transforming this data is called analysis.

Elasticsearch has an index analysis module. It maps to the Lucene Analyzer. In
general, analyzers are composed of a single Tokenizer and zero or more TokenFilters.

Analysis modules and analyzers will be discussed in
depth in Chapter 4, Analysis and Analyzers.

Elasticsearch provides a lot of character filters, tokenizers, and token filters. For
example, a character filter may be used to strip out HTML markup and a token filter
may be used to modify tokens (for example, lowercase). You can combine them to
create custom analyzers or you can use its built-in analyzer.

Good understanding of the process of analysis is very important in terms of
improving the user's search experience and relevant search results because
Elasticsearch (actually Lucene) will use analyzer during indexing and query time.

It is crucial to remember that all Elasticsearch queries
are not being analyzed.

Now let's examine the importance of the analyzer in terms of relevant search results
with a simple scenario:

curl -XPOST localhost:9200/company/employee -d '{
 "firstname": "Joe Jeffers",

Chapter 1

[11]

 "lastname": "Hoffman",
 "age": 30
}'
{"_index":"company","_type":"employee","_id":"AU7GIEQeR7spPlxvqlud","_
version":1,"created":true}

We indexed an employee. His name is Joe Jeffers Hoffman, 30 years old. Let's search
the employees that are named Joe in the company index now:

curl -XGET localhost:9200/company/_search?pretty -d '{
 "query": {
 "match": {
 "firstname": "joe"
 }
 }
}'
{
 "took": 68,
 "timed_out": false,
 "_shards": {
 "total": 5,
 "successful": 5,
 "failed": 0
 },
 "hits": {
 "total": 1,
 "max_score": 0.19178301,
 "hits": [
 {
 "_index": "company",
 "_type": "employee",
 "_id": "AU7GIEQeR7spPlxvqlud",
 "_score": 0.19178301,
 "_source": {
 "firstname": "Joe Jeffers",
 "lastname": "Hoffman",
 "age": 30
 }
 }
]
 }
}

All string type fields in the company index will be analyzed by a standard analyzer
because employee types were created with dynamic mapping.

Introduction to Efficient Indexing

[12]

The standard analyzer is the default analyzer that Elasticsearch uses. It removes
most punctuation and splits the text on word boundaries, as defined by the
Unicode Consortium.

If you want to have more information about the Unicode
Consortium, please refer to
http://www.unicode.org/reports/tr29/.

In this case, Joe Jeffers would be two tokens (Joe and Jeffers). To see how the
standard analyzer works, run the following command:

curl -XGET 'localhost:9200/_analyze?analyzer=standard&pretty' -d 'Joe
Jeffers'
{
 "tokens" : [{
 "token" : "joe",
 "start_offset" : 0,
 "end_offset" : 3,
 "type" : "<ALPHANUM>",
 "position" : 1
 }, {
 "token" : "jeffers",
 "start_offset" : 4,
 "end_offset" : 11,
 "type" : "<ALPHANUM>",
 "position" : 2
 }]
}

We searched the letters joe and the consequent document containing Joe Jeffers
was returned to us because the standard analyzer had split the text on word boundaries
and converted to lowercase. The standard analyzer is built using the Lower Case Token
Filter along with other filters (the Standard Token Filter and Stop Token Filter,
for example).

Now let's examine the following example:

curl -XDELETE localhost:9200/company
{"acknowledged":true}

curl -XPUT localhost:9200/company -d '{
 "mappings": {
 "employee": {
 "properties": {

http://www.unicode.org/reports/tr29/

Chapter 1

[13]

 "firstname": {"type": "string", "index": "not_analyzed"}
 }
 }
 }
}'
{"acknowledged":true}

curl -XPOST localhost:9200/company/employee -d '{
 "firstname": "Joe Jeffers",
 "lastname": "Hoffman",
 "age": 30
}'
{"_index":"company","_type":"employee","_id":"AU7GOF2wR7spPlxvqmHY","_
version":1,"created":true}

We deleted the company index created by dynamic mapping and recreated it with
explicit mapping. This time, we used the not_analyzed value of the index option on
the firstname field in the employee type. This means that the field is not analyzed
at indexing time:

curl -XGET localhost:9200/company/_search?pretty -d '{
 "query": {
 "match": {
 "firstname": "joe"
 }
 }
}'
{
 "took": 12,
 "timed_out": false,
 "_shards": {
 "total": 5,
 "successful": 2,
 "failed": 0
 },
 "hits": {
 "total": 0,
 "max_score": null,
 "hits": []
 }
}

www.allitebooks.com

http://www.allitebooks.org

Introduction to Efficient Indexing

[14]

As you can see, Elasticsearch did not return a result to us with the match query
because the firstname field is configured to the not_analyzed value. Therefore,
Elasticsearch did not use an analyzer during indexing; the indexed value was exactly
as specified. In other words, Joe Jeffers was a single token. Unless otherwise
indicated, the match query uses the default search analyzer. Therefore, if you want a
document to return to us with the match query without changing the analyzer in this
example, we need to specify the exact value (paying attention to uppercase/lowercase):

curl -XGET localhost:9200/company/_search?pretty -d '{
 "query": {
 "match" : {
 "firstname": "Joe Jeffers"
 }
 }
}'

The preceding command will return us the document we searched for. Now let's
examine the following example:

curl -XGET localhost:9200/company/_search?pretty -d '{
 "query": {
 "match_phrase_prefix": {
 "firstname": "Joe"
 }
 }
}'
{
 "took": 2,
 "timed_out": false,
 "_shards": {
 "total": 5,
 "successful": 5,****
 "failed": 0
 },
 "hits": {
 "total": 1,
 "max_score": 0.30685282,
 "hits": [
 {
 "_index": "company",
 "_type": "employee",
 "_id": "AU7GOF2wR7spPlxvqmHY",
 "_score": 0.30685282,
 "_source": {

Chapter 1

[15]

 "firstname": "Joe Jeffers",
 "lastname": "Hoffman",
 "age": 30
 }
 }
]
 }
}

As you can see, our searched document was returned to us although we did not
specify the exact value (please note that we still use uppercase letters) because the match_
phrase_prefix query analyzes the text and creates a phrase query out of
the analyzed text. It allows for prefix matches on the last term in the text.

Summary
In this chapter, we' looked at the important, main topics for efficient indexing and
relevant search results: How to store documents? What is the difference between the
storable and searchable field? What is the analysis process? What is the impact on
the relevant search results? In addition to that, we've briefly discussed some of the
basic concepts of Elasticsearch that are associated with Lucene (for example, inverted
index and the _source field).

In the next chapter, you'll learn about the Elasticsearch index—what mapping is,
what inverted index is, the denormalized data structure—and some other concepts
related to this topic.

[17]

What is an Elasticsearch
Index

In the previous chapter, we looked at what the difference is when a field becomes
indexed and searchable and at how the analysis process affects the relevant search results.
In this chapter, we will dive deep into the concept of the Elasticsearch index. Therefore,
we will first go through basic concepts. Then we will examine the inverted index data
structure. By the end of this chapter, we will have covered the following topics:

•	 What is dynamic mapping?
•	 What is denormalization?
•	 Is index flexible?
•	 What is the inverted index?

Nature of the Elasticsearch index
Let's go through the basic concepts of Elasticsearch indices and their features.

Indices
Elasticsearch is document-oriented. Each record in Elasticsearch is a document.
Elasticsearch uses JSON (JavaScript Object Notation) as the serialization format
for documents. Therefore, each piece of data that is sent to Elasticsearch for indexing
is a JSON document.

JSON is an open standard format that uses human-readable text to
transmit data objects consisting of attribute–value pairs. If you want
more information, please refer to https://en.wikipedia.org/
wiki/JSON.

https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON

What is an Elasticsearch Index

[18]

Elasticsearch indices compared to database management systems may be
considered to be databases. How a database is a collection of regular information,
Elasticsearch indices are a collection of structured JSON document. In other words,
an index is a logical partition for user data.

Documents are stored in the same index of similar characteristics, for example, your
member data in the member index, your customer data in the customer index, and so
on. In this sense, the index names refer to grouped documents. Like in SQL world, a
database name refers to a regular collection of information.

As mentioned in the previous chapter, Elasticsearch uses the Apache Lucene library
for writing and reading the data from the index. Apache Lucene stores all data in
a data structure called an inverted index. An inverted index is a data structure
mapped to documents and terms. We will examine the Inverted Index data structure
in detail after discussing the basic concepts.

When it comes to indices, we need to talk about the data distribution mechanism
used by Elasticsearch. Elasticsearch uses shards and replicas in order to distribute
data around the cluster.

Elasticsearch distributes data to more than one Lucene index as physical by default.
These indices are called shards and this distribution process is called sharding.
A shard is automatically managed by Elasticsearch. It is a low-level worker unit.
Take a look at the following distribution strategy:

Understanding the distribution strategy of Elasticsearch is important in the context
of efficient indexing, and this topic will be dealt with in greater detail in Chapter 5,
Anatomy of an Elasticsearch Cluster with shards and replicas.

Chapter 2

[19]

Mapping
When trying to understand the nature of Elasticsearch index, we need to look closely
at the concept of mapping.

Mapping is the process of defining how a document should be indexed to
Elasticsearch. In addition to this, how to analyze the fields of the target query is
determined by mapping.

Types are created according to the mapping information. It is important to know
that Elasticsearch creates mapping automatically based on the data sent. When data
is added, Elasticsearch tries to identify the data structure and makes it searchable.
This process is known as dynamic mapping.

Mapping is very important for relevant search results, and from this point it should
be understood quite well that how a field is analyzed is determined by mapping.

Mapping will be discussed with the basic concepts in the
next chapter.

Types
Elasticsearch indices contain one or more type(s). Types can be considered as
tables, again compared to database management systems. Types ensure grouped
documents under indices like tables do.

It is important to understand that although documents are grouped with similar
characteristics under indices and types, Elasticsearch is not limiting in our search
to a particular index or type:

curl -XGET localhost:9200/ purchaser,vendor/_search -d '{
 "query": {
 "match": {
 "country": "Turkey"
 }
 }
}'

In the preceding example, we have searched across all documents in the purchaser
and vendor indices without specifying the type:

curl -XGET localhost:9200/publisher/author,reviewer/_search -d '{
 "query": {
 "match": {

What is an Elasticsearch Index

[20]

 "city": "İstanbul"
 }
 }
}'

This time we have searched across all documents in the author and reviewer types
of the publisher index.

Document
In the Elasticsearch world (that is, in Lucene world), a document is the main entity and
basic unit of user data.

As mentioned earlier, the document format is JSON. Documents consist of fields
(that is, properties) and value pairs. Each field has a name and a type supporting
existing data types. A field is stored physically in a type within an index as an
element of a document that has a unique ID.

Now, let's send a document to Elasticsearch:

curl -XPOST localhost:9200/premierleague/topscorer -d '{
 "fullname": "Robin van Persie",
 "age": 32,
 "birthdate": "1983-08-06",
"current_club": "Fenerbahce SK"
}'
{"_index":"premierleague","_type":"topscorer","_
id":"AU8I47O90qdql2fUT1Oh","_version":1,"created":true}

As seen, we indexed the document without any preparation. Because Elasticsearch
is schema-less, it does not request some definitions such as index, type, and field type
before the indexing process.

We'll discuss the question, "Is the claim about 'Elasticsearch stands
for the schema-free model' always true?" in the next chapter.

The following command shows us the mapping for the fields that Elasticsearch
generated dynamically from the documents that we indexed:

curl -XGET localhost:9200/premierleague/_mapping/topscorer?pretty
{
 "premierleague" : {
 "mappings" : {
 "topscorer" : {

Chapter 2

[21]

 "properties" : {
 "current_club": {
 "type": "string"
 },
 "age" : {
 "type" : "long"
 },
 "birthdate" : {
 "type" : "date",
 "format" : "dateOptionalTime"
 },
 "fullname" : {
 "type" : "string"
 }
 }
 }
 }
 }
}

Documents do not necessarily have similar fields and data structures. For example, a
document with string values (in fields) and another document containing long/date
values (of fields) can be both stored in the same type. Containing documents that
have fields with different types, names, and different number of in the same index
is undoubtedly valuable. This also means that an object can be indexed later with
a new property and will automatically be added to the mapping definitions. It is
important to understand that flexibility is provided by Elasticsearch. This situation
can be likened to table and column independence that is provided by NoSQL
architectures. This also means that you can easily denormalize your data.

Denormalization
Denormalization is the process of optimizing the read performance of a database
by adding redundant data. A normalized design often stores related pieces of
information in separate logical tables. Consequently, in this case, we will be
performing the expensive join operations at which most NoSQL system are poor.
In most cases, when you deal with unstructured data, you must consider the
denormalized model for your data because, while the normalization model provides
a fixed-schema model, the denormalized model relies on schema-free data.

What is an Elasticsearch Index

[22]

You sometimes need to denormalize your data because the advantage of data
denormalization is speed. Now let's examine the following example:

curl -XPUT localhost:9200/my_index/author/1 -d '{
 "name": "David Karp",
 "email": "david@karp.com",
 "dob": "1986/07/06"
}'
{"_index":"my_index","_type":"author","_id":"1","_
version":1,"created":true}

curl -XPUT localhost:9200/my_index/article/1 -d '{
 "title": "Story on Tumblr",
 "body": "This story is...",
 "user": {
 "id": 1,
 "name": "David Karp"
 }
}'
{"_index":"my_index","_type":"article","_id":"1","_
version":1,"created":true}

Part of the author's data has been denormalized into the preceding article document.
In this way, we can find articles about relationships by the author called David with
a single query:

Curl -XGET localhost:9200/my_index/article/_search?pretty -d '{
 "query": {
 "bool": {
 "must": [
 { "match":
 {"title":"tumblr" }
 },
 { "match":
 { "user.name": "David" }
 }
]
 }
 }
}'

In this structure, each document contains all of the information; thus, there is no
need to join operations.

Chapter 2

[23]

Inverted index
As mentioned in the previous chapter, Elasticsearch uses Apache Lucene, which
stores all data in a data structure called an inverted index. An inverted index is an
index data structure that is designed to allow very fast full-text searches. In this
data structure are mapped terms (unique words) and documents. This is such that an
inverted index consists of a list of all the unique words, and for each word, a list
of the documents.

To better understand an inverted index, let's examine a scenario in which we have
three documents. These documents include the title and tags fields. If you run
the match_all query on the type that contains the documents, you will see the
following response:

{
 "_index": "my_index",
 "_type": "article",
 "_id": "1",
 "_score": 1,
 "_source": {
 "title": "core spring",
 "tags": [
"java",
"spring"
]
 }
 },
 {
 "_index": "my_index",
 "_type": "article",
 "_id": "2",
 "_score": 1,
 "_source": {
 "title": "spring data",
 "tags": [
"java",
"bigdata"
]
 }
 },
 {
 "_index": "my_index",
 "_type": "article",
 "_id": "3",
 "_score": 1,

What is an Elasticsearch Index

[24]

 "_source": {
 "title": "mongodb",
 "tags": [
"nosql",
"bigdata"
]
 }
 }

In such a scenario, Lucene first splits the fields of each document into separate words
(that is, terms or tokens) and creates a list of all the unique terms and documents to
store in the inverted index data structure.

The result is similar to the following figure:

Chapter 2

[25]

As you see, each unique term mapped with a document or documents. This structure
allows an efficient and fast search, especially for term-based queries. The reason for
this is clear: listing the documents per word is less expensive than listing the words
per document in terms of system resources. In addition, an inverted index includes
the position of each term within the document and has a numerical value indicating
the incidence of a term. More simply, it looks something like the following:

Term Count Doc_1 Doc_2 Doc_3
core 1 x
bigdata 2 x x
data 1 x
java 2 x x
mongodb 1 x
nosql 1 x
spring 2 x x

Each indexed field has a dedicated inverted index for fast retrieval in Lucene. It allows
getting all the tokens for that particular field. At this point, this is very important: an
inverted index of a document and the actual document storage are two different
things. We discussed the difference between the storable and searchable field in the
previous chapter. Inverted index is about being searchable but storage is related to
the actual document and retrieving it (if you don't recall, please refer to The difference
between the storable and searchable field section in the previous chapter).

Of course, a lot more can be said about the inverted index. But the first and most
important thing you need to know is how the data is organized and we have talked
about that enough.

Summary
In this chapter, we looked at the nature of the Elasticsearch index and reviewed the
basic concepts: what dynamic mapping is, what it means, flexibility in the index,
and what the inverted index is.

In the next chapter, you'll learn about the basic mapping concept: what basic mapping
is, what the relationship between mapping and relevant search results is, Is the claim
about 'Elasticsearch stands for the schema-free model' always true?, and some other
subjects related to this topic.

[27]

Basic Concepts of Mapping
In the previous chapter, we talked about the nature of the Elasticsearch index. We
started by looking at the basic concept and we discussed mapping. We talked about
index flexibility and data denormalization. Finally, we discussed about inverted
index and how the data is organized in an inverted index. In this chapter, we will
continue to discuss mapping. We will first go through basic concepts. Then we'll
focus on the relationship between mapping and relevant search results. Lastly, we
will try to have a good grasp on schema-less. At the end of this chapter, we will have
covered the following topics:

•	 What are metadata fields?
•	 How to control document metadata?
•	 What data types are?
•	 The relationship between mapping and getting relevant search results
•	 What is the meaning of schema-less?

Basic concepts and definitions
As stated in the previous chapter, mapping is the process of defining how a document
should be mapped to Elasticsearch (if you don't recall, please refer to the Mapping
section in the previous chapter). How a field is tokenized, analyzed, and searchable
can be found using the mapping mechanism. Keep in mind that mapping is actually
a schema definition (we will examine it in detail at the end of this chapter).

Now let's review the basic concepts and definitions.

Basic Concepts of Mapping

[28]

Metadata fields
All the fields are not returned to us when a document is requested but each
document has auto-generated metadata fields with each mapping which have
information about the document that allows us to control how the metadata
document is indexed. For example, which fields will return with the query results,
how long the document will live, and so on.

We will now examine some of those fields.

_source
We have already talked at length about the _source field in Chapter 1, Introduction
to Efficient Indexing; if you don't recall, please refer to the _source field section in the
same chapter.

_all
Elasticsearch is a full-text search engine. It allows you to search in all fields of a
document. This facility is provided by the _all field because it includes the text of
one or more other fields within the document indexed and concatenates them into
one big string. By default, the _all field is enabled and all fields are included in it
for ease of use. You can exclude or include a field in the _all field with explicit field
mappings and object mappings.

Now let's examine the following example:

curl -XPUT localhost:9200/my_index -d '{
 "mappings": {
 "employee": {
 "properties": {
 "firstname": { "type": "string" },
 "lastname": { "type": "string" },
 "addres": { "type": "string" },
 "phone": { "type": "string" },
 "email": { "type": "string" },
 "emailverification": {
 "type": "string" ,
 "include_in_all": false
 }
 }
 }
 }
}'
{"acknowledged":true}

Chapter 3

[29]

The emailverification field was configured so as not to be stored in the _all field
because we expect this field to have similar content like the email field and, hence,
we do not want any extra storage costs:

curl -XPOST localhost:9200/my_index/employee -d '{
 "firstname": "Yuri",
 "lastname": "Zhirkov",
 "addres": "Moscow",
 "email": "info@yurizhirkov.com",
 "emailverification": "FC Dynamo Moscow"
}'
{"_index":"my_index","_type":"employee","_
id":"AU8o2KINuve30Heb7oPu","_version":1,"created":true}

curl -XGET localhost:9200/my_index/employee/_search?pretty -d '{
 "query": {
 "match": {
 "_all": "dynamo"
 }
 }
}'
{
 "took": 1,
 "timed_out": false,
 "_shards": {
 "total": 5,
 "successful": 5,
 "failed": 0
 },
 "hits": {
 "total": 0,
 "max_score": null,
 "hits": []
 }
}

As you see, none of the documents were not returned to us when we searched
the dynamo phrase in the _all field because this phrase was taking place in the
emailverification field, which we already excluded in the _all field.

The _all field is very handy when we want to execute a search query against all
the fields of a document, and also the use of extra disk space for fields that normally
should not be the subject of a query may cause a waste of resources in terms of I/O
operations as the preceding example illustrates.

Basic Concepts of Mapping

[30]

What is essential to note (remember) is that this process comes at the expense of
CPU cycles and index size.

Keep in mind that the _all field is of the string type. This means
that field values of different types are stored as a string type.

_timestamp
The _timestamp field provides a timestamp for a document. By default, it is disabled
and is not stored. In order to enable and retrieve it, the following mapping should
be defined:

curl -XPUT localhost:9200/my_index -d '{
 "mappings": {
 "employee": {
 "_timestamp" : {
 "enabled" : true,
 "store": true
 }
 }
 }
}'

The _timestamp field can be queried as a standard date field and its value can
be provided as an external value when indexing. In addition, it can also be
automatically extracted from the document to index based on a path:

curl -XDELETE localhost:9200/my_index
{"acknowledged":true}

curl -XPUT localhost:9200/my_index -d '{
 "mappings": {
 "employee": {
 "_timestamp" : {
 "enabled" : true,
 "path" : "post_date",
 "store": true
 },
 "properties": {
 "firstname": { "type": "string" },
 "lastname": { "type": "string" },
 "addres": { "type": "string" },
 "phone": { "type": "string" },
 "email": { "type": "string" },

Chapter 3

[31]

 "emailverification": {
 "type": "string" ,
 "include_in_all": false
 }
 }
 }
 }
}'
{"acknowledged":true}

curl -XPOST localhost:9200/my_index/employee -d '{
 "firstname": "Yuri",
 "lastname": "Zhirkov",
 "addres": "Moscow",
 "email": "info@yurizhirkov.com",
 "emailverification": "info@yurizhirkov.com",
 "post_date": "2013-11-15T14:12:12"
}'
{"_index":"my_index","_type":"employee","_
id":"AU8xYHKBrFAX9jIdDUds","_version":1,"created":true}

Okay, now we will request the saved document along with the _timestamp field:

curl -XGET my_index/employee/_search?pretty -d '{
 "fields": ["_timestamp", "_source"],
 "query": {
 "filtered": {
 "query": {
 "match_all": {}
 },
 "filter": {
 "range": {
 "_timestamp": {
 "gt" : "2013-11-15T00:00:00",
 "lt" : "2014-11-14T23:59:59"
 }
 }
 }
 }
 }
}'
{
 "took": 3,
 "timed_out": false,
 "_shards": {

Basic Concepts of Mapping

[32]

 "total": 5,
 "successful": 5,
 "failed": 0
 },
 "hits": {
 "total": 1,
 "max_score": 1,
 "hits": [
 {
 "_index": "my_index",
 "_type": "employee",
 "_id": "AU8xYHKBrFAX9jIdDUds",
 "_score": 1,
 "_source": {
 "firstname": "Yuri",
 "lastname": "Zhirkov",
 "addres": "Moscow",
 "email": "info@yurizhirkov.com",
 "emailverification": "info@yurizhirkov.com",
 "post_date": "2013-11-15T14:12:12"
 },
 "fields": {
 "_timestamp": 1384524732000
 }
 }
]
 }
}

It is important to note about the preceding example that was queried the
_timestamp field.

_ttl
This field allows you to set your documents to time to live. That will cause the expired
documents to be deleted automatically. It comes to disabled by default. In order to
enable it, the following mapping should be defined:

curl -XPUT localhost:9200/my_index -d '{
 "mappings": {
 "reminder": {
 "_ttl": {
 "enabled": true,
 "default" : "5m"
 }

Chapter 3

[33]

 }
 }
}'
{"acknowledged":true}

Keep in mind that once _ttl is enabled, it is not allowed
to be disabled.

In the preceding example, we enabled _ttl and we provide a default _ttl value,
which is 5 minutes per index/type with the default feature. If you do not give a _ttl
value, the document will never expire.

If you provide a ttl value at a document level, it will override the default value for
the index. You can provide a _ttl value per document as follows:

curl -XPOST localhost:9200/my_index/reminder -d '{
 "user_id": 314,
 "temporary_password": "kj8nqw0xph",
 "_ttl": "30s"
}'
{"_index":"my_index","_type":"reminder","_
id":"AU82c07kRPPilXQ4LSl6","_version":1,"created":true}

Types
One of the most important issues when configuring an index is that the document
field must be configured with the appropriate data type. The type mapping allows us
to control the data type of each field in a document. Now let's examine some types of
other than the core types.

Object type
A JSON document can contain inner objects. When such a document is sent,
Elasticsearch completely understands the nature of those inner objects and makes
them searchable, for example, as follows:

curl -XPOST localhost:9200/my_index/department -d '{
 "computing": {
 "person": {
 "name": {
 "firstname": "Martin",
 "lastname": "Fowler"
 }

www.allitebooks.com

http://www.allitebooks.org

Basic Concepts of Mapping

[34]

 }
 }
}'
{"_index":"my_index","_type":"department","_id":"AU84K4PGEOfq-
PnkfR_e","_version":1,"created":true}

curl -XGET localhost:9200/my_index/department/_search?pretty -d '{
 "query": {
 "match": {
 "computing.person.name.firstname": "martin"
 }
 }
}'
{
 "took": 4,
 "timed_out": false,
 "_shards": {
 "total": 5,
 "successful": 5,
 "failed": 0
 },
 "hits": {
 "total": 1,
 "max_score": 1,
 "hits": [
 {
 "_index": "my_index",
 "_type": "department",
 "_id": "AU84K4PGEOfq-PnkfR_e",
 "_score": 1,
 "_source": {
 "computing": {
 "person": {
 "name": {
 "firstname": "Martin",
 "lastname": "Fowler"
 }
 }
 }
 }
 }
]
 }
}

Chapter 3

[35]

As you see, the inner object was successfully indexed because dynamic mapping
is enabled by default in Elasticsearch. Please note the dot notation in the preceding
command. We use the dot notation when we want to access an inner object or inner
object field. For instance, in the preceding example, dot notation in the computing.
person phrase refers to the person object, the next notation refers to name object,
and the last notation refers to firstname field. In some cases, you might want to turn
dynamic mapping off for inner objects. This can be very useful if you do not want
malformed objects, which are an incompatible data type or format:

curl -XDELETE localhost:9200/my_index
{"acknowledged":true}

curl -XPUT localhost:9200/my_index -d '{
 "mappings": {
 "department": {
 "properties": {
 "computing": {
 "type": "object",
 "properties": {
 "person": {
 "properties": {
 "name": {
 "dynamic": false,
 "properties": {
 "firstname": {"type" : "string"},
 "lastname": {"type" : "string"}
 }
 }
 }
 }
 }
 }
 }
 }
 }
}'
{"acknowledged":true}

In the preceding example, the name object mapped was configured by setting
the dynamic property's value to false. This means that if we try to index with a
new field within the name object, it will get discarded and will not be added to
the mapping definition.

Basic Concepts of Mapping

[36]

Let's see another example:

curl -XPOST localhost:9200/my_index/department -d '{
 "computing": {
 "person": {
 "name": {
 "firstname": "Martin",
 "lastname": "Fowler",
 "nickname": "martin"
 }
 }
 }
}'
{"_index":"my_index","_type":"department","_
id":"AU841UKxrec4gFOXhgdP","_version":1,"created":true}

curl -XGET localhost:9200/my_index/department/_mapping?pretty
{
 "my_index" : {
 "mappings" : {
 "department" : {
 "properties" : {
 "computing" : {
 "properties" : {
 "person" : {
 "properties" : {
 "name" : {
 "dynamic" : "false",
 "properties" : {
 "first_name" : {
 "type" : "string"
 },
 "last_name" : {
 "type" : "string"
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
}

Chapter 3

[37]

The new field (nickname) did not cause a mapping to be updated, but it was
indexed. So, if we ask Elasticsearch for the department type mapping, we see that it
does not add a schema definition of the nickname field. However, the nickname field
was indexed. This means that the nickname field will be returned to us when the
document is requested. However, if we do not want it, we should set the dynamic
parameter to strict false instead.

Root object type
The root object provides a type level configuration for fields such that it will be used
in all fields, unless otherwise noted. For example, you can explicitly define both the
index_analyzer and the search_analyzer parameters and specify a number of
formats for date fields that will be added dynamically to your document as follows:

curl -XPUT localhost:9200/library -d '{
 "mappings": {
 "book" : {
 "index_analyzer" : "standard",
 "search_analyzer" : "standard",
 "dynamic_date_formats" : ["yyyy-MM-dd", "dd-MM-yyyy"],
 "properties" : {
 "title": {"type": "string"},
 "author": {"type": "string"},
 "editor": {"type": "string"},
 "isbn": {"type": "string"}
 }
 }
 }
}'
{"acknowledged":true}

curl -XPOST localhost:9200/library/book -d '{
 "title": "The Rumi Collection: An Anthology of Translations of
Mevlana Jalaluddin Rumi",
 "author": "Jelaluddin Rumi",
 "editor": "Kabir Helminski",
 "isbn": " 1570627177",
 "edition": "19-12-2000"
}'
{"_index":"library","_type":"book","_id":"AU8976hagyuvzb298bjq","_
version":1,"created":true}

Keep in mind that dynamic_date_formats are not used for
date fields that you specify in your mapping.

Basic Concepts of Mapping

[38]

Attachment type
The attachment type allows indexing at a field encoded as base64. HTML, ePub,
Microsoft Office formats, and so on can be considered to be indexed. The type is provided
as a plugin extension. Please look at the plugin's README file for more information,
available at: https://github.com/elastic/elasticsearch-mapper-attachments.

The relationship between mapping and
relevant search results
It should be understood that how to store documents, control document metadata,
data type of a field answer to questions, and so on, is through mapping. Similarly,
as stated at the beginning of this chapter, using the mapping mechanism, we have
answered how does mapping tokenize a field and analyze the field, it going to be
searchable answers to questions, and so on, is also given by the mapping.

Now try to examine this situation closely through a simple scenario. Let's start with
indexing that looks as follows:

curl -XPOST localhost:9200/blog/article -d '{"title":"HTML In
troduction","category":["HTML"],"content":"HTML is a markup
language for describing web documents...","publishdate":"10-01-
2013","tags":["html","markup-language"]}'

curl -XPOST localhost:9200/blog/article -d '{"title":"NoSQL
Concept and MongoDB","category":["NoSQL","BigData"],"content
":"In recent years, we often hear the name of NoSQL as a new
star...","publishdate":"14-06-2013","tags":["nosql","bigdata","mongo
db"]}'

curl -XPOST localhost:9200/blog/article -d '{"title":"NoSQL with JPA",
"category":["NoSQL","BigData","JPA"],"content":"EclipseLink, reference
implementation of JPA...","publishdate":"05-08-2013","tags":["nosql","
bigdata","mongodb","eclipselink","jpa"]}'

curl -XPOST localhost:9200/blog/article -d '{"title":"JSF 2.2: HTML
5 Support","category":["HTML","Java","JSF"],"content":"HTML 5 is the
fifth version of the HTML markup Standard...","publishdate":"21-08-
2013","tags":["html 5","jsf"]}'

curl -XPOST localhost:9200/blog/article -d '{"title":"Introduction to
ElasticSearch","category":["Java","BigData"],"content":"Elasticsearch
is an open source...","publishdate":"16-09-2013","tags":["java","bigda
ta","elasticsearch","search-engine"]}'

https://github.com/elastic/elasticsearch-mapper-attachments

Chapter 3

[39]

We indexed our personal blog that published five articles for search and analysis
operations. Now, let's search for the Html 5 tag in the blog index:

curl -XGET localhost:9200/blog/_search?pretty -d '{
 "query": {
 "match": {
 "tags": "html 5"
 }
 }
}'
{
 "took": 36,
 "timed_out": false,
 "_shards": {
 "total": 5,
 "successful": 5,
 "failed": 0
 },
 "hits": {
 "total": 2,
 "max_score": 0.2169777,
 "hits": [
 {
 "_index": "blog",
 "_type": "article",
 "_id": "AU9Cb10ZT3fsfK8Z_ALA",
 "_score": 0.2169777,
 "_source": {
 "title": "JSF 2.2: HTML 5 Support",
 "category": [
 "HTML",
 "Java",
 "JSF"
],
 "content": "HTML 5 is the fifth version of the HTML
markup Standard...",
 "publishdate": "21-08-2013",
 "tags": [
 "html 5",
 "jsf"
]
 }
 },
 {

Basic Concepts of Mapping

[40]

 "_index": "blog",
 "_type": "article",
 "_id": "AU9Cb1yxT3fsfK8Z_AK9",
 "_score": 0.02250402,
 "_source": {
 "title": "HTML Introduction",
 "category": [
 "HTML"
],
 "content": "HTML is a markup language for describing
web documents...",
 "publishdate": "10-01-2013",
 "tags": [
 "html",
 "markup-language"
]
 }
 }
]
 }
}

Oops, we have a problem.

Actually, we have a single document that contains HTML tag but two documents
are returned by the query. The reason for this is that the Blog index was created with
dynamic mapping. For this reason, the tags fields were analyzed by the standard
analyzer. It removes most punctuation and splits the text on word boundaries, as
defined by the Unicode Consortium. In this case, for example, the html 5 phrase is
two tokens [html, 5]. Therefore, the html phrase matches with two documents that
are containing the html and html 5 phrases in search time.

Now let's request intervals of a month in our articles using date histogram
aggregation:

curl -XGET localhost:9200/blog/_search?pretty -d '{
 "size": 0,
 "aggs" : {
 "articles_over_time" : {
 "date_histogram" : {
 "field" : "publishdate",
 "interval" : "month"
 }
 }
 }

Chapter 3

[41]

}'
{
 "error": "SearchPhaseExecutionException[Failed to execute phase
[query], all shards failed; shardFailures {[U2m824TnSbmOAnDZSjY5-A]
[blog][0]: ClassCastException[org.elasticsearch.index.fielddata.plain.
PagedBytesIndexFieldData cannot be cast to org.elasticsearch.index.
fielddata.IndexNumericFieldData]}{[U2m824TnSbmOAnDZSjY5-A][blog]
[1]: ClassCastException[org.elasticsearch.index.fielddata.plain.
PagedBytesIndexFieldData cannot be cast to org.elasticsearch.index.
fielddata.IndexNumericFieldData]}{[U2m824TnSbmOAnDZSjY5-A][blog]
[2]: ClassCastException[org.elasticsearch.index.fielddata.plain.
PagedBytesIndexFieldData cannot be cast to org.elasticsearch.index.
fielddata.IndexNumericFieldData]}{[U2m824TnSbmOAnDZSjY5-A][blog]
[3]: ClassCastException[org.elasticsearch.index.fielddata.plain.
PagedBytesIndexFieldData cannot be cast to org.elasticsearch.index.
fielddata.IndexNumericFieldData]}{[U2m824TnSbmOAnDZSjY5-A][blog]
[4]: ClassCastException[org.elasticsearch.index.fielddata.plain.
PagedBytesIndexFieldData cannot be cast to org.elasticsearch.index.
fielddata.IndexNumericFieldData]}]",
 "status": 500
}

Oops, we have a bigger problem now than ever.

Date histogram aggregation can only be applied on date values. This is the source
of our problem. Now let's request the mapping details of the article type in the
blog index:

curl -XGET localhost:9200/blog/article/_mapping?pretty
This gives us the following mapping detail:
{
 "blog": {
 "mappings": {
 "article": {
 "properties": {
 "category": {
 "type": "string"
 },
 "content": {
 "type": "string"
 },
 "publishdate": {
 "type": "string"
 },
 "tags": {
 "type": "string"
 },

Basic Concepts of Mapping

[42]

 "title": {
 "type": "string"
 }
 }
 }
 }
 }
}

As you can see, the publishdate field is of type string. Elasticsearch uses Joda
for parsing dates. The default date parsing technique is ISODateTimeFormat.
dateOptionalTimeParser. That creates instances of DateTimeFormatter based on the
ISO8601 standard.

If you want more information about Joda, please refer to
http://www.joda.org/joda-time/.

As mentioned previously, the Blog index was created with dynamic mapping. For
this reason, the publishdate field has been recognized as a field of type
string by Elasticsearch because the value of the field is incompatible with the
default date format.

Now, the blog index must consider our needs; let's recreate the blog index with
explicit mapping.

Our needs:

1.	 We want to search by an exact value from the tag field.
2.	 We want to use the date query (as a date histogram aggregation) on the

date field.

Let's look at the following snippet:

curl -XDELETE localhost:9200/blog
{"acknowledged":true}

curl -XPUT localhost:9200/blog -d '{
 "mappings": {
 "article" : {
 "properties" : {
 "title": {"type": "string"},
 "category": {"type": "string"},
 "content": {"type": "string"},
 "publishdate": {"type": "date", "format": "dd-MM-yyyy"},

http://www.joda.org/joda-time/

Chapter 3

[43]

 "tags": {"type": "string", "index": "not_analyzed"}
 }
 }
 }
}'
{"acknowledged":true}

In the preceding explicit mapping, firstly, we defined the date format for the
publishdate field and then we used the not_analyzed value of the index option
on the tags field. This means the tags field is not analyzed at indexing time. So, the
indexed field's value was exactly as specified. In other words, "html 5" phrase will
be a single token.

Now we are able to get the results we expect from the queries after running.

Understanding the schema-less
Certainly one of the most important features of Elasticsearch is its ability to be
schema-less but it must be digested with no doubt.

Yes, as stated previously, Elasticsearch does not require some definitions such
as index, type, and field type before the indexing process, and when an object is
indexed later with a new property, it will automatically be added to the mapping
definitions.

So, is the claim about "Elasticsearch stands for the schema-free model" always true?

Recall that types are being created according to the mapping information and
mapping is actually a schema definition. Therefore, Elasticsearch expects that
mapping and the documents being indexed are compatible.

Now let's examine the following example:

curl -XPUT localhost:9200/my_index/document/1 -d '{"value": "a"}'
{"_index":"my_index","_type":"document","_id":"1","_
version":1,"created":true}

curl -XPUT localhost:9200/my_index/document/2 -d '{"value": 1}'
{"_index":"my_index","_type":"document","_id":"2","_
version":1,"created":true}

Everything seems fine. Let's now request mapping for the document type. This gives
us the following result:

curl -XGET localhost:9200/my_index/document/_mapping?pretty
{
 "my_index" : {

Basic Concepts of Mapping

[44]

 "mappings" : {
 "document" : {
 "properties" : {
 "value" : {
 "type" : "string"
 }
 }
 }
 }
 }
}

The response shows that the value field has been recognized as a field of type string
by Elasticsearch because the first value being a string value (that is, a) was sent
(remember, explicit mapping was used). In this case, when the second document was
indexed, Elasticsearch converted the numeric value into a string value.

Okay, now we will delete the my_index and indexing the documents in
reverse order:

curl -XDELETE localhost:9200/my_index
{"acknowledged":true}

curl -XPUT localhost:9200/my_index/document/1 -d '{"value": 1}'
{"_index":"my_index","_type":"document","_id":"1","_
version":1,"created":true}

So far so good. Let's continue:

curl -XPUT localhost:9200/my_index/document/2 -d '{"value": "a"}'
{"error":"MapperParsingException[failed to parse [value]]; nested:
NumberFormatException[For input string: \"a\"]; ","status":400}

Oops, we have a big problem. As you seen, the server returns a 400 Bad Request
when we submit the second document. Let's now again request mapping for the
document type:

curl -XGET localhost:9200/my_index/document/_mapping?pretty
{
 "my_index" : {
 "mappings" : {
 "document" : {
 "properties" : {
 "value" : {
 "type" : "long"
 }

Chapter 3

[45]

 }
 }
 }
 }
}

As you can see, the value field has been recognized as a field of type long by
Elasticsearch because the first value being a numeric value (that is, 1) was sent
(remember again, explicit mapping was used). In this case, when the second document
was indexed, Elasticsearch tried to parse the string value a as a numeric value and threw a
NumberFormatException as this string can't be parsed numerically.

We cannot solve this problem by deleting the first document because this action
does not change the mapping information. Keep in mind that once a field has been
added, its type cannot change.

To sum up, Elasticsearch is schema-less in that you do not need to define fields in
advance, but it requires that the fields in documents being indexed are compatible
with the mapping. You can add new fields anytime, but once a field is defined, you
cannot change its type.

Summary
In this chapter, we looked at the basic concepts of mapping and reviewed the basic
definitions—what the metadata fields are, how does mapping control them—and
we examined some data types. Then we looked at the relationship between mapping
and relevant search results. Finally, we tried to understand correctly the meaning of
schema-less by asking the question: Is the claim about "Elasticsearch stands for the
schema-free model" always true?

In the next chapter, you'll learn about the analysis module and analyzers. In
addition, we will examine the questions—what is the analysis process? What do the
underlying Tokenizer, Token, and CharFilters make?—and some other concepts
related to this topic.

[47]

Analysis and Analyzers
In the previous chapter, we looked at the basic concepts and definitions of mapping.
We talked about fields of metadata and data types. Then, we discussed the
relationship between mapping and relevant search results. Finally, we tried to have a
good grasp of understanding what the schema-less is in Elasticsearch.

In this chapter, we will review the process of analysis and analyzers. We will
examine the tokenizers and we will look closely at the character and token filters.
In addition, we will review how to add analyzers to an Elasticsearch configuration.
By the end of this chapter, we would have covered the following topics:

•	 What is analysis process?
•	 What is built-in analyzers?
•	 What are doing tokenizers, character, and token filters?
•	 What is text normalization?
•	 How to create custom analyzers?

Introducing analysis
As mentioned in Chapter 1, Introduction to Efficient Indexing, a huge scale of data is
produced at any moment in today's world of information technologies on various
platforms, such as social media and medium and large-sized companies, which
provide services in communication, health, security, and any other areas. Moreover,
initially, such data is in an unstructured form.

We can see that this point of view on the big data takes into account three basic
needs/concerns/forms:

•	 Recording of data by high performance
•	 Accessing of data by high performance
•	 Analyzing of data

Analysis and Analyzers

[48]

Big data solutions are mostly related to the aforementioned three basic needs.

Data should be recorded with high performance in order that data can be accessed
with fully high performance benefits; however, it is not enough alone. To get the real
meaning of data, data must be analyzed.

Thanks to data analysis, the well-established search engines like Google and many
social media platforms like Facebook/Twitter are using it successfully.

Let's consider Google with the following screenshot.

Would you accept it if Google does not predict that you're looking for Barcelona
when you search for the phrase barca or if does not ask you the Did you mean
function when you make a spelling mistake?

To be honest, the answer is absolutely not.

If a search engine does not predict what we're looking for, then we use another
search engine that can do it.

We're talking about subtle analysis, and more than that, the exact value of Barca is
not the same as the exact value barca. We are talking about the understanding of a
search. For example, TR relates to Turkey and a search for Jeffrey Jacob Abrams also
relates to J.J. Abrams.

Chapter 4

[49]

The importance of data analysis occurs at this point because the understanding of the
aforementioned analysis can only be achieved by data analysis.

We will discuss the analysis process in Elasticsearch in the next sections.

Process of analysis
We mentioned in Chapter 1, Introduction to Efficient Indexing and Chapter 2, What is an
Elasticsearch Index that all Apache Lucene's data is stored in the inverted index. This
means that the data is being transformed. The process of transforming data is called
analysis. The analysis process relies on two basic pillars: tokenizing and normalizing.

The first step of the analysis process is to break the text into tokens using tokenizer
after processing by the character filters for the inverted index. Then, it normalizes
these tokens (that is, terms) to make them easily searchable.

Analysis and Analyzers

[50]

Inverted index processes are performed by analyzers. Generally, an analyzer is
composed of a tokenizer and one or more token filters. During the indexing time,
when Elasticsearch processes a field that must be indexed, it checks whether an
analyzer is defined at several levels or not because an analyzer can be specified at
several levels.

The check order is as follows:

1.	 At field level
2.	 At type level
3.	 At index level
4.	 At node level

The _analyzer field is used to define document-level
analyzer. It is deprecated in 1.5.0 version.

Elasticsearch also makes the control in query time because an analyzer can be
defined in query time. This means that you can use the analyzer when you want in
query time.

Keep in mind that choosing the correct analyzer is essential
for getting relevant results.

Built-in analyzers
Elasticsearch comes with several analyzers in its standard installation. In the
following table, some analyzers are described:

Analyzer Description
Standard Analyzer This uses Standard Tokenizer to divide text. Other components

are Standard Token Filter, Lower Case Token Filter, and Stop
Token Filter. It normalizes tokens, lowercases tokens, and also
removes unwanted tokens. By default, Elasticsearch applies the
standard analyzer.

Simple Analyzer This uses Letter Tokenizer to divide text. Another component is
Lower Case Tokenizer. It lowercases tokens.

Whitespace Analyzer This uses Whitespace Tokenizer to divide text at spaces.

Chapter 4

[51]

Analyzer Description
Stop Analyzer This uses Letter Tokenizer to divide text. Other components are

Lower Case Tokenizer and Stop Token Filter. It removes stop
words from token streams.

Pattern Analyzer This uses a regular expression to divide text. It accepts lowercase
and stop words setting.

Language Analyzer A set of analyzers analyze the text for a specific language.
Languages supported are: Arabic, Armenian, Basque, Brazilian,
Bulgarian, Catalan, Chinese, Czech, Danish, Dutch, English,
finish, French, Galician, German, Greek, Hindi, Hungarian,
Indonesian, Irish, Italian, Latvian, Norwegian, Persian,
Portuguese, Romanian, Russian, Spanish, Swedish, Turkish,
and Thai.

Analyzers fulfill the following three main functions using character filters, tokenizer,
and token filters:

•	 Filtering of characters
•	 Tokenization
•	 Filtering of the term

Let's look at the main function of how closely it is realized now.

Building blocks of Analyzer
In the analysis process, a tokenizer is used to break a text into tokens. Before
this operation, the text is passed through any character filter. Then, token filters
start working.

Character filters
Character filters are used before being passed to tokenizer at the analysis process.
Elasticsearch has built-in characters filters. Also, you can create your own character
filters to meet your needs.

HTML Strip Char filter
This filter is stripping out HTML markup from an analyzed text. For example, consider
the following verse belonging to the Turkish poet and sufi mystic Yunus Emre:

Âşıklar ölmez!

Analysis and Analyzers

[52]

As you can see, Turkish and Latin accent characters are used instead of HTML decimal
code. The original text is Âşıklar ölmez! (Translation: lovers are immortal!) Let's see
how you get a result when this text is analyzed with standard tokenizer:

curl -XGET 'localhost:9200/_analyze?tokenizer=standard&pretty' -d
'Âşıklar ölmez!'
{
 "tokens" : [{
 "token" : "194",
 "start_offset" :2,
 "end_offset" :5,
 "type" : "<NUM>",
 "position" : 1
 }, {
 "token" : "351",
 "start_offset" :8,
 "end_offset" :11,
 "type" : "<NUM>",
 "position" : 2
 }, {
 "token" : "305",
 "start_offset" :14,
 "end_offset" :17,
 "type" : "<NUM>",
 "position" : 3
 }, {
 "token" : "klar",
 "start_offset" :18,
 "end_offset" :22,
 "type" : "<ALPHANUM>",
 "position" : 4
 }, {
 "token" : "246",
 "start_offset" :25,
 "end_offset" :28,
 "type" : "<NUM>",
 "position" : 5
 }, {
 "token" : "lmez",
 "start_offset" :29,
 "end_offset" :33,
 "type" : "<ALPHANUM>",
 "position" : 6
 }]
}

Chapter 4

[53]

As you can see, these results are not useful or user-friendly. Remember, if text is
being analyzed in this way, documents containing the word Âşıklar are not returned
to us when we search the word Âşıklar. In this case, we need a filter to convert the
HTML code of the characters. HTML Strip Char Filter performs this job, as shown:

curl -XGET 'localhost:9200/_analyze?tokenizer=standard&char_
filters=html_strip&pretty' -d 'Âşıklar ölmez!'
{
 "tokens" : [{
 "token" : "Âşıklar",
 "start_offset" :0,
 "end_offset" :22,
 "type" : "<ALPHANUM>",
 "position" : 1
 }, {
 "token" : "ölmez",
 "start_offset" :23,
 "end_offset" :33,
 "type" : "<ALPHANUM>",
 "position" : 2
 }]
}

Pattern Replace Char filter
This char filter allows using a regex to manipulate the characters. The usage of the
filter will be exemplified in the Creating a Custom Analyzer section.

Tokenizer
Token is one of the basic concepts in the lexical analysis of computer science, which
means that a sequence of characters (that is, string) can turn into a sequence of
tokens. For example, the string hello world becomes [hello, world]. Elasticsearch
has several tokenizers that are used to divide a string down into a stream of terms or
tokens. A simple tokenizer may split the string up into terms wherever it encounters
word boundaries, whitespace, or punctuation.

Analysis and Analyzers

[54]

Elasticsearch has built-in tokenizers. You can combine them with character filters to
create custom analyzers. In the following table, some tokenizers are described:

Tokenizer Description
Standard Tokenizer This finds the boundaries between words and then

divides text. To do this, it uses the Unicode Text
Segmentation algorithm.

Letter Tokenizer This divides text at non-letters and converts them to
lower case that performs the function of Letter Tokenizer
and the Lower Case Token Filter together.

Whitespace Tokenizer This divides text at spaces.
Pattern Tokenizer This divides text at via a regular expression.
UAX Email URL Tokenizer This tokenizes e-mails and URLs as single tokens. It

works like the standard tokenizer.
Path Hierarchy Tokenizer This divides text at delimiters (defaults character

delimiter to '/').

If you want more information about the Unicode Standard Annex
#29, refer to http://unicode.org/reports/tr29/.

Token filters
Token filters accept a stream of modified tokens from tokenizers. Elasticsearch has
built-in token filters. In the following table, some token filters are described:

Token Filter Description
ASCII Folding Token Filter This converts alphabetic, numeric, and symbolic unicode

characters that are not in the first 127 ASCII characters.
Length Token Filter This removes words that are longer or shorter than

specified.
Lowercase Token Filter This normalizes token text to lower case.
Uppercase Token Filter This normalizes token text to upper case.
Stop Token Filter This removes stop words (They are specified words - for

example the, is, are, and so on.) from token streams.
Reverse Token Filter This simply reverses each token.
Trim Token Filter This trims the whitespace surrounding a token.
Normalization Token
Filters

These normalize special characters of a certain language
(for example, Arabic, German, Persian).

Chapter 4

[55]

What's text normalization?
Text normalization is the process of transforming text into a common form. That is
necessary in order to remove insignificant differences among identical words.

Let's look at déjà-vu word to handle.

The word deja-vu is not equal to déjà-vu for string comparison. Even Déjà-vu is
not equal to déjà-vu. Similarly, Michè'le is not equal to Michèle. All these words
(that is, tokens) are not equal because the comparison is made at the byte-level by
Elasticsearch. This means, for two tokens to be considered the same, they need to
consist of exactly the same bytes when these tokens are compared.

However, these words have similar meanings. In other words, the same thing is
being sought when a user is searching for the word déjà-vu and another user,
deja-vu or deja vu. It should also be noted that the Unicode standard allows you to
create equivalent text in multiple ways.

For example, take letters é (Latin Capital letter e with grave) and é (Latin Capital letter e
with acute). In this case, you may have the same letters encoded in different ways on
your data source. Such reasons are necessary for improving relevant search results.
This is the job of token filters and this process makes tokens more easily searchable.

There are four normalization forms that exist, namely:

•	 NFC
•	 NFD
•	 NFKC
•	 NFKD

NFC is canonical composition and NFKC is compatibility composition. These
forms represent characters in the fewest bytes possible. The original word remains
unchanged in these forms.

NFD is canonical decomposition and NFKD is compatibility decomposition. These
decomposed forms represent characters by their constituent parts.

If you want more information about the unicode normalization
forms, refer to http://unicode.org/reports/tr15/

Analysis and Analyzers

[56]

ICU analysis plugin
Elasticsearch has an ICU analysis plugin. You can use this plugin to use mentioned
forms in the previous section, and so ensuring that all of your tokens are in the same
form. Note that the plugin must be compatible with the version of Elasticsearch in
your machine:

bin/plugin install elasticsearch/elasticsearch-analysis-icu/2.7.0

After installing, the plugin registers itself by default under icu_normalizer or
icuNormalizer. You can see an example of the usage as follows:

curl -XPUT /my_index -d '{
 "settings": {
 "analysis": {
 "filter": {
 "nfkc_normalizer": {
 "type": "icu_normalizer",
 "name": "nfkc"
 }
 },
 "analyzer": {
 "my_normalizer": {
 "tokenizer": "icu_tokenizer",
 "filter": ["nfkc_normalizer"]
 }
 }
 }
 }
}'

The preceding configuration let's normalize all tokens into the NFKC
normalization form.

If you want more information about the ICU, refer to
http://site.icu-project.org. If you want to examine
the plugin, refer to https://github.com/elastic/
elasticsearch-analysis-icu.

ASCII Folding Token filter
The ASCII Folding token filter converts alphabetic, numeric, and symbolic unicode
characters. It determines their corresponding ASCII characters, if a character is not in
the first 127 ASCII characters and, of course, if one exists.

http://site.icu-project.org
https://github.com/elastic/elasticsearch-analysis-icu
https://github.com/elastic/elasticsearch-analysis-icu

Chapter 4

[57]

To see how it works, run the following command:

curl -XGET 'l
ocalhost:9200/_analyze?tokenizer=standard&filters=asciifolding&pretty'
-d "Le déjà-vu est la sensation d'avoir déjà ététémoinoud'avoir déjà
vécuune situation présente"
{
 "tokens" : [{
 "token" : "Le",
 "start_offset" :0,
 "end_offset" :2,
 "type" : "<ALPHANUM>",
 "position" : 1
 }, {
 "token" : "deja",
 "start_offset" :3,
 "end_offset" :7,
 "type" : "<ALPHANUM>",
 "position" : 2
 }, {
 "token" : "vu",
 "start_offset" :8,
 "end_offset" :10,
 "type" : "<ALPHANUM>",
 "position" : 3
 }, {
 "token" : "est",
 "start_offset" :11,
 "end_offset" :14,
 "type" : "<ALPHANUM>",
 "position" : 4
 }, {
 "token" : "la",
 "start_offset" :15,
 "end_offset" :17,
 "type" : "<ALPHANUM>",
 "position" : 5
 }, {
 "token" : "sensation",
 "start_offset" :18,
 "end_offset" :27,
 "type" : "<ALPHANUM>",
 "position" : 6
 }, {
 "token" : "d'avoir",

Analysis and Analyzers

[58]

 "start_offset" :28,
 "end_offset" :35,
 "type" : "<ALPHANUM>",
 "position" : 7
 }, {
 "token" : "deja",
 "start_offset" :36,
 "end_offset" :40,
 "type" : "<ALPHANUM>",
 "position" : 8
 }, {
 "token" : "ete",
 "start_offset" :41,
 "end_offset" :44,
 "type" : "<ALPHANUM>",
 "position" : 9
 }, {
 "token" : "temoin",
 "start_offset" :45,
 "end_offset" :51,
 "type" : "<ALPHANUM>",
 "position" : 10
 }, {
 "token" : "ou",
 "start_offset" :52,
 "end_offset" :54,
 "type" : "<ALPHANUM>",
 "position" : 11
 }, {
 "token" : "d'avoir",
 "start_offset" :55,
 "end_offset" :62,
 "type" : "<ALPHANUM>",
 "position" : 12
 }, {
 "token" : "deja",
 "start_offset" :63,
 "end_offset" :67,
 "type" : "<ALPHANUM>",
 "position" : 13
 }, {
 "token" : "vecu",
 "start_offset" :68,
 "end_offset" :72,

Chapter 4

[59]

 "type" : "<ALPHANUM>",
 "position" : 14
 }, {
 "token" : "une",
 "start_offset" :73,
 "end_offset" :76,
 "type" : "<ALPHANUM>",
 "position" : 15
 }, {
 "token" : "situation",
 "start_offset" :77,
 "end_offset" :86,
 "type" : "<ALPHANUM>",
 "position" : 16
 }, {
 "token" : "presente",
 "start_offset" :87,
 "end_offset" :95,
 "type" : "<ALPHANUM>",
 "position" : 17
 }]
}

As you see, even though a user may enter déjà, the filter converts it to deja;
likewise, été is being converted to ete. The ASCII Folding token filter doesn't
require any configuration, but, if desired, you can include directly the one in a
custom analyzer as follows:

curl -XPUT localhost:9200/my_index -d '{
 "settings": {
 "analysis": {
 "analyzer": {
 "folding": {
 "tokenizer": "standard",
 "filter": ["lowercase", "asciifolding"]
 }
 }
 }
 }
}'

Analysis and Analyzers

[60]

An Analyzer Pipeline
If we have a good grasp of the analysis process described so far, a pipeline of an
analyzer should be as shown in the following picture:

Text to be analyzed is primarily processed by the character filters. Then, a filter
divides the text by tokenizers and tokens are obtained. In the final step, the token
filters modify tokens.

Specifying the analyzer for a field in
the mapping
You can define an analyzer both in the index_analyzer and the search_analyzer
member over a field in the mapping process. Also, Elasticsearch allows you to use
different analyzers in separate fields.

The following command shows us the mapping for the fields that an analyzer defined:

curl -XPUT localhost:9200/blog -d '{
 "mappings": {
 "article": {
 "properties": {
 "title": {
 "type": "string", "index_analyzer": "simple"
 },

Chapter 4

[61]

 "content": {
 "type": "string", "index_analyzer": "whitespace", "search_
analyzer": "standard"
 }
 }
 }
 }
}'
{"acknowledged":true}

We defined a simple analyzer to the title field, and whitespace analyzer to the
content field by the preceding configuration. Also, the search analyzer refers to
the standard analyzer in the content field.

Now, we will add a document to the blog index as follows:

curl -XPOST localhost:9200/blog/article -d '{
 "title": "My boss's job was eliminated'",
 "content": "Hi guys. My boss's job at the office was eliminated due
to budget cuts.'"
}'
{"_index":"blog","_type":"article","_id":"AU-bQRaEOIfz36vMy16h","_
version":1,"created":true}

Now we will search boss's word in the title field:

curl -XGET localhost:9200/blog/_search?pretty -d '{
 "query": {
 "match": {
 "title": "boss's"
 }
 }
}'
{
 "took": 2,
 "timed_out": false,
 "_shards": {
 "total": 5,
 "successful": 5,
 "failed": 0
 },
 "hits": {
 "total": 0,
 "max_score": null,
 "hits": []
 }
}

Analysis and Analyzers

[62]

Oops, we have a problem.

Actually, we have a document that contains the boss's phrase in the title field, but
the document is not returned by the query. Why did this happen?

To answer this question, let's see how the boss's phrase is analyzed in the title
field using the Analyze API:

curl -XGET "localhost:9200/blog/_analyze?field=title&text=boss's&pret
ty"
{
 "tokens" : [{
 "token" : "boss",
 "start_offset" :0,
 "end_offset" :5,
 "type" : "word",
 "position" : 1
 }, {
 "token" : "s",
 "start_offset" :10,
 "end_offset" :11,
 "type" : "word",
 "position" : 2
 }]
}

As you can see, simple analyzer broke the apostrophe. Now, let's search the phrase
guys in the content field for getting same document:

curl -XGET localhost:9200/blog/_search -d '{
 "query": {
 "match": {
 "content": "guys"
 }
 }
}'
{
 "took": 4,
 "timed_out": false,
 "_shards": {
 "total": 5,
 "successful": 5,
 "failed": 0
 },
 "hits": {

Chapter 4

[63]

 "total": 0,
 "max_score": null,
 "hits": []
 }
}

We have a document that contains the guys phrase in the content field but the
document is not returned by the query. Let's see how the Hi guys. sentence is
analyzed in the content field using the Analyze API:

curl -XGET 'localhost:9200/blog/_analyze?field=content&text=Hi
guys.&pretty'
{
 "tokens": [
 {
 "token": "Hi",
 "start_offset": 0,
 "end_offset": 2,
 "type": "word",
 "position": 1
 },
 {
 "token": "guys.",
 "start_offset": 3,
 "end_offset": 8,
 "type": "word",
 "position": 2
 }
]
}

As you can see, the whitespace analyzer broke the space and did not remove the
punctuation. If we recreate the blog index with the following configuration, in both
the preceding query will return documents:

curl -XDELETE localhost:9200/blog
{"acknowledged":true}

curl -XPUT localhost:9200/blog -d '{
 "mappings": {
 "article": {
 "properties": {
 "title": {
 "type": "string", "index_analyzer": "simple", "search_
analyzer": "simple"
 },

Analysis and Analyzers

[64]

 "content": {
 "type": "string"
 }
 }
 }
 }
}'
{"acknowledged":true}

In the preceding configuration, we defined a simple analyzer to the title field for
indexing and search operation. By default, Elasticsearch applies standard analyzer
for fields of a document. This is why we did not define an analyzer for the content
field. Now the document will return to us when we search a boss's phrase.

To summarize this example, when at first we searched the boss's word in the
title field, Elasticsearch did not return any document to us because we used
simple analyzer for indexing on the title field, and this analyzer divided the text at
non-letters. That means that boss's phrase divided the apostrophe by the simple
analyzer. However, the title field uses standard analyzer at search time. Remember
that we did not define a search analyzer for the title field initially. So, the document
was not returned to us because we used two analyzers that have different behaviors
for indexing and searching. By eliminating these differences, the document was
returned to us.

Keep in mind that the same analyzer used at index time and
at search time is very important for the terms of the query to
match the terms of inverted index.

Creating a custom analyzer
Although the analyzers that come bundled with Elasticsearch are sufficient for many
cases, we may want to use custom analyzers for some special needs by combining
character filters, tokenizers, and token filters in a configuration.

For example, if we include the javaee phrase or j2ee phrase in our article, we
want to analyze them as java enterprise edition. The following is a sample
configuration that allows it:

curl -XPUT localhost:9200/my_index -d '{
 "settings" : {
 "analysis" : {
 "char_filter" : {
 "my_pattern":{
 "type":"pattern_replace",

Chapter 4

[65]

 "pattern":"j2ee|javaee(.*)",
 "replacement":"java enterprise edition $1"
 }
 },
 "analyzer" : {
 "my_custom_analyzer" : {
 "tokenizer" : "standard",
 "filter": ["lowercase"],
 "char_filter" : ["my_pattern"]

 }
 }
 }
 }
}'
{"acknowledged":true}

The preceding configuration, firstly, defines a character filter. It is a type of pattern_
replace. We defined a pattern and replacement text for this filter.

Then, we configured our custom analyzer. We gave it a name: my_custom_analyzer.
The analyzer has standard tokenizer and lowercase token filter, and the character
filter is a type of pattern_replace that we just created.

This custom analyzer, firstly, uses the character filter to manipulate the characters.
Then, it divides text at the word boundaries and finally, normalizes token text to
lower case.

Summary
In this chapter, we looked at the analysis process and we reviewed the building
blocks of analyzer. After this, we comprehended what the character filters,
tokenizers, and token filters are, and how to specify different analyzers in separate
fields. Finally, we saw how to create a custom analyzer. In the next chapter, you'll
discover the anatomy of an Elasticsearch cluster, what a shard is, what a replica
shard is, what a function replica shard performs, and so on. In addition, we will
examine the questions, how do we configure my cluster correctly? and how do
we determine the correct number of shard and replicas? We will also look at some
relevant cases related to this topic.

[67]

Anatomy of an Elasticsearch
Cluster

In the previous chapter, we looked at the analysis process and analyzers. We talked
about character filters, tokenizers, and token filters. Then, we reviewed an analyzer
pipeline. Finally, we saw how to create a custom analyzer. In this chapter, we will
discover the anatomy of an Elasticsearch cluster. We will try to look closely at
the core components of an Elasticsearch cluster. In addition, we will examine the
question: how do we configure my cluster correctly? By the end of this chapter, we
would have covered the following topics:

•	 What are basic components of an Elasticsearch cluster
•	 What are key concepts behind distribution architecture
•	 What primary and replica shards do
•	 How to choose the right amount of shards and replicas

Basic concepts
An Elasticsearch cluster is a physical and a logical partition of the nodes that are
allocated into it. Initially, you don't need to do any configuration for your cluster.
When a node is started, Elasticsearch creates a directory based on the defined
cluster name and then the node is allocated to this directory. In the background,
Elasticsearch created some shards, and probably replicas as well (unless otherwise
noted), when you created an index. The generated shards are also allocated in the
same node.

Anatomy of an Elasticsearch Cluster

[68]

Elasticsearch is built to scale. It will be sufficient to increase the number of nodes
when more capacity is needed. In this case, the cluster will reorganize itself to
take advantage of the extra hardware and will distribute the load. Elasticsearch
provides clustering in a good manner, and this ability is one of the most important
advantages.

In the following section, we will look closely at the basic components of an
Elasticsearch cluster.

Node
A node is a single instance of the Elasticsearch server and it can host data. This
means that shards of indices are allowed to be allocated on the nodes. By default,
each node is considered to be a data node, but you can turn the setting off.

You can make a non-data node by adding node.data:
false to the elasticsearch.yml file.

Non-data nodes
There are two types of non-data nodes: dedicated master nodes and client nodes.

Dedicated master nodes
Dedicated master nodes will have the settings node.data: false and node.master
:true. Such nodes are responsible for managing the cluster. Index and search
requests are not sent to these nodes.

Client nodes
Client nodes will have the settings node.data: false and node.master: false. It
can be used to balance the load because all HTTP communication will be performed
through these nodes.

Chapter 5

[69]

Tribe node
Another type of Elasticsearch node is tribe node. Normally, a node is associated
with a single cluster. But sometimes, all the connected clusters may feel the need to
get information. In other words, you may want to access data from multiple clusters.
The tribe nodes respond to this need. A tribe node acts as a federated client across
multiple clusters. The tribe node works to retrieve the state of all connected clusters
and merges them into a global cluster state:

tribe:
 appellation1:
 cluster.name: cluster_user
 appellation2:
 cluster.name: cluster_employee

When configuring a tribe node, it just needs to list the clusters that should be
joined. The appellation1 and appellation2 are arbitrary names representing the
connection to each cluster.

Shards
When you create an index, Elasticsearch subdivides your index into multiple Lucene
indices that are called shards. The process of this subdividing is called sharding.
Shards are automatically managed by Elasticsearch and are in themselves a fully
functional and independent index. You can define a number of shards. By default, a
shard is being refreshed per second. Elasticsearch thus supports real-time search.
Shards are useful when working with large data because when you have a large
index, disk capacity of a single node may not be sufficient or may be too slow to
serve search requests. Shards solve such, and similar, problems and allow you to
horizontally scale your content volume.

Replicas
By default, Elasticsearch creates five primary shards and a copy of each primary
shard when you create an index. These copies are called replicas. So, the replica
shard is simply a copy of a primary shard. Replica shards are used to improve the
search performance and failover. If a node crashes in a way, Elasticsearch uses one
of the available replica shards of the node to avoid any data loss. For this reason, a
replica of a primary shard will not be allocated in the same node with the primary
shard. Hence, choosing the right amount of shards and replicas is very important.
Unlike primary shards, replicas can be added and removed at any time. The number
of primary shards must be specified before creating an index.

Anatomy of an Elasticsearch Cluster

[70]

Explaining the architecture of distribution
Initially, we don't have an index and data when we start a single node. In this case, it
means we have an empty cluster. When we create an index with the default settings,
the cluster will take the following view:

As mentioned earlier, Elasticsearch creates five primary shards and a copy of each
primary shard by default. But replicas do not appear in the preceding view. Why?

Let's look for the answer to our question by using the Cat API:

curl -XGET 'localhost:9200/_cat/shards'

my_index 4 p STARTED 0144b 192.168.1.22 Digitek
my_index 4 r UNASSIGNED
my_index 0 p STARTED 0144b 192.168.1.22 Digitek
my_index 0 r UNASSIGNED
my_index 3 p STARTED 0144b 192.168.1.22 Digitek
my_index 3 r UNASSIGNED
my_index 1 p STARTED 0144b 192.168.1.22 Digitek
my_index 1 r UNASSIGNED
my_index 2 p STARTED 0144b 192.168.1.22 Digitek
my_index 2 r UNASSIGNED

Chapter 5

[71]

As you can see, there are five shards in our cluster, their states are STARTED, and
there are other five shards, yet their states are UNASSIGNED. These unassigned
shards are the replicas. Currently, if we use the cluster health API, we will get the
following output:

curl -XGET 'localhost:9200/_cat/health?pretty'

1448644024 19:07:04 elasticsearch yellow 1 1 6 6 0 0 6 0

As you can see, the cluster status is yellow. A cluster status can be green, yellow, or
red. If a primary shard is not allocated in the cluster, the cluster status will be red.
The yellow status means that the primary shard is allocated but replicas are not.
Finally, the green status means that all shards are allocated. When we start a new
node, the cluster will be formed again, like the following view:

After using the Cat API again, we should now see some differences in the output:

curl -XGET 'localhost:9200/_cat/shards'
my_index 2 p STARTED 0144b 192.168.1.22 Digitek
my_index 2 r STARTED 0108b 192.168.1.22 Red Shift
my_index 0 p STARTED 0144b 192.168.1.22 Digitek
my_index 0 r STARTED 0108b 192.168.1.22 Red Shift
my_index 3 p STARTED 0144b 192.168.1.22 Digitek

Anatomy of an Elasticsearch Cluster

[72]

my_index 3 r STARTED 0108b 192.168.1.22 Red Shift
my_index 1 p STARTED 0144b 192.168.1.22 Digitek
my_index 1 r STARTED 0108b 192.168.1.22 Red Shift
my_index 4 p STARTED 0144b 192.168.1.22 Digitek
my_index 4 r STARTED 0108b 192.168.1.22 Red Shift

Let's use the cluster health API again:

curl -XGET 'localhost:9200/_cat/health?pretty'
1448645637 19:33:57 elasticsearch green 2 2 12 6 0 0 0 0

As you can see, the cluster status was green because the replicas were allocated to
the second node. Now, we add another node to our cluster, and we should see the
transformed cluster like the following picture:

As you have seen, primary shards and replica shards are distributed to the nodes of
our cluster. Elasticsearch handles this behavior very wisely. In this way, Elasticsearch
can prevent the loss of data when a node is crashed for any reason. Remember that
a replica of a primary shard will not be allocated in the same node with the primary
shard.

Chapter 5

[73]

Correctly configuring the cluster
While understanding the distribution of shards is essential, understanding the
distribution of documents is also critical. Elasticsearch works to evenly spread the
documents at shards. This is an appropriate behavior. Having a shard with the
majority of the data cannot be wise.

Let's start two Elasticsearch nodes and create an index by running the following
command:

curl -XPUT localhost:9200/my_index -d '{
 settings: {
 number_of_shards: 2,
 number_of_replicas: 0
 }
}'
{"acknowledged":true}

We've created an index without replicas that are built of two shards. Now we add a
document to index:

curl -XPOST localhost:9200/my_index/document -d '{
 "title": "The first document"
}'
{"_index":"my_index","_type":"document","_id":"AU_
iaqgDlNVjy8IaI4FM","_version":1,"created":true}

We will get the current shard level stats of the my_index by using the
following command:
curl -XGET 'localhost:9200/my_index/_stats?level=shards&pretty'
{
...
"shards": {
 "0": [
 {
 "routing": {
 "state": "STARTED",
 "primary": true,
 "node": "8EDJVceZRa2SZeEVTSjtsg",
 "relocating_node": null
 },
 "docs": {
 "count": 0,
 "deleted": 0
 },
 ...

www.allitebooks.com

http://www.allitebooks.org

Anatomy of an Elasticsearch Cluster

[74]

 }
],
 "1": [
 {
 "routing": {
 "state": "STARTED",
 "primary": true,
 "node": "gVKmlQefTqigLiJ7kVRczw",
 "relocating_node": null
 },
 "docs": {
 "count": 1,
 "deleted": 0
 },
 ...
 }
]
 }
...
}

As you can see, there is one document in the second shard. Now we add another
document to the my_index:

curl -XPOST localhost:9200/my_index/document -d '{
 "title": "The second document"
}'
{"_index":"my_index","_type":"document","_id":"AU_
ijSHrlNVjy8IaI4Wu","_version":1,"created":true}
Now we are getting the shard level stats again:
curl -XGET 'localhost:9200/my_index/_stats?level=shards&pretty'
{
...
"shards": {
 "0": [
 {
 "routing": {
 "state": "STARTED",
 "primary": true,
 "node": "8EDJVceZRa2SZeEVTSjtsg",
 "relocating_node": null
 },
 "docs": {
 "count": 1,
 "deleted": 0

Chapter 5

[75]

 },
 ...
 }
],
 "1": [
 {
 "routing": {
 "state": "STARTED",
 "primary": true,
 "node": "gVKmlQefTqigLiJ7kVRczw",
 "relocating_node": null
 },
 "docs": {
 "count": 1,
 "deleted": 0
 },
 ...
 }
]
 }
...
}

As you can see, there is one document in the first and second shards. So,
Elasticsearch evenly spread the documents to shards. Now let's kill one node
and count the number of documents of the my_index:

curl -XGET 'localhost:9200/my_index/_count?pretty'
{
 "count" : 1,
 "_shards" : {
 "total" : 2,
 "successful" : 1,
 "failed" : 0
 }
}

Oops, we have a problem. A document is missing. If we control our cluster at this
time, we see that the current color of the status is red:

curl -XGET 'localhost:9200/_cluster/health?pretty'
{
 "cluster_name" : "elasticsearch",
 "status" : "red",
 "timed_out" : false,

Anatomy of an Elasticsearch Cluster

[76]

 "number_of_nodes" : 1,
 "number_of_data_nodes" : 1,
 "active_primary_shards" : 1,
 "active_shards" : 1,
 "relocating_shards" : 0,
 "initializing_shards" : 0,
 "unassigned_shards" : 1,
 "delayed_unassigned_shards" : 0,
 "number_of_pending_tasks" : 0,
 "number_of_in_flight_fetch" : 0
}

When the current color of the status of a cluster is red, it means that all of the
primary shards are not active. In this case, losing the data is inevitable. The replica
shards solve this problem. If we want to take advantage of the replicas, we should
have at least two nodes.

At this point, we might ask: How do we configure the cluster correctly? The question
can be answered in two ways. The first way is that the default configuration (which
means five shards and one replica) is sufficient to meet basic needs and standard use
cases. The second way is that there is no current solution for every situation. There
are factors that determine the correct configuration for our cluster. For example, we
must know how many nodes we will work, what the size of the data is, and what
system resource we have to determine the correct configuration.

First of all, the use of replica is recommended to avoid data loss. To use the replica as
said before, there must be at least two nodes. So now, another question arises: How
many shards/replicas should we use?

Choosing the right amount of shards
and replicas
If you have a limited dataset and the dataset grows by a small amount, you can
use only a single primary shard with a replica. If your dataset is not limited and
grows by a large amount, the optimal number of shards is dependent on the target
number of nodes.

Actually, a single node can be sufficient for many simple use cases, but to reduce
the fault tolerance when considering the nature of distributed architecture and to
prevent data loss, you can use more than one node. So, we need to find the answer to
the first question: How many nodes will work?

Chapter 5

[77]

Even to answer this question, we need to find out the answers to a few questions.
For example: Do we need to use the non-data node? If we don't need to use non-data
nodes, considering the Elasticsearch shard allocation policy, we can say that a node
requires at least one shard to be the data node - as well as a replica. In that case, we
can follow the following formula:

Max number of data nodes = number of shards * (number of replicas + 1)

Thus, for example, if you have 10 nodes, you can configure our index with the
default configuration, which means five shards and one replica. In other words, you
can have a maximum of 10 data nodes with the default configuration.

A minimal number of shards is recommended because there is the possible cost of
splitting a query into multiple requests to every shard and merging their responses
from it. On the other hand, having multiple shards may provide certain advantages.
For example, more shards provide faster indexing. More shards refer to more Lucene
indexes. Therefore, every operation executed on a smaller index will be faster. To
sum up, there are factors that determine the correct configuration and there is no one
definite solution for every situation.

Summary
In this chapter, you looked at the basic concepts of an Elasticsearch cluster and
saw the core components of it. After this, we discussed how to configure a cluster
correctly. Finally, we discussed choosing the right amount of shards and replicas. In
the next chapter, you will learn tips to improve indexing performance. We will look
at the memory setting and how the optimization of mapping definition improves
index performance. In addition, we will examine segment merge policy and will look
at some relevant cases related to this topic. And, finally, we will look at the bulk API.

[79]

Improving Indexing
Performance

In the previous chapter, we looked at the core components of an Elasticsearch
cluster. We talked about nodes, shards, and replicas. We tried to explain the
architecture of distribution and both shards and documents by Elasticsearch. Then,
we looked closely at the functions performed by replica shards. Finally, we discussed
how to configure a cluster correctly and how to choose the right amount of shards
and replicas. In this chapter, we will look at how we can realize effective indexing.
For this purpose, we will examine memory configuration and mapping definition
tips. We will look at segments and merging policies. Then, we will examine how to
throttle disk I/O operations. By the end of this chapter, we would have covered the
following topics:

•	 How to configure memory for better performance
•	 The discovery of JVM memory structure
•	 Types of garbage collector
•	 Different strategies among garbage collectors
•	 How to choose the right merge policy
•	 How to optimize mapping definition to improve index performance
•	 How to throttle disk I/O operations

Improving Indexing Performance

[80]

Configuration
We have discussed in Chapter 4, Analysis and Analyzers, that one of the basic needs
in the big data world is the record of data by high performance (if you don't recall,
please refer to the Introduction to Analysis section in that chapter). This basic need
sometimes happens to be the most important priority and you may be willing to
sacrifice some other needs for it, for example, search performance and nuanced
analysis. In this section, you will find configuration tips for high performance
indexing.

Memory configuration
One of the best features of the Java programming language is that memory allocation
and deallocation isn't a manual process. Also, the Java programming language has
automatic garbage collection, that is, the process to identify and remove unused
objects from memory. But still, memory configuration must be done manually to
improve performance. The memory configuration is important when speeding up
processes. A recommended approach is that when you need to change the JVM
settings or arguments for this, use the ES_JAVA_OPTS environment variable. At
this point, the most important settings are the parameters -Xmx and -Xms. The first
parameter serves to control the maximum allowed memory and the second one
controls the initially allocated memory for a process on the JVM heap space. In the
following table, some of the commonly used memory parameters are described.
Descriptions of the spaces mentioned in this table will be held in the future:

VM Parameter VM Parameter Description
-Xms This parameter sets the initial heap size available to the JVM
-Xmx This parameter sets the maximum heap size available to the

JVM
-Xmn This parameter sets the initial and maximum size of the heap

for the young generation as bytes
-XX:PermSize This parameter sets the space allocated to the permanent

generation as bytes. This option was deprecated in JDK 8 and
superseded by the -XX:MetaspaceSize option

-XX:MaxPermSize This parameter sets the maximum permanent generation
space size as bytes. This option was deprecated in JDK 8 and
superseded by the -XX:MaxMetaspaceSize option

-XX:InitialSurvivorRatio This parameter sets the initial survivor space ratio used by
the through put garbage collector

The JDK 8 HotSpot JVM is now using native memory; it's called Metaspace and has
removed permanent generation in the Hotspot JVM.

Chapter 6

[81]

The ES_HEAP_SIZE environment variable
The ES_HEAP_SIZE environment variable can be used to configure -Xmx and -Xms
parameters for memory configuration in Elasticsearch that will allocate the same
value to both ES_MIN_MEM (defaults to 256 m) and ES_MAX_MEM (defaults
to 1 g) environment variables. The ES_MIN_MEM and the ES_MAX_MEM variables
can be set explicitly, but this is not recommended. When we want to pass a value to
the JVM, a shell file can be configured for this. An example is seen as follows:

Where does elasticsearch?
export ES_HOME=/usr/local/elasticsearch
export ES_CONF_DIR=$ES_HOME/config
export ES_DATA_DIR=$ES_HOME/data
export CLASSPATH=$ES_HOME/lib/elasticsearch-*.jar:$ES_HOME/lib/*:$ES_
HOME/lib/sigar/*

#This argument to pass to the JVM that allows to set the heap memory
export ES_HEAP_SIZE=1024m

ES_JAVA_OPTS="$ES_JAVA_OPTS -Des.path.data=$ES_DATA_DIR -Des.path.
conf=$ES_CONF_DIR"

export ES_JAVA_OPTS

cd$ES_HOME
exec$ES_HOME/bin/elasticsearch

You can retrieve the JVM settings for each node using the Nodes Info API:

curl http://localhost:9200/_nodes/jvm?pretty
{
...
"jvm" : {
"pid" : 11628,
"version" : "1.8.0_60-ea",
"vm_name" : "Java HotSpot(TM) 64-Bit Server VM",
"vm_version" : "25.60-b22",
"vm_vendor" : "Oracle Corporation",
"start_time_in_millis" : 1443297108081,
"mem" : {
"heap_init_in_bytes" : 1073741824,
"heap_max_in_bytes" : 1038876672,
"non_heap_init_in_bytes" : 2555904,
"non_heap_max_in_bytes" : 0,

Improving Indexing Performance

[82]

"direct_max_in_bytes" : 1038876672
 },
...
 }
}

Avoiding swapping
Another important issue is swapping, which impacts performance and node
stability. The simplest explanation is that swapping is to move the operation of the
processes between the disk and memory. The processes are constantly changing
place between disk and memory at runtime by the operating system when the
memory size is insufficient or the operating system decides that it is better to have
some part of memory written into disk. There are time and resources costs of writing
the processes into disk for free memory on behalf of higher priority tasks (this is
called swap out) and moving back (this is called swap in) when there is enough
memory. This can produce bad consequences for performance and for node stability.
Therefore, it is recommended to be avoided. Take a look at the following figure:

To avoid bad consequences of the swap operations, the mlockall property can
be enabled.

Chapter 6

[83]

Mlockall property
The mlockall property allows Elasticsearch to lock the heap memory when it sets to
true in the elasticsearch.yml file. The mlockall property can be used on Unix
systems or VirtualLock on Windows:

bootstrap.mlockall: true

If you want more information about the
VirtualLock, refer to https://msdn.microsoft.
com/en-us/library/windows/desktop/
aa366895%28v=vs.85%29.aspx.

After giving a true value to this property, you can check what was applied
successfully using this setting by executing the following command:

curl http://localhost:9200/_nodes/process?pretty
{
 "cluster_name" : "elasticsearch",
 "nodes" : {
 ...
 "process" : {
 "refresh_interval_in_millis" : 1000,
 "id" : 5124,
 "max_file_descriptors" : -1,
 "mlockall" : true
 }
 }
 }
}

Importantly, while setting the bootstrap.mlockall property to true, you must be
sure that your server has enough free physical memory to start Elasticsearch and
leaves enough memory for the operating system. Also, when using this feature, it's
recommended to set the ES_MIN_MEM and ES_MAX_MEM variables to the same
value because you need to ensure that the JVM resizes the heap with these values.

Remember, setting the ES_MIN_MEM and ES_MAX_MEM
variables explicitly is not recommended. Use the ES_HEAP_SIZE
variable instead.

https://msdn.microsoft.com/en-us/library/windows/desktop/aa366895%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366895%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366895%28v=vs.85%29.aspx

Improving Indexing Performance

[84]

If you see that mlockall is false, this means that your memory
locking is not working. There may be several reasons for this in
Unix systems. For example, the user running Elasticsearch doesn't
have permission to lock memory, you may need modify some
files (like limits.conf), the temporary directory is mounted
with the noexec option, or if you're using Mac OS X, which only
allows their kernel drivers for this, and so on.

Garbage collector
When talking about memory configuration, we need to talk about the garbage
collector. In this, first of all, we need to understand the JVM memory structure because
it is very important if we want to understand the working of Java garbage collection.

The structure of JVM memory
JVM memory is divided into separate parts. There are five parts grouped under two
main groups called Young Generation and Old Generation.

Chapter 6

[85]

The JVM memory is divided into the following parts:

•	 Eden Space: A part of the heap memory is initially allocated for most of the
object types.

•	 Survivor Space: This is a part of the heap memory that has survived the
garbage collection of the eden space. The survivor space is divided into
survivor space 0 and survivor space 1.

•	 Tenured Generation: This is a part of the heap memory that holds objects
that have existed for some time in the survivor space.

•	 Permanent Generation: This is a part of the non-heap memory that holds all
the data for the virtual machine itself.

•	 Code Cache: This is a part of the non-heap memory that is present in the
HotSpot JVM, which is used for the compilation and storage of native code.

The eden space and the survivor space are called the young generation. In other
words, the young generation is divided into three parts: the eden space and two
survivor spaces. When a new object is created, it is placed in the eden space. Most of
the newly created objects are located here. When the eden space is filled, the young
generation garbage collection performed is called minor GC.

The minor GC also checks the survivor objects (objects that are unused) and moves
them to one of the survivor spaces (first to survivor 0 and then, after another minor
GC, to survivor 1). Meanwhile, one of the survivor spaces is always empty. The
objects that are survived after living for a while in the survivor 1 space are moved to
the tenured generation heap space (that is, old generation heap space).

The old generation space is the place where all the objects are long lived and survived
after many cycles of GC. These objects in space will be living as long as the application
needs them. Garbage collection is usually performed in old generation heap space
when the application no longer needs an object in this space or if there is no free space
in old generation heap space. This is called major GC and usually takes longer time.
After this operation, the garbage collector will make space for new objects.

Improving Indexing Performance

[86]

What is the problem?
When the garbage collector runs, all application threads are frozen until it completes.
In the young generation, heap space are located short-lived (relatively new) objects.
Therefore, minor GC is very fast and the applications aren't affected too much by
this. However, as previously stated, major GC takes longer time because the old
generation space is the place where all the objects are long lived, and major GC
checks all the live objects in this space.

In this case, your application will be unresponsive during the major GC duration.
Hence, it should be minimized. If we have a responsive application that needs to
manage many concurrent requests (like an Elasticsearch Server) and major GC is
happening frequently, you will notice timeout errors. According to your needs, by
monitoring the garbage collector to avoid this from happening, you need to adjust.

Monitoring garbage collection
We can use the Java command line (like jstat) or UI tools (like jconsole) for
monitoring the garbage collection activities of an application. We'll talk about
VisualVM with the Visual GC plugin. VisualVM is a user-friendly tool for seeing
memory and GC operations.

If you want more information on how to use the jstat
command, refer to http://docs.oracle.com/javase/7/
docs/technotes/tools/share/jstat.html

If you want more information about the JConsole, refer to
https://docs.oracle.com/javase/8/docs/technotes/
guides/management/jconsole.html

http://docs.oracle.com/javase/7/docs/technotes/tools/share/jstat.html
http://docs.oracle.com/javase/7/docs/technotes/tools/share/jstat.html
https://docs.oracle.com/javase/8/docs/technotes/guides/management/jconsole.html
https://docs.oracle.com/javase/8/docs/technotes/guides/management/jconsole.html

Chapter 6

[87]

VisualVM
First, you don't need to download the VisualVM because it's also part of JDK. You just
need to use jvisualvm command in the terminal to launch the VisualVM application:

$ jvisualvm

Once launched, you need to install Visual GC plugin for garbage collector
monitoring. For this, you can choose Tools | Plugings option in VisualVM main
menu and switch to the Available Plugins tab; select the Visual GC plugin, and
click on the Install button, as shown in the following image:

Improving Indexing Performance

[88]

After installing the plugin, the Visual GC tab will be added to the VisualVM
application. Visual GC attaches to an application and collects and graphically
displays garbage collection, class loader, and HotSpot compiler performance data, as
shown in the following image:

Monitoring garbage collection is challenging work and
usually requires some effort from the system administrator.

If you want more information about the VisualVM
and Visual GC plugin, refer to https://visualvm.
java.net/ as well as http://www.oracle.com/
technetwork/java/visualgc-136680.html.

https://visualvm.java.net/ as well as http://www.oracle.com/technetwork/java/visualgc-136680.html
https://visualvm.java.net/ as well as http://www.oracle.com/technetwork/java/visualgc-136680.html
https://visualvm.java.net/ as well as http://www.oracle.com/technetwork/java/visualgc-136680.html

Chapter 6

[89]

Different strategies among garbage collectors
Before coming to the proposals in regard to tuning the garbage collection, we need
to talk about the basic process of deallocating memory by the garbage collector and
types of garbage collectors. Because each type uses a different strategy, the duration
taken by a garbage collector depends on the type of garbage collector, and the
process of deallocating memory should be well understood for you to make the right
decision in the type selection.

Process of deallocating memory
The process of deallocating consists of the following three steps:

•	 Marking: This is the first step in the process. That is where garbage collector
identifies which objects are in use and which are not. In this phase, all
objects are scanned to make this determination. Of course, this can be a very
time-consuming process.

•	 Normal Deletion: In the second step, garbage collector removes
unreferenced objects leaving referenced objects and pointers to free space.
The free space can be allocated to other objects.

•	 Deletion with Compacting: After deleting unused objects to improve
performance, all the referenced objects can be moved to be together. This
makes new memory allocation much easier and faster.

Types of garbage collector
Regarding the types, Java has the following four types of garbage collection types:

•	 Serial garbage collector
•	 Parallel garbage collector
•	 CMS garbage collector
•	 G1 garbage collector

An administrator or a programmer can choose the type of garbage collector to be
used by the JVM. For this, you just need to use a JVM switch. That enables the chosen
garbage collection strategy. Let's look at each of them.

Improving Indexing Performance

[90]

Serial garbage collector
Serial garbage collector uses the simple approach. This works by holding all the
application threads designed for single-threaded environments. It does the garbage
collection for young and old generations. While it runs, all the application threads are
frozen. It is best suited for simple standalone applications, as well as simple command-
line programs. Use the -XX:+UseSerialGC JVM argument to turn it on.

Parallel garbage collector
Parallel garbage collector is the default garbage collector of the JVM. It is also called
as Throughput Collector. It's the same as the serial garbage collector, except it uses
multiple threads for old generation garbage collection. You can control the number
of threads using the -XX:ParallelGCThreads JVM option. It works by freezing
all the application threads while performing garbage collection like serial garbage
collector. Use the -XX:+UseParallelGC JVM argument to turn it on.

Concurrent Mark Sweep garbage collector
CMS garbage collector uses multiple threads to scan the heap memory. You can
control the number of threads using the -XX:ParallelCMSThreads JVM option. It
does the garbage collection for old and young generations. The CMS garbage collector
holds all the application threads twice during a concurrent collection cycle. The first
marks the referenced objects in the old generation space as live. It's referred to as the
initial mark pause. The second accounts references that have been changed during
the concurrent mark phase in the end of the concurrent tracing phase. It's referred to
as the remark pause. The CMS garbage collector tries to minimize the pauses due to
garbage collection in this way. It's suitable for responsive applications where we can't
afford longer pause times. Compared with parallel garbage collector, CMS consumes
more CPU usage, in that the parallel garbage collector ensures better application
throughput. Use the –XX:+UseConcMarkSweepGC JVM argument to turn it on.

G1 garbage collector
G1 garbage collector is a server-style garbage collector targeted for multi-processor
machines. It's used for large heap memory areas. This collector separates the heap
memory space into multiple equal-sized heap regions and does collection within
them in parallel. It does not work like other collectors, so it does not have young and
old generation concepts. The G1 garbage collector prioritizes the region with less live
data. Use the –XX:+UseG1GC JVM argument to turn it on.

Chapter 6

[91]

Tuning the garbage collection
If you see the OutOfMemoryError exception when monitoring JVM or reviewing in
logs, it is a sign that something is wrong with the memory. In this case, either we
should consider that we do not have enough memory or we have some memory leak
and we do not fully benefit from the available hardware capacity. Before increasing
hardware costs, there are things that can be done.

For example, we get an OutOfMemory exception. Increasing the PermGen memory
space with -XX:PermGen and -XX:MaxPermGen JVM options could be a solution.
Another option is to sweep PermGen and remove classes that are no longer used.
The -XX:+CMSClassUnloadingEnabled JVM options can be used for this purpose.
Full GC cleans the entire heap, as well as both young and old spaces. If full GC
operations are happening frequently, then you should try increase old generation
memory space.

Keep in mind two things. First, this advice may not always work because there is no
one definite solution for every situation. You would need to try different options for
many cases. Second, tuning the garbage collection should be an option only when
you see an application timeout by GC timings.

File descriptors
A file descriptor is an abstract indicator used to access a file on Unix and its derivative
operating systems or other I/O resource. It is non-negative integer variable and mostly
called FD. Even devices (keyboard, display, and so on) are handled as a file in the other
modern operating systems, like on Unix systems. Elasticsearch (actually Lucene) uses
a very large number of files. Also, it uses a large number of sockets for communication
between nodes, and HTTP clients. Most of the operating systems limit the number of
file descriptors and the number of file descriptors allowed per process is inadequate
for Elasticsearch. For all of these reasons, you should increase your maximum file
descriptor count for the user running Elasticsearch to at least 32k or 64k. To increase
the maximum number of file descriptors depends on your operating system; as such,
there are different instructions for different Linux distributions.

Increasing FD limit on Unix systems
Although there are different instructions available for different distributions, it is
possible to suggest a generally accepted method:

sysctl -w vm.max_map_count=1000000

Improving Indexing Performance

[92]

You can temporarily set the number of file descriptors with the preceding command
on Linux systems. The setting (that is, vm.max_map_count) should be changed in
your etc/sysctl.conf file when you want to set it as the permanent configuration.
After changing the settings, you should check to make sure that it worked by
executing the following command:

curl 'localhost:9200/_nodes/process?pretty'
{
 "cluster_name" : "elasticsearch",
 "nodes" : {
 "CnULkSEWR2i4lLLFYcK8Xg" : {
 ...
 ,
 "process" : {
 "refresh_interval_in_millis" : 1000,
 "id" : 7550,
 "max_file_descriptors" : 1000000,
 "mlockall" : false
 }
 }
 }
}

There are also different instructions for Mac OS X versions, but the launchctl
command can be used for increasing the FD limit:

sudo launchctl limit maxfiles 10000001000000

After temporarily changing the max file limits with
the preceding command, if you see the 10240 value
in the max_file_descriptors field when you run the
curl 'localhost:9200/_nodes/process?pretty'
command, you have directed the VM to refrain from setting
the file descriptor limit to the default maximum. In this
case, you can pass -XX:-MaxFDLimit to stop the Java VM
from restricting the number of open files to 10,240. For
more information about this, please the page to which the
MaxFDLimit substance is referred: https://developer.
apple.com/library/mac/documentation/Java/
Reference/Java_VMOptionsRef/Articles/
JavaVirtualMachineOptions.html.

https://developer.apple.com/library/mac/documentation/Java/Reference/Java_VMOptionsRef/Articles/JavaVirtualMachineOptions.html
https://developer.apple.com/library/mac/documentation/Java/Reference/Java_VMOptionsRef/Articles/JavaVirtualMachineOptions.html
https://developer.apple.com/library/mac/documentation/Java/Reference/Java_VMOptionsRef/Articles/JavaVirtualMachineOptions.html
https://developer.apple.com/library/mac/documentation/Java/Reference/Java_VMOptionsRef/Articles/JavaVirtualMachineOptions.html

Chapter 6

[93]

The setting (that is, limit maxfiles) should be changed to different files for
different Mac OS X versions when you want to set the permanent configuration. For
older Mac OS X versions, you may add the following line to /etc/launchd.conf:

limit maxfiles 10000001000000#or you want a different value

You must update the kern.maxfiles and kern.maxfilesperproc parameters in the
/etc/sysctl.conf file for Mountain Lion or Mavericks:

kern.maxfiles=1000000
kern.maxfilesperproc=1000000

For Yosemite, you have to create a file at /Library/LaunchDaemons/limit.
maxfiles.plist, as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.
apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>Label</key>
<string>limit.maxfiles</string>
<key>ProgramArguments</key>
<array>
<string>launchctl</string>
<string>limit</string>
<string>maxfiles</string>
<string>1000000</string>
<string>1000000</string>
</array>
<key>RunAtLoad</key>
<true/>
<key>ServiceIPC</key>
<false/>
</dict>
</plist>

Also, if you see the –1 value in the max_file_descriptors field, this means that
Elasticsearch is unable to retrieve that value on your operating system.

Open maximum file descriptors are not supported on
Windows platforms. Elasticsearch will always return –1 on
Windows platforms.

Improving Indexing Performance

[94]

Optimization of mapping definition
If your search requirements allow it, there are some tips for optimization in the
mapping definition of your index for when you need to improve the indexing
performance. In the following section, we will look at those tips.

Norms
Scoring is the process of calculating the score of a document in the scope of a
particular query and is an important part of the query process in Lucene. The score
indicates how well the document matches the query. In other words, it is a factor that
shows how close the document you are looking for. This means, the higher the score,
the more relevant the document. There are several factors that are a determinant in
calculating the score. One of them is the norms.

Lucene takes field length into account for the default relevance calculation. When
a searched term is found in a short field (content length is short), Lucene thinks it
is more likely that the content of that field is about the term than if the same term
contains in a long field (content length is long). Therefore, Lucene keeps the length
of a field for later use at query time, that is called field-length norm. It is a number
that represents the relative field length and boost setting (that is, this is a match
weight factor). The norms are useful for scoring and important for full-text search, but
this functionality comes at a cost: It requires quite a lot of memory and consumes
approximately 1 byte per string field per document in an index. Hence, if you don't
need scoring on a specific field, you should disable norms on that field. You can
disable the norms before indexing with explicit mapping on a field as follows:

curl -XPUT localhost:9200/talent
{
 "mappings": {
 "talented": {
 "properties": {
 "email": {
 "type": "string",
 "norms": {
 "enabled": false
 }
 }
 }
 }
 }
}
{"acknowledged":true}

Chapter 6

[95]

Or by using the PUT mapping API after indexing, like the following:

curl -XPUT localhost:9200/talent/_mapping/talented
{
 "properties": {
 "email": {
 "type": "string",
 "norms": {
 "enabled": false
 }
 }
 }
}
{"acknowledged":true}

When the norms are disabled in a field, it means that the field will not take the field-
length norm into account.

Norms will not be removed instantly after disabling. They
will be removed while you continue indexing new documents
because meanwhile, old segments are merged into new
segments. In addition, keep in mind that the norms cannot be
re-enabled after disabling.

Feature index_option of string type
Elasticsearch provides some features for string types by default. If you don't
need these features, you can improve indexing performance by disabling, and
therefore, you can save memory. The index_option feature allows you to set the
indexing options; positions for analyzed fields. This means that doc numbers, term
frequencies, and positions will be indexed. Possible values and their meanings are
shown in the following table:

Value Meaning
doc doc numbers are indexed
freqs doc numbers and term frequencies are indexed
positions doc numbers, term frequencies, and positions

are indexed

Improving Indexing Performance

[96]

The term frequency is a weight factor that shows how often the term appears in this
document. You can disable term frequencies by executing the following command:

curl -XPUT localhost:9200/talent
{
 "mappings": {
 "talented": {
 "properties": {
 "zip_code": {
 "type": "string",
 "index_options": "docs"
 }
 }
 }
 }
}

The preceding mapping will disable term frequencies and also term positions at
the zip_code field, and only doc numbers can be indexed. Keep in mind that the
zip_code field with this setting will not count how many times a term appears. Also,
phrase and proximity queries will not be unable, in that these queries need term
frequencies and term positions features when in use. In addition, not_analyzed
fields use this setting by default.

Exclude unnecessary fields
We mentioned in Chapter 3, Basic Concepts of Mapping, that Elasticsearch includes the
text of one or more other fields within the document indexed and concatenates them
into one big string at _all field. By default, the _all field is enabled. Therefore, maybe
you can exclude some fields in the _all field for improving indexing performance and
saving disk space. For example, we have email and emailverification fields and
we expect similar content in these fields. In this case, there is no practical benefit if the
_all field includes emailverification field because the email field has already been
included in the _all field and this is sufficient to search for an email on _all field. In
such cases, you can exclude such fields. Thus, you can improve the performance of
indexing and you can reduce your storage costs, and, at the same time, you can throttle
unnecessary I/O operations.

Please refer to the _all section in Chapter 3, Basic Concepts of
Mapping, about how to exclude a field in the _all field.

Chapter 6

[97]

Extension of the automatic index refresh time
When the data persistence step comes into play, the hard disk drives are able to create
a risk of bottleneck for I/O operations. Elasticsearch uses the filesystem cache that
is sitting between itself and the disk for overcoming the risk of bottleneck, so ensure
that a new document can be searched in real time. A new segment is written to the
filesystem cache first, and later it is flushed to disk by Elasticsearch. (If you do not
have information about the segments, you may want to read the Segments and merging
policies section before this section.) This lightweight process of writing and opening a
new segment is called a refresh in Elasticsearch. By default, all shards (so all indices)
are being refreshed per second. Elasticsearch thus supports real-time search.

Of course, there is a cost to refresh shards per second, especially when working with
large size data. You can configure or turn off automatic refresh time. This can be
done in the following two ways:

•	 For all indices in your cluster, by setting the index.refresh_interval
parameter in the configuration file

•	 A per-index basis by index setting update

When you want to set an automatic refresh value for all indices in your cluster, you
must make the following adjustment in the elasticsearch.yml file:

index.refresh_interval: 30s

The index refresh time has been setting as 30 seconds for all indices in the cluster in
the preceding definition. The index.refresh_interval setting defines how often
the refresh operation will be executed on our indices. Defaults to 1s. When you set
value to –1, it means you just turned the setting off. You can set an automatic refresh
value for an index, as follows:

curl -XPUT localhost:9200/my_index/_settings
{
 "index": {
 "refresh_interval": "30s"
 }
}

Extension of the automatic index refresh time enables faster indexing because
of memory saving, thus achieving I/O operations throttling. But, in this case, it
should be noted that creating new documents and making changes to the existing
documents will not appear in searches during a specified period of time.

Improving Indexing Performance

[98]

Segments and merging policies
A Lucene index is composed of smaller chunks that are called segments. In other
words, a segment is a section of an index. Each segment is a fully independent index.
A new segment can be created when a new document is added or, in the automatic
refresh process, it occurs every second by default in Elasticsearch. Each segment
consumes system resources (that is, memory, CPU cycles, and so on) and, besides,
every segment is checked at search time. This means that if there are more segments,
they will be searched and there will be more memory usage. For these reasons,
increasing the number of segments is a problem. Small segments are copied to the
bigger segment to solve this problem, and the copied segments are deleted from the
disk. This operation is called segment merging. It is executed as asynchronous and
automatically processes in the background while you are indexing and searching.
Segment merging operation saves system resources as well as disk space because old
deleted documents are purged from the filesystem at the merge operation.

Chapter 6

[99]

The segments are written once, so they are immutable up to delete markers. In this
way, Lucene never has to modify the files of a segment once it has been created. This
architecture is preferred to achieve high indexing speed. So, what actually happens
when you delete or update a document? Information on a deletion operation is
indicated in another file when you delete a document from your index. This means
that the deleted documents are only marked as deleted and always stay in the
segment. You can get information about segments for a specific index, or several or
all indices, and you can see how many deleted documents it has, how much memory
use it has, how much disk space use it has, and other details with using _Indices
Segments API:

curl -XGET 'http://localhost:9200/my_index/_segments?pretty'
{
 "_shards" : {
 "total" : 10,
 "successful" : 5,
 "failed" : 0
 },
 "indices" : {
 "my_index" : {
 "shards" : {
 "0" : [{
 "routing" : {
 "state" : "STARTED",
 "primary" : true,
 "node" : "C6bMfcfQRxS2qEhNktuRqA"
 },
 "num_committed_segments" : 9,
 "num_search_segments" : 9,
 "segments" : {
 "_g7" : {
 "generation" : 583,
 "num_docs" : 1166,
 "deleted_docs" : 23,
 "size_in_bytes" : 3911931,
 "memory_in_bytes" : 1684666,
 "committed" : true,
 "search" : true,
 "version" : "4.10.4",
 "compound" : false
 },

...

Improving Indexing Performance

[100]

Even if you delete many documents from your index, until the merge happens,
those documents are not deleted from the disk. Similar case is applied for updated
documents. In fact, when a document is updated, the old version of the document
is marked as deleted in its segment and the actual version of the document is added
to the current segment. Good news. In the segment merging time, deleted and old
versions of updated documents are not copied over to the bigger segment. After
this process, the old segments will be deleted. Deleting old segments reduces the
number of segments. This also provides faster search performance. Despite all these
advantages, segment merging is an expensive process in terms of I/O (that is, input/
output) operations. Therefore, it should be checked.

Choosing the right merge policy
Elasticsearch allows us to choose the merge policy to control which segments of a
shard index are being merged. There are three options, which are as follows:

•	 tiered

•	 log_byte_size

•	 log_doc

We will examine each of these three policies. First, let's see how we can
define a policy:

index.merge.policy.type: tiered

With the preceding definition in the elasticsearch.yml configuration file, the merge
policy is tiered.

Tiered policy
Elasticsearch uses the tiered policy by default. It merges segments of approximately
equal size, taking into account the maximum number of segments allowed per tier.
During indexing, this policy first computes how many segments are allowed to be
present in the index, which is called budget. If the number of segments of the index,
then the policy sorts segments by decreasing size, taking into account the deleted
documents, and then finds the least-cost merge. This policy has the following settings:

•	 index.merge.policy.expunge_deletes_allowed: This setting specifies
the percentage of deleted documents in a segment. When running
expungeDeletes, Elasticsearch only merges away a segment if its delete
percentage is over this threshold. Default is 10.

•	 index.merge.policy.floor_segment: This setting avoids frequent flushing of
tiny segments. Segments that are less than the value defined by this setting
are rounded up to the specified size of this setting. Default is 2 MB.

Chapter 6

[101]

•	 index.merge.policy.max_merge_at_once: This setting specifies the maximum
number of segments that will be merged at the same time during normal
merging. Default is 10.

•	 index.merge.policy.max_merge_at_once_explicit: This setting specifies the
maximum number of segments that will be merged at a time during optimize
operation or expungeDeletes. Default is 30.

•	 index.merge.policy.max_merged_segment: This setting specifies the
maximum size of a single segment as approximate that will be produced
during normal merging. The estimate of the merged segment size is
calculated by summing the size of segments that are compensated for the
percentage of deleted documents in those segments. Default is 5 GB.

•	 index.merge.policy.segments_per_tier: This setting specifies the number
of segments per tier. It causes the formation of fewer segments and
more merging when a low value is defined. This means lower indexing
performance. Also, this value needs to be higher than or equal to the index.
merge.policy.max_merge_at_once; otherwise, you'll force too many
merges to occur. Default is 10.

•	 index.merge.policy.reclaim_deletes_weight: This setting specifies how
aggressively merges that reclaim deletes are favored. Higher values will lead
the more favored merge that will reclaim deletes. Defaults to 2.0.

•	 index.compound_format: This setting is a Boolean or float value that
specifies whether the index should be stored in a compound format or not.
Default value is false. When set to true, Lucene will build the index
in a single file.

The compound format functionality is experimental. This
means that it may be changed or removed completely in a
future release.

When tiered policy is used, and if a merge will produce a segment that is larger than
the value specified by the index.merge.policy.max_merged_segment setting, the
policy will merge fewer segments to keep the segment size under the budget. This
can mean that it holds many gigabytes of data for indices that have large shards.
This situation may happen when the default value of the index.merge.policy.
max_merged_segment setting is too low for your case and will slow down your
queries because it is created of many segments. You can increase the value of index.
merge.policy.max_merged_segment setting when needed by monitoring your data
with the Indices Segments API or you can use Optimize API that forces a shard to be
merged down to the number of segments for that specified number.

Improving Indexing Performance

[102]

Please refer to the optimize API section in this chapter for
the API description.

log_byte_size policy
This policy is similar to tiered merge policy that merges segments into levels of
exponentially increasing byte size, where each level has fewer segments than the
value of the merge factor. When extra segments are encountered that are greater
than the merge factor, all segments within the level are merged. This policy has the
following settings:

•	 index.merge.policy.merge_factor: This setting specifies how often segment
indices are merged during indexing. Smaller values cause less RAM usage
while indexing and searches are faster on unoptimized indices, but indexing
speed is slower. Larger values cause more RAM consumption during
indexing, and while searches on unoptimized indices are slower, indexing is
faster because less merging is being done. By default, the merge_factor is
given the value of 10. Larger values (for example, greater than the default value)
are recommended for batch index creation and smaller values (for example,
lower than the default value) are recommended for normal index maintenance.

•	 index.merge.policy.min_merge_size: This setting defines the minimum
total size of the segment files in bytes for the lowest level segments. If any
segment is lower in size than the number specified by this setting, it will be
merged when the merge_factor property allows us to do that. Defaults to
1.6 MB and it effectively avoids having many very small segments. If you set
this as too large a value, it will increase the merging cost.

•	 index.merge.policy.max_merge_size: This setting defines the maximum size
of the segment based on the total size of the segment files that can be merged
with other segments. It defaults to unbounded. This means that there is no
limit on the maximum size a segment can be in order to be merged.

•	 index.merge.policy.max_merge_docs: This setting defines the largest
segment based on the number of documents that may be merged with other
segments. It defaults to unbounded. This means there is there no limit on the
maximum number of documents a segment can have.

Elasticsearch developers say that the log_byte_size policy will be
removed in 2.0 in favor of the tiered merge policy. Elasticsearch
2.0.0-rc1 was released when this book was being written.

Chapter 6

[103]

Log_doc policy
This policy tries to merge segments into levels of exponentially increasing document
count as opposed to log_byte_size policy where each level has fewer segments
than the value of the merge factor. When extra segments are encountered that are
greater than the merge factor, all segments within the level are merged. This policy
has the following settings:

•	 index.merge.policy.merge_factor: This setting is same as the index.merge.
policy.merge_factor setting of the log_byte_size policy, so please refer
to that policy for explanation.

•	 index.merge.policy.min_merge_docs: This setting defines the minimum
number of documents for the lowest level segments. Except the default value, it
is similar to the index.merge.policy.min_merge_size setting of log_byte_
size policy, so please refer to that policy for explanation. Defaults to 1000.

•	 index.merge.policy.max_merge_docs: This setting is same as the index.
merge.policy.max_merge_docs setting of log_byte_size policy, so
please refer to that policy for explanation.

The log_doc policy has been deprecated since 1.6.0 and
Elasticsearch developers say that this policy will be removed
in 2.0 in favor of the tiered merge policy. Elasticsearch 2.0.0-
rc1 was released when this book was being written.

The optimize API
Elasticsearch provides the optimize API to force segments merging. You can define a
number with the max_num_segments parameter, and the optimize API on the basis of
this definition forces a shard to be merged down to the number of segments. This is
usually done to improve search performance:

curl -XPOST localhost:9200/my_index/_optimize?max_num_segments=1

With the preceding command, Elasticsearch merges each shard in the my_index
down to a single segment. Keep in mind that even though the optimize API is useful
in certain situations, its usage is not recommended since the normal merge process is
executed successfully by Elasticsearch.

This functionality provided by the optimize API comes at a
cost-it may consume all of the I/O on your nodes and may
cause the cluster to be unresponsive.

Improving Indexing Performance

[104]

Store module
As the name suggests, the store module is related to controlling how index data is
stored. All the operations on the hard disk drive are done using the store module.
Therefore, when it comes to improving indexing performance, they need to focus on
the store module. There are some tips to improve performance for this situation.

Store types
Elasticsearch allows an index to be stored on disk or in memory. By default, it uses
filesystem based on storage, and, in this context, it provides some store types that
we can use. Elasticsearch will automatically choose the best one for the operating
environment. If you would like to use one of these store types, you should set the
index.store.type in elasticsearch.yml file:

index.store.type: niofs

Or it can be set per-index basis at index creation time:

curl -XPUT localhost:9200/my_index -d '{
 "settings": {
 "index.store.type": "niofs"
 }
}'

Now let's look at these store types one by one.

Simple filesystem store
The simplefs type uses a random access file that maps to Lucene SimpleFSDirectory.
This type is sufficient for very simple applications, but has poor concurrent
performance because multiple threads will bottleneck. When you need index
persistence, it is usually better to use the new I/O based system store (that is, niofs)
instead of the simple FS store.

If you want more information about the Java
RandomAccessFile Class, refer to http://docs.
oracle.com/javase/8/docs/api/java/io/
RandomAccessFile.html. Also, if you want more
information about the Lucene SimpleFSDirectory, refer to
https://lucene.apache.org/core/5_3_1/core/org/
apache/lucene/store/SimpleFSDirectory.html.

http://docs.oracle.com/javase/8/docs/api/java/io/RandomAccessFile.html
http://docs.oracle.com/javase/8/docs/api/java/io/RandomAccessFile.html
http://docs.oracle.com/javase/8/docs/api/java/io/RandomAccessFile.html
https://lucene.apache.org/core/5_3_1/core/org/apache/lucene/store/SimpleFSDirectory.html
https://lucene.apache.org/core/5_3_1/core/org/apache/lucene/store/SimpleFSDirectory.html

Chapter 6

[105]

New IO filesystem store
The niofs type uses the FileChannel from the java.nio package that maps to Lucene
NIOFSDirectory. It provides a better performance in managing concurrent requests
because it allows multiple threads to read from the same file concurrently. The niofs
type is not recommended on Windows because a bug exists in the JVM in the SUN
Java implementation.

If you want more information about the bug, refer to http://
bugs.sun.com/bugdatabase/view_bug.do?bug_
id=6265734. Also, if you want more information about the
Java FileChannel Class, refer to http://docs.oracle.com/
javase/8/docs/api/java/nio/channels/FileChannel.
html. In addition, if you want more information about the
Lucene NIOFSDirectory, refer to http://lucene.apache.
org/core/5_3_1/core/org/apache/lucene/store/
NIOFSDirectory.html.

MMap filesystem store
The mmapfs type stores the shard index on the filesystem by mapping a file into
memory that maps to Lucene MMapDirectory. It uses the mmap system call for
reading, and random access file for writing. Memory mapping uses a portion of
the available virtual memory address space in your process equal to the size of the
file being mapped. Therefore, you must make sure that the virtual address space
is plentiful. This type is scalable even when it comes to multithread access because
it doesn't have any locking and it allows to directly access the I/O cache; thus, fast
accessibility to index files.

If you want more information about the Lucene
MMapDirectory, refer to http://lucene.apache.
org/core/5_3_1/core/org/apache/lucene/
store/MMapDirectory.html. Also, if you want more
information about the mmap system call, refer to https://
en.wikipedia.org/wiki/Mmap.

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6265734
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6265734
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6265734
http://docs.oracle.com/javase/8/docs/api/java/nio/channels/FileChannel.html
http://docs.oracle.com/javase/8/docs/api/java/nio/channels/FileChannel.html
http://docs.oracle.com/javase/8/docs/api/java/nio/channels/FileChannel.html
http://lucene.apache.org/core/5_3_1/core/org/apache/lucene/store/NIOFSDirectory.html
http://lucene.apache.org/core/5_3_1/core/org/apache/lucene/store/NIOFSDirectory.html
http://lucene.apache.org/core/5_3_1/core/org/apache/lucene/store/NIOFSDirectory.html
http://lucene.apache.org/core/5_3_1/core/org/apache/lucene/store/MMapDirectory.html
http://lucene.apache.org/core/5_3_1/core/org/apache/lucene/store/MMapDirectory.html
http://lucene.apache.org/core/5_3_1/core/org/apache/lucene/store/MMapDirectory.html
https://en.wikipedia.org/wiki/Mmap
https://en.wikipedia.org/wiki/Mmap

Improving Indexing Performance

[106]

Hybrid filesystem store
The default type uses both MMap and Java NIO access for storage, depending on the
file type. Currently only the term dictionary and doc values files are memory
mapped to this type to reduce impact on the operating system. All the other files of
the index are opened using Lucene NIOFSDirectory.

Throttling I/O operations
As we mentioned in segments and merging policies section, the segments are written
once and are immutable up to delete markers. However, they can be read many times.
The merge process is asynchronous and is not expected to have a negative effect on the
indexing with searching in general. Despite all this, the merging process is expensive
in terms of I/O because many read/write operations happen on many files. Usually,
searching and indexing happen concurrently on Elasticsearch. In this case, there is a
risk of a bottleneck for I/O operations, especially on systems with low I/O.

Fortunately, the store module allows throttling for all writes/merges operations.
The throttling can be configured either on a node level or on the index level.

Throttling type
Node level throttling is recommended because all the shards on the same node
perform their duty on the same disk I/O operations. In order to configure throttling
type on node level, you can use the indices.store.throttle.type and indices.
store.throttle.max_bytes_per_sec settings. The meaning of possible values of
the indices.store.throttle.type setting is as follows:

•	 none: There is no limit for merging of nodes.
•	 merge: It is I/O will limit the use for merging for nodes. It is the default

value.
•	 all: It is I/O will limit the use for all store module based operations.

The indices.store.throttle.max_bytes_per_sec setting can be a value such
as 5 MB. Its default value is 20 MB with type merge. The node level settings can be
changed dynamically using the Cluster Update Settings API, as follows:

curl -XPUT localhost:9200/_cluster/settings -d '{
 "persistent" : {
 "indices.store.throttle.type": "all"
 }
}'
{
 "acknowledged": true,

Chapter 6

[107]

 "persistent": {
 "indices": {
 "store": {
 "throttle": {
 "type": "all"
 }
 }
 }
 },
 "transient": {}
}

In order to configure throttling type on the index level one, you can use the index.
store.throttle.type setting. With an additional value that is node, it can take the
same values as the indices.store.throttle.type setting. The node value means
use the node level configuration. This is the default value. Also, you can use the
index.store.throttle.max_bytes_per_sec setting for the index level throttling
configuration. The aforementioned settings can be set in the elasticsearch.yml file
and can also be updated dynamically using the Cluster Update Settings API.

The node level throttling defaults since Elasticsearch 0.90.1.
If you are using an older version, you don't have this option
enabled by default.

Bulk API
The bulk API allows to perform many index/delete operations in a single
API call. It can greatly increase the indexing speed and should be preferred for
optimal performance.

You can use the bulk API as follows:

curl -XPUT localhost:9200/_bulk --data-binary @/Users/hakdogan/
Desktop/bulk.json

We're providing text file input to curl in the preceding command; therefore, we must
use the --data-binary flag instead of plain -d. After the data flag, the full path of the
file beginning should be noted with the @ symbol. The contents of the file are as follows:

{ "create" : { "_index" : "my_index", "_type" : "my_type", "_id": 1} }
{ "title":"How to use the Bulk API"}
{ "create" : { "_index" : "my_index", "_type" : "my_type", "_id": 2} }
{ "title":"Sizing bulk requests"}

Improving Indexing Performance

[108]

If a document with the same index and type exists already, the request will fail
for the create action. The following is an example of how to use the update and
delete actions:

{ "update" : { "_index" : "my_index", "_type" : "my_type", "_id": 1} }
{ "doc": { "title":"How to use the Bulk API for indexing speed"} }
{ "delete" : { "_index" : "my_index", "_type" : "my_type", "_id": 2} }

In the preceding example, we provided index and type names explicitly in the file.
If you provide the index or the index/type names in the command line, they will be
used by default on bulk items that do not provide them explicitly. Also note that the
file format uses literal \n's as delimiters. You should pay attention to it.

You must be sure that the client does not send HTTP chunks
when using the HTTP API because this attempt will slow your
work down.

Bulk sizing
Bulk sizing is important, especially when working with large data. It is important
to know that there is no correct size of bulk request to perform in a single bulk
action. There are some factors at this point, for example, physical size of documents
(not document count of an index), cluster configuration, and so on. Ideal size will
change for different situations. So, there is no current solution for every situation.
Nevertheless, 5–10 MB per bulk can be recommended for the beginning. You can
slowly increase it until you do not see performance gains anymore by monitoring
your nodes. You can use the BulkProcessor class for performing bulk sizing. It has
setBulkSize method, it takes a parameter of type ByteSizeValue. This parameter
defines at which size we want to flush the bulk.

Notes
As we mentioned in Chapter 1, Introduction to Efficient Indexing, understanding
the difference between storable and searchable fields is important for indexing
performance and relevant search results. Elasticsearch always stores every document
field within the _source field by default. You can change this behavior for some
fields that are not really needed to be return. It provides indexing performance and
reduces your storage costs.

Also, as we mentioned in Chapter 5, Anatomy of an Elasticsearch Cluster, shards and
the number of replicas affect the indexing speed. For example, having more shards
provides faster indexing. Therefore, every operation executed on a smaller index
will be faster.

Chapter 6

[109]

Summary
In this chapter, we looked at some memory configuration, mapping definition tips,
and segments and merging policies. Then, we examined store modules and how to
throttle disk I/O operations. Finally, we discussed the bulk API. In the next chapter,
we will examine the snapshot and restore modules; this API provides backup and
restore operations on your data.

[111]

Snapshot and Restore
In the previous chapter, we looked at some memory configuration and tips of
mapping definition for improving indexing performance. We talked about segments
and merging policies. We tried to explain the store module and how to throttle
disk I/O operations. Then, we discussed the bulk API. In this chapter, we will look
at how can we back up our data and restore. For this purpose, we will examine
Elasticsearch snapshot and restore module. By the end of this chapter, we would
have covered the following topics:

•	 How to create a snapshot repository
•	 How to create a snapshot
•	 How to restore a snapshot
•	 How the snapshot process works

Snapshot repository
When working with large amounts of data, backup and restore is an important
requirement. Elasticsearch has a snapshot and restore module so that they meet the
needs of users for backing up and restoring existing indices. Because Elasticsearch
needs to know where to back up data, before backup and restore operations of the
indices, a snapshot repository should be registered in Elasticsearch. The following is
an example of how to register a snapshot repository:

curl -XPUT localhost:9200/_snapshot/my_backup -d '{
 "type": "fs",
 "settings": {
 "location": "/data/backups/my_backup",
 "compress": true,
 "chunk_size": "10m"
 }
}'

Snapshot and Restore

[112]

The preceding command registers a shared filesystem repository named as my_
backup. It will use location of /data/backups/my_backup. The _snapshot is a
REST endpoint for snapshot operations. Its first parameter is the repository name.
Repository name will be specified by this parameter and must be unique. The
type parameter defines the information of where snapshot files will be stored. The
fs value specifies to use the shared filesystem. The repository settings will vary
according to the type of repository. For this reason, now we'll talk about repository
types, but, first, let's see how we can delete a repository:

curl -XDELETE localhost:9200/_snapshot/my_backup

When a repository is deleted, snapshot files of this repository are not deleted because
Elasticsearch only removes the reference of location of snapshot files.

Repository types
Elasticsearch initially was supporting only shared filesystem repository, but it
currently supports HDFS filesystem and cloud repositories like Amazon S3 and Azure
Cloud via officially supported plugins in addition to shared filesystem repository.
Now, let's examine those types.

Shared filesystem repository
A shared filesystem repository uses the shared filesystem to store snapshots. It is
defined by giving a fs value to the type setting. There are six settings that can be
used for the shared filesystem repository. These are as follows:

•	 location

•	 compress

•	 chunk_size

•	 concurrent_streams

•	 max_restore_bytes_per_sec

•	 max_snapshot_bytes_per_sec

The location parameter is mandatory for shared filesystem repository. It defines
the path to store files of a snapshot. You must define the same location or one of
its parent directories to mount the same shared filesystem for this definition in the
elasticsearch.yml file:

path.repo: ["/Users/hakdogan/data"]

Chapter 7

[113]

This location has been registered in the path.repo setting on all master and data
nodes by the preceding definition. Note that this location must be accessible on all
nodes. The compress setting defines the compression policy of the snapshot files.
The default value is true. Files with a large size can be broken down into chunks
during snapshotting if desired. The chunk_size setting defines the chunk size to be
used at during snapshot creation.

You can specify the size as bytes or by using size value notation, that is, 20k, 10m, 1g.
The default value is null. There is no correct size of chunk while creating a snapshot.
The correct size will vary according to the size of the index files and depending
on the system resources you have. Nevertheless, 10m can be recommended. The
concurrent_streams setting defines number of concurrent read/write stream per
repository on each node. Default value is 5. The max_restore_bytes_per_sec
setting defines throttles per node restore rate. The max_snapshot_bytes_per_sec
setting defines throttles per node snapshot rate. The default value is 40 MB per
second in both settings.

These two settings are common settings that apply to all
repository types.

URL repository
A URL repository is used to read snapshots that were created by the shared
filesystem repository. This is an alternative way as read-only to access the data.
The following settings are supported:

•	 url

•	 concurrent_streams

The url parameter is mandatory for the URL repository. It defines the location of
the snapshots to read. You must define the root directory of the shared filesystem
repository. The concurrent_streams setting defines number of concurrent read/
write stream per repository on each node. Default value is 5.

The http, https, ftp, file, and jar protocols are supported by URL repository.
Allowed URLs on the repositories.url.allowed_urls setting must be defined
when using the URL repositories with http, https, and ftp protocols. This setting
supports wildcards (that is, you can use ? symbol instead of a single character and
the * symbol instead of multiple characters), as follows:

repositories.url.allowed_urls: ["http://www.mydomain.com/root/*",
 "https://*.mydomain.com/*?*#*"]

Snapshot and Restore

[114]

Cloud repository
As noted at the beginning of the repository types section, Elasticsearch supports
cloud repositories via officially supported plugins. In the following table, these
plugins are described:

Plugin Description URL
AWS Cloud
Plugin

This plugin allows you to
use AWS API for the unicast
discovery mechanism and
add S3 repositories

https://github.com/elastic/
elasticsearch-cloud-aws

Azure Cloud
Plugin

This plugin allowsyou to use
Azure API for the unicast
discovery mechanism

https://github.com/elastic/
elasticsearch-cloud-azure

HDFS filesystem repository
Elasticsearch allows you to use the HDFS filesystem as a repository for snapshot
and restore with the Hadoop HDFS Snapshot/Restore plugin. There are two
requirements, which are as follows:

•	 Elasticsearch version 2.0 or higher
•	 HDFS accessible filesystem from the Elasticsearch classpath

For other and more details, refer to https://github.
com/elastic/elasticsearch-hadoop/tree/master/
repository-hdfs.

Snapshot
A snapshot is a backup of your cluster index(s). Snapshots are stored in a repository
that has been registered before. A repository can contain multiple snapshots of the
same cluster. A snapshot can be created by executing the following command:

curl -XPUT localhost:9200/_snapshot/my_backup/first_snapshot

The _snapshot is REST endpoint for snapshot operations. Its second parameter is a
unique snapshot name. The preceding command creates a snapshot of all open and
started indices in the cluster. If you want to back up a certain index, you must specify
the list of indices in the body of the request:

curl -XPUT localhost:9200/_snapshot/my_backup/first_snapshot -d '{
 "indices": "my_index",

https://github.com/elastic/elasticsearch-cloud-aws
https://github.com/elastic/elasticsearch-cloud-aws
https://github.com/elastic/elasticsearch-cloud-azure
https://github.com/elastic/elasticsearch-cloud-azure
https://github.com/elastic/elasticsearch-hadoop/tree/master/repository-hdfs
https://github.com/elastic/elasticsearch-hadoop/tree/master/repository-hdfs
https://github.com/elastic/elasticsearch-hadoop/tree/master/repository-hdfs

Chapter 7

[115]

 "ignore_unavailable": "true",
 "include_global_state": false,
 "partial": true
}'

The indices parameter supports multi-index syntax; that means you can
separate the index names with commas or you can use a wildcard, like *. Default
value of the ignore_unavailable parameter is true. It will cause indices that do
not exist to be ignored during snapshot creation. If this behavior is not desired, the
value of the parameter should be set to false. The include_global_state setting
allows us to store the global state as part of the snapshot. If you want to restore the
snapshot into a different cluster, the include_global_state parameter should be
set to false. By default, the snapshot operation will fail when one or more indices
don't have all primary shards available. This behavior can be changed by setting the
partial parameter to true.

By default, a snapshot request should return immediately after snapshot
initialization. This behavior can be changed by setting the wait_for_completion
parameter to true, as follows:

curl-XPUT localhost:9200/_snapshot/my_backup/first_snapshot?wait_for_
completion=true

Even when the wait_for_completion parameter is set to false, the snapshot
request may take longer to return in some cases because during snapshot
initialization, information on the all previous snapshots is loaded into memory.
Therefore, if you have large repositories, the snapshot request to return may take
several seconds or even minutes. After you create a snapshot, its information can be
obtained using the following command:

curl -XGET localhost:9200/_snapshot/my_backup/first_snapshot
{
 "snapshots": [
 {
 "snapshot": "first_snapshot",
 "version_id": 1070199,
 "version": "1.7.3",
 "indices": [
"my_index"
],
 "state": "SUCCESS",
 "start_time": "2015-10-24T20:06:27.465Z",
 "start_time_in_millis": 1445717187465,
 "end_time": "2015-10-24T20:06:27.996Z",
 "end_time_in_millis": 1445717187996,

Snapshot and Restore

[116]

 "duration_in_millis": 531,
 "failures": [],
 "shards": {
 "total": 5,
 "failed": 0,
 "successful": 5
 }
 }
]
}

You can obtain information of all snapshots using the _all parameter:

curl -XGET localhost:9200/_snapshot/my_backup/_all

Also, you can get more and complete status information about currently running
snapshots using the following command:

curl -XGET localhost:9200/_snapshot/_status

The preceding command will return information about all currently running
snapshots. You can use the following command if you want to get status information
about snapshots belonging to only a particular repository:

curl -XGET localhost:9200/_snapshot/my_backup/_status

If you want to get detailed status information about a snapshot, you must give the
repository and snapshot name as following. In this case, Elasticsearch will return
detailed status information for the given snapshot even if it's not currently running:

GET /_snapshot/my_backup/first_snapshot/_status
{
 "snapshots": [
 {
 "snapshot": "first_snapshot",
 "repository": "my_backup",
 "state": "SUCCESS",
 "shards_stats": {
 "initializing": 0,
 "started": 0,
 "finalizing": 0,
 "done": 5,
 "failed": 0,
 "total": 5
 },
 "stats": {
 "number_of_files": 65,

Chapter 7

[117]

 "processed_files": 65,
 "total_size_in_bytes": 18176267,
 "processed_size_in_bytes": 18176267,
 "start_time_in_millis": 1445873862080,
 "time_in_millis": 413
 },
 "indices": {
 "my_index": {
 "shards_stats": {
 "initializing": 0,
 "started": 0,
 "finalizing": 0,
 "done": 5,
 "failed": 0,
 "total": 5
 },
 "stats": {
 "number_of_files": 65,
 "processed_files": 65,
 "total_size_in_bytes": 18176267,
 "processed_size_in_bytes": 18176267,
 "start_time_in_millis": 1445873862080,
 "time_in_millis": 413
 },
 "shards": {
 "0": {
 "stage": "DONE",
 "stats": {
 "number_of_files": 13,
 "processed_files": 13,
 "total_size_in_bytes": 3910310,
 "processed_size_in_bytes": 3910310,
 "start_time_in_millis": 1445873862234,
 "time_in_millis": 164
 }
 },
 ...
 }
 }
 }
 }
 }
]
}

Snapshot and Restore

[118]

You can get status information about multiple snapshots, as follows:

curl-XGET localhost:9200/_snapshot/my_backup/first_snapshot,second_
snapshot/_status

And, finally, a snapshot can be deleted using the following command:

curl -XDELETE localhost:9200/_snapshot/my_backup/first_snapshot

Note that the snapshot delete command can also be used to terminate snapshot
process when it is running.

Restore
A snapshot can be restored using the following command:

curl -XPOST localhost:9200/_snapshot/my_backup/first_snapshot/_restore

The _restore is the REST endpoint for restore operations. It restores the snapshot
mentioned in the previous parameter. The preceding command will restore all
indices of the specified snapshot name. If you want to restore just certain indices, you
must be specify the list of indices in the body of the request:

curl -XPOST localhost:9200/_snapshot/my_backup/first_snapshot/_restore
-d '{
 "indices": "my_index",
 "ignore_unavailable": "true",
 "include_global_state": false,
 "include_aliases": false,
 "partial": true,
 "rename_pattern": "my_(.+)",
 "rename_replacement": "restored_$1"
}'

The indices parameter defines the index names that need to be restored. It supports
multi-index syntax. For example, when the * character is used, Elasticsearch will
restore all indices of the specified snapshot. If you do not want to restore the
aliases, the include_aliases parameter should be set to false.

By default, the restore operation will fail if one or more indices that need to be
restored don't have snapshots of all shards available. This behavior can be changed
by setting the partial parameter to true. In this case, only successfully snapshotted
shards will be restored and all missing shards will be recreated as empty. Also, you
can rename the index that needs to be restored using a regular expression with the
rename_pattern and rename_replacement parameters. In the preceding use,
the index named my_index will be restored with restored_index name.

Chapter 7

[119]

When an index restore operation is performed on an existing and open index,
it will fail:

{
 "error": "SnapshotRestoreException[[my_backup:first_snapshot]
cannot restore index [my_index] because it's open]",
 "status": 500
}

You can close the index before the restore operation, as follows:

curl -XPOST localhost:9200/my_index/_close

Closed indices are opened during the restore operation. Elasticsearch creates new
indices if they didn't exist in the cluster. The restore operation uses the Elasticsearch
standard shard recovery mechanism. Therefore, if you want to cancel a restore
operation that is running, you can use index delete command on the indices that are
being restored.

Overriding index settings during restore
Elasticsearch allows you to override most of index settings during the restore
process. For example, you can override a number of replica set settings or automatic
refresh time settings of the snapshot of an index that will be restored:

curl -XPOST localhost:9200/_snapshot/my_backup/first_snapshot/_restore
-d '{
"indices": "my_index",
 "index_settings": {
 "index.number_of_replicas": 2
 },
 "ignore_index_settings": [
 "index.refresh_interval"
]
}'

By the preceding command, the my_index will be created with two replica shards
and a default value of the index refresh interval.

Snapshot and Restore

[120]

How does the snapshot process works?
As stated earlier, a repository can contain multiple snapshots of the same cluster.
Therefore, the snapshots files are stored in compact form. This means that your data
will not be repeated when you have multiple snapshots of the same indices. At first,
Elasticsearch checks the list of the index files. Then, it copies only newly created or
changed files since the last snapshot. Now look at the following example:

curl -XGET localhost:9200/my_index/_search?pretty
{
 "took": 3,
 "timed_out": false,
 "_shards": {
 "total": 1,
 "successful": 1,
 "failed": 0
 },
 "hits": {
 "total": 2,
 "max_score": 1,
 "hits": [
 {
 "_index": "my_index",
 "_type": "snapshot",
 "_id": "AVCmN4l-7pWKrBPkopj3",
 "_score": 1,
 "_source": {
 "title": "Document A"
 }
 },
 {
 "_index": "my_index",
 "_type": "snapshot",
 "_id": "AVCmN5iN7pWKrBPkopj4",
 "_score": 1,
 "_source": {
 "title": "Document B"
 }
 }
]
 }
}

We have an index named my_index and it stores two documents. Let's create a
snapshot of this index for now as follows:

curl -XPUT localhost:9200/_snapshot/my_backup/first_snapshot -d '{
 "indices": "my_index",
 "ignore_unavailable": false,

Chapter 7

[121]

 "include_global_state": true,
 "partial": true
}'
{"accepted":true}

Now let's add another document to the index:

curl -XPOST localhost:9200/my_index/snapshot -d '{
 "title": "Document C"
}'

And now let's create a new snapshot again for this index:

curl -XPUT localhost:9200/_snapshot/my_backup/second_snapshot -d '{
 "indices": "my_index",
 "ignore_unavailable": false,
 "include_global_state": true,
 "partial": true
}'
{"accepted":true}

Let's now get for information about the two snapshots that we created:

curl -XGET localhost:9200/_snapshot/my_backup/first_snapshot/_status
{
 "snapshots": [
 {
 "snapshot": "first_snapshot",
 "repository": "kodcucomfs",
 "state": "SUCCESS",
 "shards_stats": {
 "initializing": 0,
 "started": 0,
 "finalizing": 0,
 "done": 1,
 "failed": 0,
 "total": 1
 },
 "stats": {
 "number_of_files": 7,
 "processed_files": 7,
 "total_size_in_bytes": 5059,
 "processed_size_in_bytes": 5059,
 "start_time_in_millis": 1445897714549,
 "time_in_millis": 7
 },

Snapshot and Restore

[122]

 ...

curl -XGET localhost:9200/_snapshot/my_backup/second_snapshot/_status
{
 "snapshots": [
 {
 "snapshot": "second_snapshot",
 "repository": "kodcucomfs",
 "state": "SUCCESS",
 "shards_stats": {
 "initializing": 0,
 "started": 0,
 "finalizing": 0,
 "done": 1,
 "failed": 0,
 "total": 1
 },
 "stats": {
 "number_of_files": 4,
 "processed_files": 4,
 "total_size_in_bytes": 2667,
 "processed_size_in_bytes": 2667,
 "start_time_in_millis": 1445897737400,
 "time_in_millis": 7
 },
 …

As you can see, the size of first_snapshot is approximately twice the size of
second_snapshot. The reason is that my_index had two documents during the
first_snapshot creation. We have created the second_snapshot after adding the
third document in the my_index. So, the second_snapshot includes reference to
one document while the first_snapshot includes reference to two documents. This
intelligent behavior saves time and system resources.

Summary
In this chapter, we looked at how to back up and restore our data. For this reason, we
examined the snapshot repository, and then we looked at how to create a snapshot
and restore it. We talked about their configuration details. Finally, we discussed how
snapshot process works. In the next chapter, we will examine how to improve the
user search experience. We will look at how you can correct spelling mistakes and we
will examine the suggest API. Finally, we will discuss the improving query relevance
and we will look at some relevant cases related to this topic.

[123]

Improving the User
Search Experience

In the previous chapter, we looked at how to back up and restore our data. We
examined the snapshot repository and snapshot/restore process functionality. We
talked about configuration details to snapshot and restore. Finally, we discussed how
the snapshot process works and the form of snapshot files. In this chapter, we will
examine the Elasticsearch Suggest API to correct user's spelling mistakes and we will
look closely at the various functionalities provided by Elasticsearch to improve the
relevancy of search results. By the end of this chapter, we will have covered:

•	 How to correct user's spelling mistakes
•	 How to use the term suggester
•	 How to use the phrase suggester
•	 How to provide the autocomplete functionality for the user
•	 How to use boosting
•	 How to use synonyms

Improving the User Search Experience

[124]

Correction of users' spelling mistakes
Typos and spelling mistakes are often encountered due to many reasons. Therefore,
correcting typos and user spelling mistakes is an integral part of a good search
experience. When you search for a phrase that is close to another frequently searched
phrase, you may see the did you mean phrase, which helps correct users' spelling
mistakes, as search engines use this form to improve the user search experience. For
such a case, this is what Google shows us when we type in threat safe instead of
thread safe. Take a look at the following screenshot as an example:

Elasticsearch allows us to use the Suggest API functionality. In this section, we will
look at how to use the Suggest API both in simple use case scenarios and the basic
configuration settings.

Chapter 8

[125]

Suggesters
The Suggest API suggests similar terms based on text that you provided by using a
suggester. Elasticsearch allows us to use three suggesters that provide three different
functionalities. These are term, phrase, and completion. The term and phrase
suggesters allow us to correct spelling mistakes. The completion suggester provides
the autocomplete functionality. A suggestion request can be used in two ways:

•	 Using the REST _suggest endpoint
•	 Defined alongside the query part of a _search request

Now, let's examine how we can use these formats.

Using the _suggest REST endpoint
When using the _suggest REST endpoint, you must provide text for suggestions
and the type of the suggester to use. Suggester provides suggestions that are similar
to the text provided. The following is an example of the _suggest REST endpoint.
We would like to get suggestions for the word jama. Of course, we've misspelled it
on purpose to understand the suggestion's working logic:

curl -XGET localhost:9200/my_index/_suggest?pretty -d '{
 "my_suggestion" : {
 "text : "jama",
 "term" : {
 "field : "_all"
 }
 }
}'

In the preceding example, first we specified a name for the suggestion request. In this
example, it is my_suggestion. Then, we specified the text that we want to suggest to
be returned by using the text parameter. Afterward, we added the suggester type.
Here, a term suggester is used. The term suggester object contains its configuration,
and the field property defines the field that we want to use for suggestions. In this
example, we specified that we wanted to use the _all field. Now, let's look at the
example response:

{
 "_"shards":" {
 "total":" 5,
 "successful":" 5,
 "failed":" 0
 },
 "my_suggestion":" [

Improving the User Search Experience

[126]

 {
 "text": "jama",
 "offset":" 0,
 "length":" 4,
 "options":" [
 {
 "text": "java",
 "score":" 0.75,
 "freq":" 415
 },
 {
 "text": "jaka",
 "score":" 0.75,
 "freq":" 109
 },
 {
 "text": "jakas",
 "score":" 0.5,
 "freq":" 37
 },
 {
 "text": "j2me",
 "score":" 0.5,
 "freq":" 26
 },
 {
 "text": "jakao",
 "score":" 0.5,
 "freq":" 13
 }
]
 }
]
}

As you can see in the preceding response, the output returns a list of suggestions
for the text provided (that is, term) to us that was present in the text parameter
of our my_suggestion section. The term suggester will return an array of possible
suggestions with additional information for each term. Looking at the data returned
for the term jama, we can see the options array that contains suggestions.

Chapter 8

[127]

In other words, each entry in this array is a suggestion for the provided term. If
Elasticsearch does not find any suggestions for the provided term, the options field
will be empty. Properties and their meanings are as follows in each matching term
object of the options array that is returned by Elasticsearch:

•	 Text: A text parameter of the suggestion for the term provided by user.
•	 Score: The score of the suggestion. The score is a factor indicating how close

the suggestion is to the provided term. The higher score can mean a better
suggestion. Note that the terms java and jaka received the highest score
according to the preceding response.

•	 Frequency: The frequency of the suggestion. The frequency indicates how
many times the term appears in the documents of an index. When you see
high frequency, this means that more documents will have the suggested
term in their fields and that the suggested term is an appropriate suggestion
for users. Note that the term java received the highest frequency value
according to the preceding response.

In addition, keep in mind that you can send more than one suggestion at a time by
adding multiple suggestion names. For example, in addition to the term jama, we
can also ask for a suggestion for rumy (of course, we have again made a misspelling
on purpose), as shown here:

curl -XGET localhost:9200/my_index/_suggest?pretty -d '{
 "first_suggestion" : {
 "text : "jama",
 "term" : {
 "field : "_all
 }
 },
 "second_suggestion" : {
 "text : "rumy",
 "term" : {
 "field : "_all
 }
 }
}'

Suggest object inclusion in the query
A suggest request can be defined alongside the query part of the _search request,
as follows:

curl -XGET localhost:9200/my_index/_search?pretty -d '{
 "query": {

Improving the User Search Experience

[128]

 "match": {
 "description": "java"
 }
 },
 "suggest" : {
 "first_suggestion" : {
 "text : "j2se",
 "term" : {
 "field : "_all
 }
 }
 }
}''

Unlike the _suggest REST endpoint use, when we include suggestion requests in a
query, the documents are also returned to us with the suggestions even if we do not
specify the query (the match_all query executed by Elasticsearch in this case). At
this point, it is important to know that the returned suggestions are independent of
the returned result by the specified query.

As we mentioned at the beginning of the Suggesters section, Elasticsearch allows us to
use three suggesters. Now that we now know how to use a suggestion request with
the REST _suggest endpoint and as part of a search request, now let's examine these
three suggesters.

Term suggester
The term suggester suggests terms based on the edit distance. An edit distance refers
to the number of characters that would need to be changed to make the terms match.
A term with a lower distance number is considered to be a better match than a term
with a higher distance number. Consider the case of jama returning to java that we
previously examined. In order to change the term jama to java, we need to change
the letter m to v, so this means a distance of 1. The text provided for suggestion is
analyzed before terms are suggested, and the terms suggested by Elasticsearch are
indicated as per the provided and suggested text.

The term suggester does not take the query into account even
when it is a part of a request.

Chapter 8

[129]

Configuring the term suggester
Elasticsearch provides many configuration properties to configure the term suggester
in order to suit our needs. Now we will talk about these configuration properties.

Common suggest options
The following options can be used for all the suggesters. The available options are:

•	 text: The suggest text. We want to receive suggestions for the text itself. This
option is required and can be set globally or as per the suggestion.

•	 field: The field option determines which field to use to fetch the suggestions.
It is another required option and it can be set globally or as per the suggestion.

•	 analyzer: This option's value must be an analyzer name that can be used
to analyze the text provided in the text parameter. If a value is not set,
Elasticsearch will use the search analyzer of the suggest field.

•	 size: This option defines the maximum number of suggestions that need to
be returned as per the suggest text token. The default value is 5.

•	 sort: This option allows us to specify how suggestions are sorted in the
result returned by Elasticsearch. There are two values available—score and
frequency. The default value is score. When the score value is used, the
suggestions will be sorted based on the score first, then the frequency, and
then the term itself. If the frequency is used, the suggestions will be sorted by
frequency first, then by the similarity score, and then by the term itself.

•	 suggest_mode: This option allows us to control which suggestions will be
included in the Elasticsearch response. There are three values available:
missing, popular, and always. The default value is missing. When missing
is used, Elasticsearch will generate suggestions for the provided term in
the text parameter only if it does not exist in the index. If the value called
"popular" is used, Elasticsearch will only suggest terms that exist in more
documents than the original term. Or, when the last possible value always
is used, Elasticsearch will suggest any matching suggestions for each of the
words in the text parameter.

Other and additional term suggester options
In addition to the common suggest options, there are additional options we can use
for the term suggester. These options are:

•	 lowercase_terms: When this option is set to true, Elasticsearch will make
all suggest terms lowercase after analysis.

Improving the User Search Experience

[130]

•	 max_edits: This option defines the value of the maximum edit distance and
can only take a value between 1 and 2. The default value is 2. When setting
this value to 1, you can see fewer but better suggestions in the result.

•	 prefix_length: This option allows us to set how many of the suggestion
prefix characters must match the prefix characters of the provided term. The
default value is 1. Increasing this number improves spellcheck's performance
because usually, spelling mistakes do not appear at the beginning of a word.

•	 min_word_length: This option defines the minimum length of a suggestion
that is to be returned. The default value is 4.

•	 shard_size: This option defines the maximum number of suggestions that
will be read from each individual shard. The default value is specified by the
size parameter. The terms are partitioned among the shards (unless we have
a single shard index created) because of the sharding process. Therefore, if
you set this option to a value higher than the size parameter, it can be useful
in creating a more accurate document frequency.

•	 max_inspections: This option is a factor that defines how many candidates
Elasticsearch will look at in order to find the terms on the shard level that
can be used as suggestions. The default value is 5. The factor will be used
as a multiplier for the shards_size option. Setting a higher value than the
default value can improve accuracy, but it leads to a cost in performance.

•	 min_doc_freq: This option allows us to define the low limit for the number
of documents to appear. For example, if you set the option to 2, this means
the suggestion must appear in at least two documents in a given shard. Note
that this value is counted per shard, and is not globally counted as one. This
option's default value is 0, which means the option is not enabled. When we
set option's values higher than 0, it can improve the quality of suggestions
returned by only suggesting high frequency terms. This option can be
specified as a percentage for lower values than 1. For example, 0.02 means
2%. The shard level document frequencies are used for this option.

•	 max_term_freq: This option defines the maximum number of documents
that a suggest text token can exist in order to be included for spellchecking.
Similar to the min_doc_freq parameter, it can either be a relative percentage
number (for example, 0.4 means 4%) or can be provided as an absolute
number. This value is per shard frequency. When a value higher than 1 is
specified, then a fractional value cannot be specified. The default value is
0.01. If you define a higher value for this option, the overall performance
of the spellchecker will be better. In addition, this option is very useful as it
excludes high frequency terms from being spellchecked, which are usually
correct terms. The shard level document frequencies are used for this option.

Chapter 8

[131]

The phrase suggester
The phrase suggester is an extended version of the term suggester. It uses n-gram
language models to calculate how good the suggestion is and selects entire corrected
phrases instead of individual weighted tokens. This means that whole phrases will
be returned instead of individual terms. The n-gram approach gets a contiguous
sequence of N terms from a given text. In other words, it divides terms in the string
into grams. For example, if we would like to divide the word Elasticsearch into
bi-grams, it would look like this (when a two letter n-gram is used): el la as st ti ic cs
se ea ar rc ch.

If you want more information about the n-gram language
models, please see http://en.wikipedia.org/wiki/
Language_model#N-gram_models.

The best way to describe the phrase suggester is an example so you can see it in
action. We need to create test data for this reason. Let's start by indexing five
simple documents:

curl -XPOST 'localhost:9200/my_index/article/1' -d '{"title":
"Introduction to ElasticSearch Data Analytics"}'
curl -XPOST 'localhost:9200/my_index/article/2' -d '{"title": "Big
Data search and analysis by ElasticSearch"}'
curl -XPOST 'localhost:9200/my_index/article/3' -d '{"title": "Real-
time Data Analytics with Elasticsearch "}'
curl -XPOST 'localhost:9200/my_index/article/4' -d '{"title": "Data
Mining with ElasticSearch Data Analytics"}'
curl -XPOST 'localhost:9200/my_index/article/5' -d '{"title":
"Elasticsearch Analytics with Kibana"}'
Okay, let's see how we run a phrase suggester request at now:
curl -XPOST localhost:9200/my_index/_search?pretty -d '{
 "size": 0,
 "suggest": {
 "text": "elasticsarch data analytis",
 "phrase_suggestion" : {
 "phrase": {
 "field": "title"
 }
 }
 }
}'

http://en.wikipedia.org/wiki/Language_model#N-gram_models
http://en.wikipedia.org/wiki/Language_model#N-gram_models

Improving the User Search Experience

[132]

When we examine the preceding command, we can see that it is not very different
from the command that we ran for the term suggester, except that we specified the
phrase type instead of the term type. The response to the preceding command is
as follows:

{
 "took": 15,
 "timed_out": false,
 "_shards": {
 "total": 5,
 "successful": 5,
 "failed": 0
 },
 "hits": {
 "total": 5,
 "max_score": 0,
 "hits": []
 },
 "suggest": {
 "phrase_suggestion": [
 {
 "text": "elasticsarch data analytis",
 "offset": 0,
 "length": 26,
 "options": [
 {
 "text": "elasticsearch data analytics",
 "score": 0.114973485
 },
 {
 "text": "elasticsearch data analytis",
 "score": 0.08818061
 },
 {
 "text": "elasticsarch data analytics",
 "score": 0.08641694
 },
 {
 "text": "elasticsearch data analysis",
 "score": 0.070414856
 }
]
 }
]
 }
}

Chapter 8

[133]

As you can see, when the phrase suggester is used, Elasticsearch will be the whole
phrase returned from the document instead of a single word/term for each term
from the text field. The returning array includes the most likely corrected spelling
suggestions and is sorted based on their score. In this case, we first received the
expected correction from the Elasticsearch data analytics, while the second correction
is relatively less successful in that only one of the errors is corrected.

Note that the request is executed with the max_errors parameter even if we did not
specify this explicitly. This parameter defines the corrections to be returned with
how many misspelled terms there are. There are misspelled terms in the returned
array. The default value of this parameter is 1.0. Now, let's look at what parameters
of the phrase suggester are available for usage.

Configuring the phrase suggester
As mentioned earlier, the phrase suggester has been extended from the term
suggester. This means there is an inheritance relationship between the phrase
suggester and the term suggester, plus the phrase suggester has all the features of the
term suggester. Therefore, the phrase suggester can also make use of the common
configuration options provided by the term suggester (refer to the Common suggest
options section in this chapter). In addition to these features, the phrase suggester
exposes the following basic options:

•	 field: This option determines which field to use to fetch the suggestions
that we use to perform n-gram lookups for the language model. It is a
required option.

•	 gram_size: This option defines the maximum size of the n-grams in the field
that is specified by the field option. If the specified field does not contain
n-grams, this option should be set to 1 or be omitted. This behavior is
recommended because Elasticsearch will try to detect the gram size by itself
when this option is not set.

•	 real_word_error_likelihood: This option defines the possibility of a term
being a misspelled even if the term exists in the index. The default value is
0.95, corresponding to 5%, which tells Elasticsearch that 5% of all the terms
that exist in its index are misspelled. Note that when given a low value, this
option will result in more terms being taken as misspelled even though they
may be correct.

•	 confidence: This option defines a threshold value for suggestion candidates
that will be included in the result. For example, when the confidence value is
1.0, Elasticsearch will only return suggestions that score higher than this. If it
is set to 0.0, Elasticsearch will result in returning all the suggestions no matter
what their scores are with the limited size parameter. The default value is 1.0.

www.allitebooks.com

http://www.allitebooks.org

Improving the User Search Experience

[134]

•	 max_errors: This option defines the maximum percentage of terms that can
be misspellings in order to create a correction. This option accepts an integer
number or a float value in the range between 0 and 1, which will be treated
as a percentage value. The default value is 1.0, which means that at most,
one misspelled term is returned for only one correction. When a float value
is used, it will specify the percentage of terms that can be erroneous. If we
specify an integer number, Elasticsearch will treat it as a maximum number
of misspelled terms. When given too high a value, this option can negatively
affect performance.

•	 separator: This option defines the separator that will be used to divide
terms in the bigram field. The whitespace character is used as a separator
when this option is not set.

•	 highlight: This option allow us to use suggestions highlighting. When it is
being configured, pre_tag and post_ tag should be used to specify which
prefix and postfix should be used. For example, if we would like to surround
the suggestions with the and tags, we should set the pre_ tag to
 and the post_ tag to .

•	 collate: This option allows us to check each suggestion against a specified
query or filter to prune suggestions for which no matching documents
exist in the index. The query or filter must be specified with this option
and it is run as a template query. The query or filter must contain the
{{suggestion}} variable. The current suggestion is automatically made
usable on this variable. Also, you can specify your own template params.
When the additional parameter called prune is set to true, the suggestions
will have an additional option called collate_match. The default value of
prune is false.

Now let's look at an example of using some of the parameters mentioned earlier. For
example, if you want to use highlighting the command, it would look as follows:

curl -XPOST localhost:9200/my_index/_search -d '{
 "size": 0,
 "suggest": {
 "text": "elasticsarch data analytis",
 "phrase_suggestion" : {
 "phrase": {
 "field": "title",
 "real_word_error_likelihood" : 0.95,
 "max_errors" : 0.5,
 "highlight": {
 "pre_tag": "",
 "post_tag": ""
 },

Chapter 8

[135]

 "collate" : {
 "prune" : true,
 "query" : {
 "match" : {
 "{{field}}": "{{suggestion}}"
 }
 },
 "params": {
 "field": "title"
 }
 }
 }
 }
 }
}'

The result returned by Elasticsearch for the preceding query would be as follows:

{
 "took": 17,
 "timed_out": false,
 "_shards": {
 "total": 5,
 "successful": 5,
 "failed": 0
 },
 "hits": {
 "total": 5,
 "max_score": 0,
 "hits": []
 },
 "suggest": {
 "phrase_suggestion": [
 {
 "text": "elasticsarch data analytis",
 "offset": 0,
 "length": 26,
 "options": [
 {
 "text": "elasticsearch data analytics",
 "highlighted": "elasticsearch data
analytics",
 "score": 0.114973485,
 "collate_match": true
 },

Improving the User Search Experience

[136]

 {
 "text": "elasticsearch data analytis",
 "highlighted": "elasticsearch data
analytis",
 "score": 0.08818061,
 "collate_match": true
 },
 {
 "text": "elasticsarch data analytics",
 "highlighted": "elasticsarch data analytics</
em>",
 "score": 0.08641694,
 "collate_match": true
 },
 {
 "text": "elasticsearch data analysis",
 "highlighted": "elasticsearch data
analysis",
 "score": 0.070414856,
 "collate_match": true
 }
]
 }
]
 }
}

As expected, the suggestions were highlighted nicely.

The completion suggester
The completion suggester provides a basic auto complete functionality instead
of doing spell correction, unlike other suggesters. Actually, it is a so-called prefix
suggester based on the Finite State Transducer (FST) data structure. In this
structure, available suggestions can be stored as more than one output value for each
input string value.

If you want more information on the FTS data structure,
please refer to http://en.wikipedia.org/wiki/
Finite_state_transducer.

http://en.wikipedia.org/wiki/Finite_state_transducer
http://en.wikipedia.org/wiki/Finite_state_transducer

Chapter 8

[137]

Prefix suggestions are faster than other suggestions. They are stored on an FTS-like
data structure as part of your index during index time. For this reason, the completion
suggester allows really fast loads and executions of the suggestions because it does
not perform any calculations during query time.

Mapping the configuration for the completion
suggester
In order to use this feature, we need to dedicate one field, which will be called
completion and we have to specify a special mapping for it. Thus, the field stores the
FST-like structure in the index. In order to illustrate how to use this suggester, let's
create an index to search for movie directors with the autocomplete feature. Next to
a director's name, we want to return the identifiers of the movie she/he directed in
order to search for them with an additional query. We create the director's index by
running the following command:

curl -XPOST localhost:9200/imdb -d '{
 "mappings": {
 "director": {
 "properties": {
 "name": {
 "type": "string"
 },
 "completion_suggest": {
 "type": "completion",
 "analyzer": "simple",
 "search_analyzer": "simple",
 "payloads": true
 }
 }
 }
 }
}'
{"acknowledged":"true}

Okay. Now we have an index, and it will contain a single type called "director."
We specified two fields for each document, which will be stored under this type.
These fields are the name and completion_suggest. The first field is the name of the
director and the second field is the field we will use for the autocomplete function.
Note that we defined the completion_suggest field using the completion type,
which will result in storing the FST-like structure in the index. The mapping of the
completion suggester supports the following parameters:

•	 type: This option is required and should be set to completion.

Improving the User Search Experience

[138]

•	 analyzer: This option defines the analyzer to use during indexing time. The
default value is simple.

•	 search_analyzer: This option defines the analyzer to use during query
time. The value is value of analyzer.

•	 payloads: This option defines whether or not stores for payloads. The
default value is false. It allows you to return additional information along
with the suggestion when set to true.

•	 preserve_separators: This option defines whether or not the separators are
taken into consideration. The default value is true. For example, when it is
set to false, you could find a field starting with Real Madrid if you suggest
for realm.

•	 preserve_position_increments: This option defines whether or not the
position increments are enabled. The default value is true. For example,
when it is set to false, you could find a field starting with The Godfather, if
you suggest g.

•	 max_input_length: This option defines the limit for the length of a single
input. The default value is 50 UTF-16 code points.

Indexing on completion field
We will now index a document describing Andrei Tarkovsky, and we will provide
some additional information about his movies. Let's look at the following code:

curl -XPOST localhost:9200/imdb/director/1 -d '{
 "name": "Andrei Tarkovsky",
 "completion_suggest": {
 "input": ["andrei", "arsenyevich", "tarkovsky"],
 "output": "Andrei Arsenyevich Tarkovsky",
 "payload": { "movies" : ["Ivan's Childhood", "Andrei Rublev",
"Solaris", "The Mirror", "Stalker", "Nostalgia", "The Sacrifice"] }
 }
}'
{"_"index":"""imdb","_""type":"""director","_""id":"""1","_""version":
"1,"created":"true}

As you can see, we provided the input, output, and payload properties for the
completion_suggest field. The following parameters are supported:

•	 input: This field stores the input. It can be an array of strings or just a string.
This field is required.

•	 output: This field stores a string to return when a suggestion matches. This
field is optional.

Chapter 8

[139]

•	 payload: This field stores a JSON object to return additional information
about your document as arbitrary and is optional.

•	 weight: This field stores a positive integer or a string containing a positive
integer value to define a weight related to the document. It allows you to
rank your suggestions and is optional.

Get suggestions
If we would like to find documents that have directors starting with tar, we would
run the following command:

curl -XGET localhost:9200/imdb/_suggest?pretty -d '{
 "directorAutocomplete": {
 "text": "tar",
 "completion": {
 "field": "completion_suggest"
 }
 }
}'

The result returned by Elasticsearch for the preceding query looks as follows:

{
 "_shards": {
 "total": 5,
 "successful": 5,
 "failed": 0
 },
 "directorAutocomplete": [
 {
 "text": "tar",
 "offset": 0,
 "length": 3,
 "options": [
 {
 "text": "Andrei Arsenyevich Tarkovsky",
 "score": 1,
 "payload": {
 "movies": [
 "Ivan's Childhood",
 "Andrei Rublev",
 "Solaris",
 "The Mirror",

Improving the User Search Experience

[140]

 "Stalker",
 "Nostalgia",
 "The Sacrifice"
]
 }
 }
]
 }
]
}

As you can see, the document about Andrei Tarkovsky has been returned to us
with the payload information about his movies when we search for the phrase
tar because we indexed the phrases andrei, arsenyevich, and tarkovsky in the
document's completion field as input values. This is why the phrase tar matched
the phrase tarkovsky and the text (that is, Andrei Tarkovsky Arsenyevich) that is
indexed as the output value is returned to us with the payload field.

Improving the relevancy of search results
In general, Elasticsearch is used for searching while it is a data analysis tool. In
this respect, improving query relevance is an important issue. Of course, searching
also means querying and scoring, thus it is a very important part of querying in
Apache Lucene as well. We can use the re-scoring mechanism to improve the query's
relevance. In addition to the capabilities of document scoring in the Apache Lucene
library, Elasticsearch provides different query types to manipulate the score of the
results returned by our queries. In this section, you will find several tips on this issue.

Boosting the query
Boosting queries allows us to effectively demote results that match a given query.
This feature is very useful in that we can send some irrelevant records of the result
set to the back. For example, we have an index that stores the skills of developers and
we're looking for developers who know the Java language. We use a query such as
the following for this case:

curl -XGET localhost:9200/my_index/_search?pretty -d '{
 "fields": ["age", "skills", "education_status"],
 "query": {
 "match": {
 "skills": "java"
 }
 }

Chapter 8

[141]

}'
...
 {
 "_index": "my_index",
 "_type": "talent",
 "_id": "AVERYloLvXHAFW5Vn9ct",
 "_score": 0.30685282,
 "fields": {
 "skills": [
 "c++",
 "ruby",
 "java",
 "scala",
 "python"
],
 "education_status": [
 "graduated"
],
 "age": [
 26
]
 }
 },
 {
 "_index": "my_index",
 "_type": "talent",
 "_id": "AVERZkNpvXHAFW5Vn9jo",
 "_score": 0.30685282,
 "fields": {
 "skills": [
 "java",
 "jsf",
 "wicket",
 "scala",
 "python",
 "play",
 "spring"
],
 "education_status": [
 "student"
],
 "age": [
 22
]

Improving the User Search Experience

[142]

 }
 },
 {
 "_index": "my_index",
 "_type": "talent",
 "_id": "AVERXyjCvXHAFW5Vn9W9",
 "_score": 0.30685282,
 "fields": {
 "skills": [
 "c",
 "java",
 "spring",
 "spring mvc",
 "node.js"
],
 "education_status": [
 "graduated"
],
 "age": [
 27
]
 }
 }

What can we do if there are some documents returned that we don't care as much
about than other documents, and what can we do in order to discover the most
relevant records first while browsing through the data? For example, we want to
prioritize students. Reducing the score of documents that have unwanted terms
could be a solution. You can specify negative rules in a bool query. In this case, the
documents containing unwanted terms are still returned, but their overall scores are
reduced. To send such a query to Elasticsearch, we will use the following command:

curl -XGET localhost:9200/my_index/_search?pretty -d '{
 "fields": ["age", "skills", "education_status"],
 "query": {
 "boosting": {
 "positive": {
 "match": {
 "skills": "java"
 }
 },
 "negative": {
 "match": {
 "education_status": "graduated"
 }

Chapter 8

[143]

 },
 "negative_boost": 0.2
 }
 }
}'
...
 {
 "_index": "my_index",
 "_type": "talent",
 "_id": "AVERZkNpvXHAFW5Vn9jo",
 "_score": 0.30685282,
 "_source": {
 "age": 22,
 "skills": [
 "java",
 "jsf",
 "wicket",
 "scala",
 "python",
 "play",
 "spring"
],
 "education_status": "student"
 }
 },
 {
 "_index": "my_index",
 "_type": "talent",
 "_id": "AVERYloLvXHAFW5Vn9ct",
 "_score": 0.061370563,
 "_source": {
 "age": 26,
 "skills": [
 "c++",
 "ruby",
 "java",
 "scala",
 "python"
],
 "education_status": "graduated"
 }
 },
 {

Improving the User Search Experience

[144]

"_index": "my_index",
 "_type": "talent",
 "_id": "AVERXyjCvXHAFW5Vn9W9",
 "_score": 0.061370563,
 "_source": {
 "age": 27,
 "skills": [
 "c",
 "java",
 "spring",
 "spring mvc",
 "node.js"
],
 "education_status": "graduated"
 }
 }

As you can see, the score of the document whose education_status field value
is student is the same as the previous query result, but the scores of the last two
documents have been decreased by 80 %. The reason is that it has been changed in
terms of the value of the negative boost. We set its value to 0.2 in the preceding
command.

Bool query
The bool query allows us to use Boolean combinations in nested queries. It provides
a should occurrence type that defines no must clauses in a Boolean query (of course,
this behavior can be changed by setting the minimum_should_match parameter),
but each matching should clause increases the document score. This feature is very
useful when you want to move some results among the result set to the forefront. For
example, we have an index that stores technical articles and we're looking for articles
written about Docker. We use a query like the following for this:

curl -XGET localhost:9200/my_index/_search -d '{
 "query": {
 "multi_match": {
 "query": "docker",
 "fields": ["_all"]
 }
 }
}'
...
 {
 "_index": "my_index",

Chapter 8

[145]

 "_type": "article",
 "_id": "AVETmMSTOCXTx0WbQQh1",
 "_score": 0.13005449,
 "_source": {
 "title": "9 Open Source DevOps Tools We Love",
 "content": "We have configured Jenkins to build code,
create Docker containers..."
 }
 },
 {
 "_index": "my_index",
 "_type": "article",
 "_id": "AVETl_kKOCXTx0WbQQga",
 "_score": 0.111475274,
 "_source": {
 "title": "Using Docker Volume Plugins with Amazon ECS-
Optimized AMI",
 "content": "Amazon EC2 Container Service (ECS) is a
highly scalable, high performance container management services..."
 }
 }
...

As you can see, the first document seems less relevant for docker compared to the
second document. In this case, we can use a should clause, plus we can use the boost
parameter to improve the relevancy of our search results. The boost parameter allows
us to increase the weight of the given fields. Thus, it tells Elasticsearch that some
fields are more important than other fields when performing term matching. If the
title field contains the term that we're looking for, the document is relevant. This
assessment is not wrong. Therefore, in our example, the important field is title. We
could run the following command as an another example:

curl -XGET localhost:9200/my_index/_search?pretty -d '{
 "query": {
 "bool": {
 "must": [
 {
 "match": {
 "_all": "docker"
 }
 }
],
 "should": [
 {
 "match": {

Improving the User Search Experience

[146]

 "title": {
 "query": "docker",
 "boost": 2
 }
 }
 }
]
 }
 }
}'

Okay, let's now look at the example response:

...
 {
 "_index": "my_index",
 "_type": "article",
 "_id": "AVETl_kKOCXTx0WbQQga",
 "_score": 0.33130926,
 "_source": {
 "title": "Using Docker Volume Plugins with Amazon ECS-
Optimized AMI",
 "content": "Amazon EC2 Container Service (ECS) is a
highly scalable, high performance container management services..."
 }
 },
 {
 "_index": "my_index",
 "_type": "article",
 "_id": "AVETmMSTOCXTx0WbQQh1",
 "_score": 0.018529123,
 "_source": {
 "title": "9 Open Source DevOps Tools We Love",
 "content": "We have configured Jenkins to build code,
create Docker containers..."
 }
 }
...

As you can see, the first document returned is now more relevant with regard to the
should clause and the boost parameter.

Chapter 8

[147]

Synonyms
We talked about subtle analysis in the Introduction to Analysis section in Chapter 4,
Analysis and Analyzers. Recall what you learned about the topic: TR relates to Turkey
and a search for Jeffrey Jacob Abrams also relates to J.J. Abrams. The simpler and
more subtle the changes, the easier it is for human beings to notice this similarity.
However, the machines need assistance here. Synonyms allow us to ensure that
documents are found with terms of the same/similar meanings in this regard. In
other words, they are used to broaden the scope of what is considered as a matching
document. Now let's examine the following example:

curl -XPUT localhost:9200/travel -d '{
 "settings": {
 "analysis": {
 "filter": {
 "tr_synonym_filter": {
 "type": "synonym",
 "synonyms": [
 "tr,turkey"
]
 }
 },
 "analyzer": {
 "tr_synonyms": {
 "tokenizer": "standard",
 "filter": [
 "lowercase",
 "tr_synonym_filter"
]
 }
 }
 }
 },
 "mappings": {
 "city": {
 "properties": {
 "city": {
 "type": "string", "analyzer": "tr_synonyms"
 },
 "description": {
 "type": "string", "analyzer": "tr_synonyms"
 }
 }
 }
 }
}'

Improving the User Search Experience

[148]

We created a travel index using the tr_synonyms analyzer. It is configured with the
synonym token filter whose name is tr_synonym_filter. The tr_synonym_filter
handles synonyms during the analysis process. Its synonyms parameter accepts an
array of synonyms that were provided by us. The only element of the array says that
tr is a synonym of turkey and vice versa. Now let's add a document to the index:

curl -XPOST localhost:9200/travel/city -d '{
 "city": "Istanbul",
 "description": "Istanbul is the most populous city in Turkey."
}'
{"_"index":"""travel","_""type":"""city","_""id":"""AVEXOA_xXNtV9WrYCp
uZ","_""version":"1,"created":"true}

Now, let us search tr phrase on travel index:
curl -XGET localhost:9200/travel/_search?pretty -d '{
 "query": {
 "match": {
 "description": "tr"
 }
 }
}'
{
 "took": 12,
 "timed_out": false,
 "_shards": {
 "total": 5,
 "successful": 5,
 "failed": 0
 },
 "hits": {
 "total": 1,
 "max_score": 0.13561106,
 "hits": [
 {
 "_index": "travel",
 "_type": "city",
 "_id": "AVEXOA_xXNtV9WrYCpuZ",
 "_score": 0.13561106,
 "_source": {
 "city": "Istanbul",
 "description": "Istanbul is the most populous city in
Turkey."
 }
 }
]
 }
}

Chapter 8

[149]

As you can see, the document that we're looking for was returned to us because the
tr_synonym_filter handles synonyms by means of the synonyms provided that
were defined by us.

Be careful about the _all field
We talked about the _all field in the _all section in Chapter 3, Basic Concepts of
Mapping. To remind you briefly, Elasticsearch allows you to search in all the fields
of a document. This facility is provided by the _all field, because it includes the
text of one or more other fields within the document indexed and concatenates them
into one big string. This feature is very useful when want to use a full-text search.
However, due to the structure of the field, we may not produce the expected results
when searching on this field. For example, let's change the query to run on the _all
field that we used in our previous example:

curl -XGET localhost:9200/travel/_search?pretty -d '{
 "query": {
 "match": {
 "_all": "tr"
 }
 }
}'
{
 "took": 15,
 "timed_out": false,
 "_shards": {
 "total": 5,
 "successful": 5,
 "failed": 0
 },
 "hits": {
 "total": 0,
 "max_score": null,
 "hits": []
 }
}

As you can see, no document was returned to us in the query results. This is because
the _all field combines the original values from each field of the document as a
string. In our previous example, the _all field only included these terms: [istanbul,
is, the, most, populous, city, in, turkey].

Improving the User Search Experience

[150]

So, similar words did not appear in this field. Another important point to note is that
the _all field is of the type string. This means that the fields' values of different
types are stored as a string type. For example, if we have a date field whose value is
2002-11-03 00:00:00 UTC, the _all field will contain the terms [2003, 11, and 03].

Summary
In this chapter, we looked at the Suggest API and saw how we can use term, phrase,
and completion suggesters with their configuration details. Then, we looked at
the various functionalities to improve the relevancy of search results provided by
Elasticsearch. We looked at how we can broaden the scope of matching documents
with the synonym facility. Finally, we tried to correctly understand the notion of the
_all field in depth.

Thank you for reading this book. We hope that you liked it and that we have
reinforced your knowledge of effective indexing, which can adeptly help you to
improve the relevancy of search results using Elasticsearch.

[151]

Index
Symbols
_all field 28, 29
_source field 3-28
_suggest REST endpoint

suggest object inclusion 127, 128
used, for correcting users' spelling

mistakes 125-127
_timestamp field 30-32
_ttl field 32, 33

A
analysis

about 10, 47-49
examining 10-15
normalizing 49
process 49, 50
tokenizing 49

analyzer
custom analyzer, creating 64, 65
pipeline 60
specifying, for field in mapping 60-64

Apache Lucene
about 3, 18
URL 3

ASCII Folding token filter 54, 56-59
attachment type

about 38
reference link 38

AWS Cloud Plugin
about 114
URL 114

Azure Cloud Plugin
about 114
URL 114

B
big data 1
bool query

using 144-146
built-in analyzers

about 50, 51
building blocks 51
character filters 51
Language Analyzer 51
Pattern Analyzer 51
Simple Analyzer 50
Standard Analyzer 50
Stop Analyzer 51
token filters 54
tokenizer 53, 54
Whitespace Analyzer 50

bulk API 107, 108
bulk sizing 108

C
character filters

about 51
HTML Strip Char filter 51-53
Pattern Replace Char filter 53

client nodes 68
cloud repository 114
completion suggester

completion field, indexing 138
configuration, mapping 137, 138
used, for correcting users' spelling

mistakes 136
Concurrent Mark Sweep garbage

collector 90

[152]

configuration, for high performance
indexing

file descriptors 91
garbage collector 84
JVM memory 84
memory configuration 80
performing 80
swapping, avoiding 82

custom analyzer
creating 64, 65

D
database 2
dedicated master nodes 68
denormalization 21, 22
document

about 20, 21
inverted index 23-25

document-oriented search engine 2
document storage

_source field 3-6
about 2, 3
storable field, versus searchable field 6-10

E
Elasticsearch 1
Elasticsearch cluster

about 67, 68
architecture, of distribution 70-72
configuring 73-76

ES_HEAP_SIZE environment variable 81

F
file descriptors

about 91
FD limit, increasing on Unix systems 91-93

Finite State Transducer (FST) data structure
about 136
URL 136

full text search engine 1

G
garbage collection

monitoring 86

tuning 91
garbage collector

about 84
Concurrent Mark Sweep garbage

collector 90
G1 garbage collector 90
parallel garbage collector 90
serial garbage collector 90
strategies 89

H
HDFS filesystem repository

about 114
URL 114

HTML Strip Char filter 51-53
hybrid filesystem store 106

I
ICU analysis plugin

about 56
ASCII Folding token filter 56-59
reference link 56

indices
about 17, 18
mapping 19
types 19, 20

inverted index 3, 18, 23-25
I/O operations

throttling 106
throttling type, configuring 106, 107

J
Java FileChannel Class

URL 105
Java garbage collection 84
Java RandomAccessFile Class

URL 104
JavaScript Object Notation (JSON)

about 17
reference link 17

JConsole
URL 86

jstat command
URL 86

[153]

JVM memory
Code Cache 85
deallocating 89
Eden Space 85
garbage collection, monitoring 86
garbage collector 89
garbage collectors, strategies 89
Old Generation 84
Permanent Generation 85
problem 86
structure 84, 85
Survivor Space 85
Tenured Generation 85
VisualVM 87, 88
Young Generation 84

L
Language Analyzer 51
Length Token Filter 54
Letter Tokenizer 54
log_byte_size policy

about 102
settings 102

log_doc policy
about 103
settings 103

Lowercase Token Filter 54
Lucene MMapDirectory

URL 105
Lucene NIOFSDirectory

URL 105
Lucene SimpleFSDirectory

URL 104

M
major GC 85
mapping

about 19, 27
analyzer, specifying for field 60-64
and search results, relationship

between 38-43
metadata fields 28

mapping definition
automatic index refresh time, setting 97
index_option of string type 95

norms 94
optimization 94
unnecessary fields, excluding 96

memory configuration
about 80
ES_HEAP_SIZE environment variable 81

merging policies
about 98-100
log_byte_size policy 102
log_doc policy 103
selecting 100
tiered policy 100, 101

metadata fields
_all 28, 29
_source 28
_timestamp 30-32
_ttl 32, 33
about 28

minor GC 85
mlockall property 83
MMap filesystem store 105

N
new IO filesystem store 105
NFC 55
NFD 55
NFKC 55
NFKD 55
n-gram language models

URL 131
node

about 68
non-data nodes 68
tribe node 69

non-data nodes
client nodes 68
dedicated master nodes 68

Normalization Token Filters 54
normalizing 49

O
object type

about 33-37
root object type 37

optimize API 103

[154]

P
parallel garbage collector 90
Path Hierarchy Tokenizer 54
Pattern Analyzer 51
Pattern Replace Char filter 53
Pattern Tokenizer 54
phrase suggester

configuring 133-136
used, for correcting users' spelling

mistakes 131-133

R
relevancy, of search results

_all field, using 149
bool query, using 144-146
improving 140
query, boosting 140-144
synonyms, using 147-149

replicas
about 69
selecting 76, 77

restore
about 118
index settings, overriding 119

Reverse Token Filter 54
root object type 37

S
schema-less 43-45
search results

and mapping, relationship between 38-43
relevancy, improving 140

segments
about 98-100
optimize API 103

serial garbage collector 90
sharding 18, 69
shards

about 18, 69
selecting 76, 77

shared filesystem repository 112, 113
Simple Analyzer 50
simple filesystem store 104

snapshot
about 114-118
process 120-122

snapshot repository
about 111, 112
cloud repository 114
HDFS filesystem repository 114
shared filesystem repository 112, 113
types 112
URL repository 113

Standard Analyzer 50
Standard Tokenizer 54
Stop Analyzer 51
Stop Token Filter 54
storable field

versus searchable field 6-10
store module 104
store types

about 104
hybrid filesystem store 106
MMap filesystem store 105
new IO filesystem store 105
simple filesystem store 104

Suggest API 124
suggesters

used, for correcting users' spelling
mistakes 125

suggestions
obtaining 139, 140

swapping
avoiding 82
mlockall property 83

synonyms
using 147-149

T
term suggester

additional options 129, 130
configuration options 129
configuring 129
used, for correcting users' spelling

mistakes 128
text normalization 55
tiered policy

about 100, 101
settings 100, 101

[155]

token filters
about 54
ASCII Folding Token Filter 54
Length Token Filter 54
Lowercase Token Filter 54
Normalization Token Filters 54
Reverse Token Filter 54
Stop Token Filter 54
Trim Token Filter 54
Uppercase Token Filter 54

tokenizer
about 53
Letter Tokenizer 54
Path Hierarchy Tokenizer 54
Pattern Tokenizer 54
Standard Tokenizer 54
UAX Email URL Tokenizer 54
Whitespace Tokenizer 54

tokenizing 49
tribe node 69
types

about 33
attachment type 38
object type 33-37

types, indices 19, 20

U
UAX Email URL Tokenizer 54
Unicode Consortium

about 12
URL 12

unicode normalization forms
URL 55

Unicode Standard Annex #29
URL 54

Unix systems
FD limit, increasing on 91-93

Uppercase Token Filter 54
URL repository 113
users' spelling mistakes, correcting

_suggest REST
endpoint used 125-127

about 124
completion suggester used 136
phrase suggester used 131-133
suggesters used 125
term suggester used 128

V
VirtualLock

URL 83
Visual GC plugin

URL 88
VisualVM

about 87, 88
URL 88

VM parameter
-Xmn 80
-Xms 80
-Xmx 80
-XX:InitialSurvivorRatio 80
-XX:MaxPermSize 80
-XX:PermSize 80

W
Whitespace Analyzer 50
Whitespace Tokenizer 54

Thank you for buying
Elasticsearch Indexing

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

ElasticSearch Cookbook
Second Edition
ISBN: 978-1-78355-483-6 Paperback: 472 pages

Over 130 advanced recipes to search, analyze,
deploy, manage, and monitor data effectively
with ElasticSearch

1.	 Deploy and manage simple ElasticSearch nodes
as well as complex cluster topologies.

2.	 Write native plugins to extend the functionalities
of ElasticSearch to boost your business.

3.	 Packed with clear, step-by-step recipes to walk
you through the capabilities of ElasticSearch.

Elasticsearch for Hadoop
ISBN: 978-1-78528-899-9 Paperback: 222 pages

Integrate Elasticsearch into Hadoop to effectively
visualize and analyze your data

1.	 Build production-ready analytics applications
by integrating the Hadoop ecosystem with
Elasticsearch.

2.	 Learn complex Elasticsearch queries and
develop real-time monitoring Kibana
dashboards to visualize your data.

3.	 Use Elasticsearch and Kibana to search data
in Hadoop easily with this comprehensive,
step-by-step guide.

Please check www.PacktPub.com for information on our titles

Elasticsearch Blueprints
ISBN: 978-1-78398-492-3 Paperback: 192 pages

A practical project-based guide to generating
compelling search solutions using the dynamic
and powerful features of Elasticsearch

1.	 Discover the power of Elasticsearch
by implementing it in a variety of
real-world scenarios such as restaurant
and e-commerce search.

2.	 Discover how the features you see in an
average Google search can be achieved using
Elasticsearch.

3.	 Learn how to not only generate accurate search
results, but also improve the quality of searches
for relevant results.

Elasticsearch Server
Second Edition
ISBN: 978-1-78398-052-9 Paperback: 428 pages

A practical guide to building fast, scalable, and
flexible search solutions with clear and easy-to-
understand examples

1.	 Learn about the fascinating functionality
of Elasticsearch such as data indexing, data
analysis, and dynamic mapping.

2.	 Fine-tune Elasticsearch and understand its
metrics using its API and available tools, and
see how it behaves in complex searches.

3.	 A hands-on tutorial that walks you
through all the features of Elasticsearch in an
easy-to-understand way, with examples that
will help you become an expert in no time.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to Efficient Indexing
	Getting started
	Understanding the document storage strategy
	The _source field
	The difference between the storable and searchable field

	Analysis
	Summary

	Chapter 2: What is an Elasticsearch Index
	Nature of the Elasticsearch index
	Indices
	Mapping
	Types

	Document
	Denormalization
	Inverted index

	Summary

	Chapter 3: Basic Concepts of Mapping
	Basic concepts and definitions
	Metadata fields
	_source
	_all
	_timestamp
	_ttl

	Types
	Object type
	Root object type

	Attachment type

	The relationship between mapping and relevant search results
	Understanding the schema-less
	Summary

	Chapter 4: Analysis and Analyzers
	Introducing analysis
	Process of analysis
	Built-in analyzers
	Building blocks of Analyzer
	Character filters
	HTML Strip Char filter
	Pattern Replace Char filter

	Tokenizer
	Token filters

	What's text normalization?
	ICU analysis plugin
	ASCII Folding Token filter

	An Analyzer pPipeline
	Specifying the analyzer for a field in
the mapping
	Creating a custom analyzer

	Summary

	Chapter 5: Anatomy of an Elasticsearch Cluster
	Basic concepts
	Node
	Non-data nodes
	Dedicated master nodes
	Client nodes

	Tribe node

	Shards
	Replicas
	Explaining the architecture of distribution
	Correctly configuring the cluster
	Choosing the right amount of shards
and replicas
	Summary

	Chapter 6: Improving Indexing Performance
	Configuration
	Memory configuration
	The ES_HEAP_SIZE environment variable

	Avoiding swapping
	Mlockall property

	Garbage collector
	The structure of JVM memory
	What is the problem?
	Monitoring garbage collection
	VisualVM
	Different strategies among garbage collectors
	Process of deallocating memory
	Types of garbage collector

	File descriptors
	Increasing FD limit on Unix systems

	Optimization of mapping definition
	Norms
	Feature index_option of string type
	Exclude unnecessary fields
	Extension of the automatic index refresh time

	Segments and merging policies
	Choosing the right merge policy
	Tiered policy
	log_byte_size policy
	Log_doc policy

	The optimize API

	Store module
	Store types
	Simple filesystem store
	New IO filesystem store
	MMap filesystem store
	Hybrid filesystem store

	Throttling I/O operations
	Throttling type

	Bulk API
	Bulk sizing

	Notes
	Summary

	Chapter 7: Snapshot and Restore
	Snapshot repository
	Repository types
	Shared filesystem repository
	URL repository
	Cloud repository
	HDFS filesystem repository

	Snapshot
	Restore
	Overriding index settings during restore

	How does the snapshot process works?
	Summary

	Chapter 8: Improving the User
Search Experience
	Correction of users' spelling mistakes
	Suggesters
	Using the _suggest REST endpoint
	Suggest object inclusion in the query

	Term suggester
	Configuring the term suggester

	The phrase suggester
	Configuring the phrase suggester

	The completion suggester
	Mapping the configuration for the completion suggester
	Indexing on completion field

	Get suggestions
	Improving the relevancy of search results
	Boosting the query
	Bool query
	Synonyms
	Be careful about the _all field

	Summary

	Index

