
Digital Illustration
Fundamentals

—
Wallace Jackson

 Digital Illustration
Fundamentals

Wallace Jackson

Digital Illustration Fundamentals

Wallace Jackson
Lompoc, California, USA

ISBN-13 (pbk): 978-1-4842-1696-5 ISBN-13 (electronic): 978-1-4842-1697-2
DOI 10.1007/978-1-4842-1697-2

Library of Congress Control Number: 2015958157

Copyright © 2015 by Wallace Jackson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Chád Darby
Editorial Board: Steve Anglin, Louise Corrigan, Jonathan Gennick, Robert Hutchinson,

Michelle Lowman, James Markham, Susan McDermott, Matthew Moodie, Jeffrey Pepper,
Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Karen Jameson
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California
LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available
to readers at www.apress.com/9781484216965. For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/. Readers can also access source code at
SpringerLink in the Supplementary Material section for each chapter.

Printed on acid-free paper

 Th is book is dedicated to everyone in the open source community who is working
so diligently to make professional new media application development software
and content development tools freely available to rich application developers so

that they can utilize them to achieve our creative dreams and fi nancial goals.
Last but not least, I dedicate this book to my father, Parker Jackson; my family;
my lifelong friends; and my production ranch neighbors for their constant help,

assistance, and those relaxing, late-night BBQs!

v

Contents at a Glance

About the Author .. xiii

About the Technical Reviewer ... xv

Acknowledgments ... xvii

 ■Chapter 1: The Foundation of Digital Illustration: Points and Lines1

 ■Chapter 2: The Curvature of Digital Illustration: Spline Curves11

 ■Chapter 3: The Styling of Digital Illustration: Stroke and Fill 25

 ■Chapter 4: The Depth of Digital Illustration: Using Gradients 35

 ■Chapter 5: The Imagery of Digital Illustration: Using Patterns 47

 ■Chapter 6: The Rendering of Digital Illustration: Data Formats 61

 ■Chapter 7: The Syntax of Digital Illustration: SVG Commands....... 71

 ■Chapter 8: The Vectorization of Digital Imagery: Image Tracing85

 ■Chapter 9: The Algorithms of Digital Illustration: SVG Filters 97

 ■ Chapter 10: The Progression of Digital Illustration: Painter 2016109

 ■Chapter 11: The Airbrush of Digital Illustration: Using Brushes119

 ■ Chapter 12: The Compositing of Digital Illustration:
Using Layers ... 133

 ■ Chapter 13: The Automation of Digital Illustration: Programming ...149

 ■ Chapter 14: Publish Digital Illustration: Content
Delivery Platforms .. 159

Index .. 167

vii

Contents

About the Author .. xiii

About the Technical Reviewer ... xv

Acknowledgments ... xvii

 ■Chapter 1: The Foundation of Digital Illustration: Points and Lines1

Downloading and Installing Inkscape .. 1

Inkscape.org: Get Inkscape Illustration Software ... 2

Basic Vector Shapes: Vertices and Lines ... 5

The Vertex: A Foundation for 2D and 3D Geometry ... 5

The Path: Connect the Vertices to Create a Shape ... 5

Summary ... 9

 ■Chapter 2: The Curvature of Digital Illustration: Spline Curves 11

Custom Shapes: Intro to Bézier Curves ... 11

Cubic Bézier Curve: Two Control Point Spline ... 12

Quadratic Bézier Curve: One Control Point Spline .. 12

Using Splines: Creating Complex Shapes .. 13

The Draw Bézier Curves Tool: 2D Shape Modeling ... 13

The Edit Paths by Nodes Tool: Refi ning 2D Shapes .. 17

Summary ... 24

 ■ CONTENTS

viii

 ■Chapter 3: The Styling of Digital Illustration: Stroke and Fill 25

Inkscape: Vector Illustration Shape Styles .. 25

The UI Layout: Overview of Key Areas in Inkscape ... 26

Polygon Shapes: Creating Basic Closed Shapes ... 26

Spiral Shapes: Stroking Open Shapes Using Cap ... 29

Font Shapes: Creating Text Shapes Using Fonts ... 31

Summary ... 33

 ■Chapter 4: The Depth of Digital Illustration: Using Gradients 35

Inkscape Illustration: Fill Gradients ... 35

Radial Fill Gradients: Enhancing Your Heart Shape... 35

Linear Fill Gradients: Enhancing Your Text Object ... 39

Inkscape Illustration: Stroke Gradients ... 43

Radial Stroke Gradients: Enhancing Your Spiral ... 44

Summary ... 46

 ■Chapter 5: The Imagery of Digital Illustration: Using Patterns 47

Inkscape Illustration: Using Fill Patterns ... 47

Using GIMP: Creating Your Image Pattern ... 49

Imagery in Illustration: Bitmap Patterns .. 52

Using Bitmap Images as Fill: Inkscape Pattern Fill ... 52

Using Bitmap Image Strokes: Inkscape Pattern Fill .. 56

Summary ... 59

 ■ CONTENTS

ix

 ■Chapter 6: The Rendering of Digital Illustration: Data Formats 61

Inkscape PNG Export: Rendering Objects .. 61

Inkscape Vector Export: Using Save As ... 65

Exporting to Adobe Acrobat Reader: PDF Format ... 66

Exporting to Encapsulated Postscript: EPS Format .. 67

Exporting to JavaFX: Publish in Java and Android .. 68

Summary ... 69

 ■Chapter 7: The Syntax of Digital Illustration: SVG Commands....... 71

SVG Syntax: Coding Vector Shape Data ... 71

SVG Command Summary: Lines, Arcs, and Curves ... 71

SVG Fills: Filling Your Closed Shapes with Color ... 73

The Stroke: Controlling How Lines and Curves Look .. 75

Inkscape Projects: SVG Command Syntax ... 76

Polygons: SVG Commands for Basic Closed Shape .. 76

Spirals: SVG Commands for Basic Open Shapes .. 78

Gradients: SVG Commands for Your Heart Shape ... 80

SVG Data Optimization: Integer Values .. 82

Summary ... 84

 ■Chapter 8: The Vectorization of Digital Imagery: Image Tracing 85

Inkscape Trace Bitmap: Vectorize Images ... 85

Digital Image Source: Using Inkscape File ➤ Import ... 86

Trace Bitmap Algorithm: Confi guring Parameters... 87

Optimizing Your Illustration: Export Plain SVG Data .. 92

Summary ... 95

 ■ CONTENTS

x

 ■Chapter 9: The Algorithms of Digital Illustration: SVG Filters 97

SVG Filter Effects: Illustration Special FX .. 97

Illustration Effects: Inkscape Filters Menu .. 98

Bevel Effects: Using the Filters ➤ Bevel Menu .. 99

Distortion Effects: Using the Filters ➤ Distort Menu .. 100

Paint and Draw Effects: Filters ➤ Paint and Draw ... 102

Bump Effects: Using the Filters ➤ Bumps Menu ... 103

Protrusion Effects: Using Filters ➤ Protrusions ... 105

Raster Processing: Using SVG Filters on Imagery .. 106

Summary ... 108

 ■ Chapter 10: The Progression of Digital Illustration:
Painter 2016 ... 109

Corel Painter 2016: Installing the Software ... 109

Setting Up Painter 2016: Adding Painter in Taskbar ... 111

Enhancing Painter 2016: Installing Brush Packs .. 113

Painter 2016: Vectors, Rasters, and Advanced Code .. 115

Summary ... 117

 ■Chapter 11: The Airbrush of Digital Illustration: Using Brushes119

Inkscape Brush Strokes: Digital Painting .. 119

Calligraphy Brush Stroke Tool: Basic Style Setting ... 120

Brush Stroke Confi guration: Advanced Settings ... 122

Painter 2016 Brushes: Dynamic Painting .. 125

Manual Painting: Using Painter’s Cloning Feature .. 125

Automatic Painting: Using Painter’s Auto-Painting ... 130

Summary ... 132

 ■ CONTENTS

xi

 ■ Chapter 12: The Compositing of Digital Illustration:
Using Layers ... 133

Alpha Channels: Defi ning Transparency .. 133

Layer Compositing: Complex Alpha-based Pipeline.. 134

Channel Data: Red, Green, Blue, and Alpha Channel ... 134

Masking: Using Alpha Channel Data for Selections .. 134

Using Masked Imagery: A Simple Layer Composite ... 135

Inkscape Layers: Illustration Compositing ... 139

Inkscape Document Alpha Channel: Transparency ... 140

Complex Illustration Compositing: Layers Palette .. 141

Painter Layers: Digital Paint Compositing ... 144

Summary ... 148

 ■ Chapter 13: The Automation of Digital Illustration:
Programming .. 149

Java and JavaFX: javafx.scene.effect API .. 150

HTML5 and CSS3: Markup Compositing .. 151

Android Studio: Using a PorterDuff Object .. 153

Game Design: SVG for Collision Detection ... 155

Summary ... 157

 ■ Chapter 14: Publish Digital Illustration:
Content Delivery Platforms ... 159

Open Source Formats: PDF, HTML, EPUB ... 159

Portable Document Format: Digital Illustration PDF ... 160

HyperText Markup Language: HTML5 Digital Audio .. 160

Electronic Publishing: Digital Audio in EPUB3 ... 161

Open Platforms: Java, Android, and Kindle .. 161

eBook Readers: Kindle Fire, Android, Java, or PDF ... 161

iTV Sets: Android TV, Java, JavaScript, and HTML5 .. 162

Smartwatches: Android WEAR, Java, and HTML5 ... 162

Auto Dashboards: Android AUTO, Java, and HTML5 .. 163

SmartPhone and Tablet: Android, Java, and HTML5 ... 164

Game Console: Android, Java, JavaFX, and HTML5 .. 164

Future Devices: Robots, VR, and Home Appliances... 165

Paid Software Platforms: iOS or Windows ... 165

Apple iPhone and iPad: Supported Audio Formats ... 165

Windows Phone: Supported Digital Audio Formats .. 165

Summary ... 166

Index .. 167

xiii

 About the Author

 Wallace Jackson has been writing for several
leading multimedia publications about work
in the new media content development
industry, after contributing a piece about
advanced-computer-processing architectures for
the centerfold (a removable “miniissue” insert)
of an original issue of AV Video Multimedia
Producer magazine that wasdistributed at the
SIGGRAPH trade show. Wallace has written for
alarge number of popular publications about his
work in interactive - 3D and new - media -
 advertising campaign design, including 3DArtist
magazine, Desktop Publisher Journal , CrossMedia
magazine, Kiosk magazine, AV VideoMultimedia

Producer magazine, Digital Signage magazine , and many other publications.
 Wallace has authored a dozen Apress book titles, including four titles in its popular

Pro Android series, Java and JavaFX game development titles, digital-image-compositing
titles, and new-media-content-production titles.

 In the current book on digital image compositing, he focuses on the GIMP and
Photoshop CS6 digital-image-compositing software packages, and uses them to
demonstrate digital-image-editing and - compositing fundamentals to beginners who
wish to become digital imaging professionals.

 Wallace is currently the CEO of MindTaffy Design, an agency specializing in new
media content production and digital campaign design and development, located in
Northern Santa Barbara County, halfway between its clientele in Silicon Valley to the
north and Hollywood, the “OC,” West LA,and San Diego to the south.

 MindTaffy Design has created open source, technology-based (HTML5, JavaScript,
Java, JavaFX, and Android 5.3) digital-new-media i3D content deliverables for more than
a quarter century (since 1991).

 The company’s clients consist of a significant number of international branded
manufacturers, including Sony, Tyco, Samsung, IBM, Dell, Epson, Nokia, TEAC, Sun
Microsystems, Micron, SGI, KDS USA, EIZO, CTX International, KFC, Nanao USA,
Techmedia, EZC, and Mitsubishi.

 ■ ABOUT THE AUTHOR

xiv

 Wallace received his undergraduate BA degree in business economics from the
University of California at Los Angeles (UCLA) and his graduate degree in MIS business
information systems design and implementation from University of Southern California in
Los Angeles (USC). Wallace also received a postgraduate degree in marketing strategy from
USC and completed the USC Graduate Entrepreneurship Program. He earned the two USC
degrees while at USC’s night-time Marshall School of Business MBA Program, which allowed
him to work full time as a COBOL programmer while completing his degrees.

xv

 About the Technical
Reviewer

 Chád (“Shod”) Darby is an author, instructor,
and speaker in the Java development world. As a
recognized authority on Java applications and
architectures, he has presented technical sessions
at software development conferences worldwide
(in the United States, UK, India, Russia, and
Australia). In his fifteen years as a professional
software architect, he’s had the opportunity to
work for Blue Cross/Blue Shield, Merck, Boeing,
Red Hat, and a handful of startup companies.

 Chád is a contributing author to several Java
books, including Professional Java E-Commerce (Wrox
Press), Beginning Java Networking (Wrox Press), and
 XML and Web Services Unleashed (Sams Publishing).
Chád has Java certifications from Sun Microsystems

and IBM. He holds a BS in computer science from Carnegie Mellon University.
 You can visit Chád’s blog at www.luv2code.com to view his free video tutorials on Java.

You can also follow him on Twitter at @darbyluvs2code .

http://www.luv2code.com/#_blank

xvii

 Acknowledgments

 I would like to acknowledge all my fantastic editors and their support staff at Apress,
who worked those long hours and toiled so very hard on this book to make it the ultimate
image-compositing-fundamentals book title currently on the market.

 I thank:
 Steve Anglin for his work as the Acquisitions Editor for the book and for recruiting me to

write development titles at Apress covering widely popular open source content development
platforms (Android, Java, JavaFX, HTML5, CSS3, JS, GIMP, etc.).

 Matthew Moodie for his work as the Development Editor on the book and for his
experience and guidance during the process of making the book one of the leading digital
illustration titles.

 Mark Powers for his work as the Coordinating Editor for the book and for his
constant diligence in making sure that I either hit my chapter delivery deadlines or far
surpassed them.

 Karen Jameson for her work as the Copy Editor on this book, for her careful attention
to minute details, and for conforming the text to current Apress book writing standards.

 Chád Darby for his work as the Technical Reviewer on the book and for making sure
that I didn’t make technical mistakes.

1© Wallace Jackson 2015
W. Jackson, Digital Illustration Fundamentals, DOI 10.1007/978-1-4842-1697-2_1

 CHAPTER 1

 The Foundation of Digital
Illustration: Points and Lines

 Welcome to Digital Illustration Fundamentals ! This book will take you through the
foundation of digital illustration, as well as covering how to use vector illustration assets
with popular computer programming languages and open source content publishing
platforms such as Kindle, Android Studio, HTML5, and JavaFX. I will start at the lowest
level concepts – in this chapter it is the vertex and the lines that connect these vertices
together – and then we will build upon each of these foundational concepts in subsequent
chapters, until you have a comprehensive understanding of digital illustration modeling,
color, gradient or pattern shading, command editing and vector rendering concepts and
associated terminology, file formats, work flows, spline editing, effects processing, data
footprint optimization, computer programming, and content publishing.

 I will show you how these concepts, techniques, and terms apply to the Inkscape
open source digital illustration software package. This just so happens to be free for
commercial use and very similar in features to Adobe Illustrator and CorelDRAW.

 For this reason, part of the chapter, logically the first part, would be how to download
and install open source Inkscape software, just in case you do not have any digital
illustration software on your multimedia workstation currently. Then, you’ll learn about
the foundational elements of digital illustration.

 Industry professionals call this a “vertex” or a “node.” Once you put this together with
other “vertices,” the new media result comprises what’s called a vector “shape.”

 How these digital illustration vector shapes are created and rendered is what this
book is all about, and we will build on the knowledge in this chapter with curves, fills,
gradients, patterns, commands, algorithms, tracing, layers, editing tools, fonts, data
footprint optimization, content delivery, and more, until you understand everything about
this digital illustration work process and how it can be used with modern-day devices.

 Downloading and Installing Inkscape
 All our readers are going to need to have digital illustration software of one type or
another, whether that is CorelDRAW or Adobe Illustrator or Macromedia Freehand. If you
do not own any of these, you can use the free-for-commercial-use Inkscape . Let’s install
Inkscape for Windows, Mac OS X, or Linux, next.

CHAPTER 1 ■ THE FOUNDATION OF DIGITAL ILLUSTRATION: POINTS AND LINES

2

 Inkscape.org: Get Inkscape Illustration Software
 To download the current stable version of Inkscape, you will go to: http://www.
inkscape.org , and click on the green Download Arrow link, seen in Figure 1-1 , or
alternately click on the Download tab, which is directly underneath the Inkscape logo.

 Download the inkscape-0.91-x64.msi installer file if you are using Windows or a
Linux or Mac version. Next, right-click on it and select the Install option to start your
installation process. Inkscape for Windows uses a 64-bit version, since most modern-day
workstations run 64-bit Windows Vista, 7, 8.1, or 10. Figure 1-2 shows the downloaded
file, which has been selected, and right-clicked on to reveal the context-sensitive menu,
with this Install option selected in blue. If for some reason you do not own a 64-bit
content production workstation, go to Walmart, and purchase a brand name workstation
tower for $400 to $500. I have used, and recommend, the Acer, HP, and Compaq
workstations.

 Figure 1-1. Go to the inkscape.org, and click the Download arrow

http://www.inkscape.org/
http://www.inkscape.org/

CHAPTER 1 ■ THE FOUNDATION OF DIGITAL ILLUSTRATION: POINTS AND LINES

3

 Once your installation starts, click the NEXT button, as is shown on the left-hand
side of Figure 1-2 .

 Once you click on the Next button you’ll get an End-User License Agreement
dialog. Select the I accept the terms in the License Agreement check box, and then click
on Next to continue.

 Next click on the Typical installation type button, then click on the Next button, as is
shown on the right-hand side in Figure 1-3 .

 This will give you the Ready to Install Inkscape dialog, seen in Figure 1-4 on the left,
where you can click on Install .

 Figure 1-2. Right-click on .MSI file, and select Install option

 Figure 1-3. Click Install, then Next, then the Typical Button

CHAPTER 1 ■ THE FOUNDATION OF DIGITAL ILLUSTRATION: POINTS AND LINES

4

 You will then get your Installing Inkscape progress bar, and once that has finished,
the Completed Inkscape Setup Wizard dialog will appear. Click the Finish button, and
install shortcut icons to Inkscape on the desktop or taskbar for easy launch access. Once
you have done this, launch Inkscape, and make sure that it works. You should see what is
shown in Figure 1-5 .

 Now let’s take a look at some of the basic elements of a vector illustration asset,
called vertices, paths, and lines.

 Figure 1-4. Accept default installation options, and click Next

 Figure 1-5. Click the Install Button to begin the installation

CHAPTER 1 ■ THE FOUNDATION OF DIGITAL ILLUSTRATION: POINTS AND LINES

5

 Basic Vector Shapes: Vertices and Lines
 Digital illustration vector imagery is composed of shape objects that are composed of
“data points,” called “vertices”; or in Inkscape, “nodes,” which are placed in 2D space, by
using X,Y coordinates . Lines, arcs, or curves then connect the vertex points together. We
will be looking at concepts and terminology for these points and lines during this section.
If you create a “closed” shape, that is, one where there are no openings for a fill (color,
pattern, or gradient) to escape, you can also fill a vector shape so that the shape looks
solid instead of empty. In fact, you can fill your open shape, but the fill will act as though
the shape were closed, so this is not generally done.

 The Vertex: A Foundation for 2D and 3D Geometry
 The foundation for any 2D (or 3D) vector geometry asset is called the vertex. Multiple
 vertices (the plural of vertex) are required to create a line or arc , which require two
vertices, or a closed shape , which requires at least three vertices if you are using lines,
or two vertices if you are using arcs or curves. Vertices are used in 2D vector (SVG)
data processing, as well as in 3D vector (OpenGL) data processing, both of which are
integrated into Java, JavaFX, HTML5, and Android Studio.

 Vertex data is outlined in SVG using X,Y coordinates, as mentioned earlier, which tell
the processor where the vertex is located in 2D space. Without these vertex coordinates,
lines and curves cannot be drawn, as they must have an origin , as well as a destination
vertex coordinate, as part of vector line drawing operations. A line or arc would be an
example of an open shape .

 When we get into creating and looking at SVG data you’ll notice that these X,Y numeric
pairs are the majority of the SVG data, which can be contained using the XML format, or in a
Java SVG object for Android Studio application. SVG data can also be used in your JavaScript
(HTML5) code as well as in JavaFX (Java 8 or Java 9) code, so it is compatible across each of
your open platform new media application or content development workflow.

 An X,Y coordinate, all by its lonesome, is what’s termed one dimensional or 1D .
You’ll need two vertex coordinates to be considered to be two dimensional, or 2D; so, a
line or a curve, that is, an open shape or a closed shape, will be a 2D object.

 Next, let’s take a look at the next level up from the 1D vertex shape element, the
2D path vector shape element. This 2D path data comprises the majority of a scalable
vector graphics , or SVG, shape definition, which can be defined using XML, Java, JavaFX,
Android Studio, HTML5, or JavaScript.

 The Path: Connect the Vertices to Create a Shape
 Your path is defined in SVG using a “path data” element. Both an open shape, as well as a
closed shape, are technically paths, according to the open source SVG specification. This
SVG Path represents the outline of an open or closed shape that can be filled , stroked ,
or even used as a clipping path. We will be covering these concepts in detail during the
book, but briefly, a fill deals with the interior of a path, strokes deal with the line or curve
thickness that styles your path, and the clipping path is used for Boolean operations or
cutting interiors out.

CHAPTER 1 ■ THE FOUNDATION OF DIGITAL ILLUSTRATION: POINTS AND LINES

6

 In SVG data an SVG Path object represents 2D “geometry,” used to outline a Path
object. In fact, in JavaFX, the class is actually called the SVGPath class. SVG path data
can be defined in terms of SVG commands, which I’ll cover in a later chapter in the
book. Briefly, some of them include a moveto command, which sets your current point;
a lineto command, which draws straight lines; and a curveto command, which draws a
cubic Bézier curve. A closepath command can be used to close an open shape, drawing
a closing line to the shapes starting point. If you try to fill an open shape, this closepath
command will be used by the fill, but without drawing a visible line boundary for that
portion of the shape, which you will see in Chapter 3 , covering stroke and fill operations.

 Compound paths are also possible in SVG; these allow you to create complex,
Boolean shape special effects. For instance, you could use a compound path to create a
hole in your shape.

 Straight Lines: Inkscape’s Pencil Freehand Drawing Tool
 The simplest way to connect the vertex coordinates along any path is to utilize straight
lines . Different shapes such as triangles, rectangles, pentagons, hexagons, and octagons
will be created by using the lineto command.

 There are three lineto commands: a lineto, a horizontal lineto, and a vertical lineto.
We’ll be looking at SVG commands in detail during Chapter 6 .

 To draw a line in Inkscape you would use the Pencil tool as shown selected (in blue)
on the left side of Figure 1-6 . The Pencil (Freehand) tool allows you to draw straight lines.

 To use this tool, click once where you want the line to begin, and a second time
where you want the line to end.

 Figure 1-6. Use the Freehand (Pencil icon) tool to draw a line

http://dx.doi.org/10.1007/978-1-4842-1697-2_3
http://dx.doi.org/10.1007/978-1-4842-1697-2_6

CHAPTER 1 ■ THE FOUNDATION OF DIGITAL ILLUSTRATION: POINTS AND LINES

7

 Next let’s take a look at the elliptical arc, which is a simple curve by nature
with a complex set of specification data for its SVG command, which is why, for my
programming projects, I will usually stick with either a Cubic or a Quadratic Bézier curve,
from a shape modeling perspective, as you will soon see during Chapter 2 on modeling
curves using Inkscape.

 Elliptical Arcs: Inkscape’s Circles, Ellipses, and Arcs Tool
 One of the three types of SVG curve commands is the elliptical arc, which uses a capital
A (absolute arc) or lower-case a (relative arc) as you will see in Chapter 6 . We will also
cover some of the arc-related content here, as well as take a look at how the Circles,
Ellipses, and Arcs tool works in Inkscape. Open Inkscape and click the solid circle in the
toolbar on the left side of the software, as shown in Figure 1-7 . At the top of the software
on the left are the options and option icons for each of the Inkscape primary tools, which
are aligned vertically on the left of the software package, as you have seen already in
Figures 1-5 through 1-7 . Click underneath the straight line you just drew and draw out an
oval (ellipse) shape on your screen.

 Figure 1-7. Use the Arc tool and top icons to specify open arc

http://dx.doi.org/10.1007/978-1-4842-1697-2_2
http://dx.doi.org/10.1007/978-1-4842-1697-2_6

CHAPTER 1 ■ THE FOUNDATION OF DIGITAL ILLUSTRATION: POINTS AND LINES

8

 In your Fill tab on the right, click the X (no fill); and in the Stroke Paint tab , click
the stroked square , and keep the default setting of a black one pixel stroke. At the top
left of Inkscape, set a 140 degree Start and 40 degree End setting, and click the Open
(unclosed) Shape icon , as shown in Figure 1-7 .

 This will give you the open arc, much like you would get if you used your SVG
command language to draw this shape. Let’s take a look at that now, just so that you have
a concept of how this works. We’ll get into commands in detail during Chapter 7 .

 The SVG arc command draws the segment of an ellipse. Arc takes the largest number
of parameters of any of your SVG curve drawing related commands, and takes the
following basic format:

 M x,y A radius-x,radius-y x-axis-rotation large-arc-flag sweep-flag x,y

 Here, M (moveto) x,y is your starting point for the arc, radius-x is the x-radius for an
ellipse, radius-y is a y-radius for an ellipse, x-axis-rotation is a number of rotation degrees
to rotate your x-axis, two on/off flags for large/small arc and sweep/no-sweep arc, and the
final x,y coordinates are your end point for this arc.

 It is important to note that setting both x and y radius (the rx and ry values) to
identical values will create a circle instead of an ellipse, as this setting equality will makes
your curvature symmetrical.

 The elliptical arc has a number of parameters, including a coordinate pair, the size of
the ellipse being described, the angle, and two flags that alter the rendering.

 The example will also allow you to modify whether an arc coordinates are absolute (A),
or relative (a), to your starting point (defined by the red circle).

 An example can be seen in Figure 1-8 , which shows the following Elliptical Arc SVG
command:

 M 125,300 A 225,100 0 1 1 375,300

 Figure 1-8. Elliptical Arc with Sweep and Large Arc Flags

http://dx.doi.org/10.1007/978-1-4842-1697-2_7

CHAPTER 1 ■ THE FOUNDATION OF DIGITAL ILLUSTRATION: POINTS AND LINES

9

 If you instead wanted the missing segment for this ellipse at the bottom, you would
deselect, or set to zero, the large arc flag and the sweep flag, which would draw the
smaller part of the arc and mirror it around an X-axis. The SVG command for this would
look something like the following sequence:

 M 125,300 A 225,100 0 0 0 375,300

 As you can see, the radius-x, radius-y parameters create different angles that distort
the ellipse from being a circle into an elliptical shape.

 If this interests you, there are a number of these SVG curve generators on the
Internet, if you wanted to experiment with these parameters further.

 Summary
 In this first chapter, I made sure that you had a digital illustration software package
installed and ready to master, as well as taking a look at the foundational elements of
digital illustration, also known as 2D vector illustration. These included the vertex , the
 path , the line , and the arc . Since we have a lot to cover in this book, I wanted to cover
several of these basic concepts, and at least one set of shapes (circles, ellipses, and arcs)
during this first chapter.

 In the next chapter, you will take a look at a much more complex version of the line,
known as the Bézier curve , and how to create these advanced curves in Inkscape.

11© Wallace Jackson 2015
W. Jackson, Digital Illustration Fundamentals, DOI 10.1007/978-1-4842-1697-2_2

 CHAPTER 2

 The Curvature of Digital
Illustration: Spline Curves

 Now that we have installed Inkscape and covered some of those low-level 2D vector
illustration concepts, including vertices; and the straight lines that can connect these
vertices together to form polygons; and the algorithmically generated circles, ellipses, and
arcs, we can get into the more complex Bézier spline curves that are the mainstay of both
2D and 3D geometry modeling pipelines (work processes).

 We’ll discuss different types of Bézier curves supported in SVG and then learn how
to use your new Inkscape illustration software to create a complex, custom shape using
Bézier curves. I’ll continue to cover the basic SVG command structures for the shape
components that I cover in each chapter, so we have fewer topics that we need to have in
Chapter 7 covering SVG Commands.

 Custom Shapes: Intro to Bézier Curves
 Most of the complex, custom 2D shape geometry you are going to be creating will use
the Bézier curve, as advanced illustration projects seldom are built on simple vector
geometry shapes such as circles, ovals, pentagons, octagons, or even complex shapes,
such as text fonts or clip art that have been modeled for you. At some point in time you
are going to want to create your own custom 2D geometric shapes, and that’s why we’re
going to learn about Bézier curves during this chapter. We’ll create a complex 2D vector
shape using only a few vertices (also called nodes or data points). This is highly optimized
data, as you will see in Chapter 7 , when we turn these 2D vector geometry creations into
mathematical data that you can use in HTML5, XML, Java, JavaFX, JavaScript, and similar
mark-up and programming languages. These are used in popular, open source, content
publishing platforms, including Google’s Android Studio and Chrome OS, Mozilla’s
Firefox OS, Opera OS, Canonical’s Ubuntu Touch OS, Tizen OS, Amazon’s Kindle, Fire OS
and Fire TV, EPUB 3, and Adobe’s PDF.

http://dx.doi.org/10.1007/978-1-4842-1697-2_7
http://dx.doi.org/10.1007/978-1-4842-1697-2_7

CHAPTER 2 ■ THE CURVATURE OF DIGITAL ILLUSTRATION: SPLINE CURVES

12

 Cubic Bézier Curve: Two Control Point Spline
 If you have ever used the Pen tool in Photoshop or GIMP, or any of the 3D modeling
tools out there such as Blender, then you are probably familiar with the Cubic Bézier
curve. I am not going to go into all of the detail behind how Bézier curves are constructed
mathematically, as this is a fundamentals book, and not an advanced book, but we will
be looking at how to use open source software tools to generate digital illustration vector
assets you will need for your multimedia content applications.

 You can also draw these Cubic Bézier curves by using SVG command structures. This
is done by defining your start and end vertex, as well as two control points . One control
point is for your start point, and one control point is for your end point.

 The control points are used to “control”; I like to call this conform , the curvature of
a curve, also called a spline in the industry. The curvature of a spline will be conformed
going away from the first vertex by its control point and coming into the second vertex
using the second control point. You should be able visualize this concept more clearly, in
the second part of this chapter, when you start to model using Cubic Bézier curves with
your new open source Inkscape vector illustration package.

 This Cubic Bézier curve should utilize the following SVG command structure
(data format):

 M x,y C (or c) x1,y1 x2,y2 x,y

 The starting point is defined by moveto M x,y, and the C (or c) defines an absolute
or relative Cubic Bézier curve type. The x1,y1 is your control point for the beginning
of the curve, and the x2,y2 is your control point for the end of curve. Finally, your x,y
coordinate at the end of the command string is an end point for the Cubic Bézier curve.

 Next let’s take a look at the other type of Bézier curve that is supported in the scalable
vector graphics (SVG) format, the Quadratic Bézier curve.

 Quadratic Bézier Curve: One Control Point Spline
 Your inclination will be to assume that Quadratic Bézier curves may be more
complicated, given that quad means four, and therefore, that there are two more control
points for this type of curve. The exact opposite of this assumption is actually the case,
because a Quadratic Bézier curve actually has only single control point control! This
 single control point connects with both the start point and end point of the curve
segment. Moving this single control point controls how your curve is conformed between
your two vertices (your start and end data points).

 Therefore if you were looking for a way to implement any data footprint optimization
work process for your illustrations (vector imagery), one way to do accomplish is by
SVG coordinate data reduction. Reducing the control points in complex 2D model data
represents a 100% data reduction as far as a control point specification is concerned.
To accomplish this optimization you would therefore want to utilize these Quadratic
Bézier curves.

CHAPTER 2 ■ THE CURVATURE OF DIGITAL ILLUSTRATION: SPLINE CURVES

13

 Your SVG command specification for this Quadratic Bézier curve will therefore
appear simpler, using the following data:

 M x,y Q (or q) x1,y1 x,y

 So the Quadratic Bézier command requires only one single control point, which is
then used as the control point for both start and end points. So, it’s like the two control
points in a Cubic Bézier curve are connected together as one control point, which moves
the curvature from the start point and into the end point at the same time. There are
numerous SVG curve generators on the Internet, if you want to experiment with the
parameters.

 Using Splines: Creating Complex Shapes
 Now that you have played around with one of Inkscape’s basic shape tools, the circles,
ellipses and arcs tool, let’s get down to more serious 2D geometry modeling , and focus
on drawing Bézier splines in this chapter. Bézier splines are also used in 3D modeling as
well, so you’ll get used to using them in the 2D Inkscape vector software package, and
then graduate to Blender later on if you want to take your skills into three dimensions.
Besides, most of what you will be creating for your multimedia applications would be
made either out of 3D polygons, 3D NURBS, or 2D (or 3D) Bézier Splines, so it’s practical
for us to focus on these Cubic Bézier spline tools in Inkscape and learn how to use these
tools for shape creation and optimization work flows.

 The Draw Bézier Curves Tool: 2D Shape Modeling
 Start a New Project in Inkscape, using a File ➤ New menu sequence, and select your
 Draw Bézier curves and straight lines tool. This is seen on the left side of the screen in
Figure 2-1 about halfway down on the Inkscape toolbar. I left the tool-tip pop-up mouse-
over help comment visible so that you could see it more easily. You should mouse-over
tool icons, as well as other user interface elements, to see what they do. You can learn a
lot simply by using this handy pop-up tool-tip functionality. Next, let’s create a complex
Bézier spline shape such as a heart, and only use four data points to do this since this is a
chapter on optimization.

CHAPTER 2 ■ THE CURVATURE OF DIGITAL ILLUSTRATION: SPLINE CURVES

14

 As I mentioned, the way to optimize vector illustrations is to place fewer vertex data
points, and fewer control points, which are represented in Inkscape as spline tensioning
handles .

 To create your heart in Inkscape, select the Draw Bézier curves and straight lines
tool, and click in the center of your page about 25% of the way down from the top. The
starting point in Inkscape is shown using a hollow square point called a node .

 The Draw Bézier curve icon shows a pen tip drawing out a spline curve, while pulling
a spline tensioning control handle, out of one of the spline curve’s nodes (also called a
vertex or data point). Once you click on this icon, your cursor will turn into a fountain
pen , and you can then begin to place your first vertex, which is shown as a hollow, square
node, in Figure 2-1 .

 Click a second point to the right of this starting point close to the page’s right side.
This is shown where blue spline tensioning handles meet and the green curve segment
one and red current curve segment (two) also meet, as shown in Figure 2-1 .

 Pull the spline handles out from the second point as you click (and drag) it, to create
a rough curvature approximation.

 You will fine-tune this later on, so it does not have to be perfect right off the bat. Once
you’ve let go (released your mouse-down operation, to stop drag-handles mode), you will
move the spline down, toward where you want the tip of your heart.

 Next, click on the point that will be your bottom point for this heart shape, which
should be directly underneath your start point, and about 60% of the way from the top of
the page, or 40% of the way from the bottom of the page.

 Figure 2-1. Click start point, click to right, pull out handles

CHAPTER 2 ■ THE CURVATURE OF DIGITAL ILLUSTRATION: SPLINE CURVES

15

 Draw your third segment of the heart curve up to a point that is the opposite, or
mirror image of, the second point, on the left side of your starting point this time. This
should be about the same distance from the left edge of the page as your second point
was from the right side of your page, as shown in Figure 2-2 . Click your third point to
the left of the starting point, close to the page’s left side. This is shown where blue spline
tensioning handles meet, and green curve segment three, and red current curve segment
four meet, as seen in Figure 2-2 .

 Again pull your spline handles out from the third point, as you click, and drag the
spline tensioning handles, to create your rough curve approximation for the left top of
your heart.

 Once you have let go and released the mouse-down to stop the drag tensioning
handles mode, you can move the fourth curve segment end point, to a final destination
over the start point.

 If you connect an end point to a starting point for any shape (path) you are creating,
it will make that shape closed .

 In Inkscape, if you position an end point of a path draw operation over your starting
point for the path draw operation, the mutual point will turn red , as seen in Figure 2-2 .
Once the point turns red, you can then click, and close your heart path.

 Figure 2-2. Click to left of start, adjust tension handles, then place end point for heart over
start point (turns red)

CHAPTER 2 ■ THE CURVATURE OF DIGITAL ILLUSTRATION: SPLINE CURVES

16

 Once you click on your start point, your fifth end point and your start point become
the same (start) point, so you have used only four points and only four curve segments to
create an optimized closed heart shape path. Very Impressive, my Readers!

 Once you close the shape the green and red segment color guides will disappear, and
your entire Bézier spline curve will be colored black, and be one pixel in thickness. Note
this will simply show you where your Bézier curve path is, because a path actually has no
thickness. Mathematically speaking, the path is infinitely thin and has no volume until
you stroke it, which we will cover during Chapter 3 . As you can see in Figure 2-3 , your left
side of the heart came out better than the right side did.

 For this next section of the chapter, we will be looking at how to edit these spline
curve constructs in Inkscape.

 Editing a path is done with a different tool in Inkscape called the Edit path by nodes
tool. This is provided so that an artist can go back and fine-tune node (control point or
vertex) handles, or so vector artists can further edit existing paths.

 Notice that there are many different terms used for your spline tensioning handle
points (control points), and vertices, nodes, points, or coordinates (data points) that make
up a path comprised of Bézier spline curves. Next, we’ll refine the heart and improve its
path shape, using the Edit Paths by Nodes tool. This is one of those often-used tools in
Inscape, as indicated by its location right underneath the Arrow (or Selection) tool.

 Figure 2-3. Click end point on start point and close heart path

http://dx.doi.org/10.1007/978-1-4842-1697-2_3

CHAPTER 2 ■ THE CURVATURE OF DIGITAL ILLUSTRATION: SPLINE CURVES

17

 The Edit Paths by Nodes Tool: Refining 2D Shapes
 The tool icon for an Edit Path Tool (for short) shows an acute triangle node selector
cursor selecting nodes for editing with spline tensioning handles telescoping out of a
node. Once you select this tool, your heart shape will show nodes (points, or vertices) that
are between Bézier curve segments, as hollow points. This tool is shown selected (in blue)
in Figure 2-4 .

 Let’s start by selecting the second node, located at the right side of the heart. Once
you click on this node and select it, it will turn red, and spline tensioning handles will
emerge from the node, as shown on the right-hand side of Figure 2-5 .

 Figure 2-4. Select the Edit Paths Tool and click on second node

CHAPTER 2 ■ THE CURVATURE OF DIGITAL ILLUSTRATION: SPLINE CURVES

18

 The spline tensioning handles control curvatures for two different curve segments,
one on each side of the node. The top handle, moved using the little circle at the end
of the handle, which turns red when it in use, controls the curvature of where your line
segment one comes into vertex number two.

 The bottom handle, also moved with the circle at the end of the handle, controls the
curvature of where line segment two is coming out of vertex number two, and is seen as
red (in use) in Figure 2-5 , as I adjust the bottom part of the curvature.

 Moving the spline handle end point will change the angle of the handle, and affect
the curvature of your curve, which is attached to the vertex and defined with that vertex.
The length of a spline tensioning handle defines how curved, or straight, the spline is,
going into the handle. To create square corners, put that point at the end of your handle
on top of its vertex.

 If you shorten or lengthen the handles by moving the end points closer to (or farther
from) the vertex itself, the curve will become more curved by using longer handles, or less
curved by using shorter spline tensioning handles.

 If you put your handle points on top of, or retract them back into, the vertex, it will
then become a corner point, and the curve coming out of the point will become a line
(polygon).

 There are also different keyboard modifiers that turn on angle snap (Control), lock
your curvature (Alternate) or handle length, and break the handle symmetry, coming
out of the vertex or node (Shift). This is a tool that you will need to practice using for
some length of time, in order to become proficient or professional in its usage. Be sure to
explore the Edit Paths by Node Tool option toolbar, at the top left of Inkscape, as well.

 Figure 2-5. Adjusting spline tensioning handle for second curve

CHAPTER 2 ■ THE CURVATURE OF DIGITAL ILLUSTRATION: SPLINE CURVES

19

 The first thing we need to fix, in a currently imperfect heart path, is the bulbous right
side. To fix this curvature we will need to adjust the curve coming out of your second
vertex, which will be done by using the lower segment of the tensioning handle, which is
shown (along with this heart defect) in Figure 2-5 , and which is shown, once it has been
fixed, in Figure 2-6 .

 If you want to follow along with the heart surgery we’re doing in Inkscape, you can
open your InkscapeProject_heart.svg file series, which can be found in the repository
for the book.

 To reduce the ballooning of this curve at the right side of the heart, pull the end point
of your lower handle closer to the curve of the heart until the second curve of the four
heart curves becomes symmetrical to the third curve of the four heart curves, as is shown
in Figure 2-6 .

 Using the Edit Paths by Nodes tool requires what’s often called “tweaking,” which
means making slight adjustments to the vertices and their tensioning handles more than
one time around so as to gradually refine a shape; in this case, it is a heart.

 Now that the bottom part (curve) of vertex number two is adjusted, let’s work on the
top part, that is, the curve coming into vertex number two.

 As you can see in Figure 2-5 , the rounded portion of the top part of the heart on
the right half of the heart is square, or squarish, and needs to be more rounded like the
left half.

 Figure 2-6. Adjust top tensioning handle to make shape rounder

CHAPTER 2 ■ THE CURVATURE OF DIGITAL ILLUSTRATION: SPLINE CURVES

20

 As you can see in Figure 2-6 , I have shortened this top part of the spline tensioning
handle by around 15%, to make the curvature match the other (left) side of the heart
shape better again by reducing an amount of curvature coming into the second vertex.

 Now that the top half of the heart is improved we should now start to tweak the
center points on the top and the bottom, to continue to refine this heart shape even more.

 Pull the bottom vertex down to refine the height of your heart, as shown in Figure 2-7 .
Since the tip of this heart does not have any round curves (it is sharp), this means that
spline tensioning handles are currently located directly on top of the third vertex, so
essentially, they are “hidden.”

 If you want to stylize the bottom of the heart, hold the Shift key down and pull the
spline tensioning handle out of the vertex. I show this in Figure 2-9 , so you can see what
I mean.

 To do this, place your cursor over the bottom vertex, so it turns red, and then depress
the Shift key (and hold it down) and click and drag in any direction, to pull the spline
tension handle out of the node (vertex).

 You can also pull down the top point, vertex #1, as seen in Figure 2-8 , if you like,
which will provide more pronounced curvature in the top of your heart shape.

 Figure 2-7. Pull down the bottom vertex and center it with top

CHAPTER 2 ■ THE CURVATURE OF DIGITAL ILLUSTRATION: SPLINE CURVES

21

 This will serve to enhance the curvature on each side at the top of your heart, making
your heart shape more pronounced.

 Once you refine this dip at the top middle of the heart, you will need to refine the
spline tensioning handles at vertex #2 and vertex #4 again. This is a part of the iterative
process that is called tweaking .

 Yes, I know, there are other things, which are described using this exact same term,
which are not nearly as productive, as making iterative spline tension handle adjustments
can be.

 At this point in the tweaking process, the heart’s shape is just a matter of taste, so
continue to tweak the four Bézier curve vertices, and their spline tension handle control
points, until you have that final, end result that you desire, for your sweetheart on
Valentine’s Day.

 If you wanted to stylize this tip of your heart, located at the bottom of the shape at
vertex number three, you can drag the tensioning handles back out of the sharp corner,
as is seen in Figure 2-9 , by holding down the Shift keyboard modifier, and clicking on
a selected vertex and dragging your mouse away from the selected (red) control point
(node or vertex).

 Figure 2-8. Pull down the top vertex and center it with bottom

CHAPTER 2 ■ THE CURVATURE OF DIGITAL ILLUSTRATION: SPLINE CURVES

22

 This will pull spline tensioning handles out of the node so that you can introduce
curvature into this area of the heart as seen in Figure 2-9 . I this case, we are going to make
what I call a “negative curve” where the curve goes in rather than out to give the bottom
part of the heart more style and character.

 Again, as you can see in Figure 2-9 on the right, you’ll need to tweak your spline
tensioning handles for vertex #2, to make the top right part of your heart have a thicker
(positive) curvature.

 As you can see in Figure 2-10 , this same exact curvature effect happens on the left
side of the heart, when I introduced this styling in a symmetric fashion.

 Figure 2-9. Use the Shift key and drag handle out of vertex #3

CHAPTER 2 ■ THE CURVATURE OF DIGITAL ILLUSTRATION: SPLINE CURVES

23

 To get some practice working with these tools, adjust #2 and #4 vertices spline
tensioning handles to make the top round areas of the heart more round, and less
squarish, as shown in Figure 2-10 , unless, of course, you like this heart stylization effect.
Notice if you positioned the vertex #2 and vertex #4 in mirrored positions to each other
that you could also mirror the curvature, by mirroring the spline tensioning handle length
and positioning. Play around this concept as well, using your heart model, as it clearly has
some symmetry to it.

 If you really want to master these spline modeling tools you will need to experiment,
practice, and refine your skills.

 Learn what all the option icons, located at the top left of Inkscape, do for your
Bézier Path tool. The left two insert and delete nodes, the next four join or break path or
segments between nodes, the next four apply algorithms to spline tension handles, and
the last four apply conversion algorithms to shape constructs. You can find out what each
of these does, simply by positioning your mouse cursor over each configuration icon, and
then reading the pop-up tool-tip helper text to see what it does.

 Learn the keystroke modifiers for each icon, so that you can speed the work process
and become a 2D spline modeler star.

 I’ve seen modelers at trade shows, such as SIGGRAPH, who can spline model objects
in minutes, leaving massive crowds of people aghast at their impressive spline modeling
skill levels.

 Figure 2-10. Use Shift key, drag another handle out of vertex 3

CHAPTER 2 ■ THE CURVATURE OF DIGITAL ILLUSTRATION: SPLINE CURVES

24

 Now you could make a professional career out of modeling 2D clip art assets, if you
like. Once of the great things about splines, and the way Inkscape is set up, is that you can
refine your shapes for as long as you want to, until they are perfect.

 Summary
 In this second chapter, we took a closer look at some of the more complex elements of
2D modeling for your digital illustration workflow, also known as 2D vector illustration.
These included the Cubic Bézier spline and the Quadratic Bézier spline. We also looked
at how to use Inkscape to model a fairly complex shape, a highly stylized heart, using only
four vertex elements and four Cubic Bézier spline curves.

 In the next chapter, you will take a look at Strokes and Fills , and how to create shape
geometry styling features, using Inkscape.

25© Wallace Jackson 2015
W. Jackson, Digital Illustration Fundamentals, DOI 10.1007/978-1-4842-1697-2_3

 CHAPTER 3

 The Styling of Digital
Illustration: Stroke and Fill

 Now that we have covered some of the low-level 2D vector illustration concepts, including
vertices, straight lines, and Bézier curves that can connect these vertices together, as well
as the algorithmically generated circles, ellipses, and arcs, we can take a look at some
other shape generation tools that are supported in Inkscape. We will also take a look at
the Inkscape user interface in greater detail during the first part of this chapter, since it is
something that we need to cover before we get too far into the book.

 As a part of looking at some of these other vector shape tools, you’ll also learn about
stroking and filling operations, which is what this chapter is primarily about. I’ll continue
to cover the basic SVG command structures for the shape components that I cover in
this chapter, so there are fewer topics that we need to have in Chapter 7 , covering SVG
Commands.

 Industry professionals call this “geometry decoration” a number of different terms.
In Android and HTML5, this is called “styling,” in 3D, it is called “shading” or “texturing,”
and in UI design it is called “skinning.” Once you put this decoration that we are going to
cover in the chapter (stroke and fill) and in Chapter 4 (patterns and gradients), together
with your shape definition data, you will have the ability to create impressive 2D vector
digital illustration assets.

 Inkscape: Vector Illustration Shape Styles
 Since vector media assets are inherently data optimized, as long as you use the smallest
number of vertices (points and their data coordinates) possible to create your 2D assets,
with the correct type of Bézier splines for your modeling objective, we will focus during
this chapter on how to use Inkscape to create these 2D vector assets.

 Later during Chapter 7 we will look at how to use Export functions to turn these into
SVG commands using XML markup that you can utilize not only in Android Studio, but
also in JavaFX, and in HTML5, primarily by properly using CSS3 and JavaScript.

http://dx.doi.org/10.1007/978-1-4842-1697-2_7
http://dx.doi.org/10.1007/978-1-4842-1697-2_4
http://dx.doi.org/10.1007/978-1-4842-1697-2_7

CHAPTER 3 ■ THE STYLING OF DIGITAL ILLUSTRATION: STROKE AND FILL

26

 The UI Layout: Overview of Key Areas in Inkscape
 The Inkscape user i nterface can be very complex, as this software gives you virtually
everything you’ll need for your 2D vector illustration new media asset content creation
workflow. In a nutshell, there are three vertical toolbars: your primary functional tools
on the left, your snap-to settings on the far right, and your command tools on the inside
right toolbar seen in Figure 3-1 . There is a floating palette docking area on the right of
your canvas , that white page in the center of your UI.

 At the very top are drop-down menus , and underneath that is your horizontal
toolbar, containing options for the selected tool. At the bottom of the UI is your color
swatch selector for shape fills and strokes. At the very bottom is a status bar for numeric
representation of active shapes and work flow settings.

 Let’s get right into learning how to use the other shape creation tools in Inkscape that
we have not covered thus far.

 Polygon Shapes: Creating Basic Closed Shapes
 Polygon shapes are more commonly found in i3D vector new media. Polygons are 2D
shapes, which have straight lines around their perimeter. Some examples would include
the following: triangles, rectangles, squares, and shapes such as pentagons, hexagons, and
octagons. Let’s use the Inkscape Create stars and polygons tool, shown in Figure 3-2 , and
create a basic green octagon polygon first.

 Figure 3-1. Inkscape on program launch showing functional areas

CHAPTER 3 ■ THE STYLING OF DIGITAL ILLUSTRATION: STROKE AND FILL

27

 Use the Create stars and polygons tool shown selected in Figure 3-2 and select the
 polygon option at the top left in the options toolbar, shown in blue (selected).

 Set the Corners spinner to 8 then click in the middle of the page, and pull out the
octagon shape.

 You can not only control the size of this polygon, when you pull it out from the center,
but also its rotation. I made the sides align with the top, bottom, and sides of the canvas.

 Next, let’s take a look at how to fill your octagon with a green color, using Inkscape’s
floating palette docking area.

 Solid Color Fill: Using Fill to Color Your Octagon Dark Green
 You will then use the Fill and Stroke palette, seen on the top right in Figure 3-2 . Select the
 Fill tab and then set the Flat color to use RGB color. Set the Green slider to a 50% value of
 127 and set the Blue slider to a 16% value of 42 . Click a solid color icon (second from the left)
to specify a solid color for your fill. We will be looking at the other icons in Chapter 4 ,
when we cover gradients and patterns. If the Fill and Stroke palette is not visible, you
can open it using the Object ➤ Fill and Stroke menu or by clicking the (closed) Fill and
Stroke bar in the palette docking area at the right side of the software.

 As you can see in Figure 3-2 the interior of the octagon polygon is now filled with a
nice solid green color, just as we instructed it to. Solid color fills are the easiest to define,
as all you have to do is select a color mode and color settings in order to specify a color
that you want to see inside of your polygon.

 Figure 3-2. Create a green octagon with stars and polygons tool

http://dx.doi.org/10.1007/978-1-4842-1697-2_4

CHAPTER 3 ■ THE STYLING OF DIGITAL ILLUSTRATION: STROKE AND FILL

28

 Next let’s take a look at how to stroke the edges of the octagon using a thick, red,
rounded corners, stroke operation.

 Stroking Shapes: Using Stroke to Edge Your Octagon in Red
 To define the stroke color, also called stroke paint, as it is in Inkscape, click on the Stroke
paint tab, and set a Red color by setting a Red slider to a value of 127 (this is 50%), and
click the solid icon (second one), as shown in Figure 3-3 .

 Since the default stroke width is one pixel, which would be nearly invisible to the
naked eye, click on the Stroke style tab on the far right of the Fill and Stroke palette, as
seen in Figure 3-4 . Set the Stroke Width value to 20 pixels (px in your drop-down selector)
and click the Round Join (middle) option to round the corners of your octagon. The Cap
options are for open lines and curves, and you can play around with your Dashes and
Markers settings, if you like, to style the line itself, which is always set to solid as a default
as that is the most common usage.

 Figure 3-3. Click Stroke paint tab in Fill and Stroke palette

CHAPTER 3 ■ THE STYLING OF DIGITAL ILLUSTRATION: STROKE AND FILL

29

 As you can see, at the bottom left, your stroke and fill attributes are summarized, as is
the layer that you are drawing the shape on.

 The Opacity of 100% is seen in gray at the bottom of the Stroke and Fill palette, on
the right side of your screen. This will be applied to your stroke and fill settings. There’s
also a Blur slider you can play around with, which will apply a blur algorithm to your
stroke and fill settings.

 There is also an Opacity setting in your Layers palette, which we are going to cover in
detail during Chapter 10 . Next, let’s take a look at how to use the Inkscape Spiral tool.

 Spiral Shapes: Stroking Open Shapes Using Cap
 Let’s take a look at how to create an open shape so that we can take a look at that Cap
feature in the Stroke style tab. Select the Create spirals tool, as shown in Figure 3-5 , and
use the default Turns setting of 3.00 and Divergence setting of 1.0, and an Inner radius
setting of zero . These tool options are set at the top left of Inkscape in the options toolbar.
Next, click in the middle of the page, and pull out the spiral. You can not only control the
size of this spiral, when you pull it out from the center, but also its rotation. Next, you can

 Figure 3-4. Set a 20 Width, and Round Join, in Stroke style tab

http://dx.doi.org/10.1007/978-1-4842-1697-2_10

CHAPTER 3 ■ THE STYLING OF DIGITAL ILLUSTRATION: STROKE AND FILL

30

use the Fill and Stroke palette and its Stroke paint tab to set the stroke Flat color to an RGB
color value of Blue 127, which is a 50% value between black and bright blue, giving you
nice medium blue tones. The solid color icon and Flat color setting is seen highlighted in
blue in Figure 3-5 . In case you’re wondering why 127 gives 50%, 127 is 128 (counting from
zero), which is half of 256 values allowed for each 8-bit RGB color slider value range.

 Figure 3-5. Set Stroke paint to use an RGB Blue value of 127

 Next, click the Stroke style tab and set the Width value of 12 pixels, and select the
 Straight Join and Round Cap option icons, which are shown selected in blue in
Figure 3-6 .

CHAPTER 3 ■ THE STYLING OF DIGITAL ILLUSTRATION: STROKE AND FILL

31

 Try selecting some of the dashes option settings in your drop-down menu. With the
Round Cap option, dashes look like hot dog (sausage) links tied together to create a spiral.
You could experiment with all of these different settings for a lifetime!

 As you can see at the bottom left, your stroke and fill attributes are summarized, as is
the layer that you are drawing your shape on. Since this is an open shape, your Fill is set to
None, and your Opacity is set to 100%. Let’s take a look at how to use the Fonts installed
in your workstation to create a Text object (shape) in Inkscape next, using the Create and
Edit Text objects tool.

 Font Shapes: Creating Text Shapes Using Fonts
 Since using Fonts and Text is an important part of everyday multimedia production work,
let’s use an Inkscape text tool to create some gold Segoe Script text with a nice purple
border for all of you Los Angeles Lakers fans out there. First, select Inkscape’s Create and
Edit Text objects tool, as seen in Figure 3-7 , and set the Segoe Script font option at a size
of 128, at the top left in the options toolbar. I left the other options as the default settings.
Next, click in the middle of the page, and pull out the text. You can use the Fill and Stroke
color palette, seen on the top right, to set the fill color to Gold , which is defined by setting
 Red to 127 and Green to 127 in RGB .

 Figure 3-6. Create a blue spiral, by stroking the spirals tool

CHAPTER 3 ■ THE STYLING OF DIGITAL ILLUSTRATION: STROKE AND FILL

32

 Next, click the Stroke style tab and set the Width value of 4 pixels, and select Round
Join and Round Cap option icons, which are shown selected in blue in Figure 3-8 . Since
this is a script font, we want to use as many rounded edge settings as we can, since the
font is rounded and flowing, not straight edged, like some other fonts are. For these fonts,
the straight-edged stroke cap and join setting will of course be more appropriate.

 Figure 3-7. Create a gold Segoe Script object using a text tool

CHAPTER 3 ■ THE STYLING OF DIGITAL ILLUSTRATION: STROKE AND FILL

33

 Figure 3-8. Stroke a text object using 4 pixels of purple color

 Try selecting some of the dashes option settings in your drop-down menu to create
text-based special effects. When you combine these different stroke settings with the
different font libraries that are out there, you will find that there are many different visual
effects you can attain for a client multimedia production project.

 As you can see at the bottom left, your stroke and fill attributes are summarized, as is
the layer that you are drawing the shape on, and the instructions for using the Text tool,
the number of characters you have typed, and instructions regarding how to continue
using the Text tool.

 Summary
 In this third chapter, we looked at how you can add color and style to your 2D vector
illustration shapes using fill and stroke settings that invoke styling operations to be
applied to the vector shapes by the 2D rendering engine. We looked at some new tools in
Inkscape including the polygon tool , the spiral tool , and the Text tool . Since we have a
lot to cover in this book, I wanted to cover the primary Inkscape tools that you are likely to
use during this third chapter.

 In the next chapter, you will take a look at a much more complex version of the fill,
known as the gradient , and how to create these advanced fills in Inkscape.

35© Wallace Jackson 2015
W. Jackson, Digital Illustration Fundamentals, DOI 10.1007/978-1-4842-1697-2_4

 CHAPTER 4

 The Depth of Digital
Illustration: Using Gradients

 Now that we have covered the basic concepts regarding how to stroke and fill using solid
color, we will get into the more complex 2D texturing algorithms available in SVG. These
include color gradients, covered in this chapter, as well as seamless image patterns, which
we will cover in Chapter 5 .

 In this chapter, we will look at the two different types of gradients supported in SVG
and how to apply these to stroke and fill operations, which we just covered in Chapter 3 .
If you use the right colors in a gradient, it can make 2D look 3D.

 Inkscape Illustration: Fill Gradients
 Let’s start out with Fill Gradients, as gradients are much more commonly used to fill your
closed shape than they are to fill your (stroked) open shape. There are two different types
of SVG gradients: radial gradients, which emanate from the center like a sunburst; and
linear gradients where the colors stay parallel to each other. Both types of gradients can
be very useful, and when they are used with the correct color “stop” settings, they can
even simulate the look of a 3D object using 2D vector data.

 Radial Fill Gradients: Enhancing Your Heart Shape
 Let’s use a radial fill gradient to add some more character to the heart object that
you created in Chapter 2 . Launch Inkscape and open your Digital_Illustration_
Fundamentals_CH2.svg project file, and click on your radial gradient icon (the middle
icon), which will place the current radial gradient inside your heart, as its current fill
operation. As you can see in Figure 4-1 , an Edit gradient icon will then appear at the
bottom of the Radial gradient section of the dialog. We’ll use this icon to edit the color
(and transparency) gradient listed in the Gradient table .

http://dx.doi.org/10.1007/978-1-4842-1697-2_5
http://dx.doi.org/10.1007/978-1-4842-1697-2_3
http://dx.doi.org/10.1007/978-1-4842-1697-2_2

CHAPTER 4 ■ THE DEPTH OF DIGITAL ILLUSTRATION: USING GRADIENTS

36

 The first thing we’ll need to do is to edit the existing gold to a transparent gradient, to
become more of a bright red to pink gradient. Click the Edit gradient icon and a gradient
edit guide will appear over the top of your heart shape, as shown in Figure 4-2 .

 Figure 4-1. Open CH2.svg; select Fill tab, Radial Gradient Icon

CHAPTER 4 ■ THE DEPTH OF DIGITAL ILLUSTRATION: USING GRADIENTS

37

 The center node will allow you to position the center of the radial gradient, which
I am going to position at the center of the heart. You can also offset the center of the
gradient to achieve other special effects, for instance, simulating your 3D sphere. This can
be simulated by using a radial gradient inside of a circle shape.

 The ends of these handles, which emanate from the center node, can be used to
control the falloff of the radial gradient effect. Play around with this gradient placement
control handle interface, and become familiar with how it allows you to fine-tune your
gradient placement within your shape fill operation.

 Notice that when you click the Edit gradient icon that a Edit Gradient icon is also
selected (activated) in the Inkscape toolbar at the left side of the user interface. At the top
is a toolbar that contains 10 settings used for the gradient tool.

 To change this first color “stop” in the gradient, click on the middle node in the
gradient placement guide. This should select the stop4144 initial color in the gradient,
which can be seen in the drop-down at the right of the gradient setting toolbar at the top
of Inkscape, and place the color data in the tab on the right floating palette docking area
so that you can edit it. This is shown in Figure 4-3 using the Flat color RGB slider controls,
so that you can specify a Bright Red (196 , or 77% Red value) for the center part of your
2D vector heart object.

 Figure 4-2. In Edit Gradient Mode, select middle gradient stop

CHAPTER 4 ■ THE DEPTH OF DIGITAL ILLUSTRATION: USING GRADIENTS

38

 As you change the color from gold to red, you will see a change in real time, in your
heart object in the canvas area of your Inkscape project. You will also see a color swatch
preview in the Stops drop-down menu in the gradient settings toolbar at the top of
Inkscape.

 You will also see a preview of the entire gradient that you are creating in the Select
drop-down menu, toward the left side of the gradient settings toolbar, at the top of
Inkscape.

 The next thing that you will need to do is to edit your other end of this gradient, so
that it goes from the bright red to a pink or Teaberry heart color, on the outside of the
heart.

 To change the second color “stop” in the gradient, click one of the outer nodes in a
gradient placement guide. This will select the stop4146 initial color in the gradient, which
can be seen in the drop-down at the right of the gradient setting toolbar at the top of
Inkscape, and place the color data in the tab on the right floating palette docking area so
that you can edit it. You could also select this stop from your Stops drop-down.

 This can be seen in Figure 4-4 , using the Flat color RGB slider controls, so that
you can specify the Teaberry Red using Red 180 , (a 70% Red value), Green 60 and
 Transparency 40 slider setting. The transparency setting equates to adding White color
values, since your current background (paper) color is White.

 Figure 4-3. Click Stroke paint tab in Fill and Stroke palette

CHAPTER 4 ■ THE DEPTH OF DIGITAL ILLUSTRATION: USING GRADIENTS

39

 As you change the color from gold to red, you will see a change in real time, in your
heart object in the canvas area of your Inkscape project. You will also see a color swatch
preview in the Stops drop-down menu in the gradient settings toolbar at the top of Inkscape.

 You will also see a preview of the entire gradient that you are creating in the Select
drop-down menu, toward the left side of the gradient settings toolbar, at the top of Inkscape.

 As you can see at the bottom left, your stroke and fill attributes are now updated
with the new gradient settings, with the Layer 1 which you are drawing the shape on also
specified.

 Next let’s take a look at how to use the Inkscape Linear Fill Gradients feature.

 Linear Fill Gradients: Enhancing Your Text Object
 Let’s use a linear fill gradient and add some more character to the Text object that
you created in Chapter 3 . Launch Inkscape, and open your Digital_Illustration_
Fundamentals_CH3_Text_tool project file, and click on the linear gradient icon (the
third icon), which will place the current linear gradient inside your vector text object, as
a current fill operation. As you can see in Figure 4-5 , the Edit gradient icon should then
appear at the bottom of the Linear gradient section of your dialog. We’ll use this icon to
edit the color (and transparency) gradient listed in the Gradient table , which Inkscape
has generated, and named 4699. You can click next to this 4699 and give the gradient its
own customized linear gradient name, if you feel like it.

 Figure 4-4. Set a 20 Width, and Round Join, in Stroke style tab

http://dx.doi.org/10.1007/978-1-4842-1697-2_3

CHAPTER 4 ■ THE DEPTH OF DIGITAL ILLUSTRATION: USING GRADIENTS

40

 The first thing that we will need to do is to change the direction of the linear gradient,
which is currently defaulting to side-to-side. We want the gradient to run from top to
bottom so that we can have a line of lit gold running through the text so that it looks more
like metal.

 To accomplish this, place your mouse over the round part of your gradient control
handle until it turns red. Then, click and drag it, from the right side to the top of the
bounding box around the text object, as is shown in Figure 4-6 .

 Figure 4-5. Open CH3_Text project; select Fill, Linear Gradient

CHAPTER 4 ■ THE DEPTH OF DIGITAL ILLUSTRATION: USING GRADIENTS

41

 As you can see, in real time, this changes the direction of your gradient, making it a
diagonal gradient, which you will now see is also a possibility.

 To finish the operation, place the mouse over the square part of your gradient control
handle, until it turns red. Then, click and drag it, from the left side to the bottom of the
text object’s bounding box, as shown in Figure 4-7 .

 Figure 4-6. Click Edit Gradient Icon, drag gradient end to top

CHAPTER 4 ■ THE DEPTH OF DIGITAL ILLUSTRATION: USING GRADIENTS

42

 The next thing that we need to do is to add another stop so that we can have three
color, and two color changes, in your gradient definition.

 We want the outsides of your gradient (in this case, the top and bottom of the text
object) to be gold and the inside to be yellow. So, the gradient will have three stops, the first
of which will be gold, the second of which will be yellow, and the third will be gold again.

 To add a stop, click on the plus-node icon , to the right of the Stops drop-down.
I have highlighted it in blue in Figure 4-7 and left the tool-tip pop-up helper showing
as well.

 Click in the middle of the gradient line that is running vertically through your text
object. This will insert a diamond using a red color, as is shown in Figure 4-7 .

 You can control the exact placement of this stop using a spinner labeled Offset ,
just to the left of your add and remove stop node icons, and just to the right of the Stops
drop-down.

 As you can see, in Figure 4-8 , I have placed this middle stop exactly 50% of the way
between the two existing stops, as is indicated by the 0.50 value in the spinner. Now all
that you have to do is to reconfigure the three stop color values.

 Figure 4-7. Insert a new linear gradient stop in the middle

CHAPTER 4 ■ THE DEPTH OF DIGITAL ILLUSTRATION: USING GRADIENTS

43

 Since your bottom (first) stop is set to gold already, click on the top (third) stop and
set it to gold as well, by setting the Red and Green sliders to a color value of 127.

 Next, click the middle stop; it will turn a blue color, and set the Red and Green sliders
to 255, which is really 256, or 100% on, to give yourself a bright yellow color.

 To blend the yellow color with the white background, and thus brighten it a bit more,
set the Transparency to a value of 40, which equates to 16%.

 As you can see in the Select or Stops drop-down swatches at the top of Inkscape,
you are getting the “metallic cylinder” gradient effect, and a bright yellow color like sun
glinting on gold in the middle, so that the linear gradient looks like gold tubing.

 This bright reflection in both the radial and the linear gradient is called a specular
reflection in 3D terminology, and is used to make 2D geometry look like it is 3D, using
gradients of color. This is often called 2.5D in the multimedia industry.

 Next, let’s take a look at using gradients inside stroke operations. Gradients can be
just as useful in stroke operation applications, especially if you use a lot of open shape
vectors in your 2D vector illustration artwork.

 Inkscape Illustration: Stroke Gradients
 Let’s take a look at Stroke Gradients next, as gradients can also be used to texture open
shape paths . The problem with the use of gradients with stroke operations is that the SVG
command language does not support conforming the gradient to the path, so you can only

 Figure 4-8. Edit Stops to provide the metallic gradient effect

CHAPTER 4 ■ THE DEPTH OF DIGITAL ILLUSTRATION: USING GRADIENTS

44

apply the gradient across the entire open shape object. I will show you how to get around
this limitation, and to achieve this effect by using SVG filters , which we will be dedicating
an entire chapter to (Chapter 8) later on in the book. Let’s apply a radial gradient to your
spiral object that will make it fade from view around the perimeter of the spiral.

 Radial Stroke Gradients: Enhancing Your Spiral
 Open your Digital_Illustration_Fundamentals_CH3_Spiral project, and click the arrow
(selection) tool at the top of the toolbar and select the spiral object. Next, click the Fill and
Stroke palette and then the Stroke paint tab, and click on your radial gradient icon , which
is the middle icon, as seen in Figure 4-9 . Click the edit gradient icon, shown selected on
the left in the toolbar, and position the center of the gradient at the source of your spiral,
and the outer handles in the corners of the box (this is called a bounding box) containing
your spiral object.

 Figure 4-9. Apply the radial gradient to your open spiral shape

 Click the Edit gradient icon at the bottom of the Radial gradient section of your
dialog, and create a gradient with the first stop as Medium (50%) Blue and the second
stop Transparent so that your spiral will slowly disappear. The gradient is seen at the top
left of Figure 4-9 .

http://dx.doi.org/10.1007/978-1-4842-1697-2_8

CHAPTER 4 ■ THE DEPTH OF DIGITAL ILLUSTRATION: USING GRADIENTS

45

 If SVG could apply a gradient along a curve, I would have used a linear gradient
that went from Dark Blue to Transparent (or white) to Dark Blue again, to create a 3D
special effect on this spiral object. Unfortunately SVG does not support this yet so I’ll have
to show you another way to accomplish this special effect with SVG filters , which are
supported in HTML5 and Java.

 Use your File ➤ Revert to go back to your CH3_Spiral.svg project, or use File ➤
Close , and then File ➤ Open , and open it again, so that you have your solid Medium 50%
Blue spiral back.

 Drop-down the Inkscape Filters menu, and then select the Bevels menu, and then
select the Button Bevel Filter, as can be seen at the top of Figure 4-10 . Make sure your
spiral object is selected, which you can see it is, in Figure 4-10 , as indicated by the dotted
line bounding box around your spiral object.

 Figure 4-10. Select the Filters ➤ Bevels ➤ Button menu sequence

 If you do not have an object selected, an SVG filter cannot apply its algorithm to
anything, and it will abort with an error message. You can apply these same SVG filters in
HTML5 in CSS3 code or JavaScript, and in Java using the JavaFX SVG APIs.

 As you can see in Figure 4-11 , this filter will give you the result that the linear
gradient conforming itself to a path would give you, so, until the SVG command language
will allow a gradient to “follow” the path, you can utilize this approach to get the special
effects results that you are currently seeking.

CHAPTER 4 ■ THE DEPTH OF DIGITAL ILLUSTRATION: USING GRADIENTS

46

 One of the most powerful things about SVG is that it’s a command-based
programming language, which is why I am covering that aspect of it in detail in Chapter 7 .

 For this reason, your structures can be set up in such a way as to be able to
accomplish many effects that you might not think were possible by using SVG in the form
of an illustration software package, like Inkscape. This is especially true, given these SVG
Filter capabilities, as you will see in Chapter 8 .

 Now that you have seen how powerful gradients and filter applications can be, you
will need to take a look at how to use digital imagery in vector illustration using seamless
patterns .

 Summary
 In this fourth chapter, we looked at how you can add color and style to your 2D vector
illustration shapes using fill and stroke settings that invoke styling operations to be
applied to the vector shapes by the 2D rendering engine. We looked at some styling
effects that can be applied using radial gradients and linear gradients, as well as getting
an introduction to SVG Filters to accomplish an effect that the gradients cannot currently
provide to us. Since we have a lot to cover in this book, I wanted to cover the primary
Inkscape rendering effects that you are likely to use during the fourth and fifth chapters.

 In the next chapter, you will take a look at a much more complex version of texturing
shapes using the seamless pattern and learn how to create these advanced patterns
using GIMP 2.8.

 Figure 4-11. The Button Bevel gives you in-path gradient effect

http://dx.doi.org/10.1007/978-1-4842-1697-2_7
http://dx.doi.org/10.1007/978-1-4842-1697-2_8

47© Wallace Jackson 2015
W. Jackson, Digital Illustration Fundamentals, DOI 10.1007/978-1-4842-1697-2_5

 CHAPTER 5

 The Imagery of Digital
Illustration: Using Patterns

 Now that we have covered the basic concepts regarding how to stroke and fill using both
solid colors and gradients, in this chapter we will cover the progressively more complex
2D imagery texturing patterns available in SVG. I will include the work process for
creating seamless image patterns, which are much more effective and believable than
patterns where you can see a seam (or more than one seam). Certain patterns, such as
plaid or polka dots, are inherently tileable, if you set the tile up correctly.

 In this chapter we’ll look at how to create bitmap image tiles using GIMP 2.8, which
can be used with Inkscape and SVG as patterns, and how to apply these to stroke and
fill operations, which we covered during Chapter 3 . This is the first area that SVG and
vector illustration has addressed to span raster images and vector illustrations, as the 3D
vector industry has done so successfully. There’s a paid vector illustration package called
 Corel Painter 2016 that turns digital illustration into digital painting by adding even
more digital image features, and even a real-world physics engine, just like you’ll find in
3D software packages such as Autodesk Maya, NewTek Lightwave, or Blender 3D.

 Just in case you are thinking about taking your digital illustration to a higher level,
I will be covering Painter 2016 in this book as well, as it is affordable given what if offers.

 Inkscape Illustration: Using Fill Patterns
 Let’s use a fill pattern to add some more detail to the heart object that you created in
Chapter 2 . Launch Inkscape and open up your Digital_Illustration_Fundamentals_CH2.svg
project file, and click on the Fill tab in the Fill and Stroke palette and then on the Pattern
icon (the fifth icon), which will place the default Stripes pattern inside your heart as your
current fill operation, as you can see in Figure 5-1 . A Very Art Deco Heart!

http://dx.doi.org/10.1007/978-1-4842-1697-2_3
http://dx.doi.org/10.1007/978-1-4842-1697-2_2

CHAPTER 5 ■ THE IMAGERY OF DIGITAL ILLUSTRATION: USING PATTERNS

48

 The Stripes algorithm shown in Figure 5-1 is actually an SVG command syntax
algorithm or program of sorts that uses the vector command language to create the
pattern effect seen here.

 If you drop-down this Pattern fill menu, there are a ton of vector patterns already
defined for you. If you want to look ahead in the chapter, Figure 5-9 shows a portion of
this menu.

 You might be wondering, Hey could I use my own patterns, and can they be bitmap
images that are tiled together to fill, or stroke, my vector illustrations? The answer is yes,
and that is what the chapter is all about: how exactly to bridge digital imaging and digital
illustration together, to allow artisans to generate greater visual impact for their digital
illustrations.

 In fact, I’ll cover this topic more and more as the book progresses, as after I have
covered the fundamentals of SVG, I am going to cover digital painting, with Painter 2016,
as well. I cover Painter 2016 in detail in my Digital Painting Techniques title (Apress, 2015).

 The first thing that we will need to learn is how to use GIMP 2.8.14 to create a bitmap
pattern to use in Inkscape. Your bitmap creations can use the same four bitmap file
formats that are currently supported for HTML5, Java, JavaFX, and in Android Studio 1.4.
These formats include JPEG, BMP, GIF, and PNG.

 Figure 5-1. Open CH2.svg and select the Fill tab’s Pattern Icon

CHAPTER 5 ■ THE IMAGERY OF DIGITAL ILLUSTRATION: USING PATTERNS

49

 Using GIMP: Creating Your Image Pattern
 If you have not downloaded and installed the open source GIMP 2.8.14 digital image
editing and compositing software yet, go to http://www.gimp.org and click an orange
 Download button, and then install this software package on your digital illustration
workstation. After it’s installed launch it! Let’s get to work!

 Click your background color swatch , shown circled on the right side of Figure 5-2 .
You can tell by an icon that white is your background color currently, because it appears
as if it is behind the black (foreground) color icon. This is numbered with a one in
Figure 5-2 , and shows a Change Background Color picker dialog below it. I set a Red
Hue value of zero , 48% saturation, and 96% lightness value, which equates to RGB values
of Red 245 (96% Red), Green 127 (50% Green), and Blue 127 (50% Blue). These values
will give you a nice “Teaberry” heart background color.

 Step two, seen on the left side of Figure 5-2 , is to use a File ➤ New menu sequence
and open the GIMP Create a New Image dialog. Set an 80 pixel Width and Height using a
 72 DPI X and Y resolution, and specify the RGB Color Space .

 Set Fill with to Background color . This is why you set up your Teaberry background
color as step one in the work process.

 Figure 5-2. Open GIMP; set background color; create a new image

http://www.gimp.org/

CHAPTER 5 ■ THE IMAGERY OF DIGITAL ILLUSTRATION: USING PATTERNS

50

 As you can see in Figure 5-3 , your Background layer now has an appropriate
background color for your heart object, and you can select a circular area using a circle
and ellipse tool. This tool is shown selected in blue at the top right of Figure 5-3 in the
 tool icons palette of GIMP. In the Tool Options tab under the tool icons, I selected
 Antialiasing , and Expand from center as tool options, and drew out a circular selection
area. I also clicked the foreground color swatch and set that to Red .

 The circular selection area is shown on the left side of your screen, as is the Edit ➤
Fill with FG Color menu sequence, which is what you should use to tell GIMP to fill the
selection you just created with a Red color for your Heart object pattern fill, which you are
creating here using digital image software.

 If you want the Red circle on a different layer than the background color, just to
provide you with a little taste of my GIMP 2.8.14 knowledge outlined in the Digital Image
Compositing Fundamentals (Apress, 2015) title I wrote previous to this one, click on the
Background layer to select it and then right-click and select a New Layer context-sensitive
menu option. This will instruct GIMP to create a new layer to hold your Red Circle.

 Be sure that you create this new layer before you invoke your Edit ➤ Fill menu
sequence, so that you are directing GIMP to place your Red Fill Color on the new layer
instead of over the background fill color on the Background layer.

 Whichever work process (one layer or two layers) you use is fine to achieve the same
result, so pick one, implement it, and then utilize the Select ➤ None menu sequence
to remove the selection, now that you have used it to create your Red Circle. This menu
sequence can be seen in Figure 5-4 on the left side.

 Figure 5-3. Select circular area; use Edit ➤ Fill with FG Color

CHAPTER 5 ■ THE IMAGERY OF DIGITAL ILLUSTRATION: USING PATTERNS

51

 As you can see in the Layers tab in the middle I decided to use my Background layer
to hold my pattern composition. Next use the File ➤ Export As menu sequence, shown in
Figure 5-5 , to export (save) this pattern by using a bitmap image file format.

 In the Export Image dialog, type the PolkaHeart.png file name in the Name field
at the top of the dialog, as is shown in Figure 5-6 , selected in blue. This file extension for
your file name, that is, the .PNG part of the file name, will inform GIMP which bitmap file
format (encoding algorithm) that you want the image data to use. I prefer a lossless .PNG
(pronounced “Ping”) image data format, as it provides the best visual results.

 Figure 5-4. Deselect circle, using Select ➤ None menu sequence

 Figure 5-5. Use File ➤ Export As to save a pattern as a bitmap

CHAPTER 5 ■ THE IMAGERY OF DIGITAL ILLUSTRATION: USING PATTERNS

52

 Click on the Export button to export your bitmap pattern to the directory on your
hard disk drive that you selected with the Places pane of the Export Image dialog on the
far left. The folder hierarchy I used was E:\Digital_Illustration_Fundamentals\CH05 .

 The next thing that we need to do is to show you how you can install these custom
bitmap image patterns inside Inkscape.

 Imagery in Illustration: Bitmap Patterns
 Now that I’ve shown you how to utilize the popular open source GIMP digital image
compositing software to create a tileable bitmap image pattern for use inside of Inkscape,
it is time to show you the work process for installing your own custom bitmap image
artwork. This will allow you to bridge your digital image compositing pipeline with your
digital illustration content creation pipeline. Inkscape will do this as an SVG command
file generator with pattern functions; more advanced 2D illustration software, such as
Corel Painter, take the concept even farther.

 Using Bitmap Images as Fill: Inkscape Pattern Fill
 Let’s use a bitmap-based fill pattern this time to add far more visual interest to the heart
object that you created in Chapter 2 . Open Inkscape, using your Digital_Illustration_
Fundamentals_CH2.svg project file, by double-clicking on the file in your file manager, or
right-click the file, and use Open with Inkscape. Use the File ➤ Import menu sequence,
as shown in Figure 5-7 , to open the Select file to import dialog. Navigate to and select
a PolkaHeart.png file, and then click the Open button, which will then open the
 png bitmap image import dialog seen at the bottom of Figure 5-7 .

 Figure 5-6. Name the image file PolkaHeart.png and click Export

http://dx.doi.org/10.1007/978-1-4842-1697-2_2

CHAPTER 5 ■ THE IMAGERY OF DIGITAL ILLUSTRATION: USING PATTERNS

53

 Select the Embed Image Import Type , and select the Image DPI From file radio
button option as well. I suggest using your Smooth (optimizeQuality) setting for your
 Image Rendering Mode , and I leave don’t ask again unchecked, so I can always specify
my preference for the SVG command language syntax that Inkscape is going to generate.

 Once all of these settings have been specified, click on the OK button and you should
see your bitmap pattern tile asset in the middle of Inkscape; in this case, it would be on
the top of your Heart object, as is shown in the middle of Figure 5-8 .

 Figure 5-7. Use File ➤ Import; select Embed and Smooth options

CHAPTER 5 ■ THE IMAGERY OF DIGITAL ILLUSTRATION: USING PATTERNS

54

 The next step in the work process, also shown at the top of Figure 5-8 , is to use
Inkscape’s Object ➤ Pattern ➤ Objects to Pattern menu sequence, to invoke the
Inkscape function, which converts bitmap objects into patterns that can be used in fill
and stroke operations.

 Next, click the arrow icon at the top left of Inkscape’s toolbar, and move your bitmap
pattern object, out of the way of your composition and off of the page.

 As you can see in Figure 5-8 and later, I placed mine at the lower right-hand corner of
the Inkscape document.

 Click on your heart object to select it for editing. In the Inkscape Stroke and Fill
palette, select your Fill tab, and then select the Pattern icon, as shown, fifth from the left,
in Figure 5-9 .

 Figure 5-8. Use Object ➤ Pattern ➤ Objects to Pattern function

CHAPTER 5 ■ THE IMAGERY OF DIGITAL ILLUSTRATION: USING PATTERNS

55

 In the Pattern fill section of the dialog, use the drop-down menu to select your
 pattern5591 option, which is what the SVG command syntax generator named the
pattern in the previous Objects to Pattern function.

 The pattern appears in your top (recently used patterns) part of your drop-down
selector, because you recently added it.

 As you can see in Figure 5-10 the heart now looks great!

 Figure 5-9. Select the pattern5591 bitmap pattern option to set

CHAPTER 5 ■ THE IMAGERY OF DIGITAL ILLUSTRATION: USING PATTERNS

56

 Next, let’s take a look at how you will use this pattern to apply a stroking operation
to this heart shape. I will use a different fill pattern for the interior of your heart shape, to
make the bitmap pattern stroke stand out more clearly.

 Using Bitmap Image Strokes: Inkscape Pattern Fill
 As you can see in Figure 5-11 , I have selected a different fill pattern from the drop-down,
called Cloth (bitmap). This is so that you will be able to visualize the differentiation
between the fill and the stroke bitmap imagery.

 Figure 5-10. The bitmap image pattern will fill the heart shape

CHAPTER 5 ■ THE IMAGERY OF DIGITAL ILLUSTRATION: USING PATTERNS

57

 Next, click on the Stroke style tab and set the Width to a setting of 72 pixels, using
your square Cap and Join settings afforded by the icons shown on the top right of
Figure 5-12 .

 Figure 5-11. Select another Cloth (bitmap) pattern fill option

CHAPTER 5 ■ THE IMAGERY OF DIGITAL ILLUSTRATION: USING PATTERNS

58

 This will create a thick black border, around your heart object, which is what we will
be filling with the custom bitmap pattern that you created in GIMP earlier in the chapter.

 Next, click on your Stroke paint tab, and set your drop-down to pattern5591, as is
shown at the top right of Figure 5-13 .

 Figure 5-12. Set a wider, 72 pixel, Stroke style width setting

CHAPTER 5 ■ THE IMAGERY OF DIGITAL ILLUSTRATION: USING PATTERNS

59

 Figure 5-13. Set bitmap pattern5591 as the Stroke paint pattern

 This will create the pattern stroke for your thick black border around your heart object
using the custom bitmap pattern that you had created in GIMP earlier in the chapter.

 Next, we will take a closer look at the different vector 2D digital illustration file formats.

 Summary
 In this fifth chapter, we looked at how you can use patterns to add digital imagery to the
strokes and fills for your 2D vector illustration shapes. We looked at the work process for
using the GIMP digital image compositing software package to create tiles to use as bitmap
patterns, as well as at the work process for importing and applying these inside of Inkscape.

 In the next chapter, you will take a look at an Inkscape work process for rendering
SVG into different file data format containers so that you can transfer your work among
different platforms and software packages.

61© Wallace Jackson 2015
W. Jackson, Digital Illustration Fundamentals, DOI 10.1007/978-1-4842-1697-2_6

 CHAPTER 6

 The Rendering of Digital
Illustration: Data Formats

 Now that we have covered the basic concepts regarding how to create vector shapes as
well as stroking and filling them using solid colors, gradients, and patterns, in this chapter
we show how you export the SVG command data created and generated by Inkscape
0.91 into other popular raster (PNG), vector (EPS), publishing (PDF), application
programming (JavaFX), and similar file formats.

 Since we looked at the File ➤ Import work process in the previous chapter, in this
chapter we will look at File ➤ Export and File ➤ Save As work processes and learn how
to “render” SVG data, which is what an Inkscape composition really is, in other popular
content formats.

 After we have taken a look at this, we will look at your actual SVG command language
syntax in Chapter 7 on SVG Command Language and how it works at a fundamental level.

 Inkscape PNG Export: Rendering Objects
 Let’s take a look at how to “render” or “rasterize” that heart object that you have been
refining over the course of the book. Rendering is a popular concept these days, in both
2D and 3D as well as i2D and i3D new media content genres. Since both 2D and 3D vector
assets are essentially draw commands, data points and styling (texturing) information,
the rendering (or rasterizing) process turns these into RGB pixel data and alpha channels,
so that they can be used in a digital imaging context, with image codecs (image formats)
and in image compositing pipelines.

 Launch Inkscape with Digital_Illustration_Fundamentals_CH5.svg, which is the
project file from the previous chapter, and select the bitmap tile object at the bottom right
of Inkscape with the arrow tool, and hit your Delete key. Then use the File ➤ Export PNG
Image menu sequence, shown in Figure 6-1 , on the top left.

http://dx.doi.org/10.1007/978-1-4842-1697-2_7

CHAPTER 6 ■ THE RENDERING OF DIGITAL ILLUSTRATION: DATA FORMATS

62

 If you want to open a project that already has the image tile deleted, you can open
 Digital_Illustration_Fundamentals_CH6.svg .

 It is important to note that once you have installed the bitmap tile pattern into
Inkscape, you could delete that object within your project file; just don’t delete the image
file that Inkscape is referencing from your hard disk drive. Do not move this file’s location,
as that would change its path reference.

 Invoking this File ➤ Export PNG Image menu sequence will add an Export PNG
Image palette to the very top of the Inkscape palette docking area. This is located on the
right side of your user interface, and it is shown on the top right of Figure 6-1 .

 Since you don’t have anything selected yet, your buttons at the top of this Export
PNG Image palette are set ambiguously until you select the entire page (Page), an entire
illustration (Drawing), or an SVG object within the composition (Selection).

 Once you select your heart object using the arrow select tool, the Selection button
at the top of this palette should be auto-selected by Inkscape, and you can set all the other
options to suit what you need in a digital image compositing pipeline.

 I checked the Hide all except selected , which I’m hoping will create an alpha
channel (object transparency mask) for me, as well as the Close (palette) when
complete checkbox (option).

 After all the settings are ready for export, click on the Export As button, seen in blue on
the right in Figure 6-2 . This will bring up the Select a filename for exporting dialog, shown
in Figure 6-3 . Name your file PolkaHeartStroke.png and click on the Save button to save it
in the directory you have specified at the top of the dialog using the file management utilities.
I used my E:\Digital_Illustration_Fundamentals folder to save the file.

 Figure 6-1. Open CH5.svg and select File ➤ Export PNG Image

CHAPTER 6 ■ THE RENDERING OF DIGITAL ILLUSTRATION: DATA FORMATS

63

 Figure 6-2. Select the heart object and set the export settings

 Figure 6-3. Name the PNG heart image asset PolkaHeartStroke.PNG

 Now you have specified where you want to store the file. Click the Export button,
shown in Figure 6-4 on the right. This instructs Inkscape to render your SVG data into this
PNG file.

CHAPTER 6 ■ THE RENDERING OF DIGITAL ILLUSTRATION: DATA FORMATS

64

 The next thing that we’re going to do is to use the GIMP digital image editing package
to see if Inkscape has created an alpha channel for us. If it has, we will see a transparent
area around our heart object. GIMP represents transparency using the checkerboard
pattern, as you can see on the left in Figure 6-5 .

 Figure 6-4. Click on the Export button to export the PNG file

 Figure 6-5. Use GIMP to open the PNG file to preview the result

CHAPTER 6 ■ THE RENDERING OF DIGITAL ILLUSTRATION: DATA FORMATS

65

 Inkscape will also export using other popular vector and publishing formats using
the File ➤ Save As menu sequence. This is technically not rasterizing the data, but it
could be called rendering the data in another format, either pixels (raster) or otherwise,
as you will see in the next section of this chapter.

 Inkscape Vector Export: Using Save As
 All the other formats that Inkscape supports exporting SVG data in are accessed using the
 File ➤ Save , File ➤ Save As or File ➤ Save As Copy menu sequences. I use Save As if I
have a project, or Save As Copy if I need to save a copy. The Save As menu sequence
will open the Select file to save to dialog, as seen in Figure 6-6 , with the format selector
drop-down menu open.

 Figure 6-6. The Select file to save to dialog and its options

CHAPTER 6 ■ THE RENDERING OF DIGITAL ILLUSTRATION: DATA FORMATS

66

 As you can see on the extensive drop-down menu, Inkscape supports dozens of
multimedia production industry file formats, including Adobe Acrobat or Flash (but not
Illustrator, a direct competitor to Inkscape), Postscript, Java (using JavaFX), HTML5, and
many more. We cannot cover all 27 in this chapter, but I’ll cover the most popular open
source formats (Java, PDF, and EPS), as these are the ones you’re most likely to use to
either print or publish content with. Encapsulated Postscript can be used to print, or as
an alternate to the AI (Adobe Illustrator) format, which is not supported in Inkscape, as it
is a patented format, which is proprietary to Adobe Illustrator. Let’s take a look at Adobe
Acrobat Reader’s rich document publishing platform first.

 Exporting to Adobe Acrobat Reader: PDF Format
 Let’s select the Adobe Acrobat Portable Document Format (*.pdf) option first, as shown
selected in blue in the drop-down menu selector in Figure 6-6 . This will open the Select
file to save to dialog shown in Figure 6-7 . Once you click the Save button, you will get the
 Portable Document Format dialog shown on the right side of Figure 6-7 (I combined two
screenshots into one) where you can set your PDF document format file export options,
before clicking on the OK button, to export your SVG as a PDF.

 You can use a Restrict to PDF version drop-down menu to select a PDF version to
utilize, and select options to Convert texts to paths , Omit text in PDF, and create a
LaTex file ; and to Rasterize filter effects , which we’ll be covering in Chapter 9 covering
SVG Filters, which can apply special effects for SVG illustration content production
pipelines, making art look like it was created using digital image compositing software.

 I named my PDF file Digital_Illustration_Fundamentals.pdf and then opened it
up in Adobe Acrobat Reader to preview the result of the Inkscape PDF export algorithm,
as shown in Figure 6-8 .

 Figure 6-7. Use File ➤ Import; select Embed and Smooth options

http://dx.doi.org/10.1007/978-1-4842-1697-2_9

CHAPTER 6 ■ THE RENDERING OF DIGITAL ILLUSTRATION: DATA FORMATS

67

 Next, let’s take a look at the EPS vector image format. This can be used in your digital
illustration software package, such as Adobe Illustrator, as well as in your digital imaging
software packages like Corel Painter 2016 or Adobe Photoshop, and in 3D software
packages such as Blender or Autodesk 3DS Max 2016. The EPS format can also be used
with Postscript printers.

 Exporting to Encapsulated Postscript: EPS Format
 Let’s select the Encapsulated Postscript Format (*.eps) option next, as shown eighth on
the list shown in the drop-down menu selector seen in Figure 6-6 . This will open the
 Select file to save to dialog shown in Figure 6-7 . Once you click the Save button, you
will get the Encapsulated Postscript dialog seen on the right side of Figure 6-9 (I again
combined two screenshots into one to save space) where you can set your Postscript
Level and other format file export options similar to the PDF export options, before
clicking on the OK button, to export your SVG illustration as an EPS file. If you send the
file to your laser printer or open it in Illustrator, you will see your 2D heart.

 Figure 6-8. Use Object ➤ Pattern ➤ Objects to Pattern function

CHAPTER 6 ■ THE RENDERING OF DIGITAL ILLUSTRATION: DATA FORMATS

68

 Next, let’s take a look at how you can export Java code, so that you can have Inkscape
code Java in Digital Illustration Fundamentals Java Classes for you, based on your SVG
commands!

 Exporting to JavaFX: Publish in Java and Android
 Let’s select the JavaFX data format (*.fx) option next, which is shown as number 12 on
the drop-down menu that is shown in the Save as type format selector in Figure 6-6 . This
will open the Select file to save to dialog for JavaFX, which can be seen in Figure 6-10 .
Whatever you name your JavaFX programming code export in this dialog will also be the
class name for your Java class that Inkscape is about to write Java code for once you click
on the Save button (it should be a Code button!).

 Figure 6-10. The bitmap image pattern will fill the heart shape

 Figure 6-9. Select the pattern5591 bitmap pattern option to set

CHAPTER 6 ■ THE RENDERING OF DIGITAL ILLUSTRATION: DATA FORMATS

69

 Once you click the Save button, Inkscape will generate a Java Class for your 2D heart,
which I opened in Notepad, and is shown in Figure 6-11 with some code formatting
(indenting).

 The Inkscape package should get you 99% of the way there as far as Java coding goes,
but you will still need to clean up the Java and JavaFX code a bit, for you Java coders
out there.

 Still, this is a pretty impressive feat for illustration software: writing a Java class using
the JavaFX SVG APIs. We’ll be looking at the SVG command data, shown in the middle
of your Java code in Figure 6-11 in Chapter 7 , which covers SVG Command Syntax, and
how to get Inkscape to generate it for you.

 Summary
 In this sixth chapter, we looked at how you can use Inkscape’s Export and Save As features
to render or convert your 2D vector illustration shapes into other new media file formats
or content publishing formats. We looked at the work process for exporting your heart
object into a number of formats popular worldwide, including the PNG32 digital image
(raster) format; the EPS digital illustration (vector) format; the PDF rich media document
publishing format; and the Java 7, 8, and 9 (JavaFX) code format utilized in Android
Studio, iOS, or Java application publishing.

 In the next chapter, you will take a look at an Inkscape work process for editing SVG
command syntax so you can transfer your work among different platforms and software
packages, as well as further customizing your SVG illustrations using a text editing
software tool such as Notepad, NetBeans, or IntelliJ.

 Figure 6-11. Showing the Java class code generated by Inkscape

http://dx.doi.org/10.1007/978-1-4842-1697-2_7

71© Wallace Jackson 2015
W. Jackson, Digital Illustration Fundamentals, DOI 10.1007/978-1-4842-1697-2_7

 CHAPTER 7

 The Syntax of Digital
Illustration: SVG Commands

 By now you have an understanding of how to export to some of the major new media
content publishing formats by using the export and save as functions in Inkscape. So it’s
time to get a bit more advanced and look inside the SVG command syntax that is inside
many of these formats. The SVG markup language is based on XML and is a lot like HTML
as well, using tags and parameters. Many of you will be familiar with how a markup
language functions.

 We’ll look at the primary SVG commands first, and then we will examine some
examples of how path data and style parameter settings are specified, using SVG XML .
You will examine several of your Inkscape projects, after you export them to SVG
command syntax, using the Plain SVG XML-based file format.

 SVG Syntax: Coding Vector Shape Data
 There are 10 different letters that can be utilized with your numeric path (X,Y data point
coordinate location) data in SVG data strings. Each of these SVG command letters has
an uppercase (absolute reference) and lowercase (relative reference) version. You can
combine all of these scalable vector graphics SVG commands with Java and JavaFX
classes to create interactive vector (digital illustration) artwork that has never before been
experienced. In fact, I have already showed you this in Chapter 6 , where you got a preview
of how SVG syntax looks. You will see a lot more SVG command syntax in this chapter,
wrapped in XML markup, rather than Java classes.

 SVG Command Summary: Lines, Arcs, and Curves
 SVG data commands provide you with a great deal of flexibility to define shape paths
made of lines and curves for your digital illustration content applications, as you can see
in Table 7-1 .

http://dx.doi.org/10.1007/978-1-4842-1697-2_6

CHAPTER 7 ■ THE SYNTAX OF DIGITAL ILLUSTRATION: SVG COMMANDS

72

 Table 7-1. Primary SVG commands to utilize for creating SVG path data

 SVG Command Symbol Type Parameter Description

 moveto M Absolute X, Y Defines a Start Of Path at the X,Y
using absolute coordinates

 moveto m Relative X, Y Defines a Start Of Path at the X,Y
using relative coordinates

 closepath Z Absolute None Close SVG Path, by drawing line
from last to first point

 closepath z Relative None Close SVG Path, by drawing line
from last to first point

 lineto L Absolute X, Y Draws a Line from the current
point to the next point

 lineto l Relative X, Y Draws a Line from the current
point to the next point

 horizontal
lineto

 H Absolute X Draws Horizontal Line from
current point to next point

 horizontal
lineto

 h Relative X Draws Horizontal Line from
current point to next point

 vertical lineto V Absolute Y Draws a Vertical Line from
current point to next point

 vertical lineto v Relative Y Draws a Vertical Line from
current point to next point

 curveto C Absolute X,Y, X,Y, X,Y Draws a cubic Bézier curve from
current point to next point

 curveto c Relative X,Y, X,Y, X,Y Draws a cubic Bézier curve from
current point to next point

 Short and
smooth curve

 S Absolute X,Y, X,Y Draws a cubic Bézier curve from
current point to next point

 Short and
smooth curve

 s Relative X,Y, X,Y Draws a cubic Bézier curve from
current point to next point

 quadratic
Bézier curve

 Q Absolute X,Y, X,Y Draws a quadratic Bézier curve
(current point to next point)

 quadratic
Bézier curve

 q Relative X,Y, X,Y Draws a quadratic Bézier curve
(current point to next point)

 short quadratic
Bézier

 T Absolute X,Y Draws a short quadratic Bézier
(current point to next point)

(continued)

CHAPTER 7 ■ THE SYNTAX OF DIGITAL ILLUSTRATION: SVG COMMANDS

73

 An optimal way to see how to use these powerful SVG data path drawing commands
is to get down to learning a work process for creating SVG data with vector illustration
tools and export workflows. You will learn how to do this using Inkscape , using the “quick
and dirty” approach , that is, let Inkscape do 99% of the path creation work. Then if you
like, you can cut and paste these command data strings into your Java or JavaScript logic.

 If you’re a game programmer, you can also use these path data constructs as
 collision detection polygons and for similar non-graphical uses of vector data relating
to boundaries rather than visual 2D rendered digital illustration artwork. If you’re
interested, I cover a workflow to do this using JavaFX’s SVGPath class in Beginning Java 8
Games Development (2015) from Apress.

 SVG Fills: Filling Your Closed Shapes with Color
 As you have seen already, once you have defined your shape using lines, arcs, and curves,
you can fill it to make it solid rather than hollow or empty. A fill can be a color, a gradient,
or a tiling image pattern. You can fill an open shape if you like, and the (imaginary) line
connecting the start point with the end point will define the fill boundary, so the fill does
not go all over the place in your digital illustration! The fill operations, as well as the stroke
operations, which we have also covered, are what are known as “painting” operations.

 SVG Solid Color Fill : Filling Your Shape with a Solid Color Value
 To fill the green octagon you created earlier in Chapter 3 , a fill=“green” command
statement should be added, after your path data statement. This creates a shape that
would be filled with a green color. Using SVG XML, these two declarations would be
inside of a path XML tag, using the following SVG XML markup data structure to create a
plain green octagon using only code:

 <path>
 d = "M 60 0 L 120 0 L 180 60 L 180 120 L 120 180 L 60 180 L 0 120 L 0 60"
 fill = " green "
 </path>

 SVG Command Symbol Type Parameter Description

 short quadratic
Bézier

 t Relative X,Y Draws a short quadratic Bézier
(current point to next point)

 elliptical arc A Absolute rX, rY, Rot Draws an elliptical arc from
current point to next

 elliptical arc a Relative rX, rY, Rot Draws an elliptical arc from
current point to next

Table 7-1. (continued)

http://dx.doi.org/10.1007/978-1-4842-1697-2_3

CHAPTER 7 ■ THE SYNTAX OF DIGITAL ILLUSTRATION: SVG COMMANDS

74

 Solid fill color is not as useful as gradients, however, as careful use of gradients can
even simulate a 3D result using 2D SVG graphics. Defining a gradient is more complex,
so let’s take a look at a linear and radial gradient SVG command syntax.

 Gradient Fills : Linear Gradients and Radial Gradients
 Much of what applies to how a linear gradient is set up in SVG command syntax will also
apply to the radial gradient as well, which simply uses a different XML tag. I’ll show you
how to set up the <linearGradient> tag using SVG in XML, and you can simply change it
later to be a <radialGradient> to change your gradient type. Gradients are defined using
<defs> (definitions) tag in SVG XML. The <defs> tag goes inside the “parent” <svg> parent
tags, which have the <linearGradient> tag as “children” tags. Inside this <linearGradient>
tag are at least two <stop> child tags. As you know, Stops are used to define the colors in
your gradient, what percentage the color takes up in an overall gradient, or an alpha or
transparency value for that section of the gradient. There must be at least two stops, and
you can use any amount of gradient sections that you need as well, via XML.

 Make sure that your stop offset values add up to 100% in the end. Here is how you
would fill your octagon with a red and yellow linear gradient; as you can see, it’s much
more complex:

 <svg xmlns=' http://www.w3.org/2000/svg ' height="300" width="300">
 < defs >
 < linearGradient id=" LinearGradient " x1="0%" y1="0%" x2="100%" y2="0%">
 < stop offset="0%" style="stop-color:rgb(255,255,0);stop-opacity:1" />
 < stop offset="100%" style="stop-color:rgb(255,0,0);stop-opacity:1" />
 </linearGradient>
 </defs>
 <path>
 d="M 60 0 L 120 0 L 180 60 L 180 120 L 120 180 L 60 180 L 0 120 L 0 60"
 fill="url(# LinearGradient)"
 </path>
 </svg>

 You wire the gradient into your fill using the id=“name” parameter inside of the
<linearGradient> tag and then reference that name inside of your fill=“url(#name)”
parameter, inside of the <path> tag, as you can see in the above XML markup example.

 SVG Pattern Fills : Filling Your Shape with a Tilable Image
Pattern
 Patterns are also defined in the <defs> or “definitions” tag in SVG XML. The <pattern>
tag goes inside the parent <defs> tag, and has the 
 </pattern>
 </defs>
 <path>
 d="M 60 0 L 120 0 L 180 60 L 180 120 L 120 180 L 60 180 L 0 120 L 0 60"
 fill="url(# pName)"
 </path>
 </svg>

 I am showing you how to code this in case any of you are Android Studio developers,
HTML, JavaScript, or Java application developers. Most digital illustrators can use
software packages such as Inkscape or Illustrator to create vector artwork, later exporting
it to the Plain SVG XML format to generate this code. I will be showing you this work
process in the next section of this chapter, using the vector illustrations we have created
so far during the book (the Heart, Octagon, and Filtered Spiral).

 At the end of the workday, however, you’ll need to know how to bridge these SVG
commands with the multimedia publishing code, so I am going to cover the basic SVG
commands during this chapter, so that you have knowledge regarding SVG and XML work
processes for Android, JavaFX, and HTML application development.

 The Stroke: Controlling How Lines and Curves Look
 Finally, let’s take a look at how to stroke, or color, style, or thicken, the lines, arcs, or
curves that you created using these SVG commands. The stroke parameters will allow you
to define stroke color, opacity, a width in pixels, dash array pattern, and how lines will be
capped or joined together, using round, square, or bevel constants. Let’s add all of these
stroke-related parameters to the <path> that I created earlier for the octagon, and give it a
3 pixel thick black border, with rounded corners, a dashed line, and a 50% opacity, using
the following SVG XML markup command syntax structure:

 <path>
 d = "M 60 0 L 120 0 L 180 60 L 180 120 L 120 180 L 60 180 L 0 120 L 0 60"
 fill = "green"
 stroke = "black" stroke-width = "3" stroke-dasharray = "5, 10, 5"
 stroke-linecap = "square" stroke-linejoin = "round" stroke-opacity = "0.5"
 </path>

http://www.w3.org/2000/svg

CHAPTER 7 ■ THE SYNTAX OF DIGITAL ILLUSTRATION: SVG COMMANDS

76

 Next let’s finish up by looking at the SVG data commands that would be generated by
the Inkscape projects you’ve created thus far, during the first six chapters of this book.

 Inkscape Projects : SVG Command Syntax
 Since vector new media assets are inherently optimized, as long as you use the smallest
number of vertices (points and their data coordinates) possible to create your 2D (and 3D)
assets, and the correct types of Bézier splines (curve types) for your objective, we will
focus during this chapter more on how to use Inkscape to create these 2D vector assets
and how to use Export functions to turn these into command data and XML markup
that you can utilize not only in Android Studio, but also in JavaFX, JavaScript, and in
HTML5, primarily by properly using XML and CSS. I’ll cover some minor data footprint
optimization pointers at the end of the chapter regarding replacing highly accurate float
numerics with nearly as accurate (short) integer numbers.

 Polygons: SVG Commands for Basic Closed Shape
 Polygon shapes , which we covered in Chapter 3 on styles, are shapes that have straight
lines on their perimeter, like triangles, squares, pentagons, hexagons, or octagons. These
are created with path data using basic MoveTo and LineTo commands. Let’s open the
CH3_Octagon SVG file we created using Inkscape’s polygon tool and turn this into SVG
command syntax data. Use a File ➤ Save As menu sequence, shown in Figure 7-1 , and
save the file as Plain SVG XML, so we can take a look at SVG XML syntax.

 Figure 7-1. Open CH3_Octagon.svg and use File ➤ Save As feature

http://dx.doi.org/10.1007/978-1-4842-1697-2_3

CHAPTER 7 ■ THE SYNTAX OF DIGITAL ILLUSTRATION: SVG COMMANDS

77

 Next let’s look at the File ➤ Save As Plain SVG feature.

 SVG Polygon Data Export: Using the File ➤ Save As ➤ Plain SVG
 Inkscape uses File ➤ Save As to save different data formats, as you learned in the previous
chapter. Save your Octagon as Plain SVG, as seen in Figure 7-2 , appending “_Commands”
to your name.

 Once you have given your Plain SVG file its custom name, such as
 Digital_Illustration_Fundamentals_CH3_Octagon_Commands.svg , you will be able to
differentiate it from the Inkscape artwork SVG.

 Next, find the file on your hard disk drive and open the SVG XML data using a plain
text editor. On Windows 8 this would be Notepad. You can right-click on the file name
and select the Open with Notepad option to accomplish this quickly and easily.

 Polygon SVG Syntax Editing: SVG XML Tags and Commands
 The next step in the work process is to open the Plain SVG XML file in your text editor, as
shown in Figure 7-3 . I like to use Notepad for Windows. The path data string is shown
in blue, and this is your raw SVG command syntax data for drawing your path for your
object; in this case it is an Octagon. Notice that it uses the SVG letter commands from
Table 7-1 . The path object itself is defined using the SVG XML <path> tag, and d= (data)
parameter. Inside the <path> tag there’s also an id= and style= parameter option as well,
for specifying a path name, assigned by Inkscape in this instance, and your style option
settings.

 Figure 7-2. Use File ➤ Save As menu sequence; select Plain SVG

CHAPTER 7 ■ THE SYNTAX OF DIGITAL ILLUSTRATION: SVG COMMANDS

78

 Later on in this chapter, we will take a look at how to optimize this <path> d= data,
as well as data inside other SVG XML tags.

 Spirals: SVG Commands for Basic Open Shapes
 Spiral shapes , which we covered during Chapter 4 on strokes and fills, are open shapes
that have lines or curves that are not connected (closed), spirals, arrows, asterisks,
crosses, or helixes. These are created with path data using basic MoveTo, CurveTo, and
 LineTo commands. Let’s open the CH4_Spiral.SVG file we created using Inkscape’s spiral
tool and turn this into SVG command syntax data. Use a File ➤ Save As menu sequence,
shown in Figure 7-4 , and save the file as Plain SVG XML, so we can take a look at SVG
XML syntax.

 Figure 7-3. Open CH3_Octagon_Command.svg file in a text editor

 Figure 7-4. Open CH4_Spiral.svg and use File ➤ Save As feature

http://dx.doi.org/10.1007/978-1-4842-1697-2_4

CHAPTER 7 ■ THE SYNTAX OF DIGITAL ILLUSTRATION: SVG COMMANDS

79

 Use the Select file to save to dialog to save the spiral in the Plain SVG file format, as
seen in Figure 7-5 . Notice I’m again appending “_Commands” to a filename, keeping the
original SVG file that contains the project artwork intact. If you name both files the same
name, the OS will replace your Inkscape SVG with the Plain SVG that you are using to
contain your SVG code.

 Figure 7-5. Use File ➤ Save As menu sequence; select Plain SVG

 Open this CH4_Spiral_Command Plain SVG XML file in your text editor as shown
in Figure 7-6 . As you can see, the filter effect (abbreviated as “fe” in XML markup)
makes this SVG data definition significantly more complex. This time I show a style filter
parameter reference in blue at the bottom, and how it is connected to the <filter> tag, at
the top, inside of the <defs> tag. Notice that your shape object path’s data string is always
contained inside of the <g> tag, which stands for “group.”

 Figure 7-6. Open the CH4_Spiral_Command.svg file in text editor

CHAPTER 7 ■ THE SYNTAX OF DIGITAL ILLUSTRATION: SVG COMMANDS

80

 Notice this object uses the a start point (MoveTo) and a Bézier Curve (CurveTo) and
creates the entire spiral structure by using only two SVG Commands (letter m and c) from
Table 7-1 , with the rest being curve vertex coordinates. This means you’ll be able to data
optimize this data string significantly, using the integer approach I will show you at the
end of the chapter. Since this is a fundamentals book, I won’t get into the complex XML
 <feFilterName> tags creating this filter effects structure.

 Gradients : SVG Commands for Your Heart Shape
 Custom shapes, such as the Bézier Heart we created in Chapter 2 and then styled in
Chapter 4 covering stroke and fill are more complex shapes featuring closed curves,
gradients, or patterns. These are created with path data using MoveTo, CurveTo and
 LineTo commands. Let’s open the CH4_Radial.SVG file we created using the Inkscape
Bézier Path tool and convert to SVG command syntax data. Use your File ➤ Save As
menu sequence, as shown in Figure 7-7 , and save the file as Plain SVG XML, so you can
take a look at SVG XML syntax.

 Use a Select file to save to dialog to save the heart in Plain SVG format, appending
“_Commands,” as seen in Figure 7-8 .

 Figure 7-7. Open CH4_Radial.svg and use File ➤ Save As feature

http://dx.doi.org/10.1007/978-1-4842-1697-2_2
http://dx.doi.org/10.1007/978-1-4842-1697-2_4

CHAPTER 7 ■ THE SYNTAX OF DIGITAL ILLUSTRATION: SVG COMMANDS

81

 Open this CH4_Radial_Command Plain SVG XML file in your text editor as shown
in Figure 7-9 . As you can see, the Linear Gradient and Radial Gradient structures are
again defined using the <defs> tag before they are used in the <g> tag’s <path> tag using
the style parameter’s fill:url and stroke:url definitions, which reference the id= parameters
defined for these gradients.

 Make sure to closely examine how these gradient and stop tags relate to each other in
the markup. Notice in the Inkscape file, seen in Figure 7-7 , that I have replaced the black
stroke around the heart object with a black to transparent, and red to transparent, radial
gradient stroke to give it a more subtle or natural look and to generate a more complex SVG
XML markup for you to examine and learn about SVG Commands, and SVG XML, from.

 Figure 7-8. Use File ➤ Save As menu sequence; select Plain SVG

 Figure 7-9. Open the CH4_Radial_Command.svg file in text editor

CHAPTER 7 ■ THE SYNTAX OF DIGITAL ILLUSTRATION: SVG COMMANDS

82

 SVG Data Optimization: Integer Values
 Let’s take a look at the SVG command data in Figure 7-9 more closely to see if it can
be optimized. As you’ll see, the coordinate data uses extreme precision floating-point
accuracy. This is seldom necessary for applications that write to screen display devices,
although it may be necessary for printing to a billboard or on the side of an office
building. For this reason a wise optimization work process is to round the floating-point
values to become integer values. These data values will use far less system memory
in Android Studio applications, a JavaScript application, or a JavaFX application, as
integers are allocated far less memory space than a floating point, often 100% to 200% less
memory space, depending on how Java logic defines numbers.

 As you can see in Figure 7-10 , the amount of data for a heart object is significantly
less than what is shown in Figure 7-9 . For many digital illustration projects this reduction
will be even more significant, as you will see after I optimize your spiral object, shown in
Figures 7-4 through 7-6 , next.

 It is important to note that if you have complex, multilayered projects, there’s
also a Layers as Separate SVG option, which is shown in Chapter 6 at the bottom of
Figure 6-6, so you can keep your SVG Path command data modularized layer by layer.
This is especially useful if you are coding JavaFX, for iOS and Android, or coding for
Android Studio 1.4, using Java 7and XML.

 Let’s take a look at the SVG command data in Figure 7-6 , so we can see if it can be
optimized. Open your Spiral_Command SVG file, if it is not still open on your desktop,
so that you can optimize the SVG command data string values inside of your <path> tag,
d= parameter’s string data values. As you see, the coordinate data uses extreme precision
floating-point accuracy.

 Figure 7-10. Convert your floating-point data into integer data

http://dx.doi.org/10.1007/978-1-4842-1697-2_6

CHAPTER 7 ■ THE SYNTAX OF DIGITAL ILLUSTRATION: SVG COMMANDS

83

 If you compare Figure 7-6 with Figure 7-11 , you will see that the reduction in SVG
command data, which is inside the d= parameter, in the area inside the quotation marks,
can be quite significant, in this case 60% to 70% less data, or 100% to 200% less memory
overhead as we’re using 16-bit integer memory areas instead of 32-bit or 64-bit floating-
point memory locations.

 The SVG command values inside of this d= data string are what will go inside of an
Array object in your Java, JavaFX, or JavaScript code, so this is the primary area in SVG
that you’ll want to optimize from a game programming, content publishing or application
development standpoint.

 I felt it was important to show this bridge between your digital illustration workflow
and your applications development and publishing (and possibly programming)
workflow, because the publisher of this book (Apress) specializes in programming and
technical or scientific educational books. Hope you don’t mind!

 Figure 7-11. Optimized path data values for your spiral object

CHAPTER 7 ■ THE SYNTAX OF DIGITAL ILLUSTRATION: SVG COMMANDS

84

 Summary
 In this seventh chapter, we looked at SVG Command Syntax and how the SVG XML
standard is used to export digital illustrations as data, which can later be modified
and utilized in other content publishing platforms, and in open source programming
languages. This is important if you ever wish to bridge your illustrations into the world of
interactive application development, by using popular open source content development
platforms such as Java, JavaFX, JavaScript, HTML5, Kindle, iOS, Blackberry, and Android.

 In the next chapter we take a look at how to “vectorize” raster imagery, using the
Inkscape Trace tool and work process.

85© Wallace Jackson 2015
W. Jackson, Digital Illustration Fundamentals, DOI 10.1007/978-1-4842-1697-2_8

 CHAPTER 8

 The Vectorization of Digital
Imagery: Image Tracing

 Now that you have a solid understanding of how to export Plain SVG XML data for
your programming and content publishing work process, let’s take a look at one of the
Inkscape tools that will employ a complex vectorization algorithm to do all of the work
for you. You have already learned that your vector artwork can be “rendered” into a raster,
pixel, or bitmap format, and in this chapter you will learn how to go in the other direction.

 We’ll look at the Inkscape Trace Bitmap algorithm, which will take the input bitmap
image that you import into Inkscape, just like you did in Chapter 5 , and “vectorize” it
with complex algorithms that analyze the pixels in the image and create your 2D vector
illustration SVG data, using your pixel pattern data.

 Inkscape Trace Bitmap: Vectorize Images
 Inkscape has a very impressive tool that is accessible using a Path ➤ Trace Bitmap menu
sequence and that implements a complex algorithm, actually a series of algorithms with
a front-end UI in a multi-tabbed control panel configuration, which we will be taking a
look at over the course of this chapter. Inkscape uses the Potrace bitmap tracing engine
by Peter Selinger . If you want to find out more about this software or get a stand-alone
version, visit the http://potrace.sourceforge.net code repository. Inkscape has plans
to support other vectorization algorithms in the future. Since this Potrace bitmap tracing
engine is now the vectorization tool currently in place in Inkscape we will focus on this
during this chapter, as it does a great job turning the bitmap images that you import into
Inkscape 0.91 into 2D vector illustration artwork for you and does this automatically. This
can save you a ton of time tracing over images manually using the Bézier Path tool , so I
think you’ll like this chapter quite a bit. Let’s get started because algorithms can be a lot of
fun to play around with and utilize, as they do your work for you!

http://dx.doi.org/10.1007/978-1-4842-1697-2_5
http://potrace.sourceforge.net/

CHAPTER 8 ■ THE VECTORIZATION OF DIGITAL IMAGERY: IMAGE TRACING

86

 Digital Image Source : Using Inkscape File ➤ Import
 The first thing we need to do is to find a bitmap image with a cool object in it that would
look good as a vector shape object to trace. There is a 3D car rendering that I use in my
digital image compositing and Android programming titles that fits this bill nicely, so we
will use that. It is shown in Figure 8-1 and is named: Digital_Illustration_Fundamentals_
CH8_3D_Car.png .

 Open Inkscape, and use a File ➤ Import menu sequence, as seen in Figure 8-2 , to
import the CH8_3D_Car.png digital image.

 Figure 8-1. A 640KB CH8_3D_Car.png bitmap at 964 by 512 pixels

 Figure 8-2. Use File ➤ Import menu sequence; open CH8_3D_Car.png bitmap image

CHAPTER 8 ■ THE VECTORIZATION OF DIGITAL IMAGERY: IMAGE TRACING

87

 This will bring up the Select file to import dialog seen on the left side of Figure 8-3 .
Since I haven’t created my book repository files yet, I used the CH8-FIG1.png file, instead.
As you can see, this dialog shows you that your file is 964 by 512 pixels. Click your Open
button, which brings up your png bitmap image import dialog, and select the Embed
Image Import Type and set None for your Image Rendering Mode . Get your Image DPI
from this digital image file that you are importing. Once you’ve set up all of these image
import options, click on your OK button.

 After your digital image appears in Inkscape, select the arrow tool, and then select
and move your image into the center of Inkscape, so that you can see it better.

 Trace Bitmap Algorithm: Configuring Parameters
 Now you are ready to apply the digital image tracing algorithm to this PNG24 image. This
algorithm will analyze the pixel data in the image based on color and contrast, and then
devise how to apply vector elements (lines and curves) to it using the settings that you
configure in the Trace Bitmap dialog, which is the primary subject of this section of the
chapter. Use the Inkscape Path ➤ Trace Bitmap menu sequence, shown at the top of
Figure 8-4 , and open the Trace Bitmap dialog, so that we can take a look at the different
panels that are organized using tabs, much like the floating palette docking area on the
right side of Inkscape.

 Figure 8-3. Import 3D Car image using Embed type and Image DPI From file

CHAPTER 8 ■ THE VECTORIZATION OF DIGITAL IMAGERY: IMAGE TRACING

88

 There are three tabs in the Trace Bitmap dialog, as seen in Figure 8-5 . The first
is the Mode tab , shown in the far-left panel in Figure 8-5 , which allows you to set an
operational, or functional, mode for this Trace Bitmap algorithm. The second is the
 Options tab , shown in the middle panel in Figure 8-5 , which has options for suppressing
speckles, which are isolated pixels as those of you who use Photoshop know from using
the despeckle filter, as well as smoothing corners and optimizing path data.

 Figure 8-4. Invoke the Path ➤ Trace Bitmap menu sequence

 Figure 8-5. Review the options in all three of the dialog tabs

CHAPTER 8 ■ THE VECTORIZATION OF DIGITAL IMAGERY: IMAGE TRACING

89

 There is also a Credits tab , shown on the far-right side of Figure 8-5 , which has the
Potrace web site and programmer name in it. Click on the Live Preview check box, as
I did in that tab to turn on the preview of what all of these tab settings should do once you
activate them.

 Let’s start with the bottom part of your Mode tab , as is shown in Figure 8-6 . Select
the Colors option, and you will see that your Preview on the right is now showing the
vectorization in color. This is shown on the left side, in Figure 8-6 . If you select your Grays
radio button option, you will see the similar result, only in grayscale, using no colors
(in this case, red). If you select one of these three radio buttons, you’ll generate multiple
scans that create a group of path objects in your SVG XML output. Other selections, at the
top, will generate one big contiguous path data object.

 Next let’s take a look at the Single scan creates a path section at the top of the
Mode tab, as shown in Figure 8-7 . The Brightness cutoff option , shown on the left side
of Figure 8-7 , uses the grayscale value of a pixel as an indicator for whether it should be
considered to be black or white. The Threshold can be set from zero , which is black
(or, off), up to one , which is white (fully turned on), similar to how an alpha channel works.

 The Edge detection radio button selector will produce an intermediate bitmap
that will look the least like your original image. This mode is similar to the Brightness
Threshold, except it only detects edges, and therefore, it will provide lines and curves that
would otherwise not be produced by the algorithm.

 Figure 8-6. Preview the Colors and Grays Multiple scans options

 Figure 8-7. Preview the options under the Single scan section

CHAPTER 8 ■ THE VECTORIZATION OF DIGITAL IMAGERY: IMAGE TRACING

90

 This is the setting I am going to use to trace this car. The Threshold setting for Edge
detection adjusts the brightness threshold to control whether any pixel that is adjacent
to the contrasting edge will be included in the trace. The setting can therefore adjust
the darkness (or thickness) of any edge in the output. The edge detection algorithm was
devised by J. Canny as a way of finding any iso-clines that are of similar contrast.

 The Color quantization radio button filter will find the edges where the image color
changes, even at uniform brightness and similar contrast levels. A Number of Colors
setting decides how many output colors there would be if a bitmap was in color. It then
decides black or white value based on whether the color has an even or an odd index value.

 Next, let’s move the source bitmap image up so that when we generate the trace, we
get a combination of these two (color image plus trace output), as shown in Figure 8-8 .
You are doing this so that you have room to move the image portion aside and then see
the resulting curves that this tracing tool generates.

 Select the Edge detection radio button option, and click on the OK button, to apply
the Bitmap Trace Algorithm.

 As you can see in Figure 8-9 , a path overlays the image.

 Figure 8-8. Drag the source image object to the top of Inkscape

CHAPTER 8 ■ THE VECTORIZATION OF DIGITAL IMAGERY: IMAGE TRACING

91

 You’ll have to pull the source image down and out of the way of the trace using the
 arrow tool , as shown in Figure 8-10 .

 Figure 8-9. The trace output initially overlays a source image

 Figure 8-10. Select, Move and then Delete Source Bitmap Imagery

CHAPTER 8 ■ THE VECTORIZATION OF DIGITAL IMAGERY: IMAGE TRACING

92

 Once you have pulled your source bitmap from behind your trace data, hit your
delete key, and delete it so that you can save just the vector data, just like we did in
Chapter 7 , so we can take a look at the SVG XML and the SVG Command string data.

 Optimizing Your Illustration: Export Plain SVG Data
 I saved just the trace data in an Inkscape SVG format using the name Digital_Illustration_
Fundamentals_CH8_Trace.svg and then a Digital_Illustration_Fundamentals_CH8_
Trace_Command.svg file to analyze using an OS text editing tool.

 As you can see, in Figure 8-12 , your SVG data is held in one massive path object.
The <path> tag is highlighted in blue.

 Figure 8-11. Save a Plain SVG file named CH8_Trace_Commands.svg

 Figure 8-12. Review an CH8_Trace_Commands.svg file SVG+XML data

http://dx.doi.org/10.1007/978-1-4842-1697-2_7

CHAPTER 8 ■ THE VECTORIZATION OF DIGITAL IMAGERY: IMAGE TRACING

93

 Since Notepad can’t handle all of the vector data that a trace algorithm generates,
another great way to get a view of a data footprint is using the file management utility.
In Windows this is called Explorer. As you can see, the source image’s SVG file is 866KB,
both image and a trace is 1271KB, and your trace alone is 407KB. 407 plus 866 is 1273, as
shown in Figure 8-13 .

 Next, let’s apply the Multiple Path; Colors Bitmap Trace algorithm setting. As you
can see in Figure 8-14 , you’ll get an entirely different result, featuring eight sets of
<path> data.

 Figure 8-13. Use file manager to see raster and vector filesize

 Figure 8-14. The Multiple Path Colors option creates many paths

CHAPTER 8 ■ THE VECTORIZATION OF DIGITAL IMAGERY: IMAGE TRACING

94

 As you can see, in Figure 8-15 , your SVG data is held in multiple <path> objects. Two
of the <path> tags are highlighted in blue, and their style=“fill:color” parameter holds the
color value that they traced in an eight-color multiple path setting.

 Again Notepad can not handle all of the vector data this trace algorithm generated,
so let’s use Windows Explorer to see what we are getting here. As you can see, your
multipath trace SVG output is 356KB, as shown at the bottom of Figure 8-16 .

 A great exercise for the end of this chapter would be to put what you learned in
Chapter 7 into practice and take these floating point 2.025364 six precision data values and
turn them into integers, reducing eight bytes down to one. This will turn your 408KB Single
Path Trace to 51KB (408KB/8), and your 356KB Multiple Path Trace to 44.5KB (356KB/8).

 The best way to get familiar with the Bitmap Trace tool in Inkscape is to try all of
the different settings and see if they give you the result that you are looking relative to
each of your source bitmap images, because there is no way to guess what an algorithm
of this complexity is going to do in every different and unique raster image vectorization
scenario.

 Figure 8-16. Use the File Manager utility to compare file sizes

 Figure 8-15. Review CH8_Trace_Multi_Commands.svg file SVG data

http://dx.doi.org/10.1007/978-1-4842-1697-2_7

CHAPTER 8 ■ THE VECTORIZATION OF DIGITAL IMAGERY: IMAGE TRACING

95

 Summary
 In this eighth chapter, we looked at the Inkscape Bitmap Trace Algorithm and how
to use it properly. This is important if you ever wish to bridge your digital imagery
into the digital illustration universe, and later, into the world of interactive application
development, by using popular open source content development platforms such as Java,
JavaFX, JavaScript, HTML5, Kindle, iOS, Blackberry, and Android.

 In the next chapter we take a look at how to “rasterize” vector illustration in the
client-side rendering engine, using the Inkscape SVG Filters menu and work process.

97© Wallace Jackson 2015
W. Jackson, Digital Illustration Fundamentals, DOI 10.1007/978-1-4842-1697-2_9

 CHAPTER 9

 The Algorithms of Digital
Illustration: SVG Filters

 Now that you have a solid understanding of how to apply the Inkscape Bitmap Trace
Algorithm and have some experience with exporting Plain SVG XML data for further
analysis, programming, or content publishing workflow, let’s take a closer look at SVG
Filters in the Inkscape Filters menu, as these can be a ton of fun to explore; and they can
take your artwork to a new level!

 We’ll look at the Inkscape Filters menu, which will take the input vector illustration
that you create in Inkscape, just like you did in Chapters 1 through 5 , and “rasterize” it,
using complex SVG Filter algorithms that analyze the vectors in your digital illustration
and create a 2D raster image result using SVG Filter Primitives , which you saw in SVG
XML, in Chapter 7 .

 SVG Filter Effects: Illustration Special FX
 SVG filter effects are supported in Inkscape using the Filters menu, and its 18 submenus,
yielding dozens of impressive special effects that can be applied to Scalable Vector
Graphics artwork. An SVG filter effect is comprised of a series of SVG filter operations
that are applied to a given source vector graphic to produce a modified image result, as
you have already seen in Chapter 7 , using an Inkscape spiral example. SVG Filter effects
are defined with SVG filter tag elements. An SVG filter property is set on the containing
(parent) tag element, or on a vector graphics element, to apply an SVG filter effect to it.
Each filter element can contain a set of filter “primitives” as its children. A filter primitive
performs one basic fundamental graphic operation, such as a Blend or Gaussian blur, on
one or more inputs. This algorithmic processing then produces the bitmap graphic result.
Most of these SVG filters represent some type of digital image algorithmic process; thus
the output from these SVG filter primitives will be one 32-bit raster (bitmap) digital image
using an ARGB format supported in Java and HTML5.

 Table 9-1 shows all the SVG Filter Primitives currently supported in the SVG Full
implementation, and which ones would be supported in the SVG Basic implementation.
No SVG Filter is supported whatsoever in the SVG Tiny implementation. Thus there are
three levels of SVG Filter implementation in open browsers, platforms, and devices. Be
sure and check your target publishing devices, application development platforms, and
browser to find out what SVG Filter implementation level it supports currently.

http://dx.doi.org/10.1007/978-1-4842-1697-2_1
http://dx.doi.org/10.1007/978-1-4842-1697-2_5
http://dx.doi.org/10.1007/978-1-4842-1697-2_7
http://dx.doi.org/10.1007/978-1-4842-1697-2_7

CHAPTER 9 ■ THE ALGORITHMS OF DIGITAL ILLUSTRATION: SVG FILTERS

98

 A source graphic, or the result from processing a filter primitive, can be used as an
 input, into one or more subsequent filter primitive processing algorithms, in a command
processing infrastructure that you create using Java, JavaFX, XML or CSS3.

 One application is to leverage a source graphic multiple times in your content
creation, web site, eBook, or application. This is a form of data footprint optimization as
only one asset needs to be transferred or stored in memory for multiple uses.

 For example, an SVG filter will allow you to use a single graphic for two different
assets. For instance, you could use a filter to create a monochrome copy of that source
graphic, blur it using Gaussian Blur , offset it using Offset filter , and thus create a drop
shadow effect. Or, you could just use the new Drop Shadow effect that was recently added
to SVG Filters!

 Illustration Effects: Inkscape Filters Menu
 Let’s get some hands-on experience with using these SVG Filters in Inkscape by using one
of our recent Chapter 8 projects and applying some of the different filters to it. Open up
your file you named Digital_Illustration_Fundamentals_CH8_Trace_Multi and drop
down the Filters menu. You will see 18 submenus, each of which are populated from

 Table 9-1. SVG Filter Primitives

 SVG Filter Primitive Tag Element Name SVG Basic Support

 Blend feBlend Yes

 Color matrix feColorMatrix Yes

 Component transfer feComponentTransfer Yes

 Composite feComposite Yes

 Convolve matrix feConvolveMatrix No

 Diffuse lighting feDiffuseLighting No

 Displacement map feDisplacementMap No

 Flood feFlood Yes

 Gaussian blur feGaussianBlur Yes

 Image feImage Yes

 Merge feMerge Yes

 Morphology feMorphology No

 Offset feOffset Yes

 Specular lighting feSpecularLighting No

 Tile feTile Yes

 Turbulence feTurbulence No

 Drop Shadow feDropshadow No

http://dx.doi.org/10.1007/978-1-4842-1697-2_8

CHAPTER 9 ■ THE ALGORITHMS OF DIGITAL ILLUSTRATION: SVG FILTERS

99

between 6 and 25 (or more) menu options. Clearly we cannot cover hundreds of SVG
filter algorithms and their settings in this chapter (or book), but we can take a look at
some of the more impressive and useful ones.

 Bevel Effects : Using the Filters ➤ Bevel Menu
 Let’s take a look at the Diffuse Light filter in the Bevels menu first, as it will allow us
to lighten up the image a bit and make it more presentable. As you can see, there is an
ellipses, or three dots, after the filter name, as is shown in Figure 9-1 . What this means is
that the filter has a control panel dialog, versus the filters which do not have any dots after
them, in which case they use “fixed presets” and simply apply an effect without giving you
any control over the effect.

 As you can see in Figure 9-2 , this filter allows you the ability to colorize your car,
using RGBA sliders, as well as an option to Smooth your image, change your Elevation
and Azimuth , and see a Live Preview of the SVG Filter effect, if you desire.

 Figure 9-1. The Filters ➤ Bevels ➤ Diffuse Light menu sequence

CHAPTER 9 ■ THE ALGORITHMS OF DIGITAL ILLUSTRATION: SVG FILTERS

100

 I used a Smoothness setting of 9 , an Elevation setting of 24 , an Azimuth setting
of 160 , and RGBA color settings of Red 140, Green 140, Blue 255, and Alpha 255,
respectively.

 Distortion Effects : Using the Filters ➤ Distort Menu
 Next, let’s take a look at the Felt Feather filter in the Distort menu, as it will allow us to
apply a special effect to the edges of our 3D Car digital illustration. Applying custom edge
effects to images and illustrations is a very popular thing to do these days, so this SVG
Filter Effect should be quite popular with the readers. As you can see, there are ellipses,
or three dots, after the filter name, as is seen in Figure 9-3 , meaning that this is another
filter that uses a control panel dialog. I am specifically looking at SVG Filters that utilize
a dialog so that you can get experience with the more complex SVG Filters, and learn
about the ones which give you the most creative control. Essentially, these customizable
filters are thousands of filters inside of one configurable SVG filter, since each setting
combination produces a different SVG Filter Effect. These are the most powerful SVG
Filters and the ones in Inkscape that you should focus most of your time on. Select the
Filters ➤ Distort ➤ Felt Feather menu sequence as is shown in Figure 9-3 , and let’s take a
look at another powerful SVG Filter Effect available inside of Inkscape.

 Figure 9-2. Smooth, Elevate, and Colorize the 3D Car a blue tint

CHAPTER 9 ■ THE ALGORITHMS OF DIGITAL ILLUSTRATION: SVG FILTERS

101

 Pull the control dialog off to the right, so you can see your source image, and then
select the Live Preview check box on the bottom left of the dialog to show the effect in
Inkscape. I used a Type of Out , 15 for Horizontal and Vertical Blur , 1 for Dilatation , zero
 Erosion , Fractal noise Turbulence , Complexity of 4 , Variation of 2 , Intensity of 50 ,
and 5 for Horizontal and Vertical Frequency . As you can see in Figure 9-4 , this provides a
really cool chaotic-edging special effect for the 3D car.

 Next, let’s take a look at digital painting and drawing special effects, as we’re going to
start to merge digital paint into the book starting with the next chapter.

 Figure 9-3. The Filters ➤ Distort ➤ Felt Feather menu sequence

 Figure 9-4. Set Dilation, Intensity, Turbulence, and Variation

CHAPTER 9 ■ THE ALGORITHMS OF DIGITAL ILLUSTRATION: SVG FILTERS

102

 Paint and Draw Effects : Filters ➤ Paint and Draw
 Let’s take a look at the Cross Engraving filter in the Image Paint and Draw menu next, as
it will allow us to apply those popular engraving effects to the source image, and make it
more usable for special effects that require a black and white source image that has high
contrast and clean edges. As you can see, this filter also has ellipses after the filter name,
as shown in Figure 9-5 , and it has a half dozen different options.

 I set a Clean-up setting of 0.5 , to provide a crisp edge and high contrast and
a Dilatation value of 1.0 , as can be seen in Figure 9-6 . In case you are wondering,
Dilatation comes from the concept of dilation, like your pupils when light hits them. It
literally means “the action of expanding: the state of being expanded,” according to the
 Merriam-Webster Dictionary .

 Figure 9-5. The Filters ➤ Image Paint & Draw ➤ Cross Engraving

CHAPTER 9 ■ THE ALGORITHMS OF DIGITAL ILLUSTRATION: SVG FILTERS

103

 I left Erosion at the default value of zero , and set the Strength to 0.6 , to get exactly
the effect I was looking for. A Strength is the most critical factor for this filter; you would
want to use the up and down arrows to adjust this using smaller increments and look
at the Live Preview to fine-tune the result you are looking for visually, using your finely
dilated pupils.

 Finally I set a Length value of 4.8 , to get long, strong lines in the Cross Engraving, which
looks like a wood cut, only using glass. These SVG Filters provide visually cool results.

 Next, let’s take a look at bump mapping effects, which are usually found in 3D
software, and add details to surfaces.

 Bump Effects : Using the Filters ➤ Bumps Menu
 Next, let’s take a look at the Wax Bump filter in the Bumps menu first, as it will allow us to
make our vector illustration look like it is made of dripped candle wax. Let’s also change our
source illustration, so close the CH8_Trace_Multi.svg and open up your CH8_Trace.svg file,
which is shown in Figure 9-7 .

 Figure 9-6. Set CleanUp, Dilation, Strength, Erosion, and Length

CHAPTER 9 ■ THE ALGORITHMS OF DIGITAL ILLUSTRATION: SVG FILTERS

104

 Drop down the Filters menu and select the Bumps submenu and then select the
 Wax Bumps SVG Filter Effect. Set the candle wax pink RGB color of Red 225 , Green 30,
and Blue 76 in the Bump tab, as seen on the right in Figure 9-8 , and select the options for
 Revert Bump and Live Preview . Set Transparency type to Atop and click the Options
tab, to set up the Wax Bump Options next.

 Figure 9-7. Open up your CH8_Trace.svg Inkscape Project

 Figure 9-8. Set Wax Bump options in your Bump and Options tabs

CHAPTER 9 ■ THE ALGORITHMS OF DIGITAL ILLUSTRATION: SVG FILTERS

105

 Set your Image Simplification slider to a value of 1.50 , and your Bump Simplification
slider to a value of 1.0 . Set Crop to 1.0 as well, and set the Background drop-down
menu to Color .

 Set Background opacity to zero, and set your Red , Green , and Blue sliders to zero
as well. Finally, click on the middle Lighting tab, which is shown on the far-right side in
Figure 9-9 , to set the final collection of settings for this SVG Filter.

 Set the light source to a white color by setting the RBG sliders to fully on, or a value of 255.
Set the Wax Bump Height to a value of 5.0 , and the Lightness to a value of 1.40 .

 Set the Precision value to 35 , and an Azimuth setting of 225 . Set your Elevation to 60
and set the Lighting blend drop-down to Screen and the Highlight blend to Screen as well.

 You can see the Live Preview of these settings in Figure 9-9 . If you like the effect, click
the Apply button; otherwise, change these settings until you get the result that you desire.

 Next, let’s simulate 3D, using your Protrusion Filters!

 Protrusion Effects : Using Filters ➤ Protrusions
 Next, let’s take a look at the Snow crest filter in the Filters ➤ Protrusions menu first, as it
will allow us to accumulate snow (shaving cream?) around the edges of our 3D car. Select
a Filters ➤ Protrusions ➤ Snow crest menu sequence, as shown in Figure 9-10 . This
control panel does not have many controls in it, but it at least has one, which allows you
to control drift .

 Figure 9-9. Set the Options, Lighting, and Bump for the Wax Bump

CHAPTER 9 ■ THE ALGORITHMS OF DIGITAL ILLUSTRATION: SVG FILTERS

106

 I set a Drift Size value of 0.5 to get a compact shaving cream type of effect on and
around the 3D car. Very cool stuff, as you can see in Figure 9-11 .

 Raster Processing : Using SVG Filters on Imagery
 You don’t have to only apply SVG Filters to vector imagery; you can apply it to raster
imagery as well, as seen in Figure 9-12 .

 Figure 9-10. Filters ➤ Protrustions ➤ Snow crest menu sequence

 Figure 9-11. Set Drift Size to a value of 0.5, and Live Preview

CHAPTER 9 ■ THE ALGORITHMS OF DIGITAL ILLUSTRATION: SVG FILTERS

107

 Open your CH8_Pre-Trace.svg file, as is shown in Figure 9-12 , and invoke a
 Filters ➤ Image Paint and Draw ➤ Pencil menu sequence. As you can see there are no
ellipses after the filter name, and so your image is turned into a pencil drawing, as can be
seen in Figure 9-13 . This filter does a great job of turning your digital image into a pencil
sketch, as you can see.

 In fact, this Pencil filter works so well that you might consider using it before you
run the Trace Bitmap algorithm we covered in the previous chapter to get better Bézier
curve data output. Sometimes you just have to see what comes out of your work process

 Figure 9-12. You can apply SVG Filter Effects to source imagery

 Figure 9-13. Run the Draw ➤ Pencil filter on your CH8_Pre-Trace

CHAPTER 9 ■ THE ALGORITHMS OF DIGITAL ILLUSTRATION: SVG FILTERS

108

and find innovative ways to make these algorithms work in your favor as you gain more
experience using them.

 The best way to get familiar with the SVG Filter Effects in Inkscape is to try all of
them, as well as all their various settings, and see if they give you a result that you’re
looking for relative to each of the source images or illustrations.

 There is really no way to ascertain what an algorithm of this complexity is going to do
in every different unique raster or vector image filter effect processing scenario.

 Summary
 In this eighth chapter, we looked at the Inkscape SVG Filter Effects and how to use the
Effects menu. This is important if you ever wish to bridge digital illustration to digital
images. In the next chapter, we take a look at digital painting. This will include Corel
Painter 2016 and using Inkscape Brushes.

109© Wallace Jackson 2015
W. Jackson, Digital Illustration Fundamentals, DOI 10.1007/978-1-4842-1697-2_10

 CHAPTER 10

 The Progression of Digital
Illustration: Painter 2016

 Now that you have a good handle on vector illustration as it pertains to the SVG
command syntax and SVG XML format using Inkscape, let’s take a closer look at Corel
Painter 2016 and the next level in digital illustration, called digital painting in the digital
illustration industry. I wanted to cover both an open source free software package as well
as professional level software, so the book really takes this subject to a new level.

 We’ll look at how to install Corel Painter 2016, how the software differs from SVG
software like Inkscape, and its main feature set. There’s a Free Trial Version that you can
use to follow along with during the remainder of the book if you don’t want to purchase
Painter 2016. This is located at: http://www.painterartist.com/us/free-trials/ if you
want to try the software out.

 Corel Painter 2016: Installing the Software
 Let’s start with installing Corel Painter 2016, which you can get from Corel. This is one
software package you’ll really want to add to your content production workstation and
pipeline. First you will download a Painter 2016 x64.exe file from Corel, then launch the
installer from your browser downloads area by selecting Run this file , or right-clicking
the EXE file and selecting Run as Administrator . This launches the Installer Wizard
dialog, seen in Figure 10-1 .

 Figure 10-1. Launch the Corel Painter 2016 InstallShield Wizard

http://www.painterartist.com/us/free-trials/

CHAPTER 10 ■ THE PROGRESSION OF DIGITAL ILLUSTRATION: PAINTER 2016

110

 As you can see in Figure 10-2 , once you accept a default installation location folder
of ProgramFiles/Corel/Painter2016 , you will get a progress bar dialog showing you the
installation as it progresses.

 Once your installation has completed, you will get this Installation Wizard has been
successful dialog , where you will want to select your Check for product updates option ,
as shown in Figure 10-3 . This will make certain that you have the latest Painter 2016 files
on your multimedia production workstation.

 Once you click on this Exit button, you will get the Painter 2016 Checking for
Updates dialog , shown on the left side in Figure 10-4 . For my installation, since I have
just downloaded the Painter 2016 software, this came up with the There are no updates
available at this time dialog.

 Figure 10-2. Install to/Program Files/Corel/Painter2016 folder

 Figure 10-3. Check for product update upon exiting setup dialog

CHAPTER 10 ■ THE PROGRESSION OF DIGITAL ILLUSTRATION: PAINTER 2016

111

 After you click on the OK button, you can open up the OS file management utility
and find your Painter executable file.

 Setting Up Painter 2016: Adding Painter in Taskbar
 Once you find the Painter executable file, you will then right-click on this executable and
use a Pin to Taskbar option to create the Quick Launch Icon for your desktop. This is
shown on the right side of Figure 10-5 in the context-sensitive menu, where you can
 Pin to Start (Menu), or Pin to Taskbar (or both).

 Figure 10-4. Checking for updates dialog; click OK when updated

 Figure 10-5. Find Painter2016x64.exe right-click Pin to Taskbar

CHAPTER 10 ■ THE PROGRESSION OF DIGITAL ILLUSTRATION: PAINTER 2016

112

 Once you have a Quick Launch Icon, you can then click on it anytime to launch
Painter 2016. Let’s do that now. You will get the Painter 2016 startup screen, as shown
in Figure 10-6 .

 Once Painter 2016 starts you’ll then get a control panel seen in Figure 10-7 where you
can learn Painter or get content.

 Figure 10-6. Click the QuickLaunch Icon in TaskBar to launch it

 Figure 10-7. The Painter 2016 Startup Screen’s User Interface

CHAPTER 10 ■ THE PROGRESSION OF DIGITAL ILLUSTRATION: PAINTER 2016

113

 I like to leave the Show this at startup option selected so that I always have the
Painter 2016 control panel available to me, in case I ever need it later on for any reason.

 If you do not select anything inside the startup control panel, a time-out will
eventually bring up the New Image dialog automatically, so that you can create a new
image to work on. I named mine Digital_Painting_CH10 , as you can see in Figure 10-8
and accepted the default values for the new image dialog.

 Next, let’s take a look at how to install Painter Brush Packs , which allow you to add
powerful tools to Painter 2016.

 Enhancing Painter 2016: Installing Brush Packs
 Corel offers something called Painter Brush Packs so you can enhance your Painter 2016
installation with some additional physics-based brush settings, which we will introduce
you to in this chapter, and cover in greater detail during Chapter 11 . We will take a closer
look at how to create your own custom brush; however Painter artists have spent a lot of
time creating these Brush Pack collections of custom brushes, which can save you a ton
of time doing this on your own, and allows you to get right down to creating your digital
painting artwork.

 If you purchased and downloaded any of these Corel Brush Packs, you probably
downloaded them to the same folder location as the Painter2016x64.exe file. In my case
this was a C:/Painter2016 folder, which is shown on the right side of Figure 10-9 .

 Figure 10-8. A New Image dialog shows after Start-Up times out

http://dx.doi.org/10.1007/978-1-4842-1697-2_11

CHAPTER 10 ■ THE PROGRESSION OF DIGITAL ILLUSTRATION: PAINTER 2016

114

 As you can see I downloaded 11 of the Corel Brush Packs, allowing me to enhance
Painter 2016 with powerful physics-based brush engines to enhance my creativity by an
order of magnitude allowing me to get to the actual client project workflow rather than
building the digital painting brush tools that I will need to create those client deliverables.

 Next, let’s install one of these Brush Packs, to see how they all would be installed.
Double-click on your DustandDebris installer EXE, or any of the Brush Packs that you
have decided to purchase and download, and launch the installation process.

 Your first dialog will be an Extracting dialog, shown on the left side in Figure 10-10 .
Next, you should get the License Agreement dialog, where you need to accept a license
agreement.

 After you click on the Install button, which is shown in the middle of Figure 10-10 ,
you will get an Installing progress bar dialog, shown on the right side of Figure 10-10 .

 Next, let’s launch Painter 2016 and make sure that it is working, and take a look at the
primary areas in Painter’s user interface, which are located at the top of the software as
well as in draggable palettes that dock into place at the sizes and bottom of the screen,
as you can see in Figure 10-11 . There are only three floating palettes, six panes with tabs,

 Figure 10-9. If you have any custom brushes, install them next

 Figure 10-10. Launch Installer Wizard, and accept the agreement

CHAPTER 10 ■ THE PROGRESSION OF DIGITAL ILLUSTRATION: PAINTER 2016

115

two floating toolbars, and one drop-down Brushes selector open in the default Painter
2016 configuration. I pasted part of the Window menu in the middle of the screen, to
show some of the other palette and tab options you can open in Painter, some of which
are shown in Figure 10-12 . As you can see, Painter is quite a complex piece of software.

 Now that we know Painter works, let’s take a look at how it approaches digital
illustration. We’ll take a tour of the UI to get a closer look at the complexity lurking under
the hood.

 Painter 2016: Vectors, Rasters, and Advanced Code
 Corel Painter started out decades ago as Fractal Design Painter as a competitor to
 CorelDRAW , which was the first software to combine vector illustration and raster
imaging into one unified program. Corel acquired Painter, and this latest 2016 version
combines vector, raster, and algorithms, simulating painting using raster brushes , along
vector strokes . Painter’s algorithms control how the brushes react to strokes.

 The best way to take a look at what Painter offers is to take a look at tools , palettes ,
 panes (or tabs) that it offers, which can be seen in Figure 10-12 . The Painter canvas is
always shown using a blue window border, whereas the rest of the UI is in grayscale.
Brushes are always available at the top left, and settings for the currently selected brush,
are along the top.

 Figure 10-11. Launch Painter 2016, and take a tour of its GUI

CHAPTER 10 ■ THE PROGRESSION OF DIGITAL ILLUSTRATION: PAINTER 2016

116

 Starting at the left, your Underpainting and Restoration panes are used for
advanced photographic image restoration, and will be covered in my Digital Painting
Techniques title (Apress, 2015). These allow you to restore or enhance your digital
image and digital painting assets. The Layout Grid pane allows you to create grid layout
guidelines for your digital painting content creation work process. The next two over are
 Flow Maps and Auto Painting , which allow control over how the brush imagery reacts
to the stroke dynamics (from the hardware tablet, and pressure-sensitive stylus). The
next two over are an organic paint Mixer pane and the Divine Proporation pane , which
allows you to paint based on the Fibonacci spiral found in nature by harnessing the
complex Fibonacci algorithms built right into Painter. The tall palette shown selected
(blue outline) in Figure 10-12 , which has several panes docked into in, including the Size ,
 Color , Angle , Spacing , Impasto , Blending, and Stroke Jitter , has more controls over
how your Painter Brush will react to your stroke dynamics.

 The next two smaller palettes, and smaller toolbar, will allow access to custom
 Scripts and real-time Audio Settings for brush stroke dynamics (floating panes), and
access to different patterns , gradients , nozzles , weaves , and brush looks (floating
toolbar). Nozzles allow you to paint with images along strokes.

 We’ll get into Brushes and Nozzles in greater detail in Chapter 11 . The Primary
 Painter Toolbar , seen on the right side of Figures 10-2 and 10-3 , holds your tools that
you’ll be using to create your digital paintings with. The three palettes to the right of that
are a Navigator , allowing you to navigate, or scroll around large paintings, the Color
wheel and swatches, and Layers and Channels , which we will be learning about during
Chapter 12 , covering using multiple layers, to create composite digital illustration assets,
content, and artwork.

 Finally I added Figure 10-13 to show you how to find the Brush Packs that you
installed earlier in the chapter, as they are not readily evident in the user interface. To
locate these, drop down the Painter Brushes navigator at the top left of your Painter 2016
software, scroll the left pane down to the bottom, and you will find the Brush Packs there,
shown in Figure 10-13 .

 Figure 10-12. Showing some of the powerful floating palettes

http://dx.doi.org/10.1007/978-1-4842-1697-2_11
http://dx.doi.org/10.1007/978-1-4842-1697-2_12

CHAPTER 10 ■ THE PROGRESSION OF DIGITAL ILLUSTRATION: PAINTER 2016

117

 Summary
 In this tenth chapter, to take a short break from Inkscape, we installed and looked at a
professional illustration software package from Corel called Painter 2016 . I did this so
that over the next few advanced chapters, covering things such as brushes and layers , we
could look at an open source software package as well as a professional software package,
just like I do in my Digital Image Compositing Fundamentals title (Apress, 2015). We will
look at brushes in greater detail during the next chapter.

 Figure 10-13. Ensure Brush Pack you installed is on Brush menu

119© Wallace Jackson 2015
W. Jackson, Digital Illustration Fundamentals, DOI 10.1007/978-1-4842-1697-2_11

 CHAPTER 11

 The Airbrush of Digital
Illustration: Using Brushes

 Now that you have both Inkscape 0.91 and Corel Painter 2016 on your digital illustration
workstation and have learned about the next level in digital illustration called digital
painting, I want to cover the topic of using brushes, in both your open source free
software package, as well as for professional-level software, so that we can keep covering
more advanced topics as this book progresses.

 We will look at how to implement Inkscape brush strokes, which is surprisingly
robust at digital painting for an SVG XML generation software package, as well as in Corel
Painter, which is focused more on digital painting than digital illustration.

 Inkscape Brush Strokes: Digital Painting
 Inkscape hasn’t put an emphasis on brush-based digital painting in the way that Corel
Painter has, as you can tell in Figure 11-1 , by noticing the fountain pen that is currently
being used for the Inkscape Draw Calligraphic or Brush Strokes tool. That being said,
there are still a dozen different settings for your brush stroke design work process as well
as a Presets drop-down where you can store cool brushes, or use the ones that Inkscape
offers, so Inkscape is making steady progress in the area of digital painting. What is even
more significant in Inkscape’s ongoing support of digital painting is that there are a few
icon toggles that specifically support digital painting tablet hardware settings such as
stylus pressure and stylus angle, so anyone who tells you Inkscape isn’t supporting or
focusing on brush strokes and digital painting needs to take a look at the Inkscape 0.91
 Draw Brush Strokes Setting Bar at the top of the software, which can be seen in Figure 11-1
and which we will be looking at in detail in this first section of the chapter.

CHAPTER 11 ■ THE AIRBRUSH OF DIGITAL ILLUSTRATION: USING BRUSHES

120

 Calligraphy Brush Stroke Tool: Basic Style Setting
 Open Inkscape and select a Calligraphic and Brush Stroke tool from the toolbar, and draw
brush strokes on your canvas.

 As you can see in Figure 11-1 , you can click on Fill and Stroke indicators, at the far
right of the Brush Stroke Setting Bar at the top of Inkscape, to configure the style of the
brush stroke, which I set to be a black magic marker effect, for now.

 Click your Fill and Stroke indicator color bars, circled in red on the right-hand side
of Figure 11-1 , and bring up your Preferences ➤ Calligraphy dialog, which is shown in
Figure 11-2 .

 Figure 11-1. Use Inkscape’s Draw calligraphy brush strokes tool

CHAPTER 11 ■ THE AIRBRUSH OF DIGITAL ILLUSTRATION: USING BRUSHES

121

 I checked the Show selection cue and the Select new path tool helper options, as
you can see, and I set the Style of new objects option to This tool’s own style . You can set
these Fill and Stroke indicators on the right by using a button underneath them labeled
“Take from selection,” which copies the style from a selection. You can also set these style
characteristics for a brush stroke by selecting the stroke after you lay it down. The reason I
set my brush tool to black is so I can see it better.

 I created a loopy W, using the Brush Strokes tool, shown in Figure 11-1 and 11-3 ,
and then selected it and left the Fill as Black, and I set the Stroke style to 2 pixels and the
 Stroke paint to a magenta value by using an RGB color value of Red 216 (85%), Green
zero, and Blue 216 (85%). I copied and then pasted the Stroke style dialog over the canvas
to show these settings.

 Figure 11-2. Set Brush Stroke Calligraphy in Preferences dialog

CHAPTER 11 ■ THE AIRBRUSH OF DIGITAL ILLUSTRATION: USING BRUSHES

122

 Now that we have covered the basics of stroke colors and styling, let’s take a look at
the stroke dynamics settings that allow Inkscape to do at least some of what Painter 2016
does in the digital painting realm of digital illustration workflows.

 Brush Stroke Configuration : Advanced Settings
 If you don’t want to design custom Inkscape brush stroke dynamics configurations, which
is what you’ll be learning about in this section, you can use brush stroke presets, shown
on the left side in Figure 11-4 , in the brush drop-down menu selector.

 Figure 11-4. Brush Stroke presets, stylus pressure, and Caps

 Figure 11-3. Style brush stroke in Stroke Style or Stroke Paint

CHAPTER 11 ■ THE AIRBRUSH OF DIGITAL ILLUSTRATION: USING BRUSHES

123

 Also shown, selected in blue, on the left side of Figure 11-4 , is the “Use the pressure
of the input device to alter the width of the pen” option toggle icon, which allows
Inkscape the ability to use your digital painting tablet or stylus hardware.

 Also shown selected in blue, and with the yellow tooltip pop-up helper message
showing, is the Caps spinner . This allows you to make the “caps” at the end of the brush
strokes protrude more than they otherwise should. Use caps for a visual painting guide to
help you lay down the brush strokes you want to paint.

 There’s another feature toggle icon, seen on the left in Figure 11-5 , which automates
a tracing process by looking at the background contrast (light versus dark) and adjusting
the brush width to match pixel contrast (darkness), making traces easier.

 The Mass setting, shown on the right side of the screen, adds mass to your brush
stroke, which makes the pen drag behind the stroke the higher the value you set, the more
drag you get.

 In physics, mass allows an object to have inertia. The higher you set the Mass setting
for Inkscape’s calligraphy tool, the more it will “smooth out” sharp turns and quick
jerks in your brush strokes. The default value (of 2) for the setting is initially set small so
that the tool is fast and responsive, but you can increase this Mass and get a slower and
smoother pen.

 The fixation parameter, shown highlighted in Figure 11-5 in blue in the middle of
the screen, controls a level of stroke contrast between thin and thick strokes based on
stylus angle.

 A fixation value of 0 means that a brush angle is always constant, and so the stroke
will be uniform no matter what the stylus angle. This could be said to give the least
calligraphic effect and so you’ll get a very non-calligraphic stroke, as can be seen in
Figure 11-1 , where we have a very low setting of 16.

 A fixation value of 100 means that a brush stroke should rotate freely, resulting in
a stroke perpendicular to the stylus, like a fountain pen. This results in an exaggerated
calligraphy stroke, as can be seen in Figure 11-6 , where I used a very high-fixation setting
of 100, shown circled in red at the top of the screen.

 Figure 11-5. The Trace lightness, Fixation, and Mass settings

CHAPTER 11 ■ THE AIRBRUSH OF DIGITAL ILLUSTRATION: USING BRUSHES

124

 Decreasing a fixation value allows your calligraphic pen to turn less and less relative
to the direction of your stroke.

 The third feature toggle icon, which has what looks like a protractor on it, can be
seen in blue in the middle of Figure 11-7 . This turns on your tablet stylus hardware’s tilt
feature. If you turn this on the Angle spinner is grayed-out, as you can see, because the tilt
of your stylus is controlling this value.

 The Wiggle slider controls the waver and “wiggle” of the brush stroke, and is akin to
the resistance of the paper to the movement of your stylus (or mouse). The default is set
to zero, the minimum value possible, and increasing this parameter makes your canvas

 Figure 11-6. A fixation setting of 100 gives calligraphy stroke

 Figure 11-7. Stylus tilt toggle icon and Wiggle slider setting

CHAPTER 11 ■ THE AIRBRUSH OF DIGITAL ILLUSTRATION: USING BRUSHES

125

surface (paper) more and more slippery. If the Mass setting is a high data value, your
stylus will tend to run away when sharp turns are implemented. If your Mass setting is
zero, high wiggle values will make brush strokes wiggle erratically.

 The last two settings, shown selected in blue and with a tooltip pop-up deployed in
Figure 11-8 , are a Thinning spinner and a Tremor slider . The Tremor setting is there to
control the slight wavering, common with calligraphy strokes. Tremor ranges from 0 to 100,
producing anything from slight unevenness (1–16) to wild blotches and splotches (80–100).
A proper use of Tremor will significantly expand your creative use of the Brush tool.

 If you set the Thinning parameter to a nonzero value, a brush stroke width would
vary with velocity, controlled by this Thinning parameter. The parameter value ranges
from 100 to 100 with positive values making rapid strokes thinner, and negative values
making rapid strokes broader. The default value is 0.10 and implement a very moderate
thinning of fast brush strokes.

 Painter 2016 Brushes: Dynamic Painting
 As amazing as it is that Inkscape has a brush stroke tool that uses pressure and tilt sensitive
stylus and table hardware, and therefore will allow digital painting to be performed with
open source software, there’s a paid software package that is taking digital painting to new
levels year after year, with the latest Painter 2016 version released just in time for me to be
able to include coverage of this latest digital painting technology for this book. I will also
be writing a Digital Painting Techniques title for Apress during the last two months of 2015
that should be available from Apress sometime in the last quarter of 2015.

 Manual Painting: Using Painter’s Cloning Feature
 One of the most popular work processes in Painter is using an image as a guide for brush
color, which is taken from a source image and then painted by the user onto a cloned
image canvas. I will show you this work process first, and then later take a look at Auto-
Painting where you can have Painter 2016 do all of the work for you. The first thing that
you will need to do, as you can see in Figure 11-9 , is to open a source image that you want
to create a digital painting out of using the File ➤ Open menu sequence. Find the Niki.png
image in the book repository and open it. This Niki image is a PNG24 from my Digital
Image Compositing (Apress, 2015) title, which I wrote earlier this year, about the Adobe
Photoshop CS6 and GIMP 2.8 image editors.

 Figure 11-8. The Thinning spinner setting and the Tremor slider

CHAPTER 11 ■ THE AIRBRUSH OF DIGITAL ILLUSTRATION: USING BRUSHES

126

 The next step is to use your File ➤ Clone menu sequence , which is shown on the
left-hand side of Figure 11-10 . This will “clone” the original source image that you opened
up first, and you can then paint on top of it, or edit it in any way that you wish, or even fill
it with solid color, so as to create a blank canvas. Painter has so many different options, it
will blow your mind, and mastering it over the next few years should be fun!

 The next step will be to select the original Niki source image, shown on the right side
in Figure 11-11 , and then select the Dropper tool icon , shown circled in red with an oval
on the right side of the screen shot in the Painter primary toolbar.

 Figure 11-9. Use File ➤ Open and select a Niki.png source image

 Figure 11-10. Use File ➤ Clone to create a clone image to paint

CHAPTER 11 ■ THE AIRBRUSH OF DIGITAL ILLUSTRATION: USING BRUSHES

127

 Using the Dropper tool, select a color from the Niki.png source image to use as a
background color. I liked that vanilla ice cream color, in the ceiling panels. I circled the
area that I selected the color from in red, in Figure 11-11 , so you could see where I clicked
the Dropper tool to select the color value.

 Once you select the fill color it will set the Color tab and its color wheel widget in
Painter to display that particular color value, in this case, this is Red 229 , Green 214 , and
 Blue 191 , as you can see on the right side in Figure 11-11 .

 Now you have a nice creamy background color that you can set for your cloned
image that you will be painting on with the source image pixel color values going to the
paint brush engine algorithm.

 Since Painter 2016 is “modal,” like Photoshop, and GIMP, you’ll have to select the
cloned window before you do the Fill.

 Next select the cloned image window, which is currently named Untitled-2 , until
we do the Save As in the next step and rename this Chapter-11-Brushes.riff. Use your
 Edit ➤ Fill menu sequence , which is shown on the left side in Figure 11-12 , and fill this
window with the cream color. This will paint over and obscure the image data that has
been cloned (copied) from your source Niki.png PNG24 digital image that you opened or
imported into Painter 2016.

 Figure 11-11. Use the Dropper tool to select a cream background

CHAPTER 11 ■ THE AIRBRUSH OF DIGITAL ILLUSTRATION: USING BRUSHES

128

 Once you invoke this Edit ➤ Fill menu sequence, you will get the Fill dialog where
you can use the Current Color (crème) Fill with : setting from the drop-down menu, and
set an Opacity, if you like, to cross-fade the fill color with the cloned image pixel color
values. I used the Opacity value of 100% .

 Figure 11-12. Fill your clone image using the Edit ➤ Fill menu

 Figure 11-13. Select Fill with: Current Color and Opacity: 100%

 Before I started this clone painting process, I used the File ➤ Save As menu sequence ,
seen in Figure 11-13 , and I saved the file as Chapter-11-Brushes.rif (or .riff, for Mac OS X).

CHAPTER 11 ■ THE AIRBRUSH OF DIGITAL ILLUSTRATION: USING BRUSHES

129

 Next, drop down the Painter Brushes selector in the top left of the Painter user
interface and select the Cloners group from the left side of the drop-down UI selector, as
is shown in Figure 11-15 . I selected a Painter Chalk Cloner 2 brush , whose preview can
be seen at the bottom of the drop-down selector UI.

 Next I selected a fairly fine brush size value of 10, as this will give me more detail in
the resulting painting. Figure 11-16 shows this setting, circled in red at the top, as well
as some of my brush strokes that I started in the facial area, so that you can see how the
details can come through in the paint!

 Figure 11-15. Select the Cloners Brush Group and Chalk Cloner 2

 Figure 11-14. Use File ➤ Save As and save as Chapter-11-Brushes

CHAPTER 11 ■ THE AIRBRUSH OF DIGITAL ILLUSTRATION: USING BRUSHES

130

 Automatic Painting : Using Painter’s Auto-Painting
 Next I am going to show you how to have Painter 2016 do all the digital painting work for
you, using the Auto-Painting floating palette in conjunction with the Underpainting
floating palette. You would start this work process the same way that you did in Figure 11-9 ,
but instead of using a File ➤ Clone menu sequence, use a File ➤ Quick Clone menu
sequence, which is shown in Figure 11-17 .

 This will open an auto-clone window, which I saved using a Chapter-11-Auto-Paint.rif
file name. It also opens your Clone Source floating palette with Niki in it, shown in
Figure 11-18 .

 Figure 11-16. Set Brush Size to 10 and paint in the facial area

 Figure 11-17. This time, use a File ➤ Quick Clone menu sequence

CHAPTER 11 ■ THE AIRBRUSH OF DIGITAL ILLUSTRATION: USING BRUSHES

131

 Figure 11-19. Select Smart Strokes ➤ Watercolor Spatter Water

 Next, drop down the Painter Brushes selector, and select the Smart Strokes Group,
and select a Watercolor Spatter Water brush from the right side of your drop-down
menu, as is seen in Figure 11-19 . There is a preview of what a brush will look like located
at the bottom of the Painter Brushes drop-down selector user interface, so you can
preview the effect of these brushes.

 To get Painter 2016 to create a digital painting for you automatically, click on the Play
button I circled in Figure 11-19 , until you get the result that you wanted. After that, click
on the Stop button, shown highlighted in blue, in Figure 11-20 .

 Figure 11-18. Clone Source floating palette appears showing PNG

CHAPTER 11 ■ THE AIRBRUSH OF DIGITAL ILLUSTRATION: USING BRUSHES

132

 As you have seen during this chapter, Painter 2016 is an extremely advanced
algorithmic digital painting engine, which a producer will need to put in years of practice
to master.

 If you want to create original artwork for your clients, it will be well worth your time
and a lot of fun to explore in that process anyway, so I suggest mastering this powerful
paint and illustration software and then adding it to your multimedia content production
tool set.

 Summary
 In this eleventh chapter, we covered using brushes and brush strokes in both Inkscape as
well as the digital painting and illustration software package from Corel called Painter
2016 . We looked at the Inkscape Calligraphic and Brush Stoke tool and its settings in
the first half of the chapter, and then we looked at manual digital painting using Clone
in Painter, and automatic digital painting using the Quick Clone work process after
that. We will look at layers and channels and digital image and painting and illustration
compositing in greater detail during Chapter 12 .

 Figure 11-20. Click Play and Stop icons to control Auto-Paint

http://dx.doi.org/10.1007/978-1-4842-1697-2_12

133© Wallace Jackson 2015
W. Jackson, Digital Illustration Fundamentals, DOI 10.1007/978-1-4842-1697-2_12

 CHAPTER 12

 The Compositing of Digital
Illustration: Using Layers

 Now that you have learned how to use brushes using brush strokes with tablet and stylus
hardware to create digital painting artwork in digital illustration software packages, the
next logical step would be to learn how to leverage your Layers Palette to organize your
digital illustration projects. A layer allows you to isolate components of your artwork, as
well as to apply special imaging effects, such as those provided using SVG Filters covered
in Chapter 7 , to individual layers. The process of using multiple layers (rather than just
one, called the base or background layer) to create a complex composition is called
“compositing” and was first offered in digital imaging software packages such as Adobe
Photoshop, Corel PaintShop Pro, and GIMP.

 Originally, in early digital imaging software revisions, layers just isolated masked
objects, like vellum on an overhead projector allows you to add to your presentations. The
layer was designed to hold image compositing components, but at a certain point in the
development cycle, developers started adding other cool features to layers, making them an
order of magnitude more powerful. We will be learning about masking and alpha channels
palettes during this chapter as well, as they are intertwined. In fact, we will also be covering
some digital imaging concepts that also apply to digital painting or digital illustration.

 Painter and Inkscape have a stable of layer organization tools, which can be used to
organize very complex digital paint or digital illustration compositing pipeline, or special
effect pipeline construct. In fact, layers are the reason for the term “pipeline” as they
allow you to construct a series of moves or algorithms together, to control the processing
of your artwork.

 You’ll be learning all about Inkscape and Painter layers during the course of this
chapter. Let’s get started; we have a lot to cover! Layers and layers of relevant layers
information are contained in this chapter, in fact; and no pun is intended!

 Alpha Channels: Defining Transparency
 Since each layer contains an alpha channel that defines the transparent areas (or it wouldn’t
be able to be used as a layer), let’s take a look at how alpha channels define digital image,
painting or illustration pixel transparency values, and how layers and their channels are
used for compositing digital illustration and digital painting content. Each layer will need

http://dx.doi.org/10.1007/978-1-4842-1697-2_7

CHAPTER 12 ■ THE COMPOSITING OF DIGITAL ILLUSTRATION: USING LAYERS

134

to support an alpha channel to define what will be seen on that layer and what should show
through on the layers underneath it.

 Alpha channels provide transparency support in different digital content production
software, as well as in your content publishing platforms, such as HTML5, Java, JavaFX,
Android, EPUB3, Kindle, and the like, which I will be covering in the final two chapters of
the book covering programming and publishing.

 Layer Compositing: Complex Alpha-based Pipeline
 Digital layer compositing always involves the seamless blending together of more than
one layer of digital painting, and as you might imagine, per pixel transparency is an
extremely important concept. Digital layer compositing is used from graphic design, to
feature film, to 3D game design, to digital illustration and digital painting, to interactive
applications development.

 Digital layer compositing needs to be used when you want to create “content” on the
display that appears as though it is one single image (or illustration) but is actually the
seamless collection of more than one composited artwork layer.

 One of the principle reasons you will set up your image, illustration, painting, video,
or animation composition, should be to give you precise control over various elements in
digital layer compositing software such as Painter , Inkscape , Photoshop , and GIMP . This
is done by having artwork components isolated by using layers to allow you to position,
blend, rotate, translate (move or animate), and apply special effects to individual paint or
illustration (or imaging) artwork composition components.

 Channel Data: Red, Green, Blue, and Alpha Channel
 To accomplish multilayer compositing you always need to have an alpha channel
transparency value , which you can utilize to precisely control the blending of the pixel’s
color with the pixels in the same X,Y image location on other layers below it. Like the
 RGB color channels , alpha channels can have 256 levels of transparency, ranging from
 100%transparent , to 100%opaque . You saw this early on in this book in Chapter 3 , in
Figure 3-3 .

 Each pixel in a digital illustration, digital painting, digital image, or digital video
composition will have different alpha transparency data, just as each pixel will have
different Red, Green, or Blue color data values associated with the pixel.

 You saw during Chapter 6 , in Figure 6-5 , that your alpha channel transparency
data values are shown for each pixel using a checkerboard pattern . This convention is
the same for digital imaging, digital illustration, digital painting, digital video, and even
application development environments such as IntelliJ, Android Studio, NetBeans
(Java, JavaFX, and HTML5), and Eclipse.

 Masking: Using Alpha Channel Data for Selections
 Alpha channels aren’t only used for defining transparent areas in your compositing
pipeline (layer stack); they can also be used for more creative purposes, such as storing
 selections . As you observed in Figure 6-5 , I have the heart element I created in an

http://dx.doi.org/10.1007/978-1-4842-1697-2_3
http://dx.doi.org/10.1007/978-1-4842-1697-2_3#Fig3
http://dx.doi.org/10.1007/978-1-4842-1697-2_6
http://dx.doi.org/10.1007/978-1-4842-1697-2_6#Fig5
http://dx.doi.org/10.1007/978-1-4842-1697-2_6#Fig5

CHAPTER 12 ■ THE COMPOSITING OF DIGITAL ILLUSTRATION: USING LAYERS

135

Inkscape digital illustration software package on its own layer, seamlessly and perfectly
defined using the alpha channel data. All digital content composition software, whether
it is for imaging, painting, illustration, or video, will contain layer command (tool)
options for selecting the RGB color data in the RGB channels using the alpha channel
transparency data values in the A channel, when 32-bit RGBA support is available.

 This is the primary use, in fact, for the PNG32 image file format, as the format
needs to carry the object’s selection set data in the alpha channel. Once this PNG32 is
imported into one of your digital compositing genres mentioned above, the “select using
alpha channel values” work process will then allow you to extract the RGB pixels for
only your intended object (element), allowing for a layer-based compositing pipeline
implementation.

 This RGBA support you will find in all digital composite (layer) capable multimedia
content production genres allows you to “bridge” these genres together using alpha
channel selection capable, PNG32 RGBA format. Let’s bridge a digital illustration with the
Niki.png digital image that I used in Chapter 11 , next.

 Using Masked Imagery: A Simple Layer Composite
 Let’s use GIMP again, and open up your PolkaHeartStroke.png image, using the GIMP
 File ➤ Open menu sequence. As you can see in Figure 12-1 , you can either right-click on
a layer to select the Alpha to Selection menu option, or, you can click the Fuzzy Select
Tool , seen selected in blue at the top right, and select its “select transparent areas” option,
which is seen circled in red, in the middle of the right-hand side of this screenshot.

 Figure 12-1. Use File ➤ Open ➤ PolkaHeartStroke.png in GIMP 2.8

http://dx.doi.org/10.1007/978-1-4842-1697-2_11

CHAPTER 12 ■ THE COMPOSITING OF DIGITAL ILLUSTRATION: USING LAYERS

136

 Next, use the File ➤ Open as Layers menu sequence, as is shown in Figure 12-2 , and
create a composite, using this heart.

 Use the GIMP Open Image dialog, shown in Figure 12-3 , to open the Niki.png digital
image included with the book (it’s in the book repository on the Apress.com web site).

 Figure 12-2. Use the GIMP File ➤ Open as Layers menu sequence

 Figure 12-3. Find the Niki.png image, and click the Open button

CHAPTER 12 ■ THE COMPOSITING OF DIGITAL ILLUSTRATION: USING LAYERS

137

 Next, right-click on the Niki.png layer, shown in Figure 12-4 in blue, and select the
 Scale Layer context-sensitive menu option, so that you can scale the Niki image to match
the heart object. This can be seen behind Niki, at the top of the Figure.

 In the Scale Layer dialog, as seen in Figure 12-5 , along with the scaled Niki layer
result of this operation, set Height to a value of 663 , which is the height of your Heart
object. As you can see I kept the aspect ratio (shape of the image) locked for the scaling
operation by not clicking on a chain connection icon, which is connecting the Width and
Height fields together.

 Figure 12-4. Select Niki.png layer, right-click, and Scale Layer

CHAPTER 12 ■ THE COMPOSITING OF DIGITAL ILLUSTRATION: USING LAYERS

138

 Use the Cubic Interpolation setting for the best quality image scaling result, and
finally, click on the Scale button.

 Notice that I added a Scale Layer dialog to this imaging composite, so that I could
show both the Scale Layer dialog, as well as the scaled Niki.png image result, that this
dialog will provide to you once you click on the Scale button.

 As you can see, the Niki.png layer is now obscuring your PolkaHeartStroke.png
layer, so we have a problem. Since this is the chapter on layers, let’s learn a little bit about
layers in GIMP, since at this fundamental level, layers work the same for digital imaging,
digital videos, digital illustrations, digital painting, and most of the content development
platforms as well.

 Layer order greatly affects a compositing pipeline; thus any layer without
transparency, such as a PNG24 Niki.png image, needs to be on the bottom layer of the
layer stack. PNG32 image assets such as the PolkaHeartStroke.png file need to be on top
of the stack, so their alpha channel transparency is calculated by your layer compositing
engine (algorithms in your software).

 Changing layer order in content production software will always be as simple as
clicking on one layer and dragging it to the desired position above or below the other
layer, to reorder the layers in your composite. Let’s try this, using GIMP, next.

 In this case, we will drag the Niki.png layer down under the PolkaHeartStroke.png
layer, and as is shown in Figure 12-6 , the heart is now on top of the Niki image. So that this
model’s face is not obscured, I selected the PolkaHeartStroke.png layer by clicking on it,
and then I set the Opacity slider on the top of the Layers palette to a value of 50% .

 Figure 12-5. Set Height value to 663; use a Cubic Interpolation

CHAPTER 12 ■ THE COMPOSITING OF DIGITAL ILLUSTRATION: USING LAYERS

139

 It is important to notice that since we are using a Fill pattern in the middle of the
heart object that uses grayscale, and not color like the Stroke element does, that the color
data from your Niki.png image layer, behind the digital illustration layer, is preserved.

 This makes it look like you are implementing a texturing special effect over the image
data, which now shows through the center portion of the heart object with correct Hue
color value and with lightness values that are changed via the 50% Opacity blending,
implemented by the Layer Opacity setting slider bar.

 Since we are covering Inkscape and Painter 2016 for this book, let’s spend the rest
of the chapter specifically looking at the layer functionality for both of these software
packages. You will find there are a lot of similarities, where layers are concerned, among
digital new media content production tools.

 Inkscape Layers: Illustration Compositing
 Now let’s switch from Digital Image Compositing software (GIMP) to Digital Illustration
Compositing software (Inkscape). Later, we will also cover a Digital Painting and
Compositing software package (Painter 2016), so three different genres of multimedia
production software will be covered in one single chapter. We will first take a look at how
to set a background transparency, or a background color of white (or any other color),
since your CH6 project already features a default transparent background. After that we
will add several layers to the Chapter 6 project.

 Figure 12-6. Drag Niki layer under Heart and set Opacity to 50%

http://dx.doi.org/10.1007/978-1-4842-1697-2_6

CHAPTER 12 ■ THE COMPOSITING OF DIGITAL ILLUSTRATION: USING LAYERS

140

 Inkscape Document Alpha Channel: Transparency
 To set the document transparency for your Inkscape project, use the File ➤ Document
Properties menu sequence, as is seen on the left side of Figure 12-7 .

 This will bring up your multi-tabbed Document Properties dialog, as you can see in
Figure 12-8 , and tabs to set property preferences for your Page, Guides, Grids, Snap, Color,
Scripts, Metadata, and Licensing. Select the Page tab, as shown in Figure 12-8 , and at the
bottom, click on your Background color swatch , which will open a Background color
dialog with the color picker in it. To set Page Color to White , set your Alpha value to 255 .

 Figure 12-7. The Painter 2016 Start-Up Screen’s User Interface

CHAPTER 12 ■ THE COMPOSITING OF DIGITAL ILLUSTRATION: USING LAYERS

141

 Next, let’s take a look at how to use the Inkscape Layer tab to add Text objects to your
Heart project to create a cool Valentine’s Day card for your significant other.

 Complex Illustration Compositing: Layers Palette
 Next let’s increase the complexity of your Chapter 6 project, and add some layers containing
other objects, to take this to a new and more functional level. Open your CH6.svg project file,
and let’s create a greeting card on top of the current artwork. The first thing you will learn is
how to rename a layer, so double-click on the Layer 1 label and type in Heart_Object, as is
seen on the right side of Figure 12-9 . Click on the plus (+) icon at the bottom left and use
the Add Layer dialog to add the Layer name: happy_Text_Object . Select a Position: Above
current drop-down menu setting, and then click on the Add button.

 Figure 12-8. Use Page ➤ background color ➤ Alpha to set transparency

http://dx.doi.org/10.1007/978-1-4842-1697-2_6

CHAPTER 12 ■ THE COMPOSITING OF DIGITAL ILLUSTRATION: USING LAYERS

142

 Next, add a Brush Script Text object, as shown in Figure 12-10 , and then add
another layer named Valentines_Text_Object .

 Figure 12-9. Name the Heart_Object layer; Add Happy_Text layer

 Figure 12-10. Use Add Layer dialog to add Valentine_Text_Object

CHAPTER 12 ■ THE COMPOSITING OF DIGITAL ILLUSTRATION: USING LAYERS

143

 Next, add a Sans Serif Text object, as is seen in Figure 12-11 , and then add a final
layer and name it Day_Text_Object .

 The final layered composite can be seen in Figure 12-12 .

 Figure 12-11. Use Add Layer dialog to add Day_Text_Object layer

 Figure 12-12. Your Valentine’s Day card project looks very nice

CHAPTER 12 ■ THE COMPOSITING OF DIGITAL ILLUSTRATION: USING LAYERS

144

 It is important to notice that at the bottom of your Layers palette is an Opacity slider
as well as a Blend Mode drop-down that will allow you to do the same kinds of special
algorithmic compositing effects that you can do in GIMP, Photoshop, Painter 2016,
PaintShop Pro, and Editshare Lightworks, among others.

 Now let’s look at some of the core layers and selection set (alpha channel) features
for Corel Painter 2016. Since this is a fundamentals book, I can’t really go into all the
powerful layer features for this professional digital painting software package, but I can
get you started with the features that you will use the most often with your digital painting
compositing pipeline.

 Painter Layers: Digital Paint Compositing
 Let’s open your Auto-Painting by using the File ➤ Recent menu sequence, shown at the
left in Figure 12-13 , and selecting the Chapter-11-Auto-Paint.rif option. As you can see,
there are Canvas Layers and RGB Channels selected in floating palettes.

 The first thing I’m going to show you is the Layers menu and how to add a New
Layer by using the Layers ➤ New Layer menu sequence, shown in Figure 12-14 . There
is an icon at the bottom of the Layers palette that looks like two pieces of paper. This will
also create a New Layer with a single click from a stylus.

 Figure 12-13. Ensure Brush Pack you installed is on Brush menu

CHAPTER 12 ■ THE COMPOSITING OF DIGITAL ILLUSTRATION: USING LAYERS

145

 Let’s composite a ring element over the digital painting you created in Chapter 11 .
Use the File ➤ Open menu sequence as shown in Figure 12-15 and open the
 RingElement.png PNG32 image. You can see the new Layer 1 layer you created selected
in green on the right side of the digital painting in the Layers palette, and any new
painting that you do will be on this new layer.

 Figure 12-14. Create a New Layer using a Layer ➤ New Layer menu

 Figure 12-15. Use File ➤ Open menu sequence to open RingElement

http://dx.doi.org/10.1007/978-1-4842-1697-2_11

CHAPTER 12 ■ THE COMPOSITING OF DIGITAL ILLUSTRATION: USING LAYERS

146

 Use the alpha channel (selection set) to select only the RingElement by using the
 Select ➤ Load Selection menu sequence, and Load From Layer 1 Transparency and
 Replace Selection in the Load Selection dialog, shown in Figure 12-16 , on the left side.

 Use the Edit ➤ Paste menu sequence shown in Figure 12-17 to add this RingElement
over the top of your digital painting.

 Figure 12-16. Select the RingElement using its alpha channel

 Figure 12-17. Paste the selected RingElement into your painting

CHAPTER 12 ■ THE COMPOSITING OF DIGITAL ILLUSTRATION: USING LAYERS

147

 Select the Magic Wand tool, shown on the right in Figure 12-18 , and select Layer 2
and click in the middle to select the inside of the RingElement. Use a Select ➤ Invert
Selection menu sequence to invert the selection, and select the outside of the Ring so
that we can delete everything except what is inside it.

 Since layer operations are “modal,” click on your Canvas layer to select it, before using
your Delete key. This removes digital painting data outside your ring, shown in Figure 12-19 .

 Figure 12-18. Invert selection, using Select ➤ Invert Selection

 Figure 12-19. Your final composite is a painting inside a Ring

CHAPTER 12 ■ THE COMPOSITING OF DIGITAL ILLUSTRATION: USING LAYERS

148

 As you can see, using layers and alpha channels give you a big boost in productivity and
flexibility in creating artwork in any genre of digital new media content production tools; in
the case of this book this is digital illustration and digital painting software packages. These
same exact concepts and work processes apply for digital image compositing and digital
video editing software package as well.

 Summary
 In this twelfth chapter, we took a closer look at layers and channels and how they are
used to create more complex digital projects and to manage objects and their selection
sets. I did this so that over the next couple of advanced chapters, covering things such as
 programming and publishing , you would have some of the knowledge that I cover in
my Digital Image Compositing Fundamentals title (Apress, 2015), which is important to
understand if you are creating applications, eBooks, or web sites and similar new media
digital projects. We will look at programming languages in greater detail during Chapter 13 ,
so you will need this advanced knowledge soon.

http://dx.doi.org/10.1007/978-1-4842-1697-2_13

149© Wallace Jackson 2015
W. Jackson, Digital Illustration Fundamentals, DOI 10.1007/978-1-4842-1697-2_13

 CHAPTER 13

 The Automation of Digital
Illustration: Programming

 Now that you have learned how to create professional digital illustrations, using powerful
features in digital illustration and digital painting software packages, exporting SVG or
PNG to the most popular and widespread vector and raster file formats used in the most
popular programming platforms, it’s time to take a look at those programming platforms
themselves, just in case you want to take your digital illustration and digital painting
compositing career to the next level.

 During this chapter you’ll learn about delivering digital illustration (SVG) and digital
painting (PNG) content using the popular open source programming languages that support
digital imaging (PNG) and digital illustration (SVG) such as Java, CSS3, and HTML5, JavaFX,
JavaScript, and XML for content delivery via Android Studio, iOS, Blackberry OS, Tizen OS,
Mozilla’s Firefox OS, Opera OS, and Google’s Chrome OS (also known as Chromium).

 This is important information to know if you plan to use digital illustration or digital
paintings created by using the concepts and work processes covered in this book in
programming projects, using open software development platforms , or, if you have
an interest in learning more about adding programming into your vast digital content
production and publishing repertoire.

 The platforms run a majority of the Consumer Electronics Industry hardware devices,
and include Java (Android Studio and WebKit), JavaFX (Android, iOS, Windows, Linux,
MacOSX, Solaris), and JavaScript with CSS3 and HTML5 scripting (WebKit Browsers).

 This chapter is not going to teach you programming, for that would take a number
of books (and coding experience), but it will expose you to what’s possible if you extend
the journey you’re on from digital illustration and digital painting to new media software
development. Everything that we will be covering in the chapter is free for commercial
use! You can download XML and HTML5 (NetBeans 8.1), Android Studio (IntelliJ), Java 8
and JavaFX, as well as JavaScript; they are also included with NetBeans.

 Normally, I would start the chapter covering an internal scripting language such as
the GIMP ScriptFu (please don’t ask) or Photoshop ExtendScript, but we have already
covered SVG XML, and Painter 2016 does not have any internal scripting language,
so let’s get right into what I will call “external” programming languages. Let’s start off
with the most widespread application development language, Java 8; and its JavaFX
APIs, which can be used for Android OS, iOS, Windows, Macintosh, Linux, and Solaris
Applications development, as well as in web sites or appliances.

CHAPTER 13 ■ THE AUTOMATION OF DIGITAL ILLUSTRATION: PROGRAMMING

150

 Java and JavaFX: javafx.scene.effect API
 Digital illustration and digital painting compositing pipelines can be built and controlled
using code in the Java programming language, as can be seen in Figure 13-1 . The
backplate imagery is a PNG24, the 3D logo is a PNG32, and the script text images are
PNG32 as well. The text is vector artwork and could contain SVG objects created in
Inkscape as well using the same code. Java has a library called JavaFX , which provides
expansive new media asset support spanning digital illustration (SVG) and digital
painting (PNG), as well as digital imaging, digital audio, digital video, and i3D real-time
OpenGL rendering. Most of the digital illustration data, filters and XML we have been
using during this book are in the javafx.scene.shape library and the javafx.scene.effects
library. JavaFX 8 applications run in HTML5, Android, or iOS; thus Java, the world’s most
popular programming language, is truly “code once, deliver everywhere.”

 The splashscreen for a game I am coding, for my upcoming Pro Java Games
Development title (Apress, 2016), can be seen in Figure 13-1 . The upper-left quadrant
is the splashscreen itself and uses a PNG24 backplate image overlayed with PNG23
composite images (two), vector (text) elements, and user interface button elements. Since
digital painting assets should be PNG24 you can simply substitute your digital painting
assets for the rendered 3D assets shown as the background imagery here for your digital
illustration and digital painting workflow, using the same file formats that I use here, and
the exact same Java 8 and JavaFX 8 programing logic.

 As you can see, the quality level afforded by Java 8 and JavaFX 8 is amazing and
available for playback on nearly every popular platform, including Android, iOS,
Blackberry, FireFox, Opera, Chrome, Windows, Linux, Solaris, and Macintosh OS X.

 The Java and JavaFX code can be seen in Figure 13-2 . The JavaFX API is part of the
Java API; thus, JavaFX is Java. These were separate programming languages until JavaFX
was acquired by Sun Microsystems, right before Sun was acquired by Oracle.

 Figure 13-1. Compositing raster and vector assets usingJavaFX

CHAPTER 13 ■ THE AUTOMATION OF DIGITAL ILLUSTRATION: PROGRAMMING

151

 I show the code for two of the buttons, the Instructions and the Copyrights button,
called helpButton and legalButton in the Java code, shown in Figure 13-2 . I do not seek
to teach you coding during this chapter; however Java code is understandable enough to
explain to you what is going on for this compositing.

 The boardGameBackPlate.setImage(transparentLogo); Java statement is changing
my digital image asset in my backplate layer, using terms that you are now familiar with
from this book.

 The colorAdjust.setHue(0.4); Java statement color shifts the logo 40%
(you color shifted 140%, achieving cyan to wine color) around the color wheel, and the
 colorAdjust.setHue(-0.4); Java code color shifts the logo 40% around the color wheel
in an opposite direction. With a color slider it would be 40% to the right and 40% to the
left, respectively.

 Vertical, Y axis pixel positioning is being accomplished using the infoOverlay.
setTranslateY(350); Java code and text spacing is being accomplished using an
 infoOverlay.setLineSpacing(-12); Java statement. This is how an image composite is
created with code!

 Next, let’s take a look at image compositing pipelines, implemented using only basic
markup languages (HTML5 and CSS3).

 HTML5 and CSS3: Markup Compositing
 Whereas Java (JavaFX) is the most popular programming language, HTML5 and CSS3
markup languages are the most widespread as far as usage is concerned. This is because
they are used in every browser, which all use an API called WebKit , as does Android
and iOS, so they are used in these OSes as well. There are also several HTML5 OSes out
now, not surprisingly, from the makers of the HTML5 browsers. These include Chrome

 Figure 13-2. JavaFX code adds raster and vector assets to game

CHAPTER 13 ■ THE AUTOMATION OF DIGITAL ILLUSTRATION: PROGRAMMING

152

OS, Firefox OS, and Opera OS. These are used in Smartphones, Tablets, and iTV Sets.
For instance, Panasonic iTV sets use Firefox OS, Sony Bravia uses Opera OS, Google has
a range of Chrome hardware products, and Alcatel uses Firefox OS for its Smartphone
internationally.

 I composited the HDTV resolution www.iTVset.com web site, using only lossless
codecs and with a combination of PNG24 , SVG , and aniGIF for backplate sections, as
well as PNG32 for all i3D UI element overlays. As you can see in Figure 13-3 , the entire
site looks like an uncompressed true color BMP image, however it is animated using
JavaScript and is also fully interactive. The site was coded in only 24 lines of HTML5, and
less than 2MB for total graphic image asset data footprint overhead. This is made possible
by a digital compositing (layer) pipeline allowing the “granularization” of the digital
assets, which allows me to use far smaller asset file sizes, which results in faster transfer.

 Additionally, a lot of indexed color assets can be used, allowing a site that looks
like it is true color but in fact is not. For instance, all six animated elements on the page
use an indexed color animGIF file format with the 1-bit pre-multiplied alpha channel
(uses average background color to hide aliasing).

 The i3D user interface button elements use PNG32 format, using its alpha channel
to composite the UI seamlessly over any background image used in any section of this
web site, including digital video, Java (JavaFX) applications, 3D animation as seen on the
 www.iTVSet.com home page, or full screen imagery.

 Graphics elements are held in HTML5 <DIV> tags, and CSS3 is used for blending ,
 opacity , positioning , and interactivity . I do not obstruct the right-click action with my
code in any way, so you can right-click on the site and “View as Source” to look at any of
this code, at any time during the site’s development.

 Figure 13-3. Image Composite using custom HTML5 and CSS3 markup

http://www.itvset.com/
http://www.itvset.com/

CHAPTER 13 ■ THE AUTOMATION OF DIGITAL ILLUSTRATION: PROGRAMMING

153

 Text is rendered by WebKit in its own <DIV> tag regions, using HTML5 to define
content and metatag and styled with CSS3.

 As you can see, just like Java and JavaFX, HTML5 and CSS can provide you with a
vector compositing pipeline that can be almost as powerful as GIMP and Photoshop.
However you will have to be a creative and a savvy programmer in order to pull these
capabilities out of open source SVG, HTML5, CSS, and JavaScript.

 Android Studio: Using a PorterDuff Object
 The Google Android OS platform is running more Smartphones, eBook eReaders, Tablets,
iTV Sets, Game Consoles, Smartwatches, and IoT devices than any other OS platform
in the world. In fact, I have written a series of Pro Android titles for Apress from 2013
through 2016, including Pro Android Graphics (2013), Pro Android UI (2014), Pro Android
Wearables (2015), and I am currently writing Pro Android IoT (2016). I cover how to code
for the PorterDuff pixel blending and pixel transfer modes in the Pro Android Graphics
title, and in fact, Figure 13-4 shows one of the screenshots from this book, showing three
different blend modes in use in the Nexus One Emulator in the Eclipse IDE. You’ve seen
these blending modes in your Layers palette in Chapter 12 in GIMP 2.8, Inkscape, as well
as in Painter 2016.

 The Java code to put together this compositing pipeline, which has a PNG24
backplate, PNG32 ring element, PNG32 3D logo, and alpha controlled vector, with a black
fill color, is quite complex, as can be seen in Figure 13-5 . I will go through what these
statements do so you can see a compositing code pipeline that matches up with that
layer-based compositing pipeline that you have become familiar with during the previous
Chapter (12).

 Figure 13-4. PorterDuff mode example from Pro Android Graphics

http://dx.doi.org/10.1007/978-1-4842-1697-2_12

CHAPTER 13 ■ THE AUTOMATION OF DIGITAL ILLUSTRATION: PROGRAMMING

154

 Layers are called LayerDrawable in Android, so the first line of code loads the
LayerDrawable with a contents_layers.png asset using a getResources(). getDrawable()
method call “chain.”

 I commented out a backgroundImage plate, for testing, so I will just cover the
foregroundImage plate code here. I create a Bitmap object named foregroundImage
and load it with an asset named cloudsky.png with a BitmapFactory.decodeResource()
method call. I make that Bitmap object mutable (changeable) by putting it into memory
using a . copy() method call specifying the 8-bit ARGB color depth (this is also called the
32-bit color space).

 I then set a PorterDuff transfer mode (sometimes called a blending mode , although
technically some blending modes will transfer pixels rather than blending them together)
on a Paint object using the .setXfermode() method, using the XOR mode.

 I create a Drawable object, named layerOne , and load it, with a Bitmap object
named composite , and load that into memory as a mutableComposite, and using that, I
create a Bitmap object named compositeImage . I then create a Canvas object to draw on,
named imageCanvas and load that with the compositeImage object.

 Next I draw the Bitmap object on the Canvas object using the imageCanvas.
drawBitmap() method call that specifies an area using a square 1,000 pixel Rect object,
the blending mode using the paintObject and a mutableForegroundImage as a Bitmap
object (bitmap or raster image that I specified as 32-bit ARGB_8888).

 I create an ImageView named porterDuffImageComposite , to hold (display)
this pipeline in my user interface design, and I load this ImageView by using the
 .setImageBitmap() method call.

 Figure 13-5. Java code for implementing a compositing pipeline

CHAPTER 13 ■ THE AUTOMATION OF DIGITAL ILLUSTRATION: PROGRAMMING

155

 Game Design: SVG for Collision Detection
 Let’s take a look at how I use SVG data for a collision polygon in my Beginning Java 8
Game Design title from Apress. As you’ll see in Figure 13-6 , I use the Pen Path Tool
in GIMP, to create a low-data (only 15 data points to process) collision cage for my
invinciBagel character’s sprite (one of the run cycle cels is seen here). GIMP 2.8 can save
out SVG XML data as well!

 Figure 13-7 shows my raw SVG XML data exported from GIMP before I optimize
it using the exact same work process I showed you in this book, using SVG XML data
exported using Inkscape.

 As you will see in Figure 13-8 , I reduced the coordinate pairs from 45 to 15, or about a
 300% data footprint reduction!

 Figure 13-6. SVG data used for a game sprite collision polygon

 Figure 13-7. SVG XML data from Pen Tool path exported from GIMP

CHAPTER 13 ■ THE AUTOMATION OF DIGITAL ILLUSTRATION: PROGRAMMING

156

 I copied this data into an Array object in Java as a subobject called spriteFrame in
my iBagel object, so, to reference this data I use iBagel.spriteFrame ; and to access the
 invinciBagel class (an even larger object), I use invinciBagel.iBagel.spriteFrame ,
as can be seen in green, on Java code line 122 in Figure 13-9 .

 As you can see, all the concepts that I have covered over the course of the book are
usable in Java. You can bet that all of these concepts are supported in each of these major
platform (Java, JavaFX, HTML5, CSS3, JavaScript, Android) areas, which I have covered
in the chapter. The reason for this is because the platforms are open source, as are the
PorterDuff modes, OpenGL, JPG, SVG, GIF, PNG, XML, 3D, alpha channels, GIMP, and
Inkscape.

 Figure 13-8. Optimize SVG Command String data; select for Java

 Figure 13-9. Collision detection Java code referencing SVG data

CHAPTER 13 ■ THE AUTOMATION OF DIGITAL ILLUSTRATION: PROGRAMMING

157

 As you can see in Figure 13-10 , Java or JavaFX allow you to create some pretty
impressive multimedia productions, using digital illustration data, in SVG command
formats, and digital painting data in PNG24 format.

 Since all of the areas of digital asset compositing will be “free for commercial use,”
it is logical for the open source platforms to completely incorporate them. All this is
excellent news for digital image compositing aficionados, to be sure!

 Summary
 In this thirteenth chapter, you learned about advanced topics that relate to computer
programming, and how different programming languages can support the digital asset
compositing endeavors, either inside digital asset compositing software, as a work
process, or SVG special effects plug-ins, or SVG XML markup, or outside your digital asset
compositing software, for taking your creation to the next level, by adding interactivity
and other useful features, limited only by your imagination.

 First you looked at several popular open source platform programming languages
and how these can be utilized to create the same digital asset compositing effects that you
can create using Inkscape, GIMP, and Painter 2016, all of which are covered in this book.

 Next, you looked at Java and its JavaFX new media engine and saw how that platform
supports digital asset compositing as well as advanced blending modes and special
effects algorithms.

 Then you looked at HTML5 and CSS3 and saw this platform could also implement
the digital asset compositing concepts and techniques you learned in this book using
only markup languages for deliverables such as web sites and HTML5 OS applications.

 Figure 13-10. JavaFX game using digital illustration, SVG and image compositing

CHAPTER 13 ■ THE AUTOMATION OF DIGITAL ILLUSTRATION: PROGRAMMING

158

 Finally you looked at using SVG Command data in JavaFX 8 games to create
“collision detection polygons” that are highly optimized for using low amounts of system
memory. You looked at the PorterDuff class, and some advanced Java code, showing that
a compositing pipeline with blending modes can be coded in Java and JavaFX or used in
Android Studio for advanced digital image compositing savvy applications. JavaFX apps
also work in iOS.

 In the next chapter, we will take a look at some popular content publishing platforms
and device types.

159© Wallace Jackson 2015
W. Jackson, Digital Illustration Fundamentals, DOI 10.1007/978-1-4842-1697-2_14

 CHAPTER 14

 Publish Digital Illustration:
Content Delivery Platforms

 Now that you have an understanding of the fundamental concepts, terms, and principles
in digital illustration, digital painting, digital compositing, and programming, it is time
to look at how digital illustration content can be published with popular open source
publishing platforms. I’m going to delineate the chapter based on consumer electronics
hardware device genres , as these define the different types of applications. For instance,
 eBook eReaders , such as Amazon’s Kindle Fire, use Kindle KF8 format; Smartwatches
use Android Wear SDK under the Android Studio 1.4, using the Android OS 5.4 API;
 iTV Sets use the Android TV SDK in Android Studio 1.4, using the Android OS 5.4 API,
 Automobile Dashboards use Android Auto SDK with the Android Studio 1.4 IDE with
the Android OS 5.4 API; Tablets and SmartPhones use Android SDK in Android Studio
1.4 IDE with the Android OS 5.4 API; Laptops and NetBooks use Java with JavaFX;
and each of these hardware devices also support all of the open industry publishing
standards, such as PDF, HTML5, and EPUB3.

 We’ll continue to look at how to publish with electronic hardware device types,
using the software development platforms that these devices support, such as Kindle
KF8, EPUB3, Android Studio 1.4 (Android OS 5.4), Java, JavaFX, PDF, HTML5, CSS3, and
JavaScript, some of which we already covered in Chapter 13 .

 Open Source Formats: PDF, HTML, EPUB
 Let’s start with the content publishing formats that support digital illustration that have
been defined by industry groups, as EPUB and HTML have, or which have been “open
sourced” as the Adobe Portable Document Format , or PDF , has been. Each of these
formats supports the SVG digital illustration format, as you will see during this section of
the chapter. I am starting with these open formats, as they are usable across every type
of hardware device so I’ll start with platforms with wide support.

http://dx.doi.org/10.1007/978-1-4842-1697-2_13

CHAPTER 14 ■ PUBLISH DIGITAL ILLUSTRATION: CONTENT DELIVERY PLATFORMS

160

 Portable Document Format: Digital Illustration PDF
 The Adobe PDF Portable Document format is utilized by the Adobe Acrobat Reader ,
used around the world for publishing rich media documents that can include digital
illustration , digital audio, digital video, digital images, or i3D (interactive 3D).
Acrobat Reader is free and its PDF format has been open sourced. The Adobe Acrobat
Professional series of publishing tools are still paid software packages and well worth the
money, if you need to publish via this widely accepted rich media document publishing
format. This PDF format supports two digital illustration formats, EPS and PostScript ,
the best option being EPS, as far as your quality to file size ratio is concerned. This is
because the PDF file format will keep the vector data intact and render it at whatever
screen size is being used. You can also use Inkscape to export to EPS, PostScript, and
even to PDF directly, so you don’t need PDF to support SVG directly, which it does not,
probably because it is a competing vector format.

 It used to be a PDF was only used for creating business documents. However, it has
been adopted for an eBook format; in fact, you might be reading my books using the PDF
format. Other eBook formats include Kindle (.MOBI) and EPUB (EPUB3), which we will
be covering later on during this chapter as well.

 Another advantage of this PDF document publishing format is that it offers Digital
Rights Management (DRM) support. This allows you to copy protect (lock) your
document, if you want to sell it for money. Adobe has a PDF Server product incorporating
this DRM feature that allows you to better market PDF content.

 It is rumored that the other two publishing formats that we are covering in this
section of the chapter are also looking at adding DRM support in the future. Let’s look at
HTML5 next.

 HyperText Markup Language: HTML5 Digital Audio
 You’ve already taken a look at how to use SVG and PNG formats in Chapter 13 , and
thus you know HTML5 supports the SVG digital illustration format, as well as the PNG8,
PNG24, PNG32 , JPEG, GIF, and AnimGIF digital painting imagery file formats.

 It used to be that HTML5 was only used for creating your web site designs, until the
web browser manufacturers decided to utilize their web browser code to create HTML5
OSs for consumer electronics devices given the success of Android, Bada, and iOS.

 Putting this browser code, with app launch icon support, on top of the Linux OS
Kernel , produced a Chrome OS (Motorola), Firefox OS (Panasonic iTV), and Opera OS
(Sony Bravia iTV Sets).

 There’s also Tizen OS (Samsung), which is managed by The Linux Foundation for
the creator of the Linux OS Linus Torvald.

 Tizen also uses HTML5. HTML5 is easy to implement, thanks to your open source
 WebKit API , which is also a part of Android Studio 1.4 (Android OS 5.4, and now
Android 6.0).

 HTML5 application and web site publishing is therefore an excellent way to deliver
content across all embedded mobile OS, desktop OS, and web browser platforms. This
is why DRM is in the future of HTML5, and why I showed you how to implement digital
painting assets by using HTML5 and CSS3 in Chapter 13 .

 Next, let’s take a closer look at the open source EPUB 3 publishing standard, used for
eBooks, and soon for much more.

http://dx.doi.org/10.1007/978-1-4842-1697-2_13
http://dx.doi.org/10.1007/978-1-4842-1697-2_13

CHAPTER 14 ■ PUBLISH DIGITAL ILLUSTRATION: CONTENT DELIVERY PLATFORMS

161

 Electronic Publishing: Digital Audio in EPUB3
 The EPUB specification is a distribution and interchange format standard for digital
publications and documents. EPUB 3, the third major release of the open EPUB standard,
consists of four specifications, each defining an important component of an overall
EPUB document. EPUB Publications 3 defines publication-level semantics, as well as
conformance requirements for EPUB 3 documents. EPUB Content Documents 3 defines
XHTML, SVG and CSS3 profiles for use in the context of your EPUB 3.0 publications.
 EPUB Open Container Format 3.0 , or OCF3, defines a file format, as well as a processing
model for encapsulating sets of related resource assets in one single ZIP file format
(EPUB Container). EPUB Media Overlays 3.0 defines a format and a processing model
for the data synchronization of text with digital audio assets.

 EPUB 3.0 has been widely adopted as a format for digital books, also popularly
known as “eBooks.” This 3.0 specification significantly increases the EPUB format’s
capability, so that it would be capable of supporting a range of new media publication
requirements. These would include complex layout, new media and interactivity, and
international typography (fonts) support.

 The hope is that EPUB 3 will be utilized for a broad range of content, including
books; magazines; and educational, professional, and scientific publications.

 EPUB 3 supports SVG digital illustration embedded in the document using SVG, and
digital painting using PNG, JPEG, or GIF formats. These would inherit the same functions
and feature set that these formats provide in HTML5.

 Another impressive new media feature in EPUB 3 is called Media Overlay
Documents . Media Overlay Documents could be used with SVG documents, such as
those we created during this book. Media Overlay Documents also provide the ability to
synchronize your digital audio assets with vector elements inside the Publishing Content
Document (EPUB3 publishing platforms), which could be used for some very powerful
presentation capabilities.

 Open Platforms: Java, Android, and Kindle
 The next set of formats I am going to cover are open source and free for commercial
use, but do not run across every hardware device, and are not industry specifications,
but instead are owned by major industry hardware and software manufacturers. Oracle
owns Java and JavaFX, Google owns Android, and Amazon owns Kindle (.MOBI) and
Kindle Fire, which uses the KF8 format. Let’s cover these based on the genres or types of
consumer electronics devices that these run on, starting with eBook Readers, since the
three formats we just covered are all widely used for delivering eBooks as well, as you can
see on the Apress.com web site, when you purchase your educational titles.

 eBook Readers: Kindle Fire, Android, Java, or PDF
 The eBook Reader hardware device is actually an Android tablet, which is why I added
Android into the title for this section of the chapter. The world’s most popular eBook
Reader, Kindle Fire, runs Android OS, as does the Sony eBook Reader, and the Barnes and
Noble NOOK eBook Reader. Even Apple iPad runs Kindle, EPUB3, and PDF eBook titles,

CHAPTER 14 ■ PUBLISH DIGITAL ILLUSTRATION: CONTENT DELIVERY PLATFORMS

162

as do Blackberry tablets, and Microsoft Surface tablets. The reason I added Java in the
title for this section is that Kindle has Java capabilities for interactive eBooks, and Android
uses Java as well. Since eBook readers will also read .PDF files, I also added PDF into
this title.

 Since most eBook Readers are actually Android tablets or iPads, there are a plethora
of platforms, the key open ones you looked at (Chapter 13) for delivering SVG illustration
content.

 This means you will deliver digital illustration content user experiences with Android
applications, HTML5 applications, Java applications, HTML5 web sites, Kindle eBooks,
EPUB3 eBooks, NOOK eBooks, or interactive new media PDF documents. This gives you
a ton of flexibility for publishing SVG with eBook Readers.

 Since this would all be done using Java, JavaFX, Android Studio, HTML5, and SVG,
the basics regarding how all this should be accomplished was covered during Chapters 7
and 13 .

 iTV Sets: Android TV, Java, JavaScript, and HTML5
 The iTV Set , or interactive television set, is the most recent consumer electronics device
to hit the marketplace, and iTV Set devices are expected to explode in sales during 2016
and 2017. This is the reason Google has developed a specialized version of Android
SDK (Software Development Kit) for iTV Sets, called Android TV API (Application
Programming Interface).

 There are HTML5 OS iTV Set products as well from Samsung (Tizen OS), Panasonic
(Firefox OS), and Sony (Opera OS), so the iTV Set consumer electronic device is much
like an eBook Reader device, in that it will allow you to create and deliver digital audio
content by using Java or JavaFX (Android OS or HTML5 OS), HTML5 markup, CSS3 and
 JavaScript (iOS, Android OS, HTML5 OS).

 It’s also important to realize that with iTV Set devices your viewers are going to be
paying closer attention to content streams, including digital illustration, digital painting,
i3D, and digital imagery, digital audio, and digital video.

 The viewer paying close attention to your content is not always the case with devices
such as Smartphones, or automobile dashboards (at least, let’s hope not).

 If you want to deliver digital audio content across each of these iTV Set device
platforms, you would use HTML5. Android and iOS support HTML5, but HTML5 OS and
web sites do not support Android and iOS applications. The other side of the decision
is that Apple and Google Play have more advanced app stores, so if you are going to
monetize your digital illustration and digital painting content, you would be considering
developing apps with Java (Android) or JavaFX (iOS) more than using JavaScript under
HTML5 OSes or HTML5 browsers, although these fully support SVG.

 Smartwatches: Android WEAR, Java, and HTML5
 The Smartwatch is the next most recent consumer electronics device genre to hit the
market. The Smartwatch devices are also expected to explode in sales during 2016 and
2017, primarily because there are hundreds of manufacturers manufacturing them.
This is because the densely populated watch industry is moving to release smartwatch

http://dx.doi.org/10.1007/978-1-4842-1697-2_13
http://dx.doi.org/10.1007/978-1-4842-1697-2_7
http://dx.doi.org/10.1007/978-1-4842-1697-2_13

CHAPTER 14 ■ PUBLISH DIGITAL ILLUSTRATION: CONTENT DELIVERY PLATFORMS

163

products, so that they do not lose market share to consumer electronics manufacturers,
such as LGE, Sony, Motorola, and Samsung, who already have several smartwatch
products each. One of the first custom Android APIs that Google ever developed was
 Android WEAR along with its Watch Faces API .

 Digital Illustration is an important feature that these smartwatch devices are going to
support, because vector formats are highly optimized, from a data footprint standpoint,
and SVG rendering support is built into Android Wear hardware devices.

 What this means is that a smartwatch product is like an animated digital illustration
time piece for your user’s wrist! It can provide professional digital illustration asset
playback results with overlayed smartwatch functionality.

 This is significant for digital illustration producer or digital painting application
developer professionals, which is why I’m including it as part of this digital illustration book.

 Another important feature of smartwatches is that you’ll be able to combine your
digital audio assets with other highly functional attributes, such as time, date, weather,
fashion, and health features popular with smartwatches, such as fitness and physical
health monitoring (heart, pulse, etc.) hardware input.

 Once smartwatch screen resolutions go up from 320 pixels to 480, 640, or 800 pixels,
even more functionality would become available to developers. The Huawei smartwatch
already features a 400 x 400 pixel screen, so, high resolution smartwatches should be
appearing during 2016 or 2017 given that smartphones have 4K screens that are only 5 to
7 inches, so an 800 pixel smartwatch screen is certainly possible, as the technology
exists already.

 So as long as your smartwatch user has quality bluetooth headphones and you
process and then optimize your 16-bit 48 kHz digital audio assets perfectly, and use the
lossless FLAC codec or high-quality settings for the OggVorbis or MPEG-4 AAC codec,
you should have your smartwatch users rocking their socks off!

 Auto Dashboards: Android AUTO, Java, and HTML5
 The Automobile Dashboard is the next most recent consumer electronics device genre
to hit the mass market. Auto dashboard devices are expected to become standard in cars
by 2016 or 2017 as a number of manufacturers already have them as standard equipment,
and all of the automobile manufacturers have signed on with Google to support Android
AUTO, the custom Android SDK for automobile dashboard applications. Automobiles
are another hyper-competitive industry not likely to get left behind as far as technology is
concerned, so this is another logical market for Android and HTML5 OSes to get into.

 Digital audio is again a very important feature for auto dashboards to support,
because extensive (and expensive) ultra-high-quality audio playback hardware is often
built right into the body of an automobile, especially in more expensive brands, which are
almost half of the automobile brands in the market.

 Digital audio is also the best fit for Android AUTO apps because there are stringent
guidelines regarding tasking driver attention off of the road, and digital audio Android
AUTO apps do not require the user to look at any display screen, and are thus the safest
type of Android AUTO apps and will pass muster in the Google Play Automotive App
section of the online store.

CHAPTER 14 ■ PUBLISH DIGITAL ILLUSTRATION: CONTENT DELIVERY PLATFORMS

164

 As you’ve seen in the last three sections of the chapter, there are several entirely
new consumer electronic device types that have essentially zero apps, especially digital
audio apps that have been developed for them, so the opportunity for audio developers is
nothing short of immense – so make some big money!

 SmartPhone and Tablet: Android, Java, and HTML5
 Smartphones or tablets have been around the longest, as has the hybrid between the
two, commonly referred to as a phablet . The Android OS covers all of these device types
as well as personal computers that run the Android OS. There are currently billions of
smartphones, as well as billions of tablets, and almost 100 major consumer electronics
manufacturers that have made products for the open source Android operating system
platform. For this reason, this is a significant opportunity for digital illustration content
and applications, as there are not as many of these digital illustration or digital painting
applications as there are video, audio, or image (photographic) applications.

 All your popular smartphones and tablets include support for your SVG command
data, and SVG XML file formats, as well as for rendering vector illustration data into raster
imagery data that fits user’s device screen displays with a pixel-for-pixel precision. This
results in high-quality content consumption.

 Game Console: Android, Java, JavaFX, and HTML5
 Since Android, Java, JavaFX, and HTML5 now support OpenGL ES 3.1 a plethora of
advanced game console products have appeared that are affordable priced between $50
and $100. This is yet another opportunity waiting to happen for digital illustrations gurus,
which you’ll soon be, once you practice what you learned in the book. These consoles
run Android and therefore support Java and HTML5, as well as JavaFX apps or Android
applications, and even eBooks, for that matter. There are over a dozen brands out now.

 Some major industry brands (manufacturers) are producing game controllers with
Android computers inside, for instance, an nVidia Shield, or GameStick. Other major
manufacturers, such as Amazon, manufacture a game console iTV Set hybrid product,
such as the Amazon Fire TV. Others such as OUYA and GamePop make STB (Set Top Box)
products that game controllers (and iTV Set) will plug into. Some, such as OUYA and
Razer ForgeTV, come with both the STB and the Game Controller, for a complete gaming
package.

 Since all these support Android, you can utilize vectors via SVGXML formats and
SVG commands covered in this book, and if you use HTML5 or EPUB3 you can use SVG
commands, SVG filters or SVG XML. I covered the code for doing this in Chapter 7 .

 SVG data can also be used inside of the OpenGL Rendering Engine that runs many of
the games, for texture mapping, as can digital painting assets. Texture maps are applied as
“skins” to 3D “mesh” geometry, so 3D can take your digital illustration or digital painting
content production pipelines to all new levels using open source 3D software packages
such as Blender. You can download Blender 2.76 for free, at http://www.blender.org
today!

http://dx.doi.org/10.1007/978-1-4842-1697-2_7
http://www.blender.org/

CHAPTER 14 ■ PUBLISH DIGITAL ILLUSTRATION: CONTENT DELIVERY PLATFORMS

165

 Future Devices: Robots, VR, and Home Appliances
 The future of Android SDKs will surely bring more custom APIs. I expect to see an
 Android VR , for virtual reality goggles, as well as Android HOME for home appliances or
home control units, and maybe even an Android ROBOT SDK for Android-based robots.
I have already seen many of these products in the marketplace for some time so it’s up to
Google to provide custom APIs for these product genres, all of which will be great digital
illustration applications, and great digital painting application platforms, for digital
illustrators and digital painters as well as for multimedia producers and application
developers who are digital illustrators and digital painters.

 Digital illustration as well as digital painting will be an important component in all
these emerging device genres. I’d expect at least two of these genres, Home Appliances
and VR, to showcase interactive digital painting as a way to increase user experience
levels (VR), and because UHD home theaters have the full attention of the viewers.

 Paid Software Platforms: iOS or Windows
 The last section will cover formats which are not open source, that is, they involve paid
software, and, in the case of Apple Computer, paid hardware, which will be required to
develop for these platforms. Some of these require the company who owns the platform
to approve (allow) your software before it can be sold in the application store. It is
important to note that you will be able to get around this approval process by developing
using HTML5 for these platforms, or using JavaFX; therefore you could still deliver
content for your clients without having to invest thousands in hardware (for iOS) and in
software (Windows Visual C++ or C# software development packages).

 Apple iPhone and iPad: Supported Audio Formats
 As a proprietary format, Apple and iOS do not directly support SVG as all of the other
platforms and devices in the world do. There are some third-party solutions and work-
arounds to this, like the SVGKit project on GitHub (https://github.com/SVGKit/SVGKit).

 This is why I have focused primarily on the open source operating systems and
publishing platforms in this book that do support digital illustration and digital painting
formats, such as SVG and PNG, currently in use in Java, JavaFX, Android Studio, and HTML5.

 Windows Phone: Supported Digital Audio Formats
 As a proprietary format, Windows and WindowsPhone also do not directly support SVG,
as all of the other platforms and devices in the world do. SVG support was added in
Internet Explorer 9, and there is an extension you can get for Microsoft Explorer to render
SVG file thumbnails. As Microsoft and Apple represent an increasingly smaller operating
system market share percentage as time goes on, and free open platforms continue
to gain market share percentages, this will become less and less of an issue for digital
illustrators.

https://github.com/SVGKit/SVGKit

CHAPTER 14 ■ PUBLISH DIGITAL ILLUSTRATION: CONTENT DELIVERY PLATFORMS

166

 Summary
 In this final chapter we took a look at digital illustration and digital painting publishing
concepts, principles, platforms, and file formats that you will use to compress and
decompress your digital illustration and digital painting assets, as well as to publish and
distribute these to your end users. We looked at many of the different formats, platforms,
and devices that will be available to you for developing digital illustration and digital
painting interactive new media content.

 I hope you have enjoyed this journey through the digital illustration, digital painting,
layer compositing, programming, and digital publishing concepts and work processes.

 Now that you have a fundamental knowledge of digital illustration that you can build
on in the future, for your new media design, multimedia development, and 2D content
publishing endeavors, you can create the next big vector-based application or game that
will captivate users in the marketplace.

 Be sure to keep your eye out for my other books covering Android Studio, Java and
JavaFX, HTML5, JSON, or other new media genres such as digital image compositing,
digital audio editing, and digital painting techniques.

167© Wallace Jackson 2015
W. Jackson, Digital Illustration Fundamentals, DOI 10.1007/978-1-4842-1697-2

 A
 Alpha channels

 digital layer compositing , 134
 Inkscape

 document transparency , 140
 Layers palette , 141

 masking
 layer composite , 135
 selections , 134

 RGB color channels , 134
 transparency , 134

 B
 Bézier curves , 33

 cubic , 12
 draw , 13
 Edit Path Tool , 17
 quadratic , 12

 Bézier Path tool , 85
 BitmapFactory.decodeResource()

method , 154

 C
 Calligraphy brush strokes tool , 120
 Caps spinner , 123
 Clone Source fl oating palette , 131
 Compound paths , 6
 copy() method , 154
 CorelDRAW , 115
 Corel Painter 2016 installation

 Audio Settings , 116
 brush packs , 113, 117
 Check for product

updates option , 110
 Checking for Updates dialog , 110

 default installation location folder , 110
 Divine Proporation pane , 116
 fl oating palettes , 116
 Flow Maps and Auto Painting , 116
 Installation Wizard has

been successful dialog , 110
 Installer Wizard dialog , 109
 Layout Grid pane , 116
 Mixer pane , 116
 Primary Painter Toolbar , 116
 progress bar dialog , 110
 raster brushes , 115
 Scripts , 116
 Taskbar , 111
 Underpainting and

Restoration panes , 116
 CSS3 , 151

 D
 Digital layer compositing , 134
 Digital paint compositing , 144
 Digital publishing process

 Android HOME , 165
 Android ROBOT , 165
 Android VR , 165
 Apple and iOS , 165
 automobile dashboard , 163
 eBook readers , 161–162
 EPUB 3 , 161
 game console , 164
 HTML5 , 160
 iTV Sets , 162
 PDF , 160
 Smartphones/tablets , 164
 Smartwatch , 162
 Windows and WindowsPhone , 165

 Digital Rights Management (DRM) , 160

 Index

■ INDEX

168

 E
 Elliptical arc , 7

 F
 Fill patterns , 47

 G
 getDrawable() method , 154
 getResources() method , 154
 GIMP , 49, 134–135
 Gradients

 fi ll gradients
 linear , 39–43
 radial , 35–39

 stroke gradients , 43–46

 H
 HTML5 , 151

 I
 imageCanvas.drawBitmap() method , 154
 Inkscape , 73, 134

 brush strokes
 calligraphy tool , 120
 confi guration , 122
 Draw Brush Strokes Setting Bar , 119
 presets drop-down , 119

 document transparency , 140
 font shape , 31
 illustration software , 2
 Layers palette , 141
 projects

 Export functions , 76
 gradients , 80
 polygon shapes , 76
 spiral shapes , 78

 rendering objects , 61
 spiral shape , 29
 Trace Bitmap algorithm

 arrow tool , 91
 Brightness cutoff option , 89
 Color quantization

radio button fi lter , 90
 Colors and Grays

Multiple scans options , 89
 Credits tab , 89

 digital image source , 86
 Edge detection

radio button , 89–90
 Mode tab , 88–89
 Number of Colors setting , 90
 Options tab , 88
 path , 85, 88
 plain SVG data , 92
 Potrace bitmap tracing engine , 85
 Th reshold setting , 90
 trace output , 91

 vector export
 Adobe Acrobat Reader , 66
 EPS format , 67
 Java and Android , 68

 vector illustration shape styles
 polygon shapes , 26
 UI layout , 26

 J, K
 JavaFX API , 150

 L, M, N, O
 Linear fi ll gradient , 39

 P
 Painter , 134
 Painter 2016 brushes

 automatic painting , 130
 manual painting

 brush size value , 129
 Chalk Cloner 2 brush , 129
 Current Color (crème)

Fill with dialog , 128
 Dropper tool , 126
 Edit ➤ Fill menu sequence , 128
 File ➤ Clone menu sequence , 126
 File ➤ Clone menu

sequenceDropper tool , 127
 File ➤ Clone menu sequenceEdit

➤ Fill menu sequence , 127
 File ➤ Save As

menu sequence , 128
 Niki.png source image , 125–126

 Patterns
 bitmap

 bitmap-based fi ll pattern , 52–56
 strokes , 56–59

■ INDEX

169

 fi ll patterns , 47–48
 GIMP , 49–52

 Photoshop , 134
 PNG fi le , 64
 PolkaHeartStroke.PNG , 63
 polygon shapes

 solid color fi ll , 27
 stroke shapes , 28

 Portable Document format (PDF) , 160
 Potrace bitmap tracing engine , 85
 Pro Android Graphics

 pipeline composition , 154
 PorterDuff mode , 153

 Programming
 collision detection, SVG data , 156
 CSS3 , 151
 HTML5 , 151
 JavaFX API , 150
 Pro Android Graphics

 pipeline composition , 154
 PorterDuff mode , 153

 Q
 Quick and dirty approach , 73

 R
 Radial fi ll gradients , 35
 Radial stroke gradients , 43

 S
 .setImageBitmap() method , 154
 SIGGRAPH , 23
 Spline curves

 Bézier curves
 cubic , 12
 draw , 13
 Edit Path Tool , 17
 quadratic , 12

 Straight lines , 6
 Stylus tilt toggle icon , 124
 SVG command syntax

 gradient fi lls , 74
 Inkscape projects (see Inkscape,

projects)
 integer values , 82
 interactive vector artwork , 71
 pattern fi lls , 74
 primary commands , 72
 solid color fi ll , 73
 stroke parameters , 75
 uppercase and

lowercase version , 71
 SVG fi lter algorithms

 Gaussian Blur , 98
 illustration eff ects

 Bevel eff ects , 99
 bump eff ects , 103
 distortion eff ects , 100
 paint and draw eff ects , 102
 protrusion eff ects , 105
 raster processing , 106

 Off set fi lter , 98
 primitives , 97

 SVGPath , 6

 T, U
 Th inning spinner , 125
 Tremor slider , 125
 Tweaking , 21

 V
 Vertex , 5

 W, X, Y, Z
 Watercolor Spatter Water brush , 131
 Wiggle slider setting , 124

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: The Foundation of Digital Illustration: Points and Lines
	Downloading and Installing Inkscape
	Inkscape.org: Get Inkscape Illustration Software

	Basic Vector Shapes: Vertices and Lines
	The Vertex: A Foundation for 2D and 3D Geometry
	The Path: Connect the Vertices to Create a Shape
	Straight Lines: Inkscape’s Pencil Freehand Drawing Tool
	Elliptical Arcs: Inkscape’s Circles, Ellipses, and Arcs Tool

	Summary

	Chapter 2: The Curvature of Digital Illustration: Spline Curves
	Custom Shapes: Intro to Bézier Curves
	Cubic Bézier Curve: Two Control Point Spline
	Quadratic Bézier Curve: One Control Point Spline

	Using Splines: Creating Complex Shapes
	The Draw Bézier Curves Tool: 2D Shape Modeling
	The Edit Paths by Nodes Tool: Refining 2D Shapes

	Summary

	Chapter 3: The Styling of Digital Illustration: Stroke and Fill
	Inkscape: Vector Illustration Shape Styles
	The UI Layout: Overview of Key Areas in Inkscape
	Polygon Shapes: Creating Basic Closed Shapes
	Solid Color Fill: Using Fill to Color Your Octagon Dark Green
	Stroking Shapes: Using Stroke to Edge Your Octagon in Red

	Spiral Shapes: Stroking Open Shapes Using Cap
	Font Shapes: Creating Text Shapes Using Fonts

	Summary

	Chapter 4: The Depth of Digital Illustration: Using Gradients
	Inkscape Illustration: Fill Gradients
	Radial Fill Gradients: Enhancing Your Heart Shape
	Linear Fill Gradients: Enhancing Your Text Object

	Inkscape Illustration: Stroke Gradients
	Radial Stroke Gradients: Enhancing Your Spiral

	Summary

	Chapter 5: The Imagery of Digital Illustration: Using Patterns
	Inkscape Illustration: Using Fill Patterns
	Using GIMP: Creating Your Image Pattern
	Imagery in Illustration: Bitmap Patterns
	Using Bitmap Images as Fill: Inkscape Pattern Fill
	Using Bitmap Image Strokes: Inkscape Pattern Fill

	Summary

	Chapter 6: The Rendering of Digital Illustration: Data Formats
	Inkscape PNG Export: Rendering Objects
	Inkscape Vector Export: Using Save As
	Exporting to Adobe Acrobat Reader: PDF Format
	Exporting to Encapsulated Postscript: EPS Format
	Exporting to JavaFX: Publish in Java and Android

	Summary

	Chapter 7: The Syntax of Digital Illustration: SVG Commands
	SVG Syntax: Coding Vector Shape Data
	SVG Command Summary: Lines, Arcs, and Curves
	SVG Fills: Filling Your Closed Shapes with Color
	SVG Solid Color Fill: Filling Your Shape with a Solid Color Value
	Gradient Fills: Linear Gradients and Radial Gradients
	SVG Pattern Fills: Filling Your Shape with a Tilable Image Pattern

	The Stroke: Controlling How Lines and Curves Look

	Inkscape Projects: SVG Command Syntax
	Polygons: SVG Commands for Basic Closed Shape
	SVG Polygon Data Export: Using the File ➤ Save As ➤ Plain SVG
	Polygon SVG Syntax Editing: SVG XML Tags and Commands

	Spirals: SVG Commands for Basic Open Shapes
	Gradients: SVG Commands for Your Heart Shape

	SVG Data Optimization: Integer Values
	Summary

	Chapter 8: The Vectorization of Digital Imagery: Image Tracing
	Inkscape Trace Bitmap: Vectorize Images
	Digital Image Source: Using Inkscape File ➤ Import
	Trace Bitmap Algorithm: Configuring Parameters
	Optimizing Your Illustration: Export Plain SVG Data

	Summary

	Chapter 9: The Algorithms of Digital Illustration: SVG Filters
	SVG Filter Effects: Illustration Special FX
	Illustration Effects: Inkscape Filters Menu
	Bevel Effects: Using the Filters ➤ Bevel Menu
	Distortion Effects: Using the Filters ➤ Distort Menu
	Paint and Draw Effects: Filters ➤ Paint and Draw
	Bump Effects: Using the Filters ➤ Bumps Menu
	Protrusion Effects: Using Filters ➤ Protrusions
	Raster Processing: Using SVG Filters on Imagery

	Summary

	Chapter 10: The Progression of Digital Illustration: Painter 2016
	Corel Painter 2016: Installing the Software
	Setting Up Painter 2016: Adding Painter in Taskbar
	Enhancing Painter 2016: Installing Brush Packs
	Painter 2016: Vectors, Rasters, and Advanced Code

	Summary

	Chapter 11: The Airbrush of Digital Illustration: Using Brushes
	Inkscape Brush Strokes: Digital Painting
	Calligraphy Brush Stroke Tool: Basic Style Setting
	Brush Stroke Configuration: Advanced Settings

	Painter 2016 Brushes: Dynamic Painting
	Manual Painting: Using Painter’s Cloning Feature
	Automatic Painting: Using Painter’s Auto-Painting

	Summary

	Chapter 12: The Compositing of Digital Illustration: Using Layers
	Alpha Channels: Defining Transparency
	Layer Compositing: Complex Alpha-based Pipeline
	Channel Data: Red, Green, Blue, and Alpha Channel
	Masking: Using Alpha Channel Data for Selections
	Using Masked Imagery: A Simple Layer Composite

	Inkscape Layers: Illustration Compositing
	Inkscape Document Alpha Channel: Transparency
	Complex Illustration Compositing: Layers Palette

	Painter Layers: Digital Paint Compositing
	Summary

	Chapter 13: The Automation of Digital Illustration: Programming
	Java and JavaFX: javafx.scene.effect API
	HTML5 and CSS3: Markup Compositing
	Android Studio: Using a PorterDuff Object
	Game Design: SVG for Collision Detection
	Summary

	Chapter 14: Publish Digital Illustration: Content Delivery Platforms
	Open Source Formats: PDF, HTML, EPUB
	Portable Document Format: Digital Illustration PDF
	HyperText Markup Language: HTML5 Digital Audio
	Electronic Publishing: Digital Audio in EPUB3

	Open Platforms: Java, Android, and Kindle
	eBook Readers: Kindle Fire, Android, Java, or PDF
	iTV Sets: Android TV, Java, JavaScript, and HTML5
	Smartwatches: Android WEAR, Java, and HTML5
	Auto Dashboards: Android AUTO, Java, and HTML5
	SmartPhone and Tablet: Android, Java, and HTML5
	Game Console: Android, Java, JavaFX, and HTML5
	Future Devices: Robots, VR, and Home Appliances

	Paid Software Platforms: iOS or Windows
	Apple iPhone and iPad: Supported Audio Formats
	Windows Phone: Supported Digital Audio Formats

	Summary

	Index

