Developing <
for Apple TV
using tvOS and Swift

Gary Bennett
Stefan Kaczmarek
Brad Lees

Apress:

http://www.allitebooks.org

Developing for
Apple TV using
tvOS and Swift

Gary Bennett
Stefan Kaczmarek

Brad Lees
Apress:

www.allitebooks.cond

http://www.allitebooks.org

Developing for Apple TV using tvOS and Swift
Copyright © 2015 by Gary Bennett, Stefan Kaczmarek and Brad Lees

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions

of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1714-6
ISBN-13 (electronic): 978-1-4842-1715-3

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Michelle Lowman

Development Editor: James Markham

Editorial Board: Steve Anglin, Louise Corrigan, James DeWolf, Jonathan Gennick,
Robert Hutchinson, Michelle Lowman, James Markham, Susan McDermott,
Matthew Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editors: Mark Powers

Copy Editor: Mary Bearden

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM
Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales-eBook Licensing web page at waw.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to
readers at www.apress.com/9781484217146 or http://forum.xcelme.com. For detailed information
about how to locate your book’s source code, go to www.apress.com/source-code/. Readers can also
access source code at SpringerLink in the Supplementary Material section for each chapter.

www.allitebooks.cond

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484217146
http://forum.xcelme.com
www.apress.com/source-code/
http://www.allitebooks.org

Gary would like to dedicate this book to wife Stefanie and children,
Michael, Danielle, Michelle, and Emily, for always supporing him.

Stefan would like to dedicate this book to his wife Veronica for
supporting him throughout all of life’s adventures.

Brad would like to dedicate this book to his wife Natalie for
always supporting him. He couldn’t do it without her.

www.allitebooks.cond

http://www.allitebooks.org

Contents at a Glance

About the AUthors.........cccmimmmsmmsmms s —————— xi
Acknowledgments.......ccccuseenmmmssssssmmssssssnmmsssssssnessssssssesssssnsnsssssnnnns Xiii
Introduction.........cccccesnismns s ——— Xv
Chapter 1: Getting Started with the New Apple TV........cccccemrrninnns 1
Chapter 2: The tv0S Weather App.......ccusemmmmnssssnnmmssssssnnmsssssssnsssssans 9
Chapter 3: Stack Views and the Focus Engineccccussseennssssnns 23
Chapter 4: Creating a Photo Gallery Appccoccerrmssssennsssssssnsssssnns 33

Chapter 5: Adding an Album Browser to the Photo Gallery App.... 57
Chapter 6: Adding a Dynamic Top Shelf to the

Photo Gallery App ..c.ccccerrnussemsmmmssssnsnmssssssssssssssssnssssssnssssssssnssnssnsnnns 75
Chapter 7: Storing and Sharing Data...........ccccccmnsmnrnssensnssensnssens 93
Chapter 8: CloudKit........ccceurrrmmmmmmssnmmnsnnnnmmsssssssssssssnnsssssssssnnnnnnns 105
INA@X..cciiiiiismmnnnisssnnnnnssssnnnnnesssnnnnnsssssnnneessssnnneessssnnneessssnnnenssssnnnnnnsnnn 123
v

www.allitebooks.cond

http://www.allitebooks.org

Contents

About the AUthOrS.....ccciussssmmmmmssssssmmssssssnmssssssssnssssssssesssssnnssssssnnnnnnsns Xi
Acknowledgments.......ccccuuseemmmmsssssnmmssssssnmmsssssssnessssssssesssssnsnsssssnnnnns Xiii
Introductioncccciissemmmmmisnnnnmmsssssnmmssssnnns s XV
Chapter 1: Getting Started with the New Apple TV........ccocccemnrninnns 1
LOtS Of GOOU NBWSc.eeeeeeecrerrerrerse e s ssessessessesnesnesnssnesnssnesnssnssnnnnns 1
CaAPADIIITIES ...coveeerecerecire e e nn e 1

The Siri REBMOTE ...t 4
Apple TV’S LIMItationsccccvvvevrierrrrrsis s ses e sessessesssssessassssssssasssssassenns 5
Advantages with tvOS Development...........cceoeiiennrnnnner e seenes 6
Some Notes About Developing in Swift with tv0S.........cooerrre, 6

The tvOS FOCUS ENGINE......c.cceveerrereiscrinssre s se e snssnnnens 7
What Does Focusable MEan?ccccecernenesenrnsesessssssssesessssssesessssssssessssssssessssssenes 7
1111] P2 7 8
EXEICISES ..vovueeeeirereersersessessessesse e ssessessessessessesresresnesne s e s e nnesnennennsnnnnnnnnans 8
Chapter 2: The tv0S Weather App......ccureemrrsssssnnsmssssssssssssssssssssssnns 9
Designing the VIEW.........ocvcrcrcrcrrr s 13
Adding the Code for the VIEWc.cceeererninrcrccnerne e 16
SUMMAIY ...ttt re e n s s nn s 22
EXCICISES ...veuerrerrerrersersessessessessessessessessessssssssessessessssasssssassnssnessnsssnsassanes 22
vii

www.allitebooks.cond

http://www.allitebooks.org

CONTENTS

Chapter 3: Stack Views and the Focus Engineccoccnnsnnnnsssnnas 23
Auto Layout and Stack VIEWS..........cccceeveercercscescsces s 23

Implementing StacKS.........cccorrrcrnr s 23
The FOCUS ENQINE.....cocverirerierrere e 30

A FOCUS ENQING EXAMPIEerueereerereeereenerereseresessssesassessesessessssessssssassessensssenans 30
SUMMANY ... e s n s r e 31
EXBICISEScuvruereiriesisi e 3
Chapter 4: Creating a Photo Gallery Appccccurssemmmsssnsssssnsssssnnas 33
Page View CONtrollersccoeeeereneeseeseeses s ses s ses e 33
Creating the Photo Gallery App.......ccccvvrverrerrersensensessesses s ses s sessessessenns 34
A Little Project Cleanupcccccuceerrcrerensensseneses s s ssssesesssessens 36
Adding the Page View Controller...........cccceevereercrcrsensescesses s 38
Adding Scenes to the Interface Builder Canvas.............cocvevverrerieriennene 39
Adding the Photo and Album Data Model Structures..........ccccvevrverenen. 46
Adding the Photo Image Files to the Asset Catalog.........c..ccoeerreerieriannne 48
Completing the Photo Gallery App.....cccervrrernersersessessessesses s sessessessenns 51
1T 1110 RO 55
EXBICISEScvruereerrerisc e 55

Chapter 5: Adding an Album Browser to the Photo Gallery App.... 57

Table View CONtrollers.........cccucveernennnesesessssssssssesssss s sssssssssssssssens 57
Adding a Table View Controller to the Photo Gallery Appccccvverenen. 58
Adding the Gallery Data Model Structure.........cccceevereerercrsersessessennnns 65
Adding the Cities and Landscapes Image Files to the Asset Catalog.... 66
Completing the Photo Gallery App......ccceerrrerrerrerressessessessessessessessessesas 67
One More Thing: Adding a Custom Static Top Shelf Image.................... 4l
SUMMANY ...t r e s re s 74
EXBICISEScvruirriirerise st 74
viii

www.allitebooks.cond

http://www.allitebooks.org

CONTENTS

Chapter 6: Adding a Dynamic Top Shelf to the

Photo Gallery ApPccccerrrussmmnmmssssssnmmssssssssssssssssssssssssnsssssssnnnssssnans 75
Application EXTENSIONScccvveerierieererieererssessesssesesssesesssesssssssssssssenns 76
Adding Classes and Images to the Photo Gallery Extension 78
Implementing the TVTopShelfProvider Protocolccccoeeeevceecnnnnene. 81
Launching the Photo Gallery App from a Top Shelf Thumbnail Image..... 84
Handling URLS..........ccocioicrncneres e se s s s s s 88
Completing the Photo Gallery App.....cccceeeereerereeseesseses s ses e ses s sss e 89
31111] 1P 7S 91
EXBICISES ...cuevetrcriri st 91
Chapter 7: Storing and Sharing Data.........cccusccemmnsssnnnnnnssssnnnssssnnns 93
PreferenCes ... s 93
Writing PreferenNCeSccv it se e sr e sn s sa e 9
Reading PreferenCeS ..o viverererere e s sa s ss s saesae s saesaesans 95
114 95
SUMMANY ...t sn s sr e sn s sn s sn s n s n e r e n e nn e n s 103
(=] (1= L T 103
Chapter 8: CloudKit..........ccussemmmmmssssnnmmmsssssnnmssssssnnssssssssnsssssnnnnnnsns 105
Considerations for Using CloudKit............cccoevrrrrrrrersneneesensesseesenens 105
CloudKit CONtAINETS........ccovvueerrrreerereere s sessssenens 105
DAtabASE.......c.cceer e ————————————— 109
CloudKit DAtabasescccueerursererensernsssesessesssse e ss s sessssssssssens 110
Database RECOIS..........ouererereecrirrec s 110
Example CloUudKit APP ..c.cevevierrerierre e see s sse e ssessesssessessnssassssesnes 111
SUMMAIY ...t e sn s 121
EXBICISES ...vueeetiuerisessesise st 122
1T - 123
ix

www.allitebooks.cond

http://www.allitebooks.org

About the Authors

Gary Bennett is president of xcelMe.com, which
provides iOS programming courses online. By day,
Gary develops iOS apps professionally, and by night,
he teaches iOS programming. For more than six years,
Gary has taught thousands of students how to develop
iPhone/iPad apps and has several popular apps in

the iTunes App Store. Gary has a bachelor’s degree in
computer science and has worked for 25 years in the
technology and defense industries. He served 10 years in
the U.S. Navy as a nuclear engineer aboard two nuclear
submarines. After leaving the Navy, Gary worked for
several companies as a software developer, CIO, and
president. As CIO, he helped take VistaCare public in
2002. Gary also coauthored two editions of Objective-C
for Absolute Beginners and iPhone Cool Projects for
Apress. He lives in Scottsdale, Arizona, with his wife
Stefanie and their four children.

Stefan Kaczmarek has more than 15 years of software
development experience specializing in mobile
applications, large-scale software systems, project
management, network protocols, encryption algorithms,
and audio/video codecs. As chief software architect and
cofounder of SKJM, LLC, Stefan developed a number of
successful mobile applications including iCam (which
has been featured on CNN, Good Morning America,
and The Today Show, and which was chosen by Apple
to be featured in the “Dog Lover” iPhone 3GS television
commercial) and iSpy Cameras (which held the #1 Paid
iPhone App ranking in a number of countries around

the world including the United Kingdom, Ireland, Italy, Sweden, and South Korea).
Stefan resides in Phoenix, Arizona, with his wife, Veronica, and their two children.

xi

vww . allitebooks.con

http://www.allitebooks.org

ABOUT THE AUTHORS

xii

Brad Lees has more than 16 years of experience in
application development and server management.
He has specialized in creating and initiating software
programs in financial institutions, credit card processing,
point-of-sale systems, and real estate development.
His professional career highlights have been lead
iOS developer at Apriva, owner of Innovativeware,
product development manager for Smarsh, and vice
president of application development for iNation.
Brad also coauthored two editions of Objective-C for
Absolute Beginners.
A graduate of Arizona State University, Brad
and his wife Natalie reside in Phoenix with their five
children.

vww . allitebooks.con

http://www.allitebooks.org

Acknowledgments

We would like to thank Apress for all their help in making this book possible. Specifically,
we would like to thank Mark Powers, our coordinating editor, and Michelle Lowman, our
acquisitions editor, for helping us stay focused and overcoming many obstacles. Without
Mark and Michelle, this book would not have been possible.

Special thanks to Jim Markham, our development editor, for all his suggestions
during the editorial review process to help make this a great book. Thanks to Mary
Bearden, the copy editor, who made the book look great.

We would like to thank the CodeRed-I creative design team for their visual design
direction to complete the fresh, stylized front and back cover. Special thanks to Giang Le
for his contemporary and retro graphic design elements.

0 " ™
LODERED-]

YOUR MOBILE APP SOURCE

xiii

Introduction

We are now able to write apps for the new Apple TV. This is great for iOS developers
because everything is very familiar. Xcode, Swift, UIKit Interface Builder and the tvOS
Simulator are very similar to iOS development.

This book assumes you are very familiar with i0OS development using Swift. If you
are not, please read our Swift 2 for Absolute Beginners from Apress (www.apress.com/
9781484214893).

Swift 2 for Absolute Beginners takes you through all the development to get you up to
speed to become a tvOS developer and how to do it.

Free Live Webinars, Q&A, and YouTube Videos

Every other Monday night at 6:00 p.m. Pacific time, we have live webinars and discuss
a topic from the book or a timely item of interest. These webinars are free, and you can
register for them at www.xcelme.com/latest-videos/.

HOME COURSES SCHEDULE CONSULTING ABOUT CONTACTUS FAQ

LATEST VIDEOS

R
Free Swift iOS & tvOS Webinars

Recorded Chapter Tutorials

At the end of the webinars, we have a Q&A. You can ask a question on the topic
discussed or on any topic in the book.

Additionally, all these webinars are recorded and available on YouTube. Make sure
you subscribe to the YouTube channel so you are notified when new recordings are
uploaded.

XV

www.apress.com/
9781484214893
www.apress.com/
9781484214893
www.xcelme.com/latest-videos/

INTRODUCTION

Free Book Forum

We have provided an online forum for this book at http://forum.xcelme.com, where you
can ask questions while you are learning Swift and get answers from the authors. Also,
Apple makes frequent changes to the programming language and SDK. We try our best
to make sure any changes affecting the book are updated on the forum along with any
significant text or code changes.

You can download the source code from the chapters on this forum too.

xcelMe.com

xcelMe Training Center And Interactive Developer Forum.

" Board index
F{luser Control Panel » View your posts

It is currently Sat Nov 28, 2015 10:15 pm
[Moderator Control Panel]

View unanswered posts « { SEARCH_UNREAD } « View new posts « View active topics

FORUM TOPICS POSTS

How To Access Your Course Webinars And How To Use The Forum
New students need to download the attached pdf and follow instructions to register for 3 12
your webinars after you purchase the class. Additionally, there are directions and
updates on how to access your course and forum, post questions, navigate the
message board, watch training videos, etc.
1 gary.

Book -> Swift 2.0 for Absolute Beginners: iPhone and Mac Programming Made

Easy 2nd Edition 17 66
® This forum contains answers readers may have for each chapter as well as any

corrections to the book. The forum also contains the Source Code for the book.

Moderator:
— m -» Developing for Apple TV using tvOS and Swift

This forum contains answers readers may have for each chapter as well as any
corrections to the book. The forum also contains the Source Code for the book.
Moderator: gary.bennett

xvi

http://forum.xcelme.com

CHAPTER 1

Getting Started with the
New Apple TV

Finally! For years iOS developers have been waiting to write apps for the Apple TV. Three
years ago, we read in Steve Jobs’s biography that Apple had been working on a new Apple
TV, and the current Apple TV was “just a hobby.” In the summer of 2015, Apple finally
announced the new Apple TV along with the operating system called tvOS. Developers
can now write apps for the Apple TV, and there is a new App Store for tvOS apps.

Note If you haven't already read the Introduction to this book, take the time to do so.
The Introduction covers how to access the free tvOS forum, source code used in this book,
free YouTube tvOS training videos, and how to learn Swift 2.

Lots of Good News

There are a lot of great things about the Apple TV. It is important that you understand
what the Apple TV is capable of so that you can use these capabilities in your tvOS apps.

Capabilities
The capabilities of the new Apple TV include:
e 64-bit A8 processor

32GB or 64GB of storage
e 2GBof RAM

e 10/100 Mbps Ethernet

e Wi-Fi802.11a/b/g/n/ac

e 1080p resolution

CHAPTER 1

Inherited i0S Frameworks

GETTING STARTED WITH THE NEW APPLE TV

HDMI

New Siri Remote/Apple TV Remote
Bluetooth capability

Many of the frameworks available for iOS are available for tvOS. These include:

Accelerate
AudioToolbox
AudioUnit
AVFoundation
AVKit
CFNetwork
CloudKit
CoreBluetooth
CoreData
CoreFoundation
CoreGraphics
Corelmage
CoreLocation
CoreMedia
CoreSpotlight
CoreText
CoreVideo
Darwin
Foundation
GameController

GameKit

GameplayKit

GLKit

ImagelO

MachO
MediaAccessibility
MediaPlayer
MediaToolbox

Metal

MetalKit
MetalPerformanceShaders
MobileCoreServices
ModellO

OpenGLES

SceneKit

Security

simd

SpriteKit

StoreKit

Swift Standard Library
SystemConfiguration

UIKit

CHAPTER 1 " GETTING STARTED WITH THE NEW APPLE TV

The Apple A8 Processor

The Apple TV processor is a 64-bit ARM-based system on a chip (SoC) designed by Apple
and manufactured by TSMC. It contains two billion transistors, twice as many as the
previous A7 processor.

The A8 processor was first introduced in the iPhone 6 and iPhone 6 Plus. The A8 has
25% more CPU performance and 50% more graphics performance while drawing only
50% of the power compared to its predecessor, the A7 (see Figure 1-1).

Figure 1-1. Apple’s A8 processor, used in the fourth-generation Apple TV

CHAPTER 1

GETTING STARTED WITH THE NEW APPLE TV

The Siri Remote

The Siri Remote has the following buttons (see Figure 1-2):

1.

o &

N @

Touch surface. Swipe to navigate. Press to select. Press and
hold for contextual menus.

Menu. Press to return to the previous menu.

Siri/Search. Press and hold to talk in those countries that
have the Siri Remote. In all other countries, press to open the
onscreen search app.

Play/Pause. Play and pause media.

Home. Press to return to the Home screen. Press twice to view
open apps. Press and hold to sleep.

Volume. Control TV volume.

Lightning connector. Plug-in for charging

{ =] \

- MENU @ —0

O@O

+

T—©@
—

L—e0

Figure 1-2. Apple’s Siri Remote

CHAPTER 1 " GETTING STARTED WITH THE NEW APPLE TV

Apple TV’s Limitations

The tvOS and iOS are very similar, however, there are several differences and limitations:

Users can’t tap their screens: Users will find it frustrating using the
remote to enter data into a tvOS app. They will likely experience
this right away when entering user names and passwords. They
may have to retype their entire password if they got distracted
and forgot where they left off. Users will find it very helpful to
pair a Bluetooth keyboard with their Apple TV when this feature
becomes available.

No persistent local storage: tvOS offers no persistent local

storage. The lack of local storage means any app maker must use
CloudKit, Parse, or some other cloud-based service to save files or
any other significant amount of information within their app.

Developers can only access 500KB of persistent storage. This is what
is local to the device to save basic app settings and configuration
information using the NSUserDefaults class. Only the temporary
and cache directories can be written to. The standard documents
directory is not accessible.

There is a 200MB app size limit: tvOS enforces a 200MB limit on
the size of each app. This will affect a number of apps, especially
games. Game apps can easily reach 1GB due to the inclusion

of graphic assets. Apps will have to use App Thinning and
On-Demand Recourses to download additional assets when
needed to address this restriction.

No web views: This is probably the most drastic restriction that
developers are going to have to work with; especially for apps
that are mostly web views. Apple does offer an alternative in the
form of TVML. This enables developers to define their views to
create a client-server app with the TVJS JavaScript APIs. This also
means it will be more difficult to view Word documents and PDFs
that were easily viewable in UIWebviews with iOS.

No built-in PiP. Picture-in-Picture was introduced in iOS 9 but is
not available with tvOS.

No customizable video player: The built-in video player in AVKit
for tvOS does not support the ability to extend customizations.

No photos access: tvOS does support viewing photos stored in
iCloud, but developers don’t have the ability to display the photo
picker via UIKit’s ULImagePickerController or the Photos
framework.

CHAPTER 1 " GETTING STARTED WITH THE NEW APPLE TV

e No address book, calendar, or iMessage: Apps will not be able to
incorporate the Address Book, Contacts, or EventKit frameworks.
The MessagesUI framework also isn’t available, making it
impossible to send iMessages.

e No ReplayKit: ReplayKit is targeted at game developers and lets
players record their gameplay to share with other players online.
It is possible the reason for this omission is that the Apple TV isn’t
powerful enough to record 1080p gameplay while rendering the
actual game.

e No Pasteboard API: Pasteboard enables copy and paste
functionality on iOS but it is not available for tvOS.

e No multipeer connectivity: The multipeer connectivity framework
handles identifying iOS devices via Wi-Fi, peer-to-peer Wi-Fi,
and Bluetooth, and then managing the transfer of data between
devices.

e No Mach Messages and Named Pipes: Mach Messages and Named
Pipes are low-level kernel technologies that enable interprocess
communications. This enables processes to pass messages to
each other.

Advantages with tvOS Development

The Apple TV and tvOS are new, and that brings several advantages over iOS
development, at least for now:

¢ You only need to develop for a single screen resolution.
e There is no need to handle screen rotations or size class changes.

e Unlike mobile cell phones and tablets, tvOS developers can
assume the presence of low-latency, always on, high-bandwidth
networks.

Some Notes About Developing in Swift with tvOS

When the Apple TV and tvOS were introduced, the Swift programming language had
been available for over a year. We had each been using Objective-C for over six years,
but immediately started using Swift for new app development. We will be using Swift in
this book.

Although we love developing in Swift, we feel there are a few caveats about Swift we
must disclose.

CHAPTER 1 " GETTING STARTED WITH THE NEW APPLE TV

Swift Pain Points

The Swift language is changing and changing fast. Some releases of Swift cause compiler
errors in code that worked just fine in the previous Swift version. Although the changes
are usually minimal and improve the language, the compiler errors still take time to fix.
Developer tools are still lagging behind Objective-C. Sometimes the debugger
refuses to disclose variable results, and compiler errors can be vague or misleading.
It’s hard to believe that a year and a half since the introduction of Swift the Refactor
command in Xcode still does not work!
Compiler stability can be an issue. Sometimes Xcode will crash, and heavy use of
Swift frameworks sometimes don’t work well with “whole module optimization.”

Swift Advantages

Swift may not be completely mature yet, but it is ready for prime time. It is a pleasure to
code in Swift and we have noticed about a third of the code you would have to write in
Objective-C is no longer necessary in Swift. For example, Interface Sections are no longer
necessary in Swift.

Swift does fulfill the promise of more efficient and modern development. An entire
class of errors that used to require runtime debugging are now caught by the compiler.
We spend about a quarter of the time debugging Swift apps than we would have with
Objective-C.

The tvOS Focus Engine

Interactions in tvOS present a unique challenge to developers and user interface
designers. The new Apple TV pairs a remote and a potential wireless game controller with
a user interface that lacks a traditional cursor. This results in “focus” being the only way
an app can provide visual feedback to users as they navigate within the app.

The focus engine can be thought of as a bridgekeeper between users and your tvOS
application. Understanding the focus engine is an essential step toward building an app
that feels native to tvOS, and not just a quick, ugly iOS port.

Every experienced iOS developer will feel comfortable with UIKit and tvOS, and
Apple has made it easy to port your iOS app to tvOS. However, if you don’t consider how
your app needs to interact with the focus engine from the start, you will find yourself
frustrated with the user interaction as you finish your app.

What Does Focusable Mean?

Users navigate a tvOS application by moving focus between user interface (UI) items

on their TVs. When a Ul item is focused, its appearance is adjusted to stand out from

the appearance of other items. Focus effects are what make the new Apple TV and tvOS
communal. Focus effects provide visual feedback not only to whoever is using the remote,
but also to friends and family who may be watching. This is what separates the native
tvOS experience from AirPlaying your iPhone or iPad app onto the TV.

www.allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 " GETTING STARTED WITH THE NEW APPLE TV

Only one view can be in focus at a time, and only views can receive focus. Consider

the buttons in Figure 1-3.

tvOS Views or Buttons

Figure 1-3. Button C is focusable

Button C is currently in focus. Swiping left of the Apple TV remote will focus button B.
Swiping right on the Apple TV remote will focus button D. Swiping left or right more
aggressively will focus button A or button E, respectively.

Apple has updated UIKit and provided implementations for views that can become
focusable by providing a method called canBecomeFocused().

Only the following UIKit classes can become focused:

e UlButton

e UlControl

e UlSegmentedControl
e UlTabBar

e UlTextField

e UlSearchBar

Summary

The new Apple TV offers a great opportunity for developers. The tools that are available
in tvOS enable developers to deploy a new generation of apps on a new device in users’
homes.

Exercises

1. Read the Human Interface Guidelines for tvOS. You can read
the HIG for tvOS at https://developer.apple.com/tvos/
human-interface-guidelines/.

2. Ifyou haven't already registered for a developer account, go
register! You can register at https://developer.apple.com.

https://developer.apple.com/tvos/human-interface-guidelines/
https://developer.apple.com/tvos/human-interface-guidelines/
https://developer.apple.com/

CHAPTER 2

The tvOS Weather App

This chapter will show you the capabilities of the tvOS by walking you through the steps
on how to create a basic tvOS weather app. The app will demonstrate how UIKit controls
look differently on tvOS than they do on iOS and how the development process is nearly
identical. You will use this weather app for both this chapter and Chapter 3. In Chapter 3
you will use Stack Views to lay out part of this weather app.

Building this weather app will also enable you to explore how the focus engine works
and how you can use it in your apps. The goal of the weather app will be to look up the
current weather in different cities using www.OpenlWeatherMap.org, a free web service
(see Figure 2-1).

Second

Phosres

Austin ol

Dallas Weaher scattored couds
Phoenix

Portand

San Diego

Figure 2-1. The weather app you will develop including UITabBarController,
UlTableView, and UlStackViews

The cool thing about tvOS development is how similar it’s to iOS development. Let’s
start building this weather app by choosing a template for the app based on the Tabbed
Application and include a Table View and labels.

http://dx.doi.org/10.1007/978-1-4842-1715-3_3
http://dx.doi.org/10.1007/978-1-4842-1715-3_3
http://www.openweathermap.org/

CHAPTER 2 ' THE TVOS WEATHER APP

1. Create a new tvOS Xcode project and select Tabbed
Application. Then click Next (see Figure 2-2).

Choose a template for your new project:
i0s
Application * APP

Framework & Library

Tabbed
Application

Game Single View
watchOS Application

Application

Framework & Library

05X
Application
Framework & Library
System Plug-in
Other et
Tabbed Application
This tempiate provides a starting point for an application that uses a tab bar. It provides a
user interface iy with a tab bar , and view s for the tab bar items.
Cance T

Figure 2-2. Creating the first tvOS application
2. Name the project (we are using WeatherStation), click next,

and save this to a directory of your choosing, as shown in
Figure 2-3.

10

CHAPTER 2 ' THE TVOS WEATHER APP

Choose options for your new project:

Product Name: WeatherStation
Organization Name: xcelMe
Organization Identifier: com

Bundle Identifier: com.WeatherStation

Language: Swift b
v Include Unit Tests
v Include Ul Tests
Cancel Previous Next

Figure 2-3. Naming and saving the WeatherStation app

When the project is created, the project settings are displayed, as shown in Figure 2-4.

A SR AP WestherStation: Ready ay 3t 810 Ph i [
Weatherstation, kzodeproy
RS & WeatherStation
WeatharStation e :
2 seners Capabiiies Resource Tags info Build Settings Build Phages | 'dentity and Type

v " 0 "

WeatherStation PROJECT Name 'WeatherStation

= hppCelegate.swirt o ¥ Identity :

§ WoatherStation Location Absohuts
s FirstView..irober.swift . Bbtiodeacio
WeatherStation.xcodepr
+ SecondVi_trolerswift | TARGETS Bundie dentifier com WeatharStation o
Main.stoey board & WeatherStation S Full Path fUsersigwbennett
[Assets scassets WoatharStaticnTests Deskiop/WestherStation/
Infa.plist P, Bulld 1 i e .
i WeatherStationUiT... i 4]
* [WeatherStationTests
» [WeatherStationUiTests Sapm.| Wona 2 Project Document
» I Products Mo ning provisioning profiles Project Format Xcode 3.2-compatile
No provisic th @ Organization sceihde
Class Prefix
¥ Deplayment Infa
Deployment Target -
Makn Imtert e -
risrince. s Mo Matches

¥ Appicens and Launch Images
App lcons Scurce App lcon & Top Shelf im

Launch kmages Source Launchimage

Figure 2-4. The WeatherStation app project settings

11

CHAPTER 2 ' THE TVOS WEATHER APP

As shown in Figure 2-4, FirstViewController.swift and SecondViewController.
swift files are created, one for each tab.

3. Click the Main.Storyboard file and view the Storyboard in
Interface Builder, as shown in Figure 2-5.

:

v Tab Bar Controfier

. TabBar

 u} Any nAny B ol st

Figure 2-5. The WeatherStation app Storyboard

When the storyboard file is shown, you can see there are three scenes. The
UlTabBarController acts as the entry point to the application and also serves as the
RootViewController that contains the First Scene and Second Scene View Controllers.

Note You will frequently need to zoom in and out in the Storyboard to see all the
scenes. Command + and Command — will quickly enable you to zoom in and out.

We created a Tabbed Application with two tabs to demonstrate how many of
the UIKit controls look and behave differently in tvOS compared to iOS. You will be
working in the Main.storyboard file and the FirstViewController.swift file. You will not
be working with the SecondViewController.swift file directly; but you will be using the
SecondViewController.swift file for our exercises at the end of this chapter.

Let’s run the WeatherStation app to see what it looks like in the tvOS simulator
(see Figure 2-6). Click the Play button to run the WeatherStation app.

12

CHAPTER 2 ' THE TVOS WEATHER APP

Appie TV 1080 - Appie TV 1080p | tvD5 8.0 {137383)

Second

First View

Losactart by Firat amCior ety

Figure 2-6. The WeatherStation app running in the tvOS Simulator with the remote in the
lower right hand corner

You can see that the Tab Bar is at the top of the view in tvOS instead of the bottom of
the view as in i0S apps. Use the remote to switch between tabs and dismiss the Tab Bar by
swiping.

Note If you are not able to view the remote, you can access it by going to the
tvOS Simulator menu and selecting Hardware » Show Apple TV Remote or entering
Shift-Command-R.

Designing the View
Now let’s add the Table View and Label controls to the First Scene.

4. Select the Main.storyboard file and select the First Scene.

5. Remove the two labels in the middle of the First Scene
(see Figure 2-7).

13

CHAPTER 2 ' THE TVOS WEATHER APP

> S VW A-p Finlshed a5ation oa A 108 2 =
Main pedy baard
= D WestherStation WeathesStation | [} Main storyboard | [l Main storyboard (Base)) [First Scene First | € A m o
—
Z Class FirstViewControlier © ~
Top Layout Guide Module -
Bottom Layout Guide
w | veaw Identity
P i Sseyboard 10
@ First Respander
Exit Reworstion i0
»Es Use Storyboard 1D

v [2] Tab Bar Controller Scons © Remave these labels User Defined Runtime Attributes
Ky Path Type Vale

¥ () Tab Bar Controdier

. TabBar

@) First Responder

[Exi
Storyboard Entry Point
Relationship “view conteolle. p—
Rolationship “view controlle... (| View Controller - A contralier

Tl thet marages & view.

rd Reference -
Provides o placenglder fod & view

Figure 2-7. Removing the Labels in the First Scene

6. Add a Table View to the First Scene and five Labels, as shown
in Figure 2-8.

@ Xcode File Edit View Find Navigate Editor Product Debug SourceControl Window Help TueMov24 6:34PM Q =
@0® P W A)EAp Finished running WeatherStation on Apple TV 1080p E o <lO0Q C
Main storyboard
PBEaoacEo @ ®E ¢ > B i B Main B vain (Base) ; [Second Scene) () Second View
¥ LI WeatherStation v [Second Scene T -

¥ WeatherStation v () Second
+ AppDologate swift r Make sure Table View and Label controls appear under the View

< FirstView...iroller.swift

- SeconaVi..traller.swift by

Table View

w [5] Tab Bar Controller Scene

¥ [Tab Bar Controfer
. TabBar
@) First Responder
Exit
* Storyboard Entry Point
Ruiationship “view contralle...

Figure 2-8. Adding Ul Controls to the First Scene

14

CHAPTER 2 ' THE TVOS WEATHER APP

Note You will need to expand your scene to 100% in Interface Builder to add your Table
View and Labels. Make sure the controls appear under the Document Outline Section in
Interface Builder. (see Figure 2-8).

7. Add and connect the outlets to the controls, as shown in
Figure 2-9.

2 - K
¥ [X] First Scene ;.-"
I/l FirstViewController.swift
v) Fm /! WeatherStation
Top Lavout Guide I
1 /
Bottom Layout G Labe // Created by Gary Bennett on 11/24/15.
v View // Copyright © 2815 xcelMe. ALl rights reserved.
TURka e [Temp Label J
L City Name Cu...
L Temp
L] Tome Outlet Weather Label s
T w-"-'mvCI i class FirstViewController: UIViewController
ather Cutled
L Weather @IB0utlet weak var tableView: UITableView!
* First

@IB0utlet weak var cityNameOutlet: UILabel!
@IB0utlet weak var tempOutlet: UILabel!
@IB0utlet weak var weatherQutlet: UILabel!

B First Responder
[Exit

» [Second Scene werride func viewDidLoad() {
eadlidlo

» [Tab Bar Controller Sc... itional setup after loading
tvnicallv from a nib.

Figure 2-9. Connect the control outlets

8. Connect the dataSource and delegate outlets for the Table
View, as shown in Figure 2-10.

2 - R
¥ [First Scene /"
- /7 FirstViewController.swif
CEsa_) . // WeatherStation
Top Layout GUige . M
Bottom Layout G... /f Created by Gary Bennett on 18/24/15.
v | View Copyright © 2015 xcelMe. All@rights reser
Tabie View
L City Ni
L Termp

ptroller {
L Weather
L Weather
* First
M First Sesnonda

.

¥ Referencing Outlets TableView

b eV pt: UILabe
e Seea ITLahel!

Figure 2-10. Connect the dataSource and delegate outlets

15

CHAPTER 2 ' THE TVOS WEATHER APP

Adding the Code for the View

Now let’s add the additional code to populate the Table View by adding the code in
Listing 2-1.

Listing 2-1. Code to Populate the Table View

13 @IBOutlet weak var tableView: UITableView!
14 @IBOutlet weak var cityNameOutlet: UILabel!
15 @IBOutlet weak var tempOutlet: UILabel!
16 @IBOutlet weak var weatherOutlet: UILabel!
17
18 var cities = ["Austin","Dallas","Phoenix", "Portand", "San Diego"]
19
20 override func viewDidLoad() {
21 super.viewDidLoad()
22
23 // Do any additional setup after loading the view.
24 }
25
26 func numberOfSectionsInTableView(tableView: UITableView) -> Int {
27 return 1
28 }
29
30 func tableView(tableView: UITableView, numberOfRowsInSection section:
Int) -> Int {
31 return self.cities.count
32 }
33
34 func tableView(tableView: UITableView, cellForRowAtIndexPath
indexPath: NSIndexPath) -> UITableViewCell {
35 let cell = UITableViewCell(style: .Subtitle,
reuseldentifier: nil)

36 cell.textlabel?.text = (self.cities[indexPath.row])
37 return cell
38 }

Line 18 contains the array of the cities for which you want to display the weather
information.

Lines 30 to 40 contain the data source and delegate functions to populate the
Table View.

Now run the app in the tvOS simulator to see the city names appear in the Table

View. Practice using the remote in the simulator to change the focus in between cities
(see Figure 2-11).

16

Austin
Dallas
Phoenix

Portand

San Diego

CHAPTER 2 ' THE TVOS WEATHER APP

Appie TV 1080p - Apple TV 10800 [005 8.0 (13T393)

Second

Label
Temp

Weather

Figure 2-11. Running the app with the Table View being populated

Now let’s retrieve the weather information from www.OpenlWeatherMap.org. Insert the
code as shown in Listing 2-2.

Listing 2-2. Codeto Retrieve Weather Information

41 func tableView(tableView: UITableView, didSelectRowAtIndexPath indexPath:
NSIndexPath) {

42
43
44
45
46
47

48

49

50

51
52
53
54
55
56
57

}

let row = indexPath.row
self.getWeatherData(cities[row])

func getWeatherData(city: String){

let urlString: String = city.
stringByAddingPercentEncodinghWithAllowedCharacters
(NSCharacterSet.URLQueryAllowedCharacterSet())!
//PLEASE VISIT http://home.openweathermap.org/users/sign up to
get your API Key. Insert your API key below
let url = NSURL(string: "http://api.openweathermap.org/data/2.5/
weather?q=\(urlString),us8APPID=INSERT YOUR API KEY HERE")
let getData = NSURLSession.sharedSession().dataTaskWithURL(url!)
{(data,response,error) in

dispatch_async(dispatch_get main_queue(), {

self.setlables(data!)

1)

}

getData.resume()

17

vww . allitebooks.con

http://www.openweathermap.org/
http://home.openweathermap.org/users/sign_up
http://api.openweathermap.org/data/2.5/weather?q=%5C(urlString),us&APPID=INSERT
http://api.openweathermap.org/data/2.5/weather?q=%5C(urlString),us&APPID=INSERT
http://www.allitebooks.org

CHAPTER 2 ' THE TVOS WEATHER APP

58
59
60
61

62
63
64
65
66

67
68
69
70
71
72
73
74

75
76
77
78
79
80
81

Lines 41 to 44 contain the didSelectRowAtIndexPath delegate method. This method

func setlables(weatherData:NSData) {

do {

let jsonData = try NSJSONSerialization.

JSONObjectWithData(weatherData, options: [])

let dataOut = jsonData as! Dictionary<String,AnyObject>

if let city = dataOut["name"] as? String {
cityNameOutlet.text = city

}

if let mainDictionary: Dictionary = dataOut["main"] as?
Dictionary<String,AnyObject>{

let kelvin = mainDictionary["temp"] as! Double

let celsius = kelvin - 273.15

let fahrenheit = 9/5 * celsius + 32

tempOutlet.text = String(format: "%.f", fahrenheit)

}

if let weatherDict = dataOut["weather"]![0]{
weatherOutlet.text = weatherDict["description”] as?
String

}
}
catch {

print("Fetch failed:")
}

}

gets called when the user has selected a city. This method retrieves the row that was

selected and then calls the function getWeatherData with the name of the city that was

selected.

Lines 46 to 56 contain the getWeatherData function. Line 47 takes the city string that
was passed in and replaces any spaces in the name (San Diego) with %20 (San%20Diego).

Line 49 then creates the URL used to request the weather data for the city. The URL
String for the city is passed into the URL and the API key is used by OpenWeatherMap.org

functions as a parameter at the end of the string.

Lines 50 to 55 make an asynchronous request to OpenWeatherMap.org to retrieve
the weather information for the selected city. When the weather data are successfully
downloaded, Line 52 calls setLables and passes the weather data that was downloaded

for the selected city.

Lines 58 to 81 convert the data downloaded to JSON and parses them to retrieve the

city name, temperature, and description of the weather.
Lines 61 and 62 convert the NSData to a JSON dictionary.

Lines 63 and 64 then look up the name of the city and set the cityNameOutlet text

outlet.

Lines 66 and 67 look up the temperature data. OpenWeatherMap.org returns
temperatures in Kelvin.

18

CHAPTER 2 ' THE TVOS WEATHER APP

Lines 68 to 70 convert Kelvin to Celsius and then to Fahrenheit. The temperature is
then sent to the weatherOutlet text outlet.

Now run the app to test that the weather data have updated with the city that was
selected.

When you run the app, it will crash on line 52, self.setLables(data!). Starting
with i0S 9, Apple has enforced using secure connections with websites. Because
OpenWeatherMap.com is not a secure SSL connection (i.e., one that uses https://), Apple
blocks the web service request. You can see what happened in the Output console, as
shown in Figure 2-12.

fun gr\h'ealheroalaiulv String){
let wrlString : ng =
'r:nqayﬁﬂa1ngPercﬂntEnco‘mghnnalloued haracters{ NSCharacterSet. URLOuefﬁl'lo-oﬂcrara" sum'
IT hitp:{/home, openweathermap.org/users/sion up to get API Key. Insert your e
t NSUﬂListrirg “http://api.opemeeathermap. ou;'data.fz S—’wcath Tg=\
{ '\Str;r‘q PPID=391cb2cl4e489e43e@9acdibbebaTdaf")
gnDam = NSURLSession. Jhnrciﬁcssmn[] dataTaskWithURL{url!) {(data, response,error) in

in_gueus(), {
selfs selLabIes[ua:a 'I Theead 1: EXC_BAD_INSTRUCTION (coce«EXC_ 386 INVOR, subrocesOul)

}
getData. resumel)

func setLables(weatherData:NSData) {

do {
let 1sonDa.a = try NSJS:Nserquel:oruJSDNOb\eclhxthUaleMa
- aation) -

2015-11-16 17:33:59.615
WeatherStation[5347:26726722] App Transport Securit
has blocked a cleartext HTTP (http://) resource load
since it is inmsecure. Temporary exceptions can be
configured via your app's Info.plist file.

fatal error: unexpectedly found nil while unwrapping
an Optional value

¥ = (WeatherSt v OX0000TYEA22009T0

Figure 2-12. iOS 9 blocking nonsecure (without https://) web service requests

White Listing Websites

As Apple indicates in the Console, you can configure your Info.plist file to enable only this
website’s address to be accessed without it being an TLS URL. This is called white listing.
To white list a website, you will need to modify the Info.plist.

1. Right-click the Info.plist in the Project Navigator. Then Select
Open As » Source Code, as shown in Figure 2-13.

19

CHAPTER 2 ' THE TVOS WEATHER APP

BRaAamneEc B B < & i atherStati Info.plist) No Selection
¥ [weatherstation Key Type Value
¥ || WeatherStation ¥ Information Property List © Dictionary = (12 items)
= AppDelegate.swift Localization native developmentre... & 5t on
. FirstViewController. switt Executable file a S(ENECUTABLE_NAME)
. SecondVie...ntroller swift Bundie identifier ~ $IPRODUCT_BUNDLE_IDENTIFIER)
Main.storyboard InfoDicticnary version + String 6.0
5 Assets xcossets ot me 4 swir $(PRODUCT_NAME)
- Bundle OS5 Type code : St APPL
> B westhorstatly 0" In Finder : ek i 2
- | Open with External Editor £ code H g e
: s ::-‘:::fm. Dpen b Property List :. lss
Show File Inspector Source Code 1 s
New File... Hex ¥ a
Add Files to "WeatherStation®.. Quick Look
Delete
New Group

New Group from Selection

Figure 2-13. Opening the apps Info.Plist

2. Add the code in Listing 2-3 to the Info.plist starting at line 31.
The file should then appear as shown in Figure 2-14.

Listing 2-3. Info.plist
31 <key>NSAppTransportSecurity</key>

32 <dict>

33 <key>NSExceptionDomains</key>

34 <dict>

35 <key>api.openweathermap.org</key>

36 <dict>

37 <!--Include to allow subdomains-->

38 <key>NSIncludesSubdomains</key>

39 <true/>

40 <!--Include to allow HTTP requests-->

41 <key>NSTemporaryExceptionAllowsInsecureHTTPLoads</key>
42 <true/>

43 <!--Include to specify minimum TLS version-->

44 <key>NSTemporaryExceptionMinimumTLSVersion</key>
45 <string>TLSv1.1</string>

46 </dict>
47 </dict>
48 </dict>

20

19

CHAPTER 2

Info.piist

& WeatherStation WeatherStation) [info.plist) [<dict>
~Fvranygavusy 30 any-
<key=CFBundleSignatures</key>
<string=?77?</string>
<key=CFBundleVersion</key>
<string>1</string>
<key=LSRequiresIPhone0S</key=
<true/>
<key>UIMainStoryboardFile</key=>
<string=Main</string>
<key=UIRequiredDeviceCapabilities</key>
=array=
<string=armb4</string=
</array>
<key=NSAppTransportSecurity</key>
<dict>
<key>NSExceptionDomains</key=
<dict>
<key>api.openweathermap.org</key=>
=dict>
<!—Include to allow subdomains——>
<key>NSIncludesSubdomains</key=
<true/>
<!—Include to allow HTTP reguests—>
«kepl:s‘l'anporaryExoeptlonluousInsecureHTTFLoadwkey»
<true/>
<!—Include to specify minimum TLS version-—>
<key=NSTemporaryExceptionMinimumTLSVersion</key=
<string>TLSv1.1</string=>
</dict>
</dict>
</dict>

</dict>
</plist>

Figure 2-14. Updated Info.plist source code

THE TVOS WEATHER APP

3. Close the Info.plist file and open it by clicking it. The Info.plist
should appear as shown in Figure 2-15.
| 3 S) A-Op WeatherStation | Build WeatherStation: Succeeded | Today at 5:33 PM =
Info.plist
s | 88| ¢ = WeatherStation WeatherStation Info.plist) No Selection
B WeatherStation Key Type value
¥ [0 WeatherStation ¥ Information Property List © Dictionary £ (13 items)
* AppDelegate.swift Localization native development re.. * Siring en
= FirstViewController.swift Executable file 4 ${EXECUTABLE_NAME]
 SecondVie..ntroller.swift Bundie identifier = $(PRODUCT BUNDLE IDENTIFIER)
| Main.storyboard InfoDictionary version 4 60
Bundle name 4 $(PRODUCT_NAME)
S SNt RO Bundle OS Type code i APPL
s Bundle versions string, short p 10
» WeatherStationTests Bundle creator OS Type code B nn
» [WeatherStationU|Tests Bundle version . 1
> Products Applicatigp.e ¢EPho .
MTEin storyboard file base name . Main
» Required device capabilities - (1 item)
¥ App Transport Security Settings 3 Dictionary 1 item)
w Exception Domains =t ionary (1 item)
¥ api.openweathermap.org Dictionary (3 tems})
NSincludesSubdomains Boolean YES
NSTemporaryExceptionAllow.. Boolean YES
NSTemporaryExceptionMini... TLSV1A
Figure 2-15. Updated Info.plist

21

CHAPTER 2 ' THE TVOS WEATHER APP

Now that you have white listed the OpenWeatherMap.org website, you can run the
app and retrieve the weather data for selected cities. Run the app and test the selecting of
cities. The weather data should populate, as shown in Figure 2-16.

Second

Phosre

Austin
Temo 70
Da “as ‘Weather scattered clouds
Phoenix
Portand

San Diego

Figure 2-16. App running and retrieving weather data

Summary

In this chapter you learned how to develop a basic and functional tvOS app. You learned
how to retrieve data from a web service and display it and learned how to white list a
website.

In the next chapter we will use Stack Views layout our labels and explore the tvOS
Focus Engine.

Exercises

1. Read the OpenWeatherMap.org APIJSON format and add the
ability to display humidity, barometric pressure, and wind
direction to the view.

2. Inthe Second Scene, display an icon of the current weather
that the selected city is experiencing. For example, if it is
snowing, display a snowflake.

22

CHAPTER 3

Stack Views and the
Focus Engine

In i0OS 9 Apple introduced Stack Views, and these are also available in tvOS. The
UlStackView class provides an interface for laying out collections of views in either a
column or a row. A Stack View lets you utilize Auto Layout, creating user interfaces that
can dynamically adapt to any changes in the available space within your views. IniOS 9
Stack Views automatically adjust for autorotation and screen size.

In this chapter we will expand our WeatherStation app to use Stack Views and also
explore how the tvOS Focus Engine works.

Auto Layout and Stack Views

Stack View uses Auto Layout to position and size its views. The Stack View will pin the
first and last arranged view flush with its edge along the stack’s axis. When working with
a horizontal stack, this means the first arranged view’s leading edge is pinned to the
stack’s leading edge, and the last arranged view’s trailing edge is pinned to the stack’s
trailing edge. When working with vertical stacks, the top and bottom edges are pinned,
respectively. You will see this in action in our example below.

You can then specify how you want the spacing to appear between the views in a
stack, all without having to specify the constraints in a stack.

Implementing Stacks

Implementing stacks is pretty easy. The steps below will show how to embed five labels
into a single stack.

1. Open the WeatherStation app from the previous chapter.
Select the City Name Label.

At the bottom right of Interface Builder, click the Stack icon.

Eal A

Ensure that the Stack View Axis that Interface Builder selected
is set to “Vertical” as shown in Figure 3-1.

23

CHAPTER 3 ' STACK VIEWS AND THE FOCUS ENGINE

Asignment Fill B
Distribution Fill 2]
spacing 1]

Baseline Relative

Label

Temp

Weather

Mode

Semantic

Label

Scale To Fil

Unspecified

Tag 0
Interaction @ User Interaction Enabled
Multiple Touch

Alaha 1
C—_—

L)

Tit T3 Default

Cpaque Hidden
Clears Graphics Context

Clip Subviews
Autoresize Subviews

Drawing

Stretching 0. 0.
X Y

toi tad Do

Figure 3-1. Placing the City Name label in a Vertical Stack View

1%
wAny hAny @

5. Select both Temperature Labels.
6. Atthe bottom right of Interface Builder, click the Stack icon.
7. Ensure that the Stack View Axis that Interface Builder selected
is set to “Horizontal,” as shown in Figure 3-2.
e
Axis Horizontal
Alignment Fill
Distribution Fill
- Spacing
Label Baseline Relative
S View
Templabe: Mode Scale To Fill
Weather el Se:na;\.c Unspecified
ag
Interaction + User Interaction Ena
Multiple Touch
Alpha
=
Tim C—3 Default
Drawing Opagque Hid
+ Clears Graphics Con
Clip Subviews
¥ Autoresize Subviews
Stretching 0-
X Y

whny hAny

fol tai

Figure 3-2. Placing the Temp labels in a horizontal Stack View

24

CHAPTER 3 ' STACK VIEWS AND THE FOCUS ENGINE

You will notice that Interface Builder is smart about choosing the correct Axis
settings when selecting multiple controls.

8. Select both bottom Weather Labels.

9. Atthe bottom right of the Interface Builder, click the Stack
icon.

10. Ensure that the Stack View Axis that Interface Builder selected

is set to “Horizontal,” as shown in Figure 3-3.
St -

Alignment Fill
Distribution Fill
;: - Spacing
Labe! Baseline Relative

Tem_pi.abe! Mode Scale To Fill

Semantic Unspecified

WeatherLabe!

Tag

interaction @ User Interaction Enabl
Multiple Touch
Alpha
—_—

Tint T3 Default
Drawing Opague Hiddh
Clears Graphics Conte
Clip Subviews
Autoresize Subviews
Stretching oz
x ¥

1
Any 1 Any ol tad D0OOeD

Figure 3-3. Placing the Weather labels in a horizontal Stack View

You should see all five labels in three different Stack Views, as shown in Figure 3-4.

25

CHAPTER 3 ' STACK VIEWS AND THE FOCUS ENGINE

|
89 | < > | [B WeatnerStation) [] WeatherStation) [l Main.s

» EJ Tab Bar Controller Scene

Figure 3-4. Three Stack Views have been created

11. Now select all three Stack Views and click the Stack icon to
embed these stacks into one stack, as shown in Figure 3-5.

26

CHAPTER 3 ' STACK VIEWS AND THE FOCUS ENGINE

v [2] First Scene o Sk
v First @
Top Layout Guide Aligrment e

Bottom Layout Guide) =
v View Distribution I
s Spacing
Baseline Relative
View

@ First Responder
Mode Scale To Fill

[Exit

+ [Second Scane Semantic Unspecified
= Tag
* [Tab Bar Controller Scene
nteraction + User interaction Er
Multiple Touch
Agha
Background ————
Tint 0 Default
Drawing Opague Hi
+ (Clears Graphics Ct
Clip Subvigws
+ Autoresize Subviev
Stretching 0z
X
1

& 0 Any nAny @. ol tad

Figure 3-5. One Vertical Stack View created from the three Stack Views

Note Xcode 7.1.1 Issue: When completing Step 11 above, the labels may not look as
they do in Figure 3-5 and Figure 3-6. Simply select another file and then select the Main.
storyboard file. This will cause Xcode to reset the view correctly.

Ensure the Stack View is a Vertical Axis Stack View. This makes all the views in the
Stack View alignment based vertically to one another.
It appears that all the labels are crunched together. Let’s improve the spacing in the

one Stack View.

12. Click the parent Stack View, then change the Distribution to
Fill Equally and spacing to 30, as shown in Figure 3-6.

Stack View

v [First Scene °

Ay Vertical

v () Pt

Too Layout Guide

Algrmart Leading

Bottom Layout Guide

Distribution Fil Equally

v [| View

Spacing

Basefine Relative

Mode Scale To Fil

Semantic Unspecified

M First Responder =
- Tsa o

Figure 3-6. Increasing the Vertical Spacing of the Stack Views

27

CHAPTER 3 ' STACK VIEWS AND THE FOCUS ENGINE

13. Toincrease the horizontal spacing of the Temp and Weather
labels, select both child Stack Views, change the Distribution
to Fill Equally and Spacing to 30, as shown in Figure 3-7.

v [First Scene o

v () First Axis Horizonta
Top Layout Guide

Bottom Layout Guide

Label

Asgrmans Fill [

aribution Fill Equs
¥ [view Dintrgatio Equaity

Temp Label

Table View Spacing

¥ || Stack View Baseline Relatve

‘Weather Label
View
Mode Scale ToFil

Figure 3-7. Increasing the Horizontal Spacing of the Stack Views

Now that you have the one parent Stack View, you can unset the “Extend Edges
Under Top Bars” and Add Missing Constraints in 2 steps. This will enable the First View to
shift automatically scroll up and down when the Tab Bar is visible.

14. Select the First View Controller and uncheck Extend
Edges - Under Top Bars, as shown in Figure 3-8.

©

° View Controtier
v First
Top Layout Gude
Bottom Layout Guide

Title

I initial View Contraller

View Layout + Adjust Scroll View Insets
Table View Hide Bottom Bar on Push
» Stack View + Resize View From NIB
% First oo o
@ First Responder Extend Edges Under Top Bars

[Exn # Under Bottom Bars

Unsder Opague Bars
] Second Scene

Transition Style Cover Vertical

» [Tab Bar Controller Scene - Tl Sceaar
rosentation Ful

Defines Context
Provides Context
Content Size Use Preferred Explicit Siz.

Figure 3-8. Uncheck Extend Edges - Under Top Bars

Now we can apply the “Add Missing Constraints” tool to our View Controller and all
our controls will be positioned, as we want in our view.

15. Add Missing Constraints to the First View Controller, as shown
in Figure 3-9.

28

CHAPTER 3 ' STACK VIEWS AND THE FOCUS ENGINE

{ B i ion | [Main, B Mainstoryboard (Base) | [First Scene First ¢ > ODb® =@

Title
Top Layout Guide

Bottom Layout Guide I Ini

v L] View Layout 8 Adjur
Table View Hide

> | Stack View B Resic

* First iy

@ First Responder Extend Edges | Unde

B et B unct

» [¥] Second Scene Unde

Transition Style Cover
» [2] Tab Bar Controller Scene

Update Frames

Clgar Constraints
= |] v ARy - Amy e - l

E o 0 D < WeatherStation m &
Figure 3-9. Adding Missing Constraints to our First Scene
Congratulations! You did it. Run the app now so you can see how the two constraints
for the Stack View place all five labels where you want them. More importantly, if you add

other controls to the view, you only need to update the constraints for the parent stack,
not all five labels (see Figure 3-10).

Apple TV 1080p - Apple TV 1080p [tvOS 9.0 (137383)

- Phoenix
Austin
Temp 63
Da"as Weather sky is clear
Phoenix
Portand
San Diego

Figure 3-10. The Weather App with Stack Views

29

CHAPTER 3 ' STACK VIEWS AND THE FOCUS ENGINE

The Focus Engine

With tvOS there are no tap or touch gestures, instead Apple provides the Focus Engine.

According to Apple, “the process within the UIKit that controls focus and focus
movement is called the focus engine. The user controls focus through the remote and game
controllers. The focus engine listens for incoming focus-movement events from all these
input devices. When an event comes in, it automatically determines where focus should
update and notifies the app. This system helps to create a consistent user experience across
apps, provides automatic support for all current and future input methods in every app,
and helps developers concentrate on implementing their app’s unique behavior rather than
defining or reinventing basic navigation. Only the focus engine can update focus. There is
no API for directly setting the focused view or moving focus in a certain direction. The focus
engine only updates focus if the user sends a movement event, if the system requests an
update, or if the application requests an update.”

The great thing about the focus engine is that it looks at the interface layout and
handles all the work when moving the focus from one item to another.

There are many new functions and properties available to control the
way focus is handled within tvOS apps. Many of these are defined by the
UIFocusEnvironment protocol, which the UIViewController, UIView, UIWindow, and
UIPresentationController classes automatically conform to. There are also several
methods contained in the UITableViewDelegate and UICollectionViewDelegate
protocols that can be used to control the focus within your app.

A Focus Engine Example

Let’s say you wanted to skip focus for one of the cities in our weather app as the user
scrolls through the city list with their remote. You could add some code to do this. Let’s
add the code to skip the focus of the second city in the Table View, Dallas. Add the code as
shown in Listing 3-1 starting at line 58 in the FirstViewController.swift.

Listing 3-1. Adding :canFocusRowAtIndexPath: method

58 func tableView(tableView: UITableView, canFocusRowAtIndexPath
indexPath: NSIndexPath) -> Bool {

59 if indexPath.row == 1 {
60 return false

61 }

62 return true

63 }

Here you implemented the UTtableView(:canFocusRowAtIndexPath:) method
to return false when the indexPath.row is equal to 1. Otherwise you would return true.
The UItableView(_ :canFocusRowAtIndexPath:) delegate method determines whether
specific rows can be can obtain focus.

When you run the app now, you'll notice that when you try to navigate the rows
in the Table View, the Dallas row is skipped because you implemented the
UItableView(:canFocusRowAtIndexPath:) method.

30

CHAPTER 3 " STACK VIEWS AND THE FOCUS ENGINE

Summary

In this chapter you learned how Stack Views and the focus engine work. Stack Views are
available in iOS and tvOS, but the focus engine is only available in tvOS. The Focus Engine
is available only for tvOS because we can’t tap on our TVs.

Stack Views can save lots of time during the development lifecycle of an app.
Understanding the focus engine will enable you to add to the user’s interface experience
as you create your tvOS applications.

In the next few chapters, we will be exploring some of the more common Apple TV
user interface elements while building a Photo Gallery application.

Exercises

1. Modify the Stack Views so the Temp and Weather labels are
aligned and laid out more consistently.

2. Add Constraints within the Stack Views for better readability.
3. Disable more than one city in the Table View.

4. Add abutton to the First Scene and make the button have
focus when the app starts. The button doesn’t need to do
anything, other than just have focus when the app starts.

31

CHAPTER 4

Creating a Photo Gallery App/

For the next few chapters, we will be exploring some of the more common Apple TV user
interface elements while building a Photo Gallery application. Most of the user interface
elements will be familiar to you if you are an experienced iOS developer, but the way
that the user interacts with them is somewhat different since you cannot walk up to your
television and start tapping and swiping on the screen. (Not yet, anyway!)

Page View Controllers

The first user interface element that you will be exploring is the Page View Controller.

The Page View Controller consists of a number of full-screen views that the user navigates
through by swiping left or right between them. A common component of the Page View
Controller is the Page Control, which is a series of horizontal white dots along the bottom
of the views to indicate both the number of pages available as well as which page the user
is currently viewing. An example of a Page View Controller containing a number of
full-screen images is shown in Figure 4-1.

Figure 4-1. An example of a Page View Controller and its associated Page Control

33

CHAPTER 4 ' CREATING A PHOTO GALLERY APP

From the Page Control near the bottom, you can see that there are five pages in this
Page View Controller, and the user is currently looking at page number three.

For the Photo Gallery app, you are going to create an app consisting primarily of a
Page View Controller that will present the user with a series of full-screen Image View
pages. With each page containing a different photo, this will really take advantage of the
full 1080p high-definition screen available to an Apple TV app.

Creating the Photo Gallery App

1. To get started creating the Photo Gallery app, open Xcode and
select File » New » Project.

2. Next, choose Application under tvOS, then Single View
Application, as shown in Figure 4-2.

Choose a template for your new project:
i0s
o * sae
Application % APP

Framework & Library
f Game Single View Tabbed
watchOS Application Application

Application

Framework & Library
tvOS

Application

Framework & Library
05X

Application

Framework & Library

System Plug-in

Other . . paonin
Single View Application

This template provides a starting point for an application.

Figure 4-2. Creating a new Single View Application tvOS project

3. After clicking Next, enter Photo Gallery for the Product Name
and choose Swift for the Language, as shown in Figure 4-3.

34

Choose options for your new project:

Product Name:
QOrganization Name:
Organization Identifier:
Bundle Identifier:

Language:

Cancel

CHAPTER 4

Photo Gallery
The Zonie, LLC

com.thezonie

com.thezonie.Photo-Gallery

Swift

Use Core Data
Include Unit Tests
Include Ul Tests

Figure 4-3. Creating the Photo Gallery Project

CREATING A PHOTO GALLERY APP

Previous

4. Click Next again and choose a location (for example, your
Desktop or Documents folder) where you would like to save
the project, then click Create.

You should now be looking at your newly created Photo Gallery project, as shown in

Figure 4-4.

35

CHAPTER 4 ' CREATING A PHOTO GALLERY APP

> oy P B Appie TV 1080 Photo Gallery | Build Photo Gallery: Succeeded | Today at 1:24 PM
BgQ > > B8 | € B Photo Gallery
& [zencen Copabiities Resource Togs Ife Build Settings Buil Phases
v [Phato Gallery
+ AppDelogate. swift T identity

s ViewControler. swift

Main.storyboard Bundie Identifier | com.thezonie Phota-Gallery

o

Assets xcassets

Verson 1.0
Irdo pist
> Products Budd 1
Team Moo B
* Deployment Infa
Deployment Target -]
Main interface Main u

¥ App lcons and Launch Images

App lcons Source App icon & Top Shet ima_. [©

Launch Images Source Lowunchimage a o

¥ Embedded Binaries

Figure 4-4. The newly created Photo Gallery project

A Little Project Cleanup

0@

Igertity and Type

name | Photo Gallery

Lecation A
Photo Gallery.scodeproj

Full Path [Users/thezonie/Deskion/
Phato Gallery/Phata
Galleryxcodeprn o

Project Document

Project Format | Xcode 3.2-compatible B

Caganization | The Zorio, LG
Class Prefix
Text Settings
wdent Using | Spaces B
wicths 42 407
0 6@aa

View Controller - A controlier tha1
MARAgES B viow.

Storybaard Reference - Frovides a
placehoider for a view controlier im an
external storyboar.

contralies Ehat Manages navigatice

< MNavigation Controller - &
EArough 3 Reprarchy of views.

Now that you have created your project, you first have to do a little cleanup. Since this app
will be built around a Page View Controller, you don’t need the default View Controller

that was created with the project.

1. Toremove the default View Controller, first right-click

(or Control-click) the ViewController.swift file in the Project
navigator and select Delete, as shown in Figure 4-5, followed

by Move to Trash when prompted.

36

CHAPTER 4 " CREATING A PHOTO GALLERY APP

> oy 7 Apple TV 1080p Photo Gallery: Ready | Today a1 9:44 AM E Qo SllD0E O

BRAASE B 3 < B Photo Gallery D e

ey [zencen Capabiities Resource Togs Irfe Build Settings Build Phases | 'BentRY and Type
Name Photo Gallery

v identity
Lecasion Absolute
Show in Finder Photo Gallery.scodeprof
Open with External Editor o mazosie Phovo- Gelerst Full Path Uisers thezonie/Deskton]
Open As L] Photo Gallery/Phota
- Gall o
Show Flle Inspector i)
New File... Prajeet Document
Add Files to "Photo Gallery”.. MNore B Propect Format | Xcode 32-compatoe |

Crganizasion The Zore, LLC

e

New Group
New Group from Selection B Text Settings
an B indent Using | Spaces n
Withs, [4]0
0 @O
15 Source .oaptmafmslmim_.ao o=
Source Control > | View Controller - A controlier that
1 Source Lounchimage Be L manages 3 view
Project Navigator Help
¥ Embedded Binaries Storybaard Reference - Frovides a
placehoider for a view controlier im an
external storyboaad
" 4 Navigation Contredler - &
< controlier that manages navigatice
/' through 3 Reerarchy of views.
+
S on . . 8 (®

Figure 4-5. Removing the default View Controller

2. Next, you need to select the Main.storyboard file and then
select the View Controller scene as shown in Figure 4-6.

> Ay P) B Appie TV 10800 | Photo Gallary: Ready | Today a1 9:53 AM E QoD O
BRAfsCmoe @ B¢ > EewoiyiEb [View Controier Scene | () View Controlier DeEgle
v -5 Photo Gallery [Simulated Metrics

v |1 Phato Gallery | size | Inferred B
= AppDelegate. swift Top Bar | Inferred B
B8 Assets xcassets Wiew Centrodler

Irdo.plist Thie
» [Producss 18 Is Instial View Controller

Layout @) Adust Scroll View Insets
_| Hide Bottom Bar on Push

I8 Resize View From NIB
~| Use Ful Sereen (Doprecated)

Extend Edges [Under Top Bars.
18 Under Bottom Bars
~| Under Opagus Bars

Transition Style | Cover Vortical
Presertation | Ful Scroen

D O@a

| View Controller - A controber tha
3 manages a view.

Storybaard Reference - Frovides a
placehoider for a view controlier im an
external storyboand.

Controlier Ehat Manages Navigatice

'< % Mavigation Controller - &
- through 3 hesearchy of views.

+ @ QE| | | & mn O B B lof jal | B8 &

Figure 4-6. Selecting the View Controller scene

37

CHAPTER 4 ' CREATING A PHOTO GALLERY APP

3. To delete the scene, either press the Delete key on your
keyboard or choose Edit » Delete from the application menu.

Now that the default View Controller has been removed, it is time to add the Page
View Controller to the project.

Adding the Page View Controller

1. Right-click (or Control-click) the Photo Gallery group in the
Project navigator and select New File.

2. Select Source under tvOS, then select Cocoa Touch Class, as
shown in Figure 4-7.

Choose a template for your new file:

i0s
Source
User Interface
Core Data
Apple Watch
Resource
Other

watchOS
Source
User Interface
Core Data
Resource
Other

tvOS
Source
User Interface
Core Data

Cancel

Figure 4-7. Adding a new Cocoa Touch Class to the project

@ @
Cocoa Touch Ul Test Case
Class Class
= m
Swift File Objective-C File
Cs+ (LN
C++ File Metal File

Cocoa Touch Class

A Cocoa Touch class

Unit Test Case
Class

Playground

h C

Header File CFile

3. Click Next, select UIPageViewController from the Subclass
drop-down list, and enter PageViewController as the Class

name.

4. Make sure Swift is selected as the Language (as shown in
Figure 4-8), and click Next, followed by Create to add it to the

project.

38

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 4 " CREATING A PHOTO GALLERY APP

Choose options for your new file:

Class: PageViewController
Subclass of: UlPageViewController u
Also create XIB file

Language: Swift | <]

Cancel Previous [Next]

Figure 4-8. Adding the new PageViewController class to the project

Now that you have added the PageViewController class, you need to add a Page
Content View Controller to the project to handle displaying the pages of images from
within the Page View Controller itself.

1. Right-click (or Control-click) the Photo Gallery group in the
Project navigator to add another New File to the project,
but this time, select UIViewController from the Subclass
drop-down list and name the class PageContentViewController.

Adding Scenes to the Interface Builder Canvas

Now that you have added the PageViewController and PageContentViewController
classes to the project, the next step is to add the associated scenes to the Main.storyboard
file and associate them with your two new classes.

1. First, select the Main.storyboard file from the Project
navigator to view its empty canvas.

2. Select the Object library in the Utilities area of Xcode and drag
a Page View Controller onto the canvas.

39

CHAPTER 4 ' CREATING A PHOTO GALLERY APP

3. Select the Page View Controller and choose the Attributes
inspector from the Utilities area and check the Is Initial View
Controller check box (as shown in Figure 4-9) to indicate that
this is the first view controller that will be loaded when the
app is launched.

» iy P Bl Apple TV I080p Photo Gallery | Build Photo Gallory: Succeeded | Today at 9:16 AM

BEQ > > B8 ¢ B Phot_allery B B [0 Page View Controter Scene Pagc\fe«torlrok-s ——y [O

¥ [& Photo Gallery | simutated Metrics

v |15 Photo Gallery size | Inferred

[] o

+! AppDelogate. swift Top Bar | Inferred

Main.storyooard
BH Assets xcassets Poge View Controlie
Irdo.piist Mavigation | Horizonta
.| PageViewController. swift Transition Style | Page Cur

»| PageContentViewControlier swift 1 Page Spacing 0i
» Products

(o] o)

Spine Lecation | Min
Double Sided

View Controller
Title
3 —* &3 15 initiad Vigw Controller
Laycet [Adiust Scrofl View Insets
Hide Bottom Bar on Push
Resize View From NIB
Liea Fusl Reenan {Pianrarazadi
DO@C
@ O

Split View Controller - &
comaasine view controlier that
manages left 5a right view controll.

Page View Controllor - Fresents 3
sequence of view controlars s
Bages.

GLKit View Controller - &
controfier that manages & GLA view

=, [o 5 & ol il ®

Figure 4-9. Adding a new Page View Controller to the Main.storyboard and setting it as
the Initial View Controller

Note Intv0S, the scenes within a storyboard are large, each the size of a full 1080p
television screen. This can make it difficult to navigate a storyboard containing multiple
scenes. To remedy this, you can zoom in and out of a storyboard by pressing Command +
and Command —, respectively.

4. Next, select Scroll from the Transition Style drop-down
list instead of Page Curl (as shown in Figure 4-10) to cause
the Page View Controller to show the Page Control with its
horizontal white dots, as shown previously in Figure 4-1.

40

CHAPTER 4 " CREATING A PHOTO GALLERY APP

> iy 0 @ Apple TV 10809 Phota Gallery | Buld Photo Gallery: Succeeded | Today at :16 AM g | Bl =lE
Bsa a o B¢ B Prot._allery B ' B) [Page View Controfier Scene | () Page View Cortroller Deoem$ie
v 5 Photo Gallery Simulated Metrics
v 112 Phato Gallery size | Inferred
+ AppDelegate. swift Top Bar | Inforred
Main.storybosrd
Page View Controller

B8 Assets xcassets
Mavigation | Horizontal

Info.plist
+ PageViewController.swift = —* Transition Style | Serol

+ PageContentViewControlier swift Page Spacing 0
» [0 Products
L Soing Lecasion None
Double Sided
View Controlier
Title

18 s Inétial View Controlier
taycet [0 Adiust Scroll View Insats
Hide Bottom Bar on Push
Resize View From NIB
e Fidl Sreman (Mantncatodl
oD ea
Solit View Controller - A
Comaowte view Contrilier that
MENAGes et 80 right view controll .

Page View Controller - Prasents 3
Sequence of vew CONCRers i
Eages.

GLKit View Controller - &
controfier that manages & GLKH view.

+ @ oE| O B8 B ol lal| B8 @

Figure 4-10. Setting the Transition Style to Scroll

5. Finally, with the Page View Controller scene still selected,
select the Identity inspector in the Utilities area and set the
Class to PageViewController, as shown in Figure 4-11.

> oy P R Appie TV 1080 Photo Gallery | Build Photo Gallery: Succeeded | Today at §:16 AM h SA0O0E O

BRAseme B B B0 B) B Page View Contratier Scene) () Page View Cortroller | e . + 1 @
¥ B Photo Gallery Custom Class
w [Phato Gallery _.:’ Class | PageVi Aroilior :!
Module B

+ AppDelogate. swift
Main.storybosrd
B8 Assets wcassets Identity
Irdo plist Stonyboand 10
« PageViewController.swift =
2 Aestonation 1D
+| PageContentViewCantrolier swift Use Storyboard 1D
ise a
» [0 Products
User Dotined Runtime Attributes
Koy Path Type Valug
i
Document
Label
x
oD ea

COMOONE vim CoPIOier ThaT
ManaGes et and right view consro

Page View Controller - Presents &
SEOUENCH OF VW CONUICEANS 3
FagUs

GLKIt View Controller - &
CORIISINY ENJT MANages 8 GLEIT vigw.

+ | @E | O B B 1ol laf | B8 | &
Figure 4-11. Setting the Page View Controller scene class to PageViewController

41

CHAPTER 4 ' CREATING A PHOTO GALLERY APP

Now that you have added the Page View Controller scene to the Main.storyboard,
you need to add an additional View Controller for the PageContentViewController class.

1. Dragand drop a View Controller from the Object library onto
the canvas underneath the Page View Controller scene.

2. Select the new View Controller and set both the Class
and the Storyboard ID to be PageContentViewController
in the Identity inspector of the Utilities area as shown in
Figure 4-12. (Setting the Storyboard ID of the Page Content
View Controller will allow you to instantiate instances of it
programmatically later on in the chapter.)

g oA P) B Appie TV I0BO0D Photo Gallery: Resdy | Todsy a1 10:41 AM T =l
B R Q £ B < BB B VewCo_ter Scere Page Cortent View Controller D& @E4g 1 e

v B Photo Gallery Custom Glass
v 2 Photo Gallery 2 gl cisss | PageContentviowcont.. © [

Igentity

Aestoration 1D

PageContentViewController

roller. switt

+| PageContentViewControlier swift
Use Storyboard 10
» [Products

User Defined Runtime Attributes
Ky Path Type

h View Controller - A controlier that
manages a view.

Storyboard Reference - Frovides 3
placanoider 10f & view CORTAONET i
Xt StoryBoaY.

Vs MNavigation Controller - A

A nmdnaten
=) [] H & ol lal

Figure 4-12. Setting the Page Content View Controller scene class and Storyboard ID to
PageContentViewController

Now that you have the Page View Controller and Page Content View Controller
scenes added to the Main.storyboard, you need to add the Image View to the Page
Content View Controller to actually display the photos for our Photo Gallery.

Note Before adding the Image View to the Page Content View Controller scene, you will
need to zoom back in again to 100% if you have previously zoomed out. The easiest way to
do this is to hold down the Control and Command keys and press =. You can also right-click
(or Control-click) anywhere on the empty blank space of the canvas and choose Zoom to
100%.

42

CHAPTER 4 " CREATING A PHOTO GALLERY APP

1. Dragand drop an Image View onto the Page Content View
Controller scene, as shown in Figure 4-13.

> iy 7 B Apple TV I080p Photo Gallery | Build Photo Gallory: Succeeded | Today at :16 AM 1 » < O3 O
B R q L E = |« & Phot_tlery k'hE View Image View | £ A ¥ De@ET e
¥ 15 Phato Gallery Custom Class
B
v |10 Phate Gallery ®» B — B
» AppDelegate.swift s i
Main.storybosrd
5 Assets xcassets Identity
Irfo.pliat Qesicdation 10
. PageViewController. swit
+ PageContentViewControlier swift User Defined Runtime Attributes
» [Products Koy Path Type Valua
- =] a Document
abel
x
o B2 Otject 10 qD-8A-Q0!
Lock | Inberited - (Nathing} B
O r
1 @ O
o =] a

Table View Coll - Detines the
aTIriDUtES 300 DERIVICY of Cells irowe)
in 3 taoie view

Image View - Displays a single.
image, or an asimation cescribed by
a0 array of images.

Collection View - Displays datain 8
coliection of ot

=) m] B & ol i =

Figure 4-13. Adding an Image View to the Page Content View Controller scene

Since you are going to want the Image View to fill the entire screen, you will want
to add some auto layout constraints to the Image View to pin it to the edges of the Page
Content View Controller.

1. With the Image View selected, click the Pin Tool button in the
layout bar at the bottom of the canvas.

2. Uncheck the Constrain to margins check box.

3. Select Items of New Constraints from the Update Frames
drop-down list.

4. Add the four constraints shown in Figure 4-14.

43

CHAPTER 4 ' CREATING A PHOTO GALLERY APP

> o @) Apple TV 1080p Photo Gallery | Build Photo Gallery: Succeeded | Today at 916 AM 1 i | i
BR Qs ©E o E ¥ | < & Phot_Sory hhBE View Image View | { 4 > De@AT LG
¥ (& Photo Gallery Custom Class
® E
v |17 Photo Gallery s E Class o
» AppDelsgate. swift Module B
Main.storyboard
BS Assets xcassets Icentity
SO Sestovation 10
« PageViewController. swift
PageContentViewConirolier swilt 4 Uses Dofined Buntisse Attributes.
» [Products Vs Duth— Tumg vale
Constraints
o
o <= e -
o o =
o -
Spacing 1o nearest neightor {
= 2 Constrain to margins Di-6A-Q0t
B wigtn ry - | Inherited - (Nathing) B
) aighe 28 it @a
o o
View Coll - Defings the
= 5 200 BenFWOr of cells irows)
[11] Ho it
B Aspect Ratio

3 "ﬁ Update Frames | Rems of New Constraints

Add 4 Conatraints

1 -——*»«:ﬂ -ml.ij' =

Figure 4-14. Adding constraints to the Image View

{View - Cisplays a single
o1 an animation cescribed by

i of images.

tion View - Displeys data ina

a-samedon of Colls

Now that the Image View fills the entire Page Content View Controller, the last thing
you need to do is create an outlet for the Image View in the PageContentViewController.

swift file.

1. Select the Page Content View Controller, and then click the

Assistant editor icon ““_ to also open the

PageContentViewController.swift file, as shown in Figure 4-15.

44

CHAPTER 4 " CREATING A PHOTO GALLERY APP

> W A P)E Appie TV 1080p | Photo Gallery | Buld Photo Gallery: Succeeded | Today at 12:55 PM —*@ fad I EEE =]y |
B R af & oo @ B> BB R B Orgeoce B¢ > @) Pugeton terswit | [@ PageContentViewControter | + 3
¥ & Pheto Callery 3 Jf PageContertWiewController, swift
w [0 Photo Gallery 3 /7 Phate Gallery
& i
» AppDelegate. swift
Ciingutet s 5 1 Crested by Stefon Kaczmorek on 10/20/15,
s main.storybosrd § /f Copyright @ 2015 The Zonie, LLC. ALL rights reserved.
B8 Assets xcassets 4 R
Irfo plist + drport VIKit
=} PageViswController. puift i1 class PageComtentViewController: UIViewController {
»| PageContentViewControler swift n i
1 averride func viewdidload(
» [Products " super.viewDidload()
%
] /7 Do ary additional setup after Loading the view.
”
]
1 override func didReceiveMesoryWarningl] {
] super.didReceiveMenoryWarning(]
| n /f Dispose of any resources that can be recreated.
n H
b=]
n
» il
» Jf MARK: - Navigatien
n
= 47 In a storyboard-based application, you will often want
to do a little preparation before navigation
F override func prepareforSegue(segue: UIStoryboardSegue,
sender: AnyDbject?) {
» /7 Get the new view controller using
seque.destinationViewController.
n /f Pass the selected object to the new view
controller.
n 3
n »f
»
]
»
+ | @ oOE O = B ol tal

Figure 4-15. Viewing the Page Content View Controller in the Assistant editor

2. You may also want to hide the Utilities area temporarily by
clicking the ! button in the top-right corner of Xcode to give
yourself more room to work.

3. Zoom the storyboard canvas back to 100% if zoomed out, and
then right-click (or Control-click) and drag from the Image
View to the first line within the PageContentViewController
class definition to add a UllmageView outlet named
imageView, as shown in Figure 4-16.

45

CHAPTER 4 ' CREATING A PHOTO GALLERY APP

> oA P) B Appie TV I0B0D Photo Gallery | Build Photo Gallory: Succweded | Today at 1:12 PM n e i

B g a E | < = 1|B¢ A. 1 . PageContentViewContralierswift | No Selection | 4

Conrection | Outlet
sl port UIKit
Page Content View.

Type
Storage | Weak

Cance Cornect

= L n] Ed & Iol lal

Figure 4-16. Adding the imageView outlet to the PageContentViewController class

Now that the Image View is connected to the imageView outlet, the scene work in
Interface Builder is complete. You can now re-select the Standard editor (by clicking the

icon in the top-right corner of Xcode) and turn your attention to adding the required
data model structures to the project for the Photo Gallery app.

Adding the Photo and Album Data Model
Structures

Since the purpose of a Photo Gallery app is to display a collection of photos, you are going
to want to represent each of those photos using a custom data structure in order to keep
things as clean and organized as possible. You are also going to create an Album structure
to store a collection of related Photos. The completed app will allow the user to browse
through an album of photos using the Page View Controller you have already created.
So let’s get started!

First, let’s start by creating a Model group for these new structures under the Photo
Gallery group in the Project navigator.

1. Right-click (or Control-click) the Photo Gallery group, select
New Group, and name it Model.

2. Right-click (or Control-click) on the Model group and select
New File.

46

CHAPTER 4 " CREATING A PHOTO GALLERY APP

3. Select Source under tvOS and then select Swift File.

4. Click Next and then name the file Photo.swift and then click
Create.

Add the following code into the newly created Photo.swift file:
import Foundation

struct Photo {
var name: String = ""
init(name: String) {
self.name = name
}

}

This Swift Photo structure contains a single property, a String called name (Line 4),
which will store the name of the photo associated with it.
Next, add another Swift File called Album.swift and add to it the code below:

1 import Foundation

2

3 struct Album {

4 var name: String = ""

5 var photos: [Photo] = []

6

7 init(name: String, photoNames: [String]) {
8 self.name = name

9 for photoName in photoNames {

10 self.photos += [Photo(name: photoName)]
11 }

12 }

13 }

The Album structure also contains a String name property (Line 4) as well as an array
of Photo structures called photos (Line 5) that make up the contents of the album.

The Album structure also has a designated initializer (Line 7) that takes in the name
of an album as well as an array of photo name Strings. The array of photo name Strings
is then used to create the photos array of Photo structures when the Album is initialized
(Lines 9-11).

47

CHAPTER 4 ' CREATING A PHOTO GALLERY APP

Adding the Photo Image Files to the Asset
Catalog

Now that you have created the Photo and Album data model structures, next you are
going to add the actual photo image files to the project.

The best way to add images to an Xcode project is by adding them to an asset catalog.
Asset catalogs simplify the organization and management of images in your app. When
you created the Photo Gallery project, a default asset catalog named Assets.xcassets was
created automatically.

1. To add the photo image files to the asset catalog, first click the
Assets.xcassets folder in the Project navigator. By default, the
Assets.xcassets contains an App Icon & Top Shelf Image folder,
as well as a LaunchImage image, as shown in Figure 4-17.

oA P) B Appie TV 10800 Finished running Photo Gallery on Apple TV 1080p e i

>
B R Q E HES & Proto Gallery Photciallery | B Assets scassets | No Selection
v B Photo Gallery » [App Icon & Top Shelf image

v [Photo Gallery Launchimage

+| AppDelegate. switt

Main_storyboard

Figure 4-17. The default Assets.xcassets asset catalog

To add the photo image files to the asset catalog, first download the image files,
as discussed in the Introduction to this book. After they have been downloaded and
unzipped, simply drag and drop the Animals folder into the asset catalog set list, as
shown in Figure 4-18.

48

CHAPTER 4 " CREATING A PHOTO GALLERY APP

> oA P B Apple TV I0B0D Finished running Photo Gallery on Apple TV 1080 i a1 |

B s Q : - Gallery) [Assets xcassets) No Selection

¥ & Photo Gallery v
v |1 Phato Gallery
¥ [Modei

= Phait.switt

o Album.swift

+| AppDelegate. switt

Main storyboard

= Lausenimage
Info.plist

.| PageViewController. swift

.| PageContentViewControlier switt

» [Products

Figure 4-18. Adding the Animals folder of images to the asset catalog

Adding images to an asset catalog automatically copies the images to the project, so
once they have been added, feel free to delete the original files you downloaded.

By default, when images are added to an asset catalog, they are added for All
Universal devices, as shown in Figure 4-19. This means that a single image in an asset

catalog can support multiple files at different resolutions (1x, 2x, 3x) for the various Apple
devices available.

49

CHAPTER 4 ' CREATING A PHOTO GALLERY APP

> iy 0 @ Apple TV 10800 Finished running Photo Gallery on Apple TV 1080) Tell=
B R AaAid©Eo E =« & Photo Gallery Bhat._allery) B Asse_ssots Animals | & Cows D ® ¢
v [Photo Gallery v [Animais & Image Set
v |23 Photo Gallery | =cm O] Hame | Cows
¥ [Model = Dog
e L me | Devices
+ Photo.swift == Horses o .
: = seugu Denay 2 @ Uriversa
« Album. switt : g ki
« AppDeliegate.swift = Shep 3 Pad
Icon & Top Shelf I o 2
> [App lcon & Top Shelf Image € s

Main_storybosrd

- Lavncrlmage WOS|_| Apple TV
waschOS (| Apple Watch

Info.piist
- PageViewController swift Width | Any
«| PageContentViewControlier swilt Height | Any

» [Products
Memory (| 168
Universal

208
468
Graphics Matal W2
Metal 2v2
Matal 3v1
Scale Factors | Multiple
Render s Default
On Demand Resource Tags
%) = S Show Slicing } @ C

Figure 4-19. By default, images added to an asset catalog are added for All Universal
devices

You don’t need to support multiple resolutions as you are developing an Apple
TV application, so for each of the images in the Animals folder, check the TV OS Apple
TV check box, uncheck the All Universal check box, and then drag the image from the
Unassigned spot to the 1x Apple TV spot, as shown in Figure 4-20.

50

CHAPTER 4 " CREATING A PHOTO GALLERY APP

> o) @ Apple TV 1080p Finished running Photo Gallery on Apple TV 1080p S Tl Y | o] |
B R Q E R| < & Photo Gallery Phat_allery | B Asse_ssots Animals | = Cows oD ® ¢
¥ [B Photo Gallery Cows gt Sm
v Photo Gallery Name | Cows
[Mode
o) Dericas
=! Photo.swift | ———* 4[] Universad
- Album.swift 05 (| iPhone
+ AppDelegate. swift " z Pad
R » [App Icon & Top Shetf Image € el e
" Lavnenlmage Appile TV __.* Tves 6 Apale TV

Irfo.plist waschOs (| Apple Watch

ntroller. swift Memory (| 168

ViewControlier swift 238
4G8

Graphics | | Matal W2

Mictal 2v2

Metal 3v1

Scale Factors | Multple

(o] o

Render As | Default

On Demand Resource Tags

= } = Show Slicing D o0o®

Figure 4-20. Reassigning all of the Universal images to Apple TV images in the asset
catalog

Now that the photo image files have been added to the project, you can start filling
in the details of the PageViewController and PageContentViewController classes. You are
well on our way to finishing up this app!

Completing the Photo Gallery App

The only changes you have made to the PageContentViewController class up until this
point was to add the UllmageView outlet earlier in the chapter. You still need to make a
few more changes to complete the functionality of the Page Content View Controller.

After selecting the PageContentViewController.swift file from the Project navigator,
add the following two lines to the beginning of the class definition:

var index: Int = 0
var photoName: String =

[N

N

Since there will be multiple instantiations of the PageContentViewController class
(one for each page in the Page View Controller), you will want each Page Content View
Controller to keep track of both its page index (Line 1) and the name of its photo (Line 2).
The Page View Controller will initialize these properties when it creates the Page Content
View Controller.

51

CHAPTER 4 ' CREATING A PHOTO GALLERY APP

Finally, add the following lines to the end of the viewDidLoad method:

1 if let image = UIImage(named: self.photoName) {
2 self.imageView.image = image
3 }

This initializes the Image View, loading in the photo represented by the photoName
property that was set by the Page View Controller when it created the Page Content View
Controller.

The final changes you need to make to complete the Photo Gallery app are
within the main PageViewController class. Select the PageViewController.swift
file in the Project navigator and have the PageViewController class adopt the
UIPageViewControllerDataSource protocol by editing the first line of the class definition
to match the following line of code:

1 class PageViewController: UIPageViewController,
UIPageViewControllerDataSource {

Next, add the following properties at the beginning of the class definition:

var pagelndex: Int = 0
var album = Album(name: "Animals",
photoNames: ["Cows", "Dog",
"Horses", "Seagull", "Sheep"])

B wWw N R

The pageIndex property (Line 1) keeps track of which page the Page View Controller
is currently displaying, and the album property (Lines 2-4) is the Album structure that
provides the Photos information to the Page Content View Controllers.

Next, add the following lines to the end of the viewDidLoad method:

self.dataSource = self
if let pageContentViewController =
self.pageContentViewController(self.pageIndex) {
self.setViewControllers([pageContentViewController],
direction: .Forward, animated: true, completion:
nil)

~Nouvipbh WN R

}

Setting itself as its own data source (Line 1) means that it has adopted the
UIPageViewControllerDataSource protocol, and it will then be able to provide the data
necessary to display the various Page Content View Controller pages. After setting the
data source, you generate the initial Page Content View Controller (Lines 2-3) using
the pageIndex property (which has been initialized to 0), and initialize the Page View
Controller to display the new Page Content View Controller with a Forward navigation
direction (Lines 4-6).

52

CHAPTER 4 " CREATING A PHOTO GALLERY APP

Now that you have identified the PageViewController as its own data source, you
need to add the following methods required by the UIPageViewControllerDataSource
protocol to the end of the PageViewController class definition:

1 func pageViewController(pageViewController: UIPageViewController,
viewControllerBeforeViewController viewController: UIViewController)
-> UIViewController? {

2 if let contentViewController = viewController as?
PageContentViewController {

3 return self.pageContentViewController(contentViewController.

index - 1)

4 }

5

6 return nil

7 }

8

9 func pageViewController(pageViewController: UIPageViewController,

viewControllerAfterViewController viewController: UIViewController)
-> UIViewController? {

10 if let contentViewController = viewController as?
PageContentViewController {

11 return self.pageContentViewController(contentViewController.

index + 1)

12 }

13

14 return nil

15 }

When the user is swiping back and forth between pages, these two methods are
called to provide the Page View Controller with the page that is before or after the current
page, depending on whether the user has swiped backward or forward, accordingly. If
there is no page before or after the current page (depending on which direction the user
swiped), then the methods simply return nil.

Add the next two methods at the end of the class definition for the two
UIPageViewControllerDataSource protocol methods, which provide the data needed to
display the Page Control:

1 func presentationCountForPageViewController(pageViewController:
UIPageViewController) -> Int {

2 return album.photos.count

3 }

4

5 func presentationIndexForPageViewController(pageViewController:
UIPageViewController) -> Int {

6 return self.pagelIndex

7 }

The first returns the total number of pages for the Page View Controller, which in this
case is the number of Photos contained within the Album. The second returns the current
page index so that the Page Control knows which dot should be selected.

53

CHAPTER 4 ' CREATING A PHOTO GALLERY APP

The final method you will add to the end of the class definition is the one that returns
the instantiated Page Content View Controllers for a specified page index:

1 func pageContentViewController(index: Int) ->
PageContentViewController? {
2 if let contentViewController = self.storyboard?.

instantiateViewControllerWithIdentifier
("PageContentViewController") as? PageContentViewController
where index >= 0 && index < album.photos.count {

3 self.pageIndex = index

4 contentViewController.index = index

5 contentViewController.photoName = self.album.photos[index].
name

6 return contentViewController

7 }

8

9 return nil

10 }

If an invalid index is passed that is beyond the number of photos within the album,
the method simply returns nil (Line 9). If the index is valid, then the pageIndex property
is updated with the new index (Line 3) and a new Page Content View Controller is
created (Line 2) and initialized (Lines 4-5) with the index and the photo name from the
associated Photo in the Album before it is returned (Line 6).

That's it! If you run the app by clicking the Build and run button in Xcode, it should
run in the Apple TV simulator and display a full-screen image of a number of cows
grazing, as shown in Figure 4-21.

Figure 4-21. The completed Photo Gallery app

54

CHAPTER 4 " CREATING A PHOTO GALLERY APP

Using the Apple TV Remote in the Simulator will allow you to swipe between the
five different photos from the Animals album. Tapping on the left and right sides of the
remote will allow you to scroll through the images as well.

Summary

In this chapter you created a Photo Gallery app to view multiple high-resolution photo
image files using a Page View Controller. This has given you a solid starting point for
learning more about the different User Interface controls available in tvOS.

In the next chapter we are going to expand on the Photo Gallery app by adding the
ability for the user to choose from a list of multiple albums, and then browse the photos
within them. We are also going add a custom static Top Shelf image to further showcase
the contents of the app from the Home screen of the Apple TV.

Exercises

1. Try changing the Transition Style of the Page View Controller
from Scroll to Page Curl and see what effect that has on the
app. Try slowly swiping back and forth (and even up and
down) to see how the Apple TV responds. Which style do you
prefer?

2. Tryadding some of your own 1080p images to the project to
make your own customized Photo Gallery app.

55

CHAPTER 5

Adding an Album Browser
to the Photo Gallery App)

In Chapter 4, you started the development of a Photo Gallery Apple TV app that used a
Page View Controller to allow the user to browse through a single album of full-screen
photos. In this chapter, we are going to expand on that project by adding the ability for the
user to choose from a list of multiple albums and then browse the photos within them.
We are also going add a custom static Top Shelf image to further showcase the contents of
the app from the Home screen of the Apple TV.

Table View Controllers

Table View Controllers are a common user interface element used in a number of Apple’s
platforms, and they provide a simple way of presenting a list of data to the user in table
format. We are going to use the Table View Controller to allow the user to view and
choose from a number of photo albums to browse through, as shown in Figure 5-1.

IR s

i~ ~ LAY 1 | g oY ~
Horses, Seagull, sheef

Cities
Bridge, Fireworks, Traffic, Village, Windows

Landscapes
Coast, Field, Lake, Lighthouse, Road

Figure 5-1. A Table View Controller containing a list of photo albums

57

http://dx.doi.org/10.1007/978-1-4842-1715-3_4

CHAPTER 5 " ADDING AN ALBUM BROWSER TO THE PHOTO GALLERY APP

A Table View Controller is in charge of populating and capturing user interface
events from its embedded Table View. Each row within a Table View is referred to as a
Table View Cell. The Table View Cells in Figure 5-1 each contain an image (the first image
of the album), a main title (the name of the album), and a subtitle (the names of the
images in the album). There are a number of default Table View Cell templates available,
or you can even create your own custom templates in Interface Builder. For this project,
we are going to use one of the default templates, as it will suit our needs appropriately.
No point in doing extra work when you don’t need to!

Adding a Table View Controller to the Photo
Gallery App

You are going to want the list of albums to be the first thing that the user sees when they
launch the app, so let’s start by:

1. Right-clicking (or Control-clicking) the Photo Gallery group in
the Project navigator and selecting New File.

2. Next, select Source underneath tvOS, and then Cocoa Touch
Class, as shown in Figure 5-2.

Choose a template for your new file:

i0s
Source S E] lf]

User Interface

Core Data Cocoa Touch Ul Test Case Unit Test Case Playground
Class Class Class
Apple Watch
Resource
Other - m h C
watchOS Swift File Objective-C File Header File CFile
Source
User Interface
Core Data C+ N\
Resource
Other C++ File Metal File
tvOS
Source Cocoa Touch Class
User Interface A Cocoa Touch class
Core Data
I —
Cancel s

Figure 5-2. Adding a new Cocoa Touch Class to the project

58

CHAPTER 5 © ADDING AN ALBUM BROWSER TO THE PHOTO GALLERY APP

3. Click the Next button, select UITableViewController from the
Subclass drop-down list, and enter TableViewController as
the Class name.

4. Make sure Swift is selected as the Language (as shown in
Figure 5-3), and click Next, followed by Create to add it
to the project.

Choose options for your new file:

Class: TableViewController

Subclass of: UlTableViewController ﬂ
Also create XIB file

Language: Swift ﬂ

Cancel Previous | [T CSN

Figure 5-3. Adding the TableViewController class to the project

Now that you have created a TableViewController class, you are going to want to:

1. Dragand drop a Table View Controller scene onto the
Main.storyboard canvas to the left of the Page View Controller.

2. With the new Table View Controller scene selected, check the
Is Initial View Controller check box, as shown in Figure 5-4.

59

CHAPTER 5 " ADDING AN ALBUM BROWSER TO THE PHOTO GALLERY APP

> oA P BB Appie TV 1080 Finished running Phato Gallery on Apphe TV 1080 1 D 00 E O

BR QAT o B ®WIC B [Tabie Vi_r Scene () Table View Controfer | { 4 > DemOde

v B Photo Gallery Simulated Metrics

|13 Photo Gallery Size | interred B
w [Model Top Bar | nferred B
» Photo.swift

Table View Controlier
satecsion @ Clear on Appearance

» Album. swift
« AppDelegate. ywift
I Maln storyboard g Refresting | Disablod B

B8 Assets xcassets

info piist View Cantralier
+' PagoViewCantraller. swift Title
. PageContentViewControler swit ._* I8 Iritial View Contraller
31 TableViewControlier.swi ;
ableViewControdler.swift Laycut B3 Adiust Seroll View knsets
» [Products Hide Bottom Bar an Bush

) Resize View From NIB
Use Ful Screen (Deprecated)
Extena Edges [Under Top Bars
{8 uncer Bottom Bars
Under Opague Bars

0D e@ao
Havigation Controller - 4

< CONTTOleS ENIE MANSgEs NawGALcR
ENrGugh 3 Resrarchy of vigws.

Tablo View Controller -
controlier that Manages a tale view.

Collection View Controller - &
contralies that Manages 3 cobecton
it

v [@ o8| 0o B R ol el B @

Figure 5-4. Adding a Table View Controller scene to the Main.storyboard canvas and
making it the Initial View Controller

3. Next, with the Table View Controller scene still selected, select the
Identity inspector in the Utilities area and change the Class to be
the newly created TableViewController, as shown in Figure 5-5.

> oA\ P Apple TV 1080p Finished running Phato Gallery on Apple TV 1080 3 =@ & 000
BAE QA BDO B B < B B8 Tosio Vi Scone) () Tasle View Controior | { [\ 3| weeeiimipp @ ¢ 0 @

¥ [Photo Gallery Custoan Class

¥ [Phota Gatery —l cis | Tavicvewconmoier O [

v [Model Mo B
a Photo.gwitt
« Album swift identity
« AppDelegate swift Seoryteard 10
_ :
. Restoeation 10
B Assets acassets
Use Storyboard 1D
nfo.plst
« PageViewControler switt | User Defined Rustime Attributes
« PageContentviewController. swift Key Path Type Value
» TableViewControler swift
L3 Products
¥
Decument
Label
x
D0OD@o

contrciier that manages ravigation

< Havigation Cantroller - &
hesugh 8 Meeranchy of views.

Table View Controller - &
contreiier (NIt marages 3 1atle view.

Collection View Controller - &
centrgiler that marages & celection
it

@ 0B 0 B b0l bl B3

Figure 5-5. Setting the Table View Controller scene class to TableViewController

60

CHAPTER 5 © ADDING AN ALBUM BROWSER TO THE PHOTO GALLERY APP

Now that the Table View Controller has been added to the project, you need to
configure the Table View Cell to display the appropriate information for each photo album.

1. First, click the Document Outline button D in the
bottom-left corner of the canvas to show the list of scenes in
the Main.storyboard, as shown in Figure 5-6.

| iy 0} @ Apple TV 10800 Finished running Photo Gallery on Apple TV 10800 2) i=ll=ln
B R A i & 8 o B = |« -] BB B Table Vi_r Scene Table View Controfier | ¢ 4 3 D®@Es 3 e
v [Photo Gallery v [Table View Controlior Scone e
¥ [Phoso Gallery v () Table View Controler Class | TobleviewControier © [
¥ [Modei » [Tasie View Module [~]
a Photo.swift 7§ First Resoonder
- Album.swift [exix Igentity
» AppDelegate. switt Staryboard Entry Point Storytoand 1D
I Mainstorybosrd + [Page View Controlier Scons
Restonation D
55 Assets wcassets
wilo.plst + [Page Content View Controller Scene Use Storyboard ID

- PageViewController swift User Dofined Runtime Attributes

«| PageContentViewControlier swift KeyPath Type

+ TableViewControtier swift

¥ [Products

contralies ENat MAN3QEs NaVIgatice

< Mavigation Controller - A
EArough 3 hetarchy of views.

Table View Controller - A
CONTrolier TNt Manages 3 tabile view.

Collection View Controller - A
contralies hat Manages a coliection
it

- [=) Filt [m] H & ol il =

Figure 5-6. Viewing the list of Main.storyboard scenes within the Document Outline

2. Next, expand the Table View item underneath the Table View
Controller Scene by clicking the small gray rectangle next to it,
revealing the Table View Cell, as shown in Figure 5-7.

61

CHAPTER 5 " ADDING AN ALBUM BROWSER TO THE PHOTO GALLERY APP

Ofv

L

a4 [

o 7 Apple TV 1080

Photo Gallery
Phote Gallery
¥ [Modiel
« Photo.swift
« Album switt
«| AppDelcgate. swift
I Mainstorybosrd
B Assets xcassets
Irfo.piist
+ PageViewController. swift
« PageContentViewCaontrolier swift
« TableViewControder.swift

Products

Finished running Photo Gallery on Appée TV 1080p

R| < -]
v [Tabile View Controlior Scone

¥ () Table View Controller
¥ [Tosie View

>[5 Table View Cel fmm—

T First Resgonder
B Ext

Storyboard Ertry Poimt
» [H Page View Controller Scene

» [E Page Cantent View Controlier Scene

BB B Tabie Vi_r Scenc

Table View Controlier | £

1

>

8 B ol &

Figure 5-7. Expanding the Table View to reveal the Table View Cell

62

D | =R
3 @@ T 0 e
Custom Class
Class | TableviewControier [0
Module B
Igentity
S0 yodrd 10
Festortion 1D

Use Storyboard 10

User Dotined Runtimg Attributes
Ky Path Type Value

O]

controlies that Manages nawigation

(Havigation Controller - 4
ERrOUGh 3 hegrarchy of views.

Table View Controlier - A
ONIrOIeY That MANages 3 taDie view.

Collection View Controller - &
contralies that Manages 3 cobecton
it

3. Select the Table View Cell from within the Document Outline
and then select the Attributes inspector from the Utilities area.

4. Next, select Subtitle from the Style drop-down list and enter
Cell as the Identifier, as shown in Figure 5-8.

CHAPTER 5 © ADDING AN ALBUM BROWSER TO THE PHOTO GALLERY APP

> o @) @ Apple TV 1080p Finished running Photo Gallery on Appie TV 1080p 2 O S | - |
B R aasa® E = |« & Photo Gatery B hE Table View celt [4> —H-” Q0@
¥ (B Proto Gallery [E Tabile View Controlior Scone A0S Viow ol
v |1 Phato Gallery v () Table View Controller —* Style | Subtitie B
v [Model Tadle Vi mage [~]
- Proto.swin PROTOTYPE
+ Album.switt _* i C
» AppDelegate. switt . Selection | Default 2]
I Mainstorybosrd Tltle hccessory | None 2]
B8 Assets scassets » [Page View Controller Scene ¢ Ediing Acc. | None B
Irfo.plist C; bt t E tyk
. » [Page Cantont View Contraller Scens U e ocus Style | Default 1}
| PageViewController swift
«| PageContentyiewControlier switt e o W O
« TableViewControder.swift B9 Indent While Editing
» [Products Shows Re-ordor Controls
Seporater | Defoult Insets B
Wiew
uiode | Scale To F B
—

|
[1@ O
Mavigation Controller - &
< controlier That Manages Navigaticn
ENOUGR & eErarchy of views.

Table View Controller - A
CONTrolier TNt Manages 3 tabile view.

Collection View Controller - A
contralies hat Manages a coliection
it

= i %) it O B & ol ial <

Figure 5-8. Configuring the Table View Cell

The Subtitle style is the default Table View Cell template that provides all of the user
interface elements you need (image, main title, and subtitle) to display the list of photo
albums. The Cell Identifier will be used in the TableViewController class code to identify
which Table View Cell in the Table View Controller scene to use when populating the
Table View. If you had more than one type of Table View Cell in the Table View, you would
just need to give it a different Identifier.

The last thing you need to do in the storyboard is to add a Show segue between the
Table View Cell and the Page View Controller so that when a user selects a particular
photo album from the list they are able to browse through all of the photos within it.

1. To add the Show segue, first expand the Page View Controller
Scene to reveal the Page View Controller.

2. Next, right-click (or Control-click) the Table View Cell and
drag it to the Page View Controller, as shown in Figure 5-9.

63

CHAPTER 5 " ADDING AN ALBUM BROWSER TO THE PHOTO GALLERY APP

2

Jeet [€ 4 >

PROTOTYPE

> o @) Apple TV 1080p Photo Gallery | Build Photc Gallery: Succeeded | Today at 3:41 PM
B2 af & E o B | & Photo Gateny) [0} (- [le Tabie View
¥ [% Photo Gallery [Tsble View Controlior Scane
v Photo Gallery v () Table View Controtler
|| Model v [Tasie View
. Photo.switt o
.| Album.swift £ First Reaponder
. AppDelegate.swift Eea . t
e I Title
|55 Assets xcassets. v [Page View Cotroller Scone =
 wiost = Subtitle
.. PageViewController. swift 7 First Respondur
. PageContentViewControlier. swift [E ex
Bt et » [Page Content View Controlior Scene
¥ Products
(S QE| &)

B8 & 1ol sl | B

Selection | Default
Accessory | None
Editing Acc. | None

Focus Style | Default

Ingestation 03

Table View Cell

D A0 CE
DeoemPie
Style | Subtitle B
mage i
igaeifior | Ced

-3

Level waann
1 Indent While Editing
Shows Re-order Controls

Separater | Detau't Insets B

wMode | Seale To Fi B
"

OO @ao
Mavigation Controller - A
contralier Ehat manages navigaticn
Enrough 3 hetrarchy of views.

Table View Controller - &
controlier That Manages 3 table view.

Collection View Controller - &
contralies that Manages 3 cobection
it

Figure 5-9. Adding a segue between the Table View Cell and the Page View Controller

3. Release the mouse button and choose Show under Selection

Segue, as shown in Figure 5-10.

> o 7! Apple TV 1080p Photo Gallery | Build Photo Gallery: Succesded | Today at 3:41PM
B2 af & E o B |/ & Photo Gateny) [0 (- [e Tabie View
¥ [£] Photo Gallery v [Table View Controllor Scone
¥ Photo Gallery v () Table View Controller
v Model [Tasle View
.+ Photo.swift
.| Mlbum. swift T Firat Responder
. AppDelegate switt Eea
|55 Assets xcassets. [l Page View Controller Scene

+(® O (& D

Figure 5-10. Selecting the Show segue

64

2

Jeet [€ 4

B8 & 1ol sl | B8

Selection | Default
Accessory | None
Editing Acc. | None

Focus Style | Default

Incetation 03

Table View Cell

e | EAY =
DemE9de
Style | Suttitle
mage

igueifier | Cod

s

Level widtn
1 Indent While Editing
Shows Re-order Controls.

Separater | Detau't Insets B

Mode | Seale To Fi B
"~

OO @ao
Havigation Controller - &
conirolier that manages navigatiee
Enrough & Petrarchy of views.

Table View Controller - &
controlier that Manages 3 table vien.

Collection View Controller - &
contralies that Mansges 3 cobection
it

CHAPTER 5 © ADDING AN ALBUM BROWSER TO THE PHOTO GALLERY APP

4, Select the new Show segue that was added to the Table View
Controller Scene in the Document Outline and change its
Identifier to SelectAlbumSegue in the Attributes inspector, as
shown in Figure 5-11.

> oy 7! Apple TV 1080p Photo Gallery | Build Photo Gallery: Succeeded | Today at 3:41 M 1 n et U = i
BRAaAfdomoe B B« B B D Show segue 1o *Page View Controller” | [> De @9l e
¥ 5] Photo Gallery v [Tabile View Controlior Scone arrbeard Sege
v Photo Gallery v () Table View Controlier gy it | SelecthtumSegue
v Model v [Tazie View Clats o@
B _ > Elos PROTOTYPE e B
- Alpum.swift T First Respander
) B £ Kind | Show (0.g. Push) <]
. AppDelcgate. swift [E Exit
. Title 8 fnmes
PR Show segue 1 “Page View Contro..
v Page View Comtroller S = -4
Info.pist E pag Controller Scono 5“{)“'9
. PageViewController swift e - LR LA
. PageContentViewControlier swift
. TableViewCantroller.swift
¥ Products » [Page Content View Controlier Scene
_
[1 @ &
Havigation Controller - 4
< CONrolier that manages navigatcn
Enrough 3 heesarchy of viws.
Table View Controller - &
controlier that manages 3 tabie view.
Collection View Controller - A
CONIroler That Manages 3 cobecton
it
v (@ @0 = o 5 B ol tal E

Figure 5-11. Setting the Show segue identifier

That completes all of the changes you need to make to the Main.storyboard, so now
we can turn our attention to writing some code!

Adding the Gallery Data Model Structure

In Chapter 4, you created the data model structures to represent both a single Photo, as
well as a collection of Photos within an Album. Next, you are going to define a Gallery
structure to represent a collection of Albums. That way you will be able to browse through
the Gallery, choose an Album, and then browse through the Album’s photos.

1. To start, right-click (or Control-click) the Model group in the
Project navigator and choose New File.

2. Select Source under tvOS and then select Swift File.

3. Click Next, name the file Gallery.swift, and then click Create.

65

http://dx.doi.org/10.1007/978-1-4842-1715-3_4

CHAPTER 5 " ADDING AN ALBUM BROWSER TO THE PHOTO GALLERY APP

Add the following code into the newly created Gallery.swift file:

1 import Foundation

2

3 struct Gallery {

4 var albums: [Album] {

5 return [

6 Album(name: "Animals", photoNames: ["Cows", "Dog",
"Horses", "Seagull", "Sheep"]),

7 Album(name: "Cities", photoNames: ["Bridge",
"Fireworks", "Traffic", "Village", "Windows"]),

8 Album(name: "Landscapes", photoNames: ["Coast", "Field",
"Lake", "Lighthouse", "Road"])

9]

10 }

11 }

The Swift Gallery structure contains a single computed property, an array of Albums
called albums (Lines 4-10) that consists of three albums, each containing five photos.

Adding the Cities and Landscapes Image Files to
the Asset Catalog

Now that you have defined the Gallery structure that consists of three different Albums,
each containing five different Photos, you need to add those photo image files to the asset
catalog, as you did in Chapter 4.

1. After downloading and unzipping the associated project files
for this chapter, drag and drop the Cities and Landscapes
folders containing the image files into the asset catalog to add
them to the project.

2. Next, select each newly added image and change it from a
Universal image to an Apple TV image, as you did in Chapter 4.
Once completed, your asset catalog should look similar to that
shown in Figure 5-12.

66

http://dx.doi.org/10.1007/978-1-4842-1715-3_4
http://dx.doi.org/10.1007/978-1-4842-1715-3_4

CHAPTER 5 © ADDING AN ALBUM BROWSER TO THE PHOTO GALLERY APP

> oA P) B Apple TV I0BO0D Photo Gallery | Build Photo Gallery: Succeeded | Today at 9:48 AM e N = 3
B g Q E 2| < & Photo Gallery Bha.llery Ass_ssets)) Landscapes | s Road Do ¢

¥ [Photo Gallery v [Animals =3 Image set
v (B Fhoto Gallery = Coms

wme Rood
* [Modie = Oog -

’ — Devices

o Photo.swift

K Al [Uriversal
+ Album.switt o (| iPhone
. Gallery swift "y 2 Pad
N Calgatn ne > [400 a0 & Ton Sholt mage 2 el e
Main storyboard v i Chin Apple TV Tv s 6 Apole TV

= Bridge waschOs (| Apple Watch
= Fireworis
Memory 168

08

4GB

Graphics || Matal W2

- Tratfic

- TableViewControfler.swift
Mital 2v2
Metal 31

» [Products

Scale Factors | Multipie

= Lake

(o] o

= Uighthouse Rerder As | Default
= foad

Launchimage

Figure 5-12. The asset catalog containing the Animals, Cities, and Landscapes photo albums

Completing the Photo Gallery App

Now that you have defined the Gallery structure and added the additional photo image
files to the project, the last step you need to take is to finish implementing the Table View
Controller that displays the list of photo albums for the user to choose from.

1. Click the TableViewController.swift file in the Project
navigator and add the following line at the top of the
TableViewController class declaration:

1 let gallery = Gallery()

Adding the gallery property to the Table View Controller will provide it with the
data needed to display the list of photo albums to the user.

2. Next, scroll down to the numberOfSectionsInTableView
data source method in the TableViewController.swift file and
change the return Otoreturn 1, as there is only going to be
one section in this table view that will contain the three rows
of photo albums.

3. Then, in the numberOfRowsInSection method, change the
return value to the number of albums within the gallery, as
shown below:

1 return self.gallery.albums.count

67

CHAPTER 5 " ADDING AN ALBUM BROWSER TO THE PHOTO GALLERY APP

4. Next, uncomment and edit the cel1ForRowAtIndexPath
method to match the following:

1 override func tableView(tableView: UITableView,
cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {

2 let cell = tableView.dequeueReusableCellWithIdentifier("Cell",
forIndexPath: indexPath)

3

4 cell.textlabel?.text = self.gallery.albums[indexPath.row].name

5

6 var names = ""

7 for photo in self.gallery.albums[indexPath.row].photos {

8 names += photo.name + ", "

9 }

10 names = String(names.characters.droplast(2)) // remove the
last two characters of the string

11 cell.detailTextlLabel?.text = names

12

13 cell.imageView?.image = UIImage(named: self.gallery.albums
[indexPath.row].photos[0].name)

14

15 return cell

16 }

The cellForRowAtIndexPath method is a Table View Data Source method that is
called for each Table View Cell that is displayed by a Table View. The indexPath parameter
specifies which section and row within the Table View the cell is being requested for.

In this method, you first create a new Table View Cell (Line 2) using the Cell identifier
that you specified in Interface Builder earlier in the chapter. Next, you set the textLabel
main title to be the name of the album for the requested row (Line 4). Then, you create a
comma-delimited names String from the names of each of the photos by looping through
each photo within the album (Lines 6-9) and set that to the detailTextLabel subtitle
(Line 11).

Note If you are wondering why you would remove the last two characters of the names
String (Line 10) before using it, it is because you are creating it by concatenating the name
of each photo, followed by a comma and a space. Since you do not want to have a comma
and a space after the final name, you simply remove those last two characters after exiting
the loop.

After setting the main title and subtitle strings of the cell, the final thing you need to
initialize before returning it is the image, which you do by loading the image associated
with the first photo in the album that is being requested (Line 13).

68

CHAPTER 5 © ADDING AN ALBUM BROWSER TO THE PHOTO GALLERY APP

If you build and run the application now, you should see something similar to
Figure 5-13.

W“- A Animals

s
Cltles
———

Landscapes

Figure 5-13. The Table View Controller showing the list of photo albums

That looks okay, but there is a lot of empty white space underneath the list of three
photo albums. You can fix this issue by making each row taller by adding the following
method to the TableViewController.swift file after the cel1ForRowAtIndexPath method:

1 override func tableView(tableView: UITableView,
heightForRowAtIndexPath indexPath: NSIndexPath) -> CGFloat {
2 return 300

3 }

Now when you build and run the application, you should see something similar to
Figure 5-14.

69

CHAPTER 5 " ADDING AN ALBUM BROWSER TO THE PHOTO GALLERY APP

I |;I aAnimals
. i "

Cities

Bridge, Firewo Traffic, Villa S
Landscapes

Coast, Field, Lake, Lighthouse, Road

Figure 5-14. The Table View Controller showing the list of photo albums with a more
acceptable amount of empty white space

If you select the Animals album using the Apple TV remote, everything works! The
Animals album is displayed, and you can swipe back and forth between the photos within
the album. Pressing the Menu button takes you back to the list of photo albums where
you can swipe down and select either the Cities or Landscapes album and view their
photos as well.

But wait! Selecting either the Cities or Landscapes album still takes us to the Animals
album. Do you know why that is? What have we missed?

The reason that the Page View Controller will only show the Animals album is
because it is still being initialized with that album when it is first created, and you have
not yet implemented the code that passes the album selected from the Table View
Controller on to the Page View Controller.

To do that, you need to uncomment and edit the prepareForSegue method located
at the end of the TableViewController class declaration to contain the following:

1 override func prepareForSegue(segue: UIStoryboardSegue, sender:
AnyObject?) {

2 if segue.identifier == "SelectAlbumSegue" {

3 if let pageViewController = segue.destinationViewController

as? PageViewController, row = self.tableView.
indexPathForSelectedRow?.row {

pageViewController.album = self.gallery.albums[row]
}

~N ouv b

70

CHAPTER 5 " ADDING AN ALBUM BROWSER TO THE PHOTO GALLERY APP

Remember when you connected the Table View Cell to the Page View Controller
with a Show segue with the SelectAlbumSegue identifier? When a user selects a Table
View Cell, the Show segue is initiated, and the prepareForSegue method is called. In the
method, you first check to see if the segue’s identifier is SelectedAlbumSegue (Line 2). If
itis, you create local references to the Page View Controller and the row that was selected
(Line 3) and initialize the album property of the Page View Controller with the album
from the gallery that is indexed by the selected row (Line 4). That way, when the Page
View Controller is loaded, the album property has already been initialized with the correct
album data.

Great job! You have now completed the Photo Gallery app, giving users the ability to
browse through a list of photo albums to view their associated full-screen photos on their
widescreen HDTV.

One More Thing: Adding a Custom Static Top
Shelf Image

The Photo Gallery app is now complete, but there is still something more you could do to
improve it.

The Top Shelfis an area on the Apple TV Home screen that allows an app that is
placed in the top row to showcase more information about itself when selected.

For example, when you select the Settings app, the Top Shelf shows a nice large
image of the Settings gears icon, further indicating to the user which app is selected, as
shown in Figure 5-15.

Settings

Figure 5-15. The Settings Top Shelf image

71

CHAPTER 5 " ADDING AN ALBUM BROWSER TO THE PHOTO GALLERY APP

Selecting the Photo Gallery app next to it shows the default Apple TV Top Shelf
image, as shown in Figure 5-16.

gtv

Figure 5-16. The default Top Shelfimage

That is not very representative of the Photo Gallery app you have created. Thankfully,
Apple has given developers the ability to add their own customized static Top Shelf
images to their apps, giving them that additional recognition when placed in the top row
of the Home screen.

Adding a custom static Top Shelf image is really quite easy.

1. Simply click the Assets.xcassets asset catalog in the Project
navigator and expand the App Icon & Top Shelf Image folder.

2. Then, select Top Shelf Image and drag and drop the
TopShelf.jpg image from the chapter’s downloadable content
to the blank 1x Apple TV space, as shown in Figure 5-17.

72

CHAPTER 5 " ADDING AN ALBUM BROWSER TO THE PHOTO GALLERY APP

> iy P} @ Apple TV 1080p | Finished running Photo Gallery an Apple TV 1080p oikad L= ==
bR QM ©EmE o @ (B B Phtery |55) [App icon & Top Shelf Image | = Top Shel Image D ® ¢
v [Photo Gallery v [Animais e —
1 Phote Gallery = Cows - e s Shaf s s
* [Modei == Dog
Phota,swift s= Horses m Devices
- ; - Al Universal
o Album.swift = Seagu et
s Gallery.switt = Shetp : i
» AppDelegate.swift v App Icon & Top Shelf Image 13 i
Main storyboard B 1.; App lcom - Large Apple TV v oS B Apole TV
1 Assetsacassets AL L 1 watchess (] Appis Wakth
O = Top Sheif Image]
Info piist e i Memcey (| 168
v ws
« PagtViewContralier. switt 258
= Brage e
« PageContentViewConirolier swift i Frsworlia 3
- TabieViewControrer swift 3 Geaphics () Matal W2
= Traffic _—
» Products " 1]
o Matal 31
- Windows
SCale Facto it
v [Landscapes Scale Factors | Multipio B
= Coast Aender A | Default B
Fleld
o O eao
= Lighthouse
- Road View Controller - A controber that
Launchimage manages a view.

Storyboard Reference - Frovides a
e e
external storyboan

Navigation Controller - A
L o onrniae s mavanas smasaren

Show Slicing

Figure 5-17. Adding a custom static Top Shelfimage

Now, simply build and run the app, and then press the Menu button on the Apple
TV remote to return to the Home screen. The Top Shelf image should now be displayed
whenever the Photo Gallery app is selected while it is located in the top row of the Home
screen, as shown in Figure 5-18.

.
e

——

Photo Gallery

Figure 5-18. The Photo Gallery app with its custom static Top Shelfimage

73

CHAPTER 5 " ADDING AN ALBUM BROWSER TO THE PHOTO GALLERY APP

That looks really great! And it is much more representative of what the Photo Gallery
app has to offer.

Summary

In this chapter you added a Table View Controller to the Photo Gallery app to allow the
user to select from a list of photo albums before viewing the photos using the existing
Page View Controller from Chapter 4. You also added a custom static Top Shelf image to
the app to give the user a better indication as to the contents and functionality of the app
when it is selected from the top row of the Home screen.

In the next chapter, you will customize the Top Shelf even further by adding a
scrollable collection of dynamic thumbnail images for users to choose from when
launching the app.

Exercises

1. Tryadding some additional albums and photos to the app
from an existing album or add new albums to the gallery.

2. Tryadding an additional navigation layer to the app,
perhaps starting with a Table View Controller containing a
list of different galleries. The galleries could contain albums
organized by category, allowing the user to first choose a
gallery before choosing an album to browse its photos.

74

http://dx.doi.org/10.1007/978-1-4842-1715-3_4

CHAPTER 6

Adding a Dynamic Top Shelf
to the Photo Gallery App)

The Top Shelf area of the Apple TV Home screen is a great place to provide more
information about an app, as well as to showcase what an app has to offer to its users. At
the end Chapter 5, you added a custom static Top Shelf image to the Photo Gallery app. In
this chapter, you are going to customize the Top Shelf even further by adding a scrollable
collection of dynamic thumbnail images for users to choose from, as shown in Figure 6-1.

Figure 6-1. The dynamic Top Shelf of the Photo Gallery app

Users will be able to scroll through the collection of thumbnail images to see a
preview of all of the albums within the app. Selecting any of the thumbnail images will
open the Photo Gallery app, taking the user to the selected full-screen photo.

75

http://dx.doi.org/10.1007/978-1-4842-1715-3_5

CHAPTER 6 " ADDING A DYNAMIC TOP SHELF TO THE PHOTO GALLERY APP

Application Extensions

You will add support for a dynamic Top Shelf by adding a new TV Services application
extension that implements the TVTopShelfProvider protocol to the Photo Gallery app.
App extensions are not apps themselves, but instead allow apps to provide additional
functionality to the rest of the system. Apple Watch apps, custom keyboards, and Today
widgets are some of the other examples of app extensions, specifically for iOS.

1. To getstarted, launch Xcode and open the Photo Gallery
project from Chapter 5.

2. Next, select File » New » Target from the Xcode
application menu.

3. Select Application Extension under tvOS and choose TV
Services Extension, as shown in Figure 6-2.

Choose a template for your new target:

i0s
Application
Framework & Library
Application Extension TV Services

Extension

Test

watchOS
Application
Framework & Library

tvOS
Application
Framework & Library
Application Extension
Test

0s X

i TV Services Extension
Application
- This template bullds a TV Service application extension.

Framework & Library
Application Extension

S [Next |

Figure 6-2. Adding a TV Services Extension to the Photo Gallery app

4. Click Next and enter Photo Gallery Extension for the Product
Name, as shown in Figure 6-3.

76

http://dx.doi.org/10.1007/978-1-4842-1715-3_5

Choose options for your new target:

——* Product Name:

Organization Name:

Qrganization identifier:
Bundle Identifier:
Language:

Project:

Embed in Application:

Cancel

CHAPTER 6 * ADDING A DYNAMIC TOP SHELF TO THE PHOTO GALLERY APP

Photo Gallery Extension

The Zonie, LLC

com.thezonie.Photo-Gallery.Photo-Galler

Swift
B Photo Gallery

Photo Gallery

Figure 6-3. Adding the Photo Gallery Extension to the Photo Gallery app

5. Click Finish and then Activate, if prompted. The Photo Gallery
project should now include the Photo Gallery Extension
target, as shown in Figure 6-4.

> £) P Apole TV 10808 Ph Hery | Buid P i

BEEAQAAMGCEoc O i< B Proto Gavery

¥ 5 Photo Gallery
v Photo Gallery

PROJECT
¥ [0 Modlel

ot & phote Gatlery

« Albumn swift TAROETS

o Gallery.swift Ay Prete Gallery

1072215 at 1113 AM

Capabiities Resource Tags wle Buid Settirgs Buid Phases Buid Rules

¥ identity

Bundle Identifer com thezonie Phato-Gallery Photo-0

+ AppDelogate.switt [f—

Main storyboard
B8 Assers xcoscers
Info. piist
+ PageViewController swift
+ PageContentViewControbior swift
+ TubleViewController.swift
v [Prota Gatlery Extension
+ ServiceProvider.swift
info pifst
[Framewores

» [Products.

¥ Depleyment Info

Version 1.0

Bulld 1

Team WNore B

Deployrent Target H

¥ Linked Frameworks and Libraries.

S TVBervices framework

Required £

Figure 6-4. The Photo Gallery Extension has been added to the Photo Gallery project

77

CHAPTER 6 " ADDING A DYNAMIC TOP SHELF TO THE PHOTO GALLERY APP

Adding Classes and Images to the Photo Gallery
Extension

Since the app extension is a separate target from the main Photo Gallery app, you first
need to add the classes and images that it needs to know about to generate the dynamic
Top Shelf data.

1. With the Photo Gallery project selected in the Project
navigator, select the Photo Gallery Extension target and click
the Build Phases tab, as shown in Figure 6-5.

> E) P Apple TV 1080p Photo Gallery | Build Photo Gallery: Succeeded | 10/22/15 a1 1113 AM . ot i = i
B a e = | < & Photo Gallery
¥ (2] Phots Gallery] Goneral Capaniitics fesource Togs nfo Build Settings T e
v Photo Gallery
: PROJECT =
hd Mod e
P witt & Photo GaBiery
: A g:.o‘iw 't TARGETS ¥ Target Dependencies (0 items)
« Gallery.switt oAy Phato Gatery

¥ Compile Sources (1 item)
- AppDelegate.swift @ Photo Gallery Extension

Main.staryboard b Link Dinary With Libraries (1 itern)
55 Assets xcassets
o plist ¥ Copy Bundle Resources (0 items)

Figure 6-5. The Build Phases tab selected for the Photo Gallery Extension target

2. Click the triangle next to the Compile Sources item to expand
it, as shown in Figure 6-6.

78

> ©))) App'e TV 1080

BR Qb ©E o E
¥ [% Photo Gallery
v Photo Gallery
A Model
» Photo.swift
« Alpum. swift
+ Gallory.awitt
= AppDelegate swift
Main storyboard
B8 Assets ncassets
Irfo plist
» PageViewController.swift
» PageContentViewCaontrolier swift
« TableViewControfier swift
v Photo Gallery Extension
« ServiceProvider swifl
Irdo pist
> Framaworks
» [Products

CHAPTER 6 * ADDING A DYNAMIC TOP SHELF TO THE PHOTO GALLERY APP

Prota Gallery | Buid Photo Gallory: Suceeeded | 10/22/15 31 1113 AM @ <0 O
®| < & Photo Gallery
Goneral Caganitics Reseurce Tags Into Buid Settings Buid Rules
PROJECT o
B Proto Gaiery
>
ARDETH Target Dependencies (0 items)
iy Phoss ousery ¥ Compile Sources (1 ltem)
 ServiceProvider.swift _in Phato Gallery Extension
+
* Link Binary With Libraries (1 item) ®
* Copy Bundle Resources (0 items) -

Figure 6-6. The Compile Sources Build Phase of the Photo Gallery Extension target

3. Click the + button at the bottom of the Compile Sources list
and add the Gallery.swift, Album.swift, and Photo.swift files,
as shown in Figure 6-7.

> ©))) App'e TV 1080

Q & © m o E

B =
¥ [% Photo Gallery
v Photo Gallery
A Model
» Photo.swift
« Alpum. swift
+ Gallory.awitt
= AppDelegate swift
Main storyboard
B8 Assets ncassets
Irfo plist
» PageViewController.swift
» PageContentViewCaontrolier swift
« TableViewControfier swift
v Photo Gallery Extension
« ServiceProvider swifl
Irdo pist
> Framaworks
» [Products

Prota Gallery | Buid Photo Gallory: Suceeeded | 10/22/15 31 1113 AM @ <0 O
2| < & Photo Gallery
General Capandtios Resource Tags Into Buid Settings Buid Phoses Buid Rulos
PROJECT =

B Proto Gaiery
TARGETS
oy Phato Galery
i Phato Galiery Extention

* Target Dependencies (0 items)

¥ Compile Sources (4 Roms)

= Photo.swift

| Album.switt

= Gallory.swift
i * sllery Extansion

I

* Link Bi h Libraries (1 item) *
¥ Copy Dundle Rosources (0 itoms) ®

Figure 6-7. Adding the Gallery, Album, and Photo classes to the Photo Gallery Extension

79

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 6 " ADDING A DYNAMIC TOP SHELF TO THE PHOTO GALLERY APP

Now that the Photo Gallery Extension knows what a Gallery, Album, and Photo
are, you just need to add the actual image files to the target so that they can be used to
generate the thumbnail images.

1. To add the image files to the Photo Gallery Extension, first
right-click (or Control-click) the Photo Gallery Extension
group, select New Group, and name it Photos.

2. Download and unzip the associated project files for
this chapter, and drag and drop the Animals, Cities, and
Landscapes folders onto the new Photos group in Xcode.
When prompted, make sure the Copy items if needed check
box is checked, the Create groups radio button is selected,
and the Photo Gallery Extension target check box is checked
before clicking the Finish button, as shown in Figure 6-8.

©) 0} Apple TV 10B0p Phota Gallery | Buid Photo Gallery: Succeeded | 10/22/15 at 1113 AM —
= Choose options for adding these files:
¥ & Photo Callery S uds
v [0 Phote Gallery Destination: Copy itemns if neaded h—-
¥ [Mode
N Added folders: () Create groups h——
e Create folder references
« Gallery.swift Add to targets: & Photo Gallery
= AppDelegate.s¢ Photo Gallery Extension *—_—
Maln_storyboart
v Photo Gallery Exte
v | Photos
- SglcoProvider
e oot
b [Framfuer
» [proadds Cance [HS]

Figure 6-8. Adding the image files to the Photo Gallery Extension target

Note In case you were wondering why the image files were not added to an Asset
Catalog in this instance, it is because the dynamic Top Shelf thumbnail images need to
be initialized using an image file URL. Image file URLs are not available when images are
packaged up in an asset catalog, so that is why you instead add them to the Photo Gallery
Extension target as general bundle resources.

80

CHAPTER 6 * ADDING A DYNAMIC TOP SHELF TO THE PHOTO GALLERY APP

Implementing the TVTopShelfProvider Protocol

Now that the Photo Gallery Extension target contains the necessary classes and images
needed for the dynamic Top Shelf data, it is time to generate and return that data by
implementing the TVTopShelfProvider protocol in the ServiceProvider.swift file.

Select the ServiceProvider.swift file from the Project navigator and replace the default
topShelfItems computed property definition with the code below:

1 var topShelfItems: [TVContentItem] {

2 let gallery = Gallery()

3

4 var albums: [TVContentItem] = []

5

6 // create a TVContentItem for each album in the gallery
7 for albumIndex in 0..<gallery.albums.count {

8 let album = gallery.albums[albumIndex]

9
10 var photos: [TVContentItem] = []

11

12 // create a TVContentItem for each photo in the album
13 for photoIndex in 0..<album.photos.count {
14 let photo = album.photos[photoIndex]
15

16 guard let photoldentifier =

TVContentIdentifier(identifier: photo.name,
container: nil) else { return [] }

17 guard let photoItem = TVContentItem(contentIdentifier:
photoIdentifier) else { return [] }

18
19 photoItem.title = photo.name
20 photoItem.imageURL = NSBundle.mainBundle().
URLForResource(photo.name, withExtension: ".jpg")
21 photoItem.displayURL = NSURL(string: "photogallery:vi
ewTopShelfItem?album=\(albumIndex)&photo=\(photoIndex)")
22
23 photos.append(photoItem)
24 }
25
26 guard let albumIdentifier = TVContentIdentifier(identifier:
album.name, container: nil) else { return [] }
27 guard let albumItem = TVContentItem(contentIdentifier:
albumIdentifier) else { return [] }
28
29 albumItem.title = album.name
30 albumItem.topShelfItems = photos
31

81

CHAPTER 6 " ADDING A DYNAMIC TOP SHELF TO THE PHOTO GALLERY APP

32 albums.append(albumItem)
33 }

34

35 return albums

36 }

The topShelfItems computed property is now going to return an array of
TVContentltems, one for each album. Each album TVContentItem within the returned array
is going to contain another array of TVContentItems, one for each photo within that album.

At the beginning of the topShelfItems computed property code block, you first
create an instance of the Gallery class (Line 2) so that you can reference all of the album
and photo data and information. Next, you loop over all of the albums in the gallery (Line 7)
to add the associated TVContentltems to the albums array. Then, within the photos for
loop, you will loop over all of the photos within that album (Line 13) to add the associated
TVContentltems to the photos array.

Within the photo for loop, you first create a TVContentldentifier using the name of
the current photo (Lines 14-16), and then create the actual TVContentItem using that
TVContentldentifier (Line 17). You then set the title of the photo item to be the name
of the photo (Line 19), so that it will be displayed underneath the thumbnail image when
displayed in the Top Shelf, as shown in Figure 6-9.

Figure 6-9. The title of the first TVContentltem in the Animals album is Cows

After setting the title, you then set the imageURL (Line 20) to be the location of the
associated image file that you copied to the Photo Gallery Extension earlier in the chapter.
Finally, you set the displayURL (Line 21) to a specially formatted string that will be passed to
the Photo Gallery application to identify which image thumbnail was selected from the Top
Shelf. The displayURL string contains the photogallery scheme (which we will discuss later
in the chapter) as well as the album and photo index values associated with the photo.

82

CHAPTER 6 * ADDING A DYNAMIC TOP SHELF TO THE PHOTO GALLERY APP

Once those three properties have been set for the current photo, the TVContentltem
is added to the photos array at the end of the loop (Line 23).

After the photo loop is complete, the photos array contains all of the photo
TVContentItems for the current album. Next, you create a TVContentldentifier and
TVContentltem for the album, just like you did for each photo (Lines 26-27). Then, you
set the title of the TVContentltem to the album name (Line 29) so it will appear above
each collection of image thumbnails, as shown in Figure 6-9.

After setting the topShelfItems property to be the photos array (Line 30), you add
the completed album TVContentltem to the albums array at the end of the album loop
(Line 32). Once you have added all of the albums to the albums array, the array is returned
(Line 35).

Phew! That was quite a lot of code, but you got through it! Now, if you attempt to
build and run the app extension, you will be presented with the dialog window shown
in Figure 6-10. Because app extensions are not apps that can be run independently, you
need to select Top Shelf from the list to see your changes reflected in the Top Shelf of your
Apple TV.

Choose an app to run:

Recent Applications

M Top Shelf

A A icratiARe
Al ;~..,D|Iu-::\ ons

A Photo Gallery
] Top Shelf

=) Filter
- el

cancel | (NEEINN

Figure 6-10. Selecting which app to run with the Photo Gallery Extension

83

CHAPTER 6 " ADDING A DYNAMIC TOP SHELF TO THE PHOTO GALLERY APP

After clicking Run, you will see the static Top Shelf image you added in Chapter 5
replaced with the dynamic thumbnails for all of the albums and photos contained within
the gallery. Swiping up on the Apple TV remote when the Photo Gallery app is selected
allows you to focus on the Top Shelf items and swipe back and forth between all of the
available photos.

Launching the Photo Gallery App from a Top Shelf
Thumbnail Image

Browsing through all of the thumbnails is great, but what we really want to do is click
on one of those thumbnails to view the selected image within the Photo Gallery app. To
allow the Photo Gallery Extension to do this, you are first going to have to make some
changes to the main Photo Gallery app.

1. Inthe Project navigator, select the Info.plist file that is within
the Photo Gallery group, not the one within the Photo Gallery
Extension group, as shown in Figure 6-11.

»> E))R Apple TV 1080p Finished running com.thezonls Photo-Gatlery. Photo-Gallery-Extersion on Apple TV 1080p h et i - |
B R Q E 8| < & Photo Gallery Bhato Gallery Info.plist | No Selection
¥ [Photo Gallery Koy Type
v 10 Phate Gallery h—— ¥ Infarmation Property List [+]
¥ [Mode Locakzation native Sevelopment re... & en
Executatle file 2 s $IEXECUTABLE NAME)
Bundle identifier s ${PRODUCT_BUNDLE_IDENTIFIER)
3 Galary mst Infobictionary version . 60
N AppOslegete.swit Bundie name: 2 o ${PRODUCT_NAME]
Bundle 05 Type code = APPL
Ty howi Bundie versions string, shart s s 10
i ASSars.nassats Bundie creator O Type code
Bundle version 4 o 1
Application requites Phone enviro.. § YES

Main storyboard file base name . Main
» Required cevice capabilities

b | Langscapes

s SorvicoProviderswitt
Indo.pist
» [Frameworics

» [Products

= E = com.thezonie.Photo-Gallery,Photo-Galery- Extension

Figure 6-11. Selecting the Info.plist of the Photo Gallery app

2. Once the Info.plist has been selected, hover the mouse
pointer over the last item in the list, click the + button that
appears to add a new key to it, and choose URL types from the
list, as shown in Figure 6-12.

84

http://dx.doi.org/10.1007/978-1-4842-1715-3_5

> E) P) W Appie TV 1080p

BRR Qi © 83 o E
¥ [Photo Gallery
v |10 Photo Gallery
v [Mocel
« Photo.swift
« Album switt
« Gallery.swift
« AppDelegate. swift
Main storyboard
5 Assets xcassets
i indo.piist
-] PageViewController.switt
+ PageContentViewControlier cwitt
« TableViewControfier swift
v 1 Phato Gallery Extension
v [Phates
» [Animais
» [Cities
> [Lancscapes
+ SurvicgProvider.switt
Irdo piist

» Frameworks.

CHAPTER 6 * ADDING A DYNAMIC TOP SHELF TO THE PHOTO GALLERY APP

Finished running com.thezonia Phota-Gallery. Phato-Gallery- Extersion on Agple TV 10800 ke | ER =l
B | < & Photo Gallery | [17] Phato Gallery) - Info.plist) No Selection

Koy Typo alue
¥ Infarmation Property List [13 itoms)

en 5

= —

Localzation native development re... : 4
Executable file & SIEXECUTABLE NAME)
Bundle identifer 3 ${PRODLICT_BUNDLE_IDENTIFIER)
Infobictionary version C L
Bundie name: H ${PRODUCT_NAME]
Bundle 05 Type code & ARPL
Bundie versions s3ring, shart = 10
Bundle ereator 05 Type cote . m
Bundle version & 1
Application requires Phore envira.. & YES >
Main storyboard file base name . Main
» Required Cevice capabilitios s A o

[T URL typed] Eoo sting a =
Status bar style
Status bar tinting parameters
Supportod extemal accessony p.
Supported interface orientations
SUCPOrted interfacs oI mMaton
Supported interface crientation.
Supports Automatic Graphics 5...
Toals owned after instakaton
View controller-based status ba,

= = 00 . com.thezonie.Photo-Gallery,Photo-Galery- Extension

Figure 6-12. Adding the URL types item to the Info.plist

3. After adding the URL types key to the Info.plist, click the
small gray triangle next to it to expand it, revealing the Item
0 subkey.

4. Then click the small gray triangle next to the Item 0 key to
reveal the URL identifier subkey underneath it.

5. Clickin the Value column of the URL identifier item and
change the value to Photo Gallery URL, as shown in
Figure 6-13.

85

CHAPTER 6 " ADDING A DYNAMIC TOP SHELF TO THE PHOTO GALLERY APP

> B (E) P Apple TV 10B0p Finished running Phato Gallery on Apple TV 10805 @ S0 O
B2 a A & Ec B B¢ & Photo Gallery | 1] Phato Gallery | i Info.plist) No Selection
¥ [Photo Gallery Koy Valus
v [Photo Gallery ¥ Information Property List (13 items)
[Model Locabization native development re... en H
+ Photo.swift Executabie file & SIEXECUTABLE NAME]
g D Bundie identifier F ${PRODUCT_BUNDLE_IDENTIFIER)
> Galleryaitt Infolictionary version & 60
-l Bundie name] $(PRODUCT_NAME)
= qu. Bundle S Type code & ARPL
Ty b Bundle versions string, shart : 10
5 Assets acassets Bundle ereatar DS Type cote & il
B irfo.plist Bundle version 5 1
+ PageViewController. swift Application Fequives iPhone enviro.. & YES >
» PageContentViewControlier swift Main storyboard file base name & Man
» TableViewCartroler.swift » Required device capabiitios] {1 item)
v [Photo Gallery Extension ¥ URL types B (1 Ham)
'JP"U[M ¥ ern O Cictio (1 itemn)
s . URL entitier 108 Suna ; Phow Gollery URl effm—
* [T Cities
* [Langscapes
» SorvicoProviderswift
Irfa pilist
» [Frameworics
» [Products
+ @ OE
Figure 6-13. Changing the URL identifier to Photo Gallery URL
6. Next, click the + button from within the URL identifier item
and select URL Schemes from the list, as shown in Figure 6-14.
> B (E) P Apple TV 10B0p Finished running Phato Gallery on Apple TV 10805 @ S0 O

BRRaso©ECBE
¥ [Photo Gallery
v 15 Photo Gallery
[Mocel
« Photo.swift
+ Album.swit
= Gallery.swift
+ AppDelogate swift
Main storyboard
[Assets mcassets
i indo.piist
« PageViewController.swift
« PageContentViewConirolier swit
« TableViewControler.swit
v |11 Photo Gallery Extension
[Photos
» [Animais
= [I] Cities
> [Lancscapes
« ServicoProvider.swift

Irdo piist
» [0 Framoworks.
» [Products

oE

Bl <
Koy
¥ Irfarmation Property List
Localization native development fe...
Executable file
Bundle identifier
Infolictionary version
Bundle name
Bundle 05 Type code
Bundle versions siring, shart
Bundle creator OF Type code
Bundle version
Application requines Phone envire..
Main storyboard file base name
» Requined cevice capabiities

R L T TR TR T T T T

Type

& Photo Gallery | 1] Phato Gallery | i Info.plist) No Selection

Value
13 itoms)

en

SIEXECUTABLE NAME)
${PRODUCT_BUNDLE_IDENTIFIER)
80

$(PRODUCT_NAME)

APPL

1.0

™

e

¥ URL types {1 item)
¥ item 0 (None) (2 mgens)
URL igentfier & Phota Gallery URL
| UAL Schemes| @ String = None &

Document icon Flie Name
Documant Role
URL identifier

—q

Figure 6-14. Adding the URL Schemes subkey to the Info.plist

86

CHAPTER 6 * ADDING A DYNAMIC TOP SHELF TO THE PHOTO GALLERY APP

7. Click the gray triangle next to the URL Schemes key to expand
it to reveal its Item 0 subkey. Change the value of Item 0 to be

photogallery, as shown in Figure 6-15.

>) P B Appie TV 1080p

¥ B Pheto Gallery
v Photo Gallery
v Model
» Photo.swift
» Album. swift
» Gallery swift
. AppDelegate.swit
Main_storyboard
F5 Assets wcassets
B Irfo.piist
+ PageViewController. swift
+ PageContentViewControlier swift
+ TableViewControfier swift
v Photo Gallery Extension
v [Photos
» [Animals
» [Cities
b || Langscapes
. SorvicoProvider.switt
Irdo pist
» Frameworics

» [Products

& Photo Gallery
Koy
* Infarmation Property List
Localization native development re... &
Executatle file
Bundie identifier
InfoDietionary version
Bundie name
Bundie 05 Type code
Bundle versions siring, shart
Bundle creator DS Type code
Bundle version C
Application requines iPhone envire.. &
Main storyboard file base name
» Required cevice capabilitios
¥ URL types
¥ leen O
URL igentitier
¥ URAL Schemes

Type

Photo Gallery | i info.plist | No Selection

Value

en

SIEXECUTABLE NAME)
${PRODLICT_BUNDLE_IDENTIFIER)
60

${PRODUCT_NAME]

APPL

1.0

1

YES

Main

Photo Gallery URL

2 proogsiery <f—

|_/ om0 86 s

Figure 6-15. Adding the photogallery URL Scheme to the Info.plist

Adding the photogallery URL Scheme to the Info.plist registers that scheme
(as mentioned earlier in the chapter) with the system. Now, whenever any URL that
begins with photogallery is opened on the Apple TV, it will be opened by the Photo

Gallery app.

Build and run the app extension and select one of the thumbnails from the Top Shelf.

The Photo Gallery app is now launched, but the image that was selected is not yet being
displayed. To accomplish this, you first need to tell the Photo Gallery application how to
handle the URL information that is passed to the app when it is opened from a Top Shelf
thumbnail image.

87

CHAPTER 6 " ADDING A DYNAMIC TOP SHELF TO THE PHOTO GALLERY APP

Handling URLs

When an Apple TV app is launched from a matching URL scheme, the URL is passed to a
UlApplicationDelegate protocol method called openURL. Open the AppDelegate.swift file
from the Project navigator and add the follow code to the end of the AppDelegate class
declaration:

1 func application(app: UIApplication, openURL url: NSURL, options:
[String : AnyObject]) -> Bool {

2 var albumIndex: Int?

3 var photoIndex: Int?

4

5 // extract the album and photo index from the url

6 guard let components = NSURLComponents(URL: url,

resolvingAgainstBaseURL: false) else { return true }

7 guard let queryItems = components.queryItems else { return true }

8 for queryItem in queryItems {

9 if let valueString = queryItem.value, value =

Int(valueString) {

10 if queryItem.name == "album" {

11 albumIndex = value

12 }

13 else if queryItem.name == "photo" {

14 photoIndex = value

15 }

16 }

17 }

18

19 // if the album and photo index values have been set, view that
photo

20 if albumIndex != nil && photoIndex != nil {

21 // pass the album and photo index values to the

TableViewController

22 if let tableViewController = window?.rootViewController as?
TableViewController {

23 tableViewController.viewSelectedTopShelfPhoto(

photoIndex!, inAlbum: albumIndex!)

24 }

25 }

26

27 return true

28 }

In this method, you first use the URL passed in from the Top Shelf TVContentItem
to create an NSURLComponents object (Line 6) in order to extract the albumIndex and
photoIndex values from the URL string (Lines 8-17). Then, if both of those values have
been set (Line 20), you find the TableViewController object from the main app window
(Line 22) and pass it to its viewSelectedTopShelfPhoto method (Line 23).

88

CHAPTER 6 * ADDING A DYNAMIC TOP SHELF TO THE PHOTO GALLERY APP

Completing the Photo Gallery App

Now you need to make the appropriate changes to the TableViewController

class to handle this new method being called from the App Delegate. Open the
TableViewController.swift file and add the following line of code to the top of the class
declaration, beneath the gallery property declaration:

1 var selectedTopShelfItem: (albumIndex: Int?, photoIndex: Int?) =
(nil, nil)

This defines a tuple property containing two integers, one for the album index and
one for the photo index. Initially both of the index values are nil, indicating that a Top
Shelf item has not been selected.

Next, define the viewSelectedTopShelfPhoto method by adding the following code
to the end of the class declaration:

1 func viewSelectedTopShelfPhoto(photo: Int, inAlbum album: Int) {

2 // save the selected top shelf album photo index values

3 self.selectedTopShelfItem = (album, photo)

4

5 // if T am not the presented view controller, pop back

6 if let presentedViewController = self.presentedViewController {
7 presentedViewController.dismissViewControllerAnimated(false,

completion: nil)

8 }

9 else {
10 self.checkSelectedTopShelfItem()
11 }
12 }

In this method, you first store the album and photo index values within the new
selectedTopShelfItem tuple property (Line 3). Then, you check to see what the current
state of the app’s view controller hierarchy is. If a user has previously left the app viewing
another full-screen image (Line 6), then you would want to dismiss the presented
PageViewController object (Line 7) before viewing the newly selected photo. If there is no
presentedViewController set (Line 9), then that means there is no PageViewController
object to dismiss, so the user can continue to view the selected photo (Line 10).

Next, add the following code to the end of the class declaration to check whether a
Top Shelf item has been selected, and if so, performing the appropriate action:

1 func checkSelectedTopShelfItem() {
2 if let albumIndex = self.selectedTopShelfItem.albumIndex {
3 self.tableView.selectRowAtIndexPath(NSIndexPath(forRow:

albumIndex, inSection: 0), animated: false,
scrollPosition: .None)
4 self.performSegueWithIdentifier("SelectAlbumSegue”, sender: nil)

wi
—

89

CHAPTER 6 " ADDING A DYNAMIC TOP SHELF TO THE PHOTO GALLERY APP

In this method, if the album index within the selectedTopShelfItemis set (Line 2),
you can then select that row in the table view (Line 3) and manually perform the
SelectAlbumSegue that is used when a user clicks one of the albums from the list to
browse the photos within it (Line 4).

When a user selects a Top Shelf image and the app is opened, depending on its
previous state, a PageViewController object may need to be dismissed. If that is the
case, the app needs to be notified when that process is complete so that it can continue
to view the selected Top Shelf item photo. The easiest way to do this is to override the
Table View Controller’s viewDidAppear method by adding the following code to the
TableViewController.swift file after the viewDidLoad method declaration:

override func viewDidAppear(animated: Bool) {
super.viewDidAppear(animated)
self.checkSelectedTopShelfItem()

B W N R

}

Now, whenever the Table View Controller appears, the selectedTopShelfItemis
checked (Line 3).

The final change you have to make is to pass the selected photo index to the
PageViewController object from within the prepareForSegue method of the Table View
Controller. Add the following changes to the TableViewController.swift file so that the
prepareForSegue looks like this:

1 override func prepareForSegue(segue: UIStoryboardSegue, sender:
AnyObject?) {
if segue.identifier == "SelectAlbumSegue" {

3 if let pageViewController = segue.destinationViewController
as? PageViewController, row = self.tableView.
indexPathForSelectedRow?.row {

4 pageViewController.album = self.gallery.albums[row]

N

// if there is a selected photo index set it as well and
then reset it

7 if let photoIndex = self.selectedTopShelfItem.photoIndex {
8 pageViewController.pageIndex = photoIndex
9 self.selectedTopShelfItem = (nil, nil)

10 }

11 }

12 }

13 }

Now, if the segue matches the SelectAlbumSegue identifier (Line 2), after a
Page View Controller is created (Line 3) and its album has been initialized (Line 4),
its pageIndex is set to the photoIndex of the selectedTopShelfItem (Lines 7-8) so
that the appropriate image will be selected once the app is launched. Finally, the
selectedTopShelfItemis reset back to its uninitialized state (Line 9).

90

CHAPTER 6 * ADDING A DYNAMIC TOP SHELF TO THE PHOTO GALLERY APP

Now, when you select a thumbnail image from the Top Shelf, the Photo Gallery app
is launched and the appropriate album is displayed with the appropriate photo already
selected.

Summary

Congratulations! Over the course of the past few chapters, you have created a Photo
Gallery app that enables users to select and view photos from within a number of
different photo albums, in addition to viewing those photos when selecting them from
the Top Shelf area of the Apple TV Home screen.

You have learned about using Page View Controllers, Table View Controllers,
and Application Extensions on tvOS, all using Swift. The knowledge you have gained
throughout these chapters will provide you with a great foundation for developing other
apps in the future using these aspects of tvOS development.

In the next chapter, we will explore how to store app information on the Apple TV
itself, as well as how to store and sync data to the cloud.

Exercises

1. By default, the imageShape property of a TVContentltem is
Square for the default Sectioned TVTopShelfContentStyle.
The other options available are Poster and HDTV. Make the
appropriate changes to the Photo Gallery Extension to utilize
these different styles to see which style you like best.

2. You can mix and match the TVTopShelfContentStyle values
throughout the TVContentltems displayed in the Top Shelf.
You currently have three albums, and there are three styles
available. Make the appropriate changes to the Photo Gallery
Extension to use a different TVTopShelfContentStyle for each
album, or perhaps choose a random style for each and every
photo to really give your app a unique look!

91

CHAPTER 7

Storing and Sharing Data -

The Apple TV has undergone quite an evolution when it comes to storage. The original
Apple TV came with a standard 40GB or 160GB hard drive. The Apple TV would use that
storage for holding movies, TV shows, and music locally on the Apple TV. For the next
two generations of the Apple TV, Apple removed the hard drive completely. Instead, the
Apple TV was equipped with 8GB of flash storage. These boxes lacked the ability to locally
store any media; instead movies, TV shows, and music all had to be streamed either from
alocal computer or across the Internet. With the fourth-generation, Apple has released a
hybrid solution. The new Apple TVs come in either 32GB or 64GB versions, but apps are
still required to stream most of their data and content. Apple currently limits an app to a
total of 200MB of local storage, but this data are temporary and can be removed when the
app is quit.

This chapter will discuss methods for storing information locally on the Apple TV, as
well as how to sync data using iCloud.

Preferences

There are some things to consider when deciding where to store certain kinds of
information. The easiest way to store information is within the preferences file, but this
method has some downsides.

All of the data are both read and written at the same time. If you are going to be
writing often or writing large amounts of data, this could take time and slow down your
application. As a general rule, your preferences file should never be larger than 100KB.
Currently, the preference file is capped at 500KB for tvOS, but a developer should
consider other storage methods long before reaching that limit.

The preferences file is really nothing more than a standardized file with accompanying
classes and methods to store application-specific information. A preference would be, for
example, the sorting column and direction (ascending/descending) of a list. Anything that
is generally customizable within an app should be stored in its preferences file.

93

CHAPTER 7 " STORING AND SHARING DATA

Writing Preferences

Apple has provided developers with the NSUserDefaults class; this class makes it easy
to read and write preferences for the iPhone, AppleTV, and Mac OS X. The great thing is
that, in this case, you can use the same code for iOS and Mac OS X. The only difference
between the two implementations is the location of the preferences file.

All you need to do to write preferences is to create an NSUserDefaults object. This is
done with the following code:

let prefs: NSUserDefaults = NSUserDefaults.standardUserDefaults()

This instantiates the prefs object so you can use it to set preference values. Next, you
need to set the preference keys for the values that you want to save. The BookStore app
example will be used to demonstrate specific instructions throughout this chapter. When
running a bookstore, you might want to save a username or password in the preferences.
You also might want to save things such as a default book category or recent searches. The
preferences file is a great place to store this type of information because this is the kind of
information that needs to be read only when the application is launched.

Also, on tvOS§, it is often necessary to save your current state. If a person is using your
application presses the home button, you want to be able to bring them back to the exact
place they were in your application when they are done with their phone call.

Once you have instantiated the object, you can just call setObjectforKey to save
your preferences. If you wanted to save the username of sherlock.holmes, you would call
the following line of code:

prefs.setObject("sherlock.holmes", forKey: "username"

You can use setInteger, setDouble, setBool, setFloat, and setURL instead of
setObject, depending on the type of information you are storing in the preferences file.
Let’s say you store the number of books a user wants to see in the list. Here is an example
of using setInteger to store this preference:

prefs.setInteger(10, forKey:"booksInList")

After a certain period of time, your app will automatically write changes to the
preferences file.

With just three lines of code, you are able to create a preference object, set two
preference values, and write the preferences file. It is an easy and clean process. Here is
all of the code:

let prefs: NSUserDefaults = NSUserDefaults.standardUserDefaults()

prefs.setObject("sherlock.holmes", forKey: "username")
prefs.setInteger(10, forKey:"booksInList")

94

CHAPTER 7 * STORING AND SHARING DATA

Reading Preferences

Reading preferences is similar to writing preferences. Just like with writing, the first step
is to obtain the NSUserDefaults object. This is done in the same way as it was done in the
writing process:

let prefs: NSUserDefaults = NSUserDefaults.standardUserDefaults()

Now that you have the object, you are able to access the preference values that are
set. For writing, you use the setObject syntax; for reading, you use the stringForKey
method. You can use the stringForKey method because the value you put in the
preference was a String. In the writing example, you set preferences for the username
and for the number of books in the list to display. You can read those preferences by using
the following simple lines of code:

var username = prefs.stringForKey("username")
var booksInlList = prefs.integerForKey("booksInList")

Pay close attention to what is happening in each of these lines. You start by declaring
the variable username, which is a string. This variable will be used to store the preference
value of the username you stored in the preferences. Then, you just assign it to the value
of the preference username.

iCloud

The iCloud is a service provided by Apple that allows developers to sync data and
information across multiple devices. This is especially helpful with tvOS apps since the
local storage is limited. In order to implement iCloud storage in an app, a developer must
first make sure that their app has iCloud enabled. To do this, visit the Apple Developer
Portal (http://developer.apple.com). Sign in and click Member Center in the top right
corner of the screen. Then click Certificates, Identifiers & Profiles, as shown in Figure 7-1.

SDKs 4 Forums

¥

{ Certificates, |dentifiers & Profiles Bug Reporting
i ’ iTunes Connect \' Technical Support

Figure 7-1. Selecting Certifications, Identifiers & Profiles

Next, select Identifiers under the iOS section. Then select App IDs from the left-hand
side, as shown in Figure 7-2.

95

http://developer.apple.com/

CHAPTER 7 " STORING AND SHARING DATA

D Identifiers
App IDs
Pass Type IDs
Website Push IDs
iCloud Containers
App Groups

Merchant IDs

Figure 7-2. Select App IDs

Find the App ID in the list and select it. This will bring up a list of the Application
Services available in the app, as shown in Figure 7-3.

Application Services:

Service Development Distribution
App Group Disabled Disabled
Associated Domains Disabled Disabled
Data Protection Disabled Disabled
Game Center @ Enabled @ Enabled
HealthKit Disabled Disabled
HomeKit Disabled Disabled
o Oisaled Dsabed
iCloud Disabled Disabled
In-App Purchase @ Enabled @ Enabled
Inter-App Audio Disabled Disabled
Apple Pay Disabled Disabled
Wallet Disabled Disabled
Push Motifications @ Configurable & Configurable
VPN Configuration & Control Disabled Disabled

Edit

Figure 7-3. Current App ID entitlement

96

CHAPTER 7 * STORING AND SHARING DATA

Click the Edit button at the bottom of the list to add iCloud support. The check boxes
seen in Figure 7-4 allow a developer to enable iCloud. Check the box and the app should
now have access to iCloud.

@ HomeKit

Wireless Accessory Configuration

=
Q iCloud

Compatibility

% In-App Purchase
@
% Inter-App Audio

== Apple Pay

[E= Wwallet

=
i)

Figure 7-4. Enabling iCloud

It is also possible to add iCloud capabilities through Xcode. On the left-hand side,
select your project, then select the active target, and choose the Capabilities tab. You will
then see a screen similar to that shown in Figure 7-5.

97

CHAPTER 7 " STORING AND SHARING DATA

a8 » h CioudSiorsge |) Accle TV 10800 Finiahed running iCloudStonge on Apch TV 10800

& iCloudstorage
(m] Genery paki b Resource Tags Intg Build Settings. Build Phases Busild Fules
PROJECT
& ClouaSionge

TARGETS

Turring on iCloud will...

Game Conter

. In-App Purchass

> Game Controfiers
Background Modes

> Keychain Sharing

> Data Protection

Figure 7-5. Adding iCloud capabilities through Xcode

You can turn iCloud on and off through this method also. Now with iCloud enabled,
itis possible to easily store your data in the cloud.

iCloud KVS

There are two ways to store information in iCloud. One way is to implement iCloud KVS
or key-value storage. The second way is by using CloudKit. CloudKit is more powerful
and more complicated. It will be discussed in Chapter 8. iCloud KVS is very similar to
NSUserDefaults and should only be used for storing very small amounts of data. Apple
caps the iCloud KVS storage at IMB. The major benefit to using iCloud KVS is that the
data are automatically synced across all iCloud devices within the same account.

The iCloud KVS is implemented very similarly to NSUserDefaults. It has the same
limitations and issues, but is also used in a very similar way. The code to implement
iCloud KVS is fairly simple. Start by creating a new Xcode project. Make sure tvOS
Application is selected. For this project, use Single View Application, as shown in
Figure 7-6.

98

http://dx.doi.org/10.1007/978-1-4842-1715-3_8

CHAPTER 7 * STORING AND SHARING DATA

Choose a template for your new project:

i0s - . .
Application ﬁ | APP J

Framework & Library
Game Single View Tabbed
watchOS Application Application
Application
Framework & Library
tvOS
| Application
Framework & Library
0s X
Application
Framework & Library
System Plug-in

Other
Single View Application

This template provides a starting point for an application.

Cancel o

Figure 7-6. Creating a new project

Click Next and enter the name and details of the app. We used the name
iCloudStorage, as shown in Figure 7-7.

99

CHAPTER 7 " STORING AND SHARING DATA

Choose options for your new project:

Product Name: iCloudSteragd
Organization Name: innovativeware
Organization Identifier: com.innovativeware
Bundle ldentifier; com.innovativeware.iCloudStorage
Language: Swift &

Use Core Data
Include Unit Tests
Include Ul Tests

Cancel Previous (IO

Figure 7-7. Naming you project

Once the project save location is selected, Xcode will open the project. Select the
AppDelegate.swift file from the left-hand side of the list of files. We will be implementing
the iCloud KVS in the AppDelegate.swift file.

Note In areal-world project, it is better to create a singleton manager to handle your
data syncing. Singletons are classes that are only instantiated a single time. They are easier
to extend and access. A singleton is implemented in Swift through the use of static class
variables.

At the top of the AppDelegate class, under the window variable, you need to add the
following two variables:

var iCloudKeyStore: NSUbiquitousKeyValueStore = NSUbiquitousKeyValueStore.

defaultStore()
var iCloudString: String = String()

100

CHAPTER 7 " STORING AND SHARING DATA

The first variable, iCloudKeyStore, is an NSUbiquitousKeyValueStore value. This
basically means that it is like an NSUserDefaults that is stored in the cloud. The second
variable, iCloudString, is a string that will be used to store the value synced through
iCloud.

Next, you will modify the application:didFinishLaunchingWithOptions: method.
You need to tell the iCloud service to alert you once your NSUbiquitousKeyValueStore is
changed by another app. This way you can reload your iCloudString from the key store.
Add the following lines:

NSNotificationCenter.defaultCenter().addObserver(self,
selector: "iCloudDataChanged:",
name: NSUbiquitousKeyValueStoreDidChangeExternallyNotification,
object: iCloudKeyStore)

This code tells the notification center to call the method "iCloudDataChanged: "
on your AppDelegate object whenever your key store changes values in any way. Notice
the iCloudKeyStore variable is passed in. It is possible to have multiple key stores and
receive notifications for them separately. Next, you will add the code to check the key
store for the string:

27 if let savedString = iCloudKeyStore.stringForKey("myString") {

28 iCloudString = savedString

29 } else {

30 iCloudKeyStore.setString("Testing", forKey: "myString")
31 iCloudKeyStore.synchronize()

32 }

Let’s walk through this code. The name of the key you are using in the
NSUbiquitousKeyValueStore is myString. Obviously, when creating a real app, you will
want to use descriptive titles for your keys such as username or default view. Line 27
attempts to set the value of savedString to the key myString from the key store. If this
succeeds, that means the key exists. You then assign the value of savedString to the
iCloudString variable.

If you are unable to pull myString from the key store, this means the key has yet to
be set in the cloud. You then need to tell the key store to store a value for this key. Line
30 calls the method setString on the key store and passes in a String (Testing) and a key
(myString). Line 31 then tells the key store to sync the data immediately with the cloud.
By default, an NSUbiquitousKeyValueStore will sync its data on a regular basis, but by
calling the synchronize method, you can force the sync immediately.

101

CHAPTER 7 " STORING AND SHARING DATA

Note In this example, you use setString and stringForKey to set and retrieve the
string value from the key store. Apple provides different methods for different data types.
The following retrieval methods are available:

- arrayForKey:

- boolForKey:

- dataForKey:

- dictionaryForKey:
- doubleForKey:

- longlLongForKey:

- objectForKey:

- stringForKey:

The AppDelegate.swift file should now look like the one shown in Figure 7-8.

B 5| < & ICloudStomge) 1) ICioudStonge | - AppDetegate.swift | (] sppication - inishLaunchingWithOptiona:)
v [iCloudStorage
[ICioudSomge
- AppDelegate swift
+ ViwCentrotwe.swint
Main. stonyboand
Assets zassaty impart WIKit
Info plst

#UlApplicat onMain
* [Products class AppDelegate: p + UlApplicat te {

war window: UTk
var iCloudeyStore: Mslbig Tan 1touskeny rel)
var iClowdString:Str = il

fusc applicaticatapplication: uis o didFinishLaunchingWithOptions LaunchOptions: [MSOoject: Amy 1] -

let savedString =
= savedString

. se15t ["Testing®, foriey: “myString™)

Figure 7-8. AppDelegate.swift file

There is still one problem with our code. You have told the NSNotificationCenter to
call the method iCloudDataChanged on your appdelegate, but this method has not yet
been defined. Add the following method to the AppDelegate.swift file:

func iCloudDataChanged() {

if let myString = iCloudKeyStore.stringForKey("myString") {
iCloudString = myString
}

102

CHAPTER 7 " STORING AND SHARING DATA

This method merely assigns the value of myString from the key store to the
iCloudString variable.
You can now compile and run your app.

Note You may receive a console message at run time similar to the following error:

NSUbiquitousKeyValueStore error: com.innovativeware.iCloudStorage has no
valid com.apple.developer.ubiquity-kvstore-identifier entitlement

This means you have not set up your entitlements for your app correctly.

Summary

In this chapter, you learned how to handle local storage on the Apple TV. You also learned
how to add iCloud storage. We showed you how to become alerted to a change in the
iCloud storage and how to send and receive values to and from it.

Exercises

1. Add a number to your NSUbiquitousKeyValueStore.

2. Add an Array to your cloud storage.

103

CHAPTER 8

CloudKit

Chapter 7 discussed storing preferences both locally on the AppleTV and in the cloud using
NSUserDefaults and NSUbiquitousKeyValueStore. This method works great for storing
small pieces of information, but what happens when the app needs to store a significant
amount of information? What happens when an app needs to search or sort this type of
information? This is where CloudKit comes in. CloudKit is a framework provided by Apple
that allows developers to easily sync databases between different devices.

CloudKit is currently available only for iOS , Mac OS X, and tvOS devices. Apple has
provided CloudKit JS. CloudKit JS looks to enable web apps and any other apps that can
implement javascript to hook into existing CloudKit databases. This chapter will not cover
CloudKit JS since it is not needed on tvOS.

Considerations for Using CloudKit

CloudKit is virtually free! Apple currently provides developers with 10GB of asset storage
and 2GB data transfer per month for free with a developer account. They also provide
100MB of database storage and 40 requests per second. All of this storage is provided for
free, but that is not the best part. Apple increases all four of the limitations as you add
additional users. For example, with 100,000 active users, the asset storage is increased to
25TB. As an app scales even larger, Apple will provide up to 1 petabyte (PB or 1000 terabytes
or 1,000,000 gigabytes) of asset storage and 400 requests per second. Most apps will be able
to implement CloudKit without paying any monthly fees. Apple provides pricing and limits
details on their iCloud for Developers site (https://developer.apple.com/icloud/).

CloudKit data are either stored as public or private. Public data are available to all
of those with the app. Private data are available only to specific iCloud accounts. As a
developer designs their app, they need to consider what types of data are available to all
and which data are account specific.

CloudKit Containers

All CloudKit data are separated into different containers. Containers will hold all of the
databases and information for each CloudKit-enabled app. Each app will have its own
container. It is, however, possible to share containers with different apps from the same
developer. The container ID will match the app’s bundle ID. Apple provides a class called
CKContainer for accessing the different containers.

105

http://dx.doi.org/10.1007/978-1-4842-1715-3_7
https://developer.apple.com/icloud/

CHAPTER 8 ' CLOUDKIT

The default app container can be accessed by using the following code:
var myContainer = CKContainer.defaultContainer()

Creating a custom container is easy.

1. Head to the Apple developer home page (http://developer.
apple.com) and log in. Select Member Center » Certificates,
Identifiers, & Profiles. Then select Identifiers under iOS Apps.
This will bring up a menu on the left-hand side similar to that
shown in Figure 8-1. Select iCloud Containers.

iOS Apps v

¥ Certificates
All
Pending
Development

Production

0| Identifiers
App IDs
Pass Type IDs
Website Push IDs
iCloud Containers
App Groups
Merchant IDs

Figure 8-1. Select iCloud Containers

106

http://developer.apple.com
http://developer.apple.com

CHAPTER 8 © CLOUDKIT

2. Click the Add button, as shown in Figure 8-2.

[Developer

Certificates, Identifiers & Profiles

i0S Apps

A Certificates
Al
Pending
Development

Production

0, Identifiers
App IDs
Fass Type IDs
Website Push IDs
iCloud Containers
App Groups

Merchant IDs

o Devices

Al

Technologies Resources Programs Support Member Center

Brad Lees *

iCloud Container @)

e

Getting Started with iCloud Container

With iCloud Containers, you can keep users up-to-date with news and other
alerts using iCloud. For each app you manage, you'll need to define an iCloud
Container.

Register iCloud Container
Team agents and admins can manually register iCloud Containers. Continue

Figure 8-2. Adding a new iCloud Container

3. You will then be prompted to enter a description and an
identifier, as shown in Figure 8-3. The description is only used
to display what is stored in the container. The identifier is
necessary for accessing the container.

107

CHAPTER 8 ' CLOUDKIT

ID Registering a iCloud Container
)

Registering your iCloud Container lets you use the iCloud Storage APIs to enable your apps to
store data and documents in iCloud, keeping your apps up to date automatically.

iCloud Container Description

Description:
You cannot use special characters such as @, &, *, ',

Identifier
Enter a unique identifier for your iCloud Container, starting with the string 'cloud".

We recommend using a reverse-domain name style string (i.e.,

com.domainname.appname)

Cancel

Figure 8-3. Creating a new Container

4. Enter CloudKit Demo2 for the description and enter a unique
string for the identifier. Identifiers tend to follow the pattern
of iCloud.com.companyID.containerName. The identifier will
be used to access the container in the different apps. Click
Continue and you will see a screen similar to that shown in
Figure 8-4.

108

CHAPTER 8 © CLOUDKIT

Register iCloud Container E <

ID Confirm your iCloud Container.

Ensure your iCloud Container information is correct.

Name: CloudKit Demo2

Identifier: iCloud.com.inno.cloudkit2

Figure 8-4. Finished Creating the CloudKit Container

Click the Register button and the container is now ready to be used. To access this
container, use the following code:

myContainer = CKContainer.init("iCloud.com.inno.cloudkit2")

Databases

The container ID will need to be replaced with whatever you used to register your
container in the previous step. Each container will contain a public and a private
database. The public database will contain information and assets that are shared among
all of the instances of the database. All users will have read and write access to the public
database through your app.

109

CHAPTER 8 ' CLOUDKIT

Note A developer needs to be careful when dealing with the public database. If one
user is able to delete items from it, all other users will be affected.

The private database is only accessible to the current user. The user will have to enter
their username and password, but then they will have read and write access to that database.

CloudKit Databases

Apple has provided the CKDatabase class for accessing the databases. Once a container
has been connected, it is easy to access the public and private databases. Use the
following code to access the private database:

var myContainer = CKContainer.defaultContainer()
var publicDatabase: CKDatabase = myContainer.publicCloudDatabase
var privateDatabase: CKDatabase = myContainer.privateCloudDatabase

Database Records

A CKRecord is used to store data in your database. Each CKRecord has different

pieces of data stored as key-value pairs. Records should be separated into distinct

tables or record types for each type of data. For example, for a bookstore, it would

make sense to have a record type of Book and a separate record type of Author. Each
record type will have a name and fields associated with it. Table 8-1 from Apple’s
documentation (https://developer.apple.com/library/tvos/documentation/
DataManagement/Conceptual/CloudKitQuickStart/CreatingaSchemabySavingRecords/
CreatingaSchemabySavingRecords.html) shows the possible field types for a record.

Table 8-1. Possible Field Types for a Record

Field Type Class Description

Asset CKAsset A large file that is associated with a record but stored
separately

Bytes NSData A wrapper for byte buffers that is stored with the record

Date/Time NSDate A single point in time

Double NSNumber A double

Int(64) NSNumber An integer

Location CLLocation A geographical coordinate and altitude

Reference CKReference A relationship from one object to another

String NSString An immutable text string

List NSArray Arrays of any of the above field types

110

https://developer.apple.com/library/tvos/documentation/DataManagement/Conceptual/CloudKitQuickStart/CreatingaSchemabySavingRecords/CreatingaSchemabySavingRecords.html
https://developer.apple.com/library/tvos/documentation/DataManagement/Conceptual/CloudKitQuickStart/CreatingaSchemabySavingRecords/CreatingaSchemabySavingRecords.html
https://developer.apple.com/library/tvos/documentation/DataManagement/Conceptual/CloudKitQuickStart/CreatingaSchemabySavingRecords/CreatingaSchemabySavingRecords.html

CHAPTER 8 © CLOUDKIT

Creating a record is a fairly easy process. The following code would accomplish this:
let newBook = CKRecord(recordType: "Book")

This creates a new constant called newBook that is of the type Book. Now, you are
able to set values of fields on this newBook constant:

newBook.setValue("The Hobbit", forKey: "title")
newBook.setValue("J. R. R. Tolkien", forKey: "author")

This code sets the title of the book equal to "The Hobbit". The author of the book
was also set. Now that the CKRecord of the book is all set, it can be saved to the database.
You would save this record to the public database in this case with the following code:

27 CKContainer.defaultContainer().publicCloudDatabase ().saveRecord(newBook,
completionHandler: { (record: CKRecord?, error: NSError?) in
28

29 if error != nil {

30 print("There was an error")

31

32 } else {

33 print("Record Saved Successfully")
34 }

35 1)

Line 27 tells the public database of the default container to save this record. It also
passes in a completion handler, which is a method that will run when the first method
is complete. The completion method, in this case, merely tells you if there was an issue
saving the record.

Example CloudKit App

Let’s create a CloudKit tvOS app. Launch Xcode and select Create a new Xcode project.
You will be prompted with the type of project. Select tvOS on the left-hand side and select
Single View Application, as shown in Figure 8-5. Click Next.

111

CHAPTER 8 ' CLOUDKIT

Choose a template for your new project:
[l g
Application _‘,%‘ | APP

Framework & Library
Game Single View Tabbed
watchOS Application Application

Application

Framework & Library
tvOS

Application

Framework & Library
os X

Application

Framework & Library

System Plug-in

Other
Single View Application

This template provides a starting peint for an application.

Figure 8-5. Create a Single View tvOS application

On the next screen, fill in the name of your application. We are using CKBookStore
for the name. The Organization Name and Organization Identifier should already be filled
in. Make sure the language selected is Swift. None of the check boxes need to be checked
(see Figure 8-6). Then click Next.

112

Choose options for your new project:

Product Name:
Organization Name:
Organization Identifier:
Bundle Identifier:

Language:

Cancel

Figure 8-6. Naming the project

CHAPTER 8 © CLOUDKIT

CKBookStore]
innovativeware
com.innovativeware

com.innovativeware.CKBookStore

Swift B

Use Core Data
Include Unit Tests
Include Ul Tests

You will be prompted to save your project. Select a location you can easily access.
Once Xcode opens the project, you will see something similar to Figure 8-7.

113

CHAPTER 8 ' CLOUDKIT

sne » [—p—— oot Sore Rasdy | Tocar st 434 A % |
! n @ P —— oo
B o e e T e T ot tn

b e e Eoccadican

B cxBooisitens tnearan

Ay CrBostiors

¥ Linkad Framawarks ons Uibrariss

Figure 8-7. New project screen

By default, the project is selected in the Project Navigator on the left, and the active
target will be selected in the targets list. This allows you to change settings and enable
CloudKit as the active target. Select Capabilities from the Targets menu, as shown in
Figure 8-8.

ece » iy CRBockSion) [l Apole TV 10830 CKBogaSion: Ready | Today at 11:12 AM

B = & B3 [exBockstens
Gonerst RowurcaTogs Ido DuildSettngs DuldPrases Buld Pules
PRAOJECT
- AppDsiegate. switt > Kloud | oFF |
i B CxBookStors
Man stonyboard el
 Assts ctassets - CHBookStons P \g?| Game Dantar | oFF |
Indo plst
» | Products * || In-App Purchase | oFr |

Figure 8-8. Select Capabilities in the Targets menu

Expand the arrow next to iCloud. Toggle the switch to On. If your user account
belongs to multiple teams, Xcode will prompt you to select the team to connect with this
application. Make sure CloudKit is checked under the Services heading. Your screen
should now look like Figure 8-9. The Container IDs

114

v) iCloud
Services: Key-value storage
CloudKit

Containers: () Use default container
Specify custom containers

7 iCloud.com.i i CKBookS Cloud.${CFBundieldentifier)

CloudKit Dashboard

Steps: v Add the “iCloud”

nt to your App ID

* entitiement to your App 1D
ment to your entitlements file
+ Link CloudKit.fram:

Figure 8-9. Successfully added CloudKit to the app

CHAPTER 8 © CLOUDKIT

{on I

For this app, the default container will be used. If additional containers are available
for this app, they will be displayed and are able to be selected on this screen. Apple
also provides a link to the CloudKit Dashboard. This is a web interface Apple provides
developers for administering CloudKit databases. Click the CloudKit Dashboard.

Note The CloudKit Dashboard works best in Safari.

After entering your developer credentials, you should see a screen similar to

Figure 8-10.

® < | - (0] a @ Apcie IEI0UD. VI OPET APDHE EOM. 1 £1D0a T 751 D Lo INDaVAT VW

Users

Usas Nov 19 2015 11:17 AM Nov 19 2015 3:56 PM
1 Public Record, | Private Record

Add Field

Figure 8-10. CloudKit Dashboard

Custom -

115

CHAPTER 8 ' CLOUDKIT

You won’t be doing anything in the Dashboard for now, but it is useful for managing
record types, queries, and records. You will be using it later in the chapter.

For now, let’s go back to the app and click the AppDelegate.swift file in the Project
Navigator. You need to add a method to create book records in CloudKit. Under the
import UIKit line, add the following line:

import CloudKit
Now add the following method at the end of the file, but inside the closing brace:

45 func setupBooks() {

46

47 let newBook = CKRecord(recordType: "Books")

48 newBook["title"] = "The Hobbit"

49 newBook["author"] = "J. R. R. Tolkien"

50

51 CKContainer.defaultContainer().publicCloudDatabase.
saveRecord(newBook) { (record: CKRecord?, error: NSError?) ->
Void in

52 print("Done")

53 if(error != nil) {

54 print("error"

55 print(error.debugDescription)

56 }

57 }

58 }

Line 45 creates the method called setupBooks. Line 47 creates a new CKRecord of
the type Book. Lines 48 and 49 add a title and an author to this book. Line 51 is a little
more complicated. It starts by telling the default container to tell its public database to
save this record. You then pass in a block method to be executed when the save is either
completed or fails. You are passing two parameters. The first one is the record you tried to
save and the second one is the error, if any. Line 53 checks to see if there was an error and
displays the information about it.

Note If the save function fails, many times it is because the user is not logged into their
iCloud account on the device.

To call this method, add the following line to the application
didFinishLaunchingWithOptions at the beginning of the file:

setupBooks ()
This will add a book to your cloud every time the app is launched. This is a good way

to test things out, but you will definitely want to change this in the real world. Once done,
your AppDelegate.swift file should look like the one shown in Figure 8-11.

116

CHAPTER 8 © CLOUDKIT

// AppDelegate.swift
/f CKBookStore

// Created by Brad Lees on 11/19/15.
// Copyright © 2015 innovativeware. All rights reserved.

import UIKit
import CloudKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

var window: UIWindow?

func application(application: UlApplication, didFinishLaunchingWithOptions launchOptions:
[NSObject: AnyObject]?) —> Bool {
// Override point for customization after application launch.
setupBooks()
return true

}

func applicationWillResignActive(application: UIApplication) {

// Sent when the application is about to move from active to inactive state. This can occur
for certain types of temporary interruptions (such as an incoming phone call or SMS
message) or when the user quits the application and it begins the transition to the
background state.

// Use this method to pause ongoing tasks, disable timers, and throttle down OpenGL ES frame

3 rates. Games should use this method to pause the game.

func applicationDidEnterBackground(application: UIApplication) {

// Use this method to release shared resources, save user data, invalidate timers, and store
enough application state information to restore your application to its current state in
case it is terminated later.

/¢ If your application supports background execution, this method is called instead of
applicationWillTerminate: when the user quits.

func applicationWillEnterForeground(application: UIApplication) {
// Called as part of the transition from the background to the inactive state; here you can
undo many of the changes made on entering the background.

func applicationDidBecomeActive(application: UIApplication) {
// Restart any tasks that were paused (or not yet started) while the application was inactive.
If the application was previously in the background, optionally refresh the user
interface.

}

func applicationWillTerminate(application: UIApplication) {
// Called when the application is about to terminate. Save data if appropriate. See also
applicationDidEnterBackground:.

func setupBooks() {

let newBook = CKRecord{recordType: "Books")
newBook.setValue("The Hobbit", forKey: "title")
newBook.setValue("J. R. R. Tolkien", forKey: "author")
CKContainer.defaultContainer().publicCloudDatabase.saveRecord(newBook) { (record, error) ->
Void in
print(“Done")
if(error != nil) {
print{"error")
print(error.debugDescription)

}

Figure 8-11. Finished AppDelegate

117

CHAPTER 8 ' CLOUDKIT

Run your app and see if the record was successfully saved. It should be. Open the
Console log in Xcode to verify the word “Done.” If you do see an error in the log, it is likely
the user will need to log into iCloud on the device.

Now that you have saved this book, you need to work on getting all of the book
records from the cloud. You will retrieve the cloud information in the ViewController.
swift. Click ViewController.swift. Add the import CloudKit line at the top of the file like we
did in the AppDelegate.swift file. In the viewDidLoad method, add the following code to
the bottom of the method:

20 let myPredicate: NSPredicate = NSPredicate(value: true)

21 let myQuery: CKQuery = CKQuery(recordType: "Books", predicate:
myPredicate)

22

23 CKContainer.defaultContainer().publicCloudDatabase.
performQuery (myQuery, inZoneWithID: nil) {

24 results, error in

25 if error != nil {

26 print("Error")

27 print(error.debugDescription)

28 } else {

29 print(results)

30 }

31 }

Line 20 creates an NSPredicate, which is used to create a search query. NSPredicates
are also used with Core Data. They are a powerful way to query. The NSPredicate only
queries the records where value=true, and this is how you query all of the records. True is
always true, so this will create an NSPredicate to return all of the records.

Line 21 creates a CKQuery by passing in the record type and the NSPredicate you
created in the previous line. A CKQuery can also have an NSSortDescriptor. This allows
you to sort the data you are retrieving back from CloudKit.

Line 23 tells the public database to perform the query. It is possible to segregate your
records into different zones. That is beyond the scope of this book, so here just send in nil
to the zone identifier parameter.

Lines 24 to 33 are the block methods to be executed once the query is complete. You
can now check to see if there is an error. If something failed, it will then display the error
in the log. If there is no error, you can print the records you received into the log. Once
complete, your code should look like that shown in Figure 8-12.

118

CHAPTER 8 © CLOUDKIT

import UIKit
import CloudKit

class ViewController: UIViewController {

override func viewDidlLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from a nib.

let myPredicate: NSPredicate = NSPredicate{value: true)
let myQuery: CKQuery = CKQuery(recordType: "Books", predicate: myPredicate)

CKContainer.defaultContainer().publicCloudDatabase.performQuery(myQuery, inZoneWithID: nil) {
results, error in
if error != nil {
print("Error")
print{error.debugDescription)
} else {
print(results)

Figure 8-12. Finished viewDidLoad

If you now run this app as it stands, you will receive an error. You now need to go to
the CloudKit Dashboard located at https://icloud.developer.apple.com/dashboard/.
One the left-hand side, click Record Types, then Books, as shown in Figure 8-13.

The number of public records will change depending on the number of times you have
run the app.

Record Types

Record Types Books 12 Unused Indexes
7 Public Record=

Figure 8-13. Selecting Books Record Type

You will now see a screen similar to that shown in Figure 8-14.

119

https://icloud.developer.apple.com/dashboard/

CHAPTER 8 ' CLOUDKIT

Books
Nov 19 2015 3:23 PM Nov 19 2015 3:57 PM Default ~
6 0~ 0 bytes

author String " Query +105

title String ~" Query

+' Search +105¢

Add Field..

Figure 8-14. Books details

Click the downward arrow underneath Metadata Indexes and check the box next to
Record ID, as shown in Figure 8-15. This allows your application to access these metadata
as part of a query. You will notice, Apple will inform you of the cost of selecting that index.
It will add 5% to your storage requirements. This is fine in this case, but when designing
for large CloudKit applications, size will need to be considered.

120

CHAPTER 8 © CLOUDKIT

Books
Nov 19 2015 3:23 PM Nov 19 2015 3:57 PM Default ~
6 1~ 0 bytes
Record ID ' Query +105%
v/ Sort +105%
Created By Quary
author v Query +105%
Date Created Sort
CQuery v Search 5
Date Modified Sort ' Sort +105%
title Query + Query
Modified By Query « Search
Add Field...

Figure 8-15. Creating a Record ID index

Now click the Save button at the bottom right corner of the screen. Launch your app
and you should receive a log similar to that shown in Figure 8-16. There will be one line
for each time you called setupBooks().

" S ! —h valuess{
authar = =3, R, R. Tolkien“:
title = “The Hobbit";

b 7 B4 8- 4402 - B34 L - o valusss{
author = "J. R. R. Tolkies™;
title = “The Hobbit";

b= o recordlBeBE3SHFCB-93ISE-4505-5TF4 " s . yoyd, valuess(
suthor = =), R, B, Tolkien™;
title = “The Hobsit";

. " D968-4EIE-5 q s i, valuess{
suthor = 3. R, R. Tolkien™;
title = “The Hobbit";

1y 7 i), recorec . valuess(
author = 3. R. R. Tolkiea™;
title = “The Hobbit™;

. C B2-4D44 o - . @, valusss{
suthor = <), R, R, Tolkiea™;
title = “The Hobbit";

1o BADC-4428-5146 il - o valusss]

k1

Figure 8-16. Retrieving records from CloudKit

Summary

In this chapter you learned about CloudKit and the basic objects required to access
CloudKit. You learned about the CloudKit Developer Console and how to view records
and record types in a web browser. You also created an app to save CloudKit records and
retrieve them.

This book as shown you how to begin development for the new AppleTV. We have
shown some of the familiar iOS controls and classes and also highlighted some of the
ones that are different for tvOS. Due to the tvOS lack of local storage, we also spent time
demonstrating how to store and retrieve data from iCloud.

121

CHAPTER 8 ' CLOUDKIT

Exercises

1. Add more books to your cloud storage.

2. Create a new record type in CloudKit or maybe create an
Author type.

122

Index

A B
AppDelegate.swift, 88
Apple TV

capabilities

A8 processor, 3
A8 Processor, 3
inherited iOS frameworks, 2

limitations, 5

Siri Remote, 4

tvOS

advantages, 6
Button C, 8

focus engine, 7
swift advantages, 7
Swift language, 7
UIKit classes, 8
user interface, 7

C

CKContainer, 105
CloudKit
app, 115
AppDelegate.swift file, 116-117
asset storage and
data transfer, 105
books record type, 119
CKContainer, 105
console log, Xcode, 118
containers, 105-110
dashboard, 115
databases
CKRecord, 110
completion handler, 111
newBook, 111

iCloud accounts, 105
NSPredicate, 118
NSSortDescriptor, 118
record ID index, 121
setupBooks, 116
ViewController.swift, 118
viewDidLoad, 119
CloudKit app
capabilities, targets menu, 114
cloudKit dashboard, 115
project naming, 113
project screen, 114
single view tvOS application, 112
CloudKit dashboard, 115
CloudKit tvOS app, 111

D, E
Data storing information
BookStore app, 94
classes and methods, 93
iCloud (see iCloud)
NSUserDefaults class, 94
NSUserDefaults object, 95
preference values, 94
setlnteger, 94
setObjectforKey, 94
stringForKey method, 95
tvOS, 94
Dynamic top shelf image
app extensions, 76-77
handling URLs, 88
photo gallery extension, 77
TV services extension, 76
TVTopShelfProvider protocol (see
TVTopShelfProvider protocol)

123

INDEX

F Main.storyboard file, 39
PageContentView
Focus engine, 30 Controller class, 42
PageContentView
G, H Controller.swift file, 44

Page View Controller, 41

Transition Style, 40-41
Main.storyboard scenes, 61
main title and subtitle strings, 68

Gallery.swift file, 66
Page View Controller, 33-34,
38, 63-64, 70-71

_ I’ J’ K’ L’ M’ N’ O PageViewController object, 89-90
iCloud photo albums list, 69

Gallery data model structure
asset catalog, 66-67

App IDs, 96 photo and album data
capabilities, Xcode, 98 model structures, 46
certifications,

prepareForSegue method, 90
identifiers and profiles, 95 project cleanup, 36
enabling, 97 segue identifier, 65
KVS SelectAlbumSegue identifier, 90
AppDelegate.swift file, 100, 102 selectedTopShelfltem, 90
iCloudDataChanged, 102 table view cell, 62, 64, 68, 71
iCloudKeyStore variable, 101 table view controller, 67
new project creation, 99 TableViewController class, 59, 89
NSUbiquitousKeyValueStore, 101 table view controller scene class, 60
NSUserDefaults, 98 TableViewController.swift, 89
savedString, 101 top shelf thumbnail image, 84-87
setString, 101 Photo gallery extension
sync data and information, 95 classes and images adding, 78-80
dynamic Top Shelf data, 78-79
gallery, album,
P’ Q’ R and photo classes, 79-80
Photo gallery app TVTopShelfProvider protocol
app completion, 51
asset catalog, 48

implementation, 81-84
cellForRowAtIndexPath method, 68
cities or landscapes album, 70 S
Cocoa touch class, 58
creating project, 34
custom static

ServiceProvider.swift, 81
Stack views
auto layout, 23

top shelf image, 71-73
detailTextLabel subtitle, 68
dynamic top shelf image

(see Dynamic top shelf image)
gallery data model structure, 65-66
gallery structure, 67
interface builder

adding constraints, 44
Image View, 43
imageView outlet, 46
Initial View Controller, 40

124

city name label, vertical, 24
horizontal spacing, 28
missing constraints, 29
temp labels placing, 24
Uncheck Extend Edges, 28
vertical axis stack view, 27
vertical spacing, 27
weather App, 29

weather labels, 25
WeatherStation app, 23

System on a chip (SoC), 3

INDEX

T \Vj control outlets, 15
’ U’ dataSource and
Table view controllers delegate outlets, 15
Apple’s platforms, 57 labels removing, 14
Main.storyboard canvas, 60 white listing websites, 19
photo albums list, 57, 70 Xcode project and
photo gallery app Tabbed application, 10
(see Photo gallery app) TVTopShelfProvider protocol
TableViewController.swift, 69 dynamic Top
tvOS wee'lther app Shelf data, 81
naming an{l saving, 11 photo gallery extension, 83
project settings, 11 ServiceProvider.swift, 81
simulator, 12-13 topShelfltems
storyboard file, 12 computed property, 81-82
UlStackViews, 9 TVContentldentifier, 82
UlTabBarController, 9 TVContentltem, 82
UlTableView, 9
view design
adding UI Controls, 14 W; X; Y, Z
code implementation, 16 WeatherStation app, 23

125

www.allitebooks.cond

http://www.allitebooks.org

	Contents at a Glance
	Contents
	About the Authors
	Acknowledgments
	Introduction
	Chapter 1: Getting Started with the New Apple TV
	 Lots of Good News
	 Capabilities
	 Inherited iOS Frameworks
	The Apple A8 Processor

	 The Siri Remote
	 Apple TV’s Limitations
	 Advantages with tvOS Development
	 Some Notes About Developing in Swift with tvOS
	Swift Pain Points
	 Swift Advantages

	 The tvOS Focus Engine
	 What Does Focusable Mean?

	 Summary
	 Exercises

	Chapter 2: The tvOS Weather App
	 Designing the View
	 Adding the Code for the View
	White Listing Websites

	 Summary
	 Exercises

	Chapter 3: Stack Views and the Focus Engine
	 Auto Layout and Stack Views
	 Implementing Stacks

	 The Focus Engine
	 A Focus Engine Example

	 Summary
	 Exercises

	Chapter 4: Creating a Photo Gallery App
	 Page View Controllers
	 Creating the Photo Gallery App
	 A Little Project Cleanup
	 Adding the Page View Controller
	 Adding Scenes to the Interface Builder Canvas
	 Adding the Photo and Album Data Model Structures
	 Adding the Photo Image Files to the Asset Catalog
	 Completing the Photo Gallery App
	 Summary
	 Exercises

	Chapter 5: Adding an Album Browser to the Photo Gallery App
	 Table View Controllers
	 Adding a Table View Controller to the Photo Gallery App
	 Adding the Gallery Data Model Structure
	 Adding the Cities and Landscapes Image Files to the Asset Catalog
	 Completing the Photo Gallery App
	 One More Thing: Adding a Custom Static Top Shelf Image
	 Summary
	 Exercises

	Chapter 6: Adding a Dynamic Top Shelf to the Photo Gallery App
	 Application Extensions
	 Adding Classes and Images to the Photo Gallery Extension
	 Implementing the TVTopShelfProvider Protocol
	 Launching the Photo Gallery App from a Top Shelf Thumbnail Image
	 Handling URLs
	 Completing the Photo Gallery App
	 Summary
	 Exercises

	Chapter 7: Storing and Sharing Data
	 Preferences
	 Writing Preferences
	 Reading Preferences
	 iCloud
	iCloud KVS

	 Summary
	 Exercises

	Chapter 8: CloudKit
	 Considerations for Using CloudKit
	 CloudKit Containers
	Databases

	 CloudKit Databases
	 Database Records

	 Example CloudKit App
	 Summary
	 Exercises

	Index

