
www.apress.com

B O O K S  F O R  P R O F E S S I O N A L S  B Y  P R O F E S S I O N A L S®

Bennett · Kaczm
arek · Lees 

Developing for Apple TV using tvOS and Sw
i� 

Developing 
for Apple TV 
using tvOS and Swi� 

—
Gary Bennett
Stefan Kaczmarek 
Brad Lees

SOURCE CODE ONLINE9 781484 217146

52999
ISBN 978-1-4842-1714-6

US $29.99

Shelve in
Mobile Computing

User level
Beginning–Advanced

Gary Bennett, Stefan Kaczmarek, and Brad Lees bring you a hands-on “Swi� ” introduction 
to the new tvOS SDK with a collection of app projects to try out. You’ll learn how to create a 
Weather Station app for the TV using Stack Views for the weather details, how to create a Photo 
Gallery app to browse through multiple full screen photo albums, and how to synch and store 
Apple TV app data to iCloud.

In this book, you will cover:

• Apple TV Programming Capabilities and Limitations
• Building a Weather Station app that connects to a Web Service
• Understanding the Focus Engine and Stack Views
• Creating a Photo Gallery app using Page Views
• Adding an Album Browser to the Photo Gallery app using Table Views
• Customizing the Top Shelf using both Static and Dynamic Content
• Storing information locally on the Apple TV and in the Cloud
• Integrating with CloudKit

US $29.99

• Integrating with CloudKit

TRAINING W
EBINARS

www.allitebooks.com

http://www.allitebooks.org


Developing for 
Apple TV using  
tvOS and Swift

Gary Bennett 
Stefan Kaczmarek
Brad Lees

www.allitebooks.com

http://www.allitebooks.org


Developing for Apple TV using tvOS and Swift

Copyright © 2015 by Gary Bennett, Stefan Kaczmarek and Brad Lees

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part 
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, 
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission 
or information storage and retrieval, electronic adaptation, computer software, or by similar or 
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are 
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for 
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser 
of the work. Duplication of this publication or parts thereof is permitted only under the provisions 
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must 
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the 
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1714-6

ISBN-13 (electronic): 978-1-4842-1715-3

Trademarked names, logos, and images may appear in this book. Rather than use a trademark 
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and 
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of 
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they 
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are 
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of 
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility 
for any errors or omissions that may be made. The publisher makes no warranty, express or implied, 
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Michelle Lowman
Development Editor: James Markham
Editorial Board: Steve Anglin, Louise Corrigan, James DeWolf, Jonathan Gennick,  

Robert Hutchinson, Michelle Lowman, James Markham, Susan McDermott,  
Matthew Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editors: Mark Powers
Copy Editor: Mary Bearden
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,  
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,  
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a 
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM 
Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com. 

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional 
use. eBook versions and licenses are also available for most titles. For more information, reference 
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to 
readers at www.apress.com/9781484217146 or http://forum.xcelme.com. For detailed information 
about how to locate your book’s source code, go to www.apress.com/source-code/. Readers can also 
access source code at SpringerLink in the Supplementary Material section for each chapter.

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484217146
http://forum.xcelme.com
www.apress.com/source-code/
http://www.allitebooks.org


Gary would like to dedicate this book to wife Stefanie and children,  
Michael, Danielle, Michelle, and Emily, for always supporing him.

Stefan would like to dedicate this book to his wife Veronica for  
supporting him throughout all of life’s adventures.

Brad would like to dedicate this book to his wife Natalie for  
always supporting him. He couldn’t do it without her.

www.allitebooks.com

http://www.allitebooks.org


v

Contents at a Glance

About the Authors ����������������������������������������������������������������������������� xi

Acknowledgments �������������������������������������������������������������������������� xiii

Introduction ������������������������������������������������������������������������������������� xv

 ■Chapter 1: Getting Started with the New Apple TV ������������������������� 1

 ■Chapter 2: The tvOS Weather App ��������������������������������������������������� 9

 ■Chapter 3: Stack Views and the Focus Engine ����������������������������� 23

 ■Chapter 4: Creating a Photo Gallery App �������������������������������������� 33

 ■Chapter 5: Adding an Album Browser to the Photo Gallery App ���� 57

 ■ Chapter 6: Adding a Dynamic Top Shelf to the  
Photo Gallery App ������������������������������������������������������������������������� 75

 ■Chapter 7: Storing and Sharing Data �������������������������������������������� 93

 ■Chapter 8: CloudKit ��������������������������������������������������������������������� 105

Index ���������������������������������������������������������������������������������������������� 123

www.allitebooks.com

http://www.allitebooks.org


vii

Contents

About the Authors ����������������������������������������������������������������������������� xi

Acknowledgments �������������������������������������������������������������������������� xiii

Introduction ������������������������������������������������������������������������������������� xv

 ■Chapter 1: Getting Started with the New Apple TV ������������������������� 1

Lots of Good News ���������������������������������������������������������������������������������� 1

Capabilities ��������������������������������������������������������������������������������������������������������������� 1

The Siri Remote �������������������������������������������������������������������������������������������������������� 4

Apple TV’s Limitations ���������������������������������������������������������������������������������������������� 5

Advantages with tvOS Development ������������������������������������������������������������������������� 6

Some Notes About Developing in Swift with tvOS ���������������������������������������������������� 6

The tvOS Focus Engine ���������������������������������������������������������������������������� 7

What Does Focusable Mean? ����������������������������������������������������������������������������������� 7

Summary ������������������������������������������������������������������������������������������������� 8

Exercises  ������������������������������������������������������������������������������������������������ 8

 ■Chapter 2: The tvOS Weather App ��������������������������������������������������� 9

Designing the View �������������������������������������������������������������������������������� 13

Adding the Code for the View ��������������������������������������������������������������������������������� 16

Summary ����������������������������������������������������������������������������������������������� 22

Exercises ����������������������������������������������������������������������������������������������� 22

www.allitebooks.com

http://www.allitebooks.org


■ Contents

viii

 ■Chapter 3: Stack Views and the Focus Engine ����������������������������� 23

Auto Layout and Stack Views ���������������������������������������������������������������� 23

Implementing Stacks ���������������������������������������������������������������������������������������������� 23

The Focus Engine ���������������������������������������������������������������������������������� 30

A Focus Engine Example ���������������������������������������������������������������������������������������� 30

Summary ����������������������������������������������������������������������������������������������� 31

Exercises ����������������������������������������������������������������������������������������������� 31

 ■Chapter 4: Creating a Photo Gallery App �������������������������������������� 33

Page View Controllers ��������������������������������������������������������������������������� 33

Creating the Photo Gallery App�������������������������������������������������������������� 34

A Little Project Cleanup ������������������������������������������������������������������������� 36

Adding the Page View Controller ����������������������������������������������������������� 38

Adding Scenes to the Interface Builder Canvas ������������������������������������ 39

Adding the Photo and Album Data Model Structures ���������������������������� 46

Adding the Photo Image Files to the Asset Catalog ������������������������������� 48

Completing the Photo Gallery App ��������������������������������������������������������� 51

Summary ����������������������������������������������������������������������������������������������� 55

Exercises ����������������������������������������������������������������������������������������������� 55

 ■Chapter 5: Adding an Album Browser to the Photo Gallery App ���� 57

Table View Controllers ��������������������������������������������������������������������������� 57

Adding a Table View Controller to the Photo Gallery App ���������������������� 58

Adding the Gallery Data Model Structure ���������������������������������������������� 65

Adding the Cities and Landscapes Image Files to the Asset Catalog ���� 66

Completing the Photo Gallery App ��������������������������������������������������������� 67

One More Thing: Adding a Custom Static Top Shelf Image �������������������� 71

Summary ����������������������������������������������������������������������������������������������� 74

Exercises ����������������������������������������������������������������������������������������������� 74

www.allitebooks.com

http://www.allitebooks.org


 ■ Contents

ix

 ■ Chapter 6: Adding a Dynamic Top Shelf to the  
Photo Gallery App ������������������������������������������������������������������������� 75

Application Extensions �������������������������������������������������������������������������� 76

Adding Classes and Images to the Photo Gallery Extension ����������������� 78

Implementing the TVTopShelfProvider Protocol ������������������������������������ 81

Launching the Photo Gallery App from a Top Shelf Thumbnail Image ����� 84

Handling URLs ��������������������������������������������������������������������������������������� 88

Completing the Photo Gallery App ��������������������������������������������������������� 89

Summary ����������������������������������������������������������������������������������������������� 91

Exercises ����������������������������������������������������������������������������������������������� 91

 ■Chapter 7: Storing and Sharing Data �������������������������������������������� 93

Preferences ������������������������������������������������������������������������������������������� 93

Writing Preferences ������������������������������������������������������������������������������������������������ 94

Reading Preferences ���������������������������������������������������������������������������������������������� 95

iCloud ���������������������������������������������������������������������������������������������������������������������� 95

Summary ��������������������������������������������������������������������������������������������� 103

Exercises ��������������������������������������������������������������������������������������������� 103

 ■Chapter 8: CloudKit ��������������������������������������������������������������������� 105

Considerations for Using CloudKit ������������������������������������������������������� 105

CloudKit Containers ����������������������������������������������������������������������������� 105

Database ��������������������������������������������������������������������������������������������������������������� 109

CloudKit Databases ����������������������������������������������������������������������������� 110

Database Records ������������������������������������������������������������������������������������������������� 110

Example CloudKit App ������������������������������������������������������������������������� 111

Summary ��������������������������������������������������������������������������������������������� 121

Exercises ��������������������������������������������������������������������������������������������� 122

Index ���������������������������������������������������������������������������������������������� 123

www.allitebooks.com

http://www.allitebooks.org


xi

About the Authors

Gary Bennett is president of xcelMe.com, which 
provides iOS programming courses online. By day, 
Gary develops iOS apps professionally, and by night, 
he teaches iOS programming. For more than six years, 
Gary has taught thousands of students how to develop 
iPhone/iPad apps and has several popular apps in 
the iTunes App Store. Gary has a bachelor’s degree in 
computer science and has worked for 25 years in the 
technology and defense industries. He served 10 years in 
the U.S. Navy as a nuclear engineer aboard two nuclear 
submarines. After leaving the Navy, Gary worked for 
several companies as a software developer, CIO, and 
president. As CIO, he helped take VistaCare public in 
2002. Gary also coauthored two editions of Objective-C 
for Absolute Beginners and iPhone Cool Projects for 
Apress. He lives in Scottsdale, Arizona, with his wife 
Stefanie and their four children.

Stefan Kaczmarek has more than 15 years of software 
development experience specializing in mobile 
applications, large-scale software systems, project 
management, network protocols, encryption algorithms, 
and audio/video codecs. As chief software architect and 
cofounder of SKJM, LLC, Stefan developed a number of 
successful mobile applications including iCam (which 
has been featured on CNN, Good Morning America, 
and The Today Show, and which was chosen by Apple 
to be featured in the “Dog Lover” iPhone 3GS television 
commercial) and iSpy Cameras (which held the #1 Paid 
iPhone App ranking in a number of countries around 

the world including the United Kingdom, Ireland, Italy, Sweden, and South Korea).  
Stefan resides in Phoenix, Arizona, with his wife, Veronica, and their two children. 

www.allitebooks.com

http://www.allitebooks.org


■ About the Authors

xii

Brad Lees has more than 16 years of experience in  
application development and server management.  
He has specialized in creating and initiating software 
programs in financial institutions, credit card processing, 
point-of-sale systems, and real estate development.

His professional career highlights have been lead 
iOS developer at Apriva, owner of Innovativeware, 
product development manager for Smarsh, and vice 
president of application development for iNation. 
Brad also coauthored two editions of Objective-C for 
Absolute Beginners.

A graduate of Arizona State University, Brad 
and his wife Natalie reside in Phoenix with their five 
children.

www.allitebooks.com

http://www.allitebooks.org


xiii

Acknowledgments

We would like to thank Apress for all their help in making this book possible. Specifically, 
we would like to thank Mark Powers, our coordinating editor, and Michelle Lowman, our 
acquisitions editor, for helping us stay focused and overcoming many obstacles. Without 
Mark and Michelle, this book would not have been possible. 

Special thanks to Jim Markham, our development editor, for all his suggestions 
during the editorial review process to help make this a great book. Thanks to Mary 
Bearden, the copy editor, who made the book look great. 

We would like to thank the CodeRed-I creative design team for their visual design 
direction to complete the fresh, stylized front and back cover. Special thanks to Giang Le 
for his contemporary and retro graphic design elements.



xv

Introduction

We are now able to write apps for the new Apple TV. This is great for iOS developers 
because everything is very familiar. Xcode, Swift, UIKit Interface Builder and the tvOS 
Simulator are very similar to iOS development.

This book assumes you are very familiar with iOS development using Swift. If you  
are not, please read our Swift 2 for Absolute Beginners from Apress (www.apress.com/ 
9781484214893).

Swift 2 for Absolute Beginners takes you through all the development to get you up to 
speed to become a tvOS developer and how to do it.

Free Live Webinars, Q&A, and YouTube Videos 
Every other Monday night at 6:00 p.m. Pacific time, we have live webinars and discuss 
a topic from the book or a timely item of interest. These webinars are free, and you can 
register for them at www.xcelme.com/latest-videos/. 

At the end of the webinars, we have a Q&A. You can ask a question on the topic 
discussed or on any topic in the book. 

Additionally, all these webinars are recorded and available on YouTube. Make sure 
you subscribe to the YouTube channel so you are notified when new recordings are 
uploaded. 

www.apress.com/
9781484214893
www.apress.com/
9781484214893
www.xcelme.com/latest-videos/


■ IntroduCtIon

xvi

Free Book Forum
We have provided an online forum for this book at http://forum.xcelme.com, where you 
can ask questions while you are learning Swift and get answers from the authors. Also, 
Apple makes frequent changes to the programming language and SDK. We try our best 
to make sure any changes affecting the book are updated on the forum along with any 
significant text or code changes. 

You can download the source code from the chapters on this forum too.

http://forum.xcelme.com


1

Chapter 1

Getting Started with the  
New Apple TV

Finally! For years iOS developers have been waiting to write apps for the Apple TV. Three 
years ago, we read in Steve Jobs’s biography that Apple had been working on a new Apple 
TV, and the current Apple TV was “just a hobby.” In the summer of 2015, Apple finally 
announced the new Apple TV along with the operating system called tvOS. Developers 
can now write apps for the Apple TV, and there is a new App Store for tvOS apps.

 ■ Note If you haven’t already read the Introduction to this book, take the time to do so. 
The Introduction covers how to access the free tvOS forum, source code used in this book, 
free YouTube tvOS training videos, and how to learn Swift 2.

Lots of Good News
There are a lot of great things about the Apple TV. It is important that you understand 
what the Apple TV is capable of so that you can use these capabilities in your tvOS apps.

Capabilities
The capabilities of the new Apple TV include:

•	 64-bit A8 processor

•	 32GB or 64GB of storage

•	 2GB of RAM

•	 10/100 Mbps Ethernet

•	 Wi-Fi 802.11a/b/g/n/ac

•	 1080p resolution



ChapTer 1 ■ GeTTInG STarTed wITh The new apple TV 

2

•	 HDMI

•	 New Siri Remote/Apple TV Remote

•	 Bluetooth capability

Inherited iOS Frameworks
Many of the frameworks available for iOS are available for tvOS. These include:

•	 Accelerate

•	 AudioToolbox

•	 AudioUnit

•	 AVFoundation

•	 AVKit

•	 CFNetwork

•	 CloudKit

•	 CoreBluetooth

•	 CoreData

•	 CoreFoundation

•	 CoreGraphics

•	 CoreImage

•	 CoreLocation

•	 CoreMedia

•	 CoreSpotlight

•	 CoreText

•	 CoreVideo

•	 Darwin

•	 Foundation

•	 GameController

•	 GameKit

•	 GameplayKit

•	 GLKit

•	 ImageIO

•	 MachO

•	 MediaAccessibility

•	 MediaPlayer

•	 MediaToolbox

•	 Metal

•	 MetalKit

•	 MetalPerformanceShaders

•	 MobileCoreServices

•	 ModelIO

•	 OpenGLES

•	 SceneKit

•	 Security

•	 simd

•	 SpriteKit

•	 StoreKit

•	 Swift Standard Library

•	 SystemConfiguration

•	 UIKit



ChapTer 1 ■ GeTTInG STarTed wITh The new apple TV 

3

The Apple A8 Processor
The Apple TV processor is a 64-bit ARM-based system on a chip (SoC) designed by Apple 
and manufactured by TSMC. It contains two billion transistors, twice as many as the 
previous A7 processor.

The A8 processor was first introduced in the iPhone 6 and iPhone 6 Plus. The A8 has 
25% more CPU performance and 50% more graphics performance while drawing only 
50% of the power compared to its predecessor, the A7 (see Figure 1-1).

Figure 1-1. Apple’s A8 processor, used in the fourth-generation Apple TV



ChapTer 1 ■ GeTTInG STarTed wITh The new apple TV 

4

Figure 1-2. Apple’s Siri Remote

The Siri Remote
The Siri Remote has the following buttons (see Figure 1-2):

 1. Touch surface. Swipe to navigate. Press to select. Press and 
hold for contextual menus.

 2. Menu. Press to return to the previous menu.

 3. Siri/Search. Press and hold to talk in those countries that 
have the Siri Remote. In all other countries, press to open the 
onscreen search app.

 4. Play/Pause. Play and pause media.

 5. Home. Press to return to the Home screen. Press twice to view 
open apps. Press and hold to sleep.

 6. Volume. Control TV volume.

 7. Lightning connector. Plug-in for charging 



ChapTer 1 ■ GeTTInG STarTed wITh The new apple TV 

5

Apple TV’s Limitations
The tvOS and iOS are very similar, however, there are several differences and limitations:

•	 Users can’t tap their screens: Users will find it frustrating using the 
remote to enter data into a tvOS app. They will likely experience 
this right away when entering user names and passwords. They 
may have to retype their entire password if they got distracted 
and forgot where they left off. Users will find it very helpful to 
pair a Bluetooth keyboard with their Apple TV when this feature 
becomes available.

•	 No persistent local storage: tvOS offers no persistent local 
storage. The lack of local storage means any app maker must use 
CloudKit, Parse, or some other cloud-based service to save files or 
any other significant amount of information within their app.

•	 Developers can only access 500KB of persistent storage. This is what 
is local to the device to save basic app settings and configuration 
information using the NSUserDefaults class. Only the temporary 
and cache directories can be written to. The standard documents 
directory is not accessible.

•	 There is a 200MB app size limit: tvOS enforces a 200MB limit on 
the size of each app. This will affect a number of apps, especially 
games. Game apps can easily reach 1GB due to the inclusion  
of graphic assets. Apps will have to use App Thinning and  
On-Demand Recourses to download additional assets when 
needed to address this restriction.

•	 No web views: This is probably the most drastic restriction that 
developers are going to have to work with; especially for apps  
that are mostly web views. Apple does offer an alternative in the 
form of TVML. This enables developers to define their views to 
create a client-server app with the TVJS JavaScript APIs. This also 
means it will be more difficult to view Word documents and PDFs 
that were easily viewable in UIWebviews with iOS.

•	 No built-in PiP. Picture-in-Picture was introduced in iOS 9 but is 
not available with tvOS.

•	 No customizable video player: The built-in video player in AVKit 
for tvOS does not support the ability to extend customizations.

•	 No photos access: tvOS does support viewing photos stored in 
iCloud, but developers don’t have the ability to display the photo 
picker via UIKit’s UIImagePickerController or the Photos 
framework.



ChapTer 1 ■ GeTTInG STarTed wITh The new apple TV 

6

•	 No address book, calendar, or iMessage: Apps will not be able to 
incorporate the Address Book, Contacts, or EventKit frameworks. 
The MessagesUI framework also isn’t available, making it 
impossible to send iMessages.

•	 No ReplayKit: ReplayKit is targeted at game developers and lets 
players record their gameplay to share with other players online. 
It is possible the reason for this omission is that the Apple TV isn’t 
powerful enough to record 1080p gameplay while rendering the 
actual game.

•	 No Pasteboard API: Pasteboard enables copy and paste 
functionality on iOS but it is not available for tvOS.

•	 No multipeer connectivity: The multipeer connectivity framework 
handles identifying iOS devices via Wi-Fi, peer-to-peer Wi-Fi, 
and Bluetooth, and then managing the transfer of data between 
devices.

•	 No Mach Messages and Named Pipes: Mach Messages and Named 
Pipes are low-level kernel technologies that enable interprocess 
communications. This enables processes to pass messages to 
each other.

Advantages with tvOS Development
The Apple TV and tvOS are new, and that brings several advantages over iOS 
development, at least for now:

•	 You only need to develop for a single screen resolution.

•	 There is no need to handle screen rotations or size class changes.

•	 Unlike mobile cell phones and tablets, tvOS developers can 
assume the presence of low-latency, always on, high-bandwidth 
networks.

Some Notes About Developing in Swift with tvOS
When the Apple TV and tvOS were introduced, the Swift programming language had 
been available for over a year. We had each been using Objective-C for over six years, 
but immediately started using Swift for new app development. We will be using Swift in 
this book.

Although we love developing in Swift, we feel there are a few caveats about Swift we 
must disclose.



ChapTer 1 ■ GeTTInG STarTed wITh The new apple TV 

7

Swift Pain Points
The Swift language is changing and changing fast. Some releases of Swift cause compiler 
errors in code that worked just fine in the previous Swift version. Although the changes 
are usually minimal and improve the language, the compiler errors still take time to fix.

Developer tools are still lagging behind Objective-C. Sometimes the debugger 
refuses to disclose variable results, and compiler errors can be vague or misleading. 
It’s hard to believe that a year and a half since the introduction of Swift the Refactor 
command in Xcode still does not work!

Compiler stability can be an issue. Sometimes Xcode will crash, and heavy use of 
Swift frameworks sometimes don’t work well with “whole module optimization.”

Swift Advantages
Swift may not be completely mature yet, but it is ready for prime time. It is a pleasure to 
code in Swift and we have noticed about a third of the code you would have to write in 
Objective-C is no longer necessary in Swift. For example, Interface Sections are no longer 
necessary in Swift.

Swift does fulfill the promise of more efficient and modern development. An entire 
class of errors that used to require runtime debugging are now caught by the compiler. 
We spend about a quarter of the time debugging Swift apps than we would have with 
Objective-C.

The tvOS Focus Engine
Interactions in tvOS present a unique challenge to developers and user interface 
designers. The new Apple TV pairs a remote and a potential wireless game controller with 
a user interface that lacks a traditional cursor. This results in “focus” being the only way 
an app can provide visual feedback to users as they navigate within the app.

The focus engine can be thought of as a bridgekeeper between users and your tvOS 
application. Understanding the focus engine is an essential step toward building an app 
that feels native to tvOS, and not just a quick, ugly iOS port.

Every experienced iOS developer will feel comfortable with UIKit and tvOS, and 
Apple has made it easy to port your iOS app to tvOS. However, if you don’t consider how 
your app needs to interact with the focus engine from the start, you will find yourself 
frustrated with the user interaction as you finish your app.

What Does Focusable Mean?
Users navigate a tvOS application by moving focus between user interface (UI) items 
on their TVs. When a UI item is focused, its appearance is adjusted to stand out from 
the appearance of other items. Focus effects are what make the new Apple TV and tvOS 
communal. Focus effects provide visual feedback not only to whoever is using the remote, 
but also to friends and family who may be watching. This is what separates the native 
tvOS experience from AirPlaying your iPhone or iPad app onto the TV.

www.allitebooks.com

http://www.allitebooks.org


ChapTer 1 ■ GeTTInG STarTed wITh The new apple TV 

8

Only one view can be in focus at a time, and only views can receive focus. Consider 
the buttons in Figure 1-3.

Figure 1-3. Button C is focusable

Button C is currently in focus. Swiping left of the Apple TV remote will focus button B.  
Swiping right on the Apple TV remote will focus button D. Swiping left or right more 
aggressively will focus button A or button E, respectively.

Apple has updated UIKit and provided implementations for views that can become 
focusable by providing a method called canBecomeFocused().

Only the following UIKit classes can become focused:

•	 UIButton

•	 UIControl

•	 UISegmentedControl

•	 UITabBar

•	 UITextField

•	 UISearchBar

Summary
The new Apple TV offers a great opportunity for developers. The tools that are available 
in tvOS enable developers to deploy a new generation of apps on a new device in users’ 
homes.

Exercises 
 1. Read the Human Interface Guidelines for tvOS. You can read 

the HIG for tvOS at https://developer.apple.com/tvos/
human-interface-guidelines/.

 2. If you haven’t already registered for a developer account, go 
register! You can register at https://developer.apple.com.

https://developer.apple.com/tvos/human-interface-guidelines/
https://developer.apple.com/tvos/human-interface-guidelines/
https://developer.apple.com/


9

Chapter 2

The tvOS Weather App

This chapter will show you the capabilities of the tvOS by walking you through the steps 
on how to create a basic tvOS weather app. The app will demonstrate how UIKit controls 
look differently on tvOS than they do on iOS and how the development process is nearly 
identical. You will use this weather app for both this chapter and Chapter 3. In Chapter 3 
you will use Stack Views to lay out part of this weather app.

Building this weather app will also enable you to explore how the focus engine works 
and how you can use it in your apps. The goal of the weather app will be to look up the 
current weather in different cities using www.OpenWeatherMap.org, a free web service  
(see Figure 2-1).

Figure 2-1. The weather app you will develop including UITabBarController, 
UITableView, and UIStackViews

The cool thing about tvOS development is how similar it’s to iOS development. Let’s 
start building this weather app by choosing a template for the app based on the Tabbed 
Application and include a Table View and labels.

http://dx.doi.org/10.1007/978-1-4842-1715-3_3
http://dx.doi.org/10.1007/978-1-4842-1715-3_3
http://www.openweathermap.org/


Chapter 2 ■ the tvOS Weather app

10

 1. Create a new tvOS Xcode project and select Tabbed 
Application. Then click Next (see Figure 2-2).

Figure 2-2. Creating the first tvOS application

 2. Name the project (we are using WeatherStation), click next, 
and save this to a directory of your choosing, as shown in 
Figure 2-3.



Chapter 2 ■ the tvOS Weather app

11

When the project is created, the project settings are displayed, as shown in Figure 2-4.

Figure 2-3. Naming and saving the WeatherStation app

Figure 2-4. The WeatherStation app project settings



Chapter 2 ■ the tvOS Weather app

12

As shown in Figure 2-4, FirstViewController.swift and SecondViewController.
swift files are created, one for each tab.

 3. Click the Main.Storyboard file and view the Storyboard in 
Interface Builder, as shown in Figure 2-5.

Figure 2-5. The WeatherStation app Storyboard

When the storyboard file is shown, you can see there are three scenes. The 
UITabBarController acts as the entry point to the application and also serves as the 
RootViewController that contains the First Scene and Second Scene View Controllers.

 ■ Note You will frequently need to zoom in and out in the Storyboard to see all the 
scenes. Command + and Command – will quickly enable you to zoom in and out.

We created a Tabbed Application with two tabs to demonstrate how many of 
the UIKit controls look and behave differently in tvOS compared to iOS. You will be 
working in the Main.storyboard file and the FirstViewController.swift file. You will not 
be working with the SecondViewController.swift file directly; but you will be using the 
SecondViewController.swift file for our exercises at the end of this chapter.

Let’s run the WeatherStation app to see what it looks like in the tvOS simulator  
(see Figure 2-6). Click the Play button to run the WeatherStation app.



Chapter 2 ■ the tvOS Weather app

13

Figure 2-6. The WeatherStation app running in the tvOS Simulator with the remote in the 
lower right hand corner

You can see that the Tab Bar is at the top of the view in tvOS instead of the bottom of 
the view as in iOS apps. Use the remote to switch between tabs and dismiss the Tab Bar by 
swiping.

 ■ Note If you are not able to view the remote, you can access it by going to the  
tvOS Simulator menu and selecting hardware ➤ Show apple tv remote or entering  
Shift-Command-r.

Designing the View
Now let’s add the Table View and Label controls to the First Scene.

 4. Select the Main.storyboard file and select the First Scene.

 5. Remove the two labels in the middle of the First Scene  
(see Figure 2-7).



Chapter 2 ■ the tvOS Weather app

14

Figure 2-7. Removing the Labels in the First Scene

 6. Add a Table View to the First Scene and five Labels, as shown 
in Figure 2-8.

Figure 2-8. Adding UI Controls to the First Scene



Chapter 2 ■ the tvOS Weather app

15

 ■ Note You will need to expand your scene to 100% in Interface Builder to add your table 
view and Labels. Make sure the controls appear under the Document Outline Section in 
Interface Builder. (see Figure 2-8). 

 7. Add and connect the outlets to the controls, as shown in 
Figure 2-9.

Figure 2-9. Connect the control outlets

 8. Connect the dataSource and delegate outlets for the Table 
View, as shown in Figure 2-10.

Figure 2-10. Connect the dataSource and delegate outlets



Chapter 2 ■ the tvOS Weather app

16

Adding the Code for the View
Now let’s add the additional code to populate the Table View by adding the code in 
Listing 2-1.

Listing 2-1. Code to Populate the Table View

13     @IBOutlet weak var tableView: UITableView!
14     @IBOutlet weak var cityNameOutlet: UILabel!
15     @IBOutlet weak var tempOutlet: UILabel!
16     @IBOutlet weak var weatherOutlet: UILabel!
17
18     var cities = ["Austin","Dallas","Phoenix", "Portand", "San Diego"]
19
20     override func viewDidLoad() {
21         super.viewDidLoad()
22
23         // Do any additional setup after loading the view.
24     }
25
26     func numberOfSectionsInTableView(tableView: UITableView) -> Int {
27         return 1
28     }
29
30      func tableView(tableView: UITableView, numberOfRowsInSection section: 

Int) -> Int {
31         return self.cities.count
32     }
33
34      func tableView(tableView: UITableView, cellForRowAtIndexPath 

indexPath: NSIndexPath) -> UITableViewCell {
35          let cell = UITableViewCell(style: .Subtitle,  

reuseIdentifier: nil)
36         cell.textLabel?.text = (self.cities[indexPath.row])
37         return cell
38     }

Line 18 contains the array of the cities for which you want to display the weather 
information.

Lines 30 to 40 contain the data source and delegate functions to populate the 
Table View.

Now run the app in the tvOS simulator to see the city names appear in the Table 
View. Practice using the remote in the simulator to change the focus in between cities 
(see Figure 2-11).



Chapter 2 ■ the tvOS Weather app

17

Figure 2-11. Running the app with the Table View being populated

Now let’s retrieve the weather information from www.OpenWeatherMap.org. Insert the 
code as shown in Listing 2-2.

Listing 2-2. Codeto Retrieve Weather Information

41  func tableView(tableView: UITableView, didSelectRowAtIndexPath indexPath: 
NSIndexPath) {

42         let row = indexPath.row
43         self.getWeatherData(cities[row])
44     }
45
46     func getWeatherData(city: String){
47          let urlString: String = city.

stringByAddingPercentEncodingWithAllowedCharacters 
(NSCharacterSet.URLQueryAllowedCharacterSet())!

48          //PLEASE VISIT http://home.openweathermap.org/users/sign_up to 
get your API Key. Insert your API key below

49          let url = NSURL(string: "http://api.openweathermap.org/data/2.5/
weather?q=\(urlString),us&APPID=INSERT YOUR API KEY HERE")

50          let getData = NSURLSession.sharedSession().dataTaskWithURL(url!) 
{(data,response,error ) in

51             dispatch_async(dispatch_get_main_queue(), {
52                 self.setLables(data!)
53             })
54         }
55         getData.resume()
56     }
57

www.allitebooks.com

http://www.openweathermap.org/
http://home.openweathermap.org/users/sign_up
http://api.openweathermap.org/data/2.5/weather?q=%5C(urlString),us&APPID=INSERT
http://api.openweathermap.org/data/2.5/weather?q=%5C(urlString),us&APPID=INSERT
http://www.allitebooks.org


Chapter 2 ■ the tvOS Weather app

18

58     func setLables(weatherData:NSData) {
59
60         do {
61              let jsonData = try NSJSONSerialization.

JSONObjectWithData(weatherData, options: [])
62             let dataOut = jsonData as! Dictionary<String,AnyObject>
63             if let city = dataOut["name"] as? String {
64                 cityNameOutlet.text = city
65             }
66              if let mainDictionary: Dictionary = dataOut["main"] as? 

Dictionary<String,AnyObject>{
67                 let kelvin = mainDictionary["temp"] as! Double
68                 let celsius = kelvin - 273.15
69                 let fahrenheit = 9/5 * celsius + 32
70                 tempOutlet.text = String(format: "%.f", fahrenheit)
71             }
72
73             if let weatherDict = dataOut["weather"]![0]{
74                  weatherOutlet.text = weatherDict["description"] as? 

String
75
76             }
77         }
78         catch {
79             print("Fetch failed:")
80         }
81     }

Lines 41 to 44 contain the didSelectRowAtIndexPath delegate method. This method 
gets called when the user has selected a city. This method retrieves the row that was 
selected and then calls the function getWeatherData with the name of the city that was 
selected.

Lines 46 to 56 contain the getWeatherData function. Line 47 takes the city string that 
was passed in and replaces any spaces in the name (San Diego) with %20 (San%20Diego).

Line 49 then creates the URL used to request the weather data for the city. The URL 
String for the city is passed into the URL and the API key is used by OpenWeatherMap.org 
functions as a parameter at the end of the string.

Lines 50 to 55 make an asynchronous request to OpenWeatherMap.org to retrieve 
the weather information for the selected city. When the weather data are successfully 
downloaded, Line 52 calls setLables and passes the weather data that was downloaded 
for the selected city.

Lines 58 to 81 convert the data downloaded to JSON and parses them to retrieve the 
city name, temperature, and description of the weather.

Lines 61 and 62 convert the NSData to a JSON dictionary.
Lines 63 and 64 then look up the name of the city and set the cityNameOutlet text 

outlet.
Lines 66 and 67 look up the temperature data. OpenWeatherMap.org returns 

temperatures in Kelvin.



Chapter 2 ■ the tvOS Weather app

19

Lines 68 to 70 convert Kelvin to Celsius and then to Fahrenheit. The temperature is 
then sent to the weatherOutlet text outlet.

Now run the app to test that the weather data have updated with the city that was 
selected.

When you run the app, it will crash on line 52, self.setLables(data!). Starting 
with iOS 9, Apple has enforced using secure connections with websites. Because 
OpenWeatherMap.com is not a secure SSL connection (i.e., one that uses https://), Apple 
blocks the web service request. You can see what happened in the Output console, as 
shown in Figure 2-12.

Figure 2-12. iOS 9 blocking nonsecure (without https://) web service requests

White Listing Websites
As Apple indicates in the Console, you can configure your Info.plist file to enable only this 
website’s address to be accessed without it being an TLS URL. This is called white listing. 
To white list a website, you will need to modify the Info.plist.

 1. Right-click the Info.plist in the Project Navigator. Then Select 
Open As ➤ Source Code, as shown in Figure 2-13.



Chapter 2 ■ the tvOS Weather app

20

Figure 2-13. Opening the apps Info.Plist

 2. Add the code in Listing 2-3 to the Info.plist starting at line 31. 
The file should then appear as shown in Figure 2-14.

Listing 2-3. Info.plist

31 <key>NSAppTransportSecurity</key>
32 <dict>
33   <key>NSExceptionDomains</key>
34   <dict>
35     <key>api.openweathermap.org</key>
36     <dict>
37       <!--Include to allow subdomains-->
38       <key>NSIncludesSubdomains</key>
39       <true/>
40       <!--Include to allow HTTP requests-->
41       <key>NSTemporaryExceptionAllowsInsecureHTTPLoads</key>
42       <true/>
43       <!--Include to specify minimum TLS version-->
44       <key>NSTemporaryExceptionMinimumTLSVersion</key>
45       <string>TLSv1.1</string>
46     </dict>
47   </dict>
48 </dict> 



Chapter 2 ■ the tvOS Weather app

21

Figure 2-14. Updated Info.plist source code

Figure 2-15. Updated Info.plist

 3. Close the Info.plist file and open it by clicking it. The Info.plist 
should appear as shown in Figure 2-15.



Chapter 2 ■ the tvOS Weather app

22

Now that you have white listed the OpenWeatherMap.org website, you can run the 
app and retrieve the weather data for selected cities. Run the app and test the selecting of 
cities. The weather data should populate, as shown in Figure 2-16.

Figure 2-16. App running and retrieving weather data

Summary
In this chapter you learned how to develop a basic and functional tvOS app. You learned 
how to retrieve data from a web service and display it and learned how to white list a 
website.

In the next chapter we will use Stack Views layout our labels and explore the tvOS 
Focus Engine.

Exercises
 1. Read the OpenWeatherMap.org API JSON format and add the 

ability to display humidity, barometric pressure, and wind 
direction to the view.

 2. In the Second Scene, display an icon of the current weather 
that the selected city is experiencing. For example, if it is 
snowing, display a snowflake.



23

Chapter 3

Stack Views and the  
Focus Engine

In iOS 9 Apple introduced Stack Views, and these are also available in tvOS. The 
UIStackView class provides an interface for laying out collections of views in either a 
column or a row. A Stack View lets you utilize Auto Layout, creating user interfaces that 
can dynamically adapt to any changes in the available space within your views. In iOS 9 
Stack Views automatically adjust for autorotation and screen size.

In this chapter we will expand our WeatherStation app to use Stack Views and also 
explore how the tvOS Focus Engine works.

Auto Layout and Stack Views
Stack View uses Auto Layout to position and size its views. The Stack View will pin the 
first and last arranged view flush with its edge along the stack’s axis. When working with 
a horizontal stack, this means the first arranged view’s leading edge is pinned to the 
stack’s leading edge, and the last arranged view’s trailing edge is pinned to the stack’s 
trailing edge. When working with vertical stacks, the top and bottom edges are pinned, 
respectively. You will see this in action in our example below.

You can then specify how you want the spacing to appear between the views in a 
stack, all without having to specify the constraints in a stack.

Implementing Stacks
Implementing stacks is pretty easy. The steps below will show how to embed five labels 
into a single stack.

 1. Open the WeatherStation app from the previous chapter.

 2. Select the City Name Label.

 3. At the bottom right of Interface Builder, click the Stack icon.

 4. Ensure that the Stack View Axis that Interface Builder selected 
is set to “Vertical” as shown in Figure 3-1.



Chapter 3 ■ StaCk ViewS and the FoCuS engine 

24

 5. Select both Temperature Labels.

 6. At the bottom right of Interface Builder, click the Stack icon.

 7. Ensure that the Stack View Axis that Interface Builder selected 
is set to “Horizontal,” as shown in Figure 3-2.

Figure 3-1. Placing the City Name label in a Vertical Stack View

Figure 3-2. Placing the Temp labels in a horizontal Stack View



Chapter 3 ■ StaCk ViewS and the FoCuS engine 

25

You will notice that Interface Builder is smart about choosing the correct Axis 
settings when selecting multiple controls.

 8. Select both bottom Weather Labels.

 9. At the bottom right of the Interface Builder, click the Stack 
icon.

 10. Ensure that the Stack View Axis that Interface Builder selected 
is set to “Horizontal,” as shown in Figure 3-3.

You should see all five labels in three different Stack Views, as shown in Figure 3-4.

Figure 3-3. Placing the Weather labels in a horizontal Stack View



Chapter 3 ■ StaCk ViewS and the FoCuS engine 

26

 11. Now select all three Stack Views and click the Stack icon to 
embed these stacks into one stack, as shown in Figure 3-5.

Figure 3-4. Three Stack Views have been created



Chapter 3 ■ StaCk ViewS and the FoCuS engine 

27

 ■ Note Xcode 7.1.1 issue: when completing Step 11 above, the labels may not look as 
they do in Figure 3-5 and Figure 3-6. Simply select another file and then select the Main.
storyboard file. this will cause Xcode to reset the view correctly.

Ensure the Stack View is a Vertical Axis Stack View. This makes all the views in the 
Stack View alignment based vertically to one another.

It appears that all the labels are crunched together. Let’s improve the spacing in the 
one Stack View.

 12. Click the parent Stack View, then change the Distribution to 
Fill Equally and spacing to 30, as shown in Figure 3-6.

Figure 3-5. One Vertical Stack View created from the three Stack Views

Figure 3-6. Increasing the Vertical Spacing of the Stack Views



Chapter 3 ■ StaCk ViewS and the FoCuS engine 

28

 13. To increase the horizontal spacing of the Temp and Weather 
labels, select both child Stack Views, change the Distribution 
to Fill Equally and Spacing to 30, as shown in Figure 3-7.

Now that you have the one parent Stack View, you can unset the “Extend Edges 
Under Top Bars” and Add Missing Constraints in 2 steps. This will enable the First View to 
shift automatically scroll up and down when the Tab Bar is visible.

 14. Select the First View Controller and uncheck Extend  
Edges – Under Top Bars, as shown in Figure 3-8.

Now we can apply the “Add Missing Constraints” tool to our View Controller and all 
our controls will be positioned, as we want in our view.

 15. Add Missing Constraints to the First View Controller, as shown 
in Figure 3-9.

Figure 3-7. Increasing the Horizontal Spacing of the Stack Views

Figure 3-8. Uncheck Extend Edges – Under Top Bars



Chapter 3 ■ StaCk ViewS and the FoCuS engine 

29

Congratulations! You did it. Run the app now so you can see how the two constraints 
for the Stack View place all five labels where you want them. More importantly, if you add 
other controls to the view, you only need to update the constraints for the parent stack, 
not all five labels (see Figure 3-10).

Figure 3-9. Adding Missing Constraints to our First Scene

Figure 3-10. The Weather App with Stack Views



Chapter 3 ■ StaCk ViewS and the FoCuS engine 

30

The Focus Engine
With tvOS there are no tap or touch gestures, instead Apple provides the Focus Engine.

According to Apple, “the process within the UIKit that controls focus and focus 
movement is called the focus engine. The user controls focus through the remote and game 
controllers. The focus engine listens for incoming focus-movement events from all these 
input devices. When an event comes in, it automatically determines where focus should 
update and notifies the app. This system helps to create a consistent user experience across 
apps, provides automatic support for all current and future input methods in every app, 
and helps developers concentrate on implementing their app’s unique behavior rather than 
defining or reinventing basic navigation. Only the focus engine can update focus. There is 
no API for directly setting the focused view or moving focus in a certain direction. The focus 
engine only updates focus if the user sends a movement event, if the system requests an 
update, or if the application requests an update.”

The great thing about the focus engine is that it looks at the interface layout and 
handles all the work when moving the focus from one item to another.

There are many new functions and properties available to control the 
way focus is handled within tvOS apps. Many of these are defined by the 
UIFocusEnvironment protocol, which the UIViewController, UIView, UIWindow, and 
UIPresentationController classes automatically conform to. There are also several 
methods contained in the UITableViewDelegate and UICollectionViewDelegate 
protocols that can be used to control the focus within your app.

A Focus Engine Example
Let’s say you wanted to skip focus for one of the cities in our weather app as the user 
scrolls through the city list with their remote. You could add some code to do this. Let’s 
add the code to skip the focus of the second city in the Table View, Dallas. Add the code as 
shown in Listing 3-1 starting at line 58 in the FirstViewController.swift.

Listing 3-1. Adding :canFocusRowAtIndexPath: method

58      func tableView(tableView: UITableView, canFocusRowAtIndexPath 
indexPath: NSIndexPath) -> Bool {

59         if indexPath.row == 1 {
60             return false
61         }
62         return true
63     }

Here you implemented the UItableView(_:canFocusRowAtIndexPath:) method 
to return false when the indexPath.row is equal to 1. Otherwise you would return true. 
The UItableView(_:canFocusRowAtIndexPath:) delegate method determines whether 
specific rows can be can obtain focus.

When you run the app now, you’ll notice that when you try to navigate the rows  
in the Table View, the Dallas row is skipped because you implemented the  
UItableView(_:canFocusRowAtIndexPath:) method.



Chapter 3 ■ StaCk ViewS and the FoCuS engine 

31

Summary
In this chapter you learned how Stack Views and the focus engine work. Stack Views are 
available in iOS and tvOS, but the focus engine is only available in tvOS. The Focus Engine 
is available only for tvOS because we can’t tap on our TVs.

Stack Views can save lots of time during the development lifecycle of an app. 
Understanding the focus engine will enable you to add to the user’s interface experience 
as you create your tvOS applications.

In the next few chapters, we will be exploring some of the more common Apple TV 
user interface elements while building a Photo Gallery application.

Exercises
 1. Modify the Stack Views so the Temp and Weather labels are 

aligned and laid out more consistently.

 2. Add Constraints within the Stack Views for better readability.

 3. Disable more than one city in the Table View.

 4. Add a button to the First Scene and make the button have 
focus when the app starts. The button doesn’t need to do 
anything, other than just have focus when the app starts.



33

Chapter 4

Creating a Photo Gallery App

For the next few chapters, we will be exploring some of the more common Apple TV user 
interface elements while building a Photo Gallery application. Most of the user interface 
elements will be familiar to you if you are an experienced iOS developer, but the way 
that the user interacts with them is somewhat different since you cannot walk up to your 
television and start tapping and swiping on the screen. (Not yet, anyway!)

Page View Controllers
The first user interface element that you will be exploring is the Page View Controller.  
The Page View Controller consists of a number of full-screen views that the user navigates 
through by swiping left or right between them. A common component of the Page View 
Controller is the Page Control, which is a series of horizontal white dots along the bottom 
of the views to indicate both the number of pages available as well as which page the user 
is currently viewing. An example of a Page View Controller containing a number of  
full-screen images is shown in Figure 4-1.

Figure 4-1. An example of a Page View Controller and its associated Page Control



Chapter 4 ■ Creating a photo gallery app

34

From the Page Control near the bottom, you can see that there are five pages in this 
Page View Controller, and the user is currently looking at page number three.

For the Photo Gallery app, you are going to create an app consisting primarily of a 
Page View Controller that will present the user with a series of full-screen Image View 
pages. With each page containing a different photo, this will really take advantage of the 
full 1080p high-definition screen available to an Apple TV app.

Creating the Photo Gallery App
 1. To get started creating the Photo Gallery app, open Xcode and 

select File ➤ New ➤ Project.

 2. Next, choose Application under tvOS, then Single View 
Application, as shown in Figure 4-2.

Figure 4-2. Creating a new Single View Application tvOS project

 3. After clicking Next, enter Photo Gallery for the Product Name 
and choose Swift for the Language, as shown in Figure 4-3.



Chapter 4 ■ Creating a photo gallery app

35

 4. Click Next again and choose a location (for example, your 
Desktop or Documents folder) where you would like to save 
the project, then click Create.

You should now be looking at your newly created Photo Gallery project, as shown in 
Figure 4-4.

Figure 4-3. Creating the Photo Gallery Project



Chapter 4 ■ Creating a photo gallery app

36

A Little Project Cleanup
Now that you have created your project, you first have to do a little cleanup. Since this app 
will be built around a Page View Controller, you don’t need the default View Controller 
that was created with the project.

 1. To remove the default View Controller, first right-click  
(or Control-click) the ViewController.swift file in the Project 
navigator and select Delete, as shown in Figure 4-5, followed 
by Move to Trash when prompted.

Figure 4-4. The newly created Photo Gallery project



Chapter 4 ■ Creating a photo gallery app

37

 2. Next, you need to select the Main.storyboard file and then 
select the View Controller scene as shown in Figure 4-6.

Figure 4-5. Removing the default View Controller

Figure 4-6. Selecting the View Controller scene



Chapter 4 ■ Creating a photo gallery app

38

 3. To delete the scene, either press the Delete key on your 
keyboard or choose Edit ➤ Delete from the application menu.

Now that the default View Controller has been removed, it is time to add the Page 
View Controller to the project.

Adding the Page View Controller
 1. Right-click (or Control-click) the Photo Gallery group in the 

Project navigator and select New File.

 2. Select Source under tvOS, then select Cocoa Touch Class, as 
shown in Figure 4-7.

Figure 4-7. Adding a new Cocoa Touch Class to the project

 3. Click Next, select UIPageViewController from the Subclass 
drop-down list, and enter PageViewController as the Class 
name.

 4. Make sure Swift is selected as the Language (as shown in 
Figure 4-8), and click Next, followed by Create to add it to the 
project.

www.allitebooks.com

http://www.allitebooks.org


Chapter 4 ■ Creating a photo gallery app

39

Now that you have added the PageViewController class, you need to add a Page 
Content View Controller to the project to handle displaying the pages of images from 
within the Page View Controller itself.

 1. Right-click (or Control-click) the Photo Gallery group in the 
Project navigator to add another New File to the project,  
but this time, select UIViewController from the Subclass  
drop-down list and name the class PageContentViewController.

Adding Scenes to the Interface Builder Canvas
Now that you have added the PageViewController and PageContentViewController 
classes to the project, the next step is to add the associated scenes to the Main.storyboard 
file and associate them with your two new classes.

 1. First, select the Main.storyboard file from the Project 
navigator to view its empty canvas.

 2. Select the Object library in the Utilities area of Xcode and drag 
a Page View Controller onto the canvas.

Figure 4-8. Adding the new PageViewController class to the project



Chapter 4 ■ Creating a photo gallery app

40

 3. Select the Page View Controller and choose the Attributes 
inspector from the Utilities area and check the Is Initial View 
Controller check box (as shown in Figure 4-9) to indicate that 
this is the first view controller that will be loaded when the 
app is launched.

 ■ Note in tvoS, the scenes within a storyboard are large, each the size of a full 1080p 
television screen. this can make it difficult to navigate a storyboard containing multiple 
scenes. to remedy this, you can zoom in and out of a storyboard by pressing Command + 
and Command –, respectively.

 4. Next, select Scroll from the Transition Style drop-down 
list instead of Page Curl (as shown in Figure 4-10) to cause 
the Page View Controller to show the Page Control with its 
horizontal white dots, as shown previously in Figure 4-1.

Figure 4-9. Adding a new Page View Controller to the Main.storyboard and setting it as 
the Initial View Controller



Chapter 4 ■ Creating a photo gallery app

41

 5. Finally, with the Page View Controller scene still selected, 
select the Identity inspector in the Utilities area and set the 
Class to PageViewController, as shown in Figure 4-11.

Figure 4-10. Setting the Transition Style to Scroll

Figure 4-11. Setting the Page View Controller scene class to PageViewController



Chapter 4 ■ Creating a photo gallery app

42

Now that you have added the Page View Controller scene to the Main.storyboard, 
you need to add an additional View Controller for the PageContentViewController class.

 1. Drag and drop a View Controller from the Object library onto 
the canvas underneath the Page View Controller scene.

 2. Select the new View Controller and set both the Class 
and the Storyboard ID to be PageContentViewController 
in the Identity inspector of the Utilities area as shown in 
Figure 4-12. (Setting the Storyboard ID of the Page Content 
View Controller will allow you to instantiate instances of it 
programmatically later on in the chapter.)

Figure 4-12. Setting the Page Content View Controller scene class and Storyboard ID to 
PageContentViewController

Now that you have the Page View Controller and Page Content View Controller 
scenes added to the Main.storyboard, you need to add the Image View to the Page 
Content View Controller to actually display the photos for our Photo Gallery.

 ■ Note Before adding the image View to the page Content View Controller scene, you will 
need to zoom back in again to 100% if you have previously zoomed out. the easiest way to 
do this is to hold down the Control and Command keys and press =. you can also right-click 
(or Control-click) anywhere on the empty blank space of the canvas and choose Zoom to 
100%.



Chapter 4 ■ Creating a photo gallery app

43

 1. Drag and drop an Image View onto the Page Content View 
Controller scene, as shown in Figure 4-13.

Figure 4-13. Adding an Image View to the Page Content View Controller scene

Since you are going to want the Image View to fill the entire screen, you will want 
to add some auto layout constraints to the Image View to pin it to the edges of the Page 
Content View Controller.

 1. With the Image View selected, click the Pin Tool button in the 
layout bar at the bottom of the canvas.

 2. Uncheck the Constrain to margins check box.

 3. Select Items of New Constraints from the Update Frames 
drop-down list.

 4. Add the four constraints shown in Figure 4-14.



Chapter 4 ■ Creating a photo gallery app

44

Now that the Image View fills the entire Page Content View Controller, the last thing 
you need to do is create an outlet for the Image View in the PageContentViewController.
swift file.

 1. Select the Page Content View Controller, and then click the 
Assistant editor icon  to also open the 
PageContentViewController.swift file, as shown in Figure 4-15.

Figure 4-14. Adding constraints to the Image View



Chapter 4 ■ Creating a photo gallery app

45

 2. You may also want to hide the Utilities area temporarily by 
clicking the  button in the top-right corner of Xcode to give 
yourself more room to work.

 3. Zoom the storyboard canvas back to 100% if zoomed out, and 
then right-click (or Control-click) and drag from the Image 
View to the first line within the PageContentViewController 
class definition to add a UIImageView outlet named 
imageView, as shown in Figure 4-16.

Figure 4-15. Viewing the Page Content View Controller in the Assistant editor



Chapter 4 ■ Creating a photo gallery app

46

Now that the Image View is connected to the imageView outlet, the scene work in 
Interface Builder is complete. You can now re-select the Standard editor (by clicking the 

 icon in the top-right corner of Xcode) and turn your attention to adding the required 
data model structures to the project for the Photo Gallery app.

Adding the Photo and Album Data Model 
Structures
Since the purpose of a Photo Gallery app is to display a collection of photos, you are going 
to want to represent each of those photos using a custom data structure in order to keep 
things as clean and organized as possible. You are also going to create an Album structure 
to store a collection of related Photos. The completed app will allow the user to browse 
through an album of photos using the Page View Controller you have already created.  
So let’s get started!

First, let’s start by creating a Model group for these new structures under the Photo 
Gallery group in the Project navigator.

 1. Right-click (or Control-click) the Photo Gallery group, select 
New Group, and name it Model.

 2. Right-click (or Control-click) on the Model group and select 
New File.

Figure 4-16. Adding the imageView outlet to the PageContentViewController class



Chapter 4 ■ Creating a photo gallery app

47

 3. Select Source under tvOS and then select Swift File.

 4. Click Next and then name the file Photo.swift and then click 
Create.

Add the following code into the newly created Photo.swift file:

1       import Foundation
2
3       struct Photo {
4           var name: String = ""
5
6           init(name: String) {
7               self.name = name
8           }
9       }

This Swift Photo structure contains a single property, a String called name (Line 4), 
which will store the name of the photo associated with it.

Next, add another Swift File called Album.swift and add to it the code below:

   1      import Foundation
 2
 3      struct Album {
 4          var name: String = ""
 5          var photos: [Photo] = []
 6
 7          init(name: String, photoNames: [String]) {
 8              self.name = name
 9              for photoName in photoNames {
10                  self.photos += [Photo(name: photoName)]
11              }
12          }
13      }

The Album structure also contains a String name property (Line 4) as well as an array 
of Photo structures called photos (Line 5) that make up the contents of the album.

The Album structure also has a designated initializer (Line 7) that takes in the name 
of an album as well as an array of photo name Strings. The array of photo name Strings 
is then used to create the photos array of Photo structures when the Album is initialized 
(Lines 9-11).



Chapter 4 ■ Creating a photo gallery app

48

Adding the Photo Image Files to the Asset 
Catalog
Now that you have created the Photo and Album data model structures, next you are 
going to add the actual photo image files to the project.

The best way to add images to an Xcode project is by adding them to an asset catalog. 
Asset catalogs simplify the organization and management of images in your app. When 
you created the Photo Gallery project, a default asset catalog named Assets.xcassets was 
created automatically.

 1. To add the photo image files to the asset catalog, first click the 
Assets.xcassets folder in the Project navigator. By default, the 
Assets.xcassets contains an App Icon & Top Shelf Image folder, 
as well as a LaunchImage image, as shown in Figure 4-17.

Figure 4-17. The default Assets.xcassets asset catalog

To add the photo image files to the asset catalog, first download the image files, 
as discussed in the Introduction to this book. After they have been downloaded and 
unzipped, simply drag and drop the Animals folder into the asset catalog set list, as 
shown in Figure 4-18.



Chapter 4 ■ Creating a photo gallery app

49

Adding images to an asset catalog automatically copies the images to the project, so 
once they have been added, feel free to delete the original files you downloaded.

By default, when images are added to an asset catalog, they are added for All 
Universal devices, as shown in Figure 4-19. This means that a single image in an asset 
catalog can support multiple files at different resolutions (1x, 2x, 3x) for the various Apple 
devices available.

Figure 4-18. Adding the Animals folder of images to the asset catalog



Chapter 4 ■ Creating a photo gallery app

50

You don’t need to support multiple resolutions as you are developing an Apple 
TV application, so for each of the images in the Animals folder, check the TV OS Apple 
TV check box, uncheck the All Universal check box, and then drag the image from the 
Unassigned spot to the 1x Apple TV spot, as shown in Figure 4-20.

Figure 4-19. By default, images added to an asset catalog are added for All Universal 
devices



Chapter 4 ■ Creating a photo gallery app

51

Now that the photo image files have been added to the project, you can start filling 
in the details of the PageViewController and PageContentViewController classes. You are 
well on our way to finishing up this app!

Completing the Photo Gallery App
The only changes you have made to the PageContentViewController class up until this 
point was to add the UIImageView outlet earlier in the chapter. You still need to make a 
few more changes to complete the functionality of the Page Content View Controller.

After selecting the PageContentViewController.swift file from the Project navigator, 
add the following two lines to the beginning of the class definition:

1       var index: Int = 0
2       var photoName: String = ""

Since there will be multiple instantiations of the PageContentViewController class 
(one for each page in the Page View Controller), you will want each Page Content View 
Controller to keep track of both its page index (Line 1) and the name of its photo (Line 2). 
The Page View Controller will initialize these properties when it creates the Page Content 
View Controller.

Figure 4-20. Reassigning all of the Universal images to Apple TV images in the asset 
catalog



Chapter 4 ■ Creating a photo gallery app

52

Finally, add the following lines to the end of the viewDidLoad method:

1       if let image = UIImage(named: self.photoName) {
2           self.imageView.image = image
3       }

This initializes the Image View, loading in the photo represented by the photoName 
property that was set by the Page View Controller when it created the Page Content View 
Controller.

The final changes you need to make to complete the Photo Gallery app are 
within the main PageViewController class. Select the PageViewController.swift 
file in the Project navigator and have the PageViewController class adopt the 
UIPageViewControllerDataSource protocol by editing the first line of the class definition 
to match the following line of code:

1        class PageViewController: UIPageViewController, 
UIPageViewControllerDataSource {

Next, add the following properties at the beginning of the class definition:

1       var pageIndex: Int = 0
2       var album = Album(name: "Animals",
3                   photoNames: ["Cows", "Dog",
4                                "Horses", "Seagull", "Sheep"])

The pageIndex property (Line 1) keeps track of which page the Page View Controller 
is currently displaying, and the album property (Lines 2-4) is the Album structure that 
provides the Photos information to the Page Content View Controllers.

Next, add the following lines to the end of the viewDidLoad method:

1       self.dataSource = self
2       if let pageContentViewController =
3           self.pageContentViewController(self.pageIndex) {
4              self.setViewControllers([pageContentViewController],
5              direction: .Forward, animated: true, completion:
6              nil)
7       }

Setting itself as its own data source (Line 1) means that it has adopted the 
UIPageViewControllerDataSource protocol, and it will then be able to provide the data 
necessary to display the various Page Content View Controller pages. After setting the 
data source, you generate the initial Page Content View Controller (Lines 2-3) using 
the pageIndex property (which has been initialized to 0), and initialize the Page View 
Controller to display the new Page Content View Controller with a Forward navigation 
direction (Lines 4-6).



Chapter 4 ■ Creating a photo gallery app

53

Now that you have identified the PageViewController as its own data source, you 
need to add the following methods required by the UIPageViewControllerDataSource 
protocol to the end of the PageViewController class definition:

 1       func pageViewController(pageViewController: UIPageViewController, 
viewControllerBeforeViewController viewController: UIViewController) 
-> UIViewController? {

 2           if let contentViewController = viewController as? 
PageContentViewController {

 3               return self.pageContentViewController(contentViewController.
index - 1)

 4          }
 5
 6          return nil
 7      }
 8
 9       func pageViewController(pageViewController: UIPageViewController, 

viewControllerAfterViewController viewController: UIViewController) 
-> UIViewController? {

10           if let contentViewController = viewController as? 
PageContentViewController {

11               return self.pageContentViewController(contentViewController.
index + 1)

12          }
13
14          return nil
15      }

When the user is swiping back and forth between pages, these two methods are 
called to provide the Page View Controller with the page that is before or after the current 
page, depending on whether the user has swiped backward or forward, accordingly. If 
there is no page before or after the current page (depending on which direction the user 
swiped), then the methods simply return nil.

Add the next two methods at the end of the class definition for the two 
UIPageViewControllerDataSource protocol methods, which provide the data needed to 
display the Page Control:

1        func presentationCountForPageViewController(pageViewController: 
UIPageViewController) -> Int {

2           return album.photos.count
3       }
4
5        func presentationIndexForPageViewController(pageViewController: 

UIPageViewController) -> Int {
6           return self.pageIndex
7       }

The first returns the total number of pages for the Page View Controller, which in this 
case is the number of Photos contained within the Album. The second returns the current 
page index so that the Page Control knows which dot should be selected.



Chapter 4 ■ Creating a photo gallery app

54

The final method you will add to the end of the class definition is the one that returns 
the instantiated Page Content View Controllers for a specified page index:

 1       func pageContentViewController(index: Int) -> 
PageContentViewController? {

 2           if let contentViewController = self.storyboard?.
instantiateViewControllerWithIdentifier 
("PageContentViewController") as? PageContentViewController 
where index >= 0 && index < album.photos.count {

 3              self.pageIndex = index
 4              contentViewController.index = index
 5               contentViewController.photoName = self.album.photos[index].

name
 6              return contentViewController
 7          }
 8
 9          return nil
10      }

If an invalid index is passed that is beyond the number of photos within the album, 
the method simply returns nil (Line 9). If the index is valid, then the pageIndex property 
is updated with the new index (Line 3) and a new Page Content View Controller is 
created (Line 2) and initialized (Lines 4-5) with the index and the photo name from the 
associated Photo in the Album before it is returned (Line 6).

That’s it! If you run the app by clicking the Build and run button in Xcode, it should 
run in the Apple TV simulator and display a full-screen image of a number of cows 
grazing, as shown in Figure 4-21.

Figure 4-21. The completed Photo Gallery app



Chapter 4 ■ Creating a photo gallery app

55

Using the Apple TV Remote in the Simulator will allow you to swipe between the 
five different photos from the Animals album. Tapping on the left and right sides of the 
remote will allow you to scroll through the images as well.

Summary
In this chapter you created a Photo Gallery app to view multiple high-resolution photo 
image files using a Page View Controller. This has given you a solid starting point for 
learning more about the different User Interface controls available in tvOS.

In the next chapter we are going to expand on the Photo Gallery app by adding the 
ability for the user to choose from a list of multiple albums, and then browse the photos 
within them. We are also going add a custom static Top Shelf image to further showcase 
the contents of the app from the Home screen of the Apple TV.

Exercises
 1. Try changing the Transition Style of the Page View Controller 

from Scroll to Page Curl and see what effect that has on the 
app. Try slowly swiping back and forth (and even up and 
down) to see how the Apple TV responds. Which style do you 
prefer?

 2. Try adding some of your own 1080p images to the project to 
make your own customized Photo Gallery app.



57

Chapter 5

Adding an Album Browser  
to the Photo Gallery App

In Chapter 4, you started the development of a Photo Gallery Apple TV app that used a 
Page View Controller to allow the user to browse through a single album of full-screen 
photos. In this chapter, we are going to expand on that project by adding the ability for the 
user to choose from a list of multiple albums and then browse the photos within them. 
We are also going add a custom static Top Shelf image to further showcase the contents of 
the app from the Home screen of the Apple TV.

Table View Controllers
Table View Controllers are a common user interface element used in a number of Apple’s 
platforms, and they provide a simple way of presenting a list of data to the user in table 
format. We are going to use the Table View Controller to allow the user to view and 
choose from a number of photo albums to browse through, as shown in Figure 5-1.

Figure 5-1. A Table View Controller containing a list of photo albums

http://dx.doi.org/10.1007/978-1-4842-1715-3_4


Chapter 5 ■ adding an album browser to the photo gallery app 

58

A Table View Controller is in charge of populating and capturing user interface 
events from its embedded Table View. Each row within a Table View is referred to as a 
Table View Cell. The Table View Cells in Figure 5-1 each contain an image (the first image 
of the album), a main title (the name of the album), and a subtitle (the names of the 
images in the album). There are a number of default Table View Cell templates available, 
or you can even create your own custom templates in Interface Builder. For this project, 
we are going to use one of the default templates, as it will suit our needs appropriately.  
No point in doing extra work when you don’t need to!

Adding a Table View Controller to the Photo 
Gallery App
You are going to want the list of albums to be the first thing that the user sees when they 
launch the app, so let’s start by:

 1. Right-clicking (or Control-clicking) the Photo Gallery group in 
the Project navigator and selecting New File.

 2. Next, select Source underneath tvOS, and then Cocoa Touch 
Class, as shown in Figure 5-2.

Figure 5-2. Adding a new Cocoa Touch Class to the project



Chapter 5 ■ adding an album browser to the photo gallery app 

59

 3. Click the Next button, select UITableViewController from the 
Subclass drop-down list, and enter TableViewController as 
the Class name.

 4. Make sure Swift is selected as the Language (as shown in 
Figure 5-3), and click Next, followed by Create to add it  
to the project.

Now that you have created a TableViewController class, you are going to want to:

 1. Drag and drop a Table View Controller scene onto the  
Main.storyboard canvas to the left of the Page View Controller.

 2. With the new Table View Controller scene selected, check the 
Is Initial View Controller check box, as shown in Figure 5-4.

Figure 5-3. Adding the TableViewController class to the project



Chapter 5 ■ adding an album browser to the photo gallery app 

60

 3. Next, with the Table View Controller scene still selected, select the 
Identity inspector in the Utilities area and change the Class to be 
the newly created TableViewController, as shown in Figure 5-5.

Figure 5-4. Adding a Table View Controller scene to the Main.storyboard canvas and 
making it the Initial View Controller

Figure 5-5. Setting the Table View Controller scene class to TableViewController



Chapter 5 ■ adding an album browser to the photo gallery app 

61

Now that the Table View Controller has been added to the project, you need to 
configure the Table View Cell to display the appropriate information for each photo album.

 1. First, click the Document Outline button  in the  
bottom-left corner of the canvas to show the list of scenes in 
the Main.storyboard, as shown in Figure 5-6.

 2. Next, expand the Table View item underneath the Table View 
Controller Scene by clicking the small gray rectangle next to it, 
revealing the Table View Cell, as shown in Figure 5-7.

Figure 5-6. Viewing the list of Main.storyboard scenes within the Document Outline



Chapter 5 ■ adding an album browser to the photo gallery app 

62

Figure 5-7. Expanding the Table View to reveal the Table View Cell

 3. Select the Table View Cell from within the Document Outline 
and then select the Attributes inspector from the Utilities area.

 4. Next, select Subtitle from the Style drop-down list and enter 
Cell as the Identifier, as shown in Figure 5-8.



Chapter 5 ■ adding an album browser to the photo gallery app 

63

The Subtitle style is the default Table View Cell template that provides all of the user 
interface elements you need (image, main title, and subtitle) to display the list of photo 
albums. The Cell Identifier will be used in the TableViewController class code to identify 
which Table View Cell in the Table View Controller scene to use when populating the 
Table View. If you had more than one type of Table View Cell in the Table View, you would 
just need to give it a different Identifier.

The last thing you need to do in the storyboard is to add a Show segue between the 
Table View Cell and the Page View Controller so that when a user selects a particular 
photo album from the list they are able to browse through all of the photos within it.

 1. To add the Show segue, first expand the Page View Controller 
Scene to reveal the Page View Controller.

 2. Next, right-click (or Control-click) the Table View Cell and 
drag it to the Page View Controller, as shown in Figure 5-9.

Figure 5-8. Configuring the Table View Cell



Chapter 5 ■ adding an album browser to the photo gallery app 

64

 3. Release the mouse button and choose Show under Selection 
Segue, as shown in Figure 5-10.

Figure 5-10. Selecting the Show segue

Figure 5-9. Adding a segue between the Table View Cell and the Page View Controller



Chapter 5 ■ adding an album browser to the photo gallery app 

65

 4. Select the new Show segue that was added to the Table View 
Controller Scene in the Document Outline and change its 
Identifier to SelectAlbumSegue in the Attributes inspector, as 
shown in Figure 5-11.

That completes all of the changes you need to make to the Main.storyboard, so now 
we can turn our attention to writing some code!

Adding the Gallery Data Model Structure
In Chapter 4, you created the data model structures to represent both a single Photo, as 
well as a collection of Photos within an Album. Next, you are going to define a Gallery 
structure to represent a collection of Albums. That way you will be able to browse through 
the Gallery, choose an Album, and then browse through the Album’s photos.

 1. To start, right-click (or Control-click) the Model group in the 
Project navigator and choose New File.

 2. Select Source under tvOS and then select Swift File.

 3. Click Next, name the file Gallery.swift, and then click Create.

Figure 5-11. Setting the Show segue identifier

http://dx.doi.org/10.1007/978-1-4842-1715-3_4


Chapter 5 ■ adding an album browser to the photo gallery app 

66

Add the following code into the newly created Gallery.swift file:

 1      import Foundation
 2
 3      struct Gallery {
 4          var albums: [Album] {
 5              return [
 6                   Album(name: "Animals", photoNames: ["Cows", "Dog", 

"Horses", "Seagull", "Sheep"]),
 7                   Album(name: "Cities", photoNames: ["Bridge", 

"Fireworks", "Traffic", "Village", "Windows"]),
 8                   Album(name: "Landscapes", photoNames: ["Coast", "Field", 

"Lake", "Lighthouse", "Road"])
 9              ]
10          }
11      }

The Swift Gallery structure contains a single computed property, an array of Albums 
called albums (Lines 4-10) that consists of three albums, each containing five photos.

Adding the Cities and Landscapes Image Files to 
the Asset Catalog
Now that you have defined the Gallery structure that consists of three different Albums, 
each containing five different Photos, you need to add those photo image files to the asset 
catalog, as you did in Chapter 4.

 1. After downloading and unzipping the associated project files 
for this chapter, drag and drop the Cities and Landscapes 
folders containing the image files into the asset catalog to add 
them to the project.

 2. Next, select each newly added image and change it from a 
Universal image to an Apple TV image, as you did in Chapter 4.  
Once completed, your asset catalog should look similar to that 
shown in Figure 5-12.

http://dx.doi.org/10.1007/978-1-4842-1715-3_4
http://dx.doi.org/10.1007/978-1-4842-1715-3_4


Chapter 5 ■ adding an album browser to the photo gallery app 

67

Completing the Photo Gallery App
Now that you have defined the Gallery structure and added the additional photo image 
files to the project, the last step you need to take is to finish implementing the Table View 
Controller that displays the list of photo albums for the user to choose from.

 1. Click the TableViewController.swift file in the Project 
navigator and add the following line at the top of the 
TableViewController class declaration:

1       let gallery = Gallery()

Adding the gallery property to the Table View Controller will provide it with the 
data needed to display the list of photo albums to the user.

 2. Next, scroll down to the numberOfSectionsInTableView 
data source method in the TableViewController.swift file and 
change the return 0 to return 1, as there is only going to be 
one section in this table view that will contain the three rows 
of photo albums.

 3. Then, in the numberOfRowsInSection method, change the 
return value to the number of albums within the gallery, as 
shown below:

1       return self.gallery.albums.count

Figure 5-12. The asset catalog containing the Animals, Cities, and Landscapes photo albums



Chapter 5 ■ adding an album browser to the photo gallery app 

68

 4. Next, uncomment and edit the cellForRowAtIndexPath 
method to match the following:

 1       override func tableView(tableView: UITableView, 
cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {

 2           let cell = tableView.dequeueReusableCellWithIdentifier("Cell", 
forIndexPath: indexPath)

 3
 4          cell.textLabel?.text = self.gallery.albums[indexPath.row].name
 5
 6          var names = ""
 7          for photo in self.gallery.albums[indexPath.row].photos {
 8              names += photo.name + ", "
 9          }
10           names = String(names.characters.dropLast(2))    // remove the 

last two characters of the string
11          cell.detailTextLabel?.text = names
12
13           cell.imageView?.image = UIImage(named: self.gallery.albums 

[indexPath.row].photos[0].name)
14
15          return cell
16      }

The cellForRowAtIndexPath method is a Table View Data Source method that is 
called for each Table View Cell that is displayed by a Table View. The indexPath parameter 
specifies which section and row within the Table View the cell is being requested for.

In this method, you first create a new Table View Cell (Line 2) using the Cell identifier 
that you specified in Interface Builder earlier in the chapter. Next, you set the textLabel 
main title to be the name of the album for the requested row (Line 4). Then, you create a 
comma-delimited names String from the names of each of the photos by looping through 
each photo within the album (Lines 6-9) and set that to the detailTextLabel subtitle 
(Line 11).

 ■ Note  if you are wondering why you would remove the last two characters of the names 
string (line 10) before using it, it is because you are creating it by concatenating the name 
of each photo, followed by a comma and a space. since you do not want to have a comma 
and a space after the final name, you simply remove those last two characters after exiting 
the loop.

After setting the main title and subtitle strings of the cell, the final thing you need to 
initialize before returning it is the image, which you do by loading the image associated 
with the first photo in the album that is being requested (Line 13).



Chapter 5 ■ adding an album browser to the photo gallery app 

69

If you build and run the application now, you should see something similar to 
Figure 5-13.

That looks okay, but there is a lot of empty white space underneath the list of three 
photo albums. You can fix this issue by making each row taller by adding the following 
method to the TableViewController.swift file after the cellForRowAtIndexPath method:

1        override func tableView(tableView: UITableView, 
heightForRowAtIndexPath indexPath: NSIndexPath) -> CGFloat {

2           return 300
3       }

Now when you build and run the application, you should see something similar to 
Figure 5-14.

Figure 5-13. The Table View Controller showing the list of photo albums



Chapter 5 ■ adding an album browser to the photo gallery app 

70

If you select the Animals album using the Apple TV remote, everything works! The 
Animals album is displayed, and you can swipe back and forth between the photos within 
the album. Pressing the Menu button takes you back to the list of photo albums where 
you can swipe down and select either the Cities or Landscapes album and view their 
photos as well.

But wait! Selecting either the Cities or Landscapes album still takes us to the Animals 
album. Do you know why that is? What have we missed?

The reason that the Page View Controller will only show the Animals album is 
because it is still being initialized with that album when it is first created, and you have 
not yet implemented the code that passes the album selected from the Table View 
Controller on to the Page View Controller.

To do that, you need to uncomment and edit the prepareForSegue method located 
at the end of the TableViewController class declaration to contain the following:

1        override func prepareForSegue(segue: UIStoryboardSegue, sender: 
AnyObject?) {

2           if segue.identifier == "SelectAlbumSegue" {
3                if let pageViewController = segue.destinationViewController 

as? PageViewController, row = self.tableView.
indexPathForSelectedRow?.row {

4                   pageViewController.album = self.gallery.albums[row]
5               }
6           }
7       }

Figure 5-14. The Table View Controller showing the list of photo albums with a more 
acceptable amount of empty white space



Chapter 5 ■ adding an album browser to the photo gallery app 

71

Remember when you connected the Table View Cell to the Page View Controller 
with a Show segue with the SelectAlbumSegue identifier? When a user selects a Table 
View Cell, the Show segue is initiated, and the prepareForSegue method is called. In the 
method, you first check to see if the segue’s identifier is SelectedAlbumSegue (Line 2). If 
it is, you create local references to the Page View Controller and the row that was selected 
(Line 3) and initialize the album property of the Page View Controller with the album 
from the gallery that is indexed by the selected row (Line 4). That way, when the Page 
View Controller is loaded, the album property has already been initialized with the correct 
album data.

Great job! You have now completed the Photo Gallery app, giving users the ability to 
browse through a list of photo albums to view their associated full-screen photos on their 
widescreen HDTV.

One More Thing: Adding a Custom Static Top 
Shelf Image
The Photo Gallery app is now complete, but there is still something more you could do to 
improve it.

The Top Shelf is an area on the Apple TV Home screen that allows an app that is 
placed in the top row to showcase more information about itself when selected.

For example, when you select the Settings app, the Top Shelf shows a nice large 
image of the Settings gears icon, further indicating to the user which app is selected, as 
shown in Figure 5-15.

Figure 5-15. The Settings Top Shelf image



Chapter 5 ■ adding an album browser to the photo gallery app 

72

Selecting the Photo Gallery app next to it shows the default Apple TV Top Shelf 
image, as shown in Figure 5-16.

That is not very representative of the Photo Gallery app you have created. Thankfully, 
Apple has given developers the ability to add their own customized static Top Shelf 
images to their apps, giving them that additional recognition when placed in the top row 
of the Home screen.

Adding a custom static Top Shelf image is really quite easy.

 1. Simply click the Assets.xcassets asset catalog in the Project 
navigator and expand the App Icon & Top Shelf Image folder.

 2. Then, select Top Shelf Image and drag and drop the  
TopShelf.jpg image from the chapter’s downloadable content 
to the blank 1x Apple TV space, as shown in Figure 5-17.

Figure 5-16. The default Top Shelf image



Chapter 5 ■ adding an album browser to the photo gallery app 

73

Now, simply build and run the app, and then press the Menu button on the Apple 
TV remote to return to the Home screen. The Top Shelf image should now be displayed 
whenever the Photo Gallery app is selected while it is located in the top row of the Home 
screen, as shown in Figure 5-18.

Figure 5-18. The Photo Gallery app with its custom static Top Shelf image

Figure 5-17. Adding a custom static Top Shelf image



Chapter 5 ■ adding an album browser to the photo gallery app 

74

That looks really great! And it is much more representative of what the Photo Gallery 
app has to offer.

Summary
In this chapter you added a Table View Controller to the Photo Gallery app to allow the 
user to select from a list of photo albums before viewing the photos using the existing 
Page View Controller from Chapter 4. You also added a custom static Top Shelf image to 
the app to give the user a better indication as to the contents and functionality of the app 
when it is selected from the top row of the Home screen.

In the next chapter, you will customize the Top Shelf even further by adding a 
scrollable collection of dynamic thumbnail images for users to choose from when 
launching the app.

Exercises
 1. Try adding some additional albums and photos to the app 

from an existing album or add new albums to the gallery.

 2. Try adding an additional navigation layer to the app, 
perhaps starting with a Table View Controller containing a 
list of different galleries. The galleries could contain albums 
organized by category, allowing the user to first choose a 
gallery before choosing an album to browse its photos.

http://dx.doi.org/10.1007/978-1-4842-1715-3_4


75

Chapter 6

Adding a Dynamic Top Shelf 
to the Photo Gallery App

The Top Shelf area of the Apple TV Home screen is a great place to provide more 
information about an app, as well as to showcase what an app has to offer to its users. At 
the end Chapter 5, you added a custom static Top Shelf image to the Photo Gallery app. In 
this chapter, you are going to customize the Top Shelf even further by adding a scrollable 
collection of dynamic thumbnail images for users to choose from, as shown in Figure 6-1.

Figure 6-1. The dynamic Top Shelf of the Photo Gallery app

Users will be able to scroll through the collection of thumbnail images to see a 
preview of all of the albums within the app. Selecting any of the thumbnail images will 
open the Photo Gallery app, taking the user to the selected full-screen photo.

http://dx.doi.org/10.1007/978-1-4842-1715-3_5


Chapter 6 ■ adding a dynamiC top Shelf to the photo gallery app

76

Application Extensions
You will add support for a dynamic Top Shelf by adding a new TV Services application 
extension that implements the TVTopShelfProvider protocol to the Photo Gallery app. 
App extensions are not apps themselves, but instead allow apps to provide additional 
functionality to the rest of the system. Apple Watch apps, custom keyboards, and Today 
widgets are some of the other examples of app extensions, specifically for iOS.

 1. To get started, launch Xcode and open the Photo Gallery 
project from Chapter 5.

 2. Next, select File ➤ New ➤ Target from the Xcode  
application menu.

 3. Select Application Extension under tvOS and choose TV 
Services Extension, as shown in Figure 6-2.

 4. Click Next and enter Photo Gallery Extension for the Product 
Name, as shown in Figure 6-3.

Figure 6-2. Adding a TV Services Extension to the Photo Gallery app

http://dx.doi.org/10.1007/978-1-4842-1715-3_5


Chapter 6 ■ adding a dynamiC top Shelf to the photo gallery app

77

 5. Click Finish and then Activate, if prompted. The Photo Gallery 
project should now include the Photo Gallery Extension 
target, as shown in Figure 6-4.

Figure 6-3. Adding the Photo Gallery Extension to the Photo Gallery app

Figure 6-4. The Photo Gallery Extension has been added to the Photo Gallery project



Chapter 6 ■ adding a dynamiC top Shelf to the photo gallery app

78

Adding Classes and Images to the Photo Gallery 
Extension
Since the app extension is a separate target from the main Photo Gallery app, you first 
need to add the classes and images that it needs to know about to generate the dynamic 
Top Shelf data.

 1. With the Photo Gallery project selected in the Project 
navigator, select the Photo Gallery Extension target and click 
the Build Phases tab, as shown in Figure 6-5.

 2. Click the triangle next to the Compile Sources item to expand 
it, as shown in Figure 6-6.

Figure 6-5. The Build Phases tab selected for the Photo Gallery Extension target



Chapter 6 ■ adding a dynamiC top Shelf to the photo gallery app

79

 3. Click the + button at the bottom of the Compile Sources list 
and add the Gallery.swift, Album.swift, and Photo.swift files, 
as shown in Figure 6-7.

Figure 6-6. The Compile Sources Build Phase of the Photo Gallery Extension target

Figure 6-7. Adding the Gallery, Album, and Photo classes to the Photo Gallery Extension

www.allitebooks.com

http://www.allitebooks.org


Chapter 6 ■ adding a dynamiC top Shelf to the photo gallery app

80

Now that the Photo Gallery Extension knows what a Gallery, Album, and Photo 
are, you just need to add the actual image files to the target so that they can be used to 
generate the thumbnail images.

 1. To add the image files to the Photo Gallery Extension, first 
right-click (or Control-click) the Photo Gallery Extension 
group, select New Group, and name it Photos.

 2. Download and unzip the associated project files for 
this chapter, and drag and drop the Animals, Cities, and 
Landscapes folders onto the new Photos group in Xcode. 
When prompted, make sure the Copy items if needed check 
box is checked, the Create groups radio button is selected, 
and the Photo Gallery Extension target check box is checked 
before clicking the Finish button, as shown in Figure 6-8.

 ■ Note in case you were wondering why the image files were not added to an asset 
Catalog in this instance, it is because the dynamic top Shelf thumbnail images need to 
be initialized using an image file Url. image file Urls are not available when images are 
packaged up in an asset catalog, so that is why you instead add them to the photo gallery 
extension target as general bundle resources.

Figure 6-8. Adding the image files to the Photo Gallery Extension target 



Chapter 6 ■ adding a dynamiC top Shelf to the photo gallery app

81

Implementing the TVTopShelfProvider Protocol
Now that the Photo Gallery Extension target contains the necessary classes and images 
needed for the dynamic Top Shelf data, it is time to generate and return that data by 
implementing the TVTopShelfProvider protocol in the ServiceProvider.swift file.

Select the ServiceProvider.swift file from the Project navigator and replace the default 
topShelfItems computed property definition with the code below:

 1      var topShelfItems: [TVContentItem] {
 2          let gallery = Gallery()
 3
 4          var albums: [TVContentItem] = []
 5
 6          // create a TVContentItem for each album in the gallery
 7          for albumIndex in 0..<gallery.albums.count {
 8              let album = gallery.albums[albumIndex]
 9
10              var photos: [TVContentItem] = []
11
12              // create a TVContentItem for each photo in the album
13              for photoIndex in 0..<album.photos.count {
14                  let photo = album.photos[photoIndex]
15
16                   guard let photoIdentifier = 

TVContentIdentifier(identifier: photo.name,  
container: nil) else { return [] }

17                   guard let photoItem = TVContentItem(contentIdentifier: 
photoIdentifier) else { return [] }

18
19                  photoItem.title = photo.name
20                   photoItem.imageURL = NSBundle.mainBundle().

URLForResource(photo.name, withExtension: ".jpg")
21                   photoItem.displayURL = NSURL(string: "photogallery:vi

ewTopShelfItem?album=\(albumIndex)&photo=\(photoIndex)")
22
23                  photos.append(photoItem)
24              }
25
26               guard let albumIdentifier = TVContentIdentifier(identifier: 

album.name, container: nil) else { return [] }
27               guard let albumItem = TVContentItem(contentIdentifier: 

albumIdentifier) else { return [] }
28
29              albumItem.title = album.name
30              albumItem.topShelfItems = photos
31



Chapter 6 ■ adding a dynamiC top Shelf to the photo gallery app

82

32              albums.append(albumItem)
33          }
34
35          return albums
36      }

The topShelfItems computed property is now going to return an array of 
TVContentItems, one for each album. Each album TVContentItem within the returned array 
is going to contain another array of TVContentItems, one for each photo within that album.

At the beginning of the topShelfItems computed property code block, you first 
create an instance of the Gallery class (Line 2) so that you can reference all of the album 
and photo data and information. Next, you loop over all of the albums in the gallery (Line 7) 
to add the associated TVContentItems to the albums array. Then, within the photos for 
loop, you will loop over all of the photos within that album (Line 13) to add the associated 
TVContentItems to the photos array.

Within the photo for loop, you first create a TVContentIdentifier using the name of 
the current photo (Lines 14-16), and then create the actual TVContentItem using that 
TVContentIdentifier (Line 17). You then set the title of the photo item to be the name 
of the photo (Line 19), so that it will be displayed underneath the thumbnail image when 
displayed in the Top Shelf, as shown in Figure 6-9.

After setting the title, you then set the imageURL (Line 20) to be the location of the 
associated image file that you copied to the Photo Gallery Extension earlier in the chapter. 
Finally, you set the displayURL (Line 21) to a specially formatted string that will be passed to 
the Photo Gallery application to identify which image thumbnail was selected from the Top 
Shelf. The displayURL string contains the photogallery scheme (which we will discuss later 
in the chapter) as well as the album and photo index values associated with the photo.

Figure 6-9. The title of the first TVContentItem in the Animals album is Cows



Chapter 6 ■ adding a dynamiC top Shelf to the photo gallery app

83

Once those three properties have been set for the current photo, the TVContentItem 
is added to the photos array at the end of the loop (Line 23).

After the photo loop is complete, the photos array contains all of the photo 
TVContentItems for the current album. Next, you create a TVContentIdentifier and 
TVContentItem for the album, just like you did for each photo (Lines 26-27). Then, you 
set the title of the TVContentItem to the album name (Line 29) so it will appear above 
each collection of image thumbnails, as shown in Figure 6-9.

After setting the topShelfItems property to be the photos array (Line 30), you add 
the completed album TVContentItem to the albums array at the end of the album loop 
(Line 32). Once you have added all of the albums to the albums array, the array is returned 
(Line 35).

Phew! That was quite a lot of code, but you got through it! Now, if you attempt to 
build and run the app extension, you will be presented with the dialog window shown 
in Figure 6-10. Because app extensions are not apps that can be run independently, you 
need to select Top Shelf from the list to see your changes reflected in the Top Shelf of your 
Apple TV.

Figure 6-10. Selecting which app to run with the Photo Gallery Extension



Chapter 6 ■ adding a dynamiC top Shelf to the photo gallery app

84

After clicking Run, you will see the static Top Shelf image you added in Chapter 5 
replaced with the dynamic thumbnails for all of the albums and photos contained within 
the gallery. Swiping up on the Apple TV remote when the Photo Gallery app is selected 
allows you to focus on the Top Shelf items and swipe back and forth between all of the 
available photos.

Launching the Photo Gallery App from a Top Shelf 
Thumbnail Image
Browsing through all of the thumbnails is great, but what we really want to do is click 
on one of those thumbnails to view the selected image within the Photo Gallery app. To 
allow the Photo Gallery Extension to do this, you are first going to have to make some 
changes to the main Photo Gallery app.

 1. In the Project navigator, select the Info.plist file that is within 
the Photo Gallery group, not the one within the Photo Gallery 
Extension group, as shown in Figure 6-11.

 2. Once the Info.plist has been selected, hover the mouse 
pointer over the last item in the list, click the + button that 
appears to add a new key to it, and choose URL types from the 
list, as shown in Figure 6-12.

Figure 6-11. Selecting the Info.plist of the Photo Gallery app

http://dx.doi.org/10.1007/978-1-4842-1715-3_5


Chapter 6 ■ adding a dynamiC top Shelf to the photo gallery app

85

 3. After adding the URL types key to the Info.plist, click the  
small gray triangle next to it to expand it, revealing the Item  
0 subkey. 

 4. Then click the small gray triangle next to the Item 0 key to 
reveal the URL identifier subkey underneath it.

 5. Click in the Value column of the URL identifier item and 
change the value to Photo Gallery URL, as shown in  
Figure 6-13.

Figure 6-12. Adding the URL types item to the Info.plist



Chapter 6 ■ adding a dynamiC top Shelf to the photo gallery app

86

 6. Next, click the + button from within the URL identifier item 
and select URL Schemes from the list, as shown in Figure 6-14.

Figure 6-14. Adding the URL Schemes subkey to the Info.plist

Figure 6-13. Changing the URL identifier to Photo Gallery URL



Chapter 6 ■ adding a dynamiC top Shelf to the photo gallery app

87

 7. Click the gray triangle next to the URL Schemes key to expand 
it to reveal its Item 0 subkey. Change the value of Item 0 to be 
photogallery, as shown in Figure 6-15.

Figure 6-15. Adding the photogallery URL Scheme to the Info.plist

Adding the photogallery URL Scheme to the Info.plist registers that scheme  
(as mentioned earlier in the chapter) with the system. Now, whenever any URL that 
begins with photogallery is opened on the Apple TV, it will be opened by the Photo 
Gallery app.

Build and run the app extension and select one of the thumbnails from the Top Shelf. 
The Photo Gallery app is now launched, but the image that was selected is not yet being 
displayed. To accomplish this, you first need to tell the Photo Gallery application how to 
handle the URL information that is passed to the app when it is opened from a Top Shelf 
thumbnail image.



Chapter 6 ■ adding a dynamiC top Shelf to the photo gallery app

88

Handling URLs
When an Apple TV app is launched from a matching URL scheme, the URL is passed to a 
UIApplicationDelegate protocol method called openURL. Open the AppDelegate.swift file 
from the Project navigator and add the follow code to the end of the AppDelegate class 
declaration:

 1       func application(app: UIApplication, openURL url: NSURL, options: 
[String : AnyObject]) -> Bool {

 2          var albumIndex: Int?
 3          var photoIndex: Int?
 4
 5          // extract the album and photo index from the url
 6           guard let components = NSURLComponents(URL: url, 

resolvingAgainstBaseURL: false) else { return true }
 7          guard let queryItems = components.queryItems else { return true }
 8          for queryItem in queryItems {
 9               if let valueString = queryItem.value, value = 

Int(valueString) {
10                  if queryItem.name == "album" {
11                      albumIndex = value
12                  }
13                  else if queryItem.name == "photo" {
14                      photoIndex = value
15                  }
16              }
17          }
18
19          //  if the album and photo index values have been set, view that 

photo
20          if albumIndex != nil && photoIndex != nil {
21              //  pass the album and photo index values to the 

TableViewController
22               if let tableViewController = window?.rootViewController as? 

TableViewController {
23                   tableViewController.viewSelectedTopShelfPhoto( 

photoIndex!, inAlbum: albumIndex!)
24              }
25          }
26
27          return true
28      }

In this method, you first use the URL passed in from the Top Shelf TVContentItem 
to create an NSURLComponents object (Line 6) in order to extract the albumIndex and 
photoIndex values from the URL string (Lines 8-17). Then, if both of those values have 
been set (Line 20), you find the TableViewController object from the main app window 
(Line 22) and pass it to its viewSelectedTopShelfPhoto method (Line 23).



Chapter 6 ■ adding a dynamiC top Shelf to the photo gallery app

89

Completing the Photo Gallery App
Now you need to make the appropriate changes to the TableViewController 
class to handle this new method being called from the App Delegate. Open the 
TableViewController.swift file and add the following line of code to the top of the class 
declaration, beneath the gallery property declaration:

1        var selectedTopShelfItem: (albumIndex: Int?, photoIndex: Int?) = 
(nil, nil)

This defines a tuple property containing two integers, one for the album index and 
one for the photo index. Initially both of the index values are nil, indicating that a Top 
Shelf item has not been selected.

Next, define the viewSelectedTopShelfPhoto method by adding the following code 
to the end of the class declaration:

 1      func viewSelectedTopShelfPhoto(photo: Int, inAlbum album: Int) {
 2          // save the selected top shelf album photo index values
 3          self.selectedTopShelfItem = (album, photo)
 4
 5          // if I am not the presented view controller, pop back
 6          if let presentedViewController = self.presentedViewController {
 7               presentedViewController.dismissViewControllerAnimated(false, 

completion: nil)
 8          }
 9          else {
10              self.checkSelectedTopShelfItem()
11          }
12      }

In this method, you first store the album and photo index values within the new 
selectedTopShelfItem tuple property (Line 3). Then, you check to see what the current 
state of the app’s view controller hierarchy is. If a user has previously left the app viewing 
another full-screen image (Line 6), then you would want to dismiss the presented 
PageViewController object (Line 7) before viewing the newly selected photo. If there is no 
presentedViewController set (Line 9), then that means there is no PageViewController 
object to dismiss, so the user can continue to view the selected photo (Line 10).

Next, add the following code to the end of the class declaration to check whether a 
Top Shelf item has been selected, and if so, performing the appropriate action:

1      func checkSelectedTopShelfItem() {
2          if let albumIndex = self.selectedTopShelfItem.albumIndex {
3               self.tableView.selectRowAtIndexPath(NSIndexPath(forRow: 

albumIndex, inSection: 0), animated: false,  
scrollPosition: .None)

4               self.performSegueWithIdentifier("SelectAlbumSegue", sender: nil)
5          }
6      }



Chapter 6 ■ adding a dynamiC top Shelf to the photo gallery app

90

In this method, if the album index within the selectedTopShelfItem is set (Line 2),  
you can then select that row in the table view (Line 3) and manually perform the 
SelectAlbumSegue that is used when a user clicks one of the albums from the list to 
browse the photos within it (Line 4).

When a user selects a Top Shelf image and the app is opened, depending on its 
previous state, a PageViewController object may need to be dismissed. If that is the 
case, the app needs to be notified when that process is complete so that it can continue 
to view the selected Top Shelf item photo. The easiest way to do this is to override the 
Table View Controller’s viewDidAppear method by adding the following code to the 
TableViewController.swift file after the viewDidLoad method declaration:

1       override func viewDidAppear(animated: Bool) {
2           super.viewDidAppear(animated)
3           self.checkSelectedTopShelfItem()
4       }

Now, whenever the Table View Controller appears, the selectedTopShelfItem is 
checked (Line 3).

The final change you have to make is to pass the selected photo index to the 
PageViewController object from within the prepareForSegue method of the Table View 
Controller. Add the following changes to the TableViewController.swift file so that the 
prepareForSegue looks like this:

 1       override func prepareForSegue(segue: UIStoryboardSegue, sender: 
AnyObject?) {

 2          if segue.identifier == "SelectAlbumSegue" {
 3               if let pageViewController = segue.destinationViewController 

as? PageViewController, row = self.tableView.
indexPathForSelectedRow?.row {

 4                  pageViewController.album = self.gallery.albums[row]
 5
 6                   // if there is a selected photo index set it as well and 

then reset it
 7                  if let photoIndex = self.selectedTopShelfItem.photoIndex {
 8                      pageViewController.pageIndex = photoIndex
 9                      self.selectedTopShelfItem = (nil, nil)
10                  }
11              }
12          }
13      }

Now, if the segue matches the SelectAlbumSegue identifier (Line 2), after a 
Page View Controller is created (Line 3) and its album has been initialized (Line 4), 
its pageIndex is set to the photoIndex of the selectedTopShelfItem (Lines 7-8) so 
that the appropriate image will be selected once the app is launched. Finally, the 
selectedTopShelfItem is reset back to its uninitialized state (Line 9).



Chapter 6 ■ adding a dynamiC top Shelf to the photo gallery app

91

Now, when you select a thumbnail image from the Top Shelf, the Photo Gallery app 
is launched and the appropriate album is displayed with the appropriate photo already 
selected.

Summary
Congratulations! Over the course of the past few chapters, you have created a Photo 
Gallery app that enables users to select and view photos from within a number of 
different photo albums, in addition to viewing those photos when selecting them from 
the Top Shelf area of the Apple TV Home screen.

You have learned about using Page View Controllers, Table View Controllers, 
and Application Extensions on tvOS, all using Swift. The knowledge you have gained 
throughout these chapters will provide you with a great foundation for developing other 
apps in the future using these aspects of tvOS development.

In the next chapter, we will explore how to store app information on the Apple TV 
itself, as well as how to store and sync data to the cloud.

Exercises
 1. By default, the imageShape property of a TVContentItem is 

Square for the default Sectioned TVTopShelfContentStyle. 
The other options available are Poster and HDTV. Make the 
appropriate changes to the Photo Gallery Extension to utilize 
these different styles to see which style you like best.

 2. You can mix and match the TVTopShelfContentStyle values 
throughout the TVContentItems displayed in the Top Shelf. 
You currently have three albums, and there are three styles 
available. Make the appropriate changes to the Photo Gallery 
Extension to use a different TVTopShelfContentStyle for each 
album, or perhaps choose a random style for each and every 
photo to really give your app a unique look!



93

Chapter 7

Storing and Sharing Data

The Apple TV has undergone quite an evolution when it comes to storage. The original 
Apple TV came with a standard 40GB or 160GB hard drive. The Apple TV would use that 
storage for holding movies, TV shows, and music locally on the Apple TV. For the next 
two generations of the Apple TV, Apple removed the hard drive completely. Instead, the 
Apple TV was equipped with 8GB of flash storage. These boxes lacked the ability to locally 
store any media; instead movies, TV shows, and music all had to be streamed either from 
a local computer or across the Internet. With the fourth-generation, Apple has released a 
hybrid solution. The new Apple TVs come in either 32GB or 64GB versions, but apps are 
still required to stream most of their data and content. Apple currently limits an app to a 
total of 200MB of local storage, but this data are temporary and can be removed when the 
app is quit.

This chapter will discuss methods for storing information locally on the Apple TV, as 
well as how to sync data using iCloud.

Preferences
There are some things to consider when deciding where to store certain kinds of 
information. The easiest way to store information is within the preferences file, but this 
method has some downsides.

All of the data are both read and written at the same time. If you are going to be 
writing often or writing large amounts of data, this could take time and slow down your 
application. As a general rule, your preferences file should never be larger than 100KB. 
Currently, the preference file is capped at 500KB for tvOS, but a developer should 
consider other storage methods long before reaching that limit.

The preferences file is really nothing more than a standardized file with accompanying 
classes and methods to store application-specific information. A preference would be, for 
example, the sorting column and direction (ascending/descending) of a list. Anything that 
is generally customizable within an app should be stored in its preferences file.



Chapter 7 ■ Storing and Sharing data

94

Writing Preferences
Apple has provided developers with the NSUserDefaults class; this class makes it easy 
to read and write preferences for the iPhone, AppleTV, and Mac OS X. The great thing is 
that, in this case, you can use the same code for iOS and Mac OS X. The only difference 
between the two implementations is the location of the preferences file.

All you need to do to write preferences is to create an NSUserDefaults object. This is 
done with the following code:

let prefs: NSUserDefaults = NSUserDefaults.standardUserDefaults()

This instantiates the prefs object so you can use it to set preference values. Next, you 
need to set the preference keys for the values that you want to save. The BookStore app 
example will be used to demonstrate specific instructions throughout this chapter. When 
running a bookstore, you might want to save a username or password in the preferences. 
You also might want to save things such as a default book category or recent searches. The 
preferences file is a great place to store this type of information because this is the kind of 
information that needs to be read only when the application is launched.

Also, on tvOS, it is often necessary to save your current state. If a person is using your 
application presses the home button, you want to be able to bring them back to the exact 
place they were in your application when they are done with their phone call.

Once you have instantiated the object, you can just call setObjectforKey to save 
your preferences. If you wanted to save the username of sherlock.holmes, you would call 
the following line of code:

prefs.setObject("sherlock.holmes", forKey: "username")

You can use setInteger, setDouble, setBool, setFloat, and setURL instead of 
setObject, depending on the type of information you are storing in the preferences file. 
Let’s say you store the number of books a user wants to see in the list. Here is an example 
of using setInteger to store this preference:

prefs.setInteger(10, forKey:"booksInList")

After a certain period of time, your app will automatically write changes to the 
preferences file.

With just three lines of code, you are able to create a preference object, set two 
preference values, and write the preferences file. It is an easy and clean process. Here is 
all of the code:

let prefs: NSUserDefaults = NSUserDefaults.standardUserDefaults()
prefs.setObject("sherlock.holmes", forKey: "username")
prefs.setInteger(10, forKey:"booksInList")



Chapter 7 ■ Storing and Sharing data

95

Reading Preferences
Reading preferences is similar to writing preferences. Just like with writing, the first step 
is to obtain the NSUserDefaults object. This is done in the same way as it was done in the 
writing process:

let prefs: NSUserDefaults = NSUserDefaults.standardUserDefaults()

Now that you have the object, you are able to access the preference values that are 
set. For writing, you use the setObject syntax; for reading, you use the stringForKey 
method. You can use the stringForKey method because the value you put in the 
preference was a String. In the writing example, you set preferences for the username 
and for the number of books in the list to display. You can read those preferences by using 
the following simple lines of code:

var username = prefs.stringForKey("username")
var booksInList = prefs.integerForKey("booksInList")

Pay close attention to what is happening in each of these lines. You start by declaring 
the variable username, which is a string. This variable will be used to store the preference 
value of the username you stored in the preferences. Then, you just assign it to the value 
of the preference username.

iCloud
The iCloud is a service provided by Apple that allows developers to sync data and 
information across multiple devices. This is especially helpful with tvOS apps since the 
local storage is limited. In order to implement iCloud storage in an app, a developer must 
first make sure that their app has iCloud enabled. To do this, visit the Apple Developer 
Portal (http://developer.apple.com). Sign in and click Member Center in the top right 
corner of the screen. Then click Certificates, Identifiers & Profiles, as shown in Figure 7-1.

Next, select Identifiers under the iOS section. Then select App IDs from the left-hand 
side, as shown in Figure 7-2.

Figure 7-1. Selecting Certifications, Identifiers & Profiles

http://developer.apple.com/


Chapter 7 ■ Storing and Sharing data

96

Find the App ID in the list and select it. This will bring up a list of the Application 
Services available in the app, as shown in Figure 7-3.

Figure 7-2. Select App IDs

Figure 7-3. Current App ID entitlement



Chapter 7 ■ Storing and Sharing data

97

Click the Edit button at the bottom of the list to add iCloud support. The check boxes 
seen in Figure 7-4 allow a developer to enable iCloud. Check the box and the app should 
now have access to iCloud.

It is also possible to add iCloud capabilities through Xcode. On the left-hand side, 
select your project, then select the active target, and choose the Capabilities tab. You will 
then see a screen similar to that shown in Figure 7-5.

Figure 7-4. Enabling iCloud



Chapter 7 ■ Storing and Sharing data

98

You can turn iCloud on and off through this method also. Now with iCloud enabled, 
it is possible to easily store your data in the cloud.

iCloud KVS
There are two ways to store information in iCloud. One way is to implement iCloud KVS 
or key-value storage. The second way is by using CloudKit. CloudKit is more powerful 
and more complicated. It will be discussed in Chapter 8. iCloud KVS is very similar to 
NSUserDefaults and should only be used for storing very small amounts of data. Apple 
caps the iCloud KVS storage at 1MB. The major benefit to using iCloud KVS is that the 
data are automatically synced across all iCloud devices within the same account.

The iCloud KVS is implemented very similarly to NSUserDefaults. It has the same 
limitations and issues, but is also used in a very similar way. The code to implement 
iCloud KVS is fairly simple. Start by creating a new Xcode project. Make sure tvOS 
Application is selected. For this project, use Single View Application, as shown in 
Figure 7-6.

Figure 7-5. Adding iCloud capabilities through Xcode

http://dx.doi.org/10.1007/978-1-4842-1715-3_8


Chapter 7 ■ Storing and Sharing data

99

Click Next and enter the name and details of the app. We used the name 
iCloudStorage, as shown in Figure 7-7.

Figure 7-6. Creating a new project



Chapter 7 ■ Storing and Sharing data

100

Once the project save location is selected, Xcode will open the project. Select the 
AppDelegate.swift file from the left-hand side of the list of files. We will be implementing 
the iCloud KVS in the AppDelegate.swift file.

 ■ Note  in a real-world project, it is better to create a singleton manager to handle your 
data syncing. Singletons are classes that are only instantiated a single time. they are easier 
to extend and access. a singleton is implemented in Swift through the use of static class 
variables.

At the top of the AppDelegate class, under the window variable, you need to add the 
following two variables:

var iCloudKeyStore: NSUbiquitousKeyValueStore = NSUbiquitousKeyValueStore.
defaultStore()
var iCloudString: String = String()

Figure 7-7. Naming you project



Chapter 7 ■ Storing and Sharing data

101

The first variable, iCloudKeyStore, is an NSUbiquitousKeyValueStore value. This 
basically means that it is like an NSUserDefaults that is stored in the cloud. The second 
variable, iCloudString, is a string that will be used to store the value synced through 
iCloud.

Next, you will modify the application:didFinishLaunchingWithOptions: method. 
You need to tell the iCloud service to alert you once your NSUbiquitousKeyValueStore is 
changed by another app. This way you can reload your iCloudString from the key store. 
Add the following lines:

NSNotificationCenter.defaultCenter().addObserver(self,
            selector: "iCloudDataChanged:",
            name:  NSUbiquitousKeyValueStoreDidChangeExternallyNotification,
            object: iCloudKeyStore)

This code tells the notification center to call the method "iCloudDataChanged:" 
on your AppDelegate object whenever your key store changes values in any way. Notice 
the iCloudKeyStore variable is passed in. It is possible to have multiple key stores and 
receive notifications for them separately. Next, you will add the code to check the key 
store for the string:

27    if let savedString = iCloudKeyStore.stringForKey("myString") {
28        iCloudString = savedString
29    } else {
30        iCloudKeyStore.setString("Testing", forKey: "myString")
31        iCloudKeyStore.synchronize()
32     }

Let’s walk through this code. The name of the key you are using in the 
NSUbiquitousKeyValueStore is myString. Obviously, when creating a real app, you will 
want to use descriptive titles for your keys such as username or default view. Line 27 
attempts to set the value of savedString to the key myString from the key store. If this 
succeeds, that means the key exists. You then assign the value of savedString to the 
iCloudString variable.

If you are unable to pull myString from the key store, this means the key has yet to 
be set in the cloud. You then need to tell the key store to store a value for this key. Line 
30 calls the method setString on the key store and passes in a String (Testing) and a key 
(myString). Line 31 then tells the key store to sync the data immediately with the cloud. 
By default, an NSUbiquitousKeyValueStore will sync its data on a regular basis, but by 
calling the synchronize method, you can force the sync immediately.



Chapter 7 ■ Storing and Sharing data

102

 ■ Note  in this example, you use setString and stringForKey to set and retrieve the 
string value from the key store. apple provides different methods for different data types. 
the following retrieval methods are available:

- arrayForKey:
- boolForKey:
- dataForKey:
- dictionaryForKey:
- doubleForKey:
- longLongForKey:
- objectForKey:
- stringForKey:

The AppDelegate.swift file should now look like the one shown in Figure 7-8.

Figure 7-8. AppDelegate.swift file

There is still one problem with our code. You have told the NSNotificationCenter to 
call the method iCloudDataChanged on your appdelegate, but this method has not yet 
been defined. Add the following method to the AppDelegate.swift file:

func iCloudDataChanged() {
    if let myString = iCloudKeyStore.stringForKey("myString") {
        iCloudString = myString
    }
}



Chapter 7 ■ Storing and Sharing data

103

This method merely assigns the value of myString from the key store to the 
iCloudString variable.

You can now compile and run your app.

 ■ Note You may receive a console message at run time similar to the following error:

NSUbiquitousKeyValueStore error: com.innovativeware.iCloudStorage has no 

valid com.apple.developer.ubiquity-kvstore-identifier entitlement

this means you have not set up your entitlements for your app correctly.

Summary
In this chapter, you learned how to handle local storage on the Apple TV. You also learned 
how to add iCloud storage. We showed you how to become alerted to a change in the 
iCloud storage and how to send and receive values to and from it.

Exercises
 1. Add a number to your NSUbiquitousKeyValueStore.

 2. Add an Array to your cloud storage.



105

Chapter 8

CloudKit

Chapter 7 discussed storing preferences both locally on the AppleTV and in the cloud using 
NSUserDefaults and NSUbiquitousKeyValueStore. This method works great for storing 
small pieces of information, but what happens when the app needs to store a significant 
amount of information? What happens when an app needs to search or sort this type of 
information? This is where CloudKit comes in. CloudKit is a framework provided by Apple 
that allows developers to easily sync databases between different devices.

CloudKit is currently available only for iOS , Mac OS X, and tvOS devices. Apple has 
provided CloudKit JS. CloudKit JS looks to enable web apps and any other apps that can 
implement javascript to hook into existing CloudKit databases. This chapter will not cover 
CloudKit JS since it is not needed on tvOS.

Considerations for Using CloudKit
CloudKit is virtually free! Apple currently provides developers with 10GB of asset storage 
and 2GB data transfer per month for free with a developer account. They also provide 
100MB of database storage and 40 requests per second. All of this storage is provided for 
free, but that is not the best part. Apple increases all four of the limitations as you add 
additional users. For example, with 100,000 active users, the asset storage is increased to 
25TB. As an app scales even larger, Apple will provide up to 1 petabyte (PB or 1000 terabytes 
or 1,000,000 gigabytes) of asset storage and 400 requests per second. Most apps will be able 
to implement CloudKit without paying any monthly fees. Apple provides pricing and limits 
details on their iCloud for Developers site (https://developer.apple.com/icloud/).

CloudKit data are either stored as public or private. Public data are available to all 
of those with the app. Private data are available only to specific iCloud accounts. As a 
developer designs their app, they need to consider what types of data are available to all 
and which data are account specific.

CloudKit Containers
All CloudKit data are separated into different containers. Containers will hold all of the 
databases and information for each CloudKit-enabled app. Each app will have its own 
container. It is, however, possible to share containers with different apps from the same 
developer. The container ID will match the app’s bundle ID. Apple provides a class called 
CKContainer for accessing the different containers.

http://dx.doi.org/10.1007/978-1-4842-1715-3_7
https://developer.apple.com/icloud/


Chapter 8 ■ CloudKit

106

The default app container can be accessed by using the following code:

var myContainer = CKContainer.defaultContainer()

Creating a custom container is easy.

 1. Head to the Apple developer home page (http://developer.
apple.com) and log in. Select Member Center ➤ Certificates, 
Identifiers, & Profiles. Then select Identifiers under iOS Apps. 
This will bring up a menu on the left-hand side similar to that 
shown in Figure 8-1. Select iCloud Containers.

Figure 8-1. Select iCloud Containers

http://developer.apple.com
http://developer.apple.com


Chapter 8 ■ CloudKit

107

 2. Click the Add button, as shown in Figure 8-2.

 3. You will then be prompted to enter a description and an 
identifier, as shown in Figure 8-3. The description is only used 
to display what is stored in the container. The identifier is 
necessary for accessing the container.

Figure 8-2. Adding a new iCloud Container



Chapter 8 ■ CloudKit

108

 4. Enter CloudKit Demo2 for the description and enter a unique 
string for the identifier. Identifiers tend to follow the pattern 
of iCloud.com.companyID.containerName. The identifier will 
be used to access the container in the different apps. Click 
Continue and you will see a screen similar to that shown in 
Figure 8-4.

Figure 8-3. Creating a new Container



Chapter 8 ■ CloudKit

109

Click the Register button and the container is now ready to be used. To access this 
container, use the following code:

myContainer = CKContainer.init("iCloud.com.inno.cloudkit2")

Databases
The container ID will need to be replaced with whatever you used to register your 
container in the previous step. Each container will contain a public and a private 
database. The public database will contain information and assets that are shared among 
all of the instances of the database. All users will have read and write access to the public 
database through your app.

Figure 8-4. Finished Creating the CloudKit Container



Chapter 8 ■ CloudKit

110

 ■ Note a developer needs to be careful when dealing with the public database. if one 
user is able to delete items from it, all other users will be affected.

The private database is only accessible to the current user. The user will have to enter 
their username and password, but then they will have read and write access to that database.

CloudKit Databases
Apple has provided the CKDatabase class for accessing the databases. Once a container 
has been connected, it is easy to access the public and private databases. Use the 
following code to access the private database:

var myContainer = CKContainer.defaultContainer()
  var publicDatabase: CKDatabase = myContainer.publicCloudDatabase
var privateDatabase: CKDatabase = myContainer.privateCloudDatabase

Database Records
A CKRecord is used to store data in your database. Each CKRecord has different 
pieces of data stored as key-value pairs. Records should be separated into distinct 
tables or record types for each type of data. For example, for a bookstore, it would 
make sense to have a record type of Book and a separate record type of Author. Each 
record type will have a name and fields associated with it. Table 8-1 from Apple’s 
documentation (https://developer.apple.com/library/tvos/documentation/
DataManagement/Conceptual/CloudKitQuickStart/CreatingaSchemabySavingRecords/
CreatingaSchemabySavingRecords.html) shows the possible field types for a record.

Table 8-1. Possible Field Types for a Record

Field Type Class Description

Asset CKAsset A large file that is associated with a record but stored 
separately

Bytes NSData A wrapper for byte buffers that is stored with the record

Date/Time NSDate A single point in time

Double NSNumber A double

Int(64) NSNumber An integer

Location CLLocation A geographical coordinate and altitude

Reference CKReference A relationship from one object to another

String NSString An immutable text string

List NSArray Arrays of any of the above field types

https://developer.apple.com/library/tvos/documentation/DataManagement/Conceptual/CloudKitQuickStart/CreatingaSchemabySavingRecords/CreatingaSchemabySavingRecords.html
https://developer.apple.com/library/tvos/documentation/DataManagement/Conceptual/CloudKitQuickStart/CreatingaSchemabySavingRecords/CreatingaSchemabySavingRecords.html
https://developer.apple.com/library/tvos/documentation/DataManagement/Conceptual/CloudKitQuickStart/CreatingaSchemabySavingRecords/CreatingaSchemabySavingRecords.html


Chapter 8 ■ CloudKit

111

Creating a record is a fairly easy process. The following code would accomplish this:

let newBook = CKRecord(recordType: "Book")

This creates a new constant called newBook that is of the type Book. Now, you are 
able to set values of fields on this newBook constant:

newBook.setValue("The Hobbit", forKey: "title")
newBook.setValue("J. R. R. Tolkien", forKey: "author")

This code sets the title of the book equal to "The Hobbit". The author of the book 
was also set. Now that the CKRecord of the book is all set, it can be saved to the database. 
You would save this record to the public database in this case with the following code:

27  CKContainer.defaultContainer().publicCloudDatabase ().saveRecord(newBook, 
completionHandler: { (record: CKRecord?, error: NSError?) in

28
29         if error != nil {
30             print("There was an error")
31
32         } else {
33             print("Record Saved Successfully")
34         }
35     })

Line 27 tells the public database of the default container to save this record. It also 
passes in a completion handler, which is a method that will run when the first method 
is complete. The completion method, in this case, merely tells you if there was an issue 
saving the record.

Example CloudKit App
Let’s create a CloudKit tvOS app. Launch Xcode and select Create a new Xcode project. 
You will be prompted with the type of project. Select tvOS on the left-hand side and select 
Single View Application, as shown in Figure 8-5. Click Next.



Chapter 8 ■ CloudKit

112

On the next screen, fill in the name of your application. We are using CKBookStore 
for the name. The Organization Name and Organization Identifier should already be filled 
in. Make sure the language selected is Swift. None of the check boxes need to be checked 
(see Figure 8-6). Then click Next.

Figure 8-5. Create a Single View tvOS application



Chapter 8 ■ CloudKit

113

You will be prompted to save your project. Select a location you can easily access. 
Once Xcode opens the project, you will see something similar to Figure 8-7.

Figure 8-6. Naming the project



Chapter 8 ■ CloudKit

114

By default, the project is selected in the Project Navigator on the left, and the active 
target will be selected in the targets list. This allows you to change settings and enable 
CloudKit as the active target. Select Capabilities from the Targets menu, as shown in 
Figure 8-8.

Expand the arrow next to iCloud. Toggle the switch to On. If your user account 
belongs to multiple teams, Xcode will prompt you to select the team to connect with this 
application. Make sure CloudKit is checked under the Services heading. Your screen 
should now look like Figure 8-9. The Container IDs

Figure 8-7. New project screen

Figure 8-8. Select Capabilities in the Targets menu



Chapter 8 ■ CloudKit

115

For this app, the default container will be used. If additional containers are available 
for this app, they will be displayed and are able to be selected on this screen. Apple 
also provides a link to the CloudKit Dashboard. This is a web interface Apple provides 
developers for administering CloudKit databases. Click the CloudKit Dashboard.

 ■ Note the CloudKit dashboard works best in Safari.

After entering your developer credentials, you should see a screen similar to 
Figure 8-10.

Figure 8-10. CloudKit Dashboard

Figure 8-9. Successfully added CloudKit to the app



Chapter 8 ■ CloudKit

116

You won’t be doing anything in the Dashboard for now, but it is useful for managing 
record types, queries, and records. You will be using it later in the chapter.

For now, let’s go back to the app and click the AppDelegate.swift file in the Project 
Navigator. You need to add a method to create book records in CloudKit. Under the 
import UIKit line, add the following line:

import CloudKit

Now add the following method at the end of the file, but inside the closing brace:

45 func setupBooks() {
46
47         let newBook = CKRecord(recordType: "Books")
48         newBook["title"] = "The Hobbit"
49         newBook["author"] = "J. R. R. Tolkien"
50
51          CKContainer.defaultContainer().publicCloudDatabase.

saveRecord(newBook) { (record: CKRecord?, error: NSError?) -> 
Void in

52             print("Done")
53             if(error != nil) {
54                 print("error")
55                 print(error.debugDescription)
56             }
57         }
58     }

Line 45 creates the method called setupBooks. Line 47 creates a new CKRecord of 
the type Book. Lines 48 and 49 add a title and an author to this book. Line 51 is a little 
more complicated. It starts by telling the default container to tell its public database to 
save this record. You then pass in a block method to be executed when the save is either 
completed or fails. You are passing two parameters. The first one is the record you tried to 
save and the second one is the error, if any. Line 53 checks to see if there was an error and 
displays the information about it.

 ■ Note if the save function fails, many times it is because the user is not logged into their 
iCloud account on the device.

To call this method, add the following line to the application 
didFinishLaunchingWithOptions at the beginning of the file:

setupBooks()

This will add a book to your cloud every time the app is launched. This is a good way 
to test things out, but you will definitely want to change this in the real world. Once done, 
your AppDelegate.swift file should look like the one shown in Figure 8-11.



Chapter 8 ■ CloudKit

117

Figure 8-11. Finished AppDelegate



Chapter 8 ■ CloudKit

118

Run your app and see if the record was successfully saved. It should be. Open the 
Console log in Xcode to verify the word “Done.” If you do see an error in the log, it is likely 
the user will need to log into iCloud on the device.

Now that you have saved this book, you need to work on getting all of the book 
records from the cloud. You will retrieve the cloud information in the ViewController.
swift. Click ViewController.swift. Add the import CloudKit line at the top of the file like we 
did in the AppDelegate.swift file. In the viewDidLoad method, add the following code to 
the bottom of the method:

20         let myPredicate: NSPredicate = NSPredicate(value: true)
21          let myQuery: CKQuery = CKQuery(recordType: "Books", predicate: 

myPredicate)
22
23          CKContainer.defaultContainer().publicCloudDatabase.

performQuery(myQuery, inZoneWithID: nil) {
24             results, error in
25             if error != nil {
26                 print("Error")
27                 print(error.debugDescription)
28             } else {
29                 print(results)
30             }
31         }

Line 20 creates an NSPredicate, which is used to create a search query. NSPredicates 
are also used with Core Data. They are a powerful way to query. The NSPredicate only 
queries the records where value=true, and this is how you query all of the records. True is 
always true, so this will create an NSPredicate to return all of the records.

Line 21 creates a CKQuery by passing in the record type and the NSPredicate you 
created in the previous line. A CKQuery can also have an NSSortDescriptor. This allows 
you to sort the data you are retrieving back from CloudKit.

Line 23 tells the public database to perform the query. It is possible to segregate your 
records into different zones. That is beyond the scope of this book, so here just send in nil 
to the zone identifier parameter.

Lines 24 to 33 are the block methods to be executed once the query is complete. You 
can now check to see if there is an error. If something failed, it will then display the error 
in the log. If there is no error, you can print the records you received into the log. Once 
complete, your code should look like that shown in Figure 8-12.



Chapter 8 ■ CloudKit

119

If you now run this app as it stands, you will receive an error. You now need to go to 
the CloudKit Dashboard located at https://icloud.developer.apple.com/dashboard/.

One the left-hand side, click Record Types, then Books, as shown in Figure 8-13.  
The number of public records will change depending on the number of times you have 
run the app.

You will now see a screen similar to that shown in Figure 8-14.

Figure 8-12. Finished viewDidLoad

Figure 8-13. Selecting Books Record Type

https://icloud.developer.apple.com/dashboard/


Chapter 8 ■ CloudKit

120

Click the downward arrow underneath Metadata Indexes and check the box next to 
Record ID, as shown in Figure 8-15. This allows your application to access these metadata 
as part of a query. You will notice, Apple will inform you of the cost of selecting that index. 
It will add 5% to your storage requirements. This is fine in this case, but when designing 
for large CloudKit applications, size will need to be considered.

Figure 8-14. Books details



Chapter 8 ■ CloudKit

121

Figure 8-15. Creating a Record ID index

Now click the Save button at the bottom right corner of the screen. Launch your app 
and you should receive a log similar to that shown in Figure 8-16. There will be one line 
for each time you called setupBooks().

Figure 8-16. Retrieving records from CloudKit

Summary
In this chapter you learned about CloudKit and the basic objects required to access 
CloudKit. You learned about the CloudKit Developer Console and how to view records 
and record types in a web browser. You also created an app to save CloudKit records and 
retrieve them.

This book as shown you how to begin development for the new AppleTV. We have 
shown some of the familiar iOS controls and classes and also highlighted some of the 
ones that are different for tvOS. Due to the tvOS lack of local storage, we also spent time 
demonstrating how to store and retrieve data from iCloud.



Chapter 8 ■ CloudKit

122

Exercises
 1. Add more books to your cloud storage.

 2. Create a new record type in CloudKit or maybe create an 
Author type.



123

��������� A, B
AppDelegate.swift, 88
Apple TV

capabilities
A8 processor, 3
A8 Processor, 3
inherited iOS frameworks, 2

limitations, 5
Siri Remote, 4
tvOS

advantages, 6
Button C, 8
focus engine, 7
swift advantages, 7
Swift language, 7
UIKit classes, 8
user interface, 7

��������� C
CKContainer, 105
CloudKit

app, 115
AppDelegate.swift file, 116–117
asset storage and  

data transfer, 105
books record type, 119
CKContainer, 105
console log, Xcode, 118
containers, 105–110
dashboard, 115
databases

CKRecord, 110
completion handler, 111
newBook, 111

iCloud accounts, 105
NSPredicate, 118
NSSortDescriptor, 118
record ID index, 121
setupBooks, 116
ViewController.swift, 118
viewDidLoad, 119

CloudKit app
capabilities, targets menu, 114
cloudKit dashboard, 115
project naming, 113
project screen, 114
single view tvOS application, 112

CloudKit dashboard, 115
CloudKit tvOS app, 111

��������� D, E
Data storing information

BookStore app, 94
classes and methods, 93
iCloud (see iCloud)
NSUserDefaults class, 94
NSUserDefaults object, 95
preference values, 94
setInteger, 94
setObjectforKey, 94
stringForKey method, 95
tvOS, 94

Dynamic top shelf image
app extensions, 76–77
handling URLs, 88
photo gallery extension, 77
TV services extension, 76
TVTopShelfProvider protocol (see 

TVTopShelfProvider protocol)

Index



■ index

124

��������� F
Focus engine, 30

��������� G, H
Gallery data model structure

asset catalog, 66–67
Gallery.swift file, 66

��������� I, J, K, L, M, N, O
iCloud

App IDs, 96
capabilities, Xcode, 98
certifications,  

identifiers and profiles, 95
enabling, 97
KVS

AppDelegate.swift file, 100, 102
iCloudDataChanged, 102
iCloudKeyStore variable, 101
new project creation, 99
NSUbiquitousKeyValueStore, 101
NSUserDefaults, 98
savedString, 101
setString, 101

sync data and information, 95

��������� P, Q, R
Photo gallery app

app completion, 51
asset catalog, 48
cellForRowAtIndexPath method, 68
cities or landscapes album, 70
Cocoa touch class, 58
creating project, 34
custom static  

top shelf image, 71–73
detailTextLabel subtitle, 68
dynamic top shelf image  

(see Dynamic top shelf image)
gallery data model structure, 65–66
gallery structure, 67
interface builder

adding constraints, 44
Image View, 43
imageView outlet, 46
Initial View Controller, 40

Main.storyboard file, 39
PageContentView 

Controller class, 42
PageContentView 

Controller.swift file, 44
Page View Controller, 41
Transition Style, 40–41

Main.storyboard scenes, 61
main title and subtitle strings, 68
Page View Controller, 33–34,  

38, 63–64, 70–71
PageViewController object, 89–90
photo albums list, 69
photo and album data  

model structures, 46
prepareForSegue method, 90
project cleanup, 36
segue identifier, 65
SelectAlbumSegue identifier, 90
selectedTopShelfItem, 90
table view cell, 62, 64, 68, 71
table view controller, 67
TableViewController class, 59, 89
table view controller scene class, 60
TableViewController.swift, 89
top shelf thumbnail image, 84–87

Photo gallery extension
classes and images adding, 78–80
dynamic Top Shelf data, 78–79
gallery, album,  

and photo classes, 79–80
TVTopShelfProvider protocol 

implementation, 81–84

��������� S
ServiceProvider.swift, 81
Stack views

auto layout, 23
city name label, vertical, 24
horizontal spacing, 28
missing constraints, 29
temp labels placing, 24
Uncheck Extend Edges, 28
vertical axis stack view, 27
vertical spacing, 27
weather App, 29
weather labels, 25
WeatherStation app, 23

System on a chip (SoC), 3



■ Index

125

��������� T, U, V
Table view controllers

Apple’s platforms, 57
Main.storyboard canvas, 60
photo albums list, 57, 70
photo gallery app  

(see Photo gallery app)
TableViewController.swift, 69
tvOS weather app

naming and saving, 11
project settings, 11
simulator, 12–13
storyboard file, 12
UIStackViews, 9
UITabBarController, 9
UITableView, 9
view design

adding UI Controls, 14
code implementation, 16

control outlets, 15
dataSource and  

delegate outlets, 15
labels removing, 14
white listing websites, 19

Xcode project and  
Tabbed application, 10

TVTopShelfProvider protocol
dynamic Top  

Shelf data, 81
photo gallery extension, 83
ServiceProvider.swift, 81
topShelfItems  

computed property, 81–82
TVContentIdentifier, 82
TVContentItem, 82

��������� W, X, Y, Z
WeatherStation app, 23

www.allitebooks.com

http://www.allitebooks.org

	Contents at a Glance
	Contents
	About the Authors
	Acknowledgments
	Introduction
	Chapter 1: Getting Started with the New Apple TV
	 Lots of Good News
	 Capabilities
	 Inherited iOS Frameworks 
	The Apple A8 Processor 

	 The Siri Remote
	 Apple TV’s Limitations 
	 Advantages with tvOS Development
	 Some Notes About Developing in Swift with tvOS
	Swift Pain Points
	 Swift Advantages 


	 The tvOS Focus Engine
	 What Does Focusable Mean?

	 Summary
	 Exercises

	Chapter 2: The tvOS Weather App
	 Designing the View
	 Adding the Code for the View
	White Listing Websites


	 Summary
	 Exercises

	Chapter 3: Stack Views and the Focus Engine
	 Auto Layout and Stack Views
	 Implementing Stacks

	 The Focus Engine 
	 A Focus Engine Example

	 Summary
	 Exercises

	Chapter 4: Creating a Photo Gallery App
	 Page View Controllers
	 Creating the Photo Gallery App
	 A Little Project Cleanup 
	 Adding the Page View Controller 
	 Adding Scenes to the Interface Builder Canvas
	 Adding the Photo and Album Data Model Structures 
	 Adding the Photo Image Files to the Asset Catalog 
	 Completing the Photo Gallery App 
	 Summary
	 Exercises

	Chapter 5: Adding an Album Browser to the Photo Gallery App
	 Table View Controllers
	 Adding a Table View Controller to the Photo Gallery App
	 Adding the Gallery Data Model Structure
	 Adding the Cities and Landscapes Image Files to the Asset Catalog 
	 Completing the Photo Gallery App
	 One More Thing: Adding a Custom Static Top Shelf Image 
	 Summary
	 Exercises

	Chapter 6: Adding a Dynamic Top Shelf to the Photo Gallery App
	 Application Extensions
	 Adding Classes and Images to the Photo Gallery Extension
	 Implementing the TVTopShelfProvider Protocol
	 Launching the Photo Gallery App from a Top Shelf Thumbnail Image
	 Handling URLs 
	 Completing the Photo Gallery App
	 Summary
	 Exercises

	Chapter 7: Storing and Sharing Data
	 Preferences
	 Writing Preferences
	 Reading Preferences
	 iCloud
	iCloud KVS

	 Summary
	 Exercises


	Chapter 8: CloudKit
	 Considerations for Using CloudKit
	 CloudKit Containers
	Databases 

	 CloudKit Databases
	 Database Records

	 Example CloudKit App
	 Summary
	 Exercises

	Index



