
ptg

www.allitebooks.com

http://www.allitebooks.org

ptg

Praise for Developing Hybrid Applications
for the iPhone

“For those not ready to tackle the complexities of Objective-C, this is a great way to
get started building iPhone apps. If you know the basics of HTML, JavaScript, and CSS,
you’ll be building apps in no time.”

—August Trometer, Owner of FoggyNoggin Software, www.foggynoggin.com

“Lee S. Barney takes the complexities of iPhone application creation and utilizes simple
and often witty examples and language to make this book an enjoyable and useful read.
It is not a simple how-to book, but if you have some web programming background
and an idea, this book can provide you with the foundation for well-made, maintain-
able, and useable applications for the iPhone.”

—William Dalton

“This is an outstanding book! If you are interested in building applications for the
iPhone, this is the book for you. Lee S. Barney makes it simple and easy to understand.
He has you creating a custom application from the very first chapter.Then, he brings
you up the learning curve until you’re building applications with advanced iPhone
features, such as the accelerometer, GPS, and embedded maps.This is an extremely
well-written and easy-to-follow book.”

—Joey Skinner, CEO and President, Rodeo Software

“Lee S. Barney employs his solid background in JavaScript and Xcode to demonstrate
useful techniques for building hybrid iPhone applications. I appreciate his candor as he
shares some of the pitfalls that might trap newcomers, which then supports the direction
for his solution. If you have a strong background in Javascript and are looking to break
into iPhone application development, this book would make for a good segue.”

—A. Scott Mikolaitis

www.allitebooks.com

www.foggynoggin.com
http://www.allitebooks.org

ptg

This page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

ptg

Developing Hybrid
Applications

for the iPhone

www.allitebooks.com

http://www.allitebooks.org

ptg

This page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

ptg

Developing Hybrid
Applications for

the iPhone

Using HTML, CSS, and JavaScript to
Build Dynamic Apps for the iPhone

Lee S. Barney

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

www.allitebooks.com

http://www.allitebooks.org

ptg

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publish-
er was aware of a trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Barney, Lee.
Developing hybrid applications for the iPhone : using HTML, CSS, and JavaScript to build

dynamic apps for the iPhone / Lee S. Barney.

p. cm.

Includes index.

ISBN 978-0-321-60416-3 (pbk. : alk. paper) 1. iPhone (Smartphone)--Programming.
2. Application software--Development. 3. Cross-platform software development. I. Title.

TK6570.M6B37 2009

621.3845'6--dc22

2009019162

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. For information regarding permis-
sions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-321-60416-3
ISBN-10: 0-321-60416-4

Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville,
Indiana.

First printing June 2009

Editor-in-Chief
Karen Gettman

Acquisitions Editor
Chuck Toporek

Development
Editor
Sheri Cain

Managing Editor
Kristy Hart

Project Editor
Jovana San
Nicolas-Shirley

Copy Editor
Deadline Driven
Publishing

Indexer
Erika Millen

Proofreader
Kathy Ruiz

Technical
Reviewers
August Trometer
Randall Tamura

Publishing
Coordinator
Romny French

Cover Designer
Gary Adair

Compositor
Jake McFarland

www.allitebooks.com

http://www.allitebooks.org

ptg

❖

This book is dedicated to my wonderful wife Joan
and our five boys who have put up with me

being too busy while this book was being created.
Eternity isn’t long enough to be with you.

❖

www.allitebooks.com

http://www.allitebooks.org

ptg

This page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

ptg

Table of Contents

Preface xiii

1 Developing with Dashcode and Xcode 1
Section 1: Using Dashcode and the Custom

QuickConnect Template 1

Section 2: Using Xcode and the Custom
QuickConnect Template 4

Section 3: Using Xcode and the Custom
PhoneGap Template 9

Section 4: Introduction to Basic Objective-C 11

Section 5: Objective-C QuickConnectiPhone
Application Structure 14

Section 6: Objective-C PhoneGap Application
Structure 17

Section 7: Embedding Web Content:
QuickConnectiPhone 19

Section 8: Embedding Web Content:
PhoneGap 23

Summary 24

2 JavaScript Modularity and iPhone Applications 25
Section 1: Modularity 25

Section 2: The QuickConnect JavaScript
Framework—A Modularity Example 26

Section 3: The QuickConnectiPhone
Implementation of the Modular Design 34

Section 4: Business and View Application
Controller Implementations 38

Section 5: Error Application Controller
Implementation 42

Section 6: Application Functionality Creation
Steps 43

Summary 43

3 Creating iPhone User Interfaces 45
Section 1: Apple’s Human Interface Guide 45

Section 2: List- and Browser-Based Interfaces 48

Section 3: Nonlist-Based View Applications 51

www.allitebooks.com

http://www.allitebooks.org

ptg

Section 4: Immersion Applications 55

Section 5: Creating and Using Custom
CSS Transforms 57

Section 6: Using and Creating
a Drag-and-Drop/Scale/Rotate Module 64

Summary 74

4 GPS, Acceleration, and Other Native
Functions with QuickConnect 75
Section 1: JavaScript Device Activation 75

Section 2: Objective-C Device Activation 81

Section 3: Objective-C Implementation
of the QuickConnectiPhone Architecture 88

Summary 94

5 Hybrid Applications, GPS, Acceleration, and Other
Native Functions with PhoneGap 95
Section 1: JavaScript Device Activation 95

Section 2: Objective-C Device Activation 102

Summary 109

6 Embedding Google Maps 111
Section 1: Displaying a Map from Within Your

QuickConnect JavaScript Application 111

Section 2: Objective-C Implementation of the
QuickConnect Mapping Module 115

Summary 126

7 Database Access 127
Section 1: BrowserDBAccess Example

Application 127

Section 2: Using WebView SQLite Databases 129

Section 3: Using Native SQLite Databases 133

Section 4: Using the DataAccessObject
with WebKit Engine Databases 135

Section 5: Using the DataAccessObject
with Native Databases 145

Summary 154

x Contents

ptg

8 Remote Data Access 155
Section 1: BrowserAJAXAccess

Example Application 155

Section 2: Using the ServerAccessObject 157

Section 3: ServerAccessObject 162

Section 4: Security Control Functions 171

Summary 172

A Introduction to JSON 173
Section 1: Background 173

Section 2: A JSON JavaScript API 175

Summary 178

B The QuickConnectFamily Development
Roadmap 179

C The PhoneGap Development Roadmap 183

xiContents

ptg

This page intentionally left blank

ptg

Preface

This book shows you how to create a new type of iPhone application: hybrid applica-
tions written in HTML, CSS, and JavaScript. Hybrid iPhone applications are standalone
applications that run like regular applications on your iPhone, but don’t require the files
to live on a server on the Internet.

Creating hybrid iPhone applications reduces creation time and the learning curve
required to get your application into the hands of your customers, because you don’t
have to learn Objective-C or have an intimate knowledge of the Cocoa frameworks.

Hybrid Application Development Tools
This book covers the two most commonly used open-source JavaScript software pack-
ages for writing applications for the iPhone and iPod touch devices:
QuickConnectiPhone and PhoneGap.These packages enable you to build applications
that access native device features directly from JavaScript, such as vibration, GPS location
information, the accelerometer, and many other things—all without writing a single line
of Objective-C or Cocoa.

QuickConnectiPhone, downloaded from http://sourceforge.net/projects/quickconnect,
exposes the most native device behavior and provides a highly engineered, full-featured
framework for development use. QuickConnectiPhone dramatically reduces your appli-
cation’s time-to-market because part of the framework consists of all of the glue code
you have to typically write in Objective-C, Cocoa, and JavaScript. Best of all, it does not
require a remote server for hosting JavaScript, HTML, and CSS files.

The second package is PhoneGap, downloaded from http://phonegap.com.
PhoneGap exposes fewer native behaviors and is a library rather than a full-fledged
framework.As a library, PhoneGap enables you to engineer your application any way
you want. It does, however, require a remote server for hosting files.

To reduce the learning curve and improve your understanding, good, solid examples
are used throughout this book.

If you want to create installable iPhone applications, have the web skills required, and
want to create dynamic, compelling solutions that people will use, this book shows you
how using these two packages.

Table P.1 compares what each package can do at the time of writing this book.

http://sourceforge.net/projects/quickconnect
http://phonegap.com

ptg

Table P.1 Comparing the Features of QuickConnectiPhone and PhoneGap

Behavior/Data Available QuickConnectiPhone PhoneGap

GPS Yes Yes

Accelerometer Yes Yes

Vibrate Yes Yes

System sounds Yes Yes

Ad-hoc (Bonjour) networking Yes No

Sync cable networking Yes No

Browser-based database access Yes No

Shipped database access Yes No

Drag-and-drop library Yes No

AJAX wrapper Yes No

Record/Play audio files Yes No

Embedded Google maps Yes No

Charts and graphs library Yes No

How to Use This Book
Each chapter is organized into two parts.The first part shows you how to use the rele-
vant feature of either QuickConnectiPhone or PhoneGap to accomplish a particular
task, such as getting the current geolocation of the device.The second part of the chap-
ter shows how the code behind the JavaScript call is written and how it works.You can
decide how deep into the JavaScript and Objective-C you want to delve.

The book is organized as follows:
n Chapter 1,“Developing with Dashcode and Xcode,” teaches you how to use

Dashcode and Xcode together with QuickConnectiPhone and PhoneGap to
quickly create fun-to-use applications that run on the iPhone.This chapter
includes basic Dashcode use and methods for moving your Dashcode application
into Xcode for compiling and running on devices.

n Chapter 2,“JavaScript Modularity and iPhone Applications,” teaches you how to
dramatically reduce your time to market by taking advantage of the modularity of
the QuickConnectiPhone framework. How front controllers, application con-
trollers, and JavaScript reflection are used in code is explained.

n Chapter 3,“Creating iPhone User Interfaces,” helps ensure that Apple App Store
distribution approves your applications. It describes best practices for creating high-
ly usable iPhone applications.The different types of applications usually created for
iPhones are described as well as pitfalls to watch out for.

n Chapter 4,“GPS,Acceleration, and Other Native Functions with
QuickConnectiPhone,” shows you how to get GPS, acceleration, and device

ptg

description information, and it teaches you how to vibrate your phone and play
and record audio files.You use the QuickConnectiPhone framework to access and
use these device behaviors.These abilities give your applications a truly native, fun
feel.

n Chapter 5,“GPS,Acceleration, and Other Native Functions with PhoneGap,”
shows you how to get GPS, acceleration, and device description information as
well as how to vibrate your phone and play and record audio files.You use the
PhoneGap library to access and use these native device behaviors.These abilities
give your applications a truly native, fun feel.

n Chapter 6,“Embedding Google Maps,” shows you how to put a Google map
inside your application using QuickConnectiPhone.This is one of the most
requested pieces of functionality and means you won’t have to send your users to
the map application!

n Chapter 7,“Database Access,” shows you how to get information from and store
data in SQLite databases included in your application created with the
QuickConnectiPhone framework. Do you need to ship a predefined set of data in
a database with your new applications? Read this chapter.

n Chapter 8,“Remote Data Access,” shows you how to make accessing and using
data from remote servers and/or service in your installed application easy with a
wrapper that lets you pull information from anywhere. Maybe you need to get
data from an online blog and merge it with a Twitter feed. QuickConnectiPhone’s
remote-data-access module makes it easy.

The following appendices are also included:
n Appendix A,“Introduction to JSON,” provides you with a brief introduction to

JavaScript Object Notation (JSON). JSON is one of the most commonly used and
easiest ways to transfer your data wherever it needs to go.

n Appendix B, “The QuickConnectFamily Development Roadmap,” provides an
overview of the growth of QuickConnectiPhone in the future. If you plan to
create applications for iPhones and other platforms, such as Google’s Android
phones, Nokia phones, Blackberries, and desktops such as Mac OS X, Linux, and
Windows, you should take a look at this appendix.

n Appendix C,“The PhoneGap Development Roadmap,” provides an overview of
the growth of PhoneGap in the future. If you plan to create applications for
iPhones and other platforms, such as Google’s Android phones, Nokia phones,
Blackberries, and desktops such as Mac OS X, Linux, and Windows, you should
take a look at this appendix.

ptg

Online Resources
QuickConnectiPhone and PhoneGap are undergoing rapid development.To keep up
with the new functions and capabilities and to learn more, use the following links.

QuickConnectiPhone
n Download examples and the framework from

https://sourceforge.net/projects/quickconnect/
n Review the development blog at http://tetontech.wordpress.com
n Read the Wiki at http://quickconnect.pbwiki.com/FrontPage
n Find the Google group at http://groups.google.com/group/quickconnectiPhone/
n Twitter at http://twitter.com/quickconnect

PhoneGap
n Download examples and the framework from

https://sourceforge.net/projects/phonegapinstall/
n Visit the web site at http://www.phonegap.com/
n Read the Wiki at http://phonegap.pbwiki.com/
n Find the Google group at http://groups.google.com/group/phonegap
n Twitter at http://twitter.com/phonegap

Prerequisites
You need a basic understanding of HTML, CSS, and JavaScript to effectively use this
book. If you have created web pages using these tools, you are well on your way to cre-
ating iPhone applications. If you need help with Objecive-C in both QuickConnect-
iPhone and PhoneGap, it is provided.This book is not intended to be an introductory
book on Objective-C or how to use it to develop iPhone applications.

You need to download and install Apple’s Xcode tools from the iPhone developer
web site at http://developer.apple.com/iphone.This requires Mac OS X 10.5 or greater
and an Intel-based Mac.

Although it isn’t required, you should also have either an iPhone or an iPod touch, so
you can test and run the applications on those devices.

Acknowledgments
A special thanks to Daniel Barney for working through and debugging the embedded
Google maps code.Thanks also to my coworkers in the Brigham Young University–
Idaho Computer Information Technology Department for listening and giving
suggestions.

http://www.phonegap.com/
https://sourceforge.net/projects/phonegapinstall/
http://phonegap.pbwiki.com/
http://groups.google.com/group/phonegap
http://twitter.com/phonegap
https://sourceforge.net/projects/quickconnect/
http://tetontech.wordpress.com
http://quickconnect.pbwiki.com/FrontPage
http://groups.google.com/group/quickconnectiPhone/
http://twitter.com/quickconnect
http://developer.apple.com/iphone

ptg

About the Author
Lee S. Barney (Rexburg, Idaho) is a professor at Brigham Young University–Idaho in
the Computer Information Technology Department of the Business and Communi-
cation College. He has worked as CIO and CTO of @HomeSoftware, a company that
produced web-based, mobile data, and scheduling applications for the home health care
industry. Prior to this, he worked for more than seven years as a programmer, senior soft-
ware engineer, quality assurance manager, development manager, and project manager for
AutoSimulations, Inc., the leading supplier of planning and scheduling software to the
semiconductor industry. He is the author of Oracle Database AJAX & PHP Web Application
Development.

Contacting the Author
To contact the author by email, use quickconnectfamily@gmail.com. For other types of
contact, use Twitter, the Wiki, and Google Group links provided earlier.

ptg

This page intentionally left blank

ptg

1
Developing with Dashcode

and Xcode

When used together, Dashcode and Xcode provide the power and ease of use needed
to create unique, exciting, hybrid iPhone applications. Because both of these tools were
extended with custom templates for hybrid iPhone applications, you do not have to “roll
your own” Objective-C wrapper. In the first three sections, you learn how to use existing
hybrid iPhone application templates for Dashcode and Xcode. Using these templates lets
you quickly create hybrid iPhone applications.A short discussion of basic Objective-C
and how an Objective-C iPhone application is structured in the two most heavily used
hybrid application tools—QuickConnectiPhone and PhoneGap—is also included in Sec-
tions 4 through 8.

Section 1: Using Dashcode and the Custom
QuickConnect Template
Because much of the user interface and interaction for iPhone hybrid applications are
created using HTML, JavaScript, and CSS, Dashcode is where you do most of your devel-
opment and debugging. Dashcode’s drag-and-drop interface builder is unique in its scope
and ease of use. Dashcode is used to create most of the application, and it also used to de-
bug it using the simulator and built-in debugging tools.

Because most of the code for iPhone hybrid applications is similar, the creation of a
template containing the common code would prevent the need to rewrite or import it
each time a new project is started. For a discussion of common code, see Chapter 2,
“JavaScript Modularity and iPhone Applications.”

The QuickConnectiPhone download is available from http://sourceforge.net/
projects/quickconnect and it includes a Dashcode template to assist you in creating
hybrid iPhone applications.The QuickConnectFamily installer inserts this template
into Dashcode. Unfortunately, at the time of the writing of this book, the creators of
the alternative, PhoneGap, do not provide a Dashcode template.

www.allitebooks.com

http://sourceforge.net/projects/quickconnect
http://sourceforge.net/projects/quickconnect
http://www.allitebooks.org

ptg

2 Chapter 1 Developing with Dashcode and Xcode

Figure 1.1 The QuickConnectiPhone template is used in Dashcode. The
standard Library dialog is displayed.

After you run the QuickConnectFamily installer and launch Dashcode, you can find
the QuickConnectiPhone template at the bottom of the Dashboard Widget template se-
lection dialog. Double-clicking the QuickConnectiPhone icon takes you directly into the
main Dashcode screen.The blank user interface displays on the screen. Figure 1.1 illus-
trates what the running Dashcode application looks like.

To understand and easily use the files included in the framework, you must first create
a simple user interface using Dashcode and deploy it to your iPhone using Xcode.The
user interface created here consists of only a button and a text field.When the button is
clicked, the text field displays “You did it!”

Hybrid Applications and the Alert Dialog
People accustomed to writing in JavaScript often use the Alert dialog to debug an application
or notify the user of a piece of information. The alert function in JavaScript is actually a
call into the containing browser’s native code rather than something that the JavaScript en-
gine handles.

This is not implemented in QuickConnectiPhone applications because the use of dialogs vio-
lates the iPhone user interface standards Apple provided. For debugging, you can use the
Dashcode debugger. If you move your application to Xcode you can use the debug function
to display messages in the Xcode console.

ptg

3Section 1: Using Dashcode and the Custom QuickConnect Template

PhoneGap does provide Alert dialog functionality, but it does not provide the Xcode debug
function.

To notify users of important pieces of information, insert them into an HTML div or another
element regardless of which tool you use.

Remember, be alert, don’t alert.

To create this user interface, be sure the Library dialog is open. If it is not, click the Li-
brary icon on the top bar of Dashcode.Then, find the Text part at the bottom of the parts
library and drag it on to the blank application screen.A new text area displays at the top of
your application’s interface and contains the word Text.This text, by default, has a width of
100 percent. Dashcode has dynamically inserted an HTML div tag into the underlying
index.html file of your application and some JavaScript to fill it with whatever text, back-
ground colors, and so on that you choose.

For this example, you change the id of the text div to display and empty the text
field.This is done using the interface entity inspector. Selecting the Inspector icon in the
top bar of Dashcode activates this dialog. Select the red and white tab in the upper-left
hand corner of the Inspector, change the ID field to read display, and then clear the La-
bel field.

Add a Push button to the interface by dragging and dropping it outside the text field.
The inspector now displays the information for the button instead of the text field. Select
the blue cube in the upper right-hand corner of the Inspector dialog.This causes the Be-
haviors tab to appear.This tab enables you to define JavaScript functions as handlers for
any of the user interface types of events listed. Notice that many of the standard JavaScript
mouse events are not seen.They have been replaced with ongesturestart,
ongesturechange, and ongestureend. Enter changeText in the handler section of the
onclick event.This inserts a changeText function in the main.js file, displays it to you,
and enables you to define what should happen when the onclick event is fired. In this
simple case, place the following code in the changeText function:

document.getElementById(‘display’).innerHTML = ‘You did it!’;

The sample application is now ready to run in the iPhone simulator. Select the Run
icon in the upper left-hand corner of Dashcode.This launches the simulator and runs
your application in it. Figure 1.2 shows the simple example application running in the
simulator.

Having completed and debugged the creation of the application, you can now move
the code into Xcode for deployment as an installable application.

To start, you use Dashcode to deploy the current application. If you do not, the code is
hidden inside your Dashcode project and has directives in it that only Dashcode can un-
derstand. Click the Share icon in the left-hand section of Dashcode to show the deploy-
ment screen.This enables you to save the completed HTML, CSS, and JavaScript to disk
in a form that is ready to embed in your application. Enter a name for a new directory in
the Path field to create a directory on the hard drive of your machine.The files are then

ptg

4 Chapter 1 Developing with Dashcode and Xcode

Figure 1.2 The simple exam-
ple application runs in the

Dashcode simulator after the but-
ton is clicked.

stored in this new directory.They are also ready to be imported into Xcode. Figure 1.3
shows the deployment screen.

For more information about the JavaScript files included in this template and how to
use them to make application creation easier, see Chapter 2.

Section 2: Using Xcode and the Custom
QuickConnect Template
Because you ran the QuickConnectFamily installer, the Xcode QuickConnectiPhone Ap-
plication template has been installed for you. Use it to create the Xcode project for your
QuickConnectiPhone hybrid application.This section walks you through how this is
done.The QuickConnectFamily wiki includes a video of this same process (http://
quickconnect.pbwiki.com/Moving-Dashcode-projects-to-Xcode).

To do this, select New � Project. Select iPhone OS Applications and the QuickConnect
iPhone Application icon displays. Double-click the icon, name your project, and then
select or create a directory to locate it in on your hard drive. Xcode creates a project that
includes the Objective-C files needed to run your JavaScript application directly on the

http://quickconnect.pbwiki.com/Moving-Dashcode-projects-to-Xcode
http://quickconnect.pbwiki.com/Moving-Dashcode-projects-to-Xcode

ptg

5Section 2: Using Xcode and the Custom QuickConnect Template

Figure 1.3 The deployment screen shows the completed application
being deployed to the Chapter1Example web server directory.

device without network or Internet access. In the Resources group of your application are
a series of HTML, CSS, and JavaScript placeholder files.

One of these placeholder files is index.html. It contains the HTML, CSS, and
JavaScript for an example application that is ready to run. Figure 1.4 shows this example
running on the simulator as an installed application.

To include the files created previously in Dashcode in this project, delete the follow-
ing files:

n index.html
n main.css
n main.js
n Files in the Parts group
n Files in the Images group

After removing these files, import the index.html, main.css, and main.js files. Do this by
right-control clicking the Resources group, and selecting Add � Existing Files. Browse to
the directory that you deployed your Dashcode application to and select index.html,
main.css, and main.js.You can copy the files into the Xcode project or use them where
they currently are. For this example, select the Copy items into destination group’s folder
checkbox each time you are asked.

ptg

6 Chapter 1 Developing with Dashcode and Xcode

Figure 1.4 The default
QuickConnect application

To Copy or Not to Copy Is the Question
Whether you copy the existing files or have Xcode use references to them is up to you. How
do you decide? Each method has its advantages.

If you copy the files, the project directory is complete and can be passed to other develop-
ers who do not need to replicate the directory structure of the machine that holds the exist-
ing files.

If you use the reference method, you can go back into Dashcode to make changes, and then
export the project to overwrite the files. You do not have to import them again into Xcode.

Next, right-click the Parts group and import the files in the Parts folder. Repeat this for
the Images group and the Images folder, and you are almost ready to run the application.

Because files were added to the Resources group, Xcode needs to be told to include
them in the resources used by the application. Expand the Targets selection near the bot-
tom of the screen, and then expand your application and the Copy Bundle Resources list-
ing.You can now see the resource files needed for your application to run. Select and drag
the files (not the groups) that you just added to your project to this Copy Bundle Re-
sources listing.Then, expand the Compile Sources list and remove any JavaScript files.
They obviously won’t be compiled. Do this by right-control clicking them, and then se-
lect Delete.This removes the files from the compilation list, but it does not delete the files
from the project or disk.

ptg

7Section 2: Using Xcode and the Custom QuickConnect Template

Because Dashcode uses directories, and Xcode uses groups, you need to make two
more changes to run your application.The first is in the <head> portion of the index.html
file. Because the JavaScript files and any other files referenced exist in the resource direc-
tory of the final application, the directory references to Parts and QCiPhone must be re-
moved. For example, before the reference is removed, a <script> tag will look like this:

<script type=”text/javascript” src=”Parts/utilities.js” charset=”utf-8”></script>

Afterward, it should look like this:

<script type=”text/javascript” src=”utilities.js” charset=”utf-8”></script>

Because images are used for any buttons, etc. that you created in Dashcode, you also
need to locate instances of the string Images/ in the entire project and replace them with
empty strings.This is easily done by selecting the Edit pull-down menu, choosing Find �
Find in Project, and then searching for Images/. Figure 1.5 shows the search results for
this example prior to changing the PushButton.js file.

You can now install and run your application by selecting the Build and Go icon. It is
in the top bar of the Xcode application. If you get the “No provisioned iPhone OS device
is connected” error, you can install and run the application in the simulator instead of on
your device. Click Succeeded in the bottom, right-hand corner of the Xcode window,
select the Device | Debug pull-down list in the upper, left-hand corner of the dialog that

Figure 1.5 The search screen shows the results of the search for
Images/ in the entire project.

ptg

8 Chapter 1 Developing with Dashcode and Xcode

Figure 1.6 The simpleExample
application is installed and runs

in the iPhone simulator.

displays, and click the Simulator selection. Notice that you can also choose Release or
Debug further down the pull-down list. Use this dialog frequently during your develop-
ment process to make these types of changes. Figure 1.6 shows the application installed
and running in the simulator.

Congratulations.You just completed your first hybrid iPhone application.

Provisioning? What Is That?
Provisioning is the multistep process that you or someone representing you must do to en-
able you to install and run your application on a device.

To provision your iPhone, you need to be a member of the Apple Developer Connection (ADC)
and registered to use the Program Portal. If you are part of a team, the provisioning might be
done already; if this is the case, you just need to upload the provisioning information to your
iPhone.

Copious information on how provisioning is done is available on the ADC. Be sure to follow
all the steps listed. Any deviation can result in failure, preventing you from testing applica-
tions on your device.

ptg

9Section 3: Using Xcode and the Custom PhoneGap Template

Section 3: Using Xcode and the Custom
PhoneGap Template
An Xcode custom PhoneGap application template is available and can be downloaded
from https://sourceforge.net/projects/phonegapinstall.As with the QuickConnectiPhone
installer, a custom template is available in the New � Project dialog; it is called PhoneGap
Application. Double-click this icon, name your project, and save it to a location on your
disk just as you did with the QuickConnectiPhone Application template.

Differences
One of the major differences between QuickConnectiPhone and PhoneGap is that PhoneGap
applications do not include the HTML, CSS, and JavaScript files in the installed application.
These files must reside on and be served up by a web server accessible via the Internet.

If you choose to use PhoneGap, your application can be run only when the user has access
to the Internet from his device. This is usually not a problem with iPhone owners, but it can
be a major impediment to iPod Touch owners because they need to be near an open WiFi ac-
cess point for Internet access.

If you want your application installation to be complete, use QuickConnectiPhone. If you want
the CSS, HTML, and JavaScript to reside remotely, you can use PhoneGap.

Because PhoneGap applications do not include the CSS, HTML, and JavaScript files in
the installed application, you need to point it to a web server that contains these files.The
simplest, temporary way to do this is on your own development machine.

Open your Sharing System Preference dialog and ensure that web sharing is activated.
This turns your machine into a web server. In your <UserHome> � Sites directory, cre-
ate a pg_hello directory and put an index.html file in it containing the following code:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”

“http://www.w3.org/TR/html4/strict.dtd”>

<html>

<head>

<title>pg_example</title>

<meta http-equiv=”content-type” content=”text/html; charset=utf-8”>

<meta name=”viewport” content=”minimum-scale=1.0, width=device-width, maximum-
scale=1.6”>

</head>

<body>

Congratulations. You have just loaded this web page from the Internet.

</body>

</html>

You must inform your PhoneGap application of the web server’s location by modify-
ing the url.txt file found in the Resources group. Because you have placed this file on
your own machine, replace the text in the file with http://localhost/~<user>/

https://sourceforge.net/projects/phonegapinstall

ptg

10 Chapter 1 Developing with Dashcode and Xcode

Figure 1.7 A running
PhoneGap application

pg_hello where <user> is your login name.When you select the Build and Go icon in
Xcode, your application compiles and displays the HTML page, as shown in Figure 1.7.

It is also possible to use Dashcode to create the HTML, CSS, and JavaScript for a
PhoneGap application.This is done by starting Dashcode and double-clicking the Custom
Web Application template.Add the same Text and Push Button elements, and create the
listener for the button in the same way as the QuickConnectiPhone simpleExample appli-
cation.

To make this an official PhoneGap application, you need to include the gap.js file
found in the JavaScript directory of the PhoneGap download. Do this by right-control
clicking the index.html file listing in Dashcode, and then selecting Add File.

Browse to the location of the unzipped PhoneGap download and select the gap.js file.
In the <head> tag of the index.html file of your Dashcode project, add the following line
of code:

<script type=”text/javascript” src=”gap.js” charset=”utf-8”></script>

After you run and debug the code in Dashcode, you can deploy it to phoneGap-
SimpleExample on your development machine’s web server, run the PhoneGap Xcode

ptg

11Section 4: Introduction to Basic Objective-C

Figure 1.8
The PhoneGapSimpleExample

application running

application created earlier, and see the html page running in your embedded application
(see Figure 1.8).

The same issues with provisioning and running on a development device apply to
PhoneGap applications as they do QuickConnectiPhone applications. See Section 2 for
more information on these topics.

Section 4: Introduction to Basic Objective-C
This section is not an in-depth Objective-C tutorial nor is it an in-depth discussion of
how to use Objective-C to write iPhone applications. It does give an understanding of
how the Objective-C classes used in the templates interact and behave, so that you can
leverage this knowledge in iPhone hybrid applications. It also assumes that you have a ba-
sic understanding of objects, methods, and attributes. If you want to know more about the
JavaScript framework or you don’t want to know about Objective-C code, skip the rest of
this chapter and go directly to Chapter 2. For a deeper understanding of Objective-C
iPhone development, see The iPhone Developer’s Cookbook: Building Applications with the
iPhone SDK by Erica Sadun.

www.allitebooks.com

http://www.allitebooks.org

ptg

12 Chapter 1 Developing with Dashcode and Xcode

Objective-C is an interesting language. For readers with a background in JavaScript,
PHP, Java, Perl, and other languages, it can seem daunting and incomprehensible at first
glance. In spite of this, it does deserve a second glance and not just because it is the “na-
tive” language of the iPhone.

Objective-C is an object-oriented variant of C.You can do all the powerful, dangerous
C/C++ type of programming you want, such as pointer arithmetic, and you can do some
things to make your life easier, such as automated memory management. One of the first
things you need to do in an object-oriented language is instantiate an object. If an object
named Mammal is available in the source code named and has two attributes, furColor and
milkFatRatio, in JavaScript, it is instantiated as shown in the following:

var aMammal = new Mammal(“orange”, 0.15);

You might think this is normal and expect other languages to behave in the same man-
ner. Objective-C instantiation initially looks strange if you have that expectation.The
same behavior in Objective-C looks like this:

Mammal *aMammal = [[Mammal alloc] initWithColor: @”orange” andMilkFatRatio: 0.15];

Some parts look comprehensible; others do not. If you think about it, the alloc
makes sense because it is how the Mammal object is allocated space in RAM. Even the
initWithColor and andMilkFatRatio make sense as setters or passers of the two
needed parameters. However, what is actually going on and what do all those square
brackets mean?

Objective-C uses message passing for all interactions with objects and other items
that might not be objects in other languages as they are in Objective-C. Examine this
line of code:

[Mammal alloc]

Earlier, it was hinted that this code fragment is where an object whose type is Mammal
is allocated space in RAM. It is.The square brackets around Mammal and alloc indicate
that the object in the application that represents the Mammal class is to be sent the alloc
message.This code fragment is read as, “Pass an alloc message to the Mammal class object.”
The result of passing this alloc message to the Mammal class object is that a pointer to a
new Mammal object is returned.

Pointers? What Are Those?
Pointers are interesting. Many people fear them because they don’t understand them or
don’t know what they are.

To understand them, here is an analogy: Imagine a large crowd of people, and two people in
the crowd are Alma and John. They know each other, and Alma knows where John is in the
crowd. You approach Alma and ask her where John is. She points one finger at John and
says, “There he is.”

At this instant in time, Alma is a John pointer. If you think of a pointer as something that
knows where an object is in memory, you understand.

ptg

13Section 4: Introduction to Basic Objective-C

This newly instantiated Mammal object can then be passed messages.The previous code
snippet contains another message for this new Mammal object.

This new message consists of initWithColor and andMilkFatRatio combined to-
gether.You can tell that this two-part message is a message because it and the newly allo-
cated Mammal are surrounded by square brackets, signifying that a message is being passed.
Multipart messages are delimited by spaces.A space is between the two parts of the
message.

In addition, the message parts and the values passed with them are linked together by
the colon character (:). Each message part can have a maximum of one parameter associ-
ated with it.This passed message returns a pointer to the newly allocated Mammal object so
it can be stored locally for later use. In Objective-C, these message indicators, whether for
a single or multipart message, are called selectors because they indicate what methods of
the object the compiler selects and runs.

Return to the SimpleExample Xcode project you created in Section 2. Look at the
applicationDidFinishLaunching method in the SimpleExampleAppDelegate.m file that
the template generated for you. Don’t be concerned with what the code does. Look at it
as an example of message passing.

1 - (void)applicationDidFinishLaunching:(UIApplication *)application {

2 // this helps in debugging, so that you know “exactly” where your views
are placed;

3 // if you see “red”, you are looking at the bare window.

4 window.backgroundColor = [UIColor redColor];

5

6

7 QuickConnectViewController

8 *aBrowserViewController=[[QuickConnectViewController alloc] init];

9

10 // add the CreateViewController view to the window as subview

11 [window addSubview:aBrowserViewController.view];

12

13 [window makeKeyAndVisible];

14 }

Line 8 should look familiar. It doesn’t involve mammals, but uses alloc and init mes-
sages you saw previously. In this case, something called a QuickConnectViewController is
allocated and initialized. Its class object is passed the alloc message that returns a pointer
to the newly allocated QuickConnectViewController.This new object, via its pointer, is
sent the init message.

This message accomplishes the same thing as the Mammal’s multipart
initWithColor:andMilkFatRatio message, but is much simpler. It is a single-part mes-
sage and has no parameters. Later in this chapter, you see how to create initialization and
other methods so that your objects can execute them when they are sent a message.

Line 11 sends a message to the window.This addSubView message has a parameter sent
with it that is the aBrowserViewController object’s contained view attribute.

ptg

14 Chapter 1 Developing with Dashcode and Xcode

Principal
Proxy/

Delegate
has a

has a

Figure 1.9 A graphical representation
shows a principal has a delegate, and a

delegate has a principal.

You have now seen a usable example of how to instantiate an object, how to store a lo-
cally scoped pointer to this new object, how to access an object’s attributes, and how to pass
messages with and without parameters to objects.This is most of the basic Objective-C you
need to know to understand the code in the QuickConnectiPhone and PhoneGap tem-
plate files. Next, you need to understand how Objective-C applications are put together.

Section 5: Objective-C QuickConnectiPhone
Application Structure
Although this section covers some of the basic code in the QuickConnectiPhone applica-
tion template, the same approach is used in PhoneGap and all other hybrid application
implementations.You can use either of these existing implementations or, by studying
them, create your own version.

Imagine you have a large number of shares in a successful company, which might be
true. Imagine there was a stockholder meeting to elect the chairman of the board, but you
could not attend because you were on vacation in the Bahamas. How could you still cast
your vote?

If you legally assign someone to vote for you, this person is referred to as your proxy.As
your proxy they have full authority to act on your behalf at the meeting.Your proxy could
be called your delegate.This delegate would refer to you as the principal because you are
the actual stockholder. Figure 1.9 displays this relationship. Objective-C iPhone applica-
tions use principal-delegate relationships between objects where one is the principal and
the other is the delegate.

Objective-C iPhone applications use this principal-delegate relationship a lot.The
principal-delegate relationships of interest are

n UIApplication/UIApplicationDelegate
n UIWebView/UIWebViewDelegate
n UIAccelerometer/UIAccelerometerDelegate

At this point, you need to understand that implementing protocol methods for these
delegates tells your application, view, or accelerometer that you want the delegate to han-
dle specific events when they occur instead of itself. Each protocol method is associated
with one event.

ptg

15Section 5: Objective-C QuickConnectiPhone Application Structure

Protocols
A protocol is a series of methods that can be added to a class, so that the class responds
to specific messages.

With these principal-delegate concepts fresh in your mind, take a look at a class that is
a delegate. Following is the header file for the SimpleExampleAppDelegate class that was
generated when you used the QuickConnectiPhone Application template and created the
SimpleExample application in Section 2.

Objective-C header files, the ones ending in .h, declare classes. Look at the header file
for the SimpleExampleAppDelegate class, but don’t worry about its implementation file:

1 //SimpleExampleAppDelegate.h

2 #import <UIKit/UIKit.h>

3 #import “QuickConnectViewController.h”

4

5 @interface SimpleExampleAppDelegate : NSObject

6 <UIApplicationDelegate> {

7 IBOutlet UIWindow *window;

8 QuickConnectViewController *browserViewController;

9 }

10

11 @property (nonatomic, retain) UIWindow *window;

12 @property (nonatomic, retain) QuickConnectViewController
*browserViewController;

13

14 @end

Look at line 5. If you are familiar with Java, don’t let the @interface indicator mislead
you. It does not mean this class is like a Java interface. It means that this file contains the
interface definition for this class.This header file declares what attributes
SimpleExampleAppDelegate has, how they are accessible, and what methods are to be
implemented in the separate implementation file.This class has no methods of its own.

If it is not a Java-like interface declaration, what then does line 5 do? It declares the
name of the class as SimpleExampleAppDelegate and uses the colon delimiter to indicate
that it inherits from the NSObject class. It is therefore an NSObject and can accept any
NSObject-defined messages. If you look at the NSObject class in the API documentation
in the Xcode help menu, you can see that it has a description method; therefore, because
SimpleExampleAppDelegate is an NSObject by inheritance, it also has a description
method.

Next to the NSObject inheritance declaration, you can see
<UIApplicationDelegate>.This is what tells the SimpleExampleAppDelegate class to
behave as a delegate for your application and what enables you to implement the methods
of the UIApplicationDelegate protocol messages in SimpleExampleAppDelegate’s im-
plementation file. One method of this protocol is applicationDidFinishLaunching.

ptg

16 Chapter 1 Developing with Dashcode and Xcode

This method gets called just as the application completes loading and is ready to run.
The method enables you to customize your application or query the user for more infor-
mation if needed.

In the following code, line 11 has the QuickConnectiPhone’s definition of
applicationDidFinishLaunching in the implementation file. It starts with a minus (-)
sign.This indicates it is an object method.The (void) means the method returns noth-
ing, and :(UIApplication *)application indicates that one parameter of type
UIApplication is passed into the method.

1 //

2 // SimpleExampleAppDelegate.m

3 // SimpleExample

4 //

5 #import “SimpleExampleAppDelegate.h”@implementation

6 SimpleExampleAppDelegate

7

8 @synthesize window;

9 @synthesize browserViewController;

10

11 - (void)applicationDidFinishLaunching:(UIApplication *)application {

12 // this helps in debugging, so that you know

13 // “exactly” where your views are placed;

14 // if you see “red”, you are looking at the

15 // bare window, in your distributed applications

16 // use black

17 window.backgroundColor = [UIColor redColor];

18 QuickConnectViewController

19 *aBrowserViewController=[[QuickConnectViewController alloc] init];

20 // add the aBrowserViewController view to the

21 // window as a subview

22 [window addSubview:aBrowserViewController.view];

23 //[window makeKeyAndVisible];

24 }

This applicationDidFinishLaunching method, as part of the delegate class for your
application, is called automatically when the application has completed loading. Because
of this, it can be used to instantiate other items that might be needed in the application.
In this case, you can see on lines 18 and 19 the allocation and initialization of the other
class (QuickConnectViewController) included in your application by the template.

iPhone applications are view-based, and any UIWindow or UIView object can contain
UIView objects.Therefore, it is possible to have a view within a view within a view.You
are discouraged from using this type of design for iPhone applications. Instead of this
heierarchical approach most of the developer community swaps one subview with an-
other at as high a level as possible based on what the user needs.

ptg

17Section 6: Objective-C PhoneGap Application Structure

Swapping subviews also flattens and reduces the complexity of your application’s view
structure.Thankfully, the template you used to create this application has placed just the
right number of views within views for you to display your web content. In fact, as seen
later, it inserted a web subview into the view that was just added to the window object.

The QuickConnectViewController class has the actual view object that displays your
content in the window of your application as one of its attributes.This attribute needs to
be added to the main window as a subview, which is done on line 22.

In addition to containing the content view, the QuickConnectViewController class is
also a delegate. It is the delegate for the GPS location, accelerometer,WebView, and other
types of events.

Section 6: Objective-C PhoneGap Application
Structure
As iPhone applications, PhoneGap applications also follow the same principal-delegate
structure as QuickConnectiPhone applications. See Section 5 for more information.The
delegate class you need to understand is called GlassAppDelegate. Just like the
SimpleExampleAppDelegate examined in Section 4, it has definition and implementa-
tion files.These are called GlassAppDelegate.h and GlassAppDelegate.m, respectively.

The GlassAppDelegate class in PhoneGap applications is much more than just an ap-
plication delegate. It is the delegate for all types of behavior, so the .h and .m files are
much more complex.

In the following code, you can see that the GlassAppDelegate class is a delegate for
the WebView display, the GPS location manager, the accelerometers, and others.This is
because these delegates are listed in a comma-delimited manner in the interface declara-
tion starting on line 16.

1 #import <UIKit/UIKit.h>

2 #import <CoreLocation/CoreLocation.h>

3 #import <UIKit/UINavigationController.h>

4

5 #import “Vibrate.h”

6 #import “Location.h”

7 #import “Device.h”

8 #import “Sound.h”

9 #import “Contacts.h”

10

11

12 @class GlassViewController;

13 @class Sound;

14 @class Contacts;

15

16 @interface GlassAppDelegate : NSObject <

17 UIApplicationDelegate,

ptg

18 Chapter 1 Developing with Dashcode and Xcode

18 UIWebViewDelegate,

19 CLLocationManagerDelegate,

20 UIAccelerometerDelegate,

21 UIImagePickerControllerDelegate,

22 UIPickerViewDelegate,

23 UINavigationControllerDelegate

24 >

25 {

26

27

28 IBOutlet UIWindow *window;

29 IBOutlet GlassViewController *viewController;

30 IBOutlet UIWebView *webView;

31 IBOutlet UIImageView *imageView;

32 IBOutlet UIActivityIndicatorView *activityView;

33

34 CLLocationManager *locationManager;

35 CLLocation *lastKnownLocation;

36

37 UIImagePickerController *imagePickerController;

38

39 NSURLConnection *callBackConnection;

40 Sound *sound;

41 Contacts *contacts;

42 NSURL* appURL;

43 }

44

45 @property (nonatomic, retain) CLLocation *lastKnownLocation;

46 @property (nonatomic, retain) UIWindow *window;

47 @property (nonatomic, retain) GlassViewController *viewController;

48 @property (nonatomic, retain) UIImagePickerController

49 *imagePickerController;

50

51 - (void) imagePickerController:(UIImagePickerController *)picker

52 didFinishPickingImage:(UIImage *)image2 editingInfo:(NSDictionary

53 *)editingInfo;

54 - (void) imagePickerControllerDidCancel:(UIImagePickerController

55 *)picker;

56 @end

Although the GlassAppDelegate is more complex, the class is similar to the
SimpleExampleAppDelegate class from the previous section. It is the delegate for the ap-
plication and the delegate for other types of events, whereas theQuickConnectiPhone
implementation uses the QuickConnectViewController class as the delegate for any
events that are not except application delegate events.

ptg

19Section 7: Embedding Web Content: QuickConnectiPhone

The SimpleExampleAppDelegate method is the same as the one implemented in the
SimpleExampleAppDelegate. In the interest of clarity, only some of the PhoneGap
source code for the applicationDidFinishLaunching method is shown in the follow-
ing.The source code left out is covered in detail in Section 9 and in Chapter 7,“Database
Access.”

1 -(void)applicationDidFinishLaunching:

.

.

.

2 webView.delegate = self;

.

.

.

3 [window addSubview:viewController.view];

.

.

.

4 }

Line 2 of the code is interesting. Just as in the SimpleExampleAppDelegate implemen-
tation seen in Section 6, this sets a UIWebView to be a subview of the main window.This
means that the UIWebView is used as the display for the entire application.

Having seen implementations of the main application delegate method in both
QuickConnectiPhone and PhoneGap, you are ready to see how the UIWebView is used
to display and run a JavaScript application.

Section 7: Embedding Web Content:
QuickConnectiPhone
To display web content, such as JavaScript applications or simple web pages, in your appli-
cation, you must use the UIWebView class.All implementations of hybrid applications, in-
cluding QuickConnectiPhone and PhoneGap, use this class. If you want to do any fancy
font control in an application—that is, multiple fonts and/or sizes and colors—you must
use UIWebView unless you go through the painful process of drawing the text yourself.
The UIWebView is much easier to use because it interprets HTML and CSS in addition to
JavaScript.This enables you to easily do complex textual and other types of layouts.

The UIWebView class is actually a wrapper around the WebKit rendering engine that is
used in the Safari browser, in Adobe Air,Android, and Nokia phones, and in several other
applications including those shipped with OS X, such as Mail. Dashcode is also a heavy
user of the WebKit engine.

As mentioned in the previous two sections, for a web view to be included in an appli-
cation, the UIWebView object must be added as a subview to another view in the applica-
tion.This is done in the QuickConnectViewController class’s loadView method.

ptg

20 Chapter 1 Developing with Dashcode and Xcode

The loadView method contains a number of items that enable behaviors to be ex-
pressed in a JavaScript-based application. For example, the loadView method includes the
code that scales your application’s user interface to fit the size of the screen.This capabil-
ity is commented out by default because the user interface should be designed to fit.

The interesting portion of loadView enables the display of the interface you created in
Dashcode earlier in this chapter.The code snippet that follows is how the iPhone inserts
this content into the application. It begins with the calculation of the size and point of
origin for the display of the UIWebView.This is done by retrieving the size and location of
the application’s display frame.

The CGRect structure known as webFrame contains this information and is generated
by sending the applicationFrame message to the main screen of the application.All
CGRect structures consist of two items: a CGPoint called origin that represents a top-left
point’s x and y location and a CGSize that represents how large the rectangle is.This is
represented by a height and width:

CGRect webFrame = [[UIScreen mainScreen] applicationFrame];

webFrame.origin.y -= 20.0;

The x, y, width, and height of a CGRect are floating-point numbers used to store pixel
counts.The second line in the previous code shows how to change a current value of the
vertical position stored in the webFrame variable. It shifts the origin up by 20 pixels.This
has to be done to cover a blank space left in the view for a nonexistent toolbar at the top
of the display window.

This toolbar can be seen in many standard applications, such as the Settings application
you use to configure your Wi-Fi connections. It has been removed from the templates to
maximize the use of the limited screen space available to the application. If you would
like to have the next and previous behaviors of this bar, you should create it as part of
your application using Dashcode.

When the webFrame has the location and size desired for the display of your web con-
tent, it is used to initialize a UIWebView object called aWebView. In the following code,
Lines 1 and 2 show how this is done. Notice that it is similar to the
QuickConnectViewController allocation examined earlier in this chapter.The major dif-
ferences are that the alloc message is sent to the UIWebView class, and the UIWebView ob-
ject that was just allocated is sent the initWithFrame message and passed the webFrame
structure that was created and modified in the previous code snippet.The aWebView ob-
ject is located and sized to the values contained in webFrame.

1 UIWebView *aWebView = [[UIWebView alloc]

2 initWithFrame:webFrame];

3 self.webView = aWebView;

4 aWebView.autoresizesSubviews = YES;

5 aWebView.autoresizingMask=(UIViewAutoresizingFlexibleHeight

6 | UIViewAutoresizingFlexibleWidth);

7 //set the web view delegate for the web view to be itself

8 [aWebView setDelegate:self];

ptg

21Section 7: Embedding Web Content: QuickConnectiPhone

This new UIWebView is stored in the QuickConnectViewController’s webView attrib-
ute by the code in line 4 so that it can be accessed later by other
QuickConnectViewController methods.This becomes vital when using the acceleration,
GPS location, and other capabilities described in Chapter 4,“GPS,Acceleration, and
Other Native Functions with QuickConnect.”

Lines 5 and 6 indicate what level of flexibility the aWebView object has to redraw itself.
Avoid adding subviews if you can. Line 4 states that as aWebView changes size, so should
the subviews.As the line is written, if aWebView’s width changes due to a rotation, any
subview it contains should also change width by the same scaling factor.

Lines 5 and 6 indicate that the width and the height of aWebView will also change.
When the iPhone is rotated, it is common for the current view to rotate to or from land-
scape mode and for the current view to resize itself to match the new width and height
available from the device. If lines 5 and 6 are removed or commented out, the application
still rotates but does not change the width and height of aWebView.This causes a large,
blank area to appear to the right of the applications in landscape mode. Rarely should you
allow your application’s view to rotate without resizing itself.

Line 8 of the previous code sends aWebView a message stating that the current
QuickConnectViewController, known as self, acts as the aWebView object’s delegate.
This enables the implementation of several optional UIWebViewDelegate methods in the
QuickConnectViewController class.Table 1.1 indicates what these methods are.

Add each of these optional methods to the QuickConnectViewController class if you
have a need.The template has already added webView:shouldStartLoadWithRequest,
webView:DidStartLoad, webView:DidFinishLoad, and
webView:didFailLoadWithError.

Having prepared aWebView, it is now appropriate to indicate what content it should
load and then triggers the load.To accomplish this, the location of the index.html file lo-
cated in the resources of the application must be determined.Thankfully, as seen in lines 3
and 4 of the code snippet, the NSBundle class that represents your application on disk has
a method called pathForResource:ofType.

The pathForResource:ofType method takes two strings as parameters.The first is the
name of the file shown as the string index, and the second is the file name extension
html.The result of this call is that a full path to the file on your machine is generated and
stored in the filePathString local variable.This string can then be used to create an ob-
ject that represents a URL to the file and then the NSURLRequest object aRequest that
represents the item you want to load, as seen on lines 7 and 8:

1 //determine the path the to the index.html file in the

2 //Resources directory

3 NSString *filePathString = [[NSBundle mainBundle]

4 pathForResource:@”index” ofType:@”html”];

5 //build the URL and the request for the index.html file

6 NSURL *aURL = [NSURL fileURLWithPath:filePathString];

7 NSURLRequest *aRequest = [NSURLRequest

8 requestWithURL:aURL];

ptg

22 Chapter 1 Developing with Dashcode and Xcode

9 //load the index.html file into the web view.

10 [aWebView loadRequest:aRequest];

11 //add the web view to the content view

12 [contentView addSubview:aWebView];

In line 6, the NSURL object is passed the fileURLWithPath message. Because a file is
loaded directly from disk, this is the appropriate message.This is is the only thing needed
for QuickConnectiPhone hybrid applications, but if you use another implementation and
load a page directly from the web, the message is URLWithString. It is passed with a full
URL parameter such as http://www.byui.edu.

Having completed the creation of a NSURLRequest object, the actual loading of the re-
quested URL is triggered by sending the UIWebview object aWebView the loadRequest
message.The NSURLRequest, aRequest, is passed as the only parameter to this message.

Table 1.1 The UIWebView API

Method Signature When Called Parameters

-(BOOL)webView:(UIWebView *) webView

shouldStartLoadWithRequest:
(NSURLRequest *) request
navigationType:
(UIWebViewNavigationType)
navigationType

Just before the
view starts
loading content

webView—The view that is
about to load content.

request—The location of the
content to be loaded.

navigationType—The type of
user action that causes the
page to be loaded.

UIWebViewNavigationType
options—LinkClicked,
FormSubmitted, BackForward,
Reload, FormResubmitted, and
Other.

- (void)webViewDidStartLoad:
(UIWebView *) webView

After the view
starts loading
content

webView—The view that loads
the content.

- (void)webViewDidFinishLoad:
(UIWebView *) webView

After the view
completes
loading content
successfully

webView—The view that loads
the content.

- (void)webView:(UIWebView *) webView
didFailLoadWithError:(NSError *) error

If the view fails to
load the content

webView—The view that
attempts to load the content.

Error—An error object repre-
senting the error that occurred.

http://www.byui.edu

ptg

23Section 8: Embedding Web Content: PhoneGap

After a request has been loaded, aWebView is added to the main content view by send-
ing it the addSubview message with the UIWebView object passed as the parameter. If
this is not done, the page is loaded and fully active, but it is not displayed.

Section 8: Embedding Web Content: PhoneGap
Unlike QuickConnectiPhone, PhoneGap sets up the location of the HTML file in the
applicationDidFinishLaunching delegate method discussed in Section 6.Yet, much of
what is done to display web content in your application is the same.

Just like the QuickConnectiPhone discussion in the previous section, PhoneGap must
get a path to a file in the application distribution.This time the file is url.txt instead of
QuickConnect’s index.html.This is done in lines 8–12 of the following code.

First, as seen in the last section, the NSBundle object representing your application on
disk is created.The pathForResource message is then passed to it with the parameter val-
ues url and txt. If this file is successfully located, theURLString local variable is assigned
a string that is the content of the url.txt file, as seen on lines 14 and 15.

1 NSString * htmlFileName;

2 NSString * urlFileName;

3 htmlFileName = @”index”;

4 urlFileName = @”url”;

5 NSString * urlPathString;

6 NSBundle * thisBundle = [NSBundle bundleForClass:

7 [self class]];

8 if (urlPathString = [thisBundle

9 pathForResource:urlFileName ofType:@”txt”]) {

10 NSString * theURLString =

11 [NSString stringWithContentsOfFile:

12 urlPathString];

13 appURL = [NSURL URLWithString:theURLString];

14 [appURL retain];

15 NSURLRequest * aRequest =

16 [NSURLRequest requestWithURL:appURL];

17 [webView loadRequest:aRequest];

18 }

Line 13 converts the string retrieved from the url.txt file to a NSURL object that can be
used to create a request.This request is, just as we saw in the previous section, passed as a
parameter to webView using the loadRequest message.

With these two different implementations of the same behavior, you can see that al-
though they are slightly different, they are mostly the same.All implementations of hybrid
applications use the following approach:

1. Get a URL string.

2. Create an NSURL from the string.

ptg

24 Chapter 1 Developing with Dashcode and Xcode

3. Create an NSURLRequest from the NSURL.

4. Use the UIWebViewloadRequest message with the NSURLRequest as the parameter.

If you choose to write your own implementation, follow the same steps.

Summary
To create hybrid iPhone applications, you need a small Objective-C wrapper for your
HTML, CSS, and JavaScript application. Dashcode is a powerful tool that enables you to
quickly and easily create a dynamic JavaScript application that can be embedded using
such a wrapper. Both the QuickConnectiPhone Application templates for Dashcode and
Xcode and the PhoneGap template for Xcode speed up your application creation by in-
cluding the repetitive code used in hybrid applications in your project.As Chapters 3, 4,
6, 7, and 8 show, the Xcode templates provide the Objective-C and JavaScript you need
to write hybrid applications that include JavaScript access to the following:

PhoneGap
n Accelerometer data
n GPS location data
n Device vibration

QuickConnectiPhone
n Accelerometer data
n GPS location data
n Device vibration
n Custom system sounds
n Audio recording and playback
n Displaying standard Date and Date/Time pickers
n SQLite database access to databases shipped with your application and those in the

UIWebView as the application runs

With the Dashcode and Xcode templates, you can create applications on the iPhone
faster than ever before.

ptg

2
JavaScript Modularity and

iPhone Applications

Usually, when writing JavaScript, two phrases come to mind: cross-browser compatibil-
ity and complexity.This chapter shows you how to avoid complexity in hybrid iPhone
applications, and supplies you with source code that accomplishes complex behavior
quickly and easily without sacrificing flexibility.With iPhone hybrid applications, you do
not need to worry about cross-browser compatibility because only the Safari engine
called WebKit is used.This makes it even easier to write interesting and fun JavaScript
applications.

Section 1: Modularity
The concept of modularity has been around for a long time in both the computing and
noncomputing industries.The essence of modularity is captured in the phrase,“Build it
out of interchangeable pieces.” If pieces are truly interchangeable modules, they must be
capable of replacing each other with no, or almost no, changes to the items that interact
with them. In software, this is usually a common, defined API that doesn’t change.

The entertainment industry would be chaotic if each film was produced on a different
medium because a different projector would be needed for each film. If an automobile
manufacturer didn’t standardize the way its engines were connected to the transmissions,
each engine-transmission combination would have to be hand crafted. Costs would sky-
rocket and quality could easily crash. In the software industry, many attempts have been
made to create modular, reusable code.Today, these are referred to as frameworks.

Module Defined
For a module to exist, it must have two characteristics: tight cohesion and loose coupling.

Tight cohesion means the modular item has a clearly defined role and that it does every-
thing needed to fulfill this role. It has a purpose for its existence and it acts on that pur-
pose, such as handling one activity.

ptg

26 Chapter 2 JavaScript Modularity and iPhone Applications

Loose coupling means the module isn’t reliant on knowing the internal workings of other
modules, and no other modules know about its internal workings either. This requires the
creation and use of a strong interface.

When these two characteristics are achieved, a module is born.

A steak is a module; spaghetti is not.

Frameworks are interesting to examine.There is usually a tradeoff between a frame-
work’s ease of use and its flexibility. If the framework developer isn’t careful, he can make
doing unimportant things with the framework easy and doing what the engineer or pro-
grammer needs to do hard.

Often, in the attempt to make a framework easy to use and flexible, execution scalabil-
ity is sacrificed, which is the issue with Ruby on Rails. It is great to use but won’t scale to
enterprise sizes without large amounts of clustered hardware, which reduces its supporta-
bility and increases its cost. So, how can a framework be scalable, easy to use, and flexible?
The answer is well-applied and highly engineered modularity.

Although not usually taught or emphasized, certain types of modules help make soft-
ware development easier.These somewhat secret modules are known as front controllers
and application controllers.

The examples in this chapter show you how to create and use these modules and how
they can make your application creation easier and faster.

Section 2: The QuickConnect JavaScript
Framework—A Modularity Example
The JavaScript framework in the Dashcode and Xcode templates is designed to minimize
CPU and RAM usage and still be easy to use. Because this framework is designed to be
highly modular, each component does one thing, does it well, and does it quickly.

The design uses a command-response paradigm.When you send a command, the mod-
ules run the necessary functions associated with the command. Figure 2.1 shows how this
processing flows through an application using this design approach. Processing begins at
step 1 and follows the numbered arrows through the framework.

The only items in the flow that are not already created are the Validation, Business, and
View Control Functions specific to your application’s behavior. Examples of these applica-
tion specific modules are given throughout the remainder of this book.

To validate user input, useValidation Control Functions (ValCF). Use Business Control
Functions (BCF) to retrieve data from a database, a web server, or another source, or to put
it into storage. UseView Control Functions (VCF) to update the user viewable screen.

For example, you might want to gather user information with a form-like interface
that includes a Submit button.Then, you can store this information in the SQLite data-
base and indicate to the user that the data was stored successfully.

To do this, create three control functions: a Validation Control Function to ensure that
the entered data meets the minimum standards required by your application, a Business

ptg

27Section 2: The QuickConnect JavaScript Framework—A Modularity Example

Front
Controller

Application
Controller

Database Access Object

Validation
Control

Functions

Business
Control

Functions

View
Control

Functions

Request

1

4

12

9 10 11

85

76

2 3

SQLite
Database

Figure 2.1 The processing flow associated with a
single command

Control Function to store the information in the database, and a VCF to trigger a view-
able success message.

Not all functionality needs to be associated with all three types of control functions.An
application such as a game usually does not need to have a ValCF each time the user trig-
gers some sort of behavior.

Figure 2.1 indicates that you do not need to make each of these different control func-
tions communicate with each other.The framework modules are designed to do that
work.You just need to write your control functions and associate them with commands.
Because of the design, each of the control functions requires few lines of code and is im-
mediately functional.

Because the design is modular, you can easily apply the concept of division of labor. If
you divide the creation of these control functions in a team either by command or by

ptg

28 Chapter 2 JavaScript Modularity and iPhone Applications

Table 2.1 The FrontController API

Method Signature Return Parameters

handleResult(aCmd,
paramArray)

void aCmd—A unique string representing the behavior you want
processed. For example “displayBlogEntries.”

paramArray—An optional parameter consisting of an array of
variables that might be needed during processing.

type, independent work can progress quickly. For more information about what each of
these control functions are and how to create them, see Sections 4 and 5.

Control functions, when done correctly, are reusable for more than one command. For
example, you might use multiple commands for updating the same portion of the screen.
This design enables you to associate a VCF that updates that specific portion of the view
with any number of commands.

As shown in Table 2.1, the front controller of the application is the gateway through
which all requests for execution must pass. By forcing all requests through the front con-
troller, it becomes much easier to predefine the order of execution in the application.

The front controller is much like the wall around an ancient fortified town: only one
way in and one way out. By reducing the possible points of access into the town, it be-
comes easier to defend and the citizens can live more secure lives. Including a front con-
troller in your application makes it easier to secure.

The implementation of the front controller module in the QuickConnectiPhone
JavaScript framework is the handleRequest function.This implementation is found in the
QuickConnect.js file in your application’s QCiPhone group in Xcode or QCiPhone
folder in Dashcode. By examining the code, you can see how it performs its security and
execution order functions.

When the handleRequest function is called, it is passed a command and an array of
parameters.The command parameter is required but the paramArray is optional.

The following code, located in lines 17–20 in the functions.js file of the simpleCalc ap-
plication, is an example of calling the handleRequest function in response to a user ac-
tion. Here, the user clicks the addition symbol button. Figure 2.2 shows the simpleCalc
application after the user presses the Multiply button.

function add(event)

{

handleRequest(‘math’,new Array(‘+’));

=}

The math command is passed as the first parameter, and an array containing the single
character + is passed as the second parameter. Using an array as the second parameter
might seem unnecessary in this instance, but because the design requires an array as the
second parameter, it is more flexible as you see later in this chapter.

ptg

29Section 2: The QuickConnect JavaScript Framework—A Modularity Example

Figure 2.2 The simpleCalc
example application shows
the result of pressing the

Multiply button.

The add function is the onclick listener for a button.When the associated button is se-
lected, allValCFs, BCFs, andVCFs mapped to the math command are executed and the pa-
rameter array is passed to them. Notice that the subtract, multiply, and divide listener
functions also use the same command as add, but pass a different character in the array.

In this case, the application reuses the same ValCF, BCF, and VCF code for each piece of
functionality. It is possible to use a different command in each listener and different BCFs,
and then reuse the ValCFs and VCFs. In that case distinct BCFs for each type of arithmetic
operation desired would be needed but they would be similar.Thus, a design decision was
made to create only one BCF in this case.

Figure 2.3 shows the application flow in the simpleCalc example when a user selects
any of the arithmetic buttons in the user interface. In this example, two ValCFs are exe-
cuted to determine if it is safe to continue processing. Remember that the modular design
shown here enforces the order of the function calls.

The first ValCF checks to ensure that the two values entered by the user are numbers.
The second, divisionByZeroValCF, ensures that division by zero cannot happen.

ptg

30 Chapter 2 JavaScript Modularity and iPhone Applications

checkNumbersValCF

divisionByZeroValCF

calculateSolutionBCF

displaySolutionVCF

Command Flow

Figure 2.3 Execution order of the
control functions mapped to the

math command

checkNumbersValCF

entryECF

divisionByZeroValCF

calculateSolutionBCF

displaySolutionVCF

“math”

“badNum”

“divZero”

Figure 2.4 The command flow design of the math command

After passing both validations, the calculateSolutionsBCF function is called.This
BCF performs the arithmetic calculation requested by the user.The displaySolutionVCF
then shows the result (refer to Figure 2.2).

If, however, the request fails to pass either ValCF, the modular design presented has con-
trol functions to handle this situation.

Error Control Functions (ECF) are defined as control functions used to handle error
situations. If either ValCF fails, the entryECF function is called (see Figure 2.4).This func-
tion notifies the user about an error with one or more of the entries.

How, then, is the math command mapped to the four command functions that need to
be executed? Four utility functions are provided in the QuickConnectiPhone implemen-
tation of this design. Each of them, as shown in Table 2.2, maps a command to a control
function.

ptg

31Section 2: The QuickConnect JavaScript Framework—A Modularity Example

Table 2.2 The Mapping Function API

Method Signature Return Parameters

MapCommandToValCF(command,
validationControlFunction)

Void command—A unique string representing the
behavior you want processed. For example
math.

validationControlFunction—A validation function
to execute when the command is received by the
handleRequest function.

MapCommandToBCF(command,
businessControlFunction)

Void command—A unique string representing the
behavior you want processed. For example
math.

businessControlFunction—A business function to
execute when the command is received by the
handleRequest function.

MapCommandToVCF(command,
viewControlFunction)

Void command—A unique string representing the
behavior you want processed. For example
math.

viewControlFunction—A view function to execute
when the command is received by the
handleRequest function.

MapCommandToECF(command,
errorControlFunction)

Void command—A unique string representing the
behavior you want processed. For example
divZero.

errorControlFunction—An error function to exe-
cute when the command is received by the
handleRequest function.

The following code, found in lines 24–27 of the mappings.js file, shows how mapping
commands to control functions is done for the math command and the two error com-
mands badNum and divZero.

//mapping one command to multiple funcitons

mapCommandToValCF(‘math’,checkNumbersValCF);

mapCommandToValCF(‘math’,divisionByZeroValCF);

mapCommandToBCF(‘math’, calculateSolutionBCF);

mapCommandToVCF(‘math’, displaySolutionVCF);

//multiple commands mapped to one function

mapCommandToECF(‘badNum’, entryECF);

mapCommandToECF(‘divZero’, entryECF);

A well-designed front controller needs to be only written once and can be reused in
multiple applications.The specific front controller-application controller design pre-
sented in this chapter also provides a simple way to design the specific behaviors of your
applications.

www.allitebooks.com

http://www.allitebooks.org

ptg

32 Chapter 2 JavaScript Modularity and iPhone Applications

Application Controllers
An application controller, based on the standard application controller pattern, exists to map
commands to a specific functionality. As such, implementations of the pattern generally con-
sist of a map that has commands as the keys and functionality targets as the values.

In this chapter’s design, the values associated with the map’s keys are lists of functions.
This enables the controller to execute multiple functions in the specified order and increase
the modularity and reusability of the control function targets.

A well-designed application controller makes your application extensible because functional-
ity can be added without rewriting the interfunctional communication of your application.

The QuickConnectiPhone application controller implementation is an example of this.

Now that you have seen how the commands are mapped to control functions, it is time
to examine the creation of control functions.The checkNumbersValCF function is fairly
typical of ValCFs. It is single task-oriented and ensures only that the values entered by the
user are numeric. If they are not numeric, it calls one of the application controllers,
dispatchToECF, to handle the error:

function checkNumbersValCF(parameters){

//make sure both a and b are numbers

var a = document.getElementById(‘a’).value;

var b = document.getElementById(‘b’).value;

if(isNaN(a) || isNaN(b)){

dispatchToECF(‘badNum’,’Enter numbers only.’);

return false;

}

return true;

}

ValCFs return true if the situation correctly validates and false if it does not.This enables
processing to stop immediately on failure, which increases the security of your application.

Earlier in this section, the calculateSolutionBCF mapped BCF to the math command.
As with most BCFs, it retrieves data on which to act. In this case, it pulls the data from the
user interface. In other cases, a BCF might pull values from a database or, using AJAX, pull
it from a server on the Internet.This code shows the implementation of this BCF:

function calculateSolutionBCF(parameters){

var a = document.getElementById(‘a’).value;

var b = document.getElementById(‘b’).value;

Because this full design ensures that all validation control functions execute first fol-
lowed by all BCFs and VCFs, it becomes easy to layout the function-level design of your
application (see Figure 2.4).

This full framework design also ensures that the control functions execute in the order
that they are mapped to commands. In the previous mapping code, the
checkNumbersValCF function is always called before the divisionByZeroValCF.

ptg

33Section 2: The QuickConnect JavaScript Framework—A Modularity Example

if(a == ‘’){

a = 0;

}

if(b == ‘’){

b = 0;

}

//evaluate the result of the calculation

var expression = a+parameters[0]+b;

var result = eval(expression);

return new Array(a, b, result);

}

BCFs return an array of information rather than the boolean of ValCFs.This array can
contain any information you choose to include. In this case, the two values that the user
entered and the calculated result are returned because each of these needs to be used later
to generate the information displayed to the user, as seen in Figure 2.2.

The actual calculation of the result uses JavaScript’s eval function.This function at-
tempts to execute any string as if it contains valid JavaScript code. In this example, if the
user enters 3 and 5 for the values and selects the Multiply button, the expression variable
contains the string “3 5.” When this string is passed to eval, the result returned is 15.

Be careful when using the eval function because it executes any string it is given. In
the simpleCalc example application, it is safe to use because the ValCF that ensures that
both the a and b values are numbers has been passed. If validation hasn’t been done on the
elements used in a call to eval, users can discover the internals of an application and per-
form nefarious acts, such as an SQL insertion attack if the BCF has database access.

The displaySolutionVCF is a simple example of VCFs.As with the other control
functions, it does one thing: It updates the display div with a string showing the arithmetic
action performed and the calculated result:

function displaySolutionVCF(data, parameters){

var result = data[0][0]+’ ‘+parameters[0]

+’ ‘+data[0][1]+’ = ‘+data[0][2];

document.getElementById(‘display’).innerHTML = result;

}

Generally, VCFs update the HTML of the main page in some way.An example of a
major change of the view is changing out the entire viewable UI.This example makes a
small change. It displays the arithmetic performed and leaves the rest of the UI unchanged.

ECFs can also be either simple or complex.They might involve behavior such as mak-
ing changes to stored data or be as simple as the following entryECF example. It receives a
string as its only parameter and displays it to the user:

function entryECF(message){

document.getElementById(‘display’).innerHTML = message;

}

ptg

34 Chapter 2 JavaScript Modularity and iPhone Applications

Because of its simplicity, this ECF can be used in the case of validation failures in both
ValCFs in this example application.

By using a good implementation of the front controller-application controller design,
you can focus the application design and implementation on actual desired behavior
rather than on interfunction communication/data passing.The next section shows an im-
plementation of a front controller and application controllers.

Section 3: The QuickConnectiPhone
Implementation of the Modular Design
The handleRequest function, like most other portions of the design implementation in
this section, is small. It and the method for which it is a façade consist of 21 lines of code
of which only 15 are active. In the following code, the lines of interest, 7–21, are bold.

Because handleRequest is the implementation of the front controller portion of the
design discussed in the previous section, it is responsible for calling four application con-
trollers. Each application controller is responsible for handling one type of the control
functions. dispatchToValCF as shown in line 7 of the following code is the first applica-
tion controller called. (Table 2.3 describes each application controller function.)

Table 2.3 The Application Controller API

Method Signature Return Parameters

dispatchToValCF
(aCmd, paramArray)

Boolean. True on success; false on
failure.

aCmd—A unique string repre-
senting the behavior you want
processed. For example,
displayBlogEntries.

paramArray—An optional param-
eter consisting of an array of
variables that are needed dur-
ing processing.

dispatchToBCF(aCmd,
paramArray,
callBackData)

Data ready to be displayed or
stop. If stop is returned, no fur-
ther computation is done for the
indicated command.

aCmd—A unique string repre-
senting the behavior you want
processed. For example,
displayBlogEntries.

paramArray—An optional param-
eter consisting of an array of
variables that are needed dur-
ing processing.

callBackData—An optional
parameter generated by the
framework if asynchronous calls
are made from within any BCFs
associated with the command.

ptg

35Section 3: The QuickConnectiPhone Implementation of the Modular Design

dispatchToValCF calls all of the ValCFs you have mapped to the command value in
the aCmd variable. If the mapped validation functions pass, it returns a boolean value of
true; if any one of the ValCFs fail, it returns false.

Because this dispatchToValCF call is wrapped in an if statement, further processing of
your request happens only if it returns true. If it returns false, your request falls into the
error-handling routine only if you have mapped ECFs to the main command.The simple-
Calc example application, as shown earlier, has no such mapping.

1 function handleRequest(aCmd, paramArray){

2 requestHandler(aCmd, paramArray, null);

3 }

4

5 function requestHandler(aCmd, paramArray, callBackData){

6 if(aCmd != null){

7 if(dispatchToValCF(aCmd, paramArray)){

8 try{

9 var data = dispatchToBCF(aCmd,

10 paramArray, callBackData);

11 if(data != ‘stop’){

Table 2.3 The Application Controller API

Method Signature Return Parameters

dispatchToVCF(aCmd,
data, paramArray,)

Void aCmd—A unique string repre-
senting the behavior you want
processed. For example,
displayBlogEntries.

data—An array consisting of all
of the data generated by calls
to BCFs.

paramArray—An optional param-
eter consisting of an array of
variables that are needed dur-
ing processing.

dispatchToECF(aCmd,
errorMessage)

Void aCmd—A unique string repre-
senting the behavior you want
processed. For example,
databaseDown.

errorMessage—A message to
notify the developer through log-
ging or the user through display.
This message should be
descriptive and helpful to the
type of target user it is intend-
ed for.

ptg

36 Chapter 2 JavaScript Modularity and iPhone Applications

12 dispatchToVCF(aCmd, data, paramArray);

13 }

14 }

15 catch(err){

16 logError(err);

17 }

18 }

19 else{

20 dispatchToECF(aCmd, ‘validation failed’);

21 }

22 }

23 }

After your request passes validation, the front controller module calls the next applica-
tion controller, dispatchToBCF.This controller function calls the BCFs you associated
with the command to retrieve or store any data you desire.

If your BCF returns anything other than stop, the front controller calls the VCFs you
also associated with the command. It accomplishes this by calling the third application
controller, dispatchToVCF. For further information on BCFs and VCFs, see Section 4.

The purpose of the front controller module mentioned previously is to offer a quick
and easy way to ensure a stable, secure, computational flow through your application.When
a flow is consistently used, it is much easier to create and debug your applications.There-
fore, when you use the QuickConnectiPhone implementation of the design, make calls to
the handleRequest function when you want something to happen in your application.

Each application control function in Table 2.3 performs a distinct role and enables the
handling of your command to continue or stop depending on the decisions you make in
your ValCFs and BCFs.They are modules because they are reusable, loosely coupled, and
tightly cohesive.

The dispatchToValCF function is a façade.This function and the dispatchToSCF
function are the same behaviorally, but they work against different sets of data. Use ValCFs
to validate input from the user. Security Control Functions (SCFs) are used to ensure that
data retrieved from remote sources such as web sites doesn’t contain nefarious code. Be-
cause of this similarity of function, it is best to centralize the working code and use façade
functions to make the call to the underlying check function.

The following code, found in the QuickConnect.js file, shows the dispatchToValCF
façade function and the underlying check function.As you can see, the dispatchToValCF
function calls check and passes it its own two parameters plus an additional one.This ad-
ditional parameter is a string describing the type of map the check function is to use.This
map, or associative array, contains all of the associations between commands and an array
of ValCFs.To create and associate commands with ValCFs, see Section 2 of this chapter.

1 function dispatchToValCF(validationCommand, paramArray){

2 return check(validationCommand, ‘validation’, paramArray);

3 }

4

ptg

37Section 3: The QuickConnectiPhone Implementation of the Modular Design

5 /*

6 * This function is not intended to be called directly by the programmer. Do
not use it.

7 */

8 function check(command, type, data){

9 var retVal = true;

10 /*

11 * execute all of the default functions that apply to all commands if
there are any default functions defined.

12 */

13 var map = securityMap;

14 if(type == ‘validation’){

15 map = validationMap;

16 }

17 var defaultFuncs = map[‘default’];

18 if(defaultFuncs){

19 var numFuncs = defaultFuncs.length;

20 for(var i = 0; i < numFuncs; i++){

21 retVal = defaultFuncs[i](command, data);

22 if(retVal == false){

23 break;

24 }

25 }

26 }

27 /*

28 * if the default functions have passed, then do those specifically for
the command

29 */

30 if(retVal == true){

31 commandFuncs = map[command];

32

33 if(commandFuncs){

34 var numFuncs = commandFuncs.length;

35 for(var i = 0; i < numFuncs; i++){

36 retVal = commandFuncs[i](data);

37 if(retVal == false){

38 break;

39 }

40 }

41 }

42 }

43 return retVal;

44 }

In line 17, the code attempts to retrieve an array of control functions associated with
the default command.The retrieval of these control functions means that you can create

ptg

38 Chapter 2 JavaScript Modularity and iPhone Applications

a VCF, and if you map it to default, it gets called for every command you send to
handleRequest.

A common default ValCF is one that ensures that a mapping for the command being
passed in exists in either the map for the BCFs, the VCFs, or both. If the command does
not exist in these functions, there is no reason to continue processing the command, so it
stops all further validation checking and returns false.

By returning false, it causes the dispatchToValCF function to immediately return
false, too.This, in turn, causes the front controller to stop further processing.ThisValCF
catches unmapped, erroneous commands before they can cause problems later in your ap-
plication.

If there are no default ValCFs or the command passes all those associated with the
default command, the check method continues by retrieving the list of ValCFs associated
with the specific command passed in and executes each one of them in order.

This prechecking of inputs of all types, as discussed in Section 2, is one of the purposes
of the dispatchToValCF function and the ValCFs that you create.The prechecking also
enables you to separate your validation code from your execution code. By creating this
separation, you clarify both the validation code and execution code, making the ability to
support your application simpler. It also aids you during the creation of the software by
simplifying the design process (see Section 2).

Section 4: Business and View Application
Controller Implementations
Of these two application controllers, business is the more complex and view is simple.
The dispatchToBCF function calls all the BCFs mapped to a command even if one or
more of the BCFs make asynchrounous calls.The dispatchToVCF function is much sim-
pler because it looks much like the displatchToValCF function, andVCFs are never
asynchronous. Even though both of these functions have a similar behavior, their imple-
mentations are dramatically different.

As discussed in Section 2, the dispatchToBCF business application control function is
called only if the ValCFs you have defined and mapped indicate that it is safe to continue
processing.Although this function uses some of the same ideas, it is significantly different
than the checkValidation method.

The dispatchToBCF function consists of two major portions.The first portion contains
lines 18–40 and deals with the callBackData array.This array represents the data that has
been accumulated when an asynchronous call is made. If your BCF makes no asynchro-
nous calls, this array is null. If it does make a call, such as an AJAX call or a call to retrieve
data from a database, this array contains the data required to continue calling the remain-
ing BCFs mapped to the command. Lines 25 and 31 show that this callBackData array
includes the results of all BCFs called prior to the asynchronous call and the data gener-
ated by the asynchronous call itself.

ptg

39Section 4: Business and View Application Controller Implementations

Asynchronous Defined
In computing, you are used to thinking synchronously. To be synchronous means to do
things one at a time in a defined order. When calling a function, the normal expectation is
that each step of the function executes in order. When all steps are complete, the function
returns some value or void.

Asynchronous behavior is different from this. It is more like a soccer game. In a soccer
game, each player is busy doing what needs to be done regardless of whether anyone else
is also busy. It would be silly any other way. Imagine a game in which all players waited for
other players to finish what they were doing before they started moving. Silly.

Asynchronous computing behavior means that you can tell a function to do something, but
processing continues without waiting to get anything back from the function.

Line 34 adds the data generated by the asynchronous call to the results array in those
cases where no previous BCF call has been made.Thus, after this line executes, the
results array appears to the rest of the code as if no asynchronous calls were made.

Line 37 retrieves the index number of the BCF that made the asynchronous call; oth-
erwise, the remainder of the dispatchToBCF function would not know how many BCFs
mapped to the command have already been executed.Asynchronous calls make a “break”
in the execution of the BCFs mapped to the command.The dispatchToBCF function
does not know which BCFs have already been executed unless an indicator is included in
the data received from the results of the asynchronous call.

In Chapter 7,“Database Access,” this is done for you by the getData, setData, getNa-
tiveData, and setNativeData methods of the DataAccessObject. If you create your own
framework that enables asynchronous calls, create a set of code similar to the following:

1 function dispatchToBCF(aCmd, paramArray, callBackData){

2

3 if(event == null){

4 event = window.event;

5 }

6 if(event != null){

7 stopDefault(event);

8 }

9 window.curCmd = aCmd;

10 if(paramArray){

11 window.globalParamArray = paramArray;

12 }

13 else{

14 window.globalParamArray = new Array();

15 }

16 var results = new Array();

17 window.numFuncsCalled = 0;

18 if(callBackData){

19 if(callBackData[0]){

20 if(callBackData[1]){

ptg

40 Chapter 2 JavaScript Modularity and iPhone Applications

21 var accumulatedDataFromCallback =

22 callBackData[1][3];

23 if(accumulatedDataFromCallback &&

24 accumulatedDataFromCallback.length > 0){

25 results = accumulatedDataFromCallback;

26 }

27 }

28 if(results.length == 0){

29 //results should always be an array.

30 //The [] make sure that it is.

31 results = [callBackData[0]];

32 }

33 else{

34 results.push(callBackData[0]);

35 }

36 }

37 if(callBackData[1]){

38 window.numFuncsCalled = callBackData[1][1];

39 }

40 }

41 var stop = false;

42 if(aCmd){

43 var commandList = businessMap[aCmd];

44 callFunc = function(data){

45 if(data){

46 results.append(data);

47 window.globalBCFResults = results;

48 }

49 if(window.numFuncsCalled < commandList.length){

50 var funcToCall =

51 commandList[window.numFuncsCalled];

52 window.numFuncsCalled++;

53 var result = null;

54 try{

55 result = funcToCall(paramArray,

56 results);

57 }

58 catch(err){

59 dispatchToECF(‘runFailure’,

60 err.message);

61 }

62

63 if(result != null){

64 results[results.length] = result;

65 callFunc();

66 }

67 else{

ptg

41Section 4: Business and View Application Controller Implementations

68 stop = true;

69 }

70 }

71 }

72 if(commandList && commandList.length > 0){

73 callFunc();

74 }

75 }

76 if(stop){

77 return ‘stop’;

78 }

79 return results;

80 }

Lines 41–80 in the dispatchToBCF application control function illustrate how to do
three things:

n Create and use anonymous JavaScript functions
n Do recursion in JavaScript
n Call the BCFs associated with a command

An anonymous function is any function that is created “on the fly” inside another
function.The example used in the previous code is the callFunc function found on lines
44—71.This function does not exist outside of the dispatchToBCF function.As with all
anonymous functions, it is strictly limited by the scope of the function within which it is
declared. On the other hand, any variables declared within the containing function prior
to the declaration of the anonymous function are still within scope and can be used in the
anonymous function even though they are not passed as parameters.

Lines 43 and 44 are an example of this.The commandList variable is defined outside of
the callFunc function, is not passed to the callFunc, and yet, it is used within the func-
tion. It is used on lines 50 and 51 to retrieve the next BCF to execute. Lines 55 and 56
execute this BCF and store the results of the call.

As an example of recursion, callFunc calls itself on line 65.This happens at the end of
the function only if the result of the call to the BCF did not return null.This type of re-
cursion is called tail recursion because the check is at the end of the function. If the check
had been at the beginning of the function, it would be an example of head recursion.The
full recursive cascade triggered by callFunc is started by the call on line 73.

Recursion
Recursion is the calling of a function by itself.

When the dispatchToVCF function is called a list of control functions is retrieved that
are mapped to the command as seen in the code below. Unlike the validation application
control function, dispatchToVCF is passed a data parameter that is an array consisting of
elements that are the individual results of the calls to each of the BCFs.

ptg

42 Chapter 2 JavaScript Modularity and iPhone Applications

Like the dispatchToBCF function, if any of the VCFs return stop, no further VCFs are
executed.This enables programmers to terminate further execution if they make a call to
dispatchToECF.

function dispatchToVCF(aCmd, data, paramArray){

if(aCmd){

var vcfFuncList = viewMap[aCmd];

if(vcfFuncList == null){

vcfFuncList = new Array();

}

var numFuncs = vcfFuncList.length;

for(var i = 0; i < numFuncs; i++){

try{

retVal = vcfFuncList[i](data, paramArray);

}

catch(err){

debug(errorMessage(err));

}

if(retVal && retVal == ‘stop’){

break;

}

}

}

}

When each VCF is retrieved, it is called and passed the BCF result data and the origi-
nal parameters, paramArray, sent by your application to the handleRequest function.
This is included in the implementation to enable you to pass information into both BCFs
and VCFs called by the business and view application controllers.

Section 5: Error Application Controller
Implementation
Unlike the other application controllers covered in Sections 3 and 4, the implementation
of the error application controller found in the QuickConnectiPhone framework enables
only one ECF to be mapped to a command.This means that each ECF must fully han-
dle the error, which includes changing stored data, updating the view to notify the user,
and so on.

The following implementation is an example of a simple error application controller:

function dispatchToECF(errorCommand, errorMessage){

var errorFunc = errorMap[errorCommand];

if(errorFunc){

return errorFunc(errorMessage);

}

}

ptg

43Summary

This implementation simply retrieves the ECF to execute and passes the error message
to the ECF.To activate error handling in this way, a call to dispatchToECF must be made
directly, not via a call to handleRequest.The following line of code is found in the
checkNumbersValCF function:

dispatchToECF(‘badNum’,’Enter numbers only.’);

This call to dispatchToECF passes a message to be inserted into the display of the user
interface informing the user that only numbers are acceptable values for entry.

Section 6: Application Functionality Creation
Steps
Sections 3–5 explain what is happening behind the scenes when you use the Quick-
ConnectiPhone framework’s implementation of the front and application controller de-
sign.What are the steps that you need to execute in order to write most pieces of
application functionality? They are as follows:

1. Create any BCFs to retrieve or store data, as shown in Section 4.

2. Create any VCFs to modify the user interface, as shown in Section 4.

3. Create any ValCFs needed for user input, as shown in Section 3.

4. Create any ECFs needed to handle possible error conditions, as shown in Section 5.

5. Map all of your new CFs to a command using the matching mapCommandTo
functions.

After you complete these five steps, the new functionality is part of your application.

Summary
Modularity makes your code easier to write, easier to maintain, and smaller in size when
done appropriately. By keeping this and the speed of execution targets in mind, the
QuickConnectiPhone framework’s implementation provided to you in every application
you create using the QuickConnectiPhone Application templates makes your life much
easier.You get to focus on what you want to do which is to create and provide function-
ality for your users.The framework handles the interfunction communication and control
for you.

By creating ValCFs, BCFs,VCFs, and ECFs, you can easily scope your work to increase
productivity; at the same time, you increase the quality and security of your code.

ptg

This page intentionally left blank

ptg

3
Creating iPhone User Interfaces

The iPhone presents an opportunity for unique user-interaction methods. Older inter-
face design methods are insufficient in this new medium.Your application can supply the
user the intuitive interface interactions and interface elements that iPhone users demand.
This chapter discusses how this can be done. It also discusses the Human Interface Guide
from Apple that is used to evaluate applications for inclusion in the App Store.A drag-
and-drop rotate scale module is also shown and explained to help you see how to handle
touch and gesture events in JavaScript.These new types of JavaScript events are vital to
iPhone user interface design.

Section 1: Apple’s Human Interface Guide
To give iPhone users a common experience,Apple created a guide to what should be
used in iPhone application user interfaces.This section gives you the flavor and highlights
of the iPhone Human Interface Guide (HIG) in a short and straightforward manner.The
full iPhone HIG is found at http://developer.apple.com/iphone/library/documentation/
UserExperience/Conceptual/MobileHIG/Introduction/chapter_1_1.html.

The iPhone HIG is descended from interface guides created earlier for OS X and
iPhone web development.There is a lot in common among these guides and iPhone’s
HIG.The new guide builds on the strengths of those that came before it and adds new
iPhone application-specific coverage.

On the iPhone screen, space is so limited that textual output to the user can easily be-
come overwhelming. For applications whose main function is not to read textual data,
images and icons should be used wherever possible to communicate ideas and functional-
ity to the user.

The move away from textual cues lies at the heart of the iPhone.The iPhone doesn’t
have pull-down menus or ribbons, and your application should not implement them. If it
is well designed, its use should be intuitive. If it is not intuitive, your application is not de-
signed for the iPhone.A user’s guide for your application should not be needed if it is de-
signed well.

http://developer.apple.com/iphone/library/documentation/UserExperience/Conceptual/MobileHIG/Introduction/chapter_1_1.html
http://developer.apple.com/iphone/library/documentation/UserExperience/Conceptual/MobileHIG/Introduction/chapter_1_1.html

ptg

46 Chapter 3 Creating iPhone User Interfaces

Table 3.1 iPhone Gestures and Standardized Behaviors

Gesture Behavior

Tap User interface item selection.

Drag Scroll or pan for further viewing.

One reason that pull-down menus have proliferated in many applications is that they
have grown from single-use to multiple-use applications. If you look at office applications
that are available, it is easy to see how they have grown from the simple, purpose-directed
applications they originally were to the behemoths they have become.

Word processors are no longer word processors.They must do sophisticated layouts, be
capable of including items from completely different applications, and even provide a de-
velopment environment.Although this functionality creep has kept applications some-
what viable, it has made them huge and cumbersome.

Each of your iPhone applications should have one and only one purpose or function.
It should be easily definable and easy for the user to grasp. By supporting Apple’s stan-
dard, your application will be more readily comprehensible and yield a more pleasant user
experience.

Application control is a vital component of any design.All your applications should
enable the user as much control as possible.This means your application should not force
the user into specific behaviors. Limiting options is frowned on in iPhone applications.To
help accomplish this, your application views should be in a flat arrangement. Deep hierar-
chical arrangements of views puts the computer in charge and should be discouraged.

Because gestures such as touch and multitouch are the interaction methodology for
the iPhone, your application should support these. Each touch location should be sized
appropriately to enable the user to select it. By standard, touch locations should be about
34 pixels in width and height. If they are smaller than this because you are trying to free
up screen space, the user experiences difficulty selecting screen items.A poor user experi-
ence results.

Although swipe and pinch are supported behaviors, they can be difficult for your users
to discover. If you are going to include these, give visual cues about their availability.An
example of a cue in an eBook application could be the inclusion of curled page corners
in the visual display.

Drag-and-drop functionality is generally discouraged in the HIG because the same
user interaction is typically used for scrolling or panning. However, examples of successful
applications using drag and drop are easily found.Apple has even produced an overly
complicated sample of how to accomplish it in JavaScript.The second part of this chapter
shows you how to implement drag and drop, pinching to scale, and rotating interface ele-
ments cleanly and easily.

Table 3.1 lists each type of supported user gesture and the standard behavior that is as-
sociated with it. Following these definitions flattens the learning curve for your applica-
tion. However, redefining the associated behaviors makes the learning curve steeper.

ptg

47Section 1: Apple’s Human Interface Guide

Table 3.1 iPhone Gestures and Standardized Behaviors

Gesture Behavior

Flick Quickly scroll or pan. This scrolling or panning must include contin-
ued behavior after the gesture is complete.

Swipe Reveal hidden components, such as table view row delete buttons or
additional views.

Double tap Center and then zoom in or out.

Expanding pinch
(pinch open)

Zoom in.

Contracting pinch
(pinch close)

Zoom out.

Touch and hold Display a magnified view.

The iPhone truly is an amazing device, but textual user input can be cumbersome and
slow compared to standard keyboard data entry.Try to make sure that you use data selec-
tors instead of direct input whenever possible. In hybrid applications, selectors known as
pickers pop up when the user selects an HTML <option> tag. Using selectors in your
application increases the speed with which your users control it and reduces their frustra-
tion level. Chapter 4,“GPS,Acceleration, and Other Native Functions with Quick-
Connect,” shows you how to include standard Date/Time pickers in hybrid applications.

The standard iPhone application HIG indicates that check boxes and radio buttons
should be avoided; instead, switches should be used.The Settings application ships on
every iPhone and iPod touch. It uses switches heavily. Figure 3.1 shows the Safari options
that are modifiable in the Settings application. For hybrid application developers, this
avoidance of radio buttons and check boxes is a quandary.

The Dashcode application used to develop the UI for hybrid applications doesn’t in-
clude a switch widget; however, it can be easily created. It consists of an inset-bordered
box with two text elements: OFF and ON. It also includes a button.

Using the gesture events of the button, you can make it to slide right and left, yielding
two states of this new switch.The ongestureend callback function you define for the button
is used to detect and store if it is in an ON or OFF state. Figure 3.1 shows you the
switches available to a user for modifying the settings of the Safari application. Make your
switches look like those.

By following these basic rules of design, your application fulfills Apple’s requirements
for Apple Store distribution, and it fulfills user expectations of how your application
should work.Violation of these concepts places your application at risk of rejection by
both Apple and those who might use it.

ptg

48 Chapter 3 Creating iPhone User Interfaces

Figure 3.1 The switches in the
Settings application for Safari.

Section 2: List- and Browser-Based Interfaces
One of the basic iPhone application user interface types uses lists to organize the interface
display.The HistoryExample application is one of these. In Dashcode, this interface is
created two ways.The quickest of these is to use the Browser part.

The Browser part, found in the Parts Library, can be dragged directly to your applica-
tion.This creates a stack of independent views.Views are the main display unit that users
interact with; they are often erroneously called screens.When a Browser part is added to
an application, two default views are added, but the code to switch between views is not.
A header with a navigational button is also automatically added. Figure 3.2 shows Dash-
code after adding the Browser part.

The button automatically added in the header does not need to be modified because the
Browser part changes the text displayed by the button to be the text in the header of the
previous view (if there is one).When creating an application, modify the header text, not
the button text, to reflect the application’s name or another appropriate display.

ptg

49Section 2: List- and Browser-Based Interfaces

Figure 3.2 A Dashcode application after the Browser part is added

Two default named views are inserted into the project when a Browser part is added to
an application. By selecting the first red inspector tab, you can see these views and rename
them. Figure 3.3 shows the History sample application after the views have been renamed
mainView and presidentsView. Notice there are + and – options for the Subviews list.
These buttons enable you to add additional views and remove any you don’t need.

All views in the application are managed in the Subviews list. Notice that even though
the navigation of the application is mainView � ContinentsView � SouthAmerican-
View, all of the views are direct children of the stack layout.This is how applications of
this type should be developed.

In both Rounded Rectangle and Edge-to-Edge lists, only the first list item is selec-
table in the Dashcode UI design view.This first element is used as a template for the
other items in the list.Any color, content, or size changes you make to this element are
applied to all the other elements in the list.This includes event listeners you assign.All el-
ements in the lists of the History application share the same onclick event listener, the
changeView function.

The changeView function is in the main.js file and is seen in the code that follows.
It uses the Labels andValues entered in the attributes screen of the view’s inspector to
determine the new view to display.To see this function, select the view, not the first
label element. In your application, this is where you add static list items, as shown in
Figure 3.4.

ptg

50 Chapter 3 Creating iPhone User Interfaces

Figure 3.3 The HistoryExample application with views and two rounded
rectangle lists added to the main view

function changeView(event)

{

var subViewName = event.target.object.value;

var displayName = event.target.innerText;

var browser = document.getElementById(‘browser’).object;

browser.goForward(subViewName+’View’, displayName);

}

By using these values and naming views appropriately, the goForward method of the
browser object shifts the next view appropriately.This goForward method has two pa-
rameters.The first is the name of the view to switch to, and the second is the text to dis-
play in the header of the view. If you try to switch to a view, and the header changes but
the view does not, the name of the view you are attempting to switch to is not the name
of a view in your application.

When creating list- and view-based applications, be sure to organize the data correctly.
If the information is contained in too many views, the user will find the navigation overly

ptg

51Section 3: Nonlist-Based View Applications

Figure 3.4 The mainView people list attributes display with two static ele-
ments added.

cumbersome. In fact, if you are not careful, you might reinvent the DOS-based navigation
control from the 1970s and 1980s.

List- and view-based applications have many uses, but they are not always the most vi-
sually appealing. Sometimes something other than a list needs to be used to trigger the
view changes.These applications are referred to as nonlist-based view applications.

Section 3: Nonlist-Based View Applications
Although list- and view-based applications have many uses, no rule states that all view-
based applications must use lists to access the information. Other visual clues can indicate
that by touching an item, additional information is displayed.The PictureExample sample
application in the QuickConnectiPhone download is an example of one of these.

By indicating on the screen that something is to be touched, the user tends to touch
items to see if they are active. If you choose this approach, be careful not to confuse your
intended target audience members by these indicators or by what they should touch in
order to control your application.

There are a couple of differences between the following code and the previous one.
The first is that each of the images needs either an onclick or ontouchstart listener to

ptg

52 Chapter 3 Creating iPhone User Interfaces

trigger a change to a subview. In this example, a single function, goSub, is used to handle
both touchable images.

function goSub(event)

{

var stackLayout = document.getElementById(‘stackLayout’).object;

stackLayout.setCurrentView(event.target.id+’View’

, false);

}

By giving each image an id that is similar to the name of the view that it represents, it
is easy to use one method to change views.As the previous example shows, the stack lay-
out object has a method setCurrentView.This method takes two parameters: the id of
the view to change to and a flag. If the flag is set to true, it indicates that the visual change
is intended to be a backward change.The id and flag parameters enable the programmer
or engineer to control the behavior of the transitions from one view to another.

Unlike the HistoryExample application list type application consisting of a pre-built
list, views, and a navigation header, the PictureExample application has no built-in, auto-
mated navigation bar. For this reason, the programmer or engineer that causes view
changes backwards from a subview to a super-view must write the code.

Unlike the images found in the main view, the back images are intended to cause a
change to the main view. Because it is awkward for a back directional transition to have
the same visual behavior as a forward transition, the second parameter of the
setCurrentView function is passed true.This indicates that a reverse visual transition is
required.

The following goMain code is associated with the Back button as the onclick listener.
It is passed true as the second argument.This causes the transition associated with the
mainView to occur in a direction that is the reverse of the standard behavior.Thus, it is
possible to make the user think a previous action is being undone.

function goMain(event)

{

// Set the current view of a StackLayout

var stackLayout = document.getElementById(‘stackLayout’).object;

stackLayout.setCurrentView(‘mainView’, true);

}

Another difference from browser-based applications are the options for what type of
transition animation to use when the views change.These are like any other piece of in-
formation given to a user. If a different transition type is used to move to one view as op-
posed to the others, something is different about that view. Figure 3.5 shows the list of
subviews and the goMain function in Dashcode.

As shown in Table 3.2, you can use several types of transitions in your application.
Although it is possible to use many different transactions in an application, this would
be unwise.

ptg

53Section 3: Nonlist-Based View Applications

Figure 3.5 The stack layout attributes screen showing the transition
options selected.

Source: http://creativecommons.org/licenses/by-sa/3.0/

Table 3.2 Transitions Available by Default in Dashcode

Transition
Type

Behavior

push A two-dimensional transition where the view to be displayed moves into the
viewable area while the old view moves out.

dissolve A two-dimensional transition where the view to be displayed becomes more
opaque while the old view becomes more transparent. Because they overlap
each other, it appears as if the old view gradually becomes the new view.

slide A two-dimensional transition similar to push. In this case, the old view
remains in place while the new view appears to slide over the top of it. This
gives the user the impression of moving through a stack of views. In this
case, a “backward” change, sliding off, would be drilling down into the appli-
cation views, whereas a “forward” change, sliding on, would move back up
the view stack.

fade A two-dimensional transition similar to dissolve. In this case, the old view remains
opaque, so that both views are visible at the completion of the transition. When
this transition is done “backward,” the new view becomes opaque and the origi-
nal view is fully displayed. This transition is used to add new information or
functionality to an existing view because both views can accept touch events.

http://creativecommons.org/licenses/by-sa/3.0/

ptg

54 Chapter 3 Creating iPhone User Interfaces

It appears from the Dashcode interface that the only directions available are right-to-
left and left-to-right for those transitions that move.This is not the case.Top-to-bottom
or bottom-to top movement is possible.

The following code is from the setup.js file from the HistoryExample. It is generated
by Dashcode.As you can see, the transition types and their directions are found here for
all of the views. If you want to change these, you must first turn off code generation.To
do this in Dashcode, use the pull-down menu option View � Stop Code Generation.

var dashcodePartSpecs = {

.

.

.

"stackLayout": { "creationFunction": "CreateStackLayout",

"subviewsTransitions": [{ "direction": "right-left", "duration": "",

"timing": "ease-in-out", "type": "push" }, { "direction": "right-left",

"duration": "", "timing": "ease-in-out", "type": "push" }, {

"direction": "right-left", "duration": "", "timing": "ease-in-out",

"type": "push" }, { "direction": "right-left", "duration": "",

"timing": "ease-in-out", "type": "push" }, { "direction": "right-left",

"duration": "", "timing": "ease-in-out", "type": "push" }] }

.

.

.

};

Table 3.2 Transitions Available by Default in Dashcode

Transition
Type

Behavior

flip A three-dimensional transition that causes a rotation on the device’s y-axis
through the center of the old and the new views. It appears to the user as if
the old view is the front of the application and the new view is the back. This
transition is usually used in applications with only two views.

cube A three-dimensional transition where it appears to the user that all of the views
are on the sides of a cube and the cube is rotating forward and backward.

swap A three-dimensional transition where the old view appears to slide to one
side and then move below the new view. During the transition, the new view’s
background is transparent. At the conclusion of the transition, the new view’s
background becomes opaque.

revolve A three-dimensional transition where the old and new views appear to rotate
on the y-axis of the devices display along one of the edges. The visual effect
is similar to a revolving door.

ptg

55Section 4: Immersion Applications

Because Dashcode generates a great deal of code for you and replaces the contents of
the setup.js file regularly, you should not modify this file until your application is com-
plete. It is easiest to modify this file after it is placed in the Xcode QuickConnectiPhone
template because Dashcode is no longer involved. Because it is not involved, it cannot
overwrite any changes you make.

The previous code contains the declaration of four JavaScript objects. Each object be-
gins with a { character, ends with }, and contains a direction, duration, timing, and
type attribute. One of these objects, the second, is bold to help you distinguish it from
the others.

Each these anonymous objects defines the behavior of a transition from one view to
another.The bold object code declares a transition of push type, as described in Table 3.2.
It pushes in from the left to the right in an ease-in- out manner. Ease-in- out means that
it gradually speeds up and slows down as the transition is completed.

Other timing options are ease-in, ease-out, and the default.The default is constant
speed timing and is used when the transition definition object’s timing attribute is not set.

As mentioned earlier, other options for transition direction exist and are top-bottom
and bottom-top.These do not work for all transition types.The slide and push transitions
accept these directions, but none of the others.

If you choose to make modifications to these object declarations, be aware that they
can cause problems if your application is more complex. It seems that Apple left out the
capability to choose some transition definition options because they cause the webkit en-
gine used in Safari and the UIWebView object found in hybrid applications to misbehave.

Section 4: Immersion Applications
Immersion type applications are a dramatic departure from using views for grouping in-
formation display and control.The most common form these applications take is in
games, but current examples of iPhone medical applications also apply this approach.The
idea is that user interaction with the application should be natural, flowing, and, whenever
possible, within one view.

Although this approach in its extreme form is used in games, it can also be used in other
ways. For example, the medical imaging applications use this approach and the touch capa-
bility of the iPhone to dramatically change the way doctors interact with medical images.

There is no reason innovative application engineers cannot use this same approach in
business or science. One reason that poor business decisions are made is that it is difficult
to display related and complicated pieces of information with the simple charts and graphs
used today.To look at data in a different way, a new way of displaying data must be used.

If data can be displayed visually in a nonlinear form encompassing the entire screen,
related data can be used as an overlay to it in order to find relationships.A simple form of
this approach is the map application’s capability to show not only a route from one loca-
tion to another, but to also show traffic density on and near the route.Thus, two pieces of
information are overlaid so the user can find a useful pattern.

ptg

56 Chapter 3 Creating iPhone User Interfaces

Figure 3.6 The DollarStash
game in progress

This book doesn’t pretend to offer an approach for how data can be manipulated for
display. It simply suggests that it can be done and is being done.The example in this sec-
tion is a game.

The DollarStash game is a variation of Apple’s Leaves example web application. In that
application, a series of images are inserted into a page that gradually fall to the bottom of
the screen, twisting and turning as they fall.To make this into a game, the leaves were
changed to icons that represent money.

As the user touches a bill the amount of money in his account increases by one. If a
bill fades completely away before it is touched, the player’s account amount is decreased
by one. Groups of bills are displayed in waves at the top of the screen. Each wave contains
one more bill than the previous wave.When the player’s balance drops below zero, the
game ends. Figure 3.6 shows the game in play.Although this game was put together
quickly, it dramatically points out one of the limitations of this type of application in a
hybrid environment.

The UIWebView uses the same WebKit engine as Safari and other applications to ren-
der the screen.This engine and others like it have made significant strides in recent years.
One common problem they have is that when the CPU becomes taxed, user interface

ptg

57Section 5: Creating and Using Custom CSS Transforms

events such as clicks and touches get ignored.As you play the DollarStash game on your
device, not the simulator, you will find that this is the case.

As the number of bills increases, the number of touches that are missed by the engine
also increases.To subject your user to such annoyance violates a basic rule of user inter-
face design mentioned in the first section of this chapter: rapid response to user input.

The user interaction intensive portions of these types of applications are best written
in Objective-C.That does not mean applications cannot use a UIWebView for complex
textual layout and simple image display. It does mean that until iPhone’s and iPod touch’s
CPUs get a dramatic speed increase, using the native Cascading Style Sheet (CSS) trans-
forms and animations for complex game creation is not viable.

Knowing the limitations of your device can lead you in the direction of a better de-
sign.Although highly CPU-intensive games are not viable in hybrid applications, using
the CSS transforms and animations to accomplish drag-and-drop, scaling, and rotation be-
haviors is viable when used on one interface element at a time.

Section 5: Creating and Using Custom CSS
Transforms
This section shows you how to create drag-and-drop, scale, and rotate capabilities using
the new CSS transforms built into the WebKit engine used by Safari and the UIWebView.
To learn more about CSS transitions, transforms, and animations, see Apple’s user guide
found at http://developer.apple.com/documentation/InternetWeb/Conceptual/
SafariVisualAffectsProgGuide/Introduction/chapter_1_1.html#//apple_ref/doc/uid/
TP40008032-CH1-SW1.

Several implementations of drag-and-drop type behavior are available for download
and are written in JavaScript.These implementations are great for cross-browser use on
desktop machines.They fail on the iPhone and iPod touch because the implementations
are CPU-intensive. However, a good alternative is the use of CSS transforms.

WebKit, the engine used in Safari and the UIWebView found in hybrid applications,
includes the capability to define transitions in CSS.These transitions are hardware-
accelerated, making them more efficient than making changes using JavaScript as other
libraries do.

A simple example is to shift the position of an HTML div down the screen.To do this
using traditional JavaScript, you need to modify the top attribute of the div’s style.Assume
that a div is assigned a CSS class that sets the top attribute to 50 pixels from the top of the
page.A shift down an additional 50 pixels is accomplished by setting the same attribute to
100 pixels, as seen in the following:

adiv.style.top = ‘100px’;

This declaration is interpreted as a JavaScript command and is executed by the engine
at the same speed and using the same CPU resources as any other JavaScript command.
The CSS transform alternative is done differently.

http://developer.apple.com/documentation/InternetWeb/Conceptual/SafariVisualAffectsProgGuide/Introduction/chapter_1_1.html#//apple_ref/doc/uid/TP40008032-CH1-SW1
http://developer.apple.com/documentation/InternetWeb/Conceptual/SafariVisualAffectsProgGuide/Introduction/chapter_1_1.html#//apple_ref/doc/uid/TP40008032-CH1-SW1
http://developer.apple.com/documentation/InternetWeb/Conceptual/SafariVisualAffectsProgGuide/Introduction/chapter_1_1.html#//apple_ref/doc/uid/TP40008032-CH1-SW1

ptg

58 Chapter 3 Creating iPhone User Interfaces

Using CSS transforms to accomplish a 50-pixel change in location from the original
declared position also requires the use of the div’s style declaration. However, in this case,
a completely different attribute is used.

One of the new attributes added to CSS classes, and therefore, the style attribute of an
Element object in JavaScript, is webKitTransform.This attribute, when set correctly,
causes hardware-accelerated native functions to be called. It is not interpreted as
JavaScript. Because of this, any CSS attribute change defined is executed much faster than
if you used the previous JavaScript example.

The transform example shown here also requires only one line of code:

adiv.style.webKitTransform = ‘translateY(50px)’;

At first glance, the transform attribute appears to be a function pointer like onclick,
ontouch, and other event listeners. In fact, it is not.

The major difference between webKitTransform and the listeners is that no
JavaScript function declared inline or as a Window function is assigned.A string describ-
ing which standard function is to be called and its parameters are assigned instead.This
string is then parsed by the WebKit engine in a portion of its code distinct from where
JavaScript is interpreted.

Also notice that the translation amount declared is relative to the original location of
the div.To shift an Element down an additional 50 pixels, the parameter passed to
translateY is 50px. It is also important to understand that the original location defini-
tion has not been changed.The div is still assigned the original top value of 50px. Only
the location at which it is rendered has changed. If you query the object after the transla-
tion has occurred and print out the top value, it would still be 50px, not 100px.

The Drag sample application shows how to make a div move on the screen using a
translate function.To accomplish this, the div that is to be dragged is assigned listeners for
the ontouchstart, ontouchchange, and ontouchend events.

Touch events differ from the standard onclick, onmousedown, onmousemove, and
onmouseup events used in traditional desktop drag-and-drop JavaScript implementations.
Because a touch might consist of two or more individual touches, such as when a user
places two or three fingers on the screen, a touch event needs to contain information
about each touch.

Each of the individual touches and its information is stored in an array that is an at-
tribute of an event object that is called targetTouches.This array is sized according to
the number of fingers the user has applied to the element found on the screen of the de-
vice.Thus, if one finger is applied, the array has a size of one. For two fingers, it has a
size of two.

Each object stored in the array is of type Touch and has many of the attributes usually
associated with a mouse event in JavaScript.Table 3.3 describes each of these attributes.

The drag-and-drop implementation shown here uses the clientX and clientY attrib-
utes because there is no scrolling allowed in the sample application. If there was, the
pageX and pageY attributes would be used.

ptg

59Section 5: Creating and Using Custom CSS Transforms

Table 3.3 Attributes of the Touch Class

Attribute Description

pageX The offset in the horizontal direction from the left side of the entire document
including horizontal scrolling information

pageY The offset in the vertical direction from the top of the entire document including
vertical scrolling information

screenX The offset in the horizontal direction from the left side of the device’s screen

screenY The offset in the vertical direction from the top of the device’s screen

clientX The offset in the horizontal direction from the left side of the application window

clientY The offset in the vertical direction from the top of the application window

target The DOM object representing the HTML element that was touched

One problem encountered when implementing drag-and-drop is “hopping” elements
that occur when dragging begins.This hopping occurs because the user has selected the
object by touching it somewhere in its boundaries, and yet, the translation of the device is
applied to the upper, left-hand corner. If nothing is done to handle this mismatch, the up-
per, left-hand corner of the object being dragged “hops” to the location of the user’s fin-
ger when dragging begins.

Obviously the user sees this as abnormal. For example, if the user selects the center of
the object to start the drag, he would reasonably expect his finger to stay in the center of
the object as he drags it. It would be disconcerting if it did not stay in the center. Figure
3.7 shows a the Drag sample application running.

To remedy this, the drag sample application assigns the setStartLocation function
to the ontouchstart JavaScript event handler.This function, found in the following
code and the main.js file of the example, retrieves and stores the location of the original
touch event, in pixels, in the x and y directions from the top, left corner of the applica-
tion window.

1 function setStartLocation(event)

2 {

3 var element = event.target;

4 element.offsetX = event.targetTouches[0].clientX;

5 element.offsetY = event.targetTouches[0].clientY;

6 }

By storing this distance as the offsetX and offsetY attributes of the element touched,
it can later be used when the element is dragged to stop the hopping from happening.
The actual moving of the element happens not in the setStartLocation function but in
the drag function that is assigned as the ontouchchange event listener.The drag function
is also found in the main.js file.

ptg

60 Chapter 3 Creating iPhone User Interfaces

Line 3 in the drag function, as shown in the following code, is vital to any drag-and-
drop implementation for the iPhone and iPod touch. Normally, when a touch change
event is triggered, the Safari browser or UIWebView scrolls.To turn off this behavior, the
event must be informed not to trigger its standard behavior.This is done by calling the
event’s preventDefault method. If this method is called in an ontouchchange listener,
the view will not scroll when a finger is moved within the element to which the listener
is assigned.

Being free from the default scroll behavior enables you to change the location at
which the element is rendered using webkitTransform.To do this, the current touches lo-
cation needs to be found and compared with the original touch location stored in the
setStartLocation function.

1 function drag(event)

2 {

3 event.preventDefault();

4 var element = event.target;

5 element.x = event.targetTouches[0].clientX

6 - event.target.offsetX;

Figure 3.7 The Drag sample
application after the green div

has been moved

ptg

61Section 5: Creating and Using Custom CSS Transforms

7 element.y = event.targetTouches[0].clientY

8 - event.target.offsetY;

9 if(element.lastX || element.lastY){

10 element.x += element.lastX;

11 element.y += element.lastY;

12 }

13 element.style.webkitTransform = ‘translate(‘

14 + element.x + ‘px, ‘

15 + element.y + ‘px)’;

16 }

The code found in lines 5–8 in the previous code calculates the amount that the ren-
dering of the element needs offset by in both the x and y directions.These offsets, in pix-
els, are stored in the x and y attributes of the current element for later use and then used
on lines 13–15 to accomplish the display change using the translate function described
earlier.

Because it is possible that this drag is not the first to be done by the user for an ele-
ment, it is necessary to keep track of and use the offsets that were applied previously.
These offsets are applied in lines 9–11 in the previous code and are stored in the done
method that follows.This method is assigned as the ontouchend listener.

function done(event)

{

var element = event.target;

element.lastX = element.x;

element.lastY = element.y;

}

The done method exists for one reason only: to store the current offset amount for
reuse should the user drag the element again. It does this by storing the element’s current
x and y attributes in its lastX and lastY attributes. By doing this, it ensures that they are
available when each of the ontouchchange events is fired as the user moves his finger on
the screen.

By adding these three methods as listeners to elements of your user interface, they can
be dragged by the user in a simple fashion. In the next section, you learn how to create
and use an easier-to-use, less naïve module for drag-and-drop.

In addition to drag–and-drop, iPhone applications often need the capability to scale
and rotate elements of the interface.These elements may be divs, buttons, images, or any
other organizational or visual element. Interestingly enough, the code required to accom-
plish this is much smaller than drag-and-drop. It is obvious that Apple intends engineers
and developers to include this behavior in their applications.

The gestures sample application shows how scaling and rotating can be easily done. In-
stead of touches, it uses gestures. Gestures differ from touches in that they always assume
more than one finger is being used and include user behaviors such as pinch.

ptg

62 Chapter 3 Creating iPhone User Interfaces

rotation A positive or negative double value measured in degrees that represents the
rotational difference between the locations of two fingers used in a gesture and
a vertical line. This attribute is used in rotation-gesture handling.

target The DOM object representing the HTML element in which the gesture occurred.

To represent these gestures, a GestureEvent is passed to any gesture-listening function.
Because they represent gestures, they do not include location information like a
TouchEvent.They do include three important pieces of information, as seen in Table 3.4.

The gestures example application uses these three events to scale and rotate a div.This
is accomplished adding an ongesturechange event handler called changeIt to the div it-
self.This addition of event handlers is done using the Behaviors tab of the inspector win-
dow.The code for this method is

function changeIt(event)

{

event.preventDefault();

var element = event.target;

element.style.webkitTransform=

‘rotateZ(‘+event.rotation

+’deg) scale(‘+event.scale+’)’;

}

Notice that just as in the Drag example application that the event’s default behavior
must be turned off to prevent scrolling. Unlike the Drag application, the rotation and
scaling information is not stored. Storage of the rotation information is not required be-
cause it is relative to a baseline, not the object being transformed.

Scaling information should be stored so it can be used during the next gesture because
it is relative to the element being transformed and has a cumulative effect. Storage of the
scaling information has been left out of the gestures example application and the previous
code to show you the scaling error the user of an application will see if it is not stored.
The next section shows you how to store and reuse scaling information.

Notice that there are two functions used in the string that defines the webkitTransform.
This enables you to rotate and scale the div in one call.They can be broken up and used
conditionally.

Table 3.4 The Important Attributes of the GestureEvent

Attribute Description

scale A positive or negative double value representing the change in distance between
two fingers used in a gesture. Negative values indicate that the fingers have
crossed. This attribute is used in pinch-gesture handling.

ptg

63Section 6: Using and Creating a Drag-and-Drop/Scale/Rotate Module

Figure 3.8 Application of
the rotateZ function of

webkitTransform

Three rotate functions are available to you as you create your application. Each of
them rotates the element of your choice around one of the axes of your phone.The x-
axis is horizontal, the y-axis is vertical, and the z-axis extends out of the screen.When the
previous code specifies rotateZ, it indicates that the div should rotate on the x-y plane of
the device as seen in Figure 3.8.

You can easily change the rotation so that the div rotates differently. If you use the
rotateY in the example, the div rotates around the y-axis and appears to get narrower be-
fore displaying the back of the div. If you change the rotation to rotateX, the div rotates
around the x-axis and appears to get shorter before displaying the back side of the div.

You might consider creating a cover flow implementation using rotation.At the time
of writing this book, this implementation was unadvisable. Because of the number of
transforms required to get cover flow like behavior any implementation the CPU of the
iPhone or iPod touch becomes over-taxed and the user experience is poor.

Now that you have seen naïve implementations of drag-and-drop, scaling, and rotating,
it is possible to understand a sophisticated module that implements these.

ptg

64 Chapter 3 Creating iPhone User Interfaces

Table 3.5 The Drag-and-Drop Scale Rotation API

Function Parameter Description

makeDraggable element (required)—The DOM element that is to
be dragged.

startDragCmd (optional)—A command that is
mapped to Control Functions that are called at the
end of the ontouchstart event.

dragCmd (optional)—A command that is mapped to
Control Functions that are called at the end of all
ontouchmove events.

dropCmd (optional)—A command that is mapped to
Control Functions that are called at the end of the
ontouchend event.

This function sets
up the event lis-
teners for the ele-
ment passed in,
so that the user
can drag it.

makeChangeable element (required)—The DOM element that is
scaled and rotated.

startChangeCmd (optional)—A command that is
mapped to Control Functions that are called at the
end of the ongesturestart event.

dragCmd (optional)—A command that is mapped to
Control Functions that are called at the end of all
ongesturechange events.

doneChangeCmd (optional)—A command that is
mapped to Control Functions that are called at the
end of the ongestureend event.

This function sets
up the event lis-
teners for the ele-
ment passed in,
so that the user
can be scaled and
rotate it around
the z-axis.

Section 6: Using and Creating a Drag-and-
Drop/Scale/Rotate Module
Modules, as described in Chapter 2,“JavaScript Modularity and iPhone Applications,” are
complete and independent in their functionalities. In other words, they are said to be
loosely coupled to the rest of the code in an application and have tight cohesion.Well de-
signed modules always come with an API.The API that is implemented in this section is
shown in Table 3.5.

These two functions are all your code needs to call to give your user drag-and-drop
capability and scaling and rotation (see Figure 3.9).The dragAndGesture example

ptg

65Section 6: Using and Creating a Drag-and-Drop/Scale/Rotate Module

Figure 3.9 The
dragAndGesture example applica-

tion runs with one element
rotated and moved.

The load function in the main.js file and seen in the following code shows how these
functions are used with elements in a user interface.

function load()

{

.

.

.

var anElement = document.getElementById(‘button’);

makeDraggable(anElement);

makeChangeable(anElement);

application is found in the Examples directory. It can be downloaded from
https://sourceforge.net/project/showfiles.php?group_id=213586 as part of QuickConnect-
iPhone.The functions are found in the QCUtilities.js file of the framework in the same
download.

https://sourceforge.net/project/showfiles.php?group_id=213586

ptg

66 Chapter 3 Creating iPhone User Interfaces

anElement = document.getElementById(‘imageBox’);

makeDraggable(anElement);

makeChangeable(anElement);

anElement = document.getElementById(‘box’);

makeDraggable(anElement);

makeChangeable(anElement);

anElement = document.getElementById(‘stuff’);

makeDraggable(anElement);

}

In the previous example, three different elements of the UI are changed so they can be
dragged, scaled, and rotated, and the fourth can be dragged only. Notice that after getting
a reference to the UI element, it is passed to the appropriate function or functions of the
API.This is all that is required to make your UI elements active.

The naïve implementations of drag-and-drop, scale, and rotate seen earlier in this sec-
tion act independently of each other.As you can see, the previous example indicates that
they should be able to act in concert.To do this, they need to know the effect, if any, that
the other implementations have had on the element.This change begins in the
makeDraggable and makeChangeable functions.

The makeDraggable API function handles the setup and management of the
ontouchstart event listener and any commands that might have been sent for post-event
handling.

function makeDraggable(anElement, startDragCmd

, dragCmd, dropCmd){

anElement.ontouchstart = prepareDrag;

anElement.isDraggable = true;

if(startDragCmd){

anElement.startDragCmd = startDragCmd;

}

if(dragCmd){

anElement.dragCmd = dragCmd;

}

if(dropCmd){

anElement.dropCmd = dropCmd;

}

}

Notice that the element’s isDraggable attribute is set to true.This is the first piece of
information that has been stored to enable the two functionalities to work together.Also
notice that only one touch listener, ontouchstart, is set in this function.The reason be-
hind this is to ignore touches when an element is scaled or rotated; this is discussed later
in this section.

ptg

67Section 6: Using and Creating a Drag-and-Drop/Scale/Rotate Module

The makeChangeable function is similar. It sets the gesture listeners, sets the
isChangeable attribute to true, and stores post-event commands for later use. Unlike the
makeDraggable function, this function sets the gesture listeners.This is because when
touch events are fired because of the single touches of dragging, no gesture events are
fired. If an element is draggable and dragging happens, touch events are fired and acted
on. If an element is changeable and a gesture happens, both touch and gesture events are
fired, the touch events are ignored, and the gesture events are acted on.

function makeChangeable(anElement, startChangeCmd,

changeCmd, doneChangeCmd){

anElement.ongesturestart = prepareGesture;

anElement.ongesturechange = changeIt;

anElement.ongestureend = gestureDone;

anElement.isChangeable = true;

anElement.oldRotation = 0;

anElement.oldScale = 1;

anElement.startChangeCmd = startChangeCmd;

anElement.changeCmd = changeCmd;

anElement.doneChangeCmd = doneChangeCmd;

}

Two other pieces of information are initialized in the makeChangeable method.These
are accumulators for scale and rotation called oldScale and oldRotation, respectively.

When the gestures example application is used, each time the element is rotated or
scaled, it instantly resizes itself back to its original size.This is because no automatic stor-
age of the scaling already done is available to application.The oldScale attribute of the
element is used to solve this problem.

The oldScale attribute is initialized to 1 because scaling is a multiplier that is applied
to the width and height of an element; this is discussed later in this section. If the amount
to be scaled is between 0 inclusive and 1 exclusive, it gets smaller. If the scaling amount is
1, the element remains unchanged and for any other condition it gets larger.

When an element has been scaled once, the amount it is scaled must be used in con-
junction with the new scaling amount to correctly size the element. For example, if the
first time an element is scaled, it doubled in size, the oldScale value would be set to 2. If
the user pinches the element to make it 90 percent of its size, the current scaling value
would be 2 * .9, which equals 1.8. If the oldScale value is not retained, the size would
instantly become .9 and not match the intent of the user who performed the pinch.

Previously, the prepareDrag function was assigned to the ontouchstart event lis-
tener.This function, as shown in the following code, contains several interesting pieces of
functionality.The first functionality is the storage of an array of Touch objects, described
earlier in this section.This is done to enable the gesture event-listening functions access to
the specific touch information. For example, touch events might need to know how
many touches cause the gesture event.That is not available from within the events passed
to gesture listeners.

ptg

68 Chapter 3 Creating iPhone User Interfaces

1 function prepareDrag(event){

2 stopDefault(event);

3 this.touches = event.targetTouches;

4 var self = this;

5 this.timeOut = setTimeout(function(){

6 if(self.changing){

7 return;

8 }

9 self.dragging = true;

10 self.ontouchmove = dragIt;

11 self.ontouchend = dragDone;

12 self.offsetX = event.targetTouches[0].clientX;

13 self.offsetY = event.targetTouches[0].clientY;

14 self.oldZIndex = self.style.zIndex;

15 self.style.zIndex = 50;

16 if(self.startDragCmd){

17 var params = new Array();

18 params.push(event);

19 params.push(self);

20 handleRequest(self.startDragCmd, params);

21 }

22 }, 75);

23 }

Another item of interest in the previous code appears on line 5. Instead of instantly
storing the initial location of the touch as the offsetX and offsetY attributes of the ele-
ment being dragged, a timer is used to delay setting these and other values.This is done
because the prepareDrag function might have been called as the result of the user per-
forming a gesture.

Touch events triggered because gestures always occur prior to the gesture events being
triggered. If the event passed to prepareDrag truly is the result of a gesture, the
ontouchmove and ontouchend event listeners must not be set or they would be called as
the gesture changes and ends. If these listeners were called, they would execute dragging
behavior and cause the gesture behavior to malfunction.

The timer created needs to delay long enough to allow the gesture listener function
prepareGesture to be called because it updates the changing attribute of the element
being changed.

Line 22 indicates that the delay should be 75 milliseconds.This gives sufficient time
for the gesture listener to be called and executed, if a gesture occurs, but it is short
enough not to annoy the user if a drag is what occurs. Should this delay time be too long,
the user can readily drag his finger off the element before the element moves.The last
item of interest is the population of a params array and the call to handleRequest.

The handleRequest function call on line 20 enables you to create callout functions
that execute each time a touch event is a drag.These callout functions are defined using
mapCommandTo* functions in the mapping file, as described in Chapter 2.You can call any

ptg

69Section 6: Using and Creating a Drag-and-Drop/Scale/Rotate Module

number of Business Control Functions (BCF) and View Control Functions (VCF) when
a drag starts.You might want, for example, to use this to remove the element from its par-
ent, change its background color or borders, or for another purpose.

Because it is unknown how or if you will use these callout functions, certain informa-
tion is included in the param array that is passed.This array, as shown in the previous code,
includes the element that is dragged and the dragging event. It is unknown whether you
need these in callout functions you might create, but they are added for your convenience.

As a user moves his finger across the screen, the ontouchmove event listener dragIt is
called repeatedly.The purpose of this function, like the drag function in the Drag exam-
ple application, is to move the element in conjunction with the movement of the user’s
finger. However, you can see the application of the information stored previously in the
gesture listener functions and in prepareDrag.

Because a transform is used to do both the drag-and-drop, when a drag is done, any
rotational and scaling that has been done previously must be applied in addition to the
translation.This is due to the fact that the style’s webkitTransform is reset each time it is
used. If rotation and scaling information is not included in the transform string, the ele-
ment would assume its original size and orientation as soon as it was dragged.

A transform string that causes a translation, a rotation, and scaling when fully assem-
bled contains multiple functions and looks like this:

”translate(-1px, 5px) rotateZ(21deg) scale(0.9)”

This line of code moves the element 1 pixel to the left and 5 pixels down. It then rotates
the element around its z-axis.Then it makes the element 90 percent of the original size.

The order of the function descriptions is important. If the rotation is included in the
string to the left of the translation, the rotation happens first and the translation is done at
an angle to the x- and y-axis instead of along them.This would cause faulty drag-and-
drop behavior because the element that is dragged would move at an angle to the move-
ment of the user’s finger instead of with it.

The code that assembles the string for the module is found on lines 13–25.These lines
consist of concatenating a substring that is added to a string that contains the translate
function declaration.

1 function dragIt(event){

2 stopDefault(event);

3

4 this.x = event.targetTouches[0].clientX - this.offsetX;

5 this.y = event.targetTouches[0].clientY - this.offsetY;

6

7 if(this.lastX || this.lastY){

8 this.x += this.lastX;

9 this.y += this.lastY;

10 }

11 this.style.webkitTransformOriginX = ‘50%’;

12 this.style.webkitTransformOriginY = ‘50%’;

13 var modStringFragment = ‘’;

ptg

70 Chapter 3 Creating iPhone User Interfaces

14 if(this.isChangeable){

15 if(this.rotation){

16 modStringFragment +=

17 ‘ rotateZ(‘+this.oldRotation+’deg)’;

18 }

19 if(this.oldScale){

20 modStringFragment +=

21 ‘ scale(‘+this.oldScale+’)’;

22 }

23 }

24 var modString = ‘translate(‘ + this.x + ‘px, ‘

25 + this.y + ‘px)’+modStringFragment;

26

27 this.style.webkitTransform = modString;

28 if(this.dragCmd){

29 var params = new Array();

30 params.push(event);

31 params.push(this);

32 handleRequest(this.dragCmd, params);

33 }

34 }

Another item of importance happens on lines 11 and 12.The
webkitTransformOriginX and webkitTransformOriginY attributes are set to their de-
fault values.This must be done if there is any rotation or scaling, as you see later in this
section. If it is not done, when the user drags an element, it hops and the user’s finger is
not over the same spot on the element that it originally touched.

When the user lifts a finger from the device screen, an ontouchend event is fired and
the dragDone listener function is called.The purpose of this function, as shown in the fol-
lowing code and found in QCUtilities.js, is to reset some of the attributes of the element
to their original values and store other information for later use.

function dragDone(event){

this.dragging = false;

this.ontouchmove = null;

this.ontouchend = null;

this.lastX = this.x;

this.lastY = this.y;

this.style.zIndex = this.oldZIndex;

if(this.dropCmd){

var params = new Array();

params.push(event);

params.push(this);

handleRequest(this.dropCmd, params);

}

}

ptg

71Section 6: Using and Creating a Drag-and-Drop/Scale/Rotate Module

In this function, the ontouchmove and ontouchend listeners reset to their cleared
states, so as not to interfere with the gesture handling, as was discussed earlier.The current
x and y values of the event are stored, and a command is handled if one was set.

Having seen the full flow of the sophisticated drag-and-drop methods, the correspon-
ding gesture-handling is more fully understandable. Just as the gesture handling can affect
the code required to do drag-and-drop, drag-and-drop handling can affect the code re-
quired to do scaling and rotation.

The prepareGesture function, seen in the following code and found in the
QCUtilities.js file, is simpler than the prepareDrag function discussed earlier in this sec-
tion. It sets a few attributes, but it does not need to delay as the other prepare function
does.The lack of need for delay in this function is discussed earlier in this section.

function prepareGesture(event){

stopDefault(event);

this.changing = true;

this.oldZIndex = this.style.zIndex;

this.style.zIndex = 50;

if(this.startChangeCmd){

var params = new Array();

params.push(event);

params.push(this);

handleRequest(this.startChangeCmd, params);

}

}

As with all the gesture event-handling functions, this one instructs the framework to
handle a command by calling the handleRequest function.You can execute any number
of callout functions after any gesture event listener has completed. See Chapter 2 for a
discussion of how to map commands to functions.

As the user moves his fingers across the screen, an ongesturechange event fires repeat-
edly causing the changeIt function, shown in the following code and in the
QCUtilities.js file, to be called.This function is responsible for scaling and rotating the
element based on the user’s interaction with the device.

”rotateZ(21deg) scale(0.9) translate(-1px, 5px)”

Note that it is possible to do a finger gesture in two or more different elements.This is
usually an accident on the user’s part, and therefore, lines 5–8 exist to stop the elements
from reacting when they are touched.

It is also possible for the user to pinch, which can cause an element to become too
small for two fingers. If this were allowed, the user couldn’t resize the element, making
the element unable to be modified. Lines 14–19 stop the user from accidentally making
an element too small to scale up.

www.allitebooks.com

http://www.allitebooks.org

ptg

72 Chapter 3 Creating iPhone User Interfaces

As discussed earlier, the order of function declarations in the transform string is impor-
tant.To successfully rotate and scale an element, translation must occur, but it must be de-
clared at the end of the string.

If translation happens first when the user attempts to rotate an element, the element
would gradually move during the rotation. If no translation is included, the element
rotates around its original top, left corner, as defined in its assigned CSS class. In either
case, this is an unacceptable behavior.

1 function changeIt(event){

2 stopDefault(event);

3 //the user may have only put

4 //one finger inside of the target.

5 if(this.dragging

6 || (this.touches && this.touches.length < 2)){

7 return;

8 }

9

10 this.rotation = event.rotation;

11 var rotationValue = this.rotation + this.oldRotation;

12 var scaleValue = event.scale * this.oldScale;

13 //don’t let it get to small to allow two touches

14 if(this.offsetWidth * scaleValue < 150){

15 scaleValue = 150/this.offsetWidth;

16 }

17 else if(this.offsetHeight * scaleValue < 150){

18 scaleValue = 150/this.offsetHeight;

19 }

20 this.scale = scaleValue;

21

22 var modString = ‘rotateZ(‘+rotationValue+

23 ‘deg) scale(‘+scaleValue+’)’;

24 if(this.lastX || this.lastY){

25 modString += ‘ translate(‘ + this.lastX + ‘px, ‘

26 + this.lastY + ‘px)’;

27 //update the center of rotation

28 this.xCenterOffset = 50

29 + (this.lastX/this.offsetWidth)

30 * 100;

31 this.yCenterOffset = 50

32 + (this.lastY/this.offsetHeight)

33 * 100;

34

35 this.style.webkitTransformOriginX =

36 (this.xCenterOffset)+’%’;

37 this.style.webkitTransformOriginY =

38 this.yCenterOffset)+’%’;

ptg

73Section 6: Using and Creating a Drag-and-Drop/Scale/Rotate Module

39 }

40 this.style.webkitTransform = modString;

41

42 if(this.changeCmd){

43 var params = new Array();

44 params.push(event);

45 params.push(this);

46 handleRequest(this.changeCmd, params);

47 }

48 }

Lines 22–39 create the transform string and set the webkitTransformOrigin values so
that scaling and rotation can happen based on the visual center of the element being
changed.The origin changes seen in the previous code are what made it necessary to re-
set them in the dragIt method discussed earlier.The transform origin is set as the middle
of the element based on its current offset from its original location.

When the user lifts his fingers, an ongestureend event is fired, and the gestureDone
event handler, seen below, is called. It is like the dragDone method with one major excep-
tion; it also has a timer like the prepareDrag function.

1 function gestureDone(event){

2 this.style.zIndex = this.oldZIndex;

3 //the user may not have done a rotation.

4 //if they did not rotation is undefined

5 if(this.rotation){

6 this.oldRotation += this.rotation;

7 }

8 //the user may not have done a pinch.

9 //if they did not scale is undefined

10 if(this.scale){

11 this.oldScale = this.scale;

12 }

13

14 if(this.doneChangeCmd){

15 var params = new Array();

16 params.push(event);

17 params.push(this);

18 handleRequest(this.doneChangeCmd, params);

19 }

20 var self = this;

21 this.timeOut = setTimeout(function(){

22 self.changing = false;

23 },75);

24 }

This timer, found on lines 21–23, has a similar reason for existence as did the one in
prepareDrag.When the ongestureend event fires, some touch events have not been

ptg

74 Chapter 3 Creating iPhone User Interfaces

handled yet. If the changing attribute of the element is immediately set to false (see line
22), then based on the code in prepareDrag seen earlier, the event listeners for dragging
are activated.

If these drag listeners are activated for a scale or rotate gesture, the element hops errati-
cally on the screen and the user experience is negatively impacted.

Although the drag-and-drop, scale, and rotate behaviors must know about each other,
their behaviors must be strictly segregated. If they are not, confusing, random application
behavior occurs.The code in this section and in the QCUtilities.js file provides you with
a usable, out-of-the-box implementation of drag-and-drop, scale, and rotation behaviors.

Summary
From the user’s point of view, your application’s interface is your application.A poor user
interface design, such as in the DollarStash game anti-example, can sink your application
before it gets a chance to be improved or corrected.As described in this chapter, wise in-
terface design takes advantage of three basic principles:

n Don’t surprise the user. Use commonly known interaction behaviors.
n Make the interface intuitive.The user shouldn’t need to read about how to use the

application.
n Don’t make demands on your devices that they cannot handle.You have limited

CPU and memory resources. Use them wisely.

If you follow these basic rules and Apple’s HIG, your application has a much better
chance of success.Although these rules may seem strict, they still allow for creativity, as
shown with the drag-and-drop, scale, and rotate module.

This module, if created and used wisely, can dramatically improve the user experience
of your application because it is based on the inherent multitouch capability of the
iPhone and iPod touch devices and Apple’s HIG.

ptg

4
GPS, Acceleration, and Other

Native Functions with
QuickConnect

The iPhone has many unique capabilities that you can use in your applications.These
capabilities include vibrating the phone, playing system sounds, accessing the accelerome-
ter, and using GPS location information. It is also possible to write debug messages to the
Xcode console when you write your application.Accessing these capabilities is not lim-
ited to Objective-C applications.Your hybrid applications can do these things from
within JavaScript.The first section of this chapter explains how to use these and other na-
tive iPhone functionalities with the QuickConnect JavaScript API.The second section
shows the Objective-C code underlying the QuickConnect JavaScript Library.

Section 1: JavaScript Device Activation
The iPhone is a game-changing device. One reason for this is that access to hardware
such as the accelerometer that is available to people creating applications.These native
iPhone functions enable you to create innovative applications.You decide how your ap-
plication should react to a change in the acceleration or GPS location.You decide when
the phone vibrates or plays some sort of audio.

The QuickConnectiPhone com.js file has a function that enables you to access this
behavior in a simple, easy-to-use manner.The makeCall function is used in your applica-
tion to make requests of the phone.To use makeCall, you need to pass two parameters.
The first is a command string and the second is a string version of any parameters that
might be needed to execute the command.Table 4.1 lists each standard command, the pa-
rameters required for it, and the behavior of the phone when it acts on the command.

ptg

76 Chapter 4 GPS, Acceleration, and Other Native Functions with QuickConnect

Table 4.1 MakeCall Commands API

Command
String

Message String Behavior

logMessage Any information to be logged in the
Xcode terminal.

The message appears in the Xcode ter-
minal when the code runs.

rec A JSON string of a JavaScript array
containing the name of the audio
file to create as the first element.
The second element of the array is
either start or stop depending on
if your desire is to start or stop
recording audio data.

A caf audio file with the name defined in
the message string is created.

play A JSON string of a JavaScript array
containing the name of the audio
file to be played as the first ele-
ment. The second element of the
array is either start or stop
depending on if your desire is to
start or stop playing the audio file.

The caf audio file, if it exists, is played
through the speakers of the device or
the headphones.

loc None The Core Location behavior of the device
is triggered and the latitude, longitude,
and altitude information are passed
back to your JavaScript application.

playSound –1 The device vibrates.

playSound 0 The laser audio file is played.

showDate DateTime The native date and time picker is dis-
played.

showDate Date The native date picker is displayed.

The DeviceCatalog sample application includes a Vibrate button, which when
clicked, causes the phone to shake.The button’s onclick event handler function is called
vibrateDevice and is seen in the following example.This function calls the makeCall
function and passes the playSound command with –1 passed as the additional parameter.
This call causes the phone to vibrate. It uses the playSound command because the
iPhone treats vibrations and short system sounds as sounds.

function vibrateDevice(event)

{

//the -1 indicator causes the phone to vibrate

makeCall(“playSound”, -1);

}

ptg

77Section 1: JavaScript Device Activation

Because vibration and system sounds are treated the same playing a system sound is al-
most identical to vibrating the phone.The Sound button’s onclick event handler is called
playSound.As you can see in the following code, the only difference between it and
vibrateDevice is the second parameter.

If a 0 is passed as the second parameter, the laser.wav file included in the Device-
Catalog project’s resources is played as a system sound. System sound audio files must be
less than five seconds long or they cannot be played as sounds.Audio files longer than
this are played using the play command, which is covered later in this section.

function playSound(event)

{

//the 0 indicator causes the phone to play the laser sound

makeCall(“playSound”, 0);

}

The makeCall function used in the previous code exists completely in JavaScript and
can be seen in the following code.The makeCall function consists of two portions.The
first queues up the message if it cannot be sent immediately.The second sends the mes-
sage to underlying Objective-C code for handling.The method used to pass the message
is to change the window.location property to a nonexistent URL, call, with both pa-
rameters passed to the function as parameters of the URL.

function makeCall(command, dataString){

var messageString = “cmd=”+command+”&msg=”+dataString;

if(storeMessage || !canSend){

messages.push(messageString);

}

else{

storeMessage = true;

window.location = “call?”+messageString;

}

}

Setting the URL in this way causes a message, including the URL and its parameters,
to be sent to an Objective-C component that is part of the underlying QuickConnecti-
Phone framework.This Objective-C component is designed to terminate the loading of
the new page and pass the command and the message it was sent to the framework’s
command-handling code.To see how this is done, see Section 2.

The playSound and the logMessage, rec, and play commands are unidirectional,
which means that communication from JavaScript to Objective-C with no data expected
back occurs.The remaining unidirectional standard commands all cause data to be sent
from the Objective-C components back to JavaScript.

The passing of data back to JavaScript is handled in two ways.An example of the first
is used to transfer acceleration information in the x, y, and z coordinates by a call to the
handleRequest JavaScript function, described in Chapter 2,“JavaScript Modularity and
iPhone Applications.”The call uses the accel command and the x, y, and z

ptg

78 Chapter 4 GPS, Acceleration, and Other Native Functions with QuickConnect

coordinates being passed as a JavaScript object from the Objective-C components of the
framework.

The mappings.js file indicates that the accel command is mapped to the
displayAccelerationVCF function, as shown in the following line.

mapCommandToVCF(‘accel’, displayAccelerationVCF);

This causes displayAccelerationVCF to be called each time the accelerometers de-
tect motion.This function is responsible for handling all acceleration events. In the
DeviceCatalog example application, the function simply inserts the x, y, and z acceleration
values into an HTML div.You should change this function to use these values for your
application.

The second way to send data back to JavaScript uses a call to the handleJSONRequest
JavaScript function. It works much like the handleRequest function described in
Chapter 2, but expects a JSON string as its second parameter.This function is a façade for
the handleRequest function.As shown in the following code, it simply converts the
JSON string that is its second parameter into a JavaScript object and passes the command
and the new object to the handleRequest method.This method of data transfer is used
to reply to a GPS location request initiated by a makeCall(“loc”) call and the request to
show a date and time picker.

function handleJSONRequest(cmd, parametersString){

var paramsArray = null;

if(parametersString){

var paramsArray = JSON.parse(parametersString);

}

handleRequest(cmd, paramsArray);

}

In both cases, the resulting data is converted to a JSON string and then passed to
handleJSONRequest. For more information on JSON, see Appendix A,“Introduction
to JSON.”

Because JSON libraries are available in both JavaScript and Objective-C, JSON be-
comes a good way to pass complex information between the two languages in an applica-
tion.A simple example of this is the onclick handlers for the starting and stopping of
recording and playing back audio files.

The playRecording handler is typical of all handlers for the user interface buttons
that activate device behaviors.As shown in the following example, it creates a JavaScript
array, adds two values, converts the array to a JSON string, and then executes the
makeCall function with the play command.

function playRecording(event)

{

var params = new Array();

params[0] = “recordedFile.caf”;

params[1] = “start”;

makeCall(“play”, JSON.stringify(params));

}

ptg

79Section 1: JavaScript Device Activation

To stop playing a recording, a makeCall is also issued with the play command, as
shown in the previous example, but instead of the second param being start, it is set to
stop.The terminatePlaying function in the main.js file implements this behavior.

Starting and stopping the recording of an audio file is done in the same way as
playRecording and terminatePlaying except that instead of the play command, rec is
used. Making the implementation of the starting and stopping of these related capabilities
similar makes it much easier for you to add these behaviors to your application.

As seen earlier in this section, some device behaviors, such as vibrate require commu-
nication only from the JavaScript to the Objective-C handlers. Others, such as retrieving
the current GPS coordinates or the results of a picker, require communication in both di-
rections. Figure 4.1 shows the DeviceCatalog application with GPS information.

As with some of the unidirectional examples already examined, communication starts
in the JavaScript of your application.The getGPSLocation function in the main.js file
initiates the communication using the makeCall function. Notice that as in the earlier
examples, makeCall returns nothing. makeCall uses an asynchronous communication

Figure 4.1 The DeviceCatalog
example application showing GPS

information.

ptg

80 Chapter 4 GPS, Acceleration, and Other Native Functions with QuickConnect

protocol to communicate with the Objective-C side of the library even when the com-
munication is bidirectional, so no return value is available.

function getGPSLocation(event)

{

document.getElementById(‘locDisplay’).innerText = ‘’;

makeCall(“loc”);

}

Because the communication is asynchronous, as AJAX is, a callback function needs to
be created and called to receive the GPS informartion. In the QuickConnectiPhone
framework, this is accomplished by creating a mapping in the mapping file that maps the
command showLoc to a function:

mapCommandToVCF(‘showLoc’, displayLocationVCF);

In this case, it is mapped to the displayLocationVCF view control function.This sim-
ple example function is used only to display the current GPS location in a div on the
screen. Obviously, these values can also be used to compute distances to be stored in a
database or to be sent to a server using the ServerAccessObject described in Chapter 8,
“Remote Data Access.”

function displayLocationVCF(data, paramArray){

document.getElementById(‘locDisplay’).innerText = ‘latitude:

‘+paramArray[0]+’\nlongitude: ‘+paramArray[1]+’\naltitude:

‘+paramArray[2];

}

Displaying a picker, such as the standard date and time picker, and then displaying the
selected results is similar to the previous example.This process also begins with a call from
JavaScript to the device-handling code. In this case, the event handler function of the but-
ton is the showDateSelector function found in the main.js file.

function showDateSelector(event)

{

makeCall(“showDate”, “DateTime”);

}

As with the GPS example, a mapping is also needed.This mapping maps the
showPickResults command to the displayPickerSelectionVCF view control function,
as shown in the following:

mapCommandToVCF(‘showPickResults’, displayPickerSelectionVCF);

The function to which the command is mapped inserts the results of the user’s selec-
tion in a simple div, as shown in the following code. Obviously, this information can be
used in many ways.

function displayPickerSelectionVCF(data, paramArray){

document.getElementById(‘pickerResults’).innerHTML = paramArray[0];

ptg

81Section 2: Objective-C Device Activation

Some uses of makeCall, such as the earlier examples in this section, communicate uni-
directionally from the JavaScript to the Objective-C device handlers.Those just examined
use bidirectional communication to and from handlers.Another type of communication
that is possible with the device is unidirectionally from the device to your JavaScript
code.An example of this is accelerometer information use.

The Objective-C handler for acceleration events, see Section 2 to see the code, makes
a JavaScript handleRequest call directly passing the accel command.The following
accel command is mapped to the displayAccelerationVCF view control function.

mapCommandToVCF(‘accel’, displayAccelerationVCF);

As with the other VCFs, this one inserts the acceleration values into a div.

function displayAccelerationVCF(data, param){

document.getElementById(‘accelDisplay’).innerText =’x:

‘+param.x+’\ny: ‘+param.y+’\nz: ‘+param.z;

}

One difference between this function and the others is that instead of an array being
passed, this function has an object passed as its param parameter. Section 2 shows how this
object was created from information passed from the Objective-C acceleration event
handler.

This section has shown you how to add some of the most commonly requested
iPhone behaviors to your JavaScript-based application. Section 2 shows the Objective-C
portions of the framework that support this capability.

Section 2: Objective-C Device Activation
This section assumes you are familiar with Objective-C and how it is used to create
iPhone applications. If you are not familiar with this, Erica Sadun’s book The iPhone De-
veloper’s Cookbook is available from Pearson Publishing. If you just want to use the Quick-
ConnectiPhone framework to write JavaScript applications for the iPhone, you do not
have to read this section.

Using Objective-C to vibrate the iPhone is one of the easiest behaviors to implement.
It can be done with the following single line of code if you include the AudioToolbox
framework in the resources of your project.

AudioServicesPlaySystemSound(kSystemSoundID_Vibrate);

The question then becomes,“How can I get the AudioServicesPlaySystemSound
function to be called when the UIWebView is told to change its location?”

The QuickConnectViewController implements the shouldStartLoadWithRequest
delegate method. Because the delegate of the embedded UIWebView, called aWebView, is
set to be the QuickConnectViewController this method is called every time the embed-
ded UIWebView is told to change its location.The following code and line 90 of the
QuickConnectViewController.m file show this delegate being set.

[aWebView setDelegate:self];

ptg

82 Chapter 4 GPS, Acceleration, and Other Native Functions with QuickConnect

The basic behavior of the shouldStartLoadWithRequest function is straightforward.
It is designed to enable you to write code that decides if the new page requested should
actually be loaded.The QuickConnectiPhone framework takes advantage of the decision-
making capability to disallow page loading by any of the requests made by the JavaScript
calls shown in Section 1 and execute other Objecive-C code.

The shouldStartLoadWithRequest method has several parameters that are available
for use.These include

n curWebView—The UIWebView containing your JavaScript application.
n request—A NSURLRequest containing the new URL among other items.
n navigationType—A UIWebViewNavigationType that can be used to determine if

the request is the result of the user selecting a link or if it was generated as a result
of some other action.

-(BOOL)webView:(UIWebView *)curWebView

shouldStartLoadWithRequest:(NSURLRequest *)request

navigationType:(UIWebViewNavigationType)navigationType

The URL assembled by the makeCall JavaScript function that causes the device to vi-
brate, call?cmd=playSound&msg=-1 is contained in the request object and is easily re-
trieved as a string by passing the URL message to it.This message returns an NSURL-type
object, which is then passed the absoluteString message.Thus, an NSString pointer
representing the URL is obtained.This string, seen as url in the following code, can then
be split into an array using the ? as the splitting delimiter, yielding an array of NSString
pointers.

NSString *url = [[request URL] absoluteString];

NSArray *urlArray = [url componentsSeparatedByString:@”?”];

urlArray contains two elements.The first is the call portion of the URL and the
second is the command string cmd=playSound&msg=-1.To determine which command to
act on and any parameters that might need to be used, in this case the –1, the command
string requires further parsing.This is done by splitting the commandString at the & char-
acter.This creates another array called urlParamsArray.

NSString *commandString = [urlArray objectAtIndex:1];

NSArray *urlParamsArray = [commandString

componentsSeparatedByString:@”&”];

//the command is the first parameter in the URL

cmd = [[[urlParamsArray objectAtIndex:0]

componentsSeparatedByString:@”=”] objectAtIndex:1];

In this case, requesting that the device to vibrate, the first element of the
urlParamsArray array becomes cmd=playSound and the second is msg=-1.Thus, splitting
the elements of the urlParamsArray can retrieve the command to be executed and the pa-
rameter.The = character is the delimiter to split each element of the urlParamsArray.

ptg

83Section 2: Objective-C Device Activation

Lines 1– 3 in the following example retrieve the parameter sent as the value associated
with the msg key in the URL as the NSString parameterArrayString. Because the
JavaScript that assembled the URL converts all items that are this value to JSON, this
NSString is an object that has been converted into JSON format.This includes numbers,
such as the current example, and strings, arrays, or other parameters passed from the
JavaScript.Additionally, if spaces or other special characters appear in the data, the
UIWebView escapes them as part of the URL.Therefore, lines 6–8 in the following code
is needed to unescape any special characters in the JSON string.

1 NSString *parameterArrayString = [[[urlParamsArray

2 objectAtIndex:1] componentsSeparatedByString:@”=”]

3 objectAtIndex:1];

4 //remove any encoding added as the UIWebView has

5 //escaped the URL characters.

6 parameterArrayString = [parameterArrayString

7 stringByReplacingPercentEscapesUsingEncoding:

8 NSASCIIStringEncoding];

9 SBJSON *generator = [SBJSON alloc];

10 NSError *error;

11 paramsToPass = [[NSMutableArray alloc]

12 initWithArray:[generator

13 objectWithString:parameterArrayString

14 error:&error]];

15 if([paramsToPass count] == 0){

16 //if there was no array of data sent then it must have

17 //been a string that was sent as the only parameter.

18 [paramsToPass addObject:parameterArrayString];

19 }

20 [generator release];

Lines 9–14 in the previous code contain the code to convert the JSON string
parameterArrayString to a native Objective-C NSArray. Line 9 allocates a SBJSON
generator object.The generator object is then sent the objectWithString message seen
in the following:

- (id)objectWithString:(NSString*)jsonrep error:(NSError**)error;

This multipart message is passed a JSON string, in this case parameterArrayString,
and an NSError pointer error.The error pointer is assigned if an error occurs during
the conversion process. If no error happens, it is nil.

The return value of this message is in this case the number –1. If a JavaScript array is
stringified, it is an NSArray pointer, or if it is a JavaScript string, it is an NSString pointer.
If a JavaScript custom object type is passed, the returned object is an NSDictionary
pointer.

At this point, having retrieved the command and any parameters needed to act on the
command, it is possible to use an if or case statement to do the actual computation.

ptg

84 Chapter 4 GPS, Acceleration, and Other Native Functions with QuickConnect

Such a set of conditionals is, however, not optimal because they have to be modified each
time a command is added or removed. In Chapter 2, this same problem is solved in the
JavaScript portion of the QuickConnectiPhone architecture by implementing a front
controller function called handleRequest that contains calls to implementations of appli-
cation controllers. Because the problem is the same here, an Objective-C version of
handleRequest should solve the current problem. Section 3 covers the implementation
of the front controllers and application controllers in Objective-C.The following line of
code retrieves an instance of the QuickConnect object and passes it the handleRequest
withParameters multimessage. No further computation is required within the
shouldStartLoadWithRequest delegate method.

[[QuickConnect getInstance] handleRequest:cmd withParameters:paramsToPass];

Because the QuickConnect objects’ handleRequest message is used, there must be a
way of mapping the command to the required functionality as shown in Chapter 2 using
JavaScript.The QCCommandMappings object found in the QCCommandMappings.m and
.h files of the QCObjC group contains all the mappings for Business Control Objects
(BCO) and View Control Objects (VCO) for this example.

The following code is the mapCommands method of the QCCommandMappings object
that is called when the application starts. It is passed an implementation of an application
controller that is used to create the mappings of command to functionality.An explana-
tion of the code for the mapCommandToVCO message and the call of mapCommands are
found in Section 3.

1 + (void) mapCommands:(QCAppController*)aController{

2 [aController mapCommandToVCO:@”logMessage” withFunction:@”LoggingVCO”];

3 [aController mapCommandToVCO:@”playSound” withFunction:@”PlaySoundVCO”];

4 [aController mapCommandToBCO:@”loc” withFunction:@”LocationBCO”];

5 [aController mapCommandToVCO:@”sendloc” withFunction:@”LocationVCO”];

6 [aController mapCommandToVCO:@”showDate” withFunction:@”DatePickerVCO”];

7 [aController mapCommandToVCO:@”sendPickResults”
withFunction:@”PickResultsVCO”];

8 [aController mapCommandToVCO:@”play” withFunction:@”PlayAudioVCO”];

9 [aController mapCommandToVCO:@”rec” withFunction:@”RecordAudioVCO”];

10 }

Line 3 of the previous code is pertinent to the current example of vibrating the de-
vice.As seen earlier in this section, the command received from the JavaScript portion of
the application is playSound. By sending this command as the first parameter of the
mapCommandToVCO message and PlaySoundVCO as the parameter for the second portion,
withFunction, a link is made that causes the application controller to send a doCommand
message with the –1 parameter to the PlaySoundVCO class.As you can see, all the other
commands in the DeviceCatalog example that are sent from JavaScript are mapped here.

The code for the PlaySoundVCO to which the playSound command is mapped is
found in the PlaySoundVCO.m and PlaySoundVCO.h files.The doCommand method con-
tains all the object’s behavior.

ptg

85Section 2: Objective-C Device Activation

To play a system sound, a predefined sound, of which vibrate is the only one at the
time of writing this book, must be used or a system sound must be generated from a
sound file.The doCommand of the PlaySoundVCO class shows examples of both of these
types of behavior.

1 + (id) doCommand:(NSArray*) parameters{

2 SystemSoundID aSound =

3 [((NSNumber*)[parameters objectAtIndex:1]) intValue];

4 if(aSound == -1){

5 aSound = kSystemSoundID_Vibrate;

6 }

7 else{

8 NSString *soundFile =

9 [[NSBundle mainBundle] pathForResource:@”laser”

10 ofType:@”wav”];

11 NSURL *url = [NSURL fileURLWithPath:soundFile];

12 //if the audio file is takes to long to play

13 //you will get a -1500 error

14 OSStatus error = AudioServicesCreateSystemSoundID(

15 (CFURLRef) url, &aSound);

16 }

17 AudioServicesPlaySystemSound(aSound);

18 return nil;

19 }

As seen in line 4 in the previous example, if the parameter with the index of 1 has a
value of –1, the SystemSoundID aSound variable is set to the defined
kSystemSoundID_Vibrate value. If it is not, a system sound is created from the laser.wav
file found in the resources group of the application, and the aSound variable is set to an
identifier generated for the new system sound.

In either case, the C function AudioServicesPlaySystemSound is called and the
sound is played or the device vibrates. If the device is an iPod Touch, requests for vibra-
tion are ignored by the device. In an actual application that has multiple sounds, this func-
tion can easily be expanded by passing other numbers as indicators of which sound
should be played.

Because the SystemSoundID type variable is actually numeric, the system sounds
should be generated at application start and the SystemSoundIDs for each of them should
be passed to the JavaScript portion of the application for later use.This avoids the compu-
tational load of recreating the system sound each time a sound is required, and therefore,
increases the quality of the user’s experience because there is no delay of the playing of
the sound.

Having now seen the process of passing commands from JavaScript to Objective-C
and how to vibrate the device or play a short sound, it is now easy to see and understand
how to pass a command to Objective-C and have the results returned to the JavaScript
portion of the application.

ptg

86 Chapter 4 GPS, Acceleration, and Other Native Functions with QuickConnect

Because these types of communication behave similarly, GPS location detection,
which is a popular item in iPhone applications, is shown as an example. It uses this bidi-
rectional, JavaScript-Objective-C communication capability of the QuickConnectiPhone
framework.

As with the handling of all the commands sent from the JavaScript framework, there
must be a mapping of the loc command so that the data can be retrieved and a response
sent back.

[aController mapCommandToBCO:@”loc” withFunction:@”LocationBCO”];

[aController mapCommandToVCO:@”sendloc” withFunction:@”LocationVCO”];

In this case, there are two mappings:The first is to a BCO and the second is to a
VCO.As discussed in Chapter 2, BCOs do data retrieval andVCOs are used for data
presentation.

Because BCOs for a given command are executed prior to all of the VCOs by the
QuickConnectiPhone framework, a doCommand message is first sent to the LocationBCO
class, which retrieves and returns the GPS data.The following doCommand method belongs
to the LocationBCO class. It makes the calls required to get the device to begin finding its
GPS location.

+ (id) doCommand:(NSArray*) parameters{

QuickConnectViewController *controller = (QuickConnectViewController*)[parame-
ters objectAtIndex:0];

[[controller locationManager] startUpdatingLocation];

return nil;

}

This method starts the GPS location hardware by retrieving the first item in the para-
meter’s array that is passed into the method and informing it to start the hardware.The
framework always sets the first parameter to be the QuickConnectViewController so
that it can be used if needed by BCOs or VCOs associated with any command. In all of
the Objective-C BCOs and VCOs any parameters sent from JavaScript begin with an in-
dex of 1.

The QuickConnectViewController object has a built in CLLocationManager attrib-
ute called locationManager that is turned on and off as needed by your application. It is
important not to leave this manager running any longer than needed because it uses large
amounts of battery power.Therefore, the previous code turns the location hardware on by
sending it a startUpdatingLocation message each time a location is needed.The loca-
tion hardware is turned off once the location is found.

CLLocationManager objects behave in an asynchronous manner.This means that when
a request is made for location information, a predefined callback function is called after
the location has been determined.This predefined function allows you access to the loca-
tion manager and two locations: a previously determined location and a current location.

ptg

87Section 2: Objective-C Device Activation

The location manager works by gradually refining the device’s location.As it does this,
it calls didUpdateToLocation several times.The following code example finds out how
long it takes to determine the new location. Line 9 determines if this is less than 5.0 sec-
onds and if it is terminates the location search.

1 (void)locationManager:(CLLocationManager *)manager

2 didUpdateToLocation:(CLLocation *)newLocation

3 fromLocation:(CLLocation *)oldLocation

4 {

5 // If it’s a relatively recent event, turn off updates to save power

6 NSDate* eventDate = newLocation.timestamp;

7 NSTimeInterval howRecent =

8 [eventDate timeIntervalSinceNow];

9 if (abs(howRecent) < 5.0){

10 [manager stopUpdatingLocation];

11 NSMutableArray *paramsToPass =

12 [[NSMutableArray alloc] initWithCapacity:2];

13 [paramsToPass addObject:self];

14 [paramsToPass addObject:newLocation];

15 [[QuickConnect getInstance]

16 handleRequest:@”sendloc”

17 withParameters:paramsToPass];

18 }

19 // else skip the event and process the next one.

20 }

Having terminated the location search, the code then sends a message to the Quick-
Connect front controller class stating that it should handle a sendloc request with the
QuickConnectViewController, self, and the new location passed as an additional pa-
rameter.

The sendloc command is mapped to the LocationVCO handler whose doCommand
method is seen in the following example.This method retrieves the UIWebView called
webView from the QuickConnectViewController that made the original request for GPS
location information. It then places the GPS information into the NSArray called
passingArray.

To pass the GPS information back to the webView object, the NSArray within which
it is contained must be converted into a JSON string.The same SBJSON class used ear-
lier to create an array from a JSON string is now used to create a NSString from the
NSArray.This is done on lines 21 and 22:

1 + (id) doCommand:(NSArray*) parameters{

2 QuickConnectViewController *controller =

3 (QuickConnectViewController*)[parameters

4 objectAtIndex:0];

5 UIWebView *webView = [controller webView];

6 CLLocation *location = (CLLocation*)[parameters

7 objectAtIndex:1];

ptg

88 Chapter 4 GPS, Acceleration, and Other Native Functions with QuickConnect

8

9 NSMutableArray *passingArray = [[NSMutableArray alloc]

10 initWithCapacity:3];

11 [passingArray addObject: [NSNumber numberWithDouble:

12 location.coordinate.latitude]];

13 [passingArray addObject: [NSNumber numberWithDouble:

14 location.coordinate.longitude]];

15 [passingArray addObject: [NSNumber numberWithFloat:

16 location.altitude]];

17

18 SBJSON *generator = [SBJSON alloc];

19

20 NSError *error;

21 NSString *paramsToPass = [generator

22 stringWithObject:passingArray error:&error];

23 [generator release];

24 NSString *jsString = [[NSString alloc]

25 initWithFormat:@”handleJSONRequest(‘showLoc’, ‘%@’)”,

26 paramsToPass];

27 [webView

28 stringByEvaluatingJavaScriptFromString:jsString];

29 return nil;

30 }

After converting the GPS location information into a JSON string representing an ar-
ray of numbers, a call is made to the JavaScript engine inside the webView object.This is
done by first creating an NSString that is the JavaScript to be executed. In this example, it
is a handleJSONRequest that is passed showLoc as the command and the JSON GPS in-
formation as a string.As seen in Section 1, this request causes the GPS data to appear in a
div in the HTML page being displayed.

Having seen this example, you can now look at the DatePickerVCO and
PickResultsVCO in the DeviceCatalog example and see how this same approach is used
to display the standard date and time selectors, called pickers, that are available in
Objective-C.Although predefined pickers available using JavaScript within the UIWeb-
View, they are not as nice from the user’s point of view as the standard ones available from
within Objective-C. By using these standard ones and any custom ones you may choose
to define, your hybrid application will have a smoother user experience.

Section 3: Objective-C Implementation of the
QuickConnectiPhone Architecture
The code shown in Sections 1 and 2 depends heavily on an implementation in
Objective-C of the same architecture, which is explained in Chapter 2.This section
shows how to implement the architecture in Objective-C.To see a full explanation of
each component, see Chapter 2, which contains the JavaScript implementation.

ptg

89Section 3: Objective-C Implementation of the QuickConnectiPhone Architecture

As in the JavaScript implementation, all requests for application behavior are handled
via a front controller.The front controller is implemented as the class QuickConnect, the
source for which is found in the QuickConnect.m and QuickConnect.h files. Because
messages sent to QuickConnect might need to be made from many different locations
throughout an application, this class is a singleton.

Singleton classes are written so that only one instantiated object of that class can be al-
located within an application. If done correctly, there is always a way to obtain a pointer
to this single object from anywhere in the application.With the QuickConnect singleton
object, this is accomplished by implementing a class method getInstance that returns
the single QuickConnect instance that is allocated the first time this method is called.

Because it is a class method, a getInstance message can be sent to the class without
instantiating a QuickConnect object.When called, it returns a pointer to the underlying
QuickConnect instance.As seen in the following code, this is accomplished by assigning
an instance of the class to a statically defined QuickConnect pointer.

+ (QuickConnect*)getInstance{

//since this line is declared static

//it will only be executed once.

static QuickConnect *mySelfQC = nil;

@synchronized([QuickConnect class]) {

if (mySelfQC == nil) {

mySelfQC = [QuickConnect singleton];

[mySelfQC init];

}

}

return mySelfQC;

}

The singleton message sent prior to init uses the behavior defined in the
QuickConnect objects’ superclass FTSWAbstractSingleton.This superclass allocates the
embedded singleton behavior such as overriding new, clone, and other methods that
someone might incorrectly attempt to use to allocate another QuickConnect instance.
Because of this, only the getInstance method can be used to create and use a
QuickConnect object.As with all well-formed objects in Objective-C, after a
QuickConnect object has been allocated, it must be initialized.

Both the allocation and initialization of the object happen only if no QuickConnect
object has been assigned to the mySelfQC attribute.Additionally, because of the synchro-
nization call surrounding the check for the instantiated QuickConnect object, the check-
ing and initialization are thread safe.

- (void) handleRequest: (NSString*) aCmd withParameters:(NSArray*)

parameters is another method of the QuickConnect class. Just as with the JavaScript
handleRequest(aCmd, parameters) function from Chapter 2, this method is the way to
request functionality be executed in your application.

ptg

90 Chapter 4 GPS, Acceleration, and Other Native Functions with QuickConnect

A command string and an array of parameters are passed to the method. In the follow-
ing example, lines 3–9 show that a series of messages are sent to the application con-
troller. Lines 3 and 4 first execute any VCOs associated with the command. If the
command and parameters pass validation, any BCOs associated with the command are
executed by a dispatchToBCO message.This message returns an NSMutableArray that
contains the original parameters array data to which has been added any data accumu-
lated by any BCO object that might have been called.

1 - (void) handleRequest: (NSString*) aCmd

2 withParameters:(NSArray*) parameters{

3 if([self->theAppController dispatchToValCO:aCmd

4 withParameters:parameters] != nil){

5 NSMutableArray *newParameters =

6 [self->theAppController dispatchToBCO:aCmd

7 withParameters:parameters];

8 [self->theAppController dispatchToVCO:aCmd

9 withParameters:newParameters];

10 }

11 }

After the completion of the call to dispatchToBCO:withParameters, a
dispatchToVCO:withParameters message is sent.This causes any VCOs also associated
with the given command to be executed.

By using the handleRequest:withParameters method for all requests for functional-
ity, each request goes through a three-step process.

1. Validation.

2. Execution of business rules (BCO).

3. Execution of view changes (VCO).

As in the JavaScript implementation, each dispatchTo method is a façade. In this case,
the underlying Objective-C method is dispatchToCO:withParameters.

This method first retrieves all the command objects associated with the default com-
mand in aMap the passed parameter. aMap contains either BCOs,VCOs, or ValCOs de-
pending on which façade method was called.These default command objects, if any, are
retrieved and used for all commands. If you want to have certain command objects used
for all commands, you do not need to map them to each individual command. Map them
to the default command once instead.

For the retrieved command objects to be used, they must be sent a message.The mes-
sage to be sent is doCommand. Lines 19–23 in the following example show this message
being retrieved as a selector and the performSelector message being passed.This causes
the doCommand message you have implemented in your QCCommandObject to be executed.

1 - (id) dispatchToCO: (NSString*)command withParameters:

2 (NSArray*)parameters andMap:(NSDictionary*)aMap{

3 //create a mutable array that contains all of

ptg

91Section 3: Objective-C Implementation of the QuickConnectiPhone Architecture

4 // the existing parameters.

5 NSMutableArray *resultArray;

6 if(parameters == nil){

7 resultArray = [[NSMutableArray alloc]

8 initWithCapacity:0];

9 }

10 else{

11 resultArray = [NSMutableArray

12 arrayWithArray:parameters];

13 }

14 //set the result to be something so

15 //that if no mappings are made the

16 //execution will continue.

17 id result = @”Continue”;

18 if([aMap objectForKey:@”default”] != nil){

19 SEL aSelector = @selector(doCommand);

20 while((result = [((QCCommandObject*)

21 [aMap objectForKey:@”default”])

22 performSelector:aSelector

23 withObject:parameters]) != nil){

24 if(aMap == self->businessMap){

25 [resultArray addObject:result];

26 }

27 }

28 }

29 //if all of the default command objects’ method calls

30 //return something, execute all of the custom ones.

31 if(result != nil && [aMap objectForKey:command] !=

32 nil){

33 NSArray *theCommandObjects =

34 [aMap objectForKey:command];

35 int numCommandObjects = [theCommandObjects count];

36 for(int i = 0; i < numCommandObjects; i++){

37 QCCommandObject *theCommand =

38 [theCommandObjects objectAtIndex:i];

39 result = [theCommand doCommand:parameters];

40 if(result == nil){

41 resultArray = nil;

42 break;

43 }

44 if(aMap == self->businessMap){

45 [resultArray addObject:result];

46 }

47 }

48 }

49 if(aMap == self->businessMap){

ptg

92 Chapter 4 GPS, Acceleration, and Other Native Functions with QuickConnect

Figure 4.2 A sequence diagram shows the methods called in Objective-C
to handle a request to log a JavaScript debug message.

50 return resultArray;

51 }

52 return result;

53 }

After all the doCommand messages are sent to any QCCommandObjects you mapped to
the default command, the same is done for QCCommandObjects you mapped to the
command passed into the method as a parameter.These QCCommandObjects have the
same reasons for existence as the control functions in the JavaScript implementation.
Because QCCommandObjects contain all the behavior code for your application, an
example is of one is helpful in understanding how they are created.

QCCommandObject is the parent class of LoggingVCO.As such, LoggingVCO must imple-
ment the doCommand method.The entire contents of the LoggingVCO.m file found in
the DeviceCatalog example follows. Its doCommand method writes to the log file of the

running application.This VCO logs debug messages generated from within the JavaScript
code of your application. Figure 4.2 shows the calls required to accomplish this.

The doCommand method of the LoggingVCO class is small.All doCommand methods for
the different types of command objects should always be small.They should do one thing
only and do it well. If you find that a doCommand method you are working on is getting
large, you might want to consider splitting it into logical components and creating more
than one command object class.The reason for this is that if these methods become long,
they are probably doing more than one thing.

ptg

93Section 3: Objective-C Implementation of the QuickConnectiPhone Architecture

In the following example, the “one thing” the LoggingVCO does is log messages to the
debug console in Xcode. Obviously, this small component can be reused with many com-
mands in combination with other command objects.

The behavior of this VCO consists of a single line that executes the NSLog function. In
doing so, the first object in the parameters array is appended to a static string and written
out.

#import "LoggingVCO.h"

@implementation LoggingVCO

+ (id) doCommand:(NSArray*) parameters{

NSLog(@"JavaScriptMessage: %@",

[parameters objectAtIndex:1]);

return nil;

}

@end

For this logging to occur, a mapping must be generated between the logMessage
command and the LoggingVCO class.As in the JavaScript implementation, this is done by
adding logMessage as a key and the name of the LoggingVCO class as a value to a map.

Mapping is done in the QCCommandMappings.m file.The code that follows comes
from this file in the DeviceCatalog example and maps logMessage to the LoggingVCO class.

[aController mapCommandToVCO:@”logMessage”

withFunction:@”LoggingVCO”];

The application controller is passed the mapCommandToVCO:withFunction message
where the command is the first parameter and the VCO name is the second.This method
and others like it used to map the other command object types are façades. Each of these
façade methods calls the underlying mapCommandToCO method.

This mapCommandToCO method enables multiple command objects to be mapped to a
single command by mapping the command to an NSMutableArray.This array is then
used to contain the Class objects that match the class name passed in as the second pa-
rameter.The following code shows the implementation of the mapCommandToCO method.

- (void) mapCommandToCO:(NSString*)aCommand

withFunction:(NSString*)aClassName

toMap:(NSMutableDictionary*)aMap{

NSMutableArray *controlObjects =

[[aMap objectForKey:aCommand] retain];

if(controlObjects == nil){

NSMutableArray *tmpCntrlObjs =

[[NSMutableArray alloc] initWithCapacity:1];

[aMap setObject: tmpCntrlObjs forKey:aCommand];

ptg

94 Chapter 4 GPS, Acceleration, and Other Native Functions with QuickConnect

controlObjects = tmpCntrlObjs;

[tmpCntrlObjs release];

}

//Get the control object’s class

//for the given name and add an object

//of that type to the array for the command.

Class aClass = NSClassFromString(aClassName);

if(aClass != nil){

[controlObjects addObject:aClass];

}

else{

MESSAGE(unable to find the %@ class.

Make sure that it exists under this

name and try again.”);

}

}

The addition of the Class objects to an NSMutableArray enables any number of com-
mand objects of similar type,VCOs, BCOs, or others to be mapped to the same com-
mand and then executed individually in the order that the mapCommandTo messages were
sent.Thus, you can have several VCOs execute sequentially.

For example, you can use a VCO that displays a UIView followed by another that
changes another UIView’s opacity, and then follow that up by logging a message. Sending
three mapCommandToVCO messages with the same command but three different command
object names would do this.

Several other examples of BCOs and VCOs exist in the DeviceCatalog example. Each
one is activated as requests are made from the JavaScript portion of the application.

Summary
This chapter showed you how to activate several desirable features of iPhone or iPod
Touch devices from within your JavaScript application. Using features such as GPS loca-
tion, the accelerometer values, vibrating the phone, and playing sounds and audio increase
the richness of your application.

By looking at the examples included in the DeviceCatalog and if you work in
Objective-C, you should be able to add additional features such as scanning the Bonjour
network for nearby devices, adding, removing, and retrieving contacts from the contacts
application, or adding, removing, and retrieving other built in behaviors that are available
in Objective-C applications.

Your JavaScript application can, using the approach described in this chapter, do most
anything a pure Objective-C application can do.An example of this is in Chapter 8,
where you learn how to embed Google maps into any application without losing the
look and feel of Apple’s Map application.

ptg

5
Hybrid Applications, GPS,

Acceleration, and Other Native
Functions with PhoneGap

The PhoneGap library provides an alternative to using the QuickConnect framework
discussed in Chapter 4,“GPS,Acceleration, and Other Native Functions with Quick-
Connect.”Although it does not have the full range of features found in QuickConnect, it
is, along with QuickConnect, a popular choice for accessing device information and be-
havior.The first section of this chapter explains how to access these native iPhone func-
tionalities using the PhoneGap JavaScript API.The second section shows the JavaScript
and Objective-C code that underlies the PhoneGap JavaScript API.

Section 1: JavaScript Device Activation
Because PhoneGap is undergoing development at the time of this writing, it has a limited
number of native behaviors that are available.This section covers only those behaviors
that have support on both the JavaScript and Objective-C sides of the application.There
are placeholders in the code for behavior code not yet complete or functioning in
PhoneGap at this time.These behaviors are not covered.

Table 5.1 lists the methods, functions, and attributes that are part of the working API.
Unlike QuickConnectiPhone, these do not belong to a larger framework.As such, you
are responsible for calling them directly. Because there is little safety checking in the ac-
tive code, be sure that parameters passed to these functions are valid and not null.

As discussed in Chapter 4, QuickConnectiPhone includes the HTML, CSS, and
JavaScript in the installed application on the device. PhoneGap does not. Instead, at
startup, a generic Objective-C application, renamed as your application, temporarily loads
these files from a web server to which they had previously been published (see Figure
5.1).To run the application, your device must have network connectivity.Therefore, do
not expect your application to run correctly when the user is on an airplane or where
connectivity is not available.

ptg

96 Chapter 5 Hybrid Applications, GPS, Acceleration, and Other Native Functions with PhoneGap

PhoneGap Application Startup Process

URL
Request

URL
Request

Web Server

Request

HTML, CSS,
and

JavaScript

HTML, CSS,
and

JavaScript
Web Server

Response

Figure 5.1 The startup request and response for PhoneGap applications used to
obtain the HTML, CSS, and JavaScript that define the application

When a PhoneGap application starts loading its web components from the server, a
call is made from the generic Objective-C application to JavaScript.This call sets a series
of global variables that describe the device the application runs on.The Device.init
method of the JavaScript API, usually called in a function that is assigned to be the
onload event listener, exists to gather up the global variables set by the Objective-C por-
tion of the application and stores them in attributes of PhoneGap’s Device object.The
Objective-C code that sets these device variables is discussed in Section 2.

init: function(model, version) {

.

.

.

Device.available = __gap;

Device.model = __gap_device_model;

Device.version = __gap_device_version;

Device.gapVersion = __gap_version;

Device.uuid = __gap_device_uniqueid;

.

.

.

}

ptg

97Section 1: JavaScript Device Activation

Table 5.1 PhoneGap JavaScript API

Element Parameters Behavior

gotAcceleration() x—The acceleration value
along the x-axis.

y—The acceleration value
along the y-axis.

z—The acceleration value
along the z-axis.

This function is not predefined.
To receive accelerometer infor-
mation, create this function
somewhere in your application.
When created, the Objective-C
library can then call it and pass
it the parameter values.

Device.init() None Gathers up the device informa-
tion from global variables that
were set when the application
started. This information is
placed in the Device object and
includes:

Device type (iPhone/iPodTouch)

Device OS version

Device UniqueID

PhoneGap version

Device.vibrate() None Causes the phone to vibrate for
the standard amount of time.

The previous example shows code relevant to the iPhone and iPod Touch devices.
Each of the global value names begins with __ (double underscore) and has a unique
value.The __gap variable is used as a flag to indicate whether or not the JavaScript is run
from within a PhoneGap application.This is required because at the time of this book’s
writing, the application’s HTML, CSS, and JavaScript files are not included in any com-
piled, installed PhoneGap application but downloaded by the wrapper from the Internet.
If your application’s HTML, CSS, and JavaScript files are accessed by a web browser in-
stead of a PhoneGap application, the __gap variable would be null and can be used as a
flag later in your code.

The __gap_device_model variable contains a string that describes the device your ap-
plication is running on, such as iPhone, iPod Touch, or iPhone Simulator.This variable
also includes the device’s OS version, which is in the __gap_device_version global vari-
able.The device’s globally unique id is in the __gap_device_uniqueid variable, and the
version of PhoneGap is found in __gap_version. Each of these values is available for use
either from the public device attributes seen in the snippet or from the global variables
anywhere in your code.Table 5.1 describes each of the JavaScript functions that allow you
to access device behaviors.

ptg

98 Chapter 5 Hybrid Applications, GPS, Acceleration, and Other Native Functions with PhoneGap

Table 5.1 PhoneGap JavaScript API

Element Parameters Behavior

Device.sound() clip—A string that is the
name and type of the
sound file to be played.

Example: “tweet.wav”

A sound file with this name
must be in the Resources of
your application or an execution
error will happen.

Device.Location.init() None Causes location information
already on the Objective-C side
of the application to be sent to
the JavaScript side for process-
ing and/or display.

Device.Location.callback This attribute of the Location
object when set to a custom
callback function causes a call-
back function to be executed
when the GPS information is
available.

Device.Location.wait() func—A callback function
is executed when the GPS
information is available.

This is an alternative to the
Device.Location.init()

function.

Device.exec() command—A command
string that is passed to the
Objective-C side of the
application for processing.

Examples: “vibrate,”
“sound,” and “getLoc”

This is the function that han-
dles all communication to the
Objective-C side of the applica-
tion. Each command sent trig-
gers different native device
behavior. This is the method
you call from JavaScript if you
created custom Objective-C
code that you want executed.

The PGDeviceCatalog sample application includes a Vibrate button that when
clicked causes the phone to shake.The button’s onclick event handler function is called
vibrateDevice.This function calls the Device.vibrate method that causes the device
to vibrate.

function vibrateDevice(event)

{

Device.vibrate();

}

The following Device.vibrate method is a façade for the Device object’s exec
method. It calls Device.exec and passes it the vibrate command.All the PhoneGap

ptg

99Section 1: JavaScript Device Activation

device behavior methods are actually façades of Device.exec, which is similar to
Device.vibrate.

vibrate: function() {

return Device.exec(“vibrate”)

}

The Device.exec function used in the previous code exists completely in JavaScript
and is shown in the following code. Like QuickConnectiPhone, PhoneGap sets the URL
and creates a message consisting of the URL and the command, such as vibrate, to be
sent to an Objective-C component that is part of the underlying PhoneGap framework.
This component is programmed to terminate the loading of a new page and evaluate
which command has been sent. For more information on this process, see Section 2.

exec: function(command) {

if (Device.available) {

try {

document.location = “gap:” + command;

} catch(e) {

console.log(“Command ‘“ + command +

“‘ has not been executed, because of exception: “

+ e);

alert(“Error executing command ‘“ +

command + “‘.”)

}

}

}

In the catch portion of the previous code, there are two ways of notifying the user that
something has gone wrong.The first, a console.log call, writes a message to Dashcode’s
console and works only when running in Dashcode, not on the device.

The second message uses an alert dialog. Because PhoneGap has implemented alert
behavior in Objective-C, this is active on the device but according to Apple should never
be used in iPhone applications. For more information on iPhone application user inter-
face design, see Chapter 3,“Creating iPhone User Interfaces.”

The playSound and vibrate methods are both unidirectional, which means there is
communication from JavaScript to Objective-C with no data expected back.The
Device.Location.init method is bidirectional and therefore expects to receive data
from the Objective-C PhoneGap library.As shown in the following code, this init
method is also a façade for the Device.exec method. In this case, the command passed is
getloc as opposed to the vibrate command shown earlier.

Figure 5.2 shows a running PhoneGap application that has requested GPS location in-
formation. GPS information is also accessed by a façade that calls Device.exec.

init: function() {

.

.

ptg

100 Chapter 5 Hybrid Applications, GPS, Acceleration, and Other Native Functions with PhoneGap

Figure 5.2 The
PGDeviceCatalog example appli-

cation showing the GPS and
Device information

.

Device.exec(“getloc”);

.

.

.

}

In the PGDeviceCatalog example, the Device.Location.init method is called from
within the getGPS listener function in the following code. It consists of four lines of code.
The third line calls the init function and notifies the Objective-C library that its stored
GPS data is needed.

function getGPS(event){

Device.Location.callback = updateLocation;

Device.Location.init();

}

The second line of getGPS informs the Device.Location object that the
updateLocation function, also found in main.js, is to be called when the GPS data has
been retrieved. In PhoneGap, this process is much faster than in QuickConnectiPhone

ptg

101Section 1: JavaScript Device Activation

because the PhoneGap Objective-C library starts up the GPS hardware of the device as
soon as the application is launched and shuts it down when the application exits.

By using the GPS hardware, the entire time the application runs all PhoneGap applica-
tions, even if they don’t use the GPS data collected and stored, use large amounts of bat-
tery power.The GPS hardware uses so much battery power that Apple states that leaving
it on for the run time of an application constitutes being a “poor iPhone neighbor.” Us-
ing this strategy can easily drain the battery of the device leaving insufficient power for
phone calls and the running of other applications. Because of this, PhoneGap applications
should be designed in such a way that they are intended to run only for short periods of
time even if they do not use GPS data. Because QuickConnectiPhone starts the GPS
hardware when you request GPS information and shuts it down when the location is
found, they can be designed to be run for much longer periods of time.

To receive the accelerometer data, a function called gotAcceleration(x, y, z) must
be implemented somewhere in your application. In the PGDeviceCatalog example appli-
cation, this is found in the main.js file, as shown in the following.

function gotAcceleration(x, y, z){

document.getElementById(‘accelDisplay’).innerHTML =

‘X: ‘+x+’
Y: ‘+y+’
Z: ‘+z;

}

This implementation of the gotAcceleration function displays only the accelerome-
ter values. In your implementation, you might want to do some evaluation of the data
such as a low pass filter or use it to cause some sort of change in the UI other than dis-
playing the numerical data.

Because the simulator doesn’t have accelerometer access to see this information dis-
played, you must run the application on an actual device.When you do, the
gotAcceleration function is called each time one of the accelerometers detects a change.

It is also possible to play an audio file from within JavaScript using the PhoneGap li-
brary.An example of this is the playTweetSound function shown in the following code. It
calls the Device.playSound method that is a Device.exec façade like the
Device.vibrate method mentioned previously.

function playTweetSound(event)

{

Device.playSound(‘bird.mp3’);

}

The playSound method always requires one parameter: the full name of the audio file
to be played.This file must be located in the Resources group of your application in
Xcode. It cannot be placed on the web server with your HTML, JavaScript, and CSS
files. If this file is not included in the application’s resources, it is not played.

In this example, bird.mp3 is passed to the playSound method of the Device object and
is handled as seen in the following code. Notice that the name of the file, clip, is ap-
pended to the sound command.At this point in PhoneGaps development, playSound is

ptg

102 Chapter 5 Hybrid Applications, GPS, Acceleration, and Other Native Functions with PhoneGap

the only working method that is passed parameters along with the command. It appears
that this will change as the PhoneGap team adds more functionality. For information
about the PhoneGap roadmap, see Appendix C,“The PhoneGap Development
Roadmap.”

playSound: function(clip) {

return Device.exec(‘sound:’ + clip);

}

This section showed you how you can activate the device behaviors available via
PhoneGap. Section 2 shows the Objective-C portions of the PhoneGap library that sup-
port this capability.

Section 2: Objective-C Device Activation
If you are not familiar with Objective-C and how it is used to create iPhone applications,
refer to Erica Sadun’s book, The iPhone Developer’s Cookbook, for more information on the
Objective-C described in this section. If you just want to use the PhoneGap library to
write JavaScript applications for the iPhone, you do not need to read this section.

After the web components, the HTML, CSS, and JavaScript for your application are
retrieved from the web server, the iPhone API fires an event that is captured and handled
by the webViewDidStartLoad method of the GlassAppDelegate object.This method, as
in the following code, initializes a PhoneGap Device object.

//when web application loads pass it device information

- (void)webViewDidStartLoad:(UIWebView *)theWebView {

[theWebView stringByEvaluatingJavaScriptFromString:

[[Device alloc] init]];

}

The following init method of the Device object creates a string that is a series of
JavaScript calls. Each of these calls sets a specific global variable.These variables include
the model of the device, its unique id, iPhone or iPod Touch, and the version of the de-
vice’s OS.

After the JavaScript is assembled, it is returned from the init method so that it can be
used by the stringByEvaluatingJavaScriptFromString method of the UIWebView
object. By having the UIWebView evaluate the JavaScript string, the global JavaScript
variables such as __gap_device_uniqueid are set. Later in this chapter, these global vari-
ables are assembled into a JavaScript object.

@implementation Device

- (NSString *)init{

jsCallBack = nil;

myCurrentDevice = [UIDevice currentDevice];

ptg

103Section 2: Objective-C Device Activation

return jsCallBack = [[NSString alloc] initWithFormat:@”\

__gap = true; \

__gap_version=’0.1’; \

__gap_device_model=’%s’; \

__gap_device_version=’%s’;\

__gap_device_uniqueid=’%s’;”,

[[myCurrentDevice model] UTF8String],

[[myCurrentDevice systemVersion] UTF8String],

[[myCurrentDevice uniqueIdentifier] UTF8String]

];

}

- (void)dealloc {

[jsCallBack release];

[myCurrentDevice release];

[super dealloc];

}

@end

These global variables are set without making a request. Other behaviors require you
to write code to trigger the desired behavior.

Using Objective-C to vibrate the iPhone is one of the easiest behaviors to implement.
It is done with the following single line of code if you include the AudioToolbox frame-
work in the resources of your project:

AudioServicesPlaySystemSound(kSystemSoundID_Vibrate);

How can you get the AudioServicesPlaySystemSound function to be called when
the UIWebView is told to change its location?

The GlassAppDelegate implements the
webView:shouldStartLoadWithRequest:navigationType method. Because the delegate
of the embedded UIWebView, called webView, is set to be the GlassAppDelegate (as
shown in the following code and in line 36 of GlassAppDelegate.m), this method is called
every time the embedded UIWebView is told to change its location.

webView.delegate = self;

The basic behavior of the webView:shouldStartLoadWithRequest:navigationType
function is straightforward. It is designed to enable you to write code that decides
whether the new page requested should actually be loaded.The PhoneGap library takes
advantage of this decision-making capability to disallow any of the command requests
made by the JavaScript calls shown in Section 1 and execute other Objecive-C code.

The shouldStartLoadWithRequest method has several parameters that are available
for use, which include

ptg

104 Chapter 5 Hybrid Applications, GPS, Acceleration, and Other Native Functions with PhoneGap

n curWebView—The UIWebView containing your JavaScript application
n request—A NSURLRequest containing the new URL among other items
n navigationType—A UIWebViewNavigationType that can be used to determine

whether the request is the result of the user selecting a link or whether it was gen-
erated as a result of some other action

-(BOOL)webView:(UIWebView *)curWebView

shouldStartLoadWithRequest:(NSURLRequest *)request

navigationType:(UIWebViewNavigationType)navigationType

The URL assembled by the Device.exec JavaScript method that causes the device to
vibrate, gap:vibrate, is contained in the request object and easily retrieved as a string
by passing the URL message to it.This message returns an NSURL type object that is then
passed the absoluteString message.Thus, a NSString pointer representing the URL is
obtained.

NSString *url = [[request URL] absoluteString];

NSArray *urlArray = [url componentsSeparatedByString:@”?”];

In PhoneGap, determine whether the requested URL is relative to the application’s
URL found in the url.txt file discussed in Chapter 1,“Developing Dashcode and Xcode.”
If it is not, then the Safari browser is launched displaying the page at the URL.This causes
your application to exit because the iPhone enables only one application to run at a time.

The following code retrieves both the current host being requested found in the url
parameter and the host of the application found in appURL.This is done by passing both
of these NSURL objects the host message.

Lines 3 and 4 send the rangeOfString message to the urlHost variable.This is similar
to using the indexOf method of the JavaScript String object.The following code deter-
mines whether the value of the application’s host can be found in the requested URL.

1 NSString* urlHost = [url host];

2 NSString* appHost = [appURL host];

3 NSRange range = [urlHost rangeOfString:appHost

4 options:NSCaseInsensitiveSearch];

5 if (range.location == NSNotFound)

6 [[UIApplication sharedApplication] openURL:url];

7

8 NSString * jsCallBack = nil;

9 NSArray * parts = [urlString

10 componentsSeparatedByString:”];

Line 5 checks the result of the rangeOfString method to see whether appHost was
found in urlHost. If it was not, then the openURL message is sent to the application.
Any time this openURL message is passed, your application exits and the appropriate
handling application is launched. If a URL starting with map: is passed, the iPhone’s map

ptg

105Section 2: Objective-C Device Activation

application starts and displays the results of the map URL. Other possible types include
http, which launches Safari; tel, which launches the phone dialer; mailto, which
launches the mail application; and youtube.com URLs, which launches the YouTube ap-
plication. In any case, your application exits.

Lines 9 and 10 split the URL into its component commands and place each of these
in an array called parts.This parts array is then evaluated to determine which com-
mand was sent and any parameters it might have.

PhoneGap uses an if-then-else conditional statement to evaluate the parts array. Each
command activates a different condition. In the following vibrate command condition, a
Vibrate object is instantiated and passed the vibrate message.

else if([(NSString *)[parts objectAtIndex:1]

isEqualToString:@”vibrate”]){

Vibrate *vibration = [[Vibrate alloc] init];

[vibration vibrate];

[vibration release];

NSLog(@”vibrating”);

}

It is within the Vibrate object’s vibrate method, found in Vibrate.m, that the
AudioServicesPlaySystemSound(kSystemSoundID_Vibrate); call is made.

Handling a GPS information request is done differently.This command is handled di-
rectly rather than being passed off to an object for handling. Lines 5–7 assemble a string
that contains a JavaScript call, which is the gotLocation(lat, lon) function found in
the gap.js file where lat and lon are replaced with the current latitude and longitude that
have been constantly collected since the application started running.

1 if([(NSString *)[parts objectAtIndex:1]

2 isEqualToString:@”getloc”]){

3 NSLog(@”location request!”);

4

5 jsCallBack = [[NSString alloc]

6 initWithFormat:@”gotLocation(‘%f’,’%f’);”

7 , lat, lon];

8 NSLog(%@”,jsCallBack);

9 [theWebView

10 stringByEvaluatingJavaScriptFromString:

11 jsCallBack];

12

13 [jsCallBack release];

14 }

To cause this JavaScript string jsCallBack to execute, the UIWebView passed as the
parameter theWebView to the shouldStartLoadWithRequest function must be sent the
stringByEvaluatingJavaScriptFromString message with the JavaScript string as its
parameter.At this point, the Objective-C portion of the library has completed its task.

ptg

106 Chapter 5 Hybrid Applications, GPS, Acceleration, and Other Native Functions with PhoneGap

The gotLocation JavaScript function now, as shown in the following code, calls the
Device.Location set method:

function gotLocation(lat, lon) {

return Device.Location.set(lat, lon)

}

The Device.Location.set method stores the latitude and longitude in the
Device.Location object and then, if it exists, calls the callback function that was de-
scribed in Section 1. Notice that after the callback method is called, line 6 sets the
callback method to null.This means that each time you request location information,
you must set the callback method:

1 set: function(lat, lon) {

2 Device.Location.lat = lat;

3 Device.Location.lon = lon;

4 if(Device.Location.callback != null) {

5 Device.Location.callback(lat, lon)

6 Device.Location.callback = null;

7 }

8 }

If you choose not to set the callback method each time you request location infor-
mation, no callback function is called.

Handling the sound command is similar to handling the getloc command.The main
difference is that no data is needed by the JavaScript portion of the application and so no
stringByEvaluatingJavaScriptFromString message is sent to the UIWebView. In-
stead, a Sound object is created much like the code that handles the vibrate command.

1 else if ([(NSString *)[parts objectAtIndex:1]

2 isEqualToString:@”sound”]) {

3 NSLog(@”playing sound”);

4 NSLog([parts objectAtIndex:2]);

5 NSString *ef = (NSString *)[parts objectAtIndex:2];

6 NSArray *soundFile = [ef componentsSeparatedByString:@”.”];

7

8 NSString *file = (NSString *)[soundFile objectAtIndex:0];

9 NSString *ext = (NSString *)[soundFile objectAtIndex:1];

10 NSLog(@”about to allocate %@, %@”,file, ext);

11 sound = [[Sound alloc] initWithContentsOfFile:

12 [mainBundle pathForResource:file ofType:ext]];

13 NSLog(@”sound allocated”);

14 [sound play];

15 }

This Sound object, found in Sound.m, is initialized with the path to the sound file.
This file, as stated in Section 1, must be in the Resources group of your Xcode project.
Because the file is in the Resources group, the mainBundle object, that represents your

ptg

107Section 2: Objective-C Device Activation

installed application, can be sent the pathForResource:ofType message that returns the
full path to the sound file on the device, as seen on lines 11 and 12 in the previous code.
Line 14 sends the play message to the Sound object so that the user hears the sound.

The initWithContentsOfFile method of the Sound object shows you how to con-
vert audio files, such as mp3 files, to system sounds.To do this, the audio files must be
very short. In fact,Apple suggests that they be less than five seconds long. Each system
sound is created using a URL to its location. Line 1 of the following code indicates how
to do this with any path string. Line 3 is the one of interest.

1 - (id) initWithContentsOfFile:(NSString *)path

2 {

.

.

.

3 NSURL *filePath = [NSURL fileURLWithPath:path

isDirectory:NO];

4 AudioServicesCreateSystemSoundID((CFURLRef)filePath,

&soundID);

.

.

.

5 }

Line 4 causes an audio file to be modified to be a system sound. System sounds are dif-
ferent than standard audio file playback in that they are re-interpreted and stored in the
OS itself.When it is time to play them, a media player is not needed.The
AudioServicesCreateSystemSoundID function is called to accomplish this.

Notice that it takes two parameters.The first is the URL to the audio file and the sec-
ond is a pointer to a SystemSoundID. In this case, the SystemSoundID is the soundID at-
tribute of the Sound object, which is used later to play the sound in the Sound object’s
play method.

As shown in the following code, the Sound object’s play method consists of one line of
code.A media player is not used to play the sound; instead, a call to
AudioServicesPlaySystemSound is used.When this call is made and passed a System-
SoundID, the user hears the sound.

- (void) play {

AudioServicesPlaySystemSound(soundID);

}

Regardless of what sound you want to use for a system sound, the steps for its creation
and use are always the same.

1. Get a URL that represents the location of the audio file on the device.

2. Generate the system sound and store its ID.

3. Play the system sound.

ptg

108 Chapter 5 Hybrid Applications, GPS, Acceleration, and Other Native Functions with PhoneGap

In PhoneGap, the system sound is generated each time you request it to be played,
which is unnecessary.You could create the system sound once and then play it any num-
ber of times.

As mentioned earlier in this section, the GPS hardware is activated in PhoneGap when
your application launches.This is accomplished with the first three lines of the
applicationDidFinishLaunching method code of the GlassAppDelegate.As shown in
the following code, these three lines of code intialize a CLLocationManager, store it in
the locationManager attribute of the GlassAppDelegate class, and tell it to start updating
the GPS information.

locationManager = [[CLLocationManager alloc] init];

locationManager.delegate = self;

[locationManager startUpdatingLocation];

This CLLocationManager is the class that wraps the GPS and WiFi hardware used to
determine the device’s current location. It uses input from both the GPS chip and any
open WiFi access points to determine the current latitude and longitude.

The second line in the previous code tells the locationManager object to call the
didUpdateToLocation of the GlassAppDelegate each time a location change is detected.
It does this by setting the delegate of the locationManager object to be the current
GlassAppDelegate that is represented here as the self keyword. For more information on
delegates, see Erica Sadun’s book The iPhone Developer’s Cookbook (Chapters 2 and 4).

The delegate method that is called each time a location change is detected is
didUpdateToLocation and can be found in the GlassAppDelegate.m file.As shown in the
following code, it frees any existing stored location and then stores the current location
that was passed to the method as the newLocation parameter.This stored parameter is
used by the shouldStartLoadWithRequest in its getloc condition as previously shown.

-(void)locationManager:(CLLocationManager *)manager

//Author’s note.

//There is a potential bug here.

//If the newLocation == lastKnown then

//the newLocation object is released

//[newLocation retain] should be called

//before [lastKnownLoation release]

//The code shown here is as it ships in the

//PhoneGap product.

didUpdateToLocation:(CLLocation *)newLocation

fromLocation:(CLLocation *)oldLocation

{

[lastKnownLocation release];

lastKnownLocation = newLocation;

[lastKnownLocation retain];

}

ptg

109Summary

The activation of the accelerometers is handled in much the same way as the activation
of the GPS hardware.The three lines in the following code tell the accelerometers to store
the acceleration information every 1/40 of a second and then sets the accelerometer’s del-
egate to be the current GlassAppDelegate object like it is for the location manager.

[[UIAccelerometer sharedAccelerometer]

setUpdateInterval:1.0/40.0];

[[UIAccelerometer sharedAccelerometer] setDelegate:self];

In this case, the called method is not didUpdateToLocation but didAccelerate.
As shown in the following code, the didAccelerate method is much like the

didUpdateToLocation method. It retrieves the accelerometer information, but instead of
storing it locally on the Objective-C side of the library, it sends it to the JavaScript side
much like the handling of the gotloc command seen earlier in this section.

-(void) accelerometer:(UIAccelerometer *)accelerometer

didAccelerate:(UIAcceleration *)acceleration {

NSString * jsCallBack = nil;

NSLog(@”accelerating”);

jsCallBack = [[NSString alloc]

initWithFormat:

@”gotAcceleration(‘%f’,’%f’,’%f’);”,

acceleration.x,

acceleration.y,

acceleration.z];

[webView

stringByEvaluatingJavaScriptFromString:jsCallBack];

}

Although other commands are handled in the shouldStartLoadWithRequest
method, none of them worked at the time of this writing, so they were not covered.The
items covered in this section currently work and are available in the Xcode template in-
staller for PhoneGap applications.

Summary
This chapter showed you how to activate a few desirable features of iPhone or iPod
Touch devices from within your JavaScript application using the PhoneGap library. Using
features such as GPS location, accelerometer values, phone vibration, and sounds increases
the richness of your application.

Reviewing the examples included in the PGDeviceCatalog and working in Objective-
C should enable you to add additional features such as scanning the Bonjour network for
nearby devices, adding, removing, and retrieving contacts from the contacts application or
any other built-in behavior that is available to Objective-C applications.

Using the approach described in this chapter, your JavaScript application can do most
anything a pure Objective-C application can do.

ptg

This page intentionally left blank

ptg

6
Embedding Google Maps

One capability often needed in iPhone applications is the use of maps.There are several
ways to display maps from closing the application and launching the standard iPhone Map
application to using a standard Google map. Both approaches have limitations.This chap-
ter discusses how to create and use a Google-based map that looks and behaves like the
iPhone Map application without closing the application.

Section 1: Displaying a Map from Within Your
QuickConnect JavaScript Application
The iPhone enables an engineer or programmer to use maps with hybrid applications in
a couple of ways.The simplest way is to add a link in the display that begins with http://
maps.google.com and contains the mapping information desired.When the user selects
such a link, the application exits, and the standard map application launches displaying the
requested map.

This approach is simple to use and quick to create.The drawback is that your applica-
tion closes, which is generally considered bad software design.The application ends up
having a cobbled together feeling and the user usually desires a more integrated approach.

Another drawback is that although Google can respond to requests such as “pizza” and
drop multiple pins, it is not currently possible to drop multiple pins in specific locations
you define. For example, when creating an application, you might want to drop pins at
places in town. If these places do not have searchable groupings such as “pizza,” it is not
possible to specify multiple pin locations with descriptions in a URL request sent to
Google.This limitation can be frustrating if you want to use latitudes and longitudes of
the locations on which a pin is to be dropped.

Another approach is to do essentially the same thing in your application that you
would do in a standard web page. In this case, use Google’s AJAX API to embed a map in
a div in the displayed HTML.You can then continue to use Google’s JavaScript API to
place each pin independently.

Although this approach enables you to keep the user in your application, it also has
drawbacks. First, the UIWebView displaying your map doesn’t enable scrolling within

http://maps.google.com
http://maps.google.com

ptg

112 Chapter 6 Embedding Google Maps

divs.The touch and move events are handled at a lower level and are not sent to the
Google-provided JavaScript that interacts with the embedded map.This means that you
can display the map but won’t be able to change the map’s displayed location.

Another drawback is the size of Google’s standard location information bubbles.They
are sized for displaying in a browser on a full-sized machine.When a bubble displays on
the iPhone, it tends to fill a good portion of the map. Most of the bubble usually displays
off screen and is therefore unreadable because of the scrolling problem mentioned previ-
ously.Although it is possible to resize the content of these types of bubbles, it is not possi-
ble to resize standard Google bubbles.

Obviously, it is more optimal to embed the map in the application and show multiple
pins as in the second option but have the scrolling and display capabilities of the first op-
tion.The QuickConnectiPhone framework has a component that enables you to do this
by making a single JavaScript call.

The MapExample Xcode project shows how this is done. Download this project from
http://sourceforge.net/projects/quickconnect/ as part of the QuickConnectiPhone zip
file.The MapExample project is found in the Examples directory.

The main screen of this example consists of a single displayed HTML button, as shown
in Figure 6.1.The button’s onclick listener is set to be the showTheMap function found
in the project’s main.js file and is shown in the following code. It sets up three locations:
Rexburg, Idaho;Wyoming; a wilderness area.

function showTheMap(event)

{

//a location consists of a latitude,

//a longitude, and a description

var locationsArray = new Array();

rexburg = new Array();

rexburg.push(43.82211);

rexburg.push(-111.76860);

rexburg.push(“County Court House”);

locationsArray.push(rexburg);

var wyoming = new Array();

wyoming.push(42.86);

wyoming.push(-109.45);

wyoming.push(“Wyoming Place”);

locationsArray.push(wyoming);

var wilderness = new Array();

wilderness.push(45.35);

wilderness.push(-115);

wilderness.push(“River of No Return Wilderness”);

locationsArray.push(wilderness);

var sandwichShop = new Array();

http://sourceforge.net/projects/quickconnect/

ptg

113Section 1: Displaying a Map from Within Your QuickConnect JavaScript Application

Figure 6.1 Main screen of the
MapExample application showing

the HTML button

sandwichShop.push(42.86);

sandwichShop.push(-112.45);

sandwichShop.push(“Somewhere Sandwiches”);

locationsArray.push(sandwichShop);

showMap(event, locationsArray);

}

Each location is an array that consists of three elements: latitude, longitude, and a short
description to be displayed for each pin placed.These locations are added to the
locationsArray.Although the order of the values added to each location is fixed, the
locationsArray itself is order-independent.

In an actual application, the values used for each location might be stored in a data-
base, retrieved from an RSS feed, or some other location.You can even retrieve them dur-
ing the run of your application. If you know street addresses, use Google’s geocoding
JavaScript API to get their latitudes and longitudes, http://code.google.com/apis/maps/
documentation/services.html#Geocoding_Object.At runtime, this is slow. It is better to
get the latitudes and longitudes for locations of interest using a batch process at design
time and then store them prior to shipping the application.

http://code.google.com/apis/maps/documentation/services.html#Geocoding_Object
http://code.google.com/apis/maps/documentation/services.html#Geocoding_Object

ptg

114 Chapter 6 Embedding Google Maps

Figure 6.2 The MapExample
application displaying a pin for

each location

After creating a JavaScript array containing all the required locations, it is passed to the
framework’s showMap function along with the event that causes the call to the
showTheMap function.At this point, the framework takes over and using the makeCall
function described in Chapter 4, “GPS Acceleration and Other Native Functions with
QuickConnect,” it instructs the Objective-C portion of the framework to display a map
with pins placed at each location, as shown in Figure 6.2.

The framework displays the map in an Objective-C MapView object.This MapView
class, described in Section 2, enables the user to use touch and swipe gestures to control
the map as in Apple’s Map application. By double touching a location on the map, it cen-
ters and zooms on that location.The user can also double touch a pin to center the map
and zoom in on the touched pin.

When the user single touches a pin, a short description displays in a small black box,
much like in the map application shown in Figure 6.3. If the user touches and drags a
pin, it relocates to the new position on the map.

When the user no longer needs the map, he selects the Done button, and the
MapView disappears.The application’s view displays in the same state as when the appli-
cation displayed the map.This solves the usability and resumed state problems caused by

ptg

115Section 2: Objective-C Implementation of the QuickConnect Mapping Module

Figure 6.3 The MapExample
application displaying a short

description

closing the application, launching the Map application, closing the map application, and
then relaunching the application.

By making calls to the showMap JavaScript function of the framework, your application
has built-in maps. Section 2 shows in detail how the Objective-C MapView and other
classes of the framework are designed and used.

Section 2: Objective-C Implementation of the
QuickConnect Mapping Module
The QuickConnect mapping module consists of three classes:

MapView—The main display element containing the map images

Pin—A custom pin to be displayed at a location

InfoWindow—A class used to display a short description associated with a specific pin

Figure 6.4 shows the relationships among these classes. Each MapView can have many
Pins, and each Pin must have at least one MapView.There is also a one-to-one relation-
ship between Pins and InfoWindows. In other words, for each Pin, there must be one
InfoWindow; for each InfoWindow, there must be one Pin.

ptg

116 Chapter 6 Embedding Google Maps

1 1 1*MapView InfoViewPin

Figure 6.4 The classes in the mapping module
and their relationships

Being modular in nature, an Objective-C application needs to interact directly with
the MapView class and its API.This API consists of one method:
initWithFrame:andLocations.When this method is called, a map is generated, pins are
placed on the map, and short descriptions are available to the user when touching a pin.
In addition to this, if the user double taps a pin or a location on the map, the map zooms
and centers itself on that location.The following code shows how this MapView API is
used in the QuickConnect framework.

As with the GPS location, debugging and other requests described in Chapter 2,
“JavaScript Modularity and iPhone Applications,” a call to display an embedded map uses
the front controller and application controllers.As with those pieces of functionality, a
showMap command is associated with the showMapVCO via the QCCommandMappings.m
file.The doCommand method of this VCO is small and mainly consists of placing the lati-
tudes, longitudes, and descriptions sent with the JavaScript request in an array by them-
selves.This is done by skipping the first element of the parameters array because it is the
QuickConnectViewController for your application.The doCommand method, shown in
the following code, is found in the MapExample Xcode project, which can be down-
loaded from http://sourceforge.net/projects/QuickConnect.

+ (id) doCommand:(NSArray*) parameters{

NSRange aRange = NSMakeRange(1, [parameters count]-1);

NSArray *locations = [parameters subarrayWithRange:aRange];

//size the MapView to fill the screen

MapView *aMapView = [[MapView alloc] initWithFrame:[[UIScreen mainScreen]
applicationFrame]

andLocations:locations];

QuickConnectViewController *theController =

[parameters objectAtIndex:0];

//add the map view to the application’s main view

[[[theController webView]

superview] addSubview:aMapView];

return nil;

}

Because the QuickConnectViewController has a reference to the UIWebView that dis-
plays and runs your application, it can be used to obtain a pointer to the main application
view.This is done by sending the superview message to the UIWebView.The new
MapView is then added to the main application view by passing it as a parameter with the

http://sourceforge.net/projects/QuickConnect

ptg

117Section 2: Objective-C Implementation of the QuickConnect Mapping Module

addSubview message.When this message is sent, the MapView appears and fills the screen
hiding the display of the UIWebView.

Because the MapView functionality is a self-contained module, it is easily re-usable in
many different applications (see Chapter 2 for a discussion of modularity). It can even be
used in hybrid Macintosh applications with minor, internal modifications for map display.

All Google maps, regardless of what displays, are web pages.Therefore, the MapView
object has an attribute that is its own UIWebView called webMapView. It is not the same
UIWebView instance that displays your application.

This webMapView, as shown in the following code, displays the mapView.html file
found in the Resouces MapView group and its delegate is set to the MapView class.The
MapView group contains both an embeddable UIView and a WebViewDelegate that
handles all the events for the UIWebView.

1 (id)initWithFrame:(CGRect)frame

2 andLocations:(NSArray*)aLocationList {

3 if (self = [super initWithFrame:frame]) {

4 OKToTouch = NO;

5 self.locations = aLocationList;

6 frame.origin.y -= 20;

7 UIWebView *aWebView = [[UIWebView alloc]

8 initWithFrame:frame];

9 self.webMapView = aWebView;

10 [aWebView release];

11

12 aWebView.userInteractionEnabled = NO;

13 //set the web view delegate

14 //for the web view to be itself

15 [aWebView setDelegate:self];

16

17 //determine the path to the mapView.html file

18 //in the Resources directory

19 NSString *filePathString = [[NSBundle mainBundle]
pathForResource:@”mapView” ofType:@”html”];

20 MESSAGE(@"%@", filePathString);

21 //build the URL and the request for the

22 //mapView.html file

23 NSURL *aURL = [NSURL fileURLWithPath:filePathString];

24 NSURLRequest *aRequest =

25 [NSURLRequest requestWithURL:aURL];

26

27 //load the mapView.html file into the web view.

28 [aWebView loadRequest:aRequest];

29

30 //add the web view to the content view

31 [self addSubview:self.webMapView];

32 }

ptg

118 Chapter 6 Embedding Google Maps

33 return self;

34 }

Some might think that for reasons of simplicity, the MapView class is not needed.This is
not the case. Because the UIWebView consumes all touch events and does not enable such
events to be consumed by the HTML elements it displays, the scrolling issue described in
Section 1 occurs.

To solve this problem, line 12 of the previous code turns off all event consumption by
the contained UIWebView.This enables the containing MapView object to consume all the
events as its delegate.The delegate then becomes responsible for indicating to the
UIWebView that the page it contains should be scrolled.

To scroll a map, determine that a touch moved after it started.To accomplish this, the
MapView’s standard touchesMoved:withEvent method must be implemented.

-(void)touchesMoved:(NSSet *)touches

withEvent:(UIEvent *)event{

if(OKToTouch){

if([touches count] == 1){

UITouch *touch = [touches anyObject];

CGPoint prevLoc =

[touch previousLocationInView:self];

CGPoint curLoc =

[touch locationInView:self];

double touchDeltaX = curLoc.x - prevLoc.x;

double touchDeltaY = curLoc.y - prevLoc.y;

NSString *javaScriptCall =

[[NSString alloc]

initWithFormat:@”scroll(%f, %f)”

,touchDeltaX, touchDeltaY];

NSString *result = [webMapView

stringByEvaluatingJavaScriptFromString

javaScriptCall];

if([result compare:@”true”] == 0){

int numPins = [pins count];

for(int i = 0; i < numPins; i++){

Pin *aPin =

[pins objectAtIndex:i];

[aPin moveX:touchDeltaX

andY:touchDeltaY];

[aPin.info moveX:touchDeltaX

andY:touchDeltaY];

}

}

}

ptg

119Section 2: Objective-C Implementation of the QuickConnect Mapping Module

else if([touches count] == 2){

//pinch

}

}

}

This implementation of touchesMoved:withEvent first determines how much the
touch has moved. It does this by finding the difference, the delta, between the current
event location and the location of the previous event and then passing this difference to
the HTML page in the webMapView.To do this, the
stringByEvaluatingJavaSCriptFromString message is sent with a JavaScript function
call to scroll.

This JavaScript scroll function, shown in the following code and in the map.js file of
the Resouces MapView group, uses the JavaScript Google map API to recenter the view-
able map. It does this by applying the required change in the x and y values to the map’s
current center, and then it notifies the map object to center itself on this new location.

function scroll(deltaX, deltaY){

try{

var centerPoint = map.fromLatLngToDivPixel(map.getCenter());

centerPoint.x -= deltaX;

centerPoint.y -= deltaY;

var centerLatLng =

map.fromDivPixelToLatLng(centerPoint);

map.setCenter(centerLatLng);

}

catch(error){

return false;

}

return true;

}

When this JavaScript function successfully completes, it returns true so that the re-
mainder of the touchesMoved:withEvent method can tell each of the displayed pins to
also change its location.

Because the underlying UIWebView’s consumption, in order to implement map scroll-
ing, is turned off, standard Google map pins cannot detect that they have been touched.
Because of this inability, the standard Google map description bubbles cannot be displayed
and hidden for these pins.Thus, it becomes necessary to create a custom Pin class.

This class, found in the Classes:MapView grouping, uses the pinInserted.png image for
its display.The Pin class uses this file in Resources:Images for its visual display; it can eas-
ily be replaced with any image file you choose.

An object of the Pin class is initialized for each location your application sends from
the JavaScript side.To do this, the initWithFrame:andImage:andLocation method
shown in the following code is called. It creates a UIImageView for the pin’s image, sets

ptg

120 Chapter 6 Embedding Google Maps

the pin’s location, and turns on consumption of events by setting its
userInteractionEnabled attribute to true.

-(id)initWithFrame:(CGRect)frame

andImage:(NSString*)anImage

andLocation:(MapViewLocation)aLocation{

if (self = [super initWithFrame:frame]) {

UIImageView *pinImage = [[UIImageView alloc]

initWithImage:[UIImage imageNamed:anImage]];

[self addSubview:pinImage];

[pinImage release];

location = aLocation;

self.userInteractionEnabled = YES;

self.backgroundColor = [UIColor clearColor];

}

return self;

}

By enabling a Pin object’s user interaction, it becomes possible for the pinto trap and
consume events. If a pin is touched, the touchesBegan:withEvent method of the Pin
object is called and used to modify the display.

The implementation of this function is found in Pin.m and shown in the following
code. It checks to ensure that the current and previous events have the same location on
the screen.This check ensures that the code in this method is not executed if the user
drags his finger on the screen in a swipe-like motion.

Assuming that no swiping occurs, two situations are handled by
touchesBegan:withEvent.The first is if the user single taps the pin. In this case, the de-
sired behavior is to display the simple message sent along with the location from the
JavaScript side of the application.To accomplish this, Objective-C’s reflection capabilities
are used to pass a singleTouch message to the pin itself.

The performSelector:withObject:afterDelay message is sent to the pin rather
than making a call directly.This allows for differentiation between a single and double tap.
As shown on line 13, the user has .4 seconds to complete a double tap. If the double tap
doesn’t happen, the first touch is consumed and the second touch is treated as distinct
from it.

If, on the other hand, the user double taps the pin within the .4 second time limit, a
cancelPreviousPerformRequestsWithTarget:selector:object message is passed to
stop the passing of the singleTouch message.This delay/execute or cancel approach is
the standard method for detecting the number of taps for touches.

In this case, if a single tap is detected, the singleTouch message is passed and the pin’s
short description is displayed. If a double tap is detected, the map is zoomed and centered
on the location of the pin.

1 -(void)touchesBegan:(NSSet *)touches

2 withEvent:(UIEvent *)event{

ptg

121Section 2: Objective-C Implementation of the QuickConnect Mapping Module

3 UITouch *touch = [touches anyObject];

4 CGPoint prevLoc = [touch previousLocationInView:self];

5 CGPoint curLoc = [touch locationInView:self];

6

7 if(CGPointEqualToPoint(prevLoc, curLoc)){

8 NSUInteger tapCount = [touch tapCount];

9 switch (tapCount) {

10 case 1:

11 [self performSelector:

12 @selector(singleTouch)

13 withObject:nil afterDelay:.4];

14 break;

15 case 2:

16 [NSObject cancelPreviousPerformRequestsWithTarget:self

17 selector:@selector(singleTouch)

18 object:nil];

19 //zoom and center on this pin

20 MESSAGE(@”double tap pin %i, %i”,

21 location.x, location.y);

22

23 double latOffset =
(location.y+42)/((MapView*)self.superview).pixelsPerDegLatitude;

24 double lngOffset =
(location.x+10)/((MapView*)self.superview).pixelsPerDegLongitude;

25 double latitude = [[((MapView*)self.superview).northWest
objectAtIndex:0] doubleValue] - latOffset;

26 double longitude = [[((MapView*)self.superview).northWest
objectAtIndex:1] doubleValue] + lngOffset;

27 MESSAGE(@"latitude: %f longitude: %f northWest: %@",

28 latitude,

29 longitude,

30 ((MapView*)self.superview).northWest);

31 NSString *javaScriptCall = [[NSString alloc]
initWithFormat:@”zoomTo(%f, %f)”,latitude, longitude];

32 NSString *mapDescription =
[((MapView*)self.superview).webMapView
stringByEvaluatingJavaScriptFromString:javaScriptCall];

33

34 [((MapView*)self.superview)
setMapLatLngFrameWithDescription:mapDescription];

35 [((MapView*)self.superview) updatePinLocations];

36

37 break;

38 default:

39 break;

40 }

41 }

42 }

ptg

122 Chapter 6 Embedding Google Maps

By enabling zooming and centering on a double touch of either a pin or the map
there is an increase in usability of your application.The standard map application does not
center when either of these items is double touched; it just zooms in. If the user executes
a double touch, he usually needs to follow this up with a swipe to display the region
around the area of interest.The application does not have this limitation.

You can also move pins in the map by dragging them.This is accomplished by the
touchesMoved:withEvent method shown in the following code and is like the map
scrolling shown previously. One difference is that a
cancelPreviousPerformRequestsWithTarget:selector:object message is passed
again to avoid the display of the short description because the touchesBegan method is
called prior to touchesMoved. If a cancellation message is not sent, the short message is
displayed and the pin is moved.This creates a poor user experience.

1 -(void)touchesMoved:(NSSet *)touches

2 withEvent:(UIEvent *)event{

3 if([touches count] == 1){

4

5 [NSObject cancelPreviousPerformRequestsWithTarget:self selector:@selec-
tor(singleTouch) object:nil];

6 moved = YES;

7 UITouch *touch = [touches anyObject];

8 CGPoint prevLoc = [touch previousLocationInView:self];

9 CGPoint curLoc = [touch locationInView:self];

10 double touchDeltaX = curLoc.x - prevLoc.x;

11 double touchDeltaY = curLoc.y - prevLoc.y;

12 [self moveX:touchDeltaX andY:touchDeltaY];

13 MapViewLocation mapLoc = self.location;

14 mapLoc.x += touchDeltaX;

15 mapLoc.y += touchDeltaY;

16 self.location = mapLoc;

17 if(self.info != nil){

18 self.info.hidden = TRUE;

19 self.info.label.text = @”Unknown”;

20 }

21 }

22 }

Much like the map scrolling, the movement of a pin uses the previous and current lo-
cations to update a location. In the map scrolling case, the location is the center of the
map. In the pin moving case, the location being updated is the upper-left display point of
the pin and its latitude and longitude.

Because the pin no longer represents the map location originally specified, the short
description originally supplied and associated with this pin is probably invalid. It is there-
fore set to Unknown.Additionally, if the short message displays when the user drags the
pin, it is closed to reduce the CPU requirements of drawing both the pin and the message
as they are moved.This is accomplished by line 18.

ptg

123Section 2: Objective-C Implementation of the QuickConnect Mapping Module

The info attribute of the Pin class is used to display the short description supplied by
the JavaScript portion of your application. It is an InfoWindow object that is itself a
UIView and has a single attribute: label.

The initWithFrame:andDescription method of InfoWindow, shown in the follow-
ing code and in the InfoWindow.m file found in Classes:MapView, shows the setting of
the location in the window of the viewable description as well as its content.The user in-
terface item used to display the short description is a UILabel.

-(id)initWithFrame:(CGRect)frame

andDescription:(NSString*)description{

if (self = [super initWithFrame:frame]) {

[self setBackgroundColor:[UIColor blackColor]];

CGRect labelFrame = CGRectMake(0, 0,

frame.size.width,

frame.size.height);

label = [[UILabel alloc]

initWithFrame:labelFrame];

label.text = description;

label.backgroundColor = [UIColor clearColor];

label.textColor = [UIColor whiteColor];

label.textAlignment = UITextAlignmentCenter;

[self addSubview:label];

[label release];

}

return self;

}

By using a UILabel to display the short description, you receive a whole host of capa-
bilities.You can now set the font, its alignment, size, color, and many other attributes such
as shadows. It is possible to draw the text directly instead of using a UILabel, but this uses
more lines of code. By using a prebuilt UILabel, you have a much more supportable ap-
plication.

The three classes—MapView, Pin, and InfoWindow—make up the MapView module.
They contain all the source code required to show a basic Google map, but they can eas-
ily be modified to exhibit more complex behavior.

For example, a modification can be made to the InfoWindow class so that it displays
more detail either by changing its display size or by displaying another complete UIView,
such as Apple’s standard map application. Or the MapView class can be modified to re-
trieve driving directions such as the standard application.Although both modifications re-
quire knowledge of Objective-C, they are not technically difficult.

Another item of interest not yet covered is how to adjust the locations of all of the
Pin objects and their InfoWindows while scrolling or zooming the map. Each of these
classes has a moveX:andY method.These methods have as parameters the number of pixels
in the x and y directions to shift the pin or information window and is shown in the fol-
lowing code.

ptg

124 Chapter 6 Embedding Google Maps

A novice Objective-C programmer might attempt to modify the location by using a
line of code, such as [self frame].origin.x += xChange.This line of code throws no
exceptions, causes no compilation errors, and does not change the location of the Pin or
InfoWindow.

In Objective-C UIView classes, such as the Pins and InfoWindow, the frame represent-
ing the top-left location and the width and height is applied only in two instances.The
first is if it is initialized with the initWithFrame message. In this case, the frame structure
included as a parameter is used to size the view.The second is when the frame attribute is
swapped out for another, as shown in the moveX:andY method.

- (void) moveX:(double) xChange andY:(double)yChange{

CGRect frame = [self frame];

frame.origin.x += xChange;

frame.origin.y += yChange;

self.frame = frame;

}

Because of this limited changeability, a direct manipulation of a view’s frame attribute
has no effect.

The moveX:andY method needs to be called every time the map is scrolled or zoomed.
In the touchesMoved:withEvent method of the MapView class, every pin is sent this mes-
sage for each event that is captured.

for(int i = 0; i < numPins; i++){

Pin *aPin = [pins objectAtIndex:i];

[aPin moveX:touchDeltaX andY:touchDeltaY];

[aPin.info moveX:touchDeltaX andY:touchDeltaY];

}

Map zooming is handled in the touchesEnded:withEvent method of the MapView
class.This message is passed by the device to a MapView object after all touchesBegan and
touchesMoved messages have been handled.

In the following code, notice that after determining that the touch consists of two
taps, the location in the map of the touch is determined.This is followed by a call to the
JavaScript function zoomTo as shown previously in the Pin zoom example.

1 -(void)touchesEnded:(NSSet *)touches

2 withEvent:(UIEvent *)event{

3

4 if(OKToTouch){

5 UITouch *touch = [touches anyObject];

6 if ([touch tapCount] == 2){

7 //zoom and center

8 CGPoint curLoc = [touch locationInView:self];

9

10 double latOffset = curLoc.y/self.pixelsPerDegLatitude;

11 double lngOffset = curLoc.x/pixelsPerDegLongitude;

ptg

125Section 2: Objective-C Implementation of the QuickConnect Mapping Module

12

13 double latitude = [[northWest objectAtIndex:0] doubleValue] -
latOffset;

14 double longitude = [[northWest objectAtIndex:1] doubleValue]
+ lngOffset;

15 NSString *javaScriptCall = [[NSString alloc]
initWithFormat:@”zoomTo(%f, %f)”,latitude, longitude];

16 NSString *mapDescription = [webMapView
stringByEvaluatingJavaScriptFromString:javaScriptCall];

17

18 [self setMapLatLngFrameWithDescription:mapDescription];

19 [self updatePinLocations];

20 }

21 else{

22 NSLog(@”touched”);

23 }

24 }

25 }

After accomplishing the zoom, for either Pin and MapView objects’ double taps, an
updatePinLocations message is passed to the MapView object, as shown on line 19 in the
previous code.As shown in the following code, that call causes the location of each pin to
be updated based on the latitude and longitude of each pin as well as the amount the map
has been zoomed.

This zoom scale is represented by the pixelsPerDegLatitude and pixelsPerDeg-
Longitude attributes of the MapView class set in a previous call to the
setMapLatLngFrameWithDescription method.

1 -(void) updatePinLocations{

2 int numPins = [pins count];

3 for(int i = 0; i < numPins; i++){

4 Pin *aPin = (Pin*)[pins objectAtIndex:i];

5 double latitudeDelta = [[northWest objectAtIndex:0] doubleValue] -
aPin.location.latitude;

6 double longitudeDelta = aPin.location.longitude - [[northWest
objectAtIndex:1] doubleValue];

7

8 double yPixels = latitudeDelta * pixelsPerDegLatitude;

9 double xPixels = longitudeDelta * pixelsPerDegLongitude;

10 MapViewLocation aPinLocation = aPin.location;

11 aPinLocation.x = xPixels - 10 - 4;

12 //the visual pin is ten pixels into the image

13 //from the left

14 aPinLocation.y = yPixels - 42 + 10;

15 //the visual pin is 10 pixels into the image

16 //from the bottom

17

18 CGRect pinFrame = aPin.frame;

ptg

126 Chapter 6 Embedding Google Maps

19 pinFrame.origin.x = aPinLocation.x;

20 pinFrame.origin.y = aPinLocation.y;

21 aPin.frame = pinFrame;

22 aPin.location = aPinLocation;

23

24 CGRect infoFrame = aPin.info.frame;

25 infoFrame.origin.x = aPinLocation.x - 100;

26 infoFrame.origin.y = aPinLocation.y - 30;

27 aPin.info.frame = infoFrame;

28 }

29 }

As in the moveX:andY method, the frame needs to be retrieved, modified, and then re-
set.This is done on lines 18–22 in the previous code for the pin and lines 24–27 for the
Pin object’s associated InfoWindow.

Each Pin and InfoWindow object’s location is updated for each zoom. It is possible that
some of them will no longer be visible within the bounds of the current MapView,
which is not an issue.They are rendered in the nonviewable space outside the screen.The
code does not need to hide them.

Summary
This chapter showed you how to embed Google maps into your application and how the
map viewing module was created. It also showed you how to manipulate the locations of
both custom and standard views.

By making judicious use of calls to the JavaScript in a Google map displayed in a
UIWebView, the Google JavaScript API can be used for zooming and centering.

All of this is included in the QuickConnect framework so that you can make one call
in JavaScript to display a fully usable Google map.Although easy to use, from the
JavaScript side of the framework, it is also easy to use the mapping module in any iPhone
Objective-C application you choose to write. In fact, writing just a few lines of code is all
that is required.

Custom, embedded Google maps are now within the realm of possibility for your
iPhone applications.Version 3.0 of the iPhone OS will make this even easier.

ptg

7
Database Access

Most JavaScript-based applications require a web server to store data.With iPhone OS
2.0 or later and the UIWebView class, you can store data on the iPhone without any net-
work access.This means that the application you create is a first-class citizen on the
iPhone.This chapter shows you how to store and retrieve data and create databases and
tables.This chapter provides you with an easy-to-use JavaScript wrapper for the SQLite
database used on the iPhone.The first sections show you how to start using the database.
The later sections discuss how to understand the code used in the wrapper.

Section 1: BrowserDBAccess Example
Application
The BrowserDBAccess example was created to help you understand how databases can
be used in JavaScript applications. It is found in the Examples directory of the Quick-
ConnectFamily folder you can download from http://sourceforge.net/projects/quickconnect/.

This example application creates a SQLite database called sampleDB that has one
table, score.This database exists in the UIWebView and enables the user to query it for
information. Databases created in this way are resident on the machine between runs of
the application, even though they were not installed with the application. Because of this,
if you store data in the database, it is there when the application runs again. Figure 7.1
shows this sample application running before a query is sent to the database.

The score table in the BrowserDBAccess application consists of two fields.The first is a
character-based primary key called player_name.The second is an integer field called
score.The primary key field is not autoincrementing, so it must be supplied with a value
each time a record is inserted.The BrowserDBAccess application uses several prebuilt
JavaScript classes, methods, and functions to access data in the sampleDB database.

http://sourceforge.net/projects/quickconnect/

ptg

128 Chapter 7 Database Access

Figure 7.1 The
BrowserDBAccess application
before the query is executed

Databases, Databases Everywhere
Databases use their own unique vocabulary. Tables are used as groupings for like items.
Each of these similar items is called a record. Records consist of values entered into what
are referred to as fields. Fields are defined by their name and type. If you think of records as
rows in a spreadsheet and fields as columns, you won’t be too far off. Tables are similar to
sheets. If you add a new record to a dogs table in a database, it is similar to adding a new
row to a dogs spreadsheet. It’s not the same, but it’s close enough to help us understand.

A primary key is something that uniquely identifies a specific record in a table. This can be
an integer or text, but there can be no duplicates. A primary key is something similar to a
combination of your user name and password for the Apple Developer Connection. Obvi-
ously, it would be horrendous if two people had the same login.

A foreign key is another item all together. They are used to link data from two tables to-
gether. Imagine two tables, owners and dogs. The owners table has a primary key for each
record. To know which dog belongs to which owner, a foreign key is included in the dog table.
This foreign key contains the primary key of the owner in the owners table. This is like the
registration number of the tag a dog wears on its collar that can track the owner of the dog
down if it ends up in the pound.

ptg

129Section 2: Using WebView SQLite Databases

Table 7.1 The DataAccessObject API

Attribute/
Method

Return Description Parameters

DataAccessObje
ct(dbName,
dbVersion,
dbDescription,
dbSize)

Data-
Access-
Object

Creates a
DataAccessObject
when called with
the new key word.

dbName—A unique identifying string
used to reference the specific database.

dbVersion—A string that is usually in the
form of a floating-point number.

dbDescription—A string stating the pur-
pose of the database.

dbSize—The minimum amount of disk
space allocated to the database in bytes.
If null or nothing is passed the default
value is equivalent to 5 megabytes.

getData(SQL,
parameterArray)

none A method used to
retrieve information
based on the SQL
passed in from a
database created in
the UIWebView.

SQL—A valid SQL command string.

parameterArray—An array of values used
if the SQL command is a prepared state-
ment.

setData(SQL,
parameterArray)

None A method used to
store information
based on the SQL
passed into a data-
base created in the
UIWebView.

SQL—A valid SQL command string.

parameterArray—An array of values used
if the SQL command is a prepared state-
ment.

Section 2: Using WebView SQLite Databases
Sometimes, using a database can seem intimidating.A programmer or engineer needs to
keep in mind a myriad of potential pitfalls when storing or retrieving information.Too
often, these potential pitfalls prevent programmers from using databases for simple data
storage.

On the iPhone, the native way of storing data in and for applications is to use the em-
bedded SQLite database rather than a text or binary file.The ability to quickly and easily
use this database engine can determine the success of your applications.To speed up de-
velopment, a JavaScript class is included in the QuickConnectiPhone framework so that
you don’t have to worry about the problems associated with using databases.

The DataAccessObject.js file, which is found in the QCiPhone group in both the
Dashcode and Xcode templates, contains a wrapper around the code required to access
the SQLite database.This JavaScript file is automatically included in the index.html file of
your application by both the Xcode and Dashcode templates.This wrapper, the Data-
AccessObject class, consists of a constructor and four methods, as shown in Table 7.1.

ptg

130 Chapter 7 Database Access

Table 7.1 The DataAccessObject API

Attribute/
Method

Return Description Parameters

getNativeData(S
QL,
parameterArray)

None A method used to
retrieve information
based on the SQL
passed in from a
database installed
with the applica-

SQL—A valid SQL command string.

parameterArray—An array of values used
if the SQL command is a prepared state-
ment.

setNativeData(S
QL,
parameterArray)

None A method used to
store information
based on the SQL
passed in to a
database installed
with the applica-

SQL—A valid SQL command string.

parameterArray—An array of values used
if the SQL command is a prepared state-
ment.

This JavaScript wrapper class is used in the databaseDefinition.js file included by the
templates in your application. databaseDefinition.js is where you state what database or
databases your application uses.

The following code, taken from the databaseDefinition.js file of the BrowserDBAccess
example application, shows how the constructor is used to create a database that is han-
dled by the WebKit engine used in hybrid iPhone applications.The use of the engine’s
builtin database support is appropriate when all of the data needed is generated by the ap-
plication after it is installed.

var sampleDatabase = new DataAccessObject(“sampleDB”, “1.0”, “a sample data-
base”, 2000);

The previous code creates or opens, if it already exists, a database called sampleDB. Be-
cause the WebKit engine handles the creation and use of this database, it needs a few
pieces of information.The first is the version number for the database. It can be set to any
value you prefer; here, it is set to 1.0.The database is also initialized with a maximum size
of 2000 bytes.You can choose to size your database as seems appropriate.

The return value of the previous constructor call is a DataAccessObject that is con-
nected to the underlying SQLite database and is ready for use. Modification of the data-
base is now possible and an example of this is found in the code that follows. It shows the
use of the DataAccessObject’s setData method.

sampleDatabase.setData(“CREATE TABLE IF NOT EXISTS score (‘player_name’ VARCHAR
PRIMARY KEY, ‘score’ INTEGER);”);

This SQL is for the creation of a table, but the setData method is used for all SQL re-
quests that modify database tables, insert or remove data, or change the database in any way.

As described in Chapter 2,“JavaScript Modularity and iPhone Applications,” one use of
Business Control Functions (BCF) is to get data from the database.The BCF

ptg

131Section 2: Using WebView SQLite Databases

Figure 7.2 The
browserAccessExample applica-
tion after the Execute Query but-

ton is touched

getScoresBCF (shown in the following code) does this; it is found in the functions.js file
of either example.

This BCF uses the DataAccessObjects’ getData method to retrieve the records from
the score table. Line 3 shows the actual getData call.

1 function getScoresBCF(parameters){

2 var SQL = ‘SELECT * FROM score’;

3 sampleDatabase.getData(SQL);

4 }

Figure 7.2 shows the data retrieved using this BCF. Note that the getScoresBCF re-
turns nothing because the getData method is asynchronous. Because it is asynchronous,
it does not return the sql query’s resultant data.The QuickConnectiPhone framework
handles the receipt of the data and passes it to any other control objects you mapped to
the same command as the BCF.The displayScoresVCF View Control Function in the
functions.js file is mapped to the same command as getScoresBCF, so the framework
passes the information to it when it becomes available.

www.allitebooks.com

http://www.allitebooks.org

ptg

132 Chapter 7 Database Access

Inserting data into the table is handled much the same way. If a record for an individual
called Jane is inserted, the setData call is used, as seen in the following:

sampleDatabase.setData(“INSERT INTO score VALUES(‘Jane’, 250)”);

It is unusual to hardcode values into SQL statements. Usually the values are due to user
input.Although it is possible to build a SQL statement like the previous one from the in-
formation provided by the user, it can be dangerous to do so.The code that follows shows
how to avoid this danger by using prepared statements.

function setScoresBCF(parameters){

var name = document.getElementById(‘nameField’).value;

var score = document.getElementById(‘scoreField’).value;

var statementParameters = [name, score];

var SQL = “INSERT INTO score VALUES(?, ?)”;

sampleDatabase.setData(SQL, statementParameters);

}

Notice that it looks different than the setData call used to create the score table. In
the portion of the SQL string where a name and a score would be expected, question
marks are found instead.These are placeholders used in prepared statements to indicate
where the data in the statementParameters array should be inserted. It is the responsi-
bility of the programmer to place the values to be inserted into the array in the order that
they would have been placed in the SQL string.This is why the name variable is added to
the statementParameters array before the score variable.

What Is a Prepared Statement?
Prepared statements dramatically increase the security of using SQL to store user-entered
data. In fact, they are a good way to stop SQL injection attacks and should be used much
more than they are.

Suppose you wanted to insert a record into a table called user_preferences with a location,
color, and a song field. You could piece this together like this:

“SELECT * FROM user_preferences WHERE name = “+aName

Putting together SQL statements this way is bad. It cannot be emphasized enough how bad
this is. It opens the entire database up to what is referred to as SQL insertion attacks.
These are used to penetrate databases. Don’t piece together SQL statements.

The safe way to do this is to create a SQL string that looks like this:

“SELECT * FROM user_preferences WHERE name = ?)”

Also create an array containing the value or values you want to use in place of question
marks. The calls to setData and getData take care of the rest because they use a prepared
statement.

In essence, when a prepared statement is used, the SQL is parsed before the question
marks are replaced with the values. This means that if evil SQL is inserted into any of the
variables, it is not parsed; to the database, it seems as if the SQL statement contains a

ptg

133Section 3: Using Native SQLite Databases

strange string. A call such as the previous one using question marks would return no re-
sults. The pieced together one, on the other hand, can easily return everything from any
table a hacker wants to see.

Prepared statements protect databases from intrusions known as SQL insertion attacks.
Although it may seem silly to protect this small database from intrusion, it is not.There is
always a way for someone who should not get access to a device or to the code running
on the device to do damage.All computing should be done in a safe manner.

Removing data from a database is done in much the same way. Because the database is
being modified, the setData method is used. Because the user supplies a name to be re-
moved, a prepared statement is used for security reasons.

function deleteScoreBCF(parameters){

var name = document.getElementById(‘nameField’).value;

var statementParameters = [blogName];

database.setData(‘DELETE FROM score where name = ?’,

statementParameters);

}

Section 3: Using Native SQLite Databases
In addition to being able to create and use databases in the WebKit engine found in every
hybrid iPhone application, native databases can also be used.These databases enable cre-
ators of applications to include existing data in the installed application. For example, you
might want to include a series of standard GPS locations in an application designed to
help users find items in a retail market. Instead of downloading and storing the data
when the application starts, you can include a SQLite database file in your application’s
installation.

The nativeDBAccess example application is identical in function to the browser
DBAccess example, but it uses a SQLite database file called sample.sqlite. Figure 7.3 shows
this file included in the Xcode project’s Resources group.

The JavaScript code required to create a DataAccessObject that wraps the calls to a
native database is different than what is used for the WebKit engine-based databases seen
in Section 2. Just like with the WebKit database, the defining is done in the database-
Definition.js file. However, in the case of native databases, only the name of the database
file is needed.The version and size parameters are extraneous because native databases are
unlimited in size (within reason), and versioning is part of the build and distribution
process of the application’s owner.

var sampleDatabase = sampleDatabase = new DataAccessObject(“sample.sqlite”);

Notice that there is no call to create a table because the score table already exists in
the sample.sqlite file. It is possible to create tables in native databases, but it is unusual.
The tables are usually added to the database file before the application is placed in Apple’s
App store.

ptg

134 Chapter 7 Database Access

Figure 7.3 The resources of the nativeDBAccess example application

Retrieving data from a native database is almost exactly the same as getting it from a
WebKit engine-managed database.The only difference, as shown in the following code, is
that instead of using the getData method, the getNativeData method is used. From the
application creator’s point of view, the behaviors of these two methods are identical.

function getScoresBCF(parameters){

debug(‘getting scores from database’);

var SQL = ‘SELECT * FROM score’;

sampleDatabase.getNativeData(SQL);

}

The getNativeData method, just like the getData method discussed in Section 2, is
asynchronous.Thus, the framework passes the collected data to other control objects
mapped to the same command as the BCF when the data becomes available.As with the
WebKit engine-managed example, this is the displayScoresVCFView Control Function.

Figure 7.4 shows the display generated by this VCF in the nativeDBAccess example
application.

Adding and removing data and modifying the database is done in exactly the same
way as seen in Section 2, with the exception that the setNativeData method is used in-
stead of the setData method.As the creator of your application, the differences in behav-
ior should be transparent to you.

ptg

135Section 4: Using the DataAccessObject with WebKit Engine Databases

Figure 7.4 The
nativeDBAccess example applica-
tion after the Execute Query but-

ton is touched

Section 4: Using the DataAccessObject with
WebKit Engine Databases
The previous sections covered how you can use the DataAccessObject to avoid having to
know all of the intricacies of the SQLite WebKit engine and native implementations.
This section shows you what those intricacies are and how to use them. If you just want
to use the DataAccessObject and have no desire to know how it works, you can skip this
section.

The purpose of the DataAccessObject found in the QCiPhone/DataAccessObject.js
file is to require as little knowledge of SQLite from the programmer or engineer as possi-
ble.To this end, it has been engineered so that its methods and constructors are as much
like the ServerAccessObject AJAX wrapper covered in Chapter 8,“Remote Data Access,”
as possible. By simplifying the API, it enables programmers who are not familiar with
SQLite to store data without a steep learning curve.

The constructor for the DataAccessObject is the simplest of all its methods.The be-
havior is to set and define the object’s methods as anonymous functions.This means that
no attributes are needed to store the parameters passed into the constructor.

ptg

136 Chapter 7 Database Access

Anonymous Functions
When someone is anonymous, it means that you don’t know what her name is. When a
function is anonymous, it means it doesn’t have a name. In JavaScript, a standard function
has a name for it declared in a line such as

function bark(){}

In this case, the name of the function is bark. When a function needs to be passed to an-
other function, it is common to use functions that have no names declared. These are
called anonymous functions.

If an anonymous function is passed to bark, it looks something like this:

bark(new function(){

//do something here

});

Notice that the scope operators for the anonymous function, {}, are contained in the param-
eter operators for the bark function, (). The bark function is now free to call or store this
function as it desires.

All anonymous functions have access to local variables that could have been passed to the
function in which they were declared. Because of this, the following code is valid:

String type = ‘doberman’;

bark(new function(){

if(type == ‘boxer’){

}

else if(type == ‘doberman’){

}

.

.

.

});

This feature comes in handy when functions or methods have functions as parameters, as
seen later in this section.

As with any powerful tool, it is important not to overuse anonymous functions when they are
not needed.

As seen in Table 7.1 and discussed in Sections 2 and 3, the DataAccessObject has two
major groups of methods. One handles data that is stored or retrieved using a WebKit
engine-based database, and the other group handles data transfer between your JavaScript
application and an SQLite database file included in your distributed application.The
WebKit-based methods use the most JavaScript and are covered first.

Both the getData and setData methods are façades.They do minimal computation
and rely on a third method to do most of the heavy work.The only real computation
done by either of these methods involves the assembly of the values stored in the
passThroughParameters variable seen in the code that follows.

ptg

137Section 4: Using the DataAccessObject with WebKit Engine Databases

this.getData = function(SQL, preparedStatementParameters){

var passThroughParameters =

generatePassThroughParameters();

this.dbAccess(SQL, preparedStatementParameters,

false, passThroughParameters);

}

Because the W3C standards body responsible for the HTML 5 specification requires
all calls to the WebKit engine database functionality be asynchronous, some information
about the current state of the application must be passed along with requests so it can be
used later.The generatePassThroughParameters function found in QCUtilities.js gathers
these values.

As shown in the following code, these include the current command for which com-
mand objects are being called, the number of BCOs already called, the parameters passed
to all of the control functions, such as globalParamArray, and an array that contains any
results already generated by calls to other BCFs, such as globalBCFResults.

function generatePassThroughParameters(){

var passThroughParameters = new Array();

passThroughParameters.push(window.curCmd);

passThroughParameters.push(window.numFuncsCalled);

passThroughParameters.push(globalParamArray);

passThroughParameters.push(window.globalBCFResults);

return passThroughParameters;

}

These values are later used by the framework to ensure that any remaining control
functions, based on the mappings defined in mappings.js for the curCmd command, are
executed as if all command function calls were synchronous. See Chapter 2 for a further
explanation of how this is accomplished.

The resultant passThroughParameters array is passed to the dbAccess method along
with a flag indicating if the sql in the SQL variable should be treated as an attempt to
change the data in the database. In the getData method, false is passed, as seen earlier.

The dbAccess method is the heart and soul of the DataAccessObject for WebKit en-
gine databases. It does all the work when getData or setData are called.

To understand the dbAccess method, the underlying JavaScript SQLite API must first
be understood.This API is included in the upcoming HTML 5 standard and is imple-
mented in the WebKit engine use in the UIWebView found in all hybrid iPhone applica-
tions and in Mobile Safari.The most current version of this standard at the time of this
writing can be found at http://www.w3.org/html/wg/html5/#sql.This standards docu-
ment describes several objects and methods of objects, as shown in the following tables.

The basic item of this API is the Database object.Table 7.2 describes a function related
to this object and one of its methods.The openDatabase function is a factory function
that instantiates a Database object for you.

http://www.w3.org/html/wg/html5/#sql

ptg

138 Chapter 7 Database Access

Table 7.2 Database Object API

Attribute/Method Return Description Parameters

openDatabase
(dbName, dbVersion,
dbDescription,
dbSize)

Database
object

A factory function
that creates a
Database object
for later use.

dbName—A uniquely identifying
string used to reference the specific
database.

dbVersion—A string, usually in the
form of a floating-point number.

dbDescription—A string stating the
purpose of the database.

dbSize—The maximum amount of
disk space allocated to the data-
base in bytes. If null or nothing is
passed, the default value of 5
megabytes is used.

transaction(executio
nCallback,
errorCallback,
successCallback)

SQLTransact
ion object

A method that
creates a
SQLTransaction
object used to do
database updates
and queries.

executionCallback—A function con-
taining the code required to execute
the SQL.

errorCallback—An optional function
that is called if the transaction fails.
Rollbacks of the database are not
done in this method because roll-
back behavior is automatic in the
case of failure.

successCallback—An optional func-
tion called if the transaction is suc-
cessful.

According to the standards document, all of openDatabase’s parameters are optional;
however, it is unwise not to declare a database name. If you use multiple databases in vari-
ous applications, each should have a distinct name. Leaving dbName blank can potentially
cause only one database to be shared by all of your applications and can be easily available
to nefarious applications written by others.To protect your databases, something similar
to the same origin rule restricting AJAX calls in a browser is used.

The protection rule applied to databases is a restriction stating that a database can be
accessed only by applications coming from the same origin. If you use databases in a web
application served up from www.yourplace.com and another from web.yourplace.com,
databases used in the different web applications would be accessible by both. In other
words, anything served up from any yourspace.com origin can access all databases served
up from that origin regardless of whether the database is created by the running applica-
tion or one created by an application created by another subdomain in yourplace.com.

In hybrid applications, you use the UIWebView object instead of a web browser, and
therefore, there is no same origin rule limiting AJAX. It is unknown at this time, but it can

www.yourplace.com

ptg

139Section 4: Using the DataAccessObject with WebKit Engine Databases

Table 7.3 The SQLTransaction Object API

Attribute/Method Return Description Parameters

executeSQL(sqlStatement,
arguments,
successCallback,
errorCallback);

void A method to exe-
cute any arbitrary
SQL statement
string.

sqlStatement—A string containing a
valid SQL statement. It can have ?
(question mark) place holders if it
is to be treated as a prepared
statement.

Arguments—An optional array of
values used to replace ? (question
mark) place holders in prepared
statements.

successCallback—An optional func-
tion called upon successful execu-
tion of the sqlSatement.

errorCallback—An optional function
called if the execution of the
sqlStatement fails.

be assumed that the origin restriction for databases is not effective either. Because of this,
the only thing protecting your database from being accessed by other applications might
be that the writers of the other application don’t know your database’s name and version.
Make sure you give your database a name and a version.

The transaction method is used by all SQL calls. In fact, there is no way to execute
SQL against WebKit engine databases without using a SQLTransaction object created by
the transaction method. Because of this, all JavaScript database calls in iPhone hybrid
applications are automatically transaction-safe.

One item that usually concerns developers is when to roll back the database.This is
usually done when the code written by a programmer detects that a transaction has failed
in some manner.You don’t need to worry about rollbacks when using the JavaScript data-
base functionality because transactions handle their own rollbacks on failure.

Do not send a ROLLBACK SQL statement if your transaction fails. It has already been
taken care of and causes trouble.The errorCallBack function passed to the transaction
method is not used for this purpose. It is used only for notification of failures.

The SQLTransaction object has only one method, executeSQL (see Table 7.3).This
method accepts any SQL you choose to send it. It is unwise to piece together a SQL
statement and then execute it.You should use the builtin prepared statement functionality
instead. If you are unsure what a prepared statement is and how to create one, look at
Section 2.

ptg

140 Chapter 7 Database Access

Table 7.4 The SQLResultSet Object API

Attribute/Method Return Description Parameters

insertID None A read-only integer attribute containing the ID of a
record inserted if the ID field is autoincrementing.

None

rowsAffected None A read-only integer attribute containing the num-
ber of rows added or changed during an update
type statement.

None

rows None A SQLResultSetRowList attribute containing all of
the resultant rows from a query type statement.

None

In addition to the SQL statement, an optional parameter called arguments is passed in.
This is an array of strings used to replace any question marks included in the SQL state-
ment.These are used as the variables in the prepared statement created by the call to
executeSQL.All calls to executeSQL create a prepared statement even if there are no
place holders.This is safe if you use it. It also means that it is no faster if you do not.

The last two parameters are callback functions that are executed if the statement, not
the transaction, succeeds or fails.The success function is passed a SQLResultSet object by
the executeSQL method.The SQLResultSet API can be seen in Table 7.4.The failure
function is passed a SQLError object. (The API for it can be seen in Table 7.6.) To handle
the result of your execution of the SQL statement, you should implement these functions
and include them in the executeSQL method call.

The SQLResultSet object contains the information you requested via the SQL state-
ment. It also includes two items that are nice to have.These are the insertID and
rowsAffected attributes.

If a table has an autoincrementing primary key and you insert a record into that table,
the insertID attribute of the SQLResultSet will contain the autogenerated key value.
This is handy when this key is needed to insert data associated with the key value into
other tables.

After the successful execution of an insert or update SQL statement, the rowsAffected
attribute contains the number of rows that was inserted or changed.This can be used to
validate the behavior of complex SQL statements.

The third attribute of the SQLResultSet is the rows attribute.This attribute contains a
SQLResultSetRowList, which is a wrapper around an array of records.As seen in Table
7.5, it has the attribute length that contains a number representing the number of
records in the result of a SELECT type statement.This number matches the number of
rows in the embedded array.

ptg

141Section 4: Using the DataAccessObject with WebKit Engine Databases

Table 7.5 The SQLResultSetRowList Object API

Attribute/Method Return Description Parameters

length None A read-only attribute containing the
number of records fetched by a
query type statement.

None

item(index) Array A method that returns a record as
a JavaScript associative array or
map.

Index—the result set
record number to be
returned.

It also has a method that is used to access individual rows of the results called item.
This method and attribute make it easy to iterate over the rows and values in the rows us-
ing embedded for loops.The standard methodology for doing such iterations looks like
the code that follows.

1 for(var i = 0; i < aResultSet.length; i++){

2 var aRow = aResultSet.item(i);

3 for(key in aRow){

4 var aValue = aRow[key];

5 //do something with the key and the value

6 }

7 }

Although the for loop code above is what many would consider a standard methodol-
ogy, it is not optimal in its execution because, in line 1, the length of the result set is re-
trieved each time the code goes through the outer loop.Another point of waste is the
repeated use of the for-each loop in line 3.

JavaScript for-each loops are particularly wasteful with respect to CPU cycles, but are
particularly bad when they are used in other loops. Later in this section, the explanation
of the dbAccess method shows how this code can be changed to be more optimal in its
execution.

If there is any sort of error in executing the SQL statement—whether it be because of
a statement failure, a SQLError object is generated instead of the SQLResultSet object.
Just as a SQLResultSet is passed to the success function used as a parameter to the state-
ment’s executeSQL method, a SQLError is passed to the failure function.

Your success function is never passed an SQLError nor is your error function ever
passed a SQLResultSet.This enables each of these functions to have a single purpose, and
therefore, these functions become easier to create, write, and maintain.

The SQLError object contains two attributes that contain an error code number and
an error message generated by SQLite (see Table 7.6).

ptg

142 Chapter 7 Database Access

Table 7.6 The SQLError Object API

Attribute/Method Return Description Parameters

code None A read-only attribute containing the error number
code. The possible codes are:

0—Transaction failed for unknown reason.

1—Statement failed for unknown reason.

2—Statement failed because the expected ver-
sion of the database isn’t the actual version of
the database.

3—Statement failed because too much data was
returned. Try using the SQL “LIMIT” modifier.

4—Statement failed because the memory limit
was reached and the user didn’t okay increasing
the memory limit.

5—The statement failed because of a locking fail-
ure in the transaction.

6—an INSERT, UPDATE, or REPLACE statement
failed because it violated a constraint such as
duplicating a unique key.

None

message None A read-only attribute containing an appropriate
error message.

None

These two items, code and message, are useful to a programmer or engineer, but
should not be displayed to a user.They will not know what they mean. Use these indica-
tors to log the error and to display something helpful to the user.

Examples of how to use each of these objects are in the dbAccess method of the
DataAccessObject.As mentioned earlier in this section, the dbAccess method has five pa-
rameters and is the worker method behind the getData and setData façade methods. Its
fourth parameter indicates whether the access being requested is to modify the database
or to query it.This parameter is set by the façade function calling dbAccess.

When examining the dbAccess method, you will find that it uses several anonymous
functions.The first of these is passed as the first and only parameter to the database’s
transaction method on line 3. It might appear to be easier to define this as a regular
function elsewhere in the code and pass it as the first parameter. However, this makes the
remaining code difficult, if not impossible, because variables that are in scope because they
use anonymous functions are no longer in scope. Line 2 in the following code instantiates
the QueryResult object that is used as the return value of the dbAccess method.

For a QueryResult object to be of real use, it must be available inside the transaction’s
executeSql function. Other than using anonymous functions, the only way to make this
QueryResult object available in that underlying function is to make it global.

ptg

143Section 4: Using the DataAccessObject with WebKit Engine Databases

If it was global in scope, there could be only one database access at a time. Because all
database access is asynchronous, this is impossible to guarantee.Therefore, the best ap-
proach to take is to use anonymous functions.This same logic also applies to the func-
tions passed to the executeSql method of the transaction itself.

The executeSql method of the Transaction object can be passed two functions as pa-
rameters. It is a best practice to always do so.The second parameter, as shown in Table 7.6,
is intended to be the function that handles the results of your query if all goes well.This
function declaration begins on line 10 in the code that follows.

In the success function, any inserted ID generated by the SQL is stored in the
QueryResult instantiated on line 7. If rows in the database are changed, the number of
the rows affected is also set.This is done only if the treatAsChangeData parameter of the
dbAccess method is set to true.

If data is not changed, a query must have been executed. Lines 23–51 handle this con-
dition. In these code lines, a two-dimensional JavaScript array is created that is attached to
the QueryResult return value and stores all of the data found in the SQLResult set. By
transferring the data to a standard JavaScript array, you can access the data in your other
code without knowing the structure of the SQLResult object or the fields returned from
the query. If you do want to know the field names, they are also stored in the Query-
Result object for later use.The field names and the field values retain the order in which
they are found in the SQLResult.

1 this.dbAccess = function(SQL, preparedStatementParameters,

2 treatAsChangeData, passThroughParameters){

3 if(!this.db){

4 this.db = openDatabase(dbName, dbVersion,

5 dbDescription, dbSize);

6 }

7 var queryResult = new QueryResult();

8 this.db.transaction(function(tx) {

9 tx.executeSql(SQL, preparedStatementParameters,

10 function(tx, resultSet) {

11 if(treatAsChangeData){

12 try{

13 queryResult.insertedID = resultSet.insertId;

14 queryResult.rowsAffected =

15 resultSet.rowsAffected;

16 }

17 catch(ex){

18 //then must have been an update

19 queryResult.rowsAffected =

20 resultSet.rowsAffected;

21 }

22 }

23 else{

24 //not a change to the database.

ptg

144 Chapter 7 Database Access

25 //must be a query

26 queryResult.numRowsFetched =

27 resultSet.rows.length;

28 var dataArray = new Array();

29 queryResult.numResultFields = 0;

30 queryResult.fieldNames = new Array();

31 if(queryResult.numRowsFetched > 0){

32 //retrieve the field ids in the result set

33 firstRecord = resultSet.rows.item(0);

34 var numFields = 0;

35 for(key in firstRecord){

36 queryResult.fieldNames.push(key);

37 numFields++;

38 }

39 queryResult.numResultFields = numFields;

40 var numRecords =

41 queryResult.numRowsFetched;

42 for(var i = 0; i < numRecords; i++){

43 var record = resultSet.rows.item(i);

44 var row = new Array();

45 dataArray.push(row);

46 for(var j = 0; j < numFields; j++){

47 row.push(

48 record[queryResult.fieldNames[j]]);

49 }

50 }

51 }

52 queryResult.data = dataArray;

53 }

54 if(window.callFunc){

55 var theResults = new Array();

56 theResults.push(queryResult);

57 theResults.push(passThroughParameters);

58 requestHandler(passThroughParameters[0],

59 passThroughParameters[2], theResults);

60 }

61 }//end of sql execute success callback function

62 , function(tx, error) {

63 queryResult.errorMessage = error.message;

64 if(window.callFunc){

65 var theResults = new Array();

66 theResults.push(queryResult);

67 theResults.push(passThroughParameters);

68 requestHandler(passThroughParameters[0],

69 passThroughParameters[2], theResults);

70 }

ptg

145Section 5: Using the DataAccessObject with Native Databases

71 }//end of main sql execute fail callback function

72);//end of main executeSql call

73 });//end of transaction callback function

74 }//end of dbAccess method

Regardless of whether the SQL statement that is executed is a database change or a
query, the QueryResult object created at the beginning of the function call is dispatched
to any and all remaining, uncalled control functions by the framework.This is done on
lines 58 and 59 using the requestHandler function discussed in Chapter 2.

Line 62 is the beginning of the error-handling function declaration for the Transac-
tion object method. Its responsibility is to insert the error message generated by SQLite
into the QueryResult and then dispatch this to your remaining control functions. For
more information on control functions, see Chapter 2.

Section 5: Using the DataAccessObject with
Native Databases
Less JavaScript code is required to access native databases than what is required to access
WebKit engine databases. Most of the work is done on the Objective-C side of the
framework.

As with the getData and setData methods described in the previous section, the
getNativeData and setNativeData methods are façades. In this case, they do not call the
dbAccess method of the DataAccessObject but call the getDeviceData function found
in the QCUtilities.js file.

this.getNativeData =

function(SQL, preparedStatementParameters){

getDeviceData(dbName, SQL,

preparedStatementParameters);

}

this.setNativeData =

function(SQL, preparedStatementParameters){

setDeviceData(dbName, SQL,

preparedStatementParameters);

}

The getDeviceData function has two major pieces of functionality.The first, shown in
lines 4–16, is to put together an array of information needed to execute the query in
Objective-C. Included with this array are the pass-through parameters, discussed in the
previous section.These pass-through parameters are required because, as in dealing with
the WebKit engine database requests, this request is asynchronous. For more information
on asynchronous computing, see Chapter 2.

The array being created contains the database name, the SQL to be executed, any pre-
pared statement parameters required by the SQL, and the pass-through parameters. Infor-
mation regarding prepared statements is found in the previous section of this chapter.

ptg

146 Chapter 7 Database Access

1 function getDeviceData(dbName, SQL,

2 preparedStatementParameters, callBackParams){

3 if(dbName && SQL){

4 var dataArray = new Array();

5 dataArray.push(dbName);

6 dataArray.push(SQL);

7 if(preparedStatementParameters){

8 dataArray.push(preparedStatementParameters);

9 }

10 else{

11 //put in a placeholder

12 dataArray.push(new Array());

13 }

14 var callBackParameters =

15 generatePassThroughParameters();

16 dataArray.push(callBackParameters);

17

18 var dataString = JSON.stringify(dataArray);

19 makeCall(“getData”, dataString);

20 }

21 return null;

22 }

After the data is prepared, it is turned into a JSON string and passed to the makeCall
function.This makeCall function triggers the Objective-C side of the framework as seen
in Chapter 4,“GPS,Acceleration, and Other Native Functions with QuickConnect.”This
is the second major piece of functionality.Without it, native databases would not be ac-
cessible. For more information on JSON, see Appendix A,“Introduction to JSON.”

Like the functions in Chapter 4 that access native data, Objective-C control objects are
needed to handle the actual retrieval of the database data.The two objects—SetDataBCO
and GetDataBCO—interact with the database whether the database is modified or
queried.This is like the getData and setData JavaScript functions.

+ (id) doCommand:(NSArray*) parameters{

if([parameters count] >= 3){

NSString *dbName = [parameters objectAtIndex:1];

NSString *SQL = [parameters objectAtIndex:2];

NSArray *perparedStatementValues = nil;

if([parameters count] == 4){

perparedStatementValues = [parameters

objectAtIndex:3];

}

SQLiteDataAccess *aDBAccess = [SQLiteDataAccess

getInstance:dbName isWriteable:YES];

return [aDBAccess getData:SQL

withParameters:perparedStatementValues];

}

return nil;

ptg

147Section 5: Using the DataAccessObject with Native Databases

Table 7.7 The SQLite3 API

Object/Function Return Description Parameters

sqlite3 None An object represent-
ing the SQLite data-
base in memory.

None

sqlite3_open
(filePath,
&aDatabase)

SQLITE_
OK if successfully
opened

Opens the database
file located at filePath
and stores the point-
er in the aDatabase
pointer.

filePath—The full path
on the machine to the
SQLite data file.

aDatabase—A pointer
reference to a
SQLite3 pointer that
represents the in-
memory database.

sqlite3_close
(aDatabase)

void Closes the
connections to the
SQLite database file.

ADatabase—A
SQLite3 pointer set
in the sqlite3_open
function.

sqlite3_errmsg
(aDatabase)

const char * Retrieves the last
error generated.

ADatabase—A
SQLite3 pointer to the
database from which
an error message is
desired.

sqlite3_stmt None A single SQL prepared
statement.

None

}

@end

Also, like the JavaScript get and setData functions, these BCOs do little actual com-
putation. In the previous code, the doCommand method retrieves the database name, the
SQL, and any prepared statement parameters passed from the JavaScript request.

After these pieces of information are available, a call to the SQLiteDataAccess object’s
getData method is made.This object is essentially a mirror of the JavaScript DataAccess-
Object. It has getData and setData methods, but unlike the JavaScript version, the
Objective-C version is a singleton. If you need more information regarding singletons, see
Chapter 4.

The SQLiteDataAccess getData and setData methods, like their JavaScript counter-
parts, are façades of a dbAccess method. Like the JavaScript dbAccess method, the
Objective-C version is particularly complex.This is because of the complexity of the
SQLite API for the libsqlite3.0.dylib dynamic library that ships on every iPhone and iPod
touch, as shown in Table 7.7.

ptg

148 Chapter 7 Database Access

Table 7.7 The SQLite3 API

Object/Function Return Description Parameters

sqlite3_prepare_v2
(aDatabase,
SQLChar, -1,
&statement, NULL)

int

SQLite_
OK on success

Interprets the SQL. aDatabase—A
SQLite3 pointer to the
database

SQLChar—Const char
* of UTF8 characters
that are the SQL
string.

sqlite3_column_
count(statement)

int Counts the number of
fields in the result set
of a query.

Statement—A
SQLite3_stmt pointer.

sqlite3_column_name
(statement, i)

const char * Gets the field name
for a field.

Statement—A
sqlite3_stmt pointer.

I—An integer repre-
senting the field
number

sqlite3_changes(data
base)

int Retrieves the number
of records affected by
a change to a table.

aDatabase—A
SQLite3 pointer to the
database.

sqlite3_step(stateme
nt)

int

SQLITE_ROW when a
row is available

Moves the caret in
the result set to the
next record.

statement—A
sqlite3_stmt pointer.

sqlite3_column_type(
statement,i)

int

Possible values:

SQLITE_INTEGER

SQLITE_FLOAT

SQLITE_BLOB

SQLITE_NULL

SQLITE_TEXT

Gets the type of a
field (column) in a
result set for a state-
ment.

statement—A
sqlite3_stmt pointer.

i—The number of the
field for which the
data is desired.

sqlite3_column_int(st
atement, i)

int Gets the value out of
an integer type field.

statement—A
sqlite3_stmt pointer.

i—The number of the
field for which the
data is desired.

sqlite3_column_doubl
e(statement, i)

double Gets the value out of
a double type field.

Statement—A
SQLite3_stmt pointer.

i—The number of the
field for which the
data is desired.

ptg

149Section 5: Using the DataAccessObject with Native Databases

Table 7.7 The SQLite3 API

Object/Function Return Description Parameters

sqlite3_column_text(s
tatement, i)

const unsigned char
*

Gets the value out of
a string type field.

statement—A
SQLite3_stmt pointer.

i—The number of the
field for which the
data is desired.

sqlite3_column_blob(
statement, i)

byte * Gets the bytes out of
a binary large object
(BLOB) type field.

statement—A
SWLite3_stmt pointer.

i—The number of the
field for which the
data is desired.

sqlite3_column_bytes(
statement,i)

int Gets the number of
bytes in a value in a
BLOB type field.

statement—A
SQLite3_stmt pointer.

i—The number of the
field for which the
data is desired.

sqlite3_finalize(state
ment)

void Releases the
resources associated
with the statement.

statement—A
sqlite3_stmt pointer.

sqlite3_bind_blob(stat
ement,
parameterIndex,
aVariable, byteLength,
transienceKey)

int Binds a pointer to a
byte array to a pre-
pared statement
place holder.

statement—A
SQLite3_stmt pointer.

parameterIndex—The
index number of the
prepared statement
place holder.

aVariable—A pointer
to the byte array to be
stored in the data-
base.

byteLength—The num-
ber of bytes to store.

TransienceKey—An
indicator for if the
data being inserted
should be copied
prior to insertion to
keep the data from
changing during
storage.

ptg

150 Chapter 7 Database Access

Table 7.7 The SQLite3 API

Object/Function Return Description Parameters

sqlite3_bind_double(s
tatement,
parameterIndex,
aVariable)

int Binds a double to a
prepared statement
place holder.

Statement—A
SQLite3_stmt pointer.

parameterIndex—The
index number of the
prepared statement
place holder.

aVariable—A double
to be stored in the
database.

sqlite3_bind_int(state
ment,
parameterIndex,
aVariable)

int Binds an integer to a
prepared statement
place holder.

Statement—A
SQLite3_stmt pointer.

parameterIndex—The
index number of the
prepared statement
place holder.

aVariable—An integer
to be stored in the
database.

This C library contains all of the functions used to access SQLite databases and in-
cludes capabilities such as transactions and prepared statements.The code that follows
shows how to use the API to do prepared statements. It is found in the dbAccess method
of the SQLiteDataAccess object.As stated in the API, the sqlite3_prepare_v2 function
must be passed pointers to the database, the SQL to execute, as well as a pointer pointer
to a sqlite3_stmt variable. If an error happens during the execution of the SQL,
sqlite3_prepare_v2 returns a numeric error code.

int numResultColumns = 0;

sqlite3_stmt *statement = nil;

const char* SQLChar = [SQL UTF8String];

if (sqlite3_prepare_v2(database, SQLChar, -1,

&statement, NULL) == SQLITE_OK) {

.

.

.

}

The sqlite3_stmt variable passed in the previous code is set during the execution of
the sqlite3_prepare_v2 function and contains the sqlite3_stmt that is then used to
retrieve the individual data elements in the result set of an executed SQL query. Multiple
calls to the sqlite3_step function move a caret that keeps track of the row position in

ptg

151Section 5: Using the DataAccessObject with Native Databases

the result set.Thus, if the result set is empty, or contains no rows, sqlite3_step does not
return SQLITE_ROW but returns SQLITE_DONE instead.This enables you to use a while
statement to retrieve the data out of the row the caret points to.

while (sqlite3_step(statement) == SQLITE_ROW) {

.

.

.

}

In this while loop, a series of NSMutableArrays is created as seen on line 218 of the
SQLiteDataAccess.m file and in the line that follows. Each of these arrays represents a
row of results that are retrieved and therefore called row.

NSMutableArray *row = [[NSMutableArray alloc]

initWithCapacity:numResultColumns];

To get the individual values out of the fields for each of the result set’s records, calls
must be made to get the data as the correct type.Table 7.7 lists the functions available for
getting these different types, and the code that follows shows each of these being called.

int type = [[[theResult columnTypes]

objectAtIndex:i] intValue];

if(type == SQLITE_INTEGER){

NSNumber *aNum = [[NSNumber alloc]

initWithInt: sqlite3_column_int(statement, i)];

[row addObject:aNum];

[aNum autorelease];

}

else if(type == SQLITE_FLOAT){

NSNumber *aFloat = [[NSNumber alloc]

initWithFloat

:sqlite3_column_double(statement, i)];

[row addObject:aFloat];

[aFloat autorelease];

}

else if(type == SQLITE_TEXT){

NSString *aText = [[NSString alloc]

initWithCString:sqlite3_column_text(statement, i)

encoding:NSASCIIStringEncoding];

[row addObject:aText];

[aText autorelease];

}

else if(type == SQLITE_BLOB){

NSData *aData = [[NSData alloc]

dataWithBytes:sqlite3_column_blob(statement, i)

length:sqlite3_column_bytes(statement,i)];

[row addObject:aData];

[aData autorelease];

ptg

152 Chapter 7 Database Access

}

else{//SQLITE_NULL

[row addObject:@”null”];

}

To make calls to the correct function, the type of the field in question must have al-
ready been determined.To facilitate this, the field types are discovered and stored prior to
making these calls, as seen in lines 199–205 in the SQLiteDataAccess.m file and in the
code that follows.

NSMutableArray *columnTypes = [[NSMutableArray alloc]

initWithCapacity:0];

for(int i = 0; i < numResultColumns; i++){

NSNumber * columnType = [NSNumber numberWithInt:

sqlite3_column_type(statement,i)];

[columnTypes addObject:columnType];

}

[theResult setColumnTypes:columnTypes];

The type of individual columns is retrieved from the statement’s result set using the
sqlite3_column_type function. Pass the statement pointer and the number of the field
for which the type is desired to the function, and it returns a numeric indicator of the
type of that field.The possible types are:

n SQLITE_INTEGER
n SQLITE_FLOAT
n SQLITE_BLOB
n SQLITE_NULL
n SQLITE_TEXT

The return type of the dbAccess, setData, and getData methods is a DataAccess-
Result pointer.This object contains the results of the execution of any SQL string against
a SQLite database.The following code is from the DataAccessResult.h file and shows the
fields used to store the results of one SQL execution.

@interface DataAccessResult : NSObject {

NSArray *fieldNames;

NSArray *columnTypes;

NSArray *results;

NSString *errorDescription;

NSInteger rowsAffected;

NSInteger insertedID;

}

@property (nonatomic, retain) NSArray *fieldNames;

@property (nonatomic, retain) NSArray *columnTypes;

@property (nonatomic, retain) NSArray *results;

@property (nonatomic, retain) NSString *errorDescription;

ptg

153Section 5: Using the DataAccessObject with Native Databases

@property (nonatomic) NSInteger rowsAffected;

@property (nonatomic) NSInteger insertedID;

- (NSString*) JSONStringify;

@end

As discussed in Chapter 4, because the framework handles data passing all DataAccess-
Result objects generated by calls to the SQLiteDataAccess object are included in the pa-
rameters sent to your View Control Objects (VCO). Because a call is being made from
JavaScript to get or set data in a “native” database, the end results of the query must be
passed back to the JavaScript application.This is done by the SendDBResultVCO object.

As with all command objects, SendDBResultVCO has a doCommand method. Because
of the need to transfer the data back to JavaScript, the results are converted into a JSON
string. Lines 8–11 of the following code show how this is done. Each result is first turned
into a JSON string and added to the NSMutableArray retVal.The retVal array is then
converted into a JSON string. Because of limitations in the Objective-C JSON library, it
is not possible to have arrays of objects and make one JSON string creation call.The
JSON library doesn’t traverse down through objects in arrays to make accurate conver-
sions.Thus, the extra call to JSONStringify is needed for each DataAccessResult object.

1 + (id) doCommand:(NSArray*) parameters{

.

.

.

2 NSArray *results = [parameters subarrayWithRange:aRange];

3 int numResults = [results count];

4 NSMutableArray *retVal = [[NSMutableArray alloc] init];

5 for(int i = 0; i < numResults; i++){

6 DataAccessResult * aResult =

7 (DataAccessResult*)[results objectAtIndex:i];

8 NSString* resultString = [aResult JSONStringify];

9 [retVal addObject:resultString];

10 }

11 [retVal addObject:[parameters objectAtIndex:4]];

12

13 SBJSON *generator = [SBJSON alloc];

14 NSError *error;

15 NSString *dataString = [generator stringWithObject:retVal error:&error];

16 [generator release];

17 dataString = [dataString

18 stringByReplacingOccurrencesOfString:@”’” withString:@”\\’”];

19 NSString *jsString = [[NSString alloc]

20 initWithFormat:

21 @”handleRequestCompletionFromNative(‘%@’)

ptg

154 Chapter 7 Database Access

22 , dataString];

23 QuickConnectViewController *controller =

24 [parameters objectAtIndex:0];

25 [controller.webView

26 stringByEvaluatingJavaScriptFromString:jsString]);

27 return nil;

28 }

Just as in Chapter 4, where the results are converted into a JSON string, a call is made
that passes them to the JavaScript side of the application for further processing.This is the
call to stringByEvaluatingJavaScriptFromString seen previously. It executes the
handleRequestCompletionFromNative JavaScript function that ensures that the rest of the
BCOs and VCOs map to the original command. See Chapter 5,“Hybrid Applications, GPS,
Acceleration, and Other Native Functions with PhoneGap,” for how this is done.

Summary
The DataAccesObject JavaScript module makes it significantly easier to interact with
SQLite databases in the WebKit engine. Because the module accepts only standard
JavaScript types, such as strings and arrays, it is easier to call than the WebKit engine’s
JavaScript SQLite functions themselves.The DataAcecessObject is also a façade that is
used to access “native” database files you can ship with your application. By making
JavaScript calls, you can access data in databases.This makes your JavaScript application a
full-fledged application just as if you had written it in Objective-C.

Like the DataAccessObject in JavaScript, the Objective-C SQLiteDataAccess class
makes it much easier to pull data out of or put data into SQLite databases that you ship
with your application. It follows the same design as the JavaScript DataAccessObject so
that if you don’t know Objective-C, it is easier to learn and understand what it is doing.

Because all query results from the WebKit engine or to the “native” databases are
objects that contain standard JavaScript types, you do not need to know about SQLite,
WebKit-based, or “native” internals.

Both the DataAccessObject and the SQLiteDataAccess class give you transaction safety
to keep asynchronous calls from disrupting your requests.You can safely make any num-
ber of concurrent database calls without worrying about disrupting the data in the data-
base.The next chapter covers how to make a wrapper for AJAX calls that looks and
behaves much like the DataAccessObject.

ptg

8
Remote Data Access

Sometimes, your application might need to access data from a remote database or from
one or more web services.You might even want to synchronize the data on the phone
with data stored remotely.

Hybrid iPhone applications make this easy. Because they are hybrids, they have full ac-
cess to the XMLHttpRequest object in JavaScript.This chapter shows you how to re-
trieve data from an RSS feed and display it in your application.

As with the database access discussed in Chapter 7,“Database Access,” an easy-to-use
wrapper for the XMLHttpRequest object is explained in the first section. Later sections
explain how the wrapper is created and its inner workings.

Section 1: BrowserAJAXAccess Example
Application
In Chapter 7, the nativeDBAccess example application shows the storing and retrieving
data process using an SQLite database on a device.This chapter uses a similar application
to interact with web services and servers to retrieve data.You can find the browserAJAX-
Acces application folder in the Examples directory of the quickconnectiPhone folder you
downloaded from sourceforge.net/projects/quickconnect/. Figure 8.1 shows this example appli-
cation running.

All WordPress blogs have an RSS feed that serves up the latest ten blog entries of any
hosted blog, as seen in Figure 8.2.Although it appears that this feed doesn’t serve up full
blog entries, it actually does.The browserAJAXAccess application shows only the head-
lines, but can easily be extended to store the headlines and the postings using the ap-
proach and code shown in Chapter 7.

Thankfully, all RSS feeds are client-agnostic; they don’t care what the client is.A feed
gets a request for blog postings and sends them out as XML regardless of who or what re-
quests them. Because the UIWebView contains the WebKit engine, it can send requests to
the feed and interpret the XML returned.The tool that is used to do this is the XML-
HttpRequest object, and the methodology to accomplish this is called AJAX.

ptg

156 Chapter 8 Remote Data Access

Figure 8.1 The
browserAJAXAccess application

showing the blog listing for
TetonTech

AJAX Is Not Greek
One of the greatest written creations of all time is the Iliad. This epic poem by Homer is con-
cerned with the war between the Greeks, also known as the Achaeans, and the Trojans.

One of the greatest heroes of the Greeks is AJAX. Repeatedly, he defeats his opponents,
and in one instance, he single handedly saves the Greek fleet from destruction.

Just like the Greek fleet, traditional web page development has been and is under attack. It
is viewed as too slow, too hard to use, and inflexible. Once again, an AJAX comes to the res-
cue, but this one is not Greek. This AJAX stands for Asynchronous JavaScript and XML.

The concept behind AJAX is simple. Give the user a richer experience by not reloading pages
every time he makes a request. Instead, send or retrieve data and then use dynamic HTML
principles to display the result. All of this can be done in one HTML page by using
JavaScript.

AJAX should not be Greek to you.

By combining the XMLHttpRequest object with some simple JavaScript to manipu-
late a web page, your hybrid iPhone application can use remote data just as if it were local
data.You then get the best of both worlds:Your application can run in standalone mode,

ptg

157Section 2: Using the ServerAccessObject

Figure 8.2 The TetonTech RSS
feed as seen in the Safari brows-

er

run in networked mode, and can synchronize any data differences when a connection is
available.The QuickConnectiPhone framework provides you with an easy-to-use AJAX
wrapper, the ServerAccessObject.

Section 2: Using the ServerAccessObject
The ServerAccessObject AJAX wrapper enables you to easily access remote data without
knowing the details of the XMLHttpRequest object’s API.The ServerAccesObject API is
nearly the same as the DataAccessObject discussed in Chapter 7.

Like its API, the API for the ServerAccessObject has one constructor and two meth-
ods.The constructor stores the URL of the remote server and sets up the object’s meth-
ods.The two methods—getData and setData—can then retrieve data from and send
data to the remote server defined in the constructor.Table 8.1 shows the ServerAccess
Object’s API.

ptg

158 Chapter 8 Remote Data Access

Table 8.1 The ServerAccessObject API

Attribute/Method Return Description Parameters

ServerAccessObject
(URL)

Server
Access
Object

Creates a
ServerAccessObject
when called with the
new key word.

URL—The URL for the server to
be contacted.

getData
(dataType, refresh,
parameterSequence,
HTTPHeaders)

void A method used to
retrieve information
from a remote server.
This is a GET type of
request. This method
is thread-safe.

dataType—The type of data
being retrieved. It is one of two
options:
ServerAccessObject.XML or
ServerAccessObject.TEXT.

refresh—A Boolean indicating
whether a forced refresh of the
data from the server is to be
performed.

parameterSequence—Any
parameters to be added to the
URL. Do not include the initial ?
(question mark) in this
sequence.

HTTPHeaders—An associative
array of request header names
and values to be sent with the
request.

setData(dataType,
parameterSequence,
data, HTTPHeaders)

void A method used to
modify or create infor-
mation on a remote
server or to pass
secure types of
parameters. This is a
POST type of request.
This method is
thread-safe.

dataType—The type of data
being retrieved. It is one of two
options:
ServerAccessObject.XML or
ServerAccessObject.TEXT.

parameterSequence—Any
parameters to be added to the
URL. Do not include the initial ?
(question mark) in this
sequence.

data—Any data you want to
include in the send. This can
be large amounts of character
type information, file uploads,
and so on.

HTTPHeaders—An associative
array of request header names
and values to be sent with the
request.

ptg

159Section 2: Using the ServerAccessObject

The ServerAccessObject.js file found in the QCiPhone group in both the Dashcode
and Xcode templates contains the ServerAccessObject wrapper.This JavaScript file is au-
tomatically included in the index.html file of your application by both templates.

The getSiteDataBCF function uses this JavaScript class in the functions.js file.This
JavaScript file contains all of the control functions for the browserAJAX example applica-
tion. For more information on what these types of functions are and how to create them,
see Chapter 2,“JavaScript Modularity and iPhone Applications.”

The purpose of the getSiteDataBCF function is to retrieve the blog entries from the
author’s blog. Such retrievals are easily done using the ServerAccessObject, as shown in
lines 2–5 in the following code.

1 function getSiteDataBCF(parameters){

2 var site = new ServerAccessObject(

3 ‘http://tetontech.wordpress.com/feed/’);

4 site.getData(ServerAccessObject.XML,

5 ServerAccessObject.REFRESH);

6 //Since the AJAX data access call is asynchronous

7 //this BCF should return nothing.

8

9 }

Lines 2 and 3 show the construction of the ServerAccessObject. It is passed the URL of
the RSS feed to be consumed. In this case, the URL of the author’s blog, http://
TetonTech.wordpress.com/feed is used.To access another WordPress blog, replace this URL.

Lines 4 and 5 can then use this new object called site to get the data. Because this is
an RSS feed and it is known that the server will send XML type data back to the iBlog
application, the data type is set to XML.The second parameter is a flag that forces a re-
fresh of the data instead of using a cached version.This is required if you want to ensure
the data you receive contains any and all changes stored on the server.

Indiscriminate use of forcing a refresh can have adverse side effects. Forcing a refresh
when it is not required can cause server and network overload if your application be-
comes popular. For this reason, you should evaluate whether the absolute latest data is re-
quired or whether it can be slightly out of date.

Just like the DataAccessObject, all calls to the ServerAccessObject are asynchronous.
Several calls can be run at the same time as long as there is a new ServerAccessObject cre-
ated for each call. If you use the QuickConnectiPhone framework, you do not need to de-
fine a callback function as you would when using AJAX.The framework ensures that any
remaining Business Control Functions (BCF) andView Control Functions (VCF) mapped
to the same command as the BCF making the ServerAccessObject calls are executed.

The getSiteDataBCF and displaySiteDataVCF functions are both mapped to the
sampleQuery command in the mappings.js file as discussed in Chapter 2.This means that
the data requested by getSiteDataBCF is guaranteed to be passed to
displaySiteDataVCF by the framework.

The code for displaySiteDataVCF is found in the following code.The results pa-
rameter passed to this function is an array of JavaScript objects, one for each BCF mapped

http://TetonTech.wordpress.com/feed
http://TetonTech.wordpress.com/feed

ptg

160 Chapter 8 Remote Data Access

to the sampleQuery command.The getData method of the ServerAccessObject results in
the creation of a QueryResult object just like the getData method of the DataAccess
Object (see Chapter 7 for information about the QueryResult object).

After clearing displayed items represented by the container variable in the following
code, the QueryResult object containing the results of the AJAX call is retrieved on line
9. Because getSiteDataBCF is the first BCF mapped to the sampleQuery command, the
result generated by its call for data is the first object in the results array parameter.

As seen in Chapter 7, QueryResult objects have an attribute named data. In the case
of XML requests such as the one in getSiteDataBCF, the data attribute is populated with
the resulting XML document.

Because it is a document similar to the HTML document that is usually used in dy-
namic HTML, it is treated much the same.The same types of methods are available, such
as getElementById and getElementsByTagName. It is also composed of Node objects in
parent, child, and sibling relationships.You can use all of the standard methods and ap-
proaches to interpret the data.

The call to a helper function parseWordPressFeed found in the RSSUtilities.js file is
also on line 9. It uses these standard methods to retrieve a two-dimensional array of blog
postings called entries. Each entry found in the array is composed of the posting date,
the posting content, and the posting title.

1 function displaySiteDataVCF(results, parameters){

2 var container =

3 document.getElementById(‘queryResults’);

4 //clear the contents of the container

5 while(container.lastChild){

6 container.removeChild(container.lastChild);

7 }

8 //use a wordpress parser to create entry objects

9 var entries = parseWordPressFeed(results[0].data);

10 var numEntries = entries.length;

11 //for each entry insert the title and date

12 //into the container div

13 for (var i = numEntries-1; i >= 0; i—){

14 var entry = entries[i];

15 var publishDate = entry.date;

16 var title = entry.title;

17

18 var titleElement = document.createElement(‘h2’);

19 titleElement.innerText = entry.title;

20 container.appendChild(titleElement);

21

22 var dateElement = document.createElement(‘h3’);

23 dateElement.innerText = entry.date;

24 container.appendChild(dateElement);

25

ptg

161Section 2: Using the ServerAccessObject

26 var hardRule = document.createElement(‘hr’);

27 container.appendChild(hardRule);

28 }

29 }

As each entry generated by the parseWordPressFeed helper function is accessed, lines
13–28 create HTML Element objects and insert them into the container.This causes the
display to contain the title and date of each blog entry.A hard rule is then added to sepa-
rate each displayed entry.

This example shows how to handle RSS feeds, but other types of access are just as easy,
if not easier.You can make a request of type TEXT and retrieve HTML to insert into
your application’s user interface, though this is discouraged for security reasons.You can
also make a TEXT type call to retrieve JSON.

JSON Isn’t Greek, Either
JSON is pronounced “Jason” as in Jason and the Argonauts. It is interesting that Jason and
his companions were noted for their long voyage to retrieve the Golden Fleece.

JSON is how JavaScript objects can travel long distances across networks. It stands for
JavaScript Object Notation. This is a fancy title for something that has been around for a
long time.

The following code shows how to create a JavaScript object and store a first and last
name in it:

var anObject = new Object();

anObject.fName = ‘bob’;

anObject.lName = ‘jones’;

Or, the following code shows how to use object notation:

var anObject = {fName:’bob’, lName:’jones’};

Which is correct? Both accomplish the same thing. The second option is more than likely
faster, but when objects get large, the first option is more readable and supportable.

The advantage of object notation is that it can be sent anywhere as a character string,
such as:

”{fName:’bob’, lName:’jones’}”

It can then turn into an object by passing it to the standard JavaScript function eval, but is
dangerous to do this. For a safer and easy-to-use methodology, see Appendix A, “Introduc-
tion to JSON.”

Is it a coincidence that two Greek heroes, AJAX and JSON, are saving web type development?

This is left for you to decide.

Whatever the type of data you need to retrieve, the ServerAccessObject makes it easy.
Simply instantiate the object and call getData for a GET type call or setData for a

ptg

162 Chapter 8 Remote Data Access

POST type call. Either way, the QuickConnectiPhone framework passes the information
to all subsequent control objects you have mapped to your command.

Section 3: ServerAccessObject
The previous section covered how you can use the ServerAccessObject to avoid having
to know AJAX and the XMLHttpRequest API.This section shows you what these are
and how to use them. If you just want to use the ServerAccessObject and have no desire
to know how it works, you can skip this section.

The purpose of the ServerAccessObject, found in the
QciPhone/ServerAccessObject.js file, is to require as little knowledge of AJAX from the
programmer or engineer as possible.To this end, it is engineered so that its methods and
constructors are similar to the DataAccessObject JavaScript database wrapper covered in
Chapter 7. By having a simplified API, it enables programmers who are not familiar with
AJAX to send and retrieve remote data without such a steep learning curve. If you know
the API for one of these access objects, you know how to use the other one.

The constructor for the ServerAccessObject is the simplest of all its methods.The be-
havior is to store the URL of the remote server and then set and define the object’s
methods.The only functional line in the constructor, as shown in the following code,
stores the URL for later use in the URL attribute of the object.

this.URL = URL;

This URL attribute is never accessed directly by the programmer. Programmers and
engineers should also consider the makeCall method private in addition to the URL
attribute.

The makeCall method is the heart and soul of the ServerAccessObject. It does all the
work when the object is asked to perform any sort of server access. It is fronted by the
two façade methods getData and setData.The API description in Table 8.2 describes
their basic uses.

As you can see in the following section, one of the many standard methodologies of
assigning methods to objects is used for these façades.This methodology creates a func-
tion object through the use of the function constructor call and assigns the result to an
attribute of the current object represented by the this key word.

The two façade methods getData and setData are almost identical.They receive four
parameters and then pass them plus three more to the underlying makeCall method.The
additional parameters are the first, fifth, and seventh in the getData call and the first,
third, and seventh in the setData call.The fifth parameter of the makeCall method is the
data to be passed to the server as part of a POST type request.This is obviously not
needed for the getData method, and therefore, null is passed.

this.getData = function(dataType, refresh,

parameterSequence, HTTPHeaders){

var passThroughParameters =

ptg

163Section 3: ServerAccessObject

generatePassThroughParameters();

this.makeCall(‘GET’, dataType, refresh,

parameterSequence, null, HTTPHeaders,

passThroughParameters);

}

this.setData = function(dataType, parameterSequence,

data, HTTPHeaders){

var passThroughParameters =

generatePassThroughParameters();

this.makeCall(‘POST’, dataType, true,

parameterSequence, data, HTTPHeaders,

passThroughParameters);

}

The generatePassThroughParameters function call assembles all the information re-
quired to enable the framework to continue processing the BCFs and VCFs, mapped to
the BCF using the ServerAccessObject. For more information on this function found in
the QCUtilities.js file, see Chapter 5,“Hybrid Applications, GPS, Acceleration, and
Other Native Functions with PhoneGap.”

Table 8.2 The Private makeCall Method API

Attribute/Method Return Description Parameters

makeCall(callType,
dataType, refresh,
parameterSequence,
data, HTTPHeaders,
passThroughParamet
ers)

Void A method that should
be considered pri-
vate. This method
makes the actual
AJAX calls to the
server and handles
the result.

callType—Either GET or POST.

dataType—Either TEXT or XML.

refresh—A Boolean flag indicating
whether a refresh of the data should
be enforced.

parameterSequence—A string contain-
ing the URL parameters that are used
in the request.

data—Character or binary data sent
with the request. Used with POST
requests.

HTTPHeaders—An associative array of
HTTP Request header names and val-
ues.

passThroughParameters—An array of
values needed by the framework to
continue processing after the data
has been received from the server.

ptg

164 Chapter 8 Remote Data Access

The third parameter of the makeCall method is a Boolean flag indicating whether the
caching behavior of the client, in this case the UIWebView, should be active or inactive.
In the case of the setData method, it is obvious that caching is a very bad behavior, so it
is hard coded to true to turn off this caching.

By including these parameters in the method signature of makeCAll, it can now effec-
tively encapsulate the behavior required for both retrieving and sending data to a remote
server.This façade helper function pattern is often used, as in this case, when most but not
all of the code for two or more methods/functions is the same and significant code dupli-
cation would occur if façades were not used.

To understand the makeCall method, you must understand the underlying JavaScript
XMLHttpRequest object’s API.This API is implemented in the UIWebView used in hy-
brid applications and Mobile Safari.

The only object in this API is the XMLHttpRequest object (see Table 8.3).

Table 8.3 The XMLHttpRequest Object API

Attribute/Method Return Description Parameters

XMLHttpRequest() XMLHttp
Request

A constructor for the
object.

None

abort() void Terminates the
request of which
it is a method.

None

getAllResponse
Headers()

String A string containing all
of the response head-
er names and values
is returned as a result
of this call.

None

getResponseHeader
(aHeaderName)

String Returns a string
containing the value
of the header with the
given name or null if
no such header
exists.

AHeaderName—The name of
the HTTP Response header for
which you want the associated
value.

ptg

165Section 3: ServerAccessObject

Table 8.3 The XMLHttpRequest Object API

Attribute/Method Return Description Parameters

open(type, URL,
asynch, userName,
passWord)

void Opens and
prepares a
connection to the
desired server.

type—A string of value GET or
POST.

Asynch—A Boolean flag indicat-
ing if the request should be
made asynchronously. This
should always be passed true.

userName—An optional parame-
ter that is the user name to gain
access to the file or directory
specified in the URL.

password—An optional parame-
ter that is the password for the
specified user name to gain
access to the file or directory
specified in the URL.

send(data) void A method used to
attach character or
binary data to a
request. This is used
with POST type
requests such as
uploading files.

Data—The information attached
to the request.

SetRequestHeader
(name, value)

void A method that can
overwrite standard
header values or add
custom header names
and values to a
request.

Name—A string that is the iden-
tifier key of the header.

Value—A string that is the value
associated with the name.

onreadystatechange An attribute that
is set to be a func-
tion. The
function set is called
when the onreadystat-
echange event is
fired. This happens
each time the
readyState changes.

ptg

166 Chapter 8 Remote Data Access

Table 8.3 The XMLHttpRequest Object API

Attribute/Method Return Description Parameters

readyState A series of integers
that represents the
state of the request
that is made. The
possible values are

0—The send method
has not been called.

1—The request is
being sent to the
server.

2—The request has
been received by the
server.

3—A portion of the
response has been
received from the
server.

4—A complete
response has been
received from the

responseText The data sent from
the server as text
minus any HTTP
Response headers.

responseXML The data sent from
the server as an XML
DOM. If the data is
not valid XML, this
value is null.

status A number sent by the
server indicating the
success or failure
state of a request:
404—not found and
200—success are the
two of the most com-
mon. For a complete
list, see
http://www.w3.org/
Protocols/rfc2616/
rfc2616-sec10.html.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

ptg

167Section 3: ServerAccessObject

The commonly used methods of this API are the constructor, open, and send meth-
ods.A simple example of using these methods and other commonly used attributes is
shown in the following code. It consists of requesting the main page of the open source
WebKit project as text.

Notice two items in this simple example.The first is that the request object is global
in scope. It is available for use in the handleResponse function that is called automati-
cally by the browser engine when the readyState changes.This makes the code simple,
but is a large problem if two requests need to be or are accidentally sent during overlap-
ping times.

var request = new XMLHttpRequest();

request.onreadystatechange = handleResponse;

request.open(‘GET’,’http://webkit.org/’, true);

request.sent(‘’);

function handleResponse(){

if(request.readyState == 4){

if(request.status == 200){

var result = response.responseText;

//do something with the result.

}

}

}

Because of the global scope of this request variable, this simple example is not thread-
safe. Because these requests are asynchronous, it is possible and often likely that requests
will clobber each other.The ServerAccessObject encapsulates this global variable to solve
this problem.

The second item to note is that the request is being sent to a full URL. In standard
browsers, an XMLHttpRequest object can request data only from the server that it origi-
nated from.The UIWebView in hybrid applications does not have this restriction. It can
request data from any server because it is not a browser, which is both a boon and a bane.

The reason for the restriction in browsers is to stop cross-site scripting, XSS, attacks.
These can occur if malicious JavaScript is inserted into otherwise innocent HTML that

Table 8.3 The XMLHttpRequest Object API

Attribute/Method Return Description Parameters

statusText A server-generated
string containing any
message that match-
es the status code.

ptg

168 Chapter 8 Remote Data Access

your application has requested. Because the UIWebView is not a browser, you are now
responsible for defending the application against such attacks.Thankfully, the Quick-
ConnectiPhone framework supplies you with the ability to map Security Control Func-
tions (SCF), and the ServerAccessObject calls them before passing the results of the
requests to your VCFs.

These SCFs are created like VCFs and are mapped using the mapCommandToSCF func-
tion. See Section 4 for an example of creating and using SCFs.

The XMLHttpRequest object API contains no indicator for forcing a refresh.The
ServerAccessObject handles this by setting one of the standard HTTP Request headers.

if(refresh){

/*

* if we are to disable caching and force a call to the server, then the ‘If-
Modified-Since’ header will

* need to be set to some time in the past.

*/

http.setRequestHeader(“If-Modified-Since”, “Sat, 1 Jan 2000 00:00:00 GMT”);

}

The If-Modified-Since header tells the server that it should send data if the re-
quested item has a modified date after the date included in the header value. By setting
the value to a date and time in the past, it guarantees that cached data is not used.

On the other hand, the ServerAccessObject API has no flag enabling the user to define
the request as synchronous or asynchronous. It is well accepted that all AJAX calls should
be asynchronous.This keeps the web engine responsive to further input from the user. If
they are synchronous, when the user rotates the iPhone, the UIWebView would become
a blank, white screen.This also happens if the user decides to scroll the view while a re-
quest is made to the server, which would yield a bad user experience. Because it is such a
bad idea to use the XMLHttpRequest object synchronously, the ServerAccessObject
hardcodes all requests to be asynchronous.

Unlike the earlier simple example, the ServerAccessObject does not use a standalone
function to handle the onreadystatechange events. Instead, it uses an anonymous func-
tion (see Chapter 3,“Creating iPhone User Interfaces,” for information regarding anony-
mous functions).The choice of using an anonymous function was made because of the
capability of such functions to exist in the scope of the overlying function.

In this case, all local variables declared in the makeCall method are also available in the
onreadystatechange anonymous function.Thus, the global variable problem discussed
earlier is solved. By declaring a variable, http, to be the newly created XMLHttp
RequestObject to be used in the makeCall method, it automatically is still in scope when
the onreadystatechange anonymous function is called.

For those new to the idea of anonymous functions, this seems counterintuitive. For
those who are used to them, it might seem as if you are getting away with something you
shouldn’t be able to do.The following code contains this entire anonymous function.

ptg

169Section 3: ServerAccessObject

1 http.onreadystatechange = function(){

2

3 if(http.readyState == ServerAccessObject.COMPLETE){

4 //the standard holder for all types of data queries

5 var queryResult = new QueryResult();

6 //these are custom error headers that you can

7 //send from your server code if you choose.

8 queryResult.errorNumber =

9 http.getResponseHeader(‘QC-Error-Number’);

10 queryResult.errorMessage =

11 http.getResponseHeader(‘QC-Error-Message’);

12 if(http.status != ServerAccessObject.HTTP_OK

13 && http.status != ServerAccessObject.HTTP_LOCAL

14 && http.status !=

15 ServerAccessObject.OSX_HTTP_File_Access){

16

17 queryResult.errorNumber = http.status;

18 queryResult.errorMessage = “Bad access type.”;

19 }

20

21 /*

22 * Retrieve the data if the server returns that the

23 * processing of the request was successful or if

24 * the request was directly for a file on

25 * the server disk.

26 * Get it as either Text or XML

27 */

28 if(queryResult.errorNumber == null){

29 queryResult.data = http[‘response’+dataType];

30 if(!dispatchToSCF(passThroughParameters[0],

31 queryResult.data)){

32 queryResult.errorNumber =

33 ServerAccessObject.INSECURE_DATA_RECEIVED;

34 queryResult.errorMessage =

35 “Insecure data recieved.”;

36 }

37 }

38 /*

39 * Call the next Control Function in the

40 * list passing the resultData

41 */

42 if(window.callFunc){

43 /*

44 * This may have been called from outside

ptg

170 Chapter 8 Remote Data Access

45 * a dispatchToBCF function.

46 * If so, then there has been no callFunc

47 * function defined.

48 */

49 var theResults = new Array();

50 theResults.push(queryResult);

51 theResults.push(passThroughParameters);

52 requestHandler(passThroughParameters[0],

53 passThroughParameters[2], theResults);

54 }

55 }

56

57 };

Lines 30 to 36 in the previous code segment contain the SCF and VCF calls men-
tioned previously. Line 30 looks like the code in the front controller found in Chapter 2.
In fact, it is nearly identical to the checkValidation function call described and behaves
the same way.

Just as a user can type in bad data, a server can send bad data.The checkSecurity
function is an application controller type function just like checkValidation. It calls any
SCFs you have mapped in the mapping.js file to the same command that is mapped to
the BCF using the ServerAccessObject.This way, you can apply any number of security
checks to data received from a server, which helps you solve the problem with cross-site
scripting attacks.

After checking the data, it is then added to a QueryResults object so that your appli-
cation can continue to process it.This is done by a call to the requestHandler function.
The passThroughParameters are used here because they contain the command that
triggered the call to your BCF, and the control function should be called next. By calling
requestHandler, the ServerAccessObject’s makeCall method ensures that all of your
control functions are called in the order you mapped them in the mappings.js file. Be-
cause the result object, theResults, is also passed, it is made available to all of the subse-
quent control functions.This means that you can then use the data in any way you see fit.

Because the onreadystatechange anonymous function contains these two application
controller type function calls and because it is the only function to which a server sends
data, it acts as an additional front controller for your application.This means that if you
use the ServerAccessObject for all your remote data access, you gain the advantages for all
of the remote communications that were discussed in Chapter 2 for standard applications.

The double-front controller pattern provides the needed security in your applications
and yet enables you the flexibility of retrieving data from any server. Figure 8.3 shows
how both of these front controllers protect your application and your data.

ptg

171Section 4: Security Control Functions

Section 4: Security Control Functions
SCF are called by the ServerAccessObject to ensure the validity and safety of the data re-
trieved from a server.They act in much the same way and role as ValCFs covered in
Chapter 2.They also follow the same pattern as all the other control functions.

For a SCF to be called, it must be mapped to a command. For example, your applica-
tion might require a user to log in for it to send back JSON type data on success.An ex-
ample of such a mapping is

mapCommandToSCF(‘login’, checkForFunctions);

This means that you would also need to have a checkForFunctions function that can
be called by checkSecurity.

Because of the json2 library available in the QciPhone/json2.js file, this function be-
comes easy to write.

A User A Server

ha
nd

le
R

eq
ue

st

<
fr

on
t c

on
tr

ol
le

r>

on
re

ad
ys

ta
te

ch
an

ge
 a

no
ny

m
ou

s
fu

nc
tio

n

<
fr

on
t c

on
tr

ol
le

r>

Your
ValCFs

Your
BCFs

Your
ECFs

Your
VCFs

Your
SCFs

Figure 8.3 Both users and servers can provide bad data to an application.
The double-front controller pattern protects your application code from faulty

and possibly nefarious data.

ptg

172 Chapter 8 Remote Data Access

Function checkForFunctions(data){

if(data == JSON.stringify(JSON.parse(data){

return true;

}

return false;

}

When the data is parsed, the JSON.parse method puts additional characters into the
string if it encounters function declarations or function calls.This causes these attempts to
define or make function calls to fail, providing much needed security from cross-site
scripting, XSS, attacks.

Your check can then take advantage of this by turning the newly created JavaScript
object back into a string and comparing it against the original. If it fails the comparison
test, the application knows that the data retrieved from the server contains malicious code.

This means that JSON text sent to you cannot contain function definitions or func-
tion calls.This is actually very good. If this were not so, you could never tell if the
JavaScript functions in the JSON were your code or malicious code inserted in the
middle XSS attack.

Summary
The ServerAccessObject provides you with an easy, secure way to retrieve data from re-
mote sources into your hybrid application. It provides you with an easy-to-use API that is
similar to the DataAccess API to reduce your learning curve.

With the addition of SCFs, the code you retrieve can be as thoroughly checked as you
deem fit.

The ServerAccessObject can retrieve remote data and store it for later use via the
DataAccessObject or use it directly as the browserAJAXExample application does. It also
opens up the possibility of synchronizing data stored on the local machine with data
stored on a remote machine.

The ServerAccessObject enables you to create code that can automatically notify a
web server should the application code fail.You can also use it to collect metrics from
your iPhone application and send them to a server to help make the application faster and
easier to use.

All of this is now available easily on your installed hybrid iPhone application due to
the ServerAccessObject.

ptg

Appendix A
Introduction to JSON

JavaScript Object Notation (JSON) is an interesting creation. It enables you to convert
JavaScript objects and arrays into strings that can be passed over a network or stored in a
database. Later, these strings can be reconstituted on another computer or after database
retrieval.This capability to serialize and inflate JavaScript objects and arrays opens up pos-
sibilities.This appendix shows you an Application Programmer Interface (API) for a well-
accepted JavaScript JSON library and gives you simple examples that show the library in
action.

Section 1: Background
Passing information from one system to another is always a problem.This is especially ev-
ident in web application development where a server can be written in almost anything
and run on many different types of computers. XML was one of the early device-, OS-,
and language-agnostic formats proposed to solve this problem, and it has some good uses.
Using XML for some data transfers is overkill, especially the small pieces of information
generally sent using AJAX. XML becomes wordy if all you want to send is a small array
of numbers or a key/value map.This problem was solved not by the invention of new
technology but by utilizing a capability already built into interpreted languages.

All major loosely typed interpreted languages have an eval type of functionality that
executes strings as if they are source code.This eval functionality is a powerful and dan-
gerous capability. If it is misused, it can completely open an application to hacking and
abuse. In addition, all major loosely typed interpreted languages have the capability to de-
fine arrays and objects without a call to an instantiation keyword similar to new.

If you look at JavaScript examples, you can easily see how to create an array.The first
example is an object-oriented approach:

var array = new Array();

array.push(5);

array.push(13);

array.push(‘hello’);

ptg

174 Appendix A Introduction to JSON

A second example is a nonobject-oriented approach:

var array = [5,13,’hello’];

Both of these examples create identical arrays.The second example is the one that is
interesting to a discussion of JSON. It, coupled with the capability of JavaScript to evalu-
ate a string as if it is code, makes JSON possible.

The following code creates a string of characters that matches how a programmer
would use the second example to create an array. It is not the array itself, but a descrip-
tion of what the array should be.

var someString = “[5,13,’hello’]”;

//evaluate the string

var array = eval(someString);

The last line of the previous example parses the string into JavaScript source code, in-
terprets the JavaScript, and executes it. In this simple example, the string is in the same
application as the eval call, and therefore, the process is silly. If, however, the string came
from the Objective-C side of a QuickConnectiPhone application, or, as is done tradition-
ally from a server, the eval call makes much more sense.

The production of objects is similar.The object-oriented approach, shown here, creates
an object and then adds attributes to it:

var object = new Object();

object.width = 5;

object.height = 13;

object.message = ‘hello’;

The corresponding nonobject-oriented approach is

var object = {“width”:5,”height”:13,”message”:”hello”};

The following is the JSON-like code:

var someString = ‘{“width”:5,”height”:13,”message”:”hello”}’;

//evaluate the string

var object = eval(someString);

Although this is the heart of JSON, implementing it on your own is dangerous. For
example, if the string had been passed from JavaScript to the Objective-C side of Quick-
ConnectiPhone and somehow the string includes complex instructions, it could possibly
delete everything on your hard drive.

JSON libraries have already been created to handle this security problem for you.The
one used on the JavaScript side is Json2 and is found in the json2.js file. Json2 is one of
the most commonly used JavaScript JSON parsers. Because you regularly pass and receive
data to and from the Objective-C side of QuickConnectiPhone-based applications, you
need to understand the API for this library.

ptg

175Section 2: A JSON JavaScript API

Table A.1 The Json2 API

Function Parameters

JSON.stringify(entity,
replacer, space, linebreak)

Required Parameters:

entity—The JavaScript object, array, or primitive to be
converted.

Optional Parameters:

replacer—A function or array that enables you to override the
default string generation for values associated with the
JavaScript entities’ keys.

space—A number or character such as ‘\t’ or that is
used to indent JavaScript entities that are values stored with
keys in other entities.

linebreak—A character or characters that overrides the
default ‘\n’ such as ‘\r\n’ or
.

JSON.parse(string, reviver) Required Parameters:

String —The JSON string to be converted into a JavaScript
object or array.

Optional Parameters:

Reviver—A function with the inverse behavior of a replacer
used in the stringify method.

Section 2: A JSON JavaScript API
The Json2 API, found in Table A.1, is simple and straightforward. It consists of only two
functions: one to turn an object or an array into a string and another to turn strings into
objects.The first is called stringify.

The stringify function has several parameters, but for QuickConnectiPhone, you
need only the first one. It is an object or array to be converted to a string.A generic ex-
ample is as follows:

var JSONString = JSON.stringify(object);

The conversion of strings into objects is just as simple:

var object = JSON.parse(someString);

Arrays are handled in exactly the same fashion.
A complete example, object_JSON_example.html, of using Json2 to stringify and

parse objects can be found in the Examples/JSON directory of the QuickConnectiPhone
download. Figure A.1 shows the result of converting an object into a string, converting it
back to an object, and then printing the size attribute of the object.

ptg

176 Appendix A Introduction to JSON

Figure A.1 The result of stringifying and
then parsing an object

An example also exists in the Examples/JSON directory and is called array_JSON_
example.html. It illustrates how to use Json2 to stringify and parse with arrays. Figure A.2
shows an example.

Notice that both of these examples use the industry standard words serialize and in-
flate for the results of the stringify and parse functions, respectively.

The Json2 library also enables you to pass primitives such as numbers. String objects
are also handled well.This is not true of all JSON libraries in all languages. Figure A.3
shows the example being run.

Using the Json2 library, you can pass anything to stringify and parse and it will be
handled correctly.The JSON library on the Objective-C side also correctly handles
primitives and strings.

ptg

177Section 2: A JSON JavaScript API

Figure A.2 The result of stringifying and
then parsing an array

Figure A.3 The result of stringifying and
then parsing primitives and strings

ptg

Summary
JSON is a wonderful way to pass information. It is device-, operating system-, and
language-agnostic.There are free, open source parsers in all the commonly used lan-
guages, and some of them (such as PHP) ship with them.

The Json2 library included with QuickConnectiPhone is easy to use and enables you
to send data to and receive data from the Objective-C side of the hybrid application.

178 Appendix A Introduction to JSON

ptg

Table B.1 The QuickConnectFamily Development Roadmap on February 23, 2009

iPhone Android Mac Linux Symbian

Geolocation Yes Yes Not Possible Not Possible —

Accelerometer Yes Yes In

Development

— —

Vibration Yes Yes Not Possible Not Possible —

Ad-hoc networking Yes In

Development

In

Development

In

Development
In

Development

JavaScript Database

wrapper (SQLite)

Yes Not Possible Yes In

Development

In

Development

Installed Native Database

wrapper (SQLite)

Yes Yes Yes Yes In

Development

Appendix B
The QuickConnectFamily

Development Roadmap

Because QuickConnectiPhone is early in its development cycle, it is rapidly undergo-
ing change.As such, it is important to closely watch the development for updates.
Table B.1 shows what is available for download as of February 23, 2009.

Yes indicates that the functionality is shipping. In Development indicates that work is ac-
tively being done on the feature. Development Planned means that the feature is possible
but not yet in development. Not Possible means that the feature is not available on the de-
vice. Dashed cells indicate that work is not being done at the time of writing this book.

Note
Although development is planned for Windows and Windows Mobile, because no develop-
ment is being done at this time, Table B.1 does not list them.

ptg

180 Appendix B The QuickConnectFamily Development Roadmap

Table B.1 The QuickConnectFamily Development Roadmap on February 23, 2009

iPhone Android Mac Linux Symbian

AJAX wrapper Yes In

Development

Yes Yes In

Development

Drag and Drop Library Yes — Yes Development

Planned

—

Synch cable networking In

Development

— — — —

Camera access In

Development

In

Development

In

Development

— —

Image Geolocation In

Development

— — — —

System Sounds (Play) Yes Yes Yes In

Development

In

Development

Record/Play audio files Yes Yes In

Development

Development

Planned

Development

Planned

Native Date/Time pickers Yes — — — —

Embedded Google maps Yes In

Development

— — —

Charting and graphing Yes — Yes — —

Definitions:

Geolocation—Getting current GPS location coordinate data.

Accelerometer—Getting the x, y, and z directional changes.

Vibration—Causes the device to vibrate.

Ad-hoc networking—Finding and communicating with other devices nearby run-
ning the same application.

JavaScript Database wrapper (SQLite)—Using the built-in HTML 5 database.

Native Database wrapper (SQLite)—Using SQLite databases shipped with an ap-
plication.

AJAX wrapper—An easy-to-use AJAX library to retrieve remote data.

Drag and Drop Library—An easy-to-use library to enable the user to move, spin,
and resize screen items.

Synch cable networking—Accessing and transferring data to your desktop ma-
chine using the synch cable.

ptg

181Appendix B The QuickConnectFamily Development Roadmap

Camera access—Taking and storing pictures.

Image Geolocation—Accessing the geolocation information embedded in picures
taken with the device.

System Sounds (Play)—Playing short (less than 5 seconds) sounds.

Record/Play audio files—Recording audio using the device and playing those
files and audio files shipped as part of your application.

Native Date/Time pickers—Displaying and using the Objective-C based pickers
rather than the limited JavaScript ones.

Embedded Google maps—Custom Google maps in your application rather than
standard ones, or displaying the map application.

Charting and graphing—An easy-to-use charting library for displaying line, bar,
pie, and other charts.

ptg

This page intentionally left blank

ptg

Appendix C
The PhoneGap Development

Roadmap

Because PhoneGap is early in its development cycle, it is rapidly undergoing change.As
such, it is important to closely watch the development for updates.Table C.1 is from the
PhoneGap wiki. It shows what developers claim about the availability of functions and
what has been confirmed as of the time of writing this book.

Confirmed means JavaScript functions are found in PhoneGap as of February 23, 2009.
The author is unable to comment on the availability of the Blackberry platform. In Work
means that the PhoneGap team is working to make this feature available. Claimed means
that the PhoneGap team states that the feature is available, but the author cannot find evi-
dence of this in the downloaded code. Dashed cells indicate that work is not being done
and does not currently exist. Not Possible indicates that the developers believe that the
functionality indicated is not accessible on the device.

Note
Development for Symbian and Windows Mobile is planned, but no work has been done;
therefore, they are not in Table C.1.

Table C.1 PhoneGap Development Roadmap on February 23, 2009

iPhone Android Blackberry (OS 4.5)

Geolocation Confirmed Confirmed Claimed

Accelerometer Confirmed Confirmed Available in OS 4.7

Camera In Work In Work In Work

Vibration Confirmed Confirmed Claimed

Offline (local files) In Work Claimed In Work

Contacts API Claimed — Claimed

SQLite wrapper Claimed — Not Possible

ptg

184 Appendix C The PhoneGap Development Roadmap

Table C.1 PhoneGap Development Roadmap on February 23, 2009

iPhone Android Blackberry (OS 4.5)

XMPP API — — —

File system IO — In Work In Work

Gesture / Multitouch Confirmed as part of
basic UIWebView

— —

SMS API — In Work —

Telephone API In Work In Work In Work

Copy / Paste Not Possible — Claimed

System Sounds (Play) Confirmed — —

Sounds (Record) — — —

Bluetooth — — —

Wifi ad-hoc connection — — —

Maps Claimed In Work In Work

Orientation change Confirmed — —

Network availability — — —

Definitions:

Geolocation—Getting GPS location coordinate data.

Accelerometer—Getting x, y, and z directional changes.

Camera—Taking and storing pictures.

Vibration—Causes the device to vibrate.

Offline (local files)—Installed HTML, CSS, and JavaScript files (they are not on a
web server).

Contacts API—Access to the information in the contacts application.

XMPP API—Jabber-like messaging.

File system IO—Reading and writing to flat text or binary files.

Gesture/Multi-touch—Using one or more fingers for complex data input.

SMS API—Instant messaging.

Telephone API—Placing phone calls.

Copy / Paste—Duplication of input.

System Sound (Play)—Playing audio files.

Sounds (Record)—Recording audio using the device.

ptg

185Appendix C The PhoneGap Development Roadmap

Bluetooth—Using Bluetooth connectivity to other devices.

Wifi ad-hoc connection—Finding and communicating with other devices.

Maps—Using Google maps.

Orientation change—Detecting portrait and landscape device changes.

Network availability—Detecting if the device has network access.

ptg

This page intentionally left blank

ptg

Index
A

abort method, 164

accel command, 78

accelerometers, PhoneGap, 109

access. See database access;
remote data access

ADC (Apple Developer Connection), 8

add function, 29

alert behavior, PhoneGap, 99

Alert dialog, hybrid applications and, 2

anonymous functions, 136

APIs, Json2 API, 175-176

Apple Developer Connection. See
ADC (Apple Developer Connection)

application controllers, 32

applicationDidFinishLaunching
method, 16, 19

applications

BrowserAJAXAccess sample
application, 155-157

BrowserDBAccess sample
application, 127

hybrid applications,Alert dialog and, 2
immersion applications, 55-57
nonlist-based view applications, 51-55

arrays

converting to strings, 175
creating, 173-174
passThroughParameters, 137
retVal, 153

asynchronous, 39

AudioServicesPlaySystemSound
function, 103

ptg

B
BCFs (Business Control Functions), 26, 29,

32-33, 39

Browser part, 48-50

BrowserAJAXAccess sample application,
155-157

BrowserDBAccess sample application, 127

business application controllers, 38-41

Business Control Functions (BCF), 26

C
calculateSolutionsBCF, 30

callback method, 106

callFunc function, 41

changeView function, 49

checkNumbersValCF function, 32

checkSecurity function, 170

classes

DataAccessObject
methods, 129-130
with native SQLLite databases,

133-134
with WebKit engine databases,

135-145
with WebView SQLLite databases,

130-133
GlassAppDelegate, 17
QuickConnectViewController, 17
singleton classes, 89
SQLiteDataAccess, 145-154

code attribute (SQLError), 142

control functions, 28

converting objects/strings, 175

copying files, 6

CSS transforms, creating custom, 57-63

cube transition, 54

custom PhoneGap template, 9-11

D
Dashcode, 1

directories, 7
QuickConnectiPhone template, 1-3
transitions, 52-54

data, retrieving, 26

DataAccessObject class

methods, 129-130
with native SQLLite databases,

133-134
with WebKit engine databases, 135

Database object, 137-139
dbAccess method, 137
generatePassThroughParameters

function, 137
getData method, 136
passThroughParameters array, 137
sample code listing, 143-145
setData method, 136
SQLError object, 141-142
SQLResultSetRowList object,

140-141
SQLResultSet object, 140
SQLTransaction object, 139-140

with WebView SQLLite databases,
130-133

DataAccessObject method, 129

DataAccessObject.js file, 129

database access

BrowserDBAccess sample
application, 127

database terminology, 128
native databases, 145-154

getDeviceData method, 145-146
getNativeData method, 145
makeCall function, 146
SendDBResultVCO object, 153
setNativeData method, 145

188 BCFs (Business Control Functions)

ptg

SQLite3 API, 147-150
native SQLite databases, 133-134
overview, 127
WebKit engine databases, 135

Database object, 137-139
dbAccess method, 137
generatePassThroughParameters

function, 137
getData method, 136
passThroughParameters array, 137
sample code listing, 143-145
setData method, 136
SQLError object, 141-142
SQLResultSetRowList object,

140-141
SQLResultSet object, 140
SQLTransaction object, 139-140

WebView SQLite databases, 129-133
Database object, 137-139

dbAccess method, 137, 142

delegates, 14

deleteScoreBCF function, 133

development roadmaps

for PhoneGap, 183-185
for QuickConnectiPhone, 179-181

development tools

PhoneGap, 183-185
QuickConnectiPhone, 179-181

device activation

JavaScript, 75-81, 95-102
Objective-C, 81-88, 102-109

Device.exec function, 99

Device.init method, 96

Device.Location.init method, 100

Device.Location.set method, 106

Device.vibrate method, 98

didAccelerate method, 109

didUpdateToLocation method, 109

directories, Dashcode, 7

dispatchToBCF function, 38-39

dispatchToECF function, 43

dispatchToValCF function, 35

dispatchToVCF function, 41-42

displaying

maps from within QuickConnect
JavaScript applications, 111-115

pickers, 80
displayScoresVCF View Control Function,

131, 134

displaySiteDataVCF function, 159-161

displaySolutionVCF function, 30

dissolve transitions, 53

doCommand method, 86, 92, 116, 153

DollarStash game, 56

done method, 61

double underscore (__), 97

drag and drop, 46

hopping elements, 59
modules, 64-74

drag-and-drop scale rotation API, 64

dragAndGesture example, 65

E
ECF (Error Control Functions), 30, 33, 42-43

embedding

Google Maps, 111-115
web content

PhoneGap, 23-24
QuickConnectiPhone, 19-23

entryECF function, 30

error application controllers, 42-43

eval function, 33

eval type, 173

executeSQL method, 139, 143

189executeSQL method

ptg

F
fade transitions, 54

fields (database), 128

files

copying, 6
DataAccessObject.js, 129
ServerAccessObject.js, 159

flip transitions, 54

foreign keys, 128

frameworks, 25-26

FrontController API, 28

functions. See also specific functions

anonymous functions, 136
SCF (security control functions),

171-172
future developments

for PhoneGap, 183-185
for QuickConnectiPhone, 179-181

G
__gap_device_model variable, 97

__gap variable, 97

generatePassThroughParameters
function, 137

GestureEvent, 62

gestures, 46, 62

getAllResponseHeaders method, 164

getData method, 129, 131, 136, 158,
162-163

getDeviceData method, 145-146

getGPSLocation function, 79

getInstance method, 89

getNativeData method, 130, 134, 145

getResponseHeader method, 164

getSiteDataBCF function, 159

GlassAppDelegate class, 17

goForward method, 50

Google Maps, displaying within
QuickConnect JavaScript applications,
111-115

goSub function, 52

gotAcceleration function, 101

GPS

JavaScript, 79-80
Objective-C, 86-87
PhoneGap, 99-101, 105-106

groups, Xcode, 7

H
handleRequest function, 28, 34

handleRequestCompletionFromNative
method, 154

HIG (Human Interface Guide), 45-47

HistoryExample application, 48

hopping elements, 59

hybrid applications, Alert dialog and, 2

I
immersion applications, 55-57

InfoWindow, 115, 126

initWithContentsOfFile method, 107

initWithFrame method, 116

insertID attribute (SQLResultSet), 140

instantiating objects, 12

interfaces

CSS transforms, 57-63
list-based interfaces, 48-50
view-based applications, 49-51
views, 50

isDraggable, 66

item method, 141

190 fade transitions

ptg

J-K-L
JavaScript

device activation, 75-81, 95-102
modularity, 25-34
scroll function, 119

JSON (JavaScript Object Notation), 78, 161

Json2 API, 175-176
Objective-C device activation, 83
overview, 173-174

Json2 API, 175-176

JSONStringify method, 153

L
length attribute (SQLResultSetRowList), 141

list-based interfaces, 48-50

loadView method, 20

M
makeCall function, 75-77, 146, 162-164

makeChangeable function, 64, 67

makeDraggable function, 64-66

mapCommands method, 84

mapCommandToCo method, 93

mapping function API, 30

maps

displaying from within QuickConnect
JavaScript applications, 111-115

QuickConnect mapping module,
implementing with Objective-C,
115-126

zooming, 122-125
MapView, 115

math command, 28-31

medical imaging applications, 55

message attribute (SQLError), 142

methods. See specific methods

modularity

control functions, 28
JavaScript, 25-26

implementing in
QuickConnectiPhone, 34-38

QuickConnect JavaScript
framework example, 26-34

modules

defined, 25
drag-and-drop, 64-74
rotation, 67-74
scaling, 67-74

moveX:andY method, 124

N
native databases, accessing, 145-154

getDeviceData method, 145-146
getNativeData method, 145
makeCall function, 146
SendDBResultVCO object, 153
setNativeData method, 145
SQLite databases, 133-134
SQLite3 API, 147-150

nonlist-based view applications, 51-55

NSLog function, 93

O
Objective-C, 11-14

device activation, 81-88, 102-109
implementing QuickConnectiPhone

architecture, 88-94
implementing QuickConnect

mapping module, 115-126
instantiating objects, 12
PhoneGap application structure, 17-19
pickers, 88
QuickConnectiPhone application

structure, 14-17

191Objective-C

ptg

objects. See also specific objects

converting strings to, 175
converting to strings, 175
creating, 174
instantiating with Objective-C, 12

oldScale attribute, 67

ongesturechange event, 71

onreadystatechange anonymous function,
168-170

onreadystatechange attribute, 165

ontouchchange listener, 59

ontouchend listener, 61

open method, 165

openDatabase method, 138

P
parse function, 175

passThroughParameters array, 137

pathForResource:ofType method, 21

PhoneGap, 1-3, 97-98

accelerometers, 109
alert behavior, 99
custom PhoneGap templates,

Xcode, 9-11
development roadmap, 183-185
embedding web content, 23-24
GPS, 99-101, 105-106
JavaScript device activation, 95-102
notifying the user that something has

gone wrong, 99
Objective-C application structure,

17-19
Objective-C device activation,

102-109
system sound, 107-108
versus QuickConnectiPhone, 9

pickers

displaying, 80
Objective-C, 88

Pin, 115, 120

pinch, 46

play command, 77

playing

recordings, 78
system sounds, 85

playSound method, 76, 101

playTweetSound function, 101

pointers, 12

prepared statements, 132-133

prepareDrag function, 67

prepareGesture function, 71

primary keys, 128

principal-delegate relationships, 14

principals, 14

protocols, 15

provisioning, 8

proxies, 14

push transitions, 53

Q
QCCommandObjects, 92

QuickConnect JavaScript framework

displaying maps from, 111-115
modularity example, 26-34

QuickConnect mapping module,
implementing with Objective-C, 115-126

QuickConnectFamily installer, 1

QuickConnectiPhone

development roadmap, 179-181
embedding web content, 19-23
implementing modular design, 34-38
Objective-C application structure,

14-17

192 objects

ptg

Objective-C implementation, 88-94
versus PhoneGap, 9

QuickConnectiPhone templates

Dashcode, 1-3
Xcode, 4-8

QuickConnectViewController class, 17

R
rangeOfString method, 104

readyState method, 166

recordings

playing, 78
stopping, 79

records, 128

recursion, 41

remote data access

BrowserAJAXAccess sample
application, 155-157

overview, 155
SCF (security control functions),

171-172
ServerAccessObject, 157

displaySiteDataVCF function,
159-161

getData method, 158, 162-163
getSiteDataBCF function, 159
makeCall method, 162-164
onreadystatechange anonymous

function, 168-170
ServerAccessObject method, 158
setData method, 158, 162-163
XMLHttpRequest object, 164-167

requestHandler function, 170

responseText method, 166

responseXML method, 166

retrieving data, 26

retVal array, 153

revolve transition, 54

rotate functions, 63

rotation, 67-74

rows attribute (SQLResultSet), 140

rowsAffected attribute (SQLResultSet), 140

S
scaling modules, 67-74

SCF (security control functions), 171-172

scroll function, 119

security control functions (SCF), 171-172

send method, 165

SendDBResultVCO object, 153

sendloc command, 87

ServerAccessObject, 157

displaySiteDataVCF function, 159-161
getData method, 158, 162-163
getSiteDataBCF function, 159
makeCall method, 162-164
onreadystatechange anonymous

function, 168-170
ServerAccessObject method, 158
setData method, 158, 162-163
XMLHttpRequest object, 164-167

ServerAccessObject method, 158

ServerAccessObject.js file, 159

setData method, 129-132, 136, 158,
162-163

setMapLatLngFrameWithDescription
method, 125

setNativeData method, 130, 145

SetRequestHeadert method, 165

setStartLocation function, 59

shouldStartLoadWithRequest function, 82

showDateSelector function, 80

showMap function, 114

showPickResults command, 80

193showPickResults command

ptg

SimpleExampleAppDelegate method, 19

singleton classes, 89

singleTouch message, 120

slide transitions, 53

SQLError object, 141-142

SQLite databases, accessing

native SQLite databases, 133-134
WebKit engine databases, 135

Database object, 137-139
dbAccess method, 137
generatePassThroughParameters

function, 137
getData method, 136
passThroughParameters array, 137
sample code listing, 143-145
setData method, 136
SQLError object, 141-142
SQLResultSetRowList object,

140-141
SQLResultSet object, 140
SQLTransaction object, 139-140

WebView SQLite databases, 129-133
SQLite3 API, 147-150

sqlite3_bind_blob method, 149

sqlite3_bind_double method, 150

sqlite3_bind_int method, 150

sqlite3_changes method, 148

sqlite3_close method, 147

sqlite3_column_blob method, 149

sqlite3_column_bytes method, 149

sqlite3_column_count method, 148

sqlite3_column_double method, 148

sqlite3_column_int method, 148

sqlite3_column_name method, 148

sqlite3_column_text method, 149

sqlite3_column_type method, 148

sqlite3_errmsg method, 147

sqlite3_finalize method, 149

sqlite3 object, 147

sqlite3_open method, 147

sqlite3_prepare_v2 method, 148

sqlite3_step method, 148

sqlite3_stmt method, 147

SQLiteDataAccess class, 145-154

SQLResultSetRowList object, 140-141

SQLResultSet object, 140

SQLTransaction object, 139-140

standard behaviors, 46

statements, prepared, 132-133

status messages (XMLHttpRequest), 166

statusText string (XMLHttpRequest), 165-167

stopping playing of recordings, 79

stringByEvaluatingJavaScriptFromString
method, 154

stringify function, 175

strings, converting, 175

subviews, 21

Subviews list, 49

swap transition, 54

swipe, 46

switches, 47

synchronous, 39

system sounds

JavaScript, 76-77
PhoneGap, 107-108
playing with Objective-C, 85

T
tables, 128

templates

custom PhoneGap template, 9-11
Dashcode, 1-3
QuickConnectiPhone, 4-8

194 SimpleExampleAppDelegate method

ptg

terminatePlaying function, 79

textual user input, 47

Touch class, 58

touch events, 58

touch locations, 46

touchable images, 51

touchesBegan method, 122

touchesMoved:withEvent method, 118, 124

transaction method, 138, 142

transforms (CSS), 57-63

transitions, 52-55

translate function, 61

translation, 72

types, eval, 173

U
UIWebView API, 21

UIWebView class, 19-20

updating user viewable screens, 26

user input, validating, 26

user viewable screens, updating, 26

V
ValCF, 29, 33, 38

ValCF (Validation Control Functions), 26

validating user input, 26

VCF (View Control Functions), 26, 29, 33,
38, 42

vibrations, 76, 82, 98-99, 103-104

view application controllers, 38-39, 41-42

view-based applications, 49-51

views, 50

W
web content, embedding

with PhoneGap, 23-24
with QuickConnectiPhone, 19-23

WebKit engine databases, accessing, 135

Database object, 137-139
dbAccess method, 137
generatePassThroughParameters

function, 137
getData method, 136
passThroughParameters array, 137
sample code listing, 143-145
setData method, 136
SQLError object, 141-142
SQLResultSetRowList object,

140-141
SQLResultSet object, 140
SQLTransaction object, 139-140

webKitTransform, 58-60

webMapView, 117

webView:shouldStartLoadWithRequest:
navigationType function, 103

WebView SQLite databases, accessing,
129-133

webViewDidStartLoad method, 102

X-Y-Z
Xcode

custom PhoneGap template, 9-11
groups, 7
QuickConnect templates, 4-8

XMLHttpRequest method, 164

XMLHttpRequest object, 164-167

zooming maps, 122-125

195zooming maps

	Table of Contents
	Preface
	1 Developing with Dashcode and Xcode
	Section 1: Using Dashcode and the Custom QuickConnect Template
	Section 2: Using Xcode and the Custom QuickConnect Template
	Section 3: Using Xcode and the Custom PhoneGap Template
	Section 4: Introduction to Basic Objective-C
	Section 5: Objective-C QuickConnectiPhone Application Structure
	Section 6: Objective-C PhoneGap Application Structure
	Section 7: Embedding Web Content: QuickConnectiPhone
	Section 8: Embedding Web Content: PhoneGap
	Summary

	2 JavaScript Modularity and iPhone Applications
	Section 1: Modularity
	Section 2: The QuickConnect JavaScript Framework—A Modularity Example
	Section 3: The QuickConnectiPhone Implementation of the Modular Design
	Section 4: Business and View Application Controller Implementations
	Section 5: Error Application Controller Implementation
	Section 6: Application Functionality Creation Steps
	Summary

	3 Creating iPhone User Interfaces
	Section 1: Apple’s Human Interface Guide
	Section 2: List- and Browser-Based Interfaces
	Section 3: Nonlist-Based View Applications
	Section 4: Immersion Applications
	Section 5: Creating and Using Custom CSS Transforms
	Section 6: Using and Creating a Drag-and-Drop/Scale/Rotate Module
	Summary

	4 GPS, Acceleration, and Other Native Functions with QuickConnect
	Section 1: JavaScript Device Activation
	Section 2: Objective-C Device Activation
	Section 3: Objective-C Implementation of the QuickConnectiPhone Architecture
	Summary

	5 Hybrid Applications, GPS, Acceleration, and Other Native Functions with PhoneGap
	Section 1: JavaScript Device Activation
	Section 2: Objective-C Device Activation
	Summary

	6 Embedding Google Maps
	Section 1: Displaying a Map from Within Your QuickConnect JavaScript Application
	Section 2: Objective-C Implementation of the QuickConnect Mapping Module
	Summary

	7 Database Access
	Section 1: BrowserDBAccess Example Application
	Section 2: Using WebView SQLite Databases
	Section 3: Using Native SQLite Databases
	Section 4: Using the DataAccessObject with WebKit Engine Databases
	Section 5: Using the DataAccessObject with Native Databases
	Summary

	8 Remote Data Access
	Section 1: BrowserAJAXAccess Example Application
	Section 2: Using the ServerAccessObject
	Section 3: ServerAccessObject
	Section 4: Security Control Functions
	Summary

	A: Introduction to JSON
	Section 1: Background
	Section 2: A JSON JavaScript API
	Summary

	B: The QuickConnectFamily Development Roadmap
	C: The PhoneGap Development Roadmap
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K-L
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

