Data Analysis with R

Load, wrangle, and analyze your data using the world's most
powerful statistical programming language

Data Analysis with R

Table of Contents

Data Analysis with R
Credits

About the Author

About the Reviewer

www.PacktPub.com

Support files, eBooks, discount offers, and more
Why subscribe?

Free access for Packt account holders

Preface

What this book covers

What vou need for this book
Who this book is for

Conventions

Reader feedback

Customer support
Downloading the example code

Downloading the color images of this book

Errata

Piracy
Questions
1. RefresheR

Navigating the basics
Arithmetic and assignment

Logicals and characters

Flow of control

Getting help in R

Vectors

Subsetting

Vectorized functions

Advanced subsetting
Recycling

Functions

Matrices

Loading data into R
Working with packages

Exercises

Summary
2. The Shape of Data

Univariate data

Frequency distributions

Central tendency

Spread

Populations, samples, and estimation
Probability distributions

Visualization methods
Exercises

Summary
3. Describing Relationships

Multivariate data

Relationships between a categorical and a continuous variable

Relationships between two categorical variables

The relationship between two continuous variables

Covariance

Correlation coefficients

Comparing multiple correlations

Visualization methods

Categorical and continuous variables

Two categorical variables

Two continuous variables

More than two continuous variables

Exercises

Summary
4. Probability

Basic probability

A tale of two interpretations

Sampling from distributions

Parameters

The binomial distribution

The normal distribution

The three-sigma rule and using z-tables
Exercises
Summary
5. Using Data to Reason About the World
Estimating means
The sampling distribution
Interval estimation
How did we get 1.967?
Smaller samples
Exercises
Summary

6. Testing Hypotheses
Null Hypothesis Significance Testing

One and two-tailed tests

When things go wrong

A warning about significance

A warning about p-values

Testing the mean of one sample

Assumptions of the one sample t-test

Testing two means

Don’t be fooled!

Assumptions of the independent samples t-test

Testing more than two means
Assumptions of ANOVA

Testing independence of proportions

What if my assumptions are unfounded?

Exercises

Summary
7. Bayesian Methods

The big idea behind Bayesian analysis
Choosing a prior

Who cares about coin flips

Enter MCMC — stage left

Using JAGS and runjags

Fitting distributions the Bayesian way
The Bayesian independent samples t-test

Exercises

Summary
8. Predicting Continuous Variables

Linear models

Simple linear regression
Simple linear regression with a binary predictor

A word of warning

Multiple regression

Regression with a non-binary predictor

Kitchen sink regression

The bias-variance trade-off

Cross-validation

Striking a balance

Linear regression diagnostics

Second Anscombe relationship

Third Anscombe relationship

Fourth Anscombe relationship

Advanced topics
Exercises
Summary
9. Predicting Categorical Variables

k-Nearest Neighbors
Using k-NN in R

Confusion matrices

Limitations of k-NN

Logistic regression
Using logistic regression in R

Decision trees

Random forests

Choosing a classifier
The vertical decision boundary
The diagonal decision boundary
The crescent decision boundary
The circular decision boundary

Exercises

Summary

10. Sources of Data

Relational Databases

Why didn’t we just do that in SQL?
Using JSON
XML

Other data formats

Online repositories

Exercises

Summary
11. Dealing with Messy Data
Analysis with missing data
Visualizing missing data

Types of missing data

So which one is it?

Unsophisticated methods for dealing with missing data
Complete case analysis

Pairwise deletion

Mean substitution

Hot deck imputation

Regression imputation

Stochastic regression imputation
Multiple imputation

So how does mice come up with the imputed values?

Methods of imputation
Multiple imputation in practice
Analysis with unsanitized data
Checking for out-of-bounds data
Checking the data type of a column
Checking for unexpected categories
Checking for outliers, entry errors, or unlikely data points
Chaining assertions

Other messiness

OpenRefine

Regular expressions

tidyr
Exercises

Summary
12. Dealing with Large Data

Wait to optimize
Using a bigger and faster machine

Be smart about your code

Allocation of memory

Vectorization

Using optimized packages
Using another R implementation
Use parallelization
Getting started with parallel R
An example of (some) substance
Using Rcpp
Be smarter about your code
Exercises
Summary
13. Reproducibility and Best Practices
R Scripting
RStudio
Running R scripts
An example script
Scripting and reproducibility
R projects

Version control

Communicating results

Exercises

Summary
Index

Data Analysis with R

Data Analysis with R

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2015
Production reference: 1171215
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78528-814-2

www.packtpub.com

http://www.packtpub.com

Credits

Author

Tony Fischetti
Reviewer

Dipanjan Sarkar
Commissioning Editor
Akram Hussain
Acquisition Editor
Meeta Rajani

Content Development Editor
Anish Dhurat
Technical Editor
Siddhesh Patil

Copy Editor

Sonia Mathur

Project Coordinator
Bijal Patel

Proofreader

Safis Editing

Indexer

Monica Ajmera Mehta
Graphics

Disha Haria
Production Coordinator
Conidon Miranda
Cover Work

Conidon Miranda

About the Author

Tony Fischetti is a data scientist at College Factual, where he gets to use R everyday to
build personalized rankings and recommender systems. He graduated in cognitive science
from Rensselaer Polytechnic Institute, and his thesis was strongly focused on using
statistics to study visual short-term memory.

Tony enjoys writing and contributing to open source software, blogging at
http://www.onthelambda.com, writing about himself in third person, and sharing his
knowledge using simple, approachable language and engaging examples.

The more traditionally exciting of his daily activities include listening to records, playing
the guitar and bass (poorly), weight training, and helping others.

Because I’'m aware of how incredibly lucky I am, it’s really hard to express all the
gratitude I have for everyone in my life that helped me—either directly, or indirectly—in
completing this book. The following (partial) list is my best attempt at balancing
thoroughness whilst also maximizing the number of people who will read this section by
keeping it to a manageable length.

First, I’d like to thank all of my educators. In particular, I’d like to thank the Bronx High
School of Science and Rensselaer Polytechnic Institute. More specifically, I’d like the
Bronx Science Robotics Team, all it’s members, it’s team moms, the wonderful Dena Ford
and Cherrie Fleisher-Strauss; and Justin Fox. From the latter institution, I’d like to thank
all of my professors and advisors. Shout out to Mike Kalsher, Michael Schoelles, Wayne
Gray, Bram van Heuveln, Larry Reid, and Keith Anderson (especially Keith Anderson).

I’d like to thank the New York Public Library, Wikipedia, and other freely available
educational resources. On a related note, I need to thank the R community and, more
generally, all of the authors of R packages and other open source software I use for
spending their own personal time to benefit humanity. Shout out to GNU, the R core team,
and Hadley Wickham (who wrote a majority of the R packages I use daily).

Next, I’d like to thank the company I work for, College Factual, and all of my brilliant co-
workers from whom I’ve learned so much.

I also need to thank my support network of millions, and my many many friends that have
all helped me more than they will likely ever realize.

I’d like to thank my partner, Bethany Wickham, who has been absolutely instrumental in
providing much needed and appreciated emotional support during the writing of this book,
and putting up with the mood swings that come along with working all day and writing all
night.

Next, I’d like to express my gratitude for my sister, Andrea Fischetti, who means the
world to me. Throughout my life, she’s kept me warm and human in spite of the scientist
in me that likes to get all reductionist and cerebral.

Finally, and most importantly, I’d like to thank my parents. This book is for my father, to
whom I owe my love of learning and my interest in science and statistics; and to my

http://www.onthelambda.com

mother for her love and unwavering support and, to whom I owe my work ethic and
ability to handle anything and tackle any challenge.

About the Reviewer

Dipanjan Sarkar is an IT engineer at Intel, the world’s largest silicon company, where he
works on analytics, business intelligence, and application development. He received his
master’s degree in information technology from the International Institute of Information
Technology, Bangalore. Dipanjan’s area of specialization includes software engineering,
data science, machine learning, and text analytics.

His interests include learning about new technologies, disruptive start-ups, and data
science. In his spare time, he loves reading, playing games, and watching popular sitcoms.
Dipanjan also reviewed Learning R for Geospatial Analysis and R Data Analysis
Cookbook, both by Packt Publishing.

I would like to thank Bijal Patel, the project coordinator of this book, for making the
reviewing experience really interactive and enjoyable.

www.PacktPub.com

Support files, eBooks, discount offers, and
more

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as
a print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at <service@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

IE\ PACKT!L E°

https://www?2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital
book library. Here, you can search, access, and read Packt’s entire library of books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
e On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com

Preface

I’m going to shoot it to you straight: there are a lot of books about data analysis and the R
programming language. I’1l take it on faith that you already know why it’s extremely
helpful and fruitful to learn R and data analysis (if not, why are you reading this preface?!)
but allow me to make a case for choosing this book to guide you in your journey.

For one, this subject didn’t come naturally to me. There are those with an innate talent for
grasping the intricacies of statistics the first time it is taught to them; I don’t think I’'m one
of these people. I kept at it because I love science and research and knew that data analysis
was necessary, not because it immediately made sense to me. Today, I love the subject in
and of itself, rather than instrumentally, but this only came after months of heartache.
Eventually, as I consumed resource after resource, the pieces of the puzzle started to come
together. After this, I started tutoring all of my friends in the subject—and have seen them
trip over the same obstacles that I had to learn to climb. I think that coming from this
background gives me a unique perspective on the plight of the statistics student and allows
me to reach them in a way that others may not be able to. By the way, don’t let the fact
that statistics used to baffle me scare you; I have it on fairly good authority that I know
what I’'m talking about today.

Secondly, this book was born of the frustration that most statistics texts tend to be written
in the driest manner possible. In contrast, I adopt a light-hearted buoyant approach—but
without becoming agonizingly flippant.

Third, this book includes a lot of material that I wished were covered in more of the
resources I used when I was learning about data analysis in R. For example, the entire last
unit specifically covers topics that present enormous challenges to R analysts when they
first go out to apply their knowledge to imperfect real-world data.

Lastly, I thought long and hard about how to lay out this book and which order of topics
was optimal. And when I say long and hard I mean I wrote a library and designed
algorithms to do this. The order in which I present the topics in this book was very
carefully considered to (a) build on top of each other, (b) follow a reasonable level of
difficulty progression allowing for periodic chapters of relatively simpler material
(psychologists call this intermittent reinforcement), (c) group highly related topics
together, and (d) minimize the number of topics that require knowledge of yet unlearned
topics (this is, unfortunately, common in statistics). If you’re interested, I detail this
procedure in a blog post that you can read at http://bit.ly/teach-stats.

The point is that the book you’re holding is a very special one—one that I poured my soul
into. Nevertheless, data analysis can be a notoriously difficult subject, and there may be
times where nothing seems to make sense. During these times, remember that many others
(including myself) have felt stuck, too. Persevere... the reward is great. And remember, if
a blockhead like me can do it, you can, too. Go you!

http://bit.ly/teach-stats

What this book covers

Chapter 1, RefresheR, reviews the aspects of R that subsequent chapters will assume
knowledge of. Here, we learn the basics of R syntax, learn R’s major data structures, write
functions, load data and install packages.

Chapter 2, The Shape of Data, discusses univariate data. We learn about different data
types, how to describe univariate data, and how to visualize the shape of these data.

Chapter 3, Describing Relationships, goes on to the subject of multivariate data. In
particular, we learn about the three main classes of bivariate relationships and learn how to
describe them.

Chapter 4, Probability, kicks off a new unit by laying foundation. We learn about basic
probability theory, Bayes’ theorem, and probability distributions.

Chapter 5, Using Data to Reason About the World, discusses sampling and estimation
theory. Through examples, we learn of the central limit theorem, point estimation and
confidence intervals.

Chapter 6, Testing Hypotheses, introduces the subject of Null Hypothesis Significance
Testing (NHST). We learn many popular hypothesis tests and their non-parametric
alternatives. Most importantly, we gain a thorough understanding of the misconceptions
and gotchas of NHST.

Chapter 7, Bayesian Methods, introduces an alternative to NHST based on a more intuitive
view of probability. We learn the advantages and drawbacks of this approach, too.

Chapter 8, Predicting Continuous Variables, thoroughly discusses linear regression.
Before the chapter’s conclusion, we learn all about the technique, when to use it, and what
traps to look out for.

Chapter 9, Predicting Categorical Variables, introduces four of the most popular
classification techniques. By using all four on the same examples, we gain an appreciation
for what makes each technique shine.

Chapter 10, Sources of Data, is all about how to use different data sources in R. In
particular, we learn how to interface with databases, and request and load JSON and XML
via an engaging example.

Chapter 11, Dealing with Messy Data, introduces some of the snags of working with less
than perfect data in practice. The bulk of this chapter is dedicated to missing data,
imputation, and identifying and testing for messy data.

Chapter 12, Dealing with Large Data, discusses some of the techniques that can be used to
cope with data sets that are larger than can be handled swiftly without a little planning.
The key components of this chapter are on parallelization and Rcpp.

Chapter 13, Reproducibility and Best Practices, closes with the extremely important (but
often ignored) topic of how to use R like a professional. This includes learning about
tooling, organization, and reproducibility.

What you need for this book

All code in this book has been written against the latest version of R—3.2.2 at the time of
writing. As a matter of good practice, you should keep your R version up to date but most,
if not all, code should work with any reasonably recent version of R. Some of the R
packages we will be installing will require more recent versions, though. For the other
software that this book uses, instructions will be furnished pro re nata. If you want to get a
head start, however, install RStudio, JAGS, and a C++ compiler (or Rtools if you use
Windows).

Who this book is for

Whether you are learning data analysis for the first time, or you want to deepen the
understanding you already have, this book will prove to an invaluable resource. If you are
looking for a book to bring you all the way through the fundamentals to the application of
advanced and effective analytics methodologies, and have some prior programming
experience and a mathematical background, then this is for you.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their
meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: “We will
use the system.time function to time the execution.”

A block of code is set as follows:

library(VIM)
aggr(miss_mtcars, numbers=TRUE)

Any command-line input or output is written as follows:
R --vanilla CMD BATCH nothing.R

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: “Clicking the Next
button moves you to the next screen.”

Note

Warnings or important notes appear in a box like this.
Tip

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the
book’s title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-
mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in the
output. You can download this file from
https://www.packtpub.com/sites/default/files/downloads/Data_Analysis_With_R_Colorlm:

https://www.packtpub.com/sites/default/files/downloads/Data_Analysis_With_R_ColorImages.pdf

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted and
the errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

mailto:copyright@packtpub.com

Questions

If you have a problem with any aspect of this book, you can contact us at
<guestions@packtpub.com>, and we will do our best to address the problem.

mailto:questions@packtpub.com

Chapter 1. RefresheR

Before we dive into the (other) fun stuff (sampling multi-dimensional probability
distributions, using convex optimization to fit data models, and so on), it would be helpful
if we review those aspects of R that all subsequent chapters will assume knowledge of.

If you fancy yourself as an R guru, you should still, at least, skim through this chapter,
because you’ll almost certainly find the idioms, packages, and style introduced here to be
beneficial in following along with the rest of the material.

If you don’t care much about R (yet), and are just in this for the statistics, you can heave a
heavy sigh of relief that, for the most part, you can run the code given in this book in the
interactive R interpreter with very little modification, and just follow along with the ideas.
However, it is my belief (read: delusion) that by the end of this book, you’ll cultivate a
newfound appreciation of R alongside a robust understanding of methods in data analysis.

Fire up your R interpreter, and let’s get started!

Navigating the basics

In the interactive R interpreter, any line starting with a > character denotes R asking for
input (If you see a + prompt, it means that you didn’t finish typing a statement at the
prompt and R is asking you to provide the rest of the expression.). Striking the return key
will send your input to R to be evaluated. R’s response is then spit back at you in the line
immediately following your input, after which R asks for more input. This is called a
REPL (Read-Evaluate-Print-Loop). It is also possible for R to read a batch of
commands saved in a file (unsurprisingly called batch mode), but we’ll be using the
interactive mode for most of the book.

As you might imagine, R supports all the familiar mathematical operators as most other
languages:

Arithmetic and assignment

Check out the following example:

2

H O+

> 2
[1]

9/3
]

[CSEN

>
[1
> 5 %% 2 # modulus operator (remainder of 5 divided by 2)
[1] 1
Anything that occurs after the octothorpe or pound sign, #, (or hash-tag for you

young’uns), is ignored by the R interpreter. This is useful for documenting the code in
natural language. These are called comments.

In a multi-operation arithmetic expression, R will follow the standard order of operations
from math. In order to override this natural order, you have to use parentheses flanking the
sub-expression that you’d like to be performed first.

>3+ 2 -10 N 2 # N 1s the exponent operator
[1] -95

>3+ (2 - 10) N2

[1] 67

In practice, almost all compound expressions are split up with intermediate values
assigned to variables which, when used in future expressions, are just like substituting the
variable with the value that was assigned to it. The (primary) assignment operator is <-.

> # assignments follow the form VARIABLE <- VALUE

> var <- 10

> var

[1] 10

> var N 2

[1] 100

> VAR / 2 # variable names are case-sensitive
Error: object 'VAR' not found

Notice that the first and second lines in the preceding code snippet didn’t have an output to
be displayed, so R just immediately asked for more input. This is because assignments
don’t have a return value. Their only job is to give a value to a variable, or to change the
existing value of a variable. Generally, operations and functions on variables in R don’t
change the value of the variable. Instead, they return the result of the operation. If you
want to change a variable to the result of an operation using that variable, you have to
reassign that variable as follows:

> var # var is 10

[1] 10

> var N 2

[1] 160

> var # var is still 10

[1] 10

> var <- var N 2 # no return value

> var # var is now 100

[1] 100
Be aware that variable names may contain numbers, underscores, and periods; this is
something that trips up a lot of people who are familiar with other programming languages
that disallow using periods in variable names. The only further restrictions on variable
names are that it must start with a letter (or a period and then a letter), and that it must not
be one of the reserved words in R such as TRUE, Inf, and so on.

Although the arithmetic operators that we’ve seen thus far are functions in their own right,
most functions in R take the form: function_name (value(s) supplied to the function). The
values supplied to the function are called arguments of that function.

> c0s(3.14159) # cosine function

[1] -1

> cos(pi) # pi is a constant that R provides
[1] -1

> acos(-1) # arccosine function

[1] 2.141593

> acos(cos(pi)) + 10

[1] 13.14159

> # functions can be used as arguments to other functions

(If you paid attention in math class, you’ll know that the cosine of m is -1, and that
arccosine is the inverse function of cosine.)

There are hundreds of such useful functions defined in base R, only a handful of which we
will see in this book. Two sections from now, we will be building our very own functions.

Before we move on from arithmetic, it will serve us well to visit some of the odd values
that may result from certain operations:

>1/0
[1] Inf
> 0/ 0
[1] NaN

It is common during practical usage of R to accidentally divide by zero. As you can see,
this undefined operation yields an infinite value in R. Dividing zero by zero yields the
value NaN, which stands for Not a Number.

Logicals and characters

So far, we’ve only been dealing with numerics, but there are other atomic data types in R.
To wit:

> foo <- TRUE # foo is of the logical data type

> class(foo) # class() tells us the type

[1] "logical"

> bar <- "hi!" # bar is of the character data type

> class(bar)
[1] "character"

The logical data type (also called Booleans) can hold the values TRUE or FALSE or,
equivalently, T or F. The familiar operators from Boolean algebra are defined for these
types:

> foo

[1] TRUE

> foo && TRUE # boolean and

[1] TRUE

> foo && FALSE

[1] FALSE

> foo || FALSE # boolean or

[1] TRUE

> I1foo # negation operator
[1] FALSE

In a Boolean expression with a logical value and a number, any number that is not 0 is
interpreted as TRUE.

> foo && 1
[1] TRUE
> foo && 2
[1] TRUE
> foo && 0
[1] FALSE

Additionally, there are functions and operators that return logical values such as:

>4 <2 # less than operator

[1] FALSE

> 4 >= 4 # greater than or equal to
[1] TRUE

> 3 == # equality operator

[1] TRUE

>3 1= 2 # inequality operator

[1] TRUE

Just as there are functions in R that are only defined for work on the numeric and logical
data type, there are other functions that are designed to work only with the character data
type, also known as strings:

> lang.domain <- "statistics"
> lang.domain <- toupper(lang.domain)
> print(lang.domain)

[1] "STATISTICS"

> # retrieves substring from first character to fourth character
> substr(lang.domain, 1, 4)

[1] "STAT"

> gsub("1I", "1", lang.domain) # substitutes every "I" for "1"
[1] "STAT1ST1CS"

combines character strings

> paste("R does", lang.domain, "!!I!")

[1] "R does STATISTICS !'!!"

Flow of control

The last topic in this section will be flow of control constructs.

The most basic flow of control construct is the if statement. The argument to an if
statement (what goes between the parentheses), is an expression that returns a logical
value. The block of code following the if statement gets executed only if the expression
yields TRUE. For example:

> if(2 + 2 == 4)

+ print("very good")

[1] "very good"

> if(2 + 2 == 5)

+ print("all hail to the thief")
>

It is possible to execute more than one statement if an if condition is triggered; you just
have to use curly brackets ({}) to contain the statements.

if((4/2==2) && (2*2==4)){
print("four divided by two is two..")
print("and two times two is four")

+ + Vv

}

+

[1] "four divided by two is two.."
[1] "and two times two is four"

>

It is also possible to specify a block of code that will get executed if the if conditional is
FALSE.

> closing.time <- TRUE

> jif(closing.time){

+ print("you don't have to go home")
+ print("but you can't stay here")

+ } else{

+ print("you can stay here!'")

+}

[1] "you don't have to go home"
[1] "but you can't stay here"

> if(!closing.time){

+ print("you don't have to go home")
+ print("but you can't stay here")

+ } else{

+ print("you can stay here!'")

+}

[1] "you can stay here!"

>

There are other flow of control constructs (like while and for), but we won’t directly be
using them much in this text.

Getting help in R

Before we go further, it would serve us well to have a brief section detailing how to get
help in R. Most R tutorials leave this for one of the last sections—if it is even included at
all! In my own personal experience, though, getting help is going to be one of the first
things you will want to do as you add more bricks to your R knowledge castle. Learning R
doesn’t have to be difficult; just take it slowly, ask questions, and get help early. Go you!

It is easy to get help with R right at the console. Running the help.start() function at the
prompt will start a manual browser. From here, you can do anything from going over the
basics of R to reading the nitty-gritty details on how R works internally.

You can get help on a particular function in R if you know its name, by supplying that
name as an argument to the help function. For example, let’s say you want to know more
about the gsub() function that I sprang on you before. Running the following code:

> help("gsub")

> # or simply

> ?gsub
will display a manual page documenting what the function is, how to use it, and examples
of its usage.

This rapid accessibility to documentation means that I’m never hopelessly lost when I
encounter a function which I haven’t seen before. The downside to this extraordinarily
convenient help mechanism is that I rarely bother to remember the order of arguments,
since looking them up is just seconds away.

Occasionally, you won’t quite remember the exact name of the function you’re looking
for, but you’ll have an idea about what the name should be. For this, you can use the
help.search() function.

> help.search('"chisquare")

> # or simply

> ??chisquare
For tougher, more semantic queries, nothing beats a good old fashioned web search
engine. If you don’t get relevant results the first time, try adding the term programming or
statistics in there for good measure.

Vectors

Vectors are the most basic data structures in R, and they are ubiquitous indeed. In fact,
even the single values that we’ve been working with thus far were actually vectors of
length 1. That’s why the interactive R console has been printing [1] along with all of our
output.

Vectors are essentially an ordered collection of values of the same atomic data type.
Vectors can be arbitrarily large (with some limitations), or they can be just one single
value.

The canonical way of building vectors manually is by using the c() function (which
stands for combine).

> our.vect <- c(8, 6, 7, 5, 3, 0, 9)
> our.vect
[1] 86 753009

In the preceding example, we created a numeric vector of length 7 (namely, Jenny’s
telephone number).

Note that if we tried to put character data types into this vector as follows:

> another.vect <- c("8", 6, 7, "-", 3, "0", 9)
> anhother.vect
[1] Il8l| Il6|l I|7|I II_II I|3|l IIOII l|9|l

R would convert all the items in the vector (called elements) into character data types to
satisfy the condition that all elements of a vector must be of the same type. A similar thing
happens when you try to use logical values in a vector with numbers; the logical values
would be converted into 1 and 0 (for TRUE and FALSE, respectively). These logicals will
turn into TRUE and FALSE (note the quotation marks) when used in a vector that contains
characters.

Subsetting

It is very common to want to extract one or more elements from a vector. For this, we use
a technique called indexing or subsetting. After the vector, we put an integer in square
brackets ([]) called the subscript operator. This instructs R to return the element at that
index. The indices (plural for index, in case you were wondering!) for vectors in R start at
1, and stop at the length of the vector.

> our.vect[1] # to get the first value

[1] 8

> # the function length() returns the length of a vector

> length(our.vect)

[1] 7

> our.vect[length(our.vect)] # get the last element of a vector

[1] 9
Note that in the preceding code, we used a function in the subscript operator. In cases like
these, R evaluates the expression in the subscript operator, and uses the number it returns

as the index to extract.

If we get greedy, and try to extract an element at an index that doesn’t exist, R will
respond with NA, meaning, not available. We see this special value cropping up from time
to time throughout this text.

> our.vect[10]
[1] NA

One of the most powerful ideas in R is that you can use vectors to subset other vectors:

> # extract the first, third, fifth, and

> # seventh element from our vector

> our.vect[c(1, 3, 5, 7)]

[1] 8 7 3 9
The ability to use vectors to index other vectors may not seem like much now, but its
usefulness will become clear soon.

Another way to create vectors is by using sequences.

> other.vector <- 1:10
> other.vector

[1] 1 2 3 4 5 6 7 8 9 10
> another.vector <- seq(50, 30, by=-2)
> anhother.vector

[1] 50 48 46 44 42 40 38 36 34 32 30

Above, the 1:10 statement creates a vector from 1 to 10. 16:1 would have created the
same 10 element vector, but in reverse. The seq() function is more general in that it
allows sequences to be made using steps (among many other things).

Combining our knowledge of sequences and vectors subsetting vectors, we can get the
first 5 digits of Jenny’s number thusly:

> our.vect[1:5]

[1] 8 6 7 5 3

Vectorized functions

Part of what makes R so powerful is that many of R’s functions take vectors as arguments.
These vectorized functions are usually extremely fast and efficient. We’ve already seen
one such function, length(), but there are many many others.

> # takes the mean of a vector
> mean(our.vect)

[1] 5.428571

> sd(our.vect) # standard deviation
[1] 3.101459

> min(our.vect)

[1] ©

> max(1:10)

[1] 10

> sum(c(1, 2, 3))

[1] 6

In practical settings, such as when reading data from files, it is common to have NA values
in vectors:

> messy.vector <- c(8, 6, NA, 7, 5, NA, 3, 0, 9)
> messy.vector

[1] 8 6NA 7 5NA 3 0 9

> length(messy.vector)

[1] 9

Some vectorized functions will not allow NA values by default. In these cases, an extra
keyword argument must be supplied along with the first argument to the function.

> mean(messy.vector)

[1] NA

> mean(messy.vector, na.rm=TRUE)
[1] 5.428571

> sum(messy.vector, na.rm=FALSE)
[1] NA

> sum(messy.vector, na.rm=TRUE)
[1] 38

As mentioned previously, vectors can be constructed from logical values too.

> log.vector <- c(TRUE, TRUE, FALSE)
> log.vector
[1] TRUE TRUE FALSE

Since logical values can be coerced into behaving like numerics, as we saw earlier, if we
try to sum a logical vector as follows:.

> sum(log.vector)
[1] 2

we will, essentially, get a count of the number of TRUE values in that vector.

There are many functions in R which operate on vectors and return logical vectors.
is.na() is one such function. It returns a logical vector—that is, the same length as the

vector supplied as an argument—with a TRUE in the position of every NA value. Remember
our messy vector (from just a minute ago)?

> messy.vector

[1] 8 6NA 7 5NA 3 0 9

> is.na(messy.vector)

[1] FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE
> # 8 6 NA 7 5 NA 3 0] 9

Putting together these pieces of information, we can get a count of the number of NA
values in a vector as follows:

> sum(is.na(messy.vector))
[1] 2

When you use Boolean operators on vectors, they also return logical vectors of the same
length as the vector being operated on.

> our.vect > 5
[1] TRUE TRUE TRUE FALSE FALSE FALSE TRUE

If we wanted to—and we do—count the number of digits in Jenny’s phone number that
are greater than five, we would do so in the following manner:

> sum(our.vect > 5)
[1] 4

Advanced subsetting

Did I mention that we can use vectors to subset other vectors? When we subset vectors
using logical vectors of the same length, only the elements corresponding to the TRUE
values are extracted. Hopefully, sparks are starting to go off in your head. If we wanted to
extract only the legitimate non-NA digits from Jenny’s number, we can do it as follows:

> messy.vector[!is.na(messy.vector)]
[1] 86 75309

This is a very critical trait of R, so let’s take our time understanding it; this idiom will
come up again and again throughout this book.

The logical vector that yields TRUE when an NA value occurs in messy.vector (from
is.na()) is then negated (the whole thing) by the negation operator !. The resultant vector
is TRUE whenever the corresponding value in messy.vector is not NA. When this logical
vector is used to subset the original messy vector, it only extracts the non-NA values from
it.

Similarly, we can show all the digits in Jenny’s phone number that are greater than five as
follows:

> our.vect[our.vect > 5]
[1] 86 7 9

Thus far, we’ve only been displaying elements that have been extracted from a vector.
However, just as we’ve been assigning and re-assigning variables, we can assign values to
various indices of a vector, and change the vector as a result. For example, if Jenny tells us
that we have the first digit of her phone number wrong (it’s really 9), we can reassign just
that element without modifying the others.

> our.vect
[1] 86 753009
> our.vect[1l] <- 9
> our.vect
[1] 96 753009

Sometimes, it may be required to replace all the NA values in a vector with the value 0. To
do that with our messy vector, we can execute the following command:

> messy.vector[is.na(messy.vector)] <- 0
> messy.vector
[11 8607503009

Elegant though the preceding solution is, modifying a vector in place is usually
discouraged in favor of creating a copy of the original vector and modifying the copy. One
such technique for performing this is by using the ifelse() function.

Not to be confused with the if/else control construct, ifelse() is a function that takes 3
arguments: a test that returns a logical/Boolean value, a value to use if the element passes
the test, and one to return if the element fails the test.

The preceding in-place modification solution could be re-implemented with ifelse as

follows:

> ifelse(is.na(messy.vector), 0, messy.vector)
[11 8607503009

Recycling

The last important property of vectors and vector operations in R is that they can be
recycled. To understand what I mean, examine the following expression:

> our.vect + 3
[1] 12 9 16 8 6 3 12

This expression adds three to each digit in Jenny’s phone number. Although it may look
so, R is not performing this operation between a vector and a single value. Remember
when I said that single values are actually vectors of the length 1? What is really
happening here is that R is told to perform element-wise addition on a vector of length 7
and a vector of length 1. Since element-wise addition is not defined for vectors of differing
lengths, R recycles the smaller vector until it reaches the same length as that of the bigger
vector. Once both the vectors are the same size, then R, element-by-element, performs the
addition and returns the result.

> our.vect + 3
[1] 12 9 16 8 6 3 12

is tantamount to...

> our.vect + ¢c(3, 3, 3, 3, 3, 3, 3)

[1] 12 910 8 6 3 12
If we wanted to extract every other digit from Jenny’s phone number, we can do so in the
following manner:

> our.vect[c(TRUE, FALSE)]
[1] 9 7 3 9

This works because the vector ¢ (TRUE, FALSE) is repeated until it is of the length 7,
making it equivalent to the following:

> our.vect[c(TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE)]
[1] 97 39

One common snag related to vector recycling that R users (useRs, if I may) encounter is
that during some arithmetic operations involving vectors of discrepant length, R will warn
you if the smaller vector cannot be repeated a whole number of times to reach the length
of the bigger vector. This is not a problem when doing vector arithmetic with single
values, since 1 can be repeated any number of times to match the length of any vector
(which must, of course, be an integer). It would pose a problem, though, if we were
looking to add three to every other element in Jenny’s phone number.

> our.vect + c(3, 0)
[1] 12 6 106 5 6 0 12
Warning message:
In our.vect + c(3, 0)
longer object length is not a multiple of shorter object length

You will likely learn to love these warnings, as they have stopped many useRs from
making grave errors.

Before we move on to the next section, an important thing to note is that in a lot of other
programming languages, many of the things that we did would have been implemented
using for loops and other control structures. Although there is certainly a place for loops
and such in R, oftentimes a more sophisticated solution exists in using just vector/matrix
operations. In addition to elegance and brevity, the solution that exploits vectorization and
recycling is often many, many times more efficient.

Functions

If we need to perform some computation that isn’t already a function in R a multiple
number of times, we usually do so by defining our own functions. A custom function in R
is defined using the following syntax:

function.name <- function(argumentl, argument2, ...){
some functionality
}

For example, if we wanted to write a function that determined if a number supplied as an
argument was even, we can do so in the following manner:

> is.even <- function(a.number){
+ remainder <- a.number %% 2

+ if(remainder==0)

+ return(TRUE)

+ return(FALSE)

+

}
>
> # testing it
> is.even(10)
[1] TRUE

> is.even(9)
[1] FALSE

As an example of a function that takes more than one argument, let’s generalize the
preceding function by creating a function that determines whether the first argument is
divisible by its second argument.

> is.divisible.by <- function(large.number, smaller.number){
if(large.number %% smaller.number != 0)

return(FALSE)
return(TRUE)

Vel + + + 4+

> # testing it
> js.divisible.by(10, 2)

[1] TRUE
> jis.divisible.by(10, 3)
[1] FALSE
> jis.divisible.by(9, 3)
[1] TRUE

Our function, is.even(), could now be rewritten simply as:

> jis.even <- function(num){

+ is.divisible.by(num, 2)

+}
It is very common in R to want to apply a particular function to every element of a vector.
Instead of using a loop to iterate over the elements of a vector, as we would do in many
other languages, we use a function called sapply() to perform this. sapply() takes a

vector and a function as its argument. It then applies the function to every element and
returns a vector of results. We can use sapply() in this manner to find out which digits in
Jenny’s phone number are even:

> sapply(our.vect, is.even)
[1] FALSE TRUE FALSE FALSE FALSE TRUE FALSE

This worked great because sapply takes each element, and uses it as the argument in
is.even() which takes only one argument. If you wanted to find the digits that are
divisible by three, it would require a little bit more work.

One option is just to define a function is.divisible.by.three() that takes only one
argument, and use that in sapply. The more common solution, however, is to define an
unnamed function that does just that in the body of the sapply function call:

> sapply(our.vect, function(num){is.divisible.by(num, 3)})
[1] TRUE TRUE FALSE FALSE TRUE TRUE TRUE

Here, we essentially created a function that checks whether its argument is divisible by
three, except we don’t assign it to a variable, and use it directly in the sapply body
instead. These one-time-use unnamed functions are called anonymous functions or lambda
functions. (The name comes from Alonzo Church’s invention of the lambda calculus, if
you were wondering.)

This is somewhat of an advanced usage of R, but it is very useful as it comes up very often
in practice.

If we wanted to extract the digits in Jenny’s phone number that are divisible by both, two
and three, we can write it as follows:

where.even <- sapply(our.vect, is.even)

where.div.3 <- sapply(our.vect, function(num){
is.divisible.by(num, 3)})

"&" 1is like the "&&" and operator but for vectors

our.vect[where.even & where.div.3]

[1] 6 O

Neat-O!

VV+ VYV

Note that if we wanted to be sticklers, we would have a clause in the function bodies to
preclude a modulus computation, where the first number was smaller than the second. If
we had, our function would not have erroneously indicated that 0 was divisible by two and
three. I'm not a stickler, though, so the functions will remain as is. Fixing this function is
left as an exercise for the (stickler) reader.

Matrices

In addition to the vector data structure, R has the matrix, data frame, list, and array data
structures. Though we will be using all these types (except arrays) in this book, we only
need to review the first two in this chapter.

A matrix in R, like in math, is a rectangular array of values (of one type) arranged in rows
and columns, and can be manipulated as a whole. Operations on matrices are fundamental
to data analysis.

One way of creating a matrix is to just supply a vector to the function matrix().

> a.matrix <- matrix(c(1, 2, 3, 4, 5, 6))
> a.matrix

[,1]
[1,] 1
[2,] 2
[3,] 3
[4,] 4
[5/] 5
[6,] 6

This produces a matrix with all the supplied values in a single column. We can make a
similar matrix with two columns by supplying matrix() with an optional argument, ncol,
that specifies the number of columns.

> a.matrix <- matrix(c(1, 2, 3, 4, 5, 6), ncol=2)
> a.matrix
[,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6
We could have produced the same matrix by binding two vectors, c(1, 2, 3) and c(4,
5, 6) by columns using the cbind() function as follows:

> a2.matrix <- cbind(c(1, 2, 3), c(4, 5, 6))

We could create the transposition of this matrix (where rows and columns are switched) by
binding those vectors by row instead:

> a3.matrix <- rbind(c(1, 2, 3), c(4, 5, 6))
> a3.matrix

[,1]1 [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
or by just using the matrix transposition function in R, t ().
> t(a2.matrix)

Some other functions that operate on whole vectors are rowSums()/colSums() and
rowMeans()/colMeans().

> a2.matrix

[,1]1 [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6

> colSums(a2.matrix)
[1] 6 15

> rowMeans(a2.matrix)
[1] 2.5 3.5 4.5

If vectors have sapply(), then matrices have apply(). The preceding two functions could
have been written, more verbosely, as:

> apply(a2.matrix, 2, sum)
[1] 6 15

> apply(a2.matrix, 1, mean)
[1] 2.5 3.5 4.5

where 1 instructs R to perform the supplied function over its rows, and 2, over its
columns.

The matrix multiplication operator in R is %*%

> a2.matrix %*% a2.matrix
Error in a2.matrix %*% a2.matrix : non-conformable arguments

Remember, matrix multiplication is only defined for matrices where the number of
columns in the first matrix is equal to the number of rows in the second.

> a2.matrix
[,1] [,2]

[1,] 1 4

[2,] 2 S

[3/] 3 6

> a3.matrix
[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

> a2.matrix %*% a3.matrix
[,1] [,2] [,3]

[1,1 17 22 27

[2, 22 29 36

[3,] 27 36 45

>

> # dim() tells us how many rows and columns

> # (respectively) there are in the given matrix

> dim(a2.matrix)

[1] 3 2
To index the element of a matrix at the second row and first column, you need to supply
both of these numbers into the subscripting operator.

> a2.matrix[2,1]
[1] 2

Many useRs get confused and forget the order in which the indices must appear;
remember—it’s row first, then columns!

If you leave one of the spaces empty, R will assume you want that whole dimension:

> # returns the whole second column
> a2.matrix[, 2]

[1] 4 5 6

> # returns the first row

> a2.matrix[1,]

[1] 1 4

And, as always, we can use vectors in our subscript operator:

> # give me element in column 2 at the first and third row
> a2.matrix[c(1, 3), 2]
[1] 4 6

Loading data into R

Thus far, we’ve only been entering data directly into the interactive R console. For any
data set of non-trivial size this is, obviously, an intractable solution. Fortunately for us, R
has a robust suite of functions for reading data directly from external files.

Go ahead, and create a file on your hard disk called favorites. txt that looks like this:

flavor, number
pistachio, 6

mint chocolate chip,7
vanilla,5
chocolate, 10
strawberry, 2
neopolitan, 4

This data represents the number of students in a class that prefer a particular flavor of soy
ice cream. We can read the file into a variable called favs as follows:

> favs <- read.table("favorites.txt", sep=",", header=TRUE)

If you get an error that there is no such file or directory, give R the full path name to your
data set or, alternatively, run the following command:

> favs <- read.table(file.choose(), sep=",", header=TRUE)

The preceding command brings up an open file dialog for letting you navigate to the file
you’ve just created.

The argument sep=", " tells R that each data element in a row is separated by a comma.
Other common data formats have values separated by tabs and pipes (" |"). The value of
sep should then be "\t" and " | ", respectively.

The argument header=TRUE tells R that the first row of the file should be interpreted as the
names of the columns. Remember, you can enter ?read. table at the console to learn more
about these options.

Reading from files in this comma-separated-values format (usually with the .csv file
extension) is so common that R has a more specific function just for it. The preceding data
import expression can be best written simply as:

> favs <- read.csv("favorites.txt")

Now, we have all the data in the file held in a variable of class data.frame. A data frame
can be thought of as a rectangular array of data that you might see in a spreadsheet
application. In this way, a data frame can also be thought of as a matrix; indeed, we can
use matrix-style indexing to extract elements from it. A data frame differs from a matrix,
though, in that a data frame may have columns of differing types. For example, whereas a
matrix would only allow one of these types, the data set we just loaded contains character
data in its first column, and numeric data in its second column.

Let’s check out what we have by using the head() command, which will show us the first

few lines of a data frame:

> head(favs)
flavor number

1 pistachio 6
2 mint chocolate chip 7
3 vanilla 5
4 chocolate 10
5 strawberry 2
6 neopolitan 4

> class(favs)

[1] "data.frame"

> class(favs$flavor)
[1] "factor"

> class(favs$number)
[1] "numeric"

I lied, ok! So what?! Technically, flavor is a factor data type, not a character type.

We haven’t seen factors yet, but the idea behind them is really simple. Essentially, factors
are codings for categorical variables, which are variables that take on one of a finite
number of categories—think {"high", "medium", and "low"} or {"control",
"experimental"}.

Though factors are extremely useful in statistical modeling in R, the fact that R, by
default, automatically interprets a column from the data read from disk as a type factor if it
contains characters, is something that trips up novices and seasoned useRs alike. Because
of this, we will primarily prevent this behavior manually by adding the stringsAsFactors
optional keyword argument to the read.* commands:

> favs <- read.csv('"favorites.txt", stringsAsFactors=FALSE)
> class(favs$flavor)
[1] "character"

Much better, for now! If you’d like to make this behavior the new default, read the ?
options manual page. We can always convert to factors later on if we need to!

If you haven’t noticed already, I’ve snuck a new operator on you—s$, the extract operator.
This is the most popular way to extract attributes (or columns) from a data frame. You can
also use double square brackets ([[and]]) to do this.

These are both in addition to the canonical matrix indexing option. The following three
statements are thus, in this context, functionally identical:

> favs$flavor

[1] "pistachio" "mint chocolate chip" "vanilla"
[4] "chocolate" "strawberry" "neopolitan"
> favs[["flavor"]]

[1] "pistachio" "mint chocolate chip" "vanilla"
[4] "chocolate" "strawberry" "neopolitan"
> favs[, 1]

[1] "pistachio" "mint chocolate chip" "vanilla"

[4] "chocolate" "strawberry" "neopolitan"

Note

Notice how R has now printed another number in square brackets—besides [1]—along
with our output. This is to show us that chocolate is the fourth element of the vector that
was returned from the extraction.

You can use the names () function to get a list of the columns available in a data frame.
You can even reassign names using the same:

> names(favs)

[1] "flavor" "number"

> names(favs)[1] <- "flav"
> names(favs)

[1] "flav" "number"

Lastly, we can get a compact display of the structure of a data frame by using the str ()
function on it:

> str(favs)
'data.frame': 6 obs. of 2 variables:
$ flav : chr "pistachio" "mint chocolate chip" "vanilla" "chocolate"

$ number: num 6 7 5 10 2 4

Actually, you can use this function on any R structure—the property of functions that
change their behavior based on the type of input is called polymorphism.

Working with packages

Robust, performant, and numerous though base R’s functions are, we are by no means
limited to them! Additional functionality is available in the form of packages. In fact, what
makes R such a formidable statistics platform is the astonishing wealth of packages
available (well over 7,000 at the time of writing). R’s ecosystem is second to none!

Most of these myriad packages exist on the Comprehensive R Archive Network
(CRAN). CRAN is the primary repository for user-created packages.

One package that we are going to start using right away is the ggplot2 package. ggplot2 is
a plotting system for R. Base R has sophisticated and advanced mechanisms to plot data,
but many find ggplot2 more consistent and easier to use. Further, the plots are often more
aesthetically pleasing by default.

Let’s install it!

downloads and installs from CRAN
> install.packages('"ggplot2")

Now that we have the package downloaded, let’s load it into the R session, and test it out
by plotting our data from the last section:

library(ggplot2)

ggplot(favs, aes(x=flav, y=number)) +
geom_bar(stat="identity") +
ggtitle("Soy ice cream flavor preferences")

+ + VvV V

Soy ice cream flavor preferences

flaw

number

Figure 1.1: Soy ice cream flavor preferences

You're all wrong, Mint Chocolate Chip is way better!
Don’t worry about the syntax of the ggplot function, yet. We’ll get to it in good time.

You will be installing some more packages as you work through this text. In the
meantime, if you want to play around with a few more packages, you can install the gdata
and foreign packages that allow you to directly import Excel spreadsheets and SPSS data
files respectively directly into R.

Exercises

You can practice the following exercises to help you get a good grasp of the concepts
learned in this chapter:

e Write a function called simon.says that takes in a character string, and returns that
string in all upper case after prepending the string “Simon says: ” to the beginning of
it.

e Write a function that takes two matrices as arguments, and returns a logical value
representing whether the matrices can be matrix multiplied.

¢ Find a free data set on the web, download it, and load it into R. Explore the structure
of the data set.

e Reflect upon how Hester Prynne allowed her scarlet letter to be decorated with
flowers by her daughter in Chapter 10. To what extent is this indicative of Hester’s
recasting of the scarlet letter as a positive part of her identity. Back up your thesis
with excerpts from the book.

Summary

In this chapter, we learned about the world’s greatest analytics platform, R. We started
from the beginning and built a foundation, and will now explore R further, based on the
knowledge gained in this chapter. By now, you have become well versed in the basics of R
(which, paradoxically, is the hardest part).You now know how to:

Use R as a big calculator to do arithmetic

Make vectors, operate on them, and subset them expressively
Load data from disk

Install packages

You have by no means finished learning about R; indeed, we have gone over mostly just
the basics. However, we have enough to continue ahead, and you’ll pick up more along
the way. Onward to statistics land!

Chapter 2. The Shape of Data

Welcome back! Since we now have enough knowledge about R under our belt, we can
finally move on to applying it. So, join me as we jump out of the R frying pan and into the

statistics fire.

Univariate data

In this chapter, we are going to deal with univariate data, which is a fancy way of saying
samples of one variable—the kind of data that goes into a single R vector. Analysis of
univariate data isn’t concerned with the why questions—causes, relationships, or anything
like that; the purpose of univariate analysis is simply to describe.

In univariate data, one variable—Ilet’s call it x—can represent categories like soy ice
cream flavors, heads or tails, names of cute classmates, the roll of a die, and so on. In
cases like these, we call x a categorical variable.

> categorical.data <- c("heads", "tails", "tails", "heads")

Categorical data is represented, in the preceding statement, as a vector of character type.
In this particular example, we could further specify that this is a binary or dichotomous
variable, because it only takes on two values, namely, “heads” and “tails.”

Our variable x could also represent a number like air temperature, the prices of financial
instruments, and so on. In such cases, we call this a continuous variable.

> contin.data <- c¢(198.41, 178.46, 165.20, 141.71, 138.77)

Univariate data of a continuous variable is represented, as seen in the preceding statement,
as a vector of numeric type. These data are the stock prices of a hypothetical company that
offers a hypothetical commercial statistics platform inferior to R.

You might come to the conclusion that if a vector contains character types, it is a
categorical variable, and if it contains numeric types, it is a continuous variable. Not quite!
Consider the case of data that contains the results of the roll of a six-sided die. A natural
approach to storing this would be by using a numeric vector. However, this isn’t a
continuous variable, because each result can only take on six distinct values: 1, 2, 3, 4, 5,
and 6. This is a discrete numeric variable. Other discrete numeric variables can be the
number of bacteria in a petri dish, or the number of love letters to cute classmates.

The mark of a continuous variable is that it could take on any value between some
theoretical minimum and maximum. The range of values in case of a die roll have a
minimum of 1 and a maximum of 6, but it can never be 2.3. Contrast this with, say, the
example of the stock prices, which could be zero, zillions, or anything in between.

On occasion, we are unable to neatly classify non-categorical data as either continuous or
discrete. In some cases, discrete variables may be treated as if there is an underlying
continuum. Additionally, continuous variables can be discretized, as we’ll see soon.

Frequency distributions

A common way of describing univariate data is with a frequency distribution. We’ve
already seen an example of a frequency distribution when we looked at the preferences for
soy ice cream at the end of the last chapter. For each flavor of ice cream (categorical
variable), it depicted the count or frequency of the occurrences in the underlying data set.

To demonstrate examples of other frequency distributions, we need to find some data.
Fortunately, for the convenience of useRs everywhere, R comes preloaded with almost one
hundred datasets. You can view a full list if you execute help (package="datasets").
There are also hundreds more available from add on packages.

The first data set that we are going to use is mtcars—data on the design and performance
of 32 automobiles that was extracted from the 1974 Motor Trend US magazine. (To find
out more information about this dataset, execute ?mtcars.)

Take a look at the first few lines of this dataset using the head function:

> head(mtcars)

mpg cyl disp hp drat wt (gsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

Check out the carb column, which represents the number of carburetors; by now you
should recognize this as a discrete numeric variable, though we can (and will!) treat this as
a categorical variable for now.

Running the carb vector through the unique function yields the distinct values that this
vector contains.

> unique(mtcars$carb)
[1] 412 3 6 8

We can see that there must be repeats in the carb vector, but how many? An easy way for
performing a frequency tabulation in R is to use the table function:

> table(mtcars$carb)
1 2 3 4 6 8
710 310 1 1

From the result of the preceding function, we can tell that the are 10 cars with 2
carburetors and 10 with 4, and there is one car each with 6 and 8 carburetors. The value
with the most occurrences in a dataset (in this example, the carb column is our whole data
set) is called the mode. In this case, there are two such values, 2 and 4, so this dataset is
bimodal. (There is a package in R, called modeest, to find modes easily.)

Frequency distributions are more often depicted as a chart or plot than as a table of
numbers. When the univariate data is categorical, it is commonly represented as a bar

chart, as shown in the Figure 2.1:

The other data set that we are going to use to demonstrate a frequency distribution of a
continuous variable is the airquality dataset, which holds the daily air quality
measurements from May to September in NY. Take a look at it using the head and str
functions. The univariate data that we will be using is the Temp column, which contains the
temperature data in degrees Fahrenheit.

count

A P e

number of carburetors

Figure 2.1: Frequency distribution of number of carburetors in mtcars dataset

It would be useless to take the same approach to frequency tabulation as we did in the case
of the car carburetors. If we did so, we would have a table containing the frequencies for
each of the 40 unique temperatures—and there would be far more if the temperature
wasn’t rounded to the nearest degree. Additionally, who cares that there was one
occurrence of 63 degrees and two occurrences of 64? I sure don’t! What we do care about
is the approximate temperature.

Our first step towards building a frequency distribution of the temperature data is to bin
the data—which is to say, we divide the range of values of the vector into a series of
smaller intervals. This binning is a method of discretizing a continuous variable. We then
count the number of values that fall into that interval.

Choosing the size of bins to use is tricky. If there are too many bins, we run into the same
problem as we did with the raw data and have an unwieldy number of columns in our
frequency tabulation. If we make too few, however, we lose resolution and may lose
important information. Choosing the right number of bins is more art than science, but
there are certain commonly used heuristics that often produce sensible results.

We can have R construct n number of equally-spaced bins for us by using the cut function
which, in its simplest use case, takes a vector of data and the number of bins to create:

> cut(airquality$Temp, 9)

We can then feed this result into the table function for a far more manageable frequency
tabulation:

> table(cut(airquality$Temp, 9))

(56,60.6] (60.6,65.1] (65.1,69.7] (69.7,74.2] (74.2,78.8]

8 10 14 16 26
(78.8,83.3] (83.3,87.9] (87.9,92.4] (92.4,97]
35 22 15 7

Rad!

Remember when we used a bar chart to visualize the frequency distributions of categorical
data? The common method for visualizing the distribution of discretized continuous data
is by using a histogram, as seen in the following image:

[a,

count

30 -
| II II
n II -

I I I I [I
50 60 70 80 90

temperature

Figure 2.2: Daily temperature measurements from May to September in NYC

Central tendency

One very popular question to ask about univariate data is What is the typical value? or
What'’s the value around which the data are centered?. To answer these questions, we have
to measure the central tendency of a set of data.

We’ve seen one measure of central tendency already: the mode. The mtcars$carburetors
data subset was bimodal, with a two and four carburetor setup being the most popular. The
mode is the central tendency measure that is applicable to categorical data.

The mode of a discretized continuous distribution is usually considered to be the interval
that contains the highest frequency of data points. This makes it dependent on the method
and parameters of the binning. Finding the mode of data from a non-discretized
continuous distribution is a more complicated procedure, which we’ll see later.

Perhaps the most famous and commonly used measure of central tendency is the mean.
The mean is the sum of a set of numerics divided by the number of elements in that set.
This simple concept can also be expressed as a complex-looking equation:

>

n

X =

Where ¥ (pronounced x bar) is the mean, Z'r is the summation of the elements in the
data set, and n is the number of elements in the set. (As an aside, if you are intimidated by
the equations in this book, don’t be! None of them are beyond your grasp—just think of
them as sentences of a language you’re not proficient in yet.)

The mean is represented as ¥ when we are talking about the mean of a sample (or subset)
of a larger population, and p when we are talking about the mean of the population. A
population may have too many items to compute the mean directly. When this is the case,
we rely on statistics applied to a sample of the population to estimate its parameters.

Another way to express the preceding equation using R constructs is as follows:

> sum(nums)/length(nums) # nums would be a vector of numerics

As you might imagine, though, the mean has an eponymous R function that is built-in
already:

> mean(c(1,2,3,4,5))

[1] 3
The mean is not defined for categorical data; remember that mode is the only measure of
central tendency that we can use with categorical data.

The mean—occasionally referred to as the arithmetic mean to contrast with the far less
often used geometric, harmonic, and trimmed means—while extraordinarily popular is not
a very robust statistic. This is because the statistic is unduly affected by outliers (atypically

distant data points or observations). A paradigmatic example where the robustness of the
mean fails is its application to the different distributions of income.

Imagine the wages of employees in a company called Marx & Engels, Attorneys at Law,
where the typical worker makes $40,000 a year while the CEO makes $500,000 a year. If
we compute the mean of the salaries based on a sample of ten that contains just the
exploited class, we will have a fairly accurate representation of the average salary of a
worker at that company. If however, by the luck of the draw, our sample contains the
CEOQO, the mean of the salaries will skyrocket to a value that is no longer representative or
very informative.

More specifically, robust statistics are statistical measures that work well when thrown at a
wide variety of different distributions. The mean works well with one particular type of
distribution, the normal distribution, and, to varying degrees, fails to accurately represent
the central tendency of other distributions.

Figure 2.3: A normal distribution

The normal distribution (also called the Gaussian distribution if you want to impress
people) is frequently referred to as the bell curve because of its shape. As seen in the
preceding image, the vast majority of the data points lie within a narrow band around the
center of the distribution—which is the mean. As you get further and further from the
mean, the observations become less and less frequent. It is a symmetric distribution,
meaning that the side that is to the right of the mean is a mirror image of the left side of
the mean.

Not only is the usage of the normal distribution extremely common in statistics, but it is
also ubiquitous in real life, where it can model anything from people’s heights to test
scores; a few will fare lower than average, and a few fare higher than average, but most
are around average.

The utility of the mean as a measure of central tendency becomes strained as the normal
distribution becomes more and more skewed, or asymmetrical.

If the majority of the data points fall on the left side of the distribution, with the right side
tapering off slower than the left, the distribution is considered positively skewed or right-
tailed. If the longer tail is on the left side and the bulk of the distribution is hanging out to
the right, it is called negatively skewed or left-tailed. This can be seen clearly in the
following images:

Figure 2.4a: A negatively skewed distribution

Figure 2.4b: A positively skewed distribution

Luckily, for cases of skewed distributions, or other distributions for which the mean is

inadequate to describe, we can use the median instead.

The median of a dataset is the middle number in the set after it is sorted. Less concretely,
it is the value that cleanly separates the higher-valued half of the data and the lower-valued
half.

The median of the set of numbers {1, 3, 5, 6, 7} is 5. In the set of numbers with an
even number of elements, the mean of the two middle values is taken to be the median.
For example, the median of the set {3, 3, 6, 7, 7, 10} is 6.5. The median is the 50th
percentile, meaning that 50 percent of the observations fall below that value.

> median(c(3, 7, 6, 10, 3, 7))

[1] 6.5
Consider the example of Marx & Engels, Attorneys at Law that we referred to earlier.
Remember that if the sample of employees’ salaries included the CEQO, it would give our
mean a non-representative value. The median solves our problem beautifully. Let’s say our
sample of 10 employees’ salaries was {41000, 40300, 38000, 500000, 41500, 37000,
39600, 42000, 39900, 39500}. Given this set, the mean salary is $85,880 but the median is
$40,100—way more in line with the salary expectations of the proletariat at the law firm.

In symmetric data, the mean and median are often very close to each other in value, if not
identical. In asymmetric data, this is not the case. It is telling when the median and the
mean are very discrepant. In general, if the median is less than the mean, the data set has a
large right tail or outliers/anomalies/erroneous data to the right of the distribution. If the
mean is less than the median, it tells the opposite story. The degree of difference between
the mean and the median is often an indication of the degree of skewness.

This property of the median—resistance to the influence of outliers—makes it a robust
statistic. In fact, the median is the most outlier-resistant metric in statistics.

As great as the median is, it’s far from being perfect to describe data just by its own. To
see what I mean, check out the three distributions in the following image. All three have
the same mean and median, yet all three are very different distributions.

Clearly, we need to look to other statistical measures to describe these differences.
Note

Before going on to the next chapter, check out the summary function in R.

Figure 2.5: Three distributions with the same mean and median

Spread

Another very popular question regarding univariate data is, How variable are the data
points? or How spread out or dispersed are the observations? To answer these questions,
we have to measure the spread, or dispersion, of a data sample.

The simplest way to answer that question is to take the smallest value in the dataset and
subtract it by the largest value. This will give you the range. However, this suffers from a
problem similar to the issue of the mean. The range in salaries at the law firm will vary
widely depending on whether the CEO is included in the set. Further, the range is just
dependent on two values, the highest and lowest, and therefore, can’t speak of the
dispersion of the bulk of the dataset.

One tactic that solves the first of these problems is to use the interquartile range.

Note
What about measures of spread for categorical data?

The measures of spread that we talk about in this section are only applicable to numeric
data. There are, however, measures of spread or diversity of categorical data. In spite of
the usefulness of these measures, this topic goes unmentioned or blithely ignored in most
data analysis and statistics texts. This is a long and venerable tradition that we will, for the
most part, adhere to in this book. If you are interested in learning more about this, search
for ‘Diversity Indices’ on the web.

Remember when we said that the median split a sorted dataset into two equal parts, and
that it was the 50th percentile because 50 percent of the observations fell below its value?
In a similar way, if you were to divide a sorted data set into four equal parts, or quartiles,
the three values that make these divides would be the first, second, and third quartiles
respectively. These values can also be called the 25th, 50th, and 75th percentiles. Note that
the second quartile, the 50th percentile, and the median are all equivalent.

The interquartile range is the difference between the third and first quartiles. If you apply
the interquartile range to a sample of salaries at the law firm that includes the CEQO, the
enormous salary will be discarded with the highest 25 percent of the data. However, this
still only uses two values, and doesn’t speak to the variability of the middle 50 percent.

Well, one way we can use all the data points to inform our spread metric is by subtracting
each element of a dataset from the mean of the dataset. This will give us the deviations, or
residuals, from the mean. If we add up all these deviations, we will arrive at the sum of the
deviations from the mean. Try to find the sum of the deviations from the mean in this set:
{1, 3, 5, 6, 7}.

If we try to compute this, we notice that the positive deviations are cancelled out by the
negative deviations. In order to cope with this, we need to take the absolute value, or the
magnitude of the deviation, and sum them.

This is a great start, but note that this metric keeps increasing if we add more data to the

set. Because of this, we may want to take the average of these deviations. This is called
the average deviation.

For those having trouble following the description in words, the formula for average
deviation from the mean is the following:

I N

EZ(Ir—au)

i=1

where p is the mean, N is the number elements of the sample, and i is the ith element of
the dataset. It can also be expressed in R as follows:

> sum(abs(x - mean(x))) / length(x)

Though average deviation is an excellent measure of spread in its own right, its use is
commonly—and sometimes unfortunately—supplanted by two other measures.

Instead of taking the absolute value of each residual, we can achieve a similar outcome by
squaring each deviation from the mean. This, too, ensures that each residual is positive (so
that there is no cancelling out). Additionally, squaring the residuals has the sometimes
desirable property of magnifying larger deviations from the mean, while being more
forgiving of smaller deviations. The sum of the squared deviations is called (you guessed
it!) the sum of squared deviations from the mean or, simply, sum of squares. The average
of the sum of squared deviations from the mean is known as the variance and is denoted

When we square each deviation, we also square our units. For example, if our dataset held
measurements in meters, our variance would be expressed in terms of meters squared. To
get back our original units, we have to take the square root of the variance:

N

R

This new measure, denoted by o, is the standard deviation, and it is one of the most
important measures in this book.

Note that we switched from referring to the mean as ¥ to referring it as p. This was not a
mistake.

Remember that ¥ was the sample mean, and u represented the population mean. The

preceding equations use 1 to illustrate that these equations are computing the spread
metrics on the population data set, and not on a sample. If we want to describe the

variance and standard deviation of a sample, we use the symbols s and s instead of O
and o respectively, and our equations change slightly:

Instead of dividing our sum of squares by the number of elements in the set, we are now
dividing it by n-1. What gives?

To answer that question, we have to learn a little bit about populations, samples, and
estimation.

Populations, samples, and estimation

One of the core ideas of statistics is that we can use a subset of a group, study it, and then
make inferences or conclusions about that much larger group.

For example, let’s say we wanted to find the average (mean) weight of all the people in
Germany. One way do to this is to visit all the 81 million people in Germany, record their
weights, and then find the average. However, it is a far more sane endeavor to take down
the weights of only a few hundred Germans, and use those to deduce the average weight
of all Germans. In this case, the few hundred people we do measure is the sample, and the
entirety of people in Germany is called the population.

Now, there are Germans of all shapes and sizes: some heavier, some lighter. If we only
pick a few Germans to weigh, we run the risk of, by chance, choosing a group of primarily
underweight Germans or overweight ones. We might then come to an inaccurate
conclusion about the weight of all Germans. But, as we add more Germans to our sample,
those chance variations tend to balance themselves out.

All things being equal, it would be preferable to measure the weights of all Germans so
that we can be absolutely sure that we have the right answer, but that just isn’t feasible. If
we take a large enough sample, though, and are careful that our sample is well-
representative of the population, not only can we get extraordinarily close to the actual
average weight of the population, but we can quantify our uncertainty. The more Germans
we include in our sample, the less uncertain we are about our estimate of the population.

In the preceding case, we are using the sample mean as an estimator of the population
mean, and the actual value of the sample mean is called our estimate. It turns out that the
formula for population mean is a great estimator of the mean of the population when
applied to only a sample. This is why we make no distinction between the population and
sample means, except to replace the y with ¥ . Unfortunately, there exists no perfect
estimator for the standard deviation of a population for all population types. There will
always be some systematic difference in the expected value of the estimator and the real
value of the population. This means that there is some bias in the estimator. Fortunately,
we can partially correct it.

Note that the two differences between the population and the sample standard deviation
are that (a) the p is replaced by ¥ in the sample standard deviation, and (b) the divisor n is
replaced by n-1.

In the case of the standard deviation of the population, we know the mean p. In the case of
the sample, however, we don’t know the population mean, we only have an estimate of the

population mean based on the sample mean ¥ . This must be taken into account and
corrected in the new equation. No longer can we divide by the number of elements in the
data set—we have to divide by the degrees of freedom, which is n-1.

Note

What in the world are degrees of freedom? And why is it n-1?

Let’s say we were gathering a party of six to play a board game. In this board game, each
player controls one of six colored pawns. People start to join in at the board. The first
person at the board gets their pick of their favorite colored pawn. The second player has
one less pawn to choose from, but she still has a choice in the matter. By the time the last
person joins in at the game table, she doesn’t have a choice in what pawn she uses; she is
forced to use the last remaining pawn. The concept of degrees of freedom is a little like
this.

If we have a group of five numbers, but hold the mean of those numbers fixed, all but the
last number can vary, because the last number must take on the value that will satisfy the
fixed mean. We only have four degrees of freedom in this case.

More generally, the degrees of freedom is the sample size minus the number of parameters
estimated from the data. When we are using the mean estimate in the standard deviation
formula, we are effectively keeping one of the parameters of the formula fixed, so that
only n-1 observations are free to vary. This is why the divisor of the sample standard
deviation formula is n-1; it is the degrees of freedom that we are dividing by, not the
sample size.

If you thought that the last few paragraphs were heady and theoretical, you’re right. If you
are confused, particularly by the concept of degrees of freedom, you can take solace in the
fact that you are not alone; degrees of freedom, bias, and subtleties of population vs.
sample standard deviation are notoriously confusing topics for newcomers to statistics.
But you only have to learn it only once!

Probability distributions

Up until this point, when we spoke of distributions, we were referring to frequency
distributions. However, when we talk about distributions later in the book—or when other
data analysts refer to them—we will be talking about probability distributions, which are
much more general.

It’s easy to turn a categorical, discrete, or discretized frequency distribution into a
probability distribution. As an example, refer to the frequency distribution of carburetors
in the first image in this chapter. Instead of asking What number of cars have n number of
carburetors?, we can ask, What is the probability that, if I choose a car at random, I will
get a car with n carburetors?

We will talk more about probability (and different interpretations of probability) in
Chapter 4, Probability but for now, probability is a value between 0 and 1 (or O percent
and 100 percent) that measures how likely an event is to occur. To answer the question
What'’s the probability that I will pick a car with 4 carburetors?, the equation is:

#of 4carbcars

P(1 will pick a 4 car b car)= :
number of total cars

You can find the probability of picking a car of any one particular number of carburetors
as follows:

> table(mtcars$carb) / length(mtcars$carb)

1 2 3 4 6 8
0.21875 0.31250 0.09375 0.31250 0.03125 0.03125

Instead of making a bar chart of the frequencies, we can make a bar chart of the
probabilities.

This is called a probability mass function (PMF). It looks the same, but now it maps
from carburetors to probabilities, not frequencies. Figure 2.6a represents this.

And, just as it is with the bar chart, we can easily tell that 2 and 4 are the number of
carburetors most likely to be chosen at random.

We could do the same with discretized numeric variables as well. The following images
are a representation of the temperature histogram as a probability mass function.

-]
Cad
I

probability

I I I | I I
3 B B
number of carburetors

0.0-

Figure 2.6a: Probability mass function of number of carburetors

0.15 =

probability

0.10 =

0.05 -

I I i | I
60 70 80 90 100
temperature

0.00 -

th
o

Figure 2.6b: Probability mass function of daily temperature measurements from May to
September in NY

Note that this PMF only describes the temperatures of NYC in the data we have.

There’s a problem here, though— this PMF is completely dependent on the size of bins
(our method of discretizing the temperatures). Imagine that we constructed the bins such
that each bin held only one temperature within a degree. In this case, we wouldn’t be able
to tell very much from the PMF at all, since each specific degree only occurs a few times,
if any, in the dataset. The same problem—but worse!—happens when we try to describe
continuous variables with probabilities without discretizing them at all. Imagine trying to
visualize the probability (or the frequency) of the temperatures if they were measured to
the thousandth place (for example, {90.167, 67.361, ..3}). There would be no visible
bars at all!

What we need here is a probability density function (PDF). A probability density
function will tell us the relative likelihood that we will experience a certain temperature.
The next image shows a PDF that fits the temperature data that we’ve been playing with; it
is analogous to, but better than, the histogram we saw in the beginning of the chapter and
the PMF in the preceding figure.

The first thing you’ll notice about this new plot is that it is smooth, not jagged or boxy like
the histogram and PMFs. This should intuitively make more sense, because temperatures
are a continuous variable, and there is likely to be no sharp cutoffs in the probability of
experiencing temperatures from one degree to the next.

=
= - ! \
= ."I %
/ Y
."l "-,I
{ \
III III
8 { \
=1 |
oy | \
= i \
- !
3 /
=] Y\
o =2 / Y
[=1 Y
-g Y
& / \
y \
S /
= y \
/
/ “‘
Sl i e
[]
T T T T T
a0 &0 70 &0 40 100
temperature

Figure 2.7: Three distributions with the same mean and median

The second thing you should notice is that the units and the values on the y axis have
changed. The y axis no longer represents probabilities—it now represents probability
densities. Though it may be tempting, you can’t look at this function and answer the
question What is the probability that it will be exactly 80 degrees?. Technically, the
probability of it being 80.0000 exactly is microscopically small, almost zero. But that’s
okay! Remember, we don’t care what the probability of experiencing a temperature of
80.0000 is—we just care the probability of a temperature around there.

We can answer the question What’s the probability that the temperature will be between a
particular range?. The probability of experiencing a temperature, say 80 to 90 degrees, is
the area under the curve from 80 to 90. Those of you unfortunate readers who know

calculus will recognize this as the integral, or anti-derivative, of the PDF evaluated over
the range,

()

&

where f(x) is the probability density function.

The next image shows the area under the curve for this range in pink. You can immediately
see that the region covers a lot of area—perhaps one third. According to R, it’s about 34
percent.

> temp.density <- density(airquality$Temp)
> pdf <- approxfun(temp.density$x, temp.density$y, rule=2)
> integrate(pdf, 80, 90)

0.3422287 with absolute error < 7.5e-06

0.04
|

0.03

probability density
0.02
|

0.01
|
\

0.00
l
|
|
|
I

I I I I I
&0 60 70 a0 90 100

temperature

Figure 2.8: PDF with highlighted interval

We don’t get a probability density function from the sample for free. The PDF has to be
estimated. The PDF isn’t so much trying to convey the information about the sample we
have as attempting to model the underlying distribution that gave rise to that sample.

To do this, we use a method called kernel density estimation. The specifics of kernel

density estimation are beyond the scope of this book, but you should know that the density
estimation is heavily governed by a parameter that controls the smoothness of the
estimation. This is called the bandwidth.

How do we choose the bandwidth? Well, it’s just like choosing the size to make the bins in
a histogram: there’s no right answer. It’s a balancing act between reducing chance or noise
in the model and not losing important information by smoothing over pertinent
characteristics of the data. This is a tradeoff we will see time and time again throughout
this text.

Anyway, the great thing about PDFs is that you don’t have to know calculus to interpret
PDFs. Not only are PDFs a useful tool analytically, but they make for a top-notch
visualization of the shape of data.

Note
By the way...

Remember when we were talking about modes, and I said that finding the mode of non-
discretized continuously distributed data is a more complicated procedure than for
discretized or categorical data? The mode for these types of univariate data is the peak of
the PDF. So, in the temperature example, the mode is around 80 degrees.

0.05

\

T T T T T
60 T a0 a0 100

probability density
0.02 0.03
| |
K

0.01
I

¥

0.00
L

temperature

Figure 2.9: Three different bandwidths used on the same data.

Visualization methods

In an earlier image, we saw three very different distributions, all with the same mean and
median. I said then that we need to quantify variance to tell them apart. In the following

image, there are three very different distributions, all with the same mean, median, and
variance.

0.03 -

0.02 -

density

0.01 -

0.00 -

] I
B0 90 120 150
value

Figure 2.10: Three PDF's with the same mean, median, and standard deviation

If you just rely on basic summary statistics to understand univariate data, you’ll never get
the full picture. It’s only when we visualize it that we can clearly see, at a glance, whether
there are any clusters or areas with a high density of data points, the number of clusters
there are, whether there are outliers, whether there is a pattern to the outliers, and so on.

When dealing with univariate data, the shape is the most important part (that’s why this
chapter is called Shape of Data!).

We will be using ggplot2’s gplot function to investigate these shapes and visualize these
data. gplot (for quick plot) is the simpler cousin of the more expressive ggplot function.
gplot makes it easy to produce handsome and compelling graphics using consistent
grammar. Additionally, much of the skills, lessons, and know-how from gplot are
transferrable to ggplot (for when we have to get more advanced).

Note
What’s ggplot2? Why are we using it?

There are a few plotting mechanisms for R, including the default one that comes with R
(called base R). However, ggplot2 seems to be a lot of people’s favorite. This is not
unwarranted, given its wide use, excellent documentation, and consistent grammar.

Since the base R graphics subsystem is what I learned to wield first, I’ve become adept at
using it. There are certain types of plots that I produce faster using base R, so I still use it
on a regular basis (Figure 2.8 to Figure 2.10 were made using base R!).

Though we will be using ggplot2 for this book, feel free to go your own way when
making your very own plots.

Most of the graphics in this section are going to take the following form:

> gplot(column, data=dataframe, geom=...)

where column is a particular column of the data frame dataframe, and the geom keyword
argument specifies a geometric object—it will control the type of plot that we want. For
visualizing univariate data, we don’t have many options for geom. The three types that we
will be using are bar, histogram, and density. Making a bar graph of the frequency
distribution of the number of carburetors couldn’t be easier:

> library(ggplot2)
> gplot(factor(carb), data=mtcars, geom="bar'")

10.0 -

count
n
o
I

1 2 3

(=3
s

factor(carb)
Figure 2.11: Frequency distribution of the number of carburetors

Using the factor function on the carb column makes the plot look better in this case.

We could, if we wanted to, make an unattractive and distracting plot by coloring all the
bars a different color, as follows:

> gplot(factor(carb),

+ data=mtcars,

+ geom="bar",

+ fill=factor(carb),

+ xlab="number of carburetors")

10.0 -
7.5-
factor({carb)
K
- B
=
3 50- s
8 o
| B
| E
25-
0.0- - -
] I]] I]
1 2 3 4 6 8
number of carburetors

Figure 2.12: With color and label modification

We also relabeled the x axis (which is automatically set by gqplot) to more informative
text.

It’s just as easy to make a histogram of the temperature data—the main difference is that
we switch geom from bar to histogram:

> gplot(Temp, data=airquality, geom="histogram")

count

Temp

Figure 2.13: Histogram of temperature data

Why doesn’t it look like the first histogram in the beginning of the chapter, you ask? Well,
that’s because of two reasons:

¢ [adjusted the bin width (size of the bins)
e [added color to the outline of the bars

The code I used for the first histogram looked as follows:

> gplot(Temp, data=airquality, geom="histogram",
+ binwidth=5, color=I("white"))

Making plots of the approximation of the PDF are similarly simple:

> gplot(Temp, data=airquality, geom="density")

0.04 -

0.03 -

density

0.02 -

0.00 -

|
&0 70 a0 a0

Temp
Figure 2.14: PDF of temperature data

By itself, I think the preceding plot is rather unattractive. We can give it a little more flair
by:

¢ Filling the curve pink

¢ Adding a little transparency to the fill

> gplot(Temp, data=airquality, geom="density",
+ adjust=.5, # changes bandwidth

+ fill=I("pink"),

+ alpha=I(.5), # adds transparency

+ main="density plot of temperature data")

density plot of temperature data

0.05 -

0.04 -

0.03 -

density

0.02 -

I
70 80

60
Temp

Figure 2.15: Figure 2.14 with modifications

Now that’s a handsome plot!
Notice that we also made the bandwidth smaller than the default (1, which made the PDF

more squiggly) and added a title to the plot with the main function.

Exercises

Here are a few exercises for you to revise the concepts learned in this chapter:

e Write an R function to compute the interquartile range.

e Learn about windorized, geometric, harmonic, and trimmed means. To what extent
do these metrics solve the problem of the non-robustness of the arithmetic mean?

e Craft an assessment of Virginia Woolf’s impact on feminine discourse in the 20th
century. Be sure to address both prosaic and lyrical forms in your response.

Summary

One of the hardest things about data analysis is statistics, and one of the hardest things
about statistics (not unlike computer programming) is that the beginning is the toughest
hurdle, because the concepts are so new and unfamiliar. As a result, some might find this
to be one of the more challenging chapters in this text.

However, hard work during this phase pays enormous dividends; it provides a sturdy
foundation on which to pile on and organize new knowledge.

To recap, in this chapter, we learned about univariate data. We also learned about:

The types of univariate data

How to measure the central tendency of these data
How to measure the spread of these data

How to visualize the shape of these data

Along the way, we also learned a little bit about probability distributions and
population/sample statistics.

I’m glad you made it through! Relax, make yourself a mocktail, and I'll see you at
Chapter 3, Describing Relationships shortly!

Chapter 3. Describing Relationships

Is there a relationship between smoking and lung cancer? Do people who care for dogs
live longer? Is your university’s admissions department sexist?

Tackling these exciting questions is only possible when we take a step beyond simply
describing univariate data sets—one step beyond!

Multivariate data

In this chapter, we are going to describe relationships, and begin working with
multivariate data, which is a fancy way of saying samples containing more than one
variable.

The troublemaker reader might remark that all the datasets that we’ve worked with thus
far (mtcars and airquality) have contained more than one variable. This is technically
true—but only technically. The fact of the matter is that we’ve only been working with
one of the dataset’s variables at any one time. Note that multivariate analytics is not the
same as doing univariate analytics on more than one variable—multivariate analyses and
describing relationships involve several variables at the same time.

To put this more concretely, in the last chapter we described the shape of, say, the
temperature readings in the airquality dataset.

> head(airquality)
Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3
4 18 313 11.5 62 5 4
5 NA NA 14.3 56 5 5
6 28 NA 14.9 66 5 6

In this chapter, we will be exploring whether there is a relationship between temperature
and the month in which the temperature was taken (spoiler alert: there is!).

The kind of multivariate analysis you perform is heavily influenced by the type of data
that you are working with. There are three broad classes of bivariate (or two variable)
relationships:

e The relationship between one categorical variable and one continuous variable
e The relationship between two categorical variables
e The relationship between two continuous variables

We will get into all of these in the next three sections. In the section after that, we will
touch on describing the relationships between more than two variables. Finally, following
in the tradition of the previous chapter, we will end with a section on how to create your
own plots to capture the relationships that we’ll be exploring.

Relationships between a categorical and a
continuous variable

Describing the relationship between categorical and continuous variables is perhaps the
most familiar of the three broad categories.

When I was in the fifth grade, my class had to participate in an area-wide science fair. We
were to devise our own experiment, perform it, and then present it. For some reason, in
my experiment I chose to water some lentil sprouts with tap water and some with alcohol
to see if they grew differently.

When I measured the heights and compared the measurements of the teetotaller lentils
versus the drunken lentils, I was pointing out a relationship between a categorical variable
(alcohol/no-alcohol) and a continuous variable (heights of the seedlings).

Note

Note that I wasn’t trying to make a broader statement about how alcohol affects plant
growth. In the grade-school experiment, I was just summarizing the differences in the
heights of those plants—the ones that were in the experiment. In order to make statements
or draw conclusions about how alcohol affects plant growth in general, we would be
exiting the realm of exploratory data analysis and entering the domain of inferential
statistics, which we will discuss in the next unit.

The alcohol could have made the lentils grow faster (it didn’t), grow slower (it did), or
grow at the same rate as the tap water lentils. All three of these possibilities constitute a
relationship: greater than, less than, or equal to.

To demonstrate how to uncover the relationship between these two types of variables in R,
we will be using the iris dataset that is conveniently built right into R.

> head(iris)
Sepal.Length Sepal.width Petal.Length Petal.width Species

1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

This is a famous dataset and is used today primarily for teaching purposes. It gives the
lengths and widths of the petals and sepals (another part of the flower) of 150 Iris flowers.
Of the 150 flowers, it has 50 measurements each from three different species of Iris
flowers: setosa, versicolor, and virginica.

By now, we know how to take the mean of all the petal lengths:

> mean(iris$Petal.Length)
[1] 3.758

But we could also take the mean of the petal lengths of each of the three species to see if

there is any difference in the means.
Naively, one might approach this task in R as follows:

> mean(iris$Petal.Length[iris$Species=="setosa"])

[1] 1.462
> mean(iris$Petal.Length[iris$Species=="versicolor"])
[1] 4.26
> mean(iris$Petal.Length[iris$Species=="virginica"])
[1] 5.552

But, as you might imagine, there is a far easier way to do this:
> by(iris$Petal.Length, iris$Species, mean)

iris$Species: setosa
[1] 1.462

iris$Species: versicolor
[1] 4.26

iris$Species: virginica

[1] 5.552
by is a handy function that applies a function to split the subsets of data. In this case, the
Petal.Length vector is divided into three subsets for each species, and then the mean
function is called on each of those subsets. It appears as if the setosas in this sample have
way shorter petals than the other two species, with the virginica samples’ petal length
beating out versicolor’s by a smaller margin.

Although means are probably the most common statistic to be compared between
categories, it is not the only statistic we can use to compare. If we had reason to believe

that the virginicas have a more widely varying petal length than the other two species, we
could pass the sd function to the by function as follows:

> by(iris$Petal.Length, iris$Species, sd)

Most often, though, we want to be able to compare many statistics between groups at one
time. To this end, it’s very common to pass in the summary function:

> by(iris$Petal.Length, iris$Species, summary)

iris$Species: setosa
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 1.400 1.500 1.462 1.575 1.900
iris$Species: versicolor
Min. 1st Qu. Median Mean 3rd Qu. Max.
3.00 4.00 4,35 4.26 4.60 5.10
iris$Species: virginica
Min. 1st Qu. Median Mean 3rd Qu. Max.
4.500 5.100 5.550 5.552 5.875 6.900

As common as this idiom is, it still presents us with a lot of dense information that is

difficult to make sense of at a glance. It is more common still to visualize the differences
in continuous variables between categories using a box-and-whisker plot:

Species

- setosa
- versicolor
. virginica

Petal.Length
e

I I]
setosa versicolor virginica
Species

Figure 3.1: A box-and-whisker plot depicting the relationship between the petal lengths of
the different iris species in iris dataset

A box-and-whisker plot (or simply, a box plot if you have places to go, and you’re in a
rush) displays a stunningly large amount of information in a single chart. Each categorical
variable has its own box and whiskers. The bottom and top ends of the box represent the
first and third quartile respectively, and the black band inside the box is the median for
that group, as shown in the following figure:

upper end of
whisker
AN 3rd quartile

\\ (75th percentile)

~____median

" 1st quartile
- (25th percentile)

lower end of
whisker

Figure 3.2: The anatomy of a box plot

Depending on whom you talk to and what you use to produce your plots, the edges of the
whiskers can mean a few different things. In my favorite variation (called Tukey’s
variation), the bottom of the whiskers extend to the lowest datum within 1.5 times the
interquartile range below the bottom of the box. Similarly, the very top of the whisker
represents the highest datum 1.5 interquartile ranges above the third quartile (remember:
interquartile range is the third quartile minus the first). This is, coincidentally, the
variation that ggplot2 uses.

The great thing about box plots is that not only do we get a great sense of the central
tendency and dispersion of the distribution within a category, but we can also immediately
spot the important differences between each category.

From the box plot in the previous image, it’s easy to tell what we already know about the
central tendency of the petal lengths between species: that the setosas in this sample have
the shortest petals; that the virginica have the longest on average; and that versicolors are
in the middle, but are closer to the virginicas.

In addition, we can see that the setosas have the thinnest dispersion, and that the virginica
have the highest—when you disregard the outlier.

But remember, we are not saying anything, or drawing any conclusions yet about Iris

flowers in general. In all of these analyses, we are treating all the data we have as the
population of interest; in this example, the 150 flowers measured are our population of
interest.

Before we move on to the next broad category of relationships, let’s look at the
airquality dataset, treat the month as the categorical variable, the temperature as the
continuous variable, and see if there is a relationship between the average temperature
across months.

> by(airquality$Temp, airquality$Month, mean)
airquality$Month: 5
[1] 65.54839
airquality$Month: 6
[1] 79.1
airquality$Month: 7
[1] 83.90323
airquality$Month: 8
[1] 83.96774
airquality$Month: 9
[1] 76.9

This is precisely what we would expect from a city in the Northern hemisphere:

90 -

80 -

Temp

70 -

60 -

oo
14

Month

Figure 3.3: A Box plot of NYC temperatures across months (May to September)

Relationships between two categorical
variables

Describing the relationships between two categorical variables is done somewhat less
often than the other two broad types of bivariate analyses, but it is just as fun (and useful)!

To explore this technique, we will be using the dataset UCBAdmissions, which contains
the data on graduate school applicants to the University of California Berkeley in 1973.

Before we get started, we have to wrap the dataset in a call to data. frame for coercing it
into a data frame type variable—I’ll explain why, soon.

ucba <- data.frame(UCBAdmissions)

> head(ucba)

Admit Gender Dept Freq
1 Admitted Male A 512
2 Rejected Male A 313
3 Admitted Female A 89
4 Rejected Female A 19
5 Admitted Male B 353
6 Rejected Male B 207

Now, what we want is a count of the frequencies of number of students in each of the
following four categories:

Accepted female
Rejected female
Accepted male
Rejected male

Do you remember the frequency tabulation at the beginning of the last chapter? This is
similar—except that now we are dividing the set by one more variable. This is known as
cross-tabulation or cross tab. It is also sometimes referred to as a contingency table. The
reason we had to coerce UCBAdmissions into a data frame is because it was already in the
form of a cross tabulation (except that it further broke the data down into the different
departments of the grad school). Check it out by typing UCBAdmissions at the prompt.

We can use the xtabs function in R to make our own cross-tabulations:

the first argument to xtabs (the formula) should
be read as: frequency *by* Gender and Admission
> cross <- xtabs(Freq ~ Gender+Admit, data=ucba)

> Cross
Admit
Gender Admitted Rejected
Male 1198 1493
Female 557 1278

Here, at a glance, we can see that there were 1198 males that were admitted, 557 females
that were admitted, and so on.

Is there a gender bias in UCB’s graduate admissions process? Perhaps, but it’s hard to tell

from just looking at the 2x2 contingency table. Sure, there are fewer females accepted
than males, but there are also, unfortunately, far fewer females that applied to UCB in the
first place.

To aid us in either implicating UCB of a sexist admissions machine or exonerating them, it
would help to look at a proportions table. Using a proportions table, we can easily
compare the proportion of the total number of males who were accepted versus the
proportion of the total number of females who were accepted. If the proportions are more
or less equal, we can conclude that gender does not constitute a factor in UCB’s
admissions process. If this is the case, gender and admission status is said to be
conditionally independent.

> prop.table(cross, 1)
Admit
Gender Admitted Rejected
Male 0.4451877 0.5548123
Female 0.3035422 0.6964578

Note

Why did we supply 1 as an argument to prop.table? Look up the documentation at the R
prompt. When would we want to use prop.table(cross, 2)?

Here, we can see that while 45 percent of the males who applied were accepted, only 30
percent of the females who applied were accepted. This is evidence that the admissions
department is sexist, right? Not so fast, my friend!

This is precisely what a lawsuit lodged against UCB purported. When the issue was
looked into further, it was discovered that, at the department level, women and men
actually had similar admissions rates. In fact, some of the departments appeared to have a
small but significant bias in favor of women. Check out department A’s proportion table,
for example:

> cross2 <- xtabs(Freq ~ Gender + Admit, data=ucbal[ucba$Dept=="A",])
> prop.table(cross2, 1)
Admit
Gender Admitted Rejected
Male 0.6206061 0.3793939
Female 0.8240741 0.1759259

If there were any bias in admissions, these data didn’t prove it. This phenomenon, where a
trend that appears in combined groups of data disappears or reverses when broken down
into groups is known as Simpson’s Paradox. In this case, it was caused by the fact that
women tended to apply to departments that were far more selective.

This is probably the most famous case of Simpson’s Paradox, and it is also why this
dataset is built into R. The lesson here is to be careful when using pooled data, and look
out for hidden variables.

The relationship between two continuous
variables

Do you think that there is a relationship between women’s heights and their weights? If
you said yes, congratulations, you’re right!

We can verify this assertion by using the data in R’s built-in dataset, women, which holds
the height and weight of 15 American women from ages 30 to 39.

> head(women)
height weight

1 58 115
2 59 117
3 60 120
4 61 123
5 62 126
6 63 129
> nrow(women)
[1] 15

Specifically, this relationship is referred to as a positive relationship, because as one of the
variable increases, we expect an increase in the other variable.

The most typical visual representation of the relationship between two continuous
variables is a scatterplot.

A scatterplot is displayed as a group of points whose position along the x-axis is
established by one variable, and the position along the y-axis is established by the other.
When there is a positive relationship, the dots, for the most part, start in the lower-left
corner and extend to the upper-right corner, as shown in the following figure. When there
is a negative relationship, the dots start in the upper-left corner and extend to the lower-
right one. When there is no relationship, it will look as if the dots are all over the place.

150

weight
s

&0 64 68 72

' height
Figure 3.4: Scatterplot of women’s heights and weights

The more the dots look like they form a straight line, the stronger is the relationship
between two continuous variables is said to be; the more diffuse the points, the weaker is
the relationship. The dots in the preceding figure look almost exactly like a straight line—
this is pretty much as strong a relationship as they come.

These kinds of relationships are colloquially referred to as correlations.

Covariance

As always, visualizations are great—necessary, even—but on most occasions, we are
going to quantify these correlations and summarize them with numbers.

The simplest measure of correlation that is widely use is the covariance. For each pair of
values from the two variables, the differences from their respective means are taken. Then,
those values are multiplied. If they are both positive (that is, both the values are above
their respective means), then the product will be positive too. If both the values are below
their respective means, the product is still positive, because the product of two negative
numbers is positive. Only when one of the values is above its mean will the product be
negative.

oy 2E=F)r-7)
= {:}—1}

Remember, in sample statistics we divide by the degrees of freedom and not the sample
size. Note that this means that the covariance is only defined for two vectors that have the
same length.

We can find the covariance between two variables in R using the cov function. Let’s find
the covariance between the heights and weights in the dataset, women:

> cov(women$weight, women$height)

[1] 69

the order we put the two columns in

the arguments doesn't matter

> cov(women$height, women$weight)

[1] 69
The covariance is positive, which denotes a positive relationship between the two
variables.

The covariance, by itself, is difficult to interpret. It is especially difficult to interpret in this
case, because the measurements use different scales: inches and pounds. It is also heavily
dependent on the variability in each variable.

Consider what happens when we take the covariance of the weights in pounds and the
heights in centimeters.

there are 2.54 centimeters in each inch

changing the units to centimeters increases
the variability within the height variable
> cov(women$height*2.54, women$weight)

[1] 175.26

Semantically speaking, the relationship hasn’t changed, so why should the covariance?

Correlation coefficients

A solution to this quirk of covariance is to use Pearson’s correlation coefficient instead.
Outside its colloquial context, when the word correlation is uttered—especially by
analysts, statisticians, or scientists—it usually refers to Pearson’s correlation.

Pearson’s correlation coefficient is different from covariance in that instead of using the
sum of the products of the deviations from the mean in the numerator, it uses the sum of
the products of the number of standard deviations away from the mean. These number-of-
standard-deviations-from-the-mean are called z-scores. If a value has a z-score of 1.5, it is
1.5 standard deviations above the mean; if a value has a z-score of -2, then it is 2 standard
deviations below the mean.

Pearson’s correlation coefficient is usually denoted by r and its equation is given as
follows:

2 (x-%)(r-7)
{”_])ﬂﬁ

which is the covariance divided by the product of the two variables’ standard deviation.

An important consequence of using standardized z-scores instead of the magnitude of
distance from the mean is that changing the variability in one variable does not change the
correlation coefficient. Now you can meaningfully compare values using two different
scales or even two different distributions. The correlation between weight/height-in-inches
and weight/height-in-centimeters will now be identical, because multiplication with 2.54
will not change the z-scores of each height.

> cor (women$height, women$weight)

[1] 0.9954948

> cor (women$height*2.54, women$weight)
[1] 0.9954948

Another important and helpful consequence of this standardization is that the measure of
correlation will always range from -1 to 1. A Pearson correlation coefficient of 1 will
denote a perfectly positive (linear) relationship, a r of -1 will denote a perfectly negative
(linear) relationship, and a r of 0 will denote no (linear) relationship.

Why the linear qualification in parentheses, though?

Intuitively, the correlation coefficient shows how well two variables are described by the
straight line that fits the data most closely; this is called a regression or trend line. If there
is a strong relationship between two variables, but the relationship is not linear, it cannot
be represented accurately by Pearson’s r. For example, the correlation between 1 to 100
and 100 to 200 is 1 (because it is perfectly linear), but a cubic relationship is not:

> xXs <- 1:100
> cor(xs, Xxs+100)

[1] 1

> cor(xs, xsA3)

[1] 0.917552
It is still about 0.92, which is an extremely strong correlation, but not the 1 that you should
expect from a perfect correlation.

So Pearson’s r assumes a linear relationship between two variables. There are, however,
other correlation coefficients that are more tolerant of non-linear relationships. Probably
the most common of these is Spearman’s rank coefficient, also called Spearman’s rho.

Spearman’s rho is calculated by taking the Pearson correlation not of the values, but of
their ranks.

Note
What’s a rank?

When you assign ranks to a vector of numbers, the lowest number gets 1, the second
lowest gets 2, and so on. The highest datum in the vector gets a rank that is equal to the
number of elements in that vector.

In rankings, the magnitude of the difference in values of the elements is disregarded.
Consider a race to a finish line involving three cars. Let’s say that the winner in the first
place finished at a speed three times that of the car in the second place, and the car in the
second place beat the car in the third place by only a few seconds. The driver of the car
that came first has a good reason to be proud of herself, but her rank, 1st place, does not
say anything about how she effectively cleaned the floor with the other two candidates.

Try using R’s rank function on the vectorc(8, 6, 7, 5, 3, 0, 9). Now try it on the
vectorc(8, 6, 7, 5, 3, -100, 99999). The rankings are the same, right?

When we use ranks instead, the pair that has the highest value on both the x and the y axis
will be ¢(1,1), even if one variable is a non-linear function (cubed, squared, logarithmic,
and so on) of the other. The correlations that we just tested will both have Spearman rhos
of 1, because cubing a value will not change its rank.

> Xs <- 1:100

> cor(xs, xs+100, method="spearman'")
[1] 1

> cor(xs, xsA3, method="spearman")
[1] 1

200

175

=150

125

100

0 25 50 75 100
X

Figure 3.5: Scatterplot of y=x + 100 with regression line. r and rho are both 1

1000000 = .

50000
500000 -
e

250000 -

0-
-250000 - | : | |

’ et LJL = (WL,
X
y=x
Figure 3.6: Scatterplot of with regression line. r is .92, but rho is 1

Let’s use what we’ve learned so far to investigate the correlation between the weight of a
car and the number of miles it gets to the gallon. Do you predict a negative relationship
(the heavier the car, the lower the miles per gallon)?

> cor(mtcars$wt, mtcars$mpg)
[1] -0.8676594

- mpg

wit

Figure 3.7: Scatterplot of the relationship between the weight of a car and its miles per
gallon

That is a strong negative relationship. Although, in the preceding figure, note that the data
points are more diffuse and spread around the regression line than in the other plots; this
indicates a somewhat weaker relationship than we have seen thus far.

For an even weaker relationship, check out the correlation between wind speed and
temperature in the airquality dataset as depicted in the following image:

> cor(airquality$Temp, airquality$wind)

[1] -0.4579879

> cor(airquality$Temp, airquality$wind, method="spearman")
[1] -0.4465408

Temp

Wind

Figure 3.8: Scatterplot of the relationship between wind speed and temperature

Comparing multiple correlations

Armed with our new standardized coefficients, we can now effectively compare the
correlations between different pairs of variables directly.

In data analysis, it is common to compare the correlations between all the numeric
variables in a single dataset. We can do this with the iris dataset using the following R
code snippet:

> # have to drop 5th column (species is not numeric)
> jris.nospecies <- iris[, -5]
> cor(iris.nospecies)
Sepal.Length Sepal.wWidth Petal.Length Petal.Width
Sepal.Length 1.0000000 -0.1175698 0.8717538 0.8179411

Sepal.width -0.1175698 1.0000000 -0.4284401 -0.3661259
Petal.Length 0.8717538 -0.4284401 1.0000000 0.9628654
Petal.width 0.8179411 -0.3661259 0.9628654 1.0000000

This produces a correlation matrix (when it is done with the covariance, it is called a
covariance matrix). It is square (the same number of rows and columns) and symmetric,
which means that the matrix is identical to its transposition (the matrix with the axes
flipped). It is symmetrical, because there are two elements for each pair of variables on
either side of the diagonal line of 1s. The diagonal line is all 1’s, because every variable is
perfectly correlated with itself. Which are the most highly (positively) correlated pairs of
variables? What about the most negatively correlated?

Visualization methods

We are now going to see how we can create these kinds of visualizations on our own.

Categorical and continuous variables

We have seen that box plots are a great way of comparing the distribution of a continuous
variable across different categories. As you might expect, box plots are very easy to
produce using ggplot2. The following snippet produces the box-and-whisker plot that we
saw earlier, depicting the relationship between the petal lengths of the different iris species
in the iris dataset:

> library(ggplot)

> gplot(Species, Petal.Length, data=iris, geom="boxplot",

+ fill=Species)
First, we specify the variable on the x-axis (the iris species) and then the continuous
variable on the y-axis (the petal length). Finally, we specify that we are using the iris
dataset, that we want a box plot, and that we want to fill the boxes with different colors for
each iris species.

Another fun way of comparing distributions between the different categories is by using
an overlapping density plot:

> gplot(Petal.Length, data=iris, geom="density", alpha=I(.7),

+ fill=Species)
Here we need only specify the continuous variable, since the fill parameter will break
down the density plot by species. The alpha parameter adds transparency to show more
clearly the extent to which the distributions overlap.

Species

setosa

density

versicolor

virginica

4
Petal.Length

Figure 3.9: Overlapping density plot of petal length of iris flowers across species

If it is not the distribution you are trying to compare but some kind of single-value statistic
(like standard deviation or sample counts), you can use the by function to get that value
across all categories, and then build a bar plot where each category is a bar, and the
heights of the bars represent that category’s statistic. For the code to construct a bar plot,
refer back to the last section in Chapter 1, RefresheR.

Two categorical variables

The visualization of categorical data is a grossly understudied domain and, in spite of
some fairly powerful and compelling visualization methods, these techniques remain
relatively unpopular.

My favorite method for graphically illustrating contingency tables is to use a mosaic plot.
To make mosaic plots, we will need to install and load the VCD (Visualizing Categorical
Data) package:

install.packages("vcd")
library(vcd)

ucba <- data.frame(UCBAdmissions)
mosaic(Freq ~ Gender + Admit, data=ucba,
shade=TRUE, legend=FALSE)

+ VVYVVYV

Admit
Admitted Rejected

Figure 3.10: A mosaic plot of the UCBAdmissions dataset (across all departments)

Male

Gender

Famale

The first argument to the mosaic function is a formula. This formula is meant to be read
as: display frequency broken down by gender and whether the applicant was admitted.
shade=TRUE adds a little life to the plot by adding colors to the boxes. The colors are
actually very meaningful, as is the legend we opted not to show with the final parameter—
but its meaning is beyond the scope of this section.

The mosaic plot represents each cell of a 2x2 contingency table as a tile; the area of the
box is proportional to the number of observations in that cell. From this plot, we can easily
tell that (a) more men applied to UCB than women, (b) more applicants were rejected than
accepted, and (c) women were rejected at a higher proportion than male applicants.

You remember how this was misleading, right? Let’s look at the mosaic plot for only
department A:

> mosaic(Freq ~ Gender+Admit, data=ucba[ucba$bDept=="A",],
+ shade=TRUE, legend=FALSE)

Admit
Admitted Rejected

Male

Gender

Famale

Figure 3.11: A mosaic plot of the UCBAdmissions dataset for department A

Hopefully, this plot makes the treachery of Simpson’s paradox more apparent. Notice how
there were far fewer female applicants than males, but the admission rates for the female
applicants were much higher. Try visualizing the mosaic plots for the other departments by
yourself!

Two continuous variables

The canonical way of displaying relationships between two continuous variables is via
scatterplots. The scatterplot for the women’s heights and weights that we saw earlier in
this chapter was produced with the following R code snippet:

> gplot(height, weight, data=women, geom="point")

Whether you put height and weight first depends on which variable you want tied to the
X-axis.

What about that fancy regression line?!, you ask frantically. ggplot2 gracefully provides
this feature with just a few extra characters. The scatterplot of the relationship between the
weight of a car and its miles per gallon was produced as follows:

> gplot(wt, mpg, data=mtcars, geom=c("point", "smooth"),
+ method="1m", se=FALSE)'

Here, we are specifying that we want two kinds of geometric objects, point and smooth.
The latter is responsible for the regression line. method="1m" tells gplot that we want to
use a linear model to create the trend line.

If we leave out the method, ggplot2 will choose a method automatically; in this case, it
would default to a method of drawing a non-linear trend line called LOESS:

> gplot(wt, mpg, data=mtcars, geom=c("point", '"smooth"), se=FALSE)

.
" @
.
. .
-
. .
. w . .
- - - LI
- - -
- L]
g . _H“"x.sﬁ_ . .
& . -\

Wind

Figure 3.12: A scatterplot of the relationship between the weight of a car and its miles per
gallon, and a trend-line smoothed with LOESS

The se=FALSE directive instructs ggplot2 not to plot the estimates of the error. We will get
to what this means in a later chapter.

More than two continuous variables

Finally, there is an excellent way to visualize correlation matrices like the one we saw
with the iris dataset in the section Comparing multiple correlations. To do this, we have
to install and load the corrgram package as follows:

> # install.packages("corrgram")

> library(corrgram)

>

> corrgram(iris, lower.panel=panel.conf, upper.panel=panel.pts)

Sepal.Length R

-0.12 Sepal.Width

(-0.27,0.04)

0 - 8 7 -0.43 Petal.Length HggéG ,

(0.83,0.91) (-0.55,-0.29) °

082 '037 096 Petal.Width

(0.76,0.86) (-0.50,-0.22) (0.95,0.97)

Figure 3.13: A corrgram of the iris data set’s continuous variables

With corrgrams, we can exploit the fact the correlation matrices are symmetrical by
packing in more information. On the lower left panel, we have the Pearson correlation
coefficients (never mind the small ranges beneath each coefficient for now). Instead of

repeating these coefficients for the upper right panel, we can show a small scatterplot there
instead.

We aren’t limited to showing the coefficients and scatterplots in our corrgram, though;
there are many other options and configurations available:

> corrgram(iris, lower.panel=panel.pie, upper.panel=panel.pts,

+ diag.panel=panel.density,
+ main=paste@("corrgram of petal and sepal ",
+ "measurements in iris data set'"))

corrgram of petal and sepal measurements in iris data set

o o o
S o o s [=] o ‘9.1 ﬂoﬂu
."(q—_\".ll o35 o - o B° o
J"l ".l‘ o f’cgggo e :]c oo ?*ng
| o o 0 a0
Sepal.Length ¢ °r=i'5§g i ’ cgcﬁo Es
/ | oo, 00,0 %2 o o Sy 8 °
| R, - L

o

e ofic8 2
%b :
o

'Peta’l Wldﬂ\’l

_

Figure 3.14: Another corrgram of the iris dataset’s continuous variables

Notice that this time, we can overlay a density plot wherever there is a variable name (on
the diagonal) —just to get a sense of the variables’ shapes. More saliently, instead of text
coefficients, we have pie charts in the lower-left panel. These pie charts are meant to
graphically depict the strength of the correlations.

If the color of the pie is blue (or any shade thereof), the correlation is positive; the bigger
the shaded area of the pie, the stronger the magnitude of the correlation. If, however, the
color of the pie is red or a shade of red, the correlation is negative, and the amount of
shading on the pie is proportional to the magnitude of the correlation.

To top it all off, we added the main parameter to set the title of the plot. Note the use of
pasteo so that I could split the title up into two lines of code.

To get a better sense of what corrgram is capable of, you can view a live demonstration of
examples if you execute the following at the prompt:

> example(corrgram)

Exercises

Try out the following exercises to revise the concepts learned so far:

e [.ook at the documentation on cor with help("cor"). You can see, in addition to
"pearson" and "spearman", there is an option for "kendall". Learn about Kendall’s
tau. Why, and under what conditions, is it considered better than Spearman’s rho?

e For each species of iris, find the correlation coefficient between the sepal length and
width. Are there any differences? How did we just combine two different types of the
broad categories of bivariate analyses to perform a complex multivariate analysis?

e Download a dataset from the web, or find another built-into-R dataset that suits your
fancy (using library(help = "datasets")). Explore relationships between the
variables that you think might have some connection.

e Gustave Flaubert is well understood to be a classist misogynist and this, of course,
influenced how he developed the character of Emma Bovary. However, it is not
uncommon for the readers to identify and empathize with her, and they are often
devastated by the book’s conclusion. In fact, translator Geoffrey Wall asserts that
Emma dies in a pain that is exactly adjusted to the intensity of our preceding
identification.

How can the fact that some sympathize with Emma be reconciled with Flaubert’s
apparent intention? In your response, assume a post-structuralist approach to
authorial intent.

Summary

There were many new ideas introduced in this chapter, so kudos to you for making it
through! You’re well on the way to being able to tackle some extraordinarily interesting
problems on your own!

To summarize, in this chapter, we learned that the relationships between two variables can
be broken down into three broad categories.

For categorical/continuous variables, we learned how to use the by function to retrieve the
statistics on the continuous variable for each category. We also saw how we can use box-
and-whisker plots to visually inspect the distributions of the continuous variable across
categories.

For categorical/categorical configurations, we used contingency and proportions tables to
compare frequencies. We also saw how mosaic plots can help spot interesting aspects of
the data that might be difficult to detect when just looking at the raw numbers.

For continuous/continuous data we discovered the concepts of covariance and correlations
and explored different correlation coefficients with different assumptions about the nature
of the bivariate relationship. We also learned how these concepts could be expanded to
describe the relationship between more than two continuous variables. Finally, we learned
how to use scatterplots and corrgrams to visually depict these relationships.

With this chapter, we’ve concluded the unit on exploratory data analysis, and we’ll be
moving on to confirmatory data analysis and inferential statistics.

Chapter 4. Probability

It’s time for us to put descriptive statistics down for the time being. It was fun for a while,
but we’re no longer content just determining the properties of observed data; now we want
to start making deductions about data we haven’t observed. This leads us to the realm of
inferential statistics.

In data analysis, probability is used to quantify uncertainty of our deductions about
unobserved data. In the land of inferential statistics, probability reigns queen. Many regard
her as a harsh mistress, but that’s just a rumor.

Basic probability

Probability measures the likeliness that a particular event will occur. When
mathematicians (us, for now!) speak of an event, we are referring to a set of potential
outcomes of an experiment, or trial, to which we can assign a probability of occurrence.

Probabilities are expressed as a number between 0 and 1 (or as a percentage out of 100).
An event with a probability of 0 denotes an impossible outcome, and a probability of 1
describes an event that is certain to occur.

The canonical example of probability at work is a coin flip. In the coin flip event, there are
two outcomes: the coin lands on heads, or the coin lands on tails. Pretending that coins
never land on their edge (they almost never do), those two outcomes are the only ones
possible. The sample space (the set of all possible outcomes), therefore, is {heads, tails}.
Since the entire sample space is covered by these two outcomes, they are said to be
collectively exhaustive.

The sum of the probabilities of collectively exhaustive events is always 1. In this example,
the probability that the coin flip will yield heads or yield tails is 1; it is certain that the coin
will land on one of those. In a fair and correctly balanced coin, each of those two
outcomes is equally likely. Therefore, we split the probability equally among the
outcomes: in the event of a coin flip, the probability of obtaining heads is 0.5, and the
probability of tails is 0.5 as well. This is usually denoted as follows:

P[J’rmdﬁ') =0.5

The probability of a coin flip yielding either heads or tails looks like this:

P(heads U tails } =1

And the probability of a coin flip yielding both heads and tails is denoted as follows:

P(heads Ntails] =)

The two outcomes, in addition to being collectively exhaustive, are also mutually
exclusive. This means that they can never co-occur. This is why the probability of heads
and tails is O; it just can’t happen.

The next obligatory application of beginner probability theory is in the case of rolling a
standard six-sided die. In the event of a die roll, the sample space is {1, 2, 3, 4, 5, 6}.
With every roll of the die, we are sampling from this space. In this event, too, each
outcome is equally likely, except now we have to divide the probability across six

outcomes. In the following equation, we denote the probability of rolling a 1 as P(1):

P(1)=1/6

Rolling a 1 or rolling a 2 is not collectively exhaustive (we can still roll a 3, 4, 5, or 6), but
they are mutually exclusive; we can’t roll a 1 and 2. If we want to calculate the probability
of either one of two mutually exclusive events occurring, we add the probabilities:

P(1u2)=P(1)+P(2)=1/3

While rolling a 1 or rolling a 2 aren’t mutually exhaustive, rolling 1 and not rolling a 1 are.
This is usually denoted in this manner:

P(lu-l)=1

These two events—and all events that are both collectively exhaustive and mutually
exclusive—are called complementary events.

Our last pedagogical example in the basic probability theory is using a deck of cards. Our
deck has 52 cards—4 for each number from 2 to 10 and 4 each of Jack, Queen, King, and
Ace (no Jokers!). Each of these 4 cards belong to one suit, either a Heart, Club, Spade or
Diamond. There are, therefore, 13 cards in each suit. Further, every Heart and Diamond
card is colored red, and every Spade and Club are black. From this, we can deduce the
following probabilities for the outcome of randomly choosing a card:

4

52

P(Ace) =

8
P(Queen v King) =—
32

A
P[Bfm-a"»:]:_—ﬁ

P(Club) = ;—i

Lt
=)

P(Club\w Heart U Spade) =

L1
[

P(Clubw Heart U Spade'w Diamond) = 1 collectively exhaustive)

What, then, is the probability of getting a black card and an Ace? Well, these events are
conditionally independent, meaning that the probability of either outcome does not affect
the probability of the other. In cases like these, the probability of event A and event B is
the product of the probability of A and the probability of B. Therefore:

P{ Black m Af'e) =26/52%4/52=2/52

Intuitively, this makes sense, because there are two black Aces out of a possible 52.

What about the probability that we choose a red card and a Heart? These two outcomes
are not conditionally independent, because knowing that the card is red has a bearing on
the likelihood that the card is also a Heart. In cases like these, the probability of event A
and B is denoted as follows:

P(AnB)=P(A)P(B| A)or P(B)P(A4|B)

Where P(A|B) means the probability of A given B. For example, if we represent A as
drawing a Heart and B as drawing a red card, P(A | B) means what’s the probability of
drawing a heart if we know that the card we drew was red?. Since a red card is equally
likely to be a Heart or a Diamond, P(A|B) is 0.5. Therefore:

P(Heart mRed)= P(Red) P(Heart | Red) :E*l - 5
vz 4

In the preceding equation, we used the form P(B) P(A|B). Had we used the form P(A)
P(B|A), we would have got the same answer:

P(Heart nRed)= P(Heart) P(Red | Heart) = ;—2 #l=—= %
L o .

So, these two forms are equivalent:

P(B)P(A|B)=P(A)P(B]|A)

For kicks, let’s divide both sides of the equation by P(B). That yields the following
equivalence:
P(A)P(B| A4)

P(B)

P(4]|B)=

This equation is known as Bayes’ Theorem. This equation is very easy to derive, but its
meaning and influence is profound. In fact, it is one of the most famous equations in all of
mathematics.

Bayes’ Theorem has been applied to and proven useful in an enormous amount of different
disciplines and contexts. It was used to help crack the German Enigma code during World
War 11, saving the lives of millions. It was also used recently, and famously, by Nate Silver
to help correctly predict the voting patterns of 49 states in the 2008 US presidential
election.

At its core, Bayes’ Theorem tells us how to update the probability of a hypothesis in light
of new evidence. Due to this, the following formulation of Bayes’ Theorem is often more
intuitive:

P(E|H)P(H)

P(H|E)= P(E)

where H is the hypothesis and E is the evidence.
Let’s see an example of Bayes’ Theorem in action!

There’s a hot new recreational drug on the scene called Allighate (or Ally for short). It’s
named as such because it makes its users go wild and act like an alligator. Since the effect
of the drug is so deleterious, very few people actually take the drug. In fact, only about 1
in every thousand people (0.1%) take it.

Frightened by fear-mongering late-night news, Daisy Girl, Inc., a technology consulting
firm, ordered an Allighate testing kit for all of its 200 employees so that it could offer
treatment to any employee who has been using it. Not sparing any expense, they bought
the best kit on the market; it had 99% sensitivity and 99% specificity. This means that it
correctly identified drug users 99 out of 100 times, and only falsely identified a non-user
as a user once in every 100 times.

When the results finally came back, two employees tested positive. Though the two denied
using the drug, their supervisor, Ronald, was ready to send them off to get help. Just as

Ronald was about to send them off, Shanice, a clever employee from the statistics
department, came to their defense.

Ronald incorrectly assumed that each of the employees who tested positive were using the
drug with 99% certainty and, therefore, the chances that both were using it was 98%.
Shanice explained that it was actually far more likely that neither employee was using
Allighate.

How so? Let’s find out by applying Bayes’ theorem!

Let’s focus on just one employee right now; let H be the hypothesis that one of the
employees is using Ally, and E represent the evidence that the employee tested positive.

P(Positive Test | Ally User) P(Ally User)

P(Testing positive,in general)

P(Ally User | Positive Test) =

We want to solve the left side of the equation, so let’s plug in values. The first part of the
right side of the equation, P(Positive Test | Ally User), is called the likelihood. The
probability of testing positive if you use the drug is 99%; this is what tripped up Ronald—
and most other people when they first heard of the problem. The second part, P(Ally
User), is called the prior. This is our belief that any one person has used the drug before
we receive any evidence. Since we know that only .1% of people use Ally, this would be a
reasonable choice for a prior. Finally, the denominator of the equation is a normalizing
constant, which ensures that the final probability in the equation will add up to one of all
possible hypotheses. Finally, the value we are trying to solve, P(Ally user | Positive
Test), is the posterior. It is the probability of our hypothesis updated to reflect new
evidence.

99001

P(Ally User | Positive Test) = : S
P(Testing positive,in general)

In many practical settings, computing the normalizing factor is very difficult. In this case,
because there are only two possible hypotheses, being a user or not, the probability of
finding the evidence of a positive test is given as follows:

P(Testing positive | Ally User) P(Ally User)
+ P(Testing positive| Not an Ally User) P(Not an Ally User)

Which is: (.99 *.001) + (.01 * .999) = 0.01098

Plugging that into the denominator, our final answer is calculated as follows:

QL)
P(Ally User | Positive Test) = H =0.090164

Note that the new evidence, which favored the hypothesis that the employee was using
Ally, shifted our prior belief from .001 to .09. Even so, our prior belief about whether an
employee was using Ally was so extraordinarily low, it would take some very very strong
evidence indeed to convince us that an employee was an Ally user.

Ignoring the prior probability in cases like these is known as base-rate fallacy. Shanice
assuaged Ronald’s embarrassment by assuring him that it was a very common mistake.

Now to extend this to two employees: the probability of any two employees both using the
drug is, as we now know, .01 squared, or 1 million to one. Squaring our new posterior
yields, we get .0081. The probability that both employees use Ally, even given their
positive results, is less than 1%. So, they are exonerated.

Sally is a different story, though. Her friends noticed her behavior had dramatically
changed as of late—she snaps at co-workers and has taken to eating pencils. Her
concerned cubicle-mate even followed her after work and saw her crawl into a sewer, not
to emerge until the next day to go back to work.

Even though Sally passed the drug test, we know that it’s likely (almost certain) that she
uses Ally. Bayes’ theorem gives us a way to quantify that probability!

Our prior is the same, but now our likelihood is pretty much as close to 1 as you can get -
after all, how many non-Ally users do you think eat pencils and live in sewers?

A tale of two interpretations

Though it may seem strange to hear, there is actually a hot philosophical debate about
what probability really is. Though there are others, the two primary camps into which
virtually all mathematicians fall are the frequentist camp and the Bayesian camp.

The frequentist interpretation describes probability as the relative likelihood of observing
an outcome in an experiment when you repeat the experiment multiple times. Flipping a
coin is a perfect example; the probability of heads converges to 50% as the number of
times it is flipped goes to infinity.

The frequentist interpretation of probability is inherently objective; there is a true
probability out there in the world, which we are trying to estimate.

The Bayesian interpretation, however, views probability as our degree of belief about
something. Because of this, the Bayesian interpretation is subjective; when evidence is
scarce, there are sometimes wildly different degrees of belief among different people.

Described in this manner, Bayesianism may scare many people off, but it is actually quite
intuitive. For example, when a meteorologist describes the probability of rain as 70%,
people rarely bat an eyelash. But this number only really makes sense within a Bayesian
framework because exact meteorological conditions are not repeatable, as is required by
frequentist probability.

Not simply a heady academic exercise, these two interpretations lead to different
methodologies in solving problems in data analysis. Many times, both approaches lead to
similar results. We will see examples of using both approaches to solve a problem later in
this book.

Though practitioners may strongly align themselves with one side over another, good
statisticians know that there’s a time and a place for both approaches.

Note

Though Bayesianism as a valid way of looking at probability is debated, Bayes theorem is
a fact about probability and is undisputed and non-controversial.

Sampling from distributions

Observing the outcome of trials that involve a random variable, a variable whose value
changes due to chance, can be thought of as sampling from a probability distribution—one
that describes the likelihood of each member of the sample space occurring.

That sentence probably sounds much scarier than it needs to be. Take a die roll for
example.

probability

0.2
] I l I I I I
0.0 -
1 I |
Z . 5

Figure 4.1: Probability distribution of outcomes of a die roll

Each roll of a die is like sampling from a discrete probability distribution for which each
outcome in the sample space has a probability of 0.167 or 1/6. This is an example of a
uniform distribution, because all the outcomes are uniformly as likely to occur. Further,
there are a finite number of outcomes, so this is a discrete uniform distribution (there also
exist continuous uniform distributions).

Flipping a coin is like sampling from a uniform distribution with only two outcomes.
More specifically, the probability distribution that describes coin-flip events is called a
Bernoulli distribution—it’s a distribution describing only two events.

Parameters

We use probability distributions to describe the behavior of random variables because they
make it easy to compute with and give us a lot of information about how a variable
behaves. But before we perform computations with probability distributions, we have to
specify the parameters of those distributions. These parameters will determine exactly
what the distribution looks like and how it will behave.

For example, the behavior of both a 6-sided die and a 12-sided die is modeled with a
uniform distribution. Even though the behavior of both the dice is modeled as uniform
distributions, the behavior of each is a little different. To further specify the behavior of
each distribution, we detail its parameter; in the case of the (discrete) uniform distribution,
the parameter is called n. A uniform distribution with parameter n has n equally likely
outcomes of probability 1 / n. The n for a 6-sided die and a 12-sided die is 6 and 12
respectively.

For a Bernoulli distribution, which describes the probability distribution of an event with
only two outcomes, the parameter is p. Outcome 1 occurs with probability p, and the other
outcome occurs with probability 1 - p, because they are collectively exhaustive. The flip
of a fair coin is modeled as a Bernoulli distribution with p = 0.5.

Imagine a six-sided die with one side labeled 1 and the other five sides labeled 2. The
outcome of the die roll trials can be described with a Bernoulli distribution, too! This time,
p = 0.16 (1/6). Therefore, the probability of not rolling a 1 is 5/6.

The binomial distribution

The binomial distribution is a fun one. Like our uniform distribution described in the
previous section, it is discrete.

When an event has two possible outcomes, success or failure, this distribution describes
the number of successes in a certain number of trials. Its parameters are n, the number of
trials, and p, the probability of success.

Concretely, a binomial distribution with n=1 and p=0.5 describes the behavior of a single
coin flip—if we choose to view heads as successes (we could also choose to view tails as
successes). A binomial distribution with n=36 and p=0.5 describes the number of heads
we should expect.

[V
= ™
L] L]
L] L]
=
=
= ™ ™
=
=
e
(=8
E - L] -
=
L] L]
[] »
=]]
D_—"""“ *seesnns
= T T T T T T
0 5 10 15 20 25 a0
number of heads

Figure 4.2: A binomial distribution (n=30, p=0.5)

On average, of course, we would expect to have 15 heads. However, randomness is the
name of the game, and seeing more or fewer heads is totally expected.

How can we use the binomial distribution in practice?, you ask. Well, let’s look at an
application.

Larry the Untrustworthy Knave—who can only be trusted some of the time—gives us a
coin that he alleges is fair. We flip it 30 times and observe 10 heads.

It turns out that the probability of getting exactly 10 heads on 30 flips is about 2.8%*. We

can use R to tell us the probability of getting 10 or fewer heads using the pbinom function:

> pbinom(10, size=30, prob=.5)
[1] 0.04936857

It appears as if the probability of this occurring, in a correctly balanced coin, is roughly
5%. Do you think we should take Larry at his word?

Note
*If you’re interested

The way we determined the probability of getting exactly 10 heads is by using the
probability formula for Bernoulli trials. The probability of getting k successes in n trials is
equal to:

()0

k

where p is the probability of getting one success and:

=y

If your palms are getting sweaty, don’t worry. You don’t have to memorize this in order to
understand any later concepts in this book.

The normal distribution

Do you remember in Chapter 2, The Shape of Data when we described the normal
distribution and how ubiquitous it is? The behavior of many random variables in real life
is very well described by a normal distribution with certain parameters.

The two parameters that uniquely specify a normal distribution are p (mu) and o (sigma).
1, the mean, describes where the distribution’s peak is located and o, the standard
deviation, describes how wide or narrow the distribution is.

0.08

mean=60 sd=5
— mean=50 sd=20
mean=30 sd=10

prabability density
0.04 0.06
| |

0.02

0.00
|

Figure 4.3: Normal distributions with different parameters

The distribution of heights of American females is approximately normally distributed
with parameters p= 65 inches and o= 3.5 inches.

0.08
L

density
0.06
|

0.04
l

0.02
|

0.00
L

50 55 &0 65 70 75 a0

height

Figure 4.4: Normal distributions with different parameters

With this information, we can easily answer questions about how probable it is to choose,
at random, US women of certain heights.

As mentioned earlier in Chapter 2, The Shape of Data we can’t really answer the question
What is the probability that we choose a person who is exactly 60 inches?, because
virtually no one is exactly 60 inches. Instead, we answer questions about how probable it
is that a random person is within a certain range of heights.

What is the probability that a randomly chosen woman is 70 inches or taller? If you recall,
the probability of a height within a range is the area under the curve, or the integral over
that range. In this case, the range we will integrate looks like this:

density
0.06 0.08
| |

0.04
l

0.02
|

0.00
L

a0 55 &0 65 70 75 a0

height

Figure 4.5: Area under the curve of the height distribution from 70 inches to positive

infinity

> f <- function(x){ dnorm(x, mean=65, sd=3.5) }

> integrate(f, 70, Inf)

0.07656373 with absolute error < 2.2e-06
The preceding R code indicates that there is a 7.66% chance of randomly choosing a
woman who is 70 inches or taller.

Luckily for us, the normal distribution is so popular and well studied, that there is a
function built into R, so we don’t need to use integration ourselves.

> pnorm(70, mean=65, sd=3.5)

[1] 0.9234363
The pnorm function tells us the probability of choosing a woman who is shorter than 70
inches. If we want to find P (> 70 inches), we can either subtract this value by 1 (which
gives us the complement) or use the optional argument lower . tail=FALSE. If you do this,
you’ll see that the result matches the 7.66% chance we arrived at earlier.

The three-sigma rule and using z-tables

When dealing with a normal distribution, we know that it is more likely to observe an
outcome that is close to the mean than it is to observe one that is distant—>but just how
much more likely? Well, it turns out that roughly 68% of all the values drawn from a
random distribution lie within 1 standard deviation, or 1 z-score, away from the mean.
Expanding our boundaries, we find that roughly 95% of all values are within 2 z-scores
from the mean. Finally, about 99.7% of normal deviates are within 3 standard deviations
from the mean. This is called the three-sigma rule.

—— 68%

95%
|

99.7%
| | | T

-4 -2 0 2 4

Z-5Core

Figure 4.6: The three-sigma rule

Before computers came on the scene, finding the probability of ranges associated with
random deviates was a little more complicated. To save mathematicians from having to
integrate the Gaussian (normal) function by hand (eww!), they used a z-table, or standard
normal table. Though using this method today is, strictly speaking, unnecessary, and it is a
little more involved, understanding how it works is important at a conceptual level. Not to
mention that it gives you street cred as far as statisticians are concerned!

Formally, the z-table tells us the values of cumulative distribution function at different z-
scores of a normal distribution. Less abstractly, the z-table tells us the area under the curve
from negative infinity to certain z-scores. For example, looking up -1 on a z-table will tell
us the area to the left of 1 standard deviation below the mean (15.9%).

Z-tables only describe the cumulative distribution function (area under the curve) of a
standard normal distribution—one with a mean of 0 and a standard deviation of 1.
However, we can use a z-table on normal distributions with any parameters, p and o. All

you need to do is convert a value from the original distribution into a z-score. This process
is called standardization.
. (X —u)

o

To use a z-table to find the probability of choosing a US woman at random who is taller
than 70 inches, we first have to convert this value into a z-score. To do this, we subtract
the mean (65 inches) from 70 and then divide that value by the standard deviation (3.5
inches).

(70-65)
3.5

Then, we find 1. 43 on the z-table; on most z-table layouts, this means finding the row
labeled 1. 4 (the z-score up to the tenths place) and the column “.03” (the value in the
hundredths place). The value at this intersection is .9236, which means that the
complement (someone taller than 70 inches) is 1-.9236 = 0.0764. This is the same answer
we got when we used integration and the pnorm function.

Exercises

Practise the following exercises to reinforce the concepts learned in this chapter:

Recall the drug testing at Daisy Girl, Inc. earlier in the chapter. We used .1% as our
prior probability that the employee was using the drug. Why should this prior have
been even lower? Using a subjective Bayesian interpretation of probability, estimate
what the prior should have been given that the employee was able to hold down a job
and no one saw her/him act like an alligator.

Harken back to the example of the coin from Larry the Untrustworthy Knave. We
would expect the proportion of heads in a fair coin that is flipped many times to be
around 50%. In Larry’s coin, the proportion was 2/3, which is unlikely to occur. The
probability of 20 heads in 30 flips was 2.1%. However, find the probability of getting
40 heads in 60 flips. Even though the proportions are the same, why is the probability
of observing 40 heads in 60 flips so significantly less probable? Understanding the
answer to this question is key to understanding sampling theory and inferential data
analysis.

Use the binomial distribution and pbinom to calculate the probability of observing 10
or fewer “1”s when rolling a fair 6-sided die 50 times. View rolling a “1” as a success
and not rolling “1” as a failure. What is the value of the parameter, p?

Use a z-table to find the probability of choosing a US woman at random who is 60
inches or shorter. Why is this the same probability as choosing one who is 70 inches
or taller?

Suppose a trolley is coming down the tracks, and its brakes are not working. It is
poised to run over five people who are hanging out on the tracks ahead of it. You are
next to a lever that can change the tracks that the trolley is riding on. However, the
second set of tracks has one person hanging out on it, too.

o Is it morally wrong to not pull the lever so that only one person is hurt, rather
than five?

o How would a utilitarian respond? Next, what would Thomas Aquinas say about
this? Back up your thesis by appealing to the Doctrine of the Double Effect in
Summa Theologica. Also, what would Kant say? Back up your response by
appealing to the categorical imperative introduced in the Foundation of the
Metaphysic of Morals.

Summary

In this chapter, we took a detour through probability land. You learned some basic laws of
probability, about sample spaces, and conditional independence. You also learned how to
derive Bayes’ Theorem and learned that it provides the recipe for updating hypotheses in
the light of new evidence.

We also touched upon the two primary interpretations of probability. In future chapters,
we will be employing techniques from both those approaches.

We concluded with an introduction to sampling from distributions and used two—the
binomial and the normal distributions—to answer interesting non-trivial questions about
probability.

This chapter laid the important foundation that supports confirmatory data analysis.
Making and checking inferences based on data is all about probability and, at this point,
we know enough to move on to have a great time testing hypotheses with data!

Chapter 5. Using Data to Reason About
the World

In Chapter 4, Probability, we mentioned that the mean height of US females is 65 inches.
Now pretend we didn’t know this fact—how could we find out what the average height is?

We can measure every US female, but that’s untenable; we would run out of money,
resources, and time before we even finished with a small city!

Inferential statistics gives us the power to answer this question using a very small sample
of all US women. We can use the sample to tell us something about the population we
drew it from. We can use observed data to make inferences about unobserved data. By the
end of this chapter, you too will be able to go out and collect a small amount of data and
use it to reason about the world!

Estimating means

In the example that is going to span this entire chapter, we are going to be examining how
we would estimate the mean height of all US women using only samples. Specifically, we
will be estimating the population parameters using samples’ means as an estimator.

I am going to use the vector all.us.women to represent the population. For simplicity’s
sake, let’s say there are only 10,000 US women.

> # setting seed will make random number generation reproducible
> set.seed(1)
> all.us.women <- rnorm(10000, mean=65, sd=3.5)

We have just created a vector of 10,000 normally distributed random variables with the
same parameters as our population of interest using the rnorm function. Of course, at this
point, we can just call mean on this vector and call it a day—but that’s cheating! We are
going to see that we can get really really close to the population mean without actually
using the entire population.

Now, let’s take a random sample of ten from this population using the sample function and
compute the mean:

> our.sample <- sample(all.us.women, 10)
> mean(our.sample)
[1] 64.51365

Hey, not a bad start!

Our sample will, in all likelihood, contain some short people, some normal people, and
some tall people. There’s a chance that when we choose a sample that we choose one that
contains predominately short people, or a disproportionate number of tall people. Because
of this, our estimate will not be exactly accurate. However, as we choose more and more
people to include in our sample, those chance occurrences—imbalanced proportions of the
short and tall—tend to balance each other out.

Note that as we increase our sample size, the sample mean isn’t always closer to the
population mean, but it will be closer on average.

We can test that assertion ourselves! Study the following code carefully and try running it
yourself.

> population.mean <- mean(all.us.women)

for(sample.size in seq(5, 30, by=5)){
create empty vector with 1000 elements
sample.means <- numeric(1000)
for(i in 1:1000){
sample.means[i] <- mean(sample(all.us.women, sample.size))
}
distances.from.true.mean <- abs(sample.means - population.mean)
mean.distance.from.true.mean <- mean(distances.from.true.mean)
print(mean.distance.from.true.mean)

+++++++++ VYV

[1] 1.245492

[1] ©.8653313
[1] ©.7386099
[1] ©.6355692
[1] ©.5458136

[1] 0.5090788

For each sample size from 5 to 30 (going up by 5), we will take 1000 different samples
from the population, calculate their mean, take the differences from the population mean,
and average them.

1.25 -

mean distance from true mean

0.00 = 1 1
41 &l
sample size

Figure 5.1: Accuracy of sample means as a function of sample size

As you can see, increasing the sample size gets us closer to the population mean.
Increasing the sample size also reduces the standard deviation between the means of the
samples.

1.6 -

standard deviation of sample means
I

B
|

0.0- i [
20 40 60
sample size

Figure 5.2: The variability of sample means as a function of sample size

Knowing that, with all other things being equal, larger samples are preferable to smaller
ones, let’s work with a sample size of 40 for right now. We’ll take our sample and estimate
our population mean as follows:

> mean(our.new.sample)
[1] 65.19704

The sampling distribution

So, we have estimated that the true population mean is about 65.2; we know the
population mean isn’t exactly 65.19704—but by just how much might our estimate be

off?

To answer this question, let’s take repeated samples from the population again. This time,
we’re going to take samples of size 40 from the population 10,000 times and plot a
frequency distribution of the means.

> means.of.our.samples <- numeric(10000)
> for(i in 1:10000){

+ a.sample <- sample(all.us.women, 40)

+ means.of.our.samples[i] <- mean(a.sample)
+

}

1000 -

750 -
=
[]
=
@ 500 -
o
[1§]
| -
ey

Ebu_ |‘ ||

5l __IIIII IIIII___
I I I I I
63 64 65 66 67

mean of sample

Figure 5.3: The sampling distribution of sample means

This frequency distribution is called a sampling distribution. In particular, since we used
sample means as the value of interest, this is called the sampling distribution of the sample
means (whew!!). You can create a sampling distribution of any statistic (median, variance,
and so on), but when we refer to sampling distributions throughout this chapter, we will be
specifically referring to the sampling distribution of sample means.

Check it out: the sampling distribution looks like a normal distribution—and that’s
because it is a normal distribution.

For a large enough sample size, the sampling distribution of any population will be
approximately normal with a mean equal to the population mean, 1, and a standard
deviation of:

o

N

where N is the sample size and o is the population standard deviation. This is called the
central limit theorem, and it is among the most important theorems in all of statistics.

Look back at the equation. Convince yourself that sample size is proportional to the
narrowness of the sampling distribution by noting that the sample size is in the
denominator.

The standard deviation of the sampling distribution tells us how variable a sample of a
certain size’s mean can be from sample to sample. It also tells us how much we expect
certain samples’ means to vary from the true population mean. The standard deviation of
the sampling distribution is called the standard error, and we can use it to quantify our
uncertainty about our estimate of the population mean.

If the standard error is small, an estimate from one sample is likely to be closer to the true
mean (because the sampling distribution is narrow). If our standard error is big, the mean
of any one particular sample is likely to be farther away from the true mean, on average.

Okay, so I’ve convinced you that the standard error is a great statistic to use—but how do
we get it? Up until now, I’ve said that you can calculate it by either:

¢ Taking many many samples from the population and taking the standard deviation of
the sample means

¢ Dividing the standard deviation of the population by the square root of the sample
size

However, in practice, this isn’t good enough: we don’t want to take repeated samples from
the population for the same reason that we can’t measure the heights of all US women
(because it would take too long and cost too much). And, in the case of using the
population standard deviation to get the standard error—well, we don’t know the

population standard deviation—if we did, we would have already had to calculate the
population mean, and we wouldn’t have to be estimating it with sampling!

Ideally, we want to find the standard error using only one sample. Well, it turns out that for
sufficiently large samples, using the sample standard deviation, s, in the standard error
formula (instead of the population standard deviation, ©) is a good enough approximation.
Similarly, the mean of the sampling distribution is equal to the population mean, but we
can use our sample’s mean as an estimate of that.

Note

To reiterate, for a sample of sufficient size, we can pretend that the sampling distribution
of the sample means has a mean equal to the sample’s mean and a standard deviation of
the sample’s standard deviation divided by the square root of the sample size. This
standard deviation of the sampling distribution is called the standard error, and it is a very
important number for quantifying the uncertainty of our estimation of the population mean
from the sample mean.

For a concrete example, let’s use our sample of 40, our.new.sample:

> mean(our.new.sample)

[1] 65.19704

> sd(our.new.sample)

[1] 3.588447

> sd(our.new.sample) / sqrt(length(our.new.sample))
[1] 0.5673833

Our sample’s mean and standard deviation is 65.2 and 3.59 respectively. The standard
error of the mean is 0.567.

This means that the sampling distribution of the sample means would look something like
this:

density

0.4 0.5 0.6 0.7
|
e

0.3
|

0.2
]
—

0.0

63 64 65

height

1

67

68

Figure 5.4: Estimated sampling distribution of sample means based on one sample

Interval estimation

Again, we care about the standard error (the standard deviation of the sampling
distribution of sample means) because it expresses the degree of uncertainty we have in
our estimation. Because of this, it’s not uncommon for statisticians to report the standard
error along with their estimate.

What’s more common, though, is for statisticians to report a range of numbers to describe
their estimates; this is called interval estimation. In contrast, when we were just providing
the sample mean as our estimate of the population mean, we were engaging in point
estimation.

One common approach to interval estimation is to use confidence intervals. A confidence
interval gives us a range over which a significant proportion of the sample means would
fall when samples are repeatedly drawn from a population and their means are calculated.
Concretely, a 95% confidence interval is the range that would contain 95% of the sample
means if multiple samples were taken from the same population. 95% confidence intervals
are very common, but 90% and 99% confidence intervals aren’t rare.

Think about this for a second: if a 95% confidence interval contains 95% of the sample
means, that means that the 95% confidence interval covers 95% of the area of the
sampling distribution.

=
95% confidence interval
[+]
& -
.'/q
o«
]
=
2
£
=
=1
o
o
9 \
= | —_-f/ -
L]
T T T T T
63 G4 65 66 67 G
height

Figure 5.5: The 95% confidence interval of our estimate of the sample mean (64.085 to
66.31) covers 95% of the area in the our estimated sampling distribution

Okay, so how do we find the bounds of the confidence interval? Think back to the three-zs
rule from the previous chapter on probability. Recall that about 95% of a normal
distribution’s area is within two standard deviations of the mean. Well, if the bounds of a
confidence interval cover 95% of the sampling distribution, then the bounds must be two
standard deviations away from the mean on both sides! Since the standard deviation of the
distribution of interest (the sampling distribution of sample means) is the standard error,
the bounds of the confidence interval are the mean minus 2 times the standard error and
the mean plus 2 times the standard error.

In reality, two standard deviations (or two z-scores) away from the mean contain a little bit
more than 95% of the area of the distribution. To be more precise, the range between -1.96
z-scores and 1.96 z-scores contains 95% of the area. Therefore, the bounds of a 95%
confidence interval are:

X —(1.965)and x +(1 96s)

where % is the sample mean and s is the sample standard deviation.

In our example, our bounds are:

> err <- sd(our.new.sample) / sgrt(length(our.new.sample))
> mean(our.new.sample) - (1.96%err)

[1] 64.08497

> mean(our.new.sample) + (1.96%err)

[1] 66.30912

How did we get 1.96?

You can get this number yourself by using the gnorm function.

The gnorm function is a little like the opposite of the pnorm function that we saw in the
previous chapter. That function started with a p because it gave us a probability—the
probability that we would see a value equal to or below it in a normal distribution. The q
in gnorm stands for quantile. A quantile, for a given probability, is the value at which the
probability will be equal to or below that probability.

I know that was confusing! Stated differently, but equivalently, a quantile for a given
probability is the value such that if we put it in the pnorm function, we get back that same
probability.

> gnorm(.025)

[1] -1.959964

> pnorm(-1.959964)
[1] 0.025

We showed earlier that 95% of the area under a curve of a probability distribution is
within 1.9599 z-scores away from the mean. We put . 025 in the gnorm function, because if
the mean is right smack in the middle of the 95% confidence interval, then there is 2.5%
of the area to the left of the bound and 2.5% of the area to the right of the bound. Together,
this lower 2.5% and upper 2.5% make up the missing 5% of the area.

Don'’t feel limited to the 95% confidence interval, though. You can figure out the bounds
of a 90% confidence interval using just the same procedure. In an interval that contains
90% of the area of a curve, the bounds are the values for which 5% of the area is to the left
and 5% of the area is to the right of (because 5% and 5% make up the missing 10%) the
curve.

> gnorm(.05)

[1] -1.644854

> gnorm(.95)

[1] 1.644854

> # notice the symmetry?

That means that for this example, the 90% confidence interval is 65.2 and 66.13 or 65.197
+-0.933.

Note
A warning about confidence intervals

There are many misconceptions about confidence intervals floating about. The most
pervasive is the misconception that 95% confidence intervals represent the interval such
that there is a 95% chance that the population mean is in the interval. This is false. Once
the bounds are created, it is no longer a question of probability; the population mean is
either in there or it’s not.

To convince yourself of this, take two samples from the same distribution and create 95%
confidence intervals for both of them. They are different, right? Create a few more. How

could it be the case that all of these intervals have the same probability of including the
population mean?

Using a Bayesian interpretation of probability, it is possible to say that there exists
intervals for which we are 95% certain that it encompasses the population mean, since
Bayesian probability is a measure of our certainty, or degree of belief, in something. This
Bayesian response to confidence intervals is called credible intervals, and we will learn
about them in Chapter 7, Bayesian Methods. The procedure for their construction is very
different to that of the confidence interval.

Smaller samples

Remember when I said that the sampling distribution of sample means is approximately
normal for a large enough sample size? This caveat means that for smaller sample sizes
(usually considered to be below 30), the sampling distribution of the sample means is not
well approximated by a normal distribution. It is, however, well approximated by another
distribution: the t-distribution.

Note
A bit of history...

The t-distribution is also known as the Student’s t-distribution. It gets its name from the
1908 paper that introduces it, by William Sealy Gosset writing under the pen name
Student. Gosset worked as a statistician at the Guinness Brewery and used the t-
distribution and the related t-test to study small samples of the quality of the beer’s raw
constituents. He is thought to have used a pen name at the request of Guinness so that
competitors wouldn’t know that they were using the t statistic to their advantage.

The t-distribution has two parameters, the mean and the degrees of freedom (or df). For
our purposes here, the ‘degrees of freedom’ is equal to our sample size, - 1. For example,
if we have a sample of 10 from some population and the mean is 5, then a t-distribution
with parameters mean=5 and df=9 describes the sampling distribution of sample means
with that sample size.

The t-distribution looks a lot like the normal distribution at first glance. However, further
examination will reveal that the curve is more flat and wide. This wideness accounts for
the higher level of uncertainty we have in regard to a smaller sample.

E m— ryormal distribution
= {-distribution (df=5)}
= {-distribution (df=2)

o —

=

% ™
= =}

&

= _|

L]

Figure 5.6: The normal distribution, and two t-distributions with different degrees of
freedom

Notice that as the sample size (degrees of freedom) increases, the distribution gets
narrower. As the sample size gets higher and higher, it gets closer and closer to a normal
distribution. By 29 degrees of freedom, it is very close to a normal distribution indeed.
This is why 30 is considered a good rule of thumb for what constitutes a good cut-off
between large sample sizes and small sample sizes and, thus, when deciding whether to
use a normal distribution or a t-distribution as a model for the sampling distribution.

Let’s say that we could only afford taking the heights of 15 US women. What, then, is our
95% interval estimation?

> small.sample <- sample(all.us.women, 15)
> mean(small.sample)

[1] 65.51277

> qt(.025, df=14)

[1] -2.144787

> # notice the difference

> gnorm(.025)

[1] -1.959964

Instead of using the gnorm function to get the correct multiplier to the standard error, we
want to find the quantile of the t-distribution at .025 (and .975). For this, we use the gt
function, which takes a probability and number of degrees of freedom. Note that the

quantile of the t-distribution is larger than the quantile of the normal distribution, which
will translate to larger confidence interval bounds; again, this reflects the additional
uncertainty we have in our estimate due to a smaller sample size.

> err <- sd(small.sample) / sgrt(length(small.sample))
> mean(small.sample) - (2.145 * err)

[1] 64.09551

> mean(small.sample) + (2.145 * err)

[1] 66.93003

In this case, the bounds of our 95% confidence interval are 64.1 and 66.9.

Exercises

Practise the following exercises to revise the concepts learned in this chapter:

e Write a function that takes a vector and returns the 95% confidence interval for that
vector. You can return the interval as a vector of length two: the lower bound and the
upper bound. Then, parameterize the confidence coefficient by letting the user of
your function choose their own confidence level, but keep 95% as the default. Hint:
the first line will look like this:

conf.int <- function(data.vector, conf.coeff=.95){

e Back when we introduced the central limit theorem, I said that the sampling
distribution from any distribution would be approximately normal. Don’t take my
word for it! Create a population that is uniformly distributed using the runif function
and plot a histogram of the sampling distribution using the code from this chapter and
the histogram-plotting code from Chapter 2, The Shape of Data. Repeat the process
using the beta distribution with parameters (a=0.5, b=0.5). What does the underlying
distribution look like? What does the sampling distribution look like?

e A formal and rigorous definition of knowledge and what constitutes knowledge is
still an open problem in epistemology. Since Plato and his dialogues, a popular
definition of knowledge is the Justified True Belief (JTB) account. In this account,
an agent can be said to know something, p, if (a) p is true, (b) the agent believes that
p is true, and (c) the agent is justified in believing that p is true. In a 1963 paper,
Edmund Gettier introduced examples that seem to satisfy these conditions, but appear
not to be true cases of knowledge. Read Gettier’s paper. Can the JTB account of
knowledge be modified to account for Gettier problems? Or should we reject the JTB
account of knowledge and start from scratch?

Summary

The central idea of this chapter is that making the leap from sample to population carries a
certain amount of uncertainty with it. In order to be good, honest analysts, we need to be
able to express and quantify this uncertainty.

The example we chose to illustrate this principle was estimating population mean from a
sample’s mean. You learned that the uncertainty associated with inferring the population
mean from sample means is modeled by the sampling distribution of the sample means.
The central limit theorem tells us the parameters we can expect of this sampling
distribution. You learned that we could use these parameters on their own, or in the
construction of confidence intervals, to express our level of uncertainty about our
estimate.

I want to congratulate you for getting this far. The topics introduced in this chapter are
very often considered the most difficult to grasp in all of introductory data analysis.

Your tenacity will be greatly rewarded, though; we have laid enough of a foundation to be
able to get into some real, practical topics. I promise the next chapter is a lot of fun, and it
is filled with interesting examples that you can start applying to real-life problems right
away!

Chapter 6. Testing Hypotheses

The salt-and-pepper of inferential statistics is estimation and testing hypotheses. In the last
chapter, we talked about estimation and making certain inferences about the world. In this
chapter, we will be talking about how to test the hypotheses on how the world works and
evaluate the hypotheses using only sample data.

In the last chapter, I promised that this would be a very practical chapter, and I’m a man of
my word; this chapter goes over a broad range of the most popular methods in modern
data analysis at a relatively high level. Even so, this chapter might have a little more detail
than the lazy and impatient would want. At the same time, it will have way too little detail
than what the extremely curious and mathematically inclined want. In fact, some
statisticians would have a heart attack at the degree to which I skip over the math involved
with these subjects—but I won’t tell if you don’t!

Nevertheless, certain complicated concepts and math are beyond the scope of this book.
The good news is that once you, dear reader, have the general concepts down, it is easy to
deepen your knowledge of these techniques and their intricacies—and I advocate that you
do before making any major decisions based on the tests introduced in these chapters.

Null Hypothesis Significance Testing

For better or worse, Null Hypothesis Significance Testing (NHST) is the most popular
hypothesis testing framework in modern use. So, even though there are competing
approaches that—at least in some cases—are better, you need to know this stuff up and
down!

Okay—Null Hypothesis Significance Testing—those are a bunch of big words. What do
they mean?

NHST is a lot like being a prosecutor in the United States’ or Great Britain’s justice
system. In these two countries—and a few others—the person being charged is presumed
innocent, and the burden of proving the defendant’s guilt is placed on the prosecutor. The
prosecutor then has to argue that the evidence is inconsistent with the defendant being
innocent. Only after it is shown that the extant evidence is unlikely if the person is
innocent, does the court rule a guilty verdict. If the extant evidence is weak, or is likely to
be observed even if the dependent is innocent, then the court rules not guilty. That doesn’t
mean the defendant is innocent (the defendant may very well be guilty!)—it means that
either the defendant was guilty, or there was not sufficient evidence to prove guilt.

With simple NHST, we are testing two competing hypotheses: the null and the alternative
hypotheses. The default hypothesis is called the null hypothesis—it is the hypothesis that
our observation occurred from chance alone. In the justice system analogy, this is the
hypothesis that the defendant is innocent. The alternative hypothesis is the opposite (or
complementary) hypothesis; this would be like the prosecutor’s hypothesis.

The null hypothesis terminology was introduced by a statistician named R. A. Fischer in
regard to the curious case of Muriel Bristol: a woman who claimed that she could discern,
just by tasting it, whether milk was added before tea in a teacup or whether the tea was
poured before the milk. She is more commonly known as the lady tasting tea.

Her claim was put to the test! The lady tasting tea was given eight cups; four had milk
added first, and four had tea added first. Her task was to correctly identify the four cups
that had tea added first. The null hypothesis was that she couldn’t tell the difference and
would choose a random four teacups. The alternative hypothesis is, of course, that she had
the ability to discern wither the tea or milk was poured first.

It turned out that she correctly identified the four cups. The chances of randomly choosing
the correct four cups is 70 to 1, or about 1.4%. In other words, the chances of that
happening under the null hypothesis is 1.4%. Given that it is so very unlikely to have
occurred under the null hypothesis, we may choose to reject the null hypothesis. If the null
and alternative hypotheses are mutually exclusive and collectively exhaustive, then a
rejection of the null hypothesis is tantamount to an acceptance of the alternative
hypothesis.

We can’t say anything for certain, but we can work with probabilities. In this example, we
wanted to prove or disprove the lady tasting tea’s claims. We did not try to evaluate the
probability that the lady could tell the difference; we assumed that she could not and tried

to show that it was unlikely that she couldn’t, given her stellar performance on the
assessment.

So, here’s the basic idea behind NHST as we know it so far:

1. Assume the opposite of what you are testing.
2. (Try to) show that the results you receive are unlikely given that assumption.
3. Reject the assumption.

We have heretofore been rather hand-wavy about what constitutes sufficient unlikelihood
to reject the null hypothesis and how we determine the probability in the first place. We’ll
discuss this now.

In order to quantify how likely or unlikely the results we receive are, we need to define a
test statistic—some measure of the sample. The sampling distribution of the test statistic
will tell us which test statistics are most likely to occur by chance (under the null
hypothesis) with repeated trials of the experiment. Once we know what the sampling
distribution of the test statistic looks like, we can tell what the probability of getting a
result as extreme as we got is. This is called a p-value. If it is equal to or below some pre-
specified boundary, called an alpha level (a level), we decide that the null hypothesis is a
bad hypothesis and embrace the alternative hypothesis. Largely, as a matter of tradition, an
alpha level of .05 is used most often, though other levels are occasionally used as well. So,
if the observed result would only occur 5% or less of the time (p-value < .05), we consider
it a sufficiently unlikely event and reject the null hypothesis. If the .05 cut-off sounds
rather arbitrary, it’s because it is.

So, here’s our updated and expanded basic idea behind NHST:

1. Formulate a set of two hypotheses: a null hypothesis (often denoted as HO) and an
alternative hypothesis (often denoted H1)

o HO: there is no effect
o H1: there is an effect

2. Compute the test statistic.

3. Given the sampling distribution of the test statistic under the null hypothesis, you can
calculate the probability of obtaining a test statistic equal to or more extreme than the
one you calculated. This is the p-value. Find it.

4. 1If the probability of obtaining a test statistic being equal to or more extreme than the
one you calculated is sufficiently unlikely (equal to or less than your alpha level),
then you may reject the null hypothesis.

5. If the null and alternative hypotheses are collectively exhaustive, you may embrace
the alternative hypothesis.

The illustrative example that’s going to make sense out of all of this is none other than the
gambit of Larry the Untrustworthy Knave that we met in Chapter 4, Probability. If you
recall, Larry, who can only be trusted some of the time, gave us a coin that he alleges is
fair. We flip it 30 times and observe 10 heads. Let’s hypothesize that the coin is unfair;

let’s formalize our hypotheses:

e HO (null hypothesis): the probability of obtaining heads on this coin is .5
e H1 (alternative hypothesis): the probability of obtaining heads on this coin is not .5

Let’s just use the number of heads in our sample as the test statistic. What is the sampling
distribution of this test statistic? In other words, if the coin were fair, and you repeated the
flipping-30-times experiment many times, what is the relative frequency of observing
particular numbers of heads? We’ve seen it already! It’s the binomial distribution. A
binomial distribution with parameters n=30 and p=0.5 describes the number of heads we
should expect in 30 flips.

0.15
|

010

probability

0.05
|
3
.

T T T T T T
0 5 10 15 20 25 30

0.00
|

number of heads

Figure 6.1: The sampling distribution of our coin-flip test statistic (the number of heads)

As you can see, the outcome that is the most likely is getting 15 heads (as you might
imagine). Can you see what the probability of getting 10 heads is? Fairly unlikely, right?

So, what’s the p-value, and is it less than our pre-specified alpha level? Well, we have
already worked out the probability of observing 10 or fewer heads in Chapter 4,
Probability, as follows:

> pbinom(10, size=30, prob=.5)

[1] 0.04936857

It’s less than .05. We can conclude the coin is unfair, right? Well, yes and no. Mostly no.
Allow me to explain.

One and two-tailed tests

You may reject the null hypothesis if the test statistic falls within a region under the curve
of the sampling distribution that covers 5% of the area (if the alpha level is .05). This is
called the critical region. Do you remember, in the last chapter, we constructed 95%
confidence intervals that covered 95% percent of the sampling distribution? Well, the 5%
critical region is like the opposite of this. Recall that, in order to make a symmetric 95% of
the area under the curve, we had to start at the .025 quantile and end at the .975 quantile,
leaving 2.5% percent on the left tail and 2.5% of the right tail uncovered.

Similarly, in order for the critical region of a hypothesis test to cover 5% of the most
extreme areas under the curve, the area must cover everything from the left of the .025
quantile and everything to the right of the .975 quantile.

So, in order to determine that the 10 heads out of 30 flips is statistically significant, the
probability that you would observe 10 or fewer heads has to be less than .025.

There’s a function built right into R, called binom. test, which will perform the
calculations that we have, until now, been doing by hand. In the most basic incantation of
binom.test, the first argument is the number of successes in a Bernoulli trial (the number
of heads), and the second argument is the number of trials in the sample (the number of
coin flips).

> binom.test (10, 30)
Exact binomial test

data: 10 and 30
number of successes = 10, number of trials = 30, p-value = 0.09874
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.1728742 0.5281200
sample estimates:
probability of success
0.3333333

If you study the output, you’ll see that the p-value does not cross the significance
threshold.

Now, suppose that Larry said that the coin was not biased towards tails. To see if Larry
was lying, we only want to test the alternative hypothesis that the probability of heads is
less than .5. In that case, we would set up our hypotheses like this:

e HO: The probability of heads is greater than or equal to .5
e H1: The probability of heads is less than .5

This is called a directional hypothesis, because we have a hypothesis that asserts that the
deviation from chance goes in a particular direction. In this hypothesis suite, we are only
testing whether the observed probability of heads falls into a critical region on only one
side of the sampling distribution of the test statistic. The statistical test that we would
perform in this case is, therefore, called a one-tailed test—the critical region only lies on

one tail. Since the area of the critical region no longer has to be divided between the two
tails (like in the two-tailed test we performed earlier), the critical region only contains the

area to the left of the .05 quantile.

00
]

atability
anability

obayility

oS
-
o

000
-
.
-
-
.
.
.
-
-

.
| eeennns?

0.00

.
fesesnne fesevere
T

5 10 15 20 25 30 a g 10 15 20 25 30

numier of heads number of haads number of heads

Figure 6.2: The three panels, from left to right, depict the critical regions of the left
(“lesser”) one-tailed, two-tailed, and right (“greater”) alternative hypotheses. The
dashed horizontal line is meant to show that, for the two-tailed tests, the critical region
starts below p=.025, because it is being split between two tails. For the one-tailed tests,
the critical region is below the dashed horizontal line at p=.05.

As you can see from the figure, for the directional alternative hypothesis that heads has a
probability less than .5, 10 heads is now included in the green critical region.

We can use the binom. test function to test this directional hypothesis, too. All we have to
do is specify the optional parameter alternative and set its value to "1less" (its default is

"two.sided" for a two-tailed test).

> binom.test (10,30, alternative="less")
Exact binomial test

data: 10 and 30
number of successes = 10, number of trials = 30, p-value = 0.04937

alternative hypothesis: true probability of success is less than 0.5
95 percent confidence interval:

0.0000000 0.4994387

sample estimates:

probability of success
0.3333333

If we wanted to test the directional hypothesis that the probability of heads was greater
than .5, we would use alternative="greater".

Take note of the fact that the p-value is now less than .05. In fact, it is identical to the
probability we got from the pbinom function.

When things go wrong

Certainty is a card rarely used in the deck of a data analyst. Since we make judgments and
inferences based on probabilities, mistakes happen. In particular, there are two types of
mistakes that are possible in NHST: Type I errors and Type II errors.

e A Type I error is when a hypothesis test concludes that there is an effect (rejects the
null hypothesis) when, in reality, no such effect exists

e A Type II error occurs when we fail to detect a real effect in the world and fail to
reject the null hypothesis even if it is false

Check the following table for errors encountered in the coin example:

Failure to reject null hypothesis (conclude no Reject the null hypothesis (conclude that there

Coin type detectable effect) is an effect)
El(i);n s Correct positive identification Type I error (false positive)
Er?flérlli;s Type II error (false negative) Correct identification

In the criminal justice system, Type I errors are considered especially heinous. Legal
theorist William Blackstone is famous for his quote: it is better that ten guilty persons
escape than one innocent suffer. This is why the court instructs jurors (in the United
States, at least) to only convict the defendant if the jury believes the defendant is guilty
beyond a reasonable doubt. The consequence is that if the jury favors the hypothesis that
the defendant is guilty, but only by a little bit, the jury must give the defendant the benefit
of the doubt and acquit.

This line of reasoning holds for hypothesis testing as well. Science would be in a sorry
state if we accepted alternative hypotheses on rather flimsy evidence willy-nilly; it is
better that we err on the side of caution when making claims about the world, even if that
means that we make fewer discoveries of honest-to-goodness, real-world phenomena
because our statistical tests failed to reach significance.

This sentiment underlies that decision to use an alpha level like .05. An alpha level of .05
means that we will only commit a Type I error (false positive) 5% of the time. If the alpha
level were higher, we would make fewer Type II errors, but at the cost of making more
Type I errors, which are more dangerous in most circumstances.

There is a similar metric to the alpha level, and it is called the beta level ([3 level). The beta
level is the probability that we would fail to reject the null hypothesis if the alternative
hypothesis were true. In other words, it is the probability of making a Type II error.

The complement of the beta level, 1 minus the beta level, is the probability of correctly
detecting a true effect if one exists. This is called power. This varies from test to test.

Computing the power of a test, a technique called power analysis, is a topic beyond the
scope of this book. For our purposes, it will suffice to say that it depends on the type of

test being performed, the sample size being used, and on the size of the effect that is being
tested (the effect size). Greater effects, like the average difference in height between
women and men, are far easier to detect than small effects, like the average difference in
the length of earthworms in Carlisle and in Birmingham. Statisticians like to aim for a
power of at least 80% (a beta level of .2). A test that doesn’t reach this level of power
(because of a small sample size or small effect size, and so on) is said to be underpowered.

A warning about significance

It’s perhaps regrettable that we use the term significance in relation to null-hypothesis
testing. When the term was first used to describe hypothesis tests, the word significance
was chosen because it signified something. As I wrote this chapter, I checked the
thesaurus for the word significant, and it indicated that synonyms include notable, worthy
of attention, and important. This is misleading in that it is not equivalent to its intended,
vestigial meaning. One thing that really confuses people is that they think statistical
significance is of great importance in and of itself. This is sadly untrue; there are a few
ways to achieve statistical significance without discovering anything of significance, in
the colloquial sense.

As we’ll see later in the chapter, one way to achieve non-significant statistical significance
is by using a very large sample size. Very small differences, that make little to no
difference in the real world, will nevertheless be considered statistically significant if there
is a large enough sample size.

For this reason, many people make the distinction between statistical significance and
practical significance or clinical relevance. Many hold the view that hypothesis testing
should only be used to answer the question is there an effect? or is there a discernable
difference?, and that the follow-up questions is it important? or does it make a real
difference? should be addressed separately. I subscribe to this point of view.

To answer the follow-up questions, many use effect sizes, which, as we know, capture the
magnitude of an effect in the real world. We will see an example of determining the effect
size in a test later in this chapter.

A warning about p-values

P-values are, by far, the most talked about metric in NHST. P-values are also notorious for
lending themselves to misinterpretation. Of the many criticisms of NHST (of which there
are many, in spite of its ubiquity), the misinterpretation of p-values ranks highly. The
following are two of the most common misinterpretations:

1. A p-value is the probability that the null hypothesis is true. This is not the case.
Someone misinterpreting the p-value from our first binomial test might conclude that
the chances of the coin being fair are around 10%. This is false. The p-value does not
tell us the probability of the hypothesis’ truth or falsity. In fact, the test assumes that
the null hypothesis is correct. It tells us the proportion of trials for which we would
receive a result as extreme or more extreme than the one we did if the null hypothesis
was correct. I’'m ashamed to admit it, but I made this mistake during my first college
introductory statistics class. In my final project for the class, after weeks of collecting
data, I found my p-value had not passed the barrier of significance—it was something
like .07. I asked my professor if, after the fact, I could change my alpha level to .1 so
my results would be positive. In my request, I appealed to the fact that it was still
more probable than not that my alternative hypothesis was correct—after all, if my p-
value was .07, then there was a 93% chance that the alternative hypothesis was
correct. He smiled and told me to read the relevant chapter of our text again. I
appreciate him for his patience and restraint in not smacking me right in the head for
making such a stupid mistake. Don’t be like me.

2. A p-value is a measure of the size of an effect. This is also incorrect, but its
wrongness is more subtle than the first misconception. In research papers, it is
common to attach phrases like highly significant and very highly significant to p-
values that are much smaller than .05 (like .01 and .001). It is common to interpret p-
values such as these, and statements such as these, as signaling a bigger effect than p-
values that are only modestly less than .05. This is a mistake; this is conflating
statistical significance with practical significance. In the previous section, we
explained that you can achieve significant p-values (sometimes very highly
significant ones) for an effect that is, for all intents and purposes, small and
unimportant. We will see a very salient example of this later in this chapter.

Testing the mean of one sample

An illustrative and fairly common statistical hypothesis test is the one sample t-test. You
use it when you have one sample and you want to test whether that sample likely came
from a population by comparing the mean against the known population mean. For this
test to work, you have to know the population mean.

In this example, we’ll be using R’s built-in precip data set that contains precipitation data
from 70 US cities.

> head(precip)
Mobile Juneau Phoenix Little Rock Los Angeles Sacramento
67.0 54.7 7.0 48.5 14.0 17.2

Don’t be fooled by the fact that there are city names in there—this is a regular old vector -
it’s just that the elements are labeled. We can directly take the mean of this vector, just like
a normal one.

> is.vector(precip)
[1] TRUE

> mean(precip)

[1] 34.88571

Let’s pretend that we, somehow, know the mean precipitation of the rest of the world—is
the US’ precipitation significantly different to the rest of the world’s precipitation?

Remember, in the last chapter, I said that the sampling distribution of sample means for
sample sizes under 30 were best approximated by using a t-distribution. Well, this test is
called a t-test, because in order to decide whether our samples’ mean is consistent with the
population whose mean we are testing against, we need to see where our mean falls in
relation to the sampling distribution of population means. If this is confusing, reread the
relevant section from the previous chapter.

In order to use the t-test in general cases—regardless of the scale—instead of working
with the sampling distribution of sample means, we work with the sampling distribution of
the t-statistic.

Remember z-scores from Chapter 3, Describing Relationships? The t-statistic is like a z-
score in that it is a scale-less measure of distance from some mean. In the case of the t-
statistic, though, we divide by the standard error instead of the standard deviation (because
the standard deviation of the population is unknown). Since the t-statistic is standardized,
any population, with any mean, using any scale, will have a sampling distribution of the t-
statistic that is exactly the same (at the same sample size, of course).

The equation to compute the t-statistic is this:

where ¥ is the sample mean, 1 is the population mean, s is the sample’ standard deviation,
and N is the sample size.

Let’s see for ourselves what the sampling distribution of the t-statistic looks like by taking
10,000 samples of size 70 (the same size as our precip data set) and plotting the results:

function to compute t-statistic

t.statistic <- function(thesample, thepopulation){
numerator <- mean(thesample) - mean(thepopulation)
denominator <- sd(thesample) / sqrt(length(thesample))
t.stat <- numerator / denominator
return(t.stat)

}

make the pretend population normally distributed
with a mean of 38
population.precipitation <- rnorm(100000, mean=38)
t.stats <- numeric(10000)
for(i in 1:10000){
a.sample <- sample(population.precipitation, 70)
t.stats[i] <- t.statistic(a.sample, population.precipitation)

}

plot

library(ggplot2)

tmpdata <- data.frame(vals=t.stats)

gplot(vals, data=tmpdata, geom="histogram",
color=I("white"),
xlab="sampling distribution of t-statistic",
ylab="frequency")

1200 -

900 -
600 -
300 = “ ‘
__IIII |Illl__

0-

frequency

I I I I I
-5.0 -2.5 0.0 2.5 5.0

sampling distribution of t-statistic
Figure 6.3: The sampling distribution of the t-statistic

Ah, there’s that familiar shape again!

Fortunately, the sampling distribution of the t-statistic is well known, so we don’t have
to create our own. In fact, the sampling distribution for many test statistics are well
known, so we won’t be running our own simulations of them anymore. Lucky us!

Okay, so how does our sample’s t-statistic compare to the t-distribution? Our t-statistic,
using our function from the last code-snippet, is:

> t.statistic(precip, population.precipitation)
[1] -1.901225

Though, you can work this out for yourself easily.

< _]
o
AL el
o
==
—
w ™
2]
{U‘C}
=
e
o
= _|
=]

t statistic

Figure 6.4: The t-distribution with 69 degrees of freedom. The t-statistic of our sample is
shown as the dashed line

Hmm, it looks like a pretty unlikely occurrence to me, but is it statistically significant?
First, let’s formally define our hypotheses:

e HO = the average (mean) precipitation in the US is equal to the known average

precipitation in the rest of the world
e H1 = the average (mean) precipitation in the US is different than the known average

precipitation in the rest of the world
Then, we prespecify an alpha level of .05, as is customary.

Since our hypothesis is non-directional (we only hypothesize that the precipitation in the
US is different than the world, not less or more), we define our critical region to cover 5%
of the area on each side of the curve.

> qt(.025, df=69)
[1] -1.994945
> # the critical region is less than -1.995 and more than +1.995

What does it look like now?

0.2 0.3
| |

density

0.1

0.0
|

t-statistic

Figure 6.5: The previous figure with the critical region for non-directional hypothesis
highlighted

Oh, too bad! It looks like our sample mean falls just out of the critical region. So, we fail
to reject the null hypothesis.

The cruel truth if we, for some reason, hypothesized that the US precipitation was less
than the average world precipitation is:

e HO = mean US precipitation >= mean world precipitation
e H1 = mean US precipitation < mean world precipitation

We would have achieved significance at alpha = .05.

density

= |
L) |
|
|
:
|
o |
S~ |
|
|
|
|
|
D.!] |
o |
:
|
|
|
_ :
o | :;
Fi
y
|
/l
Q] et :
- 1
| | I I | [I
-3 -2 -1 0 1 2 3
t-statistic

Figure 6.6: Figure 6.4 with directional critical region highlighted

Of course, we have no reason to think that US precipitation was less or more than the
world’s average. And to change our hypothesis now would be cheating. You’re not a
cheater, are you?

Now that we know what we’re doing, we won’t be manually calculating our test statistics
anymore; we’ll just be using the test functions that R provides.

Let’s use the function that R provides now. The one sample t-test can be performed by the

t.

test function. In its most basic form, it takes a vector of sample observations as its first

argument and the population mean as its second argument..

>

t.test(precip, mu=38)
One Sample t-test

data: precip

t = -1.901, df = 69, p-value = 0.06148

alternative hypothesis: true mean is not equal to 38
95 percent confidence interval:

31.61748 38.15395

sample estimates:
mean of x
34.88571

Among other things, this test tells us that the t-statistic is 1.9 (just like we calculated
ourselves), the degrees of freedom were 69 (the sample size minus 1), and the p-value,
which is 0.06148. Like our plot with the two-tailed critical regions showed, this p-value is
greater than our prespecified alpha level of 0.05. We fail to reject the null hypothesis.

Just for kicks, let’s run the one-tailed hypothesis test:
> t.test(precip, mu=38, alternative="less")
One Sample t-test

data: precip
t = -1.901, df = 69, p-value = 0.03074
alternative hypothesis: true mean is less than 38
95 percent confidence interval:
-Inf 37.61708
sample estimates:
mean of Xx
34.88571

Now our p-value is <.05. C’est la vie.
Note

Note that the R output indicates that the alternative hypothesis which is the true mean is
less than 38—compare this with the last t-test output.

Assumptions of the one sample t-test

There are two main assumptions of the one sample t-test:

e The data are sampled from a normal distribution. This actually has more to do with
the sampling distribution of sample means being approximately normal than the
actual population. As we know, the sampling distribution of sample means for
sufficiently large sample sizes will always be normally distributed, even if the
population is not. In reality, this assumption can be violated somewhat, and the
results will be valid, especially for sample sizes of over 30. We have nothing to worry
about here. Usually, people check this assumption by plotting the sample means and
making sure it’s kind-of normal, though there are more formal ways of doing this,
which we will see later. If the assumption of normality is in question, we may want to
use an alternative test, like a non-parametric test; we’ll see some examples at the end
of this chapter.

¢ Independence of samples: Had we tested whether the US precipitation likely came
from the population of the entire world’s precipitation, we would have been violating
this assumption. Why? Because we know that the US is a member of the set (it is
indeed ‘in the world’), so of course it was drawn from that population. This is why
we tested whether the US precipitation was on par with the rest of the world’s
precipitation. In other examples of the one sample t-tests, this assumption basically
requires that the sample be random.

Testing two means

An even more common hypothesis test is the independent samples t-test. You would use
this to check the equality of two samples’ means. Concretely, an example of using this test
would be if you have an experiment where you are testing to see if a new drug lowers
blood pressure. You would give one group a placebo and the other group the real
medication. If the mean improvement in blood pressure was significantly greater than the
improvement with the placebo, you might infer that the blood pressure medication works.
Outside of more academic uses, web companies use this test all the time to test the
effectiveness of, for example, different internet ad campaigns; they expose random users
to either one of two types of ads and test if one is more effective than the other. In web-
business parlance, this is called an A-B test, but that’s just business-ese for controlled
experiment.

The term independent means that the two samples are separate, and that data from one
sample doesn’t affect data in the other. For example, if instead of having two different
groups in the blood pressure trial, we used the same participants to test both the conditions
(randomizing the order we administer the placebo and the real medication), we would
violate independence.

The dataset we will be using for this is the mtcars dataset that we first met in Chapter 2,
The Shape of Data and saw again in Chapter 3, Describing Relationships. Specifically, we
are going to test the hypothesis that the mileage is better for manual cars than it is for cars
with automatic transmission. Let’s compare the means and produce a boxplot:

> mean(mtcars$mpg[mtcars$am==0])
[1] 17.14737
> mean(mtcars$mpg[mtcars$am==1])
[1] 24.39231
>
> mtcars.copy <- mtcars
> # make new column with better labels
> mtcars.copy$transmission <- ifelse(mtcars$am==0,
"auto", "manual')
mtcars.copy$transmission <- factor(mtcars.copy$transmission)
gplot(transmission, mpg, data=mtcars.copy,
geom="boxplot", fill=transmission) +
no legend
guides(fill=FALSE)

+ + + VvV V

35 -

30 -

25 -

mpg

20 -

15

10 -

]]
auto manual

transmission

Figure 6.7: Boxplot of the miles per gallon ratings for automatic cars and cars with
manual transmission

Hmm, looks different... but let’s check that hypothesis formally. Our hypotheses are:

e HO = mean of samplel - mean of sample2 >=(
e H1 = mean of samplel - mean of sample2 <0

To do this, we use the t.test function, too; only this time, we provide two vectors: one
for each sample. We also specify our directional hypothesis in the same way:

> automatic.mpgs <- mtcars$mpg[mtcars$am==0]
> manual.mpgs <- mtcars$mpg[mtcars$am==1]
> t.test(automatic.mpgs, manual.mpgs, alternative="less")

Welch Two Sample t-test

data: automatic.mpgs and manual.mpgs

t = -3.7671, df = 18.332, p-value = 0.0006868

alternative hypothesis: true difference in means is less than 0
95 percent confidence interval:

-Inf -3.913256
sample estimates:
mean of x mean of vy

17.14737 24.39231

p < .05. Yipee!

There is an easier way to use the t-test for independent samples that doesn’t require us to
make two vectors.

> t.test(mpg ~ am, data=mtcars, alternative='"less")

This reads, roughly, perform a t-test of the mpg column grouping by the am column in the
data frame mtcars. Confirm for yourself that these incantations are equivalent.

Don’t be fooled!

Remember when I said that statistical significance was not synonymous with important
and that we can use very large sample sizes to achieve statistical significance without any
clinical relevance? Check this snippet out:

> set.seed(16)
> t.test(rnorm(1000000, mean=10), rnorm(1000000, mean=10))

Welch Two Sample t-test

data: rnorm(1e+06, mean = 10) and rnorm(le+06, mean = 10)
t = -2.1466, df = 1999998, p-value = 0.03183
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.0058104638 -0.0002640601
sample estimates:
mean of x mean of y
9.997916 10.000954

Here, two vectors of one million normal deviates each are created with a mean of 10.
When we use a t-test on these two vectors, it should indicate that the two vectors’ means
are not significantly different, right?

Well, we got a p-value of less that .05—why? If you look carefully at the last line of the R
output, you might see why; the mean of the first vector is 9.997916, and the mean of the
second vector is 10.000954. This tiny difference, a meagre .003, is enough to tip the scale
into significant territory. However, I can think of very few applications of statistics where
.003 of anything is noteworthy even though it is, technically, statistically significant.

The larger point is that the t-test tests for equality of means, and if the means aren’t
exactly the same in the population, the t-test will, with enough power, detect this. Not all
tiny differences in population means are important, though, so it is important to frame the
results of a t-test and the p-value in context.

As mentioned earlier in the chapter, a salient strategy for putting the differences in context
is to use an effect size. The effect size commonly used in association with the t-test is
Cohen’s d. Cohen’s d is, conceptually, pretty simple: it is a ratio of the variance explained
by the “effect” and the variance in the data itself. Concretely, Cohen’s d is the difference
in means divided by the sample standard deviation. A high d indicates that there is a big
effect (difference in means) relative to the internal variability of the data.

I mentioned that to calculate d, you have to divide the difference in means by the sample
standard deviation—but which one? Although Cohen’s d is conceptually straightforward
(even elegant!), it is also sometimes a pain to calculate by hand, because the sample
standard deviation from both samples has to be pooled. Fortunately, there’s an R package
that let’s us calculate Cohen’s d—and other effect size metrics, to boot, quite easily. Let’s
use it on the auto vs. manual transmission example:

> install.packages("effsize")
> library(effsize)

> cohen.d(automatic.mpgs, manual.mpgs)
Cohen's d

d estimate: -1.477947 (large)

95 percent confidence interval:
inf sup

-2.3372176 -0.6186766

Cohen’s d is -1.478, which is considered a very large effect size. The cohen.d function
even tells you this by using canned interpretations of effect sizes. If you try this with the
two million element vectors from above, the cohen.d function will indicate that the effect
was negligible.

Although these canned interpretations were on target these two times, make sure you
evaluate your own effect sizes in context.

Assumptions of the independent samples t-test

Homogeneity of variance (or homoscedasticity - a scary sounding word), in this case,
simply means that the variance in the miles per gallon of the automatic cars is the same as
the variance in miles per gallon of the manual cars. In reality, this assumption can be
violated as long as you use a Welch’s T-test like we did, instead of the Student’s T-test. You
can still use the Student’s T-test with the t.test function, like by specifying the optional
parameter var .equal=TRUE. You can test for this formally using var.test or leveneTest
from the car package. If you are sure that the assumption of homoscedasticity is not
violated, you may want to do this because it is a more powerful test (fewer Type II errors).
Nevertheless, I usually use Welch’s T-test to be on the safe side. Also, always use Welch’s
test if the two samples’ sizes are different.

e The sampling distribution of the sample means is approximately normal: Again, with
a large enough sample size, it always is. We don’t have a terribly large sample size
here, but in reality, this formulation of the t-test works even if this assumption is
violated a little. We will see alternatives in due time.

e Independence: Like I mentioned earlier, since the samples contain completely
different cars, we’re okay on this front. For tests that, for example, use the same
participants for both conditions, you would use a Dependent Samples T-test or Paired
Samples T-test , which we will not discuss in this book. If you are interested in
running one of these tests after some research, use t.test(<vector1>, <vector2>,
paired=TRUE).

Testing more than two means

Another really common situation requires testing whether three or more means are
significantly discrepant. We would find ourselves in this situation if we had three
experimental conditions in the blood pressure trial: one groups gets a placebo, one group
gets a low dose of the real medication, and one groups gets a high dose of the real
medication.

Hmm, for cases like these, why don’t we just do a series of t-tests? For example, we can
test the directional alternative hypotheses:

e The low dose of blood pressure medication lowers BP significantly more than the
placebo

e The high dose of blood pressure medication lowers BP significantly more than the
low dose

Well, it turns out that doing this first is pretty dangerous business, and the logic goes like
this: if our alpha level is 0.05, then the chances of making a Type I error for one test is
0.05; if we perform two tests, then our chances of making a Type I error is suddenly
.09025 (near 10%). By the time we perform 10 tests at that alpha level, the chances of us
having making a Type I error is 40%. This is called the multiple testing problem or
multiple comparisons problem.

To circumvent this problem, in the case of testing three or more means, we use a technique
called Analysis of Variance, or ANOVA. A significant result from an ANOVA leads to the
inference that at least one of the means is significantly discrepant from one of the other
means; it does not lend itself to the inference that all the means are significantly different.
This is an example of an omnibus test, because it is a global test that doesn’t tell you
exactly where the differences are, just that there are differences.

You might be wondering why a test of equality of means has a name called Analysis of
Variance; it’s because it does this by comparing the variance between cases to the
variance within cases. The general intuition behind an ANOVA is that the higher the ratio
of variance between the different groups than within the different groups, the less likely
that the different groups were sampled from the same population. This ratio is called an F
ratio.

For our demonstration of the simplest species of ANOVA (the one-way ANOVA), we are
going to be using the weightLoss dataset from the car package. If you don’t have the car
package, install it.

> library(car)
head(WeightLoss)
group wll wl2 wl3 sel se2 se3

\%

1 Control 4 3 3 14 13 15
2 Control 4 4 3 13 14 17
3 Control 4 3 1 17 12 16
4 Control 3 2 1 11 11 12
5 Control 5 3 2 16 15 14

6 Control 6 5 4 17 18 18
>

> table(WeightLoss$group)

Control Diet DietEX
12 12 10
The weightLoss dataset contains pounds lost and self esteem measurements for three
weeks for three different groups: a control group, one group just on a diet, and one group
that dieted and exercised. We will be testing the hypothesis that the means of the weight
loss at week 2 are not all equal:

e HO = the mean weight loss at week 2 between the control, diet group, and diet and
exercise group are equal

e H1 = at least two of the means of weight loss at week 2 between the control, diet
group, and diet and exercise group are not equal

Before the test, let’s check out a box plot of the means:

> gplot(group, wl2, data=WeightLoss, geom="boxplot", fill=group)

group

ES Control

et

B3 DietEx

| | |
Control Diet DietEx
group

Figure 6.8: Boxplot of weight lost in week 2 of trial for three groups: control, diet, and
diet & exercise

Now for the ANOVA...

> the.anova <- aov(wl2 ~ group, data=WeightLoss)
> summary(the.anova)

Df Sum Sq Mean Sq F value Pr(>F)
group 2 45.28 22.641 13.37 6.49e-05 ***
Residuals 31 52.48 1.693

Signif. codes: 0 '***' @.001 '**' 0.01 '*' 0.05 '.' 0.1 " ' 1

Oh, snap! The p-value (Pr(>F)) is 6.49e-05, which is .000065 if you haven’t read
scientific notation yet.

As I said before, this just means that at least one of the comparisons between means was
significant—there are four ways that this could occur:

The means of diet and diet and exercise are different

The means of diet and control are different

The means of control and diet and exercise are different

The means of control, diet, and diet and exercise are all different

In order to investigate further, we perform a post-hoc test. Quite often, the post-hoc test
that analysts perform is a suite of t-tests comparing each pair of means (pairwise t-tests).

But wait, didn’t I say that was dangerous business? I did, but it’s different now:

e We have already performed an honest-to-goodness omnibus test at the alpha level of
our choosing. Only after we achieve significance do we perform pairwise t-tests.
e We correct for the problem of multiple comparisons

The easiest multiple comparison correcting procedure to understand is Bonferroni
correction. In its simplest version, it simply changes the alpha value by dividing it by the
number of tests being performed. It is considered the most conservative of all the multiple
comparison correction methods. In fact, many consider it too conservative and I’m
inclined to agree. Instead, I suggest using a correcting procedure called Holm-Bonferroni
correction. R uses this by default.

> pairwise.t.test(WeightLoss$wl2, as.vector(WeightLoss$group))
Pairwise comparisons using t tests with pooled SD
data: WeightLoss$wl2 and as.vector(WeightLoss$group)
Control Diet
Diet 0.28059 -
DietEx 7.1e-05 0.00091

P value adjustment method: holm

This output indicates that the difference in means between the Diet and Diet and exercise

groups is p < .001. Additionally, it indicates that the difference between Diet and
exercise and Control is p < .0001 (look at the cell where it says 7.1e-05). The p-value of
the comparison of just diet and the control is .28, so we fail to reject the hypothesis that
they have the same mean.

Assumptions of ANOVA

The standard one-way ANOVA makes three main assumptions:

e The observations are independent

e The distribution of the residuals (the distances between the values within the groups
to their respective means) is approximately normal

e Homogeneity of variance: If you suspect that this assumption is violated, you can use
R’s oneway . test instead

Testing independence of proportions

Remember the University of California Berkeley dataset that we first saw when discussing
the relationship between two categorical variables in Chapter 3, Describing Relationships.
Recall that UCB was sued because it appeared as though the admissions department
showed preferential treatment to male applicants. Also recall that we used cross-tabulation
to compare the proportion of admissions across categories.

If admission rates were, say 10%, you would expect about one out of every ten applicants
to be accepted regardless of gender. If this is the case—that gender has no bearing on the
proportion of admits—then gender is independent.

Small deviations from this 10% proportion are, of course, to be expected in the real world
and not necessarily indicative of a sexist admissions machine. However, if a test of
independence of proportions is significant, that indicates that a deviation as extreme as the
one we observed is very unlikely to occur if the variable were truly independent.

A test statistic that captures divergence from an idealized, perfectly independent cross

tabulation is the chi-squared statistic # statistic), and its sampling distribution is known
as a chi-square distribution. If our chi-square statistic falls into the critical region of the
chi-square distribution with the appropriate degrees of freedom, then we reject the
hypothesis that gender is an independent factor in admissions.

Let’s perform one of these chi-square tests on the whole UCB Admissions dataset.

> # The chi-square test function takes a cross-tabulation
> # which UCBAdmissions already is. I am converting it from
> # and back so that you, dear reader, can learn how to do
> # this with other data that isn't already in cross-tabulation
> # form
> ucha <- as.data.frame(UCBAdmissions)
> head(ucba)
Admit Gender Dept Freq
1 Admitted Male A 512
2 Rejected Male A 313
3 Admitted Female A 89
4 Rejected Female A 19
5 Admitted Male B 353
6 Rejected Male B 207
>
> # create cross-tabulation
> cross.tab <- xtabs(Freq ~ Gender+Admit, data=ucba)
>
> chisq.test(cross.tab)

Pearson's Chi-squared test with Yates' continuity correction

data: «cross.tab
X-squared = 91.6096, df = 1, p-value < 2.2e-16

The proportions are almost certainly not independent (p < .0001). Before you conclude
that the admissions department is sexist, remember Simpson’s Paradox? If you don’t,

reread the relevant section in Chapter 3, Describing Relationships.

Since the chi-square independence of proportion test can be (and is often used) to compare
a whole mess of proportions, it’s sometimes referred to an omnibus test, just like the
ANOVA. It doesn’t tell us what proportions are significantly discrepant, only that some
proportions are.

What if my assumptions are unfounded?

The t-test and ANOVA are both considered parametric statistical tests. The word
parametric is used in different contexts to signal different things but, essentially, it means
that these tests make certain assumptions about the parameters of the population
distributions from which the samples are drawn. When these assumptions are met (with
varying degrees of tolerance to violation), the inferences are accurate, powerful (in the
statistical sense), and are usually quick to calculate. When those parametric assumptions
are violated, though, parametric tests can often lead to inaccurate results.

We’ve spoken about two main assumptions in this chapter: normality and homogeneity of
variance. I mentioned that, even though you can test for homogeneity of variance with the
leveneTest function from the car package, the default t.test in R removes this
restriction. I also mentioned that you could use the oneway. test function in lieu of aov if
you don’t have to have to adhere to this assumption when performing an ANOVA. Due to
these affordances, I’ll just focus on the assumption of normality from now on.

In a t-test, the assumption that the sample is an approximately normal distribution can be
visually verified, to a certain extent. The naive way is to simply make a histogram of the
data. A more proper approach is to use a QQ-plot (quantile-quantile plot). You can view
a QQ-plot in R by using the gqgPlot function from the car package. Let’s use it to evaluate
the normality of the miles per gallon vector in mtcars.

> library(car)
> ggPlot(mtcars$mpg)

25

mtcars$mpg

15

10

norm quantiles

Figure 6.9: A QQ-plot of the mile per gallon vector in mtcars

A QQ-plot can actually be used to compare any sample from any theoretical distribution,
but it is most often associated with the normal distribution. The plot depicts the quantiles
of the sample and the quantiles of the normal distribution against each other. If the sample
were perfectly normal, the points would fall on the solid red diagonal line—its divergence
from this line signals a divergence from normality. Even though it is clear that the
quantiles for mpg don’t precisely comport with the quantiles of the normal distribution, its
divergence is relatively minor.

The most powerful method for evaluating adherence to the assumption of normality is to
use a statistical test. We are going to use the Shapiro-Wilk test, because it’s my favorite,
though there are a few others.

> shapiro.test(mtcars$mpg)
Shapiro-Wilk normality test

data: mtcars$mpg
W = 0.9476, p-value = 0.1229

This non-significant result indicates that the deviations from normality are not statistically
significant.

For ANOVAs, the assumption of normality applies to the residuals, not the actual values

of the data. After performing the ANOVA, we can check the normality of the residuals
quite easily:

I'm repeating the set-up
library(car)
the.anova <- aov(wl2 ~ group, data=WeightLoss)

V V.V VYV

shapiro.test(the.anova$residuals)
Shapiro-Wilk normality test

data: the.anova$residuals
W = 0.9694, p-value = 0.4444

We’re in the clear!

But what if we do violate our parametric assumptions!? In cases like these, many analysts
will fall back on using non-parametric tests.

Many statistical tests, including the t-test and ANOVA, have non-parametric alternatives.
The appeal of these tests is, of course, that they are resistant to violations of parametric
assumptions—that they are robust. The drawback is that these tests are usually less
powerful than their parametric counterparts. In other words, they have a somewhat
diminished capacity for detecting an effect if there truly is one to detect. For this reason, if
you are going to use NHST, you should use the more powerful tests by default, and switch
only if you’re assumptions are violated.

The non-parametric alternative to the independent t-test is called the Mann-Whitney U test,
though it is also known as the Wilcoxon rank-sum test. As you might expect by now, there
is a function to perform this test in R. Let’s use it on the auto vs. manual transmission
example:

> wilcox.test(automatic.mpgs, manual.mpgs)
Wilcoxon rank sum test with continuity correction

data: automatic.mpgs and manual.mpgs
W = 42, p-value = 0.001871
alternative hypothesis: true location shift is not equal to 0

Simple!

The non-parametric alternative to the one-way ANOVA is called the Kruskal-Wallis test.
Can you see where I’'m going with this?

> kruskal.test(wl2 ~ group, data=WeightLoss)
Kruskal-Wallis rank sum test

data: wl2 by group
Kruskal-Wallis chi-squared = 14.7474, df = 2, p-value = 0.0006275

Super!

Exercises

Here are a few exercises for you to practise and revise the concepts learned in this chapter:

e Read about data-dredging and p-hacking. Why is it dangerous not to formulate a
hypothesis, set an alpha level, and set a sample size before collecting data and
analyzing results?

e Use the command library(help="datasets") to find a list of datasets that R has
already built in. Pick a few interesting ones, and form a hypothesis about each one.
Rigorously define your null and alternative hypotheses before you start. Test those
hypotheses even if it means learning about other statistical tests.

e How might you quantify the effect size of a one-way ANOVA. Look up eta-squared
if you get stuck.

e In ethics, the doctrine of moral relativism holds that there are no universal moral
truths, and that moral judgments are dependent upon one’s culture or period in
history. How can moral progress (the abolition of slavery, fairer trading practices) be
reconciled with a relativistic view of morality? If there is no objective moral
paradigm, how can criticisms be lodged against the current views of morality? Why
replace existing moral judgments with others if there is no standard to which to
compare them to and, therefore, no reason to prefer one over the other.

Summary

We covered huge ground in this chapter. By now, you should be up to speed on some of
the most common statistical tests. More importantly, you should have a solid grasp of the
theory behind NHST and why it works. This knowledge is far more valuable than
mechanically memorizing a list of statistical tests and clues for when to use each.

You learned that NHST has its origin in testing whether a weird lady’s claims about tasting
tea were true or not. The general procedure for NHST is to define your null and alternative
hypotheses, define and calculate your test statistic, determine the shape and parameters of
the sampling distribution of that test statistic, measure the probability that you would
observe a test statistic as or more extreme than the one we observed (this is the p-value),
and determine whether to reject or fail to reject the null hypothesis based on the whether
the p-value was below or above the alpha level.

You then learned about one vs. two-tailed tests, Type I and Type II errors, and got some
warnings about terminology and common NHST misconceptions.

Then, you learned a litany of statistical tests—we saw that the one sample t-test is used in
scenarios where we want to determine if a sample’s mean is significantly discrepant from
some known population mean; we saw that independent samples t-tests are used to
compare the means of two distinct samples against each other; we saw that we use one-
way ANOVAs for testing multiple means, why it’s inappropriate to just perform a bunch
of t-tests, and some methods of controlling Type I error rate inflation. Finally, you learned
how the chi-square test is used to check the independence of proportions.

We then directly applied what you learned to real, fun data and tested real, fun hypotheses.
They were fun... right!?

Lastly, we discussed parametric assumptions, how to verify that they were met, and one
option for circumventing their violation at the cost of power: non-parametric tests. We
learned that the non-parametric alternative to the independent samples t-test is available in
R aswilcox.test, and the non-parametric alternative to the one-way ANOVA is
available in R using the kruskal.test function.

In the next chapter, we will also be discussing mechanisms for testing hypotheses, but this
time, we will be using an attractive alternative to NHST based on the famous theorem by
Reverend Thomas Bayes that you learned about in Chapter 4, Probability. You’ll see how
this other method of inference addresses some of the shortcomings (deserved or not) of
NHST, and why it’s gaining popularity in modern applied data analysis. See you there!

Chapter 7. Bayesian Methods

Suppose I claim that I have a pair of magic rainbow socks. I allege that whenever I wear
these special socks, I gain the ability to predict the outcome of coin tosses, using fair
coins, better than chance would dictate. Putting my claim to the test, you toss a coin 30
times, and I correctly predict the outcome 20 times. Using a directional hypothesis with
the binomial test, the null hypothesis would be rejected at alpha-level 0.05. Would you
invest in my special socks?

Why not? If it’s because you require a larger burden of proof on absurd claims, I don’t
blame you. As a grandparent of Bayesian analysis Pierre-Simon Laplace (who
independently discovered the theorem that bears Thomas Bayes’ name) once said: The
weight of evidence for an extraordinary claim must be proportioned to its strangeness.
Our prior belief—my absurd hypothesis—is so small that it would take much stronger
evidence to convince the skeptical investor, let alone the scientific community.

Unfortunately, if you’d like to easily incorporate your prior beliefs into NHST, you’re out
of luck. Or suppose you need to assess the probability of the null hypothesis; you’re out of
luck there, too; NHST assumes the null hypothesis and can’t make claims about the
probability that a particular hypothesis is true. In cases like these (and in general), you
may want to use Bayesian methods instead of frequentist methods. This chapter will tell
you how. Join me!

The big idea behind Bayesian analysis

If you recall from Chapter 4, Probability, the Bayesian interpretation of probability views
probability as our degree of belief in a claim or hypothesis, and Bayesian inference tells us
how to update that belief in the light of new evidence. In that chapter, we used Bayesian
inference to determine the probability that employees of Daisy Girl, Inc. were using an
illegal drug. We saw how the incorporation of prior beliefs saved two employees from
being falsely accused and helped another employee get the help she needed even though
her drug screen was falsely negative.

In a general sense, Bayesian methods tell us how to dole out credibility to different
hypotheses, given prior belief in those hypotheses and new evidence. In the drug example,
the hypothesis suite was discrete: drug user or not drug user. More commonly, though,
when we perform Bayesian analysis, our hypothesis concerns a continuous parameter, or
many parameters. Our posterior (or updated beliefs) was also discrete in the drug example,
but Bayesian analysis usually yields a continuous posterior called a posterior distribution.

We are going to use Bayesian analysis to put my magical rainbow socks claim to the test.
Our parameter of interest is the proportion of coin tosses that I can correctly predict
wearing the socks; we’ll call this parameter 0, or theta. Our goal is to determine what the
most likely values of theta are and whether they constitute proof of my claim.

Refer back to the section on Bayes’ theorem in Chapter 4, Probability Recall that the
posterior was the prior times the likelihood divided by a normalizing constant. This
normalizing constant is often difficult to compute. Luckily, since it doesn’t change the
shape of the posterior distribution, and we are comparing relative likelihoods and
probability densities, Bayesian methods often ignore this constant. So, all we need is a
probability density function to describe our prior belief and a likelihood function that
describes the likelihood that we would get the evidence we received given different
parameter values.

The likelihood function is a binomial function, as it describes the behavior of Bernoulli
trials; the binomial likelihood function for this evidence is shown in Figure 7.1:

relative likelihood

0.0 0.2 0.4 0.6 0.8 1.0

Figure 7.1: The likelihood function of theta for 20 out of 30 successful Bernoulli trials.

For different values of theta, there are varying relative likelihoods. Note that the value of
theta that corresponds to the maximum of the likelihood function is 0.667, which is the
proportion of successful Bernoulli trials. This means that in the absence of any other
information, the most likely proportion of coin flips that my magic socks allow me to
predict is 67%. This is called the Maximum Likelihood Estimate (MLE).

So, we have the likelihood function; now we just need to choose a prior. We will be
crafting a representation of our prior beliefs using a type of distribution called a beta
distribution, for reasons that we’ll see very soon.

Since our posterior is a blend of the prior and likelihood function, it is common for

analysts to use a prior that doesn’t much influence the results and allows the likelihood
function to speak for itself. To this end, one may choose to use a non-informative prior
that assigns equal credibility to all values of theta. This type of non-informative prior is

called a flat or uniform prior.

The beta distribution has two hyper-parameters, o (or alpha) and 8 (or beta). A beta

distribution with hyper-parameters a = B = 1 describes such a flat prior. We will call this
prior #1.

Note

These are usually referred to as the beta distribution’s parameters. We call them hyper-
parameters here to distinguish them from our parameter of interest, theta.

beta(a=1, B=1)

prior belief

0.0 0.2 0.4 0.6 0.8 1.0

Figure 7.2: A flat prior on the value of theta. This beta distribution, with alpha and beta =
1, confers an equal level of credibility to all possible values of theta, our parameter of
interest.

This prior isn’t really indicative of our beliefs, is it? Do we really assign as much
probability to my socks giving me perfect coin-flip prediction powers as we do to the

hypothesis that I’'m full of baloney?
The prior that a skeptic might choose in this situation is one that looks more like the one
depicted in Figure 7.3, a beta distribution with hyper-parameters alpha = beta = 50.

This, rather appropriately, assigns far more credibility to values of theta that are
concordant with a universe without magical rainbow socks. As good scientists, though, we

have to be open-minded to new possibilities, so this doesn’t rule out the possibility that the
socks give me special powers—the probability is low, but not zero, for extreme values of

theta. We will call this prior #2.

beta(a=50, B=50)

prior belief

0.0 0.2 0.6 0.8 1.0

Figure 7.3: A skeptic’s prior

Before we perform the Bayesian update, I need to explain why I chose to use the beta

distribution to describe my priors.
The Bayesian update—getting to the posterior—is performed by multiplying the prior

with the likelihood. In the vast majority of applications of Bayesian analysis, we don’t
know what that posterior looks like, so we have to sample from it many times to get a
sense of its shape. We will be doing this later in this chapter.

For cases like this, though, where the likelihood is a binomial function, using a beta
distribution for our prior guarantees that our posterior will also be in the beta distribution
family. This is because the beta distribution is a conjugate prior with respect to a binomial
likelihood function. There are many other cases of distributions being self-conjugate with
respect to certain likelihood functions, but it doesn’t often happen in practice that we find
ourselves in a position to use them as easily as we can for this problem. The beta
distribution also has the nice property that it is naturally confined from 0 to 1, just like the
proportion of coin flips I can correctly predict.

The fact that we know how to compute the posterior from the prior and likelihood by just
changing the beta distribution’s hyper-parameters makes things really easy in this case.
The hyper-parameters of the posterior distribution are:
new a = old a + number of successes

and

newfs = old [f + number of failures

That means the posterior distribution using prior #1 will have hyper-parameters
alpha=1+20 and beta=1+10. This is shown in Figure 7.4.

posterior belief

0.0 0.2 0.4 0.6

Figure 7.4: The result of the Bayesian update of the evidence and prior #1. The interval
depicts the 95% credible interval (the densest 95% of the area under the posterior
distribution). This interval overlaps slightly with theta = 0.5.

A common way of summarizing the posterior distribution is with a credible interval. The
credible interval on the plot in Figure 7.4 is the 95% credible interval and contains 95% of

the densest area under the curve of the posterior distribution.

Do not confuse this with a confidence interval. Though it may look like it, this credible
interval is very different than a confidence interval. Since the posterior directly contains

information about the probability of our parameter of interest at different values, it is
admissible to claim that there is a 95% chance that the correct parameter value is in the
credible interval. We could make no such claim with confidence intervals. Please do not

mix up the two meanings, or people will laugh you out of town.
Observe that the 95% most likely values for theta contain the theta value 0.5, if only

barely. Due to this, one may wish to say that the evidence does not rule out the possibility
that I’m full of baloney regarding my magical rainbow socks, but the evidence was
suggestive.

To be clear, the end result of our Bayesian analysis is the posterior distribution depicting
the credibility of different values of our parameter. The decision to interpret this as
sufficient or insufficient evidence for my outlandish claim is a decision that is separate
from the Bayesian analysis proper. In contrast to NHST, the information we glean from
Bayesian methods—the entire posterior distribution—is much richer. Another thing that
makes Bayesian methods great is that you can make intuitive claims about the probability
of hypotheses and parameter values in a way that frequentist NHST does not allow you to
do.

What does that posterior using prior #2 look like? It’s a beta distribution with alpha =
50 + 20 and beta = 50 + 10:

> curve(dbeta(x, 70, 60), # plot a beta distribution
+ xlab="06", # name x-axis

+ ylab="posterior belief", # name y-axis

+ type="1", # make smooth line

+ yaxt="'n'") # remove y axis labels

> abline(v=.5, 1lty=2) # make line at theta = 0.5

posterior belief

Figure 7.5: Posterior distribution of theta using prior #2

Choosing a prior

Notice that the posterior distribution looks a little different depending on what prior you
use. The most common criticism lodged against Bayesian methods is that the choice of
prior adds an unsavory subjective element to analysis. To a certain extent, they’re right
about the added subjective element, but their allegation that it is unsavory is way off the
mark.

To see why, check out Figure 7.6, which shows both posterior distributions (from priors
#1 and #2) in the same plot. Notice how priors #1 and #2—two very different priors—
given the evidence, produce posteriors that look more similar to each other than the priors
did.

posterior belief

0.0 0.2 0.4 0.6 0.8 1.0

Figure 7.6: The posterior distributions from prior #1 and #2

Now direct your attention to Figure 7.7, which shows the posterior of both priors if the
evidence included 80 out of 120 correct trials.

posterior belief

S . T RSP PR SPNE COP R SURY LT RS SR U RS SN SO S R A CONE L R SUE U R CORY LUSE RS S GO USSR S G N YR CUSE S PRI SYET U RO S RS (0 L GRS T G RSO S R SS S e

0.0 0.2 0.4 0.6 0.8 1.0

Figure 7.7: The posterior distributions from prior #1 and #2 with more evidence

Note that the evidence still contains 67% correct trials, but there is now more evidence.
The posterior distributions are now far more similar. Notice that now both of the
posteriors’ credible intervals do not contain theta = 0.5; with 80 out of 120 trials
correctly predicted, even the most obstinate skeptic has to concede that something is going
on (though they will probably disagree that the power comes from the socks!).

Take notice also of the fact that the credible intervals, in both posteriors, are now
substantially narrowing, illustrating more confidence in our estimate.

Finally, imagine the case where I correctly predicted 67% of the trials, but out of 450 total
trials. The posteriors derived from this evidence are shown in Figure 7.8:

posterior belief

0.0 0.2 0.4 0.6 0.8 1.0

Figure 7.8: The posterior distributions from prior #1 and #2 with even more evidence

The posterior distributions are looking very similar—indeed, they are becoming identical.
Given enough trials—given enough evidence—these posterior distributions will be exactly
the same. When there is enough evidence available such that the posterior is dominated by
it compared to the prior, it is called overwhelming the prior.

As long as the prior is reasonable (that is, it doesn’t assign a probability of 0 to

theoretically plausible parameter values), given enough evidence, everybody’s posterior
belief will look very similar.

There is nothing unsavory or misleading about an analysis that uses a subjective prior; the
analyst just has to disclose what her prior is. You can’t just pick a prior willy-nilly; it has
to be justifiable to your audience. In most situations, a prior may be informed by prior
evidence like scientific studies and can be something that most people can agree on. A
more skeptical audience may disagree with the chosen prior, in which case the analysis

can be re-run using their prior, just like we did in the magic socks example. It is sometimes
okay for people to have different prior beliefs, and it is okay for some people to require a
little more evidence in order to be convinced of something.

The belief that frequentist hypothesis testing is more objective, and therefore more correct,
is mistaken insofar as it causes all parties to have a hold on the same potentially bad
assumptions. The assumptions in Bayesian analysis, on the other hand, are stated clearly
from the start, made public, and are auditable.

To recap, there are three situations you can come across. In all of these, it makes sense to
use Bayesian methods, if that’s your thing:

¢ You have a lot of evidence, and it makes no real difference which prior any
reasonable person uses, because the evidence will overwhelm it.

e You have very little evidence, but have to make an important decision given the
evidence. In this case, you’d be foolish to not use all available information to inform
your decisions.

¢ You have a medium amount of evidence, and different posteriors illustrate the
updated beliefs from a diverse array of prior beliefs. You may require more evidence
to convince the extremely skeptical, but the majority of interested parties will be
come to the same conclusions.

Who cares about coin flips

Who cares about coin flips? Well, virtually no one. However, (a) coin flips are a great
simple application to get the hang of Bayesian analysis; (b) the kinds of problems that a
beta prior and a binomial likelihood function solve go way beyond assessing the fairness
of coin flips. We are now going to apply the same technique to a real life problem that I
actually came across in my work.

For my job, I had to create a career recommendation system that asked the user a few
questions about their preferences and spat out some careers they may be interested in.
After a few hours, I had a working prototype. In order to justify putting more resources
into improving the project, I had to prove that I was on to something and that my current
recommendations performed better than chance.

In order to test this, we got 40 people together, asked them the questions, and presented
them with two sets of recommendations. One was the true set of recommendations that I
came up with, and one was a control set—the recommendations of a person who answered
the questions randomly. If my set of recommendations performed better than chance
would dictate, then I had a good thing going, and could justify spending more time on the
project.

Simply performing better than chance is no great feat on its own—I also wanted really
good estimates of how much better than chance my initial recommendations were.

For this problem, I broke out my Bayesian toolbox! The parameter of interest is the
proportion of the time my recommendations performed better than chance. If .05 and
lower were very unlikely values of the parameter, as far as the posterior depicted, then I
could conclude that I was on to something.

Even though I had strong suspicions that my recommendations were good, I used a
uniform beta prior to preemptively thwart criticisms that my prior biased the conclusions.
As for the likelihood function, it is the same function family we used for the coin flips
(just with different parameters).

It turns out that 36 out of the 40 people preferred my recommendations to the random ones
(three liked them both the same, and one weirdo liked the random ones better). The
posterior distribution, therefore, was a beta distribution with parameters 37 and 5.

> curve(dbeta(x, 37, 5), xlab="0",
+ ylab="posterior belief",
+ type="1", yaxt='n')

posterior belief

0.0 0.2

Figure 7.9: The posterior distribution of the effectiveness of my recommendations using a
uniform prior

Again, the end result of the Bayesian analysis proper is the posterior distribution that
illustrates credible values of the parameter. The decision to set an arbitrary threshold for

concluding that my recommendations were effective or not is a separate matter.
Let’s say that, before the fact, we stated that if .05 or lower were not among the 95% most
credible values, we would conclude that my recommendations were effective. How do we

know what the credible interval bounds are?

Even though it is relatively straightforward to determine the bounds of the credible
interval analytically, doing so ourselves computationally will help us understand how the

posterior distribution is summarized in the examples given later in this chapter.
To find the bounds, we will sample from a beta distribution with hyper-parameters 37 and
5 thousands of times and find the quantiles at .025 and .975.

> samp <- rbeta(10000, 37, 5)
> quantile(samp, c(.025, .975))

2.5% 97 .5%
0.7674591 0.9597010

Neat! With the previous plot already up, we can add lines to the plot indicating this 95%
credible interval, like so:

horizontal line

> lines(c(.767, .96), «c¢(0.1, 0.1)

> # tiny vertical left boundary

> lines(c(.767, .769), c(0.15, 0.05))
> # tiny vertical right boundary

> lines(c(.96, .96), c(0.15, 0.05))

If you plot this yourself, you’ll see that even the lower bound is far from the decision
boundary—it looks like my work was worth it after all!

The technique of sampling from a distribution many many times to obtain numerical
results is known as Monte Carlo simulation.

Enter MCMUC - stage left

As mentioned earlier, we started with the coin flip examples because of the ease of
determining the posterior distribution analytically—primarily because of the beta
distribution’s self-conjugacy with respect to the binomial likelihood function.

It turns out that most real-world Bayesian analyses require a more complicated solution. In
particular, the hyper-parameters that define the posterior distribution are rarely known.
What can be determined is the probability density in the posterior distribution for each
parameter value. The easiest way to get a sense of the shape of the posterior is to sample
from it many thousands of times. More specifically, we sample from all possible
parameter values and record the probability density at that point.

How do we do this? Well, in the case of just one parameter value, it’s often
computationally tractable to just randomly sample willy-nilly from the space of all
possible parameter values. For cases where we are using Bayesian analysis to determine
the credible values for two parameters, things get a little more hairy.

The posterior distribution for more than one parameter value is a called a joint
distribution; in the case of two parameters, it is, more specifically, a bivariate distribution.
One such bivariate distribution can be seen in Figure 7.10:

Figure 7.10: A bivariate normal distribution

To picture what it is like to sample a bivariate posterior, imagine placing a bell jar on top
of a piece of graph paper (be careful to make sure Ester Greenwood isn’t under there!). We
don’t know the shape of the bell jar but we can, for each intersection of the lines in the
graph paper, find the height of the bell jar over that exact point. Clearly, the smaller the
grid on the graph paper, the higher resolution our estimate of the posterior distribution is.

Note that in the univariate case, we were sampling from n points, in the bivariate case, we

are sampling from ” ; points (n points for each axis). For models with more than two
parameters, it is simply intractable to use this random sampling method. Luckily, there’s a
better option than just randomly sampling the parameter space: Markov Chain Monte
Carlo (MCMQO).

I think the easiest way to get a sense of what MCMC is, is by likening it to the game hot
and cold. In this game—which you may have played as a child—an object is hidden and a
searcher is blindfolded and tasked with finding this object. As the searcher wanders
around, the other player tells the searcher whether she is hot or cold; hot if she is near the

object, cold when she is far from the object. The other player also indicates whether the
movement of the searcher is getting her closer to the object (getting warmer) or further
from the object (getting cooler).

In this analogy, warm regions are areas were the probability density of the posterior
distribution is high, and cool regions are the areas were the density is low. Put in this way,
random sampling is like the searcher teleporting to random places in the space where the
other player hid the object and just recording how hot or cold it is at that point. The guided
behavior of the player we described before is far more efficient at exploring the areas of
interest in the space.

At any one point, the blindfolded searcher has no memory of where she has been before.
Her next position only depends on the point she is at currently (and the feedback of the
other player). A memory-less transition process whereby the next position depends only
upon the current position, and not on any previous positions, is called a Markov chain.

The technique for determining the shape of high-dimensional posterior distributions is
therefore called Markov chain Monte Carlo, because it uses Markov chains to intelligently
sample many times from the posterior distribution (Monte Carlo simulation).

The development of software to perform MCMC on commodity hardware is, for the most

part, responsible for a Bayesian renaissance in recent decades. Problems that were, not too
long ago, completely intractable are now possible to be performed on even relatively low-

powered computers.

There is far more to know about MCMC then we have the space to discuss here. Luckily,
we will be using software that abstracts some of these deeper topics away from us.
Nevertheless, if you decide to use Bayesian methods in your own analyses (and I hope you
do!), I’d strongly recommend consulting resources that can afford to discuss MCMC at a
deeper level. There are many such resources, available for free, on the web.

Before we move on to examples using this method, it is important that we bring up this
one last point: Mathematically, an infinitely long MCMC chain will give us a perfect
picture of the posterior distribution. Unfortunately, we don’t have all the time in the world
(universe [?]), and we have to settle for a finite number of MCMC samples. The longer
our chains, the more accurate the description of the posterior. As the chains get longer and
longer, each new sample provides a smaller and smaller amount of new information
(economists call this diminishing marginal returns). There is a point in the MCMC
sampling where the description of the posterior becomes sufficiently stable, and for all
practical purposes, further sampling is unnecessary. It is at this point that we say the chain
converged. Unfortunately, there is no perfect guarantee that our chain has achieved
convergence. Of all the criticisms of using Bayesian methods, this is the most legitimate—
but only slightly.

There are really effective heuristics for determining whether a running chain has
converged, and we will be using a function that will automatically stop sampling the
posterior once it has achieved convergence. Further, convergence can be all but perfectly
verified by visual inspection, as we’ll see soon.

For the simple models in this chapter, none of this will be a problem, anyway.

Using JAGS and runjags

Although it’s a bit silly to break out MCMC for the single-parameter career
recommendation analysis that we discussed earlier, applying this method to this simple
example will aid in its usage for more complicated models.

In order to get started, you need to install a software program called JAGS, which stands
for Just Another Gibbs Sampler (a Gibbs sampler is a type of MCMC sampler). This
program is independent of R, but we will be using R packages to communicate with it.
After installing JAGS, you will need to install the R packages rjags, runjags, and
modeest. As a reminder, you can install all three with this command:

> install.packages(c("rjags", "runjags'", "modeest"))

To make sure everything is installed properly, load the runjags package, and run the
function testjags(). My output looks something like this:

> library(runjags)

> testjags()

You are using R version 3.2.1 (2015-06-18) on a unix machine,
with the RStudio GUI

The rjags package is installed

JAGS version 3.4.0 found successfully using the command
"/usr/local/bin/jags'

The first step is to create the model that describes our problem. This model is written in an
R-like syntax and stored in a string (character vector) that will get sent to JAGS to
interpret. For this problem, we will store the model in a string variable called our.model,
and the model looks like this:

our.model <- "
model {
likelihood function
numSuccesses ~ dbinom(successProb, numTrials)

prior
successProb ~ dbeta(1, 1)

parameter of interest
theta <- numSuccesses / numTrials

} n
Note that the JAGS syntax allows for R-style comments, which I included for clarity.

In the first few lines of the model, we are specifying the likelihood function. As we know,
the likelihood function can be described with a binomial distribution. The line:

numSuccesses ~ dbinom(successProb, numTrials)

says the variable numSuccesses is distributed according to the binomial function with
hyper-parameters given by variable successProb and numTrials.

In the next relevant line, we are specifying our choice of the prior distribution. In keeping

with our previous choice, this line reads, roughly: the successProb variable (referred to in
the previous relevant line) is distributed in accordance with the beta distribution with
hyper-parameters 1 and 1.

In the last line, we are specifying that the parameter we are really interested in is the
proportion of successes (number of successes divided by the number of trials). We are
calling that theta. Notice that we used the deterministic assignment operator (<-) instead
of the distributed according to operator (~) to assign theta.

The next step is to define the successProb and numTrials variables for shipping to JAGS.
We do this by stuffing these variables in an R list. We do this as follows:

our.data <- list(
numTrials = 40,
successProb = 36/40

)
Great! We are all set to run the MCMC.

> results <- autorun.jags(our.model,

+ data=our.data,
+ n.chains = 3,
+ monitor = c('theta'))

The function that runs the MCMC sampler and automatically stops at convergence is
autorun.jags. The first argument is the string specifying the JAGS model. Next, we tell
the function where to find the data that JAGS will need. After this, we specify that we
want to run 3 independent MCMC chains; this will help guarantee convergence and, if we
run them in parallel, drastically cut down on the time we have to wait for our sampling to
be done. (To see some of the other options available, as always, you can run ?
autorun.jags.) Lastly, we specify that we are interested in the variable ‘theta’.

After this is done, we can directly plot the results variable where the results of the
MCMC are stored. The output of this command is shown in Figure 7.11.

> plot(results,
+ plot.type=c("histogram", "trace"),
+ layout=c(2,1))

theta
070 075 080 OB5 080 085 1.00
|

G000 2000 10000 12000 14000
[teration
1 1 1 |
20 -
15 = -
=
o
s 10 -
=
5 - I .
= - N I | i
T T T T
07 0.8 0.8 1.0
theta

Figure 7.11: Output plots from the MCMC results. The top is a trace plot of theta values
along the chain’s length. The bottom is a bar plot depicting the relative credibility of
different theta values.

The first of these plots is called a trace plot. It shows the sampled values of theta as the
chain got longer. The fact that all three chains are overlapping around the same set of
values is, at least in this case, a strong guarantee that all three chains have converged. The
bottom plot is a bar plot that depicts the relative credibility of different values of theta. It is
shown here as a bar plot, and not a smooth curve, because the binomial likelihood function
is discrete. If we want a continuous representation of the posterior distribution, we can
extract the sample values from the results and plot it as a density plot with a sufficiently
large bandwidth:

mcmc samples are stored in mcmc