
Raymond Camden

 Client-Side
Data
 Storage
KEEPING IT LOCAL

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Raymond Camden

Boston

Client-Side Data Storage
Keeping It Local

www.allitebooks.com

http://www.allitebooks.org

978-1-491-93511-8

[LSI]

Client-Side Data Storage
by Raymond Camden

Copyright © 2016 Raymond Camden. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Meg Foley
Production Editor: Nicholas Adams
Copyeditor: Rachel Monaghan
Proofreader: James Fraleigh

Indexer: Wendy Catalano
Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

January 2016: First Edition

Revision History for the First Edition
2015-12-18: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491935118 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Client-Side Data Storage, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.com

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491935118
http://www.allitebooks.org

Table of Contents

Preface. v

1. A Gentle Introduction to Client-Side Data Storage. 1

2. Working with Cookies. 3
Cookies? Seriously? 3
Working with Cookies 4

Reading Cookies 5
Deleting Cookies 6

Demos 6
Inspecting Cookies Within Developer Tools 10
Support and Recommended Usage 11

3. Working with Web Storage. 13
Web Storage, AKA Local Storage 13
Working with Web Storage 14
Demos 15
Listening for Storage Changes 19
Inspecting Web Storage with Dev Tools 23
Support and Recommended Usage 24

4. Working with IndexedDB. 27
Welcome to Deep Data 27
Key IndexedDB Terms 28
Checking for IndexedDB Support 29
Working with Databases 29
Working with Object Stores 31

Making Object Stores 32

iii

www.allitebooks.com

http://www.allitebooks.org

Defining Primary Keys 34
Defining Indexes 36

Working with Data 37
Creating Data 38
Reading Data 42
Updating Data 45
Deleting Data 47

Getting All the Data 48
Working with Ranges and Indexes 51

Even More with IndexedDB 54
Storing Arrays 54
Counting Data 59

Inspecting IndexedDB with Dev Tools 59
Support and Recommended Usage 61

5. Working with Web SQL. 63
Dead Spec Walking 63
Basic Database Terms 64
Checking for Web SQL Support 64
Working with Databases 64
Working with Transactions 66
Inspecting Web SQL with Dev Tools 72
Support and Recommended Usage 73

6. Making It Easier with Libraries. 75
“Use the Library, Luke...” 75
Working with Lockr 75
Simplifying IndexedDB with Dexie 80
Working with localForage 88
More Options 90

7. Building a Sample Application. 91
Let’s Build Something! 91
Our Sample Data 92
The Application 95
The Code 97
Wrap-up 103

Index. 105

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Preface

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/cfjedimaster/DataStorageBook.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

v

www.allitebooks.com

https://github.com/cfjedimaster/DataStorageBook
http://www.allitebooks.org

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Client-Side Data Storage by Ray‐
mond Camden (O’Reilly). Copyright 2016 Raymond Camden, 978-1-491-93511-8.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/client-side-data-storage.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

vi | Preface

www.allitebooks.com

mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/
http://bit.ly/client-side-data-storage
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.allitebooks.org

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
As always—I thank my wife. You inspire me. You keep me sane. You make me smile from
ear to ear. I love you.

Preface | vii

www.allitebooks.com

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1

A Gentle Introduction to Client-Side
Data Storage

Browsers have—slowly and with a lot of growing pains—evolved over the past decade
to become powerful workhorses. Enhanced layout controls, 3D graphics and gaming,
and even music are now within the realm of possibility of the little old browser. One
more exciting, although relatively less flashy (no pun intended), feature is client-side
data storage. But what do we mean by this?

The “typical” process by which you navigate the Web hasn’t changed since time
began: your browser asks for a URL, a web server sends stuff back, you then ask for
more stuff, and the web server sends more stuff to you.

You can certainly get more complex and add JavaScript and AJAX to the mix. But
even in a fancy web 2.0 application, your browser may be requesting information
from the server again and again and again. The reason for this is that—for all intents
and purposes—the browser is an amnesiac. Everything it knows it has to learn from
the server.

While this is true in general, it overlooks a powerful alternative—storing data on the
browser itself. This enables the browser to skip asking the server for information and
to simply retrieve it locally from the user’s machine. It even affords the chance to
manipulate that data for whatever purposes may make sense. That data could then be
sent back to the server for updating later.

In summary, this gives the browser:

• Immediate access to data. Even with AJAX being typically much quicker for
fetching data, by having the data local to the machine itself access will be even
quicker.

1

• Less network traffic. Instead of constantly fetching data from the server, data can
be fetched once and stored for as long as it makes sense. This leads to...

• Less strain on your server. If your server is constantly responding to requests and
fetching stuff from a database server, you could overtax your server. By reducing
the amount of calls you make, your server does less work.

• Finally, with data stored locally, the possibility of a fully offline application
becomes much more feasible.

Of course, it isn’t all sunshine and roses. Moving data to the browser can also have the
following negatives:

• There isn’t any support for synchronization. Imagine you’ve copied data from a
server to a browser. How do you handle keeping that data in sync? What happens
if there are conflicts? None of the core technologies covered in this book support
any concept of handling sync. You can, however, find libraries like PouchDB, that
have this built in.

• Storage limits are fuzzy. As developers, we hate fuzzy. We want to know exactly
how much of a resource we can use. Unfortunately, for many of the technologies
this book will cover, the limits—as well as what happens when you break them—
are a bit vague.

• Finally, while the technologies covered here are powerful, they are not a replace‐
ment for a full database server. Database servers are extremely fine-tuned to the
job of handling huge amounts of data and providing a way to search them. The
solutions we’ll cover are certainly capable of storing data, but at the same time,
they aren’t like an embedded Oracle server. (Although that may be a good thing.)

In this book, we’ll discuss various client-side storage techniques. For each one we’ll
also cover, plainly and honestly, how well they are supported in the wild. You’ll see
examples of the APIs as well as demos you can use to help you learn how to use the
APIs yourself. Finally, we’ll look at a few libraries that aim to make client-side storage
even easier. Buckle up—this is going to be a fun, and sometimes rough, tour through
some of the more useful aspects of the Web!

2 | Chapter 1: A Gentle Introduction to Client-Side Data Storage

http://www.pouchdb.com

CHAPTER 2

Working with Cookies

Cookies? Seriously?
I feel almost ashamed to be speaking about cookies in a modern web development
book in 2015, but they are the oldest, and most stable, form of client-side storage
available to developers today. They are certainly not the best method, and I’d almost
never recommend using them, but they are an option and you may be forced to use
(or modify) code that makes use of them at some point in the future.

Cookies were introduced in 1994 in a beta version of Netscape. They worked by using
header values sent along with HTTP requests and responses. As you may know,
whenever your browser requests a resource, a set of headers will be sent along with
the request. Those headers include various types of data, including information about
the browser and what form of data it wants. On the flip side, the server will also send
headers back. Basically, every time you see a web page rendered in your browser,
there was a set of headers that were also sent that you don’t see. (You certainly can see
them using browser tools. They aren’t hidden as in “impossible to see,” just hidden
from view by default.)

Cookies are sent using HTTP headers, specifically the “Cookie” HTTP header, and
are sent by the browser to the server and sent to the browser from the server. Right
away you should see a problem with that. If one of the benefits of using client-side
storage is that we don’t have to send data over the wire, doesn’t sending cookies back
and forth negate that benefit? Absolutely. This is one more reason why I typically
won’t recommend using cookies.

By default, the browser makes no limit on the number of cookies it can have. In the
past, there was a limit of 20 cookies per domain, but modern browsers seem to have
removed that limit. (As an aside, I once set over 400 cookies in a Chrome browser
and it worked just fine. However, my web server started throwing errors when

3

requests were made. So in this case, it was an issue of the web server having a limit,
not the browser itself. But please don’t use 400 cookies.) Research, or in other words,
Googling, seems to indicate that a limit of 50 cookies per domain is safe at a total of 4
KB. That isn’t a lot of space for cookie values, which hinders their real-world usage.

Cookies are unique per domain. This means that a cookie value set on foo.com will
not be available on goo.com. This is good since you wouldn’t want some other site to
interfere with your usage on your own site. Cookies can be made to be unique in sub‐
domains as well. So, for example, maybe app.foo.com is a unique subdomain of the
Foo website. You can create cookies that are readable only on app.foo.com as well as
cookies that would be available to www.foo.com and app.foo.com.

To make things even more complex, you can also create cookies that are valid only for
a particular path. So, instead of app.foo.com, you may want to create cookies available
just to foo.com/app.

Finally, you can create cookies that work only on the secure (https) version of your
site. Obviously which of these options you use will depend on whatever your applica‐
tion is doing and where you think cookie values need to be present.

Along with where cookies are available, you can also specify how long they are avail‐
able. Your options are:

• Cookies that last for the current session (basically until the browser is closed)
• Cookies that will last forever
• Cookies that live for a certain amount of time
• Cookies that expire after a particular time

Working with Cookies
Cookies do not have an API. To work with them, you simply access the
document.cookie object in your code. So for example, to create a cookie, you could
do this:

document.cookie = "nameOfCookie=value";

In the preceding example, I created a cookie called nameOfCookie and defined it as
value. You use a "name=value" format to define the name and value all at once. Here
is a real example:

document.cookie = "name=Raymond";

In the previous example, I simply set a cookie called name to the value Raymond. Val‐
ues must be URL-safe, which means if you are doing anything dynamic, you’ll want
to use a helper function like encodeURIComponent.

4 | Chapter 2: Working with Cookies

name = "Raymond Camden";
document.cookie = "name=" + encodeURIComponent(name);

So far, so good. But here’s where things get a bit wonky. You may be wondering how
you would set multiple cookies. If you literally set document.cookie multiple times, it
just works. So, for example:

document.cookie = "name=Raymond";
document.cookie = "age=43";

In this code sample, we’ve actually created two cookies, not one. That just feels plain
wrong to me, but you’ll have to just roll with it.

So that’s how you create a cookie with a value, but what about all the metadata I men‐
tioned—like defining where a cookie is available and how long it lasts? The format for
appending metadata in a cookie is to use a semicolon after the value. Here is an
example:

document.cookie = "name=Raymond; expires=Fri, 31 Dec 9999 23:59:59 GMT";

This example specifies when the cookie expires. We can further expand it by specify‐
ing that it works only on a subdomain:

document.cookie = "name=Raymond; expires=Fri, 31 Dec 9999 23:59:59 GMT;
domain=app.foo.com";

You get the idea. When you don’t specify metadata like this, cookies will default to the
current domain, the current path (probably not what you want), and an expiration in
the current session.

Reading Cookies
Reading cookies is somewhat easier—depending on how comfortable you feel about
string parsing. There is no API to get “a” cookie. Instead, you can simply read
document.cookie. Doing so will give you all the cookies set for a particular site. Here
is the document.cookie value from CNN:

"_cb_ls=1;
_chartbeat2=Dlxk2YDHxyg1BXCry6.1426601000831.1439508384927.0000000000000001;
Akamai_AnalyticsMetrics_clientId=89E881222E0BD593DF2468758F328F689C36BAC1;
octowebstatid=16ppgnhrso5f2frjuvq5; ug=55cd27810eb00b0a3c6ac33c7d05339d; ugs=1;
__CG=u%3A2449373858398994400%2Cs%3A72001958%2Ct%3A1439508379253%2Cc%3A1%2Ck%3
Awww.cnn.com/19/19/54%2Cf%3A0%2Ci%3A0; __CT_Data=gpv=10;
__gads=ID=3d001e8bba3c7c6d:T=1426601001:S=ALNI_MYWNYv1SRt0tx7LQ2AzdSESOBygNA;
__vrf=1439508379290061VnNeHVWPiIjkcWMeUjRWpppwsPktE;
grvinsights=a5a942f8e7c604d573496053d63f590c; optimizelyBuckets=%7B%7D;
optimizelyEndUserId=oeu1426600996913r0.5135214943438768;
optimizelySegments=%7B%22170962340%22%3A%22false%22%2C%22171657961%22%3A%22
safari%22%2C%22172148679%22%3A%22none%22%2C%22172265329%22%3A%22direct%22%7D;
RT=sl=1&ss=1439508375405&tt=9387&obo=0&bcn=%2F%2F36f11e49.mpstat.us%2F&sh=1439
508384794%3D1%3A0%3A9387&dm=cnn.com&si=5be398d8-bb51-42ea-8128-6d4251e47ada;

Working with Cookies | 5

 s_cc=true;s_fid=5324AC5D0F8323AB-3F26DEB602CBB276; s_ppv=13; s_sq=%5B
%5BB%5D%5D;s_vi=[CS]v1|2A841A13051D0B97-400001280000490C[CE]; tosAgreed=true"

If that seems like a mess, you’re absolutely correct. Reading an individual cookie
would mean parsing the string into components separated by a semicolon. Also note
that you do not have access to any metadata. There is no way to get this information
via the document.cookie value. It wouldn’t be too difficult to parse the string, but you
really don’t need to do that. Toward the end of this chapter I’ll show you a great little
library that makes working with cookies easier.

Deleting Cookies
To delete a cookie, you can simply set a cookie with an expiration in the past:

document.cookie = "name=Raymond; expires=Thu, 01 Jan 1970 00:00:00 GMT";

Technically the value doesn’t matter, but the name must match the name of the cookie
you want to delete.

Demos
Now that you’ve seen the basics of working with cookies, let’s look at a simple demo.
As I mentioned, you probably don’t want to build cookie parsing code yourself.
Instead, you should use one of the many libraries out there. For our demo, we’ll use a
simple (and excellent) free library from the Mozilla Developer Network (MDN). You
can find this code (along with even more information on cookies) at https://devel
oper.mozilla.org/en-US/docs/Web/API/Document/cookie. The library has methods for:

getItem

Gets a cookie

setItem

Sets a cookie (including expiration, path, domain, etc.)

removeItem

Deletes a cookie

hasItem

Checks if a cookie exists

keys

Returns the names of all the cookies

The MDN code has been saved in a file called cookies.js. This is available along with
the rest of the code for this book. Our first example, test1.html, will simply use a
cookie to count how many times you’ve visited the site (Example 2-1).

6 | Chapter 2: Working with Cookies

https://developer.mozilla.org/en-US/docs/Web/API/Document/cookie
https://developer.mozilla.org/en-US/docs/Web/API/Document/cookie

As a quick aside, all examples in this book will assume (and require) that you run
them from a local web server and not just by opening the file in your browser. If you
don’t have a local web server installed, consider a simple tool like httpster for a quick
way to set up a development web server. (But promise me you’ll install a proper web
server later. You are a web developer, right?)

Example 2-1. test1.html

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Cookie Test One</title>
 <meta name="description" content="">
 <meta name="viewport" content="width=device-width">
 <script type="text/javascript" src =
 "http://ajax.googleapis.com/ajax/libs/jquery/2.1.0/jquery.min.js"></script>
 <script type="text/javascript" src="cookies.js"></script>
</head>

<body>

 <div id="resultDiv"></div>

 <script>
 $(document).ready(function() {

 //initial value
 var visited = 0;

 //Check to see if we have the cookie...
 if(docCookies.hasItem("visited")) {
 //and get it
 visited = docCookies.getItem("visited");
 }

 visited++;

 //update
 docCookies.setItem("visited", visited);

 $("#resultDiv").text("You have visited this site "+ visited +
 " times.");

 });
 </script>

</body>
</html>

Demos | 7

https://simbco.github.io/httpster/

Starting from the top, you can see a fairly typical document.ready block from the
friendly jQuery library. I begin by setting an initial value for a variable called
visited. If the cookie library says I have a cookie called visited, I then update the
variable with the cookie’s value. I then increment this value by one, store it back, and
then display it in the browser. By default, this cookie will exist only for the current
session, so let’s improve it in test2.html (Example 2-2).

Example 2-2. test2.html

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Cookie Test Two</title>
 <meta name="description" content="">
 <meta name="viewport" content="width=device-width">
 <script type="text/javascript" src =
 "http://ajax.googleapis.com/ajax/libs/jquery/2.1.0/jquery.min.js"></script>
 <script type="text/javascript" src="cookies.js"></script>
</head>
<body>

 <div id="resultDiv"></div>

 <script>
 $(document).ready(function() {

 //initial value
 var visited = 0;

 //Check to see if we have the cookie...
 if(docCookies.hasItem("visited2")) {
 //and get it
 visited = docCookies.getItem("visited2");
 }

 visited++;

 //update
 docCookies.setItem("visited2", visited, Infinity);

 $("#resultDiv").text("You have visited this site "+ visited +
 " times.");

 });
 </script>

</body>
</html>

8 | Chapter 2: Working with Cookies

In this version, we’ve made two changes. First, our cookie is now visited2. Normally
I’d use the same name as before, but we want to differentiate between the two cookies
while testing. The second change was to modify the setItem call. We’ve used an expi‐
ration value of Infinity. This creates a cookie that will last forever. Now that page
will accurately reflect how many times it has been visited by a particular user regard‐
less of whether the user is visiting during the same browser session.

So far our demos have been pretty simple, so let’s take it up a notch. We can use cook‐
ies to remember when a user has last visited the site. Based on the user’s last visit, we
can either:

• Greet a new user who has never been here before.
• Provide a special message to someone who hasn’t been here in a while—for

example, mentioning cool new features.
• Simply welcome a user who has visited often.

Let’s look at the code (Example 2-3) and then I’ll walk you through how it works.

Example 2-3. test3.html

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Cookie Test Three</title>
 <meta name="description" content="">
 <meta name="viewport" content="width=device-width">
 <script type="text/javascript" src =
 "http://ajax.googleapis.com/ajax/libs/jquery/2.1.0/jquery.min.js"></script>
 <script type="text/javascript" src="cookies.js"></script>
</head>
<body>

 <div id="resultDiv"></div>

 <script>
 $(document).ready(function() {

 var $resultDiv = $("#resultDiv");

 //Is this a brand new user?
 var newUser = true;
 //How many days since last visit
 var daysSinceLastVisit;

 //Check to see if we have the cookie...
 if(docCookies.hasItem("lastVisit")) {
 newUser = false;

Demos | 9

 //do some math to find out how long it has been
 var lastVisit = docCookies.getItem("lastVisit");
 var now = new Date();
 var lastVisitDate = new Date(lastVisit);
 //credit: http://stackoverflow.com/a/3224854/52160
 var timeDiff = Math.abs(now.getTime() - lastVisitDate.getTime());
 var daysSinceLastVisit = Math.ceil(timeDiff / (1000 * 3600 * 24));
 }

 //Set to now
 docCookies.setItem("lastVisit", new Date(), Infinity);

 if(newUser) {
 $resultDiv.text("Welcome to the site!");
 } else if(daysSinceLastVisit > 20) {
 $resultDiv.text("Welcome back to the site!");
 } else {
 $resultDiv.text("Welcome good user!");
 }

 });
 </script>

</body>
</html>

We begin by setting up two variables, newUser and daysSinceLastVisit. The first
will simply be a Boolean we can check to determine if the user is brand new, while the
latter will report on how many days it has been since the user’s last visit.

If a cookie, lastVisit, exists, we get it and then create a Date variable out of the
value. From that we can then use some simple math to figure out how many days it
has been since the user’s last visit.

Next, we set the cookie value for lastVisit to the current time.

That’s the core of the logic; we then simply spit out a message based on one of the
three states just mentioned. In this demo, the value 20 is used to determine that it has
been too long since the user visited. Obviously this value is arbitrary.

Inspecting Cookies Within Developer Tools
Modern browsers provide excellent developer tools that make it easier to inspect and
check your use of cookies. In Firefox, you can see cookies if you enable the Storage
tab (it may not be visible by default). Once it’s enabled, you can view your current
cookies (see Figure 2-1). Firefox does not allow you to modify cookies, just view
them.

10 | Chapter 2: Working with Cookies

www.allitebooks.com

http://www.allitebooks.org

Figure 2-1. Firefox’s cookie display in its developer tools

Chrome will show you a site’s current cookies in the Resources tab (Figure 2-2). You
can delete cookies here, but not edit them.

Figure 2-2. Chrome’s cookie display

Support and Recommended Usage
CanIUse.com, the best resource for checking browser feature support, doesn’t even
report on cookies because support is and has been 100% for a long time. However,
just because a browser supports the feature doesn’t guarantee that it will work. Many
people have developed a fear of cookies and blocked them.

Support and Recommended Usage | 11

As for recommended uses, as I said in the beginning, my recommendation is to not
use cookies, but if you must, keep it simple. You can use them for user preferences
and basic information (name, age, etc.). Here is a practical example. I use WordPress
for my blog. Whenever I upload an image, WordPress asks if I want to include a link
to the image when it’s added to the blog entry. I nearly always change this particular
form field to say that I want no link. A cookie could be used to remember this default
so I don’t have to constantly modify this when writing. That’s a trivial example, but it
is something I run into nearly every day. Finally, if there is something you think the
server should know as well, then using cookies ensures the server will see the same
values.

12 | Chapter 2: Working with Cookies

CHAPTER 3

Working with Web Storage

Web Storage, AKA Local Storage
Web storage is the formal name for a technology most of us call Local Storage. Out of
all the client-side technologies we’ll discuss in this book, the Web Storage API is
probably the quickest to learn and simplest to pick up. It is an API focused on setting
and retrieving simple values by keys—so, for example, storing the value Ray for the
key name. Or storing the value 43 for the key age. Complex data (like arrays or
objects) is not supported, but you can store it by encoding the values into JSON first.
(And obviously you’ll need to decode them on retrieval.)

Web storage comes in two flavors: Local Storage and Session Storage. Both use the
exact same API, but while Local Storage will persist forever (or until the user clears
it), Session Storage will go away as soon as the browser is closed. Since most people
use the persistent version, most developers use (and talk about) Local Storage. The
official specification for the Web Storage API can be found at http://www.w3.org/TR/
webstorage.

Just like cookies (and every other technology covered in this book), web storage is
unique to a particular domain. Unlike cookies, there is no magical way to make data
stored at www.foo.com also available at app.foo.com. (There are fancy workarounds
with iframes, but let’s avoid that for now.) Basically this all means that using a web
storage key called name is completely safe for both foo.com and goo.com—they won’t
conflict.

Your limits for web storage are a bit variable, but in general they range from 5 to 10
MB. Typically, this shouldn’t be a problem unless you’re storing large packets of data,
which is (generally, not always) something that isn’t recommended. If you go over the
limit, Chrome, Firefox, and Safari will all give you an error you can handle in your

13

http://www.w3.org/TR/webstorage
http://www.w3.org/TR/webstorage

code. Internet Explorer 11 and (at the time of writing) Edge do nothing, unfortu‐
nately.

Working with Web Storage
The Web Storage API (and for this chapter, we’ll use Local Storage for all our demos,
but remember that the Session Storage version acts the exact same way) has four sim‐
ple methods:

localStorage.setItem

Sets a value for a particular key

localStorage.getItem

Retrieves a value for a particular key

localStorage.removeItem

Deletes a key and the value associated with it

localStorage.clear

Removes all key/value pairs (but just for the specific domain making the request)

While Web Storage has an API, you can also treat the data like a simple JavaScript
object. So, for example, this statement:

localStorage.setItem["something"] = 1

will write to Web Storage, and this:

console.log(localStorage["something"]);

would read from it. While this works, I generally recommend using the API methods
for consistency’s sake.

One thing you must be very careful about is in regards to what data you store in Web
Storage. Web Storage supports only string data. This can be confusing at times. Imag‐
ine this code snippet:

var names = ["Ray", "Jeanne"];
localStorage.setItem("names", names);

This code will run just fine; however, it will store the string version of the array
instead of the array itself. This means that if you then do localStorage.getI
tem("names"), you’ll have "Ray,Jeanne"—a string, not the array you intended.

Luckily there is a pretty simple workaround: JSON encoding. By converting your
complex data into JSON, and then decoding it back when you fetch the value, you can
store complex data easily in Web Storage. Here’s a modified version of the previous
snippet that uses the JSON object available in modern browsers. (For older browsers
you can find plenty of libraries that will add this support.)

14 | Chapter 3: Working with Web Storage

var names = ["Ray", "Jeanne"];
localStorage.setItem("names", JSON.stringify(names));

Reading the value back into an array is pretty simple as well:

var storedNames = JSON.parse(localStorarge.getItem("names"));

In order for this to work, you’ll need to remember what keys are storing what types of
values, so be sure to keep track of this. You could use a naming system where all keys
prefixed with js or json imply that the value is JSON-encoded.

Now that you’ve seen how simple the API is, let’s look at a few demos.

Demos
For our first demo, we’re going to do something simple, and a bit cheesy. We’ll use
Web Storage to track how many times you’ve visited the page (Example 3-1). In the
previous chapter we told you to use a proper web server for testing, and we’ll remind
you of this one more time. Do not simply open this file by double-clicking on it. Run
it in a local web server instead.

Example 3-1. test1.html

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>WebStorage Test One</title>
 <meta name="description" content="">
 <meta name="viewport" content="width=device-width">
 <script type="text/javascript" src =
 "http://ajax.googleapis.com/ajax/libs/jquery/2.1.0/jquery.min.js"></script>
</head>
<body>

 <div id="resultDiv"></div>

 <script>
 $(document).ready(function() {

 if(window.localStorage) {
 var numHits = localStorage.getItem("numHits");
 if(!numHits) numHits=0;
 else numHits = parseInt(numHits, 10);
 numHits++;
 localStorage.setItem("numHits",numHits);
 $("#resultDiv").text("You have visited this site " +
 numHits +" times.");
 }

Demos | 15

 });
 </script>

</body>
</html>

The example code has one simple div block that we’ll use to render the number of
times you’ve visited the site. The JavaScript code begins by checking that
window.localStorage exists. While Web Storage has very good support (as you’ll see
toward the end of the chapter), it takes very little code to check and ensure it is sup‐
ported. Next, we fetch a value from a key called numHits. If we get nothing back, we
then default the value to 0; otherwise, we use parseInt to turn the string value into a
proper number. Remember, Web Storage stores everything as strings, even numbers.

Next we simply increment the value, store it back into Web Storage, and then render
out the result to screen (see Figure 3-1). We could have been fancy and supported “1
time” versus “1 times,” but that’s overkill for our purposes.

Figure 3-1. The demo after being run a few times

As we’ve said before, we won’t be covering the Session Storage version of the API
because it is no different, but included with the code for this book is a file called
test1_session.html. It is a modified version of Example 3-1 that simply demonstrates
the use of the sessionStorage object instead of localStorage.

Now let’s kick it up a notch. Our next demo is actually something useful. Have you
ever worked on a form and then accidentally closed the browser tab? Or perhaps the

16 | Chapter 3: Working with Web Storage

form was on a site that required login information and your login expired before you
could complete the form? In Example 3-2, we’re going to use Web Storage to keep a
copy of the form data around so it isn’t lost. We also need to remove the form data
when the form is actually completed.

Example 3-2. test2.html

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>WebStorage Test Two</title>
 <meta name="description" content="">
 <meta name="viewport" content="width=device-width">
 <script type="text/javascript" src =
 "http://ajax.googleapis.com/ajax/libs/jquery/2.1.0/jquery.min.js"></script>

</head>
<body>

 <form id="myForm">

 <p>
 Your Name:
 <input type="text" id="name" name="name">
 </p>

 <p>
 Your Age:
 <input type="number" id="age" name="age">
 </p>

 <p>
 Your Email:
 <input type="email" id="email" name="email">
 </p>

 <p>
 <input type="submit">
 </p>

 </form>

 <script>
 $(document).ready(function() {

 if(window.localStorage) {

 //If I have data, fetch it and preset
 if(localStorage.getItem("personForm")) {

Demos | 17

 var person =
 JSON.parse(localStorage.getItem("personForm"));
 $("#name").val(person.name);
 $("#age").val(person.age);
 $("#email").val(person.email);
 console.log("restored from storage");
 }

 //Listen for all <input> fields and their input event
 $("input").on("input", function(e) {
 var name = $("#name").val();
 var age = $("#age").val();
 var email = $("#email").val();
 var person = {"name":name, "age":age, "email":email};
 localStorage.setItem("personForm",
 JSON.stringify(person));
 console.log("stored the form...");
 });

 //form handler should clear storage
 $("#myForm").on("submit",function(e) {
 localStorage.removeItem("personForm");
 return true;
 });
 }

 });
 </script>

</body>
</html>

The top portion of the file is just the form we’re going to persist. It has three input
fields and a submit button. (Note it has no action value for the <form> tag, as we
aren’t really building a form processor here.)

In the JavaScript portion, we once again ensure the browser supports Web Storage
and then get down to business.

The first thing we do is see if data exists for the form in Web Storage. We’re calling the
key personForm and if it exists, it is a JSON-encoded object. Once we get it and
decode it, we can then update each of our three form fields with the existing data.
Since they are simple text fields this isn’t difficult, but obviously you could support
select, checkbox, and radio fields with a bit more work.

Next we add an event listener to the input fields in the form. Every time the input
event is fired on them, it means something has changed. We fetch the values, store
them in a simple object, and then store a JSON-encoded version into Web Storage.

18 | Chapter 3: Working with Web Storage

Finally, when the user submits the form (Figure 3-2), we don’t need to keep a copy of
it around anymore. (Although technically, there may be fields you wish to keep
around if this is a form people use often.) We simply use removeItem to delete the key
from storage.

Figure 3-2. The form with some sample data loaded automatically

Listening for Storage Changes
The last feature we’ll discuss is the storage event. This one is a bit odd and probably
not something you’ll need to worry about, but it definitely bears covering. The
storage event is exactly what it sounds like—an event that is thrown when storage
(either Local Storage or Session Storage) is modified. Let’s look at a simple case
(Example 3-3).

Example 3-3. test3.html

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>WebStorage Event Test</title>
 <meta name="description" content="">
 <meta name="viewport" content="width=device-width">

Listening for Storage Changes | 19

 <script type="text/javascript" src =
 "http://ajax.googleapis.com/ajax/libs/jquery/2.1.0/jquery.min.js"></script>

</head>
<body>

 <form id="myForm">

 <p>
 Test Value:
 <input type="text" id="test">
 </p>

 </form>

 <script>
 $(document).ready(function() {

 if(window.localStorage) {

 if(localStorage.getItem("testValue")) {
 $("#test").val(localStorage.getItem("testValue"));
 }

 //Listen for all <input> fields and their input event
 $("input").on("input", function(e) {
 var test = $("#test").val();
 localStorage.setItem("testValue", test);
 console.log("stored the test value.");
 });

 $(window).on("storage", function(e) {
 console.log("storage event fired");
 console.dir(e);
 });

 }

 });
 </script>

</body>
</html>

On the top of the page you see a simple form with one field, a text field with the ID
name. In the JavaScript, you can see code that acts a bit like the previous demo. On
load, we look for a previously existing value and set it to the field. There is then a
generic input change handler to notice changes to fields and store them. Note the use
of the console.log method to record the save.

20 | Chapter 3: Working with Web Storage

www.allitebooks.com

http://www.allitebooks.org

Beneath this we have a new event listener. The storage event is fired on the window
object, so we listen there. We’ll talk a bit more about what’s in this event in a moment.
For now, though, go ahead and open the file and do some testing. Simply type some‐
thing in and change it a few times. You may get something like Figure 3-3.

Figure 3-3. Where’s the storage event?

Notice something odd there? There are multiple log messages about storing the value,
but nothing about the storage event itself! What’s going on here?

Well, it turns out that the storage event is fired only when another instance of the
browser modifies storage. How can that happen? Simply open another tab and enter
the same URL for the demo. Modify the value in that tab and then return to the origi‐
nal tab, and you’ll finally see it. What’s happening here is that the event is letting you
know that other code has modified storage.

In Figure 3-4, note that the event contains two interesting values, oldValue and new
Value. As you can guess, the event is reporting on what the original value was and
what it changed to.

Listening for Storage Changes | 21

Figure 3-4. The storage event is fired!

The question now is, what do you do? Actually handling the change is up to your
application. You may want to prompt the user, asking whether they want to accept the
change or keep their current version. To be clear, it is already too late. The storage
system changed. But you can take the value in the form and update storage. Of
course, the other tab then would get the same warning. Prompting the user is proba‐
bly a bad idea. A simpler solution may be to simply update the form field to represent
the latest value. Example 3-4 demonstrates this approach. (Since we’re changing only
the storage event, the listing just contains that bit of code.)

Example 3-4. test4.html (snippet)

$(window).on("storage", function(e) {
 console.log("storage event fired");
 $("#test").val(e.originalEvent.newValue);
});

As you can see, we’re simply changing the form field to the new value. We could have
also used localStorage.getItem("testValue"), but since we already had the value
in the event, it made sense to use it.

22 | Chapter 3: Working with Web Storage

Inspecting Web Storage with Dev Tools
Both Firefox and Chrome provide really great support for working with Web Storage
in their respective browser developer tools. In Figure 3-5, you can see Firefox’s ren‐
dering of Local Storage data from the demos.

Figure 3-5. Firefox’s Dev Tools view of Web Storage

It may not be immediately obvious, but you can click on a value for a detailed view.
For the JSON string in personForm, Firefox recognizes it as JSON and helpfully dis‐
plays it a bit more nicely (Figure 3-6).

Figure 3-6. Detailed view of a Web Storage value

In Firefox, you cannot edit or delete Web Storage values. Don’t forget, though, that
you can use the Console tab to directly manipulate values.

In Chrome, you can find Web Storage values under the Resources tab (Figure 3-7).

Inspecting Web Storage with Dev Tools | 23

Figure 3-7. Chrome’s Dev Tools for Web Storage

Unlike with Firefox, if you double-click on a value you can edit it by hand. You can
also use the X icon at the bottom to remove an individual record.

Support and Recommended Usage
So, how well is Web Storage supported? Figure 3-8 shows the answer from Can‐
IUse.com.

Figure 3-8. CanIUse.com

That’s really good support, and as you saw in the demos, it is fairly easy to check for
support and enhance pages with this feature. In both demos, if the browser didn’t
support Web Storage, nothing broke, which is how we should be building web pages
in general!

24 | Chapter 3: Working with Web Storage

http://caniuse.com/#feat=namevalue-storage

As for recommended uses, I’d consider simple things like preferences to be a good
example, as well as basic information like the user’s name, age, and so on, and maybe
a list of “favorited” items from your site. These are things that could be stored server-
side too, of course, but as they are user-specific and not crucial to the site itself, they
may be more appropriately stored on the client.

Support and Recommended Usage | 25

CHAPTER 4

Working with IndexedDB

Welcome to Deep Data
So far the options we’ve worked with for storing data on the client side have been rel‐
atively simple and relatively small in nature. Now it’s time to dig deep and work with
a large-scale storage system, IndexedDB. IndexedDB is a powerful storage system
with a great deal of flexibility. You can store just about anything and everything you
want to on the user’s browser. However, with that great power and flexibility comes
an API that isn’t quite as friendly as Web Storage. You’ll also find that IndexedDB
does not quite yet have great support on mobile browsers, and even when it does, it
can be poorly implemented. (iOS 8, in particular, has such bad support for Index‐
edDB that it is simply better that you pretend it doesn’t exist.) However, in the future,
IndexedDB will probably become the standard method of storing large amounts of
data on the client side. For more information, and an exciting read (honest!), check
out the specification at http://www.w3.org/TR/IndexedDB/.

Like every other client-side storage system described so far, IndexedDB is unique to a
domain. Limits are usually poorly defined but tend to be extremely large when they
exist. In general, there are no limits, but the browser will begin clearing out other
IndexedDB instances if space begins to get low. Like most “persistent” systems, any‐
thing stored in the browser is inherently not persistent over eternity, but the benefits
of storing data, even only semi-persistently, are worth the effort.

27

http://www.w3.org/TR/IndexedDB/

Key IndexedDB Terms
Before we get into the code, let’s cover some important IndexedDB terms.

Databases
At the highest level of IndexedDB is the concept of a database. If you’ve ever
worked with databases in server-side web applications, then you’re already famil‐
iar with this concept. Basically, a database is where you put your data. As the
developer of your site, you have the option of making any number of databases
you want, but typically, you will create only one database for your site’s needs.
There’s no hard and fast rule here, but in general, one database per site or web
application makes the most sense.

Object stores
An object store is an individual bucket to hold data. If you’ve worked with tradi‐
tional relational databases, then you can think of an object store as a table. Basi‐
cally, if you have one database for your web application, then you will have one
object store for each type of data you’re storing. Given a website that persists doc‐
umentation articles and user-generated notes, then you could imagine two object
stores. Unlike with relational database tables, you do not have a rigid column
structure that dictates how data is stored. So, for example, in a MySQL database
table called “person,” you could have two character columns for first and last
name and a numeric column for age. In IndexedDB, what you can store can be
more loose. I can store a person with a first and last name but an age value of
unknown or even too old to matter. This can coexist with another person
stored with a proper age. IndexedDB is much more flexible in letting you store
data. That’s both good and bad. Just because you can “mix it up” doesn’t necessar‐
ily mean that you should!

Indexes
This is where the “Indexed” of “IndexedDB” comes in. An index is a way of
retrieving data from your object store. You can always get all of the data from an
object store, but many times you want to get data by a particular property. So, for
example, if you are storing people, then you may want to fetch them later by their
name, or their Social Security number, or perhaps their gender. By using indexes,
you’re telling the IndexedDB system to make it easier to fetch data by those prop‐
erties later.

As we go on you’ll learn a few other important IndexedDB terms, but these three
cover the main ones you’ll encounter throughout your development.

28 | Chapter 4: Working with IndexedDB

Checking for IndexedDB Support
Because IndexedDB still isn’t widely supported, it is important that you check for its
support before actually using it. The simplest way of doing so is with a check of the
window object.

if("indexedDB" in window) {
}

You could write this as a function too, of course:

function idbOK() {
 return "indexedDB" in window;
}

Due to the serious issues with IndexedDB and iOS 8, you may wish to consider modi‐
fying the code to return false on those platforms. This StackOverflow answer dem‐
onstrates a simple regex text that could be used:

function idbOK() {
 return "indexedDB" in window &&
 !/iPad|iPhone|iPod/.test(navigator.platform);
}

Working with Databases
As I’ve stated, the database is the top-level container for your data. How many data‐
bases you have, what you name them, and so forth is completely up to you. When
creating a database, you provide a name and a version, typically starting at 1. The ver‐
sion number is both arbitrary and important. You can only modify your database
structure (and to be clear, this means the object stores and indexes, not the actual
data itself) when you change versions. This means if you have a web app out in the
wild and need to store some new type of data, then you’ll need to increment your ver‐
sion to a new number.

Everything you do in IndexedDB is asynchronous, so opening a database means
you’ll need to respond to an event in order to begin working with it. The events
you get from a database open operation are success, error, upgradeneeded, and
blocked.

The first two are self-explanatory, but what do the others mean? upgradeneeded is
used when your database is first accessed by a user or when the version number has
changed. This is where you will set up the structure of your data. blocked is used
when the database isn’t available at all and cannot be used. Example 4-1 demonstrates
a simple case of opening a database. We aren’t actually doing anything with it—just
attempting to open it.

Checking for IndexedDB Support | 29

http://stackoverflow.com/a/9039885

Example 4-1. test_1_1.html

<!doctype html>
<html>
<head>
 <script type="text/javascript" src =
 "http://ajax.googleapis.com/ajax/libs/jquery/2.1.0/jquery.min.js"></script>
</head>

<body>

<script>
function idbOK() {
 return "indexedDB" in window;
}

var db;

$(document).ready(function() {

 //No support? Go in the corner and pout.
 if(!idbOK()) return;

 var openRequest = indexedDB.open("ora_idb1",1);

 openRequest.onupgradeneeded = function(e) {
 console.log("running onupgradeneeded");
 }

 openRequest.onsuccess = function(e) {
 console.log("running onsuccess");
 db = e.target.result;
 }

 openRequest.onerror = function(e) {
 console.log("onerror!");
 console.dir(e);
 }

});

</script>
</body>
</html>

You can see that the code begins by checking if IndexedDB is supported at all. If it is,
the indexedDB.open method is used to open the database. The first argument is the
name. Since IndexedDB is private to an individual site, you don’t have to worry about
your name conflicting with another database. The second argument is the version.
Again, you can use any number here, but you should start with 1.

30 | Chapter 4: Working with IndexedDB

The result of this call is a request object that you can use to attach event listeners to.
In the code here there is an event listener for all the events except blocked. The first
time you run this code (assuming you’re using an IndexedDB-capable browser), you
would see the output shown in Figure 4-1 in the console.

Figure 4-1. Notice the events being run

Since this was the first time you used the database, an upgradeneeded event is fired.
This also represents the fact that the database itself was created. If you repeat this pro‐
cess, only the success event will be fired (see Figure 4-2).

Figure 4-2. Since the database already existed and the version didn’t change, only one
event is fired

That’s the basics of working with the database; now let’s get deeper with object stores.

Working with Object Stores
As we said earlier, an IndexedDB object store is somewhat similar to an SQL database
table. It should contain data of one “type”—for example, instances of “people” records
or “notes” or something else. The idea is that you will have one object store for each
type of data you need to persist.

Object stores can only be created during the upgradeneeded event. This is why the
version number matters. Let’s say you design your database to support two object
stores. A few months down the road, you decide you need to store a third type of
data. You will need to do two things: first, change the version, and second, write the
code to add the new object store.

In pseudocode, you can think of this process like so:

I request to open the database
If the request fired an upgrade needed event, create object stores
If the request fired a success event, I'm ready to roll

Working with Object Stores | 31

Making Object Stores
To create an object store, you should first check to see if it exists already. Using a
database variable (which you will get from the event handlers associated with opening
the database), you can access the property objectStoreNames. This property is a DOM
StringList that will let you inspect it for an existing value. If it doesn’t exist, you can
then create it using the method call createObjectStore("name", options). Let’s
look at Example 4-2.

Example 4-2. test_2_1.html

<!doctype html>
<html>
<head>
 <script type="text/javascript" src =
 "http://ajax.googleapis.com/ajax/libs/jquery/2.1.0/jquery.min.js"></script>
</head>

<body>

<script>
function idbOK() {
 return "indexedDB" in window;
}

var db;

$(document).ready(function() {

 //No support? Go in the corner and pout.
 if(!idbOK()) return;

 var openRequest = indexedDB.open("ora_idb2",1);

 openRequest.onupgradeneeded = function(e) {
 var thisDB = e.target.result;
 console.log("running onupgradeneeded");
 if(!thisDB.objectStoreNames.contains("firstOS")) {
 console.log("makng a new object store");
 thisDB.createObjectStore("firstOS");
 }

 }

 openRequest.onsuccess = function(e) {
 console.log("running onsuccess");
 db = e.target.result;
 console.dir(db.objectStoreNames);
 }

32 | Chapter 4: Working with IndexedDB

 openRequest.onerror = function(e) {
 console.log("onerror!");
 console.dir(e);
 }

});

</script>
</body>
</html>

After checking to ensure IndexedDB is supported, we open the database. (Note we
are using a different name from the last example.) If upgradeneeded is fired, it means
that either the user is visiting the page for the first time or had an earlier version of
the database.

We fetch the database object itself by getting the result of the event’s target object. The
objectStoreNames DOMStringList value lets us use contains to see if the name of
our object store exists. If it does not, then we create it. Note that we pass only the
name of the object store. The createObjectStore method also lets us pass a second
argument with options. This is how we’ll define various configuration properties for
the object store including indexes.

As before, the first time you run this, the upgradeneeded event will fire. This time it
will actually do something (see Figure 4-3).

Figure 4-3. Notice the object store being created

On the next request, only the success handler is run, but our object store still exists
(see Figure 4-4).

Working with Object Stores | 33

Figure 4-4. There’s our lovely little object store!

Defining Primary Keys
In a few moments we’ll begin discussing indexes, but before you begin defining dif‐
ferent ways to fetch your data, you need to begin with a fundamental property: the
primary key. In your object store, every piece of data must have a way to uniquely
identify itself. For example, my name is Raymond Camden, and there are certainly
other Raymond Camdens out there in the world, but I can be uniquely identified by
my Social Security number. (OK, I know that applies only to Americans, but this
wouldn’t be the first time an American acts like the rest of the world behaves the
same.) When you define object stores, you have the opportunity to define how data
will be uniquely identified.

Practically, there are two main ways of doing this. One way is to define a key path,
which is basically a property that will always exist and contain the unique informa‐
tion. So if I were defining a people object store, I could say the key path is ssn.
Another option is to use a key generator, which basically means a way to generate a
unique value. Here are a few examples.

somedb.createObjectStore("people", {keyPath: "email"});

This example creates an object store called people where it is assumed that each piece
of data will contain a property called email that is unique.

somedb.createObjectStore("notes", {autoIncrement:true});

This example creates an object store called notes. The primary key will be assigned
automatically as an autoincrementing number.

somedb.createObjectStore("logs", {keyPath: "id", autoIncrement:true});

This example creates an object stored called notes. This time, the autoincrementing
value will be used and stored as a property called id.

So which one is right? It depends. If you are working with data that has a property in
it that should be unique, then you would want to use the keyPath option to enforce

34 | Chapter 4: Working with IndexedDB

this uniqueness. If you are working with data where nothing in the data itself is
unique, then using an autoincrementing value will make sense. Example 4-3 demon‐
strates.

Example 4-3. test_2_2.html

<!doctype html>
<html>
<head>
 <script type="text/javascript" src =
 "http://ajax.googleapis.com/ajax/libs/jquery/2.1.0/jquery.min.js"></script>
</head>

<body>

<script>
function idbOK() {
 return "indexedDB" in window;
}

var db;

$(document).ready(function() {

 //No support? Go in the corner and pout.
 if(!idbOK()) return;

 var openRequest = indexedDB.open("ora_idb3",1);

 openRequest.onupgradeneeded = function(e) {
 var thisDB = e.target.result;
 console.log("running onupgradeneeded");

 if(!thisDB.objectStoreNames.contains("people")) {
 thisDB.createObjectStore("people",
 {keyPath: "email"});
 }

 if(!thisDB.objectStoreNames.contains("notes")) {
 thisDB.createObjectStore("notes",
 {autoIncrement:true});
 }

 if(!thisDB.objectStoreNames.contains("logs")) {
 thisDB.createObjectStore("logs",
 {keyPath:"id", autoIncrement:true});
 }

 }

 openRequest.onsuccess = function(e) {

Working with Object Stores | 35

 console.log("running onsuccess");
 db = e.target.result;
 console.dir(db.objectStoreNames);
 }

 openRequest.onerror = function(e) {
 console.log("onerror!");
 console.dir(e);
 }

});

</script>
</body>
</html>

The important part of this example is the upgradeneeded event. Three object stores
are created, each of which demonstrates various ways of defining the primary key for
the object stores. As we aren’t actually storing data yet, there isn’t much to see here.

Defining Indexes
After figuring out a primary key for your data, next you’ll need to decide on your
indexes. As we said earlier, indexes define how you plan on fetching data from your
object store. This is highly dependent on your data and application needs. Indexes
must be made when you create your object stores and can also be used to define a
unique constraint on your data. (This is different from the primary key.)

To create an index, you use an instance of an object store variable:

objectStore.createIndex("name of index", "path", options);

The first argument is the name of the index, while the second refers to the property
on the data you wish to index. Most of the time you’ll use the same value for both.
The final argument is a set of options that defines how the index operates. There are
only two options: one for uniqueness, and one used specifically for data that maps to
an array. You’ll see an example of this later on. Here are two examples:

objectStore.createIndex("gender", "gender", {unique:false});
objectStore.createIndex("ssn", "ssn", {unique:true});

The first index is on gender and, as you can imagine, allows you to fetch data based
on a person’s gender. The second index is based on a Social Security number and is
also unique.

Let’s look at an example. Example 4-4 is a slightly different version of the previous
one, so we’ll share just the upgradeneeded event to keep it a bit more focused.

36 | Chapter 4: Working with IndexedDB

Example 4-4. Portion of test_2_3.html

openRequest.onupgradeneeded = function(e) {
 var thisDB = e.target.result;
 console.log("running onupgradeneeded");

 if(!thisDB.objectStoreNames.contains("people")) {
 var peopleOS = thisDB.createObjectStore("people",
 {keyPath: "email"});

 peopleOS.createIndex("gender", "gender", {unique:false});
 peopleOS.createIndex("ssn", "ssn", {unique:true});

 }

 if(!thisDB.objectStoreNames.contains("notes")) {
 var notesOS = thisDB.createObjectStore("notes",
 {autoIncrement:true});
 notesOS.createIndex("title","title", {unique:false});
 }

 if(!thisDB.objectStoreNames.contains("logs")) {
 thisDB.createObjectStore("logs",
 {keyPath:"id", autoIncrement:true});
 }

}

In this updated example, the first and second object stores have indexes. In order to
create them, we now use the result of createObjectStore so we can run the
createIndex method on them. The third and final object store does not have indexes,
and that’s totally fine. One thing to remember is that an index is going to be updated
every time you add, edit, or delete data. More indexes mean more work for Index‐
edDB.

Working with Data
Finally, now that we’ve talked about the setup and initialization of an IndexedDB
database, wouldn’t it be nice to actually—I don’t know—store data? First and fore‐
most, all data operations with IndexedDB will be done in a transaction. You can think
of a transaction as a safe wrapper around an operation. If something goes wrong in a
transaction, any changes would be rolled back. Transactions add a level of security to
your operations that ensure data integrity. What this means for you as a developer is
that the simple act of creating, reading, updating, and deleting (CRUD) data will be
slightly complex—especially when compared to the ease of use of Web Storage.
Transactions in IndexedDB will be specific to one or more object stores, basically
using whatever store you need to operate on. They can also be read-only or read and

Working with Data | 37

write. This signifies whether you are changing the database or simply reading from it.
Let’s begin with creating data.

Creating Data
To create data, you simply call the add method of an object store object. At the sim‐
plest level, it could look like this:

someObjectStore.add(data);

If your object store requires you to pass in the primary key at creation, then you
would pass that as the second argument:

someObjectStore.add(data, somekey);

The cool thing is that “data” can be anything you want—a string, a number, an object
with strings and numbers, and so on. Like most operations, adding data is asynchro‐
nous so you’ll need to listen for an event to check the status of the addition.

Let’s look at an example. Before we begin, we’ll look at the demo in the browser. The
demo has two simple forms: one for “Add Person” and one for “Add Note,” as seen in
Figure 4-5.

Figure 4-5. The two forms that will persist data

38 | Chapter 4: Working with IndexedDB

The first form asks for a name and email address, while the second simply asks for a
string. The demo doesn’t include any type of form validation, but that could be added
in a real application. In both forms, you can simply type in data and hit the relevant
button, and then the console is used to report the outcome (see Figure 4-6).

Figure 4-6. The console reports on the success of the data entry

We aren’t actually displaying the data, but for now, this is sufficient to test adding data
to IndexedDB. Now let’s look at the code (Example 4-5).

Example 4-5. test_3_1.html

<!doctype html>
<html>
<head>
 <script type="text/javascript" src =
 "http://ajax.googleapis.com/ajax/libs/jquery/2.1.0/jquery.min.js"></script>

</head>

<body>

<h2>Add Person</h2>
<input type="text" id="name" placeholder="Name">

<input type="email" id="email" placeholder="Email">

<button id="addPerson">Add Person</button>

<h2>Add Note</h2>
<textarea id="note"></textarea>
<button id="addNote">Add Note</button>

<script>
function idbOK() {
 return "indexedDB" in window;
}

var db;

$(document).ready(function() {

Working with Data | 39

 //No support? Go in the corner and pout.
 if(!idbOK()) return;

 var openRequest = indexedDB.open("ora_idb5",1);

 openRequest.onupgradeneeded = function(e) {
 var thisDB = e.target.result;
 console.log("running onupgradeneeded");

 if(!thisDB.objectStoreNames.contains("people")) {
 var peopleOS = thisDB.createObjectStore("people",
 {keyPath: "email"});

 }

 if(!thisDB.objectStoreNames.contains("notes")) {
 var notesOS = thisDB.createObjectStore("notes",
 {autoIncrement:true});
 }

 }

 openRequest.onsuccess = function(e) {
 console.log("running onsuccess");
 db = e.target.result;

 //Start listening for button clicks
 $("#addPerson").on("click", addPerson);
 $("#addNote").on("click", addNote);
 }

 openRequest.onerror = function(e) {
 console.log("onerror!");
 console.dir(e);
 }

});

function addPerson(e) {
 var name = $("#name").val();
 var email = $("#email").val();

 console.log("About to add "+name+"/"+email);

 //Get a transaction
 //default for OS list is all, default for type is read
 var transaction = db.transaction(["people"],"readwrite");
 //Ask for the objectStore
 var store = transaction.objectStore("people");

 //Define a person
 var person = {

40 | Chapter 4: Working with IndexedDB

www.allitebooks.com

http://www.allitebooks.org

 name:name,
 email:email,
 created:new Date().getTime()
 }

 //Perform the add
 var request = store.add(person);

 request.onerror = function(e) {
 console.log("Error",e.target.error.name);
 //some type of error handler
 }

 request.onsuccess = function(e) {
 console.log("Woot! Did it");
 }
}

function addNote(e) {
 var note = $("#note").val();

 console.log("About to add "+note);

 //Get a transaction
 //default for OS list is all, default for type is read
 var transaction = db.transaction(["notes"],"readwrite");
 //Ask for the objectStore
 var store = transaction.objectStore("notes");

 //Define a note
 var note = {
 text:note,
 created:new Date().getTime()
 }

 //Perform the add
 var request = store.add(note);

 request.onerror = function(e) {
 console.log("Error",e.target.error.name);
 //some type of error handler
 }

 request.onsuccess = function(e) {
 console.log("Woot! Did it");
 }
}
</script>
</body>
</html>

Working with Data | 41

This is a rather large demo, so let’s break it down bit by bit. Begin by looking at the
upgradeneeded event handler. This defines two object stores, one called people and
one called note. For people we’ve defined the key path email as the primary key, and
for notes we’re using an autoincrementing value. This decision here was arbitrary:
for the demo we’ve decided people will be unique by email address, and notes will
simply have an assigned primary key.

Notice that we don’t actually begin handling the form submissions until the
onsuccess handler for the database runs. This makes sense, as we can’t start adding
data until the database is ready to be used. But also note we copy a variable db to the
global scope. This gives us a handler on the database object so we can add data later.

Now turn your attention to the addPerson function. This is run when the first form
is submitted. After getting the values (and again, some validation could be added
here), we begin the process of working with the IndexedDB database. First, a transac‐
tion is created. We define the transaction by specifying what object store we care
about and what type of transaction we need:

var transaction = db.transaction(["people"],"readwrite");

From the transaction we then ask for the object store.

var store = transaction.objectStore("people");

Now comes the fun part. We need to define what we’re storing. IndexedDB lets you
store pretty much anything you want to. So what I store here is completely up to my
particular application needs. In my case I decided to use the values from the form as
well as a timestamp for when the person was created. To be clear, this was arbitrary. It
just shows that the form of your data is up to you.

var person = {
 name:name,
 email:email,
 created:new Date().getTime()
}

Now comes the persistence. The actual storage request is rather simple:

var request = store.add(person);

But because it is asynchronous, we need to listen for the results. In our case we listen
for the error and success events and simply use the console to report on them. The
addNote function works the same way—the only difference being the object store
that is worked with and the actual data being saved.

Reading Data
Reading data will also be asynchronous and also requires a transaction. Outside of
that it is rather simple: someObjectStore.get(primaryKey). Our next demo builds

42 | Chapter 4: Working with IndexedDB

upon the last, as you can see in Figure 4-7. We’ve added two new forms to let you
fetch data based on the primary key.

Figure 4-7. Fancy data retrieval forms

Since the code for this demo is so similar to the last one, we’ll just focus on the event
handlers for the new forms (Example 4-6).

Example 4-6. Portion of test_3_2.html

function getPerson(e) {
 var key = $("#getemail").val();
 if(key === "") return;

 var transaction = db.transaction(["people"],"readonly");
 var store = transaction.objectStore("people");

 var request = store.get(key);

 request.onsuccess = function(e) {
 var result = e.target.result;
 console.dir(result);
 }

 request.onerror = function(e) {
 console.log("Error");
 console.dir(e);
 }

}

function getNote(e) {

Working with Data | 43

 var key = $("#getnote").val();
 if(key === "") return;

 var transaction = db.transaction(["notes"],"readonly");
 var store = transaction.objectStore("notes");

 var request = store.get(Number(key));

 request.onsuccess = function(e) {
 var result = e.target.result;
 console.dir(result);
 }

 request.onerror = function(e) {
 console.log("Error");
 console.dir(e);
 }

}

Let’s begin with getPerson. After getting the value representing the primary key you
want to load, we once again create a transaction. Note that this time it is a readonly
transaction. Then we simply fetch the data like so:

var request = store.get(key);

In the success handler we dump the result to the console. It looks like Figure 4-8.

Figure 4-8. The data for one object in the database

If you try to fetch an object that does not exist, the success handler will still run, but
the result will be undefined. In order for this demo to work for you, be sure to create
at least one record and make note of the email address you used. (Later in this chap‐
ter we’ll look at how to inspect IndexedDB with dev tools and see what data is there.)

44 | Chapter 4: Working with IndexedDB

Updating Data
You can probably guess what I’m going to say here. Once again you’ll need to get a
transaction, and once you do, you’ll use the put method on an object store variable
returned from a transaction to store your data. It can be as simple as someobject
Store.put(data), but you can also use the second argument to specify a primary key.

The next demo is a bit more complex. It now asks you for the email address of an
existing person (and again, remember to actually enter data in the previous demos).
When you enter the email address of a person that exists, it will fill in a form so that
you can update the data (see Figure 4-9).

Figure 4-9. An example of updating data

The code that loads the person works the same as the previous demo. Example 4-7
demonstrates the important parts of this particular example.

Working with Data | 45

Example 4-7. Portion of test_3_3.html

function getPerson(e) {
 var key = $("#getemail").val();
 if(key === "") return;

 var transaction = db.transaction(["people"],"readonly");
 var store = transaction.objectStore("people");

 var request = store.get(key);

 request.onsuccess = function(e) {
 var result = e.target.result;
 console.dir(result);
 $("#name").val(result.name);
 $("#email").val(result.email);
 $("#created").val(result.created);
 }

 request.onerror = function(e) {
 console.log("Error");
 console.dir(e);
 }

}

function updatePerson(e) {
 var name = $("#name").val();
 var email = $("#email").val();
 var created = $("#created").val();

 console.log("About to update "+name+"/"+email);

 //Get a transaction
 //default for OS list is all, default for type is read
 var transaction = db.transaction(["people"],"readwrite");
 //Ask for the objectStore
 var store = transaction.objectStore("people");

 var person = {
 name:name,
 email:email,
 created:created
 }

 //Perform the update
 var request = store.put(person);

 request.onerror = function(e) {
 console.log("Error",e.target.error.name);
 //some type of error handler
 }

46 | Chapter 4: Working with IndexedDB

 request.onsuccess = function(e) {
 console.log("Woot! Did it");
 }
}

The getPerson code is similar to the previous example. Now we actually do some‐
thing with the result: update the form. updatePerson simply takes the form values
and persists it using the put method just described. Again, there are multiple places
here where validation could be added to make things more stable, but you get the
idea.

Deleting Data
Now for the final piece of the CRUD puzzle—deleting data. Once again, it will be in a
transaction, and once again, it will be asynchronous. The method is simple: someOb
jectStore.delete(primarykey). Our final demo is likewise simple; it will prompt
you for the email address of a person and then delete that person (Figure 4-10).

Figure 4-10. Person deleting—sounds brutal

Working with Data | 47

Example 4-8 demonstrates the code that runs when the Delete Person button is
clicked.

Example 4-8. Portion of test_3_4.html

function deletePerson(e) {
 var key = $("#email").val();
 if(key === "") return;

 var transaction = db.transaction(["people"],"readwrite");
 var store = transaction.objectStore("people");

 var request = store.delete(key);

 request.onsuccess = function(e) {
 console.log("Person deleted");
 console.dir(e);
 }

 request.onerror = function(e) {
 console.log("Error");
 console.dir(e);
 }

}

Note that a delete operation will fire the success handler even if the person doesn’t
exist. If you wanted to handle that with an error, you would need to get the person
first, see if the result was defined, and then perform the delete. A transaction around
the entire process would ensure data integrity, much like transactions in traditional
relational databases.

Getting All the Data
Now that you’ve seen basic CRUD in action, let’s discuss how you can fetch all (and
some) of the data in your database. To iterate over the data in an object store, Index‐
edDB makes use of something called a cursor. You can think of a cursor as a happy
little beaver who runs into your object store to return one piece of data at a time.
Every time it gets a piece of data it brings it back to you, and you ask it to get the next
piece. Cursors can move in either direction (so can beavers) and can also be restricted
to a “range” of data (not so much for beavers; they are free spirits).

Cursors, just like the CRUD operations, will work within transactions. As before,
you’ll get a transaction, get an object store from the transaction, and then open a cur‐
sor upon that store. Here is an abstract example:

var transaction = db.transaction(["test"], "readonly");
var objectStore = transaction.objectStore("test");

48 | Chapter 4: Working with IndexedDB

var cursor = objectStore.openCursor();

cursor.onsuccess = function(e) {
 var res = e.target.result;
 if(res) {
 //stuff
 res.continue();
 }
}

Notice the success handler for the cursor. The event result contains the data that the
beavercursor currently has. It also has a continue method. That’s how you tell the
cursor to go fetch the next object. If the result was undefined, that means you were at
the end of the cursor.

Our new demo, shown in Figure 4-11, now includes a way to list all the people in the
database (as well as to add, in case you deleted everyone in the previous example).

Figure 4-11. An example of listing data

Getting All the Data | 49

Since the “Add” code isn’t new, let’s focus on the listing code (Example 4-9).

Example 4-9. Portion of test_4_1.html

function getPeople(e) {

 var s = "";

 var transaction = db.transaction(["people"], "readonly");
 var people = transaction.objectStore("people");
 var cursor = people.openCursor();

 cursor.onsuccess = function(e) {
 var cursor = e.target.result;
 if(cursor) {
 s += "<h2>Key "+cursor.key+"</h2><p>";
 for(var field in cursor.value) {
 s+= field+"="+cursor.value[field]+"
";
 }
 s+="</p>";
 cursor.continue();
 }
 }

 transaction.oncomplete = function() {
 $("#results").html(s);
 }
}

As expected, you begin with a transaction, then move on to a store, and finally you
open the cursor. The success handler is run every time an object is fetched. In order
to update the web page, we’re going to use a variable, s, that contains HTML repre‐
senting the data itself. Note that it would be nicer to use a template language like
Handlebars here. The cursor object contains a key property that represents the pri‐
mary key for this item. The cursor object also contains a value property that repre‐
sents the data. We can iterate over each key in the object and add it to the string. In a
“real” application you wouldn’t do this; you would know your data contains certain
properties and output them directly. This code is just simple and generic.

The last part is crucial. How do you know when the cursor is complete? When you
are no longer fetching data, the transaction object will fire a complete event. We can
use that to take the string variable and inject it into the DOM.

50 | Chapter 4: Working with IndexedDB

http://www.handlebarsjs.com

Working with Ranges and Indexes
The cursor example you saw previously is useful for printing all the data, but typically
you will want to work only with a subset of your data. This is where indexes come in.
Indexes are based on a property of your data. Within that data, you can request a
range of data.

So imagine an object store of people with an index on name. You could request a
range of data based on names that begin with B and upward. (C, D, and so on.) You
could instead request a range that begins at the “lowest” value for a name and goes up
to T. Finally, you could request a range between R and S.

And to make things even more complex, for all of the preceding examples you can
switch between an inclusive and exclusive mode. What does that mean? Imagine a
range between B and E. An inclusive range will include B and E itself, giving you
names like Barry and Elric. An exclusive range will give you values between B and E
but not including names starting with those letters. So the first result may be Corwin.
(And yes, numerical ranges work too.)

Finally, you can also create a “range” of one value, so, for example, just names that
begin with R (like Raymond).

Working with ranges is only slightly different than cursors. Instead of opening a cur‐
sor on an object store, you open it on an index instead. As an example:

//make an IDBKeyRange
range = IDBKeyRange.upperBound("Camden");
cursor = someIndex.openCursor(range);
//or
cursor = someIndex.openCursor(range, "prev");

Notice that the range uses an upper bound of "Camden", which means the name must
be “lower” than Camden in a string comparison. So, for example, Cameron would
not be lower, but Cade would be.

Ranges are created from an IDBKeyRange API. Methods include upperBound, lower
Bound, bound (which means both), and only. Ranges are inclusive automatically, but
if you pass false into the second (or in the case of bound, third) argument, you can
specify exclusive. By default the direction of the cursor is "forward", but in the last
example you can see how to specify a backward traversal.

All of that is rather complex, so let’s look at an example. The demo has been extended
so that you can now search against people names, as shown in Figure 4-12. It lets you
specify a search that starts at a letter, ends at a letter, or works between them both.

Getting All the Data | 51

Figure 4-12. A person search form

52 | Chapter 4: Working with IndexedDB

Before you try this code yourself, note that it is using a new IndexedDB database. Be
sure to enter some values in the Add Person form on top so you have data to actually
search. Since adding people isn’t new, let’s focus on search in Example 4-10.

Example 4-10. Portion of test_4_2.html

function searchPeople(e) {

 var lower = $("#lower").val();
 var upper = $("#upper").val();

 if(lower == "" && upper == "") return;

 var range;
 if(lower != "" && upper != "") {
 range = IDBKeyRange.bound(lower, upper);
 } else if(lower == "") {
 range = IDBKeyRange.upperBound(upper);
 } else {
 range = IDBKeyRange.lowerBound(lower);
 }

 var transaction = db.transaction(["people"],"readonly");
 var store = transaction.objectStore("people");
 var index = store.index("name");

 var s = "";

 index.openCursor(range).onsuccess = function(e) {
 var cursor = e.target.result;
 if(cursor) {
 s += "<h2>Key "+cursor.key+"</h2><p>";
 for(var field in cursor.value) {
 s+= field+"="+cursor.value[field]+"
";
 }
 s+="</p>";
 cursor.continue();
 }
 }

 transaction.oncomplete = function() {
 //no results?
 if(s === "") s = "<p>No results.</p>";
 $("#results").html(s);
 }

}

The search function begins by reading the values from the search form and doing a
tiny bit of validation. At this point, things get tricky. Remember that we can search

Getting All the Data | 53

from a letter, to a letter, or between letters. That means we need one of three types of
ranges. That’s what the next code block does. Based on your input, it figures out the
right type of range to use. Once past that, the transaction is opened, the object store is
fetched, and then the name index is retrieved.

Now when the cursor is fetched, the range is passed to it as an argument. Outside of
that, the cursor object is treated the same as before in Example 4-9.

You may be wondering, what about more complex search—for example, people with
a name beginning with x that are gender y and have an age between 10 and 30?
Unfortunately, complex search is not something IndexedDB is good at. It isn’t going
to replace the power of a proper SQL database engine like MySQL. This is something
to keep in mind when building your applications.

Even More with IndexedDB
We’re not quite done with IndexedDB yet. Let’s look at two interesting tricks you can
do with the feature.

Storing Arrays
We mentioned earlier that nearly anything can be stored in IndexedDB, even array
data. So, for example, this is completely fine:

var person = {
 name:"Ray",
 age:43,
 background:{
 born:1973,
 bornIn:"Virginia"
 },
 hobbies:["comics","movies","bike riding"]
}
someStore.add(person);

That’s cool and all, and just plain works, but it brings up an interesting question:
What if you wanted to fetch people based on their hobbies? Well, this is where the
multiEntry option comes into play. When defining an index on a property that is
array based, simply use this option and set it to true.

objectStore.createIndex("hobbies", "hobbies", {unique:false, multiEntry:true});

This tells IndexedDB to properly store each item in the array in the index so you can
fetch someone based on one particular value. Let’s look at a demo (Figure 4-13).

54 | Chapter 4: Working with IndexedDB

Figure 4-13. Our people have hobbies now

Even More with IndexedDB | 55

In Figure 4-13, you can see now that the Add Person form has been updated to
include a hobby field. When testing, you should enter hobbies in a comma-separated
list with no spaces between them—for example, cookies,beer,movies. Do not do
cookies, beer, movies. (And again, in a released application you could handle
spaces by removing them in code.) Now the search is hobby based. By entering the
name of a hobby, you can find people who specified that as a hobby. Let’s look at the
code, and since this is somewhat different than earlier examples, we’ll share the com‐
plete listing (Example 4-11).

Example 4-11. test_5_1.html

<!doctype html>
<html>
<head>
 <script type="text/javascript" src=
 "http://ajax.googleapis.com/ajax/libs/jquery/2.1.0/jquery.min.js"></script>
</head>

<body>

<h2>Add Person</h2>
<input type="text" id="name" placeholder="Name">

<input type="email" id="email" placeholder="Email">

<input type="text" id="hobbies" placeholder="Hobbies">

<button id="addPerson">Add Person</button>
<p/>

<h2>Search Hobbies</h2>
<input type="text" id="hobby"> <button id="search">Search</button>

<div id="results"></div>

<script>
function idbOK() {
 return "indexedDB" in window;
}

var db;

$(document).ready(function() {

 //No support? Go in the corner and pout.
 if(!idbOK()) return;

 var openRequest = indexedDB.open("ora_idb7",1);

 openRequest.onupgradeneeded = function(e) {
 var thisDB = e.target.result;
 console.log("running onupgradeneeded");

56 | Chapter 4: Working with IndexedDB

 if(!thisDB.objectStoreNames.contains("people")) {
 var peopleOS = thisDB.createObjectStore("people",
 {keyPath: "email"});

 peopleOS.createIndex("name", "name",
 {unique:false});
 peopleOS.createIndex("hobbies", "hobbies",
 {unique:false, multiEntry: true});

 }

 }

 openRequest.onsuccess = function(e) {
 console.log("running onsuccess");
 db = e.target.result;

 //Start listening for button clicks
 $("#addPerson").on("click", addPerson);
 $("#search").on("click", searchPeople);
 }

 openRequest.onerror = function(e) {
 console.log("onerror!");
 console.dir(e);
 }

});

function addPerson(e) {
 var name = $("#name").val();
 var email = $("#email").val();
 var hobbies = $("#hobbies").val();

 if(hobbies != "") hobbies = hobbies.split(",");

 console.log("About to add "+name+"/"+email);

 //Get a transaction
 //default for OS list is all, default for type is read
 var transaction = db.transaction(["people"],"readwrite");
 //Ask for the objectStore
 var store = transaction.objectStore("people");

 //Define a person
 var person = {
 name:name,
 email:email,
 hobbies:hobbies,
 created:new Date().getTime()
 }

Even More with IndexedDB | 57

 //Perform the add
 var request = store.add(person);

 request.onerror = function(e) {
 console.log("Error",e.target.error.name);
 //some type of error handler
 }

 request.onsuccess = function(e) {
 console.log("Woot! Did it");
 }
}

function searchPeople(e) {

 var hobby = $("#hobby").val();

 if(hobby == "") return;

 var range = IDBKeyRange.only(hobby);

 var transaction = db.transaction(["people"],"readonly");
 var store = transaction.objectStore("people");
 var index = store.index("hobbies");

 var s = "";

 index.openCursor(range).onsuccess = function(e) {
 var cursor = e.target.result;
 if(cursor) {
 s += "<h2>Key "+cursor.key+"</h2><p>";
 for(var field in cursor.value) {
 s+= field+"="+cursor.value[field]+"
";
 }
 s+="</p>";
 cursor.continue();
 }
 }

 transaction.oncomplete = function() {
 //no results?
 if(s === "") s = "<p>No results.</p>";
 $("#results").html(s);
 }

}

</script>
</body>
</html>

58 | Chapter 4: Working with IndexedDB

That’s quite a bit of code, but the changes really are somewhat minimal. First, make
note of the new index on people:

peopleOS.createIndex("hobbies", "hobbies",
{unique:false, multiEntry: true});

As we said before, multiEntry being true is the magic flag to make this all work.
Now scroll down to the addPerson logic. To store the array, we simply convert the
string value from the form into a JavaScript array:

if(hobbies != "") hobbies = hobbies.split(",");

Finally, the search needs to find exact matches, so instead of a range to and from
something it uses the only method.

var range = IDBKeyRange.only(hobby);

Counting Data
For our final demo, we’re going to show how to count the data in an object store. You
may have thought you’d need to iterate over the entire table using a cursor. However,
there is a much simpler way of counting data: using the count method. The count
method of an object store does exactly what you think it does—it asynchronously
returns the number of objects in the store. Here is an example.

db.transaction(["note"],"readonly").objectStore("note").count().onsuccess =
function(event) {
 console.log('total is '+event.target.result);
}

Notice that we’re chaining the various method calls together in one slick line so we
can look cool to our coworkers. That is totally unnecessary. The actual count value is
available in the event result value. You can find an example of this in the code that
ships with the book (test_5_2.html).

Inspecting IndexedDB with Dev Tools
As with Web Storage, both Firefox and Chrome provide nice tools to let you work
with IndexedDB. In Figure 4-14 you can see an example of Firefox’s support.

Inspecting IndexedDB with Dev Tools | 59

Figure 4-14. Firefox Dev Tools support for IndexedDB

Along with a high-level view of the databases and object stores, you can select a store
for a detailed value list (see Figure 4-15).

Figure 4-15. Data view

Figure 4-16 shows how Chrome renders it. Note the crossed-out circle at the bottom.
It lets you quickly delete data as well.

Figure 4-16. Chrome’s IndexedDB view

60 | Chapter 4: Working with IndexedDB

Support and Recommended Usage
So, how well is IndexedDB supported? Figure 4-17 shows the report from Can‐
IUse.com.

Figure 4-17. IndexedDB support table from CanIUse.com

That’s...OK but not stellar. It is growing, however, and even iOS will support it (prop‐
erly) soon.

As for recommended uses, I’d consider anything that the user can create to be a good
candidate for IndexedDB. You could use it to copy nonprivate intranet information
locally for faster retrieval and offline support as well. Game assets, like small music
files and game data, could be copied here too.

Support and Recommended Usage | 61

CHAPTER 5

Working with Web SQL

Dead Spec Walking
Before we say anything at all about Web SQL, we regret to inform you that this spec is
dead. Or dying. Or at least sentenced to death. Web SQL as a feature was a rather
interesting one. It gave you access to miniature databases within the browser. For web
developers who did server-side work, this was especially nice because they may have
had some familiarity with SQL already. However, for reasons that are not important
to this book, the specification has been EOLed (End of Life) and will (possibly) not be
available in the future. That means—in theory—you shouldn’t even be reading this
chapter.

However...

Web SQL has very good support on mobile browsers, and was available before Index‐
edDB and much better supported than IndexedDB. It is entirely possible that as a
developer, you will run into web apps making use of Web SQL. While we don’t rec‐
ommend starting new projects with Web SQL, we hope this chapter will give you
enough knowledge about the ins and outs of Web SQL so that if you have to help sup‐
port an existing implementation you’ll know what to do.

As before, this particular client-side data storage technique will be tied to a particular
domain. Storage limits are pretty varied and can range from 5 MB to 50 to more.
Before we dive in, let’s cover some basic terms.

63

Basic Database Terms
For those of you with experience working with traditional relational database servers,
you can just go ahead and skip this section.

Databases
A database is the top-level container where you would store your data. As with
IndexedDB, you can have as many of these as you would like, but typically you’ll
probably stick to one database per site.

Tables
This is where data for a particular type of information is stored. Unlike object
stores in IndexedDB, tables are very strict about what gets stored. If you have
defined a “people” table as having name, age, and gender columns, you can only
store values in those columns. Each column also has a particular type of expected
data, and you must match that criteria to store your data.

Rows
A row is simply an individual unit of data for a table. Given a table called people,
one row would be a person.

Checking for Web SQL Support
The simplest way to check for Web SQL support is by checking for the openDatabase
API of the window object:

if("openDatabase" in window) {
}

Which can be nicely turned into a function like so:

function webSQLOK() {
 return "openDatabase" in window;
}

Working with Databases
Much like IndexedDB, databases in Web SQL have a name and a version. Unlike in
IndexedDB, though, the version number will not provide an event for you to perform
changes; instead, it acts as a validation. If the user had an earlier version of the data‐
base, you can perform an update manually to handle changes. (We’ll show an easier
way around that, however.) Next you provide a “friendly name” for the database,
which as far as I can tell is never referenced again. You also are required to provide an
initial size for the database. This is an estimated size, and frankly, most examples I’ve
seen use the same value (5 MB) and don’t bother actually trying to figure out what

64 | Chapter 5: Working with Web SQL

size they really think they need. Your code will begin by opening the database, which
is a synchronous API.

db = window.openDatabase("name","1","nice name",5*1024*1024);

Note that I’ve taken the result of the window.openDatabase call and stored it. This lets
you perform operations on the database later on. Let’s consider a simple example that
just opens up a database and uses the console to display the object itself
(Example 5-1).

Example 5-1. test1.html

<!doctype html>
<html>
<head>
 <script type="text/javascript" src =
 "http://ajax.googleapis.com/ajax/libs/jquery/2.1.0/jquery.min.js"></script>
</head>

<body>

<script>
function websqlOK() {
 return "openDatabase" in window;
}

var db;

$(document).ready(function() {

 //No support? Go in the corner and pout.
 if(!websqlOK()) return;

 db = window.openDatabase("db1", "1", "Database 1", 5*1024*1024);

 console.dir(db);

});

</script>
</body>
</html>

While there isn’t much going on here, this shows the basic “how to get started”-type
code for working with Web SQL. Figure 5-1 shows what Chrome displays in the con‐
sole for the database object.

Working with Databases | 65

Figure 5-1. Chrome’s dump of the database object

Working with Transactions
Once you’ve gotten a database object, you can then begin doing, well, everything—
and unlike in IndexedDB, working with data in Web SQL is rather simple (assuming
you know SQL, of course). Once again, a transaction will be used, and once again,
you get to specify either a read-only or read/write transaction, but after that, the code
remains the same no matter what you do. All that changes is the SQL. As a basic
example, here is how you open a read-only transaction (this assumes you’ve created a
Web SQL variable called db):

db.readTransaction(function to do stuff, error handler, success handler);

In real code, this could look like this:

db.readTransaction(function(tx) {
 tx.executeSql("select * from foo");
}, function(e) {
 console.log("Db error ",e);
}, function() {
 console.log("Done");
});

The first argument to the readTransaction call is a function that is provided a trans‐
action object. On that object, you can run executeSql, which, as you might guess, is
where you perform SQL queries. The second argument is the error handler and the
last is the success handler.

So far, so good. This is where things get a tiny bit confusing. First, here is how the
API works in general:

66 | Chapter 5: Working with Web SQL

tx.executeSql("sql statement", "array of values", "success handler",
"error hander");

Disregard the second argument for now; we’ll come back to it. The thing you’ll want
to note most is that the order of handlers (success and then error) is the opposite of
the transaction call. This is very easy to mess up, so be careful when working with
these handlers.

Let’s enhance the initial demo to do some setup work. Before you can store data in a
database, you’ll need a table. Luckily, it isn’t difficult to create tables in SQL.
Example 5-2 shows how.

Example 5-2. test2.html

<!doctype html>
<html>
<head>
 <script type="text/javascript" src =
 "http://ajax.googleapis.com/ajax/libs/jquery/2.1.0/jquery.min.js"></script>
</head>

<body>

<script>
function websqlOK() {
 return "openDatabase" in window;
}

var db;

$(document).ready(function() {

 //No support? Go in the corner and pout.
 if(!websqlOK()) return;

 db = window.openDatabase("db1", "1", "Database 1", 5*1024*1024);

 db.transaction(function(tx) {
 tx.executeSql("create table if not exists notes(id INTEGER PRIMARY "+
 "KEY AUTOINCREMENT, title TEXT, body TEXT, updated DATE)");
 },dbError,function(tx) {
 ready();
 });

});

function dbError(e) {
 console.log("Error", e);
}

function ready() {

Working with Transactions | 67

 console.log("Ready to do stuff!");
}
</script>
</body>
</html>

In this version, after the database is opened we create a read/write transaction (using
db.transaction). We then use SQL to create a table. The cool thing about this SQL is
that it gracefully handles not doing anything if the table already exists. As we stated
earlier, Web SQL does include the concept of versioning and does offer a way to per‐
form tasks when versions change, but this style of setup is far simpler and most likely
sufficient for your needs. You could execute multiple different SQL statements there
to set up as many tables as you need.

Obviously all of this is simple if you know SQL. If you don’t, there are various books
and tutorials that can help you. The SQL used in Example 5-2 creates a table called
notes. It has an id column that will be the primary key for data, a title and body
column that contain text, and an updated column storing a date value.

Now let’s kick it up a notch with a real, but simple, demo in Example 5-3.

Example 5-3. test3.html

<!doctype html>
<html>
<head>
 <script type="text/javascript" src =
 "http://ajax.googleapis.com/ajax/libs/jquery/2.1.0/jquery.min.js"></script>
</head>

<body>

<h2>Add a Note</h2>
<form>
Title: <input type="text" id="title">

Body:

<textarea id="body"></textarea>

<button id="addNote">Add Note</button>
</form>

<p/>

<table id="notes" border="1"><tbody></tbody></table>

<script>
function websqlOK() {
 return "openDatabase" in window;
}

var db;

68 | Chapter 5: Working with Web SQL

$(document).ready(function() {

 //No support? Go in the corner and pout.
 if(!websqlOK()) return;

 db = window.openDatabase("db1", "1", "Database 1", 5*1024*1024);

 db.transaction(function(tx) {
 tx.executeSql("create table if not exists notes(id INTEGER PRIMARY "+
 "KEY AUTOINCREMENT, title TEXT, body TEXT, updated DATE)");
 },dbError,function(tx) {
 ready();
 });

});

function dbError(e) {
 console.log("Error", e);
}

var $title, $body, $notesTable;

function ready() {
 $("#addNote").on("click", addNote);
 $title = $("#title");
 $body = $("#body");
 $notesTable = $("#notes tbody");
 renderNotes();
}

function addNote(e) {
 e.preventDefault();
 //no validation
 var title = $title.val();
 var body = $body.val();

 db.transaction(function(tx) {
 tx.executeSql("insert into notes(title,body,updated) values(" +
 "'" + title + "','" + body + "'," + (new Date().getTime()) +")");
 },dbError,function(tx) {
 $title.val("");
 $body.val("");
 renderNotes();
 });

}

function renderNotes() {
 db.readTransaction(function(tx) {
 tx.executeSql("select * from notes order by updated desc",[],
 function(tx, results) {

Working with Transactions | 69

 var rowStr = "";
 for(var i=0;i<results.rows.length;i++) {
 var row = results.rows.item(i);
 //use row.col
 rowStr += "<tr><td>" + row.title + "</td>";
 rowStr += "<td>" + row.body + "</td>";
 var d = new Date();
 d.setTime(row.updated);
 rowStr += "<td>" + d.toDateString() + " " + d.toTimeString();
 rowStr += "</td></tr>";
 };
 $notesTable.empty();
 $notesTable.append(rowStr);
 });
 },dbError);

}
</script>
</body>
</html>

This new version includes a form and an empty table. The form will be used to let the
user enter a note (a title and the body), while the table will be used to display existing
data. That’s it for the user interface—now let’s dig into the code.

The ready function will be run after the initial table creation SQL is executed.
Remember, this SQL safely runs multiple times, as it won’t recreate the table after the
first time. We add a simple click handler for the form, store some jQuery variables
from the DOM, and immediately run the renderNotes function.

The addNote click handler simply fetches the form values and then creates a SQL
statement to handle the insert. This SQL statement is rather brittle. We’ll fix that in
the next update. Once the SQL statement is executed, renderNotes is run again to
update the display.

Within renderNotes, we again have a transaction, but note the change to a read-only
transaction. You can see that we select all rows and order by the updated column so
we always get the latest data first. Ignore that empty array argument for now. Once
the SQL is executed, we can work with the results. The success handler for
executeSql is passed the transaction object itself and the results. This results object
is an instance of a SQLResultSet. It has a rows property, which has a length allowing
us to loop over it. To get an individual row, the item method is called with the corre‐
sponding row number. That row object is just a set of key/value pairs representing the
columns in the row. A string is used to construct a table (yes, yes, I know, tables are
passé), which is then rendered out to the DOM. Figure 5-2 demonstrates how this
looks. (And yes, it could be much better designed.)

70 | Chapter 5: Working with Web SQL

Figure 5-2. The Note form

So, now that you have a basic idea of how Web SQL works, let’s focus on the insert
statement from Example 5-3:

tx.executeSql("insert into notes(title,body,updated) values(" +
"'" + title + "','" + body + "'," + (new Date().getTime()) +")");

When executed, this generates a SQL statement that could look like so:

insert into notes(title, body, updated)
values('some title', 'some body', 1)

The issue with the code is that if the form values themselves included a single quote
character, the SQL would break. Typically, allowing user input to drive dynamic SQL
leads to something called a SQL injection attack. It’s nasty, but luckily easily fixed.
Remember that second argument that was an empty array? Instead of creating a
dynamic SQL string with concatenation, you can use “tokens” within the SQL that
represent variables. You can then use the array argument to supply those values.
Example 5-4 demonstrates how simple this is to put into effect.

Example 5-4. Partial code from test4.html

function addNote(e) {
 e.preventDefault();
 //no validation
 var title = $title.val();
 var body = $body.val();

 db.transaction(function(tx) {
 tx.executeSql("insert into notes(title,body,updated) "+

Working with Transactions | 71

 "values(?,?,?)", [title, body, new Date().getTime()]);
 },dbError,function(tx) {
 $title.val("");
 $body.val("");
 renderNotes();
 });

}

Notice how the SQL now is a simple string—no embedded variables. Where the vari‐
ables were, there are now question marks. They will be replaced in the same order as
the values included in the array in the next argument.

Inspecting Web SQL with Dev Tools
You can find pretty good support for Web SQL in Chrome’s Dev Tools. Under the
Resources tab, you’ll see a section just for Web SQL along with any defined databases.
Selecting one and expanding it then lets you select a table to view all the data (see
Figure 5-3).

Figure 5-3. Chrome’s Web SQL view

72 | Chapter 5: Working with Web SQL

The empty text field at the bottom of the data display lets you enter the name of a
column. Doing so will filter the view to just the primary key and that column. What
isn’t terribly obvious is that if you click on the database itself, you’ll see a console
where you can enter arbitrary SQL statements (see Figure 5-4).

Figure 5-4. Running SQL commands in Dev Tools

As we mentioned in the beginning of the chapter, you’ll probably not be starting new
projects with Web SQL, but if you have to debug an existing one, Chrome’s Dev Tools
support can be very useful.

Support and Recommended Usage
Let’s look at the current state of Web SQL support in Figure 5-5.

Figure 5-5. CanIUse data for Web SQL

As you can see, Chrome, Safari, and their respective mobile versions support this fea‐
ture—not bad for a dead spec. But alas, it is truly dead (or on the way out), so the
recommendation is to not use it if you can avoid it. If you are going to use it, then the
same places where you would use IndexedDB would certainly apply here as well.

Support and Recommended Usage | 73

CHAPTER 6

Making It Easier with Libraries

“Use the Library, Luke...”
OK, so that may not be exactly how the quote goes, but consider this. Client-side stor‐
age is a useful feature of modern browsers. Because it is useful, friendly developers
have created libraries to help make using client-side storage even easier. In some
cases, these libraries make the APIs easier to use. In some cases, they add features that
the native API doesn’t even support. As you can imagine, there are quite a few of
these libraries available to you, but in this chapter we’ll look at three in particular:
Lockr, Dexie, and localForage.

Working with Lockr
Our first library is Lockr, a wrapper for Web Storage (see Figure 6-1). Right away you
may be wondering why in the heck anyone would need to make Web Storage simpler,
but stick with me and you’ll see why in a moment. Lockr provides a Redis-like API
for Web Storage, but don’t worry if you’ve never heard of Redis. It is a very small
library (2.5 KB), and like everything we’ll be covering in this chapter it is free and
open source. The Lockr home page may be found here: https://github.com/tsironis/
lockr.

75

https://github.com/tsironis/lockr
https://github.com/tsironis/lockr

Figure 6-1. Lockr’s home on GitHub

You can grab the source from GitHub or install via Bower: bower install lockr.
Once you have the library downloaded, simply include it in your code like any other
JavaScript library.

Using Lockr is relatively simple. So, for example, this will set a value:

Lockr.set("name", "Raymond");

And this will get a value:

Lockr.get("name");

So why bother? Well, let’s consider two interesting examples. First, take a look at
Example 6-1.

76 | Chapter 6: Making It Easier with Libraries

Example 6-1. lockr/test1.html

<!doctype html>
<html>
<head>
 <script type="text/javascript" src =
 "http://ajax.googleapis.com/ajax/libs/jquery/2.1.0/jquery.min.js"></script>
 <script src="lockr.min.js"></script>
</head>

<body>

<script>

$(document).ready(function() {

 Lockr.set("name", "Ray");
 Lockr.set("age", 43);

 var name = Lockr.get("name");
 var age = Lockr.get("age");
 console.log(name, age + 1);

 //compare to localStorage
 localStorage.setItem("age_ls", 43);
 console.log(localStorage.getItem("age_ls")+1);

});

</script>
</body>
</html>

The code begins with two simple sets—a name and an age—and then fetches them
and prints them to the console. Notice, though, that we add 1 to the age value. Imme‐
diately after this is a similar test using “regular” Web Storage. If you run this, you’ll
discover something interesting, as shown in Figure 6-2.

Figure 6-2. Comparing Lockr and basic Web Storage

Do you see it? When Lockr retrieved and then modified the numeric value, it worked
correctly. But Web Storage treats everything as a string, so getting the age and “adding
1” ended up adding a 1 to the end of the value. OK, so that’s not a terribly big deal,
but how about Example 6-2?

Working with Lockr | 77

Example 6-2. lockr/test2.html

<!doctype html>
<html>
<head>
 <script type="text/javascript" src =
 "http://ajax.googleapis.com/ajax/libs/jquery/2.1.0/jquery.min.js"></script>
 <script src="lockr.min.js"></script>
</head>

<body>

<script>

$(document).ready(function() {

 Lockr.set("stuff", [1,2,3,4]);
 Lockr.set("person", {
 name:"Ray",
 age:43,
 hobbies:["stuff","more stuff"]
 });

 var stuff = Lockr.get("stuff");
 var person = Lockr.get("person");
 console.dir(stuff);
 console.dir(person);

});

</script>
</body>
</html>

In this example, we’ve taken two complex objects and stored them with Lockr. We did
not have to serialize them to JSON on storage or retrieval, as Figure 6-3 demon‐
strates.

78 | Chapter 6: Making It Easier with Libraries

Figure 6-3. Lockr deftly handles complex data

But wait—it gets better. You can also use Lockr’s get API to return a default value
when there isn’t an existing value in Web Storage:

var coolness = Lockr.get("coolness", "Infinity!");

In this snippet, if there wasn’t a value for coolness in Web Storage, then "Infinity!"
will be returned. (You can find a full demo of this in lockr/test3.html.)

Lockr also supports a special type of value called a hash. Given an array of data, Lockr
will let you add unique values to it. If you try to add a value that already exists, it will
not be added again. So, for example, given an array that consists of three numbers,
[1, 8, 9], if you try to add another 9, Lockr will not append it to the array. If you try
to add 4, however, Lockr will allow it, so the array will now be [1, 8, 9, 4]. Lockr
does this via a sadd API, as demonstrated in Example 6-3.

Example 6-3. lockr/test4.html

<!doctype html>
<html>
<head>
 <script type="text/javascript" src =
 "http://ajax.googleapis.com/ajax/libs/jquery/2.1.0/jquery.min.js"></script>
 <script src="lockr.min.js"></script>
</head>

<body>

<script>

$(document).ready(function() {

Working with Lockr | 79

 Lockr.set("testS", []);

 Lockr.sadd("testS", 1);
 Lockr.sadd("testS", 2);
 Lockr.sadd("testS", 3);
 Lockr.sadd("testS", 2);
 Lockr.sadd("testS", 2);
 Lockr.sadd("testS", 1);

 console.log(Lockr.get("testS"));
 console.log(Lockr.smembers("testS"));

 Lockr.srem("testS", 3);

 console.log(Lockr.smembers("testS"));

 console.log(Lockr.sismember("testS", 3));

});

</script>
</body>
</html>

To initialize the value, I set an empty array to the testS key. I then used sadd to add a
number of values. After all those numbers are added, though, the only items in the
array are 1, 2, and 3. You can use smembers to return all the values as well.

Next, srem is used to remove a value. When the members are returned again, now
only 1 and 2 remain. Finally, sismember will return true or false if a value exists in
the hash.

All in all, Lockr is a rather nice little library. Even with Web Storage being easy to use,
the data handling aspects of Lockr alone are enough to interest me. When you throw
in its incredibly small size, the library becomes even more appealing.

Simplifying IndexedDB with Dexie
For our next library, we’ll look at Dexie (shown in Figure 6-4), a far simpler wrapper
for the somewhat complex IndexedDB API. As with all the libraries we’ll discuss in
this chapter, it is 100% free and open source. You can find out more and download
the library at http://www.dexie.org.

80 | Chapter 6: Making It Easier with Libraries

www.allitebooks.com

http://www.dexie.org
http://www.allitebooks.org

Figure 6-4. The Dexie website

With Dexie, you have not one but three different ways to install the library. You can
use Bower (bower install dexie), use npm (npm install dexie), or just download
the bits from GitHub.

Once you have the library loaded on your web page, you’ll discover that working with
Dexie is incredibly simple. For example, here is how you create a pointer to an Index‐
edDB database and initialize it with an object store called notes:

var db = new Dexie("name-here");
db.version(1).stores({
 notes:'text,created'
});
db.open();

You can probably guess that the string "text,created" refers to the expected proper‐
ties of the data that will be stored, but Dexie goes a lot further and lets you pass sim‐

Simplifying IndexedDB with Dexie | 81

ple tokens to these properties to define how they act. For example, this version will
add a key called id that is automatically set.

var db = new Dexie("name-here");
db.version(1).stores({
 notes:'++id,text,created'
});
db.open();

In Example 6-4, you get a complete view of this in action.

Example 6-4. dexie/test1.html

<!doctype html>
<html>
<head>
 <script type="text/javascript" src =
 "http://ajax.googleapis.com/ajax/libs/jquery/2.1.0/jquery.min.js"></script>
 <script src="Dexie.min.js"></script>
</head>

<body>

<script>

$(document).ready(function() {

 var db = new Dexie("dexie1");
 db.version(1).stores({
 notes:"++id,text,created"
 });
 db.open();

 console.dir(db);

});

</script>
</body>
</html>

Altogether this doesn’t do much, and the console.dir won’t be terribly helpful
because it’s just an instance of a Dexie-wrapped database, but if you use your browser
developer tools to look at your IndexedDB instances you’ll see that a new one called
dexie1 has been created (Figure 6-5).

82 | Chapter 6: Making It Easier with Libraries

Figure 6-5. A new IndexedDB without the pain!

So far, so good, but let’s look at a few basic CRUD examples. Here is how you could
add data.

db.notes.add(
{ text:'foo', created:new Date().getTime() }
).then(function() {
 console.log('Note added.');
}).catch(function(err) {
});

If you are familiar with promises, then this syntax will look familiar. It’s certainly sim‐
pler than the transaction API you use normally. (To be clear, Dexie is still using trans‐
actions behind the scenes, but you don’t have to worry about them for simple
operations. While we won’t cover the topic in this simple introduction, if you want to
do multiple CRUD operations in Dexie, it also has a transaction API you can use.
And yes, it is still easier than the default IndexedDB API.)

How about reading? Yep—it is also simple:

db.notes.get(1).then(function(note) {
 console.dir(note);
});

Updating is slightly more complex—you pass in the key of the object you are modify‐
ing:

db.notes.put(
{ text:'foo', created:new Date().getTime(), key }
).then(function() {
 console.log('Note updated.');
}).catch(function(err) {
});

Simplifying IndexedDB with Dexie | 83

Even nicer, you can use put without a primary key and it will perform an insertion
instead of an update. This lets you simply use put without switching between it and
add.

And then finally, the delete operation:

db.notes.delete(1).then(function(note) {
 console.log("Removed");
});

Let’s modify our previous example to add a bit of data to the database (Example 6-5).

Example 6-5. dexie/test2.html

<!doctype html>
<html>
<head>
 <script type="text/javascript" src =
 "http://ajax.googleapis.com/ajax/libs/jquery/2.1.0/jquery.min.js"></script>
 <script src="Dexie.min.js"></script>
</head>

<body>

<script>

$(document).ready(function() {

 var db = new Dexie("dexie1");
 db.version(1).stores({
 notes:"++id,text,created"
 });
 db.open();

 db.notes.add(
 { text:"foo",created:new Date().getTime() }
).then(function() {
 console.log("Note added.");
 }).catch(function(err) {
 console.dir(err);
 });

});

</script>
</body>
</html>

84 | Chapter 6: Making It Easier with Libraries

Now our template actually adds a bit of data. Typically, you would tie this to a form,
but if you open it in your browser and check your developer tools, you’ll see the
freshly added data (Figure 6-6).

Figure 6-6. New data added by Dexie

The final piece of the puzzle is searching for data, and here is where Dexie really,
really shines. Let’s consider a simple example—finding data where some particular
column (or property) has a value lower than a target:

db.something.where("column").below(value).each(
function(item) {
 console.log('runs for each match')
});

Or maybe you meant higher, not lower:

db.something.where("column").above(value).each(
function(item) {
 console.log('runs for each match')
});

Or perhaps between two values:

db.something.where("column").between(value1, value2).each(
function(item) {
 console.log('runs for each match')
});

You can find a simple demonstration of this API in Example 6-6.

Example 6-6. dexie/test3.html

<!doctype html>
<html>
<head>
 <script type="text/javascript" src =
 "http://ajax.googleapis.com/ajax/libs/jquery/2.1.0/jquery.min.js"></script>
 <script src="Dexie.min.js"></script>
</head>

Simplifying IndexedDB with Dexie | 85

<body>

<script>

$(document).ready(function() {

 var db = new Dexie("dexie3");
 db.version(1).stores({
 people:"email,name,age"
 });
 db.open();

 db.people.put({ email:"raymondcamden@gmail.com", name:"Raymond", age:43 });
 db.people.put({ email:"elric@google.com", name:"Elric", age:23 });
 db.people.put({ email:"zula@google.com", name:"Zula", age:12 });

 db.people.where("age").between(20,50).each(function(person) {
 console.log("age match",JSON.stringify(person));
 });

 db.people.where("name").anyOf(["Elric","Zula"]).each(function(person) {
 console.log("name match",JSON.stringify(person));
 });
});

</script>
</body>
</html>

If you run this, you may notice something interesting about the output (see
Figure 6-7).

Figure 6-7. Output from the Dexie search example

While the results are correct, don’t forget that they are asynchronous results. That’s
why you see the results “intermingled” in the console. While it’s not necessarily rele‐
vant to the book at hand, let’s quickly demonstrate how you could handle a case like
this. We mentioned earlier that Dexie supports transactions, and transactions them‐
selves support knowing when they’ve completed. Example 6-7 shows a modified ver‐
sion of the previous template that uses a transaction to wait for the query operations
to complete.

86 | Chapter 6: Making It Easier with Libraries

Example 6-7. dexie/test4.html

<!doctype html>
<html>
<head>
 <script type="text/javascript" src =
 "http://ajax.googleapis.com/ajax/libs/jquery/2.1.0/jquery.min.js"></script>
 <script src="Dexie.min.js"></script>
</head>

<body>

<script>

$(document).ready(function() {

 var db = new Dexie("dexie3");
 db.version(1).stores({
 people:"email,name,age"
 });
 db.open();

 db.people.put({ email:"raymondcamden@gmail.com", name:"Raymond", age:43 });
 db.people.put({ email:"elric@google.com", name:"Elric", age:23 });
 db.people.put({ email:"zula@google.com", name:"Zula", age:12 });

 var ageResults, anyResults;
 db.transaction('r', db.people, function() {
 ageQuery = db.people.where("age").between(20,50).toArray().then(
 function(age) {
 ageResults = age;
 });
 anyQuery = db.people.where("name").anyOf(["Elric","Zula"]).toArray().then(
 function(any) {
 anyResults = any;
 });

 }).then(function() {
 console.log(JSON.stringify(ageResults));
 console.log(JSON.stringify(anyResults));
 });

});

</script>
</body>
</html>

Also note that we modified the second query to use the toArray helper. This is a
utilty Dexie provides that can return the result of a query into a simple array, mean‐
ing you would not need to use the each method to iterate over each result.

Simplifying IndexedDB with Dexie | 87

Working with localForage
For our last and final library (but don’t forget, there’s more!), we’ll look at localForage
(shown in Figure 6-8), an open source project by Mozilla, the folks behind Firefox.
localForage is an ambitious client-side storage wrapper that supports IndexedDB,
Web SQL, and Local Storage, selecting the best mechanism it can on the fly to store
data on the user’s browser. You can find complete documentation, examples, and the
downloads at the localForage website.

Figure 6-8. The localForage website

As with the other libraries in the chapter, you have multiple ways of installing local‐
Forage. You can use Bower (bower install localforage), use npm (npm install
localforage), or just download the code from GitHub.

localForage’s API is entirely asynchronous, but supports both the “old style” callback
as well as “new and hot” Promise-based APIs. You can use whatever form you’re most
comfortable with.

As a simple example, here is how you would set a value with a callback that is exe‐
cuted when the value is persisted:

localforage.setItem("name", value, function(err, value) {
});

88 | Chapter 6: Making It Easier with Libraries

http://mozilla.github.io/localForage/
https://mozilla.github.io/localForage/localforage.min.js

And here is the Promise-style version:

localforage.setItem("name", value).then(function(value) { });

Both do the exact same thing (OK, technically I’d need a catch in my second exam‐
ple) so you can use whatever form seems easier for you. Retrieving a value works the
same way:

localforage.getItem("name", function(err, value) { });
localforage.getItem("name").then(function(value) { });

Example 6-8 gives a simple demonstration of these read and writes in action.

Example 6-8. localForage/test1.html

<!doctype html>
<html>
<head>
 <script type="text/javascript" src =
 "http://ajax.googleapis.com/ajax/libs/jquery/2.1.0/jquery.min.js"></script>
 <script src="localforage.js"></script>
</head>

<body>

<script>

$(document).ready(function() {

 localforage.setItem("name", "Ray", function(err, value) {
 if(err) console.dir(err);
 console.log(value);
 });

 localforage.setItem("age", 43, function(err, value) {
 if(err) console.dir(err);
 console.log(value);

 localforage.getItem("age").then(function(value) {
 console.log("the value of age plus one is "+(value+1));
 });
 });

});

</script>
</body>
</html>

The first example simply sets a name value to Ray. The callback is fired when the data
is successfully stored. Reporting the value back out to console is not very useful since

Working with localForage | 89

it (obviously) matches what we passed in. The second example stores a numeric
value, and to ensure it is stored correctly, we fetch it and add 1 to the value when
done.

localForage also supports APIs for removing data (removeItem), clearing storage
(clear), counting the number of keys (length), and fetching all the keys (keys). You
can also iterate over all the key/value pairs with a simple iterate call:

localforage.iterate(function(value, key, index) {

}, callback);

As we said earlier, localForage attempts to use the “best” storage method it can on the
current browser. By default, localForage will first try IndexedDB, then Web SQL, and
finally Local Storage. What’s cool is that you can actually request a different priority.
The setDriver API lets you specify which system you wish to use, or an array of sys‐
tems you want to use in order. Here is an example that prefers Web SQL over Index‐
edDB:

localforage.setDriver(localforage.WEBSQL, localforage.INDEXEDDB);

Note that you do not need to specify Local Storage. If localForage cannot find your
preferred storage system, it will fall back automatically.

localForage does not provide any query or search capabilities, so keep that in mind
before adopting this particular library. This means localForage is better suited for
simple storage needs, like large data sets you wish to retrieve via key rather than via
some ad hoc search.

More Options
As we’ve said multiple times, we’ve covered only a few client-side storage libraries.
Here are a few more you may want to consider checking out.

• PouchDB is an incredibly powerful option. In fact, it was so powerful I was wor‐
ried it was a bit too much to cover in a short form here in the chapter. The devel‐
opers behind this library have done a huge amount of work in the area of client-
side storage and are well-known experts in the field. One of the biggest features
of PouchDB that may entice you is that it supports data synchronization.

• lawnchair is an older library that also supports multiple storage methods via an
adapter API.

• And finally, you can also peruse libraries via this helpful list created by Juho Vep‐
säläinen.

90 | Chapter 6: Making It Easier with Libraries

http://pouchdb.com/
http://brian.io/lawnchair/
https://github.com/bebraw/jswiki/wiki/Storage-libraries

CHAPTER 7

Building a Sample Application

Let’s Build Something!
Now that you’ve seen multiple types of client-side storage techniques as well as some
libraries to help make using them easier, let’s build a real, if simple, application that
makes use of some of these techniques. Our application will be a tool for a company
intranet (“Camden Incorporated”—coming to the NYSE soon) that lets you search
for your coworkers. This could be built using a traditional application server model,
but we’ve decided to build something fancy using modern web standards. To make
the search near instantaneous, we’ll use client-side storage to keep a copy of the
employee database on the user’s browser. This, of course, opens up all kinds of inter‐
esting issues.

First off, how do we handle synchronization? Companies aren’t static. People join or
leave companies all the time. How often that happens, of course, depends on the
company itself, but obviously you have to consider some form of strategy for keeping
the user’s copy of data in sync with the real list on the server. Luckily, in our scenario
we don’t have to worry about user edits. The server side is always “truth,” which
means we can ignore changes on the client side when syncs happen. For our demo
we’re not going to worry about syncing at all, but in a real-world demo your applica‐
tion server could provide an API where the client says—and by “says” I mean via
code, of course—“My copy of the data was last updated on October 10, 2015 at 8:55
AM.” The server could then respond with a set of changes that have occurred since
that date. Those changes could cover deletions (people who left the company),
changes (people getting married and changing their name, or getting new titles), and
additions (new hires). The client-side code would apply those changes and then make
a note of the current time so that the next time it speaks to the server it can correctly
receive the changes.

91

The next issue is a thorny one: privacy. The company database probably has a good
deal of data about you that you don’t want to share—like your salary. Remember that
we are essentially sending private information to each employee, and while you may
trust your employees, you still can’t send information that could put their privacy at
risk. A safe metric might be, “If it is on their business card, share it,” but certainly you
want to be overly cautious here. And to be clear, you cannot “filter” out the insecure
data on the client side. If your app server is returning private data, anyone can clearly
see it by opening up their browser developer tools. Anything the browser gets is open
to inspection by the user. As a matter of habit I tend to browse the Web with my
browser tools open, and I’ll naturally look at Ajax calls and the data just for curiosity’s
sake. I’m a “good guy,” but you have to assume that the “not-so-good guys and gals”
are looking as well.

The last issue is performance. Given a “small” company of 10,000 people, how do you
handle transferring that data to the browser in a performant matter? We’ve said our
hypothetical situation here is a company intranet, so we’re already kind of assuming
desktop/LAN, but you’ll want to be cognizant of the size of your data packets going to
the client. We’ll discuss a way to handle this later in the chapter.

OK, let’s talk data!

Our Sample Data
To keep things as easy as possible, our “server” will be a simple JSON file of data. As
we said earlier, we are not going to work with synchronization and creating updates,
so a flat JSON file will serve our needs just fine. To make things even easier, we’re
going to use a cool, free web service to generate our data: the Random User Genera‐
tor, shown in Figure 7-1.

92 | Chapter 7: Building a Sample Application

https://randomuser.me/
https://randomuser.me/

Figure 7-1. The Random User Generator

This site provides a free API that returns user information. The user information
includes quite a bit of detail and can be useful for demos like the one we’re building
here. Example 7-1 is a sample of the output taken from their docs.

Example 7-1. Sample API result

{
 results: [{
 user: {
 gender: "female",
 name: {
 title: "ms",
 first: "manuela",
 last: "velasco"
 },
 location: {
 street: "1969 calle de alberto aguilera",
 city: "la coruña",
 state: "asturias",
 zip: "56298"

Our Sample Data | 93

 },
 email: "manuela.velasco50@example.com",
 username: "heavybutterfly920",
 password: "enterprise",
 salt: ">egEn6YsO",
 md5: "2dd1894ea9d19bf5479992da95713a3a",
 sha1: "ba230bc400723f470b68e9609ab7d0e6cf123b59",
 sha256: "f4f52bf8c5ad7fc759d1d415e508aa0b7946d4ba",
 registered: "1303647245",
 dob: "415458547",
 phone: "994-131-106",
 cell: "626-695-164",
 DNI: "52434048-I",
 picture: {
 large: "http://api.randomuser.me/portraits/women/39.jpg",
 medium: "http://api.randomuser.me/portraits/med/women/39.jpg",
 thumbnail: "http://api.randomuser.me/portraits/thumb/women/39.jpg",
 },
 version: "0.6"
 nationality: "ES"
 },
 seed: "graywolf"
 }]
}

While the API is incredibly easy to use, we want a static set of data for our demo. If
you sign up at RandomAPI, you get permission to use the random user API for up to
10,000 results. The RandomAPI site is—as you can imagine—a collection of APIs
that provide random data. All in all, both sites are really darn useful and you can use
them within your own applications as well. It is a great way to work with “sensible”
random data while building your application.

For this demo, I signed up and requested 10,000 users. In the zip file of sample code
from this book, you can find it in c7/data/users.json. Earlier in this chapter we dis‐
cussed how you would want to be careful about what data you expose in your applica‐
tion. Since we’re just taking the random user data as is, we definitely have information
here that we would absolutely not want to share. Not only that, but our demo is only
going to use about half of the user values present in the data, which means quite a bit
of wasted data will be sent from the server to the frontend. These are all things you
would want to be very cognizant of in a proper, production-ready application. But
imagine for a moment that we’ve done that. We’ve streamlined our API down to the
bare essentials required to meet the application’s needs. What else can we do to make
the data load quicker?

One simple method is GZip compression. This is a setting your web server can use to
enable zip compression of assets before they are sent to the browser. The web server is
intelligent enough to use this feature only when the browser sends a header saying it
supports it, and since almost all modern browsers support it, this is an “easy win” to

94 | Chapter 7: Building a Sample Application

http://www.randomapi.com

help speed up your transfers. Apache, especially, makes it fairly trivial to enable. How
much does it help?

Our users.json file is 13.5 MB. That isn’t small. Poorly optimized graphics probably
won’t go over a megabyte each, so you’re really looking at a big hit here to download
that file. Figure 7-2 shows Chrome reporting on the size of the JSON file when it’s
requested via the browser. This is before any compression is added.

Figure 7-2. Chrome’s report of the file request

And Figure 7-3 shows the size after compression is enabled in Apache.

Figure 7-3. Yep, that’s smaller

The difference is pretty staggering. Keep in mind that the browser still has to decom‐
press that file on the client side, so you’ll want to use this approach with caution. I still
wouldn’t recommend sending more than 10 MB of data over the wire. At least in our
case this is an initial, “worst case” load, and later calls—again using an imaginary
application server—would send only the changes.

Now that you’ve seen the data in play, let’s look at the finished application.

The Application
When you first hit the application, it will fetch the initial data set (that large JSON
file) and begin inserting it into a local data store. Since this can take a little while, a
modal window is used to let the user know what’s going on. For the application it is
kept rather simple—just one message (Figure 7-4). You could enhance this messaging
to report on whether or not the application is downloading the initial data or has
moved on to inserting it for storage locally.

The Application | 95

Figure 7-4. A message is displayed while the application is setting up

After everything is loaded, a basic form, shown in Figure 7-5, is presented to the user.
In this application, you can search only by first and last name.

Figure 7-5. The search form

You can then begin searching. You can search on just the first name, last name, or
both. Figure 7-6 shows some sample search results.

Figure 7-6. Search results

The application will also correctly let you know when nothing is found. All in all, this
is a rather simple interface. You could add more filters (like business department or

96 | Chapter 7: Building a Sample Application

managers) to further enhance the searching later. In case you’re curious, those pic‐
tures all come from the Random User API itself.

Now that we’ve discussed our data and demonstrated how the application looks, let’s
begin looking at the code behind it.

The Code
The application will make use of Local Storage and IndexedDB. Local Storage will
just be used as a way to remember if data has been loaded. IndexedDB will store the
data itself. For Local Storage, even though the usage will be rather trivial, we’ll use
Lockr. For IndexedDB, we’ll use Dexie to simplify both inserting data as well as
searching.

Let’s begin by discussing how we’ll determine if data has been cached on the client
side. Example 7-2 demonstrates the function written to determine if local data exists.

Example 7-2. haveData function

function haveData() {
 var def = $.Deferred();

 var lastFetch = Lockr.get("lastDataSync");

 if(lastFetch) def.resolve(true);
 else def.resolve(false);

 return def.promise();
}

There are a couple of interesting things going on here. On line one, a deferred object
is created so that a promise can be returned. This allows us to use the function in an
asynchronous matter. We’re not actually using an asynchronous process, though. As
we learned, Local Storage access is synchronous, but in the future we may update the
process so that it becomes asynchronous. The code calling this function won’t have to
change.

For now, our code simply uses Lockr to check for a lastDataSync property. If this
exists, then we have data. It’s going to be a date value we set later, with the idea being
that if you hook this code up to a “real” app server in the future, the date would be
valuable information to use in determining what new data you need. Let’s look at how
this code is called (Example 7-3).

The Code | 97

Example 7-3. Calling haveData

haveData().then(function(hasData) {

 if(!hasData) {
 console.log("I need to setup the db.");
 setupData().then(appReady);
 } else {
 appReady();
 }

});

The code calling haveData() uses the then method of the returned promise to set up
what is going to run when the asynchronous process is done. Yes, it really isn’t asyn‐
chronous, but as we’ve said, the caller doesn’t need to worry about that. If there is no
data, then a call to set up the data will be fired; otherwise, the code will run a function
signifying that the search application is ready to go. Let’s look at the data setup func‐
tion.

First, Dexie requires us to create an IndexedDB database and define the object store
that will store data (Example 7-4). This is done earlier in the code within the
$(document).ready block.

Example 7-4. IndexedDB setup

myDb = new Dexie("employee_database");
myDb.version(1).stores({
 employees:"++id,&email,name.first,name.last"
});
myDb.open();

As demonstrated in the previous chapter, Dexie goes a long way to simplifying Index‐
edDB usage. You can see the database being created as well as the employees object
store. The employees store has an autoincrementing number id, a unique index on
email, and indexes on name.first and name.last. These indexes were created based
on how we plan on searching for employees. Now let’s move to the function run to
 set up data (Example 7-5).

Example 7-5. setupData function

function setupData() {
 var def = $.Deferred();

 //setup modal options
 $("#setUpModal").modal({

98 | Chapter 7: Building a Sample Application

 keyboard: false
 });

 //now show it
 $("#setupModal").modal("show");

 //now, fetch the remote data
 $.get("data/users.json", function(data) {
 console.log("Loaded JSON, have "+data.results.length+" records.");
 console.dir(data.results[0].user);

 myDb.transaction("rw", myDb.employees, function() {

 data.results.forEach(function(rawEmp) {

 /*
 We aren't copying the data as is, we modify it a bit.
 Specifically the raw data has some dupes on email/username
 so I make an email based on the compation of both
 */
 var emp = {
 cell:rawEmp.user.cell,
 dob:rawEmp.user.dob,
 email:rawEmp.user.email.split("@")[0]+"."
 + rawEmp.user.username + "@gmail.com",
 gender:rawEmp.user.gender,
 location:rawEmp.user.location,
 name:rawEmp.user.name,
 phone:rawEmp.user.phone,
 picture:rawEmp.user.picture
 };

 myDb.employees.add(emp);
 });

 }).then(function() {

 //hide the modal
 $("#setupModal").modal("hide");

 //store that we synced
 Lockr.set("lastDataSync", new Date());

 def.resolve();

 }).catch(function(err) {
 console.log("error in transaction", err);
 });

 }, "json");

 return def.promise();

The Code | 99

}

This one, as you can imagine, is the big one. As with the haveData function, jQuery
Deferreds are used to handle the asynchronous nature of the setup. Ignoring the UI
items (Bootstrap makes this so easy), the real meat begins with an Ajax call to the
JSON file. Once the file is retrieved, a transaction is opened via Dexie. For each user
in the JSON data, we need to create a new object that will be stored. In an ideal world,
our data would match what we want to store exactly, but since we’re working with
data from the Random User API, we need to manipulate it a bit. If you are setting up
an app server to feed your code data like this, you will want to try to make it match as
best you can. Note that the email address is modified a bit, as the Random User data
did not have unique email addresses. This is most likely just a bug on their side, and
it was quicker to work around it in the JavaScript. This object is added and—that’s it.
When the transaction finishes, the UI is updated again and the earlier deferred is
resolved. Note that the final step is to update Local Storage, again via Lockr, with the
current time.

Now let’s turn to search. After the data is loaded, or it was determined that the data
already existed, appReady is executed as shown in Example 7-6.

Example 7-6. appReady function

function appReady() {
 console.log('appReady fired, lets do this');
 //show the search form
 $("#searchFormDiv").show();
 $("#searchForm").on("submit", doSearch);
}

There isn’t much here. Basically the form is displayed and an event handler for run‐
ning that search is registered. Let’s look at that in Example 7-7.

Example 7-7. doSearch function

function doSearch(e) {
 e.preventDefault();
 var fName = $.trim($firstNameField.val());
 var lName = $.trim($lastNameField.val());

 $results.empty();
 console.log('search for -'+fName+'- -'+lName);

 var fnEmps = [];
 var lnEmps = [];
 myDb.transaction('r', myDb.employees, function() {

100 | Chapter 7: Building a Sample Application

 if(fName !== '') {
 myDb.employees.where("name.first").startsWithIgnoreCase(fName)
 .each(function(emp) {
 fnEmps.push(emp);
 });
 }

 if(lName !== '') {
 myDb.employees.where("name.last").startsWithIgnoreCase(lName)
 .each(function(emp) {
 lnEmps.push(emp);
 });
 }

 }).then(function() {
 console.log('done');
 var results = [];

 //just a first name
 if(fName !== '' && lName === '') {
 console.log('first');
 fnEmps.forEach(function(emp) { results.push(emp); });
 //just a last name
 } else if(lName !== '' && fName === '') {
 lnEmps.forEach(function(emp) { results.push(emp); });
 //both
 } else {

 //only return items where ob exists in both
 //to make it simpler, we'll make an index of
 //email values in lnEmps so we can check them
 //quicker while going over fnEmps
 var lnEmails = [];
 lnEmps.forEach(function(emp) { lnEmails.push(emp.email); });

 results = fnEmps.filter(function(emp) {
 return lnEmails.indexOf(emp.email) >= 0;
 });
 }

 //Begin rendering the results.
 if(results.length) {
 results.forEach(function(r) {
 console.log(r.name.first+' '+r.name.last);
 var result = resultTemplate(r);
 $results.append(result);
 });
 } else {
 $results.html("Sorry, nothing matched your search.");
 }

 }).catch(function(err) {

The Code | 101

 console.log('error', err);
 });

}

This is another large one, so let’s take it bit by bit. First, the current fields in the
search form are retrieved and trimmed. Once we have those fields, the search can
begin. Unfortunately, we can’t search for both values in one call, but we can do them
both in one transaction. So a transaction is opened and then a search, again using the
nice functions Dexie provides, against the first and last name indexes. For each
search, the results are placed in an array.

When the transaction is done, that means both searches (or one if only one search
field was used) are finished. We then have to merge the results. If you didn’t use both
fields, this is a simple matter: the result array for the field you searched for is copied
to a results array.

If you used both fields, it is a bit more complex. We want to return results that exist in
both arrays. The lnEmps array is looped over to create a simpler array of just email
addresses. This then lets us loop over the fnEmps array and accept only those values
where a corresponding email address in the last name result exists as well.

Finally, the results are ready. But how to display them? To make it simpler to dynami‐
cally write out content in the template, we’ll use Handlebars as a client-side templat‐
ing language. Handlebars lets us define a template with variable tokens. We can load
this template, automatically replace the tokens, and then render out HTML. The tem‐
plate for handling results is defined in index.html (see Example 7-8).

Example 7-8. Result template

<script id="result-template" type="text/x-handlebars-template">
<div class="panel panel-primary">
 <div class="panel-heading">
 <h3 class="panel-title">{{name.first}}{{name.last}}</h3>
 </div>
 <div class="panel-body">
 <div class="row">
 <div class="col-md-2">

 </div>
 <div class="col-md-10">
 <table style="width:100%">
 <tr>
 <td>Email:</td>
 <td>{{email}}</td>
 </tr>
 <tr>
 <td>Phone:</td>

102 | Chapter 7: Building a Sample Application

http://handlebarsjs.com/

 <td>{{phone}}</td>
 </tr>
 <tr>
 <td>Cell:</td>
 <td>{{cell}}</td>
 </tr>
 <tr valign="top">
 <td>Location:</td>
 <td>{{location.street}}

 {{location.city}}, {{location.state}} {{location.zip}}</td>
 </tr>
 </table>
 </div>
 </div>
 </div>
</div>
</script>

In the preceding listing, you can see each token as a value wrapped in double curly
braces, {{ and }}. Handlebars can process these tokens and replace them with the
actual result data from our search. What’s nice about a client-side templating lan‐
guage is that it makes it much easier to generate dynamic output from JavaScript.

Wrap-up
You can find the complete code for the demo in the zip file you downloaded, and I
strongly encourage you to play with it yourself to see what changes you could make.
More search filters could be added, and if you’re really motivated you could set up an
application server to start working on a “send only what’s changed” API. Good luck!

Wrap-up | 103

Index

A
appReady function, 100
arrays, 54-59

B
browser tools (see developer tools)

C
CanIUse.com, 11
Chrome developer tools

cookies, 11
IndexDB, 59
Web SQL, 72-73
Web Storage, 23

compression, 94-95
cookies, 3-12

basics, 3-4
deleting, 6
demos, 6-10
developer tools, 10-11
reading, 5-6
recommendations for use/non-use, 12
support, 11
working with, 4-6

CRUD, 37, 48, 83-85
cursors, 48-50

D
databases, 28, 29-31, 64
developer tools

cookies, 10-11
IndexDB, 59
Web SQL, 72-73

Web Storage, 23
Dexie, 80-87, 97-103

CRUD examples, 83-85
searching for data, 85-86

doSearch function, 100-102

F
Firefox developer tools

cookies, 10
IndexDB, 59
Web Storage, 23-23

form data, 17-19

G
GZip compression, 94-95

H
Handlebars, 50, 102-103
hash values, 79
headers, 3
HTTP headers, 3
httpster, 7

I
IndexDB, 27-61, 97-103

add method, 38
blocked events, 29
continue method, 49
createIndex method, 37
createObjectStore, 32, 37
data

counting, 59
creating, 38-42

105

deleting, 47-48
reading, 42-44
updating, 45-47

data retrieval
cursors and, 48-50
ranges and indexes, 51-54

databases and, 28, 29-31
developer tools for, 59
Dexie for (see Dexie)
error events, 29
IDBKeyRange, 51
and iOS8, 29
object stores, 28, 31-37
only method, 59
put method, 45
recommended uses, 61
someObjectStore.delete, 47
storing arrays, 54-59
success events, 29
support, 29, 61
terminology, 28
upgradeneeded events, 29, 31, 33-36, 42

indexes, 28, 36, 37, 51
iOS8, and IndexDB, 27, 29

J
JSON encoding, 14

K
key generators, 34
key paths, 34

L
lastDataSync property, 97
lawnchair, 90
libraries, 75-90

Dexie, 80-87
list of, 90
localForage, 88-90
Lockr, 75-80
PouchDB, 90, 90

Local Storage, 13, 97-103
(see also Web Storage)

localForage, 88-90
Lockr, 75-80, 97-103

hash values, 79
versus basic Web Storage, 77

M
MDN (Mozilla Developer Network) code, 6
Mozilla localForage (see localForage)

N
Netscape, 3

O
object stores, 28, 31-37

counting data in, 59
creating, 32-36
primary keys, defining, 34-36
version numbers and, 31

P
performance issues, 92, 94
PouchDB, 90
primary keys, 34-36, 50
privacy issues, 92

R
Random User Generator, 92
RandomAPI, 94
ranges, 51-54
Redis, 75

S
sample application, 91-103
Session Storage, 13, 16
setupData function, 98-100
SQL injection attack, 71
storage event, 19-22
string data, 14
synchronization issues, 91

T
tables, 64
transactions, 66-72

V
version numbers, 31

W
Web SQL, 63-73

databases, 64-66
developer tools for, 72-73

106 | Index

reasons for learning, 63
rows, 64
SQL injection attack, 71
support, 64, 73
tables, 64, 67-68
terminology, 64
transactions, 66-72

Web Storage, 13-25
clear method, 14
converting data into JSON, 14
demos, 15-19
event listeners, 18

form data, 17-19
getItem method, 14
limits, 13
Lockr for (see Lockr)
methods, 14
recommended uses, 25
removeItem method, 14
setItem method, 14
storage event, 19-22
support, 24-24
supported data, 14

web storage

Index | 107

About the Author
Raymond Camden is a developer advocate for IBM. His work focuses on the Mobile‐
First platform, Bluemix, hybrid mobile development, Node.js, HTML5, and web
standards in general. He’s a published author and presents at conferences and
user groups on a variety of topics. Raymond can be reached at his blog
(www.raymondcamden.com), @raymondcamden on Twitter, or via email at
raymondcamden@gmail.com.

Colophon
The animal on the cover of Client-Side Data Storage is the unstriped ground squirrel
(Xerus rutilus). The unstriped ground squirrel is native to the arid savanna and
shrubland found in the Horn of Africa. As ground squirrels, they make their homes
in subterranean burrows.

Unstriped ground squirrels have brown fur, with darker backs and lighter fronts. As
their name would suggest, they lack the white-striped backs common in other Afri‐
can ground squirrel species. Unstriped ground squirrels can grow up to one pound in
weight and 25 centimeters in length, with their tails growing an additional 25 centi‐
meters.

Unstriped ground squirrels have an omnivorous diet, consisting of leaves, fruit, seeds,
and insects. They spend most of their time foraging for food, and only return to their
burrows to sleep. The main predators for unstriped ground squirrels are birds of prey,
leopards, jackals, and snakes.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Lydekker’s Royal Natural History. The cover fonts are URW
Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font
is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

www.allitebooks.com

http://animals.oreilly.com
http://www.allitebooks.org

	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. A Gentle Introduction to Client-Side Data Storage
	Chapter 2. Working with Cookies
	Cookies? Seriously?
	Working with Cookies
	Reading Cookies
	Deleting Cookies

	Demos
	Inspecting Cookies Within Developer Tools
	Support and Recommended Usage

	Chapter 3. Working with Web Storage
	Web Storage, AKA Local Storage
	Working with Web Storage
	Demos
	Listening for Storage Changes
	Inspecting Web Storage with Dev Tools
	Support and Recommended Usage

	Chapter 4. Working with IndexedDB
	Welcome to Deep Data
	Key IndexedDB Terms
	Checking for IndexedDB Support
	Working with Databases
	Working with Object Stores
	Making Object Stores
	Defining Primary Keys
	Defining Indexes

	Working with Data
	Creating Data
	Reading Data
	Updating Data
	Deleting Data

	Getting All the Data
	Working with Ranges and Indexes

	Even More with IndexedDB
	Storing Arrays
	Counting Data

	Inspecting IndexedDB with Dev Tools
	Support and Recommended Usage

	Chapter 5. Working with Web SQL
	Dead Spec Walking
	Basic Database Terms
	Checking for Web SQL Support
	Working with Databases
	Working with Transactions
	Inspecting Web SQL with Dev Tools
	Support and Recommended Usage

	Chapter 6. Making It Easier with Libraries
	“Use the Library, Luke...”
	Working with Lockr
	Simplifying IndexedDB with Dexie
	Working with localForage
	More Options

	Chapter 7. Building a Sample Application
	Let’s Build Something!
	Our Sample Data
	The Application
	The Code
	Wrap-up

	Index
	About the Author

