
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

COBOL Software Modernization

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Series Editor
Jean-Charles Pomerol

COBOL Software
Modernization

From Principles to Implementation
with the BLU AGE® Method

Franck Barbier
Jean-Luc Recoussine

www.allitebooks.com

http://www.allitebooks.org

First published 2015 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the
CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the
undermentioned address:

ISTE Ltd John Wiley & Sons, Inc.
27-37 St George’s Road 111 River Street
London SW19 4EU Hoboken, NJ 07030
UK USA

www.iste.co.uk www.wiley.com

© ISTE Ltd 2015
The rights of Franck Barbier and Jean-Luc Recoussine to be identified as the authors of this work have
been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Control Number: 2014955859

British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISBN 978-1-84821-760-7

www.allitebooks.com

http://www.allitebooks.org

Contents

ACKNOWLEDGMENTS . xi

ACRONYMS . xiii

INTRODUCTION . xvii

CHAPTER 1. SOFTWARE MODERNIZATION:
A BUSINESS VISION . 1

1.1. Software-based business . 1
1.2. Information-driven business . 2

1.2.1. Adaptation to business . 4
1.3. The case of tourism industry . 7
1.4. IT progress acceleration . 11
1.5. Legacy world . 13

1.5.1. Exiting the legacy world . 15
1.5.2. Legacy world professionals 16

1.6. Conclusions . 18

CHAPTER 2. SOFTWARE MODERNIZATION:
TECHNICAL ENVIRONMENT . 21

2.1. Legacy system . 21
2.2. Modernization . 22

2.2.1. Replacement . 24
2.2.2. Migration . 25
2.2.3. Modernization versus migration 27

www.allitebooks.com

http://www.allitebooks.org

vi COBOL Software Modernization

2.2.4. The superiority of white-box
modernization . 29

2.3. Software engineering principles
underpinning modernization . 31

2.3.1. Re-engineering in action . 33
2.3.2. Re-engineering challenges . 36

2.4. Conclusions . 37

CHAPTER 3. STATUS OF COBOL LEGACY
APPLICATIONS . 39

3.1. OLTP versus batch programs . 41
3.2. Mainframes . 42
3.3. Data-driven design . 43
3.4. COBOL degeneration principle 44
3.5. COBOL pitfalls . 46
3.6. Middleware for COBOL . 47
3.7. Moving COBOL OLTP/batch
programs to Java . 49
3.8. COBOL is not a friend of Java,
and vice versa . 51
3.9. Spaghetti code . 52

3.9.1. Spaghetti code sample . 53
3.9.2. Code comprehension . 56

3.10. No longer COBOL? . 57
3.11. Conclusions . 58

CHAPTER 4. SERVICE-ORIENTED
ARCHITECTURE (SOA) . 59

4.1. Software architecture versus
information system urbanization . 59
4.2. Software architecture evolution 60
4.3. COBOL own style of software architecture 61
4.4. The one-way road to SOA . 64
4.5. Characterization of SOA . 66

4.5.1. Preliminary note . 66
4.5.2. From objects to components and services 66
4.5.3. Type versus instance . 67
4.5.4. Distribution concerns . 68
4.5.5. Functional grouping . 68
4.5.6. Granularity . 69

www.allitebooks.com

http://www.allitebooks.org

Contents vii

4.5.7. Technology-centrism . 70
4.5.8. Composition at design time
(… is definitely modeling) . 72
4.5.9. Composition at runtime . 77

4.6. Conclusions . 78

CHAPTER 5. SOA IN ACTION . 79
5.1. Service as materialized component 81
5.2. Service as Internet resource . 85

5.2.1. Pay-per-use service . 87
5.2.2. Free service . 89
5.2.3. Data feed service . 90

5.3. High-end SOA. 93
5.4. SOA challenges . 95
5.5. The Cloud . 97

5.5.1. COBOL in the Cloud . 98
5.5.2. Computing is just resource
consumption . 99
5.5.3. Cloud computing is also resource
consumption, but… . 101
5.5.4. Everything as a service . 102
5.5.5. SOA in the Cloud . 104
5.5.6. The cloud counterparts . 105

5.6. Conclusions . 106

CHAPTER 6. MODEL-DRIVEN
DEVELOPMENT (MDD) . 109

6.1. Why MDD? . 110
6.2. Models, intuitively . 111
6.3. Models, formally . 112
6.4. Models as computerized objects 113
6.5. Model-based productivity . 118
6.6. Openness through standards . 118

6.6.1. Model-Driven Architecture (MDA) 120
6.7. Models and people . 121
6.8. Metamodeling . 123

6.8.1. Metamodeling, put simply . 123
6.9. Model transformation . 125
6.10. Model transformation by example 125

www.allitebooks.com

http://www.allitebooks.org

viii COBOL Software Modernization

6.11. From contemplative to
executable models . 126
6.12. Model execution in action . 127
6.13. Toward Domain-Specific
Modeling Languages (DSMLs) . 129
6.14. Conclusions . 132

CHAPTER 7. MODEL-DRIVEN
SOFTWARE MODERNIZATION . 135

7.1. Reverse and forward engineering are
indivisible components of modernization 137
7.2. Architecture-Driven Modernization (ADM) 138
7.3. ASTM and KDM at a glance . 142
7.4. Variations on ASTM . 146
7.5. From ASTM to KDM . 148
7.6. Variations on KDM . 149
7.7. Automation . 153
7.8. Conclusions . 153

CHAPTER 8. SOFTWARE MODERNIZATION
METHOD AND TOOL . 155

8.1. BLU AGE overview . 156
8.2. The toolbox . 158

8.2.1. BLU AGE format required for
forward engineering . 160
8.2.2. Reverse tooling . 162

8.3. BLU AGE as an ADM- and
MDA-compliant tool . 170
8.4. Modernization workflow . 173

8.4.1. Initialization . 173
8.4.2. Realization . 182
8.4.3. Validation and deployment . 187

8.5. Conclusions . 188

CHAPTER 9. CASE STUDY. 191

9.1. Case study presentation . 192
9.2. Legacy modernization in action 195

9.2.1. Creating modernization project 196
9.2.2. Better dealing with the legacy material 196
9.2.3. Strategy for modernizing screens 202

www.allitebooks.com

http://www.allitebooks.org

Contents ix

9.2.4. Strategy for modernizing data items 203
9.2.5. Creating forward project . 204
9.2.6. Entity extraction . 207
9.2.7. From screens to pages and UI
components . 209

9.3. Annotations . 209
9.4. Pattern definition . 211

9.4.1. Pattern for simple statements 211
9.4.2. Patterns for operation calls . 213
9.4.3. Patterns for operation calls with arguments 214

9.4. Database exchange modernization 216
9.5. Transmodeling . 219
9.6. Transmodeling complex functionalities 226

9.6.1. Transmodeling the “custCost” program 228
9.6.2. Modernizing “Add a new reservation” 233

9.7. Application generation and testing 234
9.8. Conclusions . 235

BIBLIOGRAPHY . 239

INDEX. 243

Acknowledgments

The BLU AGE method and tool have been developed for more
than 10 years with a significant investment in terms of involved
researchers and engineers, as well as money. The authors of this book
would like to thank all contributors and administrative enablers.

The BLU AGE method has been partly funded by the European
Commission through the ReMiCS project (www.remics.eu), contract
number 257793, within the 7th Framework Program.

The authors also wish to thank the following people (in
alphabetical order) who provided contributions, ideas, feedback, etc.,
so that this book could become a reality: Christian Champagne,
Olivier Le Goaer and Alexis Henry.

Note from Franck Barbier

As books are long odysseys, their elaboration is not only linked to
technical thinking at work places. Seeking harmony in life, philosophy
and deep exchanges with “profound people” are, among other sources
of inspiration, strong factors of idea regeneration, stimulation. In this
spirit, I strongly thank great thinkers (and thus indirect contributors),
philosophers (?), inspiring the people of this book: Sophie (with
infinite love!), Vincent (when bicycling and canyoning!), Bruno J.

xii COBOL Software Modernization

(within (too many?) long coffee breaks) and Bruno P. (within
(definitely too many!) long body building exercises). Their presence,
outreach, humanity simply, etc. help me a lot.

Acronyms

ADL Architecture Description Language

ADM Architecture Driven Modernization

API Application Programming Interface

ASTM Abstract Syntax Tree Metamodel

B2B Business to Business

B2C Business to Customer

BLU AGE BLU Application GEnerator

BNF Backus-Naur Form

BPMN Business Process Model and Notation

BSP BLU AGE Shared Plugin

CASE Computer-Aided Software Engineering

CICS Customer Information Control System

COBOL Common Business-Oriented Language

CORBA Common Object Request Broker Architecture

COTS Commercial Off-The-Shelf

CRUD Create, Read, Update, Delete

DAO Data Access Object

xiv COBOL Software Modernization

DSMLs Domain-Specific Modeling Languages

DTD Document Type Definition

EAR Enterprise Java Archive

EJB Enterprise JavaBeans

EMF Eclipse Modeling Framework

ERP Enterprise Resource Planning

ESB Enterprise Service Bus

ForTran Formula Translation

FUML Semantics of a Foundational Subset for
Executable UML

HQL Hibernate Query Language

IaaS Infrastructure as a Service

IDE Integrated Development Environment

IDL Interface Description Language

IT Information Technology

JAAS Java Authentication and Authorization Service

JAR Java Archive

Java EE Java Enterprise Edition

JBI Java Bus Integration

JNI Java Native Interface

JMS Java Message Service

JPA Java Persistence API

JSL Job Specification Language

JSF JavaServer Faces

JSON JavaScript Object Notation

JTA Java Transaction API

JTS Java Transaction Service

Acronyms xv

JVM Java Virtual Machine

KDM Knowledge Discovery Metamodel

MDA Model-Driven Architecture

MDD Model-Driven Development

MOF Meta Object Facility

MVC Model-View-Controller

NIH Not-Invented-Here

OCL Object Constraint Language

OLTP On Line Transaction Processing

OMG Object Management Group

PaaS Platform as a Service

PDMs Platform Description Models

PIMs Platform-Independent Models

POJO Plain Old Java Object

PSMs Platform-Specific Models

QoS Quality of Service

SaaS Software as a Service

SASTM Specialized ASTM

SCXML State Chart XML

SBVR Semantics of Business Vocabulary and
Rules

SEI Software Engineering Institute

SLA Service-Level Agreement

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SME Small and Medium Enterprise

SQL Structured Query Language

xvi COBOL Software Modernization

UDDI Universal Description Discovery and Integration

UI User Interface

UML Unified Modeling Language

WAR Web Java Archive

WS-BPEL Web Services Business Process Execution Language

WS-Choreography Web Service Choreography

WSDL Web Service Description Language

XMI XML Model Interchange

Introduction

The digital economy is expanding faster and faster. This results
from recurrent advances in information technology (IT). There is a
virtuous circle such that, in turn, more and more (often unpredictable)
innovative usages boost IT. These usages are social and, in a broad
sense, economical. More generally, the impact of IT on business is
immense nowadays.

In this dynamical context, two decades ago software became the
premier economy sector in terms of revenue. Substantial overturning
occurred: the progress and multiplication of operating systems
(LINUX, Windows, OS X, etc.) and associated product lines (e.g.
mobile variants), the development and increasing re(use) of open-
source software, outsourcing in developing countries, etc. United
States and Europe tried to keep their advanced positioning through
“differential software engineering”: inventing new programming
languages like Java or C#, new software development approaches like
agile development, model-driven development (MDD), new software
architecture paradigms like service-oriented architecture (SOA) and
related middleware like Java Enterprise Edition (Java EE) or .NET
and new computing paradigms like mobile computing, cloud
computing or Internet computing as the superset of all modern
computing paradigms.

However, a great paradox persists, as technological entry costs,
human involvement, the acquisition of new technologies and take-up

xviii COBOL Software Modernization

initiatives, etc., are not easily and straightforwardly controllable. In
other words, the great majority of people and teams in software
development continue to use “old” technologies. First, a very good
reason for this is that information systems on the top of these cannot
be thrown overboard. Second, development hides maintenance.
Challenges relate to software evolution not to software creation,
especially from scratch. Seacord in [SEA 02] highlights this point as
follows: “For large enterprise systems, a strategy of design for
evolvability is a need. This approach does not distinguish between
development and maintenance; maintenance is simply continued
product development”.

Therefore, there is a natural temporal gap between the emergence
of any high tech software. and its daily use with total conviction and
ensured return on investment.

In this sector, COmmon Business-Oriented Language (COBOL)
remains a representative programming language. Namely, in 1997,
310 billion lines of software were in use and more than 220 billion
lines were in COBOL (source: Wikipedia). Beyond this, five billion
lines of new COBOL were developed every year, nowadays leading to
an incommensurable mass of code. In fact, most enterprise software
today is based on legacy technologies because COBOL had this ever-
contested lead role. More recently, programming in (newer) COBOL
also continues to have an impact on software architecture due to
COBOL’s inevitable “adaptation” to the Internet. Unfortunately, what
also comes up with older COBOL is a set of specific infrastructures
(computers called “mainframe computers” or “mainframes” for short),
proprietary operating systems and middleware platforms, for instance
Customer Information Control System (CICS); COBOL professionals
who have a very particular background, culture, state of mind, etc.,
were/are also a great component of the overall COBOL influence on
today’s running software.

As observed, COBOL is thus not a closed world without any link
to the Internet computing in general. That is the reason why going on
with COBOL is always technically possible. Strategically, COBOL
software evolution strongly depends upon proprietary solutions that

www.allitebooks.com

http://www.allitebooks.org

Introduction xix

limit interoperability in reasonable costs, innovation and liberty in
general, to better adapt information systems to business. There is
indeed an increasing demand for reactivity: IT, information systems
must leverage the business instead of, as it often happened in the past,
being a source of inertia. Most data and applications are business-
critical. Rapid changes in business require software and information
systems with higher adaptation capabilities. With this new reality, it is
not certain that COBOL computing is the strategic track to be
followed.

Nowadays, the worldwide COBOL offer is “modern”. COBOL
may run on any operating system with seamless Internet integration.
In spite of this modernity, the COBOL offer attempts to create a
technological continuity between the legacy COBOL code and that
newly produced. Furthermore, it also intends to keep cultures,
practices or states of mind as-is; these issues are deeply discussed and
strongly called into question in this book. More precisely, there is a
renewal of expectations for IT users and stakeholders, software as a
service (SaaS) especially, that may conflict with, not COBOL as a
tool, but COBOL as a vehicle for old-fashioned ideas.

This book, COBOL Software Modernization, is not a front-end
attack against COBOL. The reason for this is that COBOL has
brought a lot of value to the initial integration of business in
computers. With the Internet in particular, the way doing business has,
however, changed in a radical manner that highlights COBOL as a
very debatable technological solution. Accordingly, this book puts
forward the idea of software modernization, in general, which may
benefit from two proven technologies: MDD and SOA. This book
strives to create the glue between the two in a ready-to-use
“development + maintenance” technological framework.

I.1. Behind software modernization is “modernization”: the car
metaphor

Changing is not a natural way of being. People tend to be
conservative. However, modernization without motivation and

xx COBOL Software Modernization

expected progress makes no sense. Changing is merely a fear of
people in everyday life. Changing contexts, environments and
practices is also disturbing. To that extent, software has the
particularity of accentuating this phenomenon through the incessant
appearance of “new” technologies. By analogy, one may, however,
wonder why I would change my 1960s car for a 21st-Century
(electrical, hybrid, etc.) vehicle?

Rationale for change might be:

– cost savings (oil consumption);

– sustainability (pollution);

– safety (traffic rules have changed, encountered cars are
“modern”, (young) driver behaviors are not the same, etc.);

– technology issues: car parts are no longer available or they must
be fabricated in a (costly) tailored way; mechanics are few or would
likely be retiring. In short, obsolescence problems a rise on an
exponential scale;

– today’s route burdens, traffic jams contradict with the driving
spirit of cars from the 1960s;

– etc.

Arguments for no change are: keeping the driving style, the driving
emotion, the driving needs and sensations 1960s cars provide and
passionate drivers’ desire.

In business, any trade-off between “change” and “no change” often
relies on survival. In software, old technologies often possess
interesting features like robustness or stability, which may compensate
benefits announced by high technologies’ evangelists and promoters.

The car metaphor leads us not to view modernization as a panacea,
but as an opportunity. Inserting an electrical engine into a 1960s car is
definitely not the solution. Nonetheless, why not an electrical car
provided that driving requirements are assured? Novelty and
innovation in such a car might bring out unimagined pleasure. Why
not?

Introduction xxi

In this car metaphor, 1960s car drivers are “legacy people” in IT.
Driving style, emotion, needs or sensations match their business
intelligence engraved for a long time in their applications.
Modernization thus amounts to the adaptation of the contemporary
(to-be-bought) car to their company’s driving spirit instead of the
contrary. Business intelligence pervades the soul of legacy people...
technology is just a means.

This book is above all the end-to-end integration of human
concerns in software modernization, considering modernization at
large as a real vocation. In that area, COBOL has influenced people
beyond technology. In the car metaphor, COBOL is probably one the
most successfully adopted car product lines of the 1960s.

I.2. COBOL

The authors of this book were COBOL programmers. However, for
a long time, they have changed to object orientation (OO) in general,
and Java in particular. The history of programming languages and
their design shows that, with time, psychological relations between
languages and developers emerge. Developers adhere to languages,
adopt them and eventually love (defend) them. In this scenario, there
was/is an affective link between COBOL and COBOL programmers.
The understanding of this intimate relationship is an important issue
when subscribing to the idea that COBOL-based information systems
are dinosaurs whose life is unsuitable in today’s IT.

In fact, what are the reproaches against COBOL? Its historical
programming style is probably far from the canon of modern code
structuring. In this context, the common understanding of the
expression “structured programming” is mostly associated with the
class of Pascal languages: Ada and later OO languages that offer the
top-level vision of “structuring”. Is COBOL “structured”? Yes,
undoubtedly it is. Beyond, it has/keeps sexy shapes, i.e. the language
has fairly intelligible constructs. There is a clear organization of a
program in divisions: IDENTIFICATION, ENVIRONMENT, DATA
and PROCEDURE (see also Figure 9.13). Moreover, statements can

xxii COBOL Software Modernization

be considered as more explicit compared to ordinary languages. For
example, ADD, SUBTRACT, MULTIPLY, DIVIDE or simply MOVE
are the keywords that lead to smart code: add 1 to counter is
indisputably more comprehensive than counter++ in Java. Labels are
also appropriate means for cutting programs into well-delimited pieces
even if they sometimes invite programmers to use global variables
and/or GOTO constructs badly.

Three decades ago, Barnes in [BAR 84] already wrote, talking
about Formula Translation (FORTRAN) and COBOL: “(…) these
languages were not modern…”. This modernism is the hidden part of
the iceberg. In reality, the rule is always the same and applies for any
language: the quality of programs greatly depends upon the dexterity
of programmers. Typically, we may have ill-structured Java programs
when programmers make ill-advised use of, for instance, inheritance
as a programming support. To that extent, moving applications from
an aging language to a modern language, must be neither a dogma nor
an intrinsic strategy. In short, COBOL merits every respect, because it
possesses all the required means to produce well-structured code. The
question is then why, when analyzing COBOL code portfolios in
organizations, COBOL programs are spaghetti dishes? Three causes
are fairly well known:

1) From a focus on code portfolios, the drawback comes from the
fact that a considerable quantity of the existing COBOL code has been
produced by people without academic knowledge on computing.
Many of them came from third-party functional sectors. Namely,
bookkeepers, storekeepers, etc. became developers at the time when
education was not able to provide enough trained personnel in
computer science in general.

2) More importantly, in the past, software architectures were
standardized by a data-driven approach, while today’s SOA style
views code mass production as pejorative compared to the necessity of
software componentization and the need for fitting Internet computing
architectures, like cloud computing frameworks. There is a net
challenge about COBOL software maintenance, later developed in this
book, which calls for architecture-driven modernization [ULR 10].

Introduction xxiii

Roughly speaking, everybody is now convinced that COBOL software
is more expensive, in terms of evolution especially. This was formally
proven when programs had to cross the year 2000 (also known as
Y2K).

3) In practice, COBOL does not favor abstraction at all. For
example, data formats are totally rough using the “X” sign for
alphanumeric data while “9” is used for numerical data. Worse still,
the same raw data may be assigned to different variables with
different formats for different usages using the REDEFINES clause.
For example, coding years of dates with the “XX” or “99” data format
thus precluded the crossing of 2000. Practically, “00”is a value
conforming to “XX” or “99”. Semantically, “00” is interpreted in non-
modernized programs as the year 1900 instead of 2000. More openly,
Lientz and Swanson in [LIE 80] told us that the breakdown of
maintenance costs is such that 17.6% of maintenance efforts result
from changes in data formats. So, out of many other factors, the
absence of abstraction facilities in COBOL is a certain source of
maintenance budget overrun.

Despite these three COBOL pitfalls, this book’s spirit is not the
definitive conviction of COBOL as being solely responsible for the
expensive construction, operation and support of today’s existing
information systems. We may acknowledge that COBOL was a good
means to spread business intelligence into information systems. In this
line of reasoning, the native business-oriented nature of COBOL is a
source of propitious inspiration when modernizing information
systems toward newer technologies. In parallel, regarding the new
deal of the digital economy, it is broadly accepted that COBOL and its
surrounding technologies (mainframes, etc.) are not the best tools to
address dynamicity issues: information systems must change
according to a real-time scale. This leads us to view software
evolution, even adaptation at runtime, as a renewed challenge in terms
of software management. In short, what is good in COBOL (its
business facet and culture) must, in a conceptual way, be retained
when modernizing.

xxiv COBOL Software Modernization

I.3. Why the Cloud?

Discussing COBOL modernization toward SOA obliges us to pay
attention to cloud computing. How do we keep our head on our
shoulders when reading software marketing reports and surveys that
proclaim “the Cloud”! Who has not heard about cloud computing?
Nobody! In the same line of reasoning, everybody probably has a hazy
comprehension of this expression. Eventually, will cloud computing
mean “fog computing”? Perhaps it will if no precaution is taken. This
feeling comes from an exaggerated media hype without, for average
IT professionals, the possibility of having the time to digest concepts,
reorganize their own ideas (demystifying buzzwords, having
trustworthy references to well-explained experiments etc.) and simply
testing the Cloud as a not-so-different way of using computers and
networks for business.

In terms of money savings, cloud computing promises a lot.
Typically, computing infrastructure pooling is a key concern of IT
managers. Intuitively, cloud computing is at least understand able as
an appropriate solution for this. What else? A lot of computing
paradigms behind the Cloud are confirmed, even reinforced, namely
SaaS: “Put simply cloud computing is the infrastructural paradigm
shift that enables the ascension of SaaS” [MCF 12].

I.4. Legacy2Cloud

We comment later on in this book on the Cloud and SaaS in
relation to many other cloud-related notions. We strongly believe in
the Cloud’s power as, in the past, we trusted COBOL as an originally
ingenious language for business. This book capitalizes on the better
of the two through the Legacy2Cloud paradigm. This is a jump from
a world with high skill on business-oriented programming to a
world of ever-seen flexibility provided by computer/network
infrastructures (adaptability, elasticity, reactivity, etc). Beyond this
vision are a lot of tricky technical issues to be addressed to actually
enable such a jump.

Introduction xxv

Is this extraordinary jump realistic? In this scope, in [MCF 12], it is
written:

“Legacy applications As a general rule, older
applications do not make good candidates. That is
because legacy applications tend to be rigidly coded, with
outdated programming constructs, lots of references hard-
wired into the code, and a reliance on a single (usually
massive) database. There is no easy way to transform
such an application into a flexible, agile cloud service, so
you are most often better off leaving such applications on
the ground.”

It is also written:

“Modern applications All things considered, newer
applications that use modern programming techniques
and architectures are well suited to a cloud migration.
This is particularly true of multi-tiered applications that
are based on the web and the Internet standards and that
use multiple, distributed databases.”

When reading this text extract, the answer to “Is this extraordinary
jump realistic?”would be: “No, it is not.” It is indeed observed that
only already modern applications may go to the Cloud. Such an
opinion misses the fact that, on a massive scale, such applications do
not really exist, i.e. there are not many. For example, the move of a
Java EE well-formed application to the Cloud, even if it may require
some days (even weeks) of energy, is not the core of the game.
Pragmatically, why the Cloud if the latter is only concerned with “the
nobility of software applications”? Within such a vision, the Cloud’s
take up might be dramatically slowed down. Instead, the real
possibility of skipping intermediate shapes (i.e. applications that are
“modern” without being cloud-based) is the Holy Grail, this book’s
challenge. The resulting question is about the elaboration of a method
and a supporting tool that are able to accomplish COBOL software
modernization in an end-to-end and seamless way.

xxvi COBOL Software Modernization

I.5. Human weight on successful modernization

One key concern of this book is the integration of people in
modernizing activities. Once convinced of transforming COBOL
applications into Java EE for instance, the modernization method must
greatly take care of business analysts, project managers, software
architects, developers and so on to succeed. The culture, the
background, and the professional life of these people were/are so
different. They probably come from computer prehistory, but their
know-how, their knowledge of their organization (institution, agency,
firm, Small and Medium Enterprise (SME), etc.), and their control on
business, are all of inestimable value. So, modernizing COBOL
software is above all a collaborative work to extract business nuggets:
business logic, i.e. data semantics, rules, functionalities, etc. In this
context, skilled “legacy people”, high technology coaches and
powerful Computer-Aided Software Engineering (CASE) tools are
required.

I.6. This book’s structure

This book proposes a reflection on software modernization to align
old information systems with current Internet-centric computing
paradigms, mainly SOA and the Cloud along with highlighting
popular middleware platforms, namely Java EE1, .NET, Spring, etc.

The book aims at addressing business and technical issues from
Chapter 1 to Chapter 7. Practical insights into a ready-to-use method
and tool are in Chapter 8 and Chapter 9. In this scope, this book
comments on the BLU AGE method and tool used in large-scale
projects in the USA and in Europe for varied business domains:
healthcare, retail, transportation, tourism, energy, manpower,
government, etc.

1 Java EE is a standard encompassing a family of compliant application servers:
Apache TomEE, GlassFish, JBoss, etc.

1

Software Modernization:
a Business Vision

1.1. Software-based business

As of today, there is a great paradigm shift. In past decades,
software was the unavoidable way to “automate business” in the logic
of cost and time savings, productivity, and better quality in product
and service delivery. More recently, “software became recognized not
just as an automation tool but more broadly as a strategy for providing
products and services not yet offered” [FAV 11]. In other words,
nowadays, software is a non-removable part of products and services.
Software may be embedded in a car, for instance, leading to attractive
functionalities (assisted parking). Another example could be a jewel
reseller who is able to provide online authenticity certificates for its
products through its accession to a trustable international organization
in charge of regulating such certificates (respect of laws sale tracking,
etc.). In both cases, software delivers some business added value.

Companies whose primary activity is selling software are reputed
to provide intangible goods [POP 11]. The distinction between these
and other companies is tending to disappear. Car manufacturers of the
future will thus, instead of selling “a car”, sell “a computer” and
hardware/software interoperating with an engine, a chassis, an
interior, a steering wheel, etc. Jewelers will probably be in a similar
situation due to the irreversible interpenetration between the Internet
and business activities.

2 COBOL Software Modernization

The shift is the fact that the business model of “modern
companies” is changing, critically relying on software. In this context,
transforming car engineers into software engineers would be a huge
challenge, or, in the opposite way, a very bad idea; this is the same for
jewelers. So, new business models have to be invented to tame
software.

From a software engineering viewpoint, we mean it is important to
build software differently and beyond this to have software evolution
under control because of proliferation. In this line of reasoning, most
of the classical software providers still suffer from handmade
practices. Introducing these practices in non-software companies
might be a nightmare. Software divisions of future companies will
include software builders/maintainers or not. In the negative case, at
least, business analysts and innovators will constitute these divisions
to offer differentiating, and thus competitive, goods and/or services.
Finally, stand-alone software will no longer exist to the benefit of
cooperative pervasive (more or less big) software components
irrigated by the Internet.

1.2. Information-driven business

The value coming from software is the computed information.
Forthcoming software-based business models must then focus on
information-as-a-revenue and try to diminish the costs generated by
software creation, maintenance and utilization.

Today’s entrepreneurship success is thus strongly ruled by
information. As an immediate result, organizations (companies,
administrations, etc.) continuously grow their dependency upon
information and thus information technology (IT).

In this context, business processes increasingly rely on high-end
information: undisruptive availability, liveliness, sharpness, easy
digestion (even “digestibility”), rich semantics and creation of
meaningful knowledge from computed information.

www.allitebooks.com

http://www.allitebooks.org

Software Modernization: a Business Vision 3

Business processes are powered by information systems whose
criticality, optimality and dynamicity, i.e. efficiency in short, are key
concerns of business analysts, software project managers, software
architects and software developers. These people think about and
maintain applications on a daily basis, which are edges of an ill-
delimited graph, even imbroglio, of information channels (hardware
and software). Over the years, nobody has the global overview of this
graph. Worse still, everybody wonders why this graph does not
collapse as a paper castle built from a card game. The rule of the game
is now clear: the crash of the information graph is the straightforward
bankruptcy of the organization.

Figure 1.1 shows a common vision of information and information
systems in organizations. On the right-hand side, the computer layer
not only goes on providing operating means for business automation,
but it must also be a booster.

Figure 1.1. Information as an ever-rising value in organizations

4 COBOL Software Modernization

1.2.1. Adaptation to business

Information systems are an abstract view (Figure 1.1, left-hand
side) of software applications and databases, middleware platforms,
operating systems and related hardware (servers, mainframes,
personal devices and computers) and infrastructures (power feeding,
server cooling, networks, both local area networks and wide area
networks, etc.). In essence, information systems constitute a logical
view, which focuses on the immaterial assets of computer
environments: information, its structuring, organization, production
and delivery means.

As a metaphor, information systems are similar to a set of services
offered by a town: municipal libraries, book loans, magazine
consultation, buses, green car renting, kindergarten children’s
entertainment events, etc., with related synchronicity, e.g. bus
schedules fit to libraries’ working hours, children’s entertainment
events, etc. In such a context, town citizens do not care about librarian
and bus driver salaries, fuel in buses, libraries’ heating, etc.

In this line of reasoning, it has always been tempting, even healthy,
to isolate information from its physical implementation. This approach
aims at better considering information-as-a-service. Instinctively,
information consumers do not pay attention to computing
environments being hardware or software.

Designers of information systems thus have the permanent
difficulty of guaranteeing and maintaining high-quality services
wrapping information processing. The difficulty mainly lies in hiding
intrinsic problems from piled (hardware and software) layers and
recurrent failures. As an analogy, a bus drivers’ strike would probably
diminish the quality of the town’s services to citizens.

For a long time, the ideas of architecture and urbanization have
taken a prominent place in IT. It is important to notice that we
consider architecture or urbanization of information systems in a
logical way. As discussed before, information systems are mind views
while in practice bits move about within circuits. Thus,

Software Modernization: a Business Vision 5

information pieces, building blocks, etc., have virtual connections,
links, etc., whose awareness is a key aspect of information
management at large. Architecture is related to software that powers
information systems, while urbanization is a macroscopic wrapper
including information channels, forms, circulation, restitution, etc.
Both urbanization and architecture act as a basis for, respectively,
information systems and applications. Cartographic representations of
these (sample in Figure 1.2) can be made more or less explicit,
depending on their rational nature. Rationality aims in essence at
controlling useless complexity.

Figure 1.2. Urbanization and architecture

As an analogy, Figure 1.2 shows the case of tourist flow
management for the Eiffel Tower. Urbanization (right-hand side, top
of Figure 1.2) copes with transportation infrastructure in connection
with tourist visit routes and coarse-grained throughputs. Architecture
(right-hand side, bottom of Figure 1.2) is concerned with “solutions”
(e.g. signage). Information boards about visit routes are components
of a chosen architecture to perform tourist flow management “at
runtime”. Services rely on components, for instance, displaying on

6 COBOL Software Modernization

boards the next times of bus, boat, subway, etc., arrivals at closer
transportation stations.

Gradually, information system designers face newer challenges.
While architectures take time to become optimal, nowadays, they are
expected to be/become variation-prone. Today’s economical contexts
(globalization, trend reversals boosted by the Internet and consumers’
zapping) call for changing business: practices and processes at the
organizational level. At the underlying level, information and logic
engraved in information systems are surely subject to modifications as
well. While organizations may require business practices and
processes to rapidly adapt, information systems do not have the same
latency. Re-architecturing is above all an offline activity. Fortunately,
not all business adaptations involve re-architecturing, but information
systems must be thought by designers to cushion business shocks: that
is the new deal.

Returning to the case of tourist flow management for the Eiffel
Tower, re-architecturing could be the review of the existing
information systems for dealing with sporadic phenomena (e.g.
cold/heat waves) or frequent events (e.g. sport shows), which may
increase or decrease the presence of tourists. The case of a heat wave
may, for instance, call for fit-like-a-glove services: boat traffic and
arrivals to the Seine river embankments have increase to allow people
to refresh themselves on the water when departing or arriving. In other
words, customers will prefer boats to the detriment of subways, buses,
etc.

So, nowadays, since architecture variability cannot be ignored,
information systems should gain more flexibility. Typically,
architecture components must, on demand, collaborate in a different
way and/or extend collaborations with third-party components often
unknown at design time. As mentioned in the introduction, service-
oriented architecture (SOA) is a solution principle, but a lot of
progress is expected in this research field.

In [BAT 14], it is especially revealed that acting on architectures is
often infeasible due to excessive complexity. The difficulty to sort out

Software Modernization: a Business Vision 7

business logic from this complexity is high. Instability of architectures
(the contrary of variation-prone) is thus the phenomenon when
interventions in architectures’ inner workings generate long periods
before recovering stability.

As an overview, business pressure is such that information systems
must demonstrate a kind of real-time evolvability. In this scenario,
attenuating the adherence between information systems (as the
immaterial value of organizations) and computer facilities (both
hardware and software) seems to be a perpetually renewed challenge.
The well-known weakness of information systems is their poor
reactivity in terms of requirement adaptation while, in contrast,
today’s business is subject to very frequent variations, even shocks. In
other words, long-term strategies related to information management
poorly comply with volatile short-term business activities.

1.3. The case of tourism industry

The sector of tourism is indicative of the increasing and
inescapable intertwining between IT and business. Gallo and Krupka
in [GAL 08] argue “(…) travel companies will face the need to
introduce in-depth changes to their business strategies in order to
adapt to the changes affecting their customers. (…) The development
of new products and services and the adaptation of the offer to global
customer trends require a great deal of innovation” (emphasis ours).
In reality, as in many other sectors, tourism to a great extent relies on
IT to support this innovation. Nonetheless, IT can also be a source of
possible setback when companies are slowed down by rigid
information systems.

As an illustration, Figure 1.3 shows what might be an economical
process whose aim is the customization of travel offers for new
customer profiles, namely singles. Invariably, the creation of new
business services leads to new software services (and their tricky
connection with what is existing). At the bottom of Figure 1.3,
software evolution is caught in a cost vise. Two contradicting
requirement streams drive changes: innovation in scope and daily

8 COBOL Software Modernization

business. Experience especially shows that change implementation is
a source of regression. Namely, one may observe what follows: what
works perfectly at a given time after months of effort can
spontaneously become out of order. As an illustration, the addition of
new services for singles is both an extension and a modification
(coupling with the existing architecture’s components). To get the job
done well, modification may call for “adaptation” in existing
components. Afterward, these do not serve the daily business
(unexpected failures) while they did before. The expected innovation
and its associated revenues may then be significantly penalized by the
impossibility of driving software evolution in a timely manner under
controlled costs.

Figure 1.3. IT and software evolution positioning in the fluctuating tourism industry

Software Modernization: a Business Vision 9

In all business sectors, in people’s minds, IT is often rightly
considered as an aspirator of financial resources. That is true when IT
is no longer observed as a business developer. Moreover, people
outside the IT world do not understand why IT is costly (a
euphemism) while, par excellence, it is the technical field where
competition is fiercer, innovations are bigger and, accordingly, costs
linked to hardware/software parts (e.g. open-source software libraries)
are increasingly lower.

Regarding the tourism industry, it should benefit from both the
Internet (as an ever unbound marketplace) and IT advances, which
together reshape the Internet-based possibilities of doing business.
Nonetheless, over the years, the tourism industry has been unsettled
by the Internet, which created an excessive, even confusing, offer with
an exacerbated competition. In fact, the globalization of tourism
business diminishes sales margin, relying on adaptive information
systems not to miss pioneering revenue opportunities.

New players, new deals, new rules of the game, etc., appear in
quasi-real-time. The paradox is that IT makes possible this liveliness,
while software applications must accordingly behave differently to
cushion new business events. Ultimately, this leads us to ask
developers to change code and in the worst case to reformat software
architectures. The latter is both a source of stress and risk and,
unfortunately, software crash before reaching a new stable situation,
which, in turn, does not meet the very last business expectations. This
infernal circle can only be broken with flexible software frameworks.

Tourism players, such as hotel chains, tour operators, tourism
agencies/organisms/consortia, transporters and car rental companies,
are involved in both business to customer (B2C) and business to
business (B2B) commerce. For instance, hotel chains may buy
excursions from tour operators while the latter buy bedrooms from
these chains.

New players are, for instance, health centers because a confirming
trend is the fact that customers associate travels with the possibility of
care: dental care, plastic surgery, fitness, etc. Another trend is the
possibility of collaborating with real estate agents, which can supply

10 COBOL Software Modernization

different kinds of accommodation, and thus multiply the types of
lodging on offer.

New deals can be joint and/or bulk purchasing, subcontracting,
product/service sharing, partnership with price comparison Websites,
etc.

The new rules of the game are, for instance, the fact that end
customers include implicit concerns when ordering travels. These are
security, sustainability, privacy, responsible tourism, etc. In the best
case, such values might be transformed into paying services, which
probably require collaboration with specialists. In the worst case,
these values may be in contradiction to cheap offers.

Intuitively, from a software viewpoint, it turns out that, a minima,
tourism applications must be able to exchange data. Beyond this, we
may simply imagine, for example, the connection between a health
care center software and a travel management platform to book and
arrange care stays within touristic stays. This link is similar to service
interoperation between travel and dating Websites in Figure 1.3. Each
business adaptation case would probably lead to a specific software
technical problem. Reasoning case-by-case results in numerous
induced problems whose piling is inevitable and resolution is very
long.

For software experts, SOA, later discussed in this book, is an
appropriate approach for organizing software so that interoperability
succeeds beyond data: applications may evolve incrementally through
new services (i.e. functionalities) and/or new service composition. In
the case of the mentioned travel management platforming, we should
have the possibility of easily, straightforwardly and transparently
calling for services accessible from the healthcare center software,
provided that the latter has been thought up, designed and equipped
with interoperability abilities, say, secure Web services since medical
data require more privacy.

Beyond the excitement provided by the Internet, there is an actual
potentiality for IT to favor reactivity in business. More generally, IT

Software Modernization: a Business Vision 11

and information systems must be the springboard for business
adaptation in shorter and shorter cycles.

In the common business-oriented language (COBOL) world, this
vision is a myth. In the Internet and cloud computing worlds, using
Java platforms/technologies in particular, SOA is a technical reality.
Nonetheless, from a business perspective, SOA often remains a (later
reachable) goal: no company, in the tourism sector in particular, has
developed such appealing adaptation capabilities to absorb very high
business fluctuations. In very rare cases, only software aims at
changing. In effect, business processes around applications also have
to mutate in involving users differently, modifying usages (roles,
tasks, documents, frequencies, etc.). Mutations generate natural
inertia, which is most of the time incompatible with the time slots
required to have software applications that instantly suit requirement
fluctuations.

So, software modernization, with a focus on COBOL, is not only a
technical issue to be addressed. There is a crucial need to have enough
reactivity in business processes, information systems and software
applications/components that simply help rapid development/
maintenance. There is a challenge in moving legacy systems to
renewed ones. This challenge especially amounts to, as much as
possible, separating business concerns from technical constraints.

More generally, the top of Figure 1.4 shows that IT may sometimes
be a hindrance when rigidity in information systems prevents any kind
of adaptation. Beyond technical issues and the particular case of
COBOL, the idea of software modernization is thus the progressive
erasing of such rigidity.

1.4. IT progress acceleration

Theoretically, IT progresses are the source of inexorable
improvements in the functioning of information systems. Empirically,
this position statement is false. It turns out that the migration of any
information system, or information systems part (applications,
components, services, etc.) from one “legacy” technology to a

12 COBOL Software Modernization

“modern” technology, may be, without experience feedback and
expertise, a nightmare, never mind the costs.

Figure 1.4. IT may be both a business stimulator and a brake

Broadly speaking, high tech may be viewed as a lure promoted by
“evangelists” who never, in the past, present and future, used/use/will
experience the high tech they have built and promote aloud. Lies
about high tech are in essence its masked inefficiency due to its
(natural) intrinsic lack of maturity, weak testing, poor adoption and
small-scale utilization. High tech with maturity, representative
experimentations, rich feedbacks and lessons learned, etc., is actually
no longer high tech.

From a business viewpoint, high tech is of little interest if it does
not address business issues. Results are not necessarily immediate and
tangible. If they are deferred, the high tech implementation method
must, however, provide guarantees in time; tangible progresses
through returns on investment especially must occur after a certain
period of time. Observable cases are rare; they are often accompanied
by debatable numerical data and statistics. However, there is a poor
communication on absolute failures whose counting and deep analysis
is thus illusory. This context does not favor experience exchanges in
an impartial manner and contributes to freeze the opinion of legacy
people: they are still negative about software (unjustified)
“sophistication” at large.

Software Modernization: a Business Vision 13

For COBOL professionals, model-driven development (MDD),
SOA, agile software development, cloud computing, etc., may thus be
considered as high tech whose maturity needs to be proved first. The
specificity of business sectors, companies and well-isolated activities
may also be an argument against going out of legacy contexts. The
adhesion of people is the rule. Feasibility surveys and studies are
helpful; proofs of concept are essential to convince COBOL people.
High tech inventors are respectable in their recognized role for IT
progress acceleration, but they generally have a tight vision on
business.

Roughly speaking, there are at least two very different coarse-
grained categories of computer professionals: business application
builders and generic software providers. The latter develop open-
source software, commercial off-the-shelf (COTS) products, etc., and
act as suppliers for the former. The former meet end-users that are
difficult to synchronize with domain requirements. The main task of
application builders is to push and acquire information to and from the
reality of organizations. This task does leave time for integrating new
software technologies in application development frameworks: for
instance, switching to an object-oriented programming language,
adopting and setting up an agile software development method, etc.
So, pragmatism is as follows: high tech has to be thought like any
science contribution: effectively shared and beneficial for humanity; if
not it will be forgotten or postponed to the next century.

1.5. Legacy world

The legacy (software) world is the sum of legacy technologies,
legacy information systems, legacy applications and “legacy people”,
anything apparently aged but still delivering the expected business
services in time and quality – is this a paradox? Not really… Behind
the “legacy” term is probably a lot of expertise, long experience,
background and wisdom. Briefly, summarizing “legacy” as something
pejorative is often misplaced.

In [BAT 14], there is a very recent interesting summary on
interviews of IT practitioners about their own perception of legacy

14 COBOL Software Modernization

software systems and their possible modernization. Recognized
qualities are: “(76.7%) business-critical, (52.8%) proven technology,
(52.3%) reliable system and (24.4%) performance”. This directly
confirms the idea that “legacy” conveys positive values. In contrast, it
is concomitantly agreed that strong factors impose modernization:
“(1) high maintenance costs, (2) lack of knowledge, (3) to remain
agile to change and (4) prone to failures”. Discerning readers may
detect questioning contradictions in this survey, for instance, how a
legacy system may at the same time be a “reliable system” and “prone
to failures”? In fact, legacy systems are diverse in nature: people share
common characteristics like “something aged”, but they may disagree
about criteria like “reliability” above.

In this line of reasoning, the qualification of a software system as
“legacy” is not systematically linked to a programming language such
as COBOL: “more than half of the informants do not agree that the
programming language is a determining factor for a system to be
legacy, while the rest were in agreement” [BAT 14]. However, half of
the respondents’ legacy systems are known to be built on top of
COBOL.

In [NAS 08, p. 6], another survey on legacy systems is given:
“inability to be adequately supported, maintained, or enhanced”
(82.8% of interviewees) is the premium discriminating criterion for
“legacy”.

Evolvability, or more precisely, the proven absence of this
potentiality is, on the spot, what better qualifies “legacy”. In relation
to our prior analysis on the new business deal, the question is: “why
such a significant concern about evolvability?”. The answer that
comes is the same: “inability to meet business needs or system not
agile enough to continually meet the challenging needs of the
organization” [NAS 08, p. 6] (79.3% of interviewees). This criterion is
not independent of the first criterion, since evolvability mainly results
from business need fluctuations. The interesting word in the previous
text extract is “continually”. IT practitioners no longer view
maintenance as discrete, but as inevitably continuous. Driving changes
without break periods has definitely become “the job”.

Software Modernization: a Business Vision 15

1.5.1. Exiting the legacy world

In fact, economical considerations prevail over technical ones; this
is mostly true because the latter are induced from the former. More
precisely, the ratio between the immaterial value of information
systems and the cost of ownership and the technical debt associated
with these systems is a balance indicator. The worry factor, i.e.
decrease in this ratio, is the door to software modernization.

As discussed previously, information systems are the core source
of information-as-a-revenue, but they may behave like an old car
whose oil consumption is no longer consistent with the essential
services to be delivered: transport from point to point. In this
metaphor, using a public bus is similar to replacing a legacy software
system by a COTS software package.

So, exiting the legacy world is just a breaking point with respect to
the inadmissible deviation of financial indicators. Software
modernization then becomes an actual concern before being an
obsession. Nonetheless, in all surveys, people never claimed that
filling the gap with the newest technologies is the motivation behind
software modernization.

Strategically, organizations want to avoid technological silos like
developing solutions based on an evident isolation with the Internet,
cloud computing, etc. Beyond this, using these newer technologies
may be unacceptable, particularly because of entry costs. In [NAS 08,
p. 12], “funding” has rank 5 (in a scale of 1–5 with 1 being “not
challenging” and 5 being “extremely challenging”). This criterion is
recognized as the first major obstacle for modernization. In these
times of crisis, budget constraints drastically limit the spectrum of
candidate methods for modernization.

Returning to the metaphor of the energy-consuming car,
modernization is not just the replacement without awareness of the old
car by a cost-saving car. In other words, a smooth ride, for example,
can be an existing practice to be kept. More generally, old car usages
are probably associated with the best cost-saving practices: best-

16 COBOL Software Modernization

known circuits, shortcuts, car sharing, etc. We mean the immaterial
value of information systems is nothing but the business value buried
in computer memories and storages (information), as well as programs
(functions and rules, logic in short). Only modernization methods
based on a solid extraction and an intelligible reconsolidation of this
business value make sense. This approach may attenuate the
“funding” disease through the fact that modernization is first and
foremost porting business intelligence from one target to another.

In this spirit, high tech and legacy technologies are not opponents.
They are just different means, whose appropriateness is strictly linked
to different time slots. Accordingly, we may then write that any high
tech is the legacy technology of tomorrow. This strongly confirms that
modernization methods cannot be proposed in terms of point-to-point
technology mapping and transfer. The consistent and complete
expression of legacy systems, once ported, independent of new
technologies, is thus so vital.

1.5.2. Legacy world professionals

IT is strongly characterized by mutations, which apparently and
permanently call for “people brain updates” in terms of acquired
knowledge, technology comprehension and so on. There is,
understandably, a natural reluctance to follow up these mutation
cycles, which are numerous, frequent, but sometimes volatile and
unjustified. Worse, they are sometimes just hype. Being open-minded
must a priori be the rule in IT, but experience shows that most of the
worldwide software development stakeholders have no professional
time to devote to IT news, in terms of knowledge enhancing
especially. Beyond this, the volume of technology releases (products,
versions, application programming interface (API), standards, even
paradigms, etc.) is simply too huge.

We cannot, without any nuance, talk about the inability of people
to apprehend technology jumps; it is certainly only a matter of time. In
this context, software modernization is either an opportunity to invest
in new knowledge or it may be viewed as the end of

Software Modernization: a Business Vision 17

“tranquility”. As mentioned above, people share the positive opinion
on legacy software systems as being “reliable”. Behind the “reliable”
word is the fact that any long professional life with only one line-of-
product concern (e.g. COBOL) is a sure way to converge to “reliable”
systems, i.e. we must read here: “systems with full controllability”.
More generally, technology capitalization contradicts high tech. The
source of stability and full control of information systems relies on
keeping old technologies under long-term utilization despite the
fashions.

Software modernization is in essence the moment that has been
pushed away for a long time. Technology jumps in non-chosen
moments are then problematic because they are human-centric.
Several psychological and cultural barriers may strongly slow down
the process to move forward. By translating software to ill-known
technological targets, feelings such as creativity vanishing, loss of
control, being software robots, etc., may increase for individuals or
groups.

There is another source of trouble in IT. The persisting
craftsmanship in IT is the consequence (or perhaps the cause) of the
not-invented-here (NIH) syndrome. In effect, software reuse might be
considered as a semi-failure at the beginning of the 2010s, while the
origin of the software crisis was put forward in the 1960s. People
persist in considering that they build so-specific software. Any the
software from outside is, in this scenario, suspicious. This is both true
and false. This is false because, as a counterexample, any new
employee after learning periods must be able to play a significant role
in existing software evolution. This is true because the proximity with
end-users is irreplaceable. To that extent, software outsourcing is
nowadays identified for certain types of software only.

Another key human factor of software modernization is the
“graying” of IT staff. Employee retirement is an everyday event in
organizations. A driver for software modernization is then often this
human factor. However, beyond the loss of human (technical)
resources is the loss of business intelligence. Indeed, computing
wrongly remains a technical discipline omitting the raison d’être of an
information system as being the nervous system of organizations.

18 COBOL Software Modernization

Organization management is preponderant. As already discussed, the
careers of IT people close to retirement are almost always based on an
economical background. Software modernization in this scenario is
the true opportunity to mine this business intelligence before
retirement.

1.6. Conclusions

A justified criticism against IT is the fact that it was created to
assist organizations in management and business, but in increasing the
number of applications, information systems tend to become
incoercible. We mean, in an organization, IT components (hardware +
software) not only become more complex but also tend to exist to only
feed each other. Keeping IT and business converging is an everyday
battle, which calls for more and more effort, means and money. IT
people are skeptical about newer technologies because they do not
actually deliver what they promise. Non-IT people do not understand
why previous important investments in computing infrastructures do
not solve problems in a timely manner. These people only want to
relate to information systems from the surface. On the opposite side,
IT people cannot easily argue that information systems’ inner
workings are very difficult to monitor and manage.

Honestly speaking, IT people are overwhelmed. They cannot step
back. They suffer IT. Concretely, in COBOL for instance, programs
come from nowhere. Technically, each appears as yet-another-
retaining-wall. From the business viewpoint, over the years, IT
components have begun to look like patches whose direct positive
impact on the business is often imperceptible. In this context, legacy
information systems are naturally guilty. Why then modernize with
the risk of standing still?

This depressing vision contradicts news in IT magazines, Web
blogs, great-fanfare announcements, success stories, etc. Indeed, this
chapter shows that a new deal may exist: software is no longer the
means for information processing; it is the source of extended
business through the idea of information-as-a-revenue and that of

Software Modernization: a Business Vision 19

service in SOA. With the Internet’s unfinished culmination, there is
indisputably a paradigm switch. Software and information are no
longer only helpers or boosters; they are “the value”. Precisely,
services as consumer goods and services as software artifacts become
increasingly less distinctive. Intentionally, SOA and the Cloud are the
up-to-date software supports to favor such a convergence. The case of
the travel industry is representative through the endless opportunity to
develop and sell new services. In such a revolution, software is
componentized; components are business-related and pervasive
including high availability and strong dependability.

Because business without people is meaningless, this chapter also
mentions that revolutions, even though technological, cannot ignore
people’s aspirations, cultures, experience, know-how, etc. COBOL
software modernization arises in line with this healthy observation.

2

Software Modernization:
Technical Environment

2.1. Legacy system

Until now, we have singled out an intuitive idea of what a “legacy
system” really is. Being massively constituted of Common Business-
Oriented Language (COBOL) applications does not qualify a given
information system as “legacy”. NASCIO in [NAS 08, p. 2] proposes
the following definition: “A Legacy System is not solely defined by
the age of IT systems (e.g. 20 years) as there are many systems that
were designed for continued upgrades, but the term also focuses on
elements such as “supportability”, “risk” and “agility”, including the
availability of software and hardware support, and the ability to
acquire either internal or outsourced staffing, equipment or technical
support for the system in question. The term may also describe the
system’s inability to adequately support “line-of-business”
requirements or meet expectations for use of modern technologies,
such as workflow, instant messaging (IM) and user interface”.

In this definition, the age of the legacy system plays a great role,
but this criterion is not enough. In [ORA 08], it is highlighted that two
other factors play a greater role: “(…) that “agility” and “adaptability”
top the list of business drivers prompting the modernization of legacy

22 COBOL Software Modernization

systems1”. As written in Chapter 1, legacy systems were designed
where change was the exception, not the rule. Today’s business
perpetual oscillations call for mechanisms to conduct recurrent (small
or medium) changes in information systems, ultimately leading to the
possibility of revising applications in time-to-market and cost-
effective compatible cycles. Precisely, “agility” and “adaptability”
mean the potential to be agile and adaptable. So, behind the idea of
software modernization is primarily the idea to make “agility” and
“adaptability” tangible in the modernized systems, whatever the
modern technology concretely used.

In short, the term “legacy” both provides a positive and negative
idea. The positive is the idea of heritage of business know-how. The
negative is the fact that this know-how is engraved in technology in
such a way that the legacy system’s daily functioning penalizes the
business.

2.2. Modernization

In the literature on legacy systems, several words refer to the
transition from outdated systems to newer ones: modernization,
replacement, migration, renovation, recasting, revamping, etc. It is
thus important to first sort out this word list.

Simply speaking, since systems have lifecycles they have to die
someday anyway. The motivation behind transition is their evident
business value while their evolution is complex and costly, even no
longer supportable. This business value may be difficult to measure
and obtain. For example, a COBOL program generating a report from
several flat (often odd) files keeps a business value through the fact
people continue to read the report. They in particular have the
possibility of bringing with them the report at different (professional
or not) places. However, in a world of mobility, we may imagine the
availability of the report’s data on smartphones and tablets, with
probably more digested presentations/interpretations: charts,

1 Ranking of this concern in [NAS 08, p. 9] is 4 (a high attributed value) on a scale
of 1–5.

www.allitebooks.com

http://www.allitebooks.org

Software Modernization: Technical Environment 23

consolidated indicators, etc. Transition to novelty is thus above all an
opportunity to make a thorough inventory of business practices. In
other words, suppressing applications like this report editing
application is a kind of modernization.

Figure 2.1. The dilemma between modernization,
migration and replacement

In [COM 00], there is a typology of software system evolution
between maintenance, replacement and modernization (white-box and
black-box). Maintenance is characterized as having limitations when it
no longer conforms to its initial mission (“(…) bug correction and
small functional enhancements (…)”). Namely, if the software
system’s integrity cannot be guaranteed then traditional maintenance
has to be questioned. This is the case when a sum of changes is
uncontrollable in the sense that malfunctioning results from the sum
and cannot be explained via a well-isolated change. The system’s
integrity is violated because all changes are like drugs whose
concomitant ingestion creates a new disease.

24 COBOL Software Modernization

Replacement or modernization are substitutes, but Comella-Dorda
et al.’s survey misses the notion of migration, which has a great
resonance in industry through today’s modernization tools. Figure 2.1
shows the appearing dilemma when maintenance is no longer the
solution.

2.2.1. Replacement

Replacement is the radical abandonment of the old system to build
a new one from scratch. In the best case, the old system is a source of
inspiration, but in many circumstances, the total absence of
documentation, knowledge or informed people prevents such an
inspiration. Independent of business concerns, the legacy system often
cannot be extensible, worse, it can be “untouchable”: adding a few
COBOL statements at any place in the code is a sure crash followed
by several weeks of repair. Such an operating mode for maintenance is
unrealistic in a professional framework. As an illustration, the French
billing application for landline telephony is a COBOL dinosaur that
was subject to a couple of strict-replacement attempts: each led to a
failure. Replacement is in essence highly risky due to some
empiricism, i.e. undefined methods to re-engineer the business
expertise. For examples, billing rules may have many exceptional
cases imposed by aged, but still applicable, regulatory clauses coming
from (forgotten) agreements, contracts, laws, etc. In such a case,
replacement imposes extreme-value requirements’ engineering actions
with unpredictable results.

Later on, replacement includes an overlap phase where the old and
the new (completed) system run, for comparison purposes, in parallel.
The latter must be as functional and robust as the old one. There is a
risk of degraded service. For business-critical applications like billing,
this may correspond to non-encashment or litigation costs on bills, a
nightmare for a company. This remark encompasses the vivid need of
carrying out the full testing of the new system with respect to the old
one. The question is to what extent the older may serve as a reference
to measure and establish that the newer offers equivalent

Software Modernization: Technical Environment 25

functionalities, even the same quality of service. We come back later
on to this crucial issue.

2.2.2. Migration

Different from “replacement”, “migration” covers either a
lightweight or heavyweight code transcription [SEL 03].

“Lightweight” is especially the case when one moves from an
obsolete COBOL dialect (e.g. COBOL Pacbase whose maintenance by
IBM is no longer supported) to a “modern” COBOL. Here, “modern”
means that we guarantee that the generated COBOL code is actually
surrounded by perennial (efficient) maintenance tools. Common (soft)
cases are when organizations only want to move non-maintainable
COBOL, a bottleneck, to something, which again becomes evolvable.
Another use case is a COBOL-to-COBOL solution, which mostly
consists of addressing architectural issues, i.e. moving the code from
mainframes to platforms with distribution capabilities or, more
frequently, adopting the Web three-tier application style. We may also
carry out the migration to another programming language, say C#, with
the necessity to fit the transcribed programs to the new platform
constraints, in this case, .NET.

In fact, when the initial code leads to no significant restructuring
when observed in the new target (language and/or platform), this is
“lightweight”. In this case, most data structures remain as is.
Unfortunately, the output code remains cryptic; it is thus still subject
to sizeable long-term maintenance costs. In this line of reasoning,
migration to object-oriented COBOL might be a ticking time bomb if
existing data structures are transformed into classes in a one-to-one
mapping approach. We mean that generating ill-structured OO
programs is possible when we do not, as expected, dogmatically apply
OO principles (encapsulation, inheritance-polymorphism, exception
handling, etc.).

There are always optimization opportunities when programming
for a target platform/technology. Moving to object-oriented COBOL
makes sense only if the reuse of classes in libraries, for instance,

26 COBOL Software Modernization

classes in a persistence-dedicated library, is effective. Most of the
time, migration misses this possibility or, in the other extreme,
recreates a too much excessive adherence to the target
platform/technology. This is the case when the transcribed code
includes many abstruse platform/technology details.

As a comparison, the migration can be qualified as “heavyweight”
when the programs are looked into thoroughly. For instance, varied
concerns on data (unexplained dispersion, unjustified replication, low
access performance, etc.) may involve a language-to-language
transcription in concomitance with sizeable code reorganizations.
These challenges exist in relation to the utilization of new data
supports (e.g. migration from flat files to SQL-like databases).
Typically, the introduction of data access objects, as proxies between
computations and data stores, becomes useful to separate the data
semantics from data codifications. This naturally leads to a broader
review of the existing data structures. Another kind of “heavyweight”
migration is pure code refactoring when the code needs reshaping for
further reuse. Hybrid approaches apply of course.

The key feature of migration, being lightweight or heavyweight, is
the fact that the primary concerns are a technology-to-technology
focus. Both lightweight and heavyweight transcriptions have the risk
of being offered by a technology provider who proposes her/his
“future legacy proprietary technology” as is the case with object-
oriented COBOL. There effectively exist contemporary COBOL
technologies, which comply with the Internet, distribution, service
computing even cloud computing. The key drawback of “migration” is
the fact that issues are tackled through, solely, a technical angle.
Technology-to-technology encompassing language-to-language
transcription is thus a lure when there is no serious attempt to
distinguish between the technology facets and the business logic.

Figure 2.2 illustrates the risk associated with migration: it is surely
the direct transcription of, not only code and data, but the imbroglio
between the two as well. Put simply, the existing chaos is ported from
a legacy to a modern technology, so what?

Software Modernization: Technical Environment 27

Figure 2.2. COBOL software jungle as candidate for migration

2.2.3. Modernization versus migration

“Modernization” as promoted in this book is twofold. Black-box
modernization (a.k.a. “renovation”) amounts to repainting
applications. Legacy systems are analyzed through their inputs and
outputs. From this analysis, “black-box modernization is often based
on wrapping. Wrapping consists of surrounding the legacy system
with a software layer that hides the unwanted complexity of the old
system and exports a modern interface” [COM 00]. In this case,
applications have to smell, to feel “modern”, but there are no real
changes, consequently, no progress either.

Black-box modernization raises the problem of adding layers
without a clear limit and thus adding unwanted sophistication, a
certain source of future complexity. Besides, stacking layers is often
risky in terms of performance comprehension and effectiveness.
Black-box modernization may also be, contrary to COBOL-to-object-
oriented COBOL transcription, the surrounding of old COBOL within
object-oriented COBOL. There are thus many ways of hiding a legacy
system within a modern appearance.

“White-box modernization requires an initial reverse engineering
process to gain an understanding of the internal system operation.

28 COBOL Software Modernization

Components of the system and their relationships are identified, and a
representation of the system at a higher level of abstraction is
produced” [CHI 90].

White-box modernization is the method defended in this book. In
this sense, reverse engineering acts on the legacy system to create
knowledge on its inner workings. However, the resulting
representation from abstraction must ultimately be an expression of
the business logic engraved in the old system. The core goal of white-
box modernization is then a technology-neutral representation of the
legacy system. Having the ability to list the system’s components and
their semantic relationships (e.g. “includes”, “calls”, “occurs before”,
etc.) gives knowledge on the old architecture. Nonetheless,
this view has no high value if it does not enlighten us on the way this
architecture serves the business. From experience, the old architecture
is fully off topic in the forthcoming modernized system. As detailed in
this book, the extraction of knowledge in the legacy system is a
multiphase process, each phase delivering representations mixing
business and technology system properties. This mixing progressively
decreases in the course of reverse engineering. A white-box
modernization process is thus based on an iterative method separating
one-block views in related viewpoints. The code view is the first
nugget extracted. In a simplified line of reasoning, an architecture
viewpoint and a business viewpoint might be deduced from this code
view.

For example, Customer Information Control System (CICS) calls
in COBOL are eminent parts of the application’s architecture:

– one-digit precision:

IF … THEN MOVE 1 TO precision.

– two-digit precision:

ELSE MOVE 2 TO precision.

END-IF.

– ‘Currency’ program call:

EXEC CICS LINK PROGRAM(‘Currency’).

Software Modernization: Technical Environment 29

From the code perspective, these COBOL lines are a statement
suite. From the architectural viewpoint, this is a (calling) link to a
packaged program named Currency. From a business viewpoint, this
informs us that the business logic interweaves with currency
conversion functionalities in two different ways, i.e. the business logic
has two calculation precision rules: 1 or 2 digits. Unfortunately, we
have to be aware that the structuring level of average COBOL
programs is significantly lower, compared to the code above. This
results in duplicated business functions and rules, whose codification
is not uniform at all. There is a huge need to reconsolidate these. As a
comparison, recall that, in a migration process, the business logic is
deemed to be immutable.

2.2.4. The superiority of white-box modernization

An open issue about modernization is the capitalization of the
business value. To that extent, choosing between replacement,
migration, black-box or white-box modernization favors in any case
the, possibly wide, (re-)visitation of a legacy system, a rarely
encountered occasion for properly (re-)expressing its business value.
However, modernization methods differ in power on that concern.

For example, in [COM 00], they sketch the ever-topical
“Functional (Logic) Modernization” of an anonymous legacy
application by means of the encapsulation (wrapping) of the business
data and logic with the help of the Enterprise JavaBeans (EJB)
technology, the core computing support of Java EE. Java EE had
many advantages: vendor-neutrality, cloud-compliance, durability,
being a worldwide standard, having a broad support offer, being a
recognized, proven and widespread technology… Encapsulating a
legacy application (a kind of black-box modernization) using the EJB
technology or something equivalent is a bad idea despite the listed
advantages of EJB.

Looking at the same problem with migration would lead us to
replace the legacy code by EJB code without significant revisions. In
effect, migration does not really address the following issues: what is
the buried business value? How can we restructure and/or

30 COBOL Software Modernization

re-architecture? With migration, there is a risk to reinvent the wheel
by implementing, for instance, several times an EJB component
offering currency conversion functions.

Differently, pure white-box modernization may demonstrate,
through abstraction, the need for such calculations without any
assumption on how these may be supported at runtime. As an
illustration, appropriately, a remote Web service may ensure these
calculations once and for all, in all code places calling such functions.
As a summary, white-box modernization does not systematically
imply redevelopment. Besides, white-box modernization is the only
way to have enlightened opinions, e.g. to decide suppressions. This is
a very key issue of modernization: simplification as a springboard of
easier maintenance.

In practice, white-box modernization is the approach that requires a
pivot representation of the legacy system, both free from the outdated
and targeted (up-to-date) technologies of interest. Another open issue
about white-box modernization is to keep only valuable things, even
make them much more simple in the interest of evolvability. So,
white-box modernization revises systems to always remain evolvable.
This opinion is confirmed in [SEA 02]: “Before systems can be
evolved, they must be evolvable. Transforming legacy systems to the
point where evolvable software development again makes sense is
accomplished through legacy system modernization”. In this book’s
vision, this declaration of course excludes black-box modernization as
an appropriate solution.

As an overview, modernizing a system in a white-box manner is
above all the action to make it evolvable for its entire lifecycle instead
of straightforwardly moving it to a current technology (migration) to
make it, as soon as possible, operating. Frequently, business functions
benefit from being rationalized (removed, merged, split, enhanced,
etc.). Such maintenance actions must only occur on the pivot
representation promoted by white-box modernization. We show in
Chapter 7 in particular how model-driven development (MDD)
supports this idea.

Software Modernization: Technical Environment 31

2.3. Software engineering principles underpinning modernization

Chikofsky et al. in [CHI 90] formally defines three key expressions
that refer to principles used in software modernization: “reverse
engineering”, “design recovery” and “re-engineering”. “Reverse
engineering in and of itself does not involve changing the subject
system (…) It is a process of examination, not change or replication.”
Based on this characterization, replacement may possibly rely on
reverse engineering while migration and white-box modernization must
necessarily rely on it. Design recovery is a kind of reverse engineering
process in which information on the legacy system is produced not only
from the code, but from other sources: documentation, experienced
people, etc. Beyond this, the produced information is both observations
and deductions. As shown before, the CICS-based call to a Currency
program is surrounded by some code on a “precision” global variable.
The whole code is a business clause: currency conversions vary from
one logic (“precision” = 1 digit) to another (“precision” = 2 digits). The
extraction of such a business rule is impossible without semantic
interpretation. Moreover, further analysis is required outside the scope
of this simple code to formally detect and formalize the full business
rule, which leads to “precision” = 1 digit or “precision” = 2 digits.

From the observation that reverse engineering and design recovery
are read-based processes, re-engineering, instead, may be viewed as a
write-based process: “Re-engineering (…) is the examination and
alteration of a subject system to reconstitute it in a new form and the
subsequent implementation of the new form” [CHI 90]. This ever-
topical vision stresses the distinction between the modernized system in
a new form and its deferred implementation in a specific process:
forward engineering. This vision clearly affirms the dichotomy between
migration and white-box modernization through, for the latter, a pivot
representation before the reconstitution. In this scope, end-to-end
modernization is such that reverse engineering produces software
artifacts, which are well-prepared for forward engineering. We show in
the rest of this book that UML (standing for Unified Modeling
Language) models, due to their neutral nature, are good candidates for
supporting pivot representations between reverse and forward.

32 COBOL Software Modernization

For intuitive comprehension, Figures 2.3 and 2.4 sketch the MDD
principles behind, respectively, reverse and forward engineering. For
example, the recovered (deliberately simplistic) model at the bottom
of Figure 2.3 does not refer to the plastic matter used for the vintage
car’s dashboard. Nowadays, this matter is probably unrecyclable. In
short, the model at the bottom of Figure 2.3 is nothing but abstraction
in action. In their very deep nature, models leave us the possibility of
forgetting what is/becomes worthless.

Figure 2.3. Reverse engineering as a re-industrializing metaphor of a vintage car
(pictures are taken from autoautomobiles.narod.ru)

The recovered model is a more or less complete basis for creating a
modernized car. In this case, the business logic is the car’s lines, an
often-encountered style, a source of prior success, “the value”. The
model perfectly reflects this value.

Figure 2.4 is a more common case of modeling. Car engineers are
premier users of MDD. The generated product from the model, even
robotized, is subject to a long run. However, everybody agrees in the
car industry that models allow product line management, supply chain
rationalization, deferred assembly for late customization and more.

Software Modernization: Technical Environment 33

What is intangible in Figure 2.4 is a service-based approach.
Conceptually speaking, it is awkward to convince car manufacturers
that a car is a computing cluster with a middleware platform, both
surrounded by mechanical elements: engine, chassis, interior, etc. (see
also Chapter 1). This cultural rupture is a strong means of integrating
mechanical/electronic/software components in order to differentiate a
car product line from competitors. Car SOA is then the idea of easily
pluggable services: park assistance, car-to-car communication, etc.
The latter component is a palpable incarnation of the link to Internet
computing.

Figure 2.4. Forward engineering as car computer-aided design
(pictures are taken from autoautomobiles.narod.ru)

2.3.1. Re-engineering in action

Nowadays, reverse and forward engineering have a consensus in
terms of both definition and practice. To that extent, there exists a
plethora of re-engineering methods and tools. In virtually all of these,

34 COBOL Software Modernization

there is an assumption that the legacy code is the primary matter. In
this context, reverse engineering always amounts to producing a
syntactical code modeling, which is an instance of a Backus-Naur
Form (BNF). A BNF is a metalanguage, a set of (meta)-words and
grammar rules. Existing code is divided into terminals and non-
terminal pieces. For example, a given “IF … THEN … ELSE …
END-IF” COBOL occurrence in the legacy code obeys the “IF
CONTROL STRUCTURE” decomposable element of the meta-
language. The grammar rules tell us, in a formal way, how elements
may be composed. Typically, “ELSE” clauses can only be part of “IF
CONTROL STRUCTURE” elements, “ELSE” clauses are optional in
“IF CONTROL STRUCTURE” elements, etc. In essence, in the
existing code, each “IF … THEN … ELSE … END-IF” occurrence
respects these rules. Parsing the legacy code is thus above all a
classification of its tokens and a (superficial) comprehension of its
organization. This organization has no rationale because, over years,
maintainer “strokes” have eroded it. Another analogy is to
view maintainers as firemen. They save people (the business), but fire
hoses may damage houses much more than the contained fire. This
damage is ill-formed code organizations. In the end, there are no direct
means to explain why this organization is as it is. This is similar to
dismantling a terrorist bomb. Bomb parts are unknown; they are
connected in such a weird way to lower as much as possible any
comprehensibility.

As an illustration, returning to currency conversion functionalities
in some existing COBOL code, there are a lot of chances for these
functionalities to be duplicated, dispersed and in multiple code
patterns. Recall that the prior COBOL code, which is a well-
modularized CICS call to a Currency program, is the exception not the
rule in terms of adequate structuring.

BNF-oriented models of legacy systems are thus only the
beginnings of long stories. The trickiest issue is the move from code
representations to representations with “sense”. How semantic
representations may be shown off through viewpoints on code
(architecture, business logic, marked transactions, potential errors,

Software Modernization: Technical Environment 35

etc.) is the challenge. Multiple representations in space and time are
therefore required.

In time, this corresponds to the discretization of the re-engineering
process. For example, one representation includes references to the
operating system and/or runtime middleware (e.g. CICS). At the next
step, the calculated representation is free from these adherences. In
this context, the subject legacy technology is gradually erased. Since
re-engineering encompasses the alteration and later “reconstitution” of
the legacy system in another form, representations aim at being
enriched at a given time. As underlined above, white-box
modernization is a boon for carrying out modifications. These may be
refactoring to create a new system, which is really evolvable. Recall
that migration has no focus on creating a new system, whose future
maintenance is facilitated. Modifications may also be concerned with
additions: added functionalities and so on.

In space, a good strategy is the management of representations,
which are perspectives or projections of others (a.k.a. viewpoints).
What is needed is traceability in general, both in time and space. A
representation of the legacy system architecture is a more or less
accurate form; it calls for adequate metalanguages. Indeed, software
architecture as a self-contained domain has its own concerns, which
impose meta-words: component, connector, assembly, deployment,
service, etc. In other words, we cannot represent a given software
architecture with a BNF-oriented model. In another domain like
business logic, we need other concepts: business rule, business
function, etc. As shown later in Chapter 7 of this book (Model-Driven
Software Modernization), many standards have been elaborated from
the Object Management Group (OMG) in particular. The Semantics of
Business Vocabulary and Business Rules (SBVR) metalanguage is one
of these standards; the Knowledge Discovery Metamodel (KDM)
metalanguage, which overlaps with SBVR and owns another part
totally dedicated to software architecture, is another one.

The major difficulty of the re-engineering process is the
management of consistent relationships between proliferating
representations that have dedicated roles. Ultimately, we expect the

36 COBOL Software Modernization

code generation of the modernized system in line with the target
(contemporary) technology: this is the implementation representation
resulting from forward engineering. In any case, please note again that
the higher-value representation is that named “pivot”; it is
intermediate and above all free from both the aging and fresh
technologies chosen at modernization time.

So, “reverse engineering”, “design recovery” and “re-engineering”,
which includes “forward engineering”, are principles to be applied in
software modernization. However, there are related issues, which may
ruin any re-engineering plan. These are volumes (and thus scalability
issues in re-engineering), measures (particularly testing) and (re)-
integration (revamped systems must be re-injected in stationary
environments).

2.3.2. Re-engineering challenges

Chapter 1 of this book enumerates many challenges, obstacles,
brakes, etc. that are financial, human or managerial. Once the
modernization decision has been established, today’s technical
contexts show that the size of the programs/applications, in the
COBOL world especially, the necessity of measuring (in fact,
proving) the acquired advantages of the new system compared to the
old one, and the articulation of what has been modernized with what
remains in the same state, are critical issues. In other words,
“intelligent” (versus “naïve”) re-engineering is not just a canonical
process as sketched in [CHI 90]. It is a set of methods and best
practices to cope with scalability, testability and integrability. From
experience, all kinds of models of legacy systems are heavyweight
software artifacts when managed in specialized tools. Considering
design recovery for example, inferring information from model
parsing can be doomed to fail because models are numerous, big and
strongly interlaced.

Modernization methods without tools are unrealistic.
Reproduction, systematization and agglomeration of microscopic
modernization actions must be offered in tools regardless of the size
of software artifacts. In this scope, the openness of tools is also

Software Modernization: Technical Environment 37

important for tailoring methods and practices; this happens in relation
to variations of technical contexts, stakeholders’ expectations, and
constraints in general.

Testing is a representative case. The only way for measuring a
certain quality of the new system is testing. How is testing material
represented? Possibly, when the extraction of the testing material
occurs? Is the formulation of test cases and scenarios automated? Is it
achieved by means of a uniform formalism? How are test cases and
scenarios executed against the modernized system? How do test
failures have an impact on the finalization of the modernized system
before deployment in production? etc.

A re-engineering process for professional software modernization
then calls for many advances in software engineering at large. The
question is what could be the federating approach, which allows us to
tackle so many problems in a uniform way (languages for
representations, modernization well-founded actions for representation
calculations).

To close, (re)-integration is the reconnection of what has been
produced and certified in terms of expected qualities. Statically, this
can be the quality of the new code with respect to code quality
standards: future maintenance is no longer expensive. Dynamically,
this can be the performance of the new system in interaction with an
other information system’s pieces. To anticipate, it could also be
useful to have models of runtime environments to prepare
(re)-integration.

2.4. Conclusions

Software modernization may be understood with in a variable-
geometry sense. There are effective techniques behind software
modernization intentions: reverse engineering, forward engineering,
etc. This chapter lays down the bases for software modernization
through “models”. In relation to the business concerns from Chapter 1,
this chapter puts under the spotlight models in the spirit of MDD.
Namely, models are the means for making the business logic emerge

38 COBOL Software Modernization

from legacy systems. Under no circumstance, must modernization be
thought of only in terms of technology-to-technology transfer.
Accordingly, white-box modernization, despite the fact it calls for
more sophisticated methods and tools, is the way to exhibit the sole
interesting value engraved in legacy systems:

– the business logic (data semantics, functions, rules),

– and the way applications empower business practices and
processes. After modernization, we may then aim at knowing how the
renewed applications might better support these as well.

Modernization is a unique boon to reconcile IT with business,
provided that source or target technologies (programming language,
middleware platform, data storage system, etc.) do not interfere with
the reflection behind modernization: the move from a breathless
system to a service-based system. This gap is linked to massive
COBOL code bases and data as discussed and characterized in the
next chapter. The expected jump is of course impressive, but it is
worthwhile from a business perspective. Applications in companies
are more or less business-critical. Possibilities are numerous for
candidate experimentations.

3

Status of COBOL Legacy Applications

As written at the beginning of this book, throwing out COBOL
cannot be considered as a serious and sufficient motivation. Well-
structured, modular COBOL programs exist; they may probably
remain as-is for many years. Besides, as noticed in this book’s
introduction, millions, even billions, of COBOL lines of code are still
produced each year. We may imagine that the majority of them
intrinsically have no legacy status in the sense that they obey
contemporary computing: distribution (Web three-tier architecture
style, service-oriented architecture (SOA), etc.) including mobile
computing, service computing or cloud computing, object-orientation,
component-based development with associated benefits, reuse
especially. Nonetheless, the biggest volume of COBOL code (around
90%) comes from the 1970s, 1980s, 1990s… it is degenerate. Decades
of maintenance have resulted in the situation that nobody knows what
this code really does. More precisely, nobody is able to explain, in
retrospect, why “algorithms” and thus execution flows follow a given
path rather than any other.

Paradoxically, programs and applications are often fine-tuned and
highly optimized with regard to their running environments, mainly
mainframes and customer information control systems (CICS) as
favorite middleware. Globally, COBOL is recognized as doing the
expected job in “survival conditions”. Practically, when there are
bugs, these are often known and circumvented with the means at hand.

40 COBOL Software Modernization

This is laborious, but it is compensated for by an intimate knowledge
of programs, applications and their functioning.

As an illustration, here is a true story. Looking at some aged code
in a company, we found around 20 blank lines in a source file. This
space was specifically designed for copying/pasting 20 lines of code
coming from another ancillary file. After discussion, the person in
charge told us that the initial program, with 20 blank lines, may
sometimes get in correct results, even crash. In this case, the 20 lines
of code are injected in place of the free space; the program is re-
executed without errors; the 20 lines of code are then removed to re-
obtain the free space. The program with free space is later executed
several times without any problem until the next round. In this science
fiction scene, nobody, including the person in charge, was able to
explain the rationale behind this “uncommon” code manipulation. On
the contrary, everybody simply claims: it works.

The evoked degeneration of COBOL programs and applications is
the fact a non-negligible amount of COBOL code is just an addition of
patches for bugs perceived in other parts of the COBOL code. We
mean, when deficiencies arise, there is a trend to add new programs to
tame these deficiencies instead of first analyzing their local source and
next applying radical changes. This is not an informed choice. It is
most of the time impossible to intervene at some code places without
creating a strong destabilization of program chains.

In this context, in numerous organizations, subcontracted
maintenance by third-party companies is most of the time only
keeping programs and applications afloat. Indeed, practice and
experience show that programs and applications may neither decrease
nor increase in functionalities while maintenance costs explode.
Concretely, new programs are inserted in program chains for repairs,
which mostly consist of the production of new (intermediate) files
having different access types, different data formats and dependencies.
Subcontractors may have an interest in supporting such a kind of
evolution. Applications embodied by program chains become ever
more complex. This approach applies on an exponential scale, leading
to non-understandable logic, being technical (e.g. the prior 20 blank
lines) or business.

Status of COBOL Legacy Applications 41

3.1. OLTP versus batch programs

In COBOL, there is a traditional dichotomy between batch
programs and transaction processing (TP) or on-line transaction
processing (OLTP) programs. For young programmers, these two
notions make no actual sense. OLTP programs are just “classical”
programs in the current world. The word “transaction” most likely
refers to “real-time” data reading and writing in relation to
immediately visualizable results. A transaction is also a priori
concerned with the idea of something, which is directly interpretable
with respect to the business: billing, shipping, hiring, accounting… or,
more precisely, any subactivity of these.

In modern computing, programs transform data in databases within
transactions. Commit or rollback actions on data depend upon
consistent changes on these data. For example, an ATM withdrawal
must not lead to a data insertion in a database table (bank account debit)
if the cash dispenser goes down. Simply speaking, a transaction is (this
is most of the time also true for OLTP programs) associated with a
consistent suite of business actions. Any failure when executing an
action is a failure of the suite: a cancellation is required through
“rollback”. In contrast, no failure at all leads to “commit”. In this
context, a transaction manager ideally is a technical service (e.g. Java
Transaction Service or JTS in Java) in a middleware that powers
transactions. At the origin, COBOL programs did not systemically rely
on a true transaction manager as JTS. So, the OLTP acronym does not
imply, word for word, transaction management as characterized in
modern computing. In fact, OLTP programs are above all interactive
programs in the sense that end users are behind screens when executing
them. On the contrary, batch programs operate without interaction with
end users. That is the simple key difference.

So, in COBOL, transactions are effectively business-oriented, but,
unfortunately, they are excessively coupled with screen inputs/outputs
and thus they are mainly user-oriented. In modern computing,
transactions are also business-oriented, but they are detached from
presentation issues. From the Model-View-Controller (MVC)
programming principle, transactions belong to the Model side and not
to the View side (presentation). Considering distribution concerns in

42 COBOL Software Modernization

general and three-tier architecture issues in particular, transactions are
then associated with deployable components shared between
applications while COBOL OLTP programs require their own stuff:
transactions cannot be shared at the middleware level.

With Java Transaction API (JTA) for instance, this supposes the
implementation of coherent business action suites as standalone
software components, a very rarely encountered case in COBOL.
Beyond this, transactions play a central role in modern enterprise
computing. The accentuation of distribution poses significant
problems in coordination of distributed transactions especially. In
modern enterprise computing, transactions have to better match
business processes, which are services that are partly dived into
everywhere. Commit actions thus depend upon error-free execution
for the involved (remote) services. As for rollback actions, they are
key for error recovery management, provided that external services
may notify and deliver rich information on failures; they also must
have internal fault recovery capabilities like, for instance, fail soft
mode functioning. As a summary, transactions in the spirit of OLTP
programs are somehow far from today’s transaction management.

3.2. Mainframes

The weight of mainframes in the malformation of COBOL
programs can be discussed through the idea of “vertical computing”.
In other words, under the hypothesis that programs consume
resources, mainframes impose a concentration of these resources (files
especially) on a single machine. This approach is highly centralized
compared to distribution, which is at the core of the Internet.
Mainframes are computers that greatly favor sequential processing.
Over the years, this reflects the progressive construction of a
homemade culture in terms of software design experience and
expertise, software architecture style, ways of thinking and thus
designing programs in general.

By curiosity, scientific computing with Formula Translation
(FORTRAN) has followed a totally different path with the use of
massively parallel machines. A side effect is that COBOL programs

Status of COBOL Legacy Applications 43

on mainframes often deliver good performance in terms of speed
when facing high volumes. This results from intense customization
and optimization based on the consideration that resources are very
close, permanently available and above all unshared. As an analogy
with programming, this context is similar to an old-fashioned program
in which all variables are global. Software engineering has
demonstrated that such a program is the worst form of programming
about the impossibility of controlling undesired side effects.

In COBOL, resources tend to be multiplied (files especially) and
arranged for a single type of usage only. Usages are heterogeneous, so
requiring dedicated programs; this is again the source of program
proliferation. The penalizing counterpart is code intelligibility, which
is low due to high adherence to data format. Maintenance issues are
often non-shareable with people outside the closed circle of initial
designers/programmers. Subcontractors as the persons in charge of
maintenance have total control and thus have the opportunity to
exclude new incomers concerning big portions of the existing COBOL
code. As to the future, porting such programs to other types of
computers will probably lead to control loss (unpredictable
performance, random reliability) if no redesign occurs.

3.3. Data-driven design

In the COBOL dimension, the absence or weakness of network
infrastructures is the reason why the pervasiveness of data cannot be
an assumption at the time of software design. Of course, COBOL
programs, old or less old, run in network infrastructures. Nonetheless,
the COBOL background culture is not inspired by full exploitation of
such infrastructures.

Internet computing is in essence the remote access and processing
of data at large. In COBOL, replication and next dispersion are
mechanisms for supporting data pervasiveness. However, there is a
very poor, or completely absent, data consistency management
associated with replication.

44 COBOL Software Modernization

So, the COBOL-oriented organization of data in storage supports
drastically influences the way algorithms and thus programs have to
be thought of and thus run. In other words, this organization always
generates the risk of slowing down calculations. To reduce this risk,
programs are data-driven, or more precisely, data format-driven.
Accordingly, to design applications whose response time is
compatible with end users’ expectations, say, at most three seconds to
obtain results on screens, programs are created that are tortuous in
their actions, e.g. they may change/expect special data shapes before
any processing. Applications as program chains become complex with
“weird” programs whose business intelligibility becomes void.

Interactions with users in OLTP programs tend to be shortened to
smooth the load between OLTP programs. A well-known side effect is
the absolute necessity to postpone some second-level processing to
other moments: batch programs.

3.4. COBOL degeneration principle

Taking the example of a voting system, people have to register if
they intend to vote. The capture of data by officers for voters occurs in
the opening hours by means of a P1 OLTP program. Entered data are
written in a raw style in an F1 file whose organization is sequential
(Figure 3.1).

The verification and validation of data occurs for the night with the
help of a P2 batch program. This batch has F1 and F2 as inputs. The
latter is a file recording the list of “birth places”; it has a direct access
mechanism based on a ZIP code that is hashed to retrieve the
government-compliant location of a given birth place in the file. The
main role of P2 is the production of an F3 file comprising the list of
erroneous data records in F1, namely the entered voting people with
inconsistent and/or suspicious birthplaces. We may imagine many
other Pi batch programs for any other kind of checking. There is also
possibly the need for another P3 batch program, which recreates from
F1 (raw data with errors) and F3 (detected errors linked to birth
places), a file (clean data) named F1+. A business process may be

Status of COBOL Legacy Applications 45

such that dedicated officers at daily hours have to get in touch with
people having unusual birthplaces (F3 file).

In modern computing, it is more natural to mix the data capture
and the data checking in a single interactive application. Design
principles are different so that data availability, access and processing
are (secondary) separated concerns. In other words, thinking about the
application and architectural issues must not be parasitized by
heavyweight data constraints: formats, organizations (sorted or not,
replicated or not…), locations and so on. Skeptical people may believe
that data problems in COBOL are similar to those in competing
technologies. Of course, modern applications have data problems that
have to be solved at design time. Universal concepts like Data Access
Objects (DAOs) promoted by persistence frameworks like Microsoft
DAOs, Hibernate Plain Old Java Objects (POJOs) or Java Persistence
API (JPA) Entity Beans allow the design of applications without any
coupling with data supports.

In an aging COBOL approach, we observe that “vertical
computing” defers many calculations (data checking in the example)
to periods in which the computing power is underused, during the
night in particular. In the example, the execution of P1 during opening
hours prevents the execution of P2, Pi… at the same time to offer the
necessary computing power to OLTP programs, e.g. P1.

In terms of business criticality, this fabricates applications as
highly sequential, and thus fragile, chains of programs (Figure 3.1).
Any grain of sand in the gears, during the night especially when batch
programs operate, may be a nightmare for the business. It is tempting
to solidify these chains by creating rescue files and/or programs, e.g.
sorting F1 (the file of raw data on voting people) with multiple
criteria. In such a logic, the sorted file named F1++ (sorted raw data)
may on demand replace F1+ (data expurgated of erroneous records)
when batch programs do not give the expected results (F1+) early in
the morning.

This logic is endless. This logic is irreversible software
degeneration.

46 COBOL Software Modernization

3.5. COBOL pitfalls

This accumulation of software matter in general gives rise to sizeable
information systems whose internal/external layout becomes intelligible
with strong difficulty (see again Figure 2.2 (principle) and Figure 3.1
(sample)). As a comparison, in a modern application, data capture and
checking are certainly concomitant. They can deliver a set of proper, but
incomplete, data if an execution suspension occurs. In other words,
differently from COBOL, there are few cycle constraints considering the
chains of programs from days to nights and from nights to days.

COBOL programming has a direct side effect. Many COBOL
programs have no immediate business impact and value. They are just
data pre- or post-processing (sorting, consolidating/merging,
splitting… data) to (re)-reformat data so that “nobler” programs may
operate with good performance conditions. These are often OLTP
programs attached to screens and users while batch programs run for
the night in critical job chains. There are consequently a lot of
intermediate sizeable files/databases to manage data (contextual)
views as inputs and outputs of programs.

So, batch programs themselves call for new batch programs to
have upstream and downstream well-prepared data. As an illustration,
a first batch program may be in charge of data aggregation for a
second one while there is also the need for a third one in charge of
immediate disaggregation. In this context, there is a proliferation of
anti-business programs, i.e. technical issues are addressed through
other invented technical issues; technique serves technique.

Other COBOL shortcomings are the fact that data duplication (or
replication) is the rule, not the exception. There also exists a
dispersion of the business logic, worst, a total dilution. Typically, data
structures proliferate so that they have no possible interpretation in
terms of business. Initially, we may have a single “patient” data
structure in a healthcare software application. Over the years, there
may have been 10 or more close “patient” versions. Frequently, such
versions may lead to us having, for instance, a “length” field to state if
the “patient” record carries little or much information. This “length”
field makes no sense from the business logic viewpoint. Furthermore,

Status of COBOL Legacy Applications 47

there is no protection of the data format and no real control of format
alteration. Encapsulation in programming has for a long time been a
paradigm for such a protection. Even if object-oriented COBOL in
essence supports the encapsulation principle, only a totally negligible
part of COBOL programs applies it.

More generally, even though “modern COBOL” offers computing
environments that are able to tackle software engineering issues of the
21st Century with some probable efficiency, COBOL is first and
foremost a state of mind. Distribution (resource sharing especially
through pooling), parallelization through message programming,
abstraction through data format detachment and so on, are never
COBOL reflexes.

Figure 3.1. Voting system as simplified COBOL program chain

3.6. Middleware for COBOL

For the sake of survival, the fragility of COBOL applications is
alleviated by middleware whose key role is the management of
program chains. As an illustration, a middleware like CICS is in

48 COBOL Software Modernization

charge of program chaining and coordination especially in case of
fault recovery. Again, this augments the adherence with computing
infrastructures since CICS is itself dedicated to mainframe computing.
Despite many recognized qualities, such a middleware confines
applications in a vicious circle.

Let us come back to the notion of software modernization. Finally,
is there a way to move out this circle? This question is a particularly
hot topic for batch programs, whose prior characterization seems to
show that they have to vanish at the time of modernization.

In fact, COBOL software modernization can be essentially viewed
as a problem of computing platform/machine. Why not virtualize
mainframes? Why not have middleware platforms like CICS in a Java
fashion style? The first question is discussed in section 5.5.1. The
second is topical through the recent definition of a support for batch
programming in Java, which is named JSR 352.

To that extent, in [VIG 13] batch programs are characterized as
follows:

“Batch processing is a pervasive workload pattern,
expressed by a distinct application organization and
execution model. It is found across virtually every
industry, applied to such tasks as statement generation,
bank postings, risk evaluation, credit score calculation,
inventory management, portfolio optimization, and on
and on. Nearly any bulk processing task from any
business sector is a candidate for batch processing.

Batch processing is typified by bulk-oriented, non-
interactive, background execution. Frequently long
running, it may be data or computationally intensive,
execute sequentially or in parallel, and may be initiated
through various invocation models, including ad hoc,
scheduled, and on-demand.

Batch applications have common requirements, including
logging, checkpointing, and parallelization. Batch
workloads have common requirements, especially
operational control, which allow for initiation of, and

Status of COBOL Legacy Applications 49

interaction with, batch instances; such interactions
include stop and restart.”

This text extract is an exact reproduction of the COBOL batch
philosophy and associated distinctiveness. It is an incentive to write
batch programs in Java, inside or outside a place of preoccupation
about COBOL-to-Java modernization.

Outside: why write Java batch programs instead Java EE
applications? Scanning blogs on the Internet, this question comes up
with no response. The positive contribution of JSR 352 is the support
for a true transaction manager (“checkpointing” above) and the Job
Specification Language (JSL) that rightly enriches this novel
technology with the model-based spirit. Another evident advantage of
JSR 352 is its seamless integration with Java EE at large.

Inside: this means that JSR 352 only exists to port COBOL batch
programs. From platform/machine vendors, this strategic offer makes
sense to develop business on associated services like third-party
development and maintenance of Java batch programs. For COBOL
professionals, this also makes sense if we do not want to revise
architectures and to extract business logic. JSR 352 for COBOL-to-
Java modernization can be qualified as “lightweight” compared to the
white-box modernization promoted in this book.

3.7. Moving COBOL OLTP/batch programs to Java

People normatively consider that COBOL is the language of
business and Java is the language of the Internet. We may
straightforwardly conclude that Java is, before the release of JSR 352,
inappropriate for “batch computing”. Batch computing remains of
course an uncommon notion in the Internet world. There is also a
more subtle difference: the existing software architecture in which
COBOL programs operate is markedly different from that of Java
programs. Here, we exclude recent COBOL programs, which are well-
structured, even object-oriented, modular (component/service-based)
and connectable to the Internet. Instead, we look again at the quasi-
infinite set of legacy programs and applications with a focus on batch
programs: a greater part of the COBOL legacy world.

50 COBOL Software Modernization

As underlined in section 2.2 of Chapter 2, COBOL-to-Java
translation makes no sense at the code-to-code level (migration). Here,
Java is just an adequate representative standard to demonstrate what
has to be eliminated from the COBOL matter. As a comparison, JSR
352 is not code-to-code; this is because it is stressing platform issues.
However, the profound assumption of JSR 352 prevents
modernization from more open approaches like, for instance,
COBOL/CICS-to-C#/.NET; something possible with this book’s
method and tool (see Chapter 8).

What is hidden behind JSR 352 is the fact that COBOL batch
programs work together with OLTP programs. In a necessarily holistic
approach, a move to JSR 352 imposes a coordinated move of OLTP
programs whose (retrofittable) execution target is not JSR 352 but the
common Java EE. How can we then operate this concomitant
translation with two distinctive modernization logics?

The lack of maturity of JSR 352 cannot allow us to draw too many
rapid conclusions. Ignoring JSR 352, moving COBOL batch programs
in the same way OLTP programs are transformed into Java EE
components or applications is absolutely unrealistic. A proof: for
example, let us consider a batch program which processes an input file
of 50 million data records in a sequential way. Data is extracted by
means of different data masks (COBOL REDEFINES clause): the
same data in the file is assigned to multiple variables, several times, to
populate diverse instances from different data structures in the
COBOL code. A memory cache may contain a big data block until the
next reading of the next contiguous block (sequential access). On
mainframes, such processing is common and above all rapid. The
batch program records the computed data within an output file.

Applying this method from tables and relationships in a database is
irrelevant. If table structures match data masks, an exorbitant number
of DAOs and associated Structured Query Language (SQL) requests
are necessary. In the worst case, one data mask in COBOL leads to
one table, which itself leads to one DAO in Java. Relationships
between tables that correspond to dependencies between

Status of COBOL Legacy Applications 51

DAOs, are another probable source of slowdown. Despite caching or
pooling mechanisms that are natural in Java, processing “one record”
might lead to a couple of SQL SELECT statement executions. Under
the hypothesis of 1 ms, such a processing lasts more than 13 h while
the same on a mainframe surely takes less than one hour. Considering
relational and object-oriented databases, data extraction does not
depend at all upon rigid data organization in relational tables. This
organization benefits from being simplified as much as possible.
Simulations of the COBOL REDEFINES clause, only when useful,
may rely on other appropriate SQL constructs, namely jointures,
views (CREATE VIEW statement), etc.

3.8. COBOL is not a friend of Java, and vice versa

So, there is no direct relevant mapping between COBOL
processing style and Java style as Internet computing reference.
Beyond batch programs, OLTP programs cannot be directly translated
from COBOL to Java. This is also not just a problem of software
architecture since, as already written, some COBOL software matter
has to be eliminated; this is especially true for architectures as
backbones of COBOL programs.

Technology renewal and progress have led to the possibility of
distribution of program pieces leading to objects, components,
services, etc. This is the opposite of monolithic organizations of
COBOL programs, which cannot be dismantled. Worse, COBOL
programs are involved in rigid processing chains as “jobs”. These
chains embody architectures. COBOL programs are irremovable
elements in these (almost frozen) architectures. In fact, the key
difference is that COBOL programs are constructed with strong
adherence to running environments, including hardware (mainframes,
etc.) and software (CICS, etc.), while Java offers greater flexibility.

Beyond tangible IT advances, there is a conceptual gap between
COBOL and Java. Namely, object-orientation promotes abstraction
and more precisely encapsulation. Java code and reuse are such that
data format alterations (encapsulated in types) do not have to generate

52 COBOL Software Modernization

significant maintenance. Instead, COBOL programs are primarily
designed to satisfy data format constraints. In other words, the way
data is organized in flat files (sequential access or key-based access,
being indexed or not) or databases (having a hierarchical, network or
relational underlying model), strongly influences COBOL program
shapes.

3.9. Spaghetti code

We draw the evident conclusion that most of the COBOL matter
greatly benefits from being re-engineered. Nonetheless, Figure 3.2
shows from personal statistics that 15% of COBOL (right-hand side)
is maintenance-prone and Internet-compatible while another 15%
(left-hand side) is dead for modernization. This latter package is
spaghetti code and cannot be re-engineered at all.

Figure 3.2. Candidate and non-candidate COBOL applications
for reverse engineering

As an illustration of spaghetti code, many COBOL programs are
concerned by reporting, i.e. the generation of leaf files that aim at only
being sent to printers. In organizations’ business processes, these
paper-based information sets play a great role. Their absence may
greatly disturb organizations’ functioning and/or interaction with
customers, suppliers, etc. Reports can be contracts, dashboards, legal
documents or whatever. Their opportunistic replacement by other
media, even technically possible, is first and foremost a matter or
business process recast and consequent software adaptation,
something often unrealistic in terms of effort, energy, risk, short-term
strategy and consequently cost, time, etc.

If replacement decision is taken, any reporting application may
often benefit from being replaced by Commercial Off-The-Shelf

Status of COBOL Legacy Applications 53

(COTS) software provided that the upstream data is structured for that
purpose. At this technical level, this may only correspond to data
modernization, for instance moving from flat files with control
characters (return, space, tabulation, etc.) to XML. Anyway, data
modernization is a complex task because structuring hides data
extraction, (re)-consolidation and more.

So, even though modernization solutions exist from a technical
viewpoint, one interesting feature to be measured is the intrinsic
complexity of COBOL batch programs making up reporting
applications. Moreover, what is for each program its incorporated value
in terms of business assets? We mean dealing with control characters
(return, space, tabulation, etc.), cursors, odd data formats and so on is
probably far from business function and rule management.

3.9.1. Spaghetti code sample

In this section, we comment on a precise case in which there is no
business logic at all in the COBOL program because the control flow
is only governed by cursors and characters (their types: control or
meaningful data) in, at the same time, the input and output files
processed by the said program.

In Figure 3.3, we depict the execution flow of a COBOL code
portion named BEHANDLE (825 lines of code) coming out of 20.585
total lines of code (including both DATA DIVISION and
PROCEDURE DIVISION) of a reporting program. This program
alone does not constitute the full reporting application. Indeed, as
usual, many pre- and post-processing programs apply transformation
on data to make the reporting application’s program chain more
“fluid” (see “vertical computing” notion above).

BEHANDLE is massively relying on GOTO, both for forward
(see label on the top right hand side of Figure 3.3) and backward
jumps. The third kind of arrow/flow (see again label on the top right
hand side of Figure 3.3) embody the fact that no flow diversion
occurs, i.e. there is no systematic GOTO branching (a kind of
deactivation) just before a labeled statement.

54 COBOL Software Modernization

Figure 3.3. Cyclomatic complexity analysis of a

COBOL program portion

Status of COBOL Legacy Applications 55

Put simply, COBOL labels normally play the role of start sections of
code blocks. However, these blocks are not really well delimited. In
effect, the program flow is such that it sometimes enters into a block,
not from a jump to the block’s start label, say BEH-012 or BEH-014
(Figure 3.3, top of figure), but from the immediate prior statement. In
fact, blocks have no marked end as strict “return” statements in
common programming languages. In Figure 3.3, we may be in the
BEH-012 execution flow and we may go on with BEH-014 (no flow
diversion, i.e. the flow goes on while there is a label marking a different
block). In terms of algorithmic logic, there is no knowledge and trace
about the way we entered into BEH-12 (through a jump or not).

This inevitably results in spaghetti code whose refactoring is
highly tricky. From the well-known GOTO refactoring algorithm
proposed in [ERO 94], from 825 lines of code, 111 execution flows
are discovered as candidates to be refactored. In [ERO 94], it is in
particular explained that refactoring, i.e. GOTO replacement with IF
or WHILE programming constructs forces the merging of blocks of
code into one “procedure”.

Applying this algorithm on the BEHANDLE case shows no
convergence: the algorithm goes on looping. With manual
intervention, the refactored BEHANDLE section comes up with only
one service. Its volume is estimated around 825 lines of code and its
cyclomatic complexity is 226 (see en.wikipedia.org/wiki/Cyclomatic_
complexity).

If the refactoring algorithm was successful, the resulting
restructured code would not be maintainable in a modernized version.
It is agreed in the software industry to preserve service complexity
under 10. Complexity 226 is simply not acceptable (density of
conditional statements would be 1 conditional statement every 3 to 4
lines of code in the refactored code with individual services each close
to 1,000 lines of code).

This definitely illustrates that 15% of the worldwide COBOL code
is not a candidate at all for any modernization.

56 COBOL Software Modernization

3.9.2. Code comprehension

Although technology-to-technology modernization of this specific
COBOL case is proven inappropriate, Figure 3.4 demonstrates
interests and advantages linked to a model-driven approach to ease
code comprehension. This is a UML dynamical model (UML Activity
Diagrams) that graphically expresses the control flow of the program
portion.

Figure 3.4. UML representation of a COBOL program
portion (subset of what appears in Figure 3.3)

Status of COBOL Legacy Applications 57

White-box modernization is then also a solution for concentrating
in models the knowledge extracted from the source code. This may
help in having a synthesized overview of key parts of the reporting
application in order to estimate, for instance, the challenges and
inherent investments about any redevelopment from scratch versus
buying COTS software.

3.10. No longer COBOL?

The software market is such that nobody is able to anticipate the
end of COBOL. We think that COBOL, in its newer offers, will tend
be increasingly confined to market niches. The history and life of
programming languages are a matter of humor. Retrospectively, the
uptake of languages has nothing to do with rationality and is more due
to fashion, unexplained attractiveness or even fascination.

For example, why use Java, C# or Python while C++, Objective C,
Eiffel or Smalltalk sufficed. Languages convey brand images (Apple –
Objective C, Microsoft – Basic/C#...). As for COBOL, it has always
conveyed enterprise computing.

This book’s criticisms of COBOL are only concerned with
legacy COBOL code, which by definition has not been built with
recent COBOL environments and tools supporting modern computing.
COBOL in itself is not guilty. To that extent, on-the-ground
experience shows us an indisputable know-how on business
requirements’ engineering in COBOL organizations. While technical
practices have bastardized COBOL, COBOL through its “B” member
letter has revealed, built and consolidated a unique philosophy of
enterprise computing.

Despite the increasing segmentation of computing devices in
parallel with the same increasing concentration of Internet
data/application servers boosted by cloud computing, country
competitiveness relies on a differential know-how on enterprise
computing. In our opinion, the control of operating systems,
middleware platforms, including cloud infrastructures and platforms,
is an obvious source of country competitiveness, through today’s

58 COBOL Software Modernization

leaders especially. Nonetheless, the forthcoming revenues potentially
brought out by enterprise applications on the top of the Cloud are also
huge. The COBOL business spirit is thus still influencing the
economical area of enterprise software systems. So, developing
enterprise applications with COBOL, clones or more serious
challengers like Java, requires a great amount innovation in present
and future.

3.11. Conclusions

In this chapter, we observe a kind of fairly dramatic situation for
most COBOL software. The case of COBOL-to-Java is an illustration
of the move from single-machine (mainframe) computing to the
Internet, an ever-growing number of interconnected and collaborative
computing resources. Going into further technical details, the
dichotomy between batch and OLTP programs has a great role and
significance in the COBOL maintenance problems. This two-angle
analysis is fundamental for modernization. Despite technical solutions
like the JSR 352 in the Java world or probable equivalent solutions for
.NET, the Cloud…, the overall challenge remains architectural issues:
architectures must be totally recast.

Another point is recovering the business logic, a phenomenon that
can only occur through deep code investigation. The fact that 15% of
the COBOL code is definitely lost (spaghetti code) and that 15% is
compliant with contemporary standards and practices, leads us to
consider a huge amount of 70% of current applications as candidates
for modernization. As it happens, billions and billions of lines of code
may fall behind with regard to the acceleration of the Internet, as
unified computing platform and infrastructure.

4

Service-Oriented Architecture (SOA)

Software architecture is a scientific and technical discipline in
which stakeholders try to explain, reason about and, above all,
formalize the ways of software elements’ dependence on each other to
create applications and information systems. The varied nature and the
(functional and non-functional) properties of software elements, as
well as their relationships, make software architectures complex.

Software architecture issues have rapidly evolved because of
distributed systems (including Internet computing) in which software
elements are not located in one single place. Service-oriented
architecture (SOA) is borne out of this observation and has been
enshrined in cloud computing.

4.1. Software architecture versus information system urbanization

To simplify, applications have internal organizations, which
are considered as low-level structures. Information systems have
applications as non-exclusive constituents. The organization of these
constituents is a kind of high-level structure. Information systems feed
business processes with information. The articulation between
information systems and business processes is a macroscopic view or
“urbanization”. Architecture issues in information technology (IT)

60 COBOL Software Modernization

thus encompass the search for the best structuring of applications and
information systems (see Figure 1.2).

Conventionally and for clarity, we reserve the expression “software
architecture” to applications, while “urbanization” is the preferred
term at the information system level.

In terms of whole–part relationships, components (viewed as
services at runtime) are constituents of applications while applications
are constituents of information systems. However, relationships are
diverse in nature; they may have various semantics. Applications may
be linked by spatial dependencies (e.g. obligation of execution on the
same machine), temporal dependencies (e.g. obligation of execution in
sequence), functional, QoS-based (QoS standing for “Quality of
Service”) or any other kind. In this scenario, core challenges in IT-
centric architecture are the production of cartographic views and
viewpoints on information systems/ applications and the ability to
control them: behavior prediction, anticipated evolution, dynamic
reconfiguration, etc.

4.2. Software architecture evolution

In organizations, growing volumes of data and programs multiply
the number and the nature of links between parts of information
systems and applications, not to mention as their physical backbone:
personal computers, servers, cables, network equipment, etc. In short,
the evolution of computing environments has a strong, direct impact
on the evolution of urbanization plans and software, architectures.
Any control on these factors is thus rapidly hampered by
additions/modifications of elements compared to the initial design.

As a comparison, a legacy information system is like the traffic
infrastructure of a city. For example, we may consider the narrowness
of streets as a cultural heritage and an esthetic asset for tourism. We
may be embarrassed by this narrowness for tramway circulation.
Maintenance of these streets may be a dilemma when we want to keep
their beauty and concomitantly search for their convenience for

Service-Oriented Architecture (SOA) 61

tramways (power feeding equipment, lane integrity requirement, etc.).
Cities have not been built in a modular way so that their elements, at
any instant, interact differently to readily revive new urbanizations. In
this environment, tramway circulation is an application with a frozen
architecture. For instance, tramways’ width cannot shrink from
deformable elements to meet narrowness requirements. Over the
years, the only way to create some convergence between contradictory
requirements is to make urbanizations/applications more
sophisticated, for example, a facility is installed to hide some aerial
power feeding equipment, and consequently make streets persistently
esthetically pleasing.

Nonetheless, the comparison to IT has to stop here because links in
software are not material, but electronic. So, both at the information
system and application levels, we expect software constitutive
elements with, in number and nature, supple links. As a result, in the
age of Internet ultra-connectivity, software architectures can no longer
be thought of as blocks and sub-blocks only designed for a single
long-term invariable purpose. Surprisingly, links in software, though
immaterial, are not flexible enough to revise architectures in an easy
and straightforward manner. This is effectively observable for
contemporary software and disastrous for legacy software.

4.3. COBOL own style of software architecture

Looking at common business-oriented language (COBOL), the
problem is that it does not have at its core the architectural paradigm
on its own: COBOL systems are monolithic, i.e. versatile blocks do
not exist in space and time. Still worse, such blocks are not
removable. Let us come back to the city metaphor. This corresponds
to the impossibility of suppressing the facility that hides some aerial
power feeding equipment at the time when some land-based power
feeding equipment is being substituted for. Although this scenario
seems implausible in today’s city urbanization management, it is the
daily life with COBOL.

In practice, in an organization having COBOL as core language,
software elements are generally stand-alone programs (in terms of

62 COBOL Software Modernization

autonomous execution) with possible (shared) subprograms. Program
execution is planned and piloted at the machine level (mainframe)
within dedicated runtime middleware (e.g. customer information
control system (CICS)). Time after time, files, databases, reports,
programs, their commonalities, disparities, (functional or temporal,
i.e. at design time or at runtime) dependencies, versions and
configurations, etc., create an imbroglio of software matter (see
Figure 2.2). Legacy COBOL information systems and applications
generate computing environments similar to medieval cities.

Proliferation of software matter in general calls for some
rationalization, which corresponds at least to the ability to produce
cartographic intelligible representations of applications and
information systems. The possibility, even the great difficulty, of
drawing these representations gives a degree of chaos. In COBOL,
only such primary representations may leverage software architecture
comprehension: the unique path to modernization.

As a justification, Figures 3.3 and 3.4 show this need through the
internal representation of programs. At an outer level, Figure 3.1
shows the same need at the architecture level, but the view is only
“organic”. In effect, participating elements such as files, programs,
flows and users (even machines) are depicted. In COBOL, software
architectures can rarely be drawn in a logical way, i.e. independently
of the physical (underlying) installation. Changes in architectures are
thus direct changes in physical elements and their relationships,
something almost impossible to put into practice in short cycles.

Contrary to COBOL, Figure 4.1 shows the advantage of drawing
attention to architectures in a logical way and thus exhibiting “logical”
components. This is in particular the (partial) functional description in
Unified Modeling Language (UML) (Component Diagrams) of what
could be a general-purpose Currency component, which provides
currency conversion functionalities. It is made up of several business
objects such as content (Money, etc.) and interfaces (MoneyFormatter,
etc.) such as external visibility.

As discussed in section 4.4, architectures are developed from
expressing how components interact independently of their

www.allitebooks.com

http://www.allitebooks.org

Service-Oriented Architecture (SOA) 63

assignment to physical elements. For the latter issue, UML typically
proposes Deployment Diagrams, which allow representations
somewhat “close” to that in Figure 3.1 for COBOL. Before having
deployment views, pure architectural views are necessary provided
that software is really componentized. Again, the CICS call to a
COBOL Currency program in section 2.2.3 is not the rule, but the
exception; it is the perfect counter-example of what the situation of
most COBOL software at this time actually is. Legacy COBOL
software is not componentized at all. Therefore, models such as the
one shown in Figure 4.1 are science fiction in COBOL.

Figure 4.1. Currency business component (partial specification)

So, in modern software development, engineers require modeling
languages like UML or more focused languages (e.g. architecture
description language (ADL)) to express views and, possibly, points of
views when focusing on specific urbanization/architecture problems.

From an intuitive graphical formalism, Figure 4.1, at a small scale,
shows in UML how we may theoretically control
urbanizations/architectures by accurately describing how logical
software assets in applications relate to each other in spatial, temporal,
functional, etc., relationships. In the COBOL world,
urbanizations/architectures quickly decline as illustrated in the
example in Figure 3.1: files, programs, flows, etc., multiply and

64 COBOL Software Modernization

spread. Atomic functional ensembles are totally diluted and lost in
code that primarily satisfies technology constraints; the business
requirements are shredded.

In COBOL, the degeneration of software architectures comes from
two main factors:

1) The partitioned development of applications in which
requirements are pushed into applications in a vertical manner. There
is no sharing based on an organization’s domains and subdomains. As
an example, the need for currency conversion facilities in several
applications would surely result in numerous requirements’
interpretations from the requirements’ engineering phase to the
implementation phase.

2) As noted before, nobody is really able to think about software
architectures without a strong adherence to technology. Over the
years, from COBOL to Java, architecture styles have changed
according to paradigm shifts: functions (procedures, routines, etc.),
packages, objects/classes, components, services, etc. For a long time,
modularity reigns. Beyond this, advances in the field of software
architecture have put forward “abstraction” embodied by modeling
and model-driven development (MDD).

This book does not aim at “pointing the finger” on COBOL as a
unique culprit. Both points 1 and 2 remain complex issues when
addressed with the help of novel paradigms/technologies. Despite the
maturity and widespread availability of these paradigms/technologies
in the era of Web applications, namely SOA and cloud computing,
software architecture remains a hot topic.

4.4. The one-way road to SOA

Returning to the city metaphor, the Internet acts as a global village
of software elements, its inhabitants. Global reasoning (opposed to
“local reasoning”) is due to modern software development. Designing
software and thus software architectures in a systemic way contrasts

Service-Oriented Architecture (SOA) 65

with COBOL divide-to-conquer style1. As much as possible, software
architectures must be viewed as assemblies of pre-existing and/or
commercial off-the-shelf (COTS) elements instead of being invented
from ground zero to alleviate piling problems.

Software architectures make no real sense if we ignore that they
participate and contribute to the digital world. What is donated by the
Internet, that is, an ever-seen communication and computing
infrastructure, must lead, in turn, to an equivalent “return of favor”.
Beyond this, as discussed in Chapter 1, the Internet is a source of
innovation and related profit in business through not previously
imagined trading services.

Including the word “service”, SOA is first and foremost a state of
mind. SOA is, in particular, twofold. Its business facet is an ever-
encountered opportunity to design information systems and
applications in a manner that boosts the business instead of simply
viewing software as the banal automation of information processing.
This point is discussed in detail in Chapter 1. SOA’s technical facet is
what we can precisely understand behind the word “service”,
especially in terms of technological impacts and implications in daily
software development. In fact, the SOA paradigm has become popular
with the emergence and large take up of Web Services, but this
standard is not the single support for SOA.

In people’s minds, “service” is something billable. It is no
coincidence that “service” comes from the telecommunications field.
For a very long time, telecom operators have sold services to their
clients. The extraordinary convergence of computing and
communication triggers by the Internet has made “service” as the
natural core concept of Internet computing. Mobile computing, cloud
computing, etc., are nothing else than service-oriented computing
paradigms and technologies.

1 René Descartes’ famous “Discours de la méthode”, which gave rise to the Cartesian
approach for problem resolution, opposed to systemic (or system-based) approaches.

66 COBOL Software Modernization

4.5. Characterization of SOA

4.5.1. Preliminary note

In this book, for clarity, we use the expression “software part” or
“software element” in a free way, i.e. with open semantics. However,
both the words “component” and “service” have an agreed
significance. In general, components/services have composability
features while parts/elements do not. This clarification helps us, from
a software engineering viewpoint, to establish that components/
services, implicitly and systematically, induce maintainability,
reusability, even reliability, in software development and execution.

4.5.2. From objects to components and services

SOA is an architecture style based on the extreme
componentization of software. Using the words “componentization”,
“component”, “composition” and “composability” (the potential to be
composed) is not just anecdotal. The very nature of software
components is as follows: “components are for composition” (our
emphasis) [SZY 02]. In other words, software components are
software parts while all software parts are not components, especially
when these parts cannot be composed. There are two famous
definitions of the notion of “component. The first definition is: “a
software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A
software component can be deployed independently and is subject to
composition by third parties” [SZY 02].

The second definition is: “a software component is an
implementation, in software, of some functionality. It is reused as-is in
different applications, and accessed via an application-programming
interface. It may, but need not be, sold as a commercial product. A
software component is generally implemented by and for a particular
component technology” [SEI 00].

There is no broad difference between the notions of “component”
and “service”: “services are different from components in that they

Service-Oriented Architecture (SOA) 67

require a service provider. A service is an instance-level concept –
where such instances can be component instances” [SZY 02].

From the Java EE 6 Tutorial, the idea of “service” is evoked as
follows: “on the conceptual level, a service is a software component
provided through a network-accessible endpoint”.

Components and services philosophically derive from objects in
object-oriented programming. In this logic, the three notions have
common features. In effect, the technical idea of easier composition
fits the economical idea of reuse reinforced by object-oriented
programming in the 1980s. As objects, components and services are
reusable software assets (Figure 4.2).

Figure 4.2. Objects versus components versus services

4.5.3. Type versus instance

Both objects and components encompass design time and runtime
notions. At design time, objects are “types” or “classes”, while
they are called “instances” at runtime. Component instances are
runtime components. There is no specific expression/term for
component types at design time. Conventionally, the term
“component” most likely means “component type” instead of
“component instance”. In the type-instance dichotomy, services are
runtime notions only, as pointed out by Szyperski’s definition above.

68 COBOL Software Modernization

4.5.4. Distribution concerns

While the notion of service strictly correlates to distribution
concerns (“network-accessible endpoint” in Java EE 6 Tutorial
definition above), those of object and component are debatable.
However, the key difference between an object and a component is
that the latter is a unit of deployment (Szyperski’s definition above).
More precisely, this means that components comprise not only code
but also configuration data. Components are configurable.
Deployment is the operation of installing components in their running
platform. At deployment time, configuration data are transformed into
values used by the platform to manage the components’ functioning.
For example, the Enterprise JavaBeans (EJB) technology supports
security configuration data, transaction management configuration
data, etc. This approach facilitates the externalization of non-
functional aspects outside the code. Proceeding this way is an added
value for components compared to “obsolete” object-orientation, i.e.
programs that refer to resources (e.g. an Internet Protocol (IP) address)
in a hard-coded manner.

In this context, service computing and SOA are the extreme vision
of application distribution with corollary facets, such as resource
mobility and resource virtualization. These notions are discussed in
further detail in section 5.5.

4.5.5. Functional grouping

As objects, components and services gather some consistent
functionality in one piece through encapsulation. All three paradigms
must adhere to this founding principle, which is often, unfortunately, a
forgotten best practice. We mean that it is possible to find software
with ill-formed objects, components or services. For example, an EJB
component that offers two business functions, one for computing a
shipping plan and the other for computing a stock inventory, is
malformed. The two functions refer to two business activities that are
(in terms in computing semantics) far from each other.

Service-Oriented Architecture (SOA) 69

We strongly believe that services accentuate this need for business
proximity. As underlined in Chapter 1, the notion of “service” in the
computing sense has an intimate link with that of “service” (opposed
to “product”) in the commercial sense. In this logic, a service in an
SOA application must gather a set of ready-to-business functional
assets.

Otherwise, all three paradigms rely on interfaces or access points,
which are the “visible part of the iceberg”. This means that objects,
components and services consist of an implementation part
(submerged part of the iceberg) and an interface part (surface part of
the iceberg). For users, the implementation is hidden because it has
adherences to the underlying computing environment. Accordingly,
usages expressed through interfaces’ calls do not refer to the
implementation part. This low coupling is the key for successful
evolution in reasonable cost and time. Typically, Web Services are
written in various programming languages (PHP, Java, C#, etc.) while
calling them in programs does not impose any technical knowledge on
any particular language.

In short, this development philosophy is a radically opposite
framework compared to that of COBOL. More subtly, we may
consider that modern technologies have been eliminating the
handicaps of COBOL or any aged deficient technology.

4.5.6. Granularity

Although in object-oriented programming people may refer to
“objects” and “components”, components are considered as larger
pieces of software compared to objects. In extreme cases, sizeable
modules (billing, shipping, stock inventory, etc.) in enterprise resource
planning (ERP) software packages, for instance, may also be called
“components” provided that they demonstrate composition aptitudes.

Due to this difference in size, components and services exhibit
composition operators, which operate at the architecture level while
objects play at the programming level only.

70 COBOL Software Modernization

Historically, components and services are more recent notions than
objects: 1990s for components and 2000s for services. All three
paradigms relate to each other as follows: objects implement
components, which, in turn, implement services. We may illustrate
this chain via a Java class that powers an EJB component which itself
realizes at runtime a Web Service (also see section 5.1). In this special
case, an EJB is probably made up of a Java class, several Java
interfaces, Java annotations and/or XML files to define its
configuration (deployment) properties.

4.5.7. Technology-centrism

Objects, components and services are often technology-centric. In
practice, composition capabilities are not innate characteristics. When
enclosed in a technology, say Java, objects may only be composed by
means of composition operators offered by the technology. This
principle applies to EJBs as component archetypes or to Web Services
as having the role of the most well-known service illustrators.

All the three examples of technological frameworks have imposed
formats, which drastically facilitate composition. As an illustration,
asynchronous collaboration in EJB amounts to using Message Driven
Beans as proxies between “functional” components requiring
asynchronous exchanges. In EJB, this way by which asynchronous
composition issues are addressed is also known as a composition
pattern of this technological framework.

Outside a technology, composition and thus reuse are methodical
preoccupations of software teams with the risk of more random
results. We mean that one may imagine various “theoretical”
composition operators. However, the way these operators may be
implemented can be very open, possibly leading to heterogeneous
solutions in terms of effective realization in applications.

For example, Figure 4.3 shows in UML some composition whose
implementation is potentially subject to many variations, depending
on the target technology for implementation. The model in Figure 4.3
is technology-independent, but it leaves much latitude in the method,

Service-Oriented Architecture (SOA) 71

which establishes how the UML-provided (bubble) and required
(semi-circle) interfaces may be embodied in a given programming
language and component/service technology.

So, typically, teams use ADL, UML or any other modeling
language that supports conceptual composition constructs. The
chained implementation may strongly benefit from being codified
through, for instance, the definition of a consensual code pattern
shared by all team’s developers to avoid implementation
heterogeneity.

Figure 4.3. Check writing component is assembled with
Currency component via Payment

UML offers at a conceptual level other composition operators such
as containment and delegation. Again, this wealth is in contrast to the
need for interpretation of these operators at implementation time.
Technology-specific models may also be derived from UML: they are
then lowly abstract to refer to the technology of interest (Web
Services in Figure 4.4). In this case, the implementation method,
which becomes systematic and more efficient, paradoxically lets fewer
flexibility and creativity with regard to the sought SOA style. Beyond
this, technology-centrism may be a parasitic way of thinking. Indeed,
all objects are not in Java, all components are not EJBs and all

72 COBOL Software Modernization

services are not Web Services. Viewing SOA as a technology-free
architectural style is thus essential.

Figure 4.4. Technology-independent model in Figure 4.3 is transformed into a
technology-specific model (Web Services)

4.5.8. Composition at design time (… is definitely modeling)

So, as discussed, composition is the founding principle of
component-based development and service computing. In this context,
we have to make a distinction between composition at design time and
composition at runtime. The latter is also known as dynamic
composition, which coexists with the idea of, for instance, “service
discovery”, “service mediation” or “semantic interoperability” (see
section 4.5.9).

Roughly speaking, in a broad sense, application designs arise from
the identification and definition of service exchanges. So, at the design
stage, it is important to formalize how functionalities interoperate to
meet the applications’ overall functional requirements.

Service-Oriented Architecture (SOA) 73

Composition at the design stage is generally based on the
description of applications’ architectures with modeling languages
that may vary in scope and purpose. For example, the Payment entity
in Figure 4.3 is designed as an aggregator of the Currency and Check
writing services. The latter is able to generate checks from varied bank
accounts in foreign countries.

The UML component diagram in Figure 4.3 is both static,
functional (convert and write provided interfaces are exhibited) and
implementation-free (one does not know how these two interfaces
might be implemented). The model in Figure 4.4 is a slight variation
of the underlying technology: Web Services. It is technology-specific,
but does not bring out much added value.

Composition details may be numerous depending on the desired
accuracy. To make models more precise, we have in particular to
move from static descriptions (Figures 4.3 and 4.4) to dynamical
descriptions (Figures 4.5 and 4.6).

The Payment business process in Figure 4.5 integrates the
Currency and Check writing services in a workflow logic. The
business process model and notation (BPMN) formalism is used.
BPMN is recognized as a language devoted to the modeling of
organization functioning instead of stressing software’s inner
workings. The model in Figure 4.5 is, by definition, represented in a
technology-neutral way. UML activity diagrams are based on a very
similar formalism (many examples are given in Chapter 9) with,
compared to BPMN, additional constructs and a more seamless link
with other UML diagrams: class diagrams, component diagrams,
deployment diagrams, etc.

In BPMN, control flows are ruled by events (e.g. bubbles as start
and end events in Figure 4.5) and data flows for inputs and outputs of
“works” (also known as activities or simply functions such as convert
and write).

The degree of composition precision may call for more specific
modeling languages with, inevitably, the risk to adhere to a
technology and implementation concerns. For example, “service

74 COBOL Software Modernization

orchestration” promoted by the Web Services Business Process
Execution Language (WS-BPEL) is a modeling language devoted to
the Web Services technology.

Figure 4.5. Articulation between the Currency and Check writing activities in a
BPMN Payment process

In Figure 4.6, we show how any transnational financial application
supporting a Payment process formerly requests a Currency service
before requesting a Check writing service. The model in Figure 4.6
does not properly respect the WS-BPEL syntax, but it shows at a fine-
grained specification level details such as service invocations (arrows
pointing right and left), assignments (equals sign), data reception
(arrow pointing right) and data reply (arrow pointing left). The
Payment process specification in particular points out sequencing and
parallelization. As an illustration, retrieving bank account for the write
function of the Check writing Web service is parallel to the call of the
convert function of the Currency Web service.

WS-BPEL capitalizes on the capabilities of the Web Services
technology, which automatically lets us much latitude in
implementation detail description. In this scenario, WS-BPEL models
may be associated with effective predeployed Web services. WS-
BPEL models may consequently be deployed on (and then executed
by) a BPEL engine, for example Apache Orchestration Director
Engine.

In Figures 4.3–4.6, the SOA spirit is embodied by the permanent
availability and thus runtime reusability of the Currency and Check
writing software components/(Web) services. Other business

Service-Oriented Architecture (SOA) 75

processes may be instrumented by equivalent designs and thus
models. Other components/services may be grafted onto this
architecture. For example, we may envisage the addition of Check
printing and Check posting services.

Figure 4.6. WS-BPEL model enhancing (toward implementation) the UML
model in Figure 4.4 and the BPMN model in Figure 4.5

So, in SOA, services are therefore instances of components in
execution with the following advantages:

– sharing: services are in essence runtime reusable components.
Client applications or third-party components do not need their own
copy of components in their image, i.e. components’ code is not
embedded in the package. So, in the world of software components,
SOA refers to applications that do not necessarily “internally” own
their functionalities. We may go toward an extreme vision of software
reuse if services are shared over the Web, the case of Web Services;

– client applications or third-party components have the ability to
be connected with services through normalized (transparent) access,
exchange protocols (e.g. Simple Object Access Protocol (SOAP) over
Hypertext Transfer Protocol (HTTP) for Web Services). Services are

76 COBOL Software Modernization

“everywhere” provided that network connectivity exists. This
confirms that cloud computing has the definitive culmination of SOA,
but this also raises the evident problem of service disruption and
subsequent fault recovery in SOA-centric business processes and
applications;

– services expose features in terms of both functionality and
quality (e.g. performance guarantee and availability continuity). This
has created the idea of Service-Level Agreement (SLA) in which
services are constrained by a certain degree of quality due to the fact
that they are chargeable. We briefly outline in Chapter 5, with the help
of the EJB technology, the way SLA may be managed from service
provider viewpoint;

– service composition may have varied forms from high
abstraction (UML, BPMN, etc.) to implementation details and
technology strong adherence (WS-BPEL, etc.). Other mechanisms of
expressing service composition at implementation level also exist.
Typically, WS-BPEL favors a centralized architecture (also known as
orchestration) for service composition while choreography (a
decentralized architecture) is another composition paradigm
particularly based on the Web Service Choreography (WS-
Choreography) modeling language. SOA is thus manifold within or
out of the circle of the Web Services technology. SOA is a family of
architecture styles, which lets room for creativity and application
functioning optimization, in the Cloud in particular.

The counterpart of these four recognized strengths is the risk of
excessive dependence of applications on external (even
uncontrollable) service provisioning and delivery. In an ideal world,
services can be dynamically replaced by each other. In this context,
functional contracts with (possibly new) callees must still be
respected. Replacement can be motivated either by functional or QoS
insufficiencies. Applying such architectural changes at the design
stage amounts to changing models and next implementations to reflect
model changes in terms of new service usages (application
programming interface (API), locations, providers, utilization costs,
etc. may change accordingly). Such a cycle is again maintenance with
inevitable inertia, tuning, efforts and costs. Direct adaptation at

Service-Oriented Architecture (SOA) 77

runtime without service disruption aims at avoiding this cycle; it is
based on runtime composition.

4.5.9. Composition at runtime

SOA results in viewing applications as service assemblies. An
induced vision is the idea of pluggable, connectable items like newer
musicians (musician addition or musician substitution), who are able
to participate in orchestras without, as much as possible, long and
intense rehearsal.

Assembly at the design stage is comparable to the hiring, training,
validation and effective integration of these newer musicians as true
complements and sources of better music. Application design is the
well-formed articulation and coordination of these complements in
orchestras. Models in MDD play these roles: provided and required
interfaces in UML, workflows in BPMN or executable processes in
WS-BPEL are constructs for expressing these articulation and
coordination.

Assembly at runtime is, for example, the fact that composition
thought at the design stage does not lead to frozen architectures at
runtime: new services (for instance, using service directories with the
Universal Description Discovery and Integration (UDDI) standard for
Web Services) can be discovered to replace deficient services. To that
extent, service mediation is the use of a mediator service, which hides
and manages the services in charge of delivering the required
functions with the required QoS, in reasonable cost and time, etc.

Of course, with service-stable interfaces, dynamic composition can
be viewed as the transparent replacement of interfaces’
implementations: it is the “invisible” code running behind interfaces
resulting from implementations’ encapsulation. In practice, dynamic
composition is more research concern of today than an industrial
possibility and thus realistic strategy. To that extent, this book does
not emphasize the idea of dynamic composition. In effect, COBOL
heritage and modernization come up with existing monolithic stiff
architectures. This rigidity often hides a useful stability when COBOL

78 COBOL Software Modernization

information systems and applications face business disturbances. The
gap from legacy COBOL to SOA is so important that findings may
only emerge from maturity in SOA. In our opinion, dynamic
composition is a conceptual step too far for COBOL practitioners at
this time.

4.6. Conclusions

This chapter shows that SOA is a computing philosophy on its
own. SOA is above all a conceptual architectural style, which takes a
stance opposite to COBOL totally monolithic style of architecture.
SOA has prominent concerns: reusability based on easy and
straightforward composability, service provision and delivery in
quality (security, etc.) and capacity (scalability, etc.).

Componentization as a founding principle of service computing is
well relayed by models. In effect, models may greatly help the
formalization of components and interactions. Given an SOA
technology like Web Services, models are natively present at the heart
of the technology with the WS-BPEL or WS-Choreography modeling
languages. Since services may not be linked to a specific technology,
models like UML (even BPMN) models may also greatly help the
design of SOA samples.

To avoid COBOL historical pitfalls, SOA is the evident recipient
of COBOL software modernization in a renewed business context for
software in general.

5

SOA in Action

In several points of this book, we are interested in currency
conversion facilities as part of applications of organizations that
require financial computations at large.

We initially showed in section 2.2.3 an external call in COBOL to
a Currency program. This middleware-based call (Customer
Information Control System (CICS) middleware) is characterized by a
sound modularity with the exception of the “precision” variable,
which seems to be a global variable shared by the caller and the callee,
a recognized bad style of programming. We also note that this
modularity is rare in existing common business-oriented language
(COBOL) applications. The very challenge of COBOL software
modernization is not only dealing with this modularity, but it is also to
tackle COBOL currency conversion facilities that are deeply
immersed, excessively engraved and surely dispersed in many
places of the total code of numerous legacy applications. The
purpose of this chapter is to characterize the model-driven
development (MDD) method that has mechanisms to extract such a
knowledge as: the existing currency conversion functionalities, the
business rules that govern their functioning, and the business
processes fed by these.

More generally, the remaining chapters of this book are a toolkit
for code mining, analysis, interpretation and recast (reverse
engineering). It is the move from diluted currency conversion facilities

80 COBOL Software Modernization

in COBOL to a compact unified modeling language (UML) model
with equivalent riches and semantics in terms of computation. The
move to SOA is the role of forward engineering.

In section 4.4 of Chapter 4, we draw the necessary conclusion of
componentization. Currency must be a component on its own,
meaning, by definition, an ability to be composed with other
components. As an illustration, a Check writing component is
introduced as a collaborator of Currency in a Payment business
process. Compositions may be described in a loosely coupled way
(first UML model in Figure 4.3). Going into further detail leads to
make data and control flows explicit in service collaboration by means
of business process model and notation (BPMN). Technologically
independent models may be insufficient; we then want to link models
to a given technology, Web services for example (second UML
model, and Web services business process execution language
(WS-BPEL) model, see Figures 4.4 and 4.6 respectively).

In the logic of modernization, to overcome COBOL sins, we
indisputably converge to the idea of making Currency both specified
(documentation) and operational (runtime image). To have something
consistent and complete, all “lost + found” COBOL statements in
many source code files aim at providing much knowledge on
functionality completeness, utilization scope before disappearing to
the benefit of a well-isolated component, for instance, a Web service.
However, as shown below, there are many technological alternatives
beyond Web services.

Modernization amounts to detecting and setting boundaries for
these COBOL statements; further analysis and interpretation are
required to establish the level of detail about all of the existing
currency conversion facilities. In practice, a Currency component
ensures currency conversions according to different configurable
elements:

– precision (1 digit, 2 digits, more);

– rounding (ceiling, floor, etc.);

SOA in Action 81

– conversion rate update frequency (low, high, etc.): for example,
currency trading requires multiple updates of conversion rates for one
short period.

Orthogonally, QoS features are also of great importance:
availability, performance, security, fault recovery, etc., beyond the
fact that SOA is fundamentally the search for a coherent organization
of functionalities in self-contained, well-isolated modules. Once built,
these modules may also be endowed with QoS features to implement
service-level agreement (SLA) policies.

The fact that Currency must be incorporable into any application
(of course, ours, but why not into applications belonging to people
outside our organization?) calls for a kind of generic thinking on what
a Currency component/service may look like. We show that standards
exist later, in section 6.4: a formal characterization (again, a model) of
Currency as a computerized object. These standards are suitable
guides for homemade design; they may also play the role of
requirements’ documents when we want to buy, rent or freely use a
commercial off-the-shelf (COTS) Currency component/service. In all
cases, not reinventing the wheel is the rule.

The interesting point is that models are both implementation
bootstraps and comprehension/communication means. Models as
graphical or compact textual representations liberate us from
programming code tainted of too many useless details, even if,
ultimately, code is “the end of the tunnel”.

5.1. Service as materialized component

Requiring a currency conversion component ensues from analysis
of many legacy code pieces and possibility/opportunity of refactoring
these in a single (composable and thus reusable) entity. A rough
approach steers us to acquire some new code. This can be
subcontracted fabrication or simple download (source code, binary
code, etc.). The component can also be constructed in house with
inevitable maintenance issues.

82 COBOL Software Modernization

As shown later in Chapter 7, before any kind of implementation,
models help us to get a better understanding of Currency as a unified
set of functionalities (the idea of “functional grouping” in prior
chapter). Models are also maintenance entry points when we decide to
generate Currency code from a model.

In all of these cases, it exists a challenge in terms of maintenance
and reuse. Choosing an external component is “design with reuse”;
outsourcing imposes lightweight maintenance issues: open-source
software contribution or maintenance management (versioning plans,
tests, deliveries, etc.) with subcontractors. In-house fabrication is
“design for reuse”. In this second case, Currency must be formatted to
fit the required services of Payment and, indirectly, Check writing.
Currency must also be designed for meeting forthcoming
requirements expressed by currently unknown client components.
More generally, “design for reuse” raises the problem of unanticipated
utilization. Concretely, from an economical viewpoint, should we
invest on components whose (possible) postponed utilization is
unknown? Design for reuse covers tactics like component higher
genericity (and thus configurability, customization, etc.), component
portability, technology independency, etc.

In terms of human resources, constructing component libraries at
large is a fully fledged job. The comparison with COBOL is amazing
in the sense that SOA is not only a problem of architectural style but
also of service production economy with human facets (specialized
jobs, skills, teams, etc.). COBOL software modernization toward SOA
is hence, above all, an intellectual gap in the broad field of software
development.

Models are implementation springboards, comprehension/
communication supports and also roadmaps to drive choices,
decisions, orientations, etc., when modernization prompts for
transformation strategies when reshaping applications.

In the Currency example, once materialized, it can be packaged
and later deployed as a stand-alone service or with a set of closely
related services.

SOA in Action 83

In Java EE, for instance, Currency may be embodied as an EJB
component. It is a Stateless Session Bean, which is, by definition, a
fully functional component in the sense it has no remanence: callers
share it, from one call to another, without the possibility of relying on
the component’s states1.

In the Java code below, there is a clear distinction between the
component’s interface named as Currency and the component
implementation named as CurrencyImplementation:

@javax.ejb.Stateless
@javax.ejb.Remote(Currency.class)
public class CurrencyImplementation implements Currency
{ …

In EJB, the (non-exclusive) choice between a “local interface”, a
“remote interface” (prior choice) and “Web service” is a question of
access degree. In this context, we may add to the component another
visibility, that of a Web service:

@javax.ejb.Stateless
@javax.ejb.Remote(Currency.class)
@javax.jws.WebService(serviceName = “Currency”)
public class CurrencyImplementation implements Currency { …

The functional view of this code is the offering of the convert
function in the component’s interface:

@javax.ejb.Remote
public interface Currency {

double convert(double amount, Currency
source_currency, Currency target_currency,
RoundingType rounding /*, etc.*/);

}

The QoS view aims to support SLA. For example, credentials may
be assigned to a role, e.g., “FranckBarbier” below, to control and
limit the access to the convert function:

1 Note that this is the original “theoretical” definition of a service, which in essence
has no persisting state.

84 COBOL Software Modernization

@javax.ejb.Stateless
@javax.ejb.Remote(Currency.class)
@javax.jws.WebService(serviceName = “Currency”)
@javax.annotation.security.DeclareRoles(“FranckBarbier” ,
“Jean-LucRecoussine”)
public class CurrencyImplementation implements Currency {

@javax.annotation.security.RolesAllowed(“Franck
Barbier”)
double convert(double amount, Currency
source_currency, Currency target_currency,
RoundingType rounding /*, etc.*/) { …

Setting up values for performance attributes (through load
balancing administration from a Java application server console) is
also possible, but it occurs by breaking the compatibility with EJB,
namely the boldface annotations below are product-dependent
(GlassFish Java EE server from Oracle):

@javax.ejb.Stateless
@javax.ejb.Remote(Currency.class)
@javax.jws.WebService(serviceName = “Currency”)
@javax.annotation.security.DeclareRoles(“FranckBarbier” ,
“Jean-LucRecoussine”)
@StatelessDeployment(maxInstances=10,
minInstances=5)
@StatelessDeployment(poolCacheTimeout=30) // default
is 60
public class CurrencyImplementation implements Currency {

@javax.annotation.security.RolesAllowed(“FranckBar
bier”)
double convert(double amount, Currency
source_currency, Currency target_currency,
RoundingType rounding /*, etc.*/) {…

Performance is constrained by the limited space and time allocated
to the Java objects “realizing” the Currency service at runtime (see
again Figure 4.2). No more than 10 instances is the number that
establishes the low-throughput rate for software clients of Currency.
Instances live no longer than 30 s. To summarize, the service is
configured for low performance. This may correspond to favoring a
greater performance of the other deployed and running services. In

SOA in Action 85

terms of service provisioning and delivery, this may also amount to a
free service. In other words, free services are often provided with
lower power, while high-end versions are being reserved in another
deployed module for paying customers.

This EJB example perfectly illustrates the importance of careful
design: beyond coding functionalities (convert function and probably
other client-friendly functions), there is a need for configurability.
This example is realistic, not a dynamic composition. Design choices
are heavyweight. We especially show that there is a gap to obtain the
above EJB code from the models in Figures 4.3–4.6. To solve this
problem, in Chapter 6, we enter into further details to first sketch and
next precisely state the method, which enables a complete
transformation/modernization, i.e. all code artifacts are obtained from
models.

What do we demonstrate? With EJB, we sketch Currency as a
homemade component. Several functional problems remain
like acquiring exchange rates in a timely fashion (adequate rate update
frequency). We show how to set up QoS features. We also underlie
that code production inevitably generates postponed maintenance.

Enterprise JavaBeans (EJB) is a powerful technology to bring SOA
to life. In the logic of COBOL modernization, COBOL code with
currency conversion aspects will move to UML models and from
these, EJB source code will be generated. This realistic scenario relies
on findings presented in the remaining chapters of this book.

5.2. Service as Internet resource

The previous section shows a kind of “private SOA” in which
many SOA components are in-house pieces of software even if some
of them are probably externally acquired (open-source, outsourced or
fully packaged like COTS components). They have also different
formats from source code to binary software.

However, the Internet is above all an infinite marketplace (and the
biggest SOA incarnation) of computing resources, including, of

86 COBOL Software Modernization

course, services. Websites like www.programmableweb.com are a
source of bargain, shopping and simply doing business. On-demand
services are found there and, more generally, everywhere on the
Internet.

In this section, instead of incorporating a Currency service into the
application that supports the Payment business process, the followed
SOA strategy is reusing Currency as a ready-to-use Internet
computing resource. In other words, we experiment from the Web
existing running services that are able to provide the desired currency
conversion functionalities. We shift the problem from heavyweight
development to connecting with something external. The main risk is
a loss of control with respect to the application(s) currently using
these externalized runtime functionalities.

From the modernization viewpoint, a model of Currency and its
imposed (design with reuse) and potential (design for reuse)
interactions, with, for instance, Check writing, may lead to match the
legacy COBOL code to an immaterial component. It means that we
can be in a situation in which we cannot match this legacy code to a
materialized Stateless Session Bean as done before with EJB. Instead,
this corresponds to a running service over the Web, which takes over
the set of required currency conversion functionalities.

Obtaining something internally or externally does not matter when
we pay attention to all types of impacts. Having a component as
internal or external does not create a great difference: in both cases,
this is subcontracted fabrication from requirements. In effect, in-house
code production, third-party code acquisition and running service
connection are three alternatives; they share the fact that computation
requirements must be formally extracted and exposed by mining the
COBOL code base.

In this context, the specification of functional requirements (again,
the model) plays a great role in the management of risks in cases in
which the externalized service shows, after some utilization, some
“weaknesses”. In other words, the expected functional sophistication
(precision, rounding, rate update frequency, etc.) is a first guide if we

SOA in Action 87

have to switch from a service provider to a new one when problems
arise.

The second guide is the expected SLA (security through mandatory
encryption (Hypertext Transfer Protocol Secure (HTTPS)),
availability greater than 99% for, say, 1,000 calls per day to
the service, etc.). The provider, beyond “announcements”, must
guarantee the SLA. In other words, means must exist to precisely
measure the expected SLA. In this line of reasoning, as discussed
below, cloud providers offer application administration support in a
programmatic way. Programmers may develop lateral administration
programs (platforms as a service (PaaS) and infrastructure as a service
(IaaS) levels) to better control applications in the Cloud.

The third issue is interoperability with third-party technologies. For
example, the paying service (see section 5.2.1 below) can also be used
freely from a compatibility constraint about the Web Services
technology; it indeed works as a simple “data feed” service, i.e. simple
requests and responses over HTTP, even HTTPS, are conveyed.
In particular, this service may return JavaScript Object Notation
(JSON) objects for readily processing results in Web pages using
JavaScript.

There is then a functional quality of the subject service and, in
parallel, the traditional QoS. For the former quality, many details are
of importance when choosing the service and the provider. Typically,
currency conversion facilities are a business service or domain-
specific service, the domain being finance. Obeying national laws,
bank standards, rules, regulations, etc., is another key facet of
functional quality. A finance sub-domain like currency trading may
also be interested in enhanced (functional and/or non-functional)
features. We expect, from a chargeable service, great sophistication
beyond “technique serving business”.

5.2.1. Pay-per-use service

There are plenty of URLs from which currency conversion
functionalities are accessible and consumable.

88 COBOL Software Modernization

At the time of writing this book, fx.currencysystem.com/
webservices/CurrencyServer5.asmx is the documentation of a
professional paying Web service. It is a Simple Object Access
protocol (SOAP) Web service over HTTP or HTTPS. It offers a lot of
functionalities, including legal information that is often of great
importance in finance. In Java, the convert function is simply called as
follows:

@WebServiceRef(wsdlLocation = “META-
INF/wsdl/fx.currencysystem.com/webservices/CurrencyServer
5.asmx.wsdl”)
com.currencysystem.webservices.currencyserver.CurrencySe
rver service;
…
com.currencysystem.webservices.currencyserver.CurrencySe
rverSoap port = service.getCurrencyServerSoap12();
Object o = port.convert(licenseKey, fromCurrency,
toCurrency, amount, rounding, format, returnRate, time,
type);

The signature of the convert function is in essence the degree of
sophistication (and thus functional quality) of the requested service.
The licenseKey parameter reveals the paying nature of the call.

The convert function is documented in the Web service description
language (WSDL) specification:

<wsdl:documentation>
Currency Server – An exchange rate information and currency
conversion Web service.
</wsdl:documentation>
…
<s:element name=“Convert”>
<s:complexType>
<s:sequence>

<s:element minOccurs=“0” maxOccurs=“1”
name=“licenseKey” type=“s:string”/>
<s:element minOccurs=“0” maxOccurs=“1”
name=“fromCurrency” type=“s:string”/>
<s:element minOccurs=“0” maxOccurs=“1”
name=“toCurrency” type=“s:string”/>

SOA in Action 89

<s:element minOccurs=“1” maxOccurs=“1”
name=“amount” type=“s:double”/><s:element
minOccurs=“1” maxOccurs=“1” name=“rounding”
type=“s:boolean”/>
<s:element minOccurs=“0” maxOccurs=“1”
name=“format” type=“s:string”/>
<s:element minOccurs=“1” maxOccurs=“1”
name=“returnRate” type=“tns:curncsrvReturnRate”/>
<s:element minOccurs=“0” maxOccurs=“1”
name=“time” type=“s:string”/>
<s:element minOccurs=“0” maxOccurs=“1”
name=“type” type=“s:string”/>

</s:sequence>
</s:complexType>
</s:element>

In this documentation, we may, for example, observe that the
rounding is just a Boolean option. The client application must then
take charge of precision/rounding management by setting the rounding
parameter to false and later applying a local policy (business rule).

As a professional service, the functional sophistication is high via,
for example, the possibility of setting up, before calling convert, the
Foreign Exchange (FOREX, the market of currency trading) feed
source by means of other Web services offered by this site.

What do we demonstrate? There is no magic. Paying services offer
a large range of functionalities and thus sophistication. However, there
is no QoS observability and controllability for this chargeable service.
As a Web service, this service fully complies with the SOA spirit. As
a professional service, this service is provided with many other
services, which, in general, avoid code enhancement (not true for
rounding issues) beyond simple calls.

5.2.2. Free service

Otherwise, at the time we are writing this book,
www.restfulwebservices.net/service.aspx?ID=2 is the documentation
of a simplified free service. As minimal sophistication, only the

90 COBOL Software Modernization

conversion rate may be captured for deferred conversion in the caller
program:

@WebServiceRef(wsdlLocation = “META-
INF/wsdl/www.restfulwebservices.net/rest/CurrencyService.sv
c.wsdl”)
net.restfulwebservices.servicecontracts.rest._2008._01.Curre
ncyService service;
…
net.restfulwebservices.servicecontracts.rest._2008._01.ICurre
ncyService port =
service.getWebHttpBindingICurrencyService();
Object o = port.getConversionRate(parameters);

The parameters object sent at request time simply has the
setFromCurrency and setToCurrency functions to, in return, get the
right exchange rate. In contrast with the paying Web service, many
professional capabilities are missing like the temporal value of the
rate, which plays a very important role in, for instance, currency
trading applications. As a consequence, conversion code is part of the
caller program; it is a source of (undesired) extra maintenance.

What do we demonstrate? That, again, there is no magic. Free
services have poor features. In terms of maintenance, wrapping code
is necessary (conversions themselves), as is calling other services to
get any other (missing) useful information. We may, for example,
require currencies in International Organization for Standardization
(ISO)-compliant formats for any kind of displaying or checking. As a
Web service, this service also complies with SOA, but with
disappointing functional support.

5.2.3. Data feed service

As outlined many times in this book, it is important to be aware
that Web Services are just an instantiation of SOA. So, it exists over
the Web or in information systems of organizations, service-oriented
architectures that are compliant with other standards or, with no
standard at all; they are the proprietary solutions. The telecom

SOA in Action 91

industry, for instance, may greatly benefit from the SOA paradigm
without any necessary link to Web Services as an imposed
technology.

A simple method of obtaining currency conversions is sending and
receiving data based on a data feed service. As an illustration, we take
the example of a currency conversion service
(openexchangerates.org) that does not obey the Web Services
standard, but it is capable of returning converted values in appropriate
formats, JSON in this case. This service is described in greater details
here: openexchangerates.org/documentation. Another key feature of
this service is the fact that some basic features are free while
sophisticated ones are chargeable.

This data feed service perfectly responds to currency conversion
requirements. For example, free features include the fact that
exchange rates are updated every 10 min. In contrast, paying features
are, for instance, communication in secure mode with encryption
(HTTPS).

The homemade convert Java function below just accesses to the
latest.json object, which, free of charge, returns all of the available
(effectively updated) conversion rates:

public static double convert(String licenseKey, String
fromCurrency, String toCurrency, double amount) throws
java.net.MalformedURLException, java.io.IOException {

java.net.URL url = new
java.net.URL(“http://openexchangerates.org/api/latest
.json” + “?app_id=“ + licenseKey);
java.net.URLConnection connection =
(java.net.URLConnection) url.openConnection();
if (connection != null) {
javax.json.stream.JsonParserFactory factory =
javax.json.Json.createParserFactory(null);
javax.json.stream.JsonParser parser =
factory.createParser(connection.getInputStream());
… // homemade code conversion here required

As for the free service, conversion code is part of the caller
program: a source of future maintenance. The fact that JSON is used

92 COBOL Software Modernization

also forces us to deal with this technology and its application
programming interface (API). Any switch from JSON to a competitor
may then also hinder future maintenance.

Interestingly, the paying part of this data feed service may directly
return the conversion result through replacing latest.json by
convert/etc:

public static double convert(String licenseKey, String
fromCurrency, String toCurrency, double amount) throws
java.net.MalformedURLException, java.io.IOException {

java.net.URL url = new
java.net.URL(“https://openexchangerates.org/api/con
vert/” + String.valueOf(amount) + “/” +
fromCurrency + “/” + toCurrency + “?app_id=“ +
licenseKey);
javax.net.ssl.HttpsURLConnection connection =
(javax.net.ssl.HttpsURLConnection)
url.openConnection();
… // no code conversion here required, result from
service call has to be immediately consumed only

What do we demonstrate? That after deciding to reuse currency
conversion functionalities over Internet (by opposition to in-house
solutions like EJBs), problems remain in choosing the right solution
and extrapolating consequences in terms of forthcoming maintenance
especially. We show that services in SOA differ in technologies (Web
Services, data feed services over Internet, organization internal
services with EJBs, etc.), in protocols (RESTful Web Services, SOAP
Web Services, etc.), in surrounding technologies (JSON, etc.), etc.

SOA is the antithesis of COBOL, but it raises its own problems.
What concretely emerges through these four samples of services in
SOA, is the strong need of an intermediate level to abstract technology
details at early design time, which may correspond to business matter
consolidation resulting from COBOL mining. At the beginning of this
chapter, we only briefly discuss Currency in a modeling logic. Going
further in-depth, Chapter 6 revisits Currency as a model. In the

SOA in Action 93

meantime, we complement this thought on SOA by introducing a kind
of SOA heaven.

5.3. High-end SOA

SOA is a great progress in information technology (IT), but
generates new problems on its own. A SOA-centric organization must
install a kind of meta-architecture to set up, deploy and administrate a
set of non-homogeneous services, be they local, remote, homemade,
third-party, etc. As an analogy, there is a resemblance to CICS in
COBOL, which naturally imposes a computing infrastructure “style”
totally linked to COBOL programming “peculiarities” with, it should
be recalled, time after time, very undesired side effects.

In SOA, such a meta-architecture is named as an enterprise service
bus (ESB). Oracle service bus (OSB) or BizTalk from Microsoft are
products in this area. No vendor lock-in products exist like OpenESB.
In the Java world, they are mostly based on the Java Business
Integration (JBI) standard.

Figure 5.1 shows that the main purpose of an ESB is to
transparently satisfy the constraints posed by effective technologies
used for designing services. This is typically the ease of the
management of multiple protocols to access to and exchange with the
services visible on the bus.

For example, Figure 5.1 shows the interrogation of services with
SOAP, while these services are based on C/C+ through the Java
Native Interface (JNI), which basically allows the integration C/C++
libraries and code in Java. What we basically expect from an ESB is,
in this case, hiding C/C++, JNI and, above all, any adaptation code
that fits the required protocol between the service consumer and the
service producer.

As a comparison, the example of a data feed service in previous
sections leads to specific Java code. It corresponds to using the Java
APIs and libraries to cope with HTTP/HTTPS and the JSON format.
An ESB would primarily mask this technology dependency.

94 COBOL Software Modernization

Figure 5.1. ESB overview (image taken from Wikipedia)

ESB-based information systems are very advanced middleware.
Organizations with such a service-oriented computing infrastructure
are rare. Further analysis shows that this kind of system might be
appropriate for IT-based inter-organization business partnership, for
instance, among car manufacturers, car dealers and car parts and spare
parts’ suppliers.

However, having for an organization an ESB cannot be detached
from concomitant thinking about a cloud computing strategy (section
5.5 below). Indeed, at the core of an ESB, there are middleware-based
(underlying) services like a service repository (with, for instance,
service naming, service updating, etc.), facilities and management. An
ESB is then a heavyweight computing infrastructure in the sense that
it is very close to a private cloud.

SOA in Action 95

5.4. SOA challenges

In an intuitive way, this chapter presents SOA as a panacea. This is
justified with regard to COBOL and its so-awaited modernization.
However, precautions are required in a SOA strategy. Before the
implementation of an ESB or a private cloud, to make SOA real, there
are hands-on considerations to outline:

– interface types and protocol issues: as shown in examples,
services are designed from technologies and, accordingly, themselves
generate usage constraints, their access in particular through interfaces
and protocols. Consuming code outside the scope of an ESB then
always leads us to rub against technologies’ roughness. For example,
the fact that the data feed currency conversion service above is not
aligned with the two most used Web Services access protocols (SOAP
and RESTful) is embarrassing in a logic of long-term maintenance.

– substitutability issue: services are components. Components are
easily and straightforwardly composable in particular because of
interchangeability of implementations. In contrast, interfaces are
substitutable with more difficulty. We provided four ready-to-use
solutions (one in-house solution with EJB, two existing Web Services
over the Web and one JSON-based data feed service). Creating a
design environment with the necessary flexibility to timely replace
any of them by another is a true challenge. This remains a kind of
magic at this time, apart from models as contracts about requirements
and the possibility of generating the consuming code independently of
the specificities of each service.

– functional sophistication issue: to anticipate evolving
requirements, it may be appropriate to choose a currency conversion
service with a lot of functions, and a lot of parameters for each function.
This is the case of the paying Web service above. The dilemma is
paying for unused functionalities versus paying less or nothing. In the
latter case, the risk of costly maintenance at the time, where functional
requirements increase, is high. Such an anticipation is beneficial if the
initial choice is confirmed as the good one on a long-term scale. There
is then no maintenance coming from the need to reuse another service,
or the satisfaction of odd technology constraints in general (new API,
new access protocol, new security issues, etc.).

96 COBOL Software Modernization

– sustainability issue: the great risk of a service is its sustainability.
What is the guarantee behind the longevity of its service provider, the
continuous quality-driven support of the service or its necessary
versioning? Choice of software, be it package software or
components, is not a new concept. Similar to COBOL, in-house
software raises the same issues. Loss of knowledge, know-how, skill,
etc., on software may occur for both internal and external software.
The case of services is characterized with fewer side effects. Indeed,
the low coupling resulting from componentization may greatly help
the management of software non-sustainability, even if adaptations
would probably be inevitable. The question is only the amplitude of
these adaptations and the generated costs.

– pricing issue: as an illustration, the paying Web service above
has a utilization cost of 295 use for 1 year, with 10 accesses/day. Each
organization has analytical accounting that allows decision-making
with respect to in-house fabrication versus outsourcing versus buying
services over the Web or elsewhere. Software acquisition or rejection
is also ruled by non-functional concerns such as robustness, response
time, etc.

– QoS issue: QoS cannot be ignored. For example, service security,
“availability” mostly, may be a discriminating criterion for buying a
service. SOA comes up with SLA support to better meet QoS
requirements and control, at runtime especially, if the said quality is
actually observable. We sketch above, in our own implementation of a
currency conversion Web service, how SLA may be instrumented
from the supplier viewpoint.

– interoperability issue: it is highly important. It is like shopping in
a hypermarket: one hopes that COTS-dried lasagna brands finely
accommodate with COTS tomato sauces, grated cheeses, various
ground meats, etc. The application that needs currency conversion
functionalities may comparatively evolve through an enhanced
Payment business process: currency, check writing, check printing and
check posting. The postponed search for check printing and check
posting facilities must not lead to difficult (probably late) assembling
with currency and check writing already deployed and in use.

SOA in Action 97

5.5. The Cloud

It is difficult to write something about the Cloud without
introducing more confusion. To that extent, we strongly advise the
reading of McFedries’ book [MCF 12]. This book develops efforts to
make the Cloud as simple as possible; it is a kind of dream in the
cloud literature “ocean”.

Going to the Cloud is for most organizations a question of long-
term strategy via a one-way road. Naively, we may wonder if there is
a real choice with regard to the rapid evolution of Internet computing.
To be in sync with this feeling, this section tries to discuss the Cloud
from a fresh and innocent perspective. With this in mind, when
considering COBOL software modernization, we preferably discuss
the cultural gap between COBOL programming and cloud computing,
in particular the whys and wherefores. Moving legacy COBOL
applications to the Cloud is appealing, provided that there is a suitable
technology (see in Chapter 8). In other words, a two-step move
(legacy to (non-cloud) modern, modern to cloud) might be considered
both laborious and tedious.

More opportunistically, if such a modernization technology
completely allows the neutral description (through UML models) of
the business logic and the functional requirements of any legacy
application (reverse engineering), then generating the equivalent
modernized application to the Cloud (forward engineering) is a source
of net progresses. Concretely, the move from COBOL to Java EE or
.NET is compatible with the Cloud since these two well-known
computing environments2 may be managed as PaaS in the Cloud3.
Ultimately, we think that everything is a matter of API. It means the
IaaS–PaaS–software as a service (SaaS) trinity has made physical
machines, namely servers, more “transparent”. Computing
infrastructures and platforms through virtualization has become
programmable in terms of both provisioning and deprovisioning,

2 For the sake of clarity, note that the expressions “middleware”, “application server”,
“platform” and “virtual machine” are used with the same semantics.
3 The limitation for .NET is the single choice of Microsoft Azure PaaS offer.

98 COBOL Software Modernization

administration, (re)configuration and more. The programmable Web
has leveraged a never-seen possibility and its contingent opportunity.

As discussed throughout this book, the COBOL software
modernization spirit inevitably converges to a SOA/SaaS problem. As
underlined, “models” aim at hiding the PaaS and IaaS layers, apart
from models like UML Deployment Diagrams that aim to deal with
associations between logical components and their distribution and
assignment to logical and/or physical platforms/infrastructures.

5.5.1. COBOL in the Cloud

Deployment of COBOL applications in the Cloud is theoretically
possible through virtualization of physical servers, operating systems
and middleware platforms. Furthermore, COBOL supporters propose
effective solutions. Nonetheless, the theoretical facet of “COBOL in
the Cloud” results from past outright failures. Legacy COBOL code
has to be, most of the time, significantly altered to move to the Cloud
or no change occurs. In the former case, this is the logic of COBOL-
to-COBOL modernization with few advances. In the latter case, this
makes no sense to keep architectures as monolithic, while the Cloud is
the idealistic vision and incarnation of SOA.

In everyday practice, the current “COBOL in the Cloud” market is
oriented toward the deployment of young COBOL applications, which
are discussed in a way tolerating the Cloud’s principles. Obviously,
the “COBOL in the Cloud” market is sustained by historical COBOL
supporters, so as not to break the COBOL way of life. However,
young COBOL, compared to legacy COBOL, is not the big deal.
What is misleading is the inevitable rupture in the way of thinking:
thinking COBOL is not compatible with the Cloud, and more
precisely, with SOA.

Even though the “COBOL in the Cloud” principle makes sense in
terms of sketchy technical solutions, it is difficult to bypass the SOA
principle if we really hope to gain value. The connectivity between the
aged COBOL and the cloudy COBOL is only a matter of proprietary
solutions with long-term dependency and hence lock-in.

SOA in Action 99

The Cloud is also a conceptual framework and its consequential
opportunity is the possibility of talking about software in a very
different way. Moreover, business must govern software while
COBOL is, in spite of itself, the eminent representative of
the contrary. As mentioned in the beginning of this book, service
computing is a state of mind: business innovation through services
replaces “business automation”.

5.5.2. Computing is just resource consumption

As observed in the prior lines of this book, COBOL programming
is a state of mind that culturally takes into account resource
management in a very unwise way. Programs, applications and
information systems use resources. Their design tends to work out
resource usages (location, access, load, release, etc.) in the way that
software is totally rigidified. Consequently, having programs with
details on resources and usages generates sizeable and tricky
maintenance at the time these resources and their potential (novel)
usages vary in quantity, capacity, nature and capability; the everyday
life of IT departments.

As an illustration, a suppliers’ database is a resource-providing
persistence facility. Legacy programs like COBOL programs may
refer to it through a set of named files, their access method
(sequential, indexed or direct through code hashing), etc. At worst,
encoded bytes in files may have many “exotic” senses: “end of data”,
“next supplier category”, etc. In some cases, programs are using
relational databases instead of files, where we may find programs,
provider names of databases, IP addresses, port numbers, etc., as hard-
wired data: a source of inflexibility when resources and/or usages aim
to change.

Modern programming is first of all dealing with resources and
usages in a logical way. Physical characteristics of resources are set up
outside programs and defined within administration tasks. For
example, administrating a Java EE application server instance (a
running middleware) amounts to setting up and configuring resources
(e.g. naming with name-based access mechanisms), parameterizing

100 COBOL Software Modernization

potential usages through properties and values assigned to resources
(e.g. resource connection pooling with minimal and maximal sizes of
pools). In such a context, programs (components or modules, i.e. JAR,
WAR or EAR Java bytecode files) handle logical resources, which are
mapped to real (physical) elements at the middleware level. Programs
use resources in a transparent way, but they must pay attention to
resource deficiencies or failures, typically reaching the maximal size
of a resource pool. As a direct consequence, a Java EE application has
to catch middleware-oriented exceptions to preserve its integrity and
functioning from resource malfunctioning, overloading, temporal
unavailability, etc. Note, again, that section 5.1 illustrates this problem
through the assignment of performance intervals to deployment
parameters.

More generally, there is a well-separated effort on resource
sharing, pooling, saving, etc., in Java EE compared to COBOL. In
other words, resource management is an explicit task on its own in
Java EE, while a COBOL-preferred approach provides resource
monopolization for a given usage: “vertical computing” model (see
section 3.2). Besides, resource management in COBOL is fully
implicit behind non-compact and unintelligible code.

Keeping Java EE as an example, administration covers load
balancing, the possibility of assigning components or modules to other
machines, and being physical or virtual like a Java EE virtual
machine. In the Java EE computing framework, there is thus
management of computing infrastructures (starts and stops of (virtual
or not) application servers) and computing platforms. Each instance of
a Java EE platform may have its own characteristics in terms of
declared resources and anticipated usages. The difference with
COBOL is the clear separation between software
development/maintenance that is fully detached from resource
administration concerns. Nonetheless, organizations may need big
(on-site) Java EE computing frameworks whose daily administration
is both critical and considerable in terms of energy expenditure. This
is the COBOL mainframe syndrome: COBOL programming habits
and style lead to complex and big computing infrastructures and
platforms, which are often dedicated to specific treatments. In order to

SOA in Action 101

avoid falling back into the same trap, we may notice that Java EE
tends to decrease maintenance efforts and increase reuse possibilities
through a component/service-based approach. In contrast, in COBOL,
programs become complicated due to new requirements (“normal”
evolution flowing from business). Complication calls for
infrastructure/platform adaptation. Adaptation imposes program
reshaping (new odd intermediate files, new OLTP or batch programs
as pre- and/or post-processing, etc.). This infernal circle has no end,
leading to the situations described throughout this book.

5.5.3. Cloud computing is also resource consumption, but…

Since programs use resources, the Cloud is the realm within which
programs may consider resources as unlimited in quantity and capacity.
These two last notions merge because the Cloud hides, at the upper
level, the knowledge that programs might have on resources. This is
scalability, but, by their very deep nature, Java EE or .NET computing
frameworks already address scalability issues. So, what is the key
difference? In the Cloud, scalability is associated with elasticity.

In the Cloud, resources are both “logical” and “virtual” in the sense
that they are invisible and, above all, immaterial. In principle,
infrastructures and platforms are off-wall (the idea of “public cloud”).
These are the notions of IaaS and PaaS. McFedries in [MCF 12] states
the difference between the public cloud in which resources are shared
with multiple organizations (multi-tenant model) and the private cloud
(single-tenant model) that corresponds to the Java EE situation above
described. They are also hybrid situations like having a private cloud
hosted by a third-party cloud provider.

In the Java EE example, or from a private (locally-hosted) cloud,
we cannot avoid resource setting-up, configuring and usage planning,
and thus sizing. Elasticity is thus the infinite possibility of extending
resources. No matter their quantity or their individual capacity, the
cloud provider is intended to offer scalability beyond what is
envisaged at the administration level in Java EE or .NET computing
frameworks. Furthermore, administration tasks like, for instance,
duplicating a Java EE virtual machine for accepting some extra load,

102 COBOL Software Modernization

can be carried out on the fly. Such tasks can also be performed
programmatically, a more accurate characterization of what IaaS and
PaaS actually are. As an illustration, we may have our disposal
statements to launch a Java EE platform, which is mounted with the
Struts Web presentation library and API while, by default, the
JavaServer Faces (JSF) Web presentation framework is offered.

The principle of resource virtualization plays an important role in
the sense that resource consumers are detached from resource
administration at large. Never mind how cloud providers add
more hardware (servers, routers, cables, etc.); the deal is that they
response in real time to infrastructure/platform needs. This remark
makes us come back to the SLA concept: paid services oblige cloud
providers to deliver a certain QoS. For example, reliability in the
Cloud is mostly “availability” of the overall bought computing
system. SLA may then, for instance, set availability to 98%. Cloud
providers propose API to supervise, measure, even control (i.e. act on)
application behaviors in the Cloud. Again, this strengthens the
understanding of what IaaS and PaaS really are.

COBOL and the Cloud may be viewed as two different hermetic
universes in the sense that, when reasoning on resource mutualization,
that which the Cloud has been invented for, while COBOL is the
historical incarnation and representative of resource monopolization.

5.5.4. Everything as a service

In the Cloud, the Everything as a Service (EaaS) precept applies.
This book has no political goals other than viewing cloud computing
as the preferred support of SOA. What is particularly challenging with
the Cloud is the ratio between the quality of the offered services in
comparison with their pay-per-use pricing, provided that many other
critical issues are properly addressed: security, privacy, law,
regulation, etc.

Put simply, a company having a Java EE computing environment
is able to support SOA at the PaaS and SaaS levels only. Setting up a
private cloud or choosing a public cloud provides the addition of IaaS

SOA in Action 103

facilities. This point is important in COBOL since infrastructures
embodied by mainframes are the basic obstacle for information
system evolution. Indeed, in COBOL, sizing, along with downsizing,
infrastructures and their management, are carried out in a physical
manner, generating inertia, latency, etc. In contrast, IaaS does the
same logically/virtually. Note that downsizing is quite impossible in
COBOL. The major advantage of the Cloud is thus paying less when
resource usages decrease.

Services differ in nature through two categories: technical services
and business services. Technical services are those offered at the IaaS
and PaaS levels; business services are those offered at the SaaS level.
In the Cloud perspective, IT divisions become service brokers for the
business needs. In other words, IT divisions have no more excuse of
being monopolized by the management of infrastructures and
platforms, the COBOL drain on budget. Accordingly, these can focus
on business needs, their best support and automation in third-party
computing infrastructures and platforms as well.

Behind the principle of cloud provider is the ability to provision
services at, for instance, the PaaS level:

– naming services;

– database management services;

– messaging services.

PaaS services are nothing else than more or less sophisticated,
middleware services, as those offered by Java EE, for example. In the
Cloud problematic, IT departments may intervene, for instance, at the
PaaS, regardless of the underlying infrastructure: the cloud provider
offers platforms and their management in a transparent way (the cloud
user has no knowledge on the IaaS layer).

More interestingly, the cloud user may access business services at
the SaaS level, with or without taking over the responsibility and
management of the PaaS and/or IaaS layers. At the SaaS level, the
point is the dilemma between the in-house construction of business

104 COBOL Software Modernization

services (extracted from the COBOL legacy matter in particular) and
the connection with existing services:

– currency conversion services;

– check writing services;

– geographical location services;

– SMS, MMS and phone calls services.

5.5.5. SOA in the Cloud

Committing to the Cloud generates crucial challenges at the IaaS
and PaaS. In Chapter 5 of [MCF 12], the author discusses the pros
and cons of cloud computing, in IaaS and PaaS especially. For
instance, the physical location of data in terms of country law and
regulation, data server owner, data management policy, etc., generates
preoccupations on data security and privacy.

However, from a business viewpoint, the key issue remains SaaS.
In addition, from the COBOL software modernization perspective,
interests are the way the business value engraved in COBOL may be
ported in a world of pervasive services, regardless of the chosen IaaS
and PaaS frameworks. Again, the avoidance of technology adherence
cannot lead us to assimilate COBOL software modernization as a
unique problem of infrastructures and platforms, even though the
Cloud is by definition the antithesis of COBOL-like IT.

Roughly speaking, the Cloud put forward IaaS and PaaS as the
today’s means for diminishing IT costs in general. Cost and effort
savings let the opportunity for IT divisions to stress SOA.

In the developing jungle of services, the discovering, choice,
evaluation and validation along with the verification of
interoperability with pre-selected and reused (external or in-house)
services (see again the beginning of this chapter) are the constituents
of a new software development approach. Interoperability refers to
service orchestration, even choreography: how services may be

SOA in Action 105

composed with each other in a seamless way. In this scope, we
showed that models, being expressed in BPMN, UML or WS-BPEL,
are extremely useful to design this composition.

SOA in the Cloud remains a minima a tough task and a new
competency field for software engineers. Indeed, the current SaaS
offer is pretty confusing when analyzing available services over the
Web. For instance, billing services appear as coarse-grain services:
understanding of functionalities through their accurate delimitation
(i.e. what they really do and do not). Implications in daily use may be
cumbersome because such services aim at being integrated in mission-
critical applications.

As an illustration, remind each version (SOAP or RESTful Web
service versus non-standardized data feed service based on JSON) of
the Currency service. Each version’s functionalities are well bounded,
but it is extremely difficult to have a unified and synthetic view of all
versions, as tried in Chapter 6 from a modeling perspective.

5.5.6. The cloud counterparts

The cloud vision in general may be considered as both idyllic and
misplaced for computer veterans. Ironically, in [MCF 12], the author
comments on a Gartner Group’s “hype cycle” that shows a perceived
disillusionment since 2010, while the peak of (likely arbitrary)
expectations and “joy” was in 2009. In other words, some large-scale
cloud experiences will soon lead to failures with resulting lessons
learned, cleared pitfalls, etc.

The Cloud is just the result of the maturity of Internet computing.
In practice, resources are transparently accessible without specific
installation, but with the exception of continuous Internet connectivity
with adequate throughput: a significant risk in all cases because of
dependency at large.

A defeatist attitude, for COBOL people in particular, is to reject
the Cloud. Nonetheless, the Cloud is just the infrastructural backbone

106 COBOL Software Modernization

of SOA and SOA is the vector of new business through software. This
affirmed economical trend cannot be rejected.

So, the Cloud brings out non-surprising issues as follows:

– money: reducing IT budgets motivates leaving COBOL. The
Cloud’s entry costs are significant in terms of requirements on trained
people, acquired expertise. As for any technology adoption,
expenditure peaks may be incompatible with available IT budgets and
hypothetic returns on investments. At worst, daily functioning costs
may be out of control, unexplainable, non-transparent, etc., a
nightmare. The appealing “pay-per-use” principle hides the strong
need of perfectly knowing what is really and accurately used between
the resource provider and user.

– technology: dependency through vendor lock-in, poor control on
security, performance, data location with risks of loss, violation,
unavailability, illegality, etc. All of these issues are potential risks.
What is funny is the fact that the COBOL spirit (i.e. all-is-made-in-
house) may remain “the happy path”. In other words, cloud computing
has not yet demonstrated that these risks can be addressed in a cost-
effective and timely way. The ugly face of IT is indeed technology
instability, volatility, obsolescence, downgrading, etc. The Cloud is
unfortunately not evading these. The problem of abstraction, for
example, is really essential. We have to be able to design information
systems and applications that last without being prisoner of
technology peculiarities. The Cloud tackles this with API like jclouds,
for instance, in the Java world. However, MDD, as discussed all along
this book, has also a huge role to play in the abstraction challenge.

5.6. Conclusions

Behind SOA, there is an extreme intellectual switch: instead of
being a prominent cost sector for the business, why not consider
“SOA in action” as the greatest opportunity for IT departments to
become significant sources of (unimagined) revenues in
organizations? Indeed, as highlighted in Chapter 1, the degree of
innovation resulting from successful SOA is a huge progress to create
value beyond the simple fulfillment of initial demands. This

SOA in Action 107

revolutionary idea makes us returning to the travel management
domain (section 1.3 in Chapter 1). In this domain, travel companies
have the possibility of conquering markets both from the business side
and software side: software may become profitable beyond their own
(internal) usages. In other words, why not to sell our own software
services provided that these are componentized and free from
specificities? Only usages have to be application-specific.

From currency conversion facilities resulting from COBOL
modernization, we develop in this chapter a SOA-modernized
application with Currency, Check writing, etc. The necessity and,
later, the opportunity of developing, deploying and running a
Currency service, a Check writing service (even a Check posting
service), etc., really challenge us from a business viewpoint. Only a
missing link remains: a trivialized computing infrastructure in which
everybody on this planet may share and exchange these services in a
more or less transparent way.

In this line of reasoning, the Cloud comes up. Nonetheless, naively,
are SOA and the Cloud the legacy approaches of the future? The
degeneration of COBOL came from, when facing volumes and
increasing complexity, the impossibility of supervising and controlling
portfolios of applications making up information systems. SOA in the
Cloud is the most promising framework because it is initially thought
and designed to correct legacy IT as COBOL IT. But it is no miracle:
SOA in the Cloud, outside MDD, makes no sense to tame complexity.

6

Model-Driven Development (MDD)

Professional software development eventually always leads us to
choose effective technologies, vendors, products, versions and so on.
To be free of these is truly challenging. Controlling the side effects of
technologies is more reasonable; it is the essence of Model-Driven
Development (MDD).

By definition, software engineering is conceptual. For example,
algorithms exist outside the scope of their operational formulation in
programming languages. Doing the same at a larger scale, i.e. for
information systems and applications, relies on models and languages
for expressing these models. Even though this approach may satisfy
engineers, users are not able to capture the deeper meaning of software
without screens, keyboards, mouses, etc. Models are images of ideas in
minds, but running software makes these images “playful” and thus
catchable for users. The temptation to rush to technologies is then just
the desire of users, the software’s clients. Engineers often have the same
desire to rapidly have something concrete in their hands.

MDD aims at creating interfaces between ideas of software and
their incarnation in technologies. The key reason is the huge difficulty
or, sometimes, the simple impossibility of revisiting these ideas once
engraved in software.

In this spirit, degeneration of Common Business-Oriented
Language (COBOL) in particular came from the expansion
and intensive use of various odd COBOL dialects. In this context,

110 COBOL Software Modernization

beyond simple compilers, the need for rich Integrated Development
Environments (IDEs) devoted to COBOL1 was a daily reality. In
addition, history also showed the need for very specific execution
environments, Customer Information Control System (CICS) and
mainframes typically. Over the years, such a pragmatic orientation
became a lock-in: software ideas no longer remained ideas, but
became COBOL circumlocutions, i.e. impoverished and inextricable
ideas in limited-scope jargon.

6.1. Why MDD?

In a nutshell, software artifacts as outputs of software development
processes are representations of “business requirements” in
“technologies’ languages”. In this scope, maintenance amounts to
adapting information systems, applications and programs to
constraining technical/technological conditions (90% of time) instead
of promptly reacting to business changes with agility (10% of time).
The former rate contributes to the bad, but proven, reputation of IT as
a budgetary ogre. The latter rate excludes the serious listening to
users’ desires and, consequently, also contributes to the (likely
justified) vision of Information Technology (IT) as, often, an autistic
department in organizations.

To imagine new software development paradigms to be in a
position to neutralize the impacts of technologies on agile changes has
made, two decades ago, MDD industrially realistic. Primarily, MDD
is the production of software artifacts at large in formats and forms
that do not refer to technologies. MDD is thus the COBOL antivision.
Beyond this observation, without contradiction or paradox, MDD may
also be viewed as a fighter against newer technologies. These, similar
to what COBOL did in the past, tend to trap us in their peculiarities.

Typically, not to make the same mistake again, we must pay
attention to the fact that the Cloud is materialized by a profusion of
offers, and thus Application Programming Interfaces (APIs) that may

1 For instance, Pacbase COBOL from IBM, with its surrounding IDE, is a COBOL
macrolanguage, whose obsolescence has been officially programmed in 2015.

Model-Driven Development (MDD) 111

lead us to a COBOL-like chaos in a short time. That would happen in
possible relation to the lock-in syndrome: code dived into these APIs
is frozen once and for all. On balance, COBOL-trapping is real life.
Cloud-trapping? Go away.

The core principle behind COBOL software modernization is,
therefore, the expression of software systems neither in COBOL
languages/macrolanguages nor in Service-Oriented Architecture
(SOA)/Cloud counterparts. Models must first and foremost be
business-related, and consequently technology-free.

6.2. Models, intuitively

A roadmap is a model of the road infrastructure of a region. Asking
questions (e.g. “How far by car is city A from city B?”) on this
infrastructure may be achieved with the help of the map only. The
counterparty is, not all questions can be answered due to the map:
“What is the width of the road at this location?” comes with no
response.

From this sample, we characterize a model as an abstraction: a
model emphasizes some details to the detriment of others. Be careful,
this incompleteness can sometimes be penalizing. So, why are we
interested in this? What follows: omitting details lowers complexity.
The “separation of concerns” principle applies. Out-of-the-scope
details are parasites. In practice, some categories of details are often
contextually irrelevant. In other words, the topical nature of details
varies in space and time.

Returning to the road infrastructure, we may imagine another
roadmap with road widths for trucks (and without distances to keep
the map readable). The two roadmaps are two different models,
because they stress two different detail categories. The key issue is to
keep in mind that the inter-relation between the two natively results
from the fact that they represent the same road infrastructure. In effect,
truck drivers may be hindered by the manipulation of two paper
roadmaps in their cabin. Fortunately, the Internet and tablets now exist
to simplify model manipulation of everyday objects and ideas.

112 COBOL Software Modernization

As an analogy, MDD is the organization of “similar matter” in
software development processes. In software, models are
representations of software artifacts and their relationships.
Practically, representations are embodied by means of languages
understandable by IT professionals: entity-relationship modeling, state
modeling, workflow modeling, etc. State modeling, for instance, is the
fact that a variable of type “natural number” has two possible states:
zero or positive. What is abstracted is all of the possible values behind
“positive”.

6.3. Models, formally

MDD gurus and communities have highlighted the “model” term
in a manner that is nothing short of a hold-up. In epistemology, model
is the property of many sciences, which share a common sense of
“model” and make their own declination(s). Honor to whom honor is
due, mathematics develops models (e.g. natural numbers), instantiates
them with representatives (e.g. 0, 1, 2, etc.) and characterizes them
with laws (e.g. addition of two natural numbers is a natural number).

Returning to the classroom, models define things in intention while
in extenso definitions have the drawback of big volumes and thus poor
(human) manipulation. In psychology, behavior models are the cases
of psychological deviances; they are especially useful for constructing
a disease typology. In computer science, data types are models of
variables; they are useful for type checking. Compilers control
canonical usages of variables according to their type and thus reject
those that are unsupported by this type. Nonetheless, in extenso
definitions are the privilege of computers. Ultimately, software
applications are images (models) of real-world things in masses: for
example, there are as many customers in a company’s database as the
number of customers of this company. Epistemologically, models are
objects for reasoning.

MDD brings out the following added value: models are
computable (with regard to the calculation theory) in the sense they
are transformable in transformation chains; they may also be

Model-Driven Development (MDD) 113

executable. The latter point is so special that it is discussed in
section 6.8 of this chapter.

6.4. Models as computerized objects

Prior discussions on currency conversion functionalities as a self-
contained Currency service in SOA showed four code samples
(Chapter 5). Each provided a set of technological capabilities,
limitations and constraints: one is a SOAP Web Service while the
second is not; it does not follow a common standard. In short, none of
the four favors a conceptual approach, i.e. a comprehension and a
characterization free from technologies. The four proposed forms are
in essence impoverished by the capabilities/limitations/constraints of
the implementation support. For example, the JavaScript Object
Notation (JSON) exchange format (second sample that does not
comply with the Web Services standard) may be noising for
comprehension, i.e. we cannot understand the whys and wherefores
without knowing the JSON technology.

In this book, at the same time, we tried to describe the idea of a
general-purpose Currency service in natural language. The natural
language is recognized as a creator of probable dissonant
interpretations. This is especially true when many people share the
topic of interest for long periods. Typically, the turnover of people in
companies creates some discontinuity in the daily management of
business concepts. New incomers acquire knowledge through
readings, exchanges, experimentations, etc. Nonetheless, uniform
comprehension and the interpretation of concepts among all
stakeholders constitute a permanent battle.

So, a model of currency conversion functionalities is a form that
aims at diminishing the interpretation latitude of any mother language
and erasing the adherence to a technological support linked to any
machine jargon. To deliver this model, a modeling language is
required. As an illustration, IDL (Interface Description Language) is a
lightweight modeling language. This textual language is programming
language-free. It simply allows the possibility of precisely describing
the provided interface (offered functionalities) of a Currency

114 COBOL Software Modernization

component (service) without referring to constructs of COBOL, C++,
Java, Smalltalk or whatever. If we compare IDL and Unified
Modeling Language™ (UML), the former is fairly close to low
computing layers (middleware), while UML is closer to humans
(requirements’ engineering, analysis, design, etc.).

So, IDL provides us with the opportunity to have a conceptual
viewpoint on what a general-purpose Currency service should actually
be.

The core expression of the Currency service in IDL lays down
three business objects (or values) and five interfaces with the
following syntax and style:

value Currency;

value Money;

value ExchangeRate;

interface StateIdManager;

interface CurrencyBook;

interface ExchangeRateManager;

interface MoneyCalculator;

interface MoneyFormatter;

Figure 6.1 is an overview of these business concepts, their
unidirectional dependencies as well. The CosObject Identity:
IdentifiableObject is a facility, which is abstracted from a third-party
middleware standard named Common Object Request Broker
Architecture2 (CORBA). Otherwise:

“The CurrencyBook maintains a group of currencies. It is
used by the MoneyFormatter to retrieve the currency
symbol and by the MoneyCalculator to retrieve the base
currency when converting to base currency.

2 In spite of its “old age”, CORBA implementations (that in Java especially) are often
used as a backbone of Java EE application servers.

Model-Driven Development (MDD) 115

The Exchange Rate Manager maintains exchange rates. It
is used by the Money Calculator to retrieve an Exchange
Rate to exchange Money.

The Money Calculator is a utility used for performing
money arithmetic. It supports a standard set of operations
for arithmetic calculations and additional state operations
to support rounding rules, precision settings, and
conversion rules. These state settings are saved on a per-
client basis. The Money Calculator uses the Currency
Book to retrieve the base currency and the Exchange Rate
Manager to retrieve an appropriate Exchange Rate. The
Money Calculator takes Money as parameters.

There is a Money Formatter class utility used for parsing
and formatting money into strings. The formatter is
dependent upon state settings and therefore the identifier
is used for all operations to identify the application client.
The Money Formatter takes Money as parameters. The
Money Formatter uses Currency to retrieve the symbol.”
[OMG 00]

In fact, the complete IDL specification in [OMG 00] has the
responsibility to make the prior explanations in natural language only
complementary, even optional. Figure 6.1 is also a redundant
(graphical) model to contribute to the characterization a general-
purpose Currency service. Ultimately, what is sought is a consistent
and complete expression (in IDL) that is independent of technologies.

Figure 6.1. IDL core specification (model) of a general-purpose
Currency service from [OMG 00]

116 COBOL Software Modernization

In this logic, the Currency service model includes, for instance, the
necessity of rounding capabilities through a dedicated type:

enum RoundingType { ROUND_DOWN, ROUND_UP,
ROUND_FLOOR, ROUND_CEILING, DONT_ROUND };

Rounding types are used by the MoneyCalculator interface. For
example, this interface exposes two functionalities using this type as
follows:

RoundingType getRounding(in
CosObjectIdentity::IdentifiableObject stateIdentifier) raises
(FbcException);
void setRounding(in CosObjectIdentity::IdentifiableObject
stateIdentifier, in RoundingType roundingFlag) raises
(FbcException);

So, we obtain a vision of what a “consensual” Currency service
should be. Such a consensus is readily reached with the help of a
specification instead of a specific implementation like the four code
samples Chapter 5. As a result, we may reason about this model, for
instance:

– Having this model as a discussion and exchange basis between
software engineers and the software’s clients. Typically, using a
Currency service in a currency trading application requires high
precision in conversions while using it in a smartphone application for
tourists changes the deal. Does this IDL specification have the ability
to support this functional variation?

– This model may be a benchmark to compare and evaluate
preimplemented services as the samples in Chapter 5. For example, do
these service implementations offer enough capabilities and
functionalities with respect to the model playing the role of
referential?

– All or parts of this model can be a contract between
requirements’ engineers and developers in the case of a homemade
implementation. By definition, a specification is a guide for
implementation.

Model-Driven Development (MDD) 117

Models require significant intellectual investments (e.g. learning
IDL) and efforts (building and/or understanding models) from
software engineers. This can be the same for average users when
software engineers want to validate implementation choices against
users’ requirements formally represented in models.

In the beginning of this chapter, we underlined the temptation to
quickly make ideas live in software prototypes instead of reasoning on
contemplative models. We mean, models may underlie a negative
feeling in the sense that MDD is not always felt as a source of
productivity in software development processes. This is both true and
false.

As for “true”, MDD has probably been slowed down by its
insufficient maturity, in tools especially. MDD projects with failures
occured in the 2000s, but today’s acquired experience has completely
changed the deal in the 2010s.

As for “false”, the computerized nature of models is their
transformation capability. Practically, the IDL specification above is
not directly executable and thus cannot deliver the expected service at
runtime in terms of ready-to-use converted numbers in varied
currencies. However, this specification is still a computerized object
in the sense that it may be transformed into COBOL, C++, Java,
Smalltalk, etc. code. Concretely, for each programming language, IDL
is equipped with a set mapping rules in order to translate IDL text to
code. Taking the case of Java, the IDL2Java tool acts as a simple
model transformation engine. This tool derives an IDL specification
(model) into Java code. However, only stubs may be generated. The
way programmers have to power interfaces of the Currency service is
left open. The IDL Currency service specification is thus a partial
image (again, an abstraction) of what is intended to be running later
once the “powering” code finished.

Anecdotally, we may notice that this specification may be derived
from COBOL. This is simply because an IDL-to-COBOL standard
exists [OMG 99]. Having used it would surely lead to proper COBOL
with, later on, meaningless modernization. By contrast, the existing
legacy COBOL has not been produced by means of models in general

118 COBOL Software Modernization

and IDL in particular. So, an interesting idea behind the move from
IDL to Java, IDL to COBOL, etc., is the possibility of taking a step
back. Having at one’s disposal an IDL specification allows the
regeneration to a new runtime target. Model transformation in
particular and MDD in general boost a kind of healthy uniformity in
the way runtime software artifacts are produced. Do not forget that
COBOL has favored the opposite: an exponential heterogeneity of
code patterns, styles and thus samples.

6.5. Model-based productivity

Regarding the Currency service look and feel in IDL, we observed
that the specification is endowed with numerous comments in natural
language. As already underlined, a model is not a panacea. It is only
useful in special conditions. Expressing ideas and objects in the mother
language remains a solid source of riches, subtleties. Unfortunately,
since computers do not yet understand natural language, intermediate
languages are required. In this line of reasoning, the IDL Currency
service specification plays the role of a contract, an agreement, i.e. a set
of prescriptive clauses such as those found in any legal document. The
other advantage is the transformability of the model. Without seamless
gateways to runtime environments, models are only documentations
(the notion of “contemplative models” above). In this latter case, their
intrinsic value is effectively debatable for timely software development.
Again, beyond transformation, the executable nature of models is a very
topical issue to be addressed, a springboard for model-based
productivity.

6.6. Openness through standards

Models in their very deep nature promote openness, opposed to
lock-in in particular. Since models are expressed in languages that are
neither programming languages nor natural languages, MDD can be
viewed as a sound trade-off. In such a context, opting for a modeling
language is a major challenge: IDL, UML, Business Process Model
and Notation (BPMN), Web Services Business Process Execution
Language (WS-BPEL), etc. The great majority of them are normative.

Model-Driven Development (MDD) 119

For instance, UML and its underlying XML declination are both ISO
and Object Management Group (OMG) standards. As a metaphor,
models may, more easily, cross the forthcoming software innovation
decades compared to runtime technologies in general. In other words,
software artifacts in the form of models are subject to stronger
transformability compared to their incarnation in effective operational
technologies. This is just a question of degree.

Openness is in particular achieved through XML as an agreed
universal metalanguage and its nearly infinite processing capabilities.
The fact that the quasi-totality of the existing modeling languages is
based on the XML DTD (Document Type Definition) mechanism is a
guarantee of long-term sustainability. For example, XML Model
Interchange (XMI) is the XML DTD for UML. Any UML discourse
(model) is an XML file, which syntactically conforms to XMI rules.
This corresponds to the way UML language pieces may create UML
sentences and thus models.

In theory, any software artifact can be described in an XML
declination (DTD) and transformable into another declination. This
transformation is easily and straightforwardly programmable, but it is
only syntactical. In conjunction with this, we sketch below the
principle of model transformation with semantic issues: how “senses”
in models (e.g. an abstract description of a business service like
Currency) may lead, by means of a transformation, to a realization of
this service in a target technology?

Reverting back to legacy COBOL, what would be the situation of a
company having at its disposal its entire information system(s) in a
consolidated XML form? For example, this would correspond to the
(dreamed of) availability of a consistent and complete description of
its business data in XMI (the UML model), independently of data
dispersion and/or replication, hard-wired COBOL formats in
numerous weird scattered files (the operational realization of this
UML model). This availability is nothing else than the possibility of
generating (by model transformation) a new implementation toward a
newer technology. Honestly speaking, companies do not have models
(or documentations) of legacy systems because the energy required to

120 COBOL Software Modernization

maintain and synchronize systems in production and their images
(models, documentations, etc.) is equivalent to that of the Big Bang.

6.6.1. Model-Driven Architecture (MDA)

What is proposed by means of MDD is the prioritization of models
as first-class and central ways of expressing software artifacts at large
(data types, programs, components, services, architectures, etc.).
Runtime incarnations of these are results of transformations only.

Applying MDD in an orthodox way views maintenance at the
model level only. The engineering cycle, ideally, is such that changes
in models are passed on to the runtime material generated from
models in forward engineering activities. In the past, many MDD
frameworks failed in trying to keep models and their runtime images
synchronous. Direct modifications in the code break synchronicity.

The idealistic vision of MDD is embodied in another standard
named Model-Driven Architecture (MDA). In this vision, code no
longer exists. In other words, modeling is coding whether models are
executable or not.

MDA is the weaving of Platform-Independent Models (PIMs or
business-related models above) with Platform Description Models
(PDMs) to produce Platform-Specific Models (PSMs). PDMs and
PSMs raise contradictions: they are “models”, but they are not totally
technology-free. No matter this peculiarity, PIMs are the more
precious commodity. PIMs neglect technology details to the benefit of
business information. MDD processes PIMs tinted with PDM
elements to compute PSMs by transformation. These processes are
discrete due to the fact that many intermediate phases are required to
derive PIMs into runtime images.

Chapter 7 shows that PIMs may also be computed within
transformations of legacy matter, namely COBOL code, again using
other standards: Abstract Syntax Tree Metamodel (ASTM) and
Knowledge Discovery Metamodel (KDM). Figure 6.2 sums up this
vision: PDM elements incorporated into PIMs lead to PSMs: these

Model-Driven Development (MDD) 121

reflect technological choices with higher and higher precision
(“Platform description model dimension” in Figure 6.2).

Figure 6.2. MDA illustration with upstream reverse engineering

To sum up, MDA may include both reverse and forward
engineering through models as sole computerized objects.

6.7. Models and people

Any sincere discussion on MDD leads us to think about the
intimate relationship between people and models, Love? Hate? What
else? Model experts and skilled practitioners know that MDD in
organizations is a cultural shock. Beyond models, technology take-up
is not a natural state of mind. Some people prefer closed worlds,
repetitions and comfort in general. Investments to get technologies
under control are important, but fruitful. The introduction of MDD is

122 COBOL Software Modernization

nothing other than a new cycle of intellectual and technical
investments without, a priori, assurance on returns.

So, the black side of “the MDD force” may be soften with the
following arguments:

– From the prehistory of computing, IT guys have been modelers.
Everybody is happy to use “advanced” programming languages that
prevent the use of bits or bytes when programming machines.
Assembler was the first means to abstract bits and bytes. Later, more
abstract languages emerged. In short, coding is modeling,
programming languages are modeling languages and, finally, code is
an operational model. Therefore, switching to models is not climbing
Everest.

– Complexity in software is often the result of unjustified
considerable volumes of data, data formats and supports, code,
programs, etc. This is the dichotomy between accidental complexity
and intrinsic complexity. The former can be avoided in more
disciplined software development processes. Of course, MDD
proposes such a discipline with more or less codified approaches like
MDA. Accordingly, a cultural and intellectual adaptation is
mandatory; this does not imply losing landmarks.

– Dealing graphically with software is not new. Graphical
formalisms have invaded the software world with analysis and design
methods from the 1970s especially: Information Engineering by James
Martin, Structured Method by Ed Yourdon, etc. Even if modeling may
also be textual (IDL above), modeling is mostly the drawing of
software artifacts (see again the models from Figures 4.3 to
4.6), provided that drawing constructs obey composition rules: the
grammar of the (graphical) modeling language. Putting aside graphics,
and therefore models, is nonsense in modern computing. Models
reinforce not only graphical approaches of software but also offer the
automated processing of graphical software artifacts, the true novelty.

In short, in our opinion, modern computing without models is
science fiction. Proliferation of technologies is natural; it is a source of
progress and renewal. This proliferation is above all beneficial

www.allitebooks.com

http://www.allitebooks.org

Model-Driven Development (MDD) 123

provided that extant software is under control. Models are serious
candidates for this control.

Criticisms from MDD detractors are of course acceptable. The best
reaction is to transform Sir Winston Churchill’s famous maxim on
democracy: “MDD is the worst form of software development, except
for all those other forms that have been tried from time to time.”

6.8. Metamodeling

Over the years, in many sciences, metamodeling was the
overlapping zone between a given science and philosophy. In MDD,
metamodeling has become true engineering through the elaboration of
metamodels and Domain-Specific Modeling Languages (DSMLs), in
specialized tools especially. The Eclipse Modeling Framework or
EMF [STE 08] has made metamodeling popular due to its Ecore
metamodeling language.

Metamodeling plays a central role in COBOL software
modernization. Metamodels and DSMLs, being homemade or
standards like KDM, enable the reconstitution of COBOL matter as
meaningful processable models.

6.8.1. Metamodeling, put simply

Metamodeling is the circular application of modeling. For
example, “Currency” as a business concept is a model of US $, £, €, ¥,
etc. In the IDL specification above, “Currency” is an instance of
“Value”, i.e. “Value” is the model (more precisely, the type of) of
“Currency”. By transitivity, “Value” is the metamodel of US $, £, €, ¥,
etc. Circularly, what is the model of “Value”? IDL does not answer
this question. In contrast, UML owns a root element named Class as
follows (Figure 6.3):

– Class is the model of itself (M3 level).

– All UML elements are direct (M2 level) or indirect (M1 and M0
levels) instances of Class.

124 COBOL Software Modernization

Figure 6.3. UML metamodeling kernel

Metamodeling is the expression and recording of metadata to be
later accessible and processable for discovering information. A user
guide is an informal metamodel in the sense that it may depict a data
structure while this structure has only been coded to instantiate
variables conforming to it.

Reflection, introspection, intercession, etc. are other words which
are very close to metamodeling. Technically, in MDD, without
metamodeling, model transformation makes no sense. Figure 6.4 is a
metaphoric overview of metamodeling as a pyramid.

Figure 6.4. The metamodeling pyramid

Model-Driven Development (MDD) 125

6.9. Model transformation

A model transformation is an algorithm that expresses how
instances of metatypes in a metamodel are mapped and moved to
“something equivalent” in another metamodel. Without the
availability of source and target metamodels, transformation
algorithms cannot actually be described. When implemented,
transformations are classical programs even if model transformation
languages and programs mostly cope with metaelements. In
EMF/Ecore, Java is an appropriate transformation language because
EMF/Ecore provides metaelements in Java in a transparent way.

6.10. Model transformation by example

We briefly mentioned the fact that IDL offers mapping rules to
COBOL. For example, IDL interfaces are mapped to an opaque
pointer type in COBOL, as illustrated in Figure 6.5.

Figure 6.5. Simplistic metamodeling/model transformation
approach in the IDL-to-COBOL fashion

In Figure 6.5, on the COBOL side, MoneyCalculator is an instance
of POINTER (which is itself instance of COBOL type). POINTER is
thus the model (a.k.a. type) of MoneyCalculator. By deduction,
POINTER is also the metamodel of any running instance (or
concretization at runtime: interface + COBOL implementation details
and peculiarities) of MoneyCalculator.

126 COBOL Software Modernization

In short, we invent a DSML on the top of COBOL in which
POINTER is a word of this language. Concomitantly, Interface is a
word of IDL. Put simply, the principle of model transformation is just
translation: Interface in IDL must be translated into POINTER in
COBOL. The complication of model transformation code in MDD
relies on grammatical constructions of the source language that aim at
being translated into semantically equivalent constructions in the
target language. By definition, metamodels fix grammars.

6.11. From contemplative to executable models

There are three nested purposes that can be attributed to models:

1) The inner purpose is documentation. Models are informal
specifications that express software systems better than code. As
abstractions, they naturally highlight key properties to the detriment
of meaningless details. They are boosters for brainstorming
(e.g. requirement elicitation or refutation), idea communication
and thus ideal supports for team-based software development in
general.

2) An encompassing purpose is application fabrication, basically
code generation from models. In common practice, only model
templates can be generated since models do not comprise all
application details. While this surely helps, there is a significant
trend in industry to expand the generated code with the necessary
details (Figure 6.6). As a result, models and code are desynchronized
because people tend to let models fall by the wayside: too
much energy is required to maintain both (often sizeable) models
and code bases as synchronized3. Cases (1) and (2) mimic
contemplative models (i.e. informative but incomplete models
for code generation in particular). Case (1) is also a perfect
illustration of code generation from IDL. This is also true for broad-
spectrum modeling languages, of course UML, but BPMN

3 Practice especially shows that some modeling tools and IDEs do not support this
synchronization in a satisfactory way.

Model-Driven Development (MDD) 127

(organizations’ functioning modeling). BPMN addresses modeling
issues at a macroscopic level and thus beyond software, while UML is
devoted to software.

3) The outer purpose is model execution. Execution cannot actually
rely on informality compared to models as documentation. Models
must then no longer be contemplative, but executable. There is an
operational semantics (constraints, rules, exceptions, etc.), which
accurately tells us how to move from one model state to another in a
discrete way.

Figure 6.6. What happens in MDD when generation is incomplete
(pictures are taken from autoautomobiles.narod.ru)

6.12. Model execution in action

Endogenous transformations are the computation of a target model
from a source model, both conforming to the same metamodel.
Exogenous transformations are the remaining cases (e.g. IDL-to-
COBOL). In this spirit, model executability (the potential to be
executed) may be based on endogenous transformations. Execution
steps are then viewed as transformation steps like a processor tick,
which executes machine statements at each tick.

128 COBOL Software Modernization

At design time, model execution is typically simulation of model
evolution. For example, in Figure 6.7, cardinalities in a UML class
diagram pose evolution constraints on an executed object diagram
conforming to the class diagram; it is an instance of the class diagram.
Execution is useful to check a model as something well formed. Large
class models may in effect have contradictory constraints that can be
detected by simulation. Execution can also be used for validation
against requirements. Requirement emitters may observe live
execution (animation) to better understand what implies models that
they build.

Figure 6.7. Class diagram (top) with linked object diagram execution (bottom)

At runtime, model execution is the fact that the transformation
engine is similar to a virtual machine (an engine). Model constructs
are interpretable in real time, similarly to Java bytecode processed by
a Java Virtual Machine (JVM).

Modeling languages are not directly executable apart from
operating some amendments in the language’s structure and
semantics. For example, Riehle et al. in [RIE 01] describe a UML
virtual machine, to make UML executable. This approach is

Model-Driven Development (MDD) 129

proprietary. To address this issue at a larger scale, executable
languages like Semantics of a Foundational Subset for Executable
UML Models (FUMLs) are released by standardization bodies (OMG
for FUML). State Chart XML (SCXML), a W3C standard, is another
illustration.

Beyond this, the support for metamodeling and model
transformation in an IDE like Eclipse with its EMF/Ecore component
has made EMF-based modeling languages somehow executable.

The remainder of this book demonstrates why model execution is
becoming a newly higher key concern of MDD. The core goal of
modernization is among many other things to reveal the dynamics of the
business logic: functions, control and data flows. The business logic is
especially split into a declarative form (mapping to classes,
relationships, OCL constraints, etc., in UML) and an imperative form to
represent this dynamics. So, UML Activity Diagrams or other kinds of
diagrams (Sequence, Collaboration or State Machine Diagrams) benefit
from having execution properties to really allow us to have the
opportunity and power to free up the overall legacy business logic.
Beyond this, these dynamic representations are the trustworthy images
of application behaviors to be implemented at forward engineering time.

6.13. Toward Domain-Specific Modeling Languages (DSMLs)

To overtake the problem of lacunas in existing modeling
languages, there is a possibility of either creating new languages or
extending one. The latter approach is supported in UML by creating
UML profiles through the stereotyping mechanism.

In Figure 6.8, we may both observe the profile design and its
application. The former is an engineering activity totally dissociated
from the software development course. The latter allows the marking
of elements when building business models. In the example, a
Currency component is marked with the Session bean stereotype
having the Stateless tagged value. The single interest of these marks
(posed stereotypes and tagged values) is their processing in model
transformation to guide, for instance, code generation. In other words,

130 COBOL Software Modernization

the model at the bottom of Figure 6.8 is likely the source of the code
in section 5.1 (Chapter 5).

Figure 6.8. Example of profile (top) and its application (bottom)

Creating new languages in the DSML spirit may appear appealing,
but this hides the risk of uncontrolled proliferation: the syndrome of
one-problem-requires-one-language. Most of the time, DSMLs are
rooted from the core of UML called the UML Infrastructure or the
MOF (Meta Object Facility). Of course, EMF/Ecore is the dreamed of
environment to either invent DSMLs or build profiles since
EMF/Ecore is reputed to implement the MOF.

For example, Figure 6.9 shows a small piece of KDM. KDM is a
DSML whose domain is legacy systems and more precisely the
reverse engineering of legacy systems. In Figure 6.9, constituting

Model-Driven Development (MDD) 131

metatypes of KDM are introduced by inheritance (white triangles).
Because KDM is on the top of the MOF, ComputationalObject is
itself linked by inheritance to metatypes belonging to the MOF
(not illustrated in Figure 6.9). Instead of profiles that use UML
extension relationships (Figure 6.8, black plain triangle), DSMLs use
inheritance and more generally have first-class metatypes as their own
content.

Figure 6.9. KDM as a UML-rooted DSML

In summary, few languages have no UML roots. However,
“profile” versus “DSML” is a permanent embarrassing question. They
are different in the sense that a profile does not introduce new
language constructs through new metatypes, metarelationships and
constraints on these. In contrast, designing a DSML is a more
ambitious task to produce something consistent and complete.
Moreover, due to the universal nature of UML a mapping between the

132 COBOL Software Modernization

DSML and UML is often an obligation that causes difficulties. It is
like a translator: the translation of a sentence in one language rarely
keeps the same shape in another, thus leading, for DSML, to many
semantic juggling.

Another manner of distinguishing a profile from a DSML is simply
the fact that a profile is a lightweight extension of UML while a
DSML has the ambition, despite having UML roots, to become a self-
contained modeling language. This is the case for KDM.

As a summary, a profile has poorer semantics and thus less
expression power outside the scope of UML, but it is easily
processable due to the widespread nature of UML. A DSML is in
essence close to a domain and its concepts. In the world of
modernization, we might imagine the creation of a DSML for each
legacy technology (COBOL ANSI), each variant (COBOL dialect),
each version, etc.

6.14. Conclusions

MDD is a well-established software development technology,
which is recognized as mature (through tool offering, e.g. EMF) and
profitable. Expressing software systems with models is a safe way to
truly support evolvability. Models may indeed evolve from users’
requirements and innovation in general. There is a separation of
concerns with curative maintenance (e.g. bug removal), which has to
occur at transformation time. This is also an adequate method for
dealing with scalability. Applications are naturally enlarging. This
common and natural phenomenon in business often reveals the limits
of COBOL. Evolution is brutally blocked; the excessive intertwining
of business issues and technological issues does not allow code
transformation or intervention anymore.

In MDD, the weaving of PIMs with PDMs is the process of
generating the final application in a given technology and associated
programming language (Figure 6.2). An unsuspected advantage of

Model-Driven Development (MDD) 133

models is the adaptability to future not-yet-released technologies. In a
long-term perspective, this is really helpful and embraces the opposite
of COBOL. For example, models may be initially bound to a .NET
platform with C# implementation before moving to a Java EE server
in the Cloud. Business-based evolution is then, in this motion, totally
orthogonal.

7

Model-Driven Software Modernization

As stated at the beginning of this book, software modernization at
large encompasses several different approaches, but white-box
modernization is in our opinion the most fruitful approach to run end-
to-end modernization processes that target ambitious software
restructuring toward SOA and the cloud. More precisely, as shown in
Chapter 4, the powerful idea of componentization would probably
eliminate candidate modernization processes, that are not able to
restructure old applications in services.

In this context, for a long time, software engineering has offered a
toolbox with a wide range of principles for re-engineering: software
auditing, code refactoring, decompilation of binary software, etc.
More recently, model-driven development (MDD) has taken a
stronger positioning in software modernization through the idea of
Architecture Driven Modernization (ADM) from the Object
Management Group (OMG). ADM is a software modernization
framework that benefits from being built on the top of various
standards including Unified Modeling Language™ (UML).
Modernization vendors may adhere to these standards to break the
technical dependency of modernization buyers upon vendors’
solutions. This chapter concisely describes this framework before
giving a turnkey instantiation of this framework in the remaining
chapters of this book.

136 COBOL Software Modernization

In a caricatural way, modernization is code-to-code. This is the
ultimate reality. However, modernization’s clients expect more, in
terms of business progress especially. No matter what the source and
the target code, the greater concern is the fact that the modernized
application has gained quality, beyond technical quality especially.

Consequently, a modernization method must exist independently of
the source and the target technologies in general, including the source
and target programming language. While COBOL-to-Java is the most
encountered case, COBOL-to-COBOL is also a possibility. For this
latter case, there are plenty of tools that support the transformation of
non-maintainable COBOL to maintainable COBOL. A subset of these
tools can also address bulk architecture issues provided that the
targeted COBOL is surrounded with a kind of Internet-compliant
technology. For example, we may imagine cloud-based applications in
COBOL for the Windows Azure PaaS. Nonetheless, transforming
legacy COBOL applications toward this cloud technology, is as
arduous as moving to Java EE or to any other PaaS offer. Again,
COBOL software modernization is not a technology-to-technology
issue. Technology-to-technology approaches make us blind to
business challenges raised by modernization. Indeed, in technology-
to-technology approaches, where is the business logic outside
its expression in COBOL? The narrow-minded nature of a
modernization process precludes having higher recast opportunities.
Typically, properly moving to SOA and the cloud cannot result from
close processes. What does this mean? What is extracted when mining
the source code must only lead to “(…) a representation of the system
at a higher level of abstraction (…)” as mentioned in [CHI 90] when
characterizing white-box modernization.

Of course, models in the MDD spirit act as this representation. A
key advantage of models is their intrinsic independency of providers
of modernization solutions. This occurs via standards. In this respect,
Abstract Syntax Tree Metamodel (ASTM) and Knowledge Discovery
Metamodel (KDM) are two inevitable ADM standards devoted to
modernization.

Model-Driven Software Modernization 137

7.1. Reverse and forward engineering are indivisible components
of modernization

This chapter is a description of a neutral model-driven modernization
approach. “Neutral” above all means that there is no reference to the way
(“how”) the proposed approach is implemented in a CASE tool. In
addition, we also show that this approach is not a method in the sense that
it is not a ready-to-use set of well-established principles and recognized
best practices. As already written, ADM is only a software modernization
framework. The instantiation of this framework gives rise to an
operational method in Chapter 8 of this book.

Within this chapter, we in particular focused on the reverse
engineering activity. A postulate is that a rich expression of the legacy
application in the form of models is a guarantee for generating the
(modernized) companion application.

Concretely, as already written, there is a pivot UML model of the
application that is intended to be injected in the forward engineering
subprocess of modernization. The core of a neutral modernization
method is then the computation of this pivot model from the source
code. Being COBOL or something else, we might imagine the
representation of the complete legacy application in UML with a focus
on business logic; the application is concomitantly expunged from any
technical/technological details and features.

Contrary to programming languages, UML was not invented to
specifically depict execution flows. From this hypothesis, we might
believe in Picasso paintings when looking at the representation of the
complete legacy application in UML. As shown in further detail in
Chapter 8, this global UML model is segmented into several
submodels with formal intelligible relationships and subsequent
navigation. Submodels are in particular supported by UML Class
Diagrams for entities and business objects (the latter are small
functionality pieces). Services and their dynamics in the SOA sense
are depicted by means of UML Use Case Diagrams and Activity
Diagrams. There is intelligent management of the overall model with
added traceability links from the legacy intermediate models (reverse)
to the produced intermediate models (forward).

138 COBOL Software Modernization

In practice, upstream phases of modernization do not, as shown in
Figure 7.1, depend upon UML, but ASTM and KDM. ASTM and
KDM are normalized formalisms to initially depict any legacy
material in the form of models. Accordingly, obtaining a pivot UML
model as a single input of forward engineering, is the transformation
of ASTM models into KDM models and then the transformation of
the latter ones into the UML ones.

Figure 7.1. Model-driven modernization as a well codified, neutral
and discrete model transformation process

7.2. Architecture-Driven Modernization (ADM)

ASTM and KDM were invented under the auspices of the ADM
initiative at the OMG. One key motivation is the interoperability of
reverse engineering tools. As raised before, the problem of narrow-
minded modernization processes in tools is the absence of visibility
on, and accessibility to, the extracted legacy material. ADM considers
the necessity of making this material explicit and immediately
treatable by third-party tools. Like UML, as simple XML Document
Type Definitions (DTD), ASTM and KDM give us the full
opportunity to understand and process models. Again, models are
neutrality factors that aim at removing any adherence to any
technology.

Model-Driven Software Modernization 139

Ulrich in [ULR 14] especially recalls the three key activities
behind software modernization:

– “Assessment: Analysis and exposure of system and business
artifacts, architectures, data and process flows, system structure and
behavior”;

– “Stabilization and standardization: Tasks that structure, rationalize,
realign, modularize and otherwise refactor existing systems”;

– “Transformation: Extraction of data definitions, data and
business rules, along with the reuse of existing system artifacts in the
redesign of target architectures”.

Thus model-driven modernization is globally the permanent
possibility of modifying model content at any stage of the
modernization process to put into practice the three core ADM
activities above. What is missing in these points is the prevalent
possibility of implementing new functional requirements. Although
the result of modernization is a minima an iso-functional
(modernized) application, adding new functionalities beyond extant
ones calls for a specific approach. The ability to cope with model
content is thus a good means for enhancing requirements. In this
context, again, the overall UML pivot model plays the central role at
the end of reverse and start of forward.

In the ADM spirit, software modernization is viewed as an upside
down MDA-like approach. More precisely, while initial ASTM and
KDM models are most likely PSMs, the pivot UML model is the much-
desired PIM. Unraveling the legacy platform features from the
ASTM/KDM models to obtain the UML model is therefore the core job
of reverse engineering as a first modernization subprocess (Figure 7.2).

As for MDA, in the forward engineering spirit, it is in contrast the
weaving of a PIM and a PDM to obtain a PSM. In practice, from an
architectural viewpoint, several inter-related PSMs exist. Most of the
time, upstream PSMs are conceptual descriptions of architectures with
component (provided/required) interfaces. Downstream PSMs are the
same with component implementations coming from a more or less
complete generation/representation of code statements. PSMs are

140 COBOL Software Modernization

linked to each other in transformation chains. Architectural models
may also coexist with deployment models enriched with configuration
data for deployment.

In fact, ADM is nothing other than a modernization framework
without any instruction manual: there is no elaborate method and
particularly no accurate process in the sense that the steps and micro-
steps to fully clean up the legacy application to reach the PIM level,
are never defined and described.

Figure 7.2. ADM as upside down MDA

A probably unanticipated consequence of ADM is a better take-up of
MDD. MDD penetration in industry has effectively been slowed down
by the laborious learning and poor mastering of model fabrication.
Instead of building models from scratch, ADM is viewed as a more
meaningful way of (re)-developing software with models since the latter
are produced in an assisted (even automated) way. However, the
expected model is again the UML pivot model, which is by definition
based on the UML agreed and thus shared formalism. Nobody really
wants the heritage of ASTM and/or KDM models as primers for
application redesign. In other words, ASTM and KDM benefit from
being hidden at modernization time to lower complexity; people cannot
deal with too many modeling languages, UML is enough.

The great challenge about the definition an ADM-compliant
modernization method is therefore having a well-formalized reverse
engineering workflow with UML only (see Chapters 8 and 9).

Model-Driven Software Modernization 141

In this line of reasoning, Figures 7.1 and 7.2 hide the fact that there
are many intermediate ASTM and/or KDM models throughout the
reverse engineering chain before creating the “PIM (UML)” oval in
Figure 7.3. Theoretically, all intermediate models can be exchanged
in ADM-compliant model-driven modernization tools. This is true in
terms of format interoperability; this only results from the fact that
ASTM and KDM are normalized and have de facto implementations
in Eclipse Modeling Framework (EMF). Nonetheless, the deep sense
of these models, their transformation purpose as well, are only known
by each tool since versions of the ASTM/KDM model at mid-term
points of the modernization process (see examples in next sections)
are “user-defined” in the ADM philosophy. In Figure 7.3, the global
model transformation chain is modularized through compact well-
isolated transformation blocks, each named tim2m. The legacy
technology is especially vanishing in a progressive way when we go
up to the “PIM (UML)” oval.

Figure 7.3. ADM is a discrete set of model-to-model transformations

In this context, the choice of UML has a pivot language between
reverse and forward is not at all a recommendation of ADM.

142 COBOL Software Modernization

However, this choice is extremely relevant and critical because UML
is really exchangeable by its broad presence in numerous tools. This is
not the case of ASTM and KDM at this time even if the ADM task
force would like to increase take-up and large-scale use of both
ASTM and KDM.

7.3. ASTM and KDM at a glance

From Wikipedia, “Knowledge Discovery Metamodel defines an
ontology for the software assets and their relationships for the purpose
of performing knowledge discovery of existing code”. In Figure 7.4,
we also point out that only the Infrastructure and Program Elements
layers of KDM are concerned with code while the Resource and
Abstractions layers address, among others, software architecture
issues. Moreover, as stated below, Abstractions goes over reverse
engineering by dealing with forward engineering.

Figure 7.4. Overview of KDM structuring from OMG documentation

Even though KDM plays the central role in the representation of
software artifacts, it is complemented by ASTM as follows (from
OMG ASTM specification): “The Abstract Syntax Tree

Model-Driven Software Modernization 143

Metamodeling (ASTM) and the Knowledge Discovery Metamodeling
(KDM) are two complementary modeling specifications developed by
the OMG Architecture Driven Modernization Task Force. Their
relationship can be clearly understood by recognizing that the KDM
establishes a specification for abstract semantic graph models, while
the ASTM establishes a specification for abstract syntax tree models.
Thus, in contrast to other software representation standards, such as
the Knowledge Discovery Metamodel or the Unified Modeling
Language, the ASTM supports a direct 1-to-1 mapping of all code-
level software language statements into low-level software models”. It
is also noted that: “ASTM is one of the sources of information for the
KDM”.

From experience, the articulation between the two is not as clear as
claimed by the prior OMG text. Since KDM also operates at the code
level (Infrastructure and Program Elements layers in Figure 7.4), a
native overlapping exists between the two.

In practice, ASTM models are the first populated models at legacy
code parsing time. Parsing requires a perfect knowledge of the legacy
language grammar. However, old languages like BASIC variants
(QBASIC, Visual BASIC, etc.), COBOL variants (ANSI, IDS, MINI,
ACCU, etc.), RPG from IBM, BAL from BULL, (eclectic) fourth-
generation languages, etc. may reasonably be viewed as “scary”. For
example, such a trivial IF-THEN-ELSE control statement may have a
weird instantiation in a program1:

REM Some test expression:
10 IF … GOTO 40
REM 2-digit precision:
20 LET precision = 2
30 GOTO 50
REM 1-digit precision:
40 LET precision = 1
REM ‘Currency’ subroutine call:
50 GOSUB Currency

1 This is QBASIC in which lines are numbered. GOTO statements rely on this
numbering that avoids textual labels as in COBOL for example.

144 COBOL Software Modernization

The only way to catch this code as a model is based on ASTM and
a grammar management tool like Xtext in the Eclipse IDE.

Syntactically, the code above is an imbroglio of GOTO statements
finally leading to a call to currency conversion facilities (see
approaching COBOL code in section 2.2.3 in Chapter 2). From a
semantic viewpoint, there is an evident possibility of modeling this
code in an algorithmic formalism that does not depend upon any
programming language. The move from ASTM models to KDM
models is then a more or less automatic reinterpretation procedure
from syntax to semantics.

The legacy programming language grammar is either classical and
therefore matches GASTM (Generic ASTM) or it is more or less
wobbly. In the latter case, Specialized ASTM (SASTM) is required.
While GASTM is an existing metamodel with metatypes like
JumpStatement, SASTM has to be built by software (reverse) engineers
as an extension (mainly through inheritance) of the existing GASTM.
As an illustration, the ASTM OMG documentation offers a SASTM
metamodel for SQL. The specificity of SQL constructs (primary key,
foreign key, constraint, etc.) is typically not covered by GASTM.

Figure 7.5. GASTM sample

Model-Driven Software Modernization 145

Returning to the QBASIC code above, each GOTO statement
(located at lines 10 and 30) is an instance of JumpStatement
(Figure 7.5). As for the IF …, it may simply be viewed as an instance
of IfStatement. Both JumpStatement and IfStatement are members of
GASTM. For concision and thus better comprehension, we do not
depict (from the source code) the induced relationships (if any) both at
the metamodel and model levels. In other words, the QBASIC code
above might lead us to instantiate many ASTM metatypes. We will
come back to this issue with KDM.

So, there are no simple means to directly populate KDM models
from the legacy material while KDM was initially intended to play
this role. As a proof, KDM owns the Goto metatype. We may thus
build a KDM model similar to that in Figure 7.5 by simply replacing
JumpStatement objects by Goto objects at the model level. However,
this hypothetical KDM model has no added value. In fact, ASTM has
been released after KDM to solve residual problems. This explains
today’s articulation between ASTM and KDM, which is as follows:

– The very first capture of the legacy material in the form of
models with KDM supposes the development of homemade code
parsing tools, which would surely differ from one legacy technology
to another. Instead, an ASTM model is just an abstract syntax tree
grounded on a common grammar (GASTM) with, possibly, (a lot of
or a few) non-common extensions (SASTM). The availability of a
COTS grammar management tool like Xtext in Eclipse is a robust
approach to initiate a modernization process. The transformation of
what is extracted by Xtext toward ASTM is in particular easy and
straightforward.

– ASTM models, by obeying a standard, aim at being interchanged
between tools. The absence of ASTM would increase the use of
tailored mechanisms with poor interoperability. Despite the existence
of de facto hands-on “standards”, say the Xtext tool, ASTM is a better
source of openness.

– The ASTM to KDM mapping is not normalized, i.e. it is
provider-defined. The creativity of providers of modernization

146 COBOL Software Modernization

solutions then relies on their implementation of the move (model
transformation) from ASTM to KDM. It is also important to observe
that this move is not, in terms of actions and outputs, frozen once and
for all. In other words, the intelligence of modernization methods may
in particular be measured through their ability to produce rich and
coherent KDM models. As for their understandability, it may be low
or high, depending upon the sought objective. Put simply, the
technical processing of KDM models by any ADM-compliant tool
does not imply the possibility of detecting and interpreting the
semantics behind model elements and their relationships. To attenuate
this, ASTM models are more easily and straightforwardly
comprehensible due to the access to their underlying grammar.

– Contrary to ASTM, KDM offers metatypes to deal with, not
only code, but data, user interface (UI) or any architecture
concern. The advantage and expected role of KDM (compared to
ASTM) is the connection of the legacy code vision with any useful
orthogonal information on the legacy application. Typically, we must
be able with KDM to trace the fact that a legacy element is an indirect
instance of AbstractUIElement (e.g. an instance of Screen) belonging
to the KDM UI package. Indeed, in the KDM metamodel,
AbstractUIElement holds an association (0..* cardinality) with
ActionElement that belongs to the Program Elements Layer package.
This approach automatically limits the role and scope of ASTM to the
sole expression code-centric legacy artifacts, at modernization startup
especially.

7.4. Variations on ASTM

A legacy programming language with GOTO (BASIC, COBOL,
FORTRAN, C, etc.) cannot be understood and treated as any other
that is not equipped with hard-wired jumps. In a more complicated
way, we may consider some Smalltalk code as legacy source code.
Since test expressions are instances of the Boolean Smalltalk type, we
may represent a given test (“…” below) by means of the Boolean
metatype of ASTM (a subtype of PrimitiveType).

Model-Driven Software Modernization 147

“Some test expression:”
…
“1-digit precision:”
ifTrue: [precision := 1.]
“2-digit precision:”
ifFalse: [precision := 2.]
“‘Currency’ instance method call:”
Currency convert: … and: precision.

Going on with Smalltalk, an IF-THEN-ELSE control statement is
conceptually considered as an instance of the Message class of
Smalltalk whose receiver is the said test (so, an instance of the
Boolean Smalltalk type). As a result, in the Smalltalk code above, if
really is an instance of the Message class. To match the Smalltalk
grammar, a Message metatype may then be added to an in-house
SASTM, leading to the GASTM + SASTM model in Figure 7.6.
Boolean in Figure 7.6 is that of GASTM. Again, no relationships
appear while the Smalltalk source code underlies relationships
between Message and Boolean at the metamodel level, :Message and
:Boolean at the model level as well.

Figure 7.6. GASTM + SASTM sample

148 COBOL Software Modernization

7.5. From ASTM to KDM

When putting all together, we observe that the COBOL code
sample in section 2.3 of Chapter 2, the QBASIC code sample and the
Smalltalk code sample are nothing other than an IF-THEN-ELSE
algorithmic occurrence. Only the routing to the Currency conversion
functionalities appears, in COBOL, as a temporary program exit
(CICS delegation) while QBASIC and Smalltalk perform a local call
to, respectively, a subroutine and a class operation.

Figure 7.7. KDM sample

As a result, Figure 7.7 is a KDM model that removes the
unnecessary language details. In other words, this model is a
trustworthy representation of the business logic engraved both in the
COBOL, QBASIC and Smalltalk code samples.

This KDM is nonetheless incomplete in terms of discovered
semantics. The Condition object named… in the code must itself be
developed to make the business rule explicit. Furthermore, the use of
currency conversion facilities is a “system call” in COBOL (link to
CICS middleware platform) while it is local in QBASIC and

Model-Driven Software Modernization 149

Smalltalk. This call respects formal encapsulation principles in
Smalltalk while it is grounded on the global visibility of the
“precision” variable in QBASIC. All of this information must be
incorporated into the reverse engineering chain of models, to maintain
as much knowledge as possible before computing the UML pivot
model to be used as input of forward engineering.

We experience here the reason why the ADM model
transformation process is made up of many micro-steps. The model
transformation program suite may in particular benefit from being
generic. The best is its expression as a transformation from GASTM
to KDM. If SASTM metatypes exist as subtypes of GASTM
metatypes, transformation based on the latter also touches the former
through polymorphism.

Anyway, the transformation program which moves from GASTM
+ SASTM models to KDM models can be complex. This encourages
us to sparingly build in-house SASTM. Unfortunately, COBOL often
calls for specialized metatypes as we did with Message for Smalltalk.
As an illustration, we may look at this kind of assignment in COBOL
(assign to the program variable c, found in structure d, the value of the
program variable a, found in structure b):

MOVE a OF b TO c OF d.

Modernizing it leads us to primarily setup a homemade MOVE
metatype in a SASTM instead of using Assign in GASTM. All this is
taking place before mapping this code piece to an instance of the
Assign metatype in KDM. The two existing Assign metatypes in both
GASTM and KDM cannot capture the deep semantics of this
uncommon assignment even if it is well known by COBOL
specialists.

7.6. Variations on KDM

KDM is not prescriptive in terms of usage. We mean, the same
code sample and, more broadly, the same legacy system may lead to

150 COBOL Software Modernization

different models, something, in any event, embarrassing for an
industrial (and thus robust and scalable) usage of KDM.

In this spirit, KDM has a modular organization in packages. Each
package has, in terms of possible utilization, a more or less high
importance depending on the legacy technology, the domain and
status of the legacy application, the complexity and volume of the
legacy material and so on. Chapter 6 points out some details about the
Infrastructure and Program Elements layers of KDM (Figure 6.9).
The Runtime Resources Layer and Conceptual Layer of KDM in
Figure 7.4 offer other packages: Platform Package, Data Package, UI
Package and Event Package for the former layer and Structure
Package, Conceptual Package and Build Package for the latter layer.

As mentioned earlier, reverse and forward engineering are two
inseparable pillars of modernization. As a consequence, KDM has
been designed so that its Conceptual Layer is mostly devoted to
forward engineering. More precisely, while the Structure Package
proposes notions for modeling legacy system architectures, the
Conceptual Package and Build Package turn to the modernized vision
of the legacy system.

There are two good reasons to exclude the Conceptual Layer of
KDM from a suited model-driven modernization method:

1) Modeling architectures of legacy systems might have value
when these have to be partly reflected in renewed systems. In practice,
this assertion is almost always false, in COBOL specially. We mean,
the form of legacy architectures has poor interest because, most of the
time, we want to restructure all aspects in a service-based fashion. Do
not forget that, for instance, KDM may serve in Java-to-Java cases
when, possibility, architectures can go through modernization
processes with few changes. These cases are sufficiently “simple”,
even meaningless, to eliminate them from this book’s study intention.
Modeling architectures is informative and may thus gain insights into
legacy system inner workings (e.g. CISC “system call” in COBOL).
Nonetheless, we show in section 2.2.3 of Chapter 2 that the detailed
analysis and interpretation from the code reveal knowledge on
architectural issues, and, more interestingly, the (justified and

Model-Driven Software Modernization 151

displaced) intricacy of these with business logic. Again, our focus on
SOA as target architectural paradigm calls for a thorough inventory,
which often throws away legacy architectures.

2) The Conceptual Package and Build Package are direct
competitors of UML. As self-contained modernization language,
KDM is complete. However, the today’s spread of UML encourages
and strives us to use it to the detriment of these two KDM packages.
Models by their very deep nature favor interoperability. The
expression of the modernized system in UML instead of KDM allows
a greater independence and thus competition: forward engineering
may be performed by more competitor tools, these in particular that do
not have reverse engineering facilities.

From this observation, an ADM modernization approach is first
and foremost a kind of “KDM decantation” to first identify and then
put into practice the appropriate KDM packages, as, for some of them,
optional helpers. This remark may frighten readers about the
investigation and investment on KDM before running any
modernization process. This demonstrates again and again the need
for a well-codified fluid method to avoid such oversized efforts.

Figure 7.8 shows another angle for priming modernization
activities. In enterprise applications, data are spread out between
“presentation” (UI), “persistence” (files, databases) and “service”, i.e.
computation at large by means of working data in memory for
presentation/persistence intermediation. This concise approach allows
the definition of the way code macro- and micro-pieces have to be
unraveled toward the very first KDM models of an ADM-compliant
reverse engineering chain.

From this hypothesis, Figure 7.8 is a metaphor about the way the
presentation/persistence/service circle may be enlarged to make the
business logic emerge.

In this global logic, from experience, the Runtime Resources Layer
of KDM with Platform Package, Data Package, UI Package and
Event Package, is only useful for legacy applications with “good”
existing structuring. For example, the KDM Event Package is a state

152 COBOL Software Modernization

machine-oriented formalism that may be efficient for capturing the
interaction of UI components, provided that the UI Package serves as
a description support of the legacy structuring of these components.
This situation is typically the counterexample of COBOL with green
character-based inputs/outputs.

In COBOL software modernization, the Runtime Resources Layer
of KDM is the source of informative and fairly contemplative models
in the sense that they store interesting information on the legacy
system. However, information in this model has a secondary role
compared to the models coming from ASTM and the Infrastructure
and Program Elements layers of KDM, i.e. those devoted to code
modeling, analysis, interpretation with inevitable external intervention
(legacy people) and final transformation toward UML.

Figure 7.8. Modernization primarily occurs by separating presentation, persistence
and service “corners” in the COBOL “ocean of details”

Model-Driven Software Modernization 153

7.7. Automation

It is improbable to manually deal with ASTM and KDM models.
Thousands, even millions of lines of code are concerned with
modernization and thus lead to equivalent sizable models with
numerous elements. Beyond this, KDM models aim at containing not
only program elements, but also data, UI, architecture, etc. software
artifacts.

In this context, ASTM and KDM are provided as open-source
“running” metamodels, in Eclipse especially (EMF/Ecore), a sign of
confidence and an assurance of portability and sustainability.
Moreover, beyond packaged commercial products around
ASTM/KDM, environments like MoDisco (www.eclipse.org/
MoDisco) offer rich functions to manipulate ASTM/KDM in a more
friendly way than the basic support of EMF/Ecore. From experience,
MoDisco is only reserved for highly skilled software (re)-engineers.
The manipulation of such an environment is both rough and tough.
The open nature of this product leads to a lot of
adaptation/enhancement before any intensive repetitive usage at a
large-scale industrial degree, for COBOL in particular.

As will be shown in Chapter 8, MDD reverse engineering cannot
be fully automated. Legacy people’s intervention is therefore a key
complement of automation in a well-defined modernization method
and an associated tool. This supposes a lot of assistance to, for
instance, build in-house SASTM. Transformation programs from
ASTM to KDM and to KDM to UML cannot also be fixed once and
for all due to too many fluctuations and versatilities of legacy
technologies within and around COBOL. Chapter 8 not only shows
this method but its high customization degree to cope with the
heterogeneity of COBOL legacy systems.

7.8. Conclusions

Model-driven software modernization is a set of principles, which
derives from the ADM initiative and task force at the OMG. Even
though ADM puts forward the ASTM and KDM standards as
modernization-specific modeling languages (DSMLs), there is no

154 COBOL Software Modernization

prescribed method to carry out ADM end-to-end modernization
processes.

As shown in the forthcoming chapter, ADM covers forward
engineering in an anecdotal way. This encourages us to consider an
ambitious and realistic method that is based on UML as the
articulation axis between reverse and forward, instead of KDM. Any
modernization method cannot exist outside tools, given the huge
volumes of legacy information: code, data, configuration information,
etc. To that extent, there is a clear prevalence of UML and a UML-like
profile to include execution capabilities in the models that actually
have the capability of terminating the reverse engineering phase of
modernization: full application generation.

8

Software Modernization
Method and Tool

Architecture-driven modernization (ADM) is a stimulating
framework for performing model-driven software modernization.
However, the availability of an industrial method to put ADM into
practice is the centerpiece of any common business-oriented language
(COBOL) software modernization project.

This chapter first describes such a method in relation to a
professional computer-aided software engineering (CASE) tool called
BLU AGE. The chapter does not enter into accurate technical details
to show ADM at work (the purpose of Chapter 9). Nonetheless, it lists
the necessary elements to have well-formed unified modeling
language (UML) models such as pivot models between reverse and
forward engineering.

Secondly, this chapter discusses such a method in a project
management logic. This method in essence makes a peculiar
utilization of the knowledge discovery metamodel (KDM) (including
the abstract syntax tree metamodel (ASTM)) and UML in an ADM
and MDA-compliant style. In effect, the industrial nature of this
method imposes scalability because legacy applications are never toy
cases. Volumes (code sources, data, etc.) play a crucial role in the
sense that model-driven development (MDD) methods and tools may

156 COBOL Software Modernization

fail because of them (see remark on MoDisco in Chapter 7). A
methodical modernization approach thus calls for:

– reproduction (similar cases are processed in the same manner);

– systematization and phasing of modernization actions in a well-
established workflow,

– automation also covering legacy personnel’s involvement,
management and assistance (key modernization actors and roles,
models shared across teams, wizards in tooling for building model
templates and populating models, etc.);

– tailoring capabilities when having original, even borderline, cases.

Honestly Speaking, COBOL software modernization is rather a
matter of “software archeology” than “noble” software engineering.

8.1. BLU AGE overview

BLU AGE is a software tool suite based on Eclipse and
more precisely its Eclipse modeling framework (EMF) constituent.
The main purpose of BLU AGE is to provide industrial tooling to
drive large-scale modernization projects. These projects are managed
in an industrial manner to optimize productivity. Productivity is
measured in a number of lines of code (LoCs) modernized per day and
per stakeholder (also known as “consultant”). Of course, productivity
depends on the type of legacy technology (COBOL or COBOL-like
languages, fourth-generation languages such as PowerBuilder,
NatStar, etc.). For COBOL-like languages, a consultant can reach
more than 1,000 LoCs per day using BLU AGE. This includes the
concomitant achievement of numerous project management tasks like
testing the transformed LoCs.

The BLU AGE suite is composed of family of three self-contained
products:

– BRM (BLU AGE reverse modeling): From a legacy code, it is
used to generate a model to be injected in the forward engineering
component of BLU AGE or any code generator. BRM provides a set
of sub-tools to extract the business logic from the legacy code and to

Software Modernization Method and Tool 157

transform it into a UML model. This model is in essence independent
of the target technology;

– BFE (BLU AGE forward engineering): From a UML model, it is
used to generate a modernized application by choosing a target
technology: EJB, Spring, .NET, cloud platforms, etc. The model used
in the transformation is independent of the target technology; it only
represents the business logic. With BFE, users can select the
transformations to apply in order to obtain an application conforming
to the desired target architecture. In modernization situations, the
model to be used for these transformations is extracted from BRM;

– BDM (BLU AGE database modernization): It is used to
modernize databases in a modernization project. Within legacy
systems, databases mostly exist through flat files. Instead of having
relational structures, data are often badly organized in these files
through possible hierarchies. With BDM, users are able to first
modernize data schemes by defining set-based relationships to
definitely compensate the absence of rationale data organization.
Next, by introducing modern data types (to put aside character-
oriented COBOL data types), BDM produces migration scripts to
migrate data from legacy files to relational databases.

The proposed approach is based on model transformations and,
more generally, the MDA “way of life”. What does it mean? If we
consider everything as a model (including legacy and modern code),
then we are able to apply transformations in order to compute new
models until we finalize the UML one: that abstracting the modern
code, including application artifacts such as Web pages, configuration
files, etc. Transformations are just assisted actions by means of BLU
AGE editors. In exceptional circumstances, transformations may be
programmed using Java in EMF.

BLU AGE implements the MDA approach to perform automated
transformations from a model to move to the final code: “platform-
independent model (PIM) -> platform-specific model (PSM) -> code”.
BLU AGE extends this approach for the reverse part to compute a
model from the legacy code: “Code -> PSM -> PIM”. This is
described in a conceptual manner in Figures 7.1 and 7.2.

158 COBOL Software Modernization

In BLU AGE, the PIM as a UML model is always compliant to the
UML metamodel. The PSM in the forward direction is a model
compliant to the BLU AGE metamodel (a UML subset) based on
EMF (Ecore format). The PSM in the reverse direction is a model
compliant to the KDM metamodel. Figure 8.1 is an overview of this
principle.

Transformations are always automated even if users may have to
provide transformation information. In fact, users have in particular to
select what is to be transformed and how it is from a small set of
choices. Such choices are strongly guided by the tool and its
incorporated method.

Figure 8.1. Model-driven modernization with BLU AGE

8.2. The toolbox

BLU AGE is a CASE tool based on a non-intrusive and easy-to-
learn technology. All deliverables coming from BLU AGE can be
maintained with or without BLU AGE. The code generated from
UML models is not dependent upon any BLU AGE runtime or any
third-party software library. Using MDA in general and BLU AGE in
particular makes users free from technical complexity, i.e. they do not
require on in-depth knowledge of enterprise middleware platforms

Software Modernization Method and Tool 159

such as EJB, Spring, .NET, etc. Roughly speaking, users do not have
to be experts in target technologies; they only focus on models.

The tooling is associated with a method in case of modernization.
The method aims at assisting the production of the necessary UML
models from which the modern code is later generated. Nonetheless,
the UML models may be created from scratch outside any
modernization concern. BLU AGE helps us to generate an application
by reversing any legacy code. Extracted from the legacy code, the
business logic has to be first cleansed from legacy technical (obsolete)
details and next properly expressed in UML models.

In parallel, legacy user interfaces (UIs), COBOL “screens” in
general, are reshaped and stored as Web pages. In fact, these are
HTML mockups (UI prototypes). The Web pages are designed (with
assistance) from the legacy COBOL “green screens” in case of
modernization. They can also be designed from scratch. UML model
elements are referenced as HTML elements in mockups and vice
versa: mockups widget names are manipulated in UML models to
formalize the application’s interaction. Typically, BLU AGE uses
UML activity diagrams to express the kinematics of Web pages, i.e.
how we move from one page to another, what action is launched when
entering or exiting an activity once the application’s mouse is clicked,
etc.

More generally, in the case of modernization, there is a seamless
workflow (“reverse” then “forward”) with the following outputs:

– the production of an initial model including a modernized
representation of the legacy data;

– the production of HTML mockups from legacy inputs/outputs;

– the production of possible information (comments) to better
understand the application to be modernized.

Later on, the modeling of the legacy services and presentation
layer is ruled by the following supports:

– an automatic process based on code pattern definition and
“transmodeling” (also see sections 8.2.2.4. and 8.4.2.2);

160 COBOL Software Modernization

– a finalization process using any UML-compliant modeling tool to
adapt the reversed code to UML models obeying to strict rules. This is
a coercive format above called “BLU AGE metamodel” (also known
as “BLU AGE metalanguage”).

8.2.1. BLU AGE format required for forward engineering

The BLU AGE PIM model is a fully compliant UML model with
limitations. These limitations are healthy in order to obtain a simpler
language than the overall UML. The code generator (including a
syntactical checker) works from this UML subset. The underlying
format is composed of:

– entities, business objects and value objects defined as UML
classes in class diagrams. For example, the BLU AGE metalanguage
imposes that business objects own elementary operations (data
accesses and simple computations mainly), while entities only have
fields. Business objects inherit from entities as exemplified in
Figure 8.2 (top left-hand side);

– services defined as UML interfaces. Services hold operations
whose type can be:

- CRUD (create, read, update, delete) operations to handle data
in a basic manner from and toward databases. Implementation is later
determined according to the chosen persistence framework (e.g.,
Hibernate, Java Persistence API (JPA), etc.),

- processes as behaviors of operations from which a consultant is
able to design complex business functionalities containing conditions,
iterations and calls to other operations. Detailed behavior is defined
within an UML activity diagram. When we reverse a business
functionality from a legacy piece of code, we have a corresponding
“process activity diagram” (see an example in Figure 8.2, top right-
hand side),

- Web service call to call an exposed Web service. The resulting
implementation is later generated according to the Web service
provider and inherent properties (simple object access protocol

Software Modernization Method and Tool 161

(SOAP), RESTful, etc.). Basically, consultants have to set up the Web
service’s URL in the model,

-specific service call to reuse an existing code or application
programming interface (API) in the model. The library containing the
implementation is automatically inserted as a reference resource of the
BFE project. The UML model thus contains the reference to what
UML operations map to, i.e. model pieces or pre-packaged software
components;

– screen activity diagrams (Figure 8.2, bottom right-hand side) that
represent for each screen (or “page” in a Web application) all the
available actions/events (for example, hover the mouse over a given
button) and the functionality to be possibly executed on the server side
when this action is triggered;

– HTML mockups that represent the graphical layout of screens. A
screen activity diagram has one and only one mockup. Mockups are
bound to the UML model by means of a set of markers. During the
generation process, mockups are synchronized with the overall UML
model to let the possibility of producing a modernized application
with modernized inputs/outputs;

– in case of modernization of batch programs, job and steps
activity diagrams are also defined. A job establishes a sequence for a
set of steps expressed in activity diagrams.

Figure 8.2 shows the case of a COBOL record creation. This is the
managed interaction between diverse UML elements. In other words,
all diagrams and all pieces inside each diagram are managed in a
consistent manner. BLU AGE requires specific links between
elements according to their nature (entity, business object, service,
etc.) but also their place and role in a given diagram, being instances
of the “Class”, “Activity”, “Interface”, “Operation”, etc. UML meta-
types.

162 COBOL Software Modernization

Figure 8.2. BLU AGE PIM diagrams and their inter-relation

8.2.2. Reverse tooling

In a modernization project, the tooling manages all model pieces
and their interdependence in a consistent manner so that we may:

– ensure the completeness of the modernized application (not to
miss a business functionality, for instance, in the legacy code);

– enable the progress tracking of the modernization actions, to
manage the project as a whole;

– automate the processes as much as possible to improve the
productivity;

Software Modernization Method and Tool 163

– compose a team with people that may be non-experts in the
legacy technology in general and the legacy architecture in particular.

BLU AGE proposes a set of components out of the box based on
the Eclipse workbench to meet these needs.

8.2.2.1. Views and perspectives

BLU AGE proposes a set of views and perspectives to read and to
understand the legacy code using an annotation editor. Once posed,
annotations are source of navigations. For example, Figure 8.3 shows
how to access the content of a COBOL Perform code block (also
known as “paragraph call”), provided that this one has been
previously annotated. Smart navigation also allows us to access data
definitions from data occurrences, etc.

Figure 8.3. Annotation editor

Another useful view is the function view. When a user selects a
piece of code, she/he can quickly see which paragraph is calling it,
what the paragraphs inside the current paragraph are called, what the
data items handled in this paragraph are including the direction
(updated value or provided value). A sample of “function view”
appears in Figure 8.4.

One has to insist on the fact that the legacy code management is
backed up by the underlying KDM representation. From the first ASTM
and the next KDM, the legacy code only “exists” as a PSM model. For

164 COBOL Software Modernization

transparency and useless complexity (ASTM and KDM models are not
really intelligible), users cannot visualize such PSM models. Instead,
they cope with the legacy code in a more or less intuitive manner.

Figure 8.4. Function view

The segment view (Figure 8.5) proposes a way to have a
representation of data items at a glance. In COBOL, many data items
are defined within a group having a tree view (Figure 8.5, right-hand
side). Users have to select a data item from the code and the segment
view is concomitantly displayed from its selection context.

8.2.2.2. UI extraction

When modernizing an online transaction processing (OLTP)
COBOL program contains screens, a modernized behavior for the
application’s screens is required. BLU AGE proposes a feature to
transform automatically “green screens” to HTML pages (Figure 8.6).
The new screens still contain references to the legacy application using
HTML tag properties. These new HTML pages are used as input
artifacts in BFE. Extracted HTML mockups need to be graphically
adapted to customers’ needs. This is facilitated by the fact that screen
extraction does not forget any old element even if some are destined to
fade. Modernization cannot occur without an HTML designer in charge
of completing and tuning the modern content in the resulting Web
pages.

Software Modernization Method and Tool 165

Figure 8.5. Segment view

Figure 8.6. HTML mockup extraction

166 COBOL Software Modernization

8.2.2.3. Annotations

The annotation mechanism is a feature used to mark the legacy
code with a color code (also see section 8.4.2.1). Annotations in
Figure 8.7 have a meaning and can be used to provide guidelines
during reverse engineering. For example, we may annotate the code to
check what part is intended to be kept, skipped, transmodeled or
to establish that a well-defined part of the code has been modernized
to something already present in the “modern world”. In the end, all the
code should be annotated even if many parts are intended, due to their
obsolescence or meaningless status, to be dropped.

Figure 8.7. BLU AGE annotations

Software Modernization Method and Tool 167

8.2.2.4. Pattern selection and application

Patterns are connected with the legacy code for code
comprehension and massive processing when scalability issues are
rising. Patterns are pieces of code that are repetitive code blocks at
various places despite some well-established differences are tolerable
from one block to another, both belonging to the same pattern. Once
formalized, applying a pattern leads to automatically generated other
annotations. Figure 8.8 shows in three steps: 1) pattern identification
and 2) pattern design that mainly consists of separating variable and
invariable parts (2). 3) Once done, legacy code blocks are assigned to
the pattern as variants: same shape/structure with variations.

Pattern discovery and matching is highly iterative in BLU AGE to
progressively understand the inner workings of the legacy code. Code
comprehension occurs on an exponential scale as soon as many
patterns are detected and many inferences are carried out. This leads
to numerous annotations that drastically reduce the remaining code to
be modernized.

Figure 8.8. Pattern discovery, tailoring and application

168 COBOL Software Modernization

8.2.2.5. Data item extraction

In COBOL, data items are most of the time modernized as UML
classes. BLU AGE provides a standard feature to select a data item
from the legacy code and transform it into a class by applying
automated transformations to set its name (according to naming
conventions in the “modern world”) and its type. Users may be invited
to define their own transformations in case of tricky cases.

Figure 8.9. Data item modernization

Data item extraction often relies on the characterization of the
shape of grouped zones within the overall data hierarchy (step 1 in
Figure 8.9) and to apply targeted transformations (steps 2 and 3) like
moving a character suite (PIC X(…) item or suite of items) to, for
instance, a Date abstract data type in the modern technology
(“custDob” attribute of “CustomerRecord” is of type Date in

Software Modernization Method and Tool 169

Figure 8.9, step 4). All applied transformations to data items are stored
in order to keep a mapping between model elements (classes and
attributes) and legacy data items. At any time, we know all legacy data
items that were previously transformed into a class or, in scarcer
cases, to an attribute only.

8.2.2.6. Transmodeling as business logic (rules and functionalities)
extraction

Transmodeling is the core feature of BLU AGE. It amounts to
selecting a piece of code to move it to a UML element. This piece of
code is transformed into an activity diagram representing the selected
functionality. If the selected piece has annotations, these annotations
are later used to provide instructions to the transformation engine
(“skipped” or “modernized as”). Transmodeling is concerned with
approximately 80% of consultants’ modernization actions.

Figure 8.10. Transmodeling

Figure 8.10 illustrates the transmodeling approach. Code is
previously annotated or punctually selected (stage 1) for

170 COBOL Software Modernization

transformation as a UML activity diagram (stage 3). Stage 2 is the
modernization stakeholders’ intervention. Although model
transformations are pre-programmed, they require argument values to
customize them through BLU AGE facilities.

8.3. BLU AGE as an ADM- and MDA-compliant tool

Let us consider the modernization of an OLTP COBOL application
with numerous “green screens” toward an Enterprise JavaBeans™
(EJB) (say, version 3.×) Java application with, for instance, the
JavaServer faces (JSF) presentation framework and the JPA
persistence framework (Figure 8.11, right-hand side).

The first step (Figure 8.11) leads to transforming the legacy code
into a PSM model: KDM model. With BLU AGE, this transformation
is tailorable starting from archetype transformations in a knowledge
base. These interpret the legacy code based on a grammar. Within this
step, BLU AGE extracts business entities and generates HTML
mockups from the legacy “green screens”.

The second step (Figure 8.11) is the transformation of the PSM
model (KDM format) to a PIM model in UML format. These
transformations are hardwired with manual intervention so that the
business logic is properly separated from the (obsolete) legacy
platform matter: obsolete transaction management marks, persistence
techniques, error-handling mechanisms, etc., have to mutate or
disappear. In effect, all “prehistoric” matter in the legacy software is
intended to be handled by special (new) frameworks (presentation
framework like JSF, persistence framework like JPA, transaction
management framework like JTA, etc.) available in the retained
modern technology. In these transformations, BLU AGE assists
people by means of pattern discovering; this is a way to automatically
extract similar code. During all these transformation phases, the
legacy code (managed via KDM models) is annotated in relation with
progression milestones. This keeps a history on what has been already
done, and consequently, what is left to be done.

Software Modernization Method and Tool 171

In the third step (Figure 8.11), BLU AGE uses the PIM model to
fully generate the final application, depending on the target
technology. This step is fully automated. BLU AGE generates the
PSM and the modern code “behind the scenes”. Next, this code is
compiled and packaged. In this step, the final application may be
deployed and tested against the legacy application. Evolutions about
the modern application come up after this step when possible
discrepancies are observed.

Figure 8.11. Modernization approach in three key steps

BLU AGE is above all a model transformation engine. BLU AGE
takes models as inputs, applies transformations and produces new
models. These new models can be used as input models for other
transformations. The BLU AGE engine works with BLU AGE shared
plug-ins (BSPs) and a knowledge base. BSPs (also known as PDMs in
section 6.6.1 in Chapter 6) describe “model to model” and “model to
text” transformations, while the knowledge base mostly stores “text to
model” transformations. In fact, because everything is a model
(including the code), we have at our disposal an innovative means to
describe the modeled elements by using metamodels. So, if we are
able to describe transformations at the metamodel level, then we apply
these at the model level. Figure 8.12 describes this process.

172 COBOL Software Modernization

Figure 8.12. Model transformation based on metamodeling

Returning to the OLTP COBOL-to-EJB 3.× case, Figure 8.13
shows the way BLU AGE transforms the COBOL code (legacy
language) to a PSM model expressed in KDM during the first step of
the reverse process. This occurs using a language grammar (initially
that of COBOL) because a model is written in a language defined by a
metalanguage. In the MDA spirit, the metalanguage is the metamodel.
So, if some code is written according to a metalanguage, then
transforming it into a model can be performed by formalizing the
metalanguage and by applying transformations, which are translations
from one language to another.

Figure 8.13. Full transformation workflow from a
legacy application to a modern application

Software Modernization Method and Tool 173

8.4. Modernization workflow

In practice, modernizing a large-scale legacy application is not
only a matter of model production. Having a coherent and efficient
method is mandatory. Modernization projects from 100,000 LoCs to
almost 30,000,000 LoCs generate huge models whose management is
highly complex. Models vary in size, nature, role, etc. A method is
required to introduce some discretization (a process with steps) to
support this management. Such a process is decomposed into three
coarse-grain phases with well-defined building blocks:

– The Initialization phase where the story begins (details in
Figure 8.14). Here, we set up the basic elements of the modernization
project, we mine the legacy code and we establish how automation
aims at running in relation with measurable gains of productivity. It is,
indeed, important to control advances to respect the project’s budget,
to be able to inform customers about these advances.

– Realization, which is the longer phase. It is sequenced by
iterations of four to six weeks. This phase consists of building the
forward UML model (to be used to generate the final modern
application). Activities in this phase are in essence highly assisted by
means of BLU AGE.

– Validation and deployment. Realization already includes some
partial validation in iterations, but validation and deployment aims at
showing concrete results to customers. Namely, at the end of this
phase, the modern application is deployed on the chosen production
environment. So, deployment, including data migration and change
management, is business-critical. A deployment plan must be created
and carefully followed up in order to tame risks.

8.4.1. Initialization

8.4.1.1. Explore artifacts

This is the first activity when starting a modernization project. All
the legacy artifacts including at least the legacy code are gathered.
Elements such as documentation, database schemes, files, dictionaries,
data sets for testing, etc., are, most of the time, scattered. Exploring

174 COBOL Software Modernization

these elements allows us to answer to crucial questions: is the set of
artifacts “complete” in order to start the modernization under
conditions acceptable for success? What additional information do we
need? Etc.

Figure 8.14. Initialization phase with sub-activities

8.4.1.2. Support grammar

As suggested before, transforming the legacy code into a PSM
model (from ASTM to KDM) amounts to characterizing a grammar.
Often, this leads to the adjustment of an existing grammar by deeply
scanning the different shapes of the legacy code. This adjustment is
important because it defines the way to translate the legacy code into a
model. The COBOL grammar provided with BLU AGE supports all
COBOL standards, but COBOL has a lot of variants. When facing a
particular COBOL dialect, an adaptation of the grammar leads to
reviewing the native metalanguage/metamodel using generic ASTM
(GASTM)/specialized ASTM (SASTM) (see section 7.3 in
Chapter 7).

To extend or deal with grammars in general (even creating a new
one), BLU AGE provides a third-party set of functionalities called
BLU AGE Factory. Only software architects with high expertise may
use this feature.

Software Modernization Method and Tool 175

8.4.1.3. Extract

This activity takes the legacy code as an input, applies the
necessary transformations defined from the grammar and generates
the PSM model in KDM format. This task is fully automated in terms
of users’ guidance and assistance. The resulting KDM PSM model is
used by BLU AGE to generate the UML PIM model, but it is mainly
used to hold/maintain code annotations (to figure out modernization at
large, including progresses: amounts of already processed code as
models). There is a particular high-end support for navigations, easy
and straightforward accesses to legacy and modernize artifacts,
synthesized views, etc., concerning the code organization and the
resulting computed models. More generally, the synchronization
between the legacy code on the one side and the PSM and PIM
models on the other side is total.

Sometimes, the application to be modernized is not easily and
straightforwardly readable. This corresponds to macro-languages like
COBOL Pacbase (also see section 2.2.1 in Chapter 2) from which the
COBOL code is generated and not manually written by developers. In
these particular cases, BLU AGE is also able to process the native
legacy inputs to generate a PSM KDM model that is somehow closer
to a “human-readable form” making it easy to handle by consultants.

The main outputs of the Extract activity are:

– legacy PSM in KDM format,

– generated UI prototypes in HTML format (mockups) when the
legacy application has screens and related constitutive elements.

The extraction process is run once. It can be automated, scheduled
and executed in background (see the idea of “continuous integration”
below) if the amount of legacy code is important or this code has to be
transformed into a human-readable form that calls for extra
processing.

8.4.1.4. Understand legacy structure

When completed, the extracted matter allows us to read and
understand the legacy code structure. Basically, we dig into the code

176 COBOL Software Modernization

using (hidden underlying) KDM models to make apparent how the
business logic is engraved in this code:

– How are program files structured?

– Where is the business logic present?

– Where is the kick-off code?

– Is there some underlying framework used from the legacy
middleware (transaction management, persistence, logging, error
management, etc.)

– Do we need legacy technology experts?

– Are there screens? How are they composed (screen layout)?

8.4.1.5. Organize collaborative work for code sources and model

A project never involves only one or two individuals.
Consequently, in this activity, the collaborative work environment has
to be endowed with appropriate collaborative supports:

– code source repository (SVN, CVS, GIT, etc.);

– model repository (team work server devoted to model concurrent
readings, writings, etc.).

In this collaborative environment, the extracted matter is stored in
a way which is consistently shareable between modernization
stakeholders. Model and code source repositories relate to each other
to have effective gateways and thus support an effective collaborative
work.

8.4.1.6. Set up environments, support continuous integration

Consultants need a working environment to run both BLU AGE
and the modernized application. Round-trip engineering requires
gateways between the two in order to carry out tests and, from
positive or negative validations, apply corrective actions at reverse
and forward engineering time. The overall working environment is
configured as follows:

– Consultant environment: It is a machine with BLU AGE tooling
and a local testing environment (application server, database, etc.).

Software Modernization Method and Tool 177

– Testing environment: It especially includes a unit functional
testing environment to validate self-contained functionalities, an
integration testing environment to validate the complete application,
ensuring non-regression in particular.

– Tester environment: Whereas testers build automatic tests to be
principally executed in the spirit of continuous integration.

– Production environment: It has to be used for very final
validations in true end users’ daily-business contexts.

All of these environments must be documented and the
documentation must be shared using tools like Redmine or Sharepoint,
for example.

Continuous integration is a key part of any modernization project.
It consists of providing an automatic testing environment to be used
on scheduled time. Basically, at each moment of an integration, the
model is taken from the model repository, generation is launched,
generated application is deployed on a testing environment, automated
tests are executed and reports are produced. This process is useful to
eliminate regressions.

Continuous integration is a robotized perspective of modernization.
All fastidious repetitive tasks that follow creative modernization tasks
must in particular be assigned to “jobs”, as tasks performed during the
night, for instance.

8.4.1.7. Database modernization

The purpose of Database modernization is to transform a data
organization and to migrate data from a renewed data schema. For an
average COBOL legacy application, data are commonly stored in a
file operating system. In such a legacy context, the concept of the
relationship between data is not formally supported compared to what
is offered by a relational database. So, database modernization is
almost the restructuring of three COBOL general-purpose data types
that are:

– numeric items consisting of digits 0–9;

178 COBOL Software Modernization

– alphabetic items consisting of the A to Z (a to z) letters and the
space (blank) character;

– alphanumeric items consisting of digits, alphabets as well as
special characters.

Using BDM, the initial “odd schema” based on these data types is
recomposed in order to first establish a migration script and next
convert/migrate the legacy data to a relational database. This action
also results in the generation of entities (i.e. an entity/relationship
model as a UML class diagram).

This process is iterative because transforming a large data set is
never simple; actions have to be organized regarding priorities about,
for example, the criticality of first-class data compared to others.
Another example is the prioritarization of data used by the first
reversed functions.

8.4.1.8. Define patterns, apply patterns on whole legacy code

This activity is a fruitful activity for modernization in the sense
that we have to find out patterns of code. Patterns of code are a great
support for code comprehension, synthesis and refactoring. A pattern
is a piece that is repetitively present in code sources even if some
belonging elements vary from one piece to another. In programming
languages, patterns come from copy–paste actions of developers.

To discover patterns, a representative sample of legacy code is
necessary. Once found, the pattern is characterized with invariable and
variable parts. Pattern matching is then applied on the overall code.
Pattern selection and application is in particular a set of means for
establishing:

– usual implementations, i.e. technical features (e.g. inevitable
code sequences) such as:

- logging,

- audit,

- security (authentication, authorization),

Software Modernization Method and Tool 179

- user session and/or context (open, closed, etc.),

- file system access (or data element access),

- description of data items with their deep nature;

– technical;

– persisted;

– screen-centric;

– etc:

- error messages, error management in general,

- navigation (menu, command line, hyperlink, etc.);

– specific functional/technical features:

- specific actions (command line navigation, communication with
other systems, etc.),

- where the business logic is effectively present, is there a
recurring structuring for this logic?

- Events.

When pattern occurrences are found, annotation actions on the
marked code are available. These annotations are used to provide
transformation guidelines to be used at transmodeling time. The most
common annotation actions to be applied are:

– “skipped”: this is technical code that is differently implemented
in the modern application by using up-to-date-frameworks (JSF, JPA,
etc.);

– calling an existing action already implemented somewhere else
as an already known UML element (operation). In this case,
transmodeling generates a call to this element (e.g., requesting a
logging or database resource through a devoted call).

When patterns are identified, we may apply them on the entire
code. From experience, more than 50% of the entire code is matched
to patterns and annotated accordingly. During the project’s whole life,

180 COBOL Software Modernization

other patterns may be identified requiring new code parsing. Patterns
are stored in a specific project within Eclipse. It means that they can
be reused for other projects. More generally, patterns are the central
part of the knowledge base used in any modernization project.

8.4.1.9. Define target architecture, update/create BSPs

Modern applications use “framework-oriented code”. This means
that application behaviors for persistence, presentation, transaction
management, security, etc., requirements rely on technical services
offered by the target technology. Choosing frameworks is a tricky task
because compatibility (i.e. frameworks’ interoperability) issues are
numerous. In this activity, the target technology is defined, namely:

– the general technology: Java, .NET, cloud platforms, interactive
(Web) technology versus technology for batch processing, etc;

– application and database servers;

– frameworks: presentation (JSF, Struts, Spring Web MVC, etc.,),
SOA (EJB, Spring, etc.) even non-SOA, persistence (Hibernate, JPA,
etc.), security [e.g. Java authentication and authorization service
(JAAS)], communication [e.g. Java message service (JMS)], etc.

This activity is also the place to stress screen layout. How do users
navigate through the renewed application? Is there a need for “menu”
sections in pages? How should a screen be decomposed? What are the
reusable UI components? How do users navigate through data grids?
How should the data items in data grids be updated/deleted? Etc.

Off-the-shelf BLU AGE proposes a large set of BSPs used to
handle standard frameworks. In using BLU AGE Factory, updating or
creating BSPs is a critical aspect of application evolution. In fact,
applications may be regenerated from new BSPs corresponding to
other or versioned technologies and/or individual frameworks.

8.4.1.10. Build productivity tools

This activity makes a lot of sense for large modernization projects.
Its main objective is to set up specific tools to be used by consultants

Software Modernization Method and Tool 181

who help them to gain productivity. For example, defining and
implementing/integrating tools to:

– initialize a new screen, a new job, etc. Typically, session
variables in Web applications require initializations that may occur at
the first time a home page is displayed;

– manage screen layout (a Web design tool as an integrated
element of the modernization framework);

– build generic (or not) components to be used in many places of
the modern application. A specific component to be translated is, for
instance, a syntactical analyzer of command line inputs: “Add”, “add”,
“adding”, etc., are different inputs that must lead to the execution of
the same “Add a new reservation” service in an airline reservation
system (also see the case study in Chapter 9).

All these elements have to be documented and “on duty”; the team
of consultants has to be trained in mastering them.

8.4.1.11. Define iterations

BLU AGE projects made up of iterations, etc. An iteration is
between four and six weeks; it must:

– have a scope (technical and/or functional), something to be
shown to project clients and users;

– be validated at its end by users, at least by executing tests in
relation to satisfactory (measurable) scores.

The content and the order of iterations are to be defined with
enough time to manage any crisis and, consequently, to deal with risk
management.

A good iteration would be a set of functions decomposed into sub-
functions. It can represent a set of screens that may be tested in unit
functional tests or in integration tests. It is important to prepare
iteration content with something that can be assessed by the project
clients and/or users.

182 COBOL Software Modernization

8.4.2. Realization

Realization as detailed in Figure 8.15 is the longer phase. Projects’
iterations have been defined so that the modernization tasks are now
assigned to team’s members with a strict delivery planning. In most
cases, a task is the modernization of a screen including entering/exiting
actions and internal behaviors. A task is more rarely the modernization
of a well-delimited step in the context of a batch program.

Figure 8.15. Realization activities

8.4.2.1. Annotate

One key principle behind BLU AGE is the possibility of annotating
the legacy code. In fact, the PSM is inductively annotated. Indeed,
there is a perfect bijection between the legacy code and its
representation in KDM. This mapping is maintained at all times by
BLU AGE. Annotations are shown on the legacy code as shown in
Figures 8.16 and 8.17. Posing an annotation often leads to a comment
on the legacy code (Figure 8.16). More importantly, annotating also
results in transmodeling guidelines (Figure 8.17), for example:

– do not transmodel (“skipped” predefined annotation);

– this piece of code is already transmodeled in “this” operation;

– transmodeling this piece of code is required to model a call
operation to “this” existing operation.

Software Modernization Method and Tool 183

Annotations may be provided “by hand” while a consultant works
on a legacy part. They can also result from transmodeling or are
automatically generated when running the pattern matching algorithm.

BLU AGE also proposes statistics about the annotated code. This
is helpful to follow the course of the modernization project.
Annotations are also shared between team members using a source
code controller system (CVS, SVN, GIT, etc.). So, everyone is able to
determine if a specific piece of code has already been transmodeled
and what is its modern shape.

Figure 8.16. Annotate phase, example of annotation used for documentation

Figure 8.17. Annotate phase, example of annotations
used as transmodeling guidelines

184 COBOL Software Modernization

8.4.2.2. Transmodeling

Transmodeling is a suitable principle in the BLU AGE
modernization method. Once selected, a sequence of COBOL
statements (which always has an underlying representation as a KDM
model piece) from the legacy application may be immediately
transformed into an UML activity diagram. This dynamical UML
diagram is later used to generate a specific operation in the target
architecture. In practice, transmodeling takes into account existing
annotations as follows: if a piece of code has been annotated by
“Modernized As” <X>, the transmodeling processor generates in
UML a call operation action. In the UML model created by BLU
AGE, this amounts to an instance of the CallOperationAction UML
meta-type with a link to the “X” model element (the operation meta-
navigation of CallOperationAction is used).

Another relevant transmodeling approach is the generation of
“business objects” from COBOL data items (Figure 8.18). BLU AGE
provides a way to generate a UML class associated at transmodeling
time with a chosen data item. This class contains attributes; a type is
defined from an automatic mapping with a default choice that can be
overridden.

Figure 8.18. Transmodeling a COBOL data item as a UML Class

Software Modernization Method and Tool 185

Transmodeling systematically leads to comments containing
information (e.g., LoC numbers) on the original legacy code. This
information is later used as comments on the generated code.

8.4.2.3. Modeling

“Modeling” here means the manual intervention on the generated
UML model as result of modernization. Most of the model is
generated automatically, but consultants sometimes have to amend the
generated model, even create model parts from scratch.

8.4.2.4. Generate and perform unit test

A best practice is to generate and, sequentially, perform tests on
what has been generated. Namely, when a part is modeled, for
instance, when a fully fledged functionality has been transmodeled as
a UML activity diagram, it is opportunistic to produce, deploy and run
the equivalent application piece as a business service. Testing this
particular functionality within its new execution environment allows
checking that everything is working as expected. Consultants conduct
many generations per day with the possibility of carrying out
numerous elementary tests.

8.4.2.5. Design automatic “happy path” unit test

Testing people aims at building automated tests with powerful
devoted tools like Selenium, for instance. Test building is concerned
with some functionality or some sub-functionality that is testable, i.e.
a self-contained piece. It may be a complete screen or only a screen
action when possible.

The main advantage of this practice is to elaborate tests to be run at
the stages when continuous integration occurs. These are unit tests for
“normal” data and “normal” behaviors (also known as “happy path”
tests). This excludes borderline data and cases, which are subject to
sophisticated control in the application, e.g. the disruption of a
transaction because of a server failure. By their very deep nature,
“happy path” tests are easier to design compared to more customized
tests (see the prior section) whose execution cannot really be

186 COBOL Software Modernization

automated in the context of continuous integration, namely some unit
tests may only exist for one day for a specific purpose.

In common practice, every night in general, “happy path” (unit)
tests may be executed to make sure that there is no regression about
the already modernized functionalities. When a regression is found,
people may quickly react to apply any necessary correction on the
modernized matter.

Figure 8.19. Validation and deployment

Software Modernization Method and Tool 187

8.4.3. Validation and deployment

Validation and deployment is the last phase of a modernization
project. This phase is concerned with the validation with end users;
they check the real completeness and effective functioning of the
modernized application against conditions that are representative of
daily business.

8.4.3.1. Run automated tests

Most tests have been automated during the previous phase. These
can be executed by a robot on the entire renewed application; the latter
is deployed on a production-like platform to meet daily business
requirements. All the tests must succeed. This is usually a kind of
formality because if we are able to enter in the validation and
deployment phase, then it means that unit and integration testing
already succeed for the testing environment that often slightly differs
from the production platform.

8.4.3.2. Run tests manually

Most of the time, modernization actors benefit from numerous pre-
built tests in the test plan. While most tests may be run automatically,
users may ask for running some tests on they own for tricky behavior
checking. Being automated (in the scope of continuous integration) or
not, some tests have to be run manually for gaining extra information
of the applications’ robustness.

8.4.3.3. Define migration strategy and plan

The Define migration strategy and plan phase is the preparation of
all the actions to be performed to have the definitive application in
real execution conditions; it serves both the business and end users.
Because of the big number and importance of details, a strategy and a
plan are necessary in relation to an accurate schedule to stop
modernization and restart business to a more innovative
application. Namely, concerns must include rollover actions in case of
difficulties, even failures. Thinking deeply about such a plan is
important for identifying all details linked to all migration

188 COBOL Software Modernization

sub-processes. Milestones, people with special responsibility
including leader(s), contingency plans, etc., are parts of the overall
migration strategy and plan.

8.4.3.4. Perform data migration

The redesigned application is probably now running as expected,
but, in general, data sets used for testing are only representative
samples. It is then time to execute the data migration script on
the entire legacy data. This script has been prepared during the
initialization phase. It is then later possible to deploy the modernized
application on its production environment with the “true” business
data. Enhanced tests can be required to check the application beyond
data samples. For example, volumes may show performance problems
at this step.

8.4.3.5. Execute migration plan

This is the very final activity of a modernization project. It consists
of running the plan for some days until customers have entire
satisfaction.

8.5. Conclusions

Reality in COBOL software modernization calls for tools and
methods beyond concepts (MDD, etc.) and standards (ADM, MDA,
etc.). Industrial expectations are above all productivity. Another key
preoccupation is: how much COBOL matter may be moved to newer
shapes including drastic simplifications? This question arises
because modern platforms offer many predefined services at the
technical level (logging, persistence, presentation, error management,
etc.) or at the business level when predefined Web services are to be
reused in the modern code. In this context, modernization stakeholders
crucially need information about a project’s advances and
testing/validation against the behavior of the old system. BLU AGE
offers an end-to-end method that in particular smartly supports inline
deployments and executions on the contemporary execution
environment.

Software Modernization Method and Tool 189

As a global response to all of these expectations and concerns,
BLU AGE has been intensively used in a lot of business-
critical projects including Obamacare implementation in the USA,
e-government applications in France, accounting in Norway,
tourism management in Spain, etc. The next chapter aims to show
BLU AGE in action to have further insights on COBOL software
modernization.

9

Case Study

This chapter is a pedagogical and practical illustration of the ideas,
principles and solution elements discussed in Chapter 8. This chapter
is self-contained. It describes a step-by-step modernization process to
redesign a legacy Common Business-Oriented Language (COBOL)
application to finally have a modern Java Web application.

Numerous decisions are taken in a modernization process. In this
chapter, the creation of BLU Application Generator (BLU AGE)
Shared Plugins (BSPs), i.e. Platform Description Models (PDMs), to
have the possibility of generating applications toward various
(sometimes heterogeneous) platforms, is not addressed. Thus, the first
set of decisions is the choice of the target platform among the
available BLU AGE BSPs. In this chapter, Java is used along with:

– user Interface (UI): Spring Web Model-View-Controller (MVC)
as the presentation framework. To that extent, Figure 9.1 shows at
application generation time, the choice of Spring Web MVC along
with possible configurations;

– service layer: Spring;

– persistence layer: Hibernate;

– database server: PostgreSQL.

This chapter also explains the reverse engineering process for
screens and the steps involved in creating a Unified Modeling

192 COBOL Software Modernization

Language™ (UML) model piece-by-piece. Pieces are intended to be
connected with each other in a go-with-the-flow manner. They are
indeed assembled in order to satisfy the constraints imposed by BFE
and its integrated metalanguage. A shown in this chapter, the
organization of model pieces in UML packages is strict along with the
native UML metatypes and metarelationships to tie them together.

Figure 9.1. Enabling AJAX in Spring Web MVC at forward

engineering configuration time

9.1. Case study presentation

The application used in this chapter is an airline reservation
system. It is composed of the following screens:

– Menu (Figure 9.2): manages the reservation system as a whole.
Users select the menu option number and are redirected to the
requested screen;

– Add a new reservation (Figure 9.3): this screen is a standard
creation form. The payment amount is calculated taking into account
the flight date and base price;

– Modify an existing reservation (Figure 9.4): users type the
reservation ID in the first field so that the page displays the record for
edition;

Case Study 193

– Delete an existing reservation (Figure 9.5): in the same way,
users type the reservation ID to be deleted; the page then displays the
record (it is not editable). Confirmation or invalidation of deletion is
required;

– Print flight reservation (Figure 9.6): users select a flight ID; the
application then prints a report (Figure 9.7) as a text file containing all
the reservations for the selected flight;

– List all reservations (Figure 9.8): the screen displays all of the
existing reservations in a data grid-based screen area. Users are able to
apply an action on the left column. Actions are “U” or “D” for
Update or Delete respectively. According to the selected action, the
“Modify an existing reservation” (Figure 9.4) or “Delete an existing
reservation” (Figure 9.5) screen is displayed.

Figure 9.2. “Menu” screen

Figure 9.3. “Add a new reservation” screen

194 COBOL Software Modernization

Figure 9.4. “Modify an existing reservation” screen

Figure 9.5. “Delete an existing reservation” screen

Figure 9.6. “Print flight reservation” screen

Case Study 195

Figure 9.7. Report of reservations for a given flight ID

Figure 9.8. “List all reservations” screen

9.2. Legacy modernization in action

The BLU AGE legacy modernization process imposes the
following steps:

1) creating a modernization project in which the creation of static
HTML is operated;

196 COBOL Software Modernization

2) mapping data items of the “legacy world” to UML classes in the
“modern world”;

3) annotating legacy code;

4) pattern identification and matching;

5) transmodeling;

6) generating and testing the new application.

Each step is described by means of a representative sample from
the airline reservation system.

9.2.1. Creating modernization project

In BLU AGE, a modernization project is a “COBOL Reverse
Project”, say AirLineReservationReverse (Figure 9.9), and a “Forward
Project” (see section 9.2.5). The latter is essentially the UML
model used for application generation once the reverse phase is
terminated. The former mainly possesses COBOL programs and static
HTML files. HTML mockups aim at evolving at modeling time both
from the material found in the COBOL screens and, later, the
extracted application’s behavior (screen chaining, business
functionalities, etc.).

The legacy material is integrated in the AirLineReservationReverse
project as, for instance, a ZIP file (Figure 9.10). For the sake of
simplicity, the airline reservation system is considered as being in the
ANSI COBOL format, which, in BLU AGE, does not call for Abstract
Syntax Tree Metamodel (ASTM)/Knowledge Discovery Metamodel
(KDM) adjustments.

9.2.2. Better dealing with the legacy material

In BLU AGE, activating the “Generate BLU AGE Mockup” option
(Figure 9.11) translates the old screens into HTML. The resulting
(global) folder structure is shown in Figure 9.12. The “pages” folder
contains the HTML mockups that have to be later completed, in
relation with the UML models, from discovered dynamical features.

Case Study 197

Figure 9.9. Enacting “COBOL Reverse Project” option

Data items are defined in the .cpy files (a.k.a. “copybooks”) and, in
a general-purpose COBOL approach, included into programs at
compilation time.

The AirLineReservationReverse project is such that:

– “custDRVR” is the main program called.

– “custDBIO” and “custAUDT” are functions used to manage
persistence (they contain a COBOL FILE SECTION).

– The “custSxxxx” program family is the screen definitions.

– The “custxxxx” program family includes the business functions.

198 COBOL Software Modernization

Figure 9.10. Path to COBOL programs to be modernized

Each program (e.g. “custAUDT” in Figure 9.13) has an ordinary
structure in terms of divisions. Furthermore, as shown in Figure 9.14,
the DATA DIVISION of a COBOL program also might have a
LINKAGE SECTION, WORKING-STORAGE SECTION or FILE
SECTION (for data storage-oriented programs). Any data division
includes the data items that are originally defined in copybooks.

The initial processing of the legacy material enables the
discovering of all the relevant data items and, in which program(s)
they are used, their role(s) as member of the LINKAGE SECTION,
WORKING-STORAGE SECTION or FILE SECTION. In Figure 9.15,

Case Study 199

columns represent data items, rows represent COBOL programs and
mnemonics represent data item roles.

Figure 9.11. “Generate BLU AGE Mockup” option

200 COBOL Software Modernization

Figure 9.12. Programs, data items and HTML pages

Figure 9.13. Four divisions of a COBOL program

The table in Figure 9.15 assists us in deciding which data items
need to be modernized and which do not. Some data items are defined
for technical purposes and can be replaced by functions made
available in the modern architecture. For example, data grid-based
presentation can be implemented reusing common Web “data grid UI

Case Study 201

components” instead of “list components” as often observed in
COBOL legacy applications.

Figure 9.14. Possible sections of a COBOL program

Figure 9.15. Programs, data items used in these programs,
sections to which they belong

202 COBOL Software Modernization

As a result, Figure 9.16 gives a list of all the data items, their
purpose and whether (or not) they have to be modernized.

Figure 9.16. Data items that need to be modernized (or not)

9.2.3. Strategy for modernizing screens

The screen layout may be simply reshaped as follows:

– in the legacy system, navigation between screens is based on
“screen code” from the “Menu screen”. This principle is kept along
with the access to other screens by means command lines inputs;

Case Study 203

– for enhanced navigation, direct hyperlinks are also introduced in
the home page, tabs in all pages as well (“Menu”, “Add”, etc., tabs on
the top right corner of Figure 9.56);

– the application renewed screens are all divided into three parts as
follows:

- header, in which the navigation tab is setup;

- main body, in which the content extracted from legacy is
intended to be displayed;

- footer, it contains “error messages” and “users’ dialogs” in
general;

- the screen containing the data grid (“custLIST”) is modernized
using standard data grid functionality common in Web technologies;

- “first”, “previous”, “next”, “last”… shortcuts are realized using
icons at the bottom of the grid;

- actions associated with lines are placed on the right (“edit”,
“delete”, “select”, etc.);

- clicking on “edit” allows users to edit the fields on the same
page (a feature not available in the legacy application).

Otherwise, precontrollers are used to initialize pages. Namely, the
“Add a new reservation”, “Modify an existing reservation” and
“Delete an existing reservation” functionalities rely on the same
legacy screen-managing program: “custRESV”. This program deals
with several contextual variables that are also necessary in the
modernized application. Legacy initializations must then be ported to
the modern application.

9.2.4. Strategy for modernizing data items

– “COMMON-WORK-AREAS” data item containing the
“application context” is modernized as a transient object; an instance
is intended to be passed with each action. The name of this instance is
“context”. It is a common Web session variable;

204 COBOL Software Modernization

– “CUSTLOG-AUDIT-INFO” data item (used to pass values to be
logged) is modernized as a transient object;

– “CUSTOMER-RECORD” data item is modernized as an entity;

– “CUSTOMER-LOG-RECORD” data item is also modernized as
an entity.

9.2.5. Creating forward project

In BLU AGE, the creation of a “Forward Project”, say
AirLineReservationForward (Figure 9.17) is the first required action.
The mockup directory of the “Forward Project” has to be populated
(drag-and-drop action is enough) from that of the “COBOL Reverse
Project”.

Figure 9.17. Creating “Forward Project”

The second required action is the creation of a “Model Project” in a
modeling tool such as Papyrus, MagicDraw, Modelio, etc.
Considering all modeling tools in MDD, BLU AGE is recognized as
tool-agnostic provided that the chosen tool supports UML in a fully
compliant style. For example, Figure 9.18 shows the initial structure
of a BLU AGE UML model in MagicDraw.

Case Study 205

We insist on the fact that BLU AGE deals with a subset of the
UML language. In other words, BLU AGE is a set of UML profiles.
BLU AGE UML models thus obey to a very strict format including
the initial hierarchy of UML packages in Figure 9.18. There is no
great difficulty to “speak” the BLU AGE metalanguage. The UML
format imposed by BLU AGE is automatically managed by the tool
(including its direct creation with empty zones) so that it is
permanently ensured that no digression occurs.

Figure 9.18. Initial (template) BLU AGE model

In BLU AGE, stereotypes are used to identify the property of any
model element. As an illustration, <<PK_TARGET>> is a stereotype
assigned to the UML package embodying the overall air reservation
system. In conjunction with an applied stereotype, contextual
properties may also be assigned to a stereotyped model element due to
“tagged values” (as sketched in Figure 6.8).

– <<PK_TARGET>> is the root of the directory structure;

206 COBOL Software Modernization

– <<PK_BUSINESS>> owns all the extracted entities and their
respective business objects;

– <<PK_WEB>> is used to define the presentation layer (activity
diagram related to each HTML mockup);

– <<PK_SERVICE>> is used to define services (operations and
their respective activity diagrams as internal behaviors);

– <<PK_ROLES>> is used to define user roles and use cases
(UML Use Case Diagrams are used for that).

As expected, screens transformed into pages in the “Forward
Project” (Figure 9.19, right-hand side) concomitantly exist as UML
activity diagrams (Figure 9.19, left-hand side) in the <<PK_WEB>>
package of the “Model Project”. This strong attachment allows BLU
AGE to modernize screens from the other model pieces: the
application’s business logic that is itself connected with the data
management tiers.

Figure 9.19. Model and HTML mockups for a forward project

Case Study 207

9.2.6. Entity extraction

In the list of candidate data items for modernization,
“CUSTOMER-RECORD” must become an entity, i.e. a UML class
(named “CustomerRecord”, for instance) to be located in the
<<PK_BUSINESS>> package. Figure 9.20 shows the result of
modernization: “CustomerRecord” as new entity and
“CustomerRecordBO” as its direct subclass with elementary data
access operations.

Figure 9.20. “CustomerRecord” and “CustomerRecordBO” as modernized entities

Legacy fields are subject to a default treatment or specific actions
from users. For example, there is an initial composite primary key
(“CUST-RES-ID = CUST-FLIGHT + CUST-NO”) defined in the
INPUT-OUTPUT SECTION of the “custDBIO” program. Besides,
data item types may change, groups of data items may be flattened,
e.g. “CUST-ADDRESS” in Figure 9.21 has disappeared in
Figure 9.20 for the benefit of its subfields (“custStreet”, etc.). This is
the same for “CUST-RES-ID”. Beyond, its two subfields have been
marked with the <<Identifier>> stereotype to abstract the COBOL
composite primary key.

208 COBOL Software Modernization

Applying this principle of all of the data items in Figure 9.16 leads
to the UML class diagram in Figure 9.22. Note that “COMMON-
WORK-AREAS” from the “custRESV” program is marked as
TransientObject as advised in section 9.2.4. This is the same for
“CUSTLOG-AUDIT-INFO”, which does not aim at persisting.

Figure 9.21. Data item modernization using BLU AGE segment view

Figure 9.22. Extracted entities

Case Study 209

9.2.7. From screens to pages and UI components

In the legacy application, navigation between screens is grounded
on the “Menu” screen (Figure 9.2). Old pages have a “Travels” header
and display a current date (see, for instance, Figure 9.3). In the
modernized application, reusing Web UI components is put into
practice.

Typically, new pages are designed with header and footer
components. These components are useful to:

– define global navigation (user logout, tabs suite (“Menu”, “Add”,
etc., tabs on the top right corner of Figure 9.56) to directly access to
other pages, etc.);

– store and manage user session by means of the
CommonWorkAreas singleton object named “context” (this object
stores the context and should be placed as member of the Web
session);

– display the current date as done in the legacy application;

– display error messages at the bottom of pages.

Web UI components are inserted in the application’s pages as done
in Figure 9.23. In BLU AGE, the behavior of each page is also
modeled as an activity diagram. So, the application’s interaction
inside pages (from pages to pages as well) is specified by means of
activity diagrams using UI components’ ID like “header” in
Figure 9.23.

G-MARKER is a third-party tool of the BLU AGE suite to
concomitantly design Web pages and their assigned model pieces
(activity diagrams) so that consistency reigns.

9.3. Annotations

Annotations apply to COBOL programs (elements with the .cblmf
suffix in Figure 9.12). Opportunistically, the first posed annotations

210 COBOL Software Modernization

are code documentation (Figure 9.24) so that the forthcoming code
transformations may benefit from a better trace.

Figure 9.23. Header component included
in an HTML mockup

Figure 9.24. Annotated code with comment

Many annotations are for documentation and readability. Only
three annotations have a great impact on code transformation:

– “Batch” is an annotation prefix used for batch programs only (see
also Figure 8.7);

– “Skipped” and “Modernized As” are control annotations for
transmodeling. The latter requires additional parameter values to
indicate the precise envisaged modernization.

Case Study 211

9.4. Pattern definition

In BLU AGE, a pattern is identified (Figure 9.25) and later
characterized (Figure 9.26) to leverage transmodeling (i.e. the
conversion of legacy code pieces to UML model elements) in an
efficient way: code pieces obeying to the same pattern are
transmodeled in the same way to address scalability issues of
modernization. “The same way” means that the same (duplicated)
code suite may be refactored as a call to an operation, i.e. an instance
of the UML CallOperationAction metatype.

9.4.1. Pattern for simple statements

Let us consider the “CALL “C$PID” USING PID” pattern in the
“custDRVR” program (Figure 9.24). This code is not intended to be
ported to the target because it is a pure technical reference to the old
platform. To skip it, we endow a pattern with “Skipped” (Figures 9.25
and 9.26).

Figure 9.25. Defining patterns

212 COBOL Software Modernization

Once created, the identified pattern is inserted in the matching
algorithm; it may be executed for all of the remaining programs of the
legacy application. This leads to generated annotations as that
automatically posed in Figure 9.27.

Figure 9.26. Pattern-type characterization

Figure 9.27. Matched patterns

Case Study 213

9.4.2. Patterns for operation calls

Patterns can also be used to control an operation call. Typically,
the “custRESV” program includes the following code: “INITIALIZE
CUSTOMER-RECORD” (Figure 9.29). Since “INITIALIZE” is a
predefined COBOL statement, BLU AGE is able to automatically
detect the semantics of this statement, i.e. filling in the “CUSTOMER-
RECORD” data item with default standard values, e.g. zero for
numerics.

Therefore, this code deals with “CUSTOMER-RECORD” so that
the creation of a new instance of the “CustomerRecord” class is
required in the modern application. In BLU AGE, this corresponds to
an operation returning an instance of “CustomerRecord”. More
precisely, it is an instance of “CustomerRecordBO” as direct subclass
of “CustomerRecord”; polymorphism applies. Practically, this first
leads to manually add to the UML model, a new UML Interface
object1 named “ServiceInitialize” in the package stereotyped
<<PK_SERVICE>> (Figure 9.28). Next, this service is, by means of
devoted wizards, automatically equipped with a contained element
(see hierarchy in Figure 9.28): this is an operation named
“initCustomerRecord” (a.k.a. “ServiceInitialize.initCustomerRecord”)
with a return parameter whose type is “CustomerRecordBO”. The
activity diagram (Figure 9.28, right-hand side) shows the resulting
UML model piece. This activity diagram as member of
“ServiceInitialize” is also named “initCustomerRecord”. Formally, the
overall diagram is interpreted by BFE as the behavior of
“ServiceInitialize.initCustomerRecord”.

By convention, an activity diagram and its first executed action
(i.e. an instance of the UML CallOperationAction metatype) must
share the same name. This activity diagram is finally linked to the
“ServiceInitialize.initCustomerRecord” operation as described in
section 9.5.

1 The BLU AGE metalanguage embodies “services” as UML Interface objects,
Interface being a predefined UML metatype.

214 COBOL Software Modernization

Once characterized, this pattern is matched to many other code
pieces in other programs leading to generated annotations as shown in
Figure 9.29. All matched legacy pieces are definitely replaceable by a
routing to the abstract (i.e. technology-free) behavior in Figure 9.28
(right-hand side).

Figure 9.28. Created service and contained operation

Figure 9.29. Matched pattern for an operation call

9.4.3. Patterns for operation calls with arguments

Patterns are also used where a part of the legacy code is fixed
while the other is variable (“CUST-RES-ID” and “NFD” in
Figure 9.30). Moving such a code piece to the UML model is similar
to what is described in prior section (the creation of a UML Interface
object named “ServiceAudit” with a contained operation name

Case Study 215

“logUserAction” in Figure 9.31). In addition, COBOL variables must
be bound to UML variables in activity diagrams. Typically, “CUST-
RES-ID” is bound to the newly introduced “CustomerRecord” UML
variable while “NFD” is bound to “ActionCode”. Both variables
appear as input variables of the “logUserAction” activity in
Figure 9.31.

Figure 9.30. Operation call with arguments

As for “SPACES”, it is not a COBOL variable (it is a COBOL
constant). Nonetheless, we should have the possibility of replacing it
by something else in another code piece matching the pattern under
construction. BLU AGE thus invites us to set “SPACES” as
something “variable” in the designed pattern (Figure 9.32).

The pattern matching algorithm is such that code pieces matching
the pattern may have something different from “SPACES”. This is the
case of the code piece in Figure 9.33 that is modernized as the activity
diagram in Figure 9.31.

Figure 9.31. UML model piece for operation call with arguments

216 COBOL Software Modernization

9.4. Database exchange modernization

Data persistence-related statements are part of the “custDBIO”
program. This program has functions, which are used by other
programs to create, retrieve, update or delete data from the persistence
storage (flat files). These functions have to be modernized using
Create, Read, Update, Delete (CRUD) operations. Since Hibernate has
been set up as the persistence framework for this modernization
project, BLU AGE allows the expression of CRUD operations in
Hibernate Query Language (HQL).

Figure 9.32. Adding local variable to a pattern

Practically, the “custDBIO” program owns a “MAIN-LOGIC”
section (Figure 9.34). The surrounding box in the figure is the
persistence storage creation and does not need to be ported to the
modern target because Hibernate, as persistence framework, supports
such a creation in a transparent way.

Case Study 217

Figure 9.33. Matched pattern for an operation call with arguments

Figure 9.34. Database exchange program

218 COBOL Software Modernization

In the same line of reasoning, the “READ-CUST-RES-GE” and
“READ-CUST-RES-NEXT” PERFORM occurrences (final two
entries in Figure 9.35) can be omitted (“Skipped” annotation). These
are used to fetch the next or previous customer record, something
automatically handled by BLU AGE at the model level and
transmitted to Hibernate at the implementation level.

Figure 9.35. Database exchange actions to be modernized

Figure 9.35 shows the original functions to be modernized and
their action semantics from a CRUD perspective. For example, the
“ADD-CUST-RES” block is marked with the <<create>> stereotype.
In this context, “ADD-CUST-RES” is later annotated as shown in
Figure 9.36, provided that the availability of the
“customerRecordCreateWithKey” UML operation.

Figure 9.36. Annotation for “ADD-CUST-RES”

Case Study 219

In fact, several elementary UML operations have to be previously
designed as member of, again, a UML Interface object (a service in
BLU AGE) here named “ServiceCustomerRecord” (Figure 9.37). For
example, the “customerRecordGetKey” operation (second operation
in Figure 9.37) is designed and stereotyped with <<hql_operation>>
so that we may assign to it the following HQL query: “SELECT
max(custNo) from CustomerRecordBO WHERE custFlight =
custFlightId”.

Once defined, these core operations contribute to modeling the
behavior of “customerRecordCreateWithKey” as represented in the
activity diagram in Figure 9.38.

Figure 9.37. “ServiceCustomerRecord” as UML
Interface object (BLU AGE service)

9.5. Transmodeling

In BLU AGE, the transformation of tricky code portions into UML
model pieces may require the manual design of the latter. For other
(more easily identifiable) portions, pattern matching is a significant
helper to assign very similar (intelligible) portions to the same model
piece, dealing (or nor) with variable parts (see above). Pattern
matching avoids, as much as possible, manual intervention. In this
scope, pattern matching works in high conjunction with automatic
transmodeling.

In general, the main principle behind transmodeling is the direct
generation of a model piece (an activity diagram in most cases) from a
code sequence or scattered code blocks (the case of “initMenuPage”
below). Transmodeling suppresses the manual design of the

220 COBOL Software Modernization

equivalent model piece except, sometimes, its completion (see
Figure 9.42). Because of the very deep peculiarity of the code (UI,
persistence, operating system, ordinary computation, etc.),
transmodeling is subject to varied strategies.

Figure 9.38. Nominal behavior to create a customer record with key

As an illustration (“custDRVR” program), Figure 9.39 shows two
annotated sections (top of figure) that must be retained (marked
“Retained”) with a specific strategy while another (bottom of figure)
is devoted to another kind of transmodeling.

Case Study 221

The first two retained code portions (line 231 and lines 249–251)
are parts of the same business logic. They are modernized as part of an
activity diagram, which is described in Figure 9.40, left-hand side.
This behavior is used within a precontroller (Figure 9.40, right-hand
side).

Figure 9.39. Annotated code with different modernization strategies

As already mentioned, a precontroller must realize initializations
before the application’s home page is opened. Initialized elements are
stored in the context of a “CommonWorkAreas” transient object.
Remember that the “CommonWorkAreas” UML class in Figure 9.22
has only one instance named “context” in the renewed application.
Typically, this instance owns the “screenErrorMsg” attribute (see also
Figure 9.22) to embody the “SCREEN-ERROR-MSG” data item in

222 COBOL Software Modernization

Figure 9.39 (line 251). Put simply, the behavior of a precontroller is
depicted as an activity diagram including, among others, the
“SetScreenErrorMsg” activity (Figure 9.40, left-hand side) that
initializes “screenErrorMsg”. In UML, this component is factorized,
once and for all, to be run at application’s start-up and, more
generally, when we go back to the application’s home page.

Again, the linking of the three activity diagrams in Figure 9.40
relies on the use of the CallBehaviorAction and CallOperationAction
UML metatypes as follows: the activity diagram number 3 is the
modern vision/design of the old “custSMENU” screen
(“custSMENU.cblmf” program file in Figure 9.12). The
“custSMENU.html” file in Figure 9.12 is in particular the
transcription of this legacy artifact as an HTML mockup. This screen
has to be initialized before it is displayed. A precontroller action has
been added to this diagram (3-a). It is modeled by a
CallBehaviorAction UML object. The called behavior is defined by
the “initMenuPage” activity (activity diagram number 2, right-hand
side). This activity also contains the “initMenuScreen”
CallOperationAction object (2-b) representing the operation to
execute. The associated operation is modeled by another activity
(activity diagram number 1).

In other words, in Figure 9.40 (top right-hand side) one may observe
the compacted formalization of the precontroller. “initMenuScreen” is
an activity, which is member of the “ServiceInitialize” UML Interface.
“initMenuScreen” is also an operation whose process is specified in
Figure 9.40, left-hand side. An instance of CallOperationAction creates
the bridge from the “initMenuScreen” activity to the “initMenuScreen”
operation. By convention, the first activity in the activity diagram
representing the operation has the same name that the modeled
operation. In other words, the first activity in Figure 9.40, top on
left-hand side, is named “initMenuScreen”.

The two arrows in Figure 9.40 give the flow of utilization, i.e.
where processes as activity diagrams are reused in other processes. As
a result, the third activity diagram in Figure 9.40, bottom of right-hand
side, only tells us how the navigation to “custSMenu” occurs via
“initMenuPage”. Following the same line of reasoning, the

Case Study 223

“initMenuPage” activity is linked to the “initMenuPage” operation
whose behavior is the activity diagram in Figure 9.40, top of right-
hand side.

Contrary to line 231 and lines 249–251, the code portion delimited
by lines 254–272 is selected so that the transmodeling facility of BLU
AGE is used in another manner. Several manipulations within
transmodeling result in having the “checkMenuCode” activity
diagram in Figure 9.41. Simply speaking, this is the process of moving
to the “good” screen (“Add a new reservation”, etc.) according to the
user’s choice.

Figure 9.40. UML activity diagrams showing precontroller behavior

Activities named “// TODO …” are templates; they are subject to
completion. For example, the upper template activity in Figure 9.41 is
expanded as a subprocess. In Figure 9.42, the first introduced activity
of this subprocess is “initCustomerRecord” (see also section 9.4.2).
Again, using CallOperationAction, this corresponds to calling the
predefined “initCustomerRecord” operation.

224 COBOL Software Modernization

Figure 9.41. UML activity diagram as a result of transmodeling lines 254–272

Figure 9.42. Replacing “TODO activities” with appropriate operation calls

Case Study 225

Incrementally, the UML model, as a result of “reverse modeling”,
is a set of services extracted from the legacy code (Figure 9.43).
The careful design of services is important. Indeed,
transmodeling automatically names services and creates content,
which later requires renaming. For example, “ServiceMenu” is
introduced as the name for the service encompassing the
“checkMenuCode” operation and associated activity diagram
(operation’s detailed behavior).

Service elements are common callable model elements. As an
illustration, Figure 9.44 shows how this new service is called within
the “InitMenuPage” activity diagram in order to enhance the activity
diagram in Figure 9.40, bottom of right-hand side.

Figure 9.43. Tree structure for “ServiceMenu” and “checkMenuCode” as contained
element (activity diagram and associated operation)

Figure 9.44. Processes’ enhancement

226 COBOL Software Modernization

Figure 9.44 also shows how variables in HTML mockups are
manipulated in models. This occurs with a synchronization
(consistency checking) that is ensured by the G-MARKER third-party
tool.

9.6. Transmodeling complex functionalities

The “Add a new reservation” function is a representative key
function of the legacy application. The current behavioral logic behind
it is as follows:

– if the user chooses “1”, “2” or “3”, the “custRESV” program is
called from the “custDRVR” program;

– the “MAIN-LOGIC” paragraph in “custRESV” (Figure 9.45, line
274) checks the type of action to be performed. “ADD-CUST-RES”
embodies the choice of “Add a new reservation”. The business logic
behind “ADD-CUST-RES” is then as follows:

- initializing a new customer record (“CUSTOMER-RECORD”,
line 288);

- positioning the cursor (lines 291–292);

- displaying the screen (line 293);

- calling a code block named “EDIT-INPUT-FIELDS” to
manage users’ input text (line 295);

- if “SAVE-REC” is active (lines 298–330) then:

 - set the action code (e.g. “MOVE “ADD ”…”) and call the
“CALL-DATABASE-IO” paragraph (lines 298–300);

 - log user’s actions (lines 302–307);

 - clean up the “USER-RESP” and “SCREEN-PROMPT” screen
zones (lines 309–310);

 - display the result message and redisplay the screen (lines
311–313);

 - clean up “USER-RESP” again (line 315);

Case Study 227

 - display a message to be printed or exit; according to user’s
choice, go to the “Print flight reservation” screen (lines 317–329);

 - reinitialize “CUSTOMER-RECORD” (line 330).

The above code analysis enables annotating of the COBOL
“custRESV” program as done in Figure 9.45.

Figure 9.45. Annotated code for the “custRESV” program

In line 295 (Figure 9.45), the call to the “EDIT-INPUT-FIELDS”
paragraph in particular allows the validation of the values entered by
the user. In the modern application, data validation is grounded on
integrated validators. They are already parts of HTML mockups;
accordingly, line 295 is not modernized (Figure 9.46).

228 COBOL Software Modernization

“EDIT-INPUT-FIELDS” also checks for the customer payment
method. To that extent, it may call the “custCOST.cblmf” program
file to calculate the costs of booking a flight. More precisely,
“PERFORM CALL-CALCULATE-PRICE” in Figure 9.46 (line 748)
embodies the call to “custCOST” for calculating this.

Figure 9.46. “EDIT-INPUT-FIELDS” paragraph source in “custRESV.cblmf”

9.6.1. Transmodeling the “custCost” program

The steps involved for modernizing “custCOST” cover the
transformation of the “WS-COST-FIELDS” data item into to a UML
class named “WsCostField” (Figure 9.47). The way to do so is
explained in section 9.2.6.

Figure 9.47. “WS-COST-FIELDS” modernization

Case Study 229

Another step is the modernization of the “CALC-DOW-
ADJUSTMENT” paragraph (lines 241–269 in Figure 9.48).

Figure 9.48. “CALC-DOW-ADJUSTMENT” paragraph

The interesting point in BLU AGE is its capacity to cope with
algorithmic constructs such as IF-THEN-ELSE and others. Remember
that in section 7.3 in Chapter 7, such simple control statements in
programming languages may possibly raise strong difficulties in terms
of modeling. When setting up ASTM in BLU AGE, the very peculiar
grammar of the legacy language is fully understand so that BLU AGE
does not stumble over, for instance, the transformation of
“CALC-DOW-ADJUSTMENT” into a model.

Transmodeling “CALC-DOW-ADJUSTMENT” is shown in
Figure 9.49 and Figure 9.50. Again, “ServiceUtils” is the name
assigned by the BLU AGE engineer to the generated service from
“CALC-DOW-ADJUSTMENT”. “WsCostField” (“WsCostFieldBO”
as direct subclass) objects are input and/or output of activities to
compute the costs of booking a flight.

Going on with transmodeling leads to the modernization of the
“MAIN-LOGIC” paragraph in “custCOST” (Figure 9.51, lines

230 COBOL Software Modernization

177–239). In Figure 9.52, the modernized “MAIN-LOGIC” paragraph
is assigned to “ServiceCustomerRecord” both with an operation and
an activity diagram describing the behavior of this operation. Both
have the “calculatePrice” name.

Figure 9.49. Transmodeled “CALC-DOW-ADJUSTMENT” paragraph

Case Study 231

Figure 9.50. Tree structure for “ServiceUtils” and “calcDowAdjustment”
as contained element (activity diagram and associated operation)

Figure 9.51. “MAIN-LOGIC” code to be modernized as “calculatePrice” operation

Figure 9.53 shows the final result after having substituted activities
named “// TODO …” for calls to concrete operations. For instance,
“getCustFltDt” is an operation of a database access object (a.k.a.

232 COBOL Software Modernization

“business object” with “BO” suffix) offered by a BLU AGE.
Accordingly, “customerRecord” is injected as parameter for this
operation to retrieve the good flight date of a given customer.

Figure 9.52. Tree structure for “ServiceCustomerRecord” and “calculatePrice” as
contained element (activity diagram and associated operation)

Figure 9.53. Changes operated for “MAIN-LOGIC” as transmodeled paragraph

Case Study 233

9.6.2. Modernizing “Add a new reservation”

Step-by-step, macrooperations are constructed from
microoperations to have the possibility of modernizing the overall
“custRESV.cblmf” program file. When all functionalities required
within “ADD-CUST-RES” (Figure 9.45, from line 286 to line 331)
are modernized, “ADD-CUST-RES” can itself be transmodeled as
shown in Figure 9.54.

Figure 9.54. “ADD-CUST-RES” behavior

234 COBOL Software Modernization

The “Add a new reservation” process in Figure 9.54 must then be
linked to the “custSRESV” activity diagram (Figure 9.55) depicting
the behavior of the devoted page for booking reservations.

The very final business service that may, for instance, be exposed
as a Web service is named “ServiceCustRESV” in the UML model
tree structure. Such an approach allows the smart progressive
transformation of the legacy application as a Service-Oriented
Architecture (SOA)-like modern application.

Figure 9.55. Fully modernized “custSRESV” program with UI interaction

9.7. Application generation and testing

Four key folders are created from scratch as the result of running
the application generation process:

– AirLineReservationForward-entities;

– AirLineReservationForward-service;

– AirLineReservationForward-tools;

Case Study 235

– AirLineReservationForward-web.

These folders include all of the necessary directories and files
(source, configuration (JavaServer Faces (JSF), etc.)) embodying the
modernized application. These files are very common files (Java, XML,
JSF, etc.) and can be manipulated outside BLU AGE in any Integrated
Development Environment (IDE). Moreover, maintenance may occur
from this point when people want to leave modeling (however, this is
not advisable). BLU AGE also includes a set of facilities for setting up
database servers, applications servers like Apache Tomcat (it is used
here to deploy the subject application based on Spring) or Java EE-
compliant servers: Apache TomEE, GlassFish, JBoss, etc.

Partly or wholly testing the application later occurs through Web
pages. For instance, entering “1” (the original behavior in the COBOL
“Menu” screen) within the application’s home page (Figure 9.56)
leads to the “Add a new reservation” page (Figure 9.57). Entering
customer and flight information plus a value for “BASE PRICE” leads
to the calculation of “PAYMENT AMOUNT”. This relies on having
“AJAX_ENABLED” set to true in Figure 9.1.

Figure 9.56. Modernized application (home page)

9.8. Conclusions

The difficulty of COBOL software modernization is the move from
theory (promoted via Model-Driven Development (MDD) and

236 COBOL Software Modernization

Architecture-Driven Modernization (ADM)) to practice, facing up
large-scale industrial case studies. This chapter tries from a
representative case study (On Line Transaction Processing (OLTP)
COBOL application) to show that modernization strongly depends
upon a relevant assistance. Things to do are represented by a plethora
of non-homogenous concerns; consistency checking of modernization
actions is then a critical task that makes no sense outside a
professional tool.

Figure 9.57. “Add a new reservation” page

Success thus resides in agility with a true ability to go backward in
case of problems. In this context, models play the role of a malleable
matter. The great point is the fact that the reversed application in the
form of models may move, immediately (or later because of
technology evolution), to any platform. The BLU AGE method with
integrated BSPs effectively applies the Model-Driven Architecture®
(MDA) weaving principle: Platform-Independent Models (PIMs) are

Case Study 237

woven with PDMs (i.e. BSPs) to produce Platform-Specific Models
(PSMs) linked to the target platform toward the final code.

In BLU AGE, all software artifacts become models, but people
may always run them as executable models for tests, even final
controls (deployment, test and round trip engineering when possible
problems arise) against, in particular, the production environment.

Bibliography

[BAR 84] BARNES J.G.P., Programming in Ada, 2nd edition, Addison-
Wesley, 1984.

[BAS 00] BASS L., BUHMAN C., COMELLA-DORDA S., et al., Volume I:
Market Assessment of Component-Based Software Engineering,
CMU/SEI-2001-TN-007 Technical Note, Carnegie Mellon University,
May 2000.

[BAT 14] BATLAJERY B.V., KHADKA R., SAEIDI A.M., et al., Industrial
Perception of Legacy Software System and their Modernization, Utrecht
University technical report UU-CS-2014-004, February 2014.

[CHI 90] CHIKOFSKY E., CROSS J., “Reverse engineering and design
recovery: a taxonomy”, IEEE Software, vol. 7, no. 1, pp. 13–17, 1990.

[COM 00] COMELLA-DORDA S., WALLNAU K., SEACORD R.C., et al., A
Survey of Legacy System Modernization Approaches, Software
Engineering Institute Technical Note, April 2000.

[ERO 94] EROSA A., HENDREN, L., “Taming control flow: a structured
approach to eliminating Goto statements”, Proceedings of ICCL’94,
Toulouse, France, pp. 229–240, May 16–19, 1994.

[FAV 11] FAVRO J., LAWRENCE PFLEEGER S., “Software as a business”,
IEEE Software, July/August 2011.

[GAL 08] GALLO M., KRUPKA B., Innovation in the Travel Industry:
Understanding the Golden Segments for Driving Growth under
Uncertainty, Daemon Quest Global Research Center, report, 2008.

240 COBOL Software Modernization

[LIE 80] LIENTZ B.P., SWANSON E.B., Software Maintenance Management:
A Study of the Maintenance of Computer Application Software in 487
Data Processing Organizations, Addison-Wesley, 1980.

[MCF 12] MCFEDRIES P., Cloud Computing: Beyond the Hype, HP
Technology Series, 2012.

[NAS 08] NASCIO, Digital States at Risk! Modernizing Legacy Systems,
survey, December 2008.

[OMG 99] OMG, COBOL Language Mapping Specification, June 1999.

[OMG 00] OMG, Currency Specification, version 1.0, June 2000.

[ORA 08] ORACLE, Unlocking the Mainframe: Modernizing Legacy
Systems to a Service-Oriented Architecture, white paper, June 2008.

[POP 11] POPP K.M., “Software industry business models”, IEEE Software,
July/August 2011.

[RIE 01] RIEHLE D., FRALEIGH S., BUCKA-LASSEN D., et al., “The
architecture of a UML virtual machine”, Proceedings of of OOPSLA’01,
ACM Press, pp. 327–341, 2001.

[SEA 02] SEACORD R.C., “Modernizing legacy systems”, Software
Engineering Institute News, December 2002.

[SEL 13] SELIP S., Healthcare Membership System Modernization – COBOL
Pacbase to JEE: High in Quality and Right on Target, BLU AGE®
Corporation, February 2013.

[STE 08] STEINBERG D., BUDINSKY F., PATERNOSTRO M., et al., EMF –
Eclipse Modeling Framework, 2nd ed., Addison-Wesley, 2008.

[SZY 02] SZYPERSKI C., GRUNTZ D., MURER S., Component Software –
Beyond Object-Oriented Programming, 2nd ed., Addison-Wesley, 2002.

[ULR 10] ULRICH W.M., NEWCOMB P.H., Information System
Transformations: Architecture Driven Modernization Case Studies,
Morgan Kaufmann, 2010.

Bibliography 241

[ULR 14] ULRICH W.M., “A status on OMG architecture-driven
modernization task force”, Model-Driven Evolution of Legacy Systems
workshop in EDOC’14, 2014.

[VIG 13] VIGNOLA C., Batch Applications for the Java Platform, Version 1.0,
Final Release, April 2013.

Index

A, B

abstraction, 28, 30, 32, 47, 51, 64,
76, 106, 111, 117, 126, 136,
142

activity diagram, 56, 73, 129, 137,
159–161, 169, 170, 184, 185,
206, 209, 213, 215, 219, 221–
225, 230–232, 234

adaptability, 21, 22, 133
ADM, 135–142, 146, 149, 151,

153–156, 170, 174, 188, 236
agility, 21, 22, 110, 236
annotation, 166, 179, 182, 183,

210, 218
application

design, 44, 45, 72, 77
development, 13
generation, 154, 191, 196, 234
server, 57, 84, 99, 100, 176

assembly, 32, 35, 77
availability, 2, 19, 21, 22, 45, 64,

74, 76, 81, 87, 96, 102, 119,
125, 145, 155, 218

batch
processing, 48, 180
program, 41, 44–51, 101, 161,
182, 210

BLU AGE, 155–164, 167–176,
180–184, 188–191, 195, 196,
204–219, 223, 229, 232, 235–
237

BPMN, 73, 76–78, 80, 105, 118,
126, 127

BSP, 171, 180, 191, 236, 237
business

functionality, 160, 162
logic, 7, 26, 28, 29, 32, 34, 35,
38, 46, 47, 49, 53, 58, 97, 129,
136, 137, 148, 151, 156, 157,
159, 169, 170, 176, 179, 206,
221, 226
object, 62, 114, 137, 160, 161,
184, 206, 232
process, 2, 3, 11, 42, 44, 52, 59,
73, 74, 76, 79, 80, 86, 96, 118

C

CICS, 28, 50, 51, 62, 63, 79, 93,
110, 148

class diagram, 73, 128, 137, 160,
178, 208

244 COBOL Software Modernization

cloud computing, 11, 13, 15, 26,
39, 57, 59, 64, 65, 76, 94, 97,
101, 102, 104, 106

code
analysis, 227
base, 38, 86, 126, 170
comprehension, 56, 167, 178
generation, 36, 126, 129
mining, 79
production, 85, 86

complexity, 5–7, 27, 53, 55, 107,
111, 122, 140, 150, 158, 164

component diagram, 62, 73
computing

framework, 100, 101
infrastructure, 18, 48, 65, 93,
94, 97, 100, 103, 107
platform, 48, 58, 100

configurability, 82, 85
configuration, 62, 68, 70, 98, 140,

154, 157, 191, 235
contemplative model, 117, 118,

126, 152
control flow, 53, 56, 73, 80
CORBA, 114
COTS, 13, 15, 53, 57, 65, 81, 85,

96, 145
CRUD, 160, 216, 218
cyclomatic complexity, 54, 55

D

DAO, 45, 50, 51
data

feed, 87, 90–93, 95, 105
flow, 73, 129
format, 40, 43, 44, 47, 51–53,
122

item, 163, 164, 168, 169, 179,
180, 184, 196–204, 207, 208,
213, 221, 228
migration, 173, 188
structure, 25, 26, 46, 50, 124

database,
management, 103
server, 180, 191, 235

degeneration, 39, 40, 44, 45, 64,
107, 109

deployment, 35, 37, 63, 68, 70,
73, 98, 100, 140, 173, 186, 187,
188, 237
diagram, 63, 73, 98

distribution, 25, 26, 39, 41, 42,
47, 51, 68, 98

DSML, 123, 126, 129–131, 134,
153

E, F, G

EJB, 29, 30, 68–71, 76, 85, 86,
92, 95, 157, 158, 170, 172, 180

elasticity, 101
emf, 122
ERP, 69
ESB, 93, 94, 95
evolvability, 7, 14, 30, 132
executable model, 126, 327
extraction, 16, 28, 31, 37, 51, 53,

139, 164, 165, 168, 169, 175,
207

flat file, 26, 52, 53, 157, 216
foreign key, 144
forward engineering, 31–33, 36,

37, 80, 97, 120, 121, 129, 137,
138, 139, 142, 149–151, 154–
157, 160, 176, 192

FUML, 129

Index 245

GASTM, 144–149, 174
grammar, 34, 122, 126, 143–147,

170, 172, 174, 175, 229

H, I

HQL, 216, 219
IaaS, 87, 97, 98, 101–104
IDL, 113–118, 122–127
information system, 3–9, 11, 13–

18, 21, 37, 46, 59–62, 65, 78,
90, 94, 99, 103–107, 109, 119

inheritance, 25, 131, 144
integration, 36, 37, 49, 77, 93,

175–177, 181, 185–187
integrity, 23, 100
internet computing, 33, 43, 51,

59, 65, 86, 97, 105
interoperability, 10, 72, 87, 96,

104, 138, 141, 145, 151, 180
IT, 2, 4, 7–13, 16–18, 21, 38, 51,

59–61, 93, 99, 103–107, 110,
112, 122

J, K, L

JAAS, 180
Java EE, 29, 49, 50, 67, 68, 83,

84, 87, 99, 100–103, 133, 136,
235

JBI, 93
jclouds, 106
JMS, 180
JPA, 45, 160, 170, 179, 180
JSF, 102, 170, 179, 180, 235
JSL, 49
JSON, 87, 91–95, 105, 113
JTA, 42, 170
JTS, 41
JVM, 128

KDM, 35, 120, 123, 130–132,
136, 138–154, 158, 163, 164,
170–176, 182, 184, 196

legacy
application, 13, 29, 39, 79, 97,
137, 140, 146, 150, 151, 155,
164, 171–173, 175, 177, 184,
201, 203, 209, 212, 226, 234
people, 12, 13, 152, 153, 156

load, 44, 84, 99–101
balancing, 84, 100

M

mainframe, 4, 25, 29, 42, 43, 48,
50, 51, 58, 62, 100, 103, 110

maintenance,
MDA, 120–122, 139, 140, 155–

158, 170, 172, 188, 236
metadata, 124
metamodel, 35, 120, 123–125,

127, 136, 142–147, 155, 158,
160, 171, 172, 174, 196

metamodeling, 123–125, 129,
143, 172

metatype, 125, 131, 144–147,
149, 161, 192, 211, 213, 222

middleware, 4, 33, 35, 38, 39, 41,
42, 47, 48, 57, 62, 79, 94, 97,
98–100, 103, 114, 148, 158,
176

migration, 11, 22–27, 29–31, 35,
50, 157, 173, 178, 187, 188

mockup, 159, 161, 164, 165, 170,
175, 196, 199, 204, 206, 210,
222, 226, 227

model transformation, 117, 118,
119, 124–126, 129, 138, 141,
146, 149, 157, 170, 171, 172

246 COBOL Software Modernization

modeling,
 metamodeling, 123–125, 129,

143, 172
 transmodeling, 159, 169, 179,

182–185, 196, 210, 211, 219,
220, 223–229

modern application, 45, 46, 171–
173, 179–181, 203, 213, 227,
234

modernization, 1, 21, 135, 155
modernized application, 97, 107,

136, 139, 157, 161, 162, 176,
187, 188, 203, 209, 235

MOF, 130, 131
MVC, 41, 180, 191, 192

O, P

object
orientation, 39, 51, 68
oriented programming, 13, 67,
69

obsolescence, 106, 110, 166
OCL, 129
OLTP, 41–46, 49–51, 58, 101,

164, 170, 172, 236
PaaS, 87, 97, 98, 101–104, 136
pattern matching, 178, 183, 215,

219
PDM, 120, 132, 139, 171, 191,

237
performance, 14, 26, 27, 37, 43,

46, 76, 81, 84, 100, 106, 188
persistence, 26, 45, 99, 151, 152,

160, 170, 176, 180, 188, 191,
197, 216, 220

PIM, 120, 132, 139–141, 157,
162, 170, 171, 175, 236

POJO, 45
polymorphism, 25, 149, 213

primary key, 144, 207
program chain, 40, 44, 47, 48, 53
PSM, 120, 139, 157, 158, 163,

164, 170–175, 182

Q, R

QoS, 60, 76, 77, 81, 83, 85, 85,
89, 96, 102

recasting, 22
reconfiguration, 60
recovery
 design, 31, 36
 fault, 42, 48, 76, 81
redevelopment, 30, 57
reengineering, 31, 33, 35–37, 135
refactoring, 26, 35, 55, 81, 135,

178
reliability, 14, 43, 66, 102
renovation, 22, 27
replacement, 15, 22–25, 29, 31,

52, 55, 76, 77
requirement
 business, 21, 57, 64, 110, 187
 functional, 72, 86, 95, 97, 139
reverse engineering, 27, 28, 31,

32, 34, 36, 37, 52, 79, 97, 121,
130, 137–142, 149, 151, 153,
154, 166, 191

S

SaaS, 97, 98, 102–105
SASTM, 144–149, 153, 174
SBVR, 35
scalability, 36, 78, 101, 132, 155,

167, 211
SCXML, 129
security, 10, 68, 78, 81, 87, 95,

96, 102, 104, 106, 178, 180

Index 247

semantics, 2, 26, 35, 38, 60, 66,
68, 80, 127–129, 132, 144, 146,
148, 149, 213, 218

service
bus, 93
computing, 26, 39, 68, 72, 78,
99

SLA, 76, 81, 83, 87, 96, 102
SOA, 59, 79
software

architecture, 9, 35, 42, 49, 51,
59–62, 64, 65, 142
component, 2, 33, 42, 66, 67,
74, 75, 161
engineering, 2, 31, 37, 43, 47,
66, 109, 135, 155, 156
service, 7, 107

spaghetti code, 52, 53, 55, 58
stereotype, 129, 205, 207, 213,

218, 219
subclass, 207, 213, 229
substitutability, 95
subtype, 146, 149
sustainability, 10, 96, 119, 153

T, U

tagged value, 129, 205
testing, 12, 24, 36, 37, 156, 173,

176, 177, 185, 187, 188, 196,
234, 235

transaction, 34, 41, 42, 49, 68,
164, 170, 176, 180, 185, 236

transcription, 25–27, 222
translation, 42, 50, 126, 132, 172
UI, 146, 150–153, 159, 164, 175,

180, 191, 200, 209, 220, 234
urbanization, 4, 5, 59–61, 63
use case, 25, 137, 206

V, W, X

validation, 44, 77, 104, 128, 173,
176, 177, 186–188, 227

verification, 44, 104
virtual machine, 100, 101, 128
Virtualization, 68, 97, 98, 102
workflow, 21, 73, 77, 112, 140,

156, 159, 172, 173
WS-BPEL, 74–78, 80, 105, 118
WS-Choreography, 78
WSDL, 88
XMI, 119

Other titles from

in

Computer Engineering

2014
BOULANGER Jean-Louis
Formal Methods Applied to Industrial Complex Systems

BOULANGER Jean-Louis
Formal Methods Applied to Complex Systems: Implementation of the
B Method

GARDI Frédéric, BENOIST Thierry, DARLAY Julien, ESTELLON Bertrand,
MEGEL Romain
Mathematical Programming Solver based on Local Search

KRICHEN Saoussen, CHAOUACHI Jouhaina
Graph-related Optimization and Decision Support Systems

LARRIEU Nicolas, VARET Antoine
Rapid Prototyping of Software for Avionics Systems: Model-oriented
Approaches forComplex Systems Certification

OUSSALAH Mourad Chabane
Software Architecture 1

OUSSALAH Mourad Chabane
Software Architecture 2

QUESNEL Flavien
Scheduling of Large-scale Virtualized Infrastructures: Toward Cooperative
Management

RIGO Michel
Formal Languages, Automata and Numeration Systems 1: Introduction to
Combinatorics on Words
Formal Languages, Automata and Numeration Systems 2: Applications to
Recognizability and Decidability

SAINT-DIZIER Patrick
Musical Rhetoric: Foundations and Annotation Schemes

TOUATI Sid, DE DINECHIN Benoit
Advanced Backend Optimization

2013
ANDRÉ Etienne, SOULAT Romain
The Inverse Method: Parametric Verification of Real-time Embedded
Systems

BOULANGER Jean-Louis
Safety Management for Software-based Equipment

DELAHAYE Daniel, PUECHMOREL Stéphane
Modeling and Optimization of Air Traffic

FRANCOPOULO Gil
LMF — Lexical Markup Framework

GHÉDIRA Khaled
Constraint Satisfaction Problems

ROCHANGE Christine, UHRIG Sascha, SAINRAT Pascal
Time-Predictable Architectures

WAHBI Mohamed
Algorithms and Ordering Heuristics for Distributed Constraint Satisfaction
Problems

ZELM Martin et al.
Enterprise Interoperability

2012

ARBOLEDA Hugo, ROYER Jean-Claude
Model-Driven and Software Product Line Engineering

BLANCHET Gérard, DUPOUY Bertrand
Computer Architecture

BOULANGER Jean-Louis
Industrial Use of Formal Methods: Formal Verification

BOULANGER Jean-Louis
Formal Method: Industrial Use from Model to the Code

CALVARY Gaëlle, DELOT Thierry, SEDES Florence, TIGLI Jean-Yves
Computer Science and Ambient Intelligence

MAHOUT Vincent
Assembly Language Programming: ARM Cortex-M3 2.0: Organization,
Innovation and Territory

MARLET Renaud
Program Specialization

SOTO Maria, SEVAUX Marc, ROSSI André, LAURENT Johann
Memory Allocation Problems in Embedded Systems: Optimization Methods

2011

BICHOT Charles-Edmond, SIARRY Patrick
Graph Partitioning

BOULANGER Jean-Louis
Static Analysis of Software: The Abstract Interpretation

CAFERRA Ricardo
Logic for Computer Science and Artificial Intelligence

HOMES Bernard
Fundamentals of Software Testing

KORDON Fabrice, HADDAD Serge, PAUTET Laurent, PETRUCCI Laure
Distributed Systems: Design and Algorithms

KORDON Fabrice, HADDAD Serge, PAUTET Laurent, PETRUCCI Laure
Models and Analysis in Distributed Systems

LORCA Xavier
Tree-based Graph Partitioning Constraint

TRUCHET Charlotte, ASSAYAG Gerard
Constraint Programming in Music

VICAT-BLANC PRIMET Pascale et al.
Computing Networks: From Cluster to Cloud Computing

2010
AUDIBERT Pierre
Mathematics for Informatics and Computer Science

BABAU Jean-Philippe et al.
Model Driven Engineering for Distributed Real-Time Embedded Systems
2009

BOULANGER Jean-Louis
Safety of Computer Architectures

MONMARCHE Nicolas et al.
Artificial Ants

PANETTO Hervé, BOUDJLIDA Nacer
Interoperability for Enterprise Software and Applications 2010

PASCHOS Vangelis Th
Combinatorial Optimization – 3-volume series
Concepts of Combinatorial Optimization – Volume 1
Problems and New Approaches – Volume 2
Applications of Combinatorial Optimization – Volume 3

SIGAUD Olivier et al.
Markov Decision Processes in Artificial Intelligence

SOLNON Christine
Ant Colony Optimization and Constraint Programming

AUBRUN Christophe, SIMON Daniel, SONG Ye-Qiong et al.
Co-design Approaches for Dependable Networked Control Systems

2009
FOURNIER Jean-Claude
Graph Theory and Applications

GUEDON Jeanpierre
The Mojette Transform / Theory and Applications

JARD Claude, ROUX Olivier
Communicating Embedded Systems / Software and Design

LECOUTRE Christophe
Constraint Networks / Targeting Simplicity for Techniques and Algorithms

2008
BANÂTRE Michel, MARRÓN Pedro José, OLLERO Hannibal, WOLITZ Adam
Cooperating Embedded Systems and Wireless Sensor Networks

MERZ Stephan, NAVET Nicolas
Modeling and Verification of Real-time Systems

PASCHOS Vangelis Th
Combinatorial Optimization and Theoretical Computer Science: Interfaces
and Perspectives

WALDNER Jean-Baptiste
Nanocomputers and Swarm Intelligence

2007
BENHAMOU Frédéric, JUSSIEN Narendra, O’SULLIVAN Barry
Trends in Constraint Programming

JUSSIEN Narendra
A to Z of Sudoku

2006
BABAU Jean-Philippe et al.
From MDD Concepts to Experiments and Illustrations – DRES 2006

HABRIAS Henri, FRAPPIER Marc
Software Specification Methods

MURAT Cecile, PASCHOS Vangelis Th
Probabilistic Combinatorial Optimization on Graphs

PANETTO Hervé, BOUDJLIDA Nacer
Interoperability for Enterprise Software and Applications 2006 / IFAC-IFIP
I-ESA’2006

2005
GÉRARD Sébastien et al.
Model Driven Engineering for Distributed Real Time Embedded Systems

PANETTO Hervé
Interoperability of Enterprise Software and Applications 2005

	Cover
	Title Page
	Copyright
	Contents
	Acknowledgments
	Acronyms
	Introduction
	I.1. Behind software modernization is “modernization”: the car metaphor
	I.2. COBOL
	I.3. Why the Cloud?
	I.4. Legacy2Cloud
	I.5. Human weight on successful modernization
	I.6. This book’s structure

	1: Software Modernization: a Business Vision
	1.1. Software-based business
	1.2. Information-driven business
	1.2.1. Adaptation to business

	1.3. The case of tourism industry
	1.4. IT progress acceleration
	1.5. Legacy world
	1.5.1. Exiting the legacy world
	1.5.2. Legacy world professionals

	1.6. Conclusions

	2: Software Modernization: Technical Environment
	2.1. Legacy system
	2.2. Modernization
	2.2.1. Replacement
	2.2.2. Migration
	2.2.3. Modernization versus migration
	2.2.4. The superiority of white-box modernization

	2.3. Software engineering principles underpinning modernization
	2.3.1. Re-engineering in action
	2.3.2. Re-engineering challenges

	2.4. Conclusions

	3: Status of COBOL Legacy Applications
	3.1. OLTP versus batch programs
	3.2. Mainframes
	3.3. Data-driven design
	3.4. COBOL degeneration principle
	3.5. COBOL pitfalls
	3.6. Middleware for COBOL
	3.7. Moving COBOL OLTP/batch programs to Java
	3.8. COBOL is not a friend of Java, and vice versa
	3.9. Spaghetti code
	3.9.1. Spaghetti code sample
	3.9.2. Code comprehension

	3.10. No longer COBOL?
	3.11. Conclusions

	4: Service-Oriented Architecture (SOA)
	4.1. Software architecture versus information system urbanization
	4.2. Software architecture evolution
	4.3. COBOL own style of software architecture
	4.4. The one-way road to SOA
	4.5. Characterization of SOA
	4.5.1. Preliminary note
	4.5.2. From objects to components and services
	4.5.3. Type versus instance
	4.5.4. Distribution concerns
	4.5.5. Functional grouping
	4.5.6. Granularity
	4.5.7. Technology-centrism
	4.5.8. Composition at design time (… is definitely modeling)
	4.5.9. Composition at runtime

	4.6. Conclusions

	5: SOA in Action
	5.1. Service as materialized component
	5.2. Service as Internet resource
	5.2.1. Pay-per-use service
	5.2.2. Free service
	5.2.3. Data feed service

	5.3. High-end SOA
	5.4. SOA challenges
	5.5. The Cloud
	5.5.1. COBOL in the Cloud
	5.5.2. Computing is just resource consumption
	5.5.3. Cloud computing is also resource consumption, but…
	5.5.4. Everything as a service
	5.5.5. SOA in the Cloud
	5.5.6. The cloud counterparts

	5.6. Conclusions

	6: Model-Driven Development (MDD)
	6.1. Why MDD?
	6.2. Models, intuitively
	6.3. Models, formally
	6.4. Models as computerized objects
	6.5. Model-based productivity
	6.6. Openness through standards
	6.6.1. Model-Driven Architecture (MDA)

	6.7. Models and people
	6.8. Metamodeling
	6.8.1. Metamodeling, put simply

	6.9. Model transformation
	6.10. Model transformation by example
	6.11. From contemplative to executable models
	6.12. Model execution in action
	6.13. Toward Domain-Specific Modeling Languages (DSMLs)
	6.14. Conclusions

	7: Model-Driven Software Modernization
	7.1. Reverse and forward engineering are indivisible components of modernization
	7.2. Architecture-Driven Modernization (ADM)
	7.3. ASTM and KDM at a glance
	7.4. Variations on ASTM
	7.5. From ASTM to KDM
	7.6. Variations on KDM
	7.7. Automation
	7.8. Conclusions

	8: Software Modernization Method and Tool
	8.1. BLU AGE overview
	8.2. The toolbox
	8.2.1. BLU AGE format required for forward engineering
	8.2.2. Reverse tooling
	8.2.2.1. Views and perspectives
	8.2.2.2. UI extraction
	8.2.2.3. Annotations
	8.2.2.4. Pattern selection and application
	8.2.2.5. Data item extraction
	8.2.2.6. Transmodeling as business logic (rules and functionalities) extraction

	8.3. BLU AGE as an ADM- and MDA-compliant tool
	8.4. Modernization workflow
	8.4.1. Initialization
	8.4.1.1. Explore artifacts
	8.4.1.2. Support grammar
	8.4.1.3. Extract
	8.4.1.4. Understand legacy structure
	8.4.1.5. Organize collaborative work for code sources and model
	8.4.1.6. Set up environments, support continuous integration
	8.4.1.7. Database modernization
	8.4.1.8. Define patterns, apply patterns on whole legacy code
	8.4.1.9. Define target architecture, update/create BSPs
	8.4.1.10. Build productivity tools
	8.4.1.11. Define iterations

	8.4.2. Realization
	8.4.2.1. Annotate
	8.4.2.2. Transmodeling
	8.4.2.3. Modeling
	8.4.2.4. Generate and perform unit test
	8.4.2.5. Design automatic “happy path” unit test

	8.4.3. Validation and deployment
	8.4.3.1. Run automated tests
	8.4.3.2. Run tests manually
	8.4.3.3. Define migration strategy and plan
	8.4.3.4. Perform data migration
	8.4.3.5. Execute migration plan

	8.5. Conclusions

	9: Case Study
	9.1. Case study presentation
	9.2. Legacy modernization in action
	9.2.1. Creating modernization project
	9.2.2. Better dealing with the legacy material
	9.2.3. Strategy for modernizing screens
	9.2.4. Strategy for modernizing data items
	9.2.5. Creating forward project
	9.2.6. Entity extraction
	9.2.7. From screens to pages and UI components

	9.3. Annotations
	9.4. Pattern definition
	9.4.1. Pattern for simple statements
	9.4.2. Patterns for operation calls
	9.4.3. Patterns for operation calls with arguments

	9.4. Database exchange modernization
	9.5. Transmodeling
	9.6. Transmodeling complex functionalities
	9.6.1. Transmodeling the “custCost” program
	9.6.2. Modernizing “Add a new reservation”

	9.7. Application generation and testing
	9.8. Conclusions

	Bibliography
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /AdobeSansMM
 /AdobeSerifMM
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 350
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 350
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 350
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENG ()
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000410064006f00620065002000500044004600200064006f00630075006d0065006e0074007300200066006f00720020007100750061006c0069007400790020007000720069006e00740069006e00670020006f006e0020006400650073006b0074006f00700020007000720069006e007400650072007300200061006e0064002000700072006f006f0066006500720073002e002000200043007200650061007400650064002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000410064006f00620065002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /AdobeSansMM
 /AdobeSerifMM
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 350
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 350
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 350
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENG ()
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000410064006f00620065002000500044004600200064006f00630075006d0065006e0074007300200066006f00720020007100750061006c0069007400790020007000720069006e00740069006e00670020006f006e0020006400650073006b0074006f00700020007000720069006e007400650072007300200061006e0064002000700072006f006f0066006500720073002e002000200043007200650061007400650064002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000410064006f00620065002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /AdobeSansMM
 /AdobeSerifMM
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 350
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 350
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 350
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENG ()
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

