

C#:	A	Beginner’s	Tutorial

Second	Edition

	

Jayden	Ky

C#:	A	Beginner’s	Tutorial,	Second	Edition

Second	Edition:	January	2016

ISBN:	9781771970297

Copyright	©	2016	by	Brainy	Software	Inc.

Cover	image	©	Dollar	Photo	Club

All	rights	reserved.	No	part	of	this	book	may	be	reproduced	or	transmitted	in	any	form
or	 by	 any	means,	 electronic	 or	mechanical,	 including	 photocopying,	 recording,	 or	 by
any	 information	 storage	 and	 retrieval	 system,	 without	 written	 permission	 from	 the
publisher,	except	for	the	inclusion	of	brief	quotations	in	a	review.

	

	

Trademarks

Oracle	and	Java	are	registered	trademarks	of	Oracle	and/or	it’s	affiliates
UNIX	is	a	registered	trademark	of	the	Open	Group
Apache	is	a	trademark	of	The	Apache	Software	Foundation.
Firefox	is	a	registered	trademark	of	the	Mozilla	Foundation.
Google	is	a	trademark	of	Google,	Inc.

Throughout	this	book	the	printing	of	trademarked	names	without	the	trademark	symbol
is	for	editorial	purpose	only.	We	have	no	intention	of	infringement	of	the	trademark.

	

Warning	and	Disclaimer
Every	effort	has	been	made	to	make	this	book	as	accurate	as	possible.	The	author	and
the	publisher	shall	have	neither	liability	nor	responsibility	to	any	person	or	entity	with
respect	to	any	loss	or	damages	arising	from	the	information	in	this	book.

About	the	Author
Jayden	Ky	is	a	.NET	consultant	and	expert	who	has	been	involved	in	various	large-scale
projects	 as	 a	 senior	 developer	 and	 architect.	 His	 other	 books	 include	 Visual	 Basic:	 A
Beginner’s	Tutorial	and	the	first	edition	of	C#:	A	Beginner’s	Tutorial.

Table	of	Contents
Introduction

Overview	of	.NET	Framework

An	Overview	of	Object-Oriented	Programming

Using	Visual	Studio

Downloading	and	Installing	.NET	Framework

About	This	Book

Downloading	Program	Examples

Chapter	1:	Your	First	Taste	of	C#

Your	First	C#	Program

C#	Code	Conventions

Summary

Chapter	2:	Language	Fundamentals

ASCII	and	Unicode

Intrinsic	Types	and	the	Common	Type	System

Variables

Constants

Literals

Primitive	Conversions

Operators

Comments

Summary

Chapter	3:	Statements

An	Overview	of	C#	Statements

The	if	Statement

The	while	Statement

The	do-while	Statement

The	for	Statement

The	break	Statement

The	continue	Statement

The	switch	Statement

Summary

Chapter	4:	Objects	and	Classes

What	Is	a	C#	Object?

C#	Classes

Creating	Objects

Nullity	Checking

Objects	in	Memory

C#	Namespaces

Encapsulation	and	Class	Access	Control

The	this	Keyword

Using	Other	Classes

Static	Members

Variable	Scope

Method	Overloading

Summary

Chapter	5:	Core	Classes

System.Object

System.String

System.Text.StringBuilder

Arrays

System.Console

Summary

Chapter	6:	Inheritance

An	Overview	of	Inheritance

Accessibility

Method	Overriding

Calling	the	Base	Class’s	Constructors

Calling	the	Base	Class’s	Hidden	Members

Type	Casting

Sealed	Classes

The	is	Keyword

Summary

Chapter	7:	Structures

An	Overview	of	Structures

.NET	Structures

Writing	A	Structure

Nullable	Types

Summary

Chapter	8:	Error	Handling

Catching	Exceptions

try	without	catch	and	the	using	Statement

The	System.Exception	Class

Throwing	an	Exception	from	a	Method

Exception	Filters

Final	Note	on	Exception	Handling

Summary

Chapter	9:	Numbers	and	Dates

Number	Parsing

Number	Formatting

The	System.Math	Class

Working	with	Dates	and	Times

Summary

Chapter	10:	Interfaces	and	Abstract	Classes

The	Concept	of	Interface

The	Interface,	Technically	Speaking

Implementing	System.IComparable

Abstract	Classes

Summary

Chapter	11:	Polymorphism

Defining	Polymorphism

Summary

Chapter	12:	Enumerations

An	Overview	of	Enum

Enums	in	a	Class

Switching	on	enum

Summary

Chapter	13:	Generics

Why	Generics?

Introducing	Generic	Types

Applying	Restrictions

Writing	Generic	Types

Summary

Chapter	14:	Collections

Overview

The	List	Class

The	HashSet	Class

The	Queue	Class

The	Dictionary	Class

Summary

Chapter	15:	Input/Output

File	and	Directory	Handling	and	Manipulation

Input/Output	Streams

Reading	Text	(Characters)

Writing	Text	(Characters)

Reading	and	Writing	Binary	Data

Summary

Chapter	16:	Advanced	Language	Features

Delegates

Events

Anonymous	Methods

Lambda	Expressions

Expression-Bodied	Members

Extension	Methods

Implicitly	Typed	Local	Variables

Anonymous	Types

The	dynamic	Type

Summary

Chapter	17:	Data	Access	with	LINQ

Overview

LINQ	to	Objects

Standard	Query	Operators

LINQ	to	SQL

Querying	A	Database

Updating	A	Table

Inserting	Rows

Deleting	Rows

Summary

Chapter	18:	Windows	Presentation	Foundation

Overview

Application	and	Window

WPF	Controls

Panels	and	Layout

Event	Handling

XAML

A	Polymorphism	Example	with	WPF

A	Drawing	Application

Summary

Chapter	19:	Multithreading

Introduction	to	Threads

Creating	a	Thread

Using	the	Join	Method

Passing	A	Lambda	Expression	to	A	Thread

Foreground	and	Background	Threads

Synchronization

Monitor

Interlocked

The	Volatile	Keyword

A	Thread	Example	with	WPF

Summary

Appendix	A:	Visual	Studio	Community	2015

Hardware	and	Software	Requirements

Download	and	Installation

Registering	Visual	Studio	Community	2015

Creating	a	Project

Creating	a	Class

Running	a	Project

Working	with	Databases

Appendix	B:	SQL	Server	2014	Express

Downloading	SQL	Server	2014	Express

Installing	SQL	Server	2014	Express

Introduction
C#	(pronounced	“c	sharp”)	is	a	mature	programming	language	that	is	easy	to	learn.	At	the
same	time	it	is	also	part	of	.NET	Framework,	a	vast	collection	of	technologies	that	are	so
diverse	that	beginners	often	don’t	know	where	to	start.	If	you	are	one	of	them,	then	this
book	is	for	you	because	it	has	been	designed	as	a	tutorial	for	novices.	.NET,	by	the	way,	is
pronounced	“dot	net.”

As	a	beginner’s	tutorial,	this	book	does	not	teach	you	every	technology	there	is	in	.NET
Framework.	 Rather,	 this	 book	 covers	 the	 most	 important	 C#	 and	 .NET	 Framework
programming	 topics	 that	 you	 need	 to	 master	 to	 be	 able	 to	 learn	 other	 technologies
yourself.	 Nonetheless	 this	 book	 is	 comprehensive	 that	 by	 fully	 understanding	 all	 the
chapters	you	should	be	able	to	perform	an	intermediate	C#	programmer’s	daily	tasks	quite
well.

This	 book	 offers	 all	 the	 three	 subjects	 that	 a	 professional	 C#	 programmer	 must	 be
proficient	in:

?	The	C#	programming	language;
?	Object-oriented	programming	(OOP)	with	C#;
?	The	.NET	Framework	class	library.

What	makes	structuring	an	effective	C#	course	difficult	is	the	fact	that	the	three	subjects
are	 interdependent.	On	 the	one	hand,	C#	 is	 an	OOP	 language,	 so	 its	 syntax	 is	 easier	 to
learn	 if	 you	 already	 know	 about	 OOP.	 On	 the	 other	 hand,	 OOP	 features,	 such	 as
inheritance,	polymorphism	and	data	encapsulation,	are	best	taught	if	accompanied	by	real-
world	 examples.	 Unfortunately,	 understanding	 real-world	 C#	 programs	 requires
knowledge	of	the	.NET	Framework	class	library.

Because	 of	 such	 interdependence,	 the	 three	 main	 topics	 are	 not	 grouped	 into	 three
isolated	parts.	Instead,	chapters	discussing	a	major	topic	and	chapters	teaching	another	are
interwoven.	For	example,	before	explaining	polymorphism,	this	book	makes	sure	that	you
are	 familiar	 with	 certain	 .NET	 Framework	 classes	 so	 that	 real-world	 examples	 can
accompany	 the	 polymorphism	 chapter.	 In	 addition,	 because	 a	 language	 feature	 such	 as
generics	 cannot	 be	 explained	 effectively	without	 the	 comprehension	 of	 a	 certain	 set	 of
classes,	it	is	covered	after	the	discussion	of	the	supporting	classes.

There	 are	 also	 situations	 whereby	 a	 topic	 can	 be	 found	 in	 two	 or	 more	 places.	 For
instance,	looping	statements	with	for	and	while	are	a	basic	language	feature	that	should	be
discussed	in	an	early	chapter.	However,	looping	over	an	array	or	a	collection	with	foreach
can	 only	 be	 given	 after	 arrays	 and	 the	 collection	 types	 are	 taught.	 Therefore,	 looping
statements	 are	 first	 presented	 in	 Chapter	 3,	 “Statements”	 and	 then	 revisited	 when	 we
discuss	arrays	in	Chapter	5,	“Core	Classes”	and	when	we	talk	about	collections	in	Chapter
14,	“Collections.”

The	 rest	 of	 this	 introduction	 presents	 a	 high-level	 overview	 of	 .NET	 Framework,	 an
introduction	 to	 OOP,	 a	 brief	 description	 of	 each	 chapter	 and	 instructions	 for	 installing

.NET	Framework.

Overview	of	.NET	Framework
.NET	Framework	is	the	popular	name	for	a	programming	environment	specification	called
the	 Common	 Language	 Infrastructure	 (CLI).	 The	 CLI	 is	 developed	 by	 Microsoft	 and
standardized	by	ISO	and	ECMA.	Both	ISO	and	ECMA	are	 international	 standardization
bodies.

Microsoft	started	working	on	.NET	Framework	in	late	1990s	and	released	version	1.0	in
2002.	The	latest	version,	version	4.6,	is	its	tenth	iteration.	Table	I.1	shows	the	release	dates
of	all	.NET	Framework	versions.

Version Release	Date

1.0 February	13,	2002

1.1 April	24,	2003

2.0 November	7,	2005

3.0 November	6,	2006

3.5 November	19,	2007

4.0 April	12,	2010

4.5 August	15,	2012

4.5.1 October	17,	2013

4.5.2 May	5,	2014

4.6 July	20,	2015

Table	I.1:	.NET	Framework	versions

One	of	the	appeals	of	.NET	Framework	is	the	fact	that	it	supports	multiple	programming
languages.	 In	 fact,	on	 the	 last	count	 there	are	more	 than	 thirty	 languages	 that	can	 target
.NET	 Framework,	 including	 Visual	 Basic,	 C#	 and	 C++.	 This	 means,	 if	 you’re	 used	 to
Visual	 Basic,	 you	 can	 continue	 programming	 in	 that	 language	 and	 if	 you’re	 a	 C++
programmer,	you	don’t	have	to	learn	a	new	language	in	order	to	take	advantage	of	what
.NET	Framework	has	to	offer.

However,	multilanguage	support	is	by	no	means	the	only	feature	of	.NET	Framework.
The	 framework	 also	 offers	 a	 set	 of	 technologies	 that	make	 software	 development	more
rapid	and	resulting	applications	more	robust	and	secure.	For	years	 .NET	Framework	has
been	the	technology	of	choice	because	of	the	benefits	it	offers:

cross-language	integration
ease	of	use
platform	independence
an	extensive	class	library	that	speeds	up	application	development
security
scalability
extensive	industry	support

.NET	 Framework	 is	 not	 like	 a	 traditional	 programming	 environment.	 In	 traditional
programming,	 source	 code	 is	 compiled	 into	 executable	 code.	 This	 executable	 code	 is
native	to	the	target	platform	because	it	can	run	only	on	the	platform	it	is	intended	to	run.
In	other	words,	code	written	and	compiled	for	Windows	will	only	run	on	Windows,	code
written	in	Linux	will	only	run	on	Linux,	and	so	on.	This	is	depicted	in	Figure	I.1.

Figure	I.1:	Traditional	programming	paradigm

By	 contrast,	 a	 .NET	 Framework	 program	 is	 compiled	 into	 Common	 Intermediate
Language	(CIL,	pronounced	“sil”	or	“kil”)	code.	(If	you’re	familiar	with	Java,	CIL	code	is
equivalent	 to	 Java	 bytecode.)	 CIL	 code,	 formerly	 known	 as	 Microsoft	 Intermediate
Language	or	MSIL	code,	can	only	run	on	the	common	language	runtime	(CLR).	The	CLR
is	 a	 native	 application	 that	 interprets	CIL	 code.	Because	 the	CLR	 is	 available	 on	many
platforms,	the	same	CIL	code	is	cross-platform.	Again,	if	you	are	familiar	with	Java,	the
CLR	is	equivalent	to	the	Java	virtual	machine	(JVM).

As	shown	in	Figure	I.2,	you	can	use	any	supported	language	to	write	a	.NET	program
and	 compile	 it	 into	CIL	 code.	 The	 very	 same	CIL	 code	 can	 then	 run	 on	 any	 operating
system	for	which	a	CLR	has	been	developed.	In	addition	to	the	CIL	code,	a	.NET	compiler
also	generates	metadata	that	describes	the	types	in	the	CIL	code.	This	metadata	is	termed	a
manifest.	Both	CIL	code	and	the	corresponding	manifest	are	packaged	into	a	.dll	or	.exe
file	called	an	assembly.

Figure	I.2:	.NET	programming	model

Initially,	Microsoft	provided	a	CLR	implementation	only	for	Windows,	and	those	wishing
to	deploy	 .NET	apps	 in	Linux	or	OS	X	had	 to	 resort	 to	 a	 third	 party	 .NET	Framework
implementation,	 such	 as	 Project	 Mono	 (http://www.mono-project.com)	 or	 DotGNU
Portable.NET	 (http://dotgnu.org/pnet.html).	 In	 2015,	 however,	Microsoft	 released	 .NET
Core,	a	cousin	of	.NET	Framework	that	can	run	on	Windows,	Linux	and	Mac	OSX.	Even

better,	 .NET	Core	 is	 open	 source	 and	 has	 been	made	 to	work	 on	 FreeBSD	 by	 external
contributors.	More	information	on	.NET	Core	can	be	found	here:

http://dotnet.github.io/core/about/overview.html

In	.NET	jargon,	code	that	can	only	run	on	top	of	the	CLR	is	called	managed	code.	On	the
other	 side	of	 the	horizon,	 some	 .NET	 languages	 such	as	C#	and	C++	can	generate	both
managed	and	unmanaged	code.	Unmanaged	code	runs	outside	the	runtime.	This	book	only
discusses	managed	code.

C#	is	the	most	popular	language	for	developing	.NET	applications.	Initially	called	Cool
(for	 C-like	 Object	 Oriented	 Language),	 C#	 is	 a	 mature	 language	 with	 comprehensive
features.	 Table	 I.2	 shows	 the	 versions	 of	 C#	 and	 the	 .NET	 Framework	 version	 it	 is
included	in.	ECMA	and	ISO/IEC	specifications	are	only	available	for	C#	versions	1.0,	1.2
and	2.0.

Version Part	of

1.0 .NET	Framework	1.0

1.2 .NET	Framework	1.1

2.0 .NET	Framework	2.0

3.0 .NET	Framework	2.0,	3.0,	3.5

4.0 .NET	Framework	4.0

5.0 .NET	Framework	4.5

6.0 .NET	Framework	4.6

Table	I.2:	C#	versions

When	 programming	 C#	 or	 another	 .NET	 language,	 you’ll	 invariably	 work	 with	 the
common	type	system	(CTS).	Before	 I	explain	 the	CTS,	 I’d	 like	 to	make	sure	you	know
what	a	type	is.	So,	what	is	a	type?	In	computer	programming	a	type	determines	the	kind	of
value,	such	as	a	number	or	a	piece	of	text.	Type	information	is	particularly	useful	for	the
compiler.	For	example,	 it	makes	sense	 to	write	multiplication	3	*	2	because	3	and	2	are
numbers.	However,	if	you	write	VB	*	C#	in	your	C#	code,	the	compiler	will	invalidate	it
because	you	cannot	multiply	two	pieces	of	text.	At	least,	not	in	C#.

In	the	CTS,	there	are	these	five	categories	of	types:

class
interface
structure
enumeration
delegate

You	will	learn	each	of	these	types	in	this	book.

An	 Overview	 of	 Object-Oriented
Programming
Object-oriented	 programming	 (OOP)	 works	 by	 modeling	 applications	 on	 real-world
objects.	Three	principles	of	OOP	are	encapsulation,	inheritance,	and	polymorphism.

The	 benefits	 of	OOP	 are	 real.	 These	 are	 the	 reason	why	most	modern	 programming
languages,	 including	 C#,	 are	 object-oriented	 (OO).	 I	 can	 even	 cite	 two	 well-known
examples	of	language	transformation	to	support	OOP:	The	C	language	evolved	into	C++
and	Visual	Basic	was	upgraded	to	Visual	Basic.NET.

This	section	explains	the	benefits	of	OOP	and	provides	an	assessment	of	how	easy	or
hard	it	is	to	learn	OOP.

The	Benefits	of	OOP
The	benefits	of	OOP	include	easy	code	maintenance,	code	reuse	and	extendibility.	These
benefits	are	presented	in	more	detail	below.

1.	Ease	 of	 maintenance.	 Modern	 software	 applications	 tend	 to	 be	 very	 large.	 Once
upon	a	 time,	 a	 “large”	 system	comprised	 a	 few	 thousand	 lines	of	 code.	Now,	 even
those	 consisting	 of	 one	million	 lines	 are	 not	 considered	 that	 large.	When	 a	 system
gets	 larger,	 it	 starts	giving	 its	developers	problems.	Bjarne	Stroustrup,	 the	father	of
C++,	 once	 said	 something	 like	 this.	 A	 small	 program	 can	 be	 written	 in	 anything,
anyhow.	If	you	don’t	quit	easily,	you’ll	make	it	work,	at	the	end.	But	a	large	program
is	a	different	story.	If	you	don’t	use	techniques	of	“good	programming,”	new	errors
will	emerge	as	fast	as	you	fix	the	old	ones.

The	reason	for	this	is	there	is	interdependency	among	different	parts	of	a	large	program.
When	you	change	something	in	some	part	of	the	program,	you	may	not	realize	how
the	change	might	affect	other	parts.	OOP	makes	it	easy	to	make	applications	modular,
and	 modularity	 makes	 maintenance	 less	 of	 a	 headache.	 Modularity	 is	 inherent	 in
OOP	because	a	class,	which	is	a	template	for	objects,	is	a	module	by	itself.	A	good
design	 should	 allow	 a	 class	 to	 contain	 similar	 functionality	 and	 related	 data.	 An
important	and	 related	 term	 that	 is	used	often	 in	OOP	 is	coupling,	which	means	 the
degree	 of	 interaction	 between	 two	 modules.	 Loosely	 coupling	 among	 parts	 make
code	reuse—another	benefit	of	OOP—easier	to	achieve.

2.	Reusability.	 Reusability	means	 that	 code	 that	 has	 previously	 been	written	 can	 be
reused	by	 the	code	author	and	others	who	need	 the	same	functionality	provided	by
the	 code.	 It	 is	 not	 surprising	 then	 that	 an	OOP	 language	often	 comes	with	 a	 set	of
ready-to-use	libraries.	In	the	case	of	C#,	the	language	is	part	of	.NET	Framework	that
offers	a	library	of	classes	that	have	been	carefully	designed	and	tested.	It	is	also	easy
to	write	 and	 distribute	 your	 own	 library.	 Support	 for	 reusability	 in	 a	 programming
platform	is	very	attractive	because	it	shortens	development	time.

One	of	the	main	challenges	to	class	reusability	is	creating	good	documentation	for	the
class	library.	How	fast	can	a	programmer	find	a	class	that	provides	the	functionality
he	 or	 she	 is	 looking	 for?	 Is	 it	 faster	 to	 find	 such	 a	 class	 or	write	 a	 new	 one	 from
scratch?	 Fortunately,	 the	 .NET	 Framework	 class	 library	 comes	 with	 extensive
documentation.

Reusability	does	not	 only	 apply	 to	 the	 coding	phase	 through	 the	 reuse	of	 classes	 and
other	types;	when	designing	an	application	in	an	OO	system,	solutions	to	OO	design
problems	can	also	be	reused.	These	solutions	are	called	design	patterns.	To	make	it
easier	 to	 refer	 to	 each	 solution,	 each	pattern	 is	 given	 a	 name.	The	 early	 catalog	of
reusable	design	patterns	can	be	found	in	the	classic	book	Design	Patterns:	Elements
of	 Reusable	 Object-Oriented	 Software,	 by	 Erich	 Gamma,	 Richard	 Helm,	 Ralph
Johnson,	and	John	Vlissides.

3.	Extendibility

Every	application	is	unique.	It	has	its	own	requirements	and	specifications.	In	terms	of
reusability,	 sometimes	 you	 cannot	 find	 an	 existing	 class	 that	 provides	 the	 exact
functionality	that	your	application	requires.	However,	you	will	probably	find	one	or

two	that	provide	part	of	 the	functionality.	Extendibility	means	that	you	can	still	use
those	classes	by	extending	them	to	suit	your	need.	You	still	save	time,	because	you
don’t	have	to	write	code	from	scratch.

In	OOP,	extendibility	is	achieved	through	inheritance.	You	can	extend	an	existing	class,
add	some	methods	or	data	to	it,	or	change	the	behavior	of	methods	you	don’t	like.	If
you	know	the	basic	functionality	that	will	be	used	in	many	cases	but	don’t	want	your
class	to	provide	very	specific	functions,	you	can	provide	a	generic	class	that	can	be
extended	later	to	provide	functionality	specific	to	an	application.

Is	OOP	Hard?
C#	programmers	need	to	master	OOP.	As	it	happens,	it	does	make	a	difference	if	you	have
had	programmed	using	 a	 procedural	 language,	 such	 as	C	or	Pascal.	 In	 the	 light	 of	 this,
there	is	bad	news	and	good	news.

First	the	bad	news.

Researchers	have	been	debating	the	best	way	to	teach	OOP	in	school;	some	argue	that	it
is	best	to	teach	procedural	programming	before	OOP	is	introduced.	In	many	curricula,	an
OOP	course	can	be	taken	when	a	student	is	nearing	the	final	year	of	his	or	her	university
term.

More	 recent	studies,	however,	argue	 that	 someone	with	procedural	programming	skill
thinks	 in	 a	 paradigm	 very	 different	 from	 how	OO	 programmers	 view	 and	 try	 to	 solve
problems.	When	 this	person	needs	 to	 learn	OOP,	 the	greatest	 struggle	he	or	she	 faces	 is
having	to	go	through	a	paradigm	shift.	 It	 is	said	 that	 it	 takes	six	 to	18	months	 to	switch
your	 mindset	 from	 procedural	 to	 object-oriented	 paradigms.	 Another	 study	 shows	 that
students	who	have	not	learned	procedural	programming	do	not	find	OOP	that	difficult.

Now	the	good	news.

C#	qualifies	as	one	of	the	easiest	OOP	languages	to	learn.	For	example,	you	don’t	have
to	worry	about	pointers	or	spend	precious	time	solving	memory	leaks	caused	by	failing	to
destroy	 unused	 objects.	 On	 top	 of	 that,	 .NET	 Framework	 comes	 with	 a	 very
comprehensive	 class	 library	 with	 relatively	 few	 bugs	 in	 their	 early	 versions.	 Once	 you
know	the	nuts	and	bolts	of	OOP,	programming	with	C#	is	really	easy.

Using	Visual	Studio
You	should	always	use	an	integrated	development	environment	(IDE)	to	help	you	increase
productivity.	A	good	IDE	is	a	must-have	tool	that	compiles	your	program	as	you	type	and
helps	you	run	your	application.	It	also	assists	in	finding	bugs	earlier	and	tracing	programs.

In	 terms	of	 .NET	Framework	development,	 there	 are	 a	 couple	 of	 IDEs	 available,	 but
Microsoft	Visual	Studio	is	a	clear	winner.	The	latest	version	of	Visual	Studio	at	the	time	of
writing	is	Visual	Studio	2015.	Fortunately,	a	free	community	version	of	this	great	tool	is
available.	Appendix	A,	“Visual	Studio	Community	2015”	shows	how	you	can	download
and	install	this	great	tool.

Downloading	 and	 Installing	 .NET
Framework
To	 run	 a	 .NET	 application,	 you	 need	 .NET	 Framework	 installed	 on	 your	 computer.
Installing	 Visual	 Studio	 Community	 2015	 also	 installs	 the	 latest	 version	 of	 .NET
Framework,	which	 is	 currently	 at	version	4.6.	On	a	production	 server,	where	no	 IDE	 is
normally	available,	you	will	have	to	rely	on	the	.NET	Framework	version	that	comes	with
the	Windows	operating	 system	 for	 that	 server.	Windows	7	 ships	with	 .NET	Framework
3.5,	 Windows	 8.0	 and	 8.1	 with	 .NET	 Framework	 4.5	 and	 Windows	 10	 with	 .NET
Framework	4.6.

If	your	application	needs	a	more	 recent	version	of	 .NET	Framework	 than	 the	default,
you	can	get	the	installer	for	the	latest	version	of	.NET	Framework	from	this	site:

https://www.microsoft.com/en-us/download/details.aspx?id=48130

Run	the	installer	and	follow	the	instructions	in	the	dialog	that	appears.

About	This	Book
The	following	presents	the	overview	of	each	chapter.

Chapter	1,	 “Your	First	Taste	of	C#”	aims	at	giving	you	 the	 feel	of	working	with	C#.
This	 includes	writing	and	running	a	simple	C#	program	with	Visual	Studio.	 In	addition,
some	advice	on	code	conventions	and	integrated	development	environments	is	also	given.

Chapter	2,	“Language	Fundamentals”	teaches	you	the	C#	language	syntax.	You	will	be
introduced	to	topics	such	as	character	sets,	primitives,	variables,	operators,	etc.

Chapter	3,	“Statements”	explains	C#	statements	for,	while,	do-while,	if,	if-else,	switch,
break	and	continue.

Chapter	 4,	 “Objects	 and	 Classes”	 is	 the	 first	 OOP	 lesson	 in	 this	 book.	 It	 starts	 by
explaining	what	a	C#	object	 is	and	how	it	 is	stored	 in	memory.	 It	 then	continues	with	a
discussion	 of	 classes,	 class	 members	 and	 two	 OOP	 concepts	 (abstraction	 and
encapsulation).

Chapter	 5,	 “Core	 Classes”	 covers	 important	 classes	 in	 the	 .NET	 Framework	 class
library:	 System.Object,	 System.String,	 System.Text.StringBuilder,	 and
System.Console.	 Boxing/unboxing	 and	 arrays	 are	 also	 taught.	 This	 is	 an	 important
chapter	because	the	classes	explained	in	this	chapter	are	some	of	the	most	commonly	used
classes	in	.NET	Framework.

Chapter	6,	“Inheritance”	discusses	an	OOP	feature	that	enables	code	extendibility.	This
chapter	 teaches	you	how	 to	extend	a	 class,	 affect	 the	visibility	of	 a	 subclass,	override	a
method,	and	so	forth.

Chapter	 7,	 “Structures”	 explains	 the	 second	 type	 of	 the	 CTS.	 It	 also	 highlights	 the
differences	between	reference	types	and	value	types	and	talks	about	some	frequently	used
structures	 in	 the	 .NET	Framework	class	 library.	On	 top	of	 that,	 this	chapter	 teaches	you
how	to	write	your	own	structures.

Undoubtedly,	error	handling	is	an	important	feature	of	any	programming	language.	As	a
mature	 language,	C#	has	 a	 very	 robust	 error	 handling	mechanism	 that	 can	help	 prevent
bugs	 from	 creeping	 in.	 Chapter	 8,	 “Error	 Handling”	 is	 a	 detailed	 discussion	 of	 this
mechanism.

Chapter	9,	“Numbers	and	Dates”	deals	with	 three	 issues	when	working	with	numbers
and	dates:	parsing,	formatting	and	manipulation.	This	chapter	introduces	.NET	types	that
can	help	you	with	these	tasks.

Chapter	10,	“Interfaces	and	Abstract	Classes”	explains	that	an	interface	is	more	than	a
class	without	implementation.	An	interface	defines	a	contract	between	a	service	provider
and	a	client.	This	chapter	explains	how	to	work	with	interfaces	and	abstract	classes.

Polymorphism	 is	 one	 of	 the	main	 pillars	 of	OOP.	 It	 is	 incredibly	 useful	 in	 situations
whereby	the	type	of	an	object	in	not	known	at	compile	time.	Chapter	11,	“Polymorphism”
explains	this	feature	and	provides	useful	examples.

Chapter	 12,	 “Enumerations”	 show	 how	 to	 use	 the	 keyword	 enum	 to	 declare	 an

enumeration.	This	chapter	also	demonstrates	how	to	use	enumerations	in	C#	programs.

Chapter	13,	“Generics”	talks	about	generics.	As	you	will	learn	in	this	chapter,	generics
is	a	very	important	and	interesting	concept.

Chapter	 14,	 “Collections”	 shows	 how	 you	 can	 use	 the	 members	 of	 the
System.Collections.Generic	namespace	to	group	objects	and	manipulate	them.

Chapter	15,	“Input/Output”	introduces	the	concept	of	streams	and	explains	how	you	can
use	streams	to	perform	input-output	operations.

Chapter	16,	“Advanced	Language	Features”	 talks	about	extension	methods,	delegates,
events,	lambda	expressions	and	other	advanced	C#	features.

Accessing	databases	and	other	data	sources	and	manipulating	data	are	some	of	the	most
important	 tasks	in	business	applications.	There	are	many	flavors	of	database	servers	and
accessing	 different	 databases	 requires	 different	 skills.	 Chapter	 17,	 “Data	 Access	 with
LINQ”	explains	how	to	access	various	data	sources	with	LINQ.

You’ll	find	Chapter	18,	“Windows	Presentation	Foundation”	interesting	because	you’ll
learn	 to	 write	 desktop	 applications,	 with	 good-looking	 user	 interface	 and	 easy-to-use
controls.

A	 thread	 is	 a	 basic	 processing	 unit	 to	which	 an	 operating	 system	 allocates	 processor
time,	 and	 more	 than	 one	 thread	 can	 be	 executing	 code	 inside	 a	 process.	 Chapter	 19,
“Multithreading”	 shows	 that	multithreaded	 programming	 is	 not	 an	 exclusive	 domain	 of
expert	programmers.

Appendix	 A,	 “Visual	 Studio	 Community	 2015”	 discusses	 a	 free	 Integrated
Development	Environment	(IDE)	that	can	help	you	code	more	effectively.	This	tool	runs
on	Windows	7,	Windows	8,	Windows	8.1	and	Windows	10	and	you	should	consider	using
it.

Finally,	Appendix	B,	“SQL	Server	2014	Express”	explains	how	you	can	install	this	free
software	and	create	a	database	and	database	objects.

Downloading	Program	Examples
The	 program	 examples	 accompanying	 this	 book	 and	 answers	 to	 the	 questions	 in	 each
chapter	can	be	downloaded	from	this	URL:

http://books.brainysoftware.com/download/

Extract	the	zip	file	to	a	working	directory	and	you’re	good	to	start	your	C#	programming
journey.

Chapter	1

Your	First	Taste	of	C#
Developing	a	C#	program	involves	writing	code,	compiling	it	into	Common	Intermediate
Language	(CIL)	code,	and	running	the	CIL	code.	This	is	a	process	you	will	repeat	again
and	again	during	your	career	as	a	C#	programmer.	It	is	crucial	that	you	feel	comfortable
with	 it.	 Therefore,	 the	main	 objective	 of	 this	 chapter	 is	 to	 give	 you	 the	 opportunity	 to
experience	 the	 process	 of	 software	 development	 in	C#	 using	Visual	 Studio	Community
2015,	a	free	Integrated	Development	Environment	(IDE)	from	Microsoft.

As	 it	 is	 important	 to	write	 code	 that	not	only	works	but	 that	 is	 also	easy	 to	 read	and
maintain,	this	chapter	introduces	you	to	C#	code	conventions.	Examples	 for	 this	and	 the
following	chapters	have	been	developed	using	Visual	Studio	Community	2015.

Your	First	C#	Program
This	 section	highlights	 steps	 in	C#	development:	writing	 the	program,	 compiling	 it	 into
CIL	code	and	running	 the	CIL	code.	You	will	be	using	Visual	Studio	Community	2015,
which	 can	 be	 downloaded	 for	 free	 from	Microsoft’s	 website.	 If	 you	 have	 not	 done	 so,
please	install	Visual	Studio	Community	2015	by	following	the	instructions	in	Appendix	A,
“Visual	Studio	Community	2015.”

Starting	Your	IDE
Start	 Visual	 Studio	 Community	 2015.	 When	 opened,	 you’ll	 see	 something	 similar	 to
Figure	1.1.	If	 the	software	won’t	open	because	you	have	not	registered,	do	register	now.
Registration	is	free	and	explained	in	Appendix	A,	“Visual	Studio	Community	2015.”

Figure	1.1:	Starting	Visual	Studio	Community	2015

Click	the	New	Project	icon	to	create	a	new	project	and	select	Console	Application	(See
Figure	1.2).

Figure	1.2:	Creating	a	new	project

Accept	ConsoleApplication1	as	the	solution	and	project	names,	then	click	the	OK	button.
You’ll	see	a	project	and	a	solution	created	for	you	 like	 in	Figure	1.3.	Better	still,	Visual
Studio	Community	2015	also	creates	a	program	file	with	some	boilerplate	code	 like	 the
one	in	Figure	1.3.	Note	that	a	project	is	a	container	to	easily	manage	your	application.	It
contains	 C#	 source	 files	 and	 other	 resources	 such	 as	 image	 and	 video	 files	 and
documentation	that	describes	your	application.	When	you	create	a	project,	Visual	Studio
Community	 2015	 also	 creates	 a	 solution.	 A	 solution	 is	 yet	 another	 container	 that	 may
contain	one	or	more	projects.

Now	you’re	ready	to	program.

Figure	1.3:	The	created	solution	and	project

Writing	a	C#	Program
Insert	 the	 following	 two	 lines	 after	 the	 opening	 curly	 bracket	 after	 static	 void
Main(string[]	args):

Console.WriteLine("Hello	World!");

Console.ReadLine();

Listing	1.1	shows	your	complete	program	with	recently	inserted	lines	printed	in	bold.

Listing	1.1:	A	simple	C#	program

using	System;

using	System.Collections.Generic;

using	System.Linq;

using	System.Text;

using	System.Threading.Tasks;

namespace	ConsoleApplication1

{

				class	Program

				{

								static	void	Main(string[]	args)

								{

												Console.WriteLine("Hello	World!");

												Console.ReadLine();

								}

				}

}

Alternatively,	you	can	double-click	on	the	solution	(.sln)	file	in	the	zip	file	accompanying
this	book	that	you	can	download	from	the	book’s	download	site.

Compiling	and	Running	Your	C#	Program
Developing	with	Visual	Studio	Community	2015	is	really	easy.	To	compile	your	program,
simply	press	the	F5	key	or	click	the	Start	button	on	the	toolbar.	The	Start	button	is	green
and	is	shown	in	Figure	1.4.

Figure	1.4:	The	Start	button

If	your	program	compiled	successfully,	Visual	Studio	Community	2015	will	also	run	your
program.	As	a	result,	you’ll	see	a	console	with	the	text	“Hello	World!”	See	Figure	1.5.

Figure	1.5:	Running	your	program

Congratulations.	You	have	successfully	written	your	first	C#	program.	Type	Enter	to	close
the	console	after	you	finish	admiring	your	first	program.	Since	the	sole	aim	of	this	chapter
is	to	familiarize	yourself	with	the	writing	and	compiling	process,	I	will	not	be	attempting
to	explain	how	the	program	works.

C#	Code	Conventions
It	is	important	to	write	correct	C#	programs	that	run.	However,	it	is	also	crucial	to	write
programs	 that	 are	 easy	 to	 read	 and	 maintain.	 It	 is	 believed	 that	 eighty	 percent	 of	 the
lifetime	 cost	 of	 a	 piece	 of	 software	 is	 spent	 on	 maintenance.	 Also,	 the	 turnover	 of
programmers	is	high,	thus	it	is	very	likely	that	someone	other	than	you	will	maintain	your
code	during	its	lifetime.	Whoever	inherits	your	code	will	appreciate	clear	and	easy-to-read
program	sources.

Using	consistent	code	conventions	is	one	way	to	make	your	code	easier	to	read.	(Other
ways	 include	 proper	 code	 organization	 and	 sufficient	 commenting.)	 Code	 conventions
include	filenames,	file	organization,	indentation,	comments,	declaration,	statements,	white
space,	 and	 naming	 conventions.	 Microsoft	 has	 published	 a	 document	 that	 outlines
standards	that	its	employees	should	follow.	The	document	can	be	viewed	here.

http://msdn.microsoft.com/en-us/library/ff926074.aspx

Program	samples	in	this	book	will	follow	the	recommended	conventions	outlined	in	this
document.	 I’d	 also	 like	 to	 encourage	 you	 to	 develop	 the	 habit	 of	 following	 these
conventions	starting	the	first	day	of	your	programming	career,	so	that	writing	clear	code
comes	naturally	at	a	later	stage.

Summary
This	 chapter	 helped	 you	 write	 your	 first	 C#	 program	 using	 Visual	 Studio	 Community
2015.	You	successfully	wrote,	compiled,	and	ran	your	program.

Chapter	2

Language	Fundamentals
C#	 is	 an	 object-oriented	 programming	 (OOP)	 language,	 therefore	 an	 understanding	 of
OOP	is	of	utmost	importance.	Chapter	4,	“Objects	and	Classes”	is	the	first	lesson	of	OOP
in	 this	book.	However,	before	you	explore	many	 features	 and	 techniques	 in	OOP,	make
sure	you	study	the	prerequisite:	basic	programming	concepts	discussed	in	this	chapter.	The
topics	covered	are	as	follows.

?	 Encoding	 Sets.	 C#	 supports	 the	 Unicode	 character	 encoding	 set	 and	 program
element	names	are	not	restricted	to	ASCII	(American	Standard	Code	for	Information
Interchange)	 characters.	 Text	 can	 be	 written	 using	 characters	 in	 practically	 any
human	language	in	use	today.
?	Intrinsic	types.	Each	of	these	types	is	a	short	name	or	alias	for	a	type	in	the	.NET
class	library.	For	example,	int	is	the	short	name	for	the	System.Int32	structure.
?	Variables.	Variables	are	place	holders	whose	contents	can	change.	There	are	many
types	of	variables.
?	Constants.	Place	holders	whose	values	cannot	be	changed.
?	Literals.	Literals	are	 representations	of	data	values	 that	are	understood	by	 the	C#
compiler.
Type	conversion.	Changing	the	type	of	a	data	type	to	another	type.
?	 Operators.	 Operators	 are	 notations	 indicating	 that	 certain	 operations	 are	 to	 be
performed.

Note
If	you	have	programmed	with	Java	or	C++,	two	popular	languages	at	the	time	C#	was
invented,	you	should	feel	at	home	learning	C#	because	C#	syntax	is	very	similar	to	that
of	Java	and	C++.	However,	the	creator	of	C#	added	a	number	of	features	not	available
in	Java	and	C++	and	excluded	a	few	aspects	of	them.

ASCII	and	Unicode
Traditionally,	 computers	 in	 English	 speaking	 countries	 only	 used	 the	ASCII	 (American
Standard	 Code	 for	 Information	 Interchange)	 character	 set	 to	 represent	 alphanumeric
characters.	Each	character	in	the	ASCII	is	represented	by	seven	bits.	There	are	therefore
128	 characters	 in	 this	 character	 set.	 These	 include	 the	 lower	 case	 and	 upper	 case	Latin
letters,	numbers,	and	punctuation	marks.

The	ASCII	character	set	was	later	extended	to	include	another	128	characters,	such	as
the	German	 characters	 ä,	 ö,	 ü,	 and	 the	British	 currency	 symbol	 £.	 This	 character	 set	 is
called	 extended	 ASCII	 and	 each	 character	 is	 represented	 by	 eight	 bits.ASCII	 and	 the
extended	ASCII	are	only	two	of	the	many	character	sets	available.	Another	popular	one	is
the	 character	 set	 standardized	 by	 the	 ISO	 (International	 Standards	 Organization),	 ISO-
8859-1,	also	known	as	Latin-1.	Each	character	in	ISO-8859-1	is	represented	by	eight	bits
as	well.	This	character	set	contains	all	the	characters	required	for	writing	text	in	many	of
the	western	European	languages,	such	as	German,	Danish,	Dutch,	French,	Italian,	Spanish,
Portuguese,	and,	of	course,	English.	An	eight-bit-per-character	character	set	is	convenient
because	a	byte	is	also	eight	bits	long.	As	such,	storing	and	transmitting	text	written	in	an
8-bit	character	set	is	most	efficient.

However,	 not	 every	 language	 uses	 Latin	 letters.	 Chinese,	 Korean,	 and	 Thai	 are
examples	of	languages	that	use	different	character	sets.	For	example,	each	character	in	the
Chinese	language	represents	a	word,	not	a	letter.	There	are	thousands	of	these	characters
and	 eight	 bits	 are	 not	 enough	 to	 represent	 all	 the	 characters	 in	 the	 character	 set.	 The
Japanese	use	a	different	character	set	for	their	language	too.	In	total,	there	are	hundreds	of
different	character	sets	 for	all	 languages	 in	 the	world.	This	 is	confusing,	because	a	code
that	 represents	a	particular	character	 in	a	character	set	 represents	a	different	character	 in
another	character	set.

Unicode	 is	 a	 character	 set	 developed	by	 a	 non-profit	 organization	 called	 the	Unicode
Consortium	 (www.unicode.org).	 This	 body	 attempts	 to	 include	 all	 characters	 in	 all
languages	 in	 the	 world	 into	 one	 single	 character	 set.	 A	 unique	 number	 in	 Unicode
represents	 exactly	 one	 character.	 Currently	 at	 version	 6,	 Unicode	 is	 used	 in	 the	 .NET
Framework,	Java,	XML,	ECMAScript,	LDAP,	 etc.	 It	 has	 also	been	 adopted	by	 industry
leaders	such	as	IBM,	Microsoft,	Oracle,	Google,	HP,	Apple,	and	others.

Initially,	 a	Unicode	 character	was	 represented	 by	 sixteen	 bits,	which	were	 enough	 to
represent	 more	 than	 65,000	 different	 characters.	 65,000	 characters	 are	 sufficient	 for
encoding	most	of	 the	characters	 in	major	 languages	in	 the	world.	However,	 the	Unicode
consortium	planned	to	allow	for	encoding	for	as	many	as	a	million	more	characters.	With
this	amount,	you	then	need	more	than	sixteen	bits	to	represent	each	character.	In	fact,	a	32
bit	system	is	considered	a	convenient	way	of	storing	Unicode	characters.

Now,	 you	 see	 a	 problem	 already.	 While	 Unicode	 provides	 enough	 space	 for	 all	 the
characters	used	in	all	languages,	storing	and	transmitting	Unicode	text	is	not	as	efficient	as
storing	and	transmitting	ASCII	or	Latin-1	characters.	In	the	Internet	world,	this	is	a	huge
problem.	Imagine	having	to	transfer	4	times	as	much	data	as	ASCII	text!

Fortunately,	 character	 encoding	 can	 make	 it	 more	 efficient	 to	 store	 and	 transmit
Unicode	text.	You	can	think	of	character	encoding	as	analogous	to	data	compression.	And,
there	 are	many	 types	 of	 character	 encodings	 available	 today.	 The	 Unicode	 Consortium
endorses	three	of	them:

?	UTF-8	(Unicode	Transformation	Format,	8-bit	encoding	form).	This	is	popular	for
HTML	and	for	protocols	whereby	Unicode	characters	are	transformed	into	a	variable
length	 encoding	 of	 bytes.	 It	 has	 the	 advantages	 that	 the	 Unicode	 characters
corresponding	to	the	familiar	ASCII	set	have	the	same	byte	values	as	ASCII,	and	that
Unicode	characters	transformed	into	UTF-8	can	be	used	with	much	existing	software.
Most	browsers	support	the	UTF-8	character	encoding.
?	UTF-16	(Unicode	Transformation	Format,	16-bit	encoding	form).	In	this	character
encoding,	all	 the	more	commonly	used	characters	 fit	 into	a	single	16-bit	code	unit,
and	other	less	often	used	characters	are	accessible	via	pairs	of	16-bit	code	units.	The
.NET	Framework	uses	this	character	encoding.
?	UTF-32	 (Unicode	 Transformation	 Format,	 32-bit	 encoding	 form).	 This	 character
encoding	 uses	 32	 bits	 for	 every	 single	 character.	 This	 is	 clearly	 not	 a	 choice	 for
Internet	applications.	At	least,	not	at	present.

ASCII	characters	still	play	a	dominant	role	in	software	programming.	C#	too	uses	ASCII
for	almost	all	input	elements,	except	comments,	identifiers,	and	the	contents	of	characters
and	 strings.	 For	 the	 latter,	 C#	 supports	 Unicode	 characters.	 This	means,	 you	 can	 write
comments,	identifiers,	and	strings	in	languages	other	than	English.	For	example,	if	you	are
a	Chinese	speaker	living	in	Beijing,	you	can	use	Chinese	characters	for	variable	names.	As
a	 comparison,	 here	 is	 a	 piece	 of	 C#	 code	 that	 declares	 an	 identifier	 named	password,
which	consists	of	ASCII	characters:

string	password	=	"secret";

By	contrast,	the	code	in	Figure	2.1	shows	an	identifier	in	simplified	Chinese	characters.

Figure	2.1:	An	identifier	in	simplified	Chinese	characters

Intrinsic	 Types	 and	 the	 Common	 Type
System
C#	is	a	strongly	typed	language,	which	means	every	piece	of	data	must	have	a	type.	This
applies	 to	 data	 holders	 like	 variables	 too.	 C#	 defines	 various	 types	 known	 as	 intrinsic
types.

In	the	meantime,	.NET	Framework	supports	multiple	programming	languages	and	code
written	in	one	language	may	interoperate	with	code	written	in	other	languages.	In	order	to
facilitate	 this	 language	 interoperability,	 the	 .NET	 Framework	 designer	 defines	 the
Common	Type	System	(CTS).	The	CTS	specifies	all	data	types	supported	by	the	runtime
(that	 is,	 the	CLR).	A	 requirement	 for	 a	 program	written	 in	 one	 language	 to	 be	 used	 by
programs	written	in	other	languages	is	that	the	former	should	only	expose	CTS-compliant
types.

C#	is	rich	enough	to	support	intrinsic	data	types	that	are	both	CTS-compliant	and	CTS-
noncompliant.	 However,	 C#	 codes	 that	 expose	 non-CTS-compliant	 data	 types	 may	 not
interoperate	well	with	codes	written	in	another	language.

Table	2.1	lists	C#	intrinsic	types.

C#
Type

.NET
Type

Size
(bytes) Values/Range

byte Byte 1 0	to	255.

char Char 2 Any	Unicode	character.

bool Boolean 1 true	or	false.

sbyte* SByte 1 -128	to	127.

short Int16 2 -32,768	to	32,767.

ushort* UInt16 2 0	to	65,535.

int Int32 4 -2,147,483,648	to	2,147,483,647

uint* UInt32 4 0	to	4,294,967,295

float Single 4 -3.402823e38	to	3.402823e38

double Double 8 -1.79769313486232e308	to
1.79769313486232e308

decimal Decimal 16 ±1.0	×	10e−28	to	±7.9	×	10e28

long Int64 4
-9,223,372,036,854,775,808	to
9,223,372,036,854,775,807

ulong* UInt64 4 0	to	18446744073709551615

string String A	sequence	of	characters

object Object Base	type	of	all	other	types

Table	2.1:	C#	intrinsic	types

The	 four	 intrinsic	 types	 with	 an	 asterisk	 (sbyte,	 ushort,	 uint,	 ulong)	 are	 not	 CTS-
compliant,	which	means	other	languages	may	have	problems	consuming	them.	Use	non-
CTS-compliant	types	with	caution.

Beginners	often	have	difficulty	choosing	a	data	type.	However,	 it’s	not	hard.	The	first
rule	 is	 you	 have	 to	 determine	 if	 the	 type	 is	 a	 number	 or	 a	 non-number.	 If	 it	 is	 a	 non-
number,	then	you	can	choose	either	bool,	char,	or	string.	A	bool	is	for	something	that	has
two	 states,	 such	 as	 true/false	 or	 yes/no.	 A	 char	 type	 can	 contain	 a	 single	 Unicode
character,	 such	 as	 ‘a’,	 ‘9’,	 or	 ‘&’.	 The	 use	 of	 Unicode	 allows	 chars	 to	 also	 contain
characters	that	do	not	exist	in	the	English	alphabet,	such	as	this	Japanese	character	‘?’.	A
string	is	for	a	sequence	of	characters	and	string	 is	one	of	 the	most	 frequently	used	data
types	in	programming.

For	example,	bool	 is	 a	good	candidate	 to	 indicate	whether	or	not	a	certain	product	 is
used.	In	C#	you	would	write

bool	used;

However,	 if	a	product	can	be	 in	one	of	 three	conditions	 (new,	used,	and	unknown),	you
cannot	use	bool	as	three	states	are	too	many	for	this	data	type.	Instead,	you	might	want	to
use	a	numeric	type,	such	as	byte.

The	second	rule	in	choosing	a	data	type	is	you	want	to	use	a	type	with	the	smallest	size.
This	is	especially	true	for	numeric	types.	byte,	sbyte	and	int	can	all	hold	whole	numbers.
However,	if	it	is	for	holding	a	number	less	than	ten,	you	may	want	to	choose	byte	or	sbyte
because	they	only	use	one	byte	whereas	int	takes	four	bytes.

In	addition,	 if	a	value	cannot	be	negative,	choose	an	unsigned	 type.	For	 instance,	use
byte	instead	of	sbyte	for	age.

byte	Age;

In	 this	 case,	 byte	 is	 good	 enough	 because	 no	 one	 lives	 to	 200.	 On	 the	 other	 hand,	 to
represent	a	country	population,	you	may	want	to	use	an	int.	But	wait,	isn`t	it	a	signed	data
type	 and	 the	 number	 of	 people	 in	 a	 country	 cannot	 be	 negative?	 Yes,	 but	 the	 closest
alternative	 is	 uint,	 which	 is	 not	 CTS-compliant.	 I	 would	 avoid	 using	 any	 of	 non-CTS
types	even	if	it	would	cost	more	to	use	another	data	type.	If	I	were	to	choose	a	data	type
that	can	hold	any	number	between	zero	and	four	billion,	I’d	use	long	(eight	bytes	width)
instead	of	uint	(four	bytes	width)	unless	memory	is	a	big	issue.

The	data	types	byte,	short,	int,	and	long	can	only	hold	integers	or	whole	numbers,	for
numbers	with	decimal	points	you	need	either	a	float	or	a	double.

Variables
Variables	are	data	placeholders.	C#	is	a	strongly	typed	language,	therefore	every	variable
must	have	a	declared	type.	There	are	two	data	types	in	C#:

?	reference	types.	A	variable	of	reference	type	provides	a	reference	to	an	object.
?	primitive	types.	A	variable	of	primitive	type	holds	a	primitive.

In	addition	to	the	data	type,	a	C#	variable	also	has	a	name	or	an	identifier.	There	are	a	few
ground	rules	in	choosing	identifiers.

1.	An	identifier	is	an	unlimited-length	sequence	of	letters	and	digits.	An	identifier	must
begin	with	a	letter	or	an	underscore.

2.	An	 identifier	must	not	be	a	C#	keyword	 (given	 in	Table	2.2),	 a	bool	 literal,	 or	 the
null	literal.

3.	It	must	be	unique	within	its	scope.	Scopes	are	discussed	in	Chapter	4,	“Objects	and
Classes.”

abstract		 do	 		 in		 	 protected	 true

as	 		 double		int		 	 public		try

base	 		 else	 	 interface		 readonly		 typeof

bool		 	 enum	 		 internal		 ref	 		 uint

break		 	 event	 	 is	 		 return		ulong

byte		 	 explicit	 lock	 		 sbyte	 		 unchecked

case	 	 extern	 	 long	 	 sealed	 	 unsafe

catch		 	 false	 	 namespace		 short	 		 ushort

char	 	 finally		 new	 	 sizeof		using

checked	fixed	 	 null	 	 stackalloc	 virtual

class	 	 float		 	 object	 	 static	 	 void

const	 	 for	 	 operator	 string	 	 volatile

continue	 foreach		 out		 	 struct	 	 while

decimal	goto	 	 override		 switch		

default	if	 		 params	 	 this	 		

delegate	 implicit	 private		 throw	 	

Table	2.2:	C#	keywords

Note
You	can	use	a	keyword	as	an	identifier	if	you	prefix	it	with	@.

Here	are	some	legal	identifiers:

salary

x2

_x3

@class

row_count

Here	are	some	invalid	variables:

2x

class

c#+variable

2x	is	invalid	because	it	starts	with	a	number.	class	is	a	keyword	and	c#+variable	is	invalid
because	it	contains	an	asterisk	and	a	plus	sign.

Also	note	that	names	are	case-sensitive.	x2	and	X2	are	two	different	identifiers.

You	declare	a	variable	by	writing	the	type	first,	followed	by	the	name	plus	a	semicolon.
Here	are	some	examples	of	variable	declarations.

byte	x;

int	rowCount;

char	c;

In	the	examples	above	you	declare	three	variables:

?	The	variable	x	of	type	byte
?	The	variable	rowCount	of	type	int
?	The	variable	c	of	type	char

x,	rowCount,	and	c	are	variable	names	or	identifiers.

It	is	also	possible	to	declare	multiple	variables	having	the	same	type	on	the	same	line,
separating	two	variables	with	a	comma.	For	instance:

int	a,	b;

which	is	the	same	as

int	a;

int	b;

However,	writing	multiple	declarations	on	the	same	line	is	not	recommended	as	it	reduces
readability.

Finally,	 it	 is	 possible	 to	 assign	 a	 value	 to	 a	 variable	 at	 the	 same	 time	 the	 variable	 is
declared:

byte	x	=	12;

int	rowCount	=	1000;

char	c	=	'x';

Constants
In	 C#	 you	 can	 prefix	 a	 variable	 declaration	 with	 the	 keyword	 const	 to	make	 its	 value
unchangeable.	For	example,	 the	number	of	months	 in	a	year	never	 changes,	 so	you	can
write:

const	int	NumberOfMonths	=	12;

As	another	example,	in	a	class	that	performs	mathematical	calculation,	you	can	declare	the
variable	pi	 whose	 value	 is	 equal	 to	 22/7	 (the	 circumference	 of	 a	 circle	 divided	 by	 its
diameter,	in	math	represented	by	the	Greek	letter	?).

const	float	pi	=	(float)	22	/	7;

Once	assigned	a	value,	 the	value	cannot	change.	Attempting	to	change	it	will	result	 in	a
compile	error.

Note	 that	 the	casting	 (float)	after	22	 /	7	 is	 needed	 to	 convert	 the	value	of	division	 to
float.	Otherwise,	an	int	will	be	returned	and	the	pi	variable	will	have	a	value	of	3,	instead
of	3.142857.

Also	note	that	since	C#	uses	Unicode	characters,	you	can	simply	define	the	variable	pi
as	?	if	you	don’t	think	typing	it	is	harder	than	typing	pi.

const	float	?	=	(float)	22	/	7;

Literals
From	 time	 to	 time	you	will	need	 to	assign	values	 to	variables	 in	your	program,	 such	as
number	2	 to	an	 int	 or	 the	 character	 ‘c’	 to	 a	char.	 For	 this,	 you	need	 to	write	 the	value
representation	 in	 a	 format	 that	 the	 C#	 compiler	 understands.	 This	 source	 code
representation	 of	 a	 value	 is	 called	 literal.	 There	 are	 three	 types	 of	 literals:	 literals	 of
primitive	 types,	 string	 literals	 and	 the	 null	 literal.	 Only	 literals	 of	 primitive	 types	 are
discussed	in	this	chapter.	The	null	literal	is	discussed	in	Chapter	4,	“Objects	and	Classes”
and	string	literals	in	Chapter	5,	“Core	Classes.”

Literals	 of	 primitive	 types	 have	 four	 subtypes:	 integer	 literals,	 floating-point	 literals,
character	literals,	and	bool	literals.	Each	of	these	subtypes	is	explained	below.

Integer	Literals
Integer	 literals	 may	 be	 written	 in	 decimal	 (base	 10,	 something	 we	 are	 used	 to),
hexadecimal	(base	16),	or	octal	(base	8).	For	example,	one	hundred	can	be	expressed	as
100.	The	following	are	integer	literals	in	decimal:

2

123456

As	another	example,	the	following	code	assigns	10	to	variable	x	of	type	int.

int	x	=	10;

Hexadecimal	 integers	 are	 written	 by	 using	 the	 prefixes	 0x	 or	 0X.	 For	 example,	 the
hexadecimal	 number	 9E	 is	 written	 as	 0X9E	 or	 0x9E.	 Octal	 integers	 are	 written	 by
prefixing	the	numbers	with	0.	For	instance,	the	following	is	an	octal	number	567:

0567

Integer	literals	are	used	to	assign	values	to	variables	of	types	byte,	short,	 int,	and	 long.
Note,	however,	you	must	not	assign	a	value	 that	exceeds	 the	capacity	of	a	variable.	For
instance,	the	highest	number	for	a	byte	is	255.	Therefore,	the	following	code	generates	a
compile	error	because	500	is	too	big	for	a	byte.

byte	b	=	500;

Note	that	a	long	can	be	suffixed	with	L.

long	productId	=	9876543210L;

Floating-Point	Literals
Numbers	such	as	0.4,	1.23,	0.5e10	are	floating	point	numbers.	A	floating	point	number	has
the	following	parts:

?	a	whole	number	part
?	a	decimal	point
?	a	fractional	part
?	an	optional	exponent

Take	1.23	as	an	example.	For	this	floating	point,	the	whole	number	part	is	1,	the	fractional
part	is	23,	and	there	is	no	optional	exponent.	In	0.5e10,	0	is	the	whole	number	part,	5	the
fractional	part,	and	10	is	the	exponent.

In	 the	 .NET	Framework,	 there	 are	 two	 types	 of	 floating	 points,	 float	 and	double.	 In
both	floats	and	doubles,	a	whole	number	part	of	0	is	optional.	In	other	words,	0.5	can	be
written	as	.5.	Also,	the	exponent	can	be	represented	by	either	e	or	E.

To	express	float	literals,	you	use	one	of	the	following	formats.

Digits	.	[Digits]	[ExponentPart]	f_or_F

.	Digits	[ExponentPart]	f_or_F

Digits	ExponentPart	f_or_F

Digits	[ExponentPart]	f_or_F

Note	that	the	part	in	brackets	is	optional.

The	f_or_F	part	makes	a	floating	point	literal	a	float.	The	absence	of	this	part	makes	a
float	literal	a	double.	To	explicitly	express	a	double	literal,	you	can	suffix	it	with	D	or	d.

To	write	double	literals,	use	one	of	these	formats.

Digits	.	[Digits]	[ExponentPart]	[d_or_D]

.	Digits	[ExponentPart]	[d_or_D]

Digits	ExponentPart	[d_or_D]

Digits	[ExponentPart]	[d_or_D]

In	both	floats	and	doubles,	ExponentPart	is	defined	as	follows.

ExponentIndicator	SignedInteger

where	ExponentIndicator	is	either	e	or	E	and	SignedInteger	is	.

Signopt	Digits

and	Sign	is	either	+	or	-	and	a	plus	sign	is	optional.

Examples	of	float	literals	include	the	following:

2e1f					

8.F	 	

.5f	 	

0F	 	

3.14f	 	

9.0001e+12F

Here	are	examples	of	double	literals:

2e1

8.	 	

.5	 	

0.0D	 	

3.14	 	

9e-9d	

7e123D

Bool	Literals
The	bool	 type	 has	 two	 values,	 represented	 by	 literals	 true	 and	 false.	 For	 example,	 the
following	code	declares	a	bool	variable	includeSign	and	assigns	it	the	value	of	true.

boolean	includeSign	=	true;

Character	Literals
A	character	literal	is	a	Unicode	character	or	an	escape	sequence	enclosed	in	single	quotes.
An	escape	 sequence	 is	 the	 representation	of	 a	Unicode	 character	 that	 cannot	 be	 entered
using	the	keyboard	or	that	has	a	special	function	in	C#.	For	example,	the	carriage	return
and	linefeed	characters	are	used	to	terminate	a	line	and	do	not	have	visual	representation.
To	 express	 a	 linefeed	 character,	 you	 need	 to	 escape	 it,	 i.e.	 write	 its	 character
representation.	Also,	single	quote	characters	need	to	be	escaped	because	single	quotes	are
used	to	enclosed	characters.

Here	are	some	examples	of	character	literals:

'a'

'z'

'A'

'Z'

'0'

'ü'

'%'

Here	are	character	literals	that	are	escape	sequences:

'\b'	 the	backspace	character

'\t'	 the	tab	character

'\\'	 the	backslash

'\''	 single	quote

'\"'	 double	quote

'\n'	 linefeed	

'\r'	 carriage	return

In	 addition,	 C#	 allows	 you	 to	 escape	 a	 Unicode	 character	 so	 that	 you	 can	 express	 a
Unicode	character	using	a	sequence	of	ASCII	characters.	For	example,	the	Unicode	code
for	 the	character	 ?	 is	 2299.	You	can	write	 the	 following	character	 literal	 to	 express	 this
character:

'?'

However,	if	you	do	not	have	the	tool	to	produce	that	character	using	your	keyboard,	you
can	escape	it	like	so:

'\u2299'

Primitive	Conversions
When	 dealing	 with	 different	 data	 types,	 you	 often	 need	 to	 perform	 conversions.	 For
example,	 assigning	 the	 value	 of	 a	 variable	 to	 another	 variable	 involves	 a	 conversion.	 If
both	variables	have	the	same	type,	the	assignment	will	always	succeed.	Conversion	from	a
type	to	the	same	type	is	called	identity	conversion.	For	example,	the	following	operation	is
guaranteed	to	be	successful:

int	a	=	90;

int	b	=	a;

However,	 conversion	 to	 a	 different	 type	 is	 not	 guaranteed	 to	 be	 successful	 or	 even
possible.	There	are	two	other	kinds	of	primitive	conversions,	the	widening	conversion	and
the	narrowing	conversion.

The	Widening	Conversion
The	widening	primitive	conversion	occurs	from	one	type	to	another	type	whose	size	is	the
same	or	larger	than	that	of	the	first	type,	such	as	from	int	(32	bits)	to	long	(64	bits).	The
widening	conversion	is	permitted	in	the	following	cases:

byte	to	short,	int,	long,	float,	or	double
short	to	int,	long,	float,	or	double
char	to	int,	long,	float,	or	double
int	to	long,	float,	or	double
long	to	float	or	double
float	to	double

A	 widening	 conversion	 from	 an	 integer	 type	 to	 another	 integer	 type	 will	 not	 risk
information	loss.	At	the	same	token,	a	conversion	from	float	to	double	preserves	all	 the
information.	However,	a	conversion	from	an	int	or	a	long	to	a	float	may	result	in	loss	of
precision.

The	widening	primitive	conversion	occurs	implicitly.	You	do	not	need	to	do	anything	in
your	code.	For	example:

int	a	=	10;

long	b	=	a;	//	widening	conversion

The	Narrowing	Conversion
The	narrowing	conversion	occurs	from	a	 type	 to	a	different	 type	 that	has	a	smaller	size,
such	 as	 from	 a	 long	 (64	 bits)	 to	 an	 int	 (32	 bits).	 In	 general,	 the	 narrowing	 primitive
conversion	can	occur	in	these	cases:

short	to	byte	or	char
char	to	byte	or	short
int	to	byte,	short,	or	char
long	to	byte,	short,	or	char
float	to	byte,	short,	char,	int,	or	long
double	to	byte,	short,	char,	int,	long,	or	float

Unlike	 the	 widening	 primitive	 conversion,	 the	 narrowing	 primitive	 conversion	must	 be
explicit.	 You	 need	 to	 specify	 the	 target	 type	 in	 parentheses.	 For	 example,	 here	 is	 a
narrowing	conversion	from	long	to	int.

long	a	=	10;

int	b	=	(int)	a;	//	narrowing	conversion

The	(int)	on	the	second	line	tells	the	compiler	that	a	narrowing	conversion	should	occur.

The	narrowing	conversion	may	incur	information	loss,	 if	 the	converted	value	is	 larger
than	the	capacity	of	the	target	type.	The	preceding	example	did	not	cause	information	loss
because	 10	 is	 small	 enough	 for	 an	 int.	 However,	 in	 the	 following	 conversion,	 there	 is
some	information	loss	because	9876543210L	is	too	big	for	an	int.

long	a	=	9876543210L;

int	b	=	(int)	a;	//	the	value	of	b	is	now	1286608618

A	 narrowing	 conversion	 that	 results	 in	 information	 loss	 introduces	 a	 defect	 in	 your
program.

Operators
A	computer	program	is	a	collection	of	operations	that	together	achieve	a	certain	function.
There	 are	 many	 types	 of	 operations,	 including	 addition,	 subtraction,	 multiplication,
division,	and	bit	shifting.	In	this	section	you	will	learn	various	C#	operators.

An	operator	 performs	 an	 operation	 on	 one,	 two,	 or	 three	 operands.	Operands	 are	 the
objects	of	an	operation	and	the	operator	is	a	symbol	representing	the	action.	For	example,
here	is	an	additive	operation:

x	+	4

In	this	case,	x	and	4	and	the	operands	and	+	is	the	operator.

An	operator	may	or	may	not	return	a	result.

Note
Any	 legal	 combination	 of	 operators	 and	 operands	 are	 called	 an	 expression.	 For
example,	x	+	4	 is	an	expression.	A	boolean	expression	results	 in	either	true	or	 false.
An	 integer	 expression	 produces	 an	 integer.	 And,	 the	 result	 of	 a	 floating-point
expression	is	a	floating	point	number.

Operators	that	require	only	one	operand	are	called	unary	operators.	There	are	a	few	unary
operators	 in	 C#.	 Binary	 operators,	 the	 most	 common	 type	 of	 C#	 operator,	 take	 two
operands.	There	is	also	one	ternary	operator,	the	?	:	operator,	that	requires	three	operands.

Table	2.3	list	C#	operators.

	 =				>				<				!				~				?				:

	 ==			<=			>=			!=			&&			||			++			--

	 +				-				*				/				&				|				^				%				<<				>>				>>>

	 +=			-=			*=			/=			&=			|=			^=			%=			<<=			>>=			>>>=

Table	2.3:	C#	operators

In	C#,	there	are	six	categories	of	operators.

?	Unary	operators
?	Arithmetic	operators
?	Relational	and	conditional	operators
?	Shift	and	logical	operators
?	Assignment	operators
?	Other	operators

Each	of	these	operators	is	discussed	in	the	following	sections.

Unary	Operators
Unary	operators	operate	on	one	operand.	There	are	 six	unary	operators,	 all	discussed	 in
this	section.

Unary	Minus	Operator	–
The	 unary	minus	 operator	 returns	 the	 negative	 of	 its	 operand.	 The	 operand	 must	 be	 a
numeric	primitive	or	a	variable	of	a	numeric	primitive	type.	For	example,	in	the	following
code,	the	value	of	y	is	-4.5;

float	x	=	4.5f;

float	y	=	-x;

Unary	Plus	Operator	+
The	unary	plus	operator	returns	the	value	of	its	operand.	The	operand	must	be	a	numeric
primitive	or	a	variable	of	a	numeric	primitive	 type.	For	example,	 in	 the	 following	code,
the	value	of	y	is	4.5.

float	x	=	4.5f;

float	y	=	+x;

This	operator	does	not	have	much	significance	since	its	absence	makes	no	difference.

Increment	Operator	++
The	increment	operator	increments	the	value	of	its	operand	by	one.	The	operand	must	be	a
variable	of	a	numeric	primitive	type.	The	operator	can	appear	before	or	after	the	operand.
If	the	operator	appears	before	the	operand,	it	is	called	the	prefix	increment	operator.	If	it	is
written	after	the	operand,	it	becomes	the	postfix	increment	operator.

As	an	example,	here	is	a	prefix	increment	operator	in	action:

int	x	=	4;

++x;

After	++x,	the	value	of	x	is	5.	The	preceding	code	is	the	same	as

int	x	=	4;

x++;	

After	x++,	the	value	of	x	is	5.

However,	 if	 the	 result	 of	 an	 increment	operator	 is	 assigned	 to	 another	variable	 in	 the
same	 expression,	 there	 is	 a	 difference	 between	 the	 prefix	 operator	 and	 its	 postfix	 twin.
Consider	this	example.

int	x	=	4;

int	y	=	++x;

//	y	=	5,	x	=	5

The	prefix	increment	operator	is	applied	before	the	assignment.	x	is	incremented	to	5,	and

then	its	value	is	copied	to	y.

However,	check	the	use	of	the	postfix	increment	operator	here.

int	x	=	4;

int	y	=	x++;

//	y	=	4,	x	=	5

With	the	postfix	increment	operator,	the	value	of	the	operand	(x)	is	incremented	after	 the
value	of	the	operand	is	assigned	to	another	variable	(y).

Note	that	the	increment	operator	is	most	often	applied	to	ints.	However,	 it	also	works
with	other	types	of	numeric	primitives,	such	as	float	and	long.

Decrement	Operator	—
The	decrement	operator	decrements	the	value	of	its	operand	by	one.	The	operand	must	be
a	 variable	 of	 a	 numeric	 primitive	 type.	 Like	 the	 increment	 operator,	 there	 are	 also	 the
prefix	decrement	operator	and	the	postfix	decrement	operator.	For	instance,	the	following
code	decrements	x	and	assigns	the	value	to	y.

int	x	=	4;

int	y	=	--x;	

//	x	=	3;	y	=	3

In	the	following	example,	the	postfix	decrement	operator	is	used:

int	x	=	4;

int	y	=	x--;	

//	x	=	3;	y	=	4

Logical	Complement	Operator	!
The	logical	complement	operator	can	only	be	applied	to	a	bool	primitive	or	an	instance	of
System.Boolean.	The	value	of	this	operator	is	true	if	the	operand	is	false,	and	false	if	the
operand	is	true.	For	example:

bool	x	=	false;

bool	y	=	!x;		

//	at	this	point,	y	is	true	and	x	is	false

Bitwise	Complement	Operator	~
The	operand	of	the	bitwise	complement	operator	must	be	an	integer	primitive	or	a	variable
of	 an	 integer	 primitive	 type.	 The	 result	 is	 the	 bitwise	 complement	 of	 the	 operand.	 For
example:

int	j	=	2;

int	k	=	~j;	//	k	=	-3;	j	=	2

To	 understand	 how	 this	 operator	 works,	 you	 need	 to	 convert	 the	 operand	 to	 a	 binary
number	and	reverse	all	the	bits.	The	binary	form	of	2	in	an	integer	is:

0000	0000	0000	0000	0000	0000	0000	0010

Its	bitwise	complement	is

1111	1111	1111	1111	1111	1111	1111	1101

which	is	the	representation	of	-3	in	an	integer.

sizeof	Operator
This	 unary	 operator	 is	 used	 to	 obtain	 the	 size	 of	 a	 data	 type	 in	 bytes.	 For	 example,
sizeof(int)	returns	4.

Arithmetic	Operators
There	 are	 four	 types	 of	 arithmetic	 operations:	 addition,	 subtraction,	 multiplication,
division,	and	modulus.	Each	arithmetic	operator	is	discussed	here.

Addition	Operator	+
The	addition	operator	adds	two	operands.	The	types	of	the	operands	must	be	convertible	to
a	numeric	primitive.	For	example:

byte	x	=	3;

int	y	=	x	+	5;	//	y	=	8

Make	 sure	 the	 variable	 that	 accepts	 the	 addition	 result	 has	 a	 big	 enough	 capacity.	 For
example,	in	the	following	code	the	value	of	k	is	-294967296	and	not	4	billion.

int	j	=	2000000000;	//	2	billion

int	k	=	j	+	j;	//	not	enough	capacity.	A	bug!!!

On	the	other	hand,	the	following	works	as	expected:

long	j	=	2000000000;	//	2	billion

long	k	=	j	+	j;	//	the	value	of	k	is	4	billion

Subtraction	Operator	–
The	 subtraction	 operator	 performs	 subtraction	 between	 two	 operands.	 The	 types	 of	 the
operands	must	be	convertible	to	a	numeric	primitive	type.	As	an	example:

int	x	=	2;

int	y	=	x	–	1;					//	y	=	1

Multiplication	Operator	*
The	multiplication	operator	perform	multiplication	between	two	operands.	The	type	of	the
operands	must	be	convertible	to	a	numeric	primitive	type.	As	an	example:

int	x	=	4;

int	y	=	x	*	4;					//	y	=	16

Division	Operator	/
The	division	operator	performs	division	between	two	operands.	The	left	hand	operand	is
the	 dividend	 and	 the	 right	 hand	 operand	 the	 divisor.	 Both	 the	 dividend	 and	 the	 divisor
must	be	of	a	type	convertible	to	a	numeric	primitive	type.	As	an	example:

int	x	=	4;

int	y	=	x	/	2;					//	y	=	2

Note	that	at	runtime	a	division	operation	raises	an	error	if	the	divisor	is	zero.

The	result	of	a	division	using	the	/	operator	is	always	an	integer.	If	the	divisor	does	not

divide	the	dividends	equally,	the	remainder	will	be	ignored.	For	example

int	x	=	4;

int	y	=	x	/	3;					//	y	=	1

Modulus	Operator	%
The	modulus	operator	performs	division	between	two	operands	and	returns	the	remainder.
The	 left	 hand	 operand	 is	 the	 dividend	 and	 the	 right	 hand	 operand	 the	 divisor.	Both	 the
dividend	and	the	divisor	must	be	of	a	type	that	is	convertible	to	a	numeric	primitive	type.
For	example	the	result	of	the	following	operation	is	2.

8	%	3

Equality	Operators
There	are	 two	equality	operators,	==	 (equal	 to)	and	!=	 (not	equal	 to),	both	operating	on
two	 operands	 that	 can	 be	 integers,	 floating	 points,	 characters,	 or	bool.	 The	 outcome	 of
equality	operators	is	a	bool.

For	example,	the	value	of	c	is	true	after	the	comparison.

int	a	=	5;

int	b	=	5;

bool	c	=	a	==	b;

As	another	example,

bool	x	=	true;

bool	y	=	true;

bool	z	=	x	!=	y;

The	value	of	z	is	false	after	comparison	because	x	is	equal	to	y.

Relational	Operators
There	are	five	relational	operators:	<,	>,	<=,	and	>=.	Each	of	these	operators	is	explained
in	this	section.

The	 <,	 >,	 <=,	 and	 >=	 operators	 operate	 on	 two	 operands	 whose	 types	 must	 be
convertible	to	a	numeric	primitive	type.	Relational	operations	return	a	bool.

The	<	operator	evaluates	if	the	value	of	the	left-hand	operand	is	less	than	the	value	of
the	right-hand	operand.	For	example,	the	following	operation	returns	false:

9	<	6

The	>	operator	evaluates	if	the	value	of	the	left-hand	operand	is	greater	than	the	value	of
the	right-hand	operand.	For	example,	this	operation	returns	true:

9	>	6

The	<=	operator	tests	if	the	value	of	the	left-hand	operand	is	less	than	or	equal	to	the	value
of	the	right-hand	operand.	For	example,	the	following	operation	evaluates	to	false:

9	<=	6

The	>=	operator	tests	if	the	value	of	the	left-hand	operand	is	greater	than	or	equal	to	the
value	of	the	right-hand	operand.	For	example,	this	operation	returns	true:

9	>=	9

Conditional	Operators
There	are	three	conditional	operators:	the	AND	operator	&&,	the	OR	operator	||,	and	the	?
:	operator.	Each	of	these	is	detailed	below.

The	&&	operator
This	operator	takes	two	expressions	as	operands	and	both	expressions	must	return	a	value
that	 must	 be	 convertible	 to	 bool.	 It	 returns	 true	 if	 both	 operands	 evaluate	 to	 true.
Otherwise,	 it	 returns	 false.	 If	 the	 left-hand	 operand	 evaluates	 to	 false,	 the	 right-hand
operand	will	not	be	evaluated.	For	example,	the	following	returns	false.

(5	<	3)	&&	(6	<	9)

The	||	Operator
This	operator	takes	two	expressions	as	operands	and	both	expressions	must	return	a	value
that	must	be	convertible	to	bool.	||	returns	true	if	one	of	the	operands	evaluates	to	true.	If
the	left-hand	operand	evaluates	to	true,	the	right-hand	operand	will	not	be	evaluated.	For
instance,	the	following	returns	true.

(5	<	3)	||	(6	<	9)

The	?	:	Operator
This	operator	operates	on	three	operands.	The	syntax	is

expression1	?	expression2	:	expression3

Here,	 expression1	 must	 return	 a	 value	 convertible	 to	 bool.	 If	 expression1	 evaluates	 to
true,	expression2	is	returned.	Otherwise,	expression3	is	returned.

For	example,	the	following	expression	assigns	4	to	x.

int	x	=	(8	<	4)	?	2	:	4

Shift	Operators
A	 shift	 operator	 takes	 two	 operands	 whose	 type	 must	 be	 convertible	 to	 an	 integer
primitive.	 The	 left-hand	 operand	 is	 the	 value	 to	 be	 shifted,	 the	 right-hand	 operand
indicates	the	shift	distance.	There	are	three	types	of	shift	operators:

?	the	left	shift	operator	<<
?	the	right	shift	operator	>>
?	the	unsigned	right	shift	operator	>>>

The	Left	Shift	Operator	<<
The	 left	 shift	 operator	bit-shifts	 a	number	 to	 the	 left,	padding	 the	 right	bits	with	0.	The
value	of	n	<<	s	is	n	left-shifted	s	bit	positions.	This	is	the	same	as	multiplication	by	two	to
the	power	of	s.

For	example,	 left-shifting	an	 int	whose	value	 is	1	with	a	 shift	distance	of	3	 (1	<<	3)
results	in	8.	Again,	to	figure	this	out,	you	convert	the	operand	to	a	binary	number.

0000	0000	0000	0000	0000	0000	0000	0001

Shifting	to	the	left	3	shift	units	results	in:

0000	0000	0000	0000	0000	0000	0000	1000

which	is	equivalent	to	8	(the	same	as	1	*	23).

Another	rule	is	this.	If	the	left-hand	operand	is	an	int,	only	the	first	five	bits	of	the	shift
distance	will	be	used.	In	other	words,	the	shift	distance	must	be	within	the	range	0	and	31.
If	you	pass	an	number	greater	than	31,	only	the	first	five	bits	will	be	used.	This	is	to	say,	if
x	is	an	int,	x	<<	32	is	the	same	as	x	<<	0;	x	<<	33	is	the	same	as	x	<<	1.

If	the	left-hand	operand	is	a	long,	only	the	first	six	bits	of	the	shift	distance	will	be	used.
In	other	words,	the	shift	distance	actually	used	is	within	the	range	0	and	63.

The	Right	Shift	Operator	>>
The	right	shift	operator	>>	bit-shifts	the	left-hand	operand	to	the	right.	The	value	of	n	>>	s
is	n	right-shifted	s	bit	positions.	The	resulting	value	is	n/2s.

As	an	example,	16	>>	1	is	equal	to	8.	To	prove	this,	write	the	binary	representation	of
16.

0000	0000	0000	0000	0000	0000	0001	0000

Then,	shifting	it	to	the	right	by	1	bit	results	in.

0000	0000	0000	0000	0000	0000	0000	1000

which	is	equal	to	8.

The	Unsigned	Right	Shift	Operator	>>>

The	value	of	n	>>>	s	depends	on	whether	n	is	positive	or	negative.	For	a	positive	n,	 the
value	is	the	same	as	n	>>	s.

If	n	is	negative,	the	value	depends	on	the	type	of	n.	If	n	is	an	int,	the	value	is	(n>>s)+
(2<<~s).	If	n	is	a	long,	the	value	is	(n>>s)+(2L<<~s).

Assignment	Operators
There	are	twelve	assignment	operators:

=		+=		-=		*=		/=		%=		<<=		>>=		>>>=		&=		^=		|=

Assignment	operators	take	two	operands	whose	type	must	be	of	an	integral	primitive.	The
left-hand	operand	must	be	a	variable.	For	instance:

int	x	=	5;

Except	for	the	assignment	operator	=,	the	rest	work	the	same	way	and	you	should	see	each
of	 them	 as	 consisting	 of	 two	 operators.	 For	 example,	 +=	 is	 actually	 +	 and	 =.	 The
assignment	operator	<<=	has	two	operators,	<<	and	=.

The	two-part	assignment	operators	work	by	applying	the	first	operator	to	both	operands
and	then	assign	the	result	to	the	left-hand	operand.	For	example	x	+=	5	is	the	same	as	x	=
x	+	5.

x	-=	5	is	the	same	as	x	=	x	-	5.

x	<<=	5	is	equivalent	to	x	=	x	<<	5.

x	&=	5	produces	the	same	result	as	x	=	x	&=	5.

Integer	Bitwise	Operators	&	|	^
The	bitwise	operators	&	|	^	perform	a	bit	 to	bit	operation	on	 two	operands	whose	 types
must	be	convertible	 to	 int.	&	 indicates	an	AND	operation,	 |	 an	OR	operation,	and	^	 an
exclusive	OR	operation.	For	example,

0xFFFF	&	0x0000	=	0x0000

0xF0F0	&	0xFFFF	=	0xF0F0

0xFFFF	|	0x000F	=	0xFFFF

0xFFF0	^	0x00FF	=	0xFF0F

Logical	Operators	&	|	^
The	 logical	 operators	 &	 |	 ^	 perform	 a	 logical	 operation	 on	 two	 operands	 that	 are
convertible	 to	 boolean.	&	 indicates	 an	 AND	 operation,	 |	 an	 OR	 operation,	 and	 ^	 an
exclusive	OR	operation.	For	example,

true	&	true		=	true

true	&	false	=	false

true	|	false	=	true

false	|	false	=	false

true	^	true	=	false

false	^	false	=	false

false	^	true	=	true

Operator	Precedence
In	most	programs,	multiple	operators	often	appear	in	an	expression,	such	as.

int	a	=	1;

int	b	=	2;

int	c	=	3;

int	d	=	a	+	b	*	c;

What	is	the	value	of	d	after	the	code	is	executed?	If	you	say	9,	you’re	wrong.	It’s	actually
7.

Multiplication	 operator	 *	 takes	 precedence	 over	 addition	 operator	 +.	 As	 a	 result,
multiplication	will	be	performed	before	addition.	However,	if	you	want	the	addition	to	be
executed	first,	you	can	use	parentheses.

int	d	=	(a	+	b)	*	c;

The	latter	will	assign	9	to	d.

Table	 2.4	 lists	 all	 the	 operators	 in	 the	 order	 of	 precedence.	 Operators	 in	 the	 same
column	have	equal	precedence.

Operator

postfix	operators []	.	(params)	expr++	expr—

unary	operators ++expr	—expr	+expr	-expr	~	!

creation	or	cast new	(type)expr

multiplicative *	/	%

additive +	-

shift <<	>>	>>>

relational <	>	<=	>=

equality ==	!=

bitwise	AND &

bitwise	exclusive	OR ^

bitwise	inclusive	OR |

logical	AND &&

logical	OR ||

conditional ?	:

assignment =	+=	-=	*=	/=	%=	&=	^=	|=	<<=	>>=	>>>=

Table	2.4:	The	precedence	of	operators

Note	that	parentheses	have	the	highest	precedence.	Parentheses	can	also	make	expressions
clearer.	For	example,	consider	the	following	code:

int	x	=	5;

int	y	=	5;

boolean	z	=	x	*	5	==	y	+	20;

The	value	of	z	after	comparison	is	true.	However,	the	expression	is	far	from	clear.

You	can	rewrite	the	last	line	using	parentheses.

bool	z	=	(x	*	5)	==	(y	+	20);

which	does	not	change	the	result	because	*	and	+	have	higher	precedence	than	==,	but	this
makes	the	expression	much	clearer.

Promotion
Some	unary	operators	(such	as	+,	-,	and	~)	and	binary	operators	(such	as	+,	-,	*,	/)	cause
automatic	promotion,	i.e.	elevation	to	a	wider	type	such	as	from	byte	to	int.	Consider	the
following	code:

sbyte	x	=	5;

sbyte	y	=	-x;	//	error

The	 second	 line	 surprisingly	 causes	 an	 error	 even	 though	 a	 sbyte	 can	 accommodate	 -5.
The	reason	for	this	is	the	unary	operator	-	causes	the	result	of	-x	to	be	promoted	to	int.	To
rectify	 the	problem,	 either	 change	y	 to	 int	 or	 perform	 an	 explicit	 narrowing	 conversion
like	this.

sbyte	x	=	5;

sbyte	y	=	(sbyte)	–x;

For	unary	operators,	if	the	type	of	the	operand	is	byte,	sbyte,	short,	or	char,	the	outcome
is	promoted	to	int.

For	binary	operators,	the	promotion	rules	are	as	follows.

If	 any	of	 the	operands	 is	of	 type	byte,	sbyte,	 or	 short,	 then	both	operands	will	 be
converted	to	int	and	the	outcome	will	be	an	int.
If	 any	 of	 the	 operands	 is	 of	 type	 double,	 then	 the	 other	 operand	 is	 converted	 to
double	and	the	outcome	will	be	a	double.
If	any	of	 the	operands	 is	of	 type	 float,	 then	 the	other	operand	 is	converted	 to	float
and	the	outcome	will	be	a	float.
If	any	of	the	operands	is	of	type	long,	then	the	other	operand	is	converted	to	long	and
the	outcome	will	be	a	long.

For	example,	the	following	code	causes	a	compile	error:

short	x	=	200;

short	y	=	400;

short	z	=	x	+	y;

You	can	fix	this	by	changing	z	to	int	or	perform	an	explicit	narrowing	conversion	of	x	+	y,
such	as

short	z	=	(short)	(x	+	y);

Note	that	the	parentheses	around	x	+	y	is	required,	otherwise	only	x	would	be	converted	to
int	and	the	result	of	addition	of	a	short	and	an	int	will	be	an	int.

Comments
It	is	good	practice	to	write	comments	throughout	your	code,	sufficiently	explaining	what
functionality	a	class	provides,	what	a	method	does,	what	a	field	contains,	and	so	forth.

There	are	two	types	of	comments	in	C#,	both	with	syntax	similar	to	comments	in	C	and
C++.

Traditional	comments.	Enclose	a	traditional	comment	in	/*	and	*/.
End-of-line	comments.	Use	double	slashes	(//)	which	causes	the	rest	of	the	line	after
//	to	be	ignored	by	the	compiler.

For	example,	here	is	a	comment	that	describes	a	method

/*

		toUpperCase	capitalizes	the	characters	of	in	a	String	object

*/

public	void	toUpperCase(String	s)	{

Here	is	an	end-of-line	comment:

public	int	rowCount;	//the	number	of	rows	from	the	database

Traditional	comments	do	not	nest,	which	means

/*

		/*	comment	1	*/

		comment	2	*/

is	 invalid	because	 the	 first	*/	after	 the	first	 /*	will	 terminate	 the	comment.	As	 such,	 the
comment	above	will	have	the	extra	comment	2	*/,	which	will	generate	a	compiler	error.

On	the	other	hand,	end-of-line	comments	can	contain	anything,	including	the	sequences
of	characters	/*	and	*/,	such	as	this:

//	/*	this	comment	is	okay	*/

Summary
This	chapter	presents	C#	 language	 fundamentals,	 the	basic	concepts	and	 topics	 that	you
should	master	before	proceeding	to	more	advanced	subjects.	Topics	of	discussion	include
character	 sets,	 variables,	 primitives,	 literals,	 operators,	 operator	 precedence,	 and
comments.

Chapter	3	continues	with	statements,	another	important	topic	of	the	C#	language.

Chapter	3

Statements
A	computer	 program	 is	 a	 compilation	of	 instructions	 called	 statements.	There	 are	many
types	of	statements	in	C#	and	some—such	as	if,	while,	for,	and	switch—are	conditional
statements	that	determine	the	flow	of	the	program.	This	chapter	discusses	C#	statements,
starting	 with	 an	 overview	 and	 then	 providing	 details	 of	 each	 of	 them.	 The	 return
statement,	which	is	the	statement	to	exit	a	method,	is	discussed	in	Chapter	4,	“Objects	and
Classes.”

An	Overview	of	C#	Statements
In	 programming,	 a	 statement	 is	 an	 instruction	 to	 do	 something.	 Statements	 control	 the
sequence	of	execution	of	a	program.	Assigning	a	value	 to	a	variable	 is	an	example	of	a
statement.

x	=	z	+	5;

Even	a	variable	declaration	is	a	statement.

long	secondsElapsed;

By	contrast,	an	expression	is	a	combination	of	operators	and	operands	that	gets	evaluated.
For	example,	z	+	5	is	an	expression.

In	C#	a	statement	is	terminated	with	a	semicolon	and	multiple	statements	can	be	written
in	a	single	line.

x	=	y	+	1;	z	=	y	+	2;

However,	writing	multiple	statements	in	a	single	line	is	not	recommended	as	it	obscures
code	readability.

Note
In	C#,	an	empty	statement	is	legal	and	does	nothing:

			;

Some	 expressions	 can	 be	 made	 statements	 by	 terminating	 them	 with	 a	 semicolon.	 For
example,	x++	is	an	expression.	However,	this	is	a	statement:

x++;

Statements	 can	 be	 grouped	 in	 a	 block.	 By	 definition,	 a	 block	 is	 a	 sequence	 of	 the
following	programming	elements	within	braces:

?	statements
?	local	class	declarations
?	local	variable	declaration	statements

A	statement	and	a	statement	block	can	be	labeled.	Label	names	follow	the	same	rule	as	C#
identifiers	 and	 are	 terminated	 with	 a	 colon.	 For	 example,	 the	 following	 statement	 is
labeled	sectionA.

sectionA:	x	=	y	+	1;

And,	here	is	an	example	of	labeling	a	block:

start:	

{

				//	statements

}

The	purpose	of	 labeling	a	statement	or	a	block	 is	so	 that	 it	can	be	 referenced	by	a	goto
statement.	Using	goto	is	often	considered	bad	practice	and	is	not	discussed	in	this	book.

The	if	Statement
The	if	statement	is	a	conditional	branch	statement.	The	syntax	of	the	if	statement	is	either
one	of	these	two:

if	(booleanExpression)	

{

				statement(s)

}

if	(booleanExpression)	

{

				statement(s)

}	

else	

{

				statement(s)

}

If	 booleanExpression	 evaluates	 to	 true,	 the	 statements	 in	 the	 block	 following	 the	 if
statement	 are	 executed.	 If	 it	 evaluates	 to	 false,	 the	 statements	 in	 the	 if	 block	 are	 not
executed.	If	booleanExpression	evaluates	to	false	and	there	is	an	else	block,	the	statements
in	the	else	block	are	executed.

For	example,	in	the	following	if	statement,	the	if	block	will	be	executed	if	x	is	greater
than	4.

if	(x	>	4)	

{

				//	statements

}

In	the	following	example,	the	if	block	will	be	executed	if	a	 is	greater	than	3.	Otherwise,
the	else	block	will	be	executed.

if	(a	>	3)	

{

				//	statements

}	

else	

{

				//	statements

}

Note	that	the	good	coding	style	suggests	that	statements	in	a	block	be	indented.

If	 you	 are	 evaluating	 a	 bool	 in	 your	 if	 statement,	 it’s	 not	 necessary	 to	 use	 the	 ==
operator	like	this:

bool	fileExist	=	...

if	(fileExist	==	true)

Instead,	you	can	simply	write

if	(fileExists)	

By	the	same	token,	instead	of	writing

if	(fileExists	==	false)	

write

if	(!fileExists)

If	 the	 expression	 to	 be	 evaluated	 is	 too	 long	 to	 be	 written	 in	 a	 single	 line,	 it	 is
recommended	that	you	use	two	units	of	indentation	for	subsequent	lines.	For	example.

if	(numberOfLoginAttempts	<	numberOfMaximumLoginAttempts

								||	numberOfMinimumLoginAttempts	>	y)	

{

				y++;

}

If	there	is	only	one	statement	in	an	if	or	else	block,	the	braces	are	optional.

if	(a	>	3)

				a++;

else

				a	=	3;

However,	this	may	pose	what	is	called	the	dangling	else	problem.	Consider	the	following
example.	 (Note	 that	 System.Console.WriteLine	 is	 C#	 code	 for	 printing	 a	 string	 or	 a
value.)

if	(a	>	0	||	b	<	5)

				if	(a	>	2)

								System.Console.WriteLine("a	>	2");

				else

								System.Console.WriteLine("a	<	2");

The	else	statement	is	dangling	because	it	is	not	clear	which	if	statement	the	else	statement
is	associated	with.	An	else	statement	is	always	associated	with	the	immediately	preceding
if.	Using	braces	makes	your	code	clearer.

if	(a	>	0	||	b	<	5)	

{

				if	(a	>	2)	

				{

								System.Console.WriteLine("a	>	2");

				}	

				else	

				{

								System.Console.WriteLine("a	<	2");

				}

}

If	there	are	multiple	selections,	you	can	also	use	if	with	a	series	of	else	statements.

if	(booleanExpression1)	

{

				//	statements

}	

else	if	(booleanExpression2)	

{

				//	statements

}	

...

else	

{

				//	statements

}

For	example

if	(a	==	1)	

{

				System.Console.WriteLine("one");

}	

else	if	(a	==	2)	

{

				System.Console.WriteLine("two");

}	

else	if	(a	==	3)	

{

				System.Console.WriteLine("three");

}	

else	

{

				System.Console.WriteLine("invalid");

}

In	this	case,	the	else	statements	that	are	immediately	followed	by	an	if	do	not	use	braces.
See	 also	 the	 discussion	 of	 the	 switch	 statement	 in	 the	 section,	 “The	 switch	 Statement”
later	in	this	chapter.

The	while	Statement
In	many	occasions,	you	may	want	 to	perform	an	action	several	 times	 in	a	 row.	 In	other
words,	you	have	a	block	of	code	that	you	want	executed	repeatedly.	Intuitively,	this	can	be
done	by	repeating	the	lines	of	code.	For	instance,	a	beep	can	be	achieved	using	this	line	of
code:

System.Console.Beep();	

And,	to	wait	for	half	a	second	you	use	this	statement.

System.Threading.Thread.Sleep(500);

Therefore,	 to	 produce	 three	 beeps	with	 a	 500	milliseconds	 interval	 between	 two	 beeps,
you	can	simply	repeat	the	same	code:

System.Console.Beep();

System.Threading.Thread.Sleep(500);

System.Console.Beep();

System.Threading.Thread.Sleep(500);

System.Console.Beep();

However,	there	are	circumstances	where	repeating	code	does	not	work.	Here	are	some	of
those:

?	The	number	of	repetition	is	higher	than	5,	which	means	the	number	of	lines	of	code
increases	five	fold.	If	 there	 is	a	 line	that	you	need	to	fix	 in	 the	block,	copies	of	 the
same	line	must	also	be	modified.
?	If	the	number	of	repetitions	is	not	known	in	advance.

A	much	cleverer	way	is	to	put	the	repeated	code	in	a	loop.	This	way,	you	only	write	the
code	once	but	you	can	instruct	C#	to	execute	the	code	any	number	of	times.	One	way	to
create	 a	 loop	 is	 by	 using	 the	while	 statement,	 which	 is	 the	 topic	 of	 discussion	 of	 this
section.	Another	way	is	to	use	the	for	statement,	which	is	explained	in	the	next	section.

The	while	statement	has	the	following	syntax.

while	(booleanExpression)	

{

				statement(s)

}

Here,	 statement(s)	 will	 be	 executed	 as	 long	 as	 booleanExpression	 evaluates	 to	 true.	 If
there	 is	 only	 a	 single	 statement	 inside	 the	braces,	 you	may	omit	 the	braces.	For	 clarity,
however,	you	should	always	use	braces	even	when	there	is	only	one	statement.

As	an	example	of	 the	while	 statement,	 the	following	code	prints	 integer	numbers	 that
are	less	than	three.

int	i	=	0;

while	(i	<	3)	

{

				System.Console.WriteLine(i);

				i++;

}

Note	 that	 the	execution	of	 the	code	 in	 the	 loop	 is	dependent	on	 the	value	of	 i,	which	 is
incremented	with	each	iteration	until	it	reaches	3.

To	produce	three	beeps	with	an	interval	of	500	milliseconds,	use	this	code:

int	j	=	0;

while	(j	<	3)	{

				System.Console.Beep();	

				try	

				{

								Thread.currentThread().sleep(500);

				}	

				catch	(Exception	e)	

				{

				}

				j++;

}

Sometimes,	 you	 use	 an	 expression	 that	 always	 evaluates	 to	 true	 (such	 as	 the	 boolean
literal	true)	but	relies	on	the	break	statement	to	escape	from	the	loop.

int	k	=	0;

while	(true)	

{

				System.Console.WriteLine(k);

				k++;

				if	(k	>	2)	{

								break;

				}		

}

You	will	 learn	about	 the	break	 statement	 in	 the	 section,	 “The	break	Statement”	 later	 in
this	chapter.

The	do-while	Statement
The	 do-while	 statement	 is	 like	 the	 while	 statement,	 except	 that	 the	 associated	 block
always	gets	executed	at	least	once.	Its	syntax	is	as	follows:

do	

{

				statement(s)

}	while	(booleanExpression);

With	do-while,	you	put	the	statement(s)	to	be	executed	after	the	do	keyword.	Just	like	the
while	 statement,	 you	 can	 omit	 the	 braces	 if	 there	 is	 only	 one	 statement	 within	 them.
However,	always	use	braces	for	the	sake	of	clarity.

For	example,	here	is	an	example	of	the	do-while	statement:

int	i	=	0;

do	

{

				System.Console.WriteLine(i);

				i++;

}	while	(i	<	3);

This	prints	the	following	to	the	console:

0

1

2

The	 following	 do-while	 demonstrates	 that	 at	 least	 the	 code	 in	 the	 do	 block	 will	 be
executed	once	even	though	the	initial	value	of	j	used	to	test	the	expression	j	<	3	evaluates
to	false.

int	j	=	4;

do	

{

				System.Console.WriteLine(j);

				j++;

}	while	(j	<	3);

This	prints	the	following	on	the	console.

4

The	for	Statement
The	for	statement	is	like	the	while	statement,	i.e.	you	use	it	to	enclose	code	that	needs	to
be	executed	multiple	times.	However,	for	is	more	complex	than	while.

The	for	statement	starts	with	an	initialization,	followed	by	an	expression	evaluation	for
each	iteration	and	the	execution	of	a	statement	block	if	the	expression	evaluates	to	true.
An	update	statement	will	also	be	executed	after	 the	execution	of	 the	statement	block	for
each	iteration.

The	for	statement	has	following	syntax:

for	(init	;	booleanExpression	;	update)	{

				statement(s)

}

Here,	 init	 is	 an	 initialization	 that	 will	 be	 performed	 before	 the	 first	 iteration,
booleanExpression	is	a	boolean	expression	which	will	cause	the	execution	of	statement(s)
if	it	evaluates	to	true,	and	update	is	a	statement	that	will	be	executed	after	the	execution
of	the	statement	block.	init,	expression,	and	update	are	optional.

The	for	statement	will	stop	only	if	one	of	the	following	conditions	is	met:

booleanEpression	evaluates	to	false
?	A	break	or	continue	statement	is	executed
?	A	runtime	error	occurs.

It	 is	common	to	declare	a	variable	and	assign	a	value	 to	 it	 in	 the	 initialization	part.	The
variable	 declared	 will	 be	 visible	 to	 the	 expression	 and	 update	 parts	 as	 well	 as	 to	 the
statement	block.

For	example,	the	following	for	statement	loops	five	times	and	each	time	prints	the	value
of	i.

for	(int	i	=	0;	i	<	3;	i++)	

{

				System.Console.WriteLine(i);

}

The	for	statement	starts	by	declaring	an	int	named	i	and	assigning	0	to	it:

int	i	=	0;

It	then	evaluates	the	expression	i	<	3,	which	evaluates	to	true	since	i	equals	0.	As	a	result,
the	statement	block	is	executed,	and	the	value	of	i	is	printed.	It	then	performs	the	update
statement	i++,	which	increments	i	to	1.	That	concludes	the	first	loop.

The	 for	 statement	 then	 evaluates	 the	 value	 of	 i	 <	 3	 again.	 The	 result	 is	 again	 true
because	i	equals	1.	This	causes	the	statement	block	to	be	executed	and	1	is	printed	on	the
console.	 After	 that,	 the	 update	 statement	 i++	 is	 executed,	 incrementing	 i	 to	 2.	 That

concludes	the	second	loop.

Next,	 the	expression	 i	<	3	 is	evaluated	and	 the	result	 is	 true	because	 i	equals	2.	This
causes	 the	 statement	 block	 to	 be	 run	 and	 2	 is	 printed	 on	 the	 console.	 Afterwards,	 the
update	statement	 i++	 is	 executed,	 causing	 i	 to	be	equal	 to	3.	This	 concludes	 the	 second
loop.

Finally,	the	expression	i	<	3	is	evaluated	again,	and	the	result	is	false.	This	stops	the	for
loop.

This	is	what	you	will	see	on	the	console:

0

1

2

Note	that	the	variable	i	is	not	visible	anywhere	else	since	it	is	declared	within	the	for	loop.

Note	also	that	if	the	statement	block	within	for	only	consists	of	one	statement,	you	can
remove	the	braces,	so	in	this	case	the	above	for	statement	can	be	rewritten	as:

for	(int	i	=	0;	i	<	3;	i++)	

				System.Console.WriteLine(i);

However,	using	braces	even	if	there	is	only	one	statement	makes	your	code	clearer.

Here	is	another	example	of	the	for	statement.

for	(int	i	=	0;	i	<	3;	i++)	

{

				if	(i	%	2	==	0)	

				{

								System.Console.WriteLine(i);

				}

}

This	one	loops	three	times.	For	each	iteration	the	value	of	i	is	tested.	If	i	is	even,	its	value
is	printed.	The	result	of	the	for	loop	is	as	follows:

0

2

The	 following	 for	 loop	 is	 similar	 to	 the	 previous	 case,	 but	 uses	 i	 +=	 2	 as	 the	 update
statement.	As	a	result,	it	only	loops	twice,	when	i	equals	0	and	when	it	is	2.

for	(int	i	=	0;	i	<	3;	i	+=	2)	

{

				System.Console.WriteLine(i);

}

The	result	is

0

2

A	statement	that	decrements	a	variable	is	often	used	too.	Consider	the	following	for	loop:

for	(int	i	=	3;	i	>	0;	i--)	

{

				System.Console.WriteLine(i);

}

which	prints:

3

2

1

The	 initialization	 part	 of	 the	 for	 statement	 is	 optional.	 In	 the	 following	 for	 loop,	 the
variable	j	is	declared	outside	the	loop,	so	potentially	j	can	be	used	from	other	points	in	the
code	outside	the	for	statement	block.

int	j	=	0;

for	(;	j	<	3;	j++)	{

				System.Console.WriteLine(j);

}

//	j	is	visible	here

As	mentioned	previously,	 the	update	 statement	 is	 optional.	The	 following	 for	 statement
moves	the	update	statement	to	the	end	of	the	statement	block.	The	result	is	the	same.

int	k	=	0;

for	(;	k	<	3;)	

{

				System.Console.WriteLine(k);

				k++;

}

In	theory,	you	can	even	omit	the	booleanExpression	part.	For	example,	the	following	for
statement	does	not	have	one,	and	 the	 loop	 is	only	 terminated	with	 the	break	 statement.
See	the	section,	“The	break	Statement”	for	more	information.

int	m	=	0;

for	(;	;)	

{

				System.Console.WriteLine(m);

				m++;

				if	(m	>	4)	

				{

								break;

				}

}

If	you	compare	for	and	while,	you’ll	see	that	you	can	always	replace	the	while	statement
with	for.	This	is	to	say	that

while	(expression)	

{

				...

}

can	always	be	written	as

for	(;	expression;)	

{

				...

}

Note
In	 addition,	 foreach	 can	 iterate	 over	 an	 array	or	 a	 collection.	See	Chapters	 5,	 “Core
Classes”	and	Chapter	14,	“Collections”	for	discussions	of	foreach.

The	break	Statement
The	 break	 statement	 is	 used	 to	 break	 from	 an	 enclosing	 do,	 while,	 for,	 or	 switch
statement.	It	is	a	compile	error	to	use	break	anywhere	else.

For	example,	consider	the	following	code

int	i	=	0;

while	(true)	

{

				System.Console.WriteLine(i);

				i++;

				if	(i	>	3)	{

								break;

				}

}

The	result	is

0

1

2

3

Note	that	break	breaks	the	loop	without	executing	the	rest	of	the	statements	in	the	block.

Here	is	another	example	of	break,	this	time	in	a	for	loop.

int	m	=	0;

for	(;	;)	

{

				System.Console.WriteLine(m);

				m++;

				if	(m	>	4)	{

								break;

				}

}

The	continue	Statement
The	 continue	 statement	 is	 like	 break	 but	 it	 only	 stops	 the	 execution	 of	 the	 current
iteration	and	causes	control	to	begin	with	the	next	iteration.

For	example,	the	following	code	prints	the	number	0	to	9,	except	5.

for	(int	i	=	0;	i	<	10;	i++)	

{

				if	(i	==	5)	{

								continue;

				}

				System.Console.WriteLine(i);

}

When	i	is	equals	to	5,	the	expression	of	the	if	statement	evaluates	to	true	and	causes	the
continue	statement	to	be	called.	As	a	result,	the	statement	below	it	that	prints	the	value	of
i	is	not	executed	and	control	continues	with	the	next	loop,	i.e.	for	i	equal	to	6.

The	switch	Statement
An	alternative	 to	 a	 series	 of	else	 if,	 as	 discussed	 in	 the	 last	 part	 of	 the	 section,	 “The	 if
Statement,”	is	the	switch	statement.	switch	allows	you	to	choose	a	block	of	statements	to
run	from	a	selection	of	code,	based	on	the	return	value	of	an	expression.	The	expression
used	in	the	switch	statement	must	return	an	int,	a	String,	or	an	enumerated	value.

Note
The	String	class	 is	discussed	 in	Chapter	5,	“Core	Classes”	and	enumerated	values	 in
Chapter	12,	“Enums.”

The	syntax	of	the	switch	statement	is	as	follows.

switch(expression)	

{

				case	value_1	:	

								[statement(s);]

								[break	|	goto	label;]	

				case	value_2	:	

								[statement(s);]

								[break	|	goto	label;]	

						.

						.

						.

				case	value_n	:	

								[statement(s);]

								[break	|	goto	label;]	

				default:	

								[statement(s);]

								[break	|	goto	label;]	

}

After	each	statements	in	a	switch	case,	you	can	either	break	or	jump	to	a	label	using	goto.
The	statements	and	jump	statement	are	optional.

Here	is	an	example	of	the	switch	statement.	If	the	value	of	i	is	1,	“One	player	is	playing
this	game.”	is	printed.	If	the	value	is	2,	“Two	players	are	playing	this	game	is	printed.”	If
the	value	is	3,	“Three	players	are	playing	this	game	is	printed.	For	any	other	value,	“You
did	not	enter	a	valid	value.”	will	be	printed.

int	i	=	...;

switch	(i)	

{

				case	1	:	

								System.Console.WriteLine(

																"One	player	is	playing	this	game.");

								break;	

				case	2	:	

								System.Console.WriteLine(

																"Two	players	are	playing	this	game.");

								break;

				case	3	:	

								System.Console.WriteLine(

																"Three	players	are	playing	this	game.");

								break;

				default:		

								System.Console.WriteLine(

																"You	did	not	enter	a	valid	value.");

								break;

}

Summary
The	sequence	of	execution	of	a	C#	program	is	controlled	by	statements.	 In	 this	chapter,
you	 have	 learned	 the	 following	 control	 statements:	 if,	 while,	 do-while,	 for,	 break,
continue,	 and	 switch.	 Understanding	 how	 to	 use	 these	 statements	 is	 crucial	 to	 writing
correct	programs.

Chapter	4

Objects	and	Classes
This	chapter	introduces	you	to	objects	and	classes.	If	you	are	new	to	OOP,	you	may	want
to	 read	 this	 chapter	 carefully	 because	 a	 good	 understanding	 of	 OOP	 is	 key	 to	 writing
quality	programs.

This	chapter	starts	by	explaining	what	an	object	is	and	what	constitutes	a	class.	It	then
teaches	you	how	to	create	objects	in	C#	using	the	new	keyword,	how	objects	are	stored	in
memory,	 how	 classes	 can	 be	 organized	 into	 namespaces,	 how	 to	 use	 access	 control	 to
achieve	 encapsulation,	 and	 how	 C#	 manages	 unused	 objects.	 In	 addition,	 method
overloading	and	static	class	members	are	explained.

What	Is	a	C#	Object?
When	developing	an	application	in	an	OOP	language,	you	create	a	model	that	resembles	a
real-life	situation	to	solve	your	problem.	Take	for	example	a	company	payroll	application,
which	 can	 calculate	 the	 take	 home	 pay	 of	 an	 employee	 and	 the	 amount	 of	 income	 tax
payable.	 Such	 an	 application	would	 have	 a	Company	 object	 to	 represent	 the	 company
using	 the	 application,	Employee	 objects	 that	 represent	 the	 employees	 working	 for	 the
company,	Tax	objects	to	represent	the	tax	details	of	each	employee,	and	so	on.	Before	you
can	 start	 programming	 such	 applications,	 however,	 you	 need	 to	 understand	 what	 C#
objects	are	and	how	to	create	them.

Let’s	begin	with	a	look	at	objects	in	life.	Objects	are	everywhere,	living	(persons,	pets,
etc)	 and	 otherwise	 (cars,	 houses,	 streets,	 etc);	 concrete	 (books,	 televisions,	 etc)	 and
abstract	 (love,	 knowledge,	 tax	 rate,	 regulations,	 and	 so	 forth).	 Every	 object	 has	 two
features:	attributes	and	actions.	For	example,	the	following	are	some	of	a	car’s	attributes:

?	color
?	number	of	tires
?	plate	number

Additionally,	a	car	can	perform	these	actions:

?	run
?	brake

As	another	example,	a	dog	has	the	following	attributes:	color,	age,	type,	weight,	and	so	on.
And	it	also	can	bark,	run,	urinate,	sniff,	etc.

A	C#	 object	may	 have	 attribute(s)	 and	 perform	 action(s).	 In	 C#,	 attributes	 are	 called
fields	and	actions	are	called	methods.	In	other	programming	languages	fields	and	methods
may	be	called	by	other	names.	For	example,	methods	are	often	called	functions.

Both	fields	and	methods	are	optional,	meaning	some	C#	objects	may	not	have	fields	but
have	methods	and	some	others	may	have	 fields	but	not	methods.	Some,	of	course,	have
both	attributes	and	methods	and	some	have	neither.

How	do	you	create	an	object	in	C#?	To	create	an	object,	you	need	a	class,	a	blueprint
for	the	object.	Classes	are	explained	in	the	next	section.

C#	Classes
A	class	 is	a	blueprint	or	a	 template	for	creating	objects	of	 identical	 type.	If	you	have	an
Employee	 class,	 you	 can	 create	 any	 number	 of	 Employee	 objects.	 To	 create	 Street
objects,	 you	 need	 a	Street	 class.	A	 class	 determines	what	 kind	 of	 objects	 you	 get.	 For
example,	if	you	create	an	Employee	class	that	has	Age	and	Position	fields,	all	Employee
objects	created	out	of	this	Employee	class	will	have	Age	and	Position	fields	as	well.	No
more	no	less.	The	class	determines	the	objects.

In	summary,	classes	are	an	OOP	tool	that	enable	programmers	to	create	the	abstraction
of	 a	 problem.	 In	OOP,	 abstraction	 is	 the	 act	 of	 using	 programming	 objects	 to	 represent
real-world	objects.	As	such,	programming	objects	do	not	need	to	have	the	details	of	real-
world	objects.	For	instance,	if	an	Employee	object	in	a	payroll	application	needs	only	be
able	to	work	and	receive	a	salary,	then	the	Employee	class	needs	only	two	methods,	Work
and	ReceiveSalary.	OOP	abstraction	 ignores	 the	fact	 that	a	 real-world	employee	can	do
many	other	things	including	eat,	run,	kiss,	and	kick.	Classes	are	the	fundamental	building
blocks	 of	 a	C#	 program.	A	C#	 beginner	 needs	 to	 consider	 three	 things	when	writing	 a
class:

?	the	class	name
?	the	fields
?	the	methods

There	are	other	things	that	can	be	present	in	a	class,	but	they	will	be	discussed	later.

A	class	declaration	must	use	the	keyword	class	followed	by	a	class	name.	Also,	a	class
has	a	body	within	braces.	Here	is	the	general	syntax	for	classes:

class	className	

{

				[class	body]

}

For	example,	Listing	4.1	shows	a	C#	class	named	Employee,	where	the	lines	in	bold	are
the	class	body.

Listing	4.1:	The	Employee	class

class	Employee	

{

				int	Age;

				double	Salary;

}

Note
By	convention,	class	names	capitalize	 the	initial	of	each	word.	For	example,	here	are
some	 names	 that	 follow	 this	 convention:	Employee,	Boss,	DateUtility,	 PostOffice,
RegularRateCalculator.	This	type	of	naming	convention	is	known	as	Pascal	naming

convention.	The	other	convention,	 the	camel	naming	convention,	capitalize	the	initial
of	each	word,	except	the	first	word,	e.g.	postOffice,	dateUtility,	crayon.

A	class	definition	in	C#	must	be	saved	in	a	file	with	.cs	extension.	The	file	name	does	not
have	to	be	the	same	as	the	class	name.

Note
To	 visualize	 models	 in	 an	 object-oriented	 program,	 software	 engineers	 often	 use
standard	 notations	 defined	 in	 Unified	 Modeling	 Language	 (UML).	 In	 UML	 class
diagrams,	a	class	is	represented	by	a	rectangle	that	consists	of	three	parts:	the	topmost
part	is	the	class	name,	the	middle	part	is	the	list	of	fields,	and	the	bottom	part	is	the	list
of	methods.	(See	Figure	4.1)	The	fields	and	methods	can	be	hidden	if	showing	them	is
not	important.

Figure	4.1:	The	Employee	class	in	the	UML	class	diagram

Fields
Fields	are	variables.	They	can	be	value	 types	or	 references	 to	objects.	For	example,	 the
Employee	class	in	Listing	4.1	has	two	fields,	Age	and	Salary,	which	are	likely	of	value
type.	However,	 a	 field	can	also	 refer	 to	an	object.	For	 instance,	 an	Empoyee	 class	may
have	an	Address	field	of	type	Address,	which	is	a	class	that	represents	a	street	address:

Address	address;

In	 other	 words,	 an	 object	 can	 contain	 other	 objects,	 that	 is	 if	 the	 class	 of	 the	 former
contains	variables	that	reference	to	the	latter.

Field	names	should	 follow	Pascal	naming	convention.	The	 initial	of	each	word	 in	 the
field	is	written	with	a	capital	letter.	For	example,	here	are	some	“good”	field	names:	Age,
MaxAge,	Address,	ValidAddress,	NumberOfRows.

Methods
Methods	 define	 actions	 that	 a	 class’s	 objects	 (or	 instances)	 can	 do.	 A	 method	 has	 a
declaration	part	 and	 a	 body.	The	declaration	part	 consists	 of	 a	 return	value,	 the	method
name,	and	a	list	of	arguments.	The	body	contains	code	that	performs	the	action.

To	declare	a	method,	use	the	following	syntax:

returnType	methodName	(listOfArguments)

The	 return	 type	of	 a	method	can	be	 an	 intrinsic	data	 type,	 an	object,	 or	 void.	The	void
return	type	means	that	the	method	returns	nothing.	The	declaration	part	of	a	method	is	also
called	the	signature	of	the	method.

For	example,	here	is	the	GetSalary	method	that	returns	a	double.

double	GetSalary()

The	GetSalary	method	does	not	take	arguments.

As	another	example,	here	is	a	method	that	returns	an	Address	object.

Address	GetAddress()

And,	here	is	a	method	that	accepts	an	argument:

int	Negate(int	number)

If	a	method	takes	more	than	one	argument,	two	arguments	are	separated	by	a	comma.	For
example,	the	following	Add	method	takes	two	ints	and	return	an	int.

int	Add(int	a,	int	b)

The	Method	Main
A	special	method	called	Main	provides	the	entry	point	 to	an	application.	An	application
normally	has	many	classes	and	only	one	of	the	classes	needs	to	have	a	Main	method.	This
method	allows	the	class	containing	it	to	be	invoked.

In	 C#	 the	 return	 value	 of	Main	 can	 be	 void	 or	 int.	 It	 also	 may	 accept	 a	 string[]
argument.	The	following	are	valid	Main	methods,	only	one	of	them	needs	to	be	present	in
your	application.

The	signature	of	the	Main	method	is	as	follows.

static	void	Main()

static	void	Main(string[]	args)

static	int	Main()

static	int	Main(string[]	args)

If	 you	 wonder	 why	 there	 is	 the	 word	 “static”	 before	Main,	 you	 will	 get	 the	 answer
towards	the	end	of	this	chapter.

If	your	Main	method	accepts	arguments,	you	can	pass	arguments	to	it	when	running	the
class.	 To	 pass	 arguments,	 type	 them	 after	 the	 executable	 name.	 Two	 arguments	 are
separated	by	a	space.

MyApp	arg1	arg2	arg3

All	 arguments	must	 be	 passed	 as	 strings.	 For	 instance,	 to	 pass	 two	 arguments,	 “1”	 and
“safeMode”	when	running	the	Counter	class,	you	would	type	this:

Counter	1	safeMode

To	pass	line	arguments	to	the	Main	method	in	Visual	Studio,	right-click	your	project	name
in	Solution	Explorer	and	click	Properties,	then	select	Debug	in	the	Properties	pane.	You
will	 see	 the	 Debug	 pane	 like	 the	 one	 in	 Figure	 4.2.	 Enter	 your	 argument(s)	 in	 the
Command	line	arguments	box	and	save	the	arguments	by	pressing	Ctrl+S.

Figure	4.2:	Passing	line	arguments	in	Visual	Studio

Constructors
Every	class	must	have	at	least	one	constructor.	Otherwise,	no	objects	could	be	created	out
of	the	class	and	the	class	would	be	useless.	As	such,	if	your	class	does	not	explicitly	define
a	constructor,	the	compiler	adds	one	for	you.

A	constructor	 is	used	 to	construct	an	object.	A	constructor	 looks	 like	a	method	and	 is
sometimes	called	a	constructor	method.	However,	unlike	a	method,	a	constructor	does	not
have	a	return	value,	not	even	void.	Additionally,	a	constructor	must	have	the	same	name
as	the	class.

The	syntax	for	a	constructor	is	as	follows.

constructorName	(listOfArguments)	

{

				[constructor	body]

}

A	constructor	may	have	zero	argument,	in	which	case	it	is	called	a	no-argument	(or	no-arg,
for	 short)	 constructor.	 Constructor	 arguments	 can	 be	 used	 to	 initialize	 the	 fields	 in	 the
object.

If	the	C#	compiler	adds	a	no-arg	constructor	to	a	class	because	the	class	has	none,	the
addition	will	be	implicit,	i.e.	it	will	not	be	displayed	in	the	source	file.	However,	if	there	is
a	 constructor,	 regardless	 of	 the	 number	 of	 arguments	 it	 accepts,	 no	 constructor	 will	 be
added	to	the	class	by	the	compiler.

You	can	have	multiple	constructors	in	your	class	as	long	as	each	has	a	different	set	of
arguments.	As	 an	 example,	 Listing	 4.2	 adds	 two	 constructors	 to	 the	Employee	 class	 in
Listing	4.1.

Listing	4.2:	The	Employee	class	with	constructors

public	class	Employee	

{

				public	int	Age;

				public	double	Salary;

				public	Employee()

				{

				}

				public	Employee(int	AgeValue,	double	SalaryValue)

				{

								Age	=	AgeValue;

								Salary	=	SalaryValue;

				}

}

The	 second	 constructor	 is	 particularly	 useful.	 Without	 it,	 to	 assign	 values	 to	 age	 and
position,	you	would	need	to	write	extra	lines	of	code	to	initialize	the	fields:

Employee	employee	=	new	Employee();

employee.Age	=	20;

employee.Salary	=	90000.00;

With	the	second	constructor,	you	can	pass	the	values	at	the	same	time	you	create	an	object.

new	Employee(20,	90000.00);

The	new	keyword	is	new	to	you,	but	you	will	learn	how	to	use	it	in	the	next	section.

Properties
A	property	is	like	a	field	but	you	can	exert	more	control	on	a	property.	For	example,	you
can	 create	 a	 property	 that	 is	 read-only	 or	 write-only	 or	 with	 both	 read	 and	 write
permissions.	A	property	 normally	 has	 a	 backing	 field,	 that	 is	 used	 to	 store	 the	 property
value.	However,	you	can	compute	or	manipulate	the	value	before	it	is	stored	or	returned.

You	 implement	 a	 property	 using	 special	methods	 called	 accessors.	 The	 names	 of	 the
methods	are	get	and	set.	get	returns	the	value	of	the	property	and	set	 is	used	to	assign	a
value.	A	read-only	property	has	a	get	accessor	and	no	set	accessor.	A	write-only	property
has	a	set	accessor	and	no	get	accessor.	A	read-write	property	has	both	get	and	set.

Listing	4.3	shows	a	Student	class	with	a	property	member	named	Grade.	Note	that	it
has	a	backing	field	called	grade	used	to	store	the	property	value.

Listing	4.3:	A	property

class	Student

{

				private	double	grade;	//	a	backing	field

				public	double	Grade

				{

								get	{

												return	grade;

								}

								set	{

												grade	=	value;

								}

				}

}

Note	 that	 the	special	keyword	value	 in	 the	set	method	defines	 the	value	assigned	 to	 the
property.

You	can	access	the	Grade	property	just	you	would	a	field:

Student	student	=	new	Student();

student.Grade	=	3.7;

Console.WriteLine("Grade:	"	+	student.Grade);

As	another	example,	the	Director	class	in	Listing	4.4	features	a	read-only	property	named
FullName	 .	 It	 has	 no	 set	 accessor	 and	 its	 value	 is	 computed	 from	 FirstName	 and
LastName	fields.

Listing	4.4:	A	property

class	Director

{

				public	string	FirstName;

				public	string	LastName;

				public	double	FullName

				{

								get	

								{

												return	FirstName	+	"	"	+	LastName;

								}

				}

}

Class	Members	in	the	UML	Class	Diagram
Figure	 4.3	 depicts	 a	 class	 in	 a	 UML	 class	 diagram.	 The	 diagram	 provides	 a	 quick
summary	of	 all	 fields	and	methods.	UML	allows	you	 to	 include	 field	 types	and	method
signatures.	For	example,	Figure	4.3	presents	a	Book	class	with	five	fields	and	one	method.

Figure	4.3:	Including	class	member	information	in	a	class	diagram

Note	that	in	a	UML	class	diagram	a	field	and	its	type	is	separated	by	a	colon.	A	method’s
argument	list	is	presented	in	parentheses	and	its	return	type	is	written	after	a	colon.

Creating	Objects
Now	that	you	know	how	to	write	a	class,	it	is	time	to	learn	how	to	create	an	object	from	a
class.	An	 object	 is	 also	 called	 an	 instance.	 The	word	 construct	 is	 often	 used	 in	 lieu	 of
create,	thus	constructing	an	Employee	object.	Another	term	commonly	used	is	instantiate.
Instantiating	the	Employee	class	is	the	same	as	creating	an	instance	of	Employee.

There	are	a	number	of	ways	to	create	an	object,	but	the	most	common	one	is	by	using
the	 new	 keyword.	 new	 is	 always	 followed	 by	 the	 constructor	 of	 the	 class	 to	 be
instantiated.	For	example,	to	create	an	Employee	object,	you	would	write:

new	Employee();

Most	 of	 the	 time,	 you	will	want	 to	 assign	 the	 created	object	 to	 an	object	 variable	 (or	 a
reference	variable),	so	that	you	can	manipulate	the	object	 later.	To	achieve	this,	you	just
need	to	declare	an	object	reference	with	the	same	type	as	the	object.	For	instance:

Employee	employee	=	new	Employee();

Here,	employee	is	an	object	reference	of	type	Employee.

Once	you	have	an	object,	you	can	call	its	methods	and	access	its	fields,	by	using	the	object
reference	that	was	assigned	the	object.	You	use	a	period	(.)	to	call	a	method	or	a	field.	For
example:

objectReference.MethodName

objectReference.FieldName

The	 following	 code,	 for	 instance,	 creates	 an	Employee	 object	 and	 assigns	 values	 to	 its
Age	and	Salary	fields:

Employee	employee	=	new	Employee();

employee.Age	=	24;

employee.Salary	=	50000;

When	an	object	is	created,	the	CLR	also	performs	initialization	that	assigns	default	values
to	fields.

Note	 that	 you	 never	 have	 to	 explicitly	 destroy	 your	 objects	 to	 free	 up	memory.	 The
garbage	collector	inside	the	CLR	takes	care	of	it.	This,	however,	does	not	entail	that	you
can	create	as	many	objects	as	you	want	because	memory	is	(still)	limited	and	it	takes	some
time	for	the	garbage	collector	to	start.	That’s	right,	you	can	still	run	out	of	memory.

Nullity	Checking
A	reference	variable	may	reference	nothing.	Such	a	variable	 is	said	 to	be	null.	Calling	a
method	or	field	on	a	null	object	variable	will	cause	an	error.	Basically,	your	program	will
crash.

Here	are	are	ways	of	checking	for	nullity.

The	null	Keyword
A	 reference	 variable	 refers	 to	 an	 object.	 There	 are	 times,	 however,	 when	 a	 reference
variable	does	not	have	a	value	(the	variable	is	not	referencing	an	object).	Such	a	reference
variable	 is	 said	 to	 have	 a	 null	 value.	 For	 example,	 the	 following	 class	 level	 reference
variable	is	of	type	Book	but	has	not	been	assigned	a	value;

Book	book;	//	book	is	null

If	you	declare	a	local	reference	variable	within	a	method	but	do	not	assign	an	object	to	it
and	later	try	to	use	it,	you	will	need	to	assign	null	to	it	to	stop	the	compiler’s	whining:

Book	book	=	null;

Class-level	 reference	 variables	will	 be	 initialized	when	 an	 instance	 is	 created,	 therefore
you	do	not	need	to	assign	null	to	them.

Trying	to	access	the	field	or	method	of	a	null	variable	reference	raises	an	error,	such	as
in	the	following	code:

Book	book	=	null;

Console.WriteLine(book.title);	//	error	because	book	is	null

You	can	test	if	a	reference	variable	is	null	by	using	the	==	operator.	For	instance.

if	(book	==	null)	

{

				book	=	new	Book();

}

Console.WriteLine(book.title);

The	null	coalescing	operator	(??)
The	??	operator	is	called	the	null-coalescing	operator.	Its	syntax	is	as	follows.

operand-1	??	operand-2

The	operator	returns	the	left-hand	operand	if	the	operand	is	not	null;	otherwise	it	returns
the	 right	 hand	 operand.	 For	 example,	 in	 the	 following	 statement,	 newBook	 will	 be
assigned	book1	if	book1	is	not	null	or	book2	if	book1	is	null.

Book	newBook	=	book1	??	book2;

The	Null-Conditional	Operator
Accessing	an	object’s	member	may	cause	an	error	if	 the	object	is	null.	For	example,	 the
following	throws	an	exception	if	book	is	null.

string	bookTitle	=	book.title;

A	new	feature	 in	C#	6.0,	 the	null-conditional	operator	 (?.)	 is	used	 to	 test	 for	null	before
performing	a	member	access.	For	instance,	the	following	statement	will	assign	the	book’s
title	to	bookTitle	if	book	is	not	null.	Otherwise,	the	value	of	bookTitle	will	be	null.

string	bookTitle	=	book?.title;

Using	the	null-conditional	operator	is	shorter	than	using	the	null	keyword.	Here	is	how
you	would	do	the	same	thing	with	null:

string	bookTitle	=	null;

if	(book	!=	null)

{

				bookTitle	=	book.title;

}

Objects	in	Memory
When	you	declare	a	variable	in	your	class,	either	in	the	class	level	or	in	the	method	level,
you	allocate	memory	space	for	data	that	will	be	assigned	to	the	variable.	For	value	types,
it	 is	easy	 to	calculate	 the	amount	of	memory	 taken.	For	example,	declaring	an	 int	costs
you	four	bytes	and	declaring	a	 long	 sets	you	back	eight	bytes.	However,	calculation	 for
reference	variables	is	different.

When	 a	 program	 runs,	 some	memory	 space	 is	 allocated	 for	 data.	 This	 data	 space	 is
logically	divided	into	two,	 the	stack	and	 the	heap.	Value	 types	are	allocated	 in	 the	stack
and	objects	reside	in	the	heap.

When	you	declare	a	value	type,	a	few	bytes	are	allocated	in	the	stack.	When	you	declare
a	reference	variable,	some	bytes	are	also	set	aside	in	the	stack,	but	the	memory	does	not
contain	an	object’s	data,	it	contains	the	address	of	the	object	in	the	heap.	In	other	words,
when	you	declare

Book	book;

some	bytes	are	set	aside	for	the	reference	variable	book.	The	initial	value	of	book	is	null
because	there	is	not	yet	object	assigned	to	it.	When	you	write

Book	book	=	new	Book();

you	create	an	instance	of	Book,	which	is	stored	in	the	heap,	and	assign	the	address	of	the
instance	 to	 the	 reference	 variable	book.	 A	 C#	 reference	 variable	 is	 like	 a	 C++	 pointer
except	that	you	cannot	manipulate	a	reference	variable.	In	C#,	a	reference	variable	is	used
to	 access	 the	member	of	 the	object	 it	 is	 referring	 to.	Therefore,	 if	 the	Book	 class	has	 a
public	method	named	Review,	you	can	call	the	method	by	using	this	syntax:

book.Review();

An	object	can	be	referenced	by	more	than	one	reference	variable.	For	example,

Book	myBook	=	new	Book();

Book	yourBook	=	myBook;

The	second	line	copies	the	value	of	myBook	to	yourBook.	As	a	result,	yourBook	is	now
referencing	the	same	Book	object	as	myBook.

Figure	4.4	illustrates	memory	allocation	for	a	Book	object	referenced	by	myBook	and
yourBook.

Figure	4.4:	An	object	referenced	by	two	variables

On	the	other	hand,	the	following	code	creates	two	different	Book	objects:

Book	myBook	=	new	Book();

Book	yourBook	=	new	Book();

The	memory	allocation	for	this	code	is	illustrated	in	Figure	4.5.

Figure	4.5:	Two	objects	referenced	by	two	variables

Now,	how	about	an	object	that	contains	another	object?	For	example,	consider	the	code	in
Listing	4.5	that	shows	an	Employee	class	that	contains	an	Address	class.

Listing	4.5:	The	Employee	class	that	contains	another	class

public	class	Employee	

{

				Address	address	=	new	Address();

}

When	you	create	an	Employee	object	using	the	following	code,	an	Address	object	is	also
created.

Employee	employee	=	new	Employee();

Figure	4.6	depicts	the	position	of	each	object	in	the	heap.

Figure	4.6:	An	object	“within”	another	object

It	turns	out	that	the	Address	object	is	not	really	inside	the	Employee	object.	However,	the
address	 reference	 variable	 in	 the	Employee	 object	 references	 the	Address	 object,	 thus
allowing	the	Employee	object	 to	manipulate	the	Address	object.	Because	in	C#	there	 is
no	way	of	 accessing	an	object	 except	 through	a	 reference	variable	 assigned	 the	object’s
address,	no	one	else	can	access	the	Address	object	‘within’	the	Employee	object.

C#	Namespaces
Namespaces	allow	you	 to	organize	your	classes	and	other	 types	 to	create	a	 truly	unique
name	for	your	type	and	avoid	naming	conflicts.	A	namespace	may	contain	any	number	of
classes	and	other	types	and	even	another	namespace.	Here	is	a	class	that	is	declared	within
a	namespace.

namespace	MyNamespace

{

				class	MyClass

				{

				}

}

If	you	do	not	declare	your	class	in	a	namespace,	 the	C#	compiler	adds	a	default	one	for
you,	the	global	namespace.

It	is	possible	to	define	a	namespace	in	multiple	declarations,	such	as	the	following:

namespace	YourNamespace

{

				class	Class1

				{

				}

}

namespace	YourNamespace

{

				class	Class2

				{

				}

}

.NET	 Framework	 also	 uses	 namespaces	 to	 organize	 its	 class	 library.	 For	 example,	 the
Console	class	that	you’ve	been	using	to	print	a	string	belongs	to	the	System	namespace.

To	use	types	in	a	namespace,	you	use	the	using	directive	at	the	beginning	of	your	file.
For	instance,	if	you	declare

using	System;

you’ll	be	able	to	use	members	of	the	System	namespace	in	your	code.	Therefore,	you	can
simply	write

Console.WriteLine("Program	terminated.);

If	you	don’t	import	System,	you	will	have	to	include	the	fully-qualified	name	of	the	class
you	use,	e.g.

System.Console.WriteLine("Program	terminated.);

Encapsulation	and	Class	Access	Control
An	OOP	principle,	encapsulation	is	a	mechanism	that	protects	parts	of	an	object	that	need
to	be	secure	and	exposes	only	parts	that	are	safe	to	be	exposed.	The	television	is	a	good
example	of	encapsulation.	Inside	it	are	 thousands	of	electronic	components	 that	 together
form	 the	 parts	 that	 can	 receive	 signals	 and	 decode	 them	 into	 images	 and	 sound.	 These
components	 are	 not	 to	 be	 exposed	 to	 users,	 however,	 so	 Sony	 and	 other	manufacturers
wrap	them	in	a	strong	metallic	or	plastic	cover	that	does	not	break	easily.	For	a	television
to	 be	 easy	 to	 use,	 it	 exposes	 buttons	 that	 the	 user	 can	 touch	 to	 turn	 on	 and	 off	 the	 set,
adjust	brightness,	turn	up	and	down	the	volume,	and	so	on.

Back	 to	 encapsulation	 in	OOP,	 let’s	 take	 as	 an	 example	 a	 class	 that	 can	 encode	 and
decode	messages.	The	class	exposes	two	methods	called	Encode	and	Decode,	which	users
of	 the	class	can	access.	 Internally,	 there	are	dozens	of	variables	used	 to	store	 temporary
values	 and	 other	 methods	 that	 perform	 supporting	 tasks.	 The	 author	 of	 the	 class	 hides
these	variables	and	other	methods	because	allowing	access	to	them	may	compromise	the
security	of	 the	encoding/decoding	algorithms.	Besides,	exposing	 too	many	 things	makes
the	class	harder	to	use.	As	you	can	see	later,	encapsulation	is	a	powerful	feature.

C#	supports	encapsulation	through	access	control.	Access	control	is	governed	by	access
control	modifiers,	 or	 simply	 called	 access	 modifiers	 for	 brevity.	 There	 are	 four	 access
modifiers	in	C#:	public,	protected,	 internal,	and	private.	Access	control	modifiers	can
be	applied	to	classes	or	class	members.	A	class	can	be	either	public	or	internal.	A	class	by
default	have	internal	accessibility	unless	it	is	explicitly	declared	as	public.	Public	classes
can	be	accessed	by	other	 types	 in	 any	namespace.	By	contrast,	 an	 internal	 class	 is	only
accessible	to	other	types	in	the	same	namespace.	A	class	without	an	access	modifier	has	an
internal	access	level.

For	example,	ClassA	in	the	following	snippet	is	a	public	class.

namespace	CompanyA

{

				public	class	ClassA

				{

				}

}

ClassA	can	be	accessed	by	any	type	within	the	CompanyA	namespace	as	well	as	by	other
types	outside	the	namespace.	On	the	other	hand,	the	following	ClassB	and	ClassC	classes
only	accessible	to	other	types	in	the	CompanyA	namespace.	This	is	because	both	ClassB
and	ClassC	have	internal	accessibility.

namespace	CompanyA

{

				internal	class	ClassB

				{

				}

				class	ClassC

				{

				}

}

A	class	 in	 the	default	namespace	can	be	used	from	any	other	classes	 in	any	namespace,
even	though	the	class	is	not	public.	For	example,	in	this	snippet	the	Book	class	can	use	the
Chapter	 class,	 which	 is	 not	 enclosed	 in	 a	 namespace	 and	 is	 therefore	 in	 the	 default
namespace.

class	Chapter

{

}

namespace	MyCompany

{

				class	Book

				{

								Chapter	chapter	=	new	Chapter();

				}

}

On	 the	 other	 hand,	 this	 will	 not	 compile,	 because	 House	 is	 an	 internal	 class	 of	 the
YourCompany	namespace	and	cannot	be	accessed	from	a	class	in	another	namespace.

namespace	YourCompany

{

				class	House

				{

				}

}

namespace	MyCompany

{

				class	Person

				{

								House	house	=	new	House();	//	compile	error

				}

}

You	can	turn	the	House	class	to	public	and	access	it	from	another	namespace,	like	this:

namespace	YourCompany

{

				public	class	House

				{

				}

}

namespace	MyCompany

{

				using	YourCompany;

				class	Person

				{

								House	house	=	new	House();	//	compile	error

				}

}

Note	that	a	namespace	does	not	take	a	modifier	and	is	always	public.

Now	 let’s	 turn	 to	 class	 members.	 A	 class	 member	 can	 have	 one	 of	 these	 five
accessibility	levels.

?	public.	Access	is	not	restricted.
?	 protected.	 Access	 is	 limited	 to	 the	 containing	 class	 or	 types	 derived	 from	 the
containing	class.
internal.	Access	is	limited	to	the	current	assembly.
protected	internal.	Access	is	limited	to	the	current	assembly	or	types	derived	from
the	containing	class.
private.	Access	is	limited	to	the	containing	type.

A	 public	 class	 member	 can	 be	 accessed	 by	 any	 other	 classes	 that	 can	 access	 the	 class
containing	 the	 class	member.	 For	 example,	 the	ToString	method	 of	 the	System.Object
class	 in	 the	 .NET	 Framework	 class	 library	 is	 public.	 Therefore,	 once	 you	 construct	 an
Object	object,	you	can	call	its	ToString	method	because	ToString	is	public.

Object	obj	=	new	Object();

obj.ToString();

Recall	that	you	access	a	class	member	by	using	this	syntax:

referenceVariable.memberName

In	 the	preceding	 code,	obj	 is	 a	 reference	 variable	 to	 an	 instance	 of	System.Object	 and
ToString	is	the	method	defined	in	the	System.Object	class.

A	protected	 class	member	has	 a	more	 restricted	 access	 level.	 It	 can	be	 accessed	only
from	 the	 containing	 class	 or	 a	 child	 class	 of	 the	 containing	 class.	 A	 class’s	 private
members	can	only	be	accessed	from	inside	the	same	class.

How	about	constructors?	Access	levels	to	constructors	are	the	same	as	those	for	fields
and	 methods.	 Therefore,	 constructors	 can	 have	 public,	 protected,	 internal,	 protected
internal,	 and	 private	 access	 levels.	 You	 may	 think	 that	 all	 constructors	 must	 be	 public
because	the	intention	of	having	a	constructor	is	to	make	the	class	instantiatable.	However,
to	your	 surprise,	 this	 is	not	 so.	Some	constructors	are	made	private	 so	 that	 their	 classes
cannot	be	instantiated	by	using	the	new	keyword.	Private	constructors	are	normally	used
in	singleton	classes.	If	you	are	interested	in	this	topic,	there	are	articles	on	this	topic	that
you	can	find	easily	on	the	Internet.

Note

In	a	UML	class	diagram,	you	can	 include	 information	on	class	member	access	 level.
Prefix	a	public	member	with	+,	a	protected	member	with	#	and	a	private	member	with
-.	Members	with	no	prefix	are	regarded	as	having	the	default	access	level.	Figure	4.7
shows	the	Manager	class	with	members	having	various	access	levels.

Figure	4.7:	Including	class	member	access	level	in	a	UML	class	diagram

The	this	Keyword
You	use	the	this	keyword	from	any	method	or	constructor	 to	 refer	 to	 the	current	object.
For	example,	if	you	have	a	class-level	field	having	the	same	name	as	a	local	variable,	you
can	use	this	syntax	to	refer	to	the	former:

this.field

A	common	use	is	in	the	constructor	that	accepts	values	used	to	initialize	fields.	Consider
the	Box	class	in	Listing	4.6.

Listing	4.6:	The	Box	class

namespace	Project04a

{

				public	class	Box

				{

								int	Length;

								int	Width;

								int	Height;

								public	Box(int	length,	int	width,	int	height)

								{

												this.Length	=	length;

												this.Width	=	width;

												this.Height	=	height;

								}

				}

}

The	Box	class	has	three	fields,	Length,	Width,	and	Height.	Its	constructor	accepts	three
arguments	 used	 to	 initialize	 the	 fields.	 It	 is	 very	 convenient	 to	 use	 length,	width,	 and
height	as	the	parameter	names	because	they	reflect	what	they	are.	Inside	the	constructor,
length	refers	to	the	length	argument,	not	the	length	field.	this.length	refers	to	the	class-
level	length	field.

Using	Other	Classes
It	is	common	to	use	other	classes	from	the	class	you	are	writing.	Using	classes	in	the	same
namespace	as	your	current	class	is	allowed	by	default.	However,	to	use	classes	in	another
namespace,	you	must	first	import	the	namespace	using	the	keyword	using.	For	example,
to	 use	 the	members	 of	 the	System	 namespace,	 such	as	 the	System.Console	 class,	 from
your	code,	you	must	have	the	following	using	statement:

namespace	Project04a

{

				using	System;

				public	class	Demo

				{

								public	void	Test()

								{

												//	can	use	System.Console	because	we	imported	System

												Console.WriteLine("Testing…");

								}

				}

}

Note	that	using	statements	must	be	inside	the	namespace	but	before	the	class	declaration.
The	using	keyword	can	appear	multiple	times	in	a	namespace.

namespace	Project04a

{

				using	System;

				using	System.IO;

				...

}

The	only	way	to	use	classes	that	belong	to	other	namespaces	without	importing	them	is	to
use	 the	 fully	 qualified	 names	 of	 the	 classes	 in	 your	 code.	 For	 example,	 the	 following
statement	uses	System.Console	without	importing	System.

System.Console.Beep();

If	you	are	using	 identically-named	classes	 from	different	namespaces,	you	must	use	 the
fully	 qualified	 names	 when	 declaring	 the	 classes.	 For	 example,	 in	 Listing	 4.7	 the
MyCompany.Person	class	uses	the	Project1.Chair	and	Project2.Chair	classes.	Without
fully-qualified	names,	it	is	ambiguous	which	Chair	class	is	being	used.

Listing	4.7:	Using	fully	qualified	names

namespace	Project1

{

				public	class	Chair

				{

				}

}

namespace	Project2

{

				public	class	Chair

				{

				}

}

namespace	MyCompany

{

				class	Person

				{

								static	void	Main()

								{

												Project1.Chair	p1Chair	=	new	Project1.Chair();

												Project2.Chair	p2Chair	=	new	Project2.Chair();

								}

				}

}

A	 class	 that	 uses	 another	 class	 is	 said	 to	 “depend	 on”	 the	 latter.	 A	 UML	 diagram	 that
depicts	this	dependency	is	shown	in	Figure	4.8.

Figure	4.8:	Dependency	in	the	UML	class	diagram

A	dependency	relationship	is	represented	by	a	dashed	line	with	an	arrow.	In	Figure	4.8	the
Book	class	is	dependent	on	Chapter	because	the	GetChapter	method	returns	a	Chapter
object.

Static	Members
You	have	 learned	 that	 to	access	a	public	 field	or	method	of	an	object,	you	use	a	period
after	the	object	reference,	such	as:

//	Create	an	instance	of	Book

Book	book	=	new	Book();

//	access	the	Review	method

book.Review();

This	 implies	 that	 you	 must	 create	 an	 object	 first	 before	 you	 can	 access	 its	 members.
However,	in	previous	chapters,	there	were	examples	that	used	System.Console.WriteLine
to	print	values	 to	 the	console.	You	may	have	noticed	 that	you	could	call	 the	WriteLine
method	without	first	having	to	construct	a	Console	object.	How	come	you	did	not	have	to
do	something	like	this?

Console	console	=	new	Console();

console.WriteLine("a	string");

Rather,	you	use	a	period	after	the	class	name:

Console.WriteLine("a	string");

C#	 (and	many	OOP	 languages)	 supports	 the	 notion	 of	 static	members,	 which	 are	 class
members	that	can	be	called	without	first	instantiating	the	class.	The	WriteLine	method	in
System.Console	 is	 static,	which	 explains	why	 you	 can	 use	 it	without	 first	 instantiating
System.Console.

Static	members	are	not	tied	to	class	instances.	Rather,	they	can	be	called	without	having
an	 instance.	 In	 fact,	 the	method	Main,	which	acts	 as	 the	 entry	point	 to	 a	 class,	 is	 static
because	it	must	be	called	before	any	object	is	created.

To	 create	 a	 static	member,	 you	 use	 the	 keyword	 static	 in	 front	 of	 a	 field	 or	method
declaration.	If	there	is	an	access	modifier,	the	static	keyword	may	come	before	or	after	the
access	modifier.	These	two	are	correct:

public	static	int	NumberOfPages;

static	public	int	NumberOfPages;

However,	the	first	form	is	more	often	used.

For	example,	Listing	4.8	shows	the	MathUtil	class	with	a	static	method:

Listing	4.8:	The	MathUtil	class

namespace	Project04a

{

				class	MathUtil

				{

								public	static	int	Add(int	a,	int	b)

								{

												return	a	+	b;

								}

				}

}

To	use	the	Add	method,	you	can	simply	call	it	like	this:

MathUtil.Add(a,	b)

The	term	instance	methods/fields	are	used	to	refer	to	non-static	methods	and	fields.

From	 inside	 a	 static	 method,	 you	 cannot	 call	 instance	 methods	 or	 instance	 fields
because	they	only	exist	after	you	create	an	object.	You	can	access	other	static	methods	or
fields	from	a	static	method,	however.

A	common	confusion	that	a	beginner	often	encounter	is	when	they	cannot	compile	their
class	because	they	are	calling	instance	members	from	the	Main	method.	Listing	4.9	shows
such	a	class.

Listing	4.9:	Calling	non-static	members	from	a	static	method

namespace	Project04a

{

				using	System;

				public	class	StaticDemo

				{

								public	int	B	=	8;

								static	void	Main()

								{

												Console.WriteLine(B);

								}

				}

}

The	 line	 in	 bold	 causes	 a	 compile	 error	 because	 it	 attempts	 to	 access	 non-static	 field	B
from	the	Main	static	method.	There	are	two	solutions	to	this.

1.	Make	B	static

2.	Create	an	instance	of	the	class,	then	access	B	by	using	the	object	reference.

Which	 solution	 is	 appropriate	 depends	 on	 the	 situation.	 It	 often	 takes	 years	 of	 OOP
experience	to	come	up	with	a	good	decision	that	you’re	comfortable	with.

Note
You	can	only	declare	a	static	variable	in	a	class	level.	You	cannot	declare	local	static
variables	even	if	the	method	is	static.

How	 about	 static	 reference	 variables?	 You	 can	 declare	 static	 reference	 variables.	 The
variable	 will	 contain	 an	 address,	 but	 the	 object	 referenced	 is	 stored	 in	 the	 heap.	 For
instance

static	Book	book	=	new	Book();

Static	reference	variables	provide	a	good	way	of	exposing	the	same	object	that	needs	to	be
shared	among	other	different	objects.

Note
In	UML	class	diagrams,	static	members	are	underlined.	For	example,	Figure	4.9	shows
the	MathUtil	class	with	the	static	method	Add.

Figure	4.9:	Static	members	in	UML	class	diagrams

Variable	Scope
You	have	seen	that	you	can	declare	variables	in	several	different	places:

?	In	a	class	body	as	class	fields.	Variables	declared	here	are	referred	to	as	class-level
variables.
?	As	parameters	of	a	method	or	constructor.
?	In	a	method’s	body	or	a	constructor’s	body.
?	Within	a	statement	block,	such	as	inside	a	while	or	for	block.

Now	it’s	time	to	learn	the	scope	of	variables.

Variable	scope	refers	to	the	accessibility	of	a	variable.	The	rule	is	that	variables	defined
in	a	block	are	only	accessible	from	within	the	block.	The	scope	of	the	variable	is	the	block
in	which	it	is	defined.	For	example,	consider	the	following	for	statement.

for	(int	x	=	0;	x	<	5;	x++)	

{

				System.Console.WriteLine(x);

}

The	variable	x	 is	declared	within	the	for	statement.	As	a	result,	x	 is	only	available	from
within	this	for	block.	It	is	not	accessible	or	visible	from	anywhere	else.

Rule	 number	 2	 is	 a	 nested	 block	 can	 access	 variables	 declared	 in	 the	 outer	 block.
Consider	this	code.

for	(int	x	=	0;	x	<	5;	x++)	

{

				for	(int	y	=	0;	y	<	3;	y++)	

				{

								System.Console.WriteLine(x);

								System.Console.WriteLine(y);

				}

}

The	preceding	code	is	valid	because	the	inner	for	block	can	access	x,	which	is	declared	in
the	outer	for	block.

Following	 the	 rules,	 variables	 declared	 as	 method	 parameters	 can	 be	 accessed	 from
within	 the	method	body.	Also,	class-level	variables	are	accessible	 from	anywhere	 in	 the
class.

If	a	method	declares	a	 local	variable	that	has	the	same	name	as	a	class-level	variable,
the	 former	 will	 ‘shadow’	 the	 latter.	 To	 access	 the	 class-level	 variable	 from	 inside	 the
method	body,	use	the	this	keyword.

Method	Overloading
Method	 names	 are	 very	 important	 and	 should	 reflect	 what	 the	 methods	 do.	 In	 many
circumstances,	 you	may	want	 to	 use	 the	 same	name	 for	multiple	methods	 because	 they
have	 similar	 functionality.	 For	 instance,	 the	 method	 PrintString	 may	 take	 a	 String
argument	and	prints	the	string.	However,	 the	same	class	may	also	provide	a	method	that
prints	 part	 of	 a	 String	 and	 accepts	 two	 arguments,	 the	 String	 to	 be	 printed	 and	 the
character	position	 to	 start	printing	 from.	You	want	 to	call	 the	 latter	method	PrintString
too	 because	 it	 does	 print	 a	String,	 but	 that	would	 be	 the	 same	 as	 the	 first	PrintString
method.

Thankfully,	it	is	okay	in	C#	to	have	multiple	methods	having	the	same	name,	as	long	as
each	method	accept	different	sets	of	argument	types.	In	other	words,	in	our	example,	it	is
legal	to	have	these	two	methods	in	the	same	class.

public	void	PrintString(String	string)

public	void	PrintString(String	string,	int	offset)

This	feature	is	called	method	overloading.

The	 return	 value	 of	 the	 method	 is	 not	 taken	 into	 consideration.	 As	 such,	 these	 two
methods	must	not	exist	in	the	same	class:

public	int	CountRows(int	number);

public	string	countRows(int	number);

This	is	because	a	method	can	be	called	without	assigning	its	return	value	to	a	variable.	In
such	situations,	having	the	above	CountRows	methods	would	confuse	the	compiler	as	it
would	not	know	which	method	is	being	called	when	you	write

System.Console.Write(countRows(3));.

A	trickier	situation	is	depicted	in	the	following	methods	whose	signatures	are	very	similar.

public	int	PrintNumber(int	i)	

{

				return	i*2;

}

public	long	PrintNumber(long	l)	

{

				return	l*3;

}

It	 is	 legal	 to	 have	 these	 two	methods	 in	 the	 same	 class.	 However,	 you	 might	 wonder,
which	method	is	being	called	if	you	write	PrintNumber(3)?

The	key	 is	 to	 recall	 from	Chapter	2,	 “Language	Fundamentals”	 that	 a	numeric	 literal
will	be	translated	into	an	int	unless	it	is	suffixed	L	or	l..	Therefore,	printNumber(3)	will

invoke	this	method:

public	int	PrintNumber(int	i)

To	call	the	second,	pass	a	long:

printNumber(3L);

Note
Static	methods	can	also	be	overloaded.

Summary
In	 this	 chapter	 you	 learned	 how	 to	 create	 objects	 in	 C#	 using	 the	 new	 keyword,	 how
objects	are	stored	in	memory,	how	classes	can	be	organized	into	namespaces,	how	to	use
access	control	to	achieve	encapsulation,	and	how	C#	manages	unused	objects.	In	addition,
you	learned	about	method	overloading	and	static	class	members.

Chapter	5

Core	Classes
Before	 discussing	 other	 object-oriented	 programming	 (OOP)	 features,	 let’s	 examine
several	important	classes	that	are	commonly	used	in	C#.	These	classes	are	included	in	the
class	library	that	come	with	.NET	Framework.	Mastering	them	will	help	you	understand
the	examples	that	accompany	the	next	OOP	lessons.

The	most	prominent	class	of	all	is	definitely	System.Object.	However,	it	is	hard	to	talk
about	 this	 class	 without	 first	 covering	 inheritance,	 which	 I	 will	 do	 in	 Chapter	 6,
“Inheritance.”	Therefore,	System.Object	 is	 only	 discussed	 briefly	 in	 this	 chapter.	Right
now	 I	 will	 focus	 on	 classes	 that	 you	 can	 use	 in	 your	 programs,	 starting	 with
System.String	 and	 System.Text.StringBuffer.	 Then,	 I	 will	 discuss	 arrays	 and	 the
System.Console	class.	The	complete	documentation	 for	 these	classes	and	other	 types	 in
the	.NET	Framework	class	library	is	available	online	here.

http://msdn.microsoft.com/en-us/library/gg145045

System.Object
The	System.Object	class	represents	a	C#	object.	In	fact,	all	classes	are	direct	or	indirect
descendants	of	this	class.	Since	you	have	not	learned	inheritance	(which	is	only	given	in
Chapter	 6,	 “Inheritance”),	 the	 word	 descendant	 probably	 makes	 no	 sense	 to	 you.
Therefore,	I	will	briefly	discuss	some	of	the	methods	in	this	class	and	revisit	this	class	in
Chapter	6.

Here	are	some	of	the	methods	in	the	Object	class.

public	boolean	Equals(Object	obj)

Compares	this	object	with	the	passed-in	object.	A	class	must	implement	this	method	to
provide	a	means	to	compare	the	contents	of	its	instances.

public	Type	GetType()

Returns	a	System.Type	object	of	this	object.	See	the	section	“System.Type”	for	more
information	on	the	Type	class	later	in	this	chapter.

public	virtual	int	GetHashCode()

Returns	a	hash	code	value	for	this	object.

public	virtual	string	ToString()

Returns	the	string	description	of	this	object.

Do	not	worry	about	the	keyword	virtual	used	in	some	method	signatures	for	now.

System.String
I	have	not	seen	a	serious	C#	program	that	does	not	use	the	System.String	class.	It	is	one
of	the	most	often	used	classes	and	definitely	one	of	the	most	important.

A	String	object	represents	a	string,	i.e.	a	piece	of	text.	You	can	also	think	of	a	String	as
a	 sequence	 of	 Unicode	 characters.	 A	 String	 object	 can	 consists	 of	 any	 number	 of
characters.	A	String	that	has	zero	character	is	called	an	empty	String.	String	objects	are
constant.	Once	they	are	created,	 their	values	cannot	be	changed.	Because	of	 this,	String
instances	are	said	to	be	immutable.

You	 could	 construct	 a	 String	 object	 using	 the	 new	 keyword	 and	 one	 of	 the	 String
class’s	constructors,	but	this	is	not	common.	Most	often,	you	simply	assign	a	string	literal
to	a	String	variable.

System.String	s	=	".NET	is	cool";

This	produces	a	String	object	containing	“.NET	is	cool”	and	assigns	a	reference	to	it	to	s.

An	even	easier	way	to	create	a	String	is	by	using	the	string	type,	an	alias	for	the	String
class.	The	statement	above	can	be	rewritten	more	concisely	like	this.

string	s	=	".NET	is	cool";

A	string	can	include	characters	that	are	escape	sequences	(that	you	learned	in	Chapter	2,
“Language	Fundamentals”),	like	this:

string	fileName	=	"C:\\win.txt";

fileName	will	contain	the	value	of	C:\win.txt	because	\	represents	the	backslash	character.
The	following	will	raise	an	error	because	the	compiler	does	not	know	what	\w	is.

string	wrongFileName	=	"C:\win.txt";

You	can,	however,	force	the	compiler	to	parse	string	literals	differently	by	prefixing	them
with	@.	 For	 example,	 the	 following	 is	 correct	 because	 \	 is	 not	 considered	 the	 escape
character	but	is	regarded	as	a	normal	character.

String	myFileName	=	@"C:\win.txt";

String	Concatenation
You	 can	 concatenate	 two	 strings	 by	 using	 the	 +	 operator	 or	 the	String	 class’s	Concat
method.

Here	is	an	example	of	using	the	+	operator.	After	the	following	statements	are	executed,
greeting	will	contain	“Aloha”.

string	al	=	"Al";

string	oha	=	"oha";

string	greeting	=	al	+	oha;

Alternatively,	you	can	use	the	String	class’s	Concat	method	to	concatenate	two	strings:

string	al	=	"Al";

string	oha	=	"oha";

string	greeting	=	String.Concat(al,	oha);

Note	that	since	Concat	 is	a	static	method,	you	can	call	 it	without	first	creating	a	String
object.

Comparing	Two	Strings
String	comparison	is	one	of	the	most	useful	operations	in	C#	programming.	The	easiest	is
to	compare	two	strings	is	by	using	the	==	operator.	In	addition,	you	can	use	the	Equals	or
CompareTo	method.	If	you	want	to	test	if	two	string	variables	reference	the	same	instance,
use	Object.ReferenceEquals().

Consider	the	following	code.

string	a	=	".NET	is	cool";

string	b	=	".NET	is	cool";

Here,	(a	==	b)	evaluates	to	true	because	a	and	b	have	the	same	content.

The	 CLR	 maintains	 a	 pool	 of	 strings.	 Strings	 containing	 identical	 contents	 are
represented	by	 the	 same	 instance.	The	 following	code	prints	True	because	 there	 is	only
one	instance	of	“C#”.

string	c	=	"C#";

string	d	=	"C#";

Console.WriteLine(object.ReferenceEquals(c,	d));

However,	the	following	code	snippet	returns	False	because	“C”	+	“#”	returns	a	new	string
instance:

object.ReferenceEquals("C#",	"C"	+	"#");

String	Literals
Because	you	always	work	with	String	objects,	it	is	important	to	understand	the	rules	for
working	with	string	literals.

First	 of	 all,	 a	 string	 literal	 starts	 and	 ends	 with	 a	 double	 quote	 (“).	 Second,	 it	 is	 a
compile	error	 to	change	line	before	 the	closing	“.	For	example,	 this	will	 raise	a	compile
error.

string	s2	=	"This	is	an	important			

								point	to	note";

You	 can	 compose	 long	 string	 literals	 by	 using	 the	 plus	 sign	 to	 concatenate	 two	 string
literals.

string	s1	=	"Strings	"	+	"are	important";

string	s2	=	"This	is	an	important	"	+		

								"point	to	note";

You	can	concatenate	a	string	with	a	primitive	or	another	object.	For	instance,	this	line	of
code	concatenates	a	String	and	an	integer.

string	s3	=	"String	number	"	+	3;

If	an	object	is	concatenated	with	a	string,	the	ToString	method	of	the	former	will	be	called
and	the	result	used	in	the	concatenation.

Escaping	Certain	Characters
You	sometimes	need	to	use	special	characters	in	your	strings	such	as	carriage	return	(CR)
and	linefeed	(LF).	In	other	occasions,	you	may	want	to	have	a	double	quote	character	in
your	string.	In	the	case	of	CR	and	LF,	it	is	not	possible	to	input	these	characters	because
pressing	Enter	changes	 lines.	A	way	 to	 include	special	characters	 is	 to	escape	 them,	 i.e.
use	the	character	replacement	for	them.

Here	are	some	escape	sequences:

							\u										/*	a	Unicode	character

							\b										/*	\u0008:	backspace	BS	*/

							\t										/*	\u0009:	horizontal	tab	HT	*/

							\n										/*	\u000a:	new	line	*/

							\f										/*	\u000c:	form	feed	FF	*/

							\r										/*	\u000d:	carriage	return	CR	*/

							\"										/*	\u0022:	double	quote	"	*/

							\'										/*	\u0027:	single	quote	'	*/

							\\										/*	\u005c:	backslash	\	*/

For	 example,	 the	 following	 code	 includes	 the	Unicode	 character	 0122	 at	 the	 end	of	 the
string.

string	s	=	"Please	type	this	character	\u0122";

To	 obtain	 a	 string	 whose	 value	 is	 John	 “The	 Great”	 Monroe,	 you	 escape	 the	 double
quotes:

string	s	=	"John	\"The	Great\"	Monroe";

The	String	Class’s	Properties
The	String	class	offers	two	properties,	Length	and	Chars.	The	Length	property	provides
the	number	of	characters	in	the	current	String	object.	For	example,	the	following	line	of
code	sets	the	stringLength	variable	 to	5	because	 the	number	of	characters	 in	“Hello”	 is
five.

int	stringLength	=	"Hello".Length;

The	Chars	property	returns	the	Char	object	at	a	specified	index.	The	syntax	of	the	Chars
property	is	as	follows.

public	char	this[int	index]	{	get;	}

Here,	index	indicates	a	zero-based	position.	Therefore,	to	get	the	first	character	in	a	string,
you	pass	0.	For	example,	in	the	following	code	greeting[0]	returns	‘W’.

String	greeting	=	"Welcome";

char	firstChar	=	greeting[0];

Consequently,	 the	Chars	property	will	only	accept	0	 to	 the	number	of	characters	minus
one.	You’ll	get	an	IndexOutOfRangeException	if	you	pass	a	number	beyond	that	range.

As	 an	 example,	 the	 following	 code	 uses	 the	 Length	 and	Chars	 properties	 to	 print
individual	characters	in	a	string.

string	greeting2	=	"Hello";

for	(int	i	=	0;	i	<	greeting2.Length;	i++)

{

				Console.WriteLine(greeting2[i]);

}

The	String	Class’s	Methods
The	String	class	provides	methods	for	manipulating	the	value	of	a	String.	However,	since
String	 objects	 are	 immutable,	 the	 result	 of	 the	 manipulation	 is	 always	 a	 new	 String
object.

Here	are	some	of	the	more	useful	methods.

public	static	string	Concat(string	s1,	string	s2)

Concatenates	 two	 strings.	 For	 example,	 String.Concat(“Hello”,	 “World”)	 returns
“HelloWorld”.

public	bool	Contains(string	value)

Indicates	whether	the	current	string	contains	the	passed-in	value.	For	example,	“Credit
card”.Contains(“card”)	returns	true.

public	bool	EndsWith(string	suffix)

Tests	if	the	current	string	ends	with	the	specified	suffix.

public	int	IndexOf(String	substring)

Returns	 the	 index	 of	 the	 first	 occurrence	 of	 the	 specified	 substring.	 If	 no	 match	 is
found,	returns	-1.	For	instance,	the	following	expression	returns	6.

					"C#	is	cool".IndexOf("cool")

public	int	IndexOf(String	substring,	int	fromIndex)

Returns	 the	 index	 of	 the	 first	 occurrence	 of	 the	 specified	 substring	 starting	 from	 the
specified	index.	If	no	match	is	found,	returns	-1.

public	int	LastIndexOf(String	substring)

Returns	the	index	of	the	last	occurrence	of	the	specified	substring.	If	no	match	is	found,
returns	-1.

public	int	LastIndexOf(String	substring,	int	fromIndex)

Returns	 the	 index	 of	 the	 last	 occurrence	 of	 the	 specified	 substring	 starting	 from	 the
specified	index.	If	no	match	is	found,	returns	-1.	For	example,	the	following	expression
returns	7,	which	is	the	zero-based	position	of	the	last	‘c’.

						"credit	card".LastIndexOf("c")

public	string	Substring(int	beginIndex)

Returns	a	substring	of	the	current	string	starting	from	the	specified	index.	For	instance,
“C#	is	cool”.Substring(6)	returns	“cool”.

public	string	Substring(int	beginIndex,	int	length)

Returns	a	substring	of	the	current	string	starting	from	beginIndex	.	The	returned	string
will	have	the	specified	length.	For	example,	the	following	code	returns	“is”:

						"C#	is	cool".Substring(3,	2)

public	string	Replace(char	oldChar,	char	newChar)

Replaces	every	occurrence	of	oldChar	with	newChar	in	the	current	string	and	returns	a
new	string.	“dingdong”.Replace(‘d’,	‘k’)	returns	“kingkong”.

public	string	Replace(string	oldValue,	string	newValue)

Replaces	every	occurrence	of	oldValue	with	newValue	in	the	current	string	and	returns
a	 new	 string.	 the	 number	 of	 characters	 in	 this	 String.	 For	 example,
“Spring”.Replace(“Spr”,	“st”)	returns	“sting”.

public	static	bool	IsNullOrEmpty(string	value)

Returns	 true	 is	 the	 specified	 string	 is	 null	 or	 empty.	 An	 empty	 string	 contains	 no
characters.

public	string[]	Split(char[]	separator)

Splits	the	current	string	around	matches	of	the	specified	character	array.	For	example,
“big	city	mayors”.Split(”	“)	returns	an	array	of	three	strings.	The	first	array	element	is
“big”,	the	second	“city”,	and	the	third	“mayors”.

public	bool	StartsWith(String	prefix)

Tests	if	the	current	string	starts	with	the	specified	prefix.

public	char[]	ToCharArray()

Returns	the	current	string	as	a	char	array.

public	string	ToLower()

Converts	 all	 the	 characters	 in	 the	 current	 string	 to	 lower	 case.	For	 instance,	“Coffee
shop	hero”.ToLower()	returns	“coffee	shop	hero”.

public	String	ToUpper()

Converts	 all	 the	 characters	 in	 the	 current	 string	 to	 upper	 case.	 For	 instance,
“temporary”.ToUpper()	returns	“TEMPORARY”.

public	string	Trim()

Trims	 the	 trailing	and	 leading	white	 spaces	and	 returns	a	new	string.	For	example,	”
Venus	“.Trim()	returns	“Venus”.

System.Text.StringBuilder
String	objects	are	 immutable	and	are	not	a	good	choice	 if	you	need	 to	append	or	 insert
characters	 into	 them.	 This	 is	 because	 string	 operations	 on	 String	 always	 create	 a	 new
String	object	and	are	therefore	expensive.	For	modern	computers,	the	“cost”	in	additional
processing	 time	 is	 likely	negligible.	However,	 it	 is	good	programming	practice	 to	 avoid
such	 operations.	 For	 append	 and	 insert,	 you’d	 be	 better	 off	 using	 the
System.Text.StringBuilder	class.

To	use	StringBuilder,	you	start	by	creating	an	instance,	specifying	a	capacity,	which	is
the	number	of	characters	it	can	contain.	When	you	append	a	character	or	a	string	to	your
StringBuilder,	the	system	does	not	create	a	new	instance	as	long	as	there	is	still	enough
room	for	the	addition.	If	you	exceed	the	capacity,	the	system	will	automatically	increase
the	capacity	but	at	 a	cost.	Therefore,	you	should	make	sure	you	create	a	StringBuilder
with	enough	capacity,	but	not	too	big	as	each	reserved	character	space,	even	if	not	used,
takes	 memory	 space.	 Once	 you’re	 finished	 manipulating	 the	 string,	 you	 can	 convert	 a
StringBuilder	to	a	string.

Let’s	now	look	at	how	you	can	create	a	StringBuilder	and	use	its	methods.

StringBuilder	Class’s	Constructors
The	 StringBuilder	 class	 has	 five	 constructors.	 The	 simplest	 one	 is	 the	 no-argument
constructor	that	creates	a	StringBuilder	with	a	capacity	of	16	characters.

public	StringBuilder()

The	second	constructor	allows	you	to	specify	a	capacity:

public	StringBuilder(int	capacity)

There	is	also	a	constructor	that	allows	you	to	set	a	maximum	capacity.	Trying	to	add	more
characters	than	the	maximum	capacity	will	result	in	an	exception	being	thrown.

public	StringBuilder(int	capacity,	int	maximumCapacity)

You	 can	 prepopulate	 a	 StringBuilder	 with	 a	 string	 if	 you	 wish,	 using	 the	 fourth
constructor.

public	StringBuilder(string	value)

And,	you	can	specify	an	initial	string	and	a	capacity	using	the	fifth:

public	StringBuilder(string	value,	int	capacity)

Finally,	 the	 last	 constructor	 of	 StringBuilder	 allows	 you	 to	 use	 a	 substring	 as	 an	 initial
value.

public	StringBuilder(string	value,	int	startIndex,	int	length,	

								int	capacity)

For	example,	the	following	statement	creates	a	StringBuilder	with	“World”	as	its	initial
value:

string	s	=	"Hello	World";

StringBuilder	builder	=	new	StringBuilder(s,	6,	5,	20);

A	StringBuilder	created	without	specifying	a	maximum	capacity	will	have	a	very	 large
capacity	(2	gigabytes).

StringBuilder	Class’s	Properties
The	 StringBuilder	 class	 offers	 four	 properties:	 Capacity,	 Chars,	 Length,	 and
MaximumCapacity:

public	int	Capacity	{	get;	set;	}

The	capacity	of	the	StringBuilder.

public	char	this[int	index]	{get;	set;	}

Gets	 or	 sets	 the	 character	 at	 the	 specified	 index.	 For	 example,	 the	 following	 code
creates	a	StringBuilder	and	changes	the	first	and	fifth	characters.

					StringBuilder	builder4	=	new	StringBuilder("Kingkong");

					builder4[0]	=	'P';

					builder4[4]	=	'p';

public	int	Length	{	get;	set;	}

Gets	or	sets	the	length	of	this	StringBuilder.

public	int	MaxCapacity	{	get;	}

Retrieves	the	maximum	capacity	of	this	StringBuilder.

StringBuilder	Class’s	Methods
Without	 a	 doubt	 the	 most	 important	 method	 in	 StringBuilder	 is	 its	ToString	method,
which	returns	the	content	of	a	StringBuilder	as	a	string:

public	override	string	ToString()

Without	 this	 method,	 the	 StringBuilder	 class	 will	 be	 almost	 useless	 because	 while
countless	methods	take	string	arguments,	few	accept	a	StringBuilder.

StringBuilder	also	defines	methods	for	appending,	inserting,	and	removing	a	character
in	a	StringBuilder	instance.	The	Append	method	comes	with	multiple	overloads	to	make
it	possible	to	append	a	string,	a	character,	a	number,	or	another	data	type.	If	you	append	an
integer,	the	integer	will	be	converted	to	a	char	before	being	appended.

Like	Append,	the	Insert	method	is	also	available	in	multiple	overloads	to	allow	you	to
insert	different	data	types	to	a	StringBuilder.	The	difference	between	Append	and	Insert
is	 that	Append	always	adds	a	character	at	 the	end	of	 the	StringBuilder	whereas	Insert
lets	you	adds	a	character	at	any	position.

Here	are	some	overloads	of	Append	and	Insert.

public	StringBuilder	Append(string	value)

public	StringBuilder	Append(char	value)

public	StringBuilder	Append(Object	value)

public	StringBuilder	Append(int	value)

public	StringBuilder	Insert(int	index,	string	value)

public	StringBuilder	Insert(int	index,	char	value)

public	StringBuilder	Insert(int	index,	Object	value)

public	StringBuilder	Insert(int	index,	int	value)

In	 addition	 to	Append	 and	 Insert,	StringBuilder	 also	 provides	 a	Remove	 method	 to
remove	characters:

public	StringBuilder	Remove(int	startIndex,	int	length)

What’s	interesting	is	that	Append,	Insert,	and	Remove	all	return	the	same	StringBuilder
so	that	the	methods	can	be	chained	like	this.

StringBuilder	sb	=	new	StringBuilder("Hi	Hello");

sb.Append("World").Insert(8,	'	').Remove(0,	3);

Console.WriteLine(sb.ToString());	//	print	"Hello	World"

Arrays
In	C#	 you	 can	 use	 arrays	 to	 group	 primitives	 or	 objects	 of	 the	 same	 type.	 The	 entities
belonging	 to	 an	 array	 is	 called	 the	 elements	 or	 members	 of	 the	 array.	 An	 array	 is	 an
instance	of	a	class	derived	from	System.Array.	Therefore,	an	array	inherits	all	the	fields,
properties	and	methods	of	the	System.Array	class.	For	example,	you	can	call	the	Length
field	on	your	array	to	get	the	number	of	elements	in	it.	The	Length	field	is	a	field	defined
in	System.Array.

All	elements	of	an	array	have	 the	same	 type,	called	 the	element	 type	of	 the	array.	An
array	is	not	resizable	and	an	array	with	zero	component	is	called	an	empty	array.

An	array	is	an	object.	Therefore,	you	treat	a	variable	 that	refers	 to	an	array	like	other
reference	variables.	For	one,	you	can	compare	it	with	null.

String[]	names;

if	(names	==	null)		//	evaluates	to	true

Note
An	array	can	also	contain	other	arrays,	creating	an	array	of	arrays.

You	use	this	syntax	to	declare	an	array:

type[]	arrayName;

For	example,	the	following	declares	an	array	of	longs	named	numbers:

long[]	numbers;

Declaring	 an	 array	 does	 not	 create	 an	 array	 or	 allocate	 space	 for	 its	 components,	 the
compiler	 simply	creates	an	object	 reference.	One	way	 to	create	an	array	 is	by	using	 the
new	keyword.	You	must	specify	the	size	of	the	array	you	are	creating.

new	type[size]

As	an	example,	the	following	code	creates	an	array	of	four	ints:

new	int[4]

Alternatively,	you	can	declare	and	create	an	array	in	the	same	line.

int[]	ints	=	new	int[4];

To	reference	the	components	of	an	array,	use	an	index	after	the	variable	name.	Arrays	are
zero-based,	which	means	the	first	element	of	an	array	is	indexed	0.	To	retrieve	an	element
of	an	array,	you	use	 its	 index	 in	brackets.	For	example,	 the	following	snippet	creates	an
array	of	four	String	objects	and	initializes	its	first	member.

string[]	names	=	new	string[4];

names[0]	=	"Hello	World";	//assign	value	to	first	element	of	names

You	can	also	create	and	initialize	an	array	without	using	the	new	keyword.	For	example,
the	following	code	creates	an	array	of	three	String	objects.

String[]	names	=	{	"John",	"Mary",	"Paul"	};

The	 following	 code	 creates	 an	 array	 of	 four	 ints	 and	 assign	 the	 array	 to	 the	 variable
matrix.

int[]	matrix	=	{	1,	2,	3,	10	};

Be	careful	when	passing	an	array	to	a	method	because	the	following	is	illegal	even	though
the	average	method	below	take	an	array	of	ints.

int	avg	=	average({	1,	2,	3,	10	});	//	illegal

Instead,	you	have	to	instantiate	the	array	separately.

int[]	numbers	=	{	1,	2,	3,	10	};

int	avg	=	average(numbers);

or	this

int	avg	=	average(new	int[]	{	1,	2,	3,	10	});

Referencing	an	out-of-range	element	will	raise	a	runtime	error.	For	example,	the	following
code	will	raise	an	error	because	it	tries	to	access	the	fifth	element	of	an	array	that	contains
two	elements:

int[]	numbers	=	{	1,	3	};

int	x	=	numbers[4];

Note
When	an	array	is	created,	its	elements	are	either	null	(if	the	element	type	is	an	object
type)	 or	 the	 default	 value	 of	 the	 element	 type	 (if	 the	 array	 contains	 primitives).	 For
example,	an	array	of	ints	contains	zeros	by	default.

Iterating	over	an	Array
There	are	two	ways	of	iterating	over	an	array,	by	using	foreach	and	for.	The	former	is	has
a	shorter	format:

foreach	(elementType	element	in	arrayName)

{

				//	access	element	here

}

For	example,	the	following	snippet	prints	the	elements	in	employees.

string[]	employees	=	{	"John",	"Paul",	"George",	"Ringo"	};

foreach	(string	employee	in	employees)

{

				Console.WriteLine("Employee:"	+	employee);	//	print	employee

}

The	result	is	as	follows.

Employee:John

Employee:Paul

Employee:George

Employee:Ringo

The	second	method	is	to	use	the	for	loop	and	access	each	element	by	its	index:

string[]	employees	=	{	"John",	"Paul",	"George",	"Ringo"	};

for	(int	i	=	0;	i	<	employees.Length;	i++)

{

				Console.WriteLine("Employee("	+	(i	+	1)	+	"):	"	+	employees[i]);

}

Here	is	the	result.

Employee(1):John

Employee(2):Paul

Employee(3):George

Employee(4):Ringo

You	 see,	 even	 though	 foreach	 is	 simpler,	 sometimes	 you	 resort	 to	 the	 for	 loop	 if	 the
indexes	are	important	to	you.

Changing	an	Array	Size
Once	an	array	is	created,	its	size	cannot	be	changed.	If	you	want	to	change	the	size,	you
must	create	a	new	array	and	populates	it	using	the	values	of	the	old	array.	For	instance,	the
following	code	increases	the	size	of	numbers,	an	array	of	three	ints,	to	4.

int[]	numbers	=	{	1,	2,	3	};

int[]	temp	=	new	int[4];

for	(int	j	=	0;	j	<	numbers.Length;	j++)	

{

				temp[j]	=	numbers[j];

}

numbers2	=	temp;

Alternatively,	you	can	use	the	Resize	static	method	of	System.Array:

Array.Resize(ref	arrayName,	newSize)

As	an	example,	the	following	code	changes	the	size	of	numbers	to	5.

int[]	numbers	=	{	2,	3,	4	};

Array.Resize(ref	numbers,	5);

Console.WriteLine("Length	of	numbers:"	+	numbers.Length);

Passing	a	String	Array	to	Main
You	may	pass	a	string	array	to	the	Main	method	to	feed	values	to	your	program.	In	this
case,	here	is	the	signature	of	the	Main	method:

public	static	void	Main(string[]	args)

Listing	5.1	shows	a	class	that	iterates	over	the	Main	method’s	String	array	argument.

Listing	5.1:	Accessing	the	Main	method’s	arguments

public	class	MainMethodTest	

{

				public	static	void	Main(string[]	args)	{

								foreach	(string	arg	in	args)	{

												Console.WriteLine(arg);

								}

				}

}

System.Console
The	System.Console	class	exposes	useful	static	fields	and	static	methods	to	work	with	the
console.	Here	are	some	of	the	more	important	methods	in	System.Console.

public	static	void	Beep()

Plays	the	sound	of	a	beep.

public	static	void	Clear()

Clears	the	console	buffer	and	the	console	window.

public	static	ConsoleKeyInfo	ReadKey()

Gets	 the	 information	 about	 the	 next	 key	 pressed	 by	 the	 user	 and	 display	 it	 in	 the
console	window.

public	static	string	ReadLine()

Returns	the	next	line	of	characters	from	the	input	stream.

public	static	void	Write(string	s)

Writes	the	string	argument	to	the	console.	There	are	other	Write	overloads	so	you	can
pass	any	type	to	Write.

public	static	void	WriteLine(string	s)

Writes	the	string	argument	plus	the	line	terminator	to	the	console.

Summary
In	 this	 chapter	 you	 have	 examined	 several	 important	 classes	 such	 as	 System.Object,
System.String,	System.Text.StringBuilder,	System.Array,	and	System.Console.	These
are	some	of	the	most	frequently	used	classes	in	C#.	You	will	learn	about	more	classes	in
the	next	chapters.

Chapter	6

Inheritance
Inheritance	 is	 a	 very	 important	 object-oriented	 programming	 (OOP)	 feature.	 It	 is	 what
makes	code	extensible	in	any	OOP	language.	Extending	a	class	is	also	called	inheriting	or
subclassing.	 In	 C#,	 by	 default	 all	 classes	 are	 extensible,	 but	 you	 can	 use	 the	 sealed
keyword	to	prevent	a	class	from	being	subclassed.	This	chapter	explains	inheritance	in	C#.

An	Overview	of	Inheritance
You	 extend	 a	 class	 by	 creating	 a	 new	 class.	 The	 former	 and	 the	 latter	will	 then	 have	 a
parent-child	 relationship.	 The	 original	 class	 is	 the	 parent	 class	 or	 the	 base	 class	 or	 the
superclass.	 The	 new	 class	 is	 the	 child	 class	 or	 the	 subclass	 or	 the	 derived	 class	 of	 the
parent.	The	process	of	extending	a	class	 in	OOP	is	called	 inheritance.	 In	a	subclass	you
can	add	new	methods,	new	fields,	and	new	properties	as	well	as	override	existing	methods
to	change	their	behaviors.

Figure	 6.1	 presents	 a	 UML	 class	 diagram	 that	 depicts	 a	 parent-child	 relationship
between	a	class	and	a	child	class.

Figure	6.1:	The	UML	class	diagram	for	a	parent	class	and	a	child	class

Note	 that	 a	 line	 with	 an	 arrow	 is	 used	 to	 depict	 generalization,	 e.g.	 a	 parent-child
relationship.

A	child	class	 in	 turn	can	be	extended,	unless	you	specifically	make	 it	 inextensible	by
declaring	 it	 sealed.	Sealed	 classes	 are	 discussed	 in	 the	 section	 “Sealed	Classes”	 later	 in
this	chapter.

The	benefits	 of	 inheritance	 are	 obvious.	 Inheritance	gives	 you	 the	opportunity	 to	 add
some	functionality	that	does	not	exist	in	the	original	class.	It	also	gives	you	the	chance	to
change	the	behaviors	of	the	existing	class	to	better	suit	your	needs.

Extending	A	Class
You	extend	a	class	by	using	 the	colon	 in	 the	class	declaration,	 after	 the	class	name	and
before	the	parent	class.	Listing	6.1	presents	a	class	named	Parent	and	Listing	6.2	a	class
named	Child	that	extends	Parent.

Listing	6.1:	The	Parent	class

public	class	Parent	

{

}

Listing	6.2:	The	Child	class

public	class	Child	:	Parent

{

}

Extending	a	class	is	as	simple	as	that.

Note
All	classes	in	C#	automatically	extend	the	System.Object	class.	Object	is	the	ultimate
superclass	in	.NET.	Parent	in	Listing	6.1	by	default	is	a	subclass	of	Object.

Note
In	 C#	 a	 class	 can	 only	 extend	 one	 other	 class.	 This	 is	 unlike	 C++	 where	 multiple
inheritance	is	allowed.	However,	the	notion	of	multiple	inheritance	can	be	achieved	by
using	interfaces,	as	discussed	in	Chapter	10,	“Interfaces	and	Abstract	Classes.”

The	is-a	Relationship
There	is	a	special	relationship	that	is	formed	when	you	create	a	new	class	by	inheritance.
The	subclass	and	the	superclass	has	an	“is-a”	relationship.

For	 example,	 Animal	 is	 a	 class	 that	 represents	 animals.	 There	 are	 many	 types	 of
animals,	 including	 birds,	 fish,	 and	 dogs,	 so	 you	 can	 create	 subclasses	 of	Animal	 that
represent	 specific	 types	 of	 animals.	 Figure	 6.2	 features	 the	 Animal	 class	 with	 three
subclasses,	Bird,	Fish,	and	Dog.

Figure	6.2:	An	example	of	inheritance

The	is-a	relationship	between	the	subclasses	and	the	superclass	Animal	is	very	apparent.
A	bird	“is	an”	animal,	a	dog	is	an	animal,	and	a	fish	is	an	animal.	A	subclass	is	a	special
type	of	its	superclass.	For	example,	a	bird	is	a	special	type	of	animal.	The	is-a	relationship
does	not	go	the	other	way,	however.	An	animal	is	not	necessarily	a	bird	or	a	dog.

Listing	6.3	presents	the	Animal	class	and	its	subclasses.

Listing	6.3:	Animal	and	its	subclasses

class	Animal	

{

				public	float	Weight;

				public	void	Eat()	

				{

				}

}

class	Bird	:	Animal	{

				public	int	NumberOfWings	=	2;

				public	void	Fly()	

				{

				}

}

class	Fish	:	Animal	{

				public	int	NumberOfFins	=	2;

				public	void	Swim()

				{

				}

}

class	Dog	:	Animal	{

				public	int	NumberOfLegs	=	4;

				public	void	Walk()	

				{

				}

}

In	this	example,	the	Animal	class	defines	a	Weight	field	that	applies	to	all	animals.	It	also
declares	an	Eat	method	because	animals	eat.

The	Bird	class	is	a	special	type	of	Animal,	it	inherits	the	Eat	method	and	the	Weight
field.	Bird	 also	 adds	 a	NumberOfWings	 field	 and	 a	Fly	 method.	 This	 shows	 that	 the
more	 specific	 Bird	 class	 extends	 the	 functionality	 and	 behavior	 of	 the	 more	 generic
Animal	class.

A	subclass	inherits	all	public	methods	and	fields	of	its	superclass.	For	example,	you	can
create	a	Dog	object	and	call	its	Eat	method:

Dog	dog	=	new	Dog();

dog.Eat();

The	Eat	method	is	declared	in	the	Animal	class;	the	Dog	class	simply	inherits	it.

A	 consequence	 of	 the	 is-a	 relationship	 is	 that	 it	 is	 legal	 to	 assign	 an	 instance	 of	 a
subclass	 to	 a	 reference	 variable	 of	 the	 parent	 type.	 For	 example,	 the	 following	 code	 is
valid	because	Bird	is	a	subclass	of	Animal,	and	a	Bird	is	always	an	Animal.

Animal	animal	=	new	Bird();

However,	the	following	is	illegal	because	there	is	no	guarantee	that	an	Animal	would	be	a
Dog.:

Dog	dog	=	new	Animal();

Accessibility
From	within	a	subclass	you	can	access	its	superclass’s	public	and	protected	members,	such
as	methods	and	 fields,	but	not	 the	 superclass’s	private	members.	 If	 the	 subclass	and	 the
superclass	 are	 in	 the	 same	 assembly,	 you	 can	 also	 access	 the	 superclass’s	 internal
members.

Consider	the	P	and	C	classes	in	Listing	6.4.

Listing	6.4:	Showing	accessibility

public	class	P	

{

				public	void	PublicMethod()	

				{

				}

				

				protected	void	ProtectedMethod()	

				{

				}

				

				internal	void	InternalMethod()	

				{

				}

}

class	C	:	P	

{

				public	void	TestMethods()	

				{

								PublicMethod();

								ProtectedMethod();

								InternalMethod();

				}

}

P	has	three	methods,	one	public,	one	protected,	and	one	with	internal	access	level.	C	is	a
subclass	 of	P.	 As	 you	 can	 see	 in	 the	C	 class’s	TestMethods	method,	C	 can	 access	 its
parent’s	 public	 and	 protected	 method.	 In	 addition,	 because	 C	 and	 P	 are	 in	 the	 same
assembly,	C	can	also	access	P’s	internal	method.

Method	Overriding
When	you	extend	a	class,	you	can	change	 the	behavior	of	a	method	 in	 the	parent	class.
This	is	called	method	overriding,	and	this	happens	when	you	write	in	a	subclass	a	method
that	has	the	same	signature	as	a	method	in	the	parent	class.	If	only	the	name	is	the	same
but	 the	 list	of	arguments	 is	not,	 then	 it	 is	method	overloading.	Method	overloading	was
explained	in	Chapter	4,	“Objects	and	Classes.”

You	override	a	method	to	change	its	behavior.	To	override	a	method,	you	write	the	new
method	in	the	subclass.	You	can	override	the	superclass’s	public	and	protected	methods.	If
the	subclass	and	superclass	are	in	the	same	assembly,	you	can	also	override	a	method	with
the	internal	access	level.

An	example	of	method	overriding	 is	demonstrated	by	 the	Shape	 and	Oval	 classes	 in
Listing	6.5.

Listing	6.5:	The	Shape	and	Oval	classes

using	System;

class	Shape

{

				public	void	WhatAmI()

				{

								Console.WriteLine("I	am	a	shape");

				}

}

class	Oval	:	Shape

{

				new	public	void	WhatAmI()

				{

								Console.WriteLine("I	am	an	oval");

				}

}

The	Oval	class	extends	Shape	and	overrides	the	WhatAmI	method.	The	new	keyword	is
used	in	the	subclass	to	indicate	that	the	programmer	is	aware	that	the	WhatAmI	method
in	the	parent	class	is	overridden.	Without	the	new	keyword,	the	program	will	still	compile,
but	with	a	warning.

You	can	test	the	method	overriding	in	Listing	6.5	with	the	following	code.

Oval	oval	=	new	Oval();

oval.WhatAmI();	//	prints	"I	am	an	oval"

As	you	can	see,	oval.WhatAmI	invokes	the	method	in	the	Oval	class.

Now	guess,	what	would	be	the	output	of	this	snippet?

Shape	shape	=	new	Oval();

shape.WhatAmI();

Assigning	an	object	variable	with	an	instance	of	its	subclass	is	legal	in	C#	because,	after
all,	an	oval	is	a	shape.	However,	the	output	might	surprise	you.	It	is

I	am	a	shape

In	C#	calling	a	method	using	a	reference	variable	invokes	the	method	defined	in	the	type,
regardless	the	type	of	object	the	reference	variable	refers	to.

Calling	the	Base	Class’s	Constructors
A	subclass	is	just	like	an	ordinary	class,	you	use	the	new	keyword	to	create	an	instance	of
it.	If	you	do	not	explicitly	write	a	constructor	in	your	subclass,	the	compiler	will	implicitly
add	a	no-argument	(no-arg)	constructor.

When	you	instantiate	a	child	class	by	invoking	one	of	its	constructors,	the	first	thing	the
constructor	 does	 is	 call	 the	 default	 constructor	 (the	 one	 that	 takes	 no	 argument)	 of	 the
direct	 parent	 class.	 In	 the	 parent	 class,	 the	 constructor	 also	 calls	 the	 constructor	 of	 its
direct	parent	class.	This	process	repeats	itself	until	the	constructor	of	the	System.Object
class	is	reached.	In	other	words,	when	you	create	a	child	object,	all	its	parent	classes	are
also	instantiated.

This	process	is	illustrated	in	the	Employee	and	Manager	classes	in	Listing	6.6.

Listing	6.6:	Calling	a	base	class’s	default	constructor

using	System;

class	Employee

{

				public	Employee()

				{

								Console.WriteLine("Employee()");

				}

				public	Employee(string	name)

				{

								Console.WriteLine("Employee()	"	+	name);

				}

}

class	Manager	:	Employee

{

				public	Manager(string	name)

				{

								Console.WriteLine("Manager()	"	+	name);

				}

}

If	you	instantiate	the	Manager	class	as	in	the	following	code

Manager	manager	=	new	Manager("Jeff");

You’ll	see	this	in	your	console.

Employee

Manager()	Jeff

This	proves	 that	 the	 first	 thing	 that	 the	Employee	 class’s	constructor	does	 is	 invoke	 the
Employee	 class’s	 default	 constructor	 even	 when	 there	 is	 another	 constructor	 with	 the
same	set	of	arguments.

To	 invoke	 a	 non-default	 constructor	 in	 the	 base	 class	when	 creating	 an	 instance	 of	 a

subclass,	you	can	use	the	base	keyword.	For	example,	change	the	constructor	in	Manager
to	the	following	to	invoke	the	second	constructor	in	Employee:

				public	Manager(string	name)	:	base(name)

				{

								Console.WriteLine("Manager()	"	+	name);

				}

Note	 that	 it	 makes	 sense	 for	 a	 child	 class	 to	 call	 its	 parent’s	 constructor	 from	 its	 own
constructor	because	an	instance	of	a	subclass	must	always	be	accompanied	by	an	instance
of	each	of	 its	parents.	This	way,	calls	 to	a	method	that	 is	not	overridden	in	a	child	class
will	be	passed	to	its	parent	until	the	first	in	the	hierarchy	is	found.

Calling	the	Base	Class’s	Hidden	Members
The	base	keyword	has	another	purpose	in	life.	It	can	be	used	to	call	a	hidden	member	or
an	 overridden	 method	 in	 a	 base	 class.	 Since	 base	 represents	 an	 instance	 of	 the	 direct
parent,	 base.memberName	 returns	 the	 specified	 member	 in	 the	 parent	 class.	 You	 can
access	any	member	in	the	base	class	that	is	visible	from	the	subclass.	For	example,	Listing
6.8	shows	two	classes	that	have	a	parent-child	relationship:	Tool	and	Pencil.

Listing	6.8:	Using	super	to	access	a	hidden	member

using	System;

public	class	Tool

{

				public	string	Identify()	

				{

								return	"Generic	tool";

				}

}

public	class	Pencil	:	Tool	{

				new	public	string	Identify()

				{

								return	"Pencil";

				}

				public	void	Write()	

				{

								Console.WriteLine(base.Identify());

								Console.WriteLine(Identify());

				}

}

The	Pencil	class	overrides	the	Identify	method	in	Tool.	If	you	instantiate	the	Pencil	class
and	call	its	Write	method,	you	will	see	the	following	on	the	console.

Generic	tool

Pencil

Type	Casting
You	 can	 cast	 an	 object	 to	 another	 type.	The	 rule	 is,	 you	 can	 only	 cast	 an	 instance	 of	 a
subclass	to	its	parent	class.	Casting	an	object	to	a	parent	class	is	called	upcasting.	Here	is
an	example,	assuming	that	Child	is	a	subclass	of	Parent.

Child	child	=	new	Child();

Parent	parent	=	child;

To	upcast	a	Child	object,	all	you	need	to	do	is	assign	the	object	to	a	reference	variable	of
type	Parent.	Note	that	the	parent	reference	variable	cannot	access	the	members	that	are
only	available	in	Child.

Because	parent	in	the	snippet	above	references	an	object	of	type	Child,	you	can	cast	it
back	to	Child.	This	time,	it	is	called	downcasting	because	you	are	casting	an	object	to	a
class	down	the	inheritance	hierarchy.	Downcasting	requires	that	you	write	the	child	type	in
brackets.	For	example:

Child	child	=	new	Child();

Parent	parent	=	child;//	parent	pointing	to	an	instance	of	Child

Child	child2	=	(Child)	parent;	//	downcasting

Downcasting	to	a	subclass	is	only	allowed	if	the	parent	class	reference	is	already	pointing
to	an	instance	of	the	subclass.	The	following	will	generate	a	compile	error.

Object	parent	=	new	Object();

Child	child	=	(Child)	parent;	//	illegal	downcasting,	compile	error

Sealed	Classes
You	can	prevent	others	from	extending	your	class	by	making	it	sealed	using	the	keyword
sealed	in	the	class	declaration.	sealed	may	appear	after	or	before	the	access	modifier.	For
example:

public	final	class	Pencil	

final	public	class	Pen

The	first	form	is	more	common.

Even	though	making	a	class	sealed	makes	your	code	slightly	faster,	the	difference	is	too
insignificant	 to	 notice.	 Design	 consideration,	 and	 not	 speed,	 should	 be	 the	 reason	 you
make	a	class	final.	For	example,	the	System.String	class	is	sealed	because	the	designer	of
the	class	did	not	want	you	to	change	the	behavior	of	the	String	class.

The	is	Keyword
The	is	keyword	can	be	used	to	test	if	an	object	is	of	a	specified	type.	It	is	normally	used	in
an	if	statement	and	its	syntax	is.

if	(objectReference	is	type)

where	objectReference	references	an	object	being	investigated.	For	example,	the	following
if	statement	returns	true.

String	s	=	"Hello";

if	(s	is	System.String)

However,	 applying	 is	 on	 a	 null	 reference	 variable	 returns	 false.	 For	 example,	 the
following	if	statement	returns	false.

String	s	=	null;

if	(s	is	System.String)

Also,	since	a	subclass	“is	a”	type	of	its	base	class,	the	following	if	statement,	where	Child
is	a	subclass	of	Parent,	returns	true.

Child	child	=	new	Child();

if	(child	is	Parent)				//	evaluates	to	true

Summary
Inheritance	 is	 one	 of	 the	 fundamental	 principles	 in	 object-oriented	 programming.
Inheritance	makes	code	extensible.	In	C#	all	classes	by	default	extend	the	System.Object
class.	To	extend	a	class,	use	the	colon.	Method	overriding	is	another	OOP	feature	directly
related	 to	 inheritance.	 It	 enables	 you	 to	 change	 the	 behavior	 of	 a	member	 in	 the	 parent
class.	You	can	prevent	your	class	from	being	subclassed	by	making	it	sealed.

Chapter	7

Structures
In	Introduction	you	learned	that	.NET	types	consists	of	classes,	structures,	enumerations,
interfaces	and	delegates.	Classes	were	discussed	in	Chapter	4,	“Objects	and	Classes”	and
you	should	be	familiar	with	them	by	now.

The	second	type,	structures	or	simply	structs,	are	 like	classes,	 in	which	they	can	have
members	like	fields	and	methods.	Unlike	classes,	however,	structures	are	value	types	and
cannot	inherit	or	be	inherited.	The	.NET	Framework	class	library	offers	many	of	them.	For
example,	the	System	namespace	defines	important	structures	like	Byte,	Char,	Int32,	and
DateTime	that	represent	important	data	types.

This	chapter	explains	what	a	structure	is	and	shows	a	couple	of	examples.

An	Overview	of	Structures
Sometimes	called	light-weight	classes,	structures,	like	classes,	can	have	members	such	as
fields	 and	methods	 and	you	 can	use	new	 to	 create	 an	 instance	of	 a	 structure.	However,
structures	are	value	types	whereas	classes	are	reference	types.	Value	types	are	allocated	on
the	stack	or	inline	and	deallocated	when	they	go	out	of	scope.	On	the	other	hand,	reference
types	 are	 allocated	 on	 the	 heap	 and	 unused	 instances	 of	 reference	 types	 are	 garbage-
collected.	 Value	 types	 are	 generally	 cheaper	 to	 create	 but	 perform	 more	 poorly	 than
reference	 types	 if	 they	 are	 involved	 in	 a	 lot	 of	 boxing	 and	 unboxing.	All	 structures	 are
implicitly	derived	from	System.ValueType.

Unlike	 classes,	 structures	 cannot	 have	 children.	 In	 other	 words,	 structures	 do	 not
support	inheritance.

.NET	Structures

.NET	Framework	comes	with	a	lot	of	structures.	All	primitive	types	in	C#,	such	as	int	and
char,	are	aliases	to	structures	defined	in	the	System	namespace.	For	example,	every	time
you	declare	an	 int	 in	your	C#	code,	an	 instance	of	System.Int32	 is	created.	Every	 time
you	use	a	char,	there	is	a	System.Char	instance	backing	it	up.	As	such,	you	can	call	the
members	of	 the	corresponding	structure	on	your	primitive	as	 illustrated	 in	 the	following
snippet.

int	a	=	123;

System.Console.WriteLine(a.GetType());	//	prints	System.Int32

Another	difference	between	structures	and	classes	is	the	fact	that	it	is	not	possible	for	two
variables	to	point	to	the	same	structure	instance.	Assigning	a	structure	to	a	new	variable
creates	 a	 new	 instance	 of	 the	 structure.	 In	 Listing	 7.1	 the	 System.Numerics.Complex
structure,	which	represents	complex	numbers,	is	used	to	prove	the	point.

Note	 that	 System.Numerics	 namespace	 can	 be	 found	 in	 the	 System.Numerics.dll
assembly,	and	to	use	its	members	you	need	to	first	add	a	reference	to	the	assembly	in	your
project.	See	the	sidebar	on	how	to	add	an	assembly	to	a	project.

Adding	A	Reference	to	A	Project
When	you	 create	 a	 project	 in	Visual	Studio	 or	 a	 similar	 IDE,	 several	 assemblies	 are
included	by	default.	You	don’t	need	 to	do	anything	 to	use	 types	 in	 the	assemblies.	 If
you	want	to	use	a	type	that	is	not	in	the	default	assemblies,	you	need	to	reference	the
assembly	in	your	project	by	following	these	steps:

1.	In	Solution	Explorer,	select	the	project	you	want	to	add	a	reference	to.

2.	On	the	Project	menu,	choose	Add	Reference.

3.	 In	 the	 Add	 Reference	 dialog	 that	 appears,	 select	 the	 tab	 indicating	 the	 type	 of
component	you	want	to	reference.

4.	In	the	top	pane,	select	the	component	to	reference	and	then	click	the	Select	button.

Listing	7.1:	Copying	a	structure

using	System;

using	System.Numerics;

class	Numerics

{

				public	void	Test()

				{

								Complex	c1	=	new	Complex(2d,	3);

								//	creates	a	new	copy	of	c1

								Complex	c2	=	c1;	

								c2	*=	c2;	//	does	not	affect	c1

								Console.WriteLine(c1);	//	prints	(2,	3)

								Console.WriteLine(c2);	//	prints	(-5,	12)

				}

}

If	you	run	Test(),	you’ll	see	the	following	on	the	console:

(2,	3)

(-5,	12)

This	proves	that	c1	and	c2	represent	two	different	objects	because	when	you	assign	c1	to
c2,	a	new	copy	of	Complex	is	created.	Therefore,	manipulating	c2	does	not	affect	c1	and
vice	versa.

Writing	A	Structure
The	following	section	shows	how	to	write	a	custom	structure.	You	use	the	keyword	struct
followed	by	the	struct	name	to	create	a	structure.	Listing	7.2	shows	the	code	of	a	custom
struct	 named	Point.	 The	 struct	 has	 two	 fields	 (X	 and	Y)	 and	 two	methods,	Move	 and
Print.

Listing	7.2:	A	custom	structure

struct	Point

{

				public	int	X;

				public	int	Y;

				public	void	Move(int	x,	int	y)

				{

								X	+=	x;

								Y	+=	y;

				}

				public	void	Print()

				{

								System.Console.WriteLine("("	+	X	+	",	"	+	Y	+	")");

				}

}

The	following	code	can	be	used	to	test	the	Point	structure.

Point	point1	=	new	Point();

point1.Print();//	prints	(0,	0)

point1.X	=	10;

point1.Y	=	20;

point1.Move(4,	5);

point1.Print();	//	prints	(14,	25)

Nullable	Types
Another	big	difference	between	reference	types	and	value	types	is	that	reference	types	can
be	null	and	value	types	cannot.	Therefore,	declaring	a	class	variable	to	null	is	valid	in	C#:

string	name	=	null;

However,	 assigning	 null	 to	 a	 structure	 variable	 raises	 a	 compile	 error.	 For	 example,
System.DateTime	is	a	structure,	and	the	following	code	won’t	compile	because	it’s	illegal
to	assign	null	to	a	structure.

System.DateTime	today	=	null;

The	 inability	 to	 assign	 null	 to	 a	 value	 type	 often	 causes	 a	 headache	 especially	 when
working	with	a	relational	database	where	a	table	column	can	be	null,	which	means	it	does
not	 contain	 data.	 Retrieving	 a	 date	 from	 the	 database	 and	 assigning	 it	 to	 a
System.DateTime	can	be	problematic	if	the	database	date	can	be	null.	To	get	around	this,
.NET	Framework	provides	the	System.Nullable	structure	to	make	any	structure	nullable.
The	beauty	of	this	solution	is	that	you	don’t	have	to	work	with	System.Nullable	directly.
To	make	a	structure	nullable,	simply	append	a	question	mark	to	the	type	name:

int?	x	=	null;	//	x	is	nullable

Summary
In	 this	 chapter	 you	 learned	 about	 structures	 and	how	 they	differ	 from	classes.	You	 also
learned	 the	 differences	 between	 value	 types	 and	 reference	 types	 and	 wrote	 a	 custom
structure.

Chapter	8

Error	Handling
Error	 handling	 is	 an	 important	 feature	 in	 any	 programming	 language.	 A	 good	 error
handling	mechanism	makes	it	easier	for	programmers	to	write	robust	applications	and	to
prevent	bugs	from	creeping	in.	In	some	languages,	programmers	are	forced	to	use	multiple
if	statements	to	detect	all	possible	conditions	that	might	lead	to	an	error.	This	could	make
code	excessively	complex.	In	a	larger	program,	this	practice	could	easily	lead	to	spaghetti
like	code.

C#	offers	structured	exception	handling	that	provides	a	nice	way	to	handle	errors.	With
this	strategy,	part	of	the	code	that	could	potentially	lead	to	an	error	is	isolated	in	a	block.
Should	an	error	occur,	 this	error	 is	caught	and	resolved	 locally.	This	chapter	explain	C#
structured	error	handling.

Catching	Exceptions
You	 can	 isolate	 code	 that	may	 cause	 a	 runtime	 error	 using	 the	 try	 statement,	 which	 is
normally	accompanied	by	the	catch	and	finally	statements.	Such	isolation	typically	occurs
in	a	method	body.	If	an	error	is	encountered,	the	common	language	runtime	(CLR)	stops
the	processing	of	 the	 try	 block	 and	 jumps	 to	 the	 catch	 block.	Here	 you	 can	 gracefully
handle	 the	 error	 or	 notify	 the	 user	 by	 ‘throwing’	 a	 System.Exception	object.	 Another
scenario	 is	 to	 re-throw	 the	 exception	 or	 a	 new	Exception	 object	 back	 to	 the	 code	 that
called	 the	method.	 It	 is	 then	up	 to	 the	client	how	he	or	 she	would	handle	 the	error.	 If	a
thrown	exception	is	not	caught,	the	application	will	stop	abruptly.

This	is	the	syntax	of	the	try	statement.

try	

{

				[code	that	may	throw	an	exception]

}	

[catch	(ExceptionType-1	[e])	

{

				[code	that	is	executed	when	ExceptionType-1	is	thrown]

}]	

[catch	(ExceptionType-2	[e])	

{

				[code	that	is	executed	when	ExceptionType-2	is	thrown]

}]

		...	

[catch	(ExceptionType-n	[e])	

{

				[code	that	is	executed	when	ExceptionType-n	is	thrown]

}]

[finally	

{

				[code	that	runs	regardless	of	whether	an	exception	was	thrown]]

}]

The	steps	for	error	handling	can	be	summarized	as	follows:

1.	Isolate	code	that	could	lead	to	an	error	in	a	try	block.

2.	For	each	individual	catch	block,	write	code	that	is	to	be	executed	if	an	exception	of
that	particular	type	occurs	in	the	try	block.

3.	In	the	finally	block,	write	code	that	will	be	run	whether	or	not	an	error	has	occurred.

Note	that	the	catch	and	finally	blocks	are	optional,	but	one	of	them	must	exist.	Therefore,
you	can	have	try	with	one	or	more	catch	blocks	or	try	with	finally	or	try	with	catch	and
finally.

The	 previous	 syntax	 shows	 that	 you	 can	 have	 more	 than	 one	 catch	 block.	 This	 is
because	some	code	can	throw	different	types	of	exceptions.	When	an	exception	is	thrown
from	a	try	block,	control	is	passed	to	the	first	catch	block.	If	the	type	of	exception	thrown
matches	or	 is	a	 subclass	of	 the	exception	 in	 the	 first	catch	block,	 the	code	 in	 the	catch

block	is	executed	and	then	control	goes	to	the	finally	block,	if	one	exists.

If	the	type	of	the	exception	thrown	does	not	match	the	exception	type	in	the	first	catch
block,	the	CLR	goes	to	the	next	catch	block	and	does	the	same	thing	until	it	finds	a	match.
If	no	match	is	found,	the	exception	object	will	be	thrown	to	the	method	caller.	If	the	caller
does	 not	 put	 the	 offending	 code	 that	 calls	 the	method	 in	 a	 try	 block,	 the	 program	will
crash.

To	 illustrate	 the	 use	 of	 this	 error	 handling,	 consider	 the	 NumberDoubler	 class	 in
Listing	8.1.	When	the	class	is	run,	it	will	prompt	you	for	input.	You	can	type	in	anything,
including	non-digits.	If	your	input	is	successfully	converted	to	a	number,	it	will	double	it
and	 print	 the	 result.	 If	 your	 input	 is	 invalid,	 the	 program	will	 print	 an	 “Invalid	 input”
message.

Listing	8.1:	The	NumberDoubler	class

using	System;

class	NumberDoubler

{

				public	void	Test()

				{

								Console.WriteLine("Please	type	a	number"

												+	"	between	0	and	255	that	you	want	to	double");

								string	input	=	Console.ReadLine();

								try	

								{

												Byte	number	=	Byte.Parse(input);

												Console.WriteLine("Result:	{0}",	2	*	number);

								}	

								catch	(FormatException	e)	{

												Console.WriteLine("Invalid	input.");

												Console.WriteLine(e.StackTrace);

								}

								catch	(OverflowException)

								{

												Console.WriteLine("The	number	you	entered	exceeded"

																				"capacity");

								}

				}

}

The	NumberDoubler	class	uses	the	System.Console	class	to	take	user	input.

string	input	=	Console.ReadLine();

It	 then	 uses	 the	 static	Parse	method	 of	 the	System.Byte	 structure	 to	 convert	 the	 string
input	 to	 a	 byte.	 If	 you	 look	 at	 the	 documentation,	 this	 method	 can	 throw	 one	 of	 the
following	exceptions:

ArgumentNullException,	if	the	string	input	is	null.
FormatException,	if	the	string	input	is	not	a	number.
OverflowException,	if	the	string	input	is	less	than	0	or	greater	than	255.

The	 Test	 method	 in	 the	 NumberDoubler	 class	 does	 not	 try	 to	 catch	 the
ArgumentNullException	 because	 the	 output	 from	 Console.ReadLine()	 is	 never	 null.
Also	note	that	the	second	catch	block	does	not	define	a	variable	for	OverflowException
as	the	code	in	the	block	does	not	use	it.

To	test	the	NumberDouble	class,	write	and	run	this	code.

new	NumberDoubler().Test();

You	will	see	this	on	the	console:

Please	type	a	number	between	0	and	255	that	you	want	to	double

If	you	 type	a	number	between	0	and	255,	you’ll	 see	your	number	doubled.	However,	 if
you	type	a	non-number,	such	as	“abcd,”	the	Parse	method	will	throw	a	FormatException
and	you’ll	see	an	error	message	followed	by	the	stack	trace	that	tells	you	the	cause	of	the
error.

Invalid	input.

			at	System.Number.StringToNumber(String	str,	NumberStyles	options,	

							NumberBuffer&	number,	NumberFormatInfo	info,	Boolean	parseDecimal)

			at	System.Number.ParseInt32(String	s,	NumberStyles	style,	NumberFormatInfo	info)

			at	System.Byte.Parse(String	s,	NumberStyles	style,	NumberFormatInfo	info)

			at	System.Byte.Parse(String	s)

			at	NumberDoubler.Test()	in	C:\App08\NumberDoubler.cs:line	12

try	without	catch	and	the	using	Statement
A	 try	 statement	 can	 be	 used	with	 finally	without	 a	 catch	 block.	You	 normally	 use	 this
syntax	to	ensure	that	some	code	always	gets	executed	whether	or	not	the	code	in	the	try
block	can	finish	successfully.	For	example,	after	opening	a	database	connection,	you	want
to	make	sure	its	Close	method	is	called	after	you’re	done	with	the	connection.	To	illustrate
this	scenario,	consider	the	following	pseudocode	that	opens	a	database	connection.

Connection	connection	=	null;

try	

{

				

				//	open	connection

				//	do	something	with	the	connection	and	perform	other	tasks

}	

finally	{

				if	(connection	!=	null)	

				{

								//	close	connection

								connection.Close();

				}

}

If	 something	 unexpected	 occurs	 in	 the	 try	 block	 and	 it	 throws	 an	 exception,	 the	Close
method	will	always	be	called	to	release	the	resource.

In	C#	the	using	statement	(not	 to	be	confused	with	 the	using	directive	 that	 is	used	 to
import	a	namespace)	can	be	used	as	a	convenient	syntax	to	ensure	that	managed	types	that
access	unmanaged	resources	release	the	resources	after	use	by	calling	the	Dispose	method
of	 the	managed	types.	Examples	of	managed	types	 that	access	unmanaged	resources	are
File	and	Font.	When	creating	a	file,	for	example,	the	System.IO.File	class	also	creates	a
stream	object	that	lets	you	read	from	or	write	to	the	file.	When	you	no	longer	need	the	file,
the	 corresponding	 stream	 must	 be	 properly	 disposed.	 Employing	 the	 using	 statement
allows	you	to	write	very	short	code	like	this:

using	(FileStream	fs	=	File.Create(fileName))

{

				//	do	something	with	the	FileStream	here

}

The	alternative	is	to	use	a	try	and	a	finally	blocks	like	this:

FileStream	fileStream	=	null;

try

{

				fileStream	=	File.Create("C:/temp.txt");

				//	do	something	with	fileStream	here

}

finally

{

				//	dispose	of	fileStream	here.

}

You’ll	see	more	examples	on	using	the	using	statement	in	Chapter	15,	“Input/Output”	and
other	chapters.

The	System.Exception	Class
Erroneous	code	can	throw	any	type	of	exception.	For	example,	trying	to	parse	an	invalid
argument	 may	 throw	 a	 System.FormatException,	 and	 calling	 a	 method	 on	 a	 null
reference	variable	throws	a	System.ArgumentNullException.	All	.NET	exception	classes
derive	 from	 the	System.Exception	class.	 It	 is	 therefore	worthwhile	 to	 spend	 some	 time
examining	this	class.

Among	others,	the	Exception	class	has	Message	and	StackTrace	properties.	Message
contains	the	description	of	the	exception	and	StackTrace	the	immediate	frames	on	the	call
stack.

Most	 of	 the	 time	 a	 try	 block	 is	 accompanied	 by	 a	 catch	 block	 that	 catches	 the
System.Exception	 in	 addition	 to	 other	 catch	 blocks.	 The	 catch	 block	 that	 catches
Exception	must	appear	last.	If	other	catch	blocks	fail	to	catch	the	exception,	the	last	catch
will	do	that.	Here	is	an	example.

try	

{

				//	code

}	

catch	(FormatException	e)	

{

				//	handle		FormatException

}	

catch	(Exception	e)

{

				//	handle	other	exceptions

}

You	may	want	to	use	multiple	catch	blocks	in	the	code	above	because	the	statements	in
the	 try	block	may	 throw	a	FormatException	 or	other	 type	of	 exception.	 If	 the	 latter	 is
thrown,	it	will	be	caught	by	the	last	catch	block.

Be	 warned,	 though:	 The	 order	 of	 the	 catch	 blocks	 is	 important.	 You	 cannot,	 for
example,	put	a	catch	block	for	handling	System.Exception	before	any	other	catch	block.
This	 is	 because	 the	CLR	 tries	 to	match	 the	 thrown	 exception	with	 the	 argument	 of	 the
catch	blocks	in	the	order	of	appearance.	System.Exception	catches	everything;	therefore,
the	catch	blocks	after	it	would	never	be	executed.

If	you	have	several	catch	blocks	and	the	exception	type	of	one	of	the	catch	blocks	 is
derived	from	the	type	of	another	catch	block,	make	sure	the	more	specific	exception	type
appears	first.

Throwing	an	Exception	from	a	Method
When	catching	an	exception	 in	a	method,	you	have	 two	options	 to	handle	 the	error	 that
occurs	 inside	 the	 method.	 You	 can	 either	 handle	 the	 error	 in	 the	 method,	 thus	 quietly
catching	 the	 exception	 without	 notifying	 the	 caller	 (this	 has	 been	 demonstrated	 in	 the
previous	examples),	or	you	can	 throw	 the	exception	back	 to	 the	caller	and	 let	 the	caller
handle	it.	If	you	choose	the	second	option,	the	calling	code	must	catch	the	exception	that
is	thrown	back	by	the	method.

Listing	8.2	presents	a	Capitalize	method	that	changes	the	first	letter	of	a	string	to	upper
case.

Listing	8.2:	The	Capitalize	method

public	string	Capitalize(string	s)

{

				if	(s	==	null)	

				{

								throw	new	ArgumentNullException(

																"Your	passed	a	null	argument");

				}

				Character	firstChar	=	s.charAt(0);

				String	theRest	=	s.substring(1);

				return	firstChar.toString().toUpperCase()	+	theRest;

}

If	you	pass	null	to	Capitalize,	it	will	throw	a	new	ArgumentNullException.	Pay	attention
to	the	code	that	instantiates	the	ArgumentNullException	class	and	throws	the	instance:

								throw	new	ArgumentNullException(

																"You	passed	a	null	argument");

The	throw	keyword	is	used	to	throw	an	exception.

The	following	example	shows	code	that	calls	Capitalize.

String	input	=	null;

try	

{

				String	capitalized	=	util.Capitalize(input);

				System.Console.WriteLine(capitalized);

}	

catch	(ArgumentNullException	e)	

{

				System.Console.Write(e.Message);

}

Note
A	constructor	can	also	throw	an	exception.

Exception	Filters
A	new	feature	in	C#,	exception	filters	allow	you	to	specify	a	condition	on	a	catch	block.
The	syntax	is	as	follows:

try

{

				//	do	something

}

catch	(SomeException	e)	when	(condition)

{

				//	handle	error

}

This	way,	the	exception	is	only	thrown	if	the	condition	was	met.	This	is	the	same	as	the
following.

try

{

				//	do	something

}

catch	(SomeException	e)

{

				if	(condition)

				{

								//	handle	error

				}

				else

				{

								throw;

				}

}

Final	Note	on	Exception	Handling
The	 try	 statement	 imposes	 some	 performance	 penalty.	 Therefore,	 do	 not	 use	 it	 over-
generously.	 If	 it	 is	not	hard	 to	 test	 for	a	condition,	 then	you	should	do	 the	 testing	rather
than	 depending	 on	 the	 try	 statement.	 For	 example,	 calling	 a	 method	 on	 a	 null	 object
throws	an	ArgumentNullException.	Therefore,	you	could	always	surround	a	method	call
with	a	try	block:

try	

{

				ref.MethodA();

...

However,	it	is	not	hard	at	all	to	check	if	ref	is	null	prior	to	calling	MethodA.	Therefore,
the	following	code	is	better	because	it	eliminates	the	try	block.

if	(ref	!=	null)	

{

				ref.MethodA();

}	

Summary
This	 chapter	 discussed	 the	 use	 of	 structured	 error	 handling	 and	 presented	 examples	 for
each	case.	You	have	also	been	introduced	to	the	System.Exception	class	and	its	properties
and	methods.

Chapter	9

Numbers	and	Dates
In	C#	numbers	are	represented	by	types	such	as	byte,	short,	int,	float,	double	and	 long.
These	 C#	 types	 are	 aliases	 for	 .NET	 structures	 System.Byte,	 System.Int16,
System.Int32,	 System.Single,	 System.Double	 and	 System.Int64,	 respectively.	 In
addition,	 dates	 are	 represented	 by	 the	System.DateTime	 structure.	When	working	with
numbers	 and	 dates,	 three	 issues	 that	 you	 need	 to	 address	 are	 parsing,	 formatting,	 and
manipulation.

Parsing	 deals	 with	 the	 conversion	 of	 a	 string	 into	 a	 number	 or	 a	 date.	 Parsing	 is
commonplace	 because	 computer	 programs	 often	 require	 user	 input	 and	 user	 input	 is
received	as	a	string.	If	a	program	expects	a	number	or	a	date	but	receives	a	string,	then	the
string	 has	 to	 be	 first	 converted	 into	 a	 number	 or	 a	 date.	 Conversion	 is	 not	 always
straightforward.	Before	 conversion	 can	 take	 place,	 you	 first	 need	 to	 read	 the	 string	 and
make	 sure	 it	 contains	 only	 characters	 that	 make	 up	 a	 number	 or	 a	 date.	 For	 example,
“123abc”	is	not	a	number	even	though	it	starts	with	a	number.	“123.45”	is	a	float,	but	not
an	integer.	“12/25/2013”	looks	like	a	date,	but	it	is	only	valid	if	the	program	is	expecting	a
date	 in	mm/dd/yyyy	 format.	Converting	 a	 string	 to	 a	 number	 is	 called	 number	 parsing.
Converting	a	string	to	a	date	is	referred	to	as	date	parsing.

When	you	have	a	number	or	a	date,	you	may	want	to	display	it	in	a	specific	format.	For
instance,	1000000	will	be	more	readable	if	displayed	as	1,000,000	and	12/25/2016	as	Dec
25,	2016.	These	are	number	formatting	and	date	formatting,	respectively.

Number	and	date	parsing	and	formatting	are	the	topics	of	this	chapter.	These	tasks	can
be	easily	achieved	 in	 .NET	as	 the	 structures	mentioned	above	provide	 relevant	methods
for	this	purpose.	In	addition,	the	System.Math	class,	which	provides	methods	to	perform
mathematical	 operations,	 is	 also	 discussed.	 On	 top	 of	 that,	 there	 is	 a	 section	 on	 the
System.Calendar	class,	a	utility	for	manipulating	dates.

Number	Parsing
A	C#	program	may	require	that	the	user	input	a	number	that	will	be	processed	or	become
an	argument	of	a	method.	For	example,	a	currency	converter	program	would	need	the	user
to	type	in	a	value	to	be	converted.	You	can	use	ReadLine	method	of	the	System.Console
class	 to	 receive	user	 input.	However,	 the	 input	will	 be	 a	 string,	 even	 though	 it	 contains
digits	only.	Before	you	can	work	with	the	number,	such	as	doubling	it,	you	need	to	parse
the	string.	The	outcome	of	a	successful	number	parsing	is	a	number.

Therefore,	 the	 purpose	 of	 number	 parsing	 is	 to	 convert	 a	 string	 into	 a	 numeric	 value
type.	If	parsing	fails,	for	example	because	the	string	is	not	a	number	or	a	number	outside
the	specified	range,	your	program	can	throw	an	exception.

You	can	use	the	Parse	method	of	any	structure	that	represents	a	numeric	type	to	parse	a
string.	 The	 return	 type	 of	 Parse	 is	 the	 same	 as	 the	 structure	 that	 contains	 the	 Parse
method.	For	instance,	the	Parse	method	in	System.Int32	returns	an	Int32.	If	parsing	fails,
a	System.FormatException	is	thrown.

As	 an	 example,	 the	NumberParsingTest	 class	 in	 Listing	 9.1	 takes	 user	 input	 using
Console.ReadLine()	and	parses	it.	If	the	user	enters	an	invalid	number,	an	error	message
will	be	displayed.

Listing	9.1:	Parsing	numbers	(NumberParsingTest.cs)

using	System;

namespace	app09

{

				class	NumberParsingTest

				{

								public	static	void	Main()

								{

												Console.Write("Please	type	in	a	number:");

												String	input	=	Console.ReadLine();

												try

												{

																int	i	=	Int32.Parse(input);

																Console.WriteLine("The	number	entered:	"	+	i);

												}

												catch	(FormatException)

												{

																Console.WriteLine("Invalid	user	input");

												}

												Console.ReadKey();

								}

				}

}

Number	Formatting
Number	formatting	 helps	make	 numbers	more	 readable.	 For	 example,	 1000000	 is	more
readable	 if	 printed	 as	 1,000,000	 or	 1.000.000.	 Which	 format	 you	 choose	 obviously
depends	 on	 where	 you	 live.	 In	 the	 United	 States	 and	 English-speaking	 provinces	 of
Canada,	the	comma	is	used	to	separate	the	thousands,	whereas	in	France	or	Indonesia	the
dot	 is	used.	Therefore,	number	and	date	formatting	depends	on	the	culture	(or	 locale)	of
the	user.	Fortunately,	it’s	easy	to	handle	culture	information	in	.NET.

In	 .NET	 culture	 information,	 or	 culture	 info	 for	 short,	 is	 represented	 by	 the
System.Globalization.CultureInfo	 class.	 A	CultureInfo	 can	 be	 neutral	 (when	 it	 only
specifies	the	language	element	of	a	culture)	or	specific	(when	both	language	and	country
are	defined).	It	can	also	be	an	invariant	culture	if	it	is	culture-insensitive.

The	 format	 for	 a	 culture	 name	 is	 the	 combination	of	 an	 ISO	639	 two-letter	 language
code,	a	hyphen,	and	an	ISO	3166	two-letter	country	code.	Table	9.1	lists	several	language
codes	 in	 ISO	 639	 and	 table	 9.2	 some	 of	 the	 country	 codes	 in	 ISO	 3166
(http://userpage.chemie.fu-berlin.de/diverse/doc/ISO_3166.html).

Code Language

de German

el Greek

en English

es Spanish

fr French

hi Hindi

it Italian

ja Japanese

nl Dutch

pt Portuguese

ru Russian

zh Chinese

Table	9.1:	Examples	of	ISO	639	Language	Codes

http://userpage.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

Country Code

Australia AU

Brazil BR

Canada CA

China CN

Egypt EG

France FR

Germany DE

India IN

Mexico MX

Switzerland CH

Taiwan TW

United	Kingdom GB

United	States US

Table	9.2:	Examples	of	ISO	3166	Country	Codes

For	example,	en-US	is	for	English	(United	States),	en-GB	for	English	(United	Kingdom),
fr-FR	for	French	(France),	fr-CA	for	French	(Canada),	and	jp-JA	for	Japanese	(Japan).	The
only	 exceptions	 to	 this	 rule	 are	 zh-Hans	 (Chinese	 (Simplified))	 and	 zh-Hant	 (Chinese
(Traditional)),	which	both	are	neutral	cultures.

The	complete	list	of	the	supported	culture	info	can	be	found	here:

http://msdn.microsoft.com/en-us/goglobal/bb896001.aspx

For	example,	to	construct	a	CultureInfo	object	representing	the	English	language	used	in
Canada,	write	this.

CultureInfo	cInfo	=	new	CultureInfo("en-CA");

Alternatively,	you	can	use	the	static	method	CreateSpecificCulture	in	CultureInfo:

CultureInfo	cInfo	=	CultureInfo.CreateSpecificCulture("en-CA");

Now	that	you	have	sufficient	background	information	on	culture	info,	let’s	delve	into	how

you	can	format	numbers	in	C#.	The	answer	turns	out	to	be	simple,	you	use	the	ToString
methods	on	the	numeric	types.

Here	are	the	overloads	of	ToString.

public	string	ToString()

public	string	ToString(IFormatProvider	provider)

public	string	ToString(string	format)

public	string	ToString(string	format,	IformatProvider	provider)

If	you	use	the	no-arg	ToString	method,	the	default	system	format	will	be	used.	If	you	live
in	 the	US,	 chances	 are	 it	 will	 be	 en-US.	 For	 example,	 the	 following	ToString	method
formats	the	number	12345	as	12345,	which	is	the	same	as	the	original	form.

int	value	=	12345;

Console.WriteLine(value.ToString());	//	prints	12345

The	following	code	prints	2e3f	(2	x	103)	as	2000.

float	floatValue	=	2e3f;	//	2	x	10^3

Console.WriteLine(floatValue.ToString());	//prints	2000

Depending	 on	 your	 need,	 the	 no-argument	ToString	 method	may	 or	 may	 not	 be	 good
enough.	If	it	is	not,	you	can	pass	a	format	string	to	ToString	using	this	method	overload.

public	string	ToString(string	format)

Here,	you	pass	one	of	the	standard	numeric	format	strings	given	in	Table	9.3

Format	Specifier Name

“C”	or	“c” Currency

“D”	or	“d” Decimal

“E”	or	“e” Exponential

“F”	or	“f” Fixed-point

“G”	or	“g” General

“N”	or	“n” Number

“P”	or	“p” Percent

“R”	or	“r” Round-trip

“X”	or	“x” Hexadecimal

Table	9.3:	Standard	numeric	format	strings

More	information	on	numeric	format	strings	can	be	found	here:

http://msdn.microsoft.com/en-us/library/dwhawy9k

For	example,	the	following	code	prints	12345.

int	intValue	=	12345;

Console.WriteLine(intValue.ToString("g"));

Furthermore,	if	you	live	in	the	US	or	in	a	country	that	uses	the	same	currency	format	as
the	US	(and	your	computer	 is	set	 to	 the	default	setting),	you’ll	get	$12,345.00	from	this
code	snippet.

int	intValue	=	12345;

Console.WriteLine(intValue.ToString("c"));

In	other	words,	in	the	absence	of	cultural	information,	the	ToString	method	will	assume
the	 default.	 But,	 hey,	 what	 if	 you	 want	 to	 print	 something	 that	 is	 not	 your	 computer’s
default?	Like,	you’re	probably	working	for	a	client	in	another	country?	Then,	you	can	use
the	other	ToString	overload	that	takes	both	format	and	culture	information.

public	string	ToString(string	format,	IformatProvider	provider)

Recall	 that	CultureInfo	 implements	 IFormatProvider,	 so	 you	 can	 pass	 an	 instance	 of
CultureInfo	as	the	second	argument.	For	instance,	the	following	code	prints	12345	as	in
currency	format	in	French	Canadian	(i.e.,	the	Province	of	Quebec):

CultureInfo	frenchCanadian	=	new	CultureInfo("fr-CA");

Console.WriteLine(intValue.ToString("c",	frenchCanadian));

//	prints	12	345,00	$

Regardless	of	your	computer	settings	running	the	code	above	will	give	you	12	345,00	$.

Listing	9.2	shows	the	NumberFormatTest	class	that	demonstrates	how	to	use	various
overloads	of	the	ToString	method	to	format	a	number.

Listing	9.2:	The	NumberFormatTest	class

using	System;

using	System.Globalization;

namespace	app09

{

				class	NumberFormatTest

				{

								public	static	void	Main()

								{

												float	floatValue	=	2e3f;	//	2	x	10^3

												Console.WriteLine(floatValue.ToString());	//prints	2000

												int	intValue	=	12345;

												Console.WriteLine(intValue.ToString());

http://msdn.microsoft.com/en-us/library/dwhawy9k

												//	use	format	string

												Console.WriteLine(intValue.ToString("g"));	

												//prints	12345

												Console.WriteLine(intValue.ToString("c"));	

												//prints	$12,345.00	if	en-US

												CultureInfo	frenchCanadian	=	new	CultureInfo("fr-CA");

												Console.WriteLine(intValue.ToString("c",	

																frenchCanadian));	//	prints	12	345,00	$

												Console.ReadKey();

								}

				}

}

The	System.Math	Class
The	Math	class	is	a	utility	class	that	provides	static	methods	for	mathematical	operations.
There	are	also	 two	static	 final	double	 fields:	E	and	PI.	E	 represents	 the	base	of	natural
logarithms	(e).	Its	value	is	close	to	2.718.	PI	is	the	ratio	of	the	circumference	of	a	circle	to
its	diameter	(pi).	Its	value	is	22/7	or	approximately	3.1428.

Some	of	the	methods	in	the	Math	class	are	given	below.

public	static	double	Abs(double	a)

Returns	the	absolute	value	of	the	specified	double..

public	static	double	Acos(double	a)

Returns	the	arc	cosine	of	an	angle,	in	the	range	of	0.0	through	pi.

public	static	double	Asin(double	a)

Returns	the	arc	sine	of	an	angle,	in	the	range	of	–pi/2	through	pi/2.

public	static	double	Atan(double	a)

Returns	the	arc	tangent	of	an	angle,	in	the	range	of	–pi/2	through	pi/2.

public	static	double	Cos(double	a)

Returns	the	cosine	of	an	angle.

public	static	double	Exp(double	a)

Returns	Euler’s	number	e	raised	to	the	power	of	the	specified	double.

public	static	double	Log(double	a)

Returns	the	natural	logarithm	(base	e)	of	the	specified	double.

public	static	double	Log10(double	a)

Returns	the	base	10	logarithm	of	the	specified	double.

public	static	double	Max(double	a,	double	b)

Returns	the	greater	of	the	two	specified	double	values.

public	static	double	Min(double	a,	double	b)

Returns	the	smaller	of	the	two	specified	double	values.

Working	with	Dates	and	Times
There	 are	 at	 least	 two	 classes	 in	 the	 .NET	Framework	 class	 library	 that	 can	 be	 used	 to
work	with	 dates	 and	 times,	 the	System.DateTime	 structure	 and	 the	System.TimeSpan
structure.	Both	offer	methods	 for	parsing	and	 formatting	and	differ	only	 in	 the	scope	of
data	 they	 can	 handle.	 This	 section	 explains	 the	 two	 structures.	 There	 is	 also	 the
System.Globalization.Calendar	 class,	 which	 can	 manipulate	 dates	 and	 times,	 and	 its
subclasses.	However,	I	will	limit	discussion	to	DateTime	and	TimeSpan	and	will	not	be
discussing	Calendar	and	its	next	of	kin.

System.DateTime
DateTime	 represents	 a	 point	 in	 time,	 like	August	 9,	 1945	 or	 6.20pm	on	December	 20,
2020.

For	example,	the	DayCalculator	class	in	Listing	9.3	shows	how	to	parse	and	format	a
date	using	DateTime.

Listing	9.3:	The	DayCalculator	class

using	System;

using	System.Globalization;

namespace	App09

{

				class	DayCalculator

				{

								public	void	CalculateDay()

								{

												Console.Write("\nEnter	a	date	in	MM/dd/yyyy	format:	");

												DateTime	selectedDate;

												string	dateString	=	Console.ReadLine();

												string	format	=	"MM/dd/yyyy";

												CultureInfo	provider	=	CultureInfo.InvariantCulture;

												try	

												{

																selectedDate	=	DateTime.ParseExact(dateString,	

																				format,	provider);

																Console.WriteLine("{0}	is/was	a	{1}",

																				selectedDate.ToString("MMM	dd,	yyyy"),

																				selectedDate.DayOfWeek);

																DateTime	now	=	DateTime.Now;

																//	create	DateTime	with	the	same	date	this	year

																DateTime	thisYear	=	new	DateTime(

																				now.Year,	selectedDate.Month,	

																				selectedDate.Day);

																Console.WriteLine("This	year	{0}	falls/fell	"

																				+	"on	a	{1}",

																				thisYear.ToString("MMM	dd"),

																				thisYear.DayOfWeek);

												}

												catch	(FormatException)	{

																Console.WriteLine("Invalid	date.	Note	that	the	"

																				+	"month	and	date	parts	must	be	two	digits.	"

																				+	"For	example,	instead	of	1/1/2011,	"

																				+	"enter	01/01/2011");

												}

								}

								static	void	Main(string[]	args)

								{

												DayCalculator	dayCalculator	=

																new	DayCalculator();

												char	tryAgain	=	'y';

												while	(tryAgain	!=	'n'	&&	tryAgain	!=	'N')

												{

																if	(tryAgain	==	'y'	||	tryAgain	==	'Y')

																{

																				dayCalculator.CalculateDay();

																}

																Console.Write("\nTry	again	(y/n)?");

																tryAgain	=	Console.ReadKey().KeyChar;

												}

								}

				}

}

The	CalculateDay	method	 is	 the	brain	 in	DayCalculator.	 It	 takes	 user	 input,	 parses	 it,
and	prints	the	day	of	the	entered	date.

System.TimeSpan
The	 TimeSpan	 structure	 represents	 a	 time	 interval	 and	 can	 be	 used	 to	 hold	 a	 time
information.	 Unlike	DateTime	 that	 can	 be	 used	 to	 contain	 date	 and	 time	 information,
TimeSpan	can	only	hold	time	information	and	is	therefore	easier	to	use	than	DateTime	if
you	don’t	need	the	date	component.

For	 example,	 the	TimeSpanExample	 project	 in	App09	 solution	 shows	how	you	 can
use	TimeSpan	 to	 calculate	 how	 long	 a	 flight	 will	 take	 given	 the	 departure	 and	 arrival
times.	Only	time	information	is	needed	as	a	flight	in	this	example	is	assumed	to	start	and
end	on	the	same	day.

The	DurationCalculator	class	is	given	in	Listing	9.4.

Listing	9.4:	The	DurationCalculator	class

using	System;

using	System.Globalization;

namespace	TimeSpanExample

{

				class	DurationCalculator

				{

								public	void	CalculateDuration()

								{

												TimeSpan	departure;

												TimeSpan	arrival;

												string	format	=	"h\\:mm";

												bool	timeValid	=	true;

												do

												{

																Console.Write("Departure	time	(hh:mm):");

																string	intervalString	=	Console.ReadLine();

																timeValid	=	TimeSpan.TryParseExact(intervalString,	

																				format,	CultureInfo.CurrentCulture,	

																				TimeSpanStyles.None,	out	departure);

																if	(!timeValid)

																{

																				Console.WriteLine("Invalid	time.	Please	"

																								+	"enter	your	departure	time	in	hh:mm	"

																								+	"format	(Ex:	10:30	or	21:12)\n");

																}

												}

												while	(!timeValid);

												do

												{

																Console.Write("Arrival	time	(hh:mm):");

																string	intervalString	=	Console.ReadLine();

																timeValid	=	TimeSpan.TryParseExact(intervalString,

																				format,	CultureInfo.CurrentCulture,

																				TimeSpanStyles.None,	out	arrival);

																if	(!timeValid)

																{

																				Console.WriteLine("Invalid	time.	Please	"

																								+	"enter	your	arrival	time	in	hh:mm	"

																								+	"format	(Ex:	10:30	or	21:12)\n");

																}

												}

												while	(!timeValid);

												if	(arrival.CompareTo(departure)	>	0)

												{

																TimeSpan	duration	=	arrival.Subtract(departure);

																Console.WriteLine("Your	flight	will	take	{0}	"

																				+	"hour(s)	and	{1}	minute(s)",	

																				duration.Hours,	duration.Minutes);

												}

												else

												{

																Console.WriteLine("You	have	entered	an	arrival	"

																				+	"time	that	is	earlier	than	the	departure	"

																				+	"time.\nPlease	try	again	later.	");

												}

								}

								static	void	Main(string[]	args)

								{

												DurationCalculator	calculator	=	new	

																DurationCalculator();

												calculator.CalculateDuration();

												Console.ReadKey();

								}

				}

}

The	CalculateDuration	method	in	DurationCalculator	does	all	the	work.	It	employs	two
do-while	 loops	 that	 take	 the	departure	 time	and	arrival	 time,	 respectively.	 In	 each	 loop,
CalculateDuration	invokes	Console.ReadLine()	to	take	user	input	and	feed	the	input	to
the	 TryParseExact	 static	 method	 of	 TimeSpan.	 Here	 is	 the	 do-while	 loop	 for	 the
departure	time.

												bool	timeValid	=	true;

												do

												{

																Console.Write("Departure	time	(hh:mm):");

																string	intervalString	=	Console.ReadLine();

																timeValid	=	TimeSpan.TryParseExact(intervalString,	

																				format,	CultureInfo.CurrentCulture,	

																				TimeSpanStyles.None,	out	departure);

																if	(!timeValid)

																{

																				Console.WriteLine("Invalid	time.	Please	"

																								+	"enter	your	departure	time	in	hh:mm	"

																								+	"format	(Ex:	10:30	or	21:12)\n");

																}

												}

												while	(!timeValid);

TryParseExact	returns	true	if	parsing	was	successful	and	false	if	parsing	failed.	The	last
argument	of	TryParseExact	is	an	out	argument,	which	means	the	TimeSpan	object	is	set
on	 successful	 parsing.	 Basically,	 the	do-while	 loop	will	 keep	 on	 looping	 until	 the	 user
enters	a	valid	time	in	hh:mm	format.

The	second	while	loop	is	similar	to	the	first,	except	for	the	error	message.	After	a	valid
arrival	time	is	received,	the	arrival	time	is	compared	with	the	departure	time.

												if	(arrival.CompareTo(departure)	>	0)

												{

																TimeSpan	duration	=	arrival.Subtract(departure);

																Console.WriteLine("Your	flight	will	take	{0}	"

																				+	"hour(s)	and	{1}	minute(s)",	

																				duration.Hours,	duration.Minutes);

												}

												else

												{

																Console.WriteLine("You	have	entered	an	arrival	"

																				+	"time	that	is	earlier	than	the	departure	"

																				+	"time.\nPlease	try	again	later.	");

												}

arrival.CompareTo(departure)	 returns	 a	 positive	 integer	 if	 arrival	 is	 greater	 than
departure.	 In	 such	 a	 case,	 departure	 will	 be	 subtracted	 from	 arrival	 and	 the	 result
(duration)	is	printed.	On	the	other	hand,	if	departure	is	the	same	as	or	greater	than	arrival,
CalculateDuration	prints	an	error	message.

Finally,	 here	 is	 the	Main	 method	 that	 instantiates	DurationCalculator	 and	 calls	 the
CalculateDuration	method.

								static	void	Main(string[]	args)

								{

												DurationCalculator	calculator	=	new	

																DurationCalculator();

												calculator.CalculateDuration();

												Console.ReadKey();

								}

Running	this	program,	you’ll	see	this	message	on	your	console:

Departure	time	(HH:mm):

Enter	a	 time,	 such	as	10:00	and	press	Enter.	You’ll	get	a	 second	message	urging	you	 to
enter	an	arrival	time.

Arrival	time	(HH:mm):

Enter	a	time,	such	as	12:00,	and	press	Enter.	You’ll	get	the	duration	between	the	first	and
second	time	spans.	Conversely,	you’ll	get	an	error	message	if	you	type	in	an	invalid	time
or	if	the	arrival	time	is	not	greater	than	the	departure	time.

Summary
In	C#	numbers	are	represented	by	types	such	as	byte,	short,	int,	float,	double	and	 long.
These	 C#	 types	 are	 aliases	 for	 .NET	 structures	 System.Byte,	 System.Int16,
System.Int32,	 System.Single,	 System.Double	 and	 System.Int64,	 respectively.	 In
addition,	 dates	 are	 represented	 by	 the	 System.DateTime	 structure.	 In	 this	 chapter	 you
learned	the	three	issues	that	you	need	to	address	when	working	with	numbers	and	dates:
parsing,	formatting,	and	manipulation.

Chapter	10

Interfaces	and	Abstract	Classes
C#	 beginners	 often	 get	 the	 impression	 that	 an	 interface	 is	 simply	 a	 class	 without
implementation	code.	While	this	is	not	technically	incorrect,	it	obscures	the	real	purpose
of	 having	 the	 interface	 in	 the	 first	 place.	 The	 interface	 is	more	 than	 that.	 The	 interface
should	be	regarded	as	a	contract	between	a	service	provider	and	its	clients.	This	chapter
therefore	focuses	on	the	concepts	before	explaining	how	to	write	an	interface.

The	second	topic	in	this	chapter	is	the	abstract	class.	Technically	speaking,	an	abstract
class	 is	 a	 class	 that	 cannot	 be	 instantiated	 and	 must	 be	 implemented	 by	 a	 subclass.
However,	the	abstract	class	is	important	because	in	some	situations	it	can	take	the	role	of
the	interface.	You’ll	see	how	to	use	the	abstract	class	too	in	this	chapter.

The	Concept	of	Interface
When	learning	about	the	interface	for	the	first	time,	novices	often	focus	on	how	to	write
one,	 rather	 than	 understanding	 the	 concept	 behind	 it.	 They	 may	 think	 an	 interface	 is
something	like	a	class	declared	with	the	 interface	keyword	and	whose	methods	have	no
body.

While	the	description	is	not	inaccurate,	treating	an	interface	as	an	implementation-less
class	misses	the	big	picture.	A	better	definition	of	an	interface	is	a	contract.	It	is	a	contract
between	a	service	provider	(server)	and	the	user	of	such	a	service	(client).	Sometimes	the
server	defines	the	contract,	sometimes	the	client	does.

Consider	 this	 real-world	 example.	Microsoft	Windows	 is	 the	most	 popular	 operating
system	today,	but	Microsoft	does	not	make	printers.	For	printing,	you	still	 rely	on	 those
people	 at	 HP,	 Canon,	 Samsung,	 and	 the	 like.	 Each	 of	 these	 printer	 makers	 uses	 a
proprietary	 technology.	 However,	 their	 products	 can	 all	 be	 used	 to	 print	 any	 document
from	any	Windows	application.	How	come?

This	is	because	Microsoft	said	something	to	this	effect	to	printer	manufacturers,	“If	you
want	your	products	useable	on	Windows	(and	we	know	you	all	do),	you	must	implement
this	IPrintable	interface.”

The	interface	is	as	simple	as	this:

interface	IPrintable	

{

				void	Print(Document	document);

}

where	document	is	the	document	to	be	printed.

Implementing	this	interface,	printer	makers	then	write	printer	drivers.	Every	printer	has
a	different	driver,	but	they	all	implement	IPrintable.	A	printer	driver	is	an	implementation
of	IPrintable.	In	this	case,	these	printer	drivers	are	the	service	provider.

The	 client	 of	 the	 printing	 service	 is	 all	Windows	 applications.	 It	 is	 easy	 to	 print	 on
Windows	because	an	application	just	needs	to	call	the	Print	method	and	pass	a	Document
object.	 Because	 the	 interface	 is	 freely	 available,	 client	 applications	 can	 be	 compiled
without	waiting	for	an	implementation	to	be	available.

The	point	is,	printing	to	different	printers	from	different	applications	is	possible	thanks
to	 the	 IPrintable	 interface.	 A	 contract	 between	 printing	 service	 providers	 and	 printing
clients.

An	interface	can	define	methods	and	other	members.	However,	methods	in	an	interface
have	no	 implementation.	To	be	useful,	an	 interface	has	 to	have	an	 implementation	class
that	actually	performs	the	action.

Figure	10.1	illustrates	the	IPrintable	interface	and	its	implementation	in	an	UML	class
diagram.

Figure	10.1:	An	interface	and	two	implementation	classes	in	a	class	diagram

In	 the	 class	 diagram,	 an	 interface	 has	 the	 same	 shape	 as	 a	 class,	 however	 the	 name	 is
printed	 in	 italic	 and	 prefixed	 with	 <<interface>>.	 The	 HPDriver	 and	 CanonDriver
classes	implement	the	IPrintable	 interface.	The	implementations	are	of	course	different.
In	 the	HPDriver	 class,	 the	 Print	 method	 contains	 code	 that	 enables	 printing	 to	 a	 HP
printer.	 In	CanonDriver,	 the	 code	 enables	 printing	 to	 a	 Canon	 driver.	 In	 a	UML	 class
diagram,	 a	 class	 and	 an	 interface	 are	 joined	 by	 a	 dash-line	with	 an	 arrow.	This	 type	 of
relationship	 is	 often	 called	 realization	 because	 the	 class	 provides	 real	 implementation
(code	that	actually	works)	of	the	abstraction	provided	by	the	interface.

Note
This	 case	 study	 is	 contrived	 but	 the	 problem	 and	 the	 solution	 are	 real.	 I	 hope	 this
provides	you	with	more	understanding	of	what	the	interface	really	is.	It	is	a	contract.

Another	 real-world	 example	 to	 illustrate	 this	 point	 is	 the	System.Data.IDbConnection
interface,	 which	 defines	 a	 contract	 for	 all	 data	 providers	 that	 facilitates	 connecting	 to
different	 relational	 databases	 from	C#	 codes.	As	 long	 as	 a	 database	maker	 provides	 an
implementation	 of	 IDbConnection,	 their	 product	 will	 be	 accessible	 from	 any	 .NET
application.

The	Interface,	Technically	Speaking
Now	that	you	understand	what	the	interface	is,	let’s	examine	how	you	can	create	one.	In
C#,	like	the	class,	the	interface	is	a	type.	Follow	this	format	to	write	an	interface:

interface	interfaceName	

{

}

An	interface	may	contain	the	signatures	of	methods,	properties,	events,	and	delegates.	An
interface	may	not	contain	the	implementation	of	those	members.	In	addition,	an	interface
must	not	contain	fields.

All	interface	members	are	implicitly	public.	By	convention	interface	names	are	prefixed
with	I.	You	should	follow	this	convention	as	it	is	a	best	practice	to	do	so.

The	interface	is	one	of	the	most	commonly	used	types	and	there	are	hundreds	of	them	in
the	 .NET	 Framework	 class	 library.	 Examples	 include	 System.IClonable,
System.IComparable,	 System.IFormatProvider,	 System.Collection.IList,
System.Runtime.Serialization.ISerializable,	and	System.Data.IDbConnection.

It	is	easy	to	write	an	interface.	Listing	10.1	shows	an	interface	named	IPrintable.

Listing	10.1:	The	IPrintable	interface

public	interface	IPrintable

{

				void	Print(Object	document);

}

The	IPrintable	interface	defines	one	method,	Print.	Note	that	Print	is	public	even	though
there	is	no	public	keyword	in	front	of	the	method	declaration.	In	fact,	you	cannot	have	an
access	modifier	 (such	as	public	or	protected)	 in	 the	method	declaration	 in	an	 interface.
Note	that	only	the	signature	of	Print	appears	here.	The	implementation	is	written	 in	 the
implementing	class	or	structure.

Just	like	a	class,	an	interface	is	a	template	for	creating	objects.	Unlike	an	ordinary	class,
however,	 an	 interface	cannot	be	 instantiated.	 It	 simply	defines	a	 set	of	methods	 that	C#
classes	can	implement.

To	 implement	 an	 interface,	 you	 use	 the	 colon	 (:)	 after	 the	 class	 declaration.	 For
example,	Listing	10.2	shows	a	CanonDriver	class	that	implements	IPrintable.

Listing	10.2:	An	implementation	of	the	IPrintable	interface

public	class	CanonDriver	:	IPrintable

{

				public	void	Print(Object	document)	

				{

								//	code	that	does	the	printing

				}

}

An	 implementation	 class	 has	 to	 override	 all	 methods	 in	 the	 interface.	 The	 relationship
between	 an	 interface	 and	 its	 implementing	 class	 can	 be	 likened	 to	 a	 parent	 class	 and	 a
subclass.	An	 instance	 of	 the	 class	 is	 also	 an	 instance	 of	 the	 interface.	 For	 example,	 the
following	if	statement	evaluates	to	true.

CanonDriver	driver	=	new	CanonDriver();

if	(driver	is	IPrintable)				//	evaluates	to	true

A	 class	 may	 implement	 multiple	 interfaces.	 In	 the	 class	 definition,	 multiple	 interface
names	 are	 separated	 by	 a	 comma.	 For	 example,	 this	 is	 the	 definition	 of	 a	 class	 that
implements	both	IPrintable	and	System.IComparable:

public	class	MyPrinter	:	IPrintable,	System.IComparable

Of	course,	if	you	implement	multiple	interfaces,	you	must	provide	implementations	for	all
the	methods	in	the	interfaces.

You	can	also	write	a	class	 that	extends	a	base	class	and	 implements	an	 interface.	For
instance,	here	 is	 the	definition	of	a	class	 that	extends	BasePrinter	and	 implements	both
IPrintable	and	System.IComparable.

public	class	MyPrinter	:	BasePrinter,	IPrintable,	System.IComparable

One	thing	to	note	if	you’re	extending	a	class	and	implementing	one	or	many	interfaces	is
the	name	of	the	class	you’re	extending	must	come	before	the	names	of	the	interfaces.	For
instance,	the	following	declaration	will	generate	a	compile	error:

public	class	MyPrinter	:	IPrintable,	System.IComparable,	BasePrinter

The	interface	supports	inheritance.	An	interface	can	extend	another	interface.	If	interface
B	extends	 interface	A,	B	 is	said	 to	be	a	subinterface	of	A.	A	 is	 the	superinterface	of	B.
Because	B	 directly	 extends	A,	A	 is	 the	 direct	 superinterface	 of	B.	 Any	 interface	 that
extends	B	 is	 an	 indirect	 subinterface	 of	A.	 Figure	 10.2	 shows	 an	 interface	 that	 extends
another	interface.	Note	that	the	type	of	the	line	connecting	both	interfaces	is	the	same	as
the	one	used	for	extending	a	class.

Figure	10.2:	Extending	an	interface

Most	 of	 the	 time,	 you	 will	 define	 method	 members	 in	 an	 interface.	 You	 declare	 the
signatures	of	methods	in	an	interface	just	as	you	would	in	a	class.	However,	methods	in	an
interface	 do	 not	 have	 a	 body,	 they	 are	 immediately	 terminated	 by	 a	 semicolon.	 All

methods	are	implicitly	public	and	abstract,	and	it	is	illegal	to	have	an	access	modifier	in	a
method/property/event/delegate	signature.

The	syntax	of	a	method	in	an	interface	is

ReturnType	MethodName(listOfArgument);

Note	 that	 methods	 in	 an	 interface	 must	 not	 be	 declared	 static	 because	 static	 methods
cannot	be	abstract.

Implementing	System.IComparable
The	 following	 example	 shows	 the	 role	 of	 an	 interface	 as	 a	 contract	 between	 a	 service
provider	and	a	service	user.	The	objective	of	this	example	is	to	make	it	easier	for	you	to
grasp	the	concept	of	interface	in	an	OOP	language.

You	 learned	about	arrays	 in	Chapter	5,	“Core	Classes”	and	I	cursorily	mentioned	 that
the	System.Array	class	has	a	static	method	named	Sort	that	can	sort	elements	of	an	array.
Its	signature	is	as	follows:

public	static	void	Sort(Array	array)

But	how	does	Sort	know	how	to	sort	objects	that	it	knows	nothing	about?	How	does	Sort
know	 that	Elephant	 objects	 should	be	 sorted	by	weight	 and	Student	 objects	 should	 be
ordered	 by	 last	 name	 and	 first	 name?	Well,	 this	 is	where	 an	 interface	 comes	 into	 play.
Since	the	author(s)	of	System.Array	knew	nothing	about	the	objects,	they	simply	drew	a
contract	that	says	Sort	will	treat	array	elements	as	System.IComparable	instances.	So,	if
you	want	 your	 objects	 in	 an	 array	 to	 be	 sortable,	 you	 have	 to	 allow	 them	 to	 be	 cast	 to
IComparable	by	making	sure	the	object	class	implements	the	interface.

IComparable	only	has	one	method,	CompareTo,	 that	you	can	override	 to	determine
how	your	objects	can	and	should	be	sorted.

The	IComparableImplementation	project	contains	a	class	that	is	presented	in	Listing
10.3.

Listing	10.3:	Implementing	IComparable

using	System;

namespace	App10

{

				class	Student	:	IComparable

				{

								private	string	firstName;

								private	string	lastName;

								public	Student(string	firstName,	

												string	lastName)

								{

												this.lastName	=	lastName;

												this.firstName	=	firstName;

								}

								public	string	FirstName

								{

												get

												{

																return	firstName;

												}

												set

												{

																firstName	=	value;

												}

								}

								public	string	LastName

								{

												get

												{

																return	lastName;

												}

												set

												{

																lastName	=	value;

												}

								}

								public	int	CompareTo(Object	obj)

								{

												Student	anotherStudent	=	(Student)	obj;

												if	(this.lastName	==	anotherStudent.lastName)

												{

																return	this.FirstName.CompareTo(

																				anotherStudent.FirstName);

												}

												else

												{

																return	this.LastName.CompareTo(

																				anotherStudent.LastName);

												}

								}

				}

				class	Program

				{

								static	void	Main(string[]	args)

								{

												Student[]	students	=	{	

																new	Student("John",	"Suzuki"),

																new	Student("Liam",	"Doe"),

																new	Student("John",	"Smith"),

																new	Student("Joe",	"Doe"),

																new	Student("John",	"Tirano"),

																new	Student("Louis",	"Smith")};

												Console.WriteLine("\nUnsorted:");

												Console.WriteLine("====================");

												foreach	(Student	student	in	students)

												{

																Console.WriteLine(student.LastName	+	

																				",	"	+	student.FirstName);

												}

												Array.Sort(students);

												Console.WriteLine("\nSorted:");

												Console.WriteLine("====================");

												foreach	(Student	student	in	students)

												{

																Console.WriteLine(student.LastName	+

																				",	"	+	student.FirstName);

												}

												Console.ReadKey();

								}

				}

}

Running	the	code	in	Listing	10.3	shows	the	following	result	on	the	console.

Unsorted:

====================

Suzuki,	John

Doe,	Liam

Smith,	John

Doe,	Joe

Tirano,	John

Smith,	Louis

Sorted:

====================

Doe,	Joe

Doe,	Liam

Smith,	John

Smith,	Louis

Suzuki,	John

Tirano,	John

Abstract	Classes
With	 the	 interface,	 you	 have	 to	 write	 an	 implementation	 class	 that	 perform	 the	 actual
action.	 If	 there	 are	 many	 methods	 in	 the	 interface,	 you	 risk	 wasting	 time	 overriding
methods	that	you	don’t	use.	An	abstract	class	has	a	similar	role	to	an	interface,	i.e.	provide
a	contract	between	a	service	provider	and	its	clients,	but	at	the	same	time	an	abstract	class
can	 provide	 partial	 implementation.	Methods	 that	must	 be	 explicitly	 overridden	 can	 be
declared	 abstract.	 You	 still	 need	 to	 create	 an	 implementation	 class	 because	 you	 cannot
instantiate	an	abstract	class,	but	you	don’t	need	to	override	methods	you	don’t	want	to	use
or	change.

You	create	an	abstract	class	by	using	the	abstract	modifier	in	the	class	declaration.	To
create	an	abstract	method,	use	 the	abstract	modifier	 in	 front	of	 the	method	declaration.
Listing	10.4	shows	an	abstract	DefaultPrinter	class	as	an	example.

Listing	10.4:	The	DefaultPrinter	class

public	abstract	class	DefaultPrinter	

{

				public	string	GetDescription()	

				{

								return	"Use	this	to	print	documents.";

				}

				public	abstract	void	Print(Object	document);

}

There	 are	 two	 methods	 in	 DefaultPrinter,	 Print	 and	 GetDescription.	 The
GetDescription	 method	 has	 an	 implementation,	 so	 you	 do	 not	 need	 to	 override	 this
method	in	an	implementation	class,	unless	you	want	to	change	its	return	value.	The	Print
method	 is	 declared	 abstract	 and	 does	 not	 have	 a	 body.	 Listing	 10.5	 presents	 a
MyPrinterClass	class	that	is	the	implementation	class	of	DefaultPrinter.

Listing	10.5:	An	implementation	of	DefaultPrinter

public	class	MyPrinter	:	DefaultPrinter	

{

				public	override	void	Print(object	document)	

				{

								Console.WriteLine("Printing	document");

								//	some	code	here

				}

}

A	concrete	 implementation	class	such	as	MyPrinter	must	override	all	abstract	methods.
Otherwise,	it	itself	must	be	declared	abstract.

Declaring	a	class	abstract	is	a	way	to	tell	the	class	user	that	you	want	them	to	extend	the
class.	You	can	still	declare	a	class	abstract	even	if	it	does	not	have	an	abstract	method.

In	UML	class	diagrams,	an	abstract	class	looks	similar	to	a	concrete	class,	except	that
the	name	is	italicized.	Figure	10.3	shows	an	abstract	class.

Figure	10.3:	An	abstract	class

Summary
The	interface	plays	an	important	role	in	C#	because	it	defines	a	contract	between	a	service
provider	and	 its	clients.	This	chapter	showed	you	how	to	use	 the	 interface.	A	base	class
provides	a	generic	implementation	of	an	interface	and	expedites	program	development	by
providing	default	implementation	of	code.

An	abstract	class	is	like	an	interface,	but	it	may	provide	implementation	of	some	of	its
methods.

Chapter	11

Polymorphism
Polymorphism	 is	 the	 hardest	 concept	 to	 explain	 to	 those	 new	 to	 object-oriented
programming	(OOP).	In	fact,	most	of	the	time	its	definition	would	not	make	sense	without
an	 example	 or	 two.	Well,	 try	 this.	 Here	 is	 the	 definition	 in	many	 programming	 books:
“Polymorphism	 is	 an	 OOP	 feature	 that	 enables	 an	 object	 to	 determine	 which	 method
implementation	 to	 invoke	upon	receiving	a	method	call.”	 If	you	find	 this	hard	 to	digest,
you’re	not	alone.	Polymorphism	is	hard	to	explain	 in	simple	 language,	even	though	it	 is
easy	enough	to	understand	if	accompanied	by	an	example	or	two.

This	chapter	explains	what	polymorphism	is	and	presents	a	couple	of	examples.

Note
In	other	programming	languages,	polymorphism	is	also	called	late-binding	or	runtime-
binding	or	dynamic	binding.

Defining	Polymorphism
In	 C#	 and	 other	 OOP	 languages,	 it	 is	 legal	 to	 assign	 to	 a	 reference	 variable	 an	 object
whose	type	is	different	from	the	variable	type,	if	certain	conditions	are	met.	In	essence,	if
you	have	a	reference	variable	a	whose	type	is	A,	it	is	legal	to	assign	an	object	of	type	B,
like	this

A	a	=	new	B();

provided	one	of	the	following	conditions	is	met.

A	is	a	class	and	B	is	a	subclass	of	A.
A	is	an	interface	and	B	or	one	of	its	parents	implements	A.

As	you	have	learned	in	Chapter	6,	“Inheritance,”	this	is	called	upcasting.

When	you	assign	a	 an	 instance	of	B	 like	 in	 the	preceding	 code,	a	 is	 of	 type	A.	 This
means,	you	cannot	call	a	method	in	B	that	is	not	defined	in	A.	However,	if	you	print	the
value	of	a.GetType().ToString(),	you’ll	get	“B”	and	not	“A.”	So,	what	does	this	mean?	At
compile	time,	the	type	of	a	is	A,	so	the	compiler	will	not	allow	you	to	call	a	method	in	B
that	is	not	defined	in	A.	On	the	other	hand,	at	runtime	the	type	of	a	is	B,	as	proven	by	the
return	value	of	a.GetType().ToString().

Now,	here	comes	the	essence	of	polymorphism.	If	B	overrides	a	method	(say,	a	method
named	Play)	in	A,	calling	a.Play()	will	cause	the	implementation	of	Play	in	B	(and	not	in
A)	to	be	invoked.	Polymorphism	enables	an	object	(in	this	example,	the	one	referenced	by
a)	to	determine	which	method	implementation	to	choose	(either	the	one	in	A	or	the	one	in
B)	when	a	method	is	called.	Polymorphism	dictates	that	the	implementation	in	the	runtime
object	be	invoked.

What	if	you	call	another	method	in	a	(say,	a	method	called	Stop)	and	the	method	is	not
implemented	 in	 B?	 The	 CLR	 will	 be	 smart	 enough	 to	 know	 this	 and	 look	 into	 the
inheritance	 hierarchy	 of	B.	B,	 as	 it	 happens,	 must	 be	 a	 subclass	 of	 A	 or,	 if	 A	 is	 an
interface,	a	 subclass	of	another	class	 that	 implements	A.	Otherwise,	 the	code	would	not
have	 compiled.	 Having	 figured	 this	 out,	 the	 CLR	 will	 climb	 the	 ladder	 of	 the	 class
hierarchy	and	find	the	implementation	of	Stop	and	execute	it.

Now,	there	is	more	sense	in	the	definition	of	polymorphism:	Polymorphism	is	an	OOP
feature	that	enables	an	object	to	determine	which	method	implementation	to	invoke	upon
receiving	a	method	call.

Technically,	though,	how	does	C#	achieve	this?	The	C#	compiler,	as	it	turns	out,	upon
encountering	a	method	call	such	as	a.Play(),	checks	if	the	class/interface	represented	by	a
defines	such	a	method	(a	Play	method)	and	if	the	correct	set	of	parameters	are	passed	to
the	method.	But,	 that	 is	 the	 farthest	 the	compiler	goes.	With	 the	exception	of	 static	and
sealed	methods,	it	does	not	connect	(or	bind)	a	method	call	with	a	method	body.	The	CLR
determines	how	to	bind	a	method	call	with	the	method	body	at	runtime.	In	other	words,
except	for	static	and	sealed	methods,	method	binding	in	C#	takes	place	at	runtime	and	not

at	 compile	 time.	 Runtime	 binding	 is	 also	 called	 late	 binding	 or	 dynamic	 binding.	 The
opposite	 is	 early	 binding,	 in	 which	 binding	 occurs	 at	 compile	 time	 or	 link	 time.	 Early
binding	happens	in	languages	like	C.

Therefore,	 polymorphism	 is	 made	 possible	 by	 the	 late	 binding	 mechanism	 in	 .NET
Framework.	Because	of	this,	polymorphism	is	rather	inaccurately	also	called	late-binding
or	dynamic	binding	or	runtime	binding.

Let’s	look	at	the	code	in	Listing	11.1.

Listing	11.1:	An	example	of	polymorphism

using	System;

namespace	PolymorphismExample1

{

				class	Employee	{

								public	virtual	void	Work()	

								{

												Console.WriteLine("I	am	an	employee.");

								}

				}

				class	Manager	:	Employee	

				{

								public	override	void	Work()	

								{

												Console.WriteLine("I	am	a	manager.");

								}

								public	void	Manage()	

								{

												Console.WriteLine("Managing…");

								}

				}

				class	Program

				{

								static	void	Main(string[]	args)

								{

												Employee	employee;

												employee	=	new	Manager();

												Console.WriteLine(employee.GetType().ToString());

												employee.Work();

												Manager	manager	=	(Manager)	employee;

												manager.Manage();

												Console.ReadKey();

								}

				}

}

Listing	 11.1	 defines	 two	 classes:	 Employee	 and	Manager.	 Employee	 has	 a	 virtual
method	 called	Work,	 and	Manager	 extends	Employee	 and	 adds	 a	 new	method	 called
Manage	as	well	as	override	Work.

The	Main	method	in	the	Program	class	defines	an	object	variable	called	employee	of
type	Employee:

Employee	employee;

However,	employee	is	assigned	an	instance	of	Manager,	as	in:

employee	=	new	Manager();

This	 is	 legal	 because	Manager	 is	 a	 subclass	 of	 Employee,	 so	 a	 Manager	 “is	 an”
Employee.	Because	employee	is	assigned	an	instance	of	Manager,	what	is	 the	outcome
of	employee.GetType().ToString()?	You’re	right.	It’s	“Manager,”	not	“Employee.”

Then,	the	work	method	is	called.

employee.Work();

Guess	what	is	written	on	the	console?

I	am	a	manager.

This	means	that	it	 is	the	Work	method	in	the	Manager	class	that	got	called,	which	was
polymorphism	in	action.

Now,	because	the	runtime	type	of	a	is	Manager,	you	can	downcast	a	 to	Manager,	as
the	code	shows:

Manager	manager	=	(Manager)	employee;

manager.Manage();

After	seeing	the	code,	you	might	ask,	why	would	you	declare	employee	as	Employee	in
the	first	place?	Why	not	declare	employee	as	type	Manager,	like	this?

Manager	employee;

employee	=	new	Manager();

You	 do	 this	 to	 ensure	 flexibility	 in	 cases	 where	 you	 don’t	 know	 whether	 the	 object
reference	(employee)	will	be	assigned	an	instance	of	Manager	or	something	else.

Summary
Polymorphism	 is	one	of	 the	main	pillars	 in	object-oriented	programming.	 It	 is	useful	 in
circumstances	where	 the	 type	 of	 an	 object	 is	 not	 known	 at	 compile	 time.	 This	 chapter
demonstrated	 polymorphism	 through	 several	 examples.	You	 can	 find	more	 examples	 of
polymorphism	 in	 other	 chapters,	 especially	 Chapter	 18,	 “Windows	 Presentation
Foundation.”

Chapter	12

Enumerations
Enums	are	a	data	 type	 in	 .NET	Framework	 that	can	be	used	 to	hold	enumerated	values.
You	primarily	use	enums	to	restrict	the	possible	values	that	can	be	assigned	to	a	variable
or	returned	from	a	method.

This	chapter	shines	a	light	on	this	data	type.

An	Overview	of	Enum
You	use	 the	keyword	enum	 to	 create	 a	 set	 of	 valid	 values	 for	 a	 field	 or	 a	method.	For
example,	 the	 only	 possible	 values	 for	 the	 customerType	 field	 may	 be	 Individual	 and
Organization.	 For	 the	 state	 field,	 valid	 values	 may	 be	 all	 the	 states	 in	 the	 US	 plus
Canadian	provinces.	With	enum,	you	can	easily	restrict	your	program	to	take	only	one	of
the	valid	values.

An	enum	type	can	stand	alone	or	can	be	part	of	a	class.	You	make	it	stand	alone	 if	 it
needs	to	be	used	in	many	places	in	your	application.	If	it	is	only	used	from	inside	a	class,
the	enum	is	better	made	part	of	the	class.

As	an	example,	consider	the	EmployeeType	enum	definition	in	Listing	12.1.

Listing	12.1:	The	EmployeeType	enum

enum	EmployeeType

{

				FullTime,

				PartTime,

				Permanent,

				Contractor

}

The	EmployeeType	enum	has	four	enumerated	values:	FullTime,	PartTime,	Permanent,
and	Contractor.	Enum	values	are	case	sensitive	and	by	convention	capitalized.	Two	enum
values	are	 separated	by	a	comma	and	values	can	be	written	on	a	 single	 line	or	multiple
lines.	The	enum	in	Listing	12.1	is	written	in	multiple	lines	to	improve	readability.

Using	an	enum	 is	 like	using	a	class	or	an	 interface.	For	example,	 the	code	 in	Listing
12.2	uses	the	EmployeeType	enum	in	Listing	12.1	as	a	field	type.

Listing	12.2:	Using	the	EmployeeType	Enum

using	System;

namespace	EnumExample

{

				enum	EmployeeType

				{

								FullTime,

								PartTime,

								Permanent,

								Contractor

				}

				class	Employee

				{

								private	EmployeeType	employeeType;

								public	Employee(EmployeeType	employeeType)

								{

												this.employeeType	=	employeeType;

								}

								public	String	getDescription()

								{

												if	(employeeType	==	EmployeeType.Contractor)

												{

																return	"Contractor,	pay	on	hourly	basis";

												}

												else	if	(employeeType	==	EmployeeType.FullTime)

												{

																return	"Permanent,	salary-based";

												}

												else	if	(employeeType	==	EmployeeType.PartTime)

												{

																return	"Part-Time,	mostly	students";

												}

												else

												{

																return	"Full-Time,	salary-based";

												}

								}

				}

				class	Program

				{

								static	void	Main(string[]	args)

								{

												EmployeeType	employeeType	=	EmployeeType.PartTime;

												Employee	employee	=	new	Employee(employeeType);

												Console.WriteLine(employeeType);	//	prints	"PartTime"

												Console.WriteLine(employee.getDescription());

												Console.ReadKey();

								}

				}

}

In	Listing	12.2,	you	use	a	value	in	an	enum	just	like	you	would	a	class’s	static	member.
For	example,	this	code	illustrates	the	use	of	EmployeeType.

EmployeeType	employeeType	=	EmployeeType.PartTime;

Notice	how	the	employeeType	variable	is	assigned	the	enumerated	value	PartTime	of	the
EmployeeType	enum?	Because	the	employeeType	variable	is	of	type	EmployeeType,	it
can	only	be	assigned	a	value	defined	in	EmployeeType.

The	use	of	enum	 at	 first	 glance	 is	 no	 difference	 than	 the	 use	 of	 constants.	However,
there	are	some	basic	differences	between	enums	and	constants.	Constants	are	not	a	perfect
solution	for	something	that	should	accept	only	predefined	values.	For	example,	consider
the	CustomerTypeStaticFinals	class	in	Listing	12.3.

Listing	12.3:	Using	constants

class	CustomerTypeStaticFinals	

{

				public	const	int	INDIVIDUAL	=	1;

				public	const	int	ORGANIZATION	=	2;

}

Suppose	 you	 have	 a	 class	 named	 OldFashionedCustomer	 that	 uses	 an	 int	 for	 its
customerType	field.	The	following	code	creates	an	instance	of	OldFashionedCustomer
and	assigns	a	value	to	its	customerType	field:

OldFashionedCustomer	ofCustomer	=	new	OldFashionedCustomer();

ofCustomer.customerType	=	5;

With	 constants	 there	 is	 nothing	 preventing	 you	 from	 assigning	 an	 invalid	 integer	 to
customerType.	 To	 guarantee	 that	 a	 variable	 is	 assigned	 only	 a	 valid	 value,	 enums	 are
better	than	constants.

Enums	in	a	Class
You	can	use	enums	as	members	of	a	class.	You	use	this	approach	if	the	enum	is	only	used
internally	inside	the	class.	For	example,	the	code	in	Listing	12.4	is	a	modified	version	of
the	 one	 in	 Listing	 12.3.	 Unlike	 in	 Listing	 12.3,	 the	 code	 in	 Listing	 12.4	 declares	 the
EmployeeType	enum	as	a	field	in	the	Employee	class.

Listing	12.4:	Using	an	enum	as	a	class	member

using	System;

namespace	EnumExample2

{

				class	Employee

				{

								public	enum	EmployeeType

								{

												FullTime,

												PartTime,

												Permanent,

												Contractor

								}

								private	EmployeeType	employeeType;

								public	Employee(EmployeeType	employeeType)

								{

												this.employeeType	=	employeeType;

								}

								public	String	getDescription()

								{

												if	(employeeType	==	EmployeeType.Contractor)

												{

																return	"Contractor,	pay	on	hourly	basis";

												}

												else	if	(employeeType	==	EmployeeType.Permanent)

												{

																return	"Permanent,	salary-based";

												}

												else	if	(employeeType	==	EmployeeType.PartTime)

												{

																return	"Part-Time,	mostly	students";

												}

												else

												{

																return	"Full-Time,	salary-based";

												}

								}

				}

				class	Program

				{

								static	void	Main(string[]	args)

								{

												Employee.EmployeeType	employeeType	=

																				Employee.EmployeeType.FullTime;

												Employee	employee	=	new	Employee(employeeType);

												Console.WriteLine(employeeType);	//	prints	"FullTime"

												Console.WriteLine(employee.getDescription());

												Console.ReadKey();

								}

				}

}

Switching	on	enum
The	 switch	 statement	 can	 also	 work	 on	 enumerated	 values	 of	 an	 enum.	 The	 code	 in
Listing	12.5	is	an	example	of	using	an	enum,	DayOfWeek,	in	a	switch	statement.

Listing	12.5:	Switching	on	enum

using	System;

namespace	EnumExample3

{

				enum	DayOfWeek

				{

								Monday,	Tuesday,	Wednesday,	Thursday,	Friday,	Saturday,

												Sunday

				}

				class	Program

				{

								static	void	Main(string[]	args)

								{

												DayOfWeek	day	=	DayOfWeek.Sunday;

												switch	(day)

												{

																case	DayOfWeek.Monday:

																case	DayOfWeek.Tuesday:

																case	DayOfWeek.Wednesday:

																case	DayOfWeek.Thursday:

																case	DayOfWeek.Friday:

																				Console.WriteLine("Week	day");

																				break;

																case	DayOfWeek.Saturday:

																case	DayOfWeek.Sunday:

																				Console.WriteLine("Week	end");

																				break;

												}

												Console.ReadKey();

								}

				}

}

The	switch	statement	in	Listing	12.5	accepts	a	value	in	DayOfWeek.	It	will	print	“Week
day”	if	the	value	is	Monday,	Tuesday,	Wednesday,	Thursday,	or	Friday.	It	will	print	“Week
end”	if	the	value	is	Saturday	or	Sunday.

Summary
C#	supports	enum,	a	special	class	that	is	a	subclass	of	System.Enum.	Enums	are	preferred
over	integers	because	they	are	more	secure.	You	can	also	switch	on	an	enum	and	iterate	its
values.

Chapter	13

Generics
Generics	were	one	of	 the	most	prominent	 features	added	 to	 .NET	Framework	2.0.	With
generics	you	can	write	a	parameterized	type	and	create	instances	of	it	by	passing	a	type	or
types.	The	objects	will	then	be	restricted	to	the	type(s).	In	addition	to	parameterized	types,
generics	support	parameterized	methods.

The	benefit	of	generics	include	stricter	type	checking	at	compile	time	and	performance
improvement.	 In	 addition,	 generics	 eliminate	 most	 type	 castings	 you	 would	 otherwise
have	to	perform	when	working	with	members	of	the	System.Collections	namespace.

This	chapter	explains	how	you	can	use	and	write	generic	types.	It	starts	with	the	section
“Why	Generics?”	and	then	presents	examples	of	generic	 types.	After	a	discussion	of	 the
syntax,	this	chapter	concludes	with	a	section	that	explains	how	to	write	generic	types.

Why	Generics?
It	 is	 easiest	 to	 argue	 the	 case	 for	 generics	 with	 an	 example.	 Consider	 the
System.Collections.ArrayList	class,	which	has	been	in	the	.NET	Framework	class	library
since	 .NET	Framework	 1.0.	ArrayList	 is	 a	 collection	 that	 can	 hold	 objects.	 To	 add	 an
object	to	an	ArrayList,	you	call	its	Add	method,	which	has	the	following	signature.

public	virtual	int	Add(Object	value)

For	example,	the	following	code	instantiates	ArrayList	and	adds	a	product	code	(a	string)
to	it.

ArrayList	productCodes	=	new	ArrayList();

codes.Add("ABC");

Since	 all	 reference	 and	 value	 types	 derive	 from	 System.Object,	 effectively	 you	 can
pass	any	type	of	object	to	ArrayList.Add.	The	design	is	intentional	as	ArrayList	should
act	as	a	general-purpose	container	that	can	hold	any	type	of	object.

After	you	store	objects	in	an	ArrayList,	you	can	retrieve	an	element	just	as	you	would
an	array	element.

arrayList[index]

Be	aware	that	the	return	value	will	be	of	type	Object,	and	you	need	to	downcast	it	in	order
to	fully	use	it.	Modifying	the	code	above:

ArrayList	productCodes	=	new	ArrayList();

codes.Add("ABC");

//	retrieve	the	first	element

string	productCode	=	(string)	productCodes[0];

Having	to	downcast	from	object	to	the	actual	object	type	is	a	bit	of	inconvenience,	but	you
can	probably	live	with	it.	On	the	other	hand,	consider	the	following	code,	which	has	more
dire	consequences:

int	x	=	123;

ArrayList	productCodes	=	new	ArrayList();

productCodes.Add("ABC");

productCodes.Add(x);

Here,	you	pass	two	different	types,	a	string	(“ABC”)	and	an	int	(x).	Now,	suppose	you	try
to	iterate	over	the	ArrayList,	thinking	that	all	objects	in	it	are	strings.

int	count	=	codes.Count;

for	(int	i	=	0;	i	<	count;	i++)

{

				//	print	in	uppercase

				string	code	=	(string)codes[i];

				Console.WriteLine(code.ToUpper());

}

What	do	you	think	will	happen?	It	will	crash	on	the	second	element	as	its	type	is	int	and
trying	to	cast	an	int	to	string	results	in	a	runtime	error.

So	ArrayList	is	not	cool	as	the	flaw	can	be	fatal.

Realizing	 this	 imperfection,	 the	 designers	 of	 .NET	 added	 generics	 in	 .NET	2.0.	As	 a
result,	there	is	now	a	namespace	called	System.Collections.Generic.

Take	 System.Collections.Generic.List,	 for	 example.	 This	 class	 is	 very	 similar	 to
System.Collections.ArrayList,	except	that	List	is	parameterized.	Here	is	the	declaration
for	List.

public	class	List<T>	:	IList<T>,	ICollection<T>,	

								IEnumerable<T>,	IList,	ICollection,	IEnumerable

Here,	T	represents	a	type,	the	type	of	objects	that	it	can	store.	To	instantiate	List,	you	must
specify	a	type,	such	as	int	or	string.	For	example,	here	is	how	you	would	declare	a	List	of
strings:

List<string>	codes	=	new	List<string>();

What	 this	means	 is,	 you	can	only	 add	 strings	 to	codes.	Adding	a	 type	other	 than	 string
would	generate	a	compile	error.

List<string>	codes	=	new	List<string>();

codes.Add("ABC");

codes.Add(123);	//	compile	error

In	other	words,	you	cannot	make	a	mistake	of	passing	two	different	object	types	to	a	List.
On	 top	 of	 that,	 since	List	 can	 only	 accept	 a	 specific	 type,	 you	 don’t	 need	 to	 downcast
elements	you	retrieve.	Here	is	a	code	snippet	that	shows	that.

List<string>	codes	=	new	List<string>();

codes.Add("ABC");

//	add	more	elements	here

//	iterate	over	List

int	count	=	codes.Count;

for	(int	i	=	0;	i	<	count;	i++)

{

				//	print	in	uppercase

				string	code	=	codes[i];	//	no	downcasting

				Console.WriteLine(code.ToUpper());

}

You’ll	 see	more	members	 of	System.Collections.Generic	 in	 action	 in	 Chapter	 14.	 For
now,	let’s	find	out	more	about	generics.

Introducing	Generic	Types
As	 shown	 in	 the	 previous	 section,	 a	 generic	 type	 can	 accept	 parameters.	 This	 is	why	 a
generic	type	is	often	called	a	parameterized	type.

Declaring	a	generic	type	is	like	declaring	a	non-generic	one,	except	that	you	use	angle
brackets	to	enclose	the	list	of	type	variables	for	the	generic	type.

MyType<typeVar1,	typeVar2,	...>

For	example,	to	declare	a	System.Collections.Generic.List,	you	would	write	so.

List<T>	myList;

T	 is	called	a	type	variable,	namely	a	variable	 that	will	be	replaced	by	a	 type.	The	value
substituting	for	a	type	variable	will	then	be	used	as	the	argument	type	or	the	return	type	of
a	method	or	methods	in	the	generic	type.	For	the	List	class,	when	an	instance	is	created,	T
will	be	used	as	the	argument	type	of	Add	and	other	methods.	T	will	also	be	used	as	the
return	 type	of	Find	 and	other	methods.	Here	are	 the	signatures	of	Add	and	Find	 in	 the
List	class.

public	void	Add<T	item>

public	T	Find(Predicate<T>	match)

Note
A	 generic	 type	 that	 uses	 a	 type	 variable	T	 allows	 you	 to	 pass	T	when	 declaring	 or
instantiating	the	generic	type.	Additionally,	if	T	is	a	class,	you	may	also	pass	a	subclass
of	T;	if	T	is	an	interface,	you	may	pass	a	class	that	implements	T.

If	you	pass	string	to	a	declaration	of	List,	as	in

List<string>	myList;

the	Add	method	of	the	List	instance	referenced	by	myList	will	expect	a	string	object	as
its	argument	and	its	Find	method	will	return	a	string.	Because	Find	returns	a	specific	type
of	object,	no	downcasting	is	required.

To	instantiate	a	generic	type,	you	pass	the	same	list	of	parameters	as	when	declaring	it.
For	instance,	to	create	a	List	that	works	with	string,	you	pass	string	in	angle	brackets.

List<string>	myList	=	new	List<string>();

As	an	example,	Listing	13.1	compares	ArrayList	and	List.

Listing	13.1:	Comparing	non-generic	ArrayList	and	generic	List

using	System;

using	System.Collections;

using	System.Collections.Generic;

namespace	ArrayListVsList

{

				class	Program

				{

								static	void	Main(string[]	args)

								{

												ArrayList	arrayList	=	new	ArrayList();

												arrayList.Add("Life	without	generics");

												//	cast	to	String

												String	s1	=	(String)	arrayList[0];

												Console.WriteLine(s1.ToUpper());

				

												List<string>	list	=	new	List<string>();

												list.Add("Life	with	generics");

												//	no	type	casting	necessary

												String	s2	=	list[0];

												Console.WriteLine(s2.ToUpper());

												Console.ReadKey();

							}

				}

}

In	 Listing	 13.1,	 ArrayList	 is	 compared	 head-to-head	 with	 List.	 The	 declaration
List<string>	 tells	 the	 compiler	 that	 this	 instance	 of	List	 can	 only	 store	 strings.	 When
retrieving	member	elements	of	 the	List,	no	downcasting	 is	 necessary	 because	 it	 already
returns	the	intended	type,	namely	string.

If	you	run	the	code	in	Listing	13.1,	you’ll	see	these	lines	on	the	console:

LIFE	WITHOUT	GENERICS

LIFE	WITH	GENERICS

Note
With	generic	types,	type	checking	is	done	at	compile	time.

What’s	interesting	here	is	the	fact	that	a	generic	type	is	itself	a	type	and	can	be	used	as	a
type	variable.	For	example,	if	you	want	a	List	to	store	lists	of	strings,	you	can	declare	the
List	by	passing	List<string>	as	its	type	variable,	as	in

List<List<string>>	myListOfListsOfStrings;

To	retrieve	the	first	string	from	the	first	list	in	myList,	you	would	write:

string	s	=	myListOfListsOfStrings[0][0];

Listing	13.2	presents	a	class	that	uses	a	List	that	accepts	a	List	of	strings.

Listing	13.2:	Working	with	List	of	Lists

using	System;

using	System.Collections.Generic;

namespace	ListOfLists

{

				class	Program

				{

								static	void	Main(string[]	args)

								{

												List<string>	listOfStrings	=	new	List<string>();

												listOfStrings.Add("Hello	again");

												List<List<string>>	listOfLists	=	

																				new	List<List<string>>();

												listOfLists.Add(listOfStrings);

												string	s	=	listOfLists[0][0];

												Console.WriteLine(s);	//	prints	"Hello	again"

												Console.ReadKey();

								}

				}

}

Additionally,	 a	 generic	 type	 can	 accept	more	 than	one	 type	 argument.	For	 example,	 the
System.Collections.Generic.Dictionary	 class,	 which	 you	 can	 use	 to	 store	 key/value
pairs,	is	defined	as	follows.

public	class	Dictionary<TKey,	TValue>	:	...

TKey	is	used	to	denote	the	type	of	keys	and	TValue	the	type	of	values.	The	Add	method
of	the	Dictionary	class	has	the	following	signature:

public	void	Add(TKey	key,	TValue	value)

Listing	13.3	presents	an	example	that	uses	a	Dictionary.

Listing	13.3:	Using	the	generic	Dictionary

using	System;

using	System.Collections.Generic;

namespace	DictionaryExample

{

				class	Program

				{

								static	void	Main(string[]	args)

								{

												Dictionary<int,	string>	flowers	=	

																				new	Dictionary<int,	string>();

												flowers.Add(1001,	"Lily");

												flowers.Add(1002,	"Rose");

												flowers.Add(1003,	"Lotus");

												string	favorite	=	flowers[1002];

												Console.WriteLine(favorite);

												Console.ReadKey();

								}

				}

}

In	Listing	 13.3,	 you	 created	 a	Dictionary	 that	 had	 int	 as	 its	 key	 type	 and	 string	 as	 its
value	type.	A	retrieved	value	would	always	be	of	type	string,	even	without	type	casting.

Applying	Restrictions
As	you	have	seen	in	previous	sections,	the	List	and	Dictionary	classes	allow	any	type	to
be	passed	as	the	type	argument(s).	However,	you	can	also	restrict	the	type	that	can	be	used
with	 a	 parameterized	 type.	 For	 example,	 if	 you	 have	 a	MathUtility	 class	 that	 offers
methods	 for	 handling	 mathematical	 operations,	 it	 does	 make	 sense	 to	 restrict	 the	 type
argument	of	MathUtility	to	value	types	that	represent	numbers.

Table	13.1	shows	the	constraints	that	can	be	used	for	type	arguments.

Constraint Description

where	T:
struct The	type	argument	must	be	a	value	type

where	T:	class The	type	argument	must	be	a	reference	type,	including	any	class,
interface,	delegate,	and	array	type.

where	T:
new()

The	type	argument	must	have	a	no-argument	public	constructor.	If	this
constraint	must	appear	last	if	there	are	other	constraints.

where	T:
<base	class
name>

The	type	argument	must	be	the	specified	base	class	or	a	child	class	of
it.

where	T:
<interface
name>

The	type	argument	must	be	the	specified	interface	or	a	type
implementing	it.

where	T:	U The	type	argument	for	T	must	be	the	same	as	the	argument	for	U	or
derive	from	it.

Table	13.1:	Constraints	for	type	arguments

For	 example,	 to	 restrict	 the	 type	 parameter	 to	 value	 types,	 use	 the	 where	 T:	 struct
constraint.

Class	MathUtility<T>	where	T:	struct	

{		

}

If	you	try	to	pass	a	reference	type	to	MathUtility,	you’ll	get	a	compile	error	telling	you
that	the	type	argument	must	be	a	value	type.

As	 another	 example,	 the	 following	 class	 expects	 a	 type	 argument	 that	 implements
IComparable:

class	ObjecUtil<T>	where	T:	Icomparable

{

}

Writing	Generic	Types
Writing	a	generic	type	is	not	much	different	from	writing	other	types,	except	for	the	fact
that	you	declare	a	 list	of	 type	variables	 that	you	 intend	 to	use	 somewhere	 in	your	 type.
These	type	variables	come	in	angle	brackets	after	the	type	name.	For	example,	the	Point
class	in	Listing	13.4	is	a	generic	class.	A	Point	object	represents	a	point	in	a	coordinate
system	 and	 has	 an	 X	 component	 (abscissa)	 and	 a	 Y	 component	 (ordinate).	 By	making
Point	generic,	you	can	specify	the	degree	of	accuracy	of	a	Point	instance.	For	example,	if
a	 Point	 object	 needs	 to	 be	 very	 accurate,	 you	 can	 pass	Double	 as	 the	 type	 variable.
Otherwise,	Integer	would	suffice.

Listing	13.4:	The	generic	Point	class

using	System;

namespace	CustomGenericType

{

				struct	Point<T>

				{

								T	x;

								T	y;

								public	Point(T	x,	T	y)

								{

												this.x	=	x;

												this.y	=	y;

								}

								public	T	X

								{

												get	{	return	x;	}

												set	{	this.x	=	value;	}

								}

								public	T	Y

								{

												get	{	return	y;	}

												set	{	this.y	=	value;	}

								}

								public	void	Print()

								{

												Console.WriteLine("({0},	{1})",	x,	y);

								}

				}

}

In	Listing	13.4,	T	is	the	type	variable	for	the	Point	class.	T	is	used	as	the	return	value	and
argument	type	for	the	X	and	Y	properties.	In	addition,	the	constructor	also	accepts	two	T
type	variables.

Using	Point	is	just	like	using	other	generic	types.	For	example,	the	code	in	Listing	13.5
creates	 two	 Point	 objects,	 point1	 and	 point2.	 The	 former	 passes	 Integer	 as	 the	 type
variable,	the	latter	Double.

Listing	13.5:	Testing	Point

using	System;

namespace	CustomGenericType

{

				class	Program

				{

								static	void	Main(string[]	args)

								{

												Point<int>	a	=	new	Point<int>();

												a.Print();

												Point<double>	b	=	new	Point<double>(12.3,	244.4);

												b.Print();

												Console.ReadKey();

								}

				}

}

If	you	run	the	program,	you’ll	see	this	on	the	console:

(0,	0)

(12.3,	244.4)

Summary
Generics	enable	stricter	type	checking	at	compile	time.	Used	especially	with	members	of
the	System.Collections.Generic	namespace,	generics	make	two	contributions.	First,	they
add	 type	 checking	 to	 collection	 types	 at	 compile	 time,	 so	 that	 the	 object	 type	 that	 a
collection	can	hold	is	restricted	to	the	type	passed	to	it.	For	example,	you	can	now	create
an	 instance	 of	 System.Collections.Generic.List	 that	 hold	 strings	 and	 will	 not	 accept
Integer	 or	 other	 types.	 Second,	 generics	 eliminate	 the	 need	 for	 type	 casting	 when
retrieving	an	element	from	a	collection.

In	this	chapter	you	have	also	learned	that	passing	different	 type	variables	to	a	generic
type	 results	 in	 different	 types.	 This	 is	 to	 say	 that	List<String>	 is	 a	 different	 type	 than
List<Object>.	 Even	 though	 System.String	 is	 a	 subclass	 of	 System.Object,	 passing	 a
List<String>	to	a	method	that	expects	a	List<Object>	generates	a	compile	error.

Finally,	 you	 have	 seen	 that	 writing	 generic	 types	 is	 not	 that	 different	 from	 writing
ordinary	C#	types.	You	just	need	to	declare	a	list	of	type	variables	in	angle	brackets	after
the	type	name.	You	then	use	these	type	variables	as	the	types	of	method	return	values	or	as
the	types	of	method	arguments.

Chapter	14

Collections
When	 writing	 an	 object-oriented	 program,	 you	 often	 work	 with	 groups	 of	 objects.	 In
Chapter	5,	“Core	Classes”	you	learned	that	arrays	can	be	used	to	group	objects	and	iterate
over	 elements.	 Unfortunately,	 arrays	 lack	 the	 flexibility	 you	 need	 to	 rapidly	 develop
applications.	For	one,	they	cannot	be	resized.	Fortunately,	.NET	Framework	comes	with	a
set	 of	 interfaces	 and	 classes	 that	 make	 working	 with	 groups	 of	 objects	 easier.	 These
interfaces	 and	 classes	 are	 part	 of	 the	 System.Collections	 namespace	 and	 its
subnamespaces.	System.Collections	 contains	 non-generic	 types	 that	 more	 or	 less	 have
been	 replaced	by	 the	generic	 types	 in	 the	System.Collections.Generic	 namespace.	This
chapter	discusses	the	most	frequently	used	types	in	System.Collections.Generic.

Overview
A	 collection	 is	 an	 object	 that	 groups	 other	 objects.	 Also	 referred	 to	 as	 a	 container,	 a
collection	 provides	methods	 to	 store,	 retrieve,	 and	manipulate	 its	 elements.	 Collections
help	C#	programmers	manage	objects	easily.

A	 C#	 programmer	 should	 be	 familiar	 with	 the	 most	 important	 types	 in	 the
System.Collections.Generic	 namespace.	 There	 are	 dozens	 of	 classes,	 structures	 and
interfaces	 in	 this	namespace,	and,	due	 to	space	constraint,	only	 the	more	 important	ones
will	be	discussed	here:	List,	HashSet,	Queue	and	Dictionary.

List,	HashSet,	and	Queue	are	similar,	they	all	are	used	for	storing	objects	of	the	same
type.	Dictionary	 is	 good	 for	 storing	 key/value	 pairs.	 These	 types	 are	 discussed	 in	 the
sections	to	come.

The	List	Class
A	List	is	similar	to	an	array	but	with	more	flexibility.	When	you	create	an	array,	you	have
to	specify	a	size	that	cannot	be	changed.	With	a	List,	specifying	a	size	is	optional.	As	you
add	elements	to	a	List,	its	capacity	grows	automatically	if	there’s	no	more	room	for	new
elements.

List	 is	a	generic	class,	as	 such	you	need	 to	 tell	 the	compiler	what	kind	of	object	you
want	to	store	in	it.	Here	is	how	you	create	a	List	of	strings:

List<string>	animals	=	new	List<string>();

Or,	if	you	feel	you	need	to,	you	can	specify	a	size	for	your	List.	Here	is	how	you	specify
an	initial	capacity	of	10.

List<string>	animals	=	new	List<String>(10);

In	both	cases,	List	will	add	its	capacity	automatically	if	you	add	more	elements	than	the
existing	capacity.	However,	if	you	know	beforehand	how	many	elements	you	will	store	in
a	List,	it’s	a	good	idea	to	specify	an	initial	capacity	to	the	maximum	number	of	elements.
This	way,	you	will	avoid	time	that	needs	to	be	spent	for	resizing	the	List.

The	most	frequently	used	operations	you	would	do	on	a	List	is	add	an	element,	retrieve
an	element,	find	out	how	many	elements	are	on	it,	and	iterate	over	its	elements.

To	add	an	element	to	a	List,	call	its	Add	method.	To	inquire	how	many	objects	there	are
in	a	List,	call	its	Count	property.	Note	that	Count	is	different	from	the	Capacity	property.
Capacity	tells	you	the	capacity	of	the	List.	You	rarely	have	to	know	about	the	capacity	of
a	List	at	a	given	time	as	it	can	increase	automatically.

To	retrieve	an	element	 from	a	List,	use	 its	Item	property.	Recall	 that	you	 invoke	 this
property	by	passing	an	index	to	the	List	variable	as	if	it	was	an	array,	like	this:

myList[0]

The	first	element	is	represented	by	index	0,	the	second	by	1,	and	so	on.

Finally,	to	iterate	over	all	elements	in	a	List,	use	the	foreach	loop.

foreach	(T	element	in	myList)

{

				//	do	something	with	element

}

You’ll	learn	more	about	these	methods	and	properties	in	the	example	later	in	this	section.

More	Important	Methods
The	following	are	some	of	the	more	important	methods	in	List.

public	void	Add(T	item)

Adds	a	new	object	to	the	List.	The	added	item	may	be	null	and	will	be	placed	at	 the
end	of	the	list.	Compare	this	to	the	Insert	method.

public	void	Clear()

Removes	all	elements	from	the	List	and	sets	the	Count	property	to	0.

public	bool	Contains(T	item)

Inquires	if	an	item	is	on	the	List	and	returns	true	if	it	is.	Otherwise,	returns	false.

public	T	Find(Predicate<T>	match)

Searches	the	List	and	returns	the	first	element	that	matches	the	specified	condition.

public	void	Insert(int	index,	T	item)

Adds	an	item	at	the	specified	index.

public	bool	Remove(T	item)

Removes	 the	 specified	 item	 from	 the	List.	 It	 returns	 true	 if	 the	 item	 is	 successfully
removed.	Otherwise,	it	returns	false.

public	void	RemoveAt(int	index)

Removes	 the	 item	 at	 the	 specified	 index.	 Passing	 0	 to	 this	method	 removes	 the	 first
item	in	the	list.

public	void	Sort()

Sorts	the	List	using	the	default	comparer.

public	T[]	ToArray()

Returns	the	elements	as	an	array.

List	Example
Listing	14.1	shows	an	example	of	List	to	store	strings	and	iterate	them	using	foreach.

Listing	14.1:	An	example	of	List

namespace	ListExamples

{

				class	Program

				{

								static	void	Main(string[]	args)

								{

												List<string>	titles	=	new	List<string>();

												titles.Add("No	Sun	No	Moon");

												titles.Add("The	Desert	Story");

												titles.Add("Belle!");

												string	selectedTitle	=	titles[1];

												Console.WriteLine("Selected:	"	+	selectedTitle);

												Console.WriteLine();

												foreach	(string	title	in	titles)

												{

																Console.WriteLine("title:	"	+	title);

												}

												Console.ReadKey();

								}

				}

}

The	result	of	running	this	class	is	given	below.

Selected:	The	Desert	Story

title:	No	Sun	No	Moon

title:	The	Desert	Story

title:	Belle!

The	HashSet	Class
A	set	is	a	data	structure	that	can	store	values	with	no	particular	order	and	does	not	allow
duplicates.	 A	 hash	 set	 is	 a	 set	 that	 is	 implemented	 using	 a	 hash	 table	 (a	 set	 can	 be
implemented	in	some	other	ways).	The	term	hash	refers	to	a	function	used	to	compute	an
index	of	an	element	so	that	the	element	can	be	retrieved	quickly.

In	 .NET	 Framework,	 the	HashSet	 class	 represents	 a	 hash	 set.	HashSet	 is	 similar	 to
List,	there	are	Add	and	Clear	methods	that	work	like	the	Add	and	Clear	methods	in	List
and	there	is	a	Count	property	that	returns	the	number	of	elements	in	the	HashSet.	Unlike
List,	 however,	HashSet	 does	 not	 allow	 duplicates.	 On	 top	 of	 that,	 you	 cannot	 add	 or
remove	an	item	at	a	specific	index.	There	is	not	even	an	Item	property	for	retrieving	an
element	at	a	specified	position.

On	 the	 other	 hand,	HashSet	 provides	methods	 that	 are	 useful	 for	working	with	 sets,
such	as	IsSubsetOf	and	IsSuperSetOf.

Useful	Methods
The	following	are	some	of	the	more	important	methods	in	HashSet.

public	bool	Add(T	item)

Adds	a	new	object	to	the	HashSet.	If	the	item	added	is	already	in	the	HashSet,	it	won’t
be	added	again	and	the	method	will	return	false.

public	void	Clear()

Removes	all	elements	from	the	HashSet	and	sets	the	Count	property	to	0.

public	bool	Contains(T	item)

Determines	 if	 an	 item	 is	 in	 the	HashSet	 and	 returns	 true	 if	 it	 is.	 Otherwise,	 returns
false.

public	bool	IsSubsetOf(IEnumerable	other)

Determines	if	the	HashSet	is	a	subset	of	the	specified	collection.

public	bool	IsSupersetOf(IEnumerable	other)

Determines	if	the	HashSet	is	a	superset	of	the	specified	collection.

HashSet	Example
The	code	in	Listing	14.2	shows	how	to	use	a	HashSet	 to	add	strings.	Find	out	what	 the
Add	method	returns	when	you	try	to	add	a	duplicate	to	it.

Listing	14.2:	An	example	of	HashSet

using	System;

using	System.Collections.Generic;

using	System;

using	System.Collections.Generic;

namespace	HashSetExamples

{

				class	Program

				{

								static	void	Main(string[]	args)

								{

												HashSet<string>	productCodes	=	new	HashSet<string>();

												bool	added	=	productCodes.Add("1234");

												Console.WriteLine("1234	added?	"	+	added);

												

												//	duplicate,	this	won't	be	added

												added	=	productCodes.Add("1234");	

												Console.WriteLine("1234	added?	"	+	added);

												added	=	productCodes.Add("999");

												Console.WriteLine("999	added?	"	+	added);

												Console.WriteLine("\nProduct	Codes:");

												foreach	(string	productCode	in	productCodes)

												{

																Console.WriteLine("product	code:	"	+	productCode);

												}

												Console.ReadKey();

								}

				}

}

Running	the	program	will	display	this	on	the	console.

1234	added?	True

1234	added?	False

999	added?	True

Product	Codes:

product	code:	1234

product	code:	999

The	Queue	Class
A	Queue	is	a	collection	like	a	List	and	HashSet.	What	makes	the	Queue	stand	out	is	the
fact	 that	you	can	retrieve	an	element	and	remove	it	at	 the	same	time	using	the	Dequeue
method.	 To	 retrieve	 an	 element	 without	 removing	 it	 from	 the	 Queue,	 use	 the	 Peek
method.

When	you	add	an	element	to	a	Queue,	by	calling	its	Enqueue	method,	the	element	is
added	to	the	end	of	the	queue.	When	you	call	Dequeue	or	Peek,	you	get	an	element	from
the	beginning	of	the	queue.	Therefore,	the	Queue	is	a	first-in-first-out	(FIFO)	system.

Useful	Methods
Here	are	some	of	the	more	important	methods	defined	in	Queue.

public	void	Enqueue(T	item)

Adds	a	new	element	to	the	end	of	the	Queue.	The	element	added	can	be	null.

public	void	Clear()

Removes	all	elements	from	the	Queue	and	sets	its	Count	property	to	0.

public	bool	Contains(T	item)

Determines	if	an	item	is	in	the	Queue	and	returns	true	if	it	is.	Otherwise,	returns	false.

public	T	Dequeue()

Returns	the	element	from	the	beginning	of	the	Queue	and	removes	it	from	the	Queue.

public	T	Peek()

Returns	 the	 element	 from	 the	 beginning	 of	 the	Queue	without	 removing	 it	 from	 the
Queue.

Queue	Example
As	an	example,	consider	the	code	in	Listing	14.3	that	uses	a	Queue	to	add	string	elements.

Listing	14.3:	An	example	of	Queue

using	System;

using	System.Collections.Generic;

namespace	QueueExamples

{

				class	Program

				{

								static	void	Main(string[]	args)

								{

												//	Queue	test

												Queue<string>	cities	=	new	Queue<string>();

												cities.Enqueue("Ottawa");

												cities.Enqueue("Ottawa");

												cities.Enqueue("Helsinki");

												foreach	(string	city	in	cities)

												{

																Console.WriteLine("city:	"	+	city);

												}

												while	(cities.Count	>	0)

												{

																Console.WriteLine("selected:	"	+	cities.Dequeue());

												}

												Console.ReadKey();

								}

				}

}

The	following	message	is	shown	on	the	console	upon	running	the	program.

city:	Ottawa

city:	Ottawa

city:	Helsinki

selected:	Ottawa

selected:	Ottawa

selected:	Helsinki

The	Dictionary	Class
The	Dictionary	class	 is	a	 template	for	creating	containers	 that	 take	key/value	pairs.	The
Dictionary	is	suitable	for	storing	elements	that	each	consists	of	a	key	and	a	value,	such	as
an	ISBN	and	a	Book	object	or	a	country	and	a	capital.

To	construct	a	Dictionary,	you	pass	the	type	of	the	key	and	the	type	of	the	value	to	its
constructor.	 For	 example,	 the	 following	 code	 snippet	 creates	 a	Dictionary	 that	 takes	 a
string	as	key	and	a	Book	object	as	value.

Dictionary	books	=	new	Dictionary(string,	Book);

Like	 other	 types	 of	 collections,	 you	 have	 an	Add	 method	 to	 add	 a	 key/value	 pair	 to	 a
Dictionary	and	a	Clear	method	to	remove	all	its	elements.

To	 retrieve	 a	 value,	 use	 its	 Item	 property.	 For	 example,	 if	 a	Dictionary	 contains	 a
country/capital	pairs,	use	this	syntax	to	retrieve	a	value:

string	selectedCountry	=	countryDictionary[countryName];

Dictionary	Example
As	an	example,	consider	the	code	in	Listing	14.4	that	shows	off	a	Dictionary	for	storing
country/capital	pairs.

Listing	14.4:	Dictionary	Example

using	System;

using	System.Collections.Generic;

namespace	DictionaryExamples

{

				class	Program

				{

								static	void	Main(string[]	args)

								{

												Dictionary<string,	string>	capitals	=	

																				new	Dictionary<string,	string>();

												capitals.Add("France",	"Paris");

												capitals.Add("Australia",	"Canberra");

												capitals.Add("Canada",	"Ottawa");

												Console.WriteLine(capitals["Canada"]);	

												//	prints	"Ottawa"

												Console.ReadKey();

								}

				}

}

Running	the	program	in	Listing	14.4	gives	you	this	output.

Ottawa

Summary
Collections	 are	 good	 for	 working	 with	 groups	 of	 objects.	 The	 .NET	 Framework	 class
library	 provides	many	 of	 collection	 types	 that	 you	 can	 easily	 use.	Version	 1.0	 of	 .NET
Framework	featured	collection	types	in	the	System.Collections	namespace.	As	.NET	2.0
added	generics	as	a	feature,	it	also	brought	with	it	parameterized	collection	types,	which
can	be	found	in	the	System.Collections.Generic	namespace.	You	should	always	use	the
members	of	System.Collections.Generic	 instead	of	 those	in	System.Collections.	 In	 this
chapter	you	learned	the	four	most	important	members	of	the	System.Collections.Generic
namespace,	List,	HashSet,	Queue,	and	Dictionary.

Chapter	15

Input/Output
Input/output	 (I/O)	 is	 one	 of	 the	 most	 common	 operations	 performed	 by	 computer
programs.	Examples	of	I/O	operations	include

?	creating	and	deleting	files
?	reading	from	and	writing	to	a	file	or	network	socket
?	serializing	(or	saving)	objects	to	persistent	storage	and	retrieving	the	saved	objects

Support	 for	 I/O	 has	 been	 available	 since	 .NET	 Framework	 1.0	 in	 the	 form	 of	 the
System.IO	 namespace	 and	 its	 subnamespaces.	 This	 chapter	 presents	 topics	 based	 on
functionality	and	selects	the	most	important	members	of	System.IO	namespace.

File	and	directory	handling	and	manipulation	are	the	first	topic	in	this	chapter.	Here	you
learn	how	to	create	and	delete	files	and	directories	as	well	as	manipulate	their	attributes.
Next,	you	learn	what	a	stream	is	and	how	to	use	it	in	the	section	“Input/Output	Streams.”
A	stream	acts	like	a	water	pipe	that	facilitates	data	transmission.	Reading	from	and	writing
to	 a	 stream	dictate	 that	 you	do	 so	 sequentially,	which	means	 to	 read	 the	 second	unit	 of
data,	 you	must	 read	 the	 first	 one	 first.	 There	 are	 several	 types	 of	 streams.	FileStream,
NetworkStream,	 and	MemoryStream	 are	 some	 examples	 of	 streams.	 To	 make	 lives
easier,	 there	 are	 utility	 classes	 for	manipulating	 these	 streams	 so	 you	 don’t	 have	 to	 use
them	directly.	We	take	a	look	at	these	utility	classes	too.

File	 and	 Directory	 Handling	 and
Manipulation
The	.NET	Framework	class	library	comes	with	File	and	Directory	classes	for	creating	and
deleting	 files	and	directories,	 respectively.	 In	addition,	with	File	and	Directory	 you	 can
manipulate	a	file	or	directory,	such	as	checking	if	a	file/directory	exists.	In	addition,	there
is	 also	 a	FileSystemInfo	 class	 that	 is	 the	 parent	 class	 for	FileInfo	 and	DirectoryInfo.
FileInfo	offers	much	of	the	functionality	in	File	and	DirectoryInfo	provides	methods	that
do	what	Directory’s	methods	can	do.	It	is	sometimes	confusing	for	a	beginner	to	choose
which	one	to	use.

The	following	subsections	elaborate	what	you	can	do	with	File	and	Directory.

Creating	and	Deleting	A	File
To	create	a	file	you	use	the	Create	method	of	System.IO.File.	Here	is	its	signature.

public	static	FileStream	Create(string	path)

For	example,	the	following	snippet	creates	a	file	and	assigns	it	to	a	FileStream:

string	fileName	=	@"C:\users\jayden\wintemp.txt";

try

{

				FileStream	fs	=	File.Create(fileName);

}

catch	(IOException	e)

{

				Console.WriteLine(e.Message);

}

finally

{

				//	call	fs.Close()	here

}

If	 the	 file	 to	be	created	already	exists,	 the	Create	method	will	overwrite	 the	 file	with	a
new	file.	Also,	most	of	 the	 time,	you’ll	need	to	put	File.Create	 in	a	try	block	as	 it	will
throw	an	IOException	if	the	operation	fails,	for	example	if	you	don’t	have	permissions	to
create	files	in	the	specified	directory.

A	more	convenient	syntax	for	working	with	File	is	to	use	the	using	statement	like	this:

using	(FileStream	fs	=	File.Create(fileName))

{

				//	do	something	with	the	FileStream	here

}

With	this	syntax	you	don’t	have	to	worry	about	closing	it	as	the	using	statement	will	take
care	of	it.	However,	the	Create	method	may	throw	an	exception	if	it	fails	to	create	the	file.
As	such,	even	when	using	the	using	statement,	you	still	need	to	enclose	your	code	in	a	try
block	like	this:

try

{

				using	(FileStream	fs	=	File.Create(fileName))

				{

								//	do	something	with	the	FileStream	here

				}

}

catch	(Exception	e)

{

				//	handle	exception

}

Creating	and	Deleting	A	Directory
The	System.IO.Directory	class	offers	static	methods	for	creating	and	deleting	a	directory
and	a	subdirectory.	To	create	a	directory,	use	the	CreateDirectory	method.

public	static	DirectoryInfo	CreateDirectory(string	path)

CreateDirectory	 returns	 a	DirectoryInfo	 that	 exposes	 a	number	of	directory	 attributes,
such	as	the	creation	time,	the	last	access	time,	and	so	on.	In	addition,	the	DirectoryInfo
class	offer	methods	for	retrieving	and	manipulating	the	files	in	the	current	directory.	You
will	 learn	 more	 about	 the	DirectoryInfo	 class	 in	 the	 section	 “Working	 with	 File	 and
Directory	Attributes”	later	in	this	chapter.

CreateDirectory	may	throw	an	exception	if	the	operation	didn’t	complete	successfully.
For	 instance,	 if	 there	was	 insufficient	 permission	 to	 carry	 out	 the	 task,	 the	method	will
throw	an	UnauthorizedAccessException.	Likewise,	trying	to	create	a	directory	with	the
same	path	as	an	existing	file	will	throw	an	IOException.

To	 delete	 a	 directory,	 use	 the	Delete	 method	 of	 the	Directory	 class.	 There	 are	 two
overloads	for	this	method:

public	static	void	Delete(string	path)

public	static	void	Delete(string	path,	boolean	recursive)

With	 the	 first	 overload,	 the	 directory	 must	 be	 writable	 and	 empty.	 Trying	 to	 delete	 a
directory	 that	 is	 not	 empty	 will	 throw	 an	 IOException.	 Using	 the	 second	 overload,
however,	you	can	delete	a	non-empty	directory	if	you	pass	 true	as	 the	second	argument.
Note	that	the	second	overload	will	fail	if	the	directory	contains	a	read-only	file.

Working	with	File	and	Directory	Attributes
The	FileInfo	and	DirectoryInfo	 classes	 are	used	 for	working	with	 files	 and	directories,
respectively.	With	FileInfo,	you	can	create	and	delete	a	file,	even	though	the	code	would
be	less	brief	than	if	you’re	using	the	File	class.	Here	is	how	to	create	a	file	with	FileInfo.
You	first	need	to	create	an	instance	of	FileInfo.

String	path	=	@"C:\temp\note.txt";

FileInfo	fileInfo	=	new	FileInfo(path);

using	(FileStream	fileStream	=	fileInfo.Create())

{

				//	do	something	with	fileStream

}

There	are	benefits	of	choosing	FileInfo	over	File.	For	example,	you	can	easily	get	the	file
extension	by	calling	the	Extension	property	on	a	FileInfo.	 In	addition,	you	can	obtain	a
FileInfo‘s	parent	directory	by	invoking	the	Parent	property.	This	is	not	to	mention	that	its
Length	 property	 returns	 the	 file	 size	 in	 bytes,	CreationTime	 returns	 the	 creation	 time,
isReadOnly	indicates	if	the	file	is	read-only,	and	Exists	returns	a	boolean	that	indicates	if
the	file	exists.

The	last	property,	Exists,	probably	caught	your	attention.	How	can	a	file	not	exist	if	you
have	 created	 a	FileInfo	 that	 points	 to	 the	 file?	 The	 truth	 is,	 creating	 a	FileInfo	 simply
creates	 an	object	 in	memory	and	does	not	 create	 a	 file.	You	 still	 need	 to	call	Create	 to
create	the	file.	Of	course,	if	you	pass	the	path	to	an	existing	file	when	creating	a	FileInfo,
its	Exists	property	will	return	true.

The	DirectoryInfo	 class	 is	 similar	 to	FileInfo	 and	 offers	 a	 similar	 set	 of	 properties,
such	 as	 CreationTime,	 Exists,	 Extension,	 and	 Parent.	 DirectoryInfo	 also	 provides
methods	 for	 creating	 and	 deleting	 a	 directory,	 obtaining	 the	 list	 of	 subdirectories,	 and
retrieving	the	list	of	files	in	the	directory.	Here	is	the	signature	of	GetFiles,	which	returns
an	array	of	FileInfos.

public	FileInfo[]	GetFiles()

And,	here	 is	 the	signature	of	GetDirectories,	which	returns	an	array	of	DirectoryInfos,
each	of	which	represents	a	subdirectory	of	the	current	directory.

public	FileInfo[]	GetDirectories()

Listing	Files	in	A	Directory
The	 easiest	way	 to	 get	 the	 file	 list	 in	 a	 directory	 is	 to	 use	 the	GetFiles	 method	 of	 the
Directory	class.	Here	is	code	that	prints	all	files	in	C	drive.

string[]	paths	=	Directory.GetFiles(@"C:\");

foreach	(string	path	in	paths)

{

				Console.WriteLine(path);

}

Note	that	Directory.GetFiles	returns	a	string	array.	Each	element	of	the	array	contains	a
full	path	to	the	file,	e.g.	C:\markets.doc.

Alternatively,	you	can	create	a	DirectoryInfo	and	call	its	GetFiles	method,	like	this:

DirectoryInfo	directoryInfo	=	new	DirectoryInfo("C:\\");

FileInfo[]	files	=	directoryInfo.GetFiles();

foreach	(FileInfo	file	in	files)

{

				Console.WriteLine(file.Name);

}

DirectoryInfo.GetFiles	 returns	 an	 array	 of	 FileInfos,	 unlike	 Directory.GetFiles	 that
returns	a	string	array.

Copying	and	Moving	Files
Copying	a	file	is	easy.	You	can	create	a	copy	of	a	file	by	calling	the	static	method	Copy	on
the	File	class.	For	example,	the	following	single	line	of	code	creates	a	copy	of	market.pdf
in	C:\temp	to	market2.pdf	in	C:\temp.

File.Copy(@"C:\temp\market.pdf",	@"C:\temp\market2.pdf");

To	 move	 a	 file,	 use	 the	 Move	 static	 method	 in	 File.	 This	 code	 snippet	 moves
C:\temp\research.pdf	to	C:\research.pdf.

File.Move(@"C:\temp\research.pdf",	@"C:\research.pdf");

Input/Output	Streams
I/O	streams	can	be	likened	to	water	pipes.	Just	 like	water	pipes	connect	city	houses	to	a
water	reservoir,	a	stream	connects	C#	code	to	a	“data	reservoir.”	This	“data	reservoir”	is
called	 a	 sink	 and	 could	 be	 a	 file,	 a	 network	 socket,	 or	memory.	 The	 good	 thing	 about
streams	is	you	employ	a	uniform	way	to	transport	data	from	and	to	different	sinks,	hence
simplifying	your	code.	You	just	need	to	construct	the	correct	stream.

All	 streams	 derive	 from	 the	System.IO.Stream	 absract	 class.	You	 do	 not	work	with
Stream	directly,	but	rather	use	one	of	its	descendants	like	FileStream,	MemoryStream,
or	NetworkStream.	You’ve	seen	FileStream	in	action	in	the	previous	section.	When	you
create	a	file	using	File.Create,	 for	example,	a	FileStream	 is	created	for	you	that	allows
you	to	write	to	the	file.

Working	 with	 streams	 directly	 is	 hard	 as	 you’ll	 have	 to	 manage	 the	 stream	 of	 data
yourself.	Fortunately,	 the	System.IO	 namespace	provides	 several	utility	classes	 to	work
with	a	stream.	Each	utility	class	falls	into	one	of	two	groups,	it’s	either	a	reader	or	a	writer.

The	following	are	the	most	commonly	used	readers	and	writers.

StreamReader.	A	utility	class	for	reading	characters	from	a	stream.
StreamWriter.	A	utility	class	for	writing	characters	to	a	stream.
BinaryReader.	A	utility	class	for	reading	binary	data	from	a	stream.
BinaryWriter.	A	utility	class	for	writing	binary	data	to	a	stream.

All	these	reader	and	writer	classes	take	a	Stream	as	an	argument	to	their	constructor,	so
you	just	need	to	make	sure	you	pass	the	correct	stream	when	creating	a	reader	or	a	writer.
For	instance,	if	you	want	to	read	a	text	file,	you	need	to	obtain	a	FileStream	that	points	to
the	file.	Most	often,	a	FileStream	is	created	for	you	when	you	call	one	of	the	methods	in
the	File	class,	such	as	Create.	In	addition,	methods	in	the	File	class	may	already	return	a
reader	or	a	writer	without	you	having	to	explicitly	create	a	FileStream.	For	instance,	the
File	 class’s	OpenText	method	 returns	 a	StreamReader	 that	 is	 linked	 to	 the	underlying
file.

The	following	sections	show	how	to	read	and	write	characters	and	binary	data	from	a
file.

Reading	Text	(Characters)
You	 use	 the	 StreamReader	 class	 to	 read	 characters	 from	 a	 stream.	Most	 of	 the	 time,
you’ll	be	working	with	file	streams	as	these	are	the	most	popular	type	of	stream.	However,
there	are	other	kinds	of	streams	too,	such	as	network	streams	and	memory	streams.

You	can	create	a	StreamReader	by	passing	a	Stream	to	its	constructor:

StreamReader	streamReader	=	new	StreamReader(stream);

However,	you	may	not	need	to	create	a	StreamReader	explicitly.	The	OpenText	method
of	 the	 File	 class,	 for	 instance,	 returns	 a	 StreamReader	 that	 is	 associated	 with	 a
FileStream.	Therefore,	you	can	call	OpenText	and	obtain	a	StreamReader,	like	so:

StreamReader	reader	=	File.OpenText(path)

This	 is	 the	 same	 as	 creating	 a	 FileStream	 and	 pass	 it	 to	 the	 StreamReader	 class’s
constructor:

FileStream	fileStream	=	[create/obtain	a	FileStream];

StreamReader	streamReader	=	new	StreamReader(fileStream);

Regardless	of	how	you	create	a	StreamReader,	once	you	have	an	instance,	you	can	call
the	various	Read	methods	on	the	StreamReader.	This	Read	method	overload	returns	the
next	character	in	the	stream.	Here	is	its	signature.

public	override	int	Read()

Note	that	it	returns	the	character	as	an	int,	so	to	print	the	character	you	need	to	cast	it	to	a
char,	like	this:

StreamReader	streamReader	=	...

char	c	=	(char)	streamReader.Read();

Reading	one	character	at	a	time	is	probably	not	the	most	efficient	way	to	go.	Often	times,
you	want	to	read	in	many	characters	in	one	read.	For	this,	you	can	use	this	overload	of	the
Read	method:

public	override	int	Read(char[]	buffer,	int	index,	int	count)

This	Read	 method	 overload	 reads	 the	 next	 count	 characters	 from	 the	 stream	 and	 copy
them	 to	 the	 char	 array	 used	 as	 the	 first	 argument.	 The	 index	 argument	 (the	 second
argument)	 indicates	 the	 start	 of	 char	 array	 to	 write	 to.	 If	 index	 is	 zero,	 then	 the	 first
element	of	 the	array	will	get	 the	 first	 character	 read.	The	method	 returns	 the	number	of
characters	actually	read.

Here	is	an	example	of	reading	a	block	of	characters	from	a	stream.

StreamReader	streamReader	=	...

char[]	buffer	=	new	char[100];

streamReader.Read(buffer,	0,	100);

//	buffer	now	contains	characters	read	from	the	stream

There	is	also	a	ReadLine	method	that	reads	a	line	of	text	from	the	stream	and	return	it	as	a
string.	Its	signature	is	as	follows.

public	override	string	ReadLine()

Listing	14.1	shows	code	that	reads	characters	from	a	text	file.

Listing	14.1:	Reading	characters	from	a	file

using	System;

using	System.IO;

namespace	StreamReaderExample

{

				class	Program

				{

								static	void	Main(string[]	args)

								{

												String	path	=	"C:\\temp\\today.txt";

												try

												{

																using	(StreamReader	reader	=	File.OpenText(path))

																{

																				string	line;

																				//	Read	and	display	lines	from	the	file	

																				while	((line	=	reader.ReadLine())	!=	null)

																				{

																								Console.WriteLine(line);

																				}

																}

												}

												catch	(IOException	e)

												{

																Console.Write(e.Message);

												}

												Console.ReadKey();

								}

				}

}

The	code	in	Listing	14.1	opens	the	today.txt	file	in	C:\temp	and	reads	and	prints	each	line
of	 text	 in	 the	 file.	 To	 test	 this	 code,	 make	 sure	 you	 create	 a	 today.txt	 file	 in	 the
forementioned	directory.

Writing	Text	(Characters)
To	write	text	or	characters	to	a	stream,	use	the	StreamWriter	class.	This	class	offers	more
than	 a	 dozen	 of	Write	methods	 for	 various	 data	 types,	 so	 that	 there	 is	 no	 need	 to	 first
convert	a	non-string	to	a	string.	There	is	one	for	a	Single,	one	for	Uint32,	one	for	a	char,
and	so	on.	Here	are	some	of	the	signatures	of	the	Write	methods:

public	virtual	void	Write(bool	value)

public	virtual	void	Write(char	value)

public	virtual	void	Write(int	value)

public	virtual	void	Write(double	value)

public	virtual	void	Write(string	value)

There	 is	 also	 an	 overload	 that	 allows	 you	 to	 write	 a	 block	 of	 characters	 in	 one	 single
operation:

public	virtual	void	Write(char[]	buffer,	int	index,	int	count)

In	this	case,	buffer	contains	the	characters	to	write,	index	indicates	the	start	element	in	the
array,	and	count	indicates	the	number	of	characters	in	buffer	to	write.

There	 are	 also	WriteLine	 methods	 that	 accept	 a	 value.	 To	 the	 end	 of	 the	 value	 the
method	adds	a	line	terminator.	Here	are	the	signatures	of	some	of	the	WriteLine	method
overloads.

public	virtual	void	WriteLine()

public	virtual	void	WriteLine(bool	value)

public	virtual	void	WriteLine(char	value)

public	virtual	void	WriteLine(int	value)

public	virtual	void	WriteLine(double	value)

public	virtual	void	WriteLine(string	value)

The	first	overload	that	does	not	take	arguments	is	used	to	add	a	line	terminator	to	the
stream.

The	code	in	Listing	14.2	receives	input	from	the	console	and	writes	it	to	a	file.	It	keeps
on	reading	until	the	user	enters	an	empty	string.

Listing	14.2:	Writing	text	to	a	file

using	System;

using	System.IO;

namespace	StreamWriterExample

{

				class	Program

				{

								static	void	Main(string[]	args)

								{

												Console.WriteLine(

																"Please	type	in	some	text.	"	+	

																"Keep	typing	until	you're	tired."	+	

																"Enter	an	empty	line	to	exit");

												using	(StreamWriter	writer	=	

																new	StreamWriter(@"C:\temp\yoursay.txt"))

												{

																String	input	=	Console.ReadLine();

																while	(input.Trim().Length	!=	0)

																{

																				writer.WriteLine(input);

																				input	=	Console.ReadLine();

																}

												}

								}

				}

}

Reading	and	Writing	Binary	Data
To	 read	 binary	 data	 from	 a	 file	 you	 use	 the	BinaryReader	 class.	 It’s	 easy	 to	 create	 a
BinaryReader,	you	just	need	to	pass	a	stream	to	its	constructor:

BinaryReader	reader	=	new	BinaryReader(stream);

Then,	 you	 call	 one	 of	 its	Read	 methods.	 To	 read	 an	 integer,	 for	 example,	 you	 call	 its
ReadInt16	 or	ReadInt32	 method.	 To	 read	 a	 double,	 invoke	 its	ReadDouble	 method.
Other	 methods	 of	 BinaryReader	 include	 ReadBoolean,	 ReadChar,	 ReadByte,
ReadDecimal,	ReadInt64,	and	ReadString.

To	write	binary	data	to	a	file,	use	BinaryWriter.	Like	BinaryReader,	BinaryWriter	is
also	very	easy	to	create	an	instance	of.	You	just	pass	a	stream	to	its	constructor:

BinaryWriter	writer	=	new	BinaryWriter(stream);

BinaryWriter	offers	a	multitude	of	Write	method	overloads.	In	fact,	there	is	one	Write
method	for	each	data	type,	so	you	can	write	an	integer,	a	double,	a	decimal,	and	so	on.

The	example	in	Listing	14.3	shows	how	you	write	ten	integers	to	the	numbers.dat	file
in	C:\temp	and	read	them	back.

Listing	14.3:	Reading	and	writing	binary	data

using	System;

using	System.IO;

namespace	BinaryReaderWriterExample

{

				class	Program

				{

								static	void	Main(string[]	args)

								{

												string	path	=	@"C:\temp\numbers.dat";

												Random	random	=	new	Random();

												FileStream	fileStream	=	File.OpenWrite(path);

												using	(BinaryWriter	writer	=		

																				new	BinaryWriter(fileStream))

												{

																for	(int	i	=	0;	i	<	10;	i++)

																{

																				writer.Write(random.Next(0,	100));

																}

												}

												fileStream	=	File.OpenRead(path);

												using	(BinaryReader	reader	=		

																				new	BinaryReader(fileStream))

												{

																for	(int	i	=	0;	i	<	10;	i++)

																{

																				int	number	=	reader.ReadInt32();

																				Console.WriteLine(number);

																}

												}

												Console.ReadKey();

								}

				}

}

If	you	run	the	program,	you’ll	see	ten	numbers	between	0	and	100.	Each	time	you	run	the
program,	you’ll	see	a	different	set	of	numbers	as	each	number	is	randomly	generated	using
a	Random	object.

Summary
Input/output	operations	are	supported	through	the	members	of	the	System.IO	namespace.
File	 and	 directory	 handling	 and	 manipulation	 are	 done	 through	 the	 File,	 Directory,
FileInfo,	 and	 DirectoryInfo	 classes.	 Reading	 and	 writing	 data	 are	 achieved	 through
streams.	In	this	chapter	you	learned	how	to	use	these	classes	to	read	and	write	characters
and	binary	data	 from	and	 to	a	 file:	StreamReader,	StreamWriter,	BinaryReader,	 and
BinaryWriter.

Chapter	16

Advanced	Language	Features
C#	is	such	a	powerful	language	with	lots	of	great	features.	This	chapter	discusses	some	of
the	more	 important	 features	of	 the	 language	 that	are	not	discussed	anywhere	else	 in	 this
book.

Delegates
The	delegate	has	been	part	of	the	C#	language	since	version	2.0	and	without	a	doubt	is	the
most	difficult	.NET	type	to	grasp.	Delegates	are	similar	to	function	pointers	in	C	and	C++.
Unlike	C/C++	function	pointers,	however,	delegates	are	type-safe.	If	you	do	not	know	C
or	 C++,	 you	might	 have	 to	 read	 this	 section	 a	 couple	 of	 times	 before	 you	 get	 a	 good
understanding	of	delegates.	I	will	start	by	explaining	why	you	might	need	delegates,	then
talk	about	the	definition	of	the	term	itself	and	present	a	couple	of	examples.

Suppose	you	want	a	method	(Method1)	to	invoke	another	method	(Method2)	after	the
first	method	has	 finished	executing.	Even	without	using	a	delegate	you	can	achieve	 this
easily	like	so.

public	void	Method1()

{

				//	do	something

				...

				//	then	call	Method2

				Method2();

}

public	void	Method2()

{

				...

}

This	 is	 easy	 because	 you	 control	 the	 source	 code	 of	 both	Method1	 and	 Method2.
However,	 suppose	Method1	 is	 a	method	 in	 the	 class	 library	 and	 of	 course	 you	 cannot
change	it.	How	do	you	make	Method1	call	Method2?

You	would	probably	say,	why	is	it	such	a	big	deal?	In	many	cases,	if	you	want	a	method
to	be	invoked	after	another	method,	you	can	simply	call	both	methods	in	your	code.	It	is
easy	to	do	even	if	the	two	methods	are	implemented	in	different	classes.	For	example,	the
following	 code	 snippet	 assumes	 that	Method1	 is	 part	 of	Type1	 and	Method2	 part	 of
Type2.	It	is	easy	to	make	Method2	execute	after	Method1:

public	void	Main()

{

				Type1	object1	=	new	Type1();

				Type2	object2	=	new	Type2();

				object1.Method1();

				object2.Method2()

}

So,	why	the	need	for	delegates	at	all?

The	 thing	 is	 there	are	cases	whereby	a	method	needs	 to	be	 invoked	not	by	your	own
code,	but	by	another	module	or	even	by	the	system.	For	example,	you	might	want	to	do
something	in	response	to	a	button	click	in	a	GUI	application.	In	this	case,	you	cannot	use	a
conventional	method	because	when	the	system	was	written,	the	system	developers	did	not

know	ahead	of	 time	which	method(s)	 to	call	when	a	button	was	clicked.	However,	 they
recognized	that	users	of	their	system	might	want	to	perform	some	operation	in	response	to
a	button	click,	and	they	facilitated	that	by	creating	a	delegate	type.	To	have	your	method
called	when	a	button	is	clicked,	you	create	an	instance	of	the	delegate	type	that	references
your	method.	The	system	can	then	call	your	method	through	the	delegate	instance.

The	button	click	example	 is	one	use	of	 the	delegate,	 i.e.	as	an	event	 listener.	Another
use	of	the	delegate	is	as	a	callback.	A	callback	is	a	method	that	is	passed	as	an	argument	to
other	 code.	 The	 other	 code	 can	 then	 call	 back	 (execute)	 the	 passed-in	method	 at	 some
convenient	 time.	 The	 invocation	may	 be	 immediate	 as	 in	 a	 synchronous	 callback,	 or	 it
might	happen	at	later	time	as	in	an	asynchronous	callback.

Conceptually,	 the	 delegate	 is	 a	 mechanism	 for	 allowing	 a	 method	 to	 be	 called	 by	 a
caller	even	when	the	caller	has	no	prior	knowledge	of	the	method	it	is	about	to	call.

Technically,	a	delegate	is	a	type	that	references	a	method.	Declaring	a	delegate	type	is
similar	to	declaring	a	method	signature,	you	would	need	a	name,	a	list	of	arguments	and	a
return	value.	A	delegate	declaration	 is	 important	 since	 it	determines	 the	kind	of	method
that	the	delegate	can	reference.	The	methods	that	can	be	referenced	by	a	delegate	instance
must	have	the	same	signature	as	the	delegate	type	itself.

To	declare	a	delegate	type,	use	the	keyword	delegate.	Here	is	an	example	delegate.	It	is
called	MyDelegate,	takes	a	string	and	does	not	return	a	value.

public	delegate	void	MyDelegate(string	s1)

You	instantiate	a	delegate	either	by	using	the	new	operator	or	by	assigning	a	method	to	a
delegate	variable.	Therefore,	these	two	lines	of	code	are	equivalent:

MyDelegate	delegate1	=	new	MyDelegate(myMethod);

MyDelegate	delegate1	=	myMethod;

In	 this	 case,	myMethod	must	 be	 a	method	 that	 has	 the	 same	 signature	 as	 the	 delegate
type.	Once	you	have	a	delegate	instance,	you	can	pass	it	to	a	caller.

Note
When	discussing	delegates,	we	are	 talking	about	 two	different	 things.	The	first	 is	 the
delegate	type,	which	defines	the	kind	of	method	that	can	be	referenced	by	instances	of
the	delegate	type.	The	second	is	the	delegate	instance,	which	is	an	object	created	out	of
the	delegate	type	and	references	a	method	or	methods.

A	Delegate	Example
The	following	example	illustrates	the	use	of	a	delegate	as	a	callback.	Listing	16.1	shows	a
class	with	a	method	for	downloading	a	web	page	given	an	Internet	address.	It	also	declares
a	delegate	called	ResultHandler	 that	 the	method	will	call	after	 the	method	has	 finished
executing.

Listing	16.1:	The	Downloader	class	and	the	ResultHandler	delegate

namespace	DelegateExample

{

				using	System.Net;

				public	delegate	void	ResultHandler(string	text);

				public	class	Downloader

				{

								public	void	Download(string	url,	ResultHandler	handler)

								{

												string	content;

												using	(WebClient	webClient	=	new	WebClient())

												{

																content	=	webClient.DownloadString(url);

												}

												handler(content);

								}

				}

}

The	Download	method	in	Listing	16.1	takes	two	arguments.	The	first	argument	is	a	URL
and	the	second	a	delegate	that	it	will	call	after	it	has	retrieved	the	web	page	pointed	to	by
the	URL.	The	download	operation	itself	is	performed	by	the	System.Net.WebClient	class.

At	the	end	of	the	Download	method,	the	delegate	instance	is	invoked,	in	the	same	way
you	would	invoke	a	method.

handler(content);

To	use	the	Downloader	class,	you	need	to	pass	a	method	with	the	same	signature	as	the
ResultHandler	delegate	type.	Listing	16.2	shows	code	that	uses	it.

Listing	16.2:	Using	the	ResultHandler	delegate

using	System;

using	DelegateExample;

namespace	AdvancedLanguageFeatures

{

				class	Program

				{

								static	void	CountWords(string	html)

								{

												Console.WriteLine("The	page	contains	{0}	words",	

																				html.Split('	').Length);

								}

								static	void	Main(string[]	args)

								{

												Downloader	downloader	=	new	Downloader();

												ResultHandler	myDelegate	=	new	ResultHandler(CountWords);

												downloader.Download("http://news.yahoo.com",	myDelegate);

								}

				}

}

The	 code	 in	 Listing	 16.2	 creates	 an	 instance	 of	Downloader	 and	 calls	 its	Download
method,	passing	a	delegate	 type	referencing	CountWords.	CountWords	parses	 the	web
page	content	and	uses	the	String	class’s	Split	method	to	count	the	number	of	words.

You	can	replace	the	following	line	of	code

ResultHandler	myDelegate	=	new	ResultHandler(CountWords);

with

ResultHandler	myDelegate	=	CountWords;

You	can	even	pass	CountWords	 to	 the	Download	method	without	 explicitly	 creating	 a
delegate	instance:

downloader.Download("http://news.yahoo.com",	CountWords);

Multicasting
A	delegate	instance	may	reference	more	than	one	method.	When	the	delegate	instance	is
invoked,	all	the	methods	it	references	are	executed.	This	is	called	multicasting.

Take	this	PrettyDelegate	delegate	type	as	an	example:

public	delegate	void	PrettyDelegate(string	s);

Suppose	 you	 have	 three	 instances	 of	 PrettyDelegate	 that	 reference	 three	 different
methods:

PrettyDelegate	delegate1	=	obj.Method1;

PrettyDelegate	delegate2	=	obj.Method2;

PrettyDelegate	delegate3	=	StaticMethod1;

To	create	a	delegate	instance	that	references	all	the	three	methods,	you	would	do	this:

PrettyDelegate	ultimate	=	delegate1	+	delegate2;

ultimate	+=	delegate3;

To	remove	a	method,	use	the	-=	operator.	For	example,	the	following	line	of	code	removes
obj.Method1.

ultimate	-=	delegate1;

Predefined	Delegates
The	System	namespace	contains	a	number	of	predefined	delegates	that	can	be	used	for	the
most	common	cases.	Some	of	these	general-purpose	delegates	are	listed	in	Table	16.1.

Delegate Description

Action
References	a	method	that	does	not	return	a	value	and	takes	zero,	one
or	multiple	arguments.	There	are	seventeen	versions	of	this	delegate,
taking	zero,	one	to	sixteen	arguments.

AsyncCallback References	a	method	that	will	be	called	when	a	corresponding
asynchronous	operation	completes.

Comparison References	a	method	that	compares	two	objects	of	the	same	type.

Converter References	a	method	that	converts	an	object	from	one	type	to	another
type.

EventHandler References	a	method	that	handles	an	event	that	has	no	event	data.

Func
References	a	method	that	returns	a	value	and	takes	zero,	one	or
multiple	parameters.	There	are	seventeen	versions	of	this	delegate,
taking	zero,	one	to	sixteen	parameters.

Predicate References	a	method	that	defines	a	set	of	criteria	and	determines
whether	the	specified	object	meets	those	criteria.

Table	16.1:	Predefined	delegates

For	 example,	 this	 variant	 of	 the	 Action	 delegate	 type	 returns	 void	 and	 accepts	 one
argument.

public	delegate	void	Action<in	T>(T	obj)

If	you	happen	 to	need	a	delegate	 that	 takes	one	argument	and	returns	void,	you	can	use
Action	 instead	of	 creating	your	own.	The	ActionDownloader	 class	 in	Listing	16.3	 is	 a
rewrite	 of	 the	Downloader	 class	 in	 Listing	 16.1.	 Note	 that	 the	Download	 method	 in
ActionDownloader	accepts	an	Action	delegate	instance,	instead	of	an	instance	of	a	home-
made	delegate.

Listing	16.3:	The	ActionDownloader	class

using	System;

using	System.Net;

namespace	ActionDelegate

{

				public	class	ActionDownloader

				{

								public	void	Download(string	url,	Action<string>	handler)

								{

												string	content;

												using	(WebClient	webClient	=	new	WebClient())

												{

																content	=	webClient.DownloadString(url);

												}

												handler(content);

								}

				}

}

Listing	16.4	shows	how	to	use	the	ActionDownloader	class.

Listing	16.4:	Using	the	ActionDownloader	class

using	System;

using	ActionDelegate;

namespace	AdvancedLanguageFeatures

{

				class	Program

				{

								static	void	CountWords(string	html)

								{

												Console.WriteLine("The	page	contains	{0}	words",	

																				html.Split('	').Length);

								}

								static	void	Main(string[]	args)

								{

												ActionDownloader	downloader2	=	new	ActionDownloader();

												downloader2.Download("http://news.yahoo.com",	CountWords);

								}

				}

}

Events
Events	are	related	to	delegates.	As	such,	you	need	to	understand	delegates	before	you	can
tackle	events.

In	the	two	examples	in	the	section	above,	the	method	that	you	passed	to	the	Download
method	 through	 a	 delegate	 instance	 got	 invoked	 shortly	 after	 you	 had	 invoked	 the
Download	method.	In	certain	cases,	notably	in	a	GUI	environment,	you	do	not	want	your
method	to	be	called	right	away.	You’d	rather	wait	until	an	event	occurs	before	it	is	called.
For	example,	 if	your	method	does	an	 interesting	operation	 in	response	 to	a	button	click,
you	want	 to	your	method	to	execute	right	after	 the	user	clicks	the	button	and	not	before
that.

In	cases	 like	 this,	you	need	 the	caller	object	 (the	object	 that	will	 eventually	call	your
method)	to	take	your	delegate	instance	and	keep	it.	Only	when	an	event	occurs	will	your
method	be	called.	In	order	for	an	object	to	keep	a	delegate	instance,	its	class	must	declare
an	event	member.	The	type	of	an	event	member	must	be	a	delegate	type.

Here	is	a	class	that	declares	an	event	called	DoubleClick	of	type	EventHandler,	which
is	is	a	delegate	type	in	the	System	namespace.	(See	Table	16.1.)

public	MyClass

{

				public	event	EventHandler	DoubleClick;

				...

}

Basically,	an	event	is	a	class	member	like	a	field	or	a	property.	Just	like	a	field	can	hold	a
value,	an	event	can	hold	a	delegate	instance.

You	can	pass	a	delegate	instance	to	the	DoubleClick	event	using	the	+=	operator:

MyClass	obj	=	new	MyClass():

obj.MyEventHandler	+=	delegate;

Listing	 16.5	 shows	 a	 more	 detailed	 example	 that	 features	 a	 SmartStorage	 class.
Admittedly,	the	example	is	a	little	contrived,	but	it	shows	how	to	create	an	event.

SmartStorage	 contains	 a	 queue	 that	 can	 be	 accessed	 only	 through	 its	Put	 and	Take
methods.	You	call	Put	to	add	a	new	element	and	Take	to	pop	an	element	in	the	queue.	The
capacity	of	the	queue	is	10	and	it	will	not	grow	more	than	that.	Every	time	the	Put	method
is	 called	 when	 there	 are	 already	 six	 or	 more	 elements	 in	 the	 queue,	 an	 instance	 of
SmartStorage	will	raise	a	CapacityEvent	event.

Listing	16.5:	An	event	example

using	System;

using	System.Collections.Generic;

namespace	EventExample

{

				class	SmartStorage<T>

				{

								private	int	maxSize	=	10;

								private	Queue<T>	queue	=	new	Queue<T>();

								public	event	EventHandler	CapacityEvent;

								public	void	Put(T	element)

								{

												if	(queue.Count	<	maxSize)

												{

																queue.Enqueue(element);

												}

												if	(queue.Count	>	7)

												{

																if	(CapacityEvent	!=	null)

																{

																				CapacityEvent(this,	EventArgs.Empty);

																}

												}

								}

								public	T	Take()

								{

												if	(queue.Count	>	0)

												{

																return	queue.Dequeue();

												}

												return	default(T);

								}

				}

}

The	most	important	part	of	SmartStorage	is	the	event	declaration:

public	event	EventHandler	CapacityEvent;

EventHandler	is	a	delegate	type	and	CapacityEvent	is	the	name	for	the	event.

The	 code	 in	 Listing	 16.6	 shows	 how	 you	 can	 use	 SmartStorage	 and	 pass	 to	 it	 a
delegate	that	acts	as	an	event	listener	(event	handler).

Listing	16.6:	Using	the	custom	event

using	System;

using	EventExample;

namespace	AdvancedLanguageFeatures

{

				class	Program

				{

								static	void	Main(string[]	args)

								{

												SmartStorage<int>	storage	=	new	SmartStorage<int>();

												storage.CapacityEvent	+=	

																				new	EventHandler(HandleCapacityEvent);

												for	(int	i	=	0;	i	<	10;	i++)

												{

																storage.Put(i);

												}

												Console.ReadKey();

								}

								static	void	HandleCapacityEvent(Object	sender,	

																EventArgs	eventArgs)

								{

												Console.WriteLine("Storage	almost	full.");

								}

				}

}

In	this	case,	you	pass	the	HandleCapacityEvent	method	in	the	code	as	an	event	handler.

storage.CapacityEvent	+=	new	EventHandler(HandleCapacityEvent);

The	 method	 will	 be	 invoked	 whenever	 the	 SmartStorage	 instance	 raises	 a
CapacityEvent	event.	The	for	loop	is	used	to	illustrate	the	point.	You	should	see	this	in
your	console	when	you	run	the	example:

Storage	almost	full.

Storage	almost	full.

Storage	almost	full.

You	will	learn	more	about	events	in	Chapter	18,	“Windows	Presentation	Foundation.”

Anonymous	Methods
If	 a	 method	 is	 only	 used	 once	 during	 an	 application’s	 life	 time,	 you	 can	 create	 an
anonymous	method.	Introduced	in	C#	2.0,	anonymous	methods	do	not	require	a	name	and
are	declared	inline	using	the	delegate	keyword.

For	 instance,	 the	 code	 in	 Listing	 16.7	 uses	 an	 anonymous	 method	 to	 handle	 the
CapacityEvent	event	of	an	instance	of	the	SmartStorage	class	in	Listing	16.5.

Listing	16.7:	Using	an	anonymous	method

using	System;

using	EventExample;

namespace	AdvancedLanguageFeatures

{

				class	Program

				{

								static	void	Main(string[]	args)

								{

												SmartStorage<int>	storage2	=	new	SmartStorage<int>();

												storage2.CapacityEvent	+=	delegate(object	o,	EventArgs	e)

												{

																Console.WriteLine("Storage	at	more	than	69%	capacity");

												};	//	ended	with	semicolon

												for	(int	i	=	0;	i	<	10;	i++)

												{

																storage2.Put(i);

												}

								}

				}

}

Note	that	there	is	a	semicolon	at	the	end	of	the	method	declaration.

As	of	C#	3.0,	 lambda	expressions	are	preferred	over	anonymous	methods	as	a	way	to
write	inline	code.

Lambda	Expressions
Lambda	expressions	are	anonymous	methods.	You	can	use	them	to	create,	among	others,
delegate	 types.	 Lambda	 expressions	 are	 used	 extensively	 in	 LINQ,	 which	 you	 learn	 in
Chapter	17,	“LINQ.”

The	syntax	for	lambdas	are	one	of	these:

(input	parameters)	=>	expression

(input	parameters)	=>	{	statement(s);	}

The	brackets	are	optional	if	there	is	at	least	one	input	parameter.

Here	is	a	lambda	expression	that	adds	two	parameters	and	returns	the	result.

x,	y	=>	x	+	y;

In	most	 cases,	 the	compiler	 is	 smart	 enough	 to	 infer	 the	 types	of	 the	parameters.	 In	 the
event	you	need	to	provide	it	with	types,	here	is	how	you	do	it:

int	x,	int	y	=>	x	+	y;

Listing	16.8	shows	how	to	use	a	lambda	to	handle	the	CapacityEvent	in	SmartStorage	in
Listing	16.5..

Listing	16.8:	Using	a	lambda	as	an	event	handler

SmartStorage<int>	storage3	=	new	SmartStorage<int>();

storage3.CapacityEvent	+=	

								(obj,	eventArgs)	=>	

																{	Console.WriteLine("Storage	capacity	warning.");	};

for	(int	i	=	0;	i	<	10;	i++)

{

				storage3.Put(i);

}

Expression-Bodied	Members
Starting	 from	 C#	 6.0,	 you	 can	 write	 a	 method	 or	 read-only	 property	 with	 a	 lambda
expression	instead	of	a	statement	body.

For	instance,	here	is	a	method	called	Add	written	in	the	conventional	way.

public	int	Add(int	a,	int	b)

{

				return	a	+	b;

}

And,	here	is	the	same	method	written	with	a	lambda	expression.

public	int	Add(int	a,	int	b)	=>	a	+	b;

As	another	example,	consider	the	following	read-only	property:

public	string	FullName

{

				get

				{

								return	FirstName	+	"	"	+	LastName;

				}

}

In	 C#	 6.0	 and	 later,	 the	 same	 expression	 can	 be	 written	 with	 a	 lambda	 expression	 as
follows.

public	string	FullName	=>	FirstName	+	"	"	+	LastName;

Extension	Methods
C#	3.0	added	a	new	feature	to	allow	you	to	add	functionality	to	a	type	without	the	need	to
extend	 the	 type	 or	 modify	 it.	 You	 do	 this	 by	 creating	 a	 extension	 method,	 which	 is	 a
special	 kind	 of	 static	 method.	 Unlike	 static	 methods,	 however,	 extension	 methods	 are
called	as	if	they	were	instance	methods.

Listing	16.9	shows	a	class	called	MyExtension	that	houses	an	extension	method	for	the
String	class.	The	extension	method	IgnoreCaseEquals	can	then	be	used	on	any	instance
of	String	as	long	as	you	import	the	StringExtension	namespace.

Listing	16.9:	Extending	System.String

using	System;

namespace	StringExtension

{

				public	static	class	MyExtension

				{

								public	static	bool	IgnoreCaseEquals(this	string	s1,	string	s2)

								{

												return	s1.Equals(s2,	StringComparison.OrdinalIgnoreCase);

								}

				}

}

An	 extension	method	must	 be	 declared	 as	 a	 static	method	 in	 a	 non-generic	 non-nested
static	class.	The	first	parameter	to	the	method	specifies	which	type	the	method	operates	on
and	is	preceded	by	the	this	modifier.

To	use	it,	use	using	to	import	the	namespace	and	call	the	method	as	if	it	was	an	instance
method.	You	also	ignore	the	first	argument	as	if	it	did	not	exist:

string	a	=	"abcd";

string	b	=	"ABCD";

bool	equals	=	a.IgnoreCaseEquals(b);	//	evaluates	to	true

The	most	 common	 extension	methods	 are	 the	 LINQ	 standard	 query	 operators	 that	 add
query	 functionality	 to	 the	 existing	 System.Collections.IEnumerable	 and
System.Collections.Generic.IEnumerable<T>	 types.	 You	 will	 learn	 LINQ	 in	 Chapter
17,	“LINQ.”

Implicitly	Typed	Local	Variables
C#	is	a	statically	typed	language,	which	means	variable	types	are	checked	at	compile	time.
For	 example,	 the	 compiler	 will	 mark	 this	 code	 as	 erroneous	 because	 you	 are	 trying	 to
assign	a	string	to	an	int.

int	word	=	"Hello!!!";

However,	starting	from	C#	3.0	you	can	use	the	type	var	for	local	variables	and	have	the
compiler	infer	(derive)	their	types	from	the	expressions	on	the	right	side.	For	example,	the
following	code	is	valid:

var	greeting	=	"Bonjour";

At	compile	time,	greeting	will	have	the	type	string.

Here	is	another	example	of	var:

var	numbers	=	{	0,	1,	2	};

foreach	(var	a	in	numbers)

{

				Console.WriteLine(a);

}

In	the	majority	of	cases,	var	is	used	as	a	shortcut	for	the	actual	type.	In	other	words,	as	a
syntactic	convenience.	However,	var	is	also	used	with	anonymous	types,	as	explained	in
the	following	section.

Anonymous	Types
Added	 in	C#	3.0,	 the	 anonymous	 type	 lets	you	create	 an	object	without	 first	 defining	 a
type.	An	anonymous	type	can	be	used	to	encapsulate	read-only	properties	 into	an	object
that	only	needs	to	be	in	existence	for	a	relatively	short	time.

You	create	an	anonymous	 type	by	using	 the	new	operator	and	object	 initializers.	You
can	assign	the	object	a	var	variable.	Here	is	an	example:

var	person	=	new	{	Name	=	"Joe	Fresher",	Age	=	58	};

Console.WriteLine(person.Name);

The	dynamic	Type
I	 mentioned	 earlier	 that	 C#	 is	 a	 statically-type	 language,	 which	 means	 type	 checking
occurs	at	 compile-time.	However,	C#	4.0	added	 the	dynamic	 type	 to	 let	 you	bypass	 the
compiler’s	type-checking	and	defer	it	to	runtime.

The	purpose	of	using	the	dynamic	type	is	to	make	it	easier	to	program	objects	or	data
whose	 types	 are	 not	 known	 at	 compile-time,	 such	 as	 when	 using	 reflection	 or	 when
retrieving	values	from	a	COM	API.

Here	is	an	example	of	using	dynamic:

dynamic	someObject	=	getObject();

someObject.someMethod(1,	2,	4);

The	compiler	will	not	check	the	 type	of	someObject.	Nor	will	 it	verify	if	someMethod
exists.

Summary
C#	 is	 a	 feature	 rich	 language.	 Every	 new	 version	 of	 the	 language	 brings	 with	 it	 new
features	that	make	the	language	even	richer.

The	delegate	is	an	especially	useful	and	important	feature,	used	frequently	as	a	callback
or	 event	 listener.	 You	 can	 create	 a	 delegate	 instance	 by	 using	 the	 new	 operator	 or	 by
simply	passing	a	matching	method	to	a	delegate	type	variable.	Alternatively,	you	can	use	a
lambda	 to	 create	 a	 delegate	 instance	 because	 a	 lambda	 is	 essentially	 an	 anonymous
method.

Lambdas	are	interesting	as	they	bring	functional	programming	to	C#.	LINQ	technology,
which	you	learn	in	Chapter	17,	“LINQ”	uses	a	lot	of	lambdas.

Another	 important	 feature	 is	 the	 extension	 method,	 which	 allows	 you	 to	 add
functionality	to	an	existing	class	without	creating	a	subclass	or	modifying	the	class	itself.

Chapter	17

Data	Access	with	LINQ
A	 business	 application	 normally	 uses	 information	 stored	 in	 a	 relational	 database,	 and
traditionally	 C#	 developers	 used	 Structured	 Query	 Language	 (SQL)	 to	 query	 data.
However,	this	changed	with	the	introduction	of	LINQ	in	C#	3.0	and	.NET	Framework	3.5.
Short	for	Language	Integrated	Query,	LINQ	allows	compile-time	syntax	checking	and	can
be	 used	 to	 retrieve	 data	 from	 sources	 other	 than	 relational	 databases,	 including	 .NET
objects	and	XML.

This	chapter	explains	how	to	use	LINQ	to	work	with	data.

Overview
Thanks	to	LINQ,	data	retrieval	has	become	part	of	C#	and	Visual	Basic.	This	means	the
syntax	 for	 your	 query	 is	 checked	 at	 compile-time	 and	 you	 can	 take	 advantage	 of
IntelliSense	 in	 Visual	 Studio	 to	 help	 you	 list	 class	 members	 and	 complete	 keywords.
Compile	 time	 syntax	 checking	means	 you	 can	 catch	 and	 correct	 errors	 right	when	 you
code,	not	when	you	run	your	application.	By	contrast,	using	Structured	Query	Language
(SQL)	 to	 query	 a	 relational	 database	 means	 having	 the	 database	 engine	 parse	 SQL
statements	and	occasionally	getting	runtime	errors.

Unlike	 SQL,	 which	 is	 only	 for	 relational	 databases,	 LINQ	 allows	 you	 to	 query	 data
from	 different	 sources.	 Currently,	 LINQ	 support	 queries	 for	 relational	 databases,	 .NET
objects	 and	XML.	Before	LINQ,	 people	 used	ADO.NET	 to	 access	 relational	 databases.
Internally	 LINQ	 still	 uses	 ADO.NET	 to	 manipulate	 data	 in	 relational	 databases,	 but
developers	do	not	need	to	deal	with	ADO.NET	directly.

The	API	for	LINQ	is	built	into	the	.NET	Framework	class	library.	Working	with	LINQ
means	 using	 types	 in	 the	 System.Linq	 namespace	 and	 its	 subnamespaces.	 LINQ	 also
provides	extension	methods	for	the	IEnumerable	interface.

Depending	on	the	type	of	the	data	source,	LINQ	is	divided	into	these	subtechnologies:

LINQ	to	Objects	for	querying	.NET	objects.
LINQ	to	SQL	for	querying	and	manipulating	data	in	relational	databases.
LINQ	to	DataSet	for	working	with	the	DataSet.
LINQ	to	Entities	 for	writing	queries	against	 the	Entity	Framework	(EF)	conceptual
model.	Entity	Framework	 (EF)	 is	an	open-source	object-relational	mapping	 (ORM)
framework	that	is	part	of	.NET	Framework.	At	first	glance,	LINQ	to	Entities	is	very
similar	 to	 LINQ	 to	 SQL,	 both	 can	 be	 used	 to	 access	 data	 in	 relational	 databases.
However,	LINQ	to	SQL	is	easier	to	use	but	LINQ	to	Entities	offers	more	features.
LINQ	to	XML	for	working	with	XML	documents.

This	chapter	only	discusses	LINQ	to	Objects	and	Link	to	SQL,	which	are	the	two	LINQ
technologies	 that	 every	 beginner	 should	master.	 The	 other	 three	LINQ	 technologies	 are
suitable	for	more	advanced	users.

LINQ	to	Objects
As	mentioned	 previously,	 you	 use	 a	 query	 to	 retrieve	 data	 from	 a	 data	 source	 or	 data
sources.	In	your	query	you	can	determine	what	data	should	be	returned	and	how	the	result
should	 be	 organized.	 The	 application	 always	 sees	 the	 data	 source	 as	 a
System.Collections.Generic.IEnumerable	 or	System.Linq.IQueryable.	 IQueryable	 is
derived	from	IEnumerable	and	should	be	used	when	working	with	LINQ	to	SQL.

To	 create	 a	 query,	 you	 need	 to	 write	 a	 query	 expression.	 The	 syntax	 can	 be	 loosely
defined	as	follows.

from…

[where	|	orderby	|	join	|	let]	...

select	or	group…

A	query	expression	must	start	with	from	and	end	with	select	or	group.	Between	the	first
from	and	the	select/group	clause,	a	query	expression	may	contain	zero	or	multiple	where,
orderby,	join	or	let	clauses	or	even	additional	from	clauses.

For	 example,	 here	 is	 a	 simple	 query	 expression	 that	 selects	 all	 files	 in
C:\temp\pictures:

string[]	files	=	Directory.GetFiles(@"C:\Temp\pictures");	//	data	source

IEnumerable<string>	myQuery	=	from	file	in	files	

								select	file;	//	query	expression

A	query	is	not	executed	until	you	iterate	over	it	using	a	foreach	loop	or	until	you	call	its
ToList,	ToArray,	ToLookup	or	ToDictionary	method.	This	is	called	deferred	execution.
At	 runtime	 the	code	above	produces	nothing.	However,	 if	you	execute	 the	query,	 it	will
return	all	the	paths	in	C:\Temp\pictures.

The	following	example	applies	a	where	clause	that	filters	out	any	file	that	is	not	a	JPG
file:

string[]	files	=	Directory.GetFiles(@"C:\Temp\pictures");	//	data	source

IEnumerable<string>	myQuery	=	from	file	in	files

								where	file.ToLower().EndsWith(".jpg")

								select	file;	//	query	expression

The	following	foreach	statement	executes	the	query	by	iterating	over	it:

foreach	(string	file	in	myQuery)

{

				Console.WriteLine(file);

}

The	select	 clause	 can	 be	 used	 to	 project	 a	 new	 type.	 For	 example,	 the	 following	 query
projects	the	square	of	each	int	element	in	numbers.

int[]	numbers	=	{	1,	3,	5,	20,	-30	};

IEnumerable<int>	squares	=	from	number	in	numbers

								select	number	*	number;

When	executed,	squares	will	contain	{1,	9,	24,	400,	900}.

The	orderby	 clause	 can	 be	 used	 to	 sort	 the	 result	 in	 ascending	 or	 descending	 order.
Consider	this	example:

int[]	numbers	=	{	1,	3,	5,	20,	-30	};

IEnumerable<int>	orderedNumbers	=	from	number	in	numbers

								orderby	number	descending

								select	number;

When	executed,	orderedNumbers	will	 contain	{	20,	5,	3,	1,	 -30	}.	Note	 that	 if	no	 sort
order	is	specified,	orderby	will	sort	the	results	in	ascending	order.

Standard	Query	Operators
The	 System.Collections.Generic.IEnumerable	 interface	 has	 extension	 methods	 for
working	with	 sequences.	These	methods	 are	 the	backbone	of	LINQ	and	called	 standard
query	operators.	Most	of	 these	methods	operate	on	 sequences,	which	 are	objects	whose
types	implement	IEnumerable	or	IQueryable.	One	of	the	most	frequently	used	extension
methods	is	Where,	which	takes	a	lambda	expression	to	filter	out	elements.

You	can	write	your	query	in	method	syntax	or	query	syntax.	For	example,	this	query	is
written	in	method	syntax	because	it	uses	the	Where	method.

int[]	numbers	=	{	1,	3,	5,	20,	-30	};

IEnumerable<int>	evenNumbers	=	numbers.Where(n	=>	n	%	2	==	0);

The	same	query	can	be	rewritten	in	query	syntax	as	follows.

int[]	numbers	=	{	1,	3,	5,	20,	-30	};

IEnumerable<int>	evenNumbers	=	from	number	in	numbers

								where	number	%	2	==	0

								select	number;

In	fact,	 the	query	syntax	is	translated	into	equivalent	method	syntax	at	compile	time.	As
such,	you	can	choose	to	write	your	query	in	query	syntax	or	method	syntax.	You	can	even
mix	both	 together,	 like	 in	 this	example	whereby	 the	Count	method	 is	called	on	a	query
written	in	query	syntax.

int[]	numbers	=	{	1,	3,	5,	20,	-30	};

int	numberOfEvenNumbers	=	(from	number	in	numbers

								where	number	%	2	==	0

								select	number).Count();

Of	course	you	can	split	it	into	two	statements	to	make	it	clearer:

int[]	numbers	=	{	1,	3,	5,	20,	-30	};

IEnumerable<int>	evenNumbers	=	from	number	in	numbers

								where	number	%	2	==	0

								select	number;

int	numberOfEvenNumbers	=	evenNumbers.Count();

Table	17.1	shows	the	more	important	standard	query	operators.

Operator Description

Average Returns	the	average	of	a	sequence	of	decimal	values.

Count Returns	the	number	of	elements	in	a	sequence.

Distinct Returns	distinct	elements	in	a	sequence	(no	duplicates).

ElementAt Returns	the	element	at	a	specified	zero-based	index.

First Returns	the	first	element	in	a	sequence

GroupBy Groups	the	elements	in	a	sequence.

Last Returns	the	last	element	in	a	sequence

Max Returns	the	maximum	value	in	a	sequence	of	decimal	values.

Min Returns	the	minimum	value	in	a	sequence	of	decimal	values.

OrderBy Orders	the	elements	in	a	sequence	in	ascending	order.

OrderByDescending Orders	the	elements	in	a	sequence	in	descending	order.

Select Project	each	element	in	a	sequence	in	a	new	form.

Skip Skips	a	given	number	of	elements	in	a	sequence	and	then
returns	the	remaining.

Sum Returns	the	sum	of	a	sequence	of	decimal	values.

Where Filters	out	elements	in	a	sequence	based	on	a	given	predicate.

Table	17.1:	The	more	important	LINQ	standard	query	operators

LINQ	to	SQL
C#	 is	 an	 object-oriented	 programming	 language.	 As	 such,	 you	 deal	 with	 objects	 a	 lot.
When	it	is	time	to	persist	the	states	of	your	objects,	what	do	you	use?

Traditionally,	 you	 would	 use	 ADO.NET	 to	 persist	 your	 object	 states	 in	 a	 relational
database.	 Despite	 being	 a	 very	 old	 technology,	 the	 relational	 database	 is	 still	 the	 most
common	 type	 of	 data	 storage.	 ADO.NET	 was	 and	 still	 is	 a	 fine	 technology,	 however
ADO.NET	 is	 not	 the	 perfect	 solution.	 With	 ADO.NET	 you	 have	 to	 create	 a	 database
schema	 and	 tables	 yourself	 and	 write	 structure	 query	 language	 (SQL)	 statements	 to
retrieve	 and	 manipulate	 your	 data.	 And,	 if	 one	 of	 your	 classes	 changes,	 you	 have	 to
change	the	database	schema	as	well.

LINQ	 to	 SQL	 is	 a	 better	 alternative	 to	 ADO.NET.	 Internally,	 LINQ	 to	 SQL	 uses
ADO.NET	to	open	a	connection	to	the	database	and	retrieve	data.	However,	not	only	can
LINQ	to	SQL	be	used	to	persist	your	objects	in	a	relational	database,	it	can	retrieve	your
persisted	 data	 as	 .NET	 objects	 too.	 In	 other	 words,	 LINQ	 to	 SQL	 really	 hides	 the
complexity	 of	 writing	 SQL	 statements.	 Once	 you	 map	 your	 classes	 with	 a	 database
schema,	you	only	work	with	objects.	Therefore,	unlike	ADO.NET	 that	 returns	data	 in	a
record	 set,	 LINQ	 to	 SQL	 provides	 an	 object-relational	 mapping	 (ORM)	 solution	 that
returns	data	as	objects.	You	can	manage	your	database	structure	yourself,	or	you	can	use	a
tool	to	synchronize	your	database	and	your	classes.

ADO.NET
Having	existed	since	.NET	1.0,	ADO.NET	is	a	mature	.NET	technology	for	accessing
and	manipulating	data	in	various	formats,	including	data	stored	in	a	relational	database
or	 as	 XML.	 The	 name	ADO.NET	 comes	 from	ADO	 (Access	 Data	 Objects),	 an	 old
Microsoft	 technology	 that	 offered	 similar	 functionality.	 Despite	 the	 name	 similarity,
however,	the	architecture	of	ADO.NET	bears	little	resemblance	to	its	predecessor.

ADO.NET	offers	a	uniform	way	of	accessing	different	 relational	databases.	Different
database	 servers	 use	 different	 proprietary	 protocols	 and	 accessing	 them	 without
ADO.NET	(or	a	similar	 technology	such	as	Java	Database	Connectivity)	may	require
writing	entirely	different	codes.	For	each	relational	database	supported	by	ADO.NET,
there	 is	 a	 set	 of	 classes	 able	 to	 communicate	 with	 the	 database	 server.	 This	 set	 of
classes	is	called	a	data	provider.

With	a	technology	like	LINQ	to	SQL,	you	do	not	need	to	use	ADO.NET	directly.

To	make	 instances	of	your	 classes	manageable	by	LINQ	 to	SQL,	you	 first	 have	 to	 turn
your	classes	into	entity	classes.	Entity	classes	are	classes	whose	instances	can	be	persisted
using	an	ORM	solution.

The	syntax	for	LINQ	to	SQL	is	the	same	as	that	for	LINQ	to	Objects,	but	you	need	to
open	 a	 connection	 to	 the	 database	 and	 use	 IQueryable	 instead	 of	 IEnumerable.	 The
difference	between	IQueryable	and	IEnumerable	is	substantial.	With	IEnumerable,	all
records	are	retrieved	from	the	database	and	filtered	and	sorted	by	the	calling	code.	With
IQueryable,	 data	 is	 filtered	and	 sorted	by	 the	database	engine	 itself.	This	means,	when

using	IQueryable	there	is	less	data	to	transfer.

With	regard	to	mapping	an	entity	class	with	a	database	table,	you	can	choose	one	from
the	following	options.

?	Create	entity	classes	and	database	tables	yourself	and	manually	map	them.
?	Use	 the	DataContext.CreateDatabase	method	 to	 read	existing	entity	classes	and
generate	 a	 database	 and	 corresponding	 tables	 based	 on	 annotated	 columns	 in	 the
entity	classes.
?	Use	an	existing	database	schema	to	generate	entity	classes.

In	this	section	I	explain	how	to	use	the	first	approach.

Here	are	the	steps	to	querying	a	relational	database	with	LINQ	to	SQL.

1.	Annotate	your	class	with	the	Table	and	Column	attributes.

2.	Write	a	connection	string.

3.	Create	a	DataContext	object,	passing	the	connection	string.

4.	 Call	 the	GetTable	method	 on	 the	DataContext	 to	 get	 a	Table	 object.	 Assign	 the
Table	object	to	a	variable.

5.	 Write	 a	 query	 targeting	 the	 Table	 variable	 as	 the	 data	 source.	 In	 addition,	 use
IQueryable	instead	of	IEnumerable.

These	steps	are	explained	further	in	the	following	subsections.	Plus,	there	is	sample	code
example	for	manipulating	SQL	Server	data	with	LINQ	to	SQL

Annotating	Classes	with	Table	and	Column	Attributes
LINQ	to	SQL	can	persist	objects	to	a	relational	database	and	retrieve	the	data	as	objects.
An	entity	class	maps	 to	a	 table	 row,	whereas	 the	 individual	properties	of	an	entity	class
map	to	the	individual	columns	that	make	up	the	table	row.

In	order	for	LINQ	to	SQL	to	do	this,	you	need	to	annotate	your	class	with	the	Table	and
Column	 attributes	 in	 the	 System.Data.Linq.Mapping	 namespace.	 You	 use	 the	 Table
attribute	 to	map	a	database	 table	with	a	C#	class,	basically	 telling	LINQ	which	class	 to
instantiate	when	a	query	is	executed.	You	use	Column	to	map	a	table	column	with	a	class
property.

Turning	your	class	 into	an	entity	class	using	the	Table	attribute	 is	easy.	This	attribute
has	 a	Name	 property	 that	 should	 be	 assigned	 the	 name	 of	 the	 database	 table	 to	which
instances	of	this	entity	class	is	mapped	to.

Here	is	an	example	of	an	entity	class	named	Order	that	is	mapped	to	an	orders	table	in
the	database.

[Table(Name	=	"orders")]

public	class	Order

{

				...

}

The	Column	 attribute	maps	 class	 properties	 with	 table	 columns.	 Table	 17.2	 shows	 the
more	important	properties	of	the	Column	attribute.

Property Description

CanBeNull Indicates	whether	or	not	the	column	may	contain	null	values.

Expression Indicates	whether	or	not	the	column	is	a	computed	column	in	the
database.

IsDbGenerated Indicates	whether	or	not	the	values	of	the	column	should	be	auto-
generated	by	the	database.

IsPrimaryKey Indicates	whether	or	not	the	column	is	a	primary	key.

Name The	name	of	the	table	column	to	which	this	property	is	mapped	to.

Table	17.2:	The	properties	of	the	Column	attribute

Here	is	an	example	of	how	to	annotate	class	properties	with	the	Column	attribute.

[Table(Name	=	"students")]

public	class	Student

{

				private	int	_Id;

				private	string	_Name;

				[Column(Name="id",	IsPrimaryKey=true,	IsDbGenerated=true)]

				public	int	Id

				{

								get

								{

												return	this._Id;

								}

								set

								{

												this._Id	=	value;

								}

				}

				[Column(Name="student_name",	CanBeNull=true)]

				public	string	Name

				{

								get

								{

												return	this._Name;

								}

								set

								{

												this._Name	=	value;

								}

				}

}

Writing	Connection	Strings
The	 tricky	 part	 in	 programmatically	 connecting	 to	 a	 relational	 database	 is	 building	 the
correct	 connection	 string.	 Typically,	 you	 need	 to	 know	 the	 type	 of	 the	 database	 you’re
trying	to	access,	the	location	(host	or	IP	address)	of	the	server,	and,	optionally,	a	user	name
and	 password	 for	 the	 database.	 And	 then,	 you	 have	 to	 build	 a	 string	 that	 consists	 of
key/value	pairs	like	these:

key-1=value-1;	key-2=value-2;	...;	key-n=value-n

Each	 key/value	 pair	 is	 separated	 by	 a	 semicolon	 and	 the	 space	 after	 a	 semicolon	 is
optional.

Let’s	 talk	 about	 SQL	 Server	 first,	 since	 this	 is	 most	 probably	 your	 first	 choice	 of
relational	database	management	system	(RDBMS).

The	keys	for	the	SQL	Server	connection	string	can	be	found	here.

http://msdn.microsoft.com/en-us/library/system.data.sqlclient.

sqlconnection.connectionstring

Table	17.3	shows	some	of	the	more	important	ones.

Key Description

AttachedDBFilename
or	Extended
Properties	or	Initial
File	Name

The	name	of	the	database	.mdf	file.	Other	file	types	are	not
supported.

Connect	Timeout	or
Connection	Timeout
or	Timeout

The	number	of	seconds	to	wait	for	a	connection	to	the	server
before	aborting	the	attempt	and	generating	an	error.	Valid
values	are	between	0	and	2,147,483,647.

Data	Source	or
Server	or	Address	or
Addr	or	Network
Address

The	name	or	network	address	of	the	SQL	Server	instance	to
connect	to.	The	port	number	can	be	specified	after	the	server
name.

Initial	Catalog	or
Database The	name	of	the	database	to	use.

Integrated	Security	or
Trusted_Connection

Specifies	if	the	current	Windows	credentials	are	to	be	used	to
authenticate	the	user.	The	default	value	is	false,	meaning	the
UserID	and	Password	values	will	be	used	to	authenticate	the
user.	A	value	of	true	means	the	curernt	Windows	credentials
will	be	used.	In	addition	to	true	and	false,	other	valid	values
are	yes	(same	as	true),	sspi	(same	as	true),	and	no	(same	as
false).

http://msdn.microsoft.com/en-us/library/system.data.sqlclient

Max	Pool	Size The	maximum	number	of	connections	in	the	pool	if	a
connection	pool	is	employed.

Min	Pool	Size The	minimum	number	of	connections	in	the	pool	if	a
connection	pool	is	employed.

Password	or	PWD The	password	to	authenticate	the	user

Pooling Indicates	if	connection	pooling	should	be	used.	The	valid
values	are	true	(the	default),	yes,	false,	and	no.

User	ID	or	UID The	user	identifier	to	authenticate	the	user.

Table	17.3:	Valid	keys	for	SQL	Server	connection	strings

Opening	a	database	connection	 is	one	of	most	 resource-intensive	operations	 in	database
manipulation.	As	 such,	ADO.NET	 supports	 connection	pooling,	which	means	 that	 open
connections	are	not	closed	but	simply	returned	to	a	pool.	The	Pooling	key	in	a	connection
string	 should	be	 left	 in	 its	 default	 value	unless	 you	have	 a	very	good	 reason	not	 to	use
connection	pooling.

The	 following	 example	 is	 a	 connection	 string	 to	 open	 a	 connection	 to	 a	 SQL	Server
database	 by	 attaching	 its	 MDF	 file.	 It	 also	 uses	 the	 current	 Windows	 credentials	 to
authenticate	the	user.

Data	Source=.\\SQLEXPRESS;AttachDbFilename=C:\\MarketingDB.mdf;

Integrated	Security=True;Connect	Timeout=30

The	following	connection	string	connects	to	a	SQL	Server	named	PC\SQLEXPRESS	and
uses	the	MyCustomerDB	database.

Persist	Security	Info=False;Integrated	Security=true;

Initial	Catalog=MyCustomerDB;Server=PC\\SQLEXPRESS";

While	 SQL	 Server	 is	 likely	 your	 database	 engine	 in	 production,	 for	 development	 you
would	probably	choose	an	instance	of	SQL	Server	Express	LocalDB,	an	execution	mode
of	SQL	Server	Express	designed	for	program	developers.	The	good	thing	about	LocalDB
is	that	it	is	bundled	with	Visual	Studio.	In	other	words,	if	you	have	Visual	Studio	installed,
you	do	not	need	to	install	LocalDB	separately.

Here	is	a	sample	connection	string	for	LocalDB.

Data	Source=(LocalDB)\MSSQLLocalDB;AttachDbFilename=C:\\OrderDb.mdf;

Integrated	Security=True;Connect	Timeout=30

DataContext	and	Table
The	System.Data.Linq.DataContext	 class	 is	 the	main	 class	 for	working	with	LINQ	 to
SQL.	This	class	allows	you	to	create	a	database	based	on	entity	classes	and	delete	it	too.
What	 is	 of	 interest	 here,	 however,	 is	 its	 GetTable	 method	 that	 returns	 a
System.Data.Linq.Table	object	representing	a	database	table.	A	Table	object	represents	a
data	source	that	can	be	queried.

Here	is	how	you	create	a	DataContext,	a	Table	and	a	query	based	on	the	Table.

DataContext	dataContext	=	new	DataContext(connectionString);

Table<Student>	students	=	dataContext.GetTable<Student>();

Iqueryable<Student>	query	=	from	student	in	students

								where	student.Grade	>	3.5

								select	student;

Querying	A	Database
You	 can	 use	 LINQ	 to	 SQL	 to	 select	 data	 from	 a	 relational	 database.	 The	 following
example	shows	how	to	retrieve	data	from	a	LocalDB	database	to	populate	an	object.	The
database	itself	is	included	in	the	project	accompanying	this	chapter	and	is	called	test.mdf.
It	is	located	in	the	same	directory	as	the	project’s	cs	files.

Before	 you	 can	 start,	 you	 must	 first	 add	 a	 reference	 to	 the	 System.Data.Linq
namespace.	This	is	because	LINQ	to	SQL	is	deployed	as	a	separate	assembly	(that	takes
form	as	a	DLL	file).

Here	is	how	you	add	a	reference	to	the	System.Data.Linq	namespace:

1.	Right	click	your	solution/project.

2.	Click	Add	>	Reference	and	search	for	System.Data.Linq	and	add	the	reference.

3.	Click	the	OK	button.

The	 database	 in	 test.mdf	 contains	 a	product	 table	 that	 can	 be	mapped	 to	 the	Product
class	in	Listing	17.1.

Listing	17.1:	The	Product	class

using	System.Data.Linq.Mapping;

using	System.Linq;

namespace	LINQ

{

				[Table]

				class	Product

				{

								[Column	(IsPrimaryKey=true)]

								public	int	Id;

								[Column]

								public	string	name;

				}

}

You	 can	 use	 the	 code	 in	 Listing	 17.2	 to	 retrieve	 the	 data	 in	 test.mdf	 as	 instances	 of
Product.

Listing	17.2:	Using	LINQ	to	SQL

using	System;

using	System.Linq;

using	System.Data.Linq;

using	System.IO;

using	System.Collections.Generic;

namespace	LINQ

{

				class	Program

				{

								static	void	Main(string[]	args)

								{

												string	dbPath	=	new	

																				DirectoryInfo(Directory.GetCurrentDirectory())

																				.Parent.Parent.FullName	+	@"\test.mdf";

												if	(File.Exists(dbPath))

												{

																string	connectionString	=	

																								@"Data	Source=(LocalDB)\MSSQLLocalDB;"

																								+	"AttachDbFilename="	+	dbPath	+	";"

																								+	"Integrated	Security=True;Connect	Timeout=30";

																DataContext	dataContext	=	new	

																								DataContext(connectionString);

																Table<Product>	products	=	

																								dataContext.GetTable<Product>();

																IQueryable<Product>	query	=	from	pr	in	products

																								where	pr.Id	<	100

																								select	pr;

																foreach	(var	e	in	query)

																{

																				Console.WriteLine("id	=	{0},	name	=	{1}",	e.Id,	

																												e.name);

																}

																Console.WriteLine("There	are	{0}	product(s).",	

																								products.Count());

												}

												else

												{

																Console.WriteLine("Db	file	does	not	exist.");

												}

												Console.ReadKey();

								}

				}

}

The	 trickiest	 part	 is	 to	 get	 the	 connection	 string	 right.	 In	 this	 example,	 the	 connection
string	is	composed	of	the	path	to	the	test.mdf	file:

string	dbPath	=	new	

								DirectoryInfo(Directory.GetCurrentDirectory())

								.Parent.Parent.FullName	+	@"\test.mdf";

string	connectionString	=	

								@"Data	Source=(LocalDB)\MSSQLLocalDB;"

								+	"AttachDbFilename="	+	dbPath	+	";"

								+	"Integrated	Security=True;Connect	Timeout=30";

When	 the	program	 is	 run	 from	within	Visual	Studio,	Directory.GetCurrentDirectory()
returns	 either	 the	 Debug	 or	 Release	 directory	 under	 bin.	 The	 bin	 directory	 itself	 is	 a
subdirectory	of	 the	application	directory.	The	parent	of	 the	bin	directory	 is	 therefore	 the
application	directory	itself,	where	the	test.mdf	 file	 is	 located.	If	you	are	not	running	the
example	with	Visual	Studio,	you	need	to	adjust	this.

Run	the	project	and	you	should	see	the	two	product	names	in	the	product	table.	If	you

see	“Db	file	does	not	exist.”	instead,	that	means	the	connection	string	is	not	pointing	to	the
database	file.

Updating	A	Table
To	change	data	in	a	database	using	LINQ	to	SQL,	you	do	not	manipulate	the	data	directly.
Instead,	 you	 update	 it	 in	 an	 object-oriented	 way,	 i.e.	 by	 changing	 the	 states	 of	 your
entities.

The	steps	to	updating	data	in	a	database	are	as	follows:

?	Query	the	data	using	DataContext	and	Table	objects.
?	Update	your	entity	objects.
?	Call	 the	SubmitChanges	method	on	 the	DataContext	 to	save	 the	changes	 to	 the
database.

Listing	17.3	shows	an	example	of	connecting	to	a	relational	database	using	LINQ	to	SQL.

Listing	17.3:	Updating	data	with	LINQ	to	SQL

using	System;

using	System.Linq;

using	System.Data.Linq;

using	System.IO;

using	System.Collections.Generic;

namespace	LINQ

{

				class	Program

				{

								static	void	Main(string[]	args)

								{

												string	dbPath	=	new	

																				DirectoryInfo(Directory.GetCurrentDirectory())

																				.Parent.Parent.FullName	+	@"\test.mdf";

												if	(File.Exists(dbPath))

												{

																string	connectionString	=	

																								@"Data	Source=(LocalDB)\MSSQLLocalDB;"

																								+	"AttachDbFilename="	+	dbPath	+	";"

																								+	"Integrated	Security=True;Connect	Timeout=30";

																DataContext	dataContext	=	new	

																								DataContext(connectionString);

																Table<Product>	products	=	

																								dataContext.GetTable<Product>();

																IQueryable<Product>	query	=	from	pr	in	products

																																												where	pr.Id	==	1

																																												select	pr;

																Product	firstProduct	=	query.First();

																firstProduct.name	=	"Revised	product	name";

																dataContext.SubmitChanges();

												}

												else

												{

																Console.WriteLine("Db	file	does	not	exist.");

												}

												Console.ReadKey();

								}

				}

}

Inserting	Rows
To	 insert	 a	 row	or	 rows	 into	 a	 database	 table	with	LINQ	 to	SQL,	 you	 need	 to	 create	 a
DataContext	 that	 points	 to	 the	 database	 and	 call	 its	GetTable	 method.	 The	GetTable
method	 returns	 a	Table.	You	 then	need	 to	 call	 its	 InsertOnSubmit	method	 passing	 the
object	to	be	persisted	and	invoke	the	DataContext’s	SubmitChanges	method.

The	steps	to	inserting	rows	are	described	in	the	following	code	snippet.

//	Create	a	Product	instance

Product	newProduct	=	new	Product();

newProduct.id	=	300;

newProduct.name	=	"New	product";

//	Create	a	DataContext	and	a	Table

DataContext	dataContext	=	new	DataContext(connectionString);

Table<Product>	products	=	dataContext.GetTable<Product>();

//	Insert	the	Product	and	submit	changes

products.InsertOnSubmit(newProduct);

dataContext.SubmitChanges();

Deleting	Rows
The	 steps	 to	 deleting	 a	 row	or	 rows	 is	 similar	 to	 the	 instructions	 for	 inserting	 a	 row	or
rows.	Start	with	creating	a	DataContext	and	a	Table.	Next,	create	a	query	that	retrieves
the	 rows	 to	 be	 deleted	 and	 iterate	 over	 them	and	 call	 the	DeleteOnSubmit	method.	 To
persist	the	changes,	call	the	DataContext’s	SubmitChanges	method.

The	following	code	snippet	deletes	all	rows	in	the	product	table	whose	Id	is	less	than
10.

DataContext	dataContext	=	new	DataContext(connectionString);

Table<Product>	products	=	dataContext.GetTable<Product>();

IQueryable<Product>	query	=	from	pr	in	products

								where	pr.Id	<	10

								select	pr;

foreach	(var	pr	in	query)

{

				products.DeleteOnSubmit(pr);

}

dataContext.SubmitChanges();

Summary
LINQ	 is	 a	 .NET	 technology	 for	 accessing	 and	manipulating	 data	 from	 various	 sources.
There	 are	 five	 LINQ	 subtechnologies	 and	 this	 chapter	 discusses	 two	 of	 them,	LINQ	 to
objects	 and	 LINQ	 to	 SQL.	 LINQ	 to	 objects	 is	 used	 to	 query	 data	 in	 a
System.Collections.Generic.IEnumerable.	 The	 System.Linq	 namespace	 has	 added
extension	 methods	 to	 this	 interface,	 so	 that	 you	 can	 now	 aggregate	 data	 in	 an
IEnumerable.

LINQ	to	SQL	uses	ADO.NET	under	the	hood	to	access	a	relational	database	and	access
its	data.	What	is	more,	LINQ	to	SQL	provides	a	object-relational	mapping	(ORM)	service,
allowing	developers	to	persist	object	states	in	a	relational	database	without	having	to	write
SQL	statements	and	deal	with	the	database	directly.

Chapter	18

Windows	Presentation	Foundation
Thus	far,	all	examples	in	this	book	have	been	built	as	console	applications.	It	is	now	time
to	unwrap	Windows	Presentation	Foundation	(WPF),	a	technology	for	developing	desktop
application.

This	chapter	introduces	WPF	and	builds	a	couple	of	simple	applications.	Note	that	what
is	covered	in	this	chapter	is	only	the	tip	of	the	iceberg	of	what	you	can	do	with	WPF.	If
you’re	 interested	 to	 learn	 more	 about	 this	 technology,	 you	 should	 get	 a	 book	 that
specializes	 in	WPF	 and	 visit	 http://windowsclient.net,	 the	 official	 Microsoft	WPF	 site.
Before	 deciding	 to	 use	 WPF	 to	 build	 a	 new	 Windows	 application,	 please	 read	 the
overview	to	learn	what	other	technologies	are	available.

Overview
.NET	Framework	1.0	shipped	with	two	technologies	for	developing	desktop	applications,
Windows	Forms	and	GDI+.	With	 the	release	of	 .NET	3.0	 in	November	2006,	Microsoft
replaced	both	with	Windows	Presentation	Foundation	(WPF).	Why	the	change	of	heart?
Simple.	WPF	integrates	various	technologies	that	.NET	desktop	developers	had	to	master
if	they	were	to	use	Windows	Forms	and	GDI+.

Six	 years	 after	 the	 WPF	 launch,	 Microsoft	 released	 Windows	 Runtime	 (WinRT).
WinRT	targeted	Windows	8	computers	and	 initially	made	WPF	developers	worried	with
many	thinking	WinRT	could	make	WPF	obsolete.	Microsoft	tried	to	quell	the	doubt	about
the	 future	 of	 WPF	 by	 publishing	 a	 roadmap	 for	 WPF	 in	 this	 November	 2014
announcement,	promising	to	support	WPF	until	2023:

http://blogs.msdn.com/b/dotnet/archive/2014/11/12/

the-roadmap-for-wpf.aspx

For	now	WPF	still	looks	like	a	safe	investment.	And	a	reasonable	choice	too,	since	WPF
applications	run	on	Windows	7,	8	and	10	machines.	There	is	no	guarantee	WPF	will	stay
much	 longer,	 however,	 considering	 Microsoft	 has	 also	 released	 Universal	 Windows
Platform	 (UWP)	 in	 July	 2015,	 which	 it	 has	 been	 touting	 as	 the	 future	 technology	 for
writing	Windows	 desktop	 and	 mobile	 applications.	 Universal	Windows	 apps,	 however,
only	runs	on	Windows	10.	UWP	will	probably	really	take	off	once	more	Windows	7	and	8
users	have	upgraded	to	Windows	10.

There	are	two	approaches	with	regard	to	developing	WPF	applications:

?	by	using	code	only
?	by	using	code	and	XAML

I	explain	both	methods	in	this	chapter,	first	by	using	code	only	to	build	WPF	applications
and	then	by	employing	code	and	XAML.

Application	and	Window
This	 section	 explains	 two	 important	 classes	 in	 developing	 WPF	 applications,	 the
System.Windows.Application	 and	 System.Windows.Window	 classes.	 It	 provides	 two
examples	at	the	end	of	the	section.

A	WFP	application	is	represented	by	an	instance	of	the	System.Windows.Application
class	 or	 an	 instance	 of	 a	 class	 that	 extends	 System.Windows.Application.	 After	 you
create	an	Application	object,	call	its	Run	method	to	start	the	application.	It’s	that	easy.

The	Run	method	has	two	overloads:

public	int	Run()

public	int	Run(Window	window)

The	second	overload	takes	a	System.Windows.Window	object	that	represents	a	window.
Without	 a	 window,	 you	 have	 nothing	 visual.	 The	 first	Run	 overload	 is	 normally	 used
when	you	create	a	class	 that	extends	Application	 and	window	creation	 takes	place	 in	a
method	that	automatically	gets	called	when	you	start	your	application.	You	will	see	both
Run	methods	used	in	the	projects	that	accompany	this	chapter.

An	important	thing	to	remember	when	creating	a	WPF	application	is	that	you	must	use
the	[STAThread]	attribute	to	annotate	your	Main	method.	What	is	this	attribute	good	for?
This	attribute	changes	the	apartment	state	of	the	current	thread	to	be	single	threaded.	WPF
applications	 must	 be	 single-threaded.	 If	 you	 forget	 to	 apply	 this	 attribute,	 your	 WPF
application	will	crash.

Now	let’s	first	shift	our	attention	to	the	Window	class.	As	the	name	implies,	Window
represents	a	window.	On	it	you	can	add	controls	such	as	 labels,	 text	boxes,	and	buttons.
Controls	are	explained	in	more	detail	in	the	section	“WPF	Controls”	later	in	this	chapter.

The	most	 important	method	of	Window	 is	Show.	Show	 opens	 a	window	and	 returns
without	waiting	for	the	newly	opened	window	to	be	closed.	If	you	don’t	call	Show,	your
pretty	window	will	never	show.	Here	is	the	signature	of	Show:

public	void	Show()

Another	member	of	Window	you	should	know	by	heart	is	the	Content	property,	which	is
of	type	Object.	You	can	assign	any	object	to	this	property,	but	you	will	typically	assign	a
control	or	a	panel.	A	panel	is	an	area	that	contains	other	controls	and	is	discussed	in	the
section	“Panels	and	Layout”	later	in	this	chapter.

Table	18.1	lists	some	of	the	more	important	properties	in	the	Window	class.

Property Description

Content The	content	of	the	Window

ContextMenu The	context	menu	of	the	Window

FontFamily The	font	family	to	be	used	in	the	Window

FontSize The	font	size	to	be	used	in	the	Window

FontStyle The	font	style	to	be	used	in	the	Window

Height The	height	of	the	Window	in	pixels.

Icon The	icon	object	used	by	the	Window

IsActive Whether	or	not	the	Window	is	active

IsVisible Whether	or	not	the	Window	is	visible

Left The	position	of	the	Window‘s	left	edge	relative	to	the
desktop’s	left	edge.

MaxHeight The	maximum	height	of	the	Window

MaxWidth The	maximum	width	of	the	Window

MinHeight The	minimum	height	of	the	Window

MinWidth The	minimum	width	of	the	WIndow

Opacity A	double	value	ranging	from	0.0	to	1.0	that	determines	the
Window‘s	opacity,	with	1.0	the	default	value.

Padding The	padding	to	lay	out	controls	inside	the	Window

Parent The	parent	control	of	the	Window

Title The	title	of	the	Window

Top The	position	of	the	Window‘s	top	edge	relative	to	the
desktop’s	top	edge.

Width The	width	of	the	Window

WindowStartupLocation The	location	of	the	Window	when	it	is	first	started

WindowState
The	state	the	Window	is	in.	Its	value	may	be	one	of	the
three	members	of	the	WindowState	enumeration
(Minimized,	Maximized,	Normal)

Table	18.1:	The	more	important	properties	of	Window

Now	that	you	know	enough	theory	behind	WPF,	let’s	create	two	simple	WPF	applications

that	use	Application,	Window	and	a	control.

Simple	WPF	Application	1
In	this	example,	you	create	a	WPF	application	using	the	Application	class	and	starting	it
by	passing	a	Window	object.

Listing	18.1:	Simple	WPF	1

using	System;

using	System.Windows;

using	System.Windows.Controls;

namespace	App18

{

				class	SimpleWPF1				

				{

								//	WPF	apps	should	execute	on	a	STA	thread

								[STAThread]

								static	void	Main(string[]	args)

								{

												Window	window	=	new	Window();

												Label	label	=	new	Label();

												label.Content	=	"WPF	is	cool";

												window.Content	=	label;

												window.Title	=	"Simple	WPF	App";

												window.Height	=	100;

												window.Width	=	300;

												window.WindowStartupLocation	=

																				WindowStartupLocation.CenterScreen;

												Application	app	=	new	Application();

												app.Run(window);

								}

				}

}

The	code	in	Listing	18.1	is	straight	forward	enough.	First	you	create	a	Window	object	and
a	Label	object.	Then,	you	give	the	label	a	string	content	and	set	the	label	as	the	window’s
content.	Next,	you	set	the	Title,	Height,	Width,	and	WindowStartupLocation	properties
of	the	window	and	your	window	is	ready.	Afterward	you	instantiate	the	Application	class
and	call	its	Run	method.

Now	set	the	SimpleWPF1	project	as	the	default	project	in	your	Visual	Studio	solution
and	press	F5.	Voila…	you’ll	see	a	window	just	like	that	in	Figure	18.1.

Figure	18.1:	Your	first	simple	WPF	application

It	 looks	 like	a	standard	window	complete	with	Minimize,	Restore,	and	Close	buttons.	 If
you	press	the	Close	button,	the	window	will	close	and	the	application	will	terminate.

Simple	WPF	Application	2
Recall	that	the	Application	class’s	Run	method	has	an	overload	that	 takes	no	argument.
You	may	wonder	how	you	can	pass	a	Window	to	the	application	if	you’re	using	this	Run
overload.	The	answer	is	calling	any	overload	of	Run	will	cause	the	OnStartup	method	of
the	Application	instance	to	be	called.	By	writing	code	that	creates	a	Window	object	here,
you	 can	 achieve	 the	 same	 goal	 as	 passing	 a	Window	 to	 the	other	Run	method.	 In	 this
example,	you	create	a	WPF	application	by	extending	the	Application	class	and	delegate
the	window	creation	to	its	OnStartup	method.

The	code	is	presented	in	Listing	18.2.

Listing	18.2:	Creating	an	WPF	application	by	extending	Application

using	System;

using	System.Windows;

using	System.Windows.Controls;

namespace	App18

{

				class	SimpleWpf2	:	Application

				{

								//	WPF	apps	should	execute	on	a	STA	thread

								[STAThread]

								static	void	Main(string[]	args)

								{

												SimpleWpf2	app	=	new	SimpleWpf2();

												app.Run();

								}

								protected	override	void	OnStartup(StartupEventArgs	e)

								{

												base.OnStartup(e);

												Calendar	calendar	=	new	Calendar();

												Window	window	=	new	Window();

												window.Title	=	"WPF	2";

												window.Height	=	205;

												window.Width	=	200;

												window.Content	=	calendar;

												window.WindowStartupLocation	=	

																WindowStartupLocation.CenterScreen;

												window.Show();

								}

				}

}

This	 code	 is	 contained	 in	 the	SimpleWPF2	 project.	 To	 run	 it,	 set	SimpleWPF2	 as	 the
default	project	and	press	F5	in	your	Visual	Studio	Express	solution.	You’ll	see	a	window
that	contains	a	calendar	like	the	one	in	Figure	18.2.

Figure	18.2:	Another	simple	WPF	application

WPF	Controls
You’ve	 seen	 two	 controls	 used	 in	 the	 previous	 examples,	Label	 and	Calendar.	 .NET
Framework	 provides	 dozens	 of	 ready-to-use	 controls	 like	 Label	 and	 Calendar.	 The
simple	 ones	 include	Label,	TextBox	 and	Button.	 The	more	 complex	 ones	 are	 controls
like	Calendar,	RichTextBox,	and	WebBrowser.	There	are	also	panels,	which	are	controls
that	contain	other	controls.	DockPanel,	Grid,	and	StackPanel	are	examples	of	panels.

Here	is	an	incomplete	list	of	WPF	controls.

Border.	Represents	a	border	that	can	be	used	to	decorate	another	control.
Button.	Represents	a	clickable	button.
Calendar.	Represents	a	scrollable	calendar.
Canvas.	Represents	a	blank	screen	to	contain	child	elements.
CheckBox.	Represents	a	check	box.
ComboBox.	Represents	a	combo	box	with	a	drop-down	list.
DataGrid.	Represents	a	control	that	displays	data	in	a	customizable	grid.
DatePicker.	Represents	a	control	to	select	a	date	from.
DockPanel.	Represents	a	panel	where	its	child	elements	can	be	arranged	horizontally
or	vertically,	relative	to	each	other.
Grid.	Represents	a	panel	with	a	grid	area	consisting	of	rows	and	columns.
Image.	Represents	a	control	to	show	an	image.
Label.	Represents	a	non-editable	piece	of	text.
ListBox.	Represents	a	list	of	options.
Menu.	Represents	a	menu	with	elements	that	can	be	organized	hierarchically.
Panel.	Represents	a	base	class	for	all	Panel	elements.
PasswordBox.	Represents	a	control	for	entering	passwords.
PrintDialog.	Represents	a	Print	dialog	box.
ProgressBar.	Represents	a	progress	bar.
RadioButton.	Represents	a	radio	button.
RichTextBox.	Represents	a	rich	editing	control.
Separator.	Represents	a	control	for	separating	items	in	items	controls.
Slider.	Represents	a	slider	control.
SpellCheck.	Functions	as	a	spell	checker	to	a	text-editing	controls	such	as	a	TextBox
or	a	RichTextBox.
StackPanel.	 A	 panel	 that	 can	 contain	 child	 elements	 that	 can	 be	 arranged	 into	 a
single	line	horizontally	or	vertically.
TabControl.	Represents	a	control	that	contains	items	that	occupy	the	same	space	on
the	screen.
TextBox.	Represents	a	control	that	can	display	text	and	let	the	user	edit	it.
ToolBar.	Represents	a	container	for	a	group	of	commands	or	other	controls.
ToolTip.	Represents	a	tooltip.
TreeView.	Represents	a	control	that	displays	data	in	a	tree	structure.
Validation.	Provides	support	for	data	validation.
WebBrowser.	 Represents	 a	 web	 browser	 that	 can	 be	 embedded	 into	 a	 WPF
application.

You’ll	see	some	of	these	controls	used	in	the	examples	to	come.

Panels	and	Layout
It	is	very	rare	to	have	a	WPF	application	with	only	one	control.	Most	of	the	time,	you’ll
use	many	controls	in	your	application.	In	this	case,	those	controls	must	be	arranged	into	a
container	such	as	a	panel.	A	panel	is	a	rectangular	shape	to	which	child	elements	can	be
added	to.	The	System.Windows.Controls.Panel	class	represents	a	panel	and	a	couple	of
implementations	are	provided	in	the	same	namespace.	A	panel	can	contain	other	panels.

When	working	with	a	panel,	you	have	to	worry	about	how	child	controls	should	be	laid
out.	The	code	in	Listing	18.3	shows	how	to	use	a	panel	and	lay	out	its	controls.

Listing	18.3:	Panel	Example

using	System;

using	System.Windows;

using	System.Windows.Controls;

namespace	App18

{

				class	PanelExample	:	Application

				{

								//	WPF	apps	should	execute	on	a	STA	thread

								[STAThread]

								static	void	Main(string[]	args)

								{

												PanelExample	app	=	new	PanelExample();

												app.Run();

								}

								protected	override	void	OnStartup(StartupEventArgs	e)

								{

												base.OnStartup(e);

												PanelWindow	window	=	new	PanelWindow();

												window.Title	=	"Panel	Example";

												window.Height	=	228;

												window.Width	=	200;

												window.WindowStartupLocation	=	

																WindowStartupLocation.CenterScreen;

												window.Show();

								}

				}

				class	PanelWindow	:	Window

				{

								public	PanelWindow()

								{

												StackPanel	mainPanel	=	new	StackPanel();

												Calendar	calendar	=	new	Calendar();

												Button	button1	=	new	Button();

												button1.Content	=	"Previous	Year";

												Button	button2	=	new	Button();

												button2.Content	=	"Next	Year";

												StackPanel	buttonPanel	=	new	StackPanel();

												buttonPanel.Orientation	=	Orientation.Horizontal;

												buttonPanel.HorizontalAlignment	=	

																System.Windows.HorizontalAlignment.Center;

												buttonPanel.Children.Add(button1);

												buttonPanel.Children.Add(button2);

												mainPanel.Children.Add(calendar);

												mainPanel.Children.Add(buttonPanel);

												this.Content	=	mainPanel;

								}

				}

}

Figure	18.3:	Using	Panels

As	you	 can	 see	 in	Figure	 18.3,	 there	 are	 a	 couple	 controls	 that	 are	 laid	 out	 nicely.	The
good	thing	about	using	the	provided	layout	is	that	when	you	resize	the	window,	the	layout
is	retained,	as	shown	in	Figure	18.4.

Figure	18.4:	Panel	Example	(enlarged)

The	 Previous	 Year	 and	 Next	 Year	 buttons	 are	meant	 to	 allow	 the	 user	 to	 change	 year.
When	you	click	either	of	 them,	however,	nothing	happens.	This	 is	expected	because	we
did	not	 instruct	our	application	how	to	react.	To	make	something	happen	when	an	event

takes	place	(such	as	when	the	user	clicks	on	a	button),	you	need	to	write	an	event	handler.
This	topic	is	covered	in	the	next	section	“Event	Handling.”

Event	Handling
Event	 handling	 is	 a	 programming	 paradigm	 in	which	 a	 set	 of	 instructions	 are	 executed
upon	 an	 event	 being	 raised.	 You	 have	 learned	 the	 theory	 in	 Chapter	 16,	 “Advanced
Language	Features.”	Now	let’s	see	it	in	action.

Listing	18.4	presents	a	class	 that	shows	how	you	can	write	an	event	handling	method
and	link	it	to	an	event.

Listing	18.4:	Event	handling

using	System;

using	System.Windows;

using	System.Windows.Controls;

namespace	App18

{

				class	EventExample	:	Application

				{

								//	WPF	apps	should	execute	on	a	STA	thread

								[STAThread]

								static	void	Main(string[]	args)

								{

												EventExample	app	=	new	EventExample();

												app.Run();

								}

								protected	override	void	OnStartup(StartupEventArgs	e)

								{

												base.OnStartup(e);

												EventWindow	window	=	new	EventWindow();

												window.Title	=	"Event	Example";

												window.Height	=	228;

												window.Width	=	200;

												window.WindowStartupLocation	=	

																WindowStartupLocation.CenterScreen;

												window.Show();

								}

				}

				class	EventWindow	:	Window

				{

								Calendar	calendar;

								public	EventWindow()

								{

												StackPanel	mainPanel	=	new	StackPanel();

												calendar	=	new	Calendar();

												Button	button1	=	new	Button();

												button1.Content	=	"Highlight";

												Button	button2	=	new	Button();

												button2.Content	=	"No	Highlight";

												StackPanel	buttonPanel	=	new	StackPanel();

												buttonPanel.Orientation	=	Orientation.Horizontal;

												buttonPanel.HorizontalAlignment	=	

																System.Windows.HorizontalAlignment.Center;

												buttonPanel.Children.Add(button1);

												buttonPanel.Children.Add(button2);

												mainPanel.Children.Add(calendar);

												mainPanel.Children.Add(buttonPanel);

												button1.Click	+=	OnClick1;

												button2.Click	+=	OnClick2;

												this.Content	=	mainPanel;

								}

								void	OnClick1(object	sender,	RoutedEventArgs	e)

								{

												calendar.IsTodayHighlighted	=	true;

								}

								void	OnClick2(object	sender,	RoutedEventArgs	e)

								{

												calendar.IsTodayHighlighted	=	false;

								}

				}

}

Pay	special	attention	to	the	lines	in	bold.

												button1.Click	+=	OnClick1;

												button2.Click	+=	OnClick2;

These	lines	basically	inform	WPF	that	the	Click	event	of	button1	is	linked	to	OnClick1
and	the	Click	event	of	button2	to	OnClick2.	OnClick1	and	OnClick2	are	event	handlers
and	change	the	value	of	the	IsTodayHighlighted	property	of	the	Calendar	control.

								void	OnClick1(object	sender,	RoutedEventArgs	e)

								{

												calendar.IsTodayHighlighted	=	true;

								}

								void	OnClick2(object	sender,	RoutedEventArgs	e)

								{

												calendar.IsTodayHighlighted	=	false;

								}

Running	the	code	in	Listing	18.4	shows	a	window	with	a	calendar	with	two	buttons	like
that	in	Figure	18.5.	The	buttons	are	now	‘live’	as	they	are	connected	to	event	handlers.

Figure	18.5:	A	WPF	application	with	event	handlers

XAML
XAML	 stands	 for	 eXtensible	Application	Markup	Language.	Originally	 created	 for	 use
with	WPF,	XAML	can	be	used	for	any	hierarchical	data	type.

When	you	create	a	WPF	project	using	Visual	Studio,	two	.xaml	files	will	be	created	for
you.	 The	 first	 file,	 MainWindow.xaml,	 describes	 the	 main	 window	 in	 your	 WPF
application.	It	looks	like	this.

<Window	x:Class="XamlExample1.MainWindow"

			xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

			xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

			Title="MainWindow"	Height="350"	Width="525">

			<Grid>

			</Grid>

</Window>

By	default,	 it	uses	a	Grid	 as	 the	primary	panel	 for	all	your	controls.	However,	you	can
easily	change	this.

The	second	XAML	file	created	for	you	when	you	start	a	WPF	project	is	an	App.xaml
file.	It	looks	like	this:

<Application	x:Class="XamlExample1.App"

			xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

			xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

			StartupUri="MainWindow.xaml">

			<Application.Resources>

			</Application.Resources>

</Application>

This	file	describes	the	WPF	application.	Be	aware	that	the	Application	element	contains	a
StartupUri	attribute	that	references	the	MainWindow.xaml	file	that	defines	the	Window
object.

If	you	run	the	project,	you’ll	see	a	blank	window.

The	following	example	features	a	XAML-based	WPF	application.	Listing	18.5	shows
its	MainWindow.xaml	file	and	Listing	18.6	its	App.xaml	file.

Listing	18.5:	The	MainWindow.xaml	file

<Window	x:Class="XamlExample2.MainWindow"

								xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

								xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

								Title="MainWindow"	Height="350"	Width="525">

				<DockPanel	LastChildFill="True">

								<Label	Foreground="Green"	Background="Bisque"	DockPanel.Dock="Top"	

															Height="100"	HorizontalContentAlignment="Center">Top</Label>

								<Label	Foreground="Red"	Background="Beige"	DockPanel.Dock="Left"	

															Width="50"	VerticalContentAlignment="Center">Left</Label>

								<TextBlock	Foreground="Blue"	Background="AliceBlue"	

																			DockPanel.Dock="Right">Right</TextBlock>

				</DockPanel>

</Window>

Listing	18.6:	The	App.xaml	file

<Application	x:Class="XamlExample2.App"

			xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

			xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

			StartupUri="MainWindow.xaml">

			

			<Application.Resources>

									

			</Application.Resources>

</Application>

As	you	can	see	from	the	XAML	example,	the	application	does	not	contains	a	single	line	of
code.	 All	 you	 had	 to	 do	 so	 far	 was	 configure	 the	 application.	 If	 it	 were	 to	 be	 written
without	XAML,	the	application	would	look	like	the	code	in	Listing	18.7.

Listing	18.7:	Code	Only	Equivalent	of	the	XAML	example

using	System;

using	System.Windows;

using	System.Windows.Controls;

using	System.Windows.Media;

namespace	XamlExample2

{

				class	CodeOnly	:	Application

				{

								//	WPF	apps	should	execute	on	a	STA	thread

								[STAThread]

								static	void	Main(string[]	args)

								{

												CodeOnly	app	=	new	CodeOnly();

												app.Run();

								}

								protected	override	void	OnStartup(StartupEventArgs	e)

								{

												base.OnStartup(e);

												Window	window	=	new	Window();

												window.Title	=	"CodeOnly	Equivalent";

												window.Height	=	350;

												window.Width	=	525;

												DockPanel	dockPanel	=	new	DockPanel();

												dockPanel.LastChildFill	=	true;

												Label	topElement	=	new	Label();

												topElement.Content	=	"Top";

												DockPanel.SetDock(topElement,	Dock.Top);

												topElement.Foreground	=	

																new	SolidColorBrush(Colors.Green);

												topElement.Background	=	

																new	SolidColorBrush(Colors.Bisque);

												topElement.Height	=	100;

												topElement.HorizontalContentAlignment	=	

																HorizontalAlignment.Center;

												

												Label	leftElement	=	new	Label();

												leftElement.Content	=	"Left";

												leftElement.Foreground	=	

																new	SolidColorBrush(Colors.Red);

												leftElement.Background	=	

																new	SolidColorBrush(Colors.Beige);

												leftElement.Width	=	50;

												leftElement.VerticalContentAlignment	=	

																VerticalAlignment.Center;

												DockPanel.SetDock(leftElement,	Dock.Left);

												TextBox	rightElement	=	new	TextBox();

												rightElement.Text	=	"Right";

												rightElement.Foreground	=	

																new	SolidColorBrush(Colors.Blue);

												rightElement.Background	=	

																new	SolidColorBrush(Colors.AliceBlue);

												DockPanel.SetDock(rightElement,	Dock.Right);

												dockPanel.Children.Add(topElement);

												dockPanel.Children.Add(leftElement);

												dockPanel.Children.Add(rightElement);

												window.Content	=	dockPanel;

												window.Show();

								}

				}

}

A	Polymorphism	Example	with	WPF
You	 can	 use	 many	 different	 OOP	 techniques	 with	 WPF	 too.	 For	 example,	 here	 is	 an
example	of	polymorphism.

Suppose	 you	 have	 a	 WPF	 application	 and	 you	 have	 a	 method	 named
MakeMoreTransparent	that	changes	the	opacity	of	a	UIElement.	You	want	to	be	able	to
pass	to	the	method	any	WPF	controls	and	panels.	Because	of	this,	you	need	to	make	the
method	accept	a	UIElement,	which	is	the	base	class	for	all	UI	elements	in	WPF.	Listing
18.8	shows	the	method.

Listing	18.8:	The	MakeMoreTransparent	method

void	MakeMoreTransparent(UIElement	uiElement)

{

				double	opacity	=	uiElement.Opacity;

				if	(opacity	>	0.2)

				{

								uiElement.Opacity	=	opacity	-	0.1;

				}

}

Thanks	to	polymorphism,	MakeMoreTransparent	will	accept	an	instance	of	UIElement
or	 an	 instance	 of	 a	 subclass	 of	 UIElement.	 Listing	 18.9	 shows	 the	 complete	 WPF
application,	which	is	a	window	with	a	calendar	and	three	buttons.	Clicking	the	third	button
will	 iterate	 over	 all	 children	 of	 the	 window	 and	 pass	 each	 child	 to
MakeMoreTransparent.

Listing	18.9:	A	WPF	application	with	polymorphism

using	System;

using	System.Windows;

using	System.Windows.Controls;

namespace	PolymorphismExample

{

				class	PolymorphismExample	:	Application

				{

								//	WPF	apps	should	execute	on	a	STA	thread

								[STAThread]

								static	void	Main(string[]	args)

								{

												PolymorphismExample2	app	=	new	PolymorphismExample2();

												app.Run();

								}

								protected	override	void	OnStartup(StartupEventArgs	e)

								{

												base.OnStartup(e);

												EventWindow	window	=	new	EventWindow();

												window.Title	=	"Polymorphism	Example";

												window.Height	=	228;

												window.Width	=	300;

												window.WindowStartupLocation	=	

																WindowStartupLocation.CenterScreen;

												window.Show();

								}

				}

				class	EventWindow	:	Window

				{

								Calendar	calendar;

								public	EventWindow()

								{

												StackPanel	mainPanel	=	new	StackPanel();

												calendar	=	new	Calendar();

												Button	button1	=	new	Button();

												button1.Content	=	"Highlight";

												Button	button2	=	new	Button();

												button2.Content	=	"No	Highlight";

												Button	button3	=	new	Button();

												button3.Content	=	"Make	more	transparent";

												StackPanel	buttonPanel	=	new	StackPanel();

												buttonPanel.Orientation	=	Orientation.Horizontal;

												buttonPanel.HorizontalAlignment	=	

																System.Windows.HorizontalAlignment.Center;

												buttonPanel.Children.Add(button1);

												buttonPanel.Children.Add(button2);

												buttonPanel.Children.Add(button3);

												mainPanel.Children.Add(calendar);

												mainPanel.Children.Add(buttonPanel);

												button1.Click	+=	OnClick1;

												button2.Click	+=	OnClick2;

												button3.Click	+=	OnClick3;

												this.Content	=	mainPanel;

								}

								void	OnClick1(object	sender,	RoutedEventArgs	e)

								{

												calendar.IsTodayHighlighted	=	true;

								}

								void	OnClick2(object	sender,	RoutedEventArgs	e)

								{

												calendar.IsTodayHighlighted	=	false;

								}

								void	OnClick3(object	sender,	RoutedEventArgs	e)

								{

												Panel	panel	=	(Panel)	this.Content;

												int	childrenCount	=	panel.Children.Count;

												Console.WriteLine("start");

												foreach	(UIElement	child	in	panel.Children)

												{

																MakeMoreTransparent(child);

												}

								}

								void	MakeMoreTransparent(UIElement	uiElement)

								{

												double	opacity	=	uiElement.Opacity;

												if	(opacity	>	0.2)

												{

																uiElement.Opacity	=	opacity	-	0.1;

												}

								}

				}

}

If	 you	 run	 the	WPF	 application,	 you’ll	 see	 something	 like	 the	window	 in	 Figure	 18.6.
Click	the	button	on	the	right	repeatedly	to	see	polymorphism	in	action.

Figure	18.6:	WPF	with	polymorphism

A	Drawing	Application
Here	is	another	WPF	application.	It	also	takes	advantage	of	polymorphism.

The	strength	of	polymorphism	is	apparent	 in	situations	whereby	the	programmer	does
not	 know	 in	 advance	 the	 type	 of	 object	 that	will	 be	 created.	 For	 example,	 consider	 the
Simple	Draw	application	in	Figure	18.7.	With	this	application	you	can	draw	three	types	of
shapes:	rectangles,	lines,	and	ovals.

Figure	18.7:	A	Simple	Draw	application

To	 draw	 a	 line,	 for	 example,	 first	 click	 the	 Line	 radio,	 and	 then	 click	 and	 drag	 on	 the
drawing	area,	and	release	 the	mouse	button.	The	position	you	first	click	on	 the	drawing
area	will	become	the	start	point	(x1,	y1).	The	coordinate	on	which	you	release	your	mouse
button	will	be	the	end	point	(x2,	y2).

Now	let’s	figure	out	how	the	application	works.

First,	 look	 at	 the	 IShape	 interface	 and	 its	 implementation	 classes	 (SimpleLine,
SimpleOval,	and	SimpleRectangle)	in	Listing	18.10.

Listing	18.10:	The	IShape	interface	and	its	implementations

interface	IShape

{

				void	Draw(Grid	myGrid

}

public	class	SimpleLine	:	IShape

{

				double	x1,	y1,	x2,	y2;

				public	SimpleLine(double	x1,	double	y1,	double	x2,	double	y2)

				{

								this.x1	=	x1;

								this.y1	=	y1;

								this.x2	=	x2;

								this.y2	=	y2;

				}

				public	void	Draw(Grid	grid)

				{

								//	body	omitted	to	save	space

				}

}

public	class	SimpleOval	:	IShape

{

				double	x1,	y1,	x2,	y2;

				public	SimpleOval(double	x1,	double	y1,	double	x2,	double	y2)

				{

								this.x1	=	x1;

								this.y1	=	y1;

								this.x2	=	x2;

								this.y2	=	y2;

				}

				public	void	Draw(Grid	grid)

				{

								//	body	omitted	to	save	space

				}

}

public	class	SimpleRectangle	:	IShape

{

				double	x1,	y1,	x2,	y2;

				public	SimpleRectangle(double	x1,	double	y1,	double	x2,	

												double	y2)

				{

								this.x1	=	x1;

								this.y1	=	y1;

								this.x2	=	x2;

								this.y2	=	y2;

				}

				public	void	Draw(Grid	grid)

				{

								//	body	omitted	to	save	space

				}

}

There	is	only	one	method	in	the	IShape	interface,	Draw.	It	is	meant	to	be	overridden	by
implementation	classes	to	draw	the	appropriate	shape.	In	the	SimpleRectangle	class,	 for
example,	the	Draw	method	has	been	overridden	to	draw	the	shape	of	a	rectangle.

Now,	let’s	examine	the	complete	application.	The	XAML	file	is	given	in	Listing	18.11
and	the	code	in	Listing	18.12.

Listing	18.11:	The	MainWindow.xaml	file

<Window	x:Class="SimpleDraw.MainWindow"

		xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

		xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

		Name="idwin"		Title="Simple	Draw"	Height="350"	Width="525"	

		MouseDown="canvas1_MouseDown"	MouseUp="canvas1_MouseUp">

				

				<Grid	Name="buttonGrid">

								<RadioButton	Content="Line"	Height="16"	

												HorizontalAlignment="Left"	Margin="12,0,0,0"	

												Name="radioButton1"	VerticalAlignment="Top"	

												IsChecked="True"	Checked="radioButton1_Checked"	/>

								<RadioButton	Content="Oval"	Height="16"	

												HorizontalAlignment="Left"	Margin="66,0,0,0"	

												Name="radioButton2"	VerticalAlignment="Top"	

												Checked="radioButton2_Checked"	/>

								<RadioButton	Content="Rectangle"	Height="16"	

												HorizontalAlignment="Left"	Margin="120,0,0,0"	

												Name="radioButton3"	VerticalAlignment="Top"	

												Checked="radioButton3_Checked"	/>

				</Grid>

</Window>

Listing	18.12:	The	SimpleDraw	application

using	System;

using	System.Windows;

using	System.Windows.Controls;

using	System.Windows.Input;

using	System.Windows.Shapes;

namespace	SimpleDraw

{

				///	<summary>

				///	Interaction	logic	for	MainWindow.xaml

				///	</summary>

				public	partial	class	MainWindow	:	Window

				{

								private	enum	ShapeType	

								{

												Line,	Oval,	Rectangle

								}

								private	Point	startPoint;

								private	Point	endPoint;

								private	ShapeType	shapeType	=	ShapeType.Line;

								public	MainWindow()

								{

												InitializeComponent();

								}

								private	void	canvas1_MouseDown(object	sender,	

																MouseButtonEventArgs	e)

								{

												startPoint	=	e.GetPosition(this);

								}

								private	void	canvas1_MouseUp(object	sender,	

																MouseButtonEventArgs	e)

								{

												endPoint	=	e.GetPosition(this);

												IShape	shape	=	null;

												if	(shapeType	==	ShapeType.Line)

												{

																shape	=	new	SimpleLine(startPoint.X,	startPoint.Y,	

																								endPoint.X,	endPoint.Y);

												}

												else	if	(shapeType	==	ShapeType.Oval)

												{

																shape	=	new	SimpleOval(startPoint.X,	startPoint.Y,	

																								endPoint.X,	endPoint.Y);

												}

												else	if	(shapeType	==	ShapeType.Rectangle)

												{

																shape	=	new	SimpleRectangle(startPoint.X,	

																								startPoint.Y,	endPoint.X,	endPoint.Y);

												}

												if	(shape	!=	null)

												{

																Grid	grid	=	(Grid)	this.FindName("buttonGrid");

																shape.Draw(grid);

												}

								}

								private	void	radioButton1_Checked(object	sender,	

																RoutedEventArgs	e)

								{

												shapeType	=	ShapeType.Line;

								}

								private	void	radioButton2_Checked(object	sender,	

																RoutedEventArgs	e)

								{

												shapeType	=	ShapeType.Oval;

								}

								private	void	radioButton3_Checked(object	sender,	

																RoutedEventArgs	e)

								{

												shapeType	=	ShapeType.Rectangle;

								}

				}

				interface	IShape

				{

								void	Draw(Grid	myGrid);

				}

				public	class	SimpleLine	:	IShape

				{

								double	x1,	y1,	x2,	y2;

								public	SimpleLine(double	x1,	double	y1,	double	x2,	

																double	y2)

								{

												this.x1	=	x1;

												this.y1	=	y1;

												this.x2	=	x2;

												this.y2	=	y2;

								}

								public	void	Draw(Grid	grid)

								{

												Line	windowLine	=	new	Line();

												windowLine.X1	=	x1;

												windowLine.Y1	=	y1;

												windowLine.X2	=	x2;

												windowLine.Y2	=	y2;

												windowLine.Stroke	=	

																				System.Windows.Media.Brushes.Magenta;

												windowLine.StrokeThickness	=	2;

												grid.Children.Add(windowLine);

								}

				}

				public	class	SimpleOval	:	IShape

				{

								double	x1,	y1,	x2,	y2;

								public	SimpleOval(double	x1,	double	y1,	double	x2,	

																double	y2)

								{

												this.x1	=	x1;

												this.y1	=	y1;

												this.x2	=	x2;

												this.y2	=	y2;

								}

								public	void	Draw(Grid	grid)

								{

												double	x,	y;

												Ellipse	oval	=	new	Ellipse();

												Thickness	margin;

												if	(x1	<	x2)

												{

																x	=	x1;

												}

												else

												{

																x	=	x2;

												}

												if	(y1	<	y2)

												{

																y	=	y1;

												}

												else

												{

																y	=	y2;

												}

												margin	=	new	Thickness(x,	y,	0,	0);

												oval.Margin	=	margin;

												oval.HorizontalAlignment	=	HorizontalAlignment.Left;

												oval.VerticalAlignment	=	VerticalAlignment.Top;

												oval.Stroke	=	System.Windows.Media.Brushes.LimeGreen;

												oval.Width	=	Math.Abs(x2	-	x1);

												oval.Height	=	Math.Abs(y2	-	y1);

												Canvas.SetLeft(oval,	x);

												Canvas.SetTop(oval,	y);

												oval.StrokeThickness	=	2;

												grid.Children.Add(oval);

								}

				}

				public	class	SimpleRectangle	:	IShape

				{

								double	x1,	y1,	x2,	y2;

								public	SimpleRectangle(double	x1,	double	y1,	double	x2,	

																double	y2)

								{

												this.x1	=	x1;

												this.y1	=	y1;

												this.x2	=	x2;

												this.y2	=	y2;

								}

								public	void	Draw(Grid	grid)

								{

												double	x,	y;

												Rectangle	rect	=	new	Rectangle();

												if	(x1	<	x2)

												{

																x	=	x1;

												}

												else

												{

																x	=	x2;

												}

												if	(y1	<	y2)

												{

																y	=	y1;

												}

												else

												{

																y	=	y2;

												}

												Thickness	margin	=	new	Thickness(x,	y,	0,	0);

												rect.Margin	=	margin;

												rect.HorizontalAlignment	=	HorizontalAlignment.Left;

												rect.VerticalAlignment	=	VerticalAlignment.Top;

												rect.Stroke	=	System.Windows.Media.Brushes.Red;

												rect.Width	=	Math.Abs(x2	-	x1);

												rect.Height	=	Math.Abs(y2	-	y1);

												Canvas.SetLeft(rect,	x);

												Canvas.SetTop(rect,	y);

												rect.StrokeThickness	=	2;

												grid.Children.Add(rect);

								}

				}

}

The	MainWindow	class,	a	subclass	of	System.Windows.Window,	employs	a	Grid	 that
contains	three	RadioButton	controls	for	the	user	to	select	a	shape	to	draw.	MainWindow
also	 has	 several	 class	 variables.	 The	 first	 are	 two	 System.Windows.Points,	 startPoint
and	 endPoint.	 startPoint	 indicates	 the	 mouse	 press	 coordinate	 on	 the	 drawing	 area.
endPoint	denotes	the	mouse	release	coordinate.	Then,	there	is	shapeType,	a	reference	to
ShapeType,	 an	 enum	 with	 three	 members	 (Line,	 Oval,	 and	 Rectangle).	 shapeType
indicates	 the	 selected	 shape	 chosen	 by	 the	 user.	 Its	 value	 changes	 every	 time	 the	 user
clicks	a	different	radio	button.

Pay	special	attention	to	the	canvas1_mouseUp	event	handler:

								private	void	canvas1_MouseUp(object	sender,	

																MouseButtonEventArgs	e)

								{

												endPoint	=	e.GetPosition(this);

												IShape	shape	=	null;

												if	(shapeType	==	ShapeType.Line)

												{

																shape	=	new	SimpleLine(startPoint.X,	startPoint.Y,	

																								endPoint.X,	endPoint.Y);

												}

												else	if	(shapeType	==	ShapeType.Oval)

												{

																shape	=	new	SimpleOval(startPoint.X,	startPoint.Y,	

																								endPoint.X,	endPoint.Y);

												}

												else	if	(shapeType	==	ShapeType.Rectangle)

												{

																shape	=	new	SimpleRectangle(startPoint.X,	

																								startPoint.Y,	endPoint.X,	endPoint.Y);

												}

												if	(shape	!=	null)

												{

																Grid	grid	=	(Grid)	this.FindName("buttonGrid");

																shape.Draw(grid);

												}

								}

This	is	where	polymorphism	is	taking	place.	First,	the	event	handler	obtains	the	end	point,
the	point	on	which	the	user	released	the	mouse.	Then,	it	declares	a	shape	variable	of	type
IShape.	The	object	assigned	 to	shape	depends	on	 the	value	of	shapeType.	 In	 this	case,
you	see	 that	what	object	 to	create	was	not	known	at	 the	 time	 the	class	was	written.	Nor
was	it	known	at	compile-time.

Finally,	the	event	handler	calls	the	Draw	method	on	shape	to	give	the	object	a	chance
to	draw	itself	on	the	grid.

Summary
WPF	is	a	.NET	technology	for	developing	desktop	applications.	In	this	chapter	you	have
learned	the	two	main	classes	in	WPF,	Application	and	Window,	as	well	as	used	several
controls.	You’ve	also	learned	that	you	can	write	WPF	applications	by	writing	code	or	by
using	XAML	and	code.

Chapter	19

Multithreading
One	of	the	most	appealing	features	in	C#	is	the	support	for	easy	thread	programming.	Two
decades	ago,	 threads	were	 the	domain	of	programming	experts	only.	With	C#	and	other
modern	 programming	 languages,	 even	 beginners	 can	 now	 write	 multithreaded
applications.

This	chapter	explains	what	threads	are	and	why	they	are	important.	It	also	talks	about
related	topics	such	as	synchronization	and	the	visibility	problem.

Introduction	to	Threads
A	thread	is	a	basic	processing	unit	to	which	an	operating	system	allocates	processor	time.
A	 thread	 is	 sometimes	called	a	 lightweight	process	or	an	execution	context.	By	 running
multiple	threads	concurrently,	you	can	perform	two	or	more	tasks	at	the	same	time	or	give
the	user	the	illusion	that	multiple	tasks	are	being	executed	concurrently.

With	a	computer	having	multiple	processors	or	one	processor	with	multicores,	running
multiple	 threads	at	 the	same	time	is	not	hard	 to	achieve	as	different	 threads	can	execute
concurrently	in	different	cores	or	processors.	In	a	single-core	processor,	which	is	a	rarity
today,	processing	time	is	sliced	and	each	thread	is	given	a	portion	of	it,	giving	the	user	the
impression	 that	 several	 calculations	 are	 executing	 at	 the	 same	 time.	 Time-slicing	 also
occurs	in	a	multicore	processor	when	the	number	of	threads	exceeds	the	number	of	cores
and	 in	 a	 multiprocessor	 computer	 when	 the	 number	 of	 threads	 exceeds	 the	 number	 of
processors.

A	 program	 that	 has	 multiple	 threads	 is	 referred	 to	 as	 a	 multithreaded	 application.
Multithreaded	programming	or	multithreading	is	often	used	in	computer	games,	but	is	not
limited	to	this	type	of	application.	Multithreading	is	also	used	to	complete	tasks	faster	and
improve	 user	 interface	 responsiveness.	 For	 example,	 with	 only	 one	 single	 thread
executing,	an	application	may	seem	to	be	‘hanging’	when	writing	a	large	file	to	the	hard
disk,	 with	 the	 mouse	 cursor	 unable	 to	 move	 and	 buttons	 refusing	 to	 be	 clicked.	 By
dedicating	a	thread	to	save	a	file	and	another	to	receive	user	input,	your	application	can	be
more	responsive.

Threads	do	 consume	 resources,	 however,	 so	you	 should	not	 create	more	 threads	 than
necessary.	In	addition,	keeping	track	of	many	threads	is	a	complex	programming	task.

Creating	a	Thread
Every	 C#	 program	 has	 at	 least	 one	 thread,	 the	 thread	 that	 executes	 the	 program.	 It	 is
created	by	the	system	when	you	invoke	the	static	Main	method	of	your	C#	program.	To
use	additional	threads,	you	have	to	create	them	yourself.

A	 thread	 is	 represented	 by	 the	 System.Threading.Thread	 class.	 You	 can	 create	 a
Thread	by	calling	one	of	its	constructors	that	takes	a	ThreadStart	delegate:

public	Thread(ThreadStart	threadStart)

The	 ThreadStart	 delegate	 type	 represents	 a	 method	 to	 be	 executed	 in	 a	 thread.	 Its
signature	is	as	follows.

public	delegate	void	ThreadStart()

To	create	a	Thread,	you	can	either	pass	a	method	to	a	ThreadStart	instance	and	pass	it	to
the	Thread	class’s	constructor	or	pass	the	method	directly	to	Thread.

Thread	t1	=	new	Thread(new	ThreadStart(myMethod));

Thread	t2	=	new	Thread(myMethod);

To	start	a	Thread,	call	its	Start	method.	A	Thread	that	has	finished	executing	its	method
will	die	naturally.	You	do	not	have	to	do	anything.

Table	 19.1	 shows	 some	 of	 the	methods	 defined	 in	 the	Thread	 class	 and	 Table	 19.2
presents	some	of	its	properties.

Method Description

Start Starts	the	thread.

Sleep Pauses	for	a	given	number	of	milliseconds.

Abort Stops	a	thread	when	it	reaches	a	safe	point.

Join Blocks	until	the	thread	on	which	this	method	is	called	terminates.

Table	19.1:	The	Thread	class’s	more	important	methods

Note
a	safe	point	is	a	point	in	the	code	where	it	is	safe	to	do	garbage	collection.

Property Description

IsAlive Indicates	whether	or	not	the	thread	is	active.

IsBackground

Indicates	whether	this	is	a	background	or	foreground	thread.

Name The	name	of	the	thread.

Priority

The	thread’s	priority.	Its	value	is	one	of	the	members	of	the
ThreadPriority	enumeration	(AboveNormal,	BelowNormal,
Highest,	Lowest,	Normal).	The	default	value	is	Normal.	This
property	is	important	for	when	two	or	more	threads	are	vying	for
limited	processing	time.	The	thread	with	the	highest	priority	will	be
executed	first.

ThreadState

The	state	of	the	thread.	Its	value	is	one	of	the	members	of	the
ThreadState	enumeration	(Aborted,	AbortRequested,
Background,	Running,	Stopped,	StopRequested,	Suspended,
SuspendRequested,	Unstarted	and	WaitSleepJoin).

CurrentThread The	current	running	thread.

Table	19.2:	The	Thread	class’s	properties

Listings	19.1	 and	19.2	 show	 two	classes	 that	make	up	 a	multithreaded	 application.	The
Count	method	in	the	Counter	class	in	Listing	19.1	represents	a	task	that	prints	numbers	0
to	2.

Listing	19.1:	The	Counter	class

using	System;

using	System.Threading;

namespace	Multithreading

{

				class	Counter

				{

								public	void	Count()

								{

												for	(int	i	=	0;	i	<	3;	i++)

												{

																Console.WriteLine(Thread.CurrentThread.Name	+	"	:	"	+	i);

																Thread.Sleep(50);

												}

								}

				}

}

Listing	19.2	shows	a	program	that	creates	two	Threads	and	pass	the	Count	method	as	the
task.

Listing	19.2:	Using	Count	in	different	threads

using	System;

using	System.Threading;

namespace	Multithreading

{

				class	Program

				{

								static	void	Main(string[]	args)

								{

												Counter	counter	=	new	Counter();

												Thread	t1	=	new	Thread(counter.Count);

												t1.Name	=	"Thread	1";

												Thread	t2	=	new	Thread(new	ThreadStart(counter.Count));

												t2.Name	=	"Thread	2";

												t1.Start();

												t2.Start();

								}

				}

}

If	you	run	this	small	program,	you	will	see	these	messages	printed	on	the	console.

Thread	1	:	0

Thread	2	:	0

Thread	1	:	1

Thread	2	:	1

Thread	1	:	2

Thread	2	:	2

The	result	shows	that	the	two	threads	ran	concurrently.

Using	the	Join	Method
When	 you	 call	 the	Start	method	 on	 a	Thread	 to	 run	 the	 task	 given	 to	 the	 thread,	 the
method	returns	right	away,	even	before	the	task	is	complete.	The	main	thread,	from	which
you	run	the	additional	thread,	will	then	resume	the	program	by	executing	the	lines	of	code
right	below	the	point	where	the	Start	method	was	called.

To	illustrate	this,	consider	the	code	in	Listings	19.3	and	19.4.	The	class	in	Listing	19.3
simply	sleeps	for	100	milliseconds	and	then	prints	a	string.

Listing	19.3:	The	JoinDemo	class

using	System;

using	System.Threading;

namespace	Multithreading

{

				class	JoinDemo

				{

								public	void	Print()

								{

												Thread.Sleep(100);

												Console.WriteLine("Printing…	");

								}

				}

}

Listing	19.4	shows	a	program	that	creates	a	Thread	and	calls	its	Start	method.

Listing	19.4:	Starting	a	thread	without	Join

using	System;

using	System.Threading;

namespace	Multithreading

{

				class	Program

				{

								static	void	Main(string[]	args)

								{

												Thread	t3	=	new	Thread(new	JoinDemo().Print);

												t3.Start();

												Console.WriteLine("Finished.");

								}

				}

}

Here	is	what	you	will	see	on	the	console	when	you	run	the	program:

Finished.

Printing…

“Finished.”	is	printed	before	“Printing…”	because	the	main	thread	does	not	wait	until	the

Thread	 is	 finished	before	executing	 the	code	below	the	point	 the	 thread’s	Start	method
was	invoked.

Now,	if	you	call	Join	after	Start	like	so:

Thread	t3	=	new	Thread(new	JoinDemo().Print);

t3.Start();

t3.Join();

You	will	see	this	on	the	console,	instead:

Printing…

Finished.

The	Join	method	blocks	until	the	Thread	completes.

Passing	A	Lambda	Expression	to	A	Thread
The	Thread	class’s	constructors	expect	a	method	or	a	delegate	instance.	As	such,	you	can
also	pass	an	anonymous	method	or	a	lambda	expression.

Listing	19.5	shows	a	rewrite	of	the	code	in	Listing	19.1,	but	with	a	lambda	expression.

Listing	19.5:	Passing	a	lambda	expression	to	a	thread

Thread	t4	=	new	Thread(()	=>

				{

								for	(int	i	=	0;	i	<	3;	i++)

								{

												Console.WriteLine(Thread.CurrentThread.Name	+	"	:	"	+	i);

												Thread.Sleep(50);

								}

				});

t4.Name	=	"Thread	4";

t4.Start();

Foreground	and	Background	Threads
The	 Common	 Language	 Runtime	 differentiates	 between	 foreground	 and	 background
threads.	 Foreground	 threads	 keep	 the	 application	 alive,	whereas	 background	 threads	 do
not.	 What	 this	 means	 is,	 if	 you	 start	 a	 foreground	 thread	 from	 the	 main	 thread,	 the
application	will	not	exit	even	after	the	main	thread	has	finished	executing,	as	long	as	the
foreground	 thread	 is	 alive.	 On	 the	 other	 hand,	 a	 background	 thread	 will	 be	 abruptly
terminated	when	the	main	thread	completes	and	there	is	no	foreground	thread	that	is	still
alive.

By	 default,	 the	 thread	 you	 create	 by	 calling	 one	 of	 Thread’s	 constructors	 is	 a
foreground	thread.	To	make	is	a	background	thread,	set	its	IsBackground	property	to	true:

Thread	thread	=	new	Thread(...);

thread.IsBackgroudn	=	true;

thread.Start();

Synchronization
When	two	or	more	threads	have	access	to	a	shared	writable	resource	or	variable,	you	run
the	risk	of	data	corruption.	This	is	because	most	operations	are	not	atomic.	By	definition,
an	atomic	operation	is	a	set	of	operations	that	can	be	combined	to	appear	to	the	rest	of	the
system	as	a	single	operation.

An	event	whereby	two	non-atomic	operations,	running	in	different	threads	but	acting	on
the	 same	data,	 interleave	 is	 called	 thread	 interference.	Thread	 interference	can	 lead	 to	a
race	condition.	It	is	one	in	which	multiple	threads	are	reading	or	writing	some	shared	data
simultaneously	and	the	result	becomes	unpredictable.	Race	conditions	can	lead	to	subtle	or
severe	bugs	that	are	hard	to	find.	By	contrast,	 thread-safe	code	functions	correctly	when
accessed	by	multiple	threads.

Guaranteeing	 thread	 safety	 is	 not	 easy,	 because	 even	 a	 trivial	 instruction	 like
incrementing	an	int	is	not	atomic:

b++;

This	is	because	b++	requires	multiple	CPU	instructions:

?	Load	the	value	in	the	memory	location	referenced	by	b	to	a	register.
?	Increment	the	register.
?	Copy	the	new	value	in	the	register	to	the	original	memory	location.

Let’s	 say	 the	 current	 value	 of	b	 is	 0.	 Calling	b++	 twice	 should	 change	 its	 value	 to	 2.
However,	 this	 is	 not	 always	 the	 case.	 Imagine	 two	 threads	 (Thread	 1	 and	 Thread	 2)
invoking	b++	 at	 almost	 the	 same	 time.	 Let’s	 say	 Thread	 1	 starts	 first	 and	 loads	 0	 to	 a
register	and	increments	the	register	to	1.	However,	before	Thread	1	has	the	chance	to	store
the	value	back	to	memory,	Thread	2	loads	the	value	of	b	(still	0)	to	another	register	and
increments	it.	Thread	1	then	stores	the	value	of	its	register	to	memory,	but	this	is	followed
by	Thread	2	storing	the	value	of	its	register	to	the	same	memory	location.	End	result:	The
value	of	b	 is	 1,	 even	 after	 being	 incremented	 twice.	You	 officially	 have	 a	 bug	 in	 your
program.

To	 prevent	 this	 from	happening,	 you	 should	 always	 synchronize	 access	 to	 a	writable
variable	by	multiple	 threads.	This	means,	you	restrict	access	 to	 it	 to	a	single	 thread	at	a
time.	The	mechanism	for	this	is	to	create	a	lock	that	protects	a	code	segment.	The	lock	can
be	any	object	(including	an	instance	of	System.Object).	Any	thread	that	wants	to	invoke
the	code	segment	must	first	obtain	the	lock.	Since	only	one	thread	can	obtain	the	lock	at	a
time,	the	second	thread	trying	to	access	the	same	code	segment	before	the	first	 thread	is
finished	will	block	(wait)	until	the	first	thread	releases	the	lock.

You	synchronize	a	code	section	by	using	the	lock	keyword.	Consider	this	code	snippet:

private	static	object	myLock	=	new	object();

public	void	IncrementB	()

{

				lock(myLock)

				{

								b++;

				}

}

Any	 thread	 that	 needs	 to	 increment	 b	 should	 call	 IncrementB	 instead.	 This	 method
obtains	a	 lock	and	keeps	 it	until	 the	following	code	block	is	finished.	Different	methods
will	not	be	able	to	enter	the	locked	section	until	the	first	thread	exits	the	code	block	and
releases	the	lock.

Monitor
The	 lock	 keyword	 can	 make	 a	 critical	 segment	 thread-safe.	 However,	 this	 can	 also	 be
achieved	 using	 the	 Enter	 and	 Exit	 methods	 of	 the	Monitor	 class.	 In	 fact,	 the	 lock
keyword	 is	syntactic	 sugar	 for	 these	 two	methods.	 In	programming	 languages,	 syntactic
sugar	is	syntax	to	make	something	easier	to	use	or	express.

The	following	code	snippet

lock(myLock)

{

				//	statements

}

is	converted	to	this	by	the	compiler.

Monitor.Enter(myLock);

try

{

				//	statements

}

finally	

{	

				Monitor.Exit(myLock);

}

The	Enter	method	 obtains	 a	 lock	 or	 blocks	 until	 it	 can	 get	 the	 lock.	 The	Exit	method
releases	the	lock.	Note	that	the	statements	that	need	to	be	thread-safe	are	placed	in	a	try
block	and	the	Exit	method	is	invoked	in	a	finally	block.	As	such,	if	one	of	the	statements
throws	an	exception,	the	lock	will	still	be	released.

Interlocked
You	 have	 learned	 that	 incrementing	 (and	 decrementing)	 a	 variable	 is	 not	 an	 atomic
operation.	 Therefore,	 this	 operation	 must	 be	 synchronized	 if	 it	 is	 ever	 invoked	 from
multiple	 threads.	 To	 ease	 this	 tedious	 task,	 .NET	 Framework	 introduced	 the
System.Threading.Interlocked	 class	 that	 provides	 static	methods	 for	 incrementing	 and
decrementing	variables	in	a	thread-safely	manner.

Here	is	the	the	signature	of	Increment.

public	static	int	Increment(ref	int	location)

Therefore,	instead	of	writing

private	static	object	myLock	=	new	object();

public	void	IncrementB	()

{

				lock(myLock)

				{

								b++;

				}

}

You	can	use	Interlocked.

public	void	IncrementB	()

{

				Interlocked.Increment(ref	b);	

}

And,	you	don’t	even	need	a	lock!

The	Volatile	Keyword
If	a	field	is	to	be	modified	by	multiple	threads,	you	must	use	the	volatile	modifier	in	your
field	declaration.	The	volatile	modifier	ensures	that	the	most	up-to-date	value	is	present	in
the	field	at	all	times.

The	volatile	modifier	is	a	convenient	way	of	synchronizing	a	variable	without	using	a
lock.

A	Thread	Example	with	WPF
To	conclude	this	chapter,	let’s	take	a	look	at	a	WPF	application	that	features	multithreaded
programming.	This	application	shows	two	threads	updating	the	widths	of	lines	until	they
are	stopped.

Listing	19.6	shows	the	application	layout	in	an	XAML	file.	The	application	consists	of
a	canvas	 to	play	animation	and	 two	buttons.	The	first	button,	 the	Start	button,	starts	 the
animation.	The	second	button,	the	Stop	button,	stops	it.

Listing	19.6:	The	XAML	file

<Window	x:Class="AnimationWithThreads.MainWindow"

								xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

								xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

								xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

								xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

								xmlns:local="clr-namespace:AnimationWithThreads"

								mc:Ignorable="d"

								Title="Animation	with	threads"	Height="232"	Width="600">

				<Grid>

								<Grid.RowDefinitions>

												<RowDefinition	Height="140"	/>

												<RowDefinition	Height="70"	/>

								</Grid.RowDefinitions>

								<Canvas	Height="180"	Width="600"	Grid.Column="0"	Grid.Row="0">

												<Line	Name="line1"

																X1="0"	Y1="40"

																X2="30"	Y2="40"

																Stroke="Red"

																StrokeThickness="40"	/>

												<Line	Name="line2"

																X1="0"	Y1="100"

																X2="30"	Y2="100"

																Stroke="Green"

																StrokeThickness="40"	/>

								</Canvas>

								<StackPanel	Grid.Column="0"	Grid.Row="1"	

																Orientation="Horizontal">

												<Button	Click="StartButton_Click"	Content="Start"	Width="60"	

																				Height="50"/>

												<Button	Click="StopButton_Click"	Content="Stop"	Width="60"	

																				Height="50"/>

								</StackPanel>

				</Grid>

</Window>

Note	that	the	Start	button’s	Click	event	is	bound	to	a	StartButton_Click	method	and	the
Stop	button’s	Click	event	is	handled	by	a	StopButton_Click	method.	Listing	19.7	shows
the	program	that	include	the	two	event	handlers.

Listing	19.7:	The	MainWindow.xaml.cs	file

using	System;

using	System.Threading;

using	System.Windows;

namespace	AnimationWithThreads

{

				///	<summary>

				///	Interaction	logic	for	MainWindow.xaml

				///	</summary>

				public	partial	class	MainWindow	:	Window

				{

								private	volatile	bool	stopped	=	false;

								public	MainWindow()

								{

												InitializeComponent();

								}

								private	void	StartButton_Click(object	sender,	RoutedEventArgs	e)

								{

												Thread	thread1	=	new	Thread(()	=>

												{

																int	width	=	0;

																stopped	=	false;

																while(!stopped)

																{

																				width	+=	10;

																				this.Dispatcher.Invoke((Action)(()	=>

																				{

																								line1.X2	=	width;

																				}));

																				if	(width	==	600)

																				{

																								width	=	0;

																				}

																				Thread.Sleep(100);

																}

												});

												thread1.Start();

												Thread	thread2	=	new	Thread(()	=>

												{

																int	width	=	0;

																stopped	=	false;

																while	(!stopped)

																{

																				width	+=	10;

																				this.Dispatcher.Invoke((Action)(()	=>

																				{

																								line2.X2	=	width;

																				}));

																				if	(width	==	600)

																				{

																								width	=	0;

																				}

																				Thread.Sleep(50);

																}

												});

												thread2.Start();

								}

								private	void	StopButton_Click(object	sender,	RoutedEventArgs	e)

								{

												stopped	=	true;

								}

				}

}

The	StartButton_Click	method	creates	two	threads	and	start	them.	Each	of	the	threads	is
given	a	loop	that	keeps	changing	the	lines’	widths	and	checking	a	stopped	variable,	which
is	declared	as	volatile	 to	make	sure	any	changes	to	it	are	visible	to	the	two	threads.	The
StopButton_Click	method	changes	stopped	to	true	that	in	effect	stops	the	threads.

Figure	19.1	shows	the	application.

Figure	19.1:	Using	two	threads

Summary
Multithreaded	 programming	 is	 easy	 with	 C#,	 thanks	 to	 .NET	 Framework	 support	 for
threads.	To	 create	 a	 thread,	 you	 instantiate	 the	Thread	 class	 passing	 a	 delegate.	 In	 this
chapter	you	have	learned	how	to	write	programs	that	manipulate	threads	and	synchronize
threads.	You	have	also	learned	how	to	write	thread-safe	code.

Appendix	A

Visual	Studio	Community	2015
Visual	 Studio	 2015	 is	 the	 latest	 Integrated	 Development	 Environment	 (IDE)	 from
Microsoft	for	building	web,	mobile	and	desktop	applications.	One	of	the	versions	of	this
software	is	Visual	Studio	Community	2015.	The	community	edition	is	free	forever	as	long
as	you	register.

This	appendix	provides	a	quick	tutorial	to	using	Visual	Studio	Community	2015.

Hardware	and	Software	Requirements
To	 run	 Visual	 Studio	 Community	 2015,	 you	 need	 a	 computer	 with	 the	 following
specification.

?	1.6	GHz	or	faster	processor
?	1	GB	of	RAM
?	4	GB	of	available	hard	disk	space

Visual	Studio	Community	2015	runs	on	these	operating	systems.

?	Windows	10
?	Windows	8.1
?	Windows	7

Download	and	Installation
You	 can	 download	 the	 installer	 for	 Visual	 Studio	 Community	 2015	 free	 from	 this
Microsoft	website:

https://www.visualstudio.com

To	install	the	software,	follow	these	steps.

1.	Double	click	the	installer	you	just	downloaded.	Make	sure	you	are	connected	to	the
Internet	 because	 there	 are	 other	 files	 that	 need	 to	 be	 downloaded.	 You’ll	 see	 the
dialog	like	the	one	in	Figure	A.1.	This	dialog	is	the	first	of	a	series	of	windows	in	the
Setup	wizard.

2.	Agree	to	the	license	terms	and	conditions	by	clicking	the	“I	agree	…”	checkbox	and
you’ll	see	an	Install	button	at	the	bottom.

3.	Click	the	Install	button.

4.	Windows	will	ask	if	you	want	to	let	the	Setup	program	run.	Click	OK.

5.	 Now,	 sit	 tight	 and	 wait	 as	 the	 wizard	 downloads	 the	 necessary	 programs	 and
preparing	 your	 system.	 It	 will	 take	 a	 while	 but	 don’t	 go	 away.	 At	 one	 stage,	 the
wizard	will	ask	you	to	restart	your	computer.	When	that	happens,	restart	it.

6.	When	your	computer	is	back	up,	the	same	wizard	will	resume	its	work.	Keep	waiting.

7.	Finally,when	it’s	really	done,	you’ll	see	the	dialog	like	the	one	in	Figure	A.2.

8.	Click	LAUNCH.

Figure	A.1:	The	first	installation	dialog	for	Visual	Studio	Community	2015

Figure	A.2:	The	last	installation	dialog	for	Visual	Studio	Community	2015

You’ll	 be	 able	 to	 use	 this	 product	 for	 30	 days,	 after	 which	 you’ll	 need	 to	 register	 to
continue	using	it.	Don’t	worry,	registration	is	free.

Figure	A.3:	Starting	Visual	Studio	Community	2015

Congratulations.	You’re	now	ready	to	program.

The	Visual	Studio	2015	application	icon	has	been	moved	outside	of	the	Visual	Studio
2015	 folder.	 If	 you’re	 running	Windows	7,	 you	 can	 find	 the	 application	 right	 under	 the
“All	Programs”	 list.	 If	you	are	 running	Windows	8,	8.1	or	10,	you	can	find	 it	under	 the
‘Visual	Studio’	grouping.	If	you	are	still	unable	to	find	it,	use	Windows	search	(press	the
Windows	key,	then	type	“Visual	Studio	2015”).

In	Windows	7	the	application	icon	is	no	longer	located	in	the	Visual	Studio	2015	folder.

Figure	A.4:	Where	to	find	the	application	icon	in	Windows	7

Registering	Visual	Studio	Community	2015
Visual	 Studio	Community	 2015	 is	 free.	However,	Microsoft	wants	 you	 to	 register	 your
copy	 with	 them	 if	 you	 are	 planning	 to	 use	 it	 for	 more	 than	 thirty	 days.	 Don’t	 worry,
registration	is	free.

You	know	it	 is	 time	to	register	when	you	get	a	warning	dialog	when	you	open	Visual
Studio	Community	2015.	You	will	be	asked	 to	 sign	 in	with	a	Microsoft	account.	 If	you
don’t	have	one,	you	will	need	to	create	one.

Creating	a	Project
Visual	Studio	Community	2015	organizes	resources	in	projects.	Therefore,	before	you	can
create	a	C#	class,	you	must	first	create	a	project.	To	do	so,	follow	these	steps.

1.	Click	File	>	New	>	Project.	The	New	Project	dialog	will	be	displayed	(See	Figure
A.5).

Figure	A.5:	The	New	Project	dialog

2.	Select	Visual	C#	from	under	Installed	>	Templates,	and	then	click	on	Windows.

3.	Select	an	application	type	from	the	center	pane.	For	this	book,	you	will	create	either	a
Console	application	or	a	WPF	application.

4.	Enter	a	project	name	in	the	Name	box	and	browse	to	the	directory	where	you	want	to
save	the	project’s	resources.	Afterward,	click	OK.

Visual	Studio	Community	2015	will	 create	 a	new	project	plus	 the	 first	 class	 in	 the
project.	This	is	depicted	in	Figure	A.6.

Figure	A.6:	A	C#	project

Creating	a	Class
To	 create	 a	 class	 other	 than	 that	 created	 by	 default	 by	Visual	 Studio,	 right-click	 on	 the
project	name	 in	 the	Solution	Explorer	widget	and	click	Add	>	Class.	 In	Figure	A.6	 the
widget	is	located	on	the	left.	If	you	do	not	see	the	Solution	Explorer	widget,	click	View	>
Solution	Explorer.

In	 the	 “Add	New	 Item”	 dialog	 like	 the	 one	 in	 Figure	A.7,	 enter	 a	 class	 name	 in	 the
Name	 box	 and	 click	Add.	 Alternatively,	 you	 can	 open	 the	 Add	 New	 Item	 dialog	 by
pressing	the	shortcut	Shift+Alt+C.

Figure	A.7:	The	“Add	New	Item”	Dialog

Running	a	Project
To	run	a	project,	press	F5.	Visual	Studio	will	compile	the	project	and	run	the	class	with	a
Main	method.	You	can	only	have	one	Main	method	in	a	project.

Visual	Studio	will	catch	any	compile	or	build	errors	before	it	runs	a	project.

Working	with	Databases
Visual	Studio	is	not	just	a	compiler,	it	ships	with	a	lot	of	useful	tools	for	developers.	One
of	 the	 tools	 allows	 you	 to	 connect	 to	 a	 relational	 database	 or	 create	 a	 new	 one	 and
manipulate	its	data.	You	can	create	tables,	update	the	data	in	the	tables,	run	SQL	queries
and	so	on.

Visual	Studio	also	comes	with	LocalDB,	a	minified	version	of	SQL	Server	Express	built
for	developers.	LocalDB	requires	no	maintenance	and	can	be	started	by	another	program.
LocalDB	is	suitable	for	development.

Creating	A	Database
You	can	easily	connect	 to	an	existing	database	or	create	a	new	one.	The	supported	data
sources	are:

Microsoft	Access	Database	File
Microsoft	ODBC	Data	Source
Microsoft	SQL	Server
Microsoft	SQL	Server	Database	File
Oracle	Database

To	create	a	database,	follow	these	steps:

1.	Click	Tools	>	Connect	to	Database.	You	will	see	the	dialog	in	Figure	A.8.

Figure	A.8:	Adding	a	data	connection

2.	 Select	 the	 database	 type.	 For	 this	 example,	 select	Microsoft	 SQL	Server	Database
File.

3.	Click	 the	Browser	button	and	navigate	 to	a	 folder	 that	will	be	 the	 location	of	your
database	file.

4.	Type	MyDB.mdf	 as	 a	 file	 name	 and	 click	Open.	When	 you	 are	 back	 to	 the	Add
Connection	 dialog,	 keep	 the	 authentication	 method	 (Windows	 authentication)	 and
click	the	OK	button.

5.	Visual	Studio	will	ask	if	you	would	like	it	to	create	a	new	database	file.	Click	Yes.

6.	 The	 Add	 Connection	 dialog	 will	 close.	 Now	 click	 SQL	 Server	Object	 Explorer
from	 the	View	menu	or	 click	 the	 tab	on	 the	 left	 edge	of	Visual	Studio.	Figure	A.9
shows	 the	 SQL	 Server	 Object	 Explorer	 window.	You	 should	 see	 a	 (localdb)	 entry

under	SQL	Server.

7.	 Expand	 the	 (localdb)	 node	 and	 you	 should	 see	 MyDB	 (your	 newly	 created	 SQL
Server	database	file)	under	the	Databases	node.

Figure	A.9:	SQL	Server	Object	Explorer

Creating	A	Table
To	create	a	table	in	a	database,	follow	these	steps.

1.	 If	not	already	open,	open	SQL	Server	Object	Explorer	and	expand	 the	SQL	Server
node	 until	 you	 see	 your	 database	 in	which	 you	want	 to	 create	 a	 table	 (See	 Figure
A.9).

2.	Right	click	on	the	Tables	node	under	the	database	node	(e.g.	MyDB),	and	select	Add
New	Table	 from	 the	popup	menu.	The	 table	designer	 like	 that	 in	Figure	A.10	will
open.

Figure	A.10:	The	table	designer

3.	Add	fields	with	the	correct	data	types.	As	you	add	more	fields,	the	T-SQL	window	at
the	bottom	will	update	the	script	to	include	the	fields.	When	you	are	finished	adding
fields,	 change	 the	 table	 name	 from	CREATE	TABLE	 [dbo].[Table]	 to	CREATE
TABLE	[dbo].tableName,	replacing	tableName	with	the	actual	name	of	your	table.

4.	Click	 the	Update	 button.	 In	 the	 dialog	 that	 appears,	 click	Update	Database.	 The
table	 should	be	 added	 to	 the	Tables	node	under	your	database,	 as	 shown	 in	Figure
A.11.

Figure	A.11:	A	new	table	(Employee)

Editing	Data	in	A	Table
To	add,	delete	or	update	data	in	a	table,	right-click	on	the	table	name	in	the	SQL	Server
Object	Explorer	window	and	select	View	Data.

Figure	 A.12	 shows	 the	 data	 view	 of	 the	 table.	 Feel	 free	 to	 add,	 delete	 and	 edit	 the
records.

Figure	A.12:	The	data	view

Appendix	B

SQL	Server	2014	Express
Microsoft	SQL	Server	is	one	of	the	most	popular	relational	database	servers	today	and	this
appendix	 explains	 how	 to	 download	 and	 install	 the	 free	 version	 of	 this	 widely	 used
software,	SQL	Server	2014	Express.

Downloading	SQL	Server	2014	Express
The	SQL	Server	products	can	be	downloaded	from	this	site:

http://www.microsoft.com/en-us/server-cloud/products/sql-server-editions/sql-server-express.aspx

When	 you	 click	 the	 Download	 link,	 you	 will	 be	 asked	 to	 sign	 in	 with	 your	Microsoft
account.	If	you	do	not	have	one,	just	sign	up.	It	is	free.

Once	you	have	successfully	signed	in,	you	will	be	redirected	to	the	page	for	choosing	a
SQL	Server	product.	Select	SQL	Server	2014	Express	 (32	bit	or	64	bit),	 your	preferred
language	and	your	country	of	residence.	Then,	save	the	installation	.exe	file	in	your	hard
disk.

An	 alternative	 to	 SQL	 Server	 2014	 Express	 would	 be	 SQL	 Server	 2014	 LocalDB
Express	(32	bit	or	64	bit),	which	is	a	mini	version	of	SQL	Server	2014	Express	dedicated
for	 programmers.	 However,	 LocalDB	 is	 already	 included	 with	 Visual	 Studio.	 See
Appendix	A	for	information	on	how	to	work	with	LocalDB	in	Visual	Studio.

Note
At	the	time	of	writing,	SQL	Server	2016	Express	is	on	its	way	to	be	released.	If	 it	 is
already	out	by	the	time	you	read	this	book,	choose	the	2016	version	instead.

Installing	SQL	Server	2014	Express
To	install	SQL	Server	2014	Express,	follow	these	steps.

1.	Double-click	on	the	installation	file	you	downloaded.	A	small	dialog	will	ask	you	to
confirm	the	location	for	the	extracted	files.	Select	a	directory	or	agree	to	the	default.
You	will	then	see	a	dialog	that	looks	like	Figure	B.1.

Figure	B.1:	Starting	the	installation	process

2.	On	the	right	window,	click	New	SQL	Server	stand-alone	installation.

3.	In	the	next	window,	check	the	I	accept	the	license	terms	checkbox.

4.	Click	Next.	The	Feature	Selection	window,	shown	in	Figure	B.2,	will	open.

Figure	B.2:	The	Feature	Selection	window

5.	Accept	the	default	and	click	Next.

6.	The	next	window	is	the	Instance	Configuration	window,	as	shown	in	Figure	B.3.

Figure	B.3:	The	Instance	Configuration	window

7.	 Again,	 accept	 the	 default	 and	 click	 Next.	 You	 will	 see	 the	 Server	 Configuration
window	like	the	one	in	Figure	B.4.

Figure	B.4:	The	Server	Configuration	window

8.	Click	Next	and	you’ll	see	the	Database	Engine	Configuration	window	like	the	one	in
Figure	B.5.

Figure	B.5:	The	Database	Engine	Configuration	window

9.	 Click	Next	 again.	 The	 next	 window	 will	 show	 that	 installation	 is	 complete.	 (See
Figure	B.6.)

Figure	B.6:	Installation	complete

10.	Click	Close.	You	may	need	to	restart	your	computer.

	Introduction
	Overview of .NET Framework
	An Overview of Object-Oriented Programming
	Using Visual Studio
	Downloading and Installing .NET Framework
	About This Book
	Downloading Program Examples

	Chapter 1: Your First Taste of C#
	Your First C# Program
	C# Code Conventions
	Summary

	Chapter 2: Language Fundamentals
	ASCII and Unicode
	Intrinsic Types and the Common Type System
	Variables
	Constants
	Literals
	Primitive Conversions
	Operators
	Comments
	Summary

	Chapter 3: Statements
	An Overview of C# Statements
	The if Statement
	The while Statement
	The do-while Statement
	The for Statement
	The break Statement
	The continue Statement
	The switch Statement
	Summary

	Chapter 4: Objects and Classes
	What Is a C# Object?
	C# Classes
	Creating Objects
	Nullity Checking
	Objects in Memory
	C# Namespaces
	Encapsulation and Class Access Control
	The this Keyword
	Using Other Classes
	Static Members
	Variable Scope
	Method Overloading
	Summary

	Chapter 5: Core Classes
	System.Object
	System.String
	System.Text.StringBuilder
	Arrays
	System.Console
	Summary

	Chapter 6: Inheritance
	An Overview of Inheritance
	Accessibility
	Method Overriding
	Calling the Base Class's Constructors
	Calling the Base Class's Hidden Members
	Type Casting
	Sealed Classes
	The is Keyword
	Summary

	Chapter 7: Structures
	An Overview of Structures
	.NET Structures
	Writing A Structure
	Nullable Types
	Summary

	Chapter 8: Error Handling
	Catching Exceptions
	try without catch and the using Statement
	The System.Exception Class
	Throwing an Exception from a Method
	Exception Filters
	Final Note on Exception Handling
	Summary

	Chapter 9: Numbers and Dates
	Number Parsing
	Number Formatting
	The System.Math Class
	Working with Dates and Times
	Summary

	Chapter 10: Interfaces and Abstract Classes
	The Concept of Interface
	The Interface, Technically Speaking
	Implementing System.IComparable
	Abstract Classes
	Summary

	Chapter 11: Polymorphism
	Defining Polymorphism
	Summary

	Chapter 12: Enumerations
	An Overview of Enum
	Enums in a Class
	Switching on enum
	Summary

	Chapter 13: Generics
	Why Generics?
	Introducing Generic Types
	Applying Restrictions
	Writing Generic Types
	Summary

	Chapter 14: Collections
	Overview
	The List Class
	The HashSet Class
	The Queue Class
	The Dictionary Class
	Summary

	Chapter 15: Input/Output
	File and Directory Handling and Manipulation
	Input/Output Streams
	Reading Text (Characters)
	Writing Text (Characters)
	Reading and Writing Binary Data
	Summary

	Chapter 16: Advanced Language Features
	Delegates
	Events
	Anonymous Methods
	Lambda Expressions
	Expression-Bodied Members
	Extension Methods
	Implicitly Typed Local Variables
	Anonymous Types
	The dynamic Type
	Summary

	Chapter 17: Data Access with LINQ
	Overview
	LINQ to Objects
	Standard Query Operators
	LINQ to SQL
	Querying A Database
	Updating A Table
	Inserting Rows
	Deleting Rows
	Summary

	Chapter 18: Windows Presentation Foundation
	Overview
	Application and Window
	WPF Controls
	Panels and Layout
	Event Handling
	XAML
	A Polymorphism Example with WPF
	A Drawing Application
	Summary

	Chapter 19: Multithreading
	Introduction to Threads
	Creating a Thread
	Using the Join Method
	Passing A Lambda Expression to A Thread
	Foreground and Background Threads
	Synchronization
	Monitor
	Interlocked
	The Volatile Keyword
	A Thread Example with WPF
	Summary

	Appendix A: Visual Studio Community 2015
	Hardware and Software Requirements
	Download and Installation
	Registering Visual Studio Community 2015
	Creating a Project
	Creating a Class
	Running a Project
	Working with Databases

	Appendix B: SQL Server 2014 Express
	Downloading SQL Server 2014 Express
	Installing SQL Server 2014 Express

