

Beginning	Java	Game	Development	with
LibGDX

Lee	Stemkoski

Beginning	Java	Game	Development	with	LibGDX

Copyright	©	2015	by	Lee	Stemkoski

This	work	is	subject	to	copyright.	All	rights	are	reserved	by	the	Publisher,	whether	the	whole	or	part	of	the
material	is	concerned,	specifically	the	rights	of	translation,	reprinting,	reuse	of	illustrations,	recitation,
broadcasting,	reproduction	on	microfilms	or	in	any	other	physical	way,	and	transmission	or	information	storage
and	retrieval,	electronic	adaptation,	computer	software,	or	by	similar	or	dissimilar	methodology	now	known	or
hereafter	developed.	Exempted	from	this	legal	reservation	are	brief	excerpts	in	connection	with	reviews	or
scholarly	analysis	or	material	supplied	specifically	for	the	purpose	of	being	entered	and	executed	on	a	computer
system,	for	exclusive	use	by	the	purchaser	of	the	work.	Duplication	of	this	publication	or	parts	thereof	is	permitted
only	under	the	provisions	of	the	Copyright	Law	of	the	Publisher’s	location,	in	its	current	version,	and	permission
for	use	must	always	be	obtained	from	Springer.	Permissions	for	use	may	be	obtained	through	RightsLink	at	the
Copyright	Clearance	Center.	Violations	are	liable	to	prosecution	under	the	respective	Copyright	Law.

ISBN-13	(pbk):	978-1-4842-1501-2

ISBN-13	(electronic):	978-1-4842-1500-5

Trademarked	names,	logos,	and	images	may	appear	in	this	book.	Rather	than	use	a	trademark	symbol	with	every
occurrence	of	a	trademarked	name,	logo,	or	image	we	use	the	names,	logos,	and	images	only	in	an	editorial
fashion	and	to	the	benefit	of	the	trademark	owner,	with	no	intention	of	infringement	of	the	trademark.

The	use	in	this	publication	of	trade	names,	trademarks,	service	marks,	and	similar	terms,	even	if	they	are	not
identified	as	such,	is	not	to	be	taken	as	an	expression	of	opinion	as	to	whether	or	not	they	are	subject	to	proprietary
rights.

While	the	advice	and	information	in	this	book	are	believed	to	be	true	and	accurate	at	the	date	of	publication,
neither	the	authors	nor	the	editors	nor	the	publisher	can	accept	any	legal	responsibility	for	any	errors	or	omissions
that	may	be	made.	The	publisher	makes	no	warranty,	express	or	implied,	with	respect	to	the	material	contained
herein.

Managing	Director:	Welmoed	Spahr

Lead	Editor:	Ben	Renow-Clarke

Technical	Reviewer:	Garry	Patchett

Editorial	Board:	Steve	Anglin,	Pramila	Balan,	Louise	Corrigan,	Jonathan	Gennick,	Robert	Hutchinson,
Celestin	Suresh	John,	Michelle	Lowman,	James	Markham,	Susan	McDermott,	Matthew	Moodie,
Jeffrey	Pepper,	Douglas	Pundick,	Ben	Renow-Clarke,	Gwenan	Spearing

Coordinating	Editor:	Mark	Powers

Copy	Editor:	Sharon	Wilkey

Compositor:	SPi	Global

Indexer:	SPi	Global

Artist:	SPi	Global

Distributed	to	the	book	trade	worldwide	by	Springer	Science+Business	Media	New	York,	233	Spring	Street,	6th
Floor,	New	York,	NY	10013.	Phone	1-800-SPRINGER,	fax	(201)	348-4505,	e-mail	orders-ny@springer-
sbm.com,	or	visit	www.springeronline.com.	Apress	Media,	LLC	is	a	California	LLC	and	the	sole	member
(owner)	is	Springer	Science	+	Business	Media	Finance	Inc	(SSBM	Finance	Inc).	SSBM	Finance	Inc	is	a	Delaware
corporation.

For	information	on	translations,	please	e-mail	rights@apress.com,	or	visit	www.apress.com.

Apress	and	friends	of	ED	books	may	be	purchased	in	bulk	for	academic,	corporate,	or	promotional	use.	eBook
versions	and	licenses	are	also	available	for	most	titles.	For	more	information,	reference	our	Special	Bulk	Sales–
eBook	Licensing	web	page	at	www.apress.com/bulk-sales.

Any	source	code	or	other	supplementary	materials	referenced	by	the	author	in	this	text	is	available	to	readers	at
www.apress.com/9781484215012.	For	detailed	information	about	how	to	locate	your	book’s	source	code,
go	to	www.apress.com/source-code/.	Readers	can	also	access	source	code	at	SpringerLink	in	the
Supplementary	Material	section	for	each	chapter.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com/9781484215012
http://www.apress.com/source-code/

Contents	at	a	Glance
About	the	Author

About	the	Technical	Reviewer

Acknowledgments

Introduction

	Chapter	1:	Getting	Started	with	Java	and	LibGDX

	Chapter	2:	The	LibGDX	Framework

	Chapter	3:	Extending	the	Framework

	Chapter	4:	Adding	Polish	to	Your	Game

	Chapter	5:	Alternative	Sources	of	User	Input

	Chapter	6:	Additional	Game	Case	Studies

	Chapter	7:	Integrating	Third-Party	Software

	Chapter	8:	Introduction	to	3D	Graphics

	Chapter	9:	The	Journey	Continues

	Appendix	A:	Review	of	Java	Fundamentals
Index

Contents
About	the	Author

About	the	Technical	Reviewer

Acknowledgments

Introduction

	Chapter	1:	Getting	Started	with	Java	and	LibGDX

Choosing	a	Development	Environment

Setting	Up	BlueJ
Downloading	and	Installing

Using	BlueJ

Setting	Up	LibGDX

Creating	a	“Hello,	World!”	Program	with	LibGDX

Advantages	to	Using	LibGDX

Summary

	Chapter	2:	The	LibGDX	Framework

Understanding	the	Life	Cycle	of	a	Game

Working	with	User	Input

Managing	the	Action
The	Sprite	Class

The	Actor	Class

Implementing	Visual	Effects
Value-Based	Animations

Image-Based	Animations

Introducing	User	Interfaces
Labels	and	Bitmap	Fonts

Layering	with	Stage	Objects

Cameras	and	Scrolling

Handling	Multiple	Screens

Summary

	Chapter	3:	Extending	the	Framework

Cheese,	Please!	Revisited
Discrete	Input

Abstract	Class	Design

Refactoring	the	Project

Balloon	Buster:	A	Mouse-Driven	Game
Balloons

Adding	Interactivity

Next	Steps

Starfish	Collector:	A	Game	with	Improved	Actor	Classes
The	BaseActor	Class

The	AnimatedActor	Class

The	PhysicsActor	Class

Creating	the	Game

Next	Steps

Summary

	Chapter	4:	Adding	Polish	to	Your	Game

Audio

Advanced	User-Interface	Design
Arranging	UI	Elements

Managing	Resources

Using	Customized	Bitmap	Fonts

Creating	Buttons

Setting	Up	the	Start	Screen

Creating	an	Overlay	Menu

Summary

	Chapter	5:	Alternative	Sources	of	User	Input

Gamepad	Controllers
Continuous	Input

Discrete	Input

Touch-Screen	Controls
Working	with	a	Touch	Pad

Redesigning	the	User	Interface

Summary

	Chapter	6:	Additional	Game	Case	Studies

Space	Rocks
The	Spaceship

Lasers

Rocks	and	Explosions

Next	Steps

Plane	Dodger
Infinite	Scrolling	Effects

Player	Plane

Stars	and	Sparkles

Enemy	Planes

Next	Steps

Rectangle	Destroyer
The	Paddle

The	Brick

The	Ball

The	Power-up

Setting	Up	the	Game

Next	Steps

52-Card	Pickup
Cards	and	Piles

Setting	Up	the	Game

Providing	Visual	Hints

Next	Steps

Summary

	Chapter	7:	Integrating	Third-Party	Software

Working	with	Particle	Systems	in	LibGDX
The	LibGDX	Particle	Editor

Rocket-Thruster	Effect

Explosion	Effect

The	ParticleActor	Class

Starscape:	An	Interactive	Visual	Demo

Using	Tiled	for	Level	Design
Creating	Tilemaps

Treasure	Quest:	An	Adventure-Style	Exploration	Game

Creating	Four-Directional	Character	Animations

Simulating	Advanced	Physics	with	Box2D

Physics	Primer

The	Box2DActor	Class

Jumping	Jack:	A	Physics-Based	Sandbox	Game

Integrating	Multiple	Components
Preliminary	Setup

Jumping	Jack	2:	Even	More	Coins

Summary

	Chapter	8:	Introduction	to	3D	Graphics

Exploring	3D	Concepts	and	Classes

Creating	a	Minimal	3D	Demo

Re-creating	the	Actor/Stage	Framework
The	BaseActor3D	Class

The	Stage3D	Class

Creating	an	Interactive	3D	Demo

Pirate	Cruiser:	Navigating	the	Sea	in	3D

Next	Steps

Summary

	Chapter	9:	The	Journey	Continues

Continuing	Your	Developing
Working	on	Projects

Obtaining	Art	Resources

Participating	in	Game	Jams

Overcoming	Difficulties

Broadening	Your	Horizons
Playing	Different	Games

Increasing	Your	Skill	Set

Recommended	Reading

Disseminating	Your	Games
Packaging	for	Desktop	Computers

Compiling	for	Other	Platforms

Finding	Distribution	Outlets

	Appendix	A:	Review	of	Java	Fundamentals

Data	Types	and	Operators

Control	Structures
Conditional	Statements

Repetition	Statements

Methods

Objects	and	Classes

Summary

Index

About	the	Author
Lee	Stemkoski	is	a	professor	of	computer	science	and	mathematics.	He	has	been	teaching
for	ten	years,	with	a	focus	on	video	game	programming	and	related	courses	for	the	past
five	years.	He	has	authored	many	scholarly	articles	as	well	as	game	development	tutorials.

About	the	Technical	Reviewer
Garry	Patchett	has	worked	in	IT	and	engineering	for	more	than	20	years	designing
products,	creating	software,	and	administering	and	documenting	systems.	With	a	Masters
Degree	in	Project	Management	he	is	a	dedicated	‘systems	nerd’	whose	interests	vary	from
the	technological	to	the	philosophical.	Garry	is	currently	working	freelance	and	is
involved	in	various	Open	Source	projects.

Acknowledgments
I	would	like	to	acknowledge	the	amazing	editorial	and	support	staff	at	Apress,	for	without
their	talent	and	dedication,	this	book	you	are	reading	would	not	exist.	In	particular,	I’d	like
to	thank	Ben	Renow-Clarke,	for	believing	in	this	book	from	the	very	beginning,	and	Mark
Powers,	for	his	constant	words	of	support	and	encouragement.

I’d	also	like	to	thank	the	technical	reviewer,	Garry	Patchett,	for	his	attention	to	both
the	programming	and	the	pedagogical	aspects	of	this	book.	From	the	very	beginning,	he
intuitively	understood	who	the	target	audience	was	and	the	level	of	detail	and	guidance
they	needed.	Garry’s	many	insightful	comments	and	suggestions	greatly	improved	the
clarity	of	this	book,	and	I	am	grateful	for	all	the	time	and	energy	he	put	into	helping	to
make	this	book	the	best	that	it	could	be.

Finally,	a	special	thanks	to	my	students,	past	and	present,	for	their	continuous	and
infectious	enthusiasm.	Your	drive	and	devotion	to	game	development	is	what	inspired	me
to	write	this	book.

Introduction
Welcome	to	Beginning	Game	Development	with	LibGDX!

In	this	book,	you’ll	learn	how	to	program	games	in	Java	using	the	LibGDX	game
development	framework.	The	LibGDX	libraries	are	both	powerful	and	easy	to	use,	and
they	will	enable	you	to	create	a	great	variety	of	games	quickly	and	efficiently.	LibGDX	is
free	and	open-source,	can	be	used	to	make	2D	and	3D	games,	and	integrates	easily	with
third-party	libraries	to	support	additional	features.	Applications	created	in	LibGDX	are
truly	cross-platform;	supported	systems	include	Windows,	Mac	OS	X,	Linux,	Android,
iOS,	and	HTML5/WebGL.

I	have	taught	courses	in	Java	programming	and	video	game	development	for	many
years,	and	I’ve	often	struggled	to	find	game	programming	books	that	I	can	recommend	to
my	students	without	reservation,	which	lead	me	to	write	this	book	you	are	currently
reading.	In	particular,	you	will	find	that	this	book	contains	the	following	unique
combination	of	features,	chosen	with	the	aspiring	game	developer	(that’s	you!)	in	mind:

This	book	recommends	and	explains	how	to	use	a	simple	Java
development	environment	so	that	you	can	move	on	to	programming
games	more	quickly.

By	using	the	LibGDX	framework,	you	won’t	have	to	“reinvent	the
wheel”	for	common	programming	tasks	such	as	rendering	graphics
and	playing	audio.	(An	explanation	of	how	to	write	such	code	from
scratch	could	easily	require	fifty	or	more	additional	pages	of	reading.)
LibGDX	streamlines	the	development	process	and	allows	you	to	focus
on	game	mechanics	and	design.

This	book	contains	many	examples	of	video	games	that	can	be
developed	with	LibGDX.	The	first	few	example	projects	will
introduce	you	to	the	basic	features	provided	by	the	framework;	these
starter	projects	will	be	extended	in	the	chapters	that	follow	to	illustrate
how	to	add	visual	polish	and	advanced	functionality.	Later	projects
will	focus	on	implementing	game	mechanics	from	a	variety	of	genres:
shoot-‘em-ups,	infinite	side	scrollers,	drag-and-drop	games,	platform
games,	adventure	games	with	a	top-down	perspective,	and	2.5D
games.	I	believe	that	working	through	many	examples	is	fundamental
in	the	learning	process;	you	will	observe	programming	patterns
common	to	many	games,	you	will	see	the	benefits	of	writing	reusable
code	in	practice,	you	will	have	the	opportunity	to	compare	and
contrast	code	from	different	projects,	and	you	will	gain	experience	by
implementing	additional	features	on	your	own.

At	the	beginning	of	this	book,	I	am	only	assuming	that	you	have	a
basic	familiarity	with	Java	programming.	(For	more	details	about	what
background	knowledge	you	need,	please	consult	the	appendix.)
Throughout	the	first	few	chapters	of	this	book,	advanced

programming	concepts	will	be	introduced	and	explained	as	they	arise
naturally	and	are	needed	in	the	context	of	game	programming.	By	the
time	you	reach	the	end	of	this	book,	you	will	have	learned	about	many
advanced	Java	programming	topics	that	are	also	useful	for	software
development	in	general.

Thank	you	for	allowing	me	to	be	your	guide	as	you	begin	your	journey	as	a	game
programmer.	I	hope	that	you	find	this	book	both	informative	and	enjoyable,	and	that	it
enables	and	inspires	you	to	create	your	own	video	games	to	share	with	the	world.

CHAPTER	1

Getting	Started	with	Java	and	LibGDX
This	chapter	explains	how	to	set	up	a	Java	development	environment	and	configure	it	to
run	with	the	LibGDX	game	development	framework.	You’ll	see	a	simple	example	of	a
“Hello,	World!”	program,	and	explore	it	in	enough	detail	to	understand	the	different	parts.
Finally,	you’ll	learn	some	of	the	advantages	to	be	gained	by	working	with	the	LibGDX
library.

Choosing	a	Development	Environment
Before	diving	into	Java	programming,	you	need	to	set	up	an	integrated	development
environment	(IDE):	the	software	you	will	use	for	writing,	debugging,	and	compiling	code.
There	are	many	editors	for	writing	your	Java	programs,	each	customized	for	different	skill
levels.	BlueJ	(www.bluej.org)	and	DrJava	(www.drjava.org)	are	designed	for
beginners	and	educational	use,	and	are	frequently	used	in	introductory	programming
courses	in	schools	and	colleges.	IntelliJ	IDEA	(www.jetbrains.com/idea/),
NetBeans	(netbeans.org),	and	Eclipse	(eclipse.org)	are	advanced	editors,
preferred	by	practicing	professionals.	For	compiling	and	running	Java	code,	you’ll	need
the	Java	Development	Kit	(JDK),	which	is	available	directly	from	the	Oracle	Corporation,
or	bundled	directly	with	some	of	the	editors	listed.

Each	editor	has	advantages	and	disadvantages.	BlueJ	and	DrJava	are	user-friendly	and
have	a	simple,	minimal	user	interface,	but	lack	some	of	the	advanced	editors’	features,
such	as	autocompletion	of	fields,	methods,	and	import	statements.	The	advanced	editors
are	faster,	feature-packed,	more	powerful	and	customizable,	and	have	various	plug-ins
available,	but	they	also	have	a	steep	learning	curve	and	user	interfaces	that	may	be	more
daunting	to	beginners.	Figure	1-1	illustrates	this	point	with	a	side-by-side	comparison	of
the	Eclipse	and	BlueJ	interfaces.

Figure	1-1.	User	interfaces	for	Eclipse	(left)	and	BlueJ	(right)

http://www.bluej.org
http://www.drjava.org
http://www.jetbrains.com/idea/

This	chapter	covers	how	to	set	up	BlueJ.	I’ve	selected	this	particular	IDE	because	it	is
quick	and	easy	to	set	up	and	configure,	which	will	enable	you	to	start	programming	games
even	faster.	However,	if	you	are	already	familiar	and	comfortable	with	one	of	the	more
advanced	editors,	of	course	you	should	feel	free	to	use	it	rather	than	BlueJ.	A	wealth	of
informational	material	is	available	for	setting	up	Eclipse,	NetBeans,	and	IntelliJ	IDEA
with	LibGDX,	available	online	at	the	LibGDX	wiki
(https://github.com/libgdx/libgdx/wiki).	If	you	choose	to	use	one	of
these	programs,	then	after	your	IDE	is	set	up,	skip	ahead	to	the	upcoming	section
“Creating	a	‘Hello,	World!’	Program	for	LibGDX.”

Setting	Up	BlueJ
This	section	covers	how	to	set	up	the	BlueJ	IDE.	Since	it	was	designed	for	beginners,	the
number	of	steps	is	small	and	the	process	is	straightforward,	as	you	will	see.

Downloading	and	Installing
BlueJ	can	be	downloaded	from	www.bluej.org.

There	are	two	download	options:	one	bundled	with	the	JDK,	and	one	without.	The
JDK	includes	tools	for	developing	and	debugging	Java	applications;	in	particular,	it	is
necessary	for	compiling	your	code.	If	you	have	used	your	computer	to	develop	Java
applications	before,	you	likely	already	have	the	JDK	installed	and	can	just	select	the
stand-alone	BlueJ	installer.	If	you	aren’t	sure,	you	should	download	and	run	the	BlueJ
combined	installer.

Using	BlueJ
When	learning	a	new	programming	language	or	library,	it	is	a	well-established	tradition	in
computer	science	to	write	a	“Hello,	World!”	application	as	a	first	program.	This	section
covers	the	basics	of	using	BlueJ	in	the	process	of	writing	this	program:

1.	 Start	up	the	BlueJ	software.	(The	first	time	you	run	it,	it	may
prompt	you	for	the	location	of	the	directory	where	the	JDK	is
stored.)

2.	 When	the	main	window	appears,	in	the	menu	bar,	select	Project	
New	Project.	BlueJ	organizes	your	work	into	projects,	which	are
stored	as	directories;	all	Java	source	code	and	compiled	class	files
are	stored	in	the	project	directory.

3.	 When	prompted	for	a	project	name,	navigate	to	your	Desktop
folder,	enter	MyProject,	and	click	the	OK	button.	This	creates	a
directory	in	the	Desktop	folder	with	the	same	name.

After	step	3,	your	screen	should	look	similar	to	Figure	1-2.

https://github.com/libgdx/libgdx/wiki
http://www.bluej.org

Figure	1-2.	The	BlueJ	project	window

4.	 Create	a	new	class,	either	by	clicking	the	New	Class	button	or	by
choosing	Edit	 	New	Class	from	the	menu	bar.

5.	 When	you	are	prompted	to	enter	a	name	for	the	class,	type
HelloWorld	and	press	the	Enter	key	or	click	the	OK	button.	An
orange	rectangle	appears	with	the	name	of	your	class	at	its	top.	The
gray	diagonal	lines	indicate	that	the	code	has	not	yet	been	compiled.

6.	 Either	double-click	the	rectangle	or	right-click	and	select	Open
Editor	to	edit	the	file.	You	will	see	that	some	template	code	has
been	added;	delete	all	of	this	code,	and	enter	the	following	code	in
its	place:

public	class	HelloWorld
{
				public	static	void	main()
				{
								System.out.print("Hello,	World!");
				}
}

After	entering	this	code	into	BlueJ,	it	should	appear	similar	to	the
screenshot	in	Figure	1-3.

Figure	1-3.	A	“Hello,	World!”	program	displayed	in	the	BlueJ	code	editor

7.	 Click	the	Compile	button	to	compile	your	code.	(This	action	also
automatically	saves	your	code.)	You	should	see	the	message	“Class
compiled	–	no	syntax	errors”	in	the	status	bar	at	the	bottom	of	the
window.

8.	 Right-click	the	orange	rectangle	for	the	class,	and	select	the	method
void	main()	from	the	list	that	appears.	This	runs	the	method
that	you	have	just	written.	A	terminal	window	appears,	containing
the	text	Hello,	World!,	as	shown	in	Figure	1-4.

Figure	1-4.	Text	displayed	by	the	“Hello,	World!”	program

Congratulations	on	running	your	first	program	using	BlueJ!

BlueJ	has	a	number	of	features	that	make	programming	easier.	While	entering	the
preceding	code,	you	may	have	noticed	the	syntax	highlighting	(Java	keywords	and	strings
appear	in	different	colors),	and	also	that	classes	and	methods	appear	surrounded	by
different	background	colors,	to	make	it	easier	to	visually	inspect	your	code.	(Later,	you’ll
notice	that	conditional	statements	and	loops	are	similarly	distinguished	with	background
colors.)	BlueJ	contains	additional	features	that	you	may	find	useful,	such	as	these:

Automatic	code	formatting.	Selecting	Auto-Layout	from	the	Edit
menu	will	adjust	the	whitespace	in	your	code	so	that	nested	statements
are	aligned	consistently.

Listing	available	method	names.	After	typing	the	name	of	a	class	or
object,	followed	by	a	period,	pressing	Ctrl+Space	will	display	a	list	of
available	method	names.

Shortcut	keys	for	indenting/un-indenting	and
commenting/uncommenting	blocks	of	code.	These	are	listed	in	the
Edit	menu.

A	simple	interface	for	adding	breakpoints,	which	activates	a	debugger
that	allows	you	to	step	through	code	line	by	line	and	easily	inspect
objects.

For	complete	information	on	these	and	other	features,	see	the	BlueJ	reference	manual
at	www.bluej.org/doc/bluej-ref-manual.pdf.

Setting	Up	LibGDX
In	this	section,	you’ll	configure	BlueJ	so	that	it	can	use	the	LibGDX	software	library.
Software	libraries	are	collections	of	prewritten	code	and	methods	that	can	be	used	by
other	programs.	Their	value	lies	in	their	reusability—they	accelerate	and	simplify	the
development	process	when	they	implement	frequently	needed	processes,	saving
programmers	from	needing	to	“reinvent	the	wheel”	every	time	they	write	a	program.	The
LibGDX	libraries,	for	example,	contain	methods	for	displaying	graphics,	playing	sounds,
and	getting	input	from	the	user.	(Advanced	functions	are	available	as	well,	which	are
discussed	later	in	this	chapter.)

In	Java,	libraries	are	stored	in	Java	Archive	(JAR)	files.	A	JAR	file	contains	many	files
(similar	to	a	ZIP	file)—compiled	Java	files,	stored	in	a	standardized	directory	structure
that	the	JDK	can	navigate.	Your	first	step	is	to	download	the	LibGDX	JAR	files	that	you
will	need	for	our	project.	There	are	two	online	sources	to	obtain	these	files:

From	the	web	site
https://libgdx.badlogicgames.com/releases/,
download	the	latest	version	of	the	file	with	a	file	name	of	the	form
libgdx-x.y.z.zip.	This	is	an	archive	file	that	contains	all	the
various	LibGDX	JAR	files.	Extract	the	following	files	to	your
Desktop	directory:	gdx.jar,	gdx-natives.jar,	gdx-
backend-lwjgl.jar,	and	gdx-backend-lwjgl-
natives.jar.	These	files	contain	the	core	code	for	the	LibGDX
library.

Alternatively,	the	most	up-to-date	versions	of	these	four	JAR	files	can
be	obtained	from	the	web	site
https://libgdx.badlogicgames.com/nightlies/dist/.
These	are	the	nightly	builds	of	the	LibGDX	libraries	(in	contrast	to	the
previous	link,	which	points	to	the	most	recent	stable	version	of	the
software).	These	files	are	the	most	up-to-date,	but	they	are	also	under
development	and	thus	may	contain	a	few	bugs	or	glitches.

http://www.bluej.org/doc/bluej-ref-manual.pdf
https://libgdx.badlogicgames.com/releases/
https://libgdx.badlogicgames.com/nightlies/dist/

Once	these	four	JAR	files	have	been	obtained,	BlueJ	needs	to	be	configured	so	that	it
recognizes	and	can	use	the	contents	of	these	files.	There	are	two	main	ways	to	do	so:

The	easiest	way	to	make	BlueJ	aware	of	JAR	files	is	to	create	a
directory	named	+libs	within	the	project	directory,	then	copy	the
JAR	files	into	this	directory,	and	restart	the	BlueJ	software.	By
default,	when	a	project	is	opened	in	BlueJ,	it	automatically	scans	for
the	presence	of	a	folder	named	+libs	and	takes	its	contents	into
account	when	compiling	new	code.

When	there	are	JAR	files	that	may	be	used	in	multiple	projects,	rather
than	creating	redundant	copies	of	these	files	in	+libs	directories	for
each	of	these	projects,	they	can	be	copied	to	a	special	subdirectory,
named	userlib,	in	the	folder	where	the	BlueJ	software	is	installed.
The	full	path	to	the	directory	should	be	something	similar	to
C:\Program	Files\BlueJ\lib\userlib\;	the	exact	name
can	be	checked	by	selecting	the	menu	option	Tools	 	Preferences	in
Windows,	or	BlueJ	 	Preferences	in	OS	X,	and	clicking	the	Libraries
tab.

Once	these	steps	are	complete,	BlueJ	needs	to	be	restarted,	and	then	you’ll	be	ready	to
write	your	first	program	in	LibGDX.

Creating	a	“Hello,	World!”	Program	with
LibGDX
Traditionally,	a	“Hello,	World!”	program	displays	a	text	message	on	the	screen.	Since	our
ultimate	goal	is	to	create	video	games—primarily	visual	programs—your	first	LibGDX
program	will	draw	a	picture	of	the	world	in	a	window,	as	shown	in	Figure	1-5.

Figure	1-5.	A	“Hello,	World!”	program	created	using	LibGDX

Here,	you	will	begin	to	see	some	of	the	advantages	and	start	to	understand	what	I
mean	by	building	upon	the	classes	provided	by	the	LibGDX	libraries.	Our	first	project
contains	two	classes.	The	first	class,	called	HelloWorldImage,	makes	use	of	the
functionality	of	a	LibGDX	class,	called	Game,	by	extending	it.

EXTENDING	A	CLASS

One	of	the	central	principles	of	software	engineering	is	to	design	programs	that	avoid
redundancy	by	creating	reusable	code.	One	way	to	accomplish	this	is	by	the	object-
oriented	concept	of	inheritance:	the	creation	of	a	new	class	based	on	an	existing	class.

For	example,	if	we	were	designing	a	role-playing	game,	it	would	probably	have	many
types	of	playable	characters,	such	as	warriors,	ninjas,	thieves,	and	wizards.	If	we
were	to	design	classes	to	represent	each	of	these	characters,	they	would	have	certain
features	in	common:	they	each	have	a	name,	a	certain	number	of	health	points	(HP),
and	perhaps	a	method	named	attack	that	can	be	used	when	simulating	combat.

Some	features	also	may	be	unique	to	each	character;	for	example,	perhaps	wizards
also	have	a	certain	number	of	magic	points	(MP),	and	a	method	named	castSpell
that	is	called	when	they	use	magic.	Because	of	the	differences	between	these
characters,	we	can’t	create	a	single	class	that	represents	all	of	them;	at	the	same	time,
it	feels	redundant	to	keep	entering	the	same	fields	over	and	over	again	in	each	of	their
separate	classes.	An	elegant	approach	to	this	type	of	scenario	is	to	create	a	base	class
that	contains	all	the	features	common	to	these	characters,	and	other	classes	will
extend	this	base	class.	The	extending	class	has	access	to	all	the	fields	and	methods	of
the	base	class,	and	can	also	contain	its	own	fields	and	methods	as	usual.	We	could
implement	this	scenario	with	the	following	code:

public	class	Person
		{
										String	name;
										int	HP;
										public	void	attack(Person	other)
										{
																		//	insert	code	here…
										}
		}

And	then	we	can	extend	the	Person	class	as	follows:

public	class	Wizard	extends	Person
		{
										int	MP;
										public	void	castSpell(String	spellName)
										{
																		//	insert	code	here…
										}
		}

Then,	if	we	were	to	create	instances	of	these	classes:
Person	percy	=	new	Person();
Wizard	merlin	=	new	Wizard();

Then	commands	such	as	merlin.MP	+=	10	and
merlin.castSpell(“fireball”)	are	valid,	as	well	as	commands	involving
fields	and	methods	of	the	base	class,	such	as	merlin.HP	-=	3	and
merlin.attack(percy).	However,	the	object	called	percy	can	use	only	the
fields	and	methods	of	the	Person	class;	code	such	as	percy.HP	+=	5	will
compile,	but	percy.castSpell(“lightning”)	will	result	in	an	error	when
the	file	is	compiled.

The	concept	of	extending	a	class	is	not	only	useful	for	in-game	entities,	but	also	for
framework-like	elements.	For	example,	it	would	be	useful	to	have	a	Menu	class	that
contains	functionality	common	to	all	types	of	menus,	such	as	opening	and	closing	the
menu.	It	might	then	be	useful	to	create	other	classes	that	extend	this	one:	for
example,	a	class	named	SelectionMenu	could	be	created,	which	is	a	Menu	that
specializes	in	displaying	some	sort	of	information	and	asks	the	player	to	make	a
selection	from	a	set	of	options.	An	InformationMenu	class	might	be	a	menu	that
displays	some	text-based	information	and	simply	closes	when	the	player	is	finished
reading	it.

Create	a	new	class	in	your	project,	called	HelloWorldImage,	and	enter	the	source
code	that	follows.	Note	that	before	the	class	itself,	there	are	a	number	of	import
statements	that	indicate	which	of	the	LibGDX	classes	you’ll	be	using	in	this	program.

Also	note	that	this	program	uses	an	image	with	the	file	name	world.png;	this	image	is
included	in	the	source	code	for	this	chapter,	in	the	folder	MyProject	(the	source	code	is
available	from	apress.com).	You	should	copy	this	image	into	your	MyProject
folder.	Alternatively,	you	could	use	an	image	of	your	own	choosing	instead;	a	size	of	256
by	256	pixels	is	recommended	for	this	program,	and	don’t	forget	to	change	the	file	name
in	the	following	code	accordingly	if	you	do.

import	com.badlogic.gdx.Game;
import	com.badlogic.gdx.Gdx;
import	com.badlogic.gdx.files.FileHandle;
import	com.badlogic.gdx.graphics.GL20;
import	com.badlogic.gdx.graphics.g2d.SpriteBatch;
import	com.badlogic.gdx.graphics.Texture;

public	class	HelloWorldImage	extends	Game
{
				private	Texture	texture;
				private	SpriteBatch	batch;

				public	void	create()
				{
								FileHandle	worldFile	
=	Gdx.files.internal("world.png");
								texture	=	new	Texture(worldFile);
								batch	=	new	SpriteBatch();
				}

				public	void	render()
				{
								Gdx.gl.glClearColor(1,	1,	1,	1);
								Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);

								batch.begin();
								batch.draw(texture,	192,	112);
								batch.end();
				}
}

The	HelloWorldImage	class	contains	two	objects:	a	Texture	and	a
SpriteBatch.	A	Texture	is	an	object	that	stores	image-related	data:	the	dimensions
(width	and	height)	of	an	image,	and	the	color	of	each	pixel.	A	SpriteBatch	is	an	object
that	draws	images	to	the	screen.

The	HelloWorldImage	class	also	contains	two	methods:	create	and	render.

The	create	method	initializes	the	Texture	and	SpriteBatch	objects.	In
particular,	the	Texture	object	requires	an	image	file	from	which	it	will	get	its	image

data.	For	this	purpose,	you	create	a	FileHandle:	a	LibGDX	object	that	is	used	to	access
files	stored	on	the	computer.	The	Gdx	class	contains	many	useful	static	objects	and
methods	(similar	to	Java’s	Math	class);	here,	you	use	a	method	named	internal	to
generate	a	FileHandle	object	that	will	be	used	by	the	Texture	object.	The
internal	method	will	search	for	the	file	in	the	BlueJ	project	directory,	the	same
location	where	the	compiled	class	files	are	stored.

After	the	create	method	is	finished,	the	render	method	will	be	called	by	LibGDX
approximately	60	times	per	second.1	This	method	contains	a	pair	of	static	method	calls:
one	to	select	a	particular	background	color,	and	another	to	use	that	color	to	clear	the
window.

Next,	you’ll	create	a	second	class	that	creates	an	instance	of	the	HelloWorldImage
class	and	activates	its	methods;	such	a	class	is	often	called	a	driver	class,	and	requires	you
to	write	a	static	method.

STATIC	METHODS	AND	DRIVER	CLASSES

By	default,	the	methods	of	a	class	are	called	by	instances	of	that	class.	However,	a
method	can	also	be	declared	to	be	static,	meaning	that	it	is	called	from	the	class
directly	(rather	than	an	instance).	Whether	a	method	should	be	instance-based	or
class-based	(static)	depends	on	how	the	method	is	used	and	what	data	it	requires.

An	instance-based	method	usually	depends	on	the	internal	data	specific	to	that
instance.	For	example,	every	String	object	has	a	method	called	charAt,	which	takes
an	integer	as	input,	and	returns	the	character	stored	at	that	position	in	the	String.	If
we	create	two	String	objects	as	follows:
String	player1	=	“Lee”;
String	player2	=	“Dan”;

then	the	expression	player1.charAt(1)	returns	the	character	e,	while
player2.charAt(1)	returns	a.	The	value	returned	by	this	method	depends	on
the	data	stored	in	that	instance,	and	thus	charAt	is	most	assuredly	an	instance-based
method.

In	object-oriented	programming	languages,	most	of	the	methods	of	a	class	will	be
instance-based	because	they	either	depend	upon	or	potentially	change	the	values	of
an	instance’s	variables.	There	are,	of	course,	situations	where	static	methods	are	more
natural.	In	general,	any	method	that	does	not	involve	the	internal	state	of	an	object
could	be	declared	as	static	(such	as	mathematical	formulas—all	the	methods	of	Java’s
Math	class	are	static).

A	driver	class	(also	sometimes	referred	to	as	a	main,	entry	point,	starter,	or	launcher
class)	is	a	class	whose	purpose	is	to	drive	the	execution	of	another	class,	which	often
involves	creating	an	instance	of	the	class	and	calling	one	or	more	of	its	methods.	The
driver	class	typically	requires	only	a	single	method	to	accomplish	this	task;	this
method	is	traditionally	called	main.	Since	it	is	the	first	method	called	by	the
program,	the	main	method	must	be	static,	because	when	a	program	starts,	there	are

no	instances	available	to	run	instance-based	methods.	If	the	main	method	were	not
static,	we	would	have	a	problem	similar	to	the	philosophical	conundrum:	Which
came	first:	the	chicken	or	the	egg?	Something	has	to	be	able	to	instantiate	a	class
without	itself	being	instantiated,	and	this	is	exactly	what	the	static	main	method	of	a
driver	class	does.
A	standard	“Hello,	World!”	program	could	be	rewritten	using	a	driver	class	as
follows:
public	class	Greeter

		{
										public	void	sayHello()
										{
																		System.out.print(“Hello!”);
										}
		}

		public	class	Launcher
		{
										public	static	void	main()
										{
																		Greeter	greta	=	new	Greeter();
																		greta.sayHello();
										}
		}

Next,	in	the	same	project,	create	a	class	called	HelloLauncher	that	contains	the
following	code:

import	com.badlogic.gdx.backends.lwjgl.LwjglApplication;
public	class	HelloLauncher
{
				public	static	void	main	(String[]	args)
				{
								HelloWorldImage	myProgram	=	new	HelloWorldImage();
								LwjglApplication	launcher	=	new	LwjglApplication(
myProgram);
				}
}

As	mentioned	in	the	previous	“Static	Methods	and	Driver	Classes”	sidebar,	this	class
first	creates	an	instance	of	the	HelloWorldImage	class,	called	myProgram.	Then,
instead	of	running	the	methods	of	myProgram	directly,	the	main	method	creates	a
LwjglApplication	object,	which	takes	myProgram	as	input;	the	constructor
performs	some	initialization	tasks,	and	then	runs	the	create	and	render	methods	of
myProgram	as	discussed	previously.

The	acronym	LWJGL	stands	for	the	Lightweight	Java	Game	Library,	an	open	source
Java	library	originally	created	by	Caspian	Rychlik-Prince	to	simplify	game	development
in	terms	of	accessing	the	desktop	computer	hardware	resources.	In	LibGDX,	LWJGL	is
used	for	the	desktop	back	end	to	support	all	the	major	desktop	operating	systems,	such	as
Windows,	Linux,	and	Mac	OS	X.

Another	benefit	to	having	a	driver	class,	separate	from	the	classes	that	contain	the
game	functionality,	is	the	potential	to	create	driver	classes	for	other	platforms,	such	as
Android,	which	LibGDX	also	supports.

When	you’ve	entered	all	the	code	for	both	classes,	return	to	the	main	window	in	BlueJ,
and	click	the	Compile	button.	Then	right-click	the	orange	rectangle	for	the
HelloLauncher	class,	and	in	the	list	of	methods	that	appears,	select	the	method	listed
as	void	main(String[]	args).	A	pop-up	window	appears,	in	which	you	could
enter	an	array	of	strings	as	input	if	you	needed	to—but	you	don’t.	Click	the	OK	button,
and	you	should	see	a	window	as	shown	previously	in	Figure	1-5.

Congratulations	on	completing	your	first	application	using	LibGDX!

Advantages	to	Using	LibGDX
In	addition	to	the	ability	to	compile	your	game	so	that	it	can	run	on	multiple	platforms,
there	are	many	other	advantages	to	using	the	LibGDX	game	development	framework.
LibGDX	makes	it	easy	to	accomplish	tasks	such	as	these:

Render	2D	graphics,	animations,	bitmap-based	fonts,	and	particle
effects

Stream	music	and	play	sound	effects

Process	input	from	a	keyboard,	mouse,	touch	screens,	accelerometer,
or	game	pad

Organize	user	interfaces	using	a	scene	graph	and	fully	skinnable	UI
control	library

Integrate	third-party	plug-ins,	such	as	the	Box2D	physics	engine
(box2d.org),	the	Tiled	map	editor	file	format	(mapeditor.org),
and	the	Spine	2D	animation	software	(esotericsoftware.com)

Render	3D	graphics	with	materials	and	lighting	effects,	and	load	3D
models	from	common	file	formats	such	as	OBJ	and	FBX

A	complete	list	of	LibGDX	features	can	be	found	at	the	web	site
http://libgdx.badlogicgames.com/features.html.

Summary
In	this	chapter,	you’ve	set	up	BlueJ,	an	integrated	development	environment	for	Java

http://libgdx.badlogicgames.com/features.html

programming,	and	configured	BlueJ	to	use	the	LibGDX	game	development	framework.
Then	you	created	your	first	application	with	LibGDX:	a	“Hello,	World!”	program	that
displays	an	image	of	the	world	in	a	window.	This	program	involved	extending	LibGDX’s
Game	class,	and	creating	a	driver	class	that	runs	the	program	on	the	desktop.	Along	the
way,	you	learned	about	a	few	of	the	other	classes	involved	in	this	program.	Finally,	you
learned	about	some	of	the	additional	features	of	the	LibGDX	library,	many	of	which	are
discussed	in	detail	in	future	chapters.

1Since	neither	the	texture	nor	the	coordinates	are	changing	in	this	example,	the	fact	that	the	render	method	is	called
repeatedly	is	irrelevant	here.	However,	if	you	were	to	periodically	change	the	image,	you	could	generate	an	animation;	if
you	were	to	gradually	change	the	coordinates,	you	could	simulate	motion.	You	will	see	how	to	accomplish	both	of	these
variations	in	the	following	chapter.

CHAPTER	2

The	LibGDX	Framework
This	chapter	introduces	many	of	the	major	features	of	the	LibGDX	library.	It	illustrates
how	to	use	them	in	the	process	of	creating	a	game	called	Cheese,	Please!,	where	you	help
the	player’s	character,	Mousey,	scurry	around	the	floor	while	looking	for	a	tasty	piece	of
cheese.	A	screenshot	of	this	game	in	action	appears	in	Figure	2-1.	You’ll	see	a	few	ways	to
accomplish	standard	game	programming	tasks,	such	as	representing	game	entities.	Then,
you’ll	incrementally	add	a	variety	of	features,	such	as	animation,	a	user	interface,	and	an
introductory	menu	screen.

Figure	2-1.	The	main	screen	for	the	game	Cheese,	Please!

Understanding	the	Life	Cycle	of	a	Game
Before	jumping	into	the	programming	aspect	of	game	development,	it	is	important	to
understand	the	overall	structure	of	a	game	program:	the	major	stages	that	a	game	program
progresses	through,	and	the	tasks	that	a	game	program	must	perform	in	each	stage.	The
stages	are	as	follows:

Startup:	During	this	stage,	any	files	needed	(such	as	images	or	sounds)
are	loaded,	game	objects	are	created,	and	values	are	initialized.

The	game	loop:	A	stage	that	repeats	continuously	while	the	game	is
running,	and	that	consists	of	the	following	three	substages:

Process	input:	The	program	checks	to	see	if	the	user	has
performed	any	action	that	sends	data	to	the	computer:	pressing
keyboard	keys,	moving	the	mouse	or	clicking	mouse	buttons,
touching	or	swiping	on	a	touch	screen,	or	pressing	joysticks	or
buttons	on	a	game	pad.

Update:	Performs	tasks	that	involve	the	state	of	the	game
world	and	the	entities	within	it.	This	could	include	changing
positions	of	entities	based	on	user	input	or	physics	simulations,
performing	collision	detection	to	determine	when	two	entities
come	in	contact	with	each	other	and	what	action	to	perform	in
response,	or	selecting	actions	for	nonplayer	characters

Render:	Draw	all	graphics	on	the	screen,	such	as	background
images,	game	world	entities,	and	the	user	interface	(which
typically	overlays	the	game	world).

Shutdown:	This	stage	begins	when	the	player	provides	input	to	the
computer	indicating	that	he	is	finished	using	the	software	(for
example,	by	clicking	a	Quit	button),	and	may	involve	removing
images	or	data	from	memory,	saving	player	data	or	the	game	state,
signaling	the	computer	to	stop	monitoring	hardware	devices	for	user
input,	and	closing	any	windows	that	were	created	by	the	game.

The	flowchart	in	Figure	2-2	illustrates	the	order	in	which	these	stages	occur.

Figure	2-2.	The	stages	of	a	game	program

Some	game	developers	may	include	additional	stages	in	the	game	loop,	such	as	these:

A	sleep	stage	that	pauses	the	execution	of	the	program	for	a	given
amount	of	time.	Many	game	developers	aim	to	write	programs	that
can	run	at	60	frames	per	second	(FPS),	meaning	that	the	game	loop
will	run	once	every	16.67	milliseconds.1	If	the	game	loop	can	run
faster	than	this,	the	program	can	be	instructed	to	pause	for	whatever
amount	of	time	remains	in	the	16.67-millisecond	interval,	thus	freeing
up	the	CPU	for	any	other	applications	that	may	be	running	in	the
background.	LibGDX	automatically	handles	this	for	us,	so	we	won’t
worry	about	including	it	here.

An	audio	stage,	where	any	background	music	is	streamed	or	sound

effects	are	played.	In	this	book,	we	will	consider	playing	audio	as	part
of	the	update	stage,	and	we	will	discuss	how	to	accomplish	this	in	a
later	chapter.

Most	of	these	stages	are	handled	by	a	corresponding	method	in	LibGDX.	For	example,
the	startup	stage	is	carried	out	by	the	create	method,	the	update	and	render	stages	are
both	handled	by	the	render	method,2	and	any	shutdown	actions	are	performed	by	a
method	named	dispose.

In	fact,	when	your	driver	class	creates	any	kind	of	Application	(such	as	a
LwjglApplication),	the	application	will	work	correctly	only	if	given	an	object	that
contains	a	certain	set	of	methods	(including	create,	render,	and	dispose);	this	is	a
necessary	convention	so	that	the	Application	knows	what	to	do	during	each	stage	of
the	game	program’s	life	cycle.	The	way	you	are	able	to	enforce	such	requirements	in	Java
programs	is	by	using	interfaces.

INTERFACES

Informally,	you	can	think	of	an	interface	as	a	kind	of	contract	that	other	classes	can
promise	to	fulfill.	As	a	simple	example,	let’s	say	that	you	write	a	Player	class,
which	contains	a	method	named	talkTo	that	is	used	to	interact	with	objects	in	your
environment.	The	talkTo	method	takes	a	single	input,	called	creature,	and	in
the	code	that	follows,	you	have
creature.speak();

For	the	talkTo	method	to	work	correctly,	whatever	type	of	object	that	creature
is	an	instance	of,	it	must	have	a	method	named	speak.	Maybe	sometimes
creature	is	an	instance	of	a	Person	class,	while	at	other	times	creature	is	an
instance	of	a	Monster	class.	In	general,	you	would	like	the	talkTo	method	to	be
as	inclusive	as	possible—any	object	with	a	speak	method	should	be	permitted	as
input.	You	can	accomplish	this	behavior	by	using	interfaces.

First,	you	create	an	interface	as	follows:
public	interface	Speaker
{
				public	void	speak();
}

At	first	glance,	an	interface	appears	similar	to	a	class,	except	that	the	methods	are
only	declared;	they	do	not	contain	any	actual	code.	All	that	is	required	is	the
signature	of	the	method:	the	name,	the	output	type,	the	input	types	(if	any),	and	any
modifiers	such	as	public.	This	information	is	followed	by	a	semicolon	instead	of
the	familiar	set	of	braces	that	encompass	code.	The	classes	that	implement	this
interface	will	provide	the	code	for	their	version	of	the	speak	function.	I	emphasize
that	since	Speaker	is	not	a	class,	you	cannot	create	an	instance	of	a	Speaker
object;	instead,	you	write	other	classes	that	include	the	methods	as	specified	in	the

Speaker	interface.

A	class	indicates	that	it	meets	the	requirements	of	an	interface	(that	it	contains	all	the
indicated	fields	and	methods)	by	including	the	keyword	implements,	followed	by
the	name	of	interface,	after	the	name	of	the	class.	Any	class	that	implements	the
Speaker	interface	must	provide	the	code	for	its	version	of	the	speak	function.	The
following	demonstrates	with	a	class	called	Person	and	a	class	called	Monster:

public	class	Person	implements	Speaker
{
				//	additional	code	above
				public	void	speak()
				{			System.out.println(“Hello.”);		}
				//	additional	code	below
}

public	class	Monster	implements	Speaker
{
				//	additional	code	above
				public	void	speak()
				{		System.out.println(“Grrr!”);		}
				//	additional	code	below
}

Always	remember,	when	implementing	an	interface,	you	must	write	methods	for
everything	declared	in	the	interface;	otherwise,	there	will	be	a	compile-time	error.
You	could	even	write	a	method	that	contains	no	code	between	the	braces,	as	shown
next	(for	a	class	that	represents	a	particularly	untalkative	piece	of	furniture).	This	can
be	convenient	when	you	need	to	use	only	part	of	the	functionality	of	the	interface.
public	class	Chair	implements	Speaker
{
				//	additional	code	above
				public	void	speak()		{	}
				//	additional	code	below
}

Finally,	you	write	the	method	talkTo	so	that	it	takes	a	Speaker	as	input:

public	class	Player
{
								//	additional	code	above

								public	void	talkTo(Speaker	creature)
								{
																creature.speak();
								}

								//	additional	code	below
}

Any	class	that	implements	the	Speaker	interface	may	be	used	as	input	for	a
Player	object’s	talkTo	method.	For	example,	we	present	some	code	that	creates
instances	of	each	of	these	classes,	and	describe	the	results	in	the	accompanying
comments:
Player	dan	=	new	Player();
Person	chris	=	new	Person();
Monster	grez	=	new	Monster();
Chair	footstool	=	new	Chair();
dan.talkTo(chris);	//	prints	“Hello.”
dan.talkTo(grez);	//	prints	“Grrr!”
dan.talkTo(footstool);	//	does	not	print	anything

An	Application	in	LibGDX	requires	user-created	classes	to	implement	the
ApplicationListener	interface	so	that	it	can	handle	all	stages	of	a	game	program’s
life	cycle.	You	may	recall,	however,	that	in	our	example	from	Chapter	1,	the
HelloWorldImage	class	did	not	implement	the	ApplicationListener	class;	it
only	extended	the	Game	class.	Why	didn’t	this	result	in	an	error	when	the	class	was
compiled?	If	you	take	a	look	“under	the	hood”	(which,	in	the	context	of	computer
programming,	typically	means	to	inspect	the	source	code),	you’ll	notice	that	the	Game
class	itself	implements	the	ApplicationListener	class,	and	includes	“empty”
versions	of	the	functions;	there	is	no	code	between	the	braces	that	define	the	body	of	each
function.	This	enables	you	to	write	only	variations	of	the	interface	methods	that	you	need
to	use	in	the	class	that	extends	the	Game	class,	which	will	then	override	the	versions	in	the
Game	class;	any	interface	method	that	you	don’t	write	will	default	to	the	empty	version	in
the	Game	class.	(In	fact,	the	ApplicationListener	interface	requires	a	total	of	six
methods:	create,	render,	resize,	pause,	resume,	and	dispose;	in	our
example,	you	wrote	only	two	of	these.)

Working	with	User	Input
This	section	introduces	the	game	Cheese,	Please!,	where	we	help	guide	the	player’s
character,	Mousey,	to	a	piece	of	cheese.	Some	of	the	code	will	be	familiar	from	the
HelloWorldImage	example,	such	as	the	Texture	and	SpriteBatch	classes,	the
purpose	of	the	create	and	render	methods,	and	the	role	of	the	driver	class.	There	are	a
few	new	additions	as	well.	Since	the	coordinates	of	Mousey	may	change,	you	use
variables	to	store	these	values.	Most	significantly,	you	introduce	some	code	that	makes	our
program	interactive—you	will	process	keyboard	input	from	the	user.	Finally,	you’ll
include	a	Boolean	variable	that	keeps	track	of	whether	the	player	has	won,	which	becomes
true	when	Mousey	reaches	the	cheese,	and	also	results	in	a	You	Win	message	being
displayed	on	the	screen.

In	this	section,	as	well	as	the	sections	that	follow,	you	are	invited	to	create	a	new
project	in	BlueJ	and	enter	the	code	that	is	presented,	or	alternatively,	to	simply	download
the	source	code	from	the	web	site	for	this	book,	and	run	the	code	via	the	included	BlueJ

project	files.	The	online	source	code	also	contains	all	the	images	that	you	will	need,	stored
in	the	assets	folder	in	each	project,	referenced	in	the	following	code.

The	source	code	for	this	initial	version	of	our	game,	called	CheesePlease1,
appears	next.	Note	in	particular	that	for	organizational	purposes,	all	the	image	files	are
stored	in	a	folder	called	assets,	contained	within	the	main	project	directory.	There	are
also	new	import	statements,	which	enable	you	to	create	a	variety	of	new	objects,	which
are	also	explained	here.

import	com.badlogic.gdx.Gdx;
import	com.badlogic.gdx.Input.Keys;
import	com.badlogic.gdx.graphics.GL20;
import	com.badlogic.gdx.graphics.Texture;
import	com.badlogic.gdx.graphics.g2d.SpriteBatch;
import	com.badlogic.gdx.Game;

public	class	CheesePlease1	extends	Game
{
				private	SpriteBatch	batch;

				private	Texture	mouseyTexture;
				private	float	mouseyX;
				private	float	mouseyY;

				private	Texture	cheeseTexture;
				private	float	cheeseX;
				private	float	cheeseY;

				private	Texture	floorTexture;
				private	Texture	winMessage;

				private	boolean	win;

				public	void	create()
				{
								batch	=	new	SpriteBatch();

								mouseyTexture	=	new	Texture(
Gdx.files.internal("assets/mouse.png"));
								mouseyX	=	20;
								mouseyY	=	20;

								cheeseTexture	=	new	Texture(
Gdx.files.internal("assets/cheese.png"));
								cheeseX	=	400;
								cheeseY	=	300;

								floorTexture	=	new	Texture(

Gdx.files.internal("assets/tiles.jpg"));
								winMessage	=	new	Texture(
Gdx.files.internal("assets/you-win.png"));

								win	=	false;
				}

				public	void	render()
				{
								//	check	user	input
								if	(Gdx.input.isKeyPressed(Keys.LEFT))
												mouseyX--;
								if	(Gdx.input.isKeyPressed(Keys.RIGHT))
												mouseyX++;
								if	(Gdx.input.isKeyPressed(Keys.UP))
												mouseyY++;
								if	(Gdx.input.isKeyPressed(Keys.DOWN))
												mouseyY--;

								//	check	win	condition:	mousey	must	be	overlapping	
cheese
								if	((mouseyX	>	cheeseX)
										&&	(mouseyX	+	mouseyTexture.getWidth()	<	cheeseX	
+	cheeseTexture.getWidth())
										&&	(mouseyY	>	cheeseY)
										&&	(mouseyY	+	mouseyTexture.getHeight()	<	cheeseY	
+	cheeseTexture.getHeight()))
												win	=	true;

								//	clear	screen	and	draw	graphics
								Gdx.gl.glClearColor(0.8f,	0.8f,	1,	1);
								Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);

								batch.begin();
								batch.draw(floorTexture,	0,	0);
								batch.draw(cheeseTexture,	cheeseX,	cheeseY);
								batch.draw(mouseyTexture,	mouseyX,	mouseyY);
								if	(win)
												batch.draw(winMessage,	170,	60);
								batch.end();
				}
}

You	also	need	a	launcher-style	class	to	create	an	instance	of	this	class	and	run	it;	this
can	be	accomplished	with	the	following	short	class:

import	com.badlogic.gdx.backends.lwjgl.LwjglApplication;
public	class	Launcher1

{
				public	static	void	main	(String[]	args)
				{
								CheesePlease1	myProgram	=	new	CheesePlease1();
								LwjglApplication	launcher	=	new	LwjglApplication(
myProgram);
				}
}

In	the	class	CheesePlease1,	the	create	method	initializes	variables	and	loads
textures.	This	program	contains	four	images,	stored	as	Texture	objects:	Mousey,	the
cheese,	floor	tiles	for	the	background,	and	an	image	containing	the	words	You	Win.	For
brevity,	instead	of	creating	a	new	variable	to	store	each	of	the	FileHandle	objects
created	by	the	internal	method,	you	initialize	them	in	the	same	line	where	you
construct	each	new	Texture	object.	The	coordinates	of	Mousey’s	position	are	stored	by
using	floating-point	numbers,	since	you	need	to	store	decimal	values,	and	the	LibGDX
game	development	framework	uses	float	rather	than	double	variables	in	its	classes
for	a	slight	increase	in	program	efficiency.	Even	though	the	coordinates	of	the	cheese
texture	will	not	be	changing,	you	store	them	by	using	variables	anyway	so	that	future	code
involving	these	values	is	more	readable.	The	floorTexture	and	winMessage	objects
do	not	require	variables	to	store	their	coordinates,	as	their	positions	will	not	be	changing,
and	their	positions	will	be	specified	in	the	render	method	(discussed	later	in	this
section).

The	render	method	contains	three	main	blocks	of	code	that	roughly	correspond	to
the	game	loop	substages:	process	input,	update,	and	render.

First,	a	sequence	of	commands	use	a	method	named	isKeyPressed,	belonging	to
(an	object	belonging	to)	the	Gdx	class,	which	determines	whether	a	key	on	the	keyboard	is
currently	being	pressed.	The	names	of	each	key	are	represented	using	constant	values
from	the	Keys	class.	When	one	of	the	arrow	keys	is	pressed,	the	corresponding	x	or	y
coordinate	of	Mousey	is	adjusted	accordingly;	x	values	increase	toward	the	right	side	of
the	window,	while	y	values	increase	toward	the	top	of	the	window.3	Note	that	if	the	user
presses	the	left	and	right	arrow	keys	at	the	same	time,	the	effects	of	the	addition	and
subtraction	cancel	each	other	out,	and	the	position	of	Mousey	will	not	change;	a	similar
situation	also	applies	when	the	user	presses	the	up	and	down	arrow	keys	at	the	same	time.

The	second	set	of	commands	perform	collision	detection:	they	determine	whether	the
rectangular	region	containing	mouseyTexture	is	completely	contained	within	the
rectangular	region	containing	cheeseTexture.	To	determine	this,	you	need	to	compare
the	left,	right,	top,	and	bottom	boundaries	of	the	rectangles	as	indicated	in	Figure	2-3.	The
position	of	the	left	and	bottom	sides	are	given	by	the	values	of	the	x	and	y	coordinates	of
the	texture,	respectively;	the	position	of	the	right	and	top	sides	can	be	calculated	by	adding
the	width	and	height	of	the	texture	(obtained	by	using	the	getWidth	and	getHeight
methods)	to	the	x	and	y	coordinates,	respectively.	As	illustrated	in	Figure	2-3,	rectangle	A
contains	rectangle	B	exactly	when	these	four	conditions	are	true:

A.x	<	B.x

(B.x	+	B.width)	<	(A.x	+	A.width)

A.y	<	B.y

(B.y	+	B.height)	<	(A.y	+	A.height)

Figure	2-3.	Rectangle	containment	diagram

This	test	is	applied	to	mouseyTexture	and	cheeseTexture,	and	when	true,	the
Boolean	variable	win	is	set	to	true,	indicating	that	the	player	has	won	the	game.

The	third	set	of	commands	is	where	the	actual	rendering	takes	place.	The	glClear
method	draws	a	solid-	colored	rectangle	on	the	screen,	using	the	color	specified	in	the
glClearColor	method	(in	terms	of	red/green/blue/alpha	values).	The	screen	must	be
cleared	in	this	manner	during	every	rendering	pass,	effectively	“erasing”	the	screen,
because	the	images	from	previous	render	calls	might	be	visible	otherwise.	The	order	of	the
draw	method	calls	is	particularly	important:	textures	that	are	rendered	later	appear	on	top
of	those	rendered	earlier.	Thus,	you	typically	want	to	draw	the	background	elements	first,
followed	by	the	main	in-game	entities,	and	the	user	interface	elements	are	typically	drawn
last.	The	Batch	class,	used	for	drawing,	optimizes	graphics	operations	by	sending
multiple	images	at	once	to	the	computer’s	graphics	processing	unit	(GPU).

Managing	the	Action
In	the	previous	example—our	first	iteration	of	the	game	Cheese,	Please!—you	have	seen
that	each	game	entity	(such	as	Mousey	and	the	cheese)	has	a	lot	of	related	information	that
you	need	to	keep	track	of,	such	as	textures	and	(x,y)	coordinates.	A	central	design
principle	in	an	object-oriented	programming	language	like	Java	is	to	encapsulate	related
information	in	a	single	class.	While	you	could	create	a	Mousey	class,	a	Cheese	class,	and

so	forth	to	manage	this	information,	this	approach	would	result	in	a	lot	of	redundancy	in
your	program,	which	is	both	inefficient	and	difficult	to	manage.	Since	another	guiding
principle	in	software	engineering	is	to	write	reusable	code,	you	want	to	implement	a	single
class	that	contains	the	basic	information	common	to	all	game	entities,	which	you	can	then
extend	when	necessary.

LibGDX	demonstrates	its	flexibility	in	this	regard	by	providing	multiple	ways	to
manage	this	information,	two	of	which	you’ll	explore	in	this	section:	the	Sprite	class
and	the	Actor	class.

The	Sprite	Class
The	Sprite	class	contains	everything	you	need	to	refactor	the	code	from	the	class
CheesePlease1.	Sprites	contain	fields	that	store	coordinates,	a	texture,	and	additional
information	such	as	angle	of	rotation	and	scaling	factors.	There	is	even	an	associated
Rectangle	object,	which	has	built-in	methods	(such	as	contains	and	intersects)
to	perform	collision	detection,	which	will	greatly	simplify	that	part	of	our	program.	Each
of	these	fields	is	accessed	using	standard	get	and	set	style	functions.	Some	other	available
Sprite	methods	that	will	be	useful	include	the	methods	translateX	and
translateY,	which	change	the	values	of	the	x	and	y	coordinates	of	the	Sprite,	and
draw,	which	a	Sprite	can	use	to	render	itself	(taking	into	account	its	position	and
rotation)	using	a	given	SpriteBatch.	Following	is	the	code	for	this	new	version	of
Cheese,	Please!,	the	class	CheesePlease2,	using	Sprite	objects;	in	addition	to
importing	the	Sprite	class,	you	also	import	the	Rectangle	class,	which	you	will	see
simplifies	collision	detection.

import	com.badlogic.gdx.Game;
import	com.badlogic.gdx.Gdx;
import	com.badlogic.gdx.Input.Keys;
import	com.badlogic.gdx.graphics.GL20;
import	com.badlogic.gdx.graphics.Texture;
import	com.badlogic.gdx.graphics.g2d.SpriteBatch;
import	com.badlogic.gdx.graphics.g2d.Sprite;
import	com.badlogic.gdx.math.Rectangle;

public	class	CheesePlease2	extends	Game
{
				private	SpriteBatch	batch;
				private	Sprite	mouseySprite;
				private	Sprite	cheeseSprite;
				private	Sprite	floorSprite;
				private	Sprite	winTextSprite;
				private	boolean	win;

				public	void	create()
				{

								batch	=	new	SpriteBatch();

								mouseySprite	=	new	Sprite(new	
Texture(Gdx.files.internal("assets/mouse.png")));
								mouseySprite.setPosition(20,	20);

								cheeseSprite	=	new	Sprite(new	
Texture(Gdx.files.internal("assets/cheese.png")));
								cheeseSprite.setPosition(400,	300);

								floorSprite	=	new	Sprite(new	
Texture(Gdx.files.internal("assets/tiles.jpg")));
								floorSprite.setPosition(0,	0);

								winTextSprite	=	new	Sprite(new	
Texture(Gdx.files.internal("assets/you-win.png")));
								winTextSprite.setPosition(170,	60);

								win	=	false;
				}

				public	void	render()
				{
								//	process	input
								if	(Gdx.input.isKeyPressed(Keys.LEFT))
												mouseySprite.translateX(-1);
								if	(Gdx.input.isKeyPressed(Keys.RIGHT))
												mouseySprite.translateX(1);
								if	(Gdx.input.isKeyPressed(Keys.UP))
												mouseySprite.translateY(1);
								if	(Gdx.input.isKeyPressed(Keys.DOWN))
												mouseySprite.translateY(-1);

								//	check	win	condition
								Rectangle	cheeseRectangle	
=	cheeseSprite.getBoundingRectangle();
								Rectangle	mouseyRectangle	
=	mouseySprite.getBoundingRectangle();

								if	(cheeseRectangle.contains(mouseyRectangle))
												win	=	true;

								//	draw	graphics
								Gdx.gl.glClearColor(0.8f,	0.8f,	1,	1);
								Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);

								batch.begin();
								floorSprite.draw(batch);

								cheeseSprite.draw(batch);
								mouseySprite.draw(batch);
								if	(win)
												winTextSprite.draw(batch);
								batch.end();
				}
}

For	the	most	part,	the	lines	of	code	for	the	CheesePlease2	class	directly
correspond	to	those	in	the	CheesePlease1	class.	You	can	observe	a	few	minor
differences:	Sprites	are	initialized	using	a	Texture	object,	and	use	of	the	Rectangle
method	greatly	simplifies	collision	detection.	The	CheesePlease2	class	will	require	its
own	launcher	class,	similar	to	the	one	for	CheesePlease1	(but	it	should	initialize	a
CheesePlease2	instance).	Since	the	change	is	a	minor	one,	I	won’t	list	the	launcher
code	here,	but	as	always,	complete	functioning	source	code	for	all	examples	can	be
downloaded	from	this	book’s	web	site.

For	some	games,	the	Sprite	object	may	be	sufficient	for	your	needs;	other	times,
you	may	need	to	write	a	customized	class	that	extends	the	Sprite	class	in	order	to	store
additional	data	and	provide	extra	functionality	for	your	game	entities.	For	example,	the
characters	in	your	game	might	need	to	keep	track	of	health	points	(HP);	perhaps	they	can
be	damaged	or	healed,	and	you	need	to	be	able	to	check	if	they	are	“alive”	(whether	their
HP	is	greater	than	zero).	In	this	scenario,	you	could	extend	the	Sprite	class	as	follows:

public	class	SpriteWithHP	extends	Sprite
{
				private	int	HP;

				//	constructor
				public	SpriteWithHP(Texture	t)
				{
								//	activate	constructor	of	the	class	being	extended
								super(t);
								//	set	default	amount	of	HP
								HP	=	100;
}

public	int	getHP()
{		return	HP;		}

public	void	setHP(int	amount)
{		HP	=	amount;		}

public	void	damage(int	amount)
{		HP	-=	amount;		}

public	void	heal(int	amount)

{		HP	+=	amount;		}

public	boolean	isAlive()
{		return	(HP	>	0);		}

}

Since	SpriteWithHP	is	an	extension	of	the	Sprite	class,	all	the	data	and
functions	in	the	Sprite	class	can	be	used	with	one	of	these	objects	also!

The	Actor	Class
As	mentioned	previously,	LibGDX	provides	multiple	approaches	to	managing	the
information	associated	with	game	entities.	With	the	core	functionality	provided	by	the
Sprite	class	and	the	ability	to	extend	this	class	as	needed,	at	first	thought	it	may	be
unclear	how	a	second	approach	would	be	useful.	Furthermore,	checking	the	source	code
for	the	LibGDX	Actor	class,	it	may	seem	to	be	a	poor	substitute	for	the	Sprite	class,
as	it	doesn’t	provide	prebuilt	functionality	involving	the	Texture	or	Rectangle	class.
However,	as	you	will	come	to	see,	this	seeming	“omission”	ultimately	turns	out	to	be	a
strength	of	the	Actor	class.	You	are	free	to	implement	graphics,	bounding	shapes,	a	draw
method,	and	any	other	features	in	any	way	that	is	convenient	to	you.	For	instance,	you
could	emulate	the	single-texture	approach	of	a	Sprite	object,	presented	in	the	following
code:

public	class	SpritelikeActor	extends	Actor
{
				private	Texture	image;

				//	constructor
				public	SpritelikeActor()
				{		super();		}

				public	void	setTexture(Texture	t)
				{		image	=	t;		}

				public	Texture	getTexture()
				{		return	image;		}

				public	void	draw(Batch	b)
				{
								b.draw(getTexture(),	getX(),	getY());
				}
}

Alternatively,	you	could	store	multiple	textures,	and	customize	the	draw	method	to
select	a	texture	to	render	based	on	the	internal	state	of	the	object	(for	example,	according
to	the	number	of	health	points	the	object	has).	This	could	be	accomplished	with	the

following	code:

public	class	HealthyActor	extends	Actor
{
				public	int	HP;
				public	Texture	healthyImage;
				public	Texture	damagedImage;
				public	Texture	deceasedImage;

				//	omitted:	constructor
				//	omitted:	methods	to	get/set	above	fields

				public	void	draw(Batch	b)
				{
								if	(HP	>	50)
												b.draw(healthyImage,	getX(),	getY());
								else	if	(HP	>	0	&&	HP	<=	50)
												b.draw(damagedImage,	getX(),	getY());
								else				//	in	this	case,	HP	<=	0
												b.draw(deceasedImage,	getX(),	getY());
				}
}

You	could	even	store	one	or	more	animations	in	your	actor;	you’ll	see	this	variation
later	in	this	chapter.

A	few	other	fundamental	differences	between	the	Sprite	and	Actor	classes	should
be	mentioned	here.	First,	in	addition	to	a	draw	method,	the	Actor	class	has	an	act
method,	which	can	serve	as	a	form	of	an	update	method	for	the	Actor.	Second,	the
Actor	class	was	designed	to	be	used	in	concert	with	a	class	called	Stage	(that	you	will
be	using	in	the	near	future),	which	stores	a	list	of	Actor	instances	and	contains	methods
(named	act	and	draw)	that	call	the	act	and	draw	methods	of	every	actor	that	has	been
added	to	it.

Our	next	goal	is	to	rewrite	the	Cheese,	Please!	game	so	that	it	uses	the	Actor	class
rather	than	the	Sprite	class	to	represent	its	game	entities.	Before	proceeding,	however,
you	first	need	to	extend	the	Actor	class	so	that	it	stores	a	Texture	and	a	Rectangle.
You	will	also	include	two	float	variables	in	our	new	class;	they	will	represent	the	velocity
(in	pixels	per	second)	in	the	x	and	y	directions,	and	be	used	in	the	act	method	to
automatically	calculate	the	new	position	of	the	Actor.	(For	an	Actor	that	does	not
move,	you	will	leave	the	velocity	variables	set	at	their	default	value	of	0.)

This	new	class,	called	BaseActor,	is	shown	here:

import	com.badlogic.gdx.scenes.scene2d.Actor;
import	com.badlogic.gdx.graphics.g2d.Batch;
import	com.badlogic.gdx.graphics.Texture;
import	com.badlogic.gdx.graphics.g2d.TextureRegion;

import	com.badlogic.gdx.math.Rectangle;
import	com.badlogic.gdx.graphics.Color;

public	class	BaseActor	extends	Actor
{
				public	TextureRegion	region;
				public	Rectangle	boundary;
				public	float	velocityX;
				public	float	velocityY;

				public	BaseActor()
				{
								super();
								region	=	new	TextureRegion();
								boundary	=	new	Rectangle();
								velocityX	=	0;
								velocityY	=	0;
				}

				public	void	setTexture(Texture	t)
				{
								int	w	=	t.getWidth();
								int	h	=	t.getHeight();
								setWidth(w);
								setHeight(h);
								region.setRegion(t);
				}

				public	Rectangle	getBoundingRectangle()
				{
								boundary.set(getX(),	getY(),	getWidth(),	getHeight()	
);
								return	boundary;
				}

				public	void	act(float	dt)
				{
								super.act(dt);
								moveBy(velocityX	*	dt,	velocityY	*	dt);
				}

				public	void	draw(Batch	batch,	float	parentAlpha)
				{
								Color	c	=	getColor();
								batch.setColor(c.r,	c.g,	c.b,	c.a);
								if	(isVisible())
												batch.draw(region,	getX(),	getY(),	getOriginX(),	

getOriginY(),
																getWidth(),	getHeight(),	getScaleX(),	
getScaleY(),	getRotation());
				}
}

The	following	are	some	observations	about	this	code:

Instead	of	using	a	Texture,	you	are	using	a	TextureRegion	to
store	your	image,	which	will	yield	greater	flexibility	in	future
extensions	of	the	BaseActor	class.	The	main	difference	is	that	a
TextureRegion	can	be	used	to	store	a	Texture	that	contains
multiple	images	or	animation	frames,	and	a	TextureRegion	also
stores	coordinates,	called	(u,v)	coordinates,	that	determine	which
rectangular	subarea	of	the	Texture	is	to	be	used.

First,	in	the	act	method,	you	include	the	method	call
super.act(dt).	The	causes	the	act	method	in	the	Actor	class
(the	class	being	extended,	sometimes	called	the	super	class)	to	be
executed	first.

Next,	in	the	act	method,	you	calculate	the	distance	the	BaseActor
has	travelled	(if	any)	since	the	last	update.	This	amount	is	calculated
using	this	physics	formula:

distance	=	rate	×	time

The	rate	is	the	value	of	the	velocity	variable;	the	time	elapsed	since
the	last	update	is	stored	in	the	variable	dt	(which	stands	for	delta
time;	in	physics,	delta	often	signifies	the	change	in	a	value).	The
distance	travelled	along	each	axis	is	then	added	to	the	corresponding
position	variable.

In	the	draw	method,	you	set	the	Color	values	(red,	green,	blue,	and
alpha/transparency)	of	the	Batch	object	to	be	equal	to	those	of	the
Color	stored	in	the	Actor	class.	This	is	used	for	tinting	the	color	of
the	BaseActor	texture,	which	can	vary	the	visual	appearance	of	an
image	in	many	ways,	without	needing	to	load	additional	images.	The
default	Color	value	of	an	Actor	is	white,	which	has	no	effect	on
the	texture’s	appearance.

Finally,	in	the	draw	method,	after	checking	whether	the	Actor	field
visible	is	set	to	true	(using	the	isVisible	method),	you	draw
the	texture,	taking	into	account	its	position,	origin	(center	of	rotation),
width	and	height,	scaling	factors,	and	rotation	angle.

Next,	is	the	new	version	of	our	game’s	source	code,	which	uses	the	new	BaseActor
class	throughout.	There	are	a	few	changes	from	the	Sprite-based	version	of	the	code.	In

particular:

Actor	objects	must	be	added	to	the	Stage,	and	the	act	and	draw
methods	of	the	Stage	must	be	called	(recall	that	calling	the	act	and
draw	methods	on	a	Stage	results	in	the	Stage	object	calling	the
act	and	draw	methods	of	all	the	Actor	objects	that	have	been
added	to	it).

We	set	the	initial	visibility	of	winText	to	false,	because	the	player
should	not	be	able	to	see	that	particular	image	until	later,	when	she	has
won	the	game.

Mousey’s	position	is	not	changed	directly;	the	change	in	position	is
calculated	using	velocity	and	elapsed	time	since	the	last	update,	the
latter	of	which	is	given	by	the	method	getDeltaTime.	A	velocity
of	100	(pixels	per	second)	may	seem	large,	but	if	the	game	is	running
at	a	rate	of	60	frames	per	second,	then	getDeltaTime	will	return	a
value	of	approximately	0.016;	this	means	Mousey	will	move	about	1.6
pixels	each	time	the	update	method	is	called.	This	is	comparable	to
Mousey’s	speed	in	the	version	of	the	game	from	the	class
CheesePlease1.

import	com.badlogic.gdx.Game;
import	com.badlogic.gdx.Gdx;
import	com.badlogic.gdx.Input.Keys;
import	com.badlogic.gdx.graphics.GL20;
import	com.badlogic.gdx.graphics.Texture;
import	com.badlogic.gdx.graphics.g2d.SpriteBatch;
import	com.badlogic.gdx.math.Rectangle;
import	com.badlogic.gdx.scenes.scene2d.Stage;

public	class	CheesePlease3	extends	Game
{
				public	Stage	mainStage;
				private	BaseActor	mousey;
				private	BaseActor	cheese;
				private	BaseActor	floor;
				private	BaseActor	winText;

				public	void	create()
				{
								mainStage	=	new	Stage();

								floor	=	new	BaseActor();
								floor.setTexture(new	
Texture(Gdx.files.internal("assets/tiles.jpg")));
								floor.setPosition(0,	0);

								mainStage.addActor(floor);

								cheese	=	new	BaseActor();
								cheese.setTexture(new	
Texture(Gdx.files.internal("assets/cheese.png")));
								cheese.setPosition(400,	300);
								mainStage.addActor(cheese);

								mousey	=	new	BaseActor();
								mousey.setTexture(new	
Texture(Gdx.files.internal("assets/mouse.png")));
								mousey.setPosition(20,	20);
								mainStage.addActor(mousey);

								winText	=	new	BaseActor();
								winText.setTexture(new	
Texture(Gdx.files.internal("assets/you-win.png")));
								winText.setPosition(170,	60);
								winText.setVisible(false);
								mainStage.addActor(winText);
				}

				public	void	render()
				{
								//	process	input
								mousey.velocityX	=	0;
								mousey.velocityY	=	0;

								if	(Gdx.input.isKeyPressed(Keys.LEFT))
												mousey.velocityX	-=	100;
								if	(Gdx.input.isKeyPressed(Keys.RIGHT))
												mousey.velocityX	+=	100;
								if	(Gdx.input.isKeyPressed(Keys.UP))
												mousey.velocityY	+=	100;
								if	(Gdx.input.isKeyPressed(Keys.DOWN))
												mousey.velocityY	-=	100;

								//	update
								float	dt	=	Gdx.graphics.getDeltaTime();
								mainStage.act(dt);

								//	check	win	condition:	mousey	must	be	overlapping	
cheese
								Rectangle	cheeseRectangle	
=	cheese.getBoundingRectangle();
								Rectangle	mouseyRectangle	
=	mousey.getBoundingRectangle();

								if	(cheeseRectangle.contains(mouseyRectangle))
												winText.setVisible(true);

								//	draw	graphics
								Gdx.gl.glClearColor(0.8f,	0.8f,	1,	1);
								Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);

								mainStage.draw();
				}
}

In	the	next	section,	you’ll	see	how	using	the	Actor	class	enables	you	to	implement
various	types	of	animations	for	your	game	entities.

Implementing	Visual	Effects
This	section	shows	how	to	implement	two	types	of	animation:	value-based	animation	and
image-based	animation.

Value-Based	Animations
Many	visual	effects	can	be	achieved	by	continuously	changing	values	associated	with	a
game	entity,	such	as	the	following:

A	movement	effect	can	be	created	by	changing	the	position	coordinate
values.

A	spinning	effect	can	be	created	by	changing	the	rotation	value.

A	growing	or	shrinking	effect	can	be	created	by	changing	the	scale
factors.

A	color-cycling	effect	can	be	created	by	changing	the	color
red/green/blue	component	values.

A	fading	in/out	effect	can	be	created	by	changing	the	alpha
(transparency)	value.

These	effects	can	easily	be	added	to	your	game	by	using	LibGDX’s	Action	class.	An
Action	is	an	object	that	can	be	added	to	an	Actor,	which	automatically	changes	the
values	of	various	fields	(position,	rotation,	scale,	color)	over	time.	The	code	that
accomplishes	this	is	contained	within	the	act	method	of	the	Actor	class	(and	this	is	why
you	needed	to	call	super.act(dt)	when	writing	the	act	method	of	the	BaseActor
class—to	make	sure	that	this	code	was	executed).	To	create	an	Action,	it	is
recommended	to	use	the	static	methods	available	in	the	Actions	class.	We’ll	see	many
examples	of	these	methods	in	what	follows;	for	a	complete	listing,	see	the	documentation
for	the	LibGDX	Actions	class.

You	can	also	create	complex,	compound	visual	effects	by	combining	Action	objects.
These	effects	can	be	configured	to	run	one	after	the	other	(in	sequence)	or	all	at	the	same
time	(in	parallel).	Additionally,	actions	can	be	set	to	repeat	a	finite	or	infinite	number	of
times.	Once	again,	the	methods	of	the	Actions	class	greatly	simplify	this	process.

You	will	add	two	value-based	animation	effects	to	the	program,	both	of	which	will
occur	(that	is,	they	will	be	created	and	added	to	the	corresponding	actors)	when	the	player
wins	the	game.

You	start	by	creating	a	new	class,	called	CheesePlease4,	that	contains	all	of	the
code	from	the	class	CheesePlease3.	To	this	new	class,	you	begin	by	declaring	a
Boolean	variable	called	win,	and	in	the	create	method,	initialize	it	to	false.	To	check
whether	the	player	has	won	the	game,	you	use	the	following	code,	which	is	structured	so
that	win	is	set	to	true	only	once:

Rectangle	cheeseRectangle	=	cheese.getBoundingRectangle();
Rectangle	mouseyRectangle	=	mousey.getBoundingRectangle();
if	(!win	&&	cheeseRectangle.contains(mouseyRectangle))
{
				win	=	true;
}

The	following	code	listings	should	be	added	into	the	preceding	block	of	code,	where
win	is	set	to	true.

Next,	you	will	create	an	effect	that	will	cause	the	cheese	image	to	rotate	(360	degrees
per	1	second),	shrink	(change	both	scaling	factors	to	0	over	the	course	of	1	second),	and
fade	out	(over	the	course	of	1	second);	furthermore,	these	actions	will	all	occur	in	parallel.
This	also	requires	you	to	import	the	Action	and	Actions	classes;	the	full	import	paths
can	be	found	in	the	LibGDX	documentation,	or	seen	in	the	source	code	accompanying	this
chapter.

Action	spinShrinkFadeOut	=	Actions.parallel(
				Actions.alpha(1),											//	set	transparency	value
				Actions.rotateBy(360,	1),			//	rotation	amount,	duration
				Actions.scaleTo(0,	0,	1),			//	x	amount,	y	amount,	
duration
				Actions.fadeOut(1)										//	duration	of	fade	out
);
cheese.addAction(spinShrinkFadeOut);

In	order	for	the	cheese	image	to	rotate	around	its	center	(rather	than	a	corner),	you
need	to	set	the	origin	point	of	the	Actor,	which	serves	as	the	center	of	rotation.	This	can
be	accomplished	by	adding	the	following	line	of	code	to	the	create	method,	after	setting
the	Texture	of	the	cheese	object:

mousey.setOrigin(mousey.getWidth()/2,	mousey.getHeight()/2	
);

You	now	create	a	sequence	of	effects	that	causes	the	You	Win	graphic	to	become
visible,	and	then	fade	in	(over	the	course	of	2	seconds).	The	last	step	will	be	an	infinite
loop	containing	a	two-step	sequence:	shift	the	color	tint	to	red,	and	then	shift	the	color	tint
to	blue,	each	of	these	steps	occurring	over	the	course	of	1	second.	(This	will	also	require
you	to	import	the	Color	class.)	Since	the	nesting	of	these	method	calls	can	be
complicated,	I’ve	used	indentation	to	make	the	code	more	readable:

Action	fadeInColorCycleForever	=	Actions.sequence(
				Actions.alpha(0),			//	set	transparency	value
				Actions.show(),					//	set	visible	to	true
				Actions.fadeIn(2),		//	duration	of	fade	in
				Actions.forever(
								Actions.sequence(
												//	color	shade	to	approach,	duration
												Actions.color(new	Color(1,0,0,1),	1),
												Actions.color(new	Color(0,0,1,1),	1)
)
)
);
winText.addAction(fadeInColorCycleForever);

Image-Based	Animations
An	image-based	animation	is	created	from	images	that	are	rapidly	displayed	in	sequence
to	create	the	illusion	of	movement.	In	LibGDX,	this	can	be	accomplished	using	the
Animation	class.	Creating	an	animation	requires	three	pieces	of	information:

An	Array	of	TextureRegion	objects	(the	images	to	be	used	in
the	animation)

The	amount	of	time	that	each	image	should	be	displayed

A	value	that	indicates	how	the	frames	should	be	played—in	the	order
given,	in	reverse	order,	from	first	to	last	to	first	again	(ping-pong
order),	and	whether	to	repeat	(loop)	the	animation

The	following	code	presents	an	example	of	creating	an	animation	that	will	be	used	for
the	Mousey	character	later.	You	initialize	a	standard	array	to	store	textures.	Next,	you	use
a	for	loop	to	load	textures	from	image	files	(the	images	displayed	in	Figure	2-4),	set	the
filter	type	(which	controls	how	pixel	colors	are	interpolated	when	the	image	is	rotated	or
stretched),	and	store	the	textures	in	an	array.	For	the	images	to	load,	you	must	make	sure
that	they	have	been	copied	into	the	project’s	assets	folder	(the	images	are	included	with
the	source	code	for	this	chapter).	Then	you	convert	the	standard	Java	array	into	a	LibGDX
Array	instance.	Finally,	you	initialize	an	Animation.	This	requires	four	additional
import	statements	to	be	added,	for	the	TextureRegion,	TextureFilter,	Array,
and	Animation	classes.

TextureRegion[]	frames	=	new	TextureRegion[4];
for	(int	n	=	0;	n	<	4;	n++)
{
				String	fileName	=	"assets/mouse"	+	n	+	".png";
				Texture	tex	=	new	Texture(Gdx.files.internal(fileName));
				tex.setFilter(TextureFilter.Linear,	
TextureFilter.Linear);
				frames[n]	=	new	TextureRegion(tex);
}
Array<TextureRegion>	framesArray	=	new	Array<TextureRegion>
(frames);
Animation	anim	=	new	Animation(0.1f,	framesArray,	
Animation.PlayMode.LOOP_PINGPONG);

Figure	2-4.	Images	used	to	animate	Mousey:	mouse0.png	through	mouse3.png

Next,	you	will	create	a	new	class,	AnimatedActor,	which	extends	the
BaseActor	class	and	uses	this	newly	created	Animation	data	in	its	draw	method.
The	additional	information	this	class	needs	to	store	includes	the	total	elapsed	time	the
animation	has	been	playing	(to	determine	the	correct	image	to	use	at	each	point	in	time),
and	of	course	the	Animation	itself.	In	the	act	method,	you	will	increment
elapsedTime.	For	an	extra	bit	of	polish,	here	you’ll	set	the	rotation	of	the	Actor
texture	to	match	the	direction	of	movement.	(This	value	is	calculated	using	the	velocity,	an
arctangent	function,	and	a	conversion	factor	from	radians	to	degrees;	we’ll	discuss	the
derivation	of	this	formula	at	a	later	time.)	Finally,	in	the	draw	method,	before	you	call	the
draw	method	of	the	BaseActor	class,	you	use	the	getKeyFrame	method	of	the
Animation	class	to	retrieve	the	correct	image	based	on	the	current	value	of
elapsedTime.	The	complete	source	code	for	this	method	appears	here:

import	com.badlogic.gdx.graphics.g2d.Batch;
import	com.badlogic.gdx.graphics.Texture;
import	com.badlogic.gdx.graphics.g2d.Animation;
import	com.badlogic.gdx.math.MathUtils;

public	class	AnimatedActor	extends	BaseActor
{
				public	float	elapsedTime;
				public	Animation	anim;

				public	AnimatedActor()
				{
								super();
								elapsedTime	=	0;

				}

				public	void	setAnimation(Animation	a)
				{
								Texture	t	=	a.getKeyFrame(0).getTexture();
								setTexture(t);
								anim	=	a;
				}

				public	void	act(float	dt)
				{
								super.act(dt);
								elapsedTime	+=	dt;
								if	(velocityX	!=	0	||	velocityY	!=	0)
												setRotation(MathUtils.atan2(velocityY,	velocityX	
)	*	MathUtils.radiansToDegrees);
				}

				public	void	draw(Batch	batch,	float	parentAlpha)
				{
								region.setRegion(anim.getKeyFrame(elapsedTime));
								super.draw(batch,	parentAlpha);
				}
}

Now	that	you	have	created	a	class	that	handles	animations,	you	can	rewrite	the
initialization	code	for	Mousey	to	use	the	AnimatedActor	class.	You	declare	the
mousey	instance	as	follows:

private	AnimatedActor	mousey;

And	finally,	after	anim	(Mousey’s	Animation)	is	initialized	in	the	create
method,	you	replace	Mousey’s	initialization	code	with	the	following	code.	(Note	that	you
need	to	set	Mousey’s	origin	coordinates	to	be	the	center	of	the	image,	so	that	rotations
appear	as	expected.)

mousey	=	new	AnimatedActor();
mousey.setAnimation(anim);
mousey.setOrigin(mousey.getWidth()/2,	mousey.getHeight()/2	
);
mousey.setPosition(20,	20);
mainStage.addActor(mousey);

The	complete	source	code	for	this	example,	which	incorporates	all	of	these	changes	to
introduce	both	types	of	animations,	can	be	found	in	the	file	CheesePlease4.java.
When	you	run	this	version,	you	should	see	that	Mousey’s	whiskers	twitch,	her	tail	swings
back	and	forth,	and	she	faces	the	direction	that	she	is	moving	in.

Introducing	User	Interfaces
The	user	interface	of	a	game	typically	displays	information	about	the	game	world	or	the
player’s	status,	using	a	combination	of	graphics	and	text.	We’ve	previously	discussed	how
to	display	graphics	in	great	detail,	and	so	in	this	section	we	discuss	a	simple	method	for
displaying	image-based	text.	You’ll	also	add	a	second	Stage	to	contain	user-interface
elements:	both	the	You	Win	texture,	as	well	as	a	text-based	object	that	displays	how	long
the	game	has	been	running.	Finally,	you’ll	enlarge	the	size	of	your	game	world	so	that	it	is
larger	than	the	program	window,	and	then	see	how	to	adjust	the	area	of	the	Stage	that	is
being	drawn	to	the	window.	You’ll	create	a	new	class,	called	CheesePlease5,	that
contains	all	the	code	from	CheesePlease4	as	a	starting	point.

Along	the	way,	you’ll	learn	about	some	new	LibGDX	classes,	so	you	need	to	add	the
following	import	statements	to	the	code:

import	com.badlogic.gdx.scenes.scene2d.ui.Label;
import	com.badlogic.gdx.scenes.scene2d.ui.Label.LabelStyle;
import	com.badlogic.gdx.graphics.g2d.BitmapFont;
import	com.badlogic.gdx.graphics.Camera;
import	com.badlogic.gdx.math.MathUtils;

Labels	and	Bitmap	Fonts
To	display	text	in	LibGDX,	the	most	straightforward	approach	is	to	use	the	Label	class,
which	also	happens	to	be	an	extension	of	the	Actor	class	(and	thus	gets	added	to	a
Stage	in	the	same	way).	A	Label	is	initialized	with	(at	least)	two	pieces	of	information:
some	text	to	display	(normally	in	String	format),	and	a	LabelStyle.	A
LabelStyle	itself	requires	two	pieces	of	information	when	being	initialized:	a
BitmapFont	,	and	a	Color	used	to	tint	the	font	graphics.

The	data	for	a	computer-generated	font	is	typically	stored	in	one	of	two	ways:	either	as
a	set	of	mathematical	curves	and	formulas	(these	are	called	outline	fonts	or	vector	fonts,
and	include	standards	such	as	TrueType	font),	or	as	a	set	of	images.	The	latter	is	referred
to	as	a	bitmap	font,	and	is	the	format	used	by	the	LabelStyle	class.

There	are	many	ways	to	initialize	a	BitmapFont	object,	which	are	discussed	at
length	in	a	future	chapter.	For	now,	you	use	the	constructor	with	no	arguments,	which
defaults	to	the	size	15	Arial	font	file	included	in	the	LibGDX	libraries.

The	additions	to	the	CheesePlease5	class	are	as	follows:

First,	initialize	a	float	variable	to	keep	track	of	the	total	elapsed	time,	and	a	Label
variable	that	will	display	this	information:

private	float	timeElapsed;
private	Label	timeLabel;

Next,	in	the	create	method,	you	initialize	both	of	these	variables.	At	the	start	of	the
program,	the	timeElapsed	should	be	set	to	0.	Before	you	initialize	the	Label,	you
first	initialize	the	default	BitmapFont,	and	then	create	a	label	containing	the	text
Time:	0	and	use	a	LabelStyle	with	your	font,	tinted	with	a	navy	blue	color.	You	can
make	the	font	appear	larger	by	using	the	method	setFontScale,4	and	the	coordinates
of	the	text	can	be	set	by	using	the	setPosition	method,	just	as	with	any	Actor
object.

timeElapsed	=	0;
BitmapFont	font	=	new	BitmapFont();
String	text	=	"Time:	0";
LabelStyle	style	=	new	LabelStyle(font,	Color.NAVY);
timeLabel	=	new	Label(text,	style);
timeLabel.setFontScale(2);
timeLabel.setPosition(500,	440);

Updating	these	variables	(timeElapsed	and	timeLabel)	is	fairly	straightforward.
There	are	two	additional	tasks	to	perform	in	the	update	section:	increment	the	time
elapsed,	and	change	the	text	of	the	label	(using	the	Label	class	setText	method,	and
rounding	timeElapsed	to	a	whole	number	by	casting	it	to	the	int	type).	The
following	code	demonstrates	these	additions.	Since	these	changes	should	take	place	only
while	the	game	is	still	ongoing	(meaning,	the	player	did	not	yet	win	the	game),	the	code	is
placed	within	a	conditional	block:

if	(!win)
{
				timeElapsed	+=	dt;
				timeLabel.setText("Time:	"	+	(int)timeElapsed);
}

Layering	with	Stage	Objects
Generally,	user	interface	elements	are	drawn	on	top	of	game	world	entities.	In	previous
examples,	I	have	been	careful	in	choosing	the	order	in	which	the	Actors	are	added	to	the
Stage,5	so	that	background	images	are	rendered	first,	followed	by	the	main	game
entities,	followed	by	the	user	interface	elements.	An	easier	method	is	to	create	multiple
Stage	objects	that	represent	these	groups,	and	then	render	the	Stage	objects	in	the
correct	order.

Adding	a	second	Stage	is	a	straightforward	process:	most	of	the	code	mirrors	that	of
the	already	existing	Stage	object	called	mainStage.	Right	after	mainStage	is
declared,	you’ll	declare	a	new	Stage	called	uiStage:

private	Stage	uiStage;

You	need	to	initialize	uiStage	in	the	create	method	(in	the	line	after

mainStage	is	initialized):

uiStage		=	new	Stage();

Also	during	the	create	method,	you’ll	add	the	timeLabel	object	to	uiStage,
and	also	change	a	line	of	code	so	that	winText	is	added	to	uiStage	instead	of
mainStage:

uiStage.addActor(winText);
uiStage.addActor(timeLabel);

In	the	update	section	of	the	game	loop,	right	after	the	call	to	the	act	method	of
mainStage,	you	do	the	same	for	uiStage:

uiStage.act(dt);

Similarly,	after	drawing	the	mainStage	elements,	you	need	to	draw	the	uiStage
elements:

uiStage.draw();

At	this	point,	you	can	try	compiling	and	running	the	code	to	see	how	the	text	appears
onscreen.

Cameras	and	Scrolling
Up	to	this	point,	we’ve	implicitly	assumed	that	the	dimensions	(length	and	width)	of	the
game	world	are	exactly	the	same	as	the	dimensions	of	the	program	window,	which	are	640
by	480	pixels	by	default.	In	this	section,	you’ll	begin	by	increasing	the	size	of	the	game
world	to	800	by	800	pixels,	which	will	later	lead	us	to	a	discussion	of	scrolling	and
cameras.	To	this	end,	your	first	modification	to	the	code	will	be	to	declare	some	constants
to	store	these	values,	using	the	final	keyword	to	guarantee	that	their	values	cannot
accidentally	be	changed	later.	This	will	also	make	the	code	that	follows	more	readable.

//	game	world	dimensions
final	int	mapWidth	=	800;
final	int	mapHeight	=	800;

//	window	dimensions
final	int	viewWidth	=	640;
final	int	viewHeight	=	480;

You’ll	also	change	the	background	texture	(the	floor	tiles)	to	a	new	image	file	that	is
800	by	800	pixels,	which	will	fit	the	game	world	exactly.	You’ve	made	the	edges	of	this
image	a	bit	darker	as	well	so	that	it	is	clear	to	the	player	where	the	boundaries	of	the	game
world	are.

floor.setTexture(new	
Texture(Gdx.files.internal("assets/tiles-800-800.jpg")));

Next,	you’ll	address	and	fix	a	small	game-play	detail:	as	it	stands,	Mousey	can	move
beyond	the	dimensions	of	the	game	world.	You	could	stop	Mousey	from	wandering	past
the	left	boundary	of	the	game	world	with	this	code:

if	(mousey.getX()	<	0)
					mousey.setX(0);

You	also	want	the	right	edge	of	Mousey’s	texture	to	be	bounded	by	the	right	edge	of
the	screen;	this	can	be	expressed	with	the	inequality	mousey.getX()	+
mousey.getWidth()	<	mapWidth,	or	equivalently,	Mousey’s	x	coordinate	should
always	be	less	than	mapWidth	–	mousey.getWidth().	This	restriction	can	be
accomplished	with	this	line	of	code:

if	(mousey.getX()	>	mapWidth	–	mousey.getWidth())
					mousey.setX(mapWidth	–	mousey.getWidth();

Effectively,	what	you’re	doing	is	restricting	the	value	of	mousey.x	to	the	interval
[0,	mapWidth	–	mousey.width].	This	mathematical	function	is	called
clamping,	and	is	one	of	the	functions	provided	by	the	MathUtils	class	in	LibGDX.	The
method	call	clamp(x,a,b)	will	return

a,	when	x	<	a

x,	when	a	<=	x	and	x	<=	b

b,	when	x	>	b

Using	this	method,	you	can	condense	the	previous	two	lines	of	code	into	the
following:

mousey.setX(MathUtils.clamp(mousey.getX(),	0,		mapWidth	
-	mousey.getWidth()));

Similarly,	to	keep	Mousey	within	the	game	world	in	the	vertical	direction,	you	need	to
restrict	Mousey’s	y	coordinate	to	the	interval	[0,	mapHeight	–	mousey.height
].	This	can	be	accomplished	with	this	code:

mousey.setY(MathUtils.clamp(mousey.getY(),	0,		mapHeight	
-	mousey.getHeight()));

The	previous	two	lines	of	code	can	be	inserted	right	after	the	line	containing
mainStage.act(dt).

This	point	is	another	good	time	to	compile	and	test	the	code,	and	verify	that	Mousey
can	no	longer	pass	completely	beyond	the	boundaries	of	the	screen.

Next,	you	need	to	use	the	Camera	class,	for	it	determines	which	part	of	a	Stage	is
rendered;	this	is	now	important,	since	only	a	portion	of	the	game	world	can	be	displayed
in	the	program	window	at	a	time.	In	the	render	part	of	the	game	loop,	before	you	draw
mainStage,	you’ll	get	the	Camera	object	associated	with	mainStage	and	center	it	on

(by	setting	its	position	to)	the	player’s	(Mousey’s)	position.

However,	when	Mousey	approaches	the	edge	of	the	game	world,	if	the	camera	remains
centered	on	Mousey,	then	the	region	the	camera	is	displaying	might	include	areas	outside
the	boundary	of	the	game	world,	which	would	be	unacceptable.	Therefore,	you	need	to
make	a	second	adjustment	to	the	camera’s	position:	you	need	to	bound	the	camera	position
so	that	it	stays	in	the	central	area	of	the	game	world.	More	precisely,	as	illustrated	in
Figure	2-5,	the	x	coordinate	of	the	camera	must	always	be	at	least	viewWidth/2	pixels
away	from	the	left	and	right	boundaries	of	the	game	world.	The	division	by	2	occurs
because	the	camera	is	in	the	center	of	the	screen,	and	therefore	needs	a	buffer	of	only	half
the	width	on	each	side.	Similarly,	the	y	coordinate	must	be	at	least	viewHeight/2
pixels	away	from	the	top	and	bottom	boundaries	of	the	game	world.

Figure	2-5.	Boundaries	for	the	camera	position

This	can	be	efficiently	accomplished	using	the	clamp	method,	similarly	to	when	you
bounded	the	position	of	Mousey	to	the	game	world.	The	code	to	accomplish	this	is	listed
next,	and	should	appear	right	before	the	call	to	mainStage.draw():

Camera	cam	=	mainStage.getCamera();

//	center	camera	on	player
cam.position.set(mousey.getX()	+	mousey.getOriginX(),
				mousey.getY()	+	mousey.getOriginY(),	0);

//	bound	camera	to	layout
cam.position.x	=	MathUtils.clamp(cam.position.x,	
viewWidth/2,		mapWidth	-	viewWidth/2);
cam.position.y	=	MathUtils.clamp(cam.position.y,	
viewHeight/2,	mapHeight	-	viewHeight/2);
cam.update();

Note	that	you	don’t	need	to	perform	any	similar	adjustments	to	the	stage	that	contains
the	user	interface,	as	the	contents	of	the	UI	do	not	scroll	as	the	game	world	does.

The	complete	source	code	for	this	example	is	not	listed	here;	it	can	be	viewed	from	the

book	web	site,	in	the	file	CheesePlease5.java.	Try	running	the	code	now,	and
observe	how	the	camera	always	centers	on	Mousey	whenever	possible.

Handling	Multiple	Screens
One	major	component	of	video	game	software	that	you	have	not	yet	implemented	is	the
ability	to	handle	multiple	screens.	Almost	every	game	has	a	title	screen	displaying	the
name	of	the	game,	perhaps	with	menu	items	or	buttons	that	bring	the	player	to	a	help
screen	with	instructions	or	load	a	new	screen	where	the	game	play	begins.	The	Game	class
of	the	LibGDX	library	enables	you	to	accomplish	these	goals.

Recall	that	the	Game	class	implements	the	ApplicationListener	interface,	so
that	it	can	handle	all	the	tasks	of	the	game	life	cycle.	The	Game	class	also	has	the	ability
to	delegate	these	functions	to	another	object,	but	this	object	must	contain	a	particular	set
of	methods	for	this	approach	to	work	correctly.	As	you’ve	seen	previously,	this	kind	of
convention	is	enforced	by	using	interfaces;	the	particular	interface	provided	by	LibGDX
for	this	task	is	called	Screen.	It	is	quite	similar	to	the	ApplicationListener
interface,	except	for	the	following	differences:

The	create	method	is	not	required.	Instead,	you	could	call	a	create-
style	method	from	the	constructor	of	the	class	implementing	the
interface.

Two	new	methods,	called	show	and	hide,	are	required.	These
methods	are	called	when	the	implementing	class	gains	or	loses	focus,
respectively.

To	adapt	the	current	version	of	your	game	to	this	new	framework,	the	basic	steps	are
as	follows:

You	create	a	new	class,	called	CheeseLevel,	which	contains	all	the	code	from	the
previous	iteration	of	our	main	example	(CheesePlease5),	and	all	the	changes
discussed	next	should	be	applied	to	this	new	class.	CheeseLevel	should	also	import	the
class	com.badlogic.gdx.Screen.

The	class	declaration	should	no	longer	extend	the	Game	class;	rather,	it	implements
the	Screen	interface,	so	it	should	read	as	follows:	public	class	CheeseLevel
implements	Screen.	Also,	you	will	need	to	include	code	for	each	of	the	methods
required	by	the	interface;	for	now,	you’ll	leave	each	method	body	empty,	as	follows:

public	void	resize(int	width,	int	height)	{		}
public	void	pause()			{		}
public	void	resume()		{		}
public	void	dispose()	{		}
public	void	show()				{		}
public	void	hide()				{		}

The	interface	also	assumes	that	the	render	method	is	passed	a	float	method	that
represents	the	time	elapsed	since	the	last	frame	(which	means	you	no	longer	need	to
calculate	it).	You	rewrite	the	method	declaration	for	render	as	public	void
render(float	dt),	and	you	can	delete	the	following	(now	redundant)	line	of	code
from	the	render	method:

float	dt	=	Gdx.graphics.getDeltaTime();

You	also	want	to	store	a	reference	to	the	Game	that	created	this	screen,	which	will
enable	you	to	switch	screens	later.	After	the	existing	variable	declarations,	you	add	this:

public	Game	game;

You	write	a	constructor	method	for	this	class;	it	will	take	a	Game	object	as	a
parameter,	to	store	for	later	access	as	mentioned	previously,	and	it	will	also	call	the
create	method,	as	follows:

public	CheeseLevel(Game	g)
{
				game	=	g;
				create();
}

The	complete	code	for	this	new,	final	version	of	your	game,	containing	all	of	the
additions	listed	previously,	is	given	here:

import	com.badlogic.gdx.Game;
import	com.badlogic.gdx.Gdx;
import	com.badlogic.gdx.Input.Keys;
import	com.badlogic.gdx.graphics.Color;
import	com.badlogic.gdx.graphics.GL20;
import	com.badlogic.gdx.graphics.Texture;
import	com.badlogic.gdx.math.Rectangle;
import	com.badlogic.gdx.scenes.scene2d.Stage;
import	com.badlogic.gdx.scenes.scene2d.actions.Actions;
import	com.badlogic.gdx.graphics.Texture.TextureFilter;
import	com.badlogic.gdx.graphics.g2d.TextureRegion;
import	com.badlogic.gdx.graphics.g2d.Animation;
import	com.badlogic.gdx.graphics.g2d.Animation.PlayMode;
import	com.badlogic.gdx.utils.Array;

import	com.badlogic.gdx.scenes.scene2d.ui.Label;
import	com.badlogic.gdx.scenes.scene2d.ui.Label.LabelStyle;
import	com.badlogic.gdx.graphics.g2d.BitmapFont;
import	com.badlogic.gdx.graphics.Camera;
import	com.badlogic.gdx.math.MathUtils;

import	com.badlogic.gdx.Screen;

public	class	CheeseLevel	implements	Screen
{
				private	Stage	mainStage;
				private	Stage	uiStage;

				private	AnimatedActor	mousey;
				private	BaseActor	cheese;
				private	BaseActor	floor;
				private	BaseActor	winText;
				private	boolean	win;

				private	float	timeElapsed;
				private	Label	timeLabel;

				//	game	world	dimensions
				final	int	mapWidth	=	800;
				final	int	mapHeight	=	800;
				//	window	dimensions
				final	int	viewWidth	=	640;
				final	int	viewHeight	=	480;

				public	Game	game;
				public	CheeseLevel(Game	g)
				{
								game	=	g;
								create();
				}

				public	void	create()
				{
								mainStage	=	new	Stage();
								uiStage	=	new	Stage();
								timeElapsed	=	0;

								floor	=	new	BaseActor();
								floor.setTexture(new	
Texture(Gdx.files.internal("assets/tiles-800-800.jpg")));
								floor.setPosition(0,	0);
								mainStage.addActor(floor);

								cheese	=	new	BaseActor();
								cheese.setTexture(new	
Texture(Gdx.files.internal("assets/cheese.png")));
								cheese.setPosition(400,	300);
								cheese.setOrigin(cheese.getWidth()/2,	
cheese.getHeight()/2);

								mainStage.addActor(cheese);

								mousey	=	new	AnimatedActor();

								TextureRegion[]	frames	=	new	TextureRegion[4];
								for	(int	n	=	0;	n	<	4;	n++)
								{
												String	fileName	=	"assets/mouse"	+	n	+	".png";
												Texture	tex	=	new	
Texture(Gdx.files.internal(fileName));
												tex.setFilter(TextureFilter.Linear,	
TextureFilter.Linear);
												frames[n]	=	new	TextureRegion(tex);
								}
								Array<TextureRegion>	framesArray	=	new	
Array<TextureRegion>(frames);

								Animation	anim	=	new	Animation(0.1f,	framesArray,	
Animation.PlayMode.LOOP_PINGPONG);

								mousey.setAnimation(anim);
								mousey.setOrigin(mousey.getWidth()/2,	
mousey.getHeight()/2);
								mousey.setPosition(20,	20);
								mainStage.addActor(mousey);

								winText	=	new	BaseActor();
								winText.setTexture(new	
Texture(Gdx.files.internal("assets/you-win.png")));
								winText.setPosition(170,	60);
								winText.setVisible(false);
								uiStage.addActor(winText);

								BitmapFont	font	=	new	BitmapFont();
								String	text	=	"Time:	0";
								LabelStyle	style	=	new	LabelStyle(font,	Color.NAVY);
								timeLabel	=	new	Label(text,	style);
								timeLabel.setFontScale(2);
								timeLabel.setPosition(500,440);	//	sets	bottom	left	
(baseline)	corner?
								uiStage.addActor(timeLabel);

								win	=	false;
				}

				public	void	render(float	dt)
				{

								//	process	input
								mousey.velocityX	=	0;
								mousey.velocityY	=	0;

								if	(Gdx.input.isKeyPressed(Keys.LEFT))
												mousey.velocityX	-=	100;
								if	(Gdx.input.isKeyPressed(Keys.RIGHT))
												mousey.velocityX	+=	100;;
								if	(Gdx.input.isKeyPressed(Keys.UP))
												mousey.velocityY	+=	100;
								if	(Gdx.input.isKeyPressed(Keys.DOWN))
												mousey.velocityY	-=	100;
								if	(Gdx.input.isKeyPressed(Keys.M))
												game.setScreen(new	CheeseMenu(game));

								//	update
								mainStage.act(dt);
								uiStage.act(dt);

								//	bound	mousey	to	the	rectangle	defined	by	mapWidth,	
mapHeight
								mousey.setX(MathUtils.clamp(mousey.getX(),	
0,		mapWidth	-	mousey.getWidth()));
								mousey.setY(MathUtils.clamp(mousey.getY(),	
0,		mapHeight	-	mousey.getHeight()));

								//	check	win	condition:	mousey	must	be	overlapping	
cheese
								Rectangle	cheeseRectangle	
=	cheese.getBoundingRectangle();
								Rectangle	mouseyRectangle	
=	mousey.getBoundingRectangle();

								if	(!win	&&	cheeseRectangle.contains(mouseyRectangle	
))
								{
												win	=	true;
												winText.addAction(Actions.sequence(
																				Actions.alpha(0),
																				Actions.show(),
																				Actions.fadeIn(2),
																				Actions.forever(Actions.sequence(
																												Actions.color(new	Color(1,0,0,1),	
1),
																												Actions.color(new	Color(0,0,1,1),	1)
))
));

												cheese.addAction(Actions.parallel(
																				Actions.alpha(1),
																				Actions.rotateBy(360f,	1),
																				Actions.scaleTo(0,0,	2),	//	xAmt,	yAmt,	
duration
																				Actions.fadeOut(1)
));
								}

								if	(!win)
								{
												timeElapsed	+=	dt;
												timeLabel.setText("Time:	"	+	(int)timeElapsed);
								}

								//	draw	graphics
								Gdx.gl.glClearColor(0.8f,	0.8f,	1,	1);
								Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);

								//	camera	adjustment
								Camera	cam	=	mainStage.getCamera();

								//	center	camera	on	player
								cam.position.set(mousey.getX()	+	mousey.getOriginX(),
												mousey.getY()	+	mousey.getOriginY(),	0);

								//	bound	camera	to	layout
								cam.position.x	=	MathUtils.clamp(cam.position.x,	
viewWidth/2,		mapWidth	-	viewWidth/2);
								cam.position.y	=	MathUtils.clamp(cam.position.y,	
viewHeight/2,	mapHeight	-	viewHeight/2);
								cam.update();

								mainStage.draw();
								uiStage.draw();
				}

				public	void	resize(int	width,	int	height)	{		}
				public	void	pause()			{		}
				public	void	resume()		{		}
				public	void	dispose()	{		}
				public	void	show()				{		}
				public	void	hide()				{		}
}

With	this	groundwork	laid,	you	will	now	create	an	extension	of	the	Game	class	that
creates	an	instance	of	the	CheeseLevel	class	(passing	itself	as	an	argument	in	the

process),	and	sets	it	to	be	the	active	Screen:

import	com.badlogic.gdx.Game;
public	class	CheeseGame	extends	Game
{
				public	void	create()
				{
								CheeseLevel	cl	=	new	CheeseLevel(this);
								setScreen(cl);
				}
}

And,	as	usual,	you	need	to	write	a	new	driver	class:

import	com.badlogic.gdx.backends.lwjgl.LwjglApplication;
public	class	CheeseLauncher
{
				public	static	void	main	(String[]	args)
				{
								CheeseGame	myProgram	=	new	CheeseGame();
								LwjglApplication	launcher	=	new	LwjglApplication(
myProgram);
				}
}

Now	is	a	good	time	to	test	the	new	version	of	the	code,	to	verify	that	all	the	changes
have	been	implemented	correctly.

Next,	you’ll	create	another	class	that	also	implements	the	Screen	interface;	this	class
will	serve	as	your	start	menu,	and	is	illustrated	in	Figure	2-6.

Figure	2-6.	The	start	menu	screen	for	the	game	Cheese,	Please!

In	this	class,	you	need	only	one	Stage	to	contain	all	the	elements	of	the	user
interface.	You	will	use	a	BaseActor	for	the	background	floor	tile	image,	and	another	for
the	title	graphic,	both	of	which	need	to	be	copied	to	the	assets	folder.	You’ll	use	a
Label	to	create	the	instruction	text,	and	since	it	is	an	extension	of	the	Actor	class,	you
can	and	will	add	a	repeating	sequence	of	actions	to	give	the	text	a	pulsing	effect.	The
source	code	for	this	class	is	listed	here;	you	start	by	listing	the	import	statements,
variable	declarations,	and	method	names:

import	com.badlogic.gdx.Game;
import	com.badlogic.gdx.Gdx;
import	com.badlogic.gdx.Input.Keys;
import	com.badlogic.gdx.graphics.Color;
import	com.badlogic.gdx.graphics.GL20;
import	com.badlogic.gdx.graphics.Texture;
import	com.badlogic.gdx.scenes.scene2d.Stage;
import	com.badlogic.gdx.scenes.scene2d.ui.Label;
import	com.badlogic.gdx.scenes.scene2d.ui.Label.LabelStyle;
import	com.badlogic.gdx.scenes.scene2d.actions.Actions;
import	com.badlogic.gdx.graphics.g2d.BitmapFont;
import	com.badlogic.gdx.Screen;

public	class	CheeseMenu	implements	Screen
{
				private	Stage	uiStage;
				private	Game	game;

				public	CheeseMenu(Game	g)
				{
								game	=	g;
								create();
				}

				public	void	create()
				{				}

				public	void	render(float	dt)
				{				}

				public	void	resize(int	width,	int	height)	{		}
				public	void	pause()			{		}
				public	void	resume()		{		}
				public	void	dispose()	{		}
				public	void	show()				{		}
				public	void	hide()				{		}
}

In	the	create	method,	you	initialize	the	Stage	and	the	BaseActor	objects	that
will	contain	the	title	screen	images,	as	well	as	the	BitmapFont	and	Label	that	display
the	instructions	and	the	associated	effect,	with	the	following	code:

uiStage		=	new	Stage();

BaseActor	background	=	new	BaseActor();
background.setTexture(new	
Texture(Gdx.files.internal("assets/tiles-menu.jpg")));
uiStage.addActor(background);

BaseActor	titleText	=	new	BaseActor();
titleText.setTexture(new	
Texture(Gdx.files.internal("assets/cheese-please.png")));
titleText.setPosition(20,	100);
uiStage.addActor(titleText);

BitmapFont	font	=	new	BitmapFont();
String	text	=	"	Press	S	to	start,	M	for	main	menu	";
LabelStyle	style	=	new	LatbelStyle(font,	Color.YELLOW);
Label	instructions	=	new	Label(text,	style);
instructions.setFontScale(2);
instructions.setPosition(100,	50);
//	repeating	color	pulse	effect
instructions.addAction(
				Actions.forever(

								Actions.sequence(
												Actions.color(new	Color(1,	1,	0,	1),	0.5f),
												Actions.delay(0.5f),
												Actions.color(new	Color(0.5f,	0.5f,	0,	1),	0.5f)
)
)
);
uiStage.addActor(instructions);

In	the	render	method,	you’ll	check	to	see	whether	the	user	is	pressing	the	S	key,	in
which	case	you’ll	use	the	setScreen	method	of	the	Game	class	to	switch	the	Screen
to	a	CheeseLevel	instance,	which	is	where	the	game	is	played.	In	addition,	you
perform	the	standard	tasks	of	calling	the	act	method	of	any	Stage	objects	being	used,
and	drawing	the	graphics	to	the	screen,	as	follows:

//	process	input
if	(Gdx.input.isKeyPressed(Keys.S))
				game.setScreen(new	CheeseLevel(game));

//	update
uiStage.act(dt);

//	draw	graphics
Gdx.gl.glClearColor(0.8f,	0.8f,	1,	1);
Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);
uiStage.draw();

Now	that	the	CheeseMenu	class	has	been	configured,	you	can	return	to	the
previously	created	CheeseLevel	class.	You’d	like	to	give	the	user	the	ability	to	return
to	the	main	menu	by	pressing	the	M	key,	and	so	you	add	the	following	code	to	the	update
section	of	the	render	method	in	the	CheeseLevel	class:

if	(Gdx.input.isKeyPressed(Keys.M))
				game.setScreen(new	CheeseMenu(game));

Finally,	you	need	to	rewrite	the	CheeseGame	class	to	use	an	instance	of
CheeseMenu	(rather	than	CheeseLevel)	as	the	first	screen	that	will	be	loaded,	as
follows:

import	com.badlogic.gdx.Game;
public	class	CheeseGame	extends	Game
{
				public	void	create()
				{
								CheeseMenu	cm	=	new	CheeseMenu(this);
								setScreen(cm);
				}

}

This	completes	the	“Cheese,	Please!”	game!

Summary
This	chapter	introduced	many	features	of	the	LibGDX	library.	You	began	with	an
overview	of	the	life	cycle	of	a	game	program,	and	learned	how	the	stages	are	performed
by	methods	with	a	particular	naming	convention,	enforced	by	an	interface.	You	learned
how	to	process	keyboard	input	by	using	the	Gdx	class,	and	how	to	encapsulate	game
entity	data	by	using	either	the	Sprite	class	or	the	Actor	class.	You	learned	how	the
Stage	class	can	be	used	to	manage	Actor	instances,	and	how	to	extend	the	Actor	class
for	greater	functionality.	Next,	you	saw	how	to	make	actors	more	visually	interesting	by
using	value-based	animations	provided	by	the	Actions	class,	and	image-based
animations	via	the	Animation	class.	Then,	I	introduced	the	Label,	LabelStyle,	and
BitmapFont	classes	to	help	you	create	a	user	interface	on	a	second	Stage.	You	also
increased	the	size	of	the	game	world	and	learned	how	to	use	the	Camera	associated	with
a	Stage	to	display	the	correct	part	of	the	game	world.	Finally,	the	chapter	introduced	the
Screen	interface	that	enabled	you	to	create	a	start	menu	in	a	class	separate	from	the	class
containing	the	game-play	code;	and	you	saw	how	the	Game	class	manages	multiple
screens.

In	the	next	chapter,	you’ll	create	your	own	extensions	of	these	classes	that	capture	the
common	features	in	many	games,	and	see	how	to	use	these	as	the	basis	of	a	completely
new	game.

1Running	faster	than	this	is	usually	unnecessary,	because	most	computer	display	hardware	is	incapable	of	displaying
images	at	a	greater	rate	than	this.

2The	next	chapter	covers	how	to	organize	code	more	intuitively,	so	that	the	update	and	render	stages	are	handled	by
separate	methods.

3The	design	choice	to	have	y	increase	toward	the	top,	while	consistent	with	mathematical	conventions,	is	the	opposite	of
most	computer	science	coordinate	system	conventions,	which	place	the	origin	point	(0,0)	at	the	top-left	corner	of	a
window,	and	the	y	value	increases	toward	the	bottom.

4For	enlarging	font,	this	method	should	be	used	sparingly,	as	it	may	cause	images	to	look	pixelated.	This	effect	can	be
lessened	by	using	a	linear	texture	filter	on	the	bitmap	font	image,	but	the	best	practice	would	be	to	simply	use	a	high-
resolution	image	for	the	font	whenever	possible.

5However,	it	is	possible	to	rearrange	the	rendering	order	of	an	Actor	after	it	has	been	added	to	a	Stage	by	using	the
setZIndex	method	of	the	Actor	class.

CHAPTER	3

Extending	the	Framework
This	chapter	begins	by	reviewing	the	code	for	the	Cheese,	Please!	game	from	the	previous
chapter.	Your	main	focus	will	be	streamlining	your	code	from	the	previous	chapter	by
refactoring	common	elements	into	new	classes	that	can	be	reused	as	needed.	This	will	also
make	it	easier	to	introduce	more-advanced	features,	such	as	new	methods	for	processing
user	input.	Then	you	will	see	how	your	new	classes	can	be	used	as	a	basis	for	additional
game	projects.	Finally,	you	will	improve	your	custom	extensions	of	the	Actor	class	by
adding	improved	collision	detection	and	response,	managing	multiple	animations,	and
implementing	physics-based	movement.

Cheese,	Please!	Revisited
Looking	at	the	final	version	of	the	code	from	the	previous	chapter’s	game	(Cheese,
Please!),	you	can	observe	that	the	Screen-implementing	classes	contain	similar	data
(such	as	Stage	objects)	and	perform	similar	tasks	(such	as	calling	the	act	and	draw
methods	of	the	stages).	In	computer	programming,	you’d	like	to	remove	repetition	and
create	reusable	code	whenever	possible,	so	that	your	code	is	easier	to	understand	and
maintain.	You’ll	address	this	issue	in	this	section.	In	addition,	you’ll	introduce	some	new
functionality	to	each	of	these	classes:

The	ability	to	handle	discrete	input	events—actions	that	occur	only
once	when	a	key	is	pressed	or	a	mouse	button	is	clicked

The	ability	to	pause	the	game,	which	requires	the	Boolean	variable
paused	to	determine	whether	the	game	is	currently	paused,	and	some
associated	helper	methods:	isPaused,	setPaused,	and
togglePaused

The	ability	to	resize	the	window	and	have	the	game	world	entities
scale	appropriately	in	response

To	this	end,	you’ll	create	a	new	class,	called	BaseScreen,	which	manages	the	data
and	handles	the	new	and	old	tasks	that	your	classes	have	in	common.	Then,	your	other
game-play-centric	classes	will	extend	the	BaseScreen	class,	which	will	simplify	your
code	greatly.	Before	you	start	writing	this	class,	however,	you	need	to	learn	about	two
implementation-related	issues	in	detail:	discrete	input	and	abstract	class	design.

Discrete	Input

Previously,	the	method	you	used	to	process	input	is	called	polling:	checking	the	state	of
the	input	hardware	devices	(such	as	the	keyboard)	during	every	iteration	of	the	game	loop.
This	approach	is	particularly	well-suited	for	continuous	actions—those	that	continue	to
happen	during	an	interval	of	time,	as	long	as	the	corresponding	trigger	is	active.	For
instance,	the	player’s	character	should	continue	to	move	(barring	the	presence	of	solid
obstacles	such	as	walls)	for	as	long	as	the	player	is	pressing	an	arrow	key.

In	contrast,	an	action	such	as	jumping	is	called	a	discrete	action,	since	it	happens	only
once	per	key	press.	Even	if	the	player	continues	to	hold	down	the	jump	key,	the	player’s
character	will	not	jump	again	until	the	jump	key	is	released	and	pressed	a	second	time
(provided	that	the	character	is	on	the	ground	again!).

Discrete	actions	are	tricky	to	handle	using	the	polling	approach,	and	so	the	LibGDX
library	provides	an	event-driven	approach.	This	involves	writing	functions	that	are
automatically	called	when	certain	events	occur	(such	as	the	initial	press	or	release	of	a
key,	or	click	of	a	mouse	button).

Any	object	can	be	assigned	the	responsibility	of	responding	to	input	events,	but	in
order	to	do	so	correctly,	it	must	contain	a	particular	set	of	methods:	those	specified	by	the
InputProcessor	interface.	There	are	eight	of	these	methods	altogether:	keyDown,
keyUp,	and	keyTyped	to	handle	keyboard	events;	touchDown,	touchUp,	and
touchDragged	to	handle	both	mouse	and	touch-screen	events;	mouseMoved	and
scrolled	to	handle	mouse	events.	We’ll	discuss	these	methods	further	during	the	source
code	listing	for	the	BaseScreen	class.

The	final	question	we	need	to	address	in	this	section	is	this:	which	component	of	your
program	should	bear	the	responsibility	of	responding	to	input	events?	For	example,	the
Stage	class	implements	the	InputProcessor	interface;	this	is	particularly	helpful	for
a	Stage	that	contains	user	interface	elements,	because	it	enables	button-like	objects	to
activate	methods	when	they	are	clicked.	At	the	same	time,	you	are	planning	for	the
BaseScreen	class	to	also	implement	the	InputProcessor	interface	so	that	it	can
handle	discrete	input	as	described	earlier.	Should	the	Stage	class	or	the	BaseScreen
class	be	in	charge	of	responding	to	input	events?	In	practice,	you	want	both	objects	to
have	the	opportunity	to	do	so.	The	way	this	arrangement	will	be	implemented	in	your	code
is	via	the	InputMultiplexer	class.	An	InputMultiplexer	object	is	itself	an
InputProcessor	that	contains	a	list	of	other	InputProcessors.	You	can	add	the
Stage	and	BaseScreen	objects	to	an	InputMultiplexer,	and	when	input	events
occur,	the	InputMultiplexer	will	forward	along	the	information	to	each	of	these
objects	and	give	them	the	opportunity	to	respond	accordingly.

Abstract	Class	Design
Another	design	consideration	you	have	to	address	is	which	classes	should	implement
which	methods.	In	the	BaseScreen	class	you	will	be	writing,	you	will	be	providing	the
code	for	some	methods,	such	as	the	constructor	and	render	methods.	For	other	methods,
such	as	create,	the	classes	extending	BaseScreen	should	be	required	to	provide	the
code.	Conceptually,	the	role	of	BaseScreen	lies	somewhere	between	a	standard	class,

where	all	of	the	methods	are	fully	implemented,	and	an	interface,	where	the	methods	are
only	declared.	In	Java,	this	functionality	can	be	achieved	by	an	abstract	class.

ABSTRACT	CLASSES

Often	in	programming,	we’ll	try	to	reduce	redundant	code	by	refactoring	repeated
features	in	a	base	class,	and	then	extending	that	class	with	specialized	subclasses.
Sometimes,	we’ll	know	that	all	of	the	extending	classes	will	need	to	implement	a
particular	method—but	they	will	all	do	it	in	a	different	way,	so	we	can’t	write	the
code	ahead	of	time	in	the	base	class,	but	we	do	need	to	declare	the	method	in	the	base
class.

For	example,	we	might	create	a	fantasy-style	role-playing	game.	Our	base	class,
Person,	will	contain	some	standard	fields	and	methods	that	all	Person	objects
should	have,	like	a	String	called	name	that	stores	the	name	of	the	person,	and	get
and	set	methods	to	access	this	information.	There	may	be	two	classes,	Wizard	and
Warrior,	that	extend	the	Person	class.	The	user	interface	of	this	game	contains	a
Sword	button	that	activates	the	useSword	method	of	the	Person	class,	while	a
Spell	button	activates	a	useSpell	method.

Although	the	Person	class	will	declare	these	methods,	their	implementation	will
differ	greatly	in	the	Wizard	and	Warrior	classes.	Traditionally,	warriors	wield
swords,	and	wizards	do	not;	wizards	cast	magic	spells,	and	warriors	do	not.	If	the
player	clicks	a	button	corresponding	to	an	action	that	a	character	is	unable	to
perform,	we	may	want	a	message	to	display	onscreen	explaining	this.

The	programming	difficulty	is	that	we	want	to	require	extensions	of	the	Person
class	to	be	required	to	provide	code	for	the	methods	useSword	and	useSpell,	as
an	interface	does;	however,	Person	cannot	be	an	interface	because	it	provides	code
for	some	of	its	methods,	such	as	getting	and	setting	the	name	field.	In	an	interface,
methods	are	only	declared,	not	written.

The	solution	to	this	scenario	is	to	declare	the	method,	as	we	would	in	an	interface,
with	the	additional	modifier	that	the	method	is	abstract,	which	is	written	as
follows:
public	abstract	void	useSword();
public	abstract	void	useSpell();

When	one	or	more	methods	are	declared	in	this	way,	this	has	an	effect	on	the	class	as
well.	Since	not	all	of	the	code	is	provided,	we	cannot	create	an	instance	of	this	class
(again,	similar	to	an	interface).	We	must	indicate	this	by	declaring	the	class	to
abstract	as	well:
public	abstract	class	Person
{
				private	String	name;
				public	void	setName(String	n)		{	name	=	n;	}
				public	String	getName()		{	return	name;	}

				public	abstract	void	useSword();
				public	abstract	void	useSpell();
}

Now,	the	classes	that	extend	Person	must	provide	an	implementation	of	each
abstract	method.	For	example:
public	class	Wizard	extends	Person
{
				public	void	useSword()
				{
								System.out.print(“You	are	unable	to	wield	
a	sword…”);
				}

				public	void	useSpell()
				{
								//	insert	code	here	that	damages	enemies
				}
}

public	class	Warrior	extends	Person
{
				public	void	useSword()
				{
								//	insert	code	here	that	damages	enemies
				}

				public	void	useSpell()
				{
								System.out.print(“You	are	unable	to	use	magic…”);
				}
}

In	this	way,	an	abstract	class	combines	the	advantages	of	a	standard	class	and	an
interface.

You	want	every	class	that	extends	the	BaseScreen	class	to	be	required	to	implement
its	own	create	method,	since	create	will	be	called	by	the	constructor	method	of	the
BaseScreen	class.	Therefore,	you	will	write	the	method	signature	and	declare	it	to	be
abstract:

public	abstract	void	create();

Additionally,	the	use	of	abstract	methods	enables	you	to	address	a	design	concern	from
the	previous	chapter.	When	we	discussed	the	stages	of	the	life	cycle	of	a	game	program,
you	observed	that	LibGDX	uses	the	render	method	to	perform	the	game-loop	tasks.
However,	rendering	graphics	is	really	only	one	of	three	tasks	performed	in	the	game	loop,
the	others	being	processing	input	and	updating	the	state	of	the	game	world.	You	can	use

abstract	classes	to	help	separate	out	the	update	and	render	functionality.	Within	the
render	method	of	the	BaseScreen	class,	you’ll	start	by	calling	an	abstract	method
named	update,	and	then	the	BaseScreen	class	will	proceed	to	perform	all	the
rendering	code.	Overall,	this	greatly	reduces	the	complexity	for	the	developers	who	write
the	classes	that	extend	BaseScreen;	their	primary	focus	is	to	write	the	methods
create	and	update.

Refactoring	the	Project
This	section	introduces	the	BaseScreen	class.	In	particular,	the	code	you	write	will
handle	the	following	tasks,	in	common	to	all	your	Screen–extending	classes:

Provide	a	reference	to	the	Game	object	that	instantiated	the	current
class

Initialize	the	mainStage	and	uiStage	objects

In	the	render	method,	call	the	act	method	of	the	stages,	clear	the
screen,	and	then	call	the	draw	method	of	the	stages

Provide	empty	methods	for	all	the	Screen	interface	methods	and
InputProcessor	interface	methods	not	needed	by	your	program

Provide	methods	for	pausing	the	game	and	resizing	the	window

At	this	point,	create	a	new	project	in	BlueJ,	and	copy	all	of	the	classes	from	the
previous	version	of	the	Cheese,	Please!	game	project.	Then	create	a	new	class	called
BaseScreen,	as	described	next.

First,	you	present	the	core	of	the	BaseScreen	class,	which	contains	the	import
statements	and	variable	declarations	needed.	The	various	methods	of	this	class	will	be
explained	in	the	subsequent	code	listings.

import	com.badlogic.gdx.Screen;
import	com.badlogic.gdx.InputProcessor;
import	com.badlogic.gdx.Game;
import	com.badlogic.gdx.Gdx;
import	com.badlogic.gdx.graphics.GL20;
import	com.badlogic.gdx.scenes.scene2d.Stage;
import	com.badlogic.gdx.utils.viewport.FitViewport;
import	com.badlogic.gdx.InputMultiplexer;

public	abstract	class	BaseScreen	implements	Screen,	
InputProcessor
{
				protected	Game	game;

				protected	Stage	mainStage;

				protected	Stage	uiStage;

				public	final	int	viewWidth		=	640;
				public	final	int	viewHeight	=	480;

				private	boolean	paused;
}

Next,	you	have	the	constructor,	which	stores	a	reference	to	the	Game	object,	initializes
the	Stage	objects,	sets	pause	to	false,	sets	up	the	InputMultiplexer	to	receive
all	input	data	and	pass	it	along	to	this	class	and	the	stages,	and	calls	the	create	method.
Note	that	each	Stage	is	initialized	with	a	FitViewport	object;	this	object	scales	each
Stage	and	its	contents	to	fit	the	current	window	size,	and	if	the	aspect	ratio	of	the
window	does	not	match	that	of	the	Stage,	then	the	extra	region	is	filled	in	with	solid
black.

public	BaseScreen(Game	g)
{
				game	=	g;

				mainStage	=	new	Stage(new	FitViewport(viewWidth,	
viewHeight));
				uiStage			=	new	Stage(new	FitViewport(viewWidth,	
viewHeight));

				paused	=	false;

				InputMultiplexer	im	=	new	InputMultiplexer(this,	uiStage,	
mainStage);
				Gdx.input.setInputProcessor(im);

				create();
}

After	this,	you	include	the	abstract	methods	create	and	update,	which	must	be
implemented	by	any	classes	that	extend	BaseScreen:

public	abstract	void	create();

public	abstract	void	update(float	dt);

Following	this	is	the	render	method,	which	runs	the	game	loop.	You	include	the
code	that	updates	the	stages,	calls	the	update	method,	and	draws	the	graphics:

//	gameloop	code;	update,	then	render.
public	void	render(float	dt)
{
				uiStage.act(dt);

				//	only	pause	gameplay	events,	not	UI	events
				if	(!isPaused())
				{
								mainStage.act(dt);
								update(dt);
				}

				//	render
				Gdx.gl.glClearColor(0,0,0,1);
				Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);
				mainStage.draw();
				uiStage.draw();
}

Then	you	have	the	methods	that	provide	pausing	functionality	for	your	games:

//	pause	methods
public	boolean	isPaused()
{		return	paused;		}

public	void	setPaused(boolean	b)
{		paused	=	b;		}

public	void	togglePaused()
{		paused	=	!paused;		}

Also,	you	enter	code	in	the	resize	method	of	the	Screen	interface	to	adjust	the
size	of	the	stages’	Viewport	objects	whenever	the	window	size	is	changed:

public	void	resize(int	width,	int	height)
				{
								mainStage.getViewport().update(width,	height,	true);
								uiStage.getViewport().update(width,	height,	true);
				}

Finally,	you	write	empty	versions	of	the	remaining	methods	required	by	the	Screen
and	InputProcessor	interfaces,	so	that	the	classes	extending	BaseScreen	don’t
have	to	do	so:

//	methods	required	by	Screen	interface
public	void	pause()			{		}
public	void	resume()		{		}
public	void	dispose()	{		}
public	void	show()				{		}
public	void	hide()				{		}

//	methods	required	by	InputProcessor	interface

public	boolean	keyDown(int	keycode)
{		return	false;		}
public	boolean	keyUp(int	keycode)
{		return	false;		}
public	boolean	keyTyped(char	c)
{		return	false;		}
public	boolean	mouseMoved(int	screenX,	int	screenY)
{		return	false;		}
public	boolean	scrolled(int	amount)
{		return	false;		}

public	boolean	touchDown(int	screenX,	int	screenY,	int	
pointer,	int	button)
{		return	false;		}
public	boolean	touchDragged(int	screenX,	int	screenY,	int	
pointer)
{		return	false;		}
public	boolean	touchUp(int	screenX,	int	screenY,	int	
pointer,	int	button)
{		return	false;		}

Now,	you	will	see	how	the	BaseScreen	class	can	be	used	to	simplify	the	classes
CheeseMenu	and	CheeseLevel	from	the	previous	version	of	the	Cheese,	Please!
game.	The	game-specific	classes	no	longer	need	to	deal	with	much	of	the	infrastructure,
such	as	declaring	and	initializing	Game	and	Stage	variables.	Each	is	required	to	contain
only	two	methods:	create	and	update.	The	update	method	contains	much	of	the
code	originally	present	in	the	render	method,	notable	exceptions	being	the	absence	of
the	calls	to	the	each	stage’s	act	methods,	and	all	the	code	that	actually	performed
rendering	operations.	For	demonstration	purposes,	you	will	also	overwrite	the	keyDown
method;	it	is	particularly	well	suited	for	the	discrete	event	of	switching	screens,	and	using
the	new	pause	functionality	(which	is	triggered	in	the	game	by	pressing	the	P	key).	To
implement	this	code,	it	may	be	easiest	to	start	with	the	code	from	the	previous	version	of
the	class	and	make	modifications	and	deletions	where	necessary.

The	following	is	the	rewritten	code	for	the	CheeseMenu	class,	starting	with	the	core
code:	the	import	statements	and	constructor.	Note	in	particular	that	there	are	fewer
import	statements;	you	are	now	extending	the	BaseScreen	class	rather	than	the
Screen	class,	and	you	don’t	need	to	declare	a	Game	or	Stage	variable	(as	the
BaseScreen	class	handles	this	for	you):

import	com.badlogic.gdx.Game;
import	com.badlogic.gdx.Gdx;
import	com.badlogic.gdx.Input.Keys;
import	com.badlogic.gdx.graphics.Color;
import	com.badlogic.gdx.graphics.Texture;
import	com.badlogic.gdx.scenes.scene2d.ui.Label;

import	com.badlogic.gdx.scenes.scene2d.ui.Label.LabelStyle;
import	com.badlogic.gdx.scenes.scene2d.actions.Actions;
import	com.badlogic.gdx.graphics.g2d.BitmapFont;

public	class	CheeseMenu	extends	BaseScreen
{
				public	CheeseMenu(Game	g)
				{		super(g);		}

}

The	create	method	of	the	BaseScreen	class	follows;	here,	note	that	you	don’t
need	to	initialize	the	Stage	object:

public	void	create()
{
				BaseActor	background	=	new	BaseActor();
				background.setTexture(new	
Texture(Gdx.files.internal("assets/tiles-menu.jpg")));
				uiStage.addActor(background);

				BaseActor	titleText	=	new	BaseActor();
				titleText.setTexture(new	
Texture(Gdx.files.internal("assets/cheese-please.png")));
				titleText.setPosition(20,	100);
				uiStage.addActor(titleText);

				BitmapFont	font	=	new	BitmapFont();
				String	text	=	"	Press	S	to	start,	M	for	main	menu	";
				LabelStyle	style	=	new	LabelStyle(font,	Color.YELLOW);
				Label	instructions	=	new	Label(text,	style);
				instructions.setFontScale(2);
				instructions.setPosition(100,	50);
				//	repeating	color	pulse	effect
				instructions.addAction(
								Actions.forever(
												Actions.sequence(
																Actions.color(new	Color(1,	1,	0,	1),	0.5f),
																Actions.delay(0.5f),
																Actions.color(new	Color(0.5f,	0.5f,	0,	1),	
0.5f)
)
)
);
				uiStage.addActor(instructions);
}

Finally,	the	following	is	the	code	for	the	remaining	two	methods.	First	you	have	the

update	method,	which	replaces	the	render	method	from	the	previous	version	of	this
class	and	contains	only	the	code	pertaining	to	the	game	logic;	note	the	absence	of	the
drawing	code.	The	only	input	you	processed	in	the	previous	version	was	checking	to	see
whether	the	S	key	was	being	held	down.	Since	this	is	more	accurately	represented	as	a
discrete	event,	you’ll	move	this	code	into	the	keyDown	method	of	the
InputProcessor	interface,	overriding	the	empty	version	from	the	BaseScreen
class.	As	it	turns	out,	this	means	that	no	code	is	left	within	the	update	method,	but	you
must	include	the	method	even	though	the	body	is	empty,	because	it	was	declared
abstract	in	the	BaseScreen	class.

public	void	update(float	dt)
{

}

//	InputProcessor	methods	for	handling	discrete	input
public	boolean	keyDown(int	keycode)
{
				if	(keycode	==	Keys.S)
								game.setScreen(new	CheeseLevel(game));

				return	false;
}

This	completes	the	code	for	the	CheeseMenu	class.	Next	is	the	code	for	the	rewritten
CheeseLevel	class.	As	before,	you	start	with	the	core	of	the	class:	import	statements,
variable	declarations,	and	the	constructor:

import	com.badlogic.gdx.Game;
import	com.badlogic.gdx.Gdx;
import	com.badlogic.gdx.Input.Keys;
import	com.badlogic.gdx.graphics.Color;
import	com.badlogic.gdx.graphics.Texture;
import	com.badlogic.gdx.math.Rectangle;;
import	com.badlogic.gdx.scenes.scene2d.Action;
import	com.badlogic.gdx.scenes.scene2d.actions.Actions;
import	com.badlogic.gdx.graphics.Texture.TextureFilter;
import	com.badlogic.gdx.graphics.g2d.TextureRegion;
import	com.badlogic.gdx.graphics.g2d.Animation;
import	com.badlogic.gdx.graphics.g2d.Animation.PlayMode;
import	com.badlogic.gdx.utils.Array;
import	com.badlogic.gdx.scenes.scene2d.ui.Label;
import	com.badlogic.gdx.scenes.scene2d.ui.Label.LabelStyle;
import	com.badlogic.gdx.graphics.g2d.BitmapFont;
import	com.badlogic.gdx.graphics.Camera;
import	com.badlogic.gdx.math.MathUtils;

public	class	CheeseLevel	extends	BaseScreen
{
				private	AnimatedActor	mousey;
				private	BaseActor	cheese;
				private	BaseActor	floor;
				private	BaseActor	winText;
				private	boolean	win;
				private	float	timeElapsed;
				private	Label	timeLabel;

				//	game	world	dimensions
				final	int	mapWidth	=	800;
				final	int	mapHeight	=	800;

				public	CheeseLevel(Game	g)
				{		super(g);		}

}

Next,	is	the	code	for	the	create	method,	once	again	devoid	of	initializing	the
Stage	objects:

public	void	create()
{
				timeElapsed	=	0;

				floor	=	new	BaseActor();
				floor.setTexture(new	
Texture(Gdx.files.internal("assets/tiles-800-800.jpg")));
				floor.setPosition(0,	0);
				mainStage.addActor(floor);

				cheese	=	new	BaseActor();
				cheese.setTexture(new	
Texture(Gdx.files.internal("assets/cheese.png")));
				cheese.setPosition(400,	300);
				cheese.setOrigin(cheese.getWidth()/2,	
cheese.getHeight()/2);
				mainStage.addActor(cheese);

				mousey	=	new	AnimatedActor();

				TextureRegion[]	frames	=	new	TextureRegion[4];
				for	(int	n	=	0;	n	<	4;	n++)
				{
								String	fileName	=	"assets/mouse"	+	n	+	".png";
								Texture	tex	=	new	

Texture(Gdx.files.internal(fileName));
								tex.setFilter(TextureFilter.Linear,	
TextureFilter.Linear);
								frames[n]	=	new	TextureRegion(tex);
				}
				Array<TextureRegion>	framesArray	=	new	
Array<TextureRegion>(frames);

				Animation	anim	=	new	Animation(0.1f,	framesArray,	
Animation.PlayMode.LOOP_PINGPONG);

				mousey.setAnimation(anim);
				mousey.setOrigin(mousey.getWidth()/2,	
mousey.getHeight()/2);
				mousey.setPosition(20,	20);
				mainStage.addActor(mousey);

				winText	=	new	BaseActor();
				winText.setTexture(new	
Texture(Gdx.files.internal("assets/you-win.png")));
				winText.setPosition(170,	60);
				winText.setVisible(false);
				uiStage.addActor(winText);

				BitmapFont	font	=	new	BitmapFont();
				String	text	=	"Time:	0";
				LabelStyle	style	=	new	LabelStyle(font,	Color.NAVY);
				timeLabel	=	new	Label(text,	style);
				timeLabel.setFontScale(2);
				timeLabel.setPosition(500,440);	//	sets	bottom	left	
(baseline)	corner?
				uiStage.addActor(timeLabel);

				win	=	false;
}

Finally,	you	have	the	code	for	the	update	method,	which	is	a	subset	of	the	code	of
the	render	method	of	the	previous	version.	As	was	the	case	with	the	previous	update
method,	you	no	longer	need	to	call	the	act	or	draw	methods	of	the	stages.	The	code	that
processes	input	pertaining	to	movement	of	the	player,	a	continuous	action,	remains	in	the
update	method;	the	code	for	discrete	actions	(switching	screens	and	pausing	the	game)
is	moved	to	a	keyDown	method,	also	presented	here:

public	void	update(float	dt)
{
				//	process	input
				mousey.velocityX	=	0;

				mousey.velocityY	=	0;

				if	(Gdx.input.isKeyPressed(Keys.LEFT))
								mousey.velocityX	-=	100;
				if	(Gdx.input.isKeyPressed(Keys.RIGHT))
								mousey.velocityX	+=	100;;
				if	(Gdx.input.isKeyPressed(Keys.UP))
								mousey.velocityY	+=	100;
				if	(Gdx.input.isKeyPressed(Keys.DOWN))
								mousey.velocityY	-=	100;

				//	bound	mousey	to	the	rectangle	defined	by	mapWidth,	
mapHeight
				mousey.setX(MathUtils.clamp(mousey.getX(),	0,		mapWidth	
-	mousey.getWidth()));
				mousey.setY(MathUtils.clamp(mousey.getY(),	
0,		mapHeight	-	mousey.getHeight()));

				//	check	win	condition:	mousey	must	be	overlapping	cheese
				Rectangle	cheeseRectangle	
=	cheese.getBoundingRectangle();
				Rectangle	mouseyRectangle	
=	mousey.getBoundingRectangle();

				if	(!win	&&	cheeseRectangle.contains(mouseyRectangle	
))
				{
								win	=	true;

								Action	spinShrinkFadeOut	=	Actions.parallel(
												Actions.alpha(1),									//	set	transparency	
value
												Actions.rotateBy(360,	1),	//	rotation	amount,	
duration
												Actions.scaleTo(0,0,	2),		//	x	amount,	y	amount,	
duration
												Actions.fadeOut(1)								//	duration	of	fade	in
);
								cheese.addAction(spinShrinkFadeOut);

								Action	fadeInColorCycleForever	=	Actions.sequence(
												Actions.alpha(0),			//	set	transparency	value
												Actions.show(),					//	set	visible	to	true
												Actions.fadeIn(2),		//	duration	of	fade	out
												Actions.forever(
																Actions.sequence(
																				//	color	shade	to	approach,	duration

																				Actions.color(new	Color(1,0,0,1),	1),
																				Actions.color(new	Color(0,0,1,1),	1)
)
)
);
								winText.addAction(fadeInColorCycleForever);
				}

				if	(!win)
				{
								timeElapsed	+=	dt;
								timeLabel.setText("Time:	"	+	(int)timeElapsed);
				}

				//	camera	adjustment
				Camera	cam	=	mainStage.getCamera();

				//	center	camera	on	player
				cam.position.set(mousey.getX()	+	mousey.getOriginX(),
								mousey.getY()	+	mousey.getOriginY(),	0);

				//	bound	camera	to	layout
				cam.position.x	=	MathUtils.clamp(cam.position.x,	
viewWidth/2,		mapWidth-viewWidth/2);
				cam.position.y	=	MathUtils.clamp(cam.position.y,	
viewHeight/2,	mapHeight-viewHeight/2);
				cam.update();
}

//	InputProcessor	methods	for	handling	discrete	input
public	boolean	keyDown(int	keycode)
{
				if	(keycode	==	Keys.M)
								game.setScreen(new	CheeseMenu(game));

				if	(keycode	==	Keys.P)
								togglePaused();

				return	false;
}

This	completes	the	refactoring	of	the	code	for	the	Cheese,	Please!	game.

At	this	point,	your	project	contains	many	classes	that	depend	on	each	other	in	various
ways.	The	BlueJ	window	represents	each	class	with	an	orange	rectangle,	and	the
relationships	between	the	classes	are	indicated	by	arrows.	Dashed	arrows	indicate	that	one
class	creates	an	instance	of	another,	while	solid	arrows	indicate	that	one	class	extends
another.	You	can	drag	and	drop	the	orange	rectangles	to	rearrange	them	so	that	the

interrelationships	are	more	clear;	one	possible	such	arrangement	appears	in	Figure	3-1.
Note	in	particular	that	you	can	visually	deduce	that	CheeseLevel	and	CheeseMenu
extend	the	BaseScreen	class.

Figure	3-1.	Relationships	between	classes	in	the	refactored	Cheese,	Please!	game	project

Now	that	you	see	how	the	BaseScreen	class	enables	you	to	streamline	your
previous	code,	in	the	next	section	you’ll	see	how	it	simplifies	the	creation	of	a	completely
new	game,	with	an	entirely	different	(mouse-driven)	control	scheme.

Balloon	Buster:	A	Mouse-Driven	Game
This	section	presents	a	game	called	Balloon	Buster,	which	serves	two	purposes:	first,	to
illustrate	the	general	applicability	of	the	BaseScreen	class	from	the	previous	section,
and	second,	to	present	a	game	that	is	played	using	only	the	mouse	(in	contrast	to	Cheese,
Please!,	which	was	played	using	only	the	keyboard).

In	Balloon	Buster,	illustrated	in	Figure	3-2,	the	player’s	goal	is	to	pop	as	many
balloons	as	possible.	Balloons	spawn	to	the	left	of	the	screen	at	regular	intervals,	and	then
drift	across	the	screen	to	the	right,	following	various	randomized	patterns.	Game	play
continues	until	the	player	decides	to	quit.	The	program	keeps	track	of	and	displays	various
statistics:	the	total	number	of	balloons	that	have	been	popped,	the

Figure	3-2.	A	screenshot	of	the	game	Balloon	Buster

number	that	have	escaped	off-screen,	and	the	hit	ratio(the	ratio	of	popped	balloons	to
mouse	clicks).	The	closer	the	hit	ratio	value	is	to	100%,	the	more	accurate	the	player	is.

At	this	point,	you	create	a	new	project	in	BlueJ.	Into	this	project,	you	need	to	copy	the
code	for	the	BaseScreen	and	BaseActor	classes.	In	addition,	you	need	a	launcher
class,	as	well	as	a	class	that	extends	Game	and	initializes	and	sets	the	first	(and	in	this
game,	only)	screen	to	be	displayed,	BalloonLevel	(described	next).	The	corresponding
classes	can	also	be	copied	over	from	the	previous	project	and	changed	as	needed.

You	will	write	a	class	called	BalloonLevel	that	extends	the	BaseScreen	class,
and	you	will	also	reuse	the	BaseActor	class	from	the	previous	game.	This	allows	you	to
focus	on	determining	the	fields	required	by	the	BalloonLevel	class,	and	the	contents
of	the	create	and	update	methods.

In	Balloon	Buster,	the	only	game	entities	that	appear	on	the	main	stage	are	a
background	image	(of	the	sky)	and	the	balloons	that	the	player	will	be	popping.	You’ll
need	a	variable	to	keep	track	of	how	much	time	has	passed	since	the	previous	balloon	was
spawned,	to	know	when	it	is	time	to	spawn	another.	You’ll	also	need	to	keep	track	of	the
number	of	popped	balloons,	escaped	balloons,	and	mouse	clicks;	Label	objects	will	be
used	to	display	each	of	these	values	on	the	user	interface	stage.	Finally,	you’ll	store	the
width	and	height	of	the	game	world,	as	they	will	be	needed	to	determine	when	a	balloon
has	flown	off-screen.	The	following	is	the	code	for	the	BalloonLevel	class	that
includes	these	variables,	as	well	as	all	the	import	statements	you	will	eventually	need.
The	create	and	update	methods	are	blank	for	now;	you	will	fill	them	in	later	in	this
section.

import	com.badlogic.gdx.Game;
import	com.badlogic.gdx.Gdx;
import	com.badlogic.gdx.graphics.Color;
import	com.badlogic.gdx.graphics.Texture;
import	com.badlogic.gdx.scenes.scene2d.Actor;
import	com.badlogic.gdx.scenes.scene2d.ui.Label;
import	com.badlogic.gdx.scenes.scene2d.ui.Label.LabelStyle;
import	com.badlogic.gdx.graphics.g2d.BitmapFont;
import	com.badlogic.gdx.scenes.scene2d.InputListener;
import	com.badlogic.gdx.scenes.scene2d.InputEvent;

public	class	BalloonLevel	extends	BaseScreen
{
				private	BaseActor	background;

				private	float	spawnTimer;
				private	float	spawnInterval;

				private	int	popped;
				private	int	escaped;
				private	int	clickCount;

				private	Label	poppedLabel;
				private	Label	escapedLabel;
				private	Label	hitRatioLabel;

				//	game	world	dimensions
				final	int	mapWidth	=	640;
				final	int	mapHeight	=	480;

				public	BalloonLevel(Game	g)
				{		super(g);		}

				public	void	create()
				{						}

				public	void	update(float	dt)
				{						}
}

Balloons
The	balloon	entities	are	particularly	interesting,	from	a	coding	standpoint.	You’d	like	each
balloon	to	move	a	little	differently,	according	to	a	set	of	parameters	that	are	randomly
generated	at	the	time	the	balloon	is	created.	Because	you	need	each	balloon	to	store	this
information,	and	the	information	is	unique	to	each	instance,	you	need	to	write	a	class
(named	Balloon)	that	extends	the	BaseActor	class.	This	class	will	also	have	its	own

act	method	that	sets	the	position	of	the	actor	to	follow	a	sine	wave–based	path	across	the
screen.	You	calculate	the	position	of	each	balloon	parametrically:	the	x	and	the	y
coordinates	are	each	a	function	of	another	variable,	time,	which	represents	the	amount	of
time	that	has	passed	since	the	Balloon	object	was	created.	As	time	passes,	the	x
coordinate	of	the	balloon	steadily	increases,	while	the	y	coordinate	is	calculated	according
to	this	formula:

y	=	A	×	sin(B	×	x)	+	C

where	A	controls	the	amplitude	(or	height)	of	the	sine	wave	(illustrated	in	Figure	3-3),	B
affects	the	rate	of	oscillation	(illustrated	in	Figure	3-4),	and	C	controls	the	initial	height.

Figure	3-3.	Sine	waves	with	different	amplitudes:	small	(dashed	line)	and	large	(solid	line)

Figure	3-4.	Sine	waves	with	different	rates	of	oscillation:	small	(dashed	line)	and	large	(solid	line)

The	constructor	of	the	Balloon	object	initializes	and	randomizes	the	values	used	in
this	formula	(and	also	loads	a	texture).	You	use	some	functions	from	the	MathUtils
class.	The	random	method	produces	a	randomly	generated	float	value	between	the	two
given	inputs,	which	you	use	to	introduce	some	variation	in	the	parameters	that	control	the
path	of	the	balloon.	The	sin	method	calculates	the	values	of	a	sine	wave	function.	You
also	initially	offset	the	x	position	to	beyond	the	left	edge	of	the	screen	so	that	the	balloon
objects	don’t	suddenly	appear	in	the	middle	of	the	sky.	The	source	code	for	this	class	is
given	here:

import	com.badlogic.gdx.Gdx;
import	com.badlogic.gdx.math.MathUtils;
import	com.badlogic.gdx.graphics.Texture;

public	class	Balloon	extends	BaseActor
{

				public	float	speed;
				public	float	amplitude;
				public	float	oscillation;
				public	float	initialY;
				public	float	time;
				public	int	offset;

				public	Balloon()
				{
								speed							=	80				*	MathUtils.random(0.5f,	2.0f);
								amplitude			=	50				*	MathUtils.random(0.5f,	2.0f);
								oscillation	=	0.01f	*	MathUtils.random(0.5f,	2.0f);
								initialY				=	120			*	MathUtils.random(0.5f,	2.0f);
								time	=	0;
								offsetX	=	-100;
								setTexture(new	Texture(
Gdx.files.internal("assets/red-balloon.png")));

								//	initial	spawn	location	off-screen
								setX(offsetX);
				}

				public	void	act(float	dt)
				{
								super.act(dt);
								time	+=	dt;
								//	set	starting	location	to	left	of	window
								float	xPos	=	speed	*	time	+	offsetX;
								float	yPos	=	amplitude	*	MathUtils.sin(oscillation	
*	xPos)	+	initialY;
								setPosition(xPos,	yPos);
				}
}

Next,	you’ll	learn	about	the	create	method	of	the	BalloonLevel	class.	This
initializes	most	of	the	variables	discussed	previously,	adding	a	background	image	to	the
main	stage,	creating	a	BitmapFont	and	LabelStyle	for	the	Label	objects	to	use,
and	then	adding	each	Label	object	to	the	stage	containing	the	user	interface	elements.
The	one	object	that	is	not	initialized	here	is	the	Balloon	object;	these	are	handled	by	the
update	method,	which	is	discussed	later.

public	void	create()
{
				background	=	new	BaseActor();
				background.setTexture(new	
Texture(Gdx.files.internal("assets/sky.jpg")));
				background.setPosition(0,	0);

				mainStage.addActor(background);

				spawnTimer	=	0;
				spawnInterval	=	0.5f;

				//	set	up	user	interface
				BitmapFont	font	=	new	BitmapFont();
				LabelStyle	style	=	new	LabelStyle(font,	Color.NAVY);

				popped	=	0;
				poppedLabel	=	new	Label("Popped:	0",	style);
				poppedLabel.setFontScale(2);
				poppedLabel.setPosition(20,	440);
				uiStage.addActor(poppedLabel);

				escaped	=	0;
				escapedLabel	=	new	Label("Escaped:	0",	style);
				escapedLabel.setFontScale(2);
				escapedLabel.setPosition(220,	440);
				uiStage.addActor(escapedLabel);

				clickCount	=	0;
				hitRatioLabel	=	new	Label("Hit	Ratio:	---",	style);
				hitRatioLabel.setFontScale(2);
				hitRatioLabel.setPosition(420,	440);
				uiStage.addActor(hitRatioLabel);
}

Adding	Interactivity
This	section	covers	the	contents	of	the	update	method.	You	update	the	spawnTimer,
and	once	it	exceeds	a	predefined	period	(stored	in	spawnInterval),	you	create	a	new
Balloon	instance.	Most	significantly	in	this	portion	of	the	code,	you	add	an	object	to	the
Balloon	that	allows	it	to	process	input.	You	may	recall	from	our	discussion	of	the
InputMultiplexer	object	earlier	in	this	chapter	that	discrete	input	events	can	be
processed	by	classes	implementing	the	InputProcessor	interface,	as	well	as	Actor
objects	(and	for	this	reason,	you	included	the	Stage	objects	when	creating	the
InputMultiplexer).	You	specify	how	an	Actor	should	respond	to	an	input	event	via
an	InputListener	object,	which	contains	methods	corresponding	to	the	different	types
of	input	that	can	be	handled.	Since	each	custom	InputListener	object	is	used	within
only	a	single	line	of	code	in	our	program,	you	can	simplify	your	code	by	creating
anonymous	inner	classes.

ANONYMOUS	INNER	CLASSES

One	of	the	reasons	we	create	variables	when	writing	a	program	is	so	that	we	can	refer
to	them	again	at	a	later	point	in	the	code.	Sometimes,	however,	we	need	to	use	an

instance	only	once	in	a	program,	and	there	is	no	need	to	refer	to	it	later.	For	example,
we	might	want	to	use	a	Scanner	object	to	process	the	contents	of	a	text	file.	To	this
end,	we	can	create	a	File	object	that	provides	access	to	the	text	file,	and	pass	this	to
the	Scanner	object,	as	follows:

File	f	=	new	File(“data.txt”);
Scanner	s	=	new	Scanner(f);

However,	since	we	never	need	to	access	the	File	object	later	in	this	program,	we
could	alternatively	create	an	anonymous1	File	instance	at	the	single	point	in	the
code	where	it	is	needed:	during	the	initialization	of	the	Scanner	object.

Scanner	s	=	new	Scanner(new	File(“data.txt”));

In	Java,	not	only	can	preexisting	classes	be	initialized	in	this	way,	but	also	new
classes	can	be	created	as	well.	For	example,	perhaps	you	are	creating	a	game	in
which	a	character	collects	Scroll	objects,	via	a	method	called	addScroll;	each
Scroll	can	display	a	different	message.	The	Scroll	class	is	given	as	follows:

public	class	Scroll
{
				public	void	displayMessage()		{		}
}

This	class	is	meant	to	be	extended	so	that	the	displayMessage	method	can	be
overwritten.	However,	if	every	Scroll-derived	object	is	instantiated	at	only	a	single
point	in	the	program,	creating	files	for	all	these	classes	results	in	a	lot	of	unnecessary
extra	code.	For	example,	we	could	create	a	class	called	TreasureScroll	as
follows:
public	class	TreasureScroll	extends	Scroll
{
				public	void	displayMessage()
				{		System.out.print(“The	treasure	is	buried	in	the	
castle	garden.”);		}
}

Then	we	could	create	an	anonymous	instance	of	this	object	when	the	player	adds	it	to
their	Scroll	collection:

player.addScroll(new	TreasureScroll());

We	can	create	an	anonymous	inner	class	to	accomplish	the	same	goal	with	the
following	code:
player.addScroll(
				new	Scroll()
				{
								public	void	displayMessage()
								{		System.out.print(“The	treasure	is	buried	in	the	
castle	garden.”);		}

				}
);

Within	the	call	to	addScroll,	we’ve	created	an	instance	of	a	new	object,	which
extends	the	Scroll	class,	and	includes	a	set	of	braces	where	fields	and	method
declarations	can	be	placed,	just	as	with	a	regular	class.	This	new	object	is
anonymous,	since	neither	the	instance	nor	the	class	are	named,	and	is	an	inner	class
because	it	is	a	class	defined	within	another	class.

The	same	approach	is	also	valid	when	working	with	interfaces.	For	example,	assume
that	Scroll	had	been	defined	as	an	interface	instead	of	a	class,	as	follows:

public	interface	Scroll
{
				public	void	displayMessage();
}

In	this	situation,	when	an	anonymous	inner	class	is	created	and	passed	as	a	parameter
to	the	addScroll	method,	the	parameter	will	be	interpreted	as	a	class	that
implements	the	Scroll	interface.

This	programming	pattern	is	particularly	useful	when	creating	objects	that	contain
code	detailing	how	to	respond	to	user	input,	since	such	objects	are	typically	needed
only	once,	as	an	argument	to	an	input-processing	method.

You	will	create	an	anonymous	inner	class	that	extends	the	InputListener	class
and	contains	a	single	method,	named	touchDown,	that	is	called	when	the	user	touches	or
clicks	within	the	rectangular	region	defined	by	the	actor.	Within	this	method,	you	make
the	actor	remove	itself	from	the	stage	that	contains	it.	You	also	increment	the	number	of
popped	balloons;	this	latter	instruction	is	why	the	InputListener	is	added	within	the
BalloonLevel	class	rather	than	the	Balloon	class:	it	needs	to	access	the	popped
variable	in	the	BalloonLevel	class.

Next,	in	the	update	method,	you	use	a	for-each	loop	that	iterates	through	the	set
of	all	actors	stored	in	the	mainStage	object,	checks	whether	they	have	passed	beyond
the	boundaries	of	the	screen,	and	if	so,	removes	them	from	the	stage	and	increments
escaped,	the	number	of	escaped	balloons.2

Finally,	in	the	update	method,	you	update	the	text	of	the	Label	objects	in	the	user
interface.	You	are	particularly	careful	to	update	only	the	Label	displaying	the	hit	ratio
information	after	clickCount	is	greater	than	0,	to	avoid	a	division-by-zero	runtime
error.

You’re	now	ready	for	the	complete	source	code	of	the	update	method:

public	void	update(float	dt)
{
				spawnTimer	+=	dt;
				//	check	time	for	next	balloon	spawn

				if	(spawnTimer	>	spawnInterval)
				{
								spawnTimer	-=	spawnInterval;
								Balloon	b	=	new	Balloon();
								b.addListener(
										new	InputListener()
										{
													public	boolean	touchDown	(InputEvent	ev,	float	x,	
float	y,	int	pointer,	int	button)
													{
																	popped++;
																	b.remove();
																	return	true;
													}
											});
								mainStage.addActor(b);
				}

				//	remove	balloons	that	are	off-screen
				for	(Actor	a	:	mainStage.getActors())
				{
								if	(a.getX()	>	mapWidth	||	a.getY()	>	mapHeight)
								{
												escaped++;
												a.remove();
								}
				}

				//	update	user	interface
				poppedLabel.setText("Popped:	"	+	popped);
				escapedLabel.setText("Escaped:	"	+	escaped);
				if	(clickCount	>	0)
				{
								int	percent	=	(int)(100.0	*	popped	/	clickCount);
								hitRatioLabel.setText("Hit	Ratio:	"	+	percent	+	"%"	
);
				}
}

You	may	have	noticed	that	you	didn’t	change	the	value	of	clickCount,	the	number
of	mouse	clicks,	anywhere	within	the	update	method.	This	is	because	clicking	a	mouse
button	is	a	discrete	action,	and	is	best	handled	by	the	touchDown	method	in	the
BalloonLevel	class.	(Recall	that	all	classes	that	implement	the	InputProcessor
interface	have	a	touchDown	method,	and	because	of	our	use	of	the
InputMultiplexer	class,	each	one	of	these	classes	will	have	a	chance	to	process	user
input.)	To	accomplish	this,	you	add	the	following	code	immediately	following	the

update	method:

public	boolean	touchDown(int	screenX,	int	screenY,	int	
pointer,	int	button)
{
				clickCount++;
				return	false;
}

In	addition,	as	usual,	you	need	to	create	a	new	class	that	extends	the	Game	class:

import	com.badlogic.gdx.Game;
public	class	BalloonGame	extends	Game
{
				public	void	create()
				{
								BalloonLevel	z	=	new	BalloonLevel(this);
								setScreen(z);
				}
}

And	also	as	usual,	you	need	to	create	a	new	driver	class:

import	com.badlogic.gdx.backends.lwjgl.LwjglApplication;
public	class	BalloonLauncher
{
				public	static	void	main	()
				{
								BalloonGame	myProgram	=	new	BalloonGame();
								LwjglApplication	launcher	=	new	LwjglApplication(
myProgram);
				}
}

This	completes	the	core	mechanics	of	the	Balloon	Buster	game.	Now	is	a	good	time	to
test	out	the	game,	and	see	how	many	balloons	you	can	pop!

Next	Steps
Although	this	game	is	fully	functional,	many	features	still	could	be	changed	or	added	to
the	game	to	make	it	more	interesting	or	visually	appealing.	The	following	are	some	ideas
and	suggestions	that	you	could	implement,	or	that	may	inspire	you	to	create	other
modifications:

Add	a	start	screen	containing	a	button	image	to	click	that	starts	the
game.

Use	the	gray-balloon.png	image	instead,	and	select	a	random

Color	to	tint	the	balloon	image	when	it	is	spawned.

When	a	balloon	is	popped,	add	an	Action	that	makes	the	balloon
fade	out	slowly	instead	of	just	disappearing.

Add	an	ending	condition—perhaps	the	game	ends	after	a	fixed	amount
of	time,	or	after	a	fixed	number	of	balloons	have	escaped,	or	after	100
total	balloons	have	been	spawned.

Change	the	game-play	mechanic	entirely:	randomly	spawn	red	and
green	balloons;	popping	green	balloons	adds	to	your	score,	while
popping	red	balloons	subtracts	from	your	score	or	ends	the	game.

Anything	else	you	can	think	of—the	sky’s	the	limit!

Starfish	Collector:	A	Game	with
Improved	Actor	Classes
This	section	introduces	another	new	game,	and	the	final	game	of	this	chapter:	Starfish
Collector.	Developing	this	game	will	involve	rearranging	and	adding	some	features	to	the
BaseActor	and	AnimatedActor	classes,	as	well	as	creating	a	new	class,
PhysicsActor,	for	improved	realistic	motion.	In	these	classes	and	in	our	new	game
program,	you	will	also	use	some	of	Java’s	built-in	data	structure	classes.

DATA	STRUCTURES

Data	structures	are	specialized	formats	for	storing,	organizing,	and	accessing	data.

The	first	data	structure	typically	encountered	in	Java	programming	is	the	array,
which	can	store	a	fixed	number	of	objects	of	a	single	type;	the	values	stored	in	the
array	can	be	later	accessed	by	an	integer	that	refers	to	the	position	index	within	the
array.	While	simple	to	understand,	arrays	have	a	few	drawbacks,	such	as	having	a
fixed	size	when	they	are	created,	and	the	possibly	unintuitive	association	of	a	number
to	each	array	element.

Java	provides	a	variety	of	data	structures	that	address	these	problems,	two	of	which
are	introduced	here	(and	both	of	which	you	will	use	in	this	chapter	and	beyond).

One	of	these	data	structures	is	the	ArrayList	class.	It	can	be	used	to	store	any
number	of	objects	of	a	single	type;	its	size	is	not	fixed	and	does	not	need	to	be
specified	when	it	is	created.	Objects	can	be	added	to	a	particular	position,	similar	to
arrays,	but	objects	can	also	be	added	to	the	end	of	an	ArrayList	by	using	the
method	add	(which	also	increases	the	size	of	the	ArrayList	by	1).

Another	convenience	to	using	an	ArrayList	is	that	if	you	want	to	use	a	loop	to
perform	some	action	with	each	of	the	elements,	you	can	use	a	for-each	loop
(illustrated	in	the	following	code),	which	allows	you	to	create	an	index	variable	that
iterates	through	the	objects	stored	in	the	ArrayList;	this	is	in	contrast	to	looping

through	a	standard	array,	where	your	index	variable	must	be	an	int	that	iterates	over
the	positions	of	the	objects	stored	in	the	array,	and	retrieving	the	objects	themselves
requires	an	extra	line	of	code.
Finally,	objects	can	be	removed	from	an	ArrayList	by	using	the	method	remove
and	the	object	itself	(which	will	also	decrease	the	size	of	the	ArrayList	by	1).	To
accomplish	the	same	task	with	an	array	is	much	more	difficult:	first,	we	have	to
somehow	determine	the	index	of	the	object	that	is	to	be	removed;	second,	the	object
can’t	really	even	be	removed—it	is	typically	replaced	with	a	null	object,	and	the
size	of	the	array	isn’t	changed.

For	comparison,	the	following	are	two	variations	of	the	same	code.	First,	we	use	an
array:
//	initialize	array
String[]	names	=	new	String[3];

//	add	data	to	array
names[0]	=	“Lee”;
names[1]	=	“Dan”;
names[2]	=	“Chris”;

//	print	the	names
for	(int	i	=	0;	i	<	names.length;	i++)
{
				String	n	=	names[i];
				System.out.println(n);
}

//	delete	“Lee”	from	array
names[0]	=	null;

//	names.length	still	equals	3

Next,	we	write	some	equivalent	code	that	instead	uses	the	ArrayList	class:

//	initialize	ArrayList
ArrayList<String>	names	=	new	ArrayList<String>();

//	add	data	to	ArrayList
names.add(“Lee”);
names.add(“Dan”);
names.add(“Chris”);

//	print	the	names
for	(String	n	:	names)
{
				System.out.println(n);
}

//	delete	“Lee”	from	ArrayList
names.delete(“Lee”);

//	now,	names.size()	equals	2

In	many	cases,	the	ArrayList	version	of	the	preceding	code	is	more	intuitive	and
easier	to	maintain.

Another	useful	data	structure	is	called	an	associative	array,	which	stores	pairs	of
objects.	The	first	object	in	the	pair	is	called	the	key;	the	second	object	is	called	the
value.	All	the	keys	are	the	same	type	of	object,	as	are	all	the	values	(but	the	key	type
may	be	different	from	the	value	type).	A	standard	Java	array	is	a	special	case	of	an
associative	array,	where	the	keys	are	consecutive	integers,	ranging	from	0	to	some
number	n.

The	HashMap	class	in	Java	provides	all	the	functionality	of	an	associative	array.	For
example,	perhaps	we	would	like	to	store	a	list	of	names	(each	a	String)	and	their
associated	high	scores	(each	an	Integer)	in	a	game.	We	initialize	a	HashMap
object	similarly	to	the	way	we	initialize	an	ArrayList	object,	except	that	the	angle
brackets	contain	the	names	of	both	the	key	type	and	the	value	type.	Key-value	pairs
can	be	stored	using	the	put	method,	values	can	be	retrieved	using	the	get	method,
and	the	name	of	the	associated	key,	and	key-value	pairs	can	be	deleted	by	using	the
remove	method	and	the	name	of	the	key.	You	can	also	check	whether	a	given	key	or
value	exists	in	the	HashMap	by	using	the	containsKey	and	containsValue
methods.	The	following	example	demonstrates	some	of	these	methods:
//	initialize	HashMap
HashMap<String,Integer>	highScores	=	new	
HashMap<String,Integer>();

//	add	data	to	HashMap
highScores.put(“Lee”,	337);
highScores.put(“Dan”,	9001);
highScores.put(“Chris”,	3333361);

//	retrieve	a	value
int	danScore	=	highScores.get(“Dan”);

//	delete	an	entry
highScores.remove(“Chris”);

//	now,	highScores.size()	equals	2
//		and	highScores.containsKey(“Chris”)	returns	false

At	this	point,	you	will	start	a	new	project	in	BlueJ	for	the	Starfish	Collector	game.	To
begin,	copy	the	code	from	the	previous	project	for	the	BaseActor	and
AnimatedActor	classes,	which	you	will	modify	over	the	course	of	the	following
sections.

The	BaseActor	Class
First,	you	will	work	on	the	BaseActor	class.	The	purpose	of	this	class	is	to	manage	a
single	texture	and	a	collision	polygon;	you	remove	the	velocity-related	code	(which	will
become	part	of	the	PhysicsActor	class	instead).	You	also	replace	the	Rectangle
object	with	a	Polygon	object.	A	Polygon	is	a	data	structure	that	defines	a	shape	in
terms	of	the	coordinates	of	its	vertices	(corners);	it	is	initialized	with	an	array	of	float
values	that	define	the	coordinates	of	the	vertices,	one	after	the	other.	For	example,	if	the
vertices	of	a	polygon	are	(x0,y0),	(x1,y1),	…	,	(xN,yN),	then	the	corresponding	Polygon
object	would	be	initialized	with	the	array	{x0,	y0,	x1,	y1,	…	,	xN,	yN}.	Also,
unlike	a	Rectangle	object,	a	Polygon	can	be	translated	and	rotated,	which	will	come
in	useful	later.	You	begin	our	presentation	of	the	BaseActor	class	by	listing	the	code	for
the	import	statements,	declaring	the	variables	you	need,	writing	the	constructor	to
initialize	these	variables,	and	you	also	repeat	the	methods	that	haven’t	changed	since	the
previous	version:	setTexture,	act,	and	draw.

import	com.badlogic.gdx.scenes.scene2d.Actor;
import	com.badlogic.gdx.graphics.g2d.Batch;
import	com.badlogic.gdx.graphics.Texture;
import	com.badlogic.gdx.graphics.g2d.TextureRegion;
import	com.badlogic.gdx.graphics.Color;
import	com.badlogic.gdx.math.Rectangle;
import	com.badlogic.gdx.math.Polygon;
import	com.badlogic.gdx.math.MathUtils;
import	com.badlogic.gdx.math.Intersector;
import	
com.badlogic.gdx.math.Intersector.MinimumTranslationVector;

public	class	BaseActor	extends	Actor
{
				public	TextureRegion	region;
				public	Polygon	boundingPolygon;

				public	BaseActor()
				{
								super();
								region	=	new	TextureRegion();
								boundingPolygon	=	null;
				}

				public	void	setTexture(Texture	t)
				{
								int	w	=	t.getWidth();
								int	h	=	t.getHeight();
								setWidth(w);
								setHeight(h);

								region.setRegion(t);
				}
				public	void	act(float	dt)
				{
								super.act(dt);
				}

				public	void	draw(Batch	batch,	float	parentAlpha)
				{
								Color	c	=	getColor();
								batch.setColor(c.r,	c.g,	c.b,	c.a);
								if	(isVisible())
												batch.draw(region,	getX(),	getY(),	getOriginX(),	
getOriginY(),
																getWidth(),	getHeight(),	getScaleX(),	
getScaleY(),	getRotation());
				}

}

Specifying	the	coordinates	of	a	polygon	can	be	a	laborious	task,	so	in	the
BaseActor	class	you	will	include	a	pair	of	methods	that	can	be	used	to	initialize	a
Polygon	object,	either	with	a	rectangular	shape,	or	with	a	shape	approximating	a	circle
or	an	ellipse.

The	coordinates	of	a	rectangle	are	easy	to	calculate.	If	the	rectangle	has	width	w	and
height	h,	then	(as	illustrated	in	Figure	3-5),	the	coordinates	of	the	vertices,	in
counterclockwise	order,	are	(0,0),	(w,0),	(w,h),	and	(0,h).	You	initialize	this	polygon	with
the	float	array	{0,0,	w,0,	w,h,	h,0}.	The	method	setRectangleBoundary
will	set	this	up	for	you.

Figure	3-5.	Vertices	of	a	rectangle

Your	other	method,	setEllipseBoundary,	will	be	used	to	initialize	a	polygon
that	approximates	the	shape	of	an	ellipse3	contained	within	the	rectangular	region	pictured
in	Figure	3-5.	This	method	involves	some	mathematical	equations	to	calculate	the
coordinates	of	the	vertices.	The	trigonometric	functions,	sine	and	cosine,	can	be	used	to
parameterize	a	circle	or	an	ellipse,	which	means	you	can	write	functions	for	the	x	and	y

coordinates	in	terms	of	another	variable,	t.	For	example,	if	we	let	x	=	cos(t)	and	y	=	sin(t),
then	as	the	variable	t	takes	on	values	ranging	from	0	to	2	×	pi	(approximately	6.28),4	the
corresponding	(x,y)	points	will	trace	out	the	shape	of	a	circle	with	radius	1.	You	can	adapt
these	equations	to	generate	an	ellipse	that	fits	snugly	within	the	given	rectangular	region,
as	illustrated	in	Figure	3-6.	First,	you	must	scale	(multiply)	x	by	w/2,	and	y	by	h/2,	so	the
ellipse	has	the	correct	size.	However,	the	resulting	ellipse	is	centered	at	the	origin,	and	you
want	the	ellipse	to	be	centered	at	(w/2,	h/2);	therefore,	you	add	these	values	to	the	x	and	y
equations,	respectively.	The	final	form	of	the	equations	are	as	follows:

x	=	w/2	*	cos(t)	+	w/2
y	=	h/2	*	sin(t)	+	h/2

The	setEllipseBoundary	method	contains	a	loop	to	generate	a	set	of	n	equally
spaced	values	for	t	in	the	interval	[0,	6.28],	then	calculates	the	corresponding	x	and	y
coordinates,	and	stores	them	in	an	array	that	will	be	used	to	initialize	the	polygon.	If	n	=	4,
the	polygon	will	be	a	diamond	shape;	if	n	=	8,	the	polygon	will	be	an	octagon	shape,	and
so	forth.	The	larger	the	value	of	n,	the	smoother	the	shape	will	be.	However,	there	is	a
trade-off:	collision	detection	for	general	polygons	is	computationally	intensive;	large
values	of	n	can	drastically	slow	down	your	program.	For	the	game	you’re	going	to	create,
you’ll	be	content	with	n	=	8;	an	ellipse	alongside	a	polygon	approximation	is	illustrated	in
Figure	3-7.

Figure	3-6.	Ellipse	contained	within	a	rectangle

Figure	3-7.	An	ellipse	and	a	polygon	approximation	of	the	ellipse

The	code	for	setRectangleBoundary	and	setEllipseBoundary	are	given
next,	along	with	a	method	getBoundingPolygon	that	returns	the	collision	polygon	for
this	actor,	adjusting	it	according	to	the	actor’s	current	position	and	rotation.

public	void	setRectangleBoundary()
{
				float	w	=	getWidth();
				float	h	=	getHeight();
				float[]	vertices	=	{0,0,	w,0,	w,h,	0,h};

				boundingPolygon	=	new	Polygon(vertices);
				boundingPolygon.setOrigin(getOriginX(),	getOriginY());
}

public	void	setEllipseBoundary()
{
				int	n	=	8;	//	number	of	vertices
				float	w	=	getWidth();
				float	h	=	getHeight();
				float[]	vertices	=	new	float[2*n];
				for	(int	i	=	0;	i	<	n;	i++)
				{
								float	t	=	i	*	6.28f	/	n;
								//	x-coordinate
								vertices[2*i]	=	w/2	*	MathUtils.cos(t)	+	w/2;
								//	y-coordinate
								vertices[2*i+1]	=	h/2	*	MathUtils.sin(t)	+	h/2;
				}
				boundingPolygon	=	new	Polygon(vertices);
				boundingPolygon.setOrigin(getOriginX(),	getOriginY());
}

public	Polygon	getBoundingPolygon()
{
				boundingPolygon.setPosition(getX(),	getY());
				boundingPolygon.setRotation(getRotation());
				return	boundingPolygon;
}

Now	that	you’ve	defined	the	collision	polygons	for	the	BaseActor	class,	there	is
still	the	matter	of	detecting	when	two	polygons	overlap.	Unlike	the	Rectangle	class,
which	has	its	own	overlaps	method,	the	Polygon	class	does	not.	Fortunately,	another
utility	class	provided	by	LibGDX,	called	Intersector,	does	have	such	a	method.	Even
more	significantly,	the	Intersector	class	also	has	the	functionality	to	deal	with
collision	response.	If	a	character	overlaps	with	an	item	or	power-up,	the	typical	response
is	to	add	an	item	to	an	inventory	or	increase	character	stats,	respectively.	If	a	character
overlaps	with	a	solid	object	such	as	a	wall,	then	instead	you	need	to	calculate	how	to
adjust	that	character’s	position.	There	are	many	ways	to	adjust	the	position,	many	of
which	are	mathematically	complex,	and	so	we’ll	relegate	a	more	comprehensive
discussion	to	future	chapters.	For	now,	you’ll	just	provide	the	code	for	a	function	named
overlaps,	which	determines	whether	this	BaseActor	overlaps	with	another.	The
overlaps	method	also	takes	a	second	input,	a	Boolean	variable	that	indicates	whether
the	collision	should	be	treated	as	solid;	if	set	to	true,	the	position	of	this	BaseActor
will	be	adjusted	so	that	it	no	longer	overlaps	the	other	BaseActor.	The	code	for	this
method	is	as	follows:

/**
	*		Determine	if	the	collision	polygons	of	two	BaseActor	
objects	overlap.
	*		If	(resolve	==	true),	then	when	there	is	overlap,	move	
this	BaseActor
	*				along	minimum	translation	vector	until	there	is	no	
overlap.
	*/
public	boolean	overlaps(BaseActor	other,	boolean	resolve)
{
				Polygon	poly1	=	this.getBoundingPolygon();
				Polygon	poly2	=	other.getBoundingPolygon();

				if	
(!poly1.getBoundingRectangle().overlaps(poly2.getBoundingRectangle())
)
								return	false;

				MinimumTranslationVector	mtv	=	new	
MinimumTranslationVector();
				boolean	polyOverlap	
=	Intersector.overlapConvexPolygons(poly1,	poly2,	mtv);
				if	(polyOverlap	&&	resolve)
				{
								this.moveBy(mtv.normal.x	*	mtv.depth,	mtv.normal.y	
*	mtv.depth);
				}
				float	significant	=	0.5f;
				return	(polyOverlap	&&	(mtv.depth	>	significant));
}

Finally,	you	introduce	a	pair	of	general-purpose	methods,	called	copy	and	clone.
The	clone	method	will	create	and	return	a	new	BaseActor,	and	make	this	new	object
an	exact	duplicate	of	the	BaseActor	calling	the	method.	This	process	is	carried	out	via
the	copy	method,	which	copies	the	data	from	one	BaseActor	into	another	(and	in	fact,
this	is	really	the	only	situation	in	which	copy	will	need	to	be	called).These	methods	will
be	helpful	when	you	want	to	create	multiple	instances	of	an	object	that	have	only	slight
variations;	you	can	create	a	base	version	of	an	object,	clone	it,	and	then	change	whatever
properties	need	to	be	changed.	The	code	for	these	two	methods	is	as	follows:

public	void	copy(BaseActor	original)
{
				this.region	=	new	TextureRegion(original.region);
				if	(original.boundingPolygon	!=	null)
				{
								this.boundingPolygon	=	new	Polygon(
original.boundingPolygon.getVertices());

								this.boundingPolygon.setOrigin(original.getOriginX(),	
original.getOriginY());
				}
				this.setPosition(original.getX(),	original.getY());
				this.setOriginX(original.getOriginX());
				this.setOriginY(original.getOriginY());
				this.setWidth(original.getWidth());
				this.setHeight(original.getHeight());
				this.setColor(original.getColor());
				this.setVisible(original.isVisible());
}

public	BaseActor	clone()
{
				BaseActor	newbie	=	new	BaseActor();
				newbie.copy(this);
				return	newbie;
}

This	completes	the	methods	for	the	BaseActor	class.

The	AnimatedActor	Class
Next,	you’ll	modify	the	AnimatedActor	class.	The	main	purpose	of	this	class	is	to
manage	a	set	of	animations,	and	select	the	correct	image	from	the	active	animation	(by
active,	I	mean	the	animation	that	is	currently	being	rendered).	For	simplicity,	to	each
Animation	you’d	like	to	associate	a	String	that	represents	its	name.	For	example,	in	a
top-view	adventure	game,	the	main	character	might	have	four	animations	named	north,
south,	east,	and	west,	one	for	each	direction	she	might	be	walking	in.	In	a	platformer
action	game,	the	main	character	might	have	animations	named	stand,	walk,	and	jump
that	correspond	to	each	of	these	actions	in	the	game.

To	store	this	information,	you’ll	use	the	HashMap	data	structure,	as	discussed
previously.	String	objects	will	be	used	as	keys,	and	Animation	objects	will	be	the
associated	values;	therefore,	the	full	data	type	is	HashMap<String,Animation>.
You’ll	include	a	method	named	storeAnimation	that	puts	this	data	into	the
HashMap,	and	a	method	named	setActiveAnimation	that	gets	an	animation	from
the	HashMap	and	sets	it	to	be	the	currently	active	animation.	You’ll	also	have	a	field
named	activeName	that	stores	the	name	of	the	currently	active	animation,	to	make	it
easier	to	check	what’s	currently	playing.	You’ll	also	add	a	few	nice	touches	for
convenience:	the	first	animation	loaded	will	be	set	as	the	default,	and	there	will	be	a
version	of	the	storeAnimation	method	that	takes	a	Texture	as	input	and	will
automatically	convert	it	to	a	one-frame,	or	still,	animation.

Here	is	the	code	for	the	AnimatedActor	class:

import	com.badlogic.gdx.graphics.g2d.Batch;

import	com.badlogic.gdx.graphics.Texture;
import	com.badlogic.gdx.graphics.g2d.TextureRegion;
import	com.badlogic.gdx.graphics.g2d.Animation;
import	java.util.HashMap;

public	class	AnimatedActor	extends	BaseActor
{
				private	float	elapsedTime;
				private	Animation	activeAnim;
				private	String	activeName;
				private	HashMap<String,Animation>	animationStorage;

				public	AnimatedActor()
				{
								super();
								elapsedTime	=	0;
								activeAnim	=	null;
								activeName	=	null;
								animationStorage	=	new	HashMap<String,Animation>();
				}

				public	void	storeAnimation(String	name,	Animation	anim)
				{
								animationStorage.put(name,	anim);
								if	(activeName	==	null)
												setActiveAnimation(name);
				}

				public	void	storeAnimation(String	name,	Texture	tex)
				{
								TextureRegion	reg	=	new	TextureRegion(tex);
								TextureRegion[]	frames	=	{	reg	};
								Animation	anim	=	new	Animation(1.0f,	frames);
								storeAnimation(name,	anim);
				}

				public	void	setActiveAnimation(String	name)
				{
								if	(!animationStorage.containsKey(name))
								{
												System.out.println("No	animation:	"	+	name);
												return;
								}

								//	no	need	to	set	animation	if	already	running
								if	(activeName.equals(name))
												return;

								activeName	=	name;
								activeAnim	=	animationStorage.get(name);
								elapsedTime	=	0;

								Texture	tex	=	activeAnim.getKeyFrame(0).getTexture();
								setWidth(tex.getWidth());
								setHeight(tex.getHeight());
				}

				public	String	getAnimationName()
				{
								return	activeName;
				}

				public	void	act(float	dt)
				{
								super.act(dt);
								elapsedTime	+=	dt;
				}

				public	void	draw(Batch	batch,	float	parentAlpha)
				{
								region.setRegion(activeAnim.getKeyFrame(elapsedTime)	
);
								super.draw(batch,	parentAlpha);
				}
}

The	PhysicsActor	Class
Finally,	we	come	to	the	topic	of	the	brand	new	PhysicsActor	class,	which	extends	the
AnimatedActor	class.	This	class	will	store	velocity	as	well	as	acceleration	data,	which
will	make	movement	appear	much	smoother.	Instead	of	setting	velocity	when	a	movement
key	is	pressed,	you	can	choose	to	set	acceleration,	which	causes	the	actor	to	slowly	gain
speed	(much	like	a	car	does	when	the	gas	pedal,	also	known	as	the	accelerator,	is	pressed).
This	data	will	be	stored	using	the	Vector2	class,	which	stores	two-dimensional	vector
data,	both	an	x	and	a	y	component;	there	are	also	convenience	methods	for	operations
such	as	adding	two	vectors	together,	or	calculating	the	length	of	a	vector.	In	the
PhysicsActor	class,	you’ll	store	a	maxSpeed	value,	which	will	be	used	to	stop	the
actor	from	gaining	speed	indefinitely,	and	also	a	deceleration	value,	which	will
control	how	quickly	the	character	slows	down	(its	speed	decreases)	when	not	accelerating.
Finally,	a	Boolean	variable	autoAngle	will	determine	whether	an	actor’s	image	should
be	rotated	to	match	the	direction	of	motion.	The	following	are	the	import	statements,
variable	declarations,	and	constructor	method	for	this	class:

import	com.badlogic.gdx.math.Vector2;
import	com.badlogic.gdx.math.MathUtils;

public	class	PhysicsActor	extends	AnimatedActor
{
				private	Vector2	velocity;
				private	Vector2	acceleration;

				//	maximum	speed
				private	float	maxSpeed;

				//	speed	reduction,	in	pixels/second,	when	not	
accelerating
				private	float	deceleration;

				//	should	image	rotate	to	match	velocity?
				private	boolean	autoAngle;

				public	PhysicsActor()
				{
								velocity	=	new	Vector2();
								acceleration	=	new	Vector2();
								maxSpeed	=	9999;
								deceleration	=	0;
								autoAngle	=	false;
				}
}

This	PhysicsActor	class	contains	many	methods	for	getting	and	setting	this
information.	For	the	Vector2	variables,	velocity	and	acceleration,	we	provide
two	ways	to	set	their	data:	either	in	terms	of	the	x	and	y	components,	or	in	terms	of	the
angle	and	magnitude	(or	size),	which	the	methods	then	convert	to	x	and	y	components	by
using	trigonometry,	as	illustrated	in	Figure	3-8.	If	the	vector’s	direction	angle	is	given	by
A,	and	the	magnitude	is	given	by	M,	then	the	x	component	of	the	vector	is	calculated	by
the	formula	x	=	M	×	cos(A),	and	similarly,	the	y	component	is	given	by	y	=	M	×	sin(A).

Figure	3-8.	Converting	a	vector’s	angle	and	magnitude	to	x	and	y	components

The	methods	involving	velocity	and	acceleration	are	as	follows:

//	velocity	methods

				public	void	setVelocityXY(float	vx,	float	vy)
				{		velocity.set(vx,vy);		}

				public	void	addVelocityXY(float	vx,	float	vy)
				{		velocity.add(vx,vy);		}

				//	set	velocity	from	angle	and	speed
				public	void	setVelocityAS(float	angleDeg,	float	speed)
				{
								velocity.x	=	speed	*	MathUtils.cosDeg(angleDeg);
								velocity.y	=	speed	*	MathUtils.sinDeg(angleDeg);
				}

//	acceleration/deceleration	methods

				public	void	setAccelerationXY(float	ax,	float	ay)
				{		acceleration.set(ax,ay);		}

				public	void	addAccelerationXY(float	ax,	float	ay)
				{		acceleration.add(ax,ay);		}

				//	set	acceleration	from	angle	and	speed
				public	void	setAccelerationAS(float	angleDeg,	float	
speed)
				{
								acceleration.x	=	speed	*	MathUtils.cosDeg(angleDeg);
								acceleration.y	=	speed	*	MathUtils.sinDeg(angleDeg);
				}
				public	void	setDeceleration(float	d)
				{		deceleration	=	d;		}

In	addition,	related	utility	methods	determine	the	speed	and	angle	of	motion	of	the
actor,	change	the	current	speed,	and	accelerate	in	the	direction	the	actor	is	currently
facing:
public	float	getSpeed()

				{		return	velocity.len();		}

				public	void	setSpeed(float	s)
				{		velocity.setLength(s);		}

				public	void	setMaxSpeed(float	ms)
				{		maxSpeed	=	ms;		}

				public	float	getMotionAngle()
				{		return	MathUtils.atan2(velocity.y,	velocity.x)
*	MathUtils.radiansToDegrees;		}

				public	void	setAutoAngle(boolean	b)
				{		autoAngle	=	b;		}

				public	void	accelerateForward(float	speed)
				{		setAccelerationAS(getRotation(),	speed);		}

Most	fundamental	to	the	PhysicsActor	class	is	the	act	method,	which	processes
and	updates	the	actor’s	position	and	velocity	data.	The	five	steps	of	the	act	method	are	as
follows:

Change	velocity	according	to	acceleration	and	the	time
passed	(dt)

Decrease	the	speed	(decelerate)	when	not	accelerating

If	the	current	speed	is	greater	than	maxSpeed,	reduce	it	to	this
amount

Change	the	position	according	to	velocity	and	the	time	passed
(dt)

When	autoAngle	is	true,	set	the	actor	rotation	equal	to	the	direction
of	motion

Finally,	here	is	the	code	for	the	act	method:

public	void	act(float	dt)
{
				super.act(dt);

				//	apply	acceleration
				velocity.add(acceleration.x	*	dt,	acceleration.y	*	dt);

				//	decrease	velocity	when	not	accelerating
				if	(acceleration.len()	<	0.01)
				{
								float	decelerateAmount	=	deceleration	*	dt;
								if	(getSpeed()	<	decelerateAmount)
												setSpeed(0);
								else
												setSpeed(getSpeed()	-	decelerateAmount);
				}

				//	cap	at	max	speed
				if	(getSpeed()	>	maxSpeed)
								setSpeed(maxSpeed);

				//	apply	velocity

				moveBy(velocity.x	*	dt,	velocity.y	*	dt);

				//	rotate	image	when	moving
				if	(autoAngle	&&	getSpeed()	>	0.1)
								setRotation(getMotionAngle());
}

Creating	the	Game
Now,	with	these	new	general-purpose	Actor-based	classes	at	your	disposal,	you	will	put
them	through	their	paces	with	a	new	game	called	Starfish	Collector.	In	this	game,	the
player	guides	a	turtle	around	a	set	of	rocks	to	aid	her	in	her	quest	of	collecting	all	the
starfish	she	can	see.	Figure	3-9	features	a	screenshot	of	this	game	in	action.

Figure	3-9.	The	Starfish	Collector	game

As	usual,	you’ll	need	a	driver	class	and	a	class	extending	Game;	these	can	be	copied
from	the	previous	project	and	modified	as	necessary.	In	this	project,	you	also	need	to
include	a	copy	of	the	BaseScreen	class	created	earlier	in	this	chapter.	The	main	game
play	will	be	handled	by	a	class	named	TurtleLevel	that	will	extend	the	BaseScreen
class.	The	three	main	parts	of	the	TurtleLevel	class	you	must	develop	are	the	list	of
fields	you	need	to	declare,	the	contents	of	the	create	method,	and	the	contents	of	the
update	method.

First,	in	this	game,	you’ll	use	a	BaseActor	for	the	ocean	background,	and	a
PhysicsActor	for	the	turtle	character	controlled	by	the	player.	The	rock	and	starfish
objects	do	not	move	and	are	not	animated,	so	these	will	both	be	BaseActor	objects;
since	you	need	many	copies	of	each,	you’ll	create	two	ArrayList	objects.	One	will

store	the	rock	entities	to	process	for	collision	detection,	and	the	other	will	store	the	starfish
entities	that	the	turtle	can	collect.	Variables	will	store	the	dimensions	of	the	game	world.
At	this	point,	the	code	for	the	TurtleLevel	class	(including	all	the	import	statements
you	will	require	in	the	future)	is	as	follows:

import	com.badlogic.gdx.Game;
import	com.badlogic.gdx.Gdx;
import	com.badlogic.gdx.Input.Keys;
import	com.badlogic.gdx.graphics.Texture;
import	com.badlogic.gdx.graphics.Texture.TextureFilter;
import	com.badlogic.gdx.graphics.g2d.TextureRegion;
import	com.badlogic.gdx.graphics.g2d.Animation;
import	com.badlogic.gdx.graphics.g2d.Animation.PlayMode;
import	com.badlogic.gdx.utils.Array;
import	com.badlogic.gdx.math.MathUtils;
import	java.util.ArrayList;

public	class	TurtleLevel	extends	BaseScreen
{
				private	BaseActor	ocean;
				private	ArrayList<BaseActor>	rockList;
				private	ArrayList<BaseActor>	starfishList;
				private	PhysicsActor	turtle;
				private	int	mapWidth	=	800;
				private	int	mapHeight	=	600;

				public	TurtleLevel(Game	g)
				{		super(g);		}

				public	void	create()
				{				}

				public	void	update(float	dt)
				{				}
}

Next,	you	will	develop	the	create	method.	The	images	referred	to	in	this	section	can
be	obtained	from	the	StarfishCollector/assets	folder	containing	the	source
code	for	this	chapter,	and	should	be	copied	into	your	project’s	assets	folder.	You	start
by	creating	the	BaseActor	that	contains	the	background	image	of	water.	You	also	clone
this	BaseActor,	offset	the	position,	set	its	Color	so	that	it	will	appear	translucent,	and
add	it	to	the	uiStage	so	all	the	objects	on	the	mainStage	will	appear	to	be
underwater.	Next,	you	create	the	BaseActor	representing	a	rock,	and	set	its	collision
polygon	to	be	elliptical.	You	then	initialize	an	ArrayList	and	use	it	to	store	cloned
versions	of	the	rock	entity,	each	with	slightly	different	positions,	which	were	stored	in	the
rockCoords	array.	This	is	followed	by	completely	analogous	code	for	creating	a	set	of

starfish	objects.	Finally	in	the	create	method,	you	set	up	turtle,	which	is	a
PhysicsActor	object.	You	create	and	store	a	multiframe	animation	(similar	to	how	you
created	Mousey’s	animation	in	Cheese,	Please!),	and	you	also	store	a	texture,	which	is
converted	to	a	single-frame	animation	by	the	AnimatedActor	class.	You	set	the	initial
position	and	rotation	of	the	turtle,	and	you	set	the	origin	so	that	the	turtle	will	rotate
around	its	center.	You	also	initialize	the	collision	boundary	to	be	an	ellipse,	set	the
maximum	speed	to	be	100	(pixels/second),	and	set	deceleration	to	be	200	(pixels/second),
so	that	once	the	player	releases	the	arrow	keys,	the	turtle	will	glide	to	a	stop	in	about	half	a
second.	The	code	for	the	create	method	is	given	here:

public	void	create()
{
				ocean	=	new	BaseActor();
				ocean.setTexture(new	
Texture(Gdx.files.internal("assets/water.jpg")));
				ocean.setPosition(0,	0);
				mainStage.addActor(ocean);

				BaseActor	overlay	=	ocean.clone();
				overlay.setPosition(-50,-50);
				overlay.setColor(1,1,1,	0.25f);
				uiStage.addActor(overlay);

				BaseActor	rock	=	new	BaseActor();
				rock.setTexture(new	
Texture(Gdx.files.internal("assets/rock.png")));
				rock.setEllipseBoundary();

				rockList	=	new	ArrayList<BaseActor>();
				int[]	rockCoords	=	{200,0,	200,100,	250,200,	360,200,	
470,200};
				for	(int	i	=	0;	i	<	5;	i++)
				{
								BaseActor	r	=	rock.clone();
								//	obtain	coordinates	from	the	array,	both	x	and	y,	at	
the	same	time
								r.setPosition(rockCoords[2*i],	rockCoords[2*i+1]);
								mainStage.addActor(r);
								rockList.add(r);
				}

				BaseActor	starfish	=	new	BaseActor();
				starfish.setTexture(new	
Texture(Gdx.files.internal("assets/starfish.png")));
				starfish.setEllipseBoundary();

				starfishList	=	new	ArrayList<BaseActor>();

				int[]	starfishCoords	=	{400,100,	100,400,	650,400};
				for	(int	i	=	0;	i	<	3;	i++)
				{
								BaseActor	s	=	starfish.clone();
								s.setPosition(starfishCoords[2*i],	
starfishCoords[2*i+1]);
								mainStage.addActor(s);
								starfishList.add(s);
				}

				turtle	=	new	PhysicsActor();
				TextureRegion[]	frames	=	new	TextureRegion[6];
				for	(int	n	=	1;	n	<=	6;	n++)
				{
								String	fileName	=	"assets/turtle-"	+	n	+	".png";
								Texture	tex	=	new	
Texture(Gdx.files.internal(fileName));
								tex.setFilter(TextureFilter.Linear,	
TextureFilter.Linear);
								frames[n-1]	=	new	TextureRegion(tex);
				}
				Array<TextureRegion>	framesArray	=	new	
Array<TextureRegion>(frames);

				Animation	anim	=	new	Animation(0.1f,	framesArray,	
Animation.PlayMode.LOOP);
				turtle.storeAnimation("swim",	anim);

				Texture	frame1	=	new	
Texture(Gdx.files.internal("assets/turtle-1.png"));
				turtle.storeAnimation("rest",	frame1);

				turtle.setOrigin(turtle.getWidth()/2,	
turtle.getHeight()/2);
				turtle.setPosition(20,	20);
				turtle.setRotation(90);
				turtle.setEllipseBoundary();
				turtle.setMaxSpeed(100);
				turtle.setDeceleration(200);
				mainStage.addActor(turtle);
}

Finally,	you	design	and	create	the	update	method.	The	turtle	is	controlled	by	the
arrow	keys,	but	the	movement	is	from	the	perspective	of	the	turtle.	The	left	and	right
arrow	keys	rotate	the	turtle	to	the	left	and	right,	and	the	up	arrow	key	accelerates	the	turtle
forward,	in	whatever	direction	the	turtle	is	currently	facing.	The	next	lines	of	code	switch
the	turtle’s	animation	to	rest	or	swim,	if	necessary,	based	on	the	turtle’s	current	speed.

After	that,	the	turtle	object	is	bound	to	the	game-world	area,	so	that	it	can’t	move	off-
screen.	Then	you	check	to	see	whether	the	turtle	is	overlapping	any	of	the	rock	objects,
and	resolve	the	position	of	the	turtle	if	so.	Finally,	you	check	to	see	whether	the	turtle	is
overlapping	any	of	the	starfish	objects	(the	starfish	are	not	solid,	so	you	don’t	need	to
resolve	the	turtle’s	position	in	this	case).	When	there	is	an	overlap,	you	want	to	remove	the
starfish	from	the	game:	both	from	the	Stage	that	is	rendering	it,	and	from	the
ArrayList	that	is	used	for	collision	detection.	This	last	step	is	tricky,	because	you	can’t
remove	an	object	from	a	list	at	the	same	time	that	you	are	iterating	through	the	list;	this
would	be	like	someone	tearing	the	pages	out	of	a	book	while	you’re	trying	to	read	it	(in
Java,	this	is	called	a	ConcurrentModificationException	error).	Therefore,
when	you	identify	a	starfish	that	you	want	to	remove	from	the	game,	you	add	it	to	a	list	of
objects	to	delete	later,	and	then	afterward	you	iterate	through	this	second	list,	at	which
time	you	can	safely	remove	the	starfish	from	the	Stage	and	the	original	ArrayList.
The	code	for	the	update	method	is	shown	here:

public	void	update(float	dt)
{
				//	process	input
				turtle.setAccelerationXY(0,0);

				if	(Gdx.input.isKeyPressed(Keys.LEFT))
								turtle.rotateBy(90	*	dt);
				if	(Gdx.input.isKeyPressed(Keys.RIGHT))
								turtle.rotateBy(-90	*	dt);
				if	(Gdx.input.isKeyPressed(Keys.UP))
								turtle.accelerateForward(100);

				//	set	correct	animation
				if	(turtle.getSpeed()	>	1	&&	
turtle.getAnimationName().equals("rest"))
								turtle.setActiveAnimation("swim");
				if	(turtle.getSpeed()	<	1	&&	
turtle.getAnimationName().equals("swim"))
								turtle.setActiveAnimation("rest");

				//	bound	turtle	to	the	screen
				turtle.setX(MathUtils.clamp(turtle.getX(),	0,		mapWidth	
-	turtle.getWidth()));
				turtle.setY(MathUtils.clamp(turtle.getY(),	
0,		mapHeight	-	turtle.getHeight()));

				for	(BaseActor	r	:	rockList)
				{
								turtle.overlaps(r,	true);
				}

				ArrayList<BaseActor>	removeList	=	new	

ArrayList<BaseActor>();
				for	(BaseActor	s	:	starfishList)
				{
								if	(turtle.overlaps(s,	false))
												removeList.add(s);
				}

				for	(BaseActor	b	:	removeList)
				{
								b.remove();													//	remove	from	stage
								starfishList.remove(b);	//	remove	from	list	used	by	
update
				}
}

As	usual,	you	need	a	class	that	extends	Game,	as	follows:

import	com.badlogic.gdx.Game;
public	class	TurtleGame	extends	Game
{
				public	void	create()
				{
								TurtleLevel	tl	=	new	TurtleLevel(this);
								setScreen(tl);
				}
}

Also	as	usual,	each	project	requires	a	driver	class.	This	time,	you	create	a	driver	class
that	contains	an	additional	feature:	a	LwjglApplicationConfiguration	object.
This	class	contains	fields	that	can	be	set,	which	allow	you	to	change	the	window-specific
settings	such	as	the	width	and	height	of	the	game	window,	and	the	text	displayed	in	the
title	bar.	This	object	can	be	passed	in	as	a	second	parameter	to	the	LwjglApplication
constructor.

import	com.badlogic.gdx.backends.lwjgl.LwjglApplication;
import	
com.badlogic.gdx.backends.lwjgl.LwjglApplicationConfiguration;
public	class	TurtleLauncher
{
				public	static	void	main	(String[]	args)
				{
								LwjglApplicationConfiguration	config	=	new	
LwjglApplicationConfiguration();
								//	change	configuration	settings
								config.width	=	1000;
								config.height	=	800;
								config.title	=	"Starfish	Collector";

								TurtleGame	myProgram	=	new	TurtleGame();
								LwjglApplication	launcher	=	new	LwjglApplication(
myProgram,	config);
				}
}

This	covers	the	core	mechanics	of	the	Starfish	Collector	game.

Next	Steps
Despite	the	advanced	mechanics,	by	no	means	is	this	a	finished	product,	similar	to	the
situation	at	the	end	of	the	Balloon	Buster	game	section.	However,	with	what	you’ve
covered	in	the	previous	examples,	you’re	ready	to	add	more	features	yourself,	such	as
these:

A	start	screen,	which	contains	directions	and	a	lists	of	keys	to	press,	or
has	a	button	image	to	click	in	order	to	load	the	TurtleLevel	screen
and	start	the	game.

A	Label	in	the	user	interface	that	states	how	many	starfish	remain	to
be	collected.

For	added	challenge,	make	the	game	world	larger	than	the	window,	so
that	not	all	the	starfish	are	visible	at	the	same	time,	and	add	extra
rocks	to	make	the	game	world	more	maze-like	and	extra	starfish	that
are	located	in	regions	of	the	game	world	not	immediately	visible	at	the
start	of	the	game.

Add	some	special	effects	using	the	Actions	class,	such	as	making
that	starfish	slowly	rotate,	and	once	a	starfish	is	collected,	have	it	fade
out	before	it	is	removed	from	the	stage.

Add	a	You	Win	message	to	the	game	that	fades	in	after	all	the	starfish
have	been	collected.

Summary
In	this	chapter,	you	created	a	set	of	reusable	classes	that	can	greatly	streamline	the	code
development	process	for	future	projects.	You	refactored	the	code	from	the	previous
chapter	and	created	the	BaseScreen	class,	which	contains	standard	data	and	startup
tasks	common	to	many	games,	such	as	storing	and	initializing	Stage	objects.	You	saw
how	to	handle	discrete	input,	such	as	the	initial	press	of	a	key	or	the	click	of	a	mouse,	and
created	the	Balloon	Buster	game.	Finally,	you	created	a	trio	of	extensions	of	the	Actor
class:	BaseActor,	which	performs	collision	detection	and	resolution	with	a	generalized
polygon	shape;	AnimatedActor,	which	manages	a	collection	of	animations;	and
PhysicsActor,	which	stores	and	processes	motion-related	data	such	as	velocity	and

acceleration.	The	use	of	these	classes	was	illustrated	with	the	game	Starfish	Collector.
You’ve	come	a	long	way	already,	and	in	the	next	chapter	you’ll	take	another	leap	forward
by	learning	how	to	incorporate	sounds	and	music	into	your	games.

1It	is	called	anonymous	because	it	is	not	assigned	a	name,	and	thus	can’t	be	accessed	again	for	later	use.

2Technically,	you’re	really	interested	in	only	whether	Balloon	objects	pass	beyond	the	boundary	of	the	screen,	and
mainStage	also	stores	the	BaseActor	that	stores	the	background	image.	Fortunately,	the	background	can’t	move
off-screen	and	so	you	can	use	the	Stage’s	internal	list	for	your	purposes.	In	future	programs,	you’ll	be	forced	to	be
more	precise,	and	keep	track	of	and	process	different	types	of	game	entities	using	different	lists.

3Although	LibGDX	contains	an	Ellipse	class,	there	are	no	classes	or	methods	in	LibGDX	that	perform	collision
detection	with	ellipse	shapes;	however,	Polygon	objects	do	have	such	functionality	available.

4The	interval	extends	from	0	to	6.28	because	mathematical	functions	typically	use	radian	measure	for	angles	rather	than
degree	measure.	6.28	radians	roughly	corresponds	to	360	degrees,	which	represents	a	full	rotation	around	the	origin,
which	we	need	when	calculating	the	values	of	points	all	the	way	around	the	ellipse.

CHAPTER	4

Adding	Polish	to	Your	Game
This	chapter	builds	on	the	Starfish	Collector	game	introduced	in	the	previous	chapter.	The
core	game	play	remains	the	same;	the	additions	include	background	music	and	sound
effects,	as	well	as	a	user	interface	with	customized	bitmap	fonts,	image-based	buttons,	and
other	UI	controls.

Audio
Incorporating	audio	into	your	game	is	a	straightforward	process,	thanks	to	the	built-in
functionality	of	the	LibGDX	libraries.	Supported	file	types	include	MP3,	OGG,	and	WAV.
LibGDX	provides	two	interfaces	for	this	purpose,	Sound	and	Music,	each	of	which	can
be	created	from	the	audio	object	of	the	Gdx	class.	(The	classes	that	implement	the
interfaces	depend	on	the	platform	being	used;	happily,	these	details	are	handled	for	you	by
LibGDX.)

The	Sound	interface	is	provided	for	sound	effects:	small	audio	files	that	are	played
when	discrete	game	events	occur,	such	as	when	an	item	is	collected,	a	character	jumps,	or
two	objects	collide.	Sound	effects	are	typically	short	(a	few	seconds	or	less),	and	the
corresponding	files	should	not	be	larger	than	1MB.	(For	larger	audio	clips,	you	should
consider	using	the	Music	interface,	given	next.)	To	load	a	sound	effect	into	memory,	for
example,	you	use	this	code:

Sound	beep	=	Gdx.audio.newSound(
Gdx.files.internal("beep.wav"));

After	the	sound	has	been	loaded	into	memory,	it	can	be	played	with	the	following:

beep.play(volume);

The	variable	volume	is	a	float	between	0	and	1,	which	determines	how	loudly	the
sound	will	be	played	(0	is	silent,	and	1	is	full	volume).	A	single	sound	effect	can	be	played
multiple	times	in	rapid	succession;	the	sounds	will	simply	overlap	each	other	in	this	case.

The	Music	interface	is	provided	for	longer	audio	sequences,	such	as	background
music	or	ambient	sounds.	To	prepare	music	for	streaming,	you	use	this	code:

Music	song	=	Gdx.audio.newSound(
Gdx.files.internal("song.ogg"));

The	volume	can	be	set	using	the	setVolume	method,	which	takes	a	float	value
just	as	a	Sound	objects	do.	If	you	would	like	the	audio	to	loop,	use

setLooping(true).	To	control	playback,	there	are	play,	pause,	and	stop
methods.	To	retrieve	information	about	the	current	state	of	playback,	you	use	the	methods
isPlaying,	isLooping,	and	getPosition,	the	latter	of	which	returns	the	current
position	in	seconds.

Sound	and	Music	instances	should	be	disposed—removed	from	memory—when	the
game	is	finished,	which	can	be	accomplished	using	their	provided	dispose	methods.

Next,	you’ll	see	how	to	add	music	and	sound	effects	to	the	Starfish	Collector	game
created	in	the	previous	chapter.	All	the	code	that	follows	should	be	added	to	the
TurtleLevel	class.	You	begin	by	adding	the	following	import	statements:

import	com.badlogic.gdx.audio.Sound;
import	com.badlogic.gdx.audio.Music;

Then	you	declare	the	following	variables:

private	float	audioVolume;
private	Sound	waterDrop;
private	Music	instrumental;
private	Music	oceanSurf;

At	the	end	of	the	create	method,	you	initialize	these	variables	and	start	playing	the
music	with	the	following	code.	The	sound	files	referenced	in	the	code	can	be	downloaded
from	the	assets	directory	containing	the	source	code	from	this	chapter,	and	should	be
added	to	your	local	project’s	assets	folder:

waterDrop				=	
Gdx.audio.newSound(Gdx.files.internal("assets/Water_Drop.ogg"));
instrumental	
=	Gdx.audio.newMusic(Gdx.files.internal("assets/Master_of_the_Feast.ogg"));
oceanSurf				=	
Gdx.audio.newMusic(Gdx.files.internal("assets/Ocean_Waves.ogg"));

audioVolume	=	0.80f;
instrumental.setLooping(true);
instrumental.setVolume(audioVolume);
instrumental.play();
oceanSurf.setLooping(true);
oceanSurf.setVolume(audioVolume);
oceanSurf.play();

In	the	update	method,	during	the	collision	detection,	you	play	the	water-drop	sound
effect	whenever	a	starfish	disappears.	This	section	of	code	is	given	next;	only	the	line	that
appears	in	bold	font	needs	to	be	added:

for	(BaseActor	b	:	removeList)
{
				b.remove();

				starfishList.remove(b);
				waterDrop.play(audioVolume);

}

Finally,	you	add	a	dispose	method,	which	in	turn	calls	the	dispose	method	of
each	audio	object,	so	as	to	free	up	memory	when	the	screen	is	closed:

public	void	dispose()
{
				waterDrop.dispose();
				instrumental.dispose();
				oceanSurf.dispose();
}

This	method	should	be	activated	when	the	user	exits	the	program;	later	in	this	chapter,
you’ll	see	where	this	takes	place.

You	may	have	noticed	that	you’re	using	the	variable	audioVolume	to	store	the
volume	for	playing	sounds	and	music,	but	nowhere	in	the	provided	code	is	there	a
mechanism	for	changing	this	value.	You	will	implement	volume	control	in	the	next
section,	which	covers	advanced	user-interface	controls.

Advanced	User-Interface	Design
Our	next	goal	is	to	create	a	polished	user	interface.

First,	you’ll	create	a	title	screen	that	includes	the	name	of	your	game,	buttons	to	start
or	quit	the	game,	and	a	graphic	that	credits	the	LibGDX	library.	This	is	illustrated	in
Figure	4-1.

Figure	4-1.	Title	screen	layout

Next,	in	the	main	game	screen	(where	the	game	is	played),	you	want	to	add	some	text
that	states	how	many	starfish	remain	to	be	collected,	and	a	Pause	button.	These	elements
should	appear	in	the	upper	corners	of	the	window	so	that	they	do	not	block	the	player’s
view	of	the	game	world,	which	could	interfere	with	the	game	play,	resulting	in	a
diminished	player	experience.	This	is	illustrated	in	Figure	4-2.

Figure	4-2.	Main	game	layout

Finally,	when	the	user	clicks	the	Pause	button,	in	addition	to	pausing	the	game	play,	a
pause	menu	should	appear.	This	menu	dims	the	view	of	the	game	world	by	overlaying	a
translucent	black	rectangle	on	top	of	it;	on	top	of	this	is	text	indicating	the	game	is	paused,
buttons	to	resume	or	quit	the	game,	and	a	slider	to	control	the	audio	volume,	as	shown	in
Figure	4-3.

Figure	4-3.	Pause	game	layout

In	the	subsections	that	follow,	you’ll	design	and	implement	layouts	with	the	Table
class,	manage	image	and	style	resources	with	the	Skin	class,	and	learn	about	classes	that
provide	commonly	needed	user-interface	elements,	such	as	Label,	Image,	Button
(and	its	subclass	TextButton),	and	Slider.

Arranging	UI	Elements
In	Chapter	2,	you	created	a	game	called	Cheese,	Please!	that	had	a	simple	user	interface:
the	menu	screen	contained	a	title	image	and	some	text	instructions,	and	the	main	game
screen	contained	text	that	displayed	the	time	elapsed.	Determining	the	exact	screen
coordinates	where	those	items	should	be	displayed,	taking	into	account	the	size	of	the
items	being	placed,	can	be	tedious	to	calculate.	Fortunately,	the	LibGDX	libraries	provide
a	class	named	Table	that	greatly	simplifies	this	process	by	automatically	placing	these
elements	for	you.

Table	is	a	subclass	of	Actor,	so	it	can	be	added	to	Stage	objects;	furthermore,
Table	is	also	a	subclass	of	Group,	so	objects	can	be	added	to	a	Table	as	well.	In
particular,	a	Table	consists	of	Cell	objects,	laid	out	in	rows	and	columns,	each	Cell
containing	an	Actor.	The	add	method	creates	a	new	Cell	(containing	an	Actor,	if	one
is	specified),	and	adds	it	to	the	end	of	the	current	row.	The	add	method	returns	the	Cell

object	that	is	created,	and	thus	can	be	immediately	formatted	by	calling	any	combination
of	the	following	methods	on	the	result:

left,	center,	and	right	to	set	the	horizontal	alignment	of	the
Cell	contents

bottom	and	top	to	set	the	vertical	alignment

padLeft,	padRight,	padBottom,	padTop	to	add	an	amount	of
padding	(in	pixels)	to	the	contents	of	the	current	Cell,	or	the	pad
method	to	apply	padding	in	all	directions

width	and	height	to	set	the	size	of	the	Cell	(the	size	of	the	Cell
affects	the	size	of	its	contents)

expandX	and	expandY	to	force	a	Cell	to	increase	its	size	to	fill
the	remaining	table	size	in	that	direction

colspan	to	declare	that	a	given	Cell	will	span	multiple	columns

All	tables	contain	a	single	row	by	default.	To	create	a	new	row	in	the	Table,
positioned	beneath	the	current	row,	you	call	the	row	method.

For	example,	let’s	create	a	Table	named	t	with	contents	laid	out	in	the	style	of	the
title	screen	shown	previously	in	Figure	4-1.	For	simplicity	in	this	section	and	in	the
accompanying	diagram,	we	will	name	the	Actor	objects	a,	b,	c,	and	d;	a	represents	the
title	image,	b	and	c	represent	the	Start	and	Quit	buttons,	and	d	represents	the	LibGDX
image.	Figure	4-4	illustrates	the	layout.

Figure	4-4.	Abstract	table	layout	for	the	Start	screen

The	diagram	indicates	that	you	will	need	a	Table	with	three	rows	and	two	columns.
Every	row	that	doesn’t	require	two	separate	cells	should	have	its	single	cell	set	to	span	two
columns.	The	final	cell	is	the	trickiest	to	configure:	not	only	does	it	span	two	columns,	but
its	contents	are	aligned	to	the	right,	and	there	should	be	50	pixels	of	padding	between

itself	and	the	row	above.	The	following	code	illustrates	how	this	layout	can	be	achieved;
however,	you	won’t	add	any	code	to	the	project	at	this	time.	Later,	you	will	add	code
based	on	this	template	(with	a,	b,	c,	and	d	replaced	by	the	variables	corresponding	to
these	objects).

Table	t	=	new	Table();
t.add(a).colspan(2);
t.row();
t.add(b);
t.add(c);
t.row();
t.add(d).colspan(2).right().padTop(50);

As	another	example	of	the	Table	class,	you’ll	learn	how	to	create	the	layout	for	the
main	game	screen	(shown	previously	in	Figure	4-2).	The	abstract	version	of	this	layout
appears	in	Figure	4-5.

Figure	4-5.	Abstract	table	layout	for	the	main	game	screen

In	Figure	4-5,	the	entire	table	has	10	pixels	of	padding	on	all	sides	(represented	by	the
empty	border	area).	Cell	a	contains	the	Starfish	Left	label,	and	cell	c	contains	the	Pause
button.	Cell	b	does	not	contain	an	actor;	it	will	be	extended	in	the	horizontal	(x)	direction
to	fill	all	remaining	space	in	the	first	row,	so	that	cells	a	and	c	will	be	positioned	on	the
left	and	right	sides	of	the	screen,	respectively.	Similarly,	cell	d	is	also	used	for	positioning
purposes	and	does	not	contain	an	actor;	it	spans	all	three	columns	in	the	second	row,	and	is
extended	to	fill	all	the	remaining	space	in	the	vertical	(y)	direction,	so	that	the	first	row
will	appear	at	the	top	of	the	screen.	The	code	that	yields	the	layout	from	Figure	4-5	is
presented	here	(and	as	before,	it	will	serve	as	a	template	to	be	added	to	the	project	later):

Table	t	=	new	Table();
t.pad(10);
t.add(a);
t.add().expandX();
t.add(c);
t.row();

t.add().colspan(3).expandY();

Creating	the	content	that	will	be	added	to	these	Table	objects—instances	of	the
Label,	Image,	and	Button	classes—is	discussed	later	in	this	chapter.	Even	before	we
discuss	this	topic,	note	that	because	multiple	screens	will	use	a	Table	object,	you	will
write	and	add	the	corresponding	code	to	the	BaseScreen	class.

First	you	need	the	corresponding	import	statement:

import	com.badlogic.gdx.scenes.scene2d.ui.Table;

Next,	you	declare	a	Table	object,	named	uiTable,	following	the	declaration	of	the
Stage	objects:

protected	Table	uiTable;

Finally,	you	initialize	this	object	in	the	constructor	of	the	BaseScreen	class,	and
attach	it	to	the	uiStage:

uiTable	=	new	Table();
uiTable.setFillParent(true);
uiStage.addActor(uiTable);

Next,	you	will	lay	additional	groundwork	before	creating	the	user	interface	objects.
You’ll	see	how	to	efficiently	store	and	reuse	UI	components.

Managing	Resources
When	designing	a	user	interface,	you	typically	want	to	have	a	consistent	theme.	You	want
to	use	the	same	set	of	fonts,	styles,	and	so	forth	in	the	many	screens	the	game	will	have.	In
the	interests	of	efficiency,	you	do	not	want	to	re-create	these	game	objects	repeatedly.
What	you	will	do	instead	is	to	create	the	common	UI	elements	when	the	Game	class	is
initialized,	and	store	them	in	a	data	structure	that	can	be	accessed	by	the	Screen	objects
at	a	later	time.	Conveniently,	the	LibGDX	libraries	provide	a	class	for	precisely	this
purpose:	the	Skin	class.

A	Skin	object	stores	objects	in	a	way	similar	to	a	HashMap	(discussed	in	Chapter	3),
using	String	objects	as	keys	and	any	object	type	as	values.	Objects	can	be	stored	using
the	add	method	and	retrieved	using	the	get	method.	For	example,	the	following	code
creates	a	new	Skin,	and	then	creates	a	new	Color	and	stores	it	using	the	name
LightGreen,	and	finally	retrieves	it	and	assigns	it	to	a	new	Color	variable.

Skin	uiSkin	=	new	Skin();
Color	greenish	=	new	Color(0.5f,	1.0f,	0.5f,	1.0f);
uiSkin.add("LightGreen",	greenish);
Color	textColor	=	uiSkin.get("LightGreen",	Color.class);

Note	that	the	second	parameter	passed	in	the	get	method	is	the	class	field,	which	is

used	to	determine	the	type	of	object	being	retrieved.	If	this	parameter	is	not	included,	the
return	type	is	Object,	and	the	returned	value	would	need	to	be	manually	cast	to	the
appropriate	class	type,	as	follows:

Color	textColor	=	(Color)(uiSkin.get("LightGreen"));

Frequently	stored	object	types	have	their	own	get-style	methods.	For	instance,	you
could	also	retrieve	the	color	stored	previously	by	using	the	code
getColor(“LightGreen”).	Using	these	methods	can	make	the	code	slightly	easier
to	read,	because	the	value	returned	would	not	need	to	be	cast	into	the	required	type.	For	a
complete	list	of	the	provided	get-related	methods	of	the	Skin	class,	please	consult	the
LibGDX	documentation.

Because	you	may	use	a	Skin	object	in	most	games	that	you	will	create	in	the	future,
you	will	add	a	new	class	to	your	framework	code	that	extends	the	core	classes	provided	by
LibGDX.	Just	as	your	BaseScreen	class	extended	the	Screen	class,	you	will	create	a
BaseGame	class	that	extends	the	Game	class.	BaseGame	will	contain	a	Skin	object
that	is	initialized	by	the	constructor.	You	will	override	the	empty	dispose	method
provided	by	the	Game	class	and	write	a	method	that	calls	the	dispose	method	of	the
skin,	so	memory	is	freed	up	when	the	BaseGame	object	is	no	longer	needed	(similar	to
the	disposal	of	audio	objects,	discussed	earlier	in	this	chapter).	In	addition,	extensions	of
the	Game	class	must	include	a	create	method,	but	as	BaseGame	is	never	meant	to	be
instantiated	directly	(similar	to	BaseScreen),	you	will	declare	the	create	method	to
be	abstract,	which	in	turn	requires	the	BaseGame	class	itself	to	be	abstract.	The	code	for
the	BaseGame	class	is	as	follows:

import	com.badlogic.gdx.Game;
import	com.badlogic.gdx.scenes.scene2d.ui.Skin;

public	abstract	class	BaseGame	extends	Game
{
				//	used	to	store	resources	common	to	multiple	screens
				Skin	skin;

				public	BaseGame()
				{
								skin	=	new	Skin();
				}

				public	abstract	void	create();

				public	void	dispose()
				{
								skin.dispose();
				}
}

Following	this	addition,	you	must	change	the	BaseScreen	class	so	that	every
occurrence	of	the	Game	type	is	replaced	by	the	BaseGame	type:	the	game	variable	and
constructor	parameter	should	both	be	of	type	BaseGame.	Similarly,	in	the
TurtleLevel	class,	the	constructor	parameter	should	be	a	BaseGame	object.	In
addition,	your	TurtleGame	class	should	now	extend	BaseGame,	rather	than	Game.	In
the	create	method	of	TurtleGame,	eventually	you	will	include	code	to	initialize	the
resources	common	to	multiple	screens,	store	these	resources	using	the	Skin	object,	and
only	after	these	tasks	are	complete	should	you	initialize	and	set	the	first	screen	to	appear
in	the	game.

Using	Customized	Bitmap	Fonts
Bitmap-based	fonts	were	briefly	mentioned	in	Chapter	2;	this	section	discusses	them	in
much	greater	detail.

To	create	a	BitmapFont,	you	need	two	things:	an	image	that	contains	all	the
characters	you	may	want	to	represent	in	your	application	(Figure	4-6	contains	an
example),	and	an	associated	data	file	that	lists	the	region	(position	and	size)	corresponding
to	each	character.	For	example,	the	region	in	Figure	4-6	corresponding	to	A	is	located	at
x=319,	y=134,	and	has	width	45	and	height	41.	When	a	bitmap	font	is	used	to	display	text,
the	image	region	corresponding	to	each	character	of	the	text	is	extracted,	and	these	image
regions	are	aligned	side	by	side	to	produce	the	result	seen	onscreen.

Figure	4-6.	An	image	file	(512	by	256	pixels)	used	to	create	a	bitmap	font

LibGDX	uses	the	BMFont	format	for	storing	this	data,	developed	by	Andreas
Jönsson.1	An	application	named	Hiero	is	provided	by	LibGDX	that	can	be	used	to
generate	bitmap	font	data	using	fonts	installed	on	your	computer.	The	first	version	of
Hiero	was	created	by	Kevin	Glass	for	use	with	his	Java	game	development	library,
Slick2D.	Since	then,	Hiero	has	been	ported	to	LibGDX	by	Nathan	Sweet,	one	of	the	major
contributors	to	the	LibGDX	libraries.	Hiero	is	packaged	as	an	executable	JAR	file;	the
current	link	to	download	it	is	posted	on	the	LibGDX	wiki	page.2

For	this	project,	I’ve	created	a	custom	font	data	file	and	bitmap	file	(cooper.fnt
and	cooper.png,	respectively)	that	you	can	download	from	the	assets	folder	in	the
source	code	directory	for	the	chapter	and	copy	to	your	own	project.	If	you	would	prefer	to
create	your	own	font	using	Hiero,	I	briefly	discuss	the	operation	of	this	program	in	the
next	paragraph;	otherwise,	you	can	skip	to	the	paragraph	afterward.

When	you	start	Hiero,	a	variety	of	options	are	presented.	Figure	4-7	contains	a
screenshot	of	the	program	in	action.	In	the	upper-left	area,	you	may	select	a	locally
installed	font;	in	the	center	region,	you	can	enter	the	characters	whose	images	you	wish	to
generate;	in	the	upper-right	area,	you	can	select	various	effects	to	apply	to	the	image,
including	solid	coloring,	gradient	coloring,	outline,	and	drop	shadow.	Parameters	for
effects	can	be	altered	by	clicking	their	values	and	entering	or	selecting	a	new	value.	When
finished,	select	Save	BMFont	files	from	the	File	menu,	and	you’ll	have	a	PNG	and	FNT
file	ready	to	be	used	by	the	LibGDX	BitmapFont	class.

Figure	4-7.	The	Hiero	application	for	generating	bitmap	font	data

To	use	a	custom-generated	bitmap	font	in	LibGDX,	you	initialize	the	BitmapFont
object	with	a	FileHandle	to	the	FNT	file	generated.	(The	name	of	the	associated	PNG
file	is	stored	within	the	FNT	file	and	thus	does	not	need	to	be	stated	directly	in	the	code.)
For	example:

BitmapFont	myFont	=	new	BitmapFont(
Gdx.files.internal("myCustomFont.fnt"));

If	desired,	it	is	possible	to	access	the	Texture	data	contained	within	the
BitmapFont	object.	You	may	want	to	do	this,	for	example,	in	order	to	set	the	filter	to
obtain	a	smoother	appearance	when	images	are	scaled.	To	accomplish	this,	you	can
include	the	following	code	after	myFont	is	created:

myFont.getRegion().getTexture().setFilter(TextureFilter.Linear,

	TextureFilter.Linear);

After	creating	a	BitmapFont,	you	can	then	use	it	as	part	of	a	LabelStyle,	to	be
applied	to	Label	objects	in	your	game.	With	the	new	structure	provided	by	the
BaseGame	class,	you’ll	create	the	style	objects	in	your	BaseGame	extension,	and	use
these	objects	in	your	BaseScreen	extensions.

First,	here	is	the	code	for	the	completely	overhauled	TurtleGame	class,	which	now
extends	BaseGame	and	creates	and	stores	the	shared	resources:

import	com.badlogic.gdx.Gdx;
import	com.badlogic.gdx.graphics.Texture.TextureFilter;
import	com.badlogic.gdx.scenes.scene2d.ui.Label.LabelStyle;
import	com.badlogic.gdx.graphics.Color;
import	com.badlogic.gdx.graphics.g2d.BitmapFont;

public	class	TurtleGame	extends	BaseGame
{
				public	void	create()
				{
								//	initialize	resources	common	to	multiple	screens	and	
store	to	skin	database
								BitmapFont	uiFont	=	new	
BitmapFont(Gdx.files.internal("assets/cooper.fnt"));
								uiFont.getRegion().getTexture().setFilter(TextureFilter.Linear,
	TextureFilter.Linear);
								skin.add("uiFont",	uiFont);

								LabelStyle	uiLabelStyle	=	new	LabelStyle(uiFont,	
Color.BLUE);
								skin.add("uiLabelStyle",	uiLabelStyle);

								//	initialize	and	start	main	game
								TurtleLevel	tl	=	new	TurtleLevel(this);
								setScreen(tl);
				}
}

In	the	TurtleLevel	class,	you	can	now	easily	create	the	Label	that	displays	the
number	of	starfish	left	to	collect.	First	you	need	to	include	the	corresponding	import
statement:

import	com.badlogic.gdx.scenes.scene2d.ui.Label;

Next,	you	declare	the	Label,	named	starfishLeftLabel.	Since	this	will	be
used	in	both	the	create	and	update	methods,	you	declare	it	globally	in	the	class:

Label	starfishLeftLabel;

You	then	initialize	this	Label	in	the	create	method.	At	first	glance,	it	may	be
surprising	that	the	Skin	class	does	not	contain	any	get	methods	to	retrieve	style-related
objects.	However,	this	wasn’t	a	development	oversight;	instead,	the	Label	constructor
method	has	an	overloaded	variation	that	allows	you	to	pass	in	the	Skin	object	itself,	as
well	as	the	name	of	the	style	object	to	be	used.	The	constructor	itself	will	automatically
retrieve	and	convert	the	corresponding	data	as	necessary.	Thus,	the	following	code	can	be
placed	in	the	create	method	to	initialize	the	Label	with	the	LabelStyle	you	created
in	the	TurtleGame	class:

starfishLeftLabel	=	new	Label("Starfish	Left:	--",	
game.skin,	"uiLabelStyle");

Finally,	at	the	end	of	the	update	method,	you	can	update	the	text	displayed	by	this
Label	so	that	it	displays	the	correct	number	of	starfish	left	to	collect,	using	the	following
line	of	code:

starfishLeftLabel.setText("Starfish	Left:	"	+	
starfishList.size());

At	this	point,	the	TurtleLevel	class	compiles,	but	no	change	is	visible	on	the
screen,	as	the	label	has	not	been	added	to	a	stage	yet;	you	will	do	so	in	a	later	section,	after
exploring	the	remaining	components	for	the	user	interface.	The	next	user-interface	control
you	need	for	the	TurtleLevel	class	is	provided	by	the	Button	class.

Creating	Buttons
A	button	is	one	of	the	most	basic	user-interface	controls	that	gets	input	from	a	user.	There
are	multiple	ways	to	customize	the	appearance	and	behavior	of	a	button,	as	well	as
extensions	of	the	Button	class	(such	as	TextButton	and	CheckBox),	some	of	which
you	will	explore	in	this	chapter.

First,	you	will	initialize	a	basic	Button	object	together	with	a	ButtonStyle.	A
ButtonStyle	object	can	store	one	or	more	images,	one	of	which	will	be	displayed,
depending	on	the	current	state	of	the	button.	An	image	stored	in	the	up	field	serves	as	the
default	image.	Image	data	for	UI	elements	must	be	stored	using	a	class	that	implements
the	Drawable	interface,	which	has	methods	that	resize	and	draw	an	image	to	fit	in	a
given	rectangular	region.	(TextureRegionDrawable	is	an	example	of	one	of	many
such	classes.)	The	easiest	way	to	initialize	such	an	object	is	using	the	Skin	class,	which
in	addition	to	being	an	excellent	way	to	manage	resources,	contains	many	methods	for
converting	image	data.	For	example,	it	is	possible	to	store	a	Texture	under	a	given
name,	and	then	retrieving	that	data	using	the	same	name	and	the	getDrawable	method
will	automatically	create	a	Drawable	object.

Adding	interactivity	to	a	Button	object	is	a	process	you	have	seen	before,	in	the
Balloon	Buster	game	from	Chapter	3.	In	that	game,	the	balloon	objects	were	derived	from
the	Actor	class,	and	thus	had	the	ability	to	listen	for	input	events	(such	as	being

clicked/touched).	The	code	that	was	executed	in	this	event	was	contained	in	a	method
called	touchDown,	part	of	an	anonymous	inner	class	derived	from	the
InputListener	class.	Since	the	Button	class	is	also	an	extension	of	the	Actor
class,	you	can	(and	will)	use	the	same	approach	here.

First,	you	require	the	following	import	statements	to	be	added	to	the	class:

import	com.badlogic.gdx.scenes.scene2d.ui.Button;
import	
com.badlogic.gdx.scenes.scene2d.ui.Button.ButtonStyle;
import	com.badlogic.gdx.scenes.scene2d.InputEvent;
import	com.badlogic.gdx.scenes.scene2d.InputListener;

The	following	code	creates	a	Button	that	will	be	used	to	pause	and	unpause	the
Starfish	Collector	game	play	(but	not	the	music).	Since	you	don’t	need	to	reference	this
object	later	in	the	update	method,	you	can	declare	and	initialize	it	within	the	create
method	of	the	TurtleLevel	class.	First,	you	load	a	Texture	into	the	skin	stored	by
game,	and	convert	it	to	a	Drawable	for	use	in	a	ButtonStyle	object.	(As	usual,	the
image	you	use	can	be	downloaded	from	the	source	code	assets	folder.)	Then	you
initialize	the	Button	and	add	an	InputListener	which	will	activate	the
togglePause	method,	which	was	defined	by	the	BaseScreen	class.

Texture	pauseTexture	=	new	
Texture(Gdx.files.internal("assets/pause.png"));
game.skin.add("pauseImage",	pauseTexture);

ButtonStyle	pauseStyle	=	new	ButtonStyle();
pauseStyle.up	=	game.skin.getDrawable("pauseImage");

Button	pauseButton	=	new	Button(pauseStyle);

pauseButton.addListener(
				new	InputListener()
				{
								public	boolean	touchDown	(InputEvent	event,	float	x,	
float	y,	int	pointer,	int	button)
								{
												togglePaused();
												return	true;
								}
				});

Now	that	you	have	created	the	objects	starfishLeftLabel	and	pauseButton,
and	uiTable	is	provided	by	the	BaseScreen	class,	you	are	now	ready	and	able	to
implement	the	user-interface	layout	for	the	TurtleLevel	class	described	earlier	in	this
chapter.	At	the	end	of	the	create	method	in	the	TurtleLevel	class,	you	simply	add
this	code:

uiTable.pad(10);
uiTable.add(starfishLeftLabel);
uiTable.add().expandX();
uiTable.add(pauseButton);
uiTable.row();
uiTable.add().colspan(3).expandY();

Finally,	there	is	one	subtle	but	vital	detail	to	address.	In	the	create	method,	you
previously	added	an	object	called	overlay	to	the	uiStage.	This	object	contains	a
semitransparent	image	of	water	for	the	purpose	of	making	all	the	game	entities	rendered
underneath	it	appear	underwater.	Since	this	object	was	added	to	uiStage	after
uiTable	was	added,	it	is	currently	covering	the	button	object,	and	thus	preventing	the
button	from	registering	user	input	(such	as	the	touchDown	event).	To	remedy	this
situation,	you	must	rearrange	the	elements	on	the	uiStage	so	that	overlay	appears
underneath	the	button;	visually	speaking,	you	need	to	send	it	to	the	back	of	the	layer.	This
is	accomplished	by	adding	the	following	line	of	code	to	the	create	method,	after
overlay	has	been	added	to	uiStage:

overlay.toBack();

Setting	Up	the	Start	Screen
Next,	you	will	set	up	the	start	screen,	which	appears	when	the	user	first	starts	the	program
(as	depicted	previously	in	Figure	4-1).	You	will	create	a	new	class	for	this	purpose,	called
TurtleMenu.	This	class	does	not	require	you	to	use	the	mainStage	object	at	all—just
the	uiTable	is	used	to	arrange	objects.	In	this	class,	you	use	two	new	classes:	Image
and	TextButton.	Even	before	you	introduce	these	classes,	you	can	write	skeleton	code
for	the	TurtleMenu	class,	as	presented	here:

import	com.badlogic.gdx.Gdx;
import	com.badlogic.gdx.graphics.Texture;
import	com.badlogic.gdx.graphics.Texture.TextureFilter;
import	com.badlogic.gdx.scenes.scene2d.ui.Image;
import	com.badlogic.gdx.scenes.scene2d.ui.TextButton;
import	com.badlogic.gdx.scenes.scene2d.InputEvent;
import	com.badlogic.gdx.scenes.scene2d.InputListener;

public	class	TurtleMenu	extends	BaseScreen
{
				public	TurtleMenu(BaseGame	g)
				{		super(g);		}

				public	void	create()
				{				}

				public	void	update(float	dt)

				{				}
}

Each	picture	that	you	want	to	display	on	this	screen	will	be	loaded	initially	as	a
Texture.	To	ensure	that	each	image	scales	smoothly,	you	will	consistently	specify	that
linear	filtering	should	be	used	each	time.	You	can	use	a	repeated	image	for	the	table
background,	provided	you	convert	it	to	a	Drawable	first	(which	you	do	using	the	skin
object).	All	other	Texture	objects	that	you	would	like	to	include	in	the	uiTable	will
be	displayed	using	Image	objects,	which	exist	for	exactly	this	purpose.	Recall	that	all
user-interface	objects	store	images	using	the	Drawable	interface	so	that	they	can	be
resized	as	needed.	The	Texture	class	does	not	implement	the	Drawable	interface,	but
conveniently,	the	Image	constructor	accepts	a	Texture	as	input	and	can	convert	it	to	a
Drawable	object	automatically.	As	usual,	the	image	files	referenced	here	can	be
download	from	the	source	code	assets	folder:

Texture	waterTex	=	new	
Texture(Gdx.files.internal("assets/water.jpg"));
waterTex.setFilter(TextureFilter.Linear,	
TextureFilter.Linear);
game.skin.add("waterTex",	waterTex);
uiTable.background(game.skin.getDrawable("waterTex"));

Texture	titleTex	=	new	
Texture(Gdx.files.internal("assets/starfish-
collector.png"));
titleTex.setFilter(TextureFilter.Linear,	
TextureFilter.Linear);
Image	titleImage	=	new	Image(titleTex);

Texture	libgdxTex	=	new	
Texture(Gdx.files.internal("assets/created-libgdx.png"));
libgdxTex.setFilter(TextureFilter.Linear,	
TextureFilter.Linear);
Image	libgdxImage	=	new	Image(libgdxTex);

Next,	you	introduce	an	extension	of	the	Button	class,	called	TextButton,	which	is
a	Button	that	has	a	Label	on	top	to	display	the	associated	text.	The	associated	style
object,	TextButtonStyle,	requires	both	a	Drawable	for	the	button	graphic,	and	a
BitmapFont	and	Color	to	draw	the	label.

One	potential	complication	with	creating	a	TextButton	arises	when	the	button’s
text	is	larger	than	the	provided	image,	in	which	case	the	text	will	overflow	past	the	borders
of	the	button.	To	alleviate	this	problem,	you	can	use	the	NinePatch	class,	which	allows
you	to	scale	an	image	in	a	particular	way.	A	NinePatch	object	can	be	initialized	using	a
Texture	followed	by	four	integers,	as	follows:

NinePatch	np	=	new	NinePatch(texture,	left,	right,	top,	

bottom);

The	integers	represent	distances,	measured	in	pixels,	from	the	correspondingly	named
edge	of	the	image.	They	are	used	to	divide	the	texture	into	nine	regions,	as	illustrated	in
Figure	4-8.

Figure	4-8.	Dividing	a	texture	into	nine	regions

When	converted	to	a	Drawable,	the	corners	of	the	image	(the	regions	labeled	with	a
in	Figure	4-8)	will	never	be	scaled;	the	b	regions	can	scale	horizontally,	the	c	regions	can
scale	vertically,	and	the	central	region	d	can	scale	in	both	directions.	This	is	particularly
useful	for	button-like	images,	so	that	the	edges	of	the	image	do	not	appear	distorted.
Figure	4-9	illustrates	a	small	image	that	is	scaled	using	standard	methods,	and	also	scaled
using	nine-patch	methods.	Notice	in	particular	that	using	standard	scaling,	the	border	of
the	enlarged	image	appears	thicker,	while	nine-patch	scaling	more	closely	preserves	the
appearance	of	the	original	border,	as	it	only	scales	each	edge	in	the	direction	along	which
it	is	oriented.

Figure	4-9.	A	button-like	image,	scaled	using	standard	methods	and	using	nine-patch	methods

At	this	point,	you	can	turn	your	attention	to	the	TurtleGame	class.	You	will	write
the	code	that	initializes	the	TextButtonStyle	object,	and	store	it	using	the	skin
object,	so	that	it	can	be	used	by	all	the	screens	in	your	program.	First,	you	need	to	add	the
following	import	statements:

import	com.badlogic.gdx.graphics.Texture;
import	
com.badlogic.gdx.scenes.scene2d.ui.TextButton.TextButtonStyle;
import	com.badlogic.gdx.graphics.g2d.NinePatch;

After	downloading	the	nine	patch–related	images	into	the	assets	folder,	the	code
you	need	to	add	to	the	create	method	is	as	follows:

TextButtonStyle	uiTextButtonStyle	=	new	TextButtonStyle();

uiTextButtonStyle.font						=	uiFont;
uiTextButtonStyle.fontColor	=	Color.NAVY;

Texture	upTex	=	new	
Texture(Gdx.files.internal("assets/ninepatch-1.png"));
skin.add("buttonUp",	new	NinePatch(upTex,	26,26,16,20));
uiTextButtonStyle.up	=	skin.getDrawable("buttonUp");

To	add	a	bit	more	polish	to	the	TextButton	objects,	you’ll	also	add	some
information	to	the	TextButtonStyle	objects.	Often	the	appearance	of	a	button	may
change	depending	on	how	the	user	is	interacting	with	it.	For	instance,	when	the	mouse
pointer	is	hovering	over	a	button,	it	may	become	lighter	in	appearance,	and	while	the
button	is	being	pressed,	the	background	image	may	be	changed	to	make	the	button	look
more	“flat.”	These	variations	in	appearance	are	illustrated	in	Figure	4-10.

Figure	4-10.	Different	button	appearances,	based	on	state:	default/up,	hover/over,	and	pressed/down

To	provide	a	TextButton	with	the	same	style,	you	simply	store	additional	image
data	to	the	over	and	down	fields	of	the	TextButtonStyle	object,	and	you	may
change	the	font	colors	as	well,	if	desired.	These	additions	are	accomplished,	and	the	style
object	is	added	to	the	skin	object,	with	the	code	presented	here:

Texture	overTex	=	new	
Texture(Gdx.files.internal("assets/ninepatch-2.png"));
skin.add("buttonOver",	new	NinePatch(overTex,	26,26,16,20)	
);
uiTextButtonStyle.over	=	skin.getDrawable("buttonOver");
uiTextButtonStyle.overFontColor	=	Color.BLUE;

Texture	downTex	=	new	
Texture(Gdx.files.internal("assets/ninepatch-3.png"));
skin.add("buttonDown",	new	NinePatch(downTex,	26,26,16,20)	
);
uiTextButtonStyle.down	=	skin.getDrawable("buttonDown");
uiTextButtonStyle.downFontColor	=	Color.BLUE;

skin.add("uiTextButtonStyle",	uiTextButtonStyle);

With	this	style	data	stored,	you	are	now	ready	to	create	the	TextButton	objects	in
the	TurtleMenu	class.	The	Start	button	will	initialize	the	TurtleLevel	class	and	set
it	to	be	the	active	screen,	while	the	Quit	button	will	exit	the	application.	This	listener
contains	two	methods,	each	of	which	is	activated	for	different	events:	touchDown	is
called	when	the	object	is	initially	touched	or	when	the	mouse	button	is	pressed	down
while	over	this	object;	touchUp	is	called	immediately	after	the	touching	action	stops	or
when	the	mouse	button	is	released.	The	touchUp	methods	are	used	to	execute	these

actions,	so	that	they	occur	when	the	buttons	are	released.

TextButton	startButton	=	new	TextButton("Start",	game.skin,	
"uiTextButtonStyle");
startButton.addListener(
				new	InputListener()
				{
								public	boolean	touchDown	(InputEvent	event,	float	x,	
float	y,	int	pointer,	int	button)
								{		return	true;		}

								public	void	touchUp	(InputEvent	event,	float	x,	float	
y,	int	pointer,	int	button)
								{
												game.setScreen(new	TurtleLevel(game));
								}
				});

TextButton	quitButton	=	new	TextButton("Quit",	game.skin,	
"uiTextButtonStyle");
quitButton.addListener(
				new	InputListener()
				{
								public	boolean	touchDown	(InputEvent	event,	float	x,	
float	y,	int	pointer,	int	button)
								{		return	true;		}

								public	void	touchUp	(InputEvent	event,	float	x,	float	
y,	int	pointer,	int	button)
								{
												Gdx.app.exit();
								}
				});

Finally,	with	all	the	user-interface	objects	created,	you	are	now	ready	to	place	them	on
the	screen	by	adding	them	to	the	uiTable	object.	You	use	the	same	code	from	our	earlier
discussion	of	laying	out	the	Start	menu,	with	one	addition:	in	the	interests	of	symmetry,
you’d	like	the	two	buttons	to	have	the	same	width,	but	because	of	the	text	being	displayed,
the	Start	button	will	be	wider	by	default.	You	can	change	the	width	of	the	Quit	button	to
match	the	width	of	the	Start	button,	by	setting	the	width	of	the	cell	that	contains	it:

float	w	=	startButton.getWidth();
uiTable.add(titleImage).colspan(2);
uiTable.row();
uiTable.add(startButton);
uiTable.add(quitButton).width(w);
uiTable.row();

uiTable.add(libgdxImage).colspan(2).right().padTop(50);

Finally,	to	load	the	menu	screen	(rather	than	the	game-play	screen)	when	the	program
starts,	you	need	to	make	a	change	to	the	TurtleGame	class.	At	the	end	of	the	create
method,	instead	of	creating	an	instance	of	the	TurtleLevel	class	(and	setting	this	to	be
the	active	screen),	you’d	like	to	use	the	TurtleMenu	class.	To	this	end,	change	the	last
two	lines	of	the	create	method	to	the	following:

TurtleMenu	tm	=	new	TurtleMenu(this);
setScreen(tm);

Creating	an	Overlay	Menu
Now	that	you’ve	finished	setting	up	your	two	main	user	interfaces,	you	have	one	final
addition	to	the	Starfish	Collector	game.	You’d	like	to	create	an	overlay-style	menu	that
appears	on	top	of	the	main	UI	on	the	TurtleLevel	screen	when	the	game	is	paused,	as
illustrated	in	Figure	4-11.	As	with	the	previous	user-interface	discussion,	you	show	the
desired	result	side	by	side	with	an	abstract	layout	diagram	indicating	the	placement	of	the
UI	elements.	In	Figure	4-11,	cells	a	and	d	contain	labels,	cells	b	and	c	contain	buttons,
and	cell	e	contains	a	slider.	There	will	also	be	a	translucent	black	background	that	dims
the	user’s	view	of	the	game,	which	also	makes	the	Pause	menu	contents	more	easily
identifiable.	You	are	already	familiar	with	two	of	the	classes	you	need:	Label	and
TextButton.	The	new	control	element	you	need	is	a	Slider,	which	will	be	used	to
change	the	audioVolume	variable	that	sets	the	volume	of	sound	effects	and	background
music,	introduced	in	the	beginning	of	this	chapter.

Figure	4-11.	Abstract	table	layout	for	the	pause	overlay

For	consistency,	you’ll	initialize	and	store	the	associated	SliderStyle	object	in	the
TurtleGame	class,	alongside	the	other	style	objects.	As	usual,	you’ll	also	use	the
methods	of	the	Skin	class	to	convert	the	needed	Texture	objects	into	Drawable
objects.	The	two	fields	of	the	SliderStyle	object	you	must	include	are	images	for	the
background	and	the	knob	that	is	dragged	back	and	forth	along	the	slider	itself.	You	may

also	include	two	additional	images	that	are	set	to	appear	on	top	of	the	background,	before
and	after	the	knob	image,	which	can	be	seen	in	Figure	4-11.	The	knob	is	the	circular
image;	the	“before”	and	“after”	images	are	the	colored	horizontal	images	that	appear	to
the	left	and	right	of	the	knob,	respectively.	All	the	necessary	images	can	be	downloaded
from	the	source	code	assets	folder.	You	need	to	add	the	following	import	to	the
TurtleGame	class:

import	
com.badlogic.gdx.scenes.scene2d.ui.Slider.SliderStyle;

Then,	in	the	create	method,	the	code	you	will	include	to	initialize	your
SliderStyle	object	appears	here:

SliderStyle	uiSliderStyle	=	new	SliderStyle();

skin.add("sliderBack",			new	
Texture(Gdx.files.internal("assets/slider-after.png")));
skin.add("sliderKnob",			new	
Texture(Gdx.files.internal("assets/slider-knob.png")));
skin.add("sliderAfter",		new	
Texture(Gdx.files.internal("assets/slider-after.png")));
skin.add("sliderBefore",	new	
Texture(Gdx.files.internal("assets/slider-before.png")));

uiSliderStyle.background	=	skin.getDrawable("sliderBack");
uiSliderStyle.knob							=	skin.getDrawable("sliderKnob");
uiSliderStyle.knobAfter		=	skin.getDrawable("sliderAfter");
uiSliderStyle.knobBefore	=	skin.getDrawable("sliderBefore");

skin.add("uiSliderStyle",	uiSliderStyle);

Since	each	point	along	a	slider	corresponds	to	a	numerical	value,	to	initialize	the
Slider	object	in	the	TurtleLevel	class,	you	must	provide	the	minimum	and
maximum	values	that	your	Slider	will	represent	(in	our	case,	0	and	1),	as	well	as	the
smallest	possible	increment	between	values.	You	also	must	include	a	Boolean	variable	that
determines	whether	the	Slider	should	be	displayed	vertically	(you	leave	this	set	to
false	to	obtain	a	horizontal	slider).	The	final	arguments	involve	style	data;	in	our	case,
since	you	stored	the	data	using	a	Skin,	you	provide	a	reference	to	the	Skin	object	and
the	corresponding	name	that	was	used	to	store	the	SliderStyle	object.

Next,	you	add	the	code	that	will	be	executed	when	the	user	interacts	with	the	Slider.
In	this	case,	you	diverge	from	your	previous	approach	of	using	an	EventListener,
because	of	the	different	way	in	which	the	user	interacts	with	this	particular	user-interface
element.	Multiple	changes	may	occur	between	the	touchDown	and	touchUp	events
registered	by	an	Actor;	these	intermediate	changes	are	observed	by	the
ChangeListener	class,	which	then	calls	its	changed	method.

At	this	point,	you	return	to	the	TurtleLevel	class	to	make	your	final	changes.	First,

you	have	the	remaining	import	statements	to	add:

import	com.badlogic.gdx.scenes.scene2d.ui.Slider;
import	com.badlogic.gdx.scenes.scene2d.utils.ChangeListener;
import	com.badlogic.gdx.scenes.scene2d.Actor;
import	com.badlogic.gdx.scenes.scene2d.ui.Table;
import	com.badlogic.gdx.scenes.scene2d.ui.Stack;
import	com.badlogic.gdx.scenes.scene2d.utils.Drawable;
import	com.badlogic.gdx.graphics.Color;
import	com.badlogic.gdx.scenes.scene2d.ui.TextButton;

The	following	code	creates	a	Slider	using	your	previously	created	SliderStyle
object,	sets	the	coordinates	of	the	slider’s	knob	to	the	position	corresponding	to	the	initial
value	of	audioVolume,	and	adds	a	ChangeListener	object	that	adjusts	the	volume
of	the	audio	objects	whenever	the	user	interacts	with	the	Slider.	This	code	should	be
added	after	the	audioVolume	variable	has	been	initialized:

Slider	audioSlider	=	new	Slider(0,	1,	0.005f,	false,	
game.skin,	"uiSliderStyle");
audioSlider.setValue(audioVolume);
audioSlider.addListener(
				new	ChangeListener()
				{
								public	void	changed(ChangeEvent	event,	Actor	actor)
								{
												audioVolume	=	audioSlidergetValue();
												instrumental.setVolume(audioVolume);
												oceanSurf.setVolume(audioVolume);
								}
				});

Next,	you	want	to	create	the	pause	overlay	menu	itself.	Note	that	you	can’t	just	add
these	new	elements	into	the	preexisting	uiTable.	What	you	need	is	a	second	Table
object,	whose	visibility	depends	on	whether	the	game	is	paused,	and	when	visible,	renders
on	top	of	uiTable.	The	former	goal	can	be	accomplished	using	the	setVisible
method	of	the	table;	the	latter	can	be	arranged	with	a	Stack	object	that,	as	the	name
suggests,	places	(stacks)	one	object	above	another.

You	create	a	new	Table	in	the	TurtleLevel	class:

private	Table	pauseOverlay;

And	then	in	the	create	method,	you	initialize	it:

pauseOverlay	=	new	Table();
pauseOverlay.setFillParent(true);

Then	you	create	a	Stack	object	and	add	it	to	the	uiStage.	After	this,	you	add	the

uiTable	and	the	pauseOverlay	table	to	it,	which	will	cause	them	to	render	in	that
order:

Stack	stacker	=	new	Stack();
stacker.setFillParent(true);
uiStage.addActor(stacker);
stacker.add(uiTable);
stacker.add(pauseOverlay);

Next,	you’ll	add	a	white	texture	to	the	skin,	and	use	the	newDrawable	method	to
create	a	tinted	version	of	this	texture	using	a	translucent	black	color,	based	on	a	simple
image	(which	can	be	downloaded	from	the	source	code	assets	folder):

game.skin.add("white",	new	Texture(
Gdx.files.internal("assets/white4px.png")));
Drawable	pauseBackground	=	game.skin.newDrawable("white",	
new	Color(0,0,0,0.8f));

Next,	you	create	the	remaining	Label	and	TextButton	objects	for	the	pause
overlay	menu,	and	remember	to	call	the	previously	written	dispose	method	to	free	up
memory	when	quitting	the	game:

Label	pauseLabel	=	new	Label("Paused",	game.skin,	
"uiLabelStyle");

TextButton	resumeButton	=	new	TextButton("Resume",	
game.skin,	"uiTextButtonStyle");
resumeButton.addListener(
				new	InputListener()
				{
								public	boolean	touchDown	(InputEvent	event,	float	x,	
float	y,	int	pointer,	int	button)
								{		return	true;		}

								public	void	touchUp	(InputEvent	event,	float	x,	float	
y,	int	pointer,	int	button)
								{
												togglePaused();
												pauseOverlay.setVisible(isPaused());
								}
				});

TextButton	quitButton	=	new	TextButton("Quit",	game.skin,	
"uiTextButtonStyle");
quitButton.addListener(
				new	InputListener()
				{
								public	boolean	touchDown	(InputEvent	event,	float	x,	

float	y,	int	pointer,	int	button)
								{		return	true;		}

								public	void	touchUp	(InputEvent	event,	float	x,	float	
y,	int	pointer,	int	button)
								{
												dispose();
												Gdx.app.exit();
								}
				});

Label	volumeLabel	=	new	Label("Volume",	game.skin,	
"uiLabelStyle");

With	all	the	user-interface	objects	created,	you	will	add	them	to	the	pauseOverlay
table,	one	object	per	row	for	simplicity.	You	also	force	the	buttons	to	have	equal	width
using	the	same	approach	as	when	you	designed	the	UI	for	the	TurtleMenu	class:

float	w	=	resumeButton.getWidth();
pauseOverlay.setBackground(pauseBackground);
pauseOverlay.add(pauseLabel).pad(20);
pauseOverlay.row();
pauseOverlay.add(resumeButton);
pauseOverlay.row();
pauseOverlay.add(quitButton).width(w);
pauseOverlay.row();
pauseOverlay.add(volumeLabel).padTop(100);
pauseOverlay.row();
pauseOverlay.add(audioSlider).width(400);

You	initialize	pauseOverlay	to	be	invisible:

pauseOverlay.setVisible(false);

Finally,	you	add	the	following	line	of	code	to	the	handle	method	of	the	Pause
button’s	EventListener,	which	will	make	pauseOverlay	visible	whenever	the
game	is	paused:

pauseOverlay.setVisible(isPaused());

This	completes	the	final	layer	for	your	user	interface;	the	three	layers	are	illustrated
side	by	side	in	Figure	4-12.

Figure	4-12.	The	three	layers	of	content	in	Starfish	Collector

This	brings	you	to	the	end	of	your	refinements	to	the	Starfish	Collector	game!	To
practice	these	techniques,	I	recommend	that	you	rewrite	the	corresponding	portions	of	the
other	previous	games,	Cheese,	Please!	and	Balloon	Buster,	to	incorporate	this	new
approach	to	user-interface	design.

Summary
In	this	chapter,	you	added	quite	a	bit	of	polish	to	the	Starfish	Collector	game.	You	started
by	adding	sound	effects	and	background	music,	using	the	audio	object	and	the	Sound
and	Music	interfaces.	Then	you	designed	and	implemented	a	sophisticated	user	interface,
including	a	Start	menu	screen,	a	user	interface	for	the	main	game	screen,	and	a	menu	that
overlays	the	main	screen	when	the	game	is	paused.	You	learned	how	to	use	the	Table
class	to	simplify	the	layout	of	user	interfaces,	and	the	Skin	class	to	manage	resources.
You	restructured	your	custom	BaseScreen	class	and	added	a	BaseGame	class	to
incorporate	these	new	classes.	You	also	saw	how	to	create	a	variety	of	user-interface
elements	using	the	classes	Label,	Button,	TextButton,	Image,	and	Slider,	and
their	associated	style	objects.	In	the	next	chapter,	you’ll	continue	your	focus	on	the	user’s
experience,	focusing	on	providing	the	user	alternative	forms	of	input	to	play	the	game.

1See	www.angelcode.com/products/bmfont/	for	additional	details.

2Available	at	https://github.com/libgdx/libgdx/wiki/Hiero	.

http://www.angelcode.com/products/bmfont/
https://github.com/libgdx/libgdx/wiki/Hiero

CHAPTER	5

Alternative	Sources	of	User	Input
In	previous	chapters,	your	games	have	been	controlled	with	traditional	desktop	computer
hardware:	a	keyboard	and	a	mouse.	In	this	chapter,	you’ll	explore	two	alternative	sources
of	user	input:	gamepad	controllers	and	touch-screen	controls.	If	you	do	not	have	access	to
a	gamepad	with	a	USB	connector	(as	discussed	later	in	this	chapter),	you	can	still	follow
along;	the	code	will	still	compile,	and	you’ll	leave	keyboard	controls	as	a	feedback	(a
good	practice	to	consider	in	general	for	the	convenience	of	your	game’s	players).
Similarly,	even	if	you	don’t	have	access	to	device	that’s	touch-screen	capable,	learning
about	the	associated	design	considerations	is	still	worthwhile.	Furthermore,	touch	events
and	mouse	events	are	handled	by	the	same	methods	in	LibGDX;	you	can	simulate	single-
touch	input	(but	not	multitouch	input)	with	the	mouse.	On	the	other	hand,	if	neither
gamepad	nor	touch-based	input	is	of	interest	to	you,	this	entire	chapter	may	be	omitted
without	loss	of	continuity.

As	a	starting	point,	I’ve	updated	the	code	from	the	Cheese,	Please!	game	(introduced
in	Chapter	3)	to	include	the	structural	and	design	modifications	introduced	in	Chapter	4:
incorporating	the	new	BaseGame	class	together	with	Skin	and	Table	objects	to
organize	the	user	interface.	This	revised	code	can	be	found	in	the
CheesePleaseUpdate	directory	containing	the	source	code	for	this	chapter,	and	will
serve	as	your	starting	point	for	both	of	the	main	sections	that	follow.

Gamepad	Controllers
Gamepad	controllers	are	specialized	hardware	devices	that	make	it	easier	for	the	player	to
enter	game-related	input.	They	have	been	in	existence	as	long	as	game	consoles,	and	have
included	various	configurations	of	components	such	as	joysticks,	buttons,	directional	pads,
dials,	triggers,	and	touch	pads.	With	the	increase	in	console-style	gaming	available	on
desktop	computers,	many	gamepads	that	can	be	connected	via	USB	ports	are	now
available.	In	this	section,	you’ll	develop	controls	for	an	Xbox	360	gamepad,	or	one	of	the
many	alternative	products	that	emulate	it,	such	as	the	Logitech	F310	gamepad,	shown	in
Figure	5-1.

Figure	5-1.	Xbox	360	and	Logitech	F310	gamepad	controllers

Support	for	gamepad	input	is	provided	by	the	Controller	and	Controllers
classes.	These	are	not	part	of	the	core	LibGDX	libraries,	and	thus	their	code	is	contained
in	different	JAR	files,	which	must	be	included	in	your	project.	From	the	same	download
location	where	you	obtained	the	file	libgdx.jar,	discussed	in	Chapter	1,	locate	the
directory	extensions/gdx-controllers/	and	download	the	following	files:

gdx-controllers.jar
gdx-controllers-desktop.jar
gdx-controllers-desktop-natives.jar

To	begin,	make	a	copy	of	the	CheesePleaseUpdate	project	folder	and	rename	it
to	CheesePleaseGamepad.	Copy	the	JAR	files	you	have	downloaded	into	the	+libs
folder	in	your	project	directory.	Once	these	files	have	been	added,	you	will	need	to	restart
BlueJ	for	the	newly	added	classes	to	be	available.	The	first	addition	you	need	to	make	to
your	code	is	to	import	all	the	controller-related	classes	to	your	customized	classes	that	will
use	them.	To	do	so,	add	the	following	import	statement	to	the	BaseScreen,
MenuScreen,	and	GameScreen	classes:

import	com.badlogic.gdx.controllers.*;

Recall	that	you	can	process	user	input	in	one	of	two	ways.	For	continuous	input
(corresponding	to	actions	such	as	walking),	you	poll	the	state	of	the	hardware	device	in
the	update	method,	which	typically	runs	60	times	per	second.	Later	you	will	see	that	this
process	is	analogous	to	polling	for	keyboard	input:	keyboard	polling	uses	methods	of	the
Gdx.input	object	such	as	isKeyPressed,	while	gamepad	polling	uses	methods	of	a
Controller	object	such	as	getAxis	and	getButton.	For	discrete	input
(corresponding	to	actions	such	as	jumping),	you	previously	configured	the	program	to
monitor	(or	“listen”)	for	events,	such	as	when	a	keyboard	key	is	initially	pressed	down.
Similarly,	you	will	include	additional	code	in	the	BaseScreen	class	to	monitor	for
discrete	gamepad	events,	such	as	when	a	gamepad	button	is	initially	pressed	down.	You
will	introduce	code	for	both	continuous	and	discrete	gamepad	input	over	the	course	of	the
next	two	sections.

Continuous	Input

In	this	section,	you	will	add	code	to	the	update	method	of	the	GameScreen	class,
which	will	determine	the	direction	in	which	the	joystick	is	being	pressed,	and	move	the
player’s	character	accordingly.	First,	you	need	to	retrieve	the	instance	of	the	active
Controller	object.	The	Controllers	class	provides	the	static	utility	method
getControllers	that	retrieves	an	Array	of	active,	connected	Controller	objects.
Assuming	that	just	a	single	gamepad	is	connected,	you	need	only	get	the	zeroth	element	of
the	Array,	as	follows:

Controller	gamepad	=	Controllers.getControllers().get(0);

Once	the	Controller	has	been	obtained,	you	can	poll	for	the	state	of	joysticks,
buttons,	directional	pads,	and	trigger	buttons	by	using	one	of	four	provided	get-style
methods.	Many	of	these	require	a	single	parameter:	a	constant	value	that	corresponds	to	a
component	of	the	gamepad.	These	values	are	gamepad	specific,	and	a	particular	gamepad
might	even	have	different	values	for	different	operating	systems.	The	most	robust	method
for	determining	these	values	is	to	allow	the	player	to	configure	the	gamepad	mapping	at
runtime,	by	looping	through	the	different	actions	required	by	the	game,	asking	the	player
to	press	the	corresponding	button,	and	storing	the	values	for	later	use.	For	simplicity	in
this	section,	I	have	included	a	class	called	XBoxGamepad	that	stores	the	codes	for	an
Xbox	360-style	controller	(which	includes	those	such	as	the	Logitech	F310	controller
mentioned	earlier).	This	code	for	this	class	is	presented	here,	and	I’ll	explain	how	to	use
the	values	afterward:

import	com.badlogic.gdx.controllers.PovDirection;

public	class	XBoxGamepad
{
				/**	button	codes	*/
				public	static	final	int	BUTTON_A														=	0;
				public	static	final	int	BUTTON_B														=	1;
				public	static	final	int	BUTTON_X														=	2;
				public	static	final	int	BUTTON_Y														=	3;
				public	static	final	int	BUTTON_LEFT_SHOULDER		=	4;
				public	static	final	int	BUTTON_RIGHT_SHOULDER	=	5;
				public	static	final	int	BUTTON_BACK											=	6;
				public	static	final	int	BUTTON_START										=	7;
				public	static	final	int	BUTTON_LEFT_STICK					=	8;
				public	static	final	int	BUTTON_RIGHT_STICK				=	9;

				/**	directional	pad	codes	*/
				public	static	final	PovDirection	DPAD_UP				=	
PovDirection.north;
				public	static	final	PovDirection	DPAD_DOWN		=	
PovDirection.south;
				public	static	final	PovDirection	DPAD_RIGHT	
=	PovDirection.east;
				public	static	final	PovDirection	DPAD_LEFT		=	

PovDirection.west;

				/**	joystick	axis	codes	*/
				//	X-axis:	-1	=	left,	+1	=	right
				//	Y-axis:	-1	=	up		,	+1	=	down
				public	static	final	int	AXIS_LEFT_X		=	1;
				public	static	final	int	AXIS_LEFT_Y		=	0;
				public	static	final	int	AXIS_RIGHT_X	=	3;
				public	static	final	int	AXIS_RIGHT_Y	=	2;

				/**	trigger	codes	*/
				//	Left	&	Right	Trigger	buttons	treated	as	a	single	axis;	
same	ID	value
				//	Values	-	Left	trigger:	0	to	+1.		Right	trigger:	0	to	
-1.
				//	Note:	values	are	additive;	they	can	cancel	each	other	
if	both	are	pressed.
				public	static	final	int	AXIS_LEFT_TRIGGER		=	4;
				public	static	final	int	AXIS_RIGHT_TRIGGER	=	4;
}

The	following	methods	are	available	to	poll	the	state	of	a	gamepad	component:

To	poll	the	state	of	the	joystick,	use	getAxis(code),	where	code
is	an	integer	corresponding	to	either	the	left	or	right	joystick,	and
either	the	x	or	y	direction.	The	value	returned	is	a	float	in	the	range
from	–1	to	1.	On	the	x	axis,	–1	corresponds	to	left	and	+1	corresponds
to	right,	while	on	the	y	axis,	–1	corresponds	to	up	and	+1	corresponds
to	down.	For	example,	consider	the	following	line	of	code:

float	x	=	
gamepad.getAxis(XBoxGamepad.AXIS_LEFT_X);

If	the	value	of	x	equals	0.5,	then	that	means	the	left	joystick	of	the
gamepad	is	being	pressed	halfway	to	the	right.

I	emphasize	that	the	orientation	of	the	y	axis	used	by	most	controllers
(negative	values	correspond	to	the	“up”	direction)	is	the	opposite
orientation	assumed	by	the	LibGDX	libraries	(positive	values
correspond	to	the	“up”	direction).	This	will	need	to	be	remembered
when	processing	input	in	the	update	method.

To	poll	the	state	of	the	triggers,	you	also	use	getAxis(code).	On
Xbox	360-style	controllers,	the	left	and	right	triggers	are	treated	as	a
single	axis.	Pressing	the	left	trigger	generates	the	values	in	the	range
from	0	(not	pressed)	to	+1	(fully	pressed),	while	pressing	the	right
trigger	generates	values	in	the	range	from	0	(not	pressed)	to	–1	(fully
pressed).	If	both	triggers	are	pressed	at	once,	the	getAxis	method

will	return	the	sum	of	their	values;	in	particular,	if	both	triggers	are
fully	pressed,	getAxis	will	return	0.

To	check	the	state	of	the	gamepad	buttons,	use	getButton(code),
where	code	is	an	integer	corresponding	to	a	gamepad	button.	The
value	returned	is	a	Boolean	that	indicates	whether	the	corresponding
button	is	currently	being	pressed	down.

To	determine	which	direction	is	being	pressed	on	the	directional	pad,1
use	getPov(num),	where	num	is	the	index	of	the	directional	pad
(typically	0).	Directional	pads	are	interesting,	in	that	they	yield	return
values	more	complex	than	a	button	(a	boolean	value)	but	less
complex	than	a	joystick	axis	(a	float	value).	This	“middle	ground”
level	of	input	is	handled	by	returning	an	enumerated	type	(an	enum)
defined	in	the	imported	PovDirection	class.	However,	for
convenience,	I	have	defined	alternative	names	(that	may	be	more
familiar	to	modern	gamers)	for	these	values	in	the	XBoxGamepad
class.

You	are	now	ready	to	add	gamepad–based	controls	to	the	update	method	of	the
GameScreen	class.	In	particular,	you	enable	the	player	to	control	Mousey	with	the
gamepad	left	joystick,	by	incorporating	the	getAxis	method.	In	the	following	code,	you
check	to	see	whether	a	controller	is	connected	by	testing	whether	the	Array	of
controllers	contains	at	least	one	element.	If	so,	then	provided	that	the	joystick	has	moved
passed	a	certain	threshold	(called	the	deadzone,	used	to	compensate	for	controller
sensitivity,	typically	set	to	a	value	between	10	and	20	percent),	you	set	the	acceleration	of
your	character	accordingly.	If	not,	you	provide	fallback	keyboard	controls	for	your	game.

float	accelerate	=	100.0f;
if	(Controllers.getControllers().size	>	0)
{
				Controller	gamepad	=	Controllers.getControllers().get(0);
				float	xAxis	=		gamepad.getAxis(XBoxGamepad.AXIS_LEFT_X);
				float	yAxis	=	-gamepad.getAxis(XBoxGamepad.AXIS_LEFT_Y);
				float	deadZone	=	0.15f;
				if	(Math.abs(xAxis)	<	deadZone)
								xAxis	=	0;
				if	(Math.abs(yAxis)	<	deadZone)
								yAxis	=	0;
				mousey.setAccelerationXY(xAxis	*	accelerate,	yAxis	
*	accelerate);
}
else
{
				//	keyboard	fallback	controls
				mousey.setAccelerationXY(0,0);

				if	(Gdx.input.isKeyPressed(Keys.LEFT))
								mousey.addAccelerationXY(-accelerate,0);
				if	(Gdx.input.isKeyPressed(Keys.RIGHT))
								mousey.addAccelerationXY(accelerate,0);
				if	(Gdx.input.isKeyPressed(Keys.UP))
								mousey.addAccelerationXY(0,accelerate);
				if	(Gdx.input.isKeyPressed(Keys.DOWN))
								mousey.addAccelerationXY(0,-accelerate);
}

Discrete	Input
Next,	you	will	introduce	the	code	necessary	to	process	discrete	gamepad	input	events.
First,	you	must	declare	that	the	BaseScreen	class	implements	the
ControllerListener	interface.	The	first	line	of	the	class	declaration	should	read	as
follows:

public	abstract	class	BaseScreen	implements	Screen,	
InputProcessor,	ControllerListener

You	need	to	declare	the	methods	required	by	the	ControllerListener	interface;
these	can	be	overridden	if	needed	by	the	individual	classes	that	extend	BaseScreen.
The	methods	you	need	to	include	are	as	follows:

public	void	connected(Controller	controller)
{		}

public	void	disconnected(Controller	controller)
{		}

public	boolean	xSliderMoved(Controller	controller,	int	
sliderCode,	boolean	value)
{		return	false;		}

public	boolean	ySliderMoved(Controller	controller,	int	
sliderCode,	boolean	value)
{		return	false;		}

public	boolean	accelerometerMoved(Controller	controller,	int	
accelerometerCode,	Vector3	value)
{		return	false;		}

public	boolean	povMoved(Controller	controller,	int	povCode,	
PovDirection	value)
{		return	false;		}

public	boolean	axisMoved(Controller	controller,	int	
axisCode,	float	value)

{		return	false;		}

public	boolean	buttonDown(Controller	controller,	int	
buttonCode)
{		return	false;		}

public	boolean	buttonUp(Controller	controller,	int	
buttonCode)
{		return	false;		}

Finally,	you	need	to	“activate”	the	listener.	You	will	add	the	currently	active	Screen
to	the	set	of	listeners	managed	by	the	Controllers	class.	You	must	also	remove	any
previously	added	ControllerListener	objects;	you	don’t	want	other	Screen
objects	that	may	be	inactive	(but	still	reside	in	memory)	to	respond	to	input,	because	this
could	cause	unexpected	problems.	(For	example,	if	the	Start	button	were	used	to	begin	a
new	game	from	the	menu	screen,	after	switching	to	the	game	screen,	you	no	longer	want
this	action	to	be	occur	when	clicking	Start;	therefore,	you	must	stop	the	menu	screen	from
“listening”	and	responding	to	these	events.)	You	can	perform	this	task	in	the
BaseScreen	constructor	by	adding	the	following	lines	of	code:

Controllers.clearListeners();
Controllers.addListener(this);

Now	that	your	modifications	to	the	BaseScreen	class	are	complete,	you	are	ready	to
write	game-specific	code	to	respond	to	discrete	gamepad	input.	For	example,	you	want	to
enable	the	player	to	pause	the	game	by	pressing	the	X	button	on	the	Xbox	gamepad.	It
would	be	inaccurate	to	poll	for	the	state	of	the	button	in	the	update	method,	as	this	could
result	in	toggling	the	pause	state	60	times	per	second.	Pausing	the	game	is	a	discrete
action,	and	thus	you	override	one	of	the	ControllerListener	methods	to	listen	for
the	event	of	pressing	the	X	button.	The	following	code,	to	be	added	to	the	GameScreen
class,	accomplishes	this	task:

public	boolean	buttonDown(Controller	controller,	int	
buttonCode)
{
				if	(buttonCode	==	XBoxGamepad.BUTTON_X)
								togglePaused();

					return	false;
}

Similarly,	you	would	like	to	be	able	to	start	the	game	by	clicking	the	Start	button	while
the	main	menu	screen	is	active.	To	this	end,	you	add	the	following	code	to	the
MenuScreen	class:

public	boolean	buttonDown(Controller	controller,	int	
buttonCode)
{

				if	(buttonCode	==	XBoxGamepad.BUTTON_START)
								game.setScreen(new	GameScreen(game));

				return	false;
}

This	completes	the	controller-based	additions	to	the	Cheese,	Please!	game.	The	final
version	of	the	source	code	is	contained	within	the	CheesePleaseGamepad	folder	that
contains	the	source	code	for	this	chapter.

Touch-Screen	Controls
In	this	section,	you’ll	learn	how	to	implement	gamepad-inspired	onscreen	touch	controls.
Again,	as	mentioned	in	the	beginning	of	the	chapter,	access	to	a	touch-screen	device	is	not
needed	to	test	the	code	for	this	section,	as	LibGDX	handles	mouse	events	and	touch
events	with	the	same	methods;	single-touch	input	is	simulated	by	the	mouse.	Since	you
have	already	learned	about	the	Button	class	in	the	previous	chapter,	you’re	well	on	your
way.	In	what	follows,	you’ll	learn	about	another	user-interface	control	provided	by	the
LibGDX	library,	the	Touchpad	class,	which	was	created	to	simulate	a	traditional	arcade
joystick.	Figure	5-2	shows	an	example	of	a	traditional	arcade-style	joystick,	and	a	touch-
pad	control	that	can	be	created	with	LibGDX,	which	is	rendered	in	a	top-down	perspective
of	the	arcade-style	joystick.

Figure	5-2.	A	traditional	arcade-style	joystick,	and	a	touch-pad	control	created	in	LibGDX

The	biggest	challenge	to	successfully	using	these	controls	is	not	the	creation	of	the
object,	but	rather	a	design	challenge:	how	should	these	elements	be	arranged	and	placed
on	the	screen?	One	option	is	to	overlay	the	elements	on	top	of	the	game	world	itself,	as
you	have	with	various	Label	objects	in	previous	chapters.	However,	you	rapidly	discover
the	problem	that	having	too	many	controls—which	must	typically	be	much	larger	than
labels,	for	easy	operation—can	obscure	the	game	world	to	the	extent	that	it	interferes	with
game	play.	If	poorly	placed,	a	touch	pad	could	completely	obscure	the	main	character.
Figure	5-3	illustrates	this	possible	situation	by	placing	the	touch	pad	in	the	lower-left
corner	of	the	game	screen.	Notice	how	it	could	cover	Mousey	completely!

Figure	5-3.	A	poorly	placed	touch-pad	control	obscuring	the	main	character,	Mousey

Some	games	attempt	to	address	this	issue	by	making	the	controls	on	the	user	interface
translucent,	yet	the	core	difficulty	remains	because	the	player’s	fingers	will	often	be
positioned	over	the	region	where	the	controls	are,	thus	still	obscuring	the	view	of	the	game
world.	An	alternative	approach	that	you	will	implement	in	this	section	is	to	reserve	a
particular	region	of	the	screen	for	the	controls,	and	render	the	game	world	in	the
remaining	area,	as	illustrated	in	Figure	5-4.

Figure	5-4.	Placing	the	game	controls	below	the	game	world

Working	with	a	Touch	Pad
Touchpad	objects	are	rendered	using	two	images:	one	representing	the	background,	and
the	other	representing	the	knob.	The	user	can	touch	(or	click)	the	knob	and	drag	it	off-
center;	its	movement	is	constrained	to	a	circular	area	contained	within	the	rectangular
region	defined	by	the	background	image.

These	objects	require	two	parameters	to	be	initialized.	First,	you	supply	a	value	for	the
deadzone	radius—the	minimal	distance	(in	pixels)	the	knob	must	be	dragged	in	order	for
any	change	to	register.	This	is	useful	for	situations	when	the	player	wants	to	leave	a	finger
on	the	touch	pad	and	also	for	the	character	to	remain	still.	Without	a	deadzone	setting,	the
controls	would	be	too	sensitive	for	this	to	be	possible.	It	is	unlikely	that	the	average	player
would	have	pixel-perfect	finger	positioning	to	keep	the	knob	exactly	centered,	and	the
result	would	be	unwanted	(and	possibly	player-frustrating)	drift	of	the	character	being
controlled.

Second,	the	images	used	in	a	Touchpad	object	are	stored	in	a	TouchpadStyle
object,	which	contains	two	images,	both	stored	as	Drawable	objects,	as	is	standard	for
UI	elements	in	LibGDX.	As	usual,	you	will	load	each	image	into	a	Texture	object	and
convert	it	into	a	Drawable	by	using	the	game’s	Skin	object.	Because	only	one	screen	in
your	game	uses	this	style,	you	won’t	initialize	the	style	in	the	class	extending	BaseGame,
as	you	have	with	other	style	data	objects.

To	begin	this	project,	start	by	making	another	local	copy	of	the
CheesePleaseUpdate	project	directory,	renaming	it	to
CheesePleaseTouchscreen.	You’ll	also	need	to	copy	some	images	from	this
chapter’s	source	code	directory:	from	CheesePleaseTouchscreen/assets,	copy
all	of	the	images	into	your	local	project’s	assets	directory.

In	the	GameScreen	class,	you	begin	by	adding	the	import	statements:

import	com.badlogic.gdx.scenes.scene2d.ui.Touchpad;
import	
com.badlogic.gdx.scenes.scene2d.ui.Touchpad.TouchpadStyle;
import	
com.badlogic.gdx.scenes.scene2d.ui.Button.ButtonStyle;
import	com.badlogic.gdx.scenes.scene2d.InputListener;
import	com.badlogic.gdx.scenes.scene2d.InputEvent;

You	include	the	following	code	to	declare	the	Touchpad	object	in	the	GameScreen
class,	so	that	both	the	create	and	update	methods	can	access	it:

private	Touchpad	touchPad;

Next,	in	the	create	method,	you	use	the	following	code	to	initialize	the	Touchpad
object	as	well	as	its	corresponding	TouchpadStyle.	While	it	is	possible	to	add	an	event
listener	to	monitor	and	respond	to	changes	in	the	state	of	the	touch	pad,	instead	you	will
poll	for	the	state	of	the	touch	pad	later,	in	the	update	method.

TouchpadStyle	touchStyle	=	new	TouchpadStyle();

Texture	padKnobTex	=	new	
Texture(Gdx.files.internal("assets/joystick-knob.png"));
game.skin.add("padKnobImage",	padKnobTex);
touchStyle.knob	=	game.skin.getDrawable("padKnobImage");

Texture	padBackTex	=	new	
Texture(Gdx.files.internal("assets/joystick-bg.png"));
game.skin.add("padBackImage",	padBackTex);
touchStyle.background	
=	game.skin.getDrawable("padBackImage");

touchPad	=	new	Touchpad(5,	touchStyle);

In	the	update	method,	you	can	use	the	Touchpad	object	methods
getKnobPercentX	and	getKnobPercentY	to	determine	the	current	position	of	the
knob.	The	returned	values	range	from	–1	to	+1;	you	can	multiply	these	values	by	the
maximum	desired	acceleration	for	your	character,	which	will	give	the	player	a	great	deal
of	control	over	the	speed:	the	further	the	knob	is	dragged	from	the	center	of	the	touch	pad,
the	greater	the	character’s	speed	will	be.	You	replace	the	code	that	polls	the	state	of	the
keyboard	arrow	keys	and	sets	Mousey’s	acceleration	with	the	following:

float	accelerate	=	100;
mousey.setAccelerationXY(
				touchPad.getKnobPercentX()	*	accelerate,	
touchPad.getKnobPercentY()	*	accelerate);

For	completeness,	the	code	that	you	will	use	to	create	the	Pause	button	displayed	in
the	game	screenshot	in	Figure	5-4	is	given	below;	this	code	should	be	included	in	the
create	method.	In	this	case,	an	event	listener	is	attached	to	the	Button	object,	since
pausing	the	game	is	a	discrete	action.

Texture	pauseTexture	=	new	
Texture(Gdx.files.internal("assets/pause.png"));
game.skin.add("pauseImage",	pauseTexture);
ButtonStyle	pauseStyle	=	new	ButtonStyle();
pauseStyle.up	=	game.skin.getDrawable("pauseImage");

Button	pauseButton	=	new	Button(pauseStyle);

pauseButton.addListener(
				new	InputListener()
				{
								public	boolean	touchDown	(InputEvent	event,	float	x,	
float	y,	int	pointer,	int	button)
								{
												togglePaused();
												return	true;
								}
				});

With	these	elements	in	place,	you	are	ready	to	focus	your	attention	on	creating	the	user
interface	layout	illustrated	in	Figure	5-4.

Redesigning	the	User	Interface
As	mentioned	in	the	beginning	of	our	discussion	of	touch-screen	controls,	you	have	to
deal	with	the	issue	of	control	elements	obstructing	the	user’s	view	of	the	game	world;	we
have	elected	to	display	the	controls	at	the	bottom	of	the	screen	and	render	the	game	world
above	them.

First,	you’ll	set	the	configuration	options	in	the	Launcher	class	so	that	the	window

has	width	600	and	height	800;	the	main	function	becomes	as	follows:

public	static	void	main	(String[]	args)
{
				LwjglApplicationConfiguration	config	=	new	
LwjglApplicationConfiguration();
				config.width	=	600;
				config.height	=	800;
				config.title	=	"Cheese,	Please!";

				CheeseGame	myProgram	=	new	CheeseGame();
				LwjglApplication	launcher	=	new	LwjglApplication(
myProgram,	config);
}

Next,	you’ll	make	some	changes	to	the	BaseScreen	class.	The	user	interface	will
still	fill	the	entire	window,	but	the	game	world	(the	contents	of	mainStage)	will	be
rendered	in	the	upper	area	of	this	window,	as	illustrated	in	Figure	5-4.	Thus,	you’ll	change
the	dimensions	of	mainStage	to	600	by	600	pixels,	and	later	you’ll	see	how	to	render
mainStage	in	a	different	location.	The	constants	viewWidth	and	viewHeight	will
now	exclusively	refer	to	the	dimensions	of	mainStage,	and	you’ll	declare	the	constants
uiWidth	and	uiHeight	to	store	the	dimensions	of	uiStage.

The	variable	declarations	in	the	BaseScreen	class	should	now	be	as	follows:

public	final	int	viewWidth		=	600;
public	final	int	viewHeight	=	600;
public	final	int	uiWidth				=	600;
public	final	int	uiHeight			=	800;

In	the	constructor	method,	the	initialization	of	mainStage	remains	the	same,	but	the
line	of	code	initializing	uiStage	should	be	changed	to	the	following:

uiStage	=	new	Stage(new	FitViewport(uiWidth,	uiHeight));

In	the	render	method,	you	can	change	the	rendering	location	of	each	stage	by	using
the	method	glViewport	of	the	Gdx.gl	object,	before	the	draw	method	of	each	stage
is	called.	The	parameters	of	glViewport	define	the	rectangular	region	where	the	stage
should	be	rendered:	the	x	and	y	coordinates	of	the	bottom-left	corner,	followed	by	the
width	and	height	of	the	rectangle.	In	the	following	code	listing,	the	code	to	be	added	(to
adjust	the	rendering	locations	as	previously	described)	appears	in	bold:

Gdx.gl.glViewport(0,	uiHeight-viewHeight,	viewWidth,	
viewHeight);
mainStage.draw();
Gdx.gl.glViewport(0,0,	uiWidth,uiHeight);
uiStage.draw();

In	general,	it	is	recommended	to	use	the	glViewport	method	sparingly,	as	it
changes	the	rendering	parameters,	but	not	the	coordinates	of	touch	events	generated	by
event	listeners.	This	is	why	uiStage	was	kept	at	the	same	size	as	the	window.
Otherwise,	the	call	to	glViewport	could	result	in	a	mismatch	between	where	the
controls	are	drawn	and	where	the	controls	are	activated.

Next,	you	plan	the	new	layout	of	uiTable	that	incorporates	the	onscreen	controls,	as
illustrated	in	Figure	5-4;	an	abstract	diagram	of	this	layout	is	presented	in	Figure	5-5.

Figure	5-5.	Abstract	diagram	of	the	new	user-interface	layout,	including	control	elements

The	contents	of	Figure	5-5	are	as	follows:

Cell	a	contains	a	right-aligned	label	displaying	the	time	elapsed.

Cell	b	contains	the	You	Win	image	(separated	by	50	pixels	of	padding
in	between),	as	in	the	previous	version	of	this	game.

Cell	c	is	empty	and	set	to	expand	in	the	y	direction	to	fill	any	available
space,	to	ensure	that	cell	d	will	be	positioned	at	the	bottom	of	the
screen.

Cell	d	has	a	fixed	size	of	200	by	600	pixels,	and	contains	another
Table,	which	in	turn	contains	the	onscreen	touch	controls;	the
Table	in	cell	d	is	padded	by	25	pixels	all	around,	has	a	background
image	that	is	repeated	(or	tiled)	to	fill	the	available	space,	and	contains
three	cells	in	a	single	row:	e,	f,	and	g.

Cell	e	contains	the	touchPad	object.

Cell	f	is	empty	and	set	to	expand	in	the	x	direction	to	fill	any	available
space,	so	that	cell	e	is	closer	to	the	left	side	of	the	screen,	and	cell	g	is
closer	to	the	right	side.

Cell	g	contains	the	Button	used	to	pause	the	game.

Before	you	implement	this	layout,	you	must	remove	the	code	for	the	previous	version
of	the	UI.	In	particular,	delete	the	following	lines	from	the	create	method:

uiTable.pad(10);
uiTable.add().expandX();
uiTable.add(timeLabel);
uiTable.row();
uiTable.add(winImage).colspan(2).padTop(50);
uiTable.row();
uiTable.add().colspan(2).expandY();

In	its	place,	you	add	the	following	code,	which	uses	the	previously	created
touchpad	and	pauseButton	elements	and	implements	the	table	layout	as	described:

uiTable.add(timeLabel).right().pad(10);
uiTable.row();
uiTable.add(winImage).padTop(50);
uiTable.row();
uiTable.add().expandY();
uiTable.row();

Table	controlTable	=	new	Table();
controlTable.pad(25);
Texture	controlTex	=	new	
Texture(Gdx.files.internal("assets/pixels-white.png"),	
true);
game.skin.add("controlTex",	controlTex);
controlTable.background(
game.skin.getTiledDrawable("controlTex"));
controlTable.add(touchPad);
controlTable.add().expandX();
controlTable.add(pauseButton);

uiTable.add(controlTable).width(600).height(200);

With	this	code,	the	Cheese,	Please!	game	should	now	render	as	illustrated	in	Figure	5-
4.	The	source	code	that	incorporates	all	of	these	changes	is	contained	within	the
CheesePleaseTouchscreen	directory.	The	touch-screen	controls	are	best
experienced	when	the	program	is	run	on	a	touch-screen	device,	such	as	a	tablet	running
the	Android	OS;	this	topic	is	discussed	briefly	in	Chapter	9.

Summary
In	this	chapter,	you	added	two	new	ways	for	the	player	to	interact	with	your	game.	First,
you	added	gamepad	controller	support	to	the	base	game	by	using	the	controller	extensions
for	the	LibGDX	libraries.	This	required	the	inclusion	of	some	new	JAR	files	in	your
project,	as	well	as	a	class	dedicated	to	storing	the	values	corresponding	to	each	of	the
joysticks,	buttons,	directional	pads,	and	triggers	on	your	particular	gamepad.	You	learned
how	to	poll	for	continuous	input,	as	well	as	how	to	set	up	event	listeners	to	monitor	for
discrete	input.	Afterward,	you	saw	how	to	add	touch-screen	support	to	the	base	game,
using	Touchpad	and	Button	objects.	This	chapter	discussed	at	length	the	design	issues
that	arise	when	adding	onscreen	controls,	and	showed	one	way	to	alleviate	these	issues,	by
repositioning	the	rendering	locations	of	the	stages	using	the	glViewport	method.	With
these	new	techniques	at	your	disposal,	you	will	be	able	to	greatly	improve	the	gameplay
experience	for	your	players.

1The	control	element	typically	referred	to	as	a	directional	pad	was	referred	to	as	a	point-of-view	control	in	traditional
flight	simulators,	which	explains	the	use	of	the	POV	acronym	in	the	LibGDX	source	code.

CHAPTER	6

Additional	Game	Case	Studies
This	chapter	introduces	a	series	of	games	and	focuses	on	how	to	implement	a	variety	of
game	mechanics.	Each	of	the	examples	is	playable,	but	certainly	not	a	polished	product—
for	example,	none	has	a	Start	menu	or	a	user	interface,	and	we	won’t	implement	win	or
lose	conditions	(these	are	left	for	the	you	to	implement	as	recommended	“Next	Steps”	at
the	end	of	each	section).	Nonetheless,	the	techniques	covered	should	prove	to	be	useful	for
many	situations.

For	each	of	the	new	games	that	is	presented,	you	should	begin	by	creating	a	new
project	in	BlueJ.	In	each	project,	you	should	copy	over	the	classes	BaseGame,
BaseScreen,	BaseActor,	AnimatedActor,	and	PhysicsActor.	In	the
BaseScreen	class,	you	should	change	the	values	of	viewWidth	and	viewHeight	to
800	and	600,	respectively,	as	the	games	in	this	chapter	require	a	larger	window.	You
should	also	create	a	launcher-style	class	and	a	class	that	extends	BaseGame,	as	in	earlier
projects.	In	each	section,	you	will	write	a	class	called	GameScreen	that	is	initialized	by
the	customized	BaseGame-extending	class	of	each	project.

Space	Rocks
This	section	introduces	a	game	called	Space	Rocks,	a	space-themed	shoot-’em-up	game
inspired	by	the	classic	arcade	game	Asteroids.	The	user	controls	a	spaceship;	the	goal	is	to
shoot	lasers	to	destroy	all	the	rocks	floating	around	the	screen.	Figure	6-1	shows	this	game
in	action.

Figure	6-1.	The	Space	Rocks	game

The	spaceship	steers	much	like	the	turtle	from	the	Starfish	Collector	game:	it	can
rotate	left	and	right,	and	move	forward	in	whatever	direction	it	is	facing.	The	new
mechanics	and	topics	introduced	with	this	game	include	the	following:

Creating	a	template	instance	of	an	object	to	be	used	as	a	basis	for
spawning	later

Using	new	methods	for	the	BaseActor	class	to	simplify	centering
objects

Updating	the	BaseActor	class	so	that	groups	of	objects	can	move
together

Maintaining	multiple	lists	of	actor	objects

Using	a	new	method	to	wrap	the	position	of	an	actor	around	the	screen
(an	object	that	moves	past	one	edge	of	the	screen	reappears	on	the
opposite	side)

After	creating	a	new	project	and	including	the	classes	as	described	at	the	beginning	of
this	chapter,	you	should	copy	all	the	images	from	this	chapter’s	source	directory
SpaceRocks/assets	into	your	local	project’s	assets	folder.	You	then	create	the
core	of	the	GameScreen	class,	including	the	import	statements	and	variable	and
method	declarations	you	will	need:

import	com.badlogic.gdx.Gdx;
import	com.badlogic.gdx.Input.Keys;
import	com.badlogic.gdx.graphics.Texture;
import	com.badlogic.gdx.scenes.scene2d.actions.Actions;

import	com.badlogic.gdx.graphics.Texture.TextureFilter;
import	com.badlogic.gdx.graphics.g2d.Animation;
import	com.badlogic.gdx.graphics.g2d.Animation.PlayMode;
import	com.badlogic.gdx.math.MathUtils;
import	java.util.ArrayList;

public	class	GameScreen	extends	BaseScreen
{
				private	BaseActor	background;
				private	PhysicsActor	spaceship;
				private	BaseActor	rocketfire;

				//	create	"base"	objects	to	clone	later
				private	PhysicsActor	baseLaser;
				private	AnimatedActor	baseExplosion;

				private	ArrayList<PhysicsActor>	laserList;
				private	ArrayList<PhysicsActor>	rockList;
				private	ArrayList<BaseActor>	removeList;

				//	game	world	dimensions
				final	int	mapWidth	=	800;
				final	int	mapHeight	=	600;

				public	GameScreen(BaseGame	g)
				{		super(g);		}

				public	void	create()
				{													}

				public	void	update(float	dt)
				{													}

}

Next,	you	proceed	to	fill	in	the	methods.	In	the	create	method,	you	initialize	the
background	object:

background	=	new	BaseActor();
background.setTexture(new	
Texture(Gdx.files.internal("assets/space.png")));
background.setPosition(0,	0);
mainStage.addActor(background);

Each	of	the	remaining	objects	to	be	initialized	needs	to	have	its	origin	set	to	the	center
of	its	associated	image,	for	rotations	to	appear	correct.	To	simplify	the	code	that	follows,
add	the	following	method	to	the	BaseActor	class,	which	automates	this	process	for	you:

public	void	setOriginCenter()
{
				if	(getWidth()	==	0)
								System.err.println("error:	actor	size	not	set");

				setOrigin(getWidth()/2,	getHeight()/2);
}

The	Spaceship
Returning	to	the	create	method	of	the	GameScreen	class,	you	initialize	the
spaceship	object	as	usual:

1.	 Load	and	store	a	Texture	(which	is	automatically	converted	to	an
Animation	for	you).

2.	 Set	the	starting	position.

3.	 Set	the	physics	properties	(a	small	deceleration	value	will	provide	a
“drifting”	effect).

4.	 Select	a	shape	for	collision-detection	purposes.

5.	 Add	the	object	to	a	Stage.

In	contrast	to	the	turtle	object	from	the	Starfish	Collector	game,	you	do	not	want	to	set
the	autoAngle	parameter	to	true,	because	the	spaceship	should	be	able	to	face	in	a
different	direction	than	the	one	corresponding	to	its	angle	of	motion.	In	fact,	this	is	one	of
the	distinguishing	features	of	this	game:	to	slow	down	quickly,	the	spaceship	must	turn
around	and	accelerate	in	the	opposite	direction.	Here’s	the	code	that	accomplishes	the
features	listed	above:

spaceship	=	new	PhysicsActor();
Texture	shipTex	=	new	
Texture(Gdx.files.internal("assets/spaceship.png"));
shipTex.setFilter(TextureFilter.Linear,	
TextureFilter.Linear);
spaceship.storeAnimation("default",	shipTex);

spaceship.setPosition(400,300);
spaceship.setOriginCenter();
spaceship.setMaxSpeed(200);
spaceship.setDeceleration(20);
spaceship.setEllipseBoundary();

mainStage.addActor(spaceship);

Steering	the	spaceship	in	Space	Rocks	is	slightly	different	from	moving	the	turtle	in
Starfish	Collector,	in	that	you’d	like	to	be	able	to	change	the	spaceship’s	acceleration

gradually	in	various	directions.	To	this	end,	you	need	to	add	the	following	method	to	the
PhysicsActor	class,	which	will	adjust	an	actor’s	acceleration	by	adding	a	given
amount	of	acceleration	in	another	direction:

public	void	addAccelerationAS(float	angle,	float	amount)
{
				acceleration.add(amount	*	MathUtils.cosDeg(angle),	
amount	*	MathUtils.sinDeg(angle));
}

With	this	new	method	in	place,	it	is	time	to	return	to	the	GameScreen	class.	To	steer
the	spaceship,	you	add	the	following	code	to	the	update	method:

spaceship.setAccelerationXY(0,0);

if	(Gdx.input.isKeyPressed(Keys.LEFT))
				spaceship.rotateBy(180	*	dt);
if	(Gdx.input.isKeyPressed(Keys.RIGHT))
				spaceship.rotateBy(-180	*	dt);
if	(Gdx.input.isKeyPressed(Keys.UP))
				spaceship.addAccelerationAS(spaceship.getRotation(),	
100);

One	of	the	interesting	features	of	the	Space	Rocks	game	world	is	that	there	are	no
“boundaries”:	an	object	travelling	past	the	right	edge	of	the	screen	reappears	on	the	left
(and	vice	versa),	and	similarly	for	the	bottom	and	top	edges.	This	behavior	is	called
wraparound,	and	can	be	implemented	by	including	the	following	method	in	the
GameScreen	class:

public	void	wraparound(BaseActor	ba)
{
				if	(ba.getX()	+	ba.getWidth()	<	0)
								ba.setX(mapWidth);
				if	(ba.getX()	>	mapWidth)
								ba.setX(-ba.getWidth());
				if	(ba.getY()	+	ba.getHeight()	<	0)
								ba.setY(mapHeight);
				if	(ba.getY()	>	mapHeight)
								ba.setY(-ba.getHeight());
}

Then	in	the	update	method,	this	method	should	be	invoked	on	each	of	the	moving
entities	in	the	game.	To	start,	include	the	following	line	of	code:

wraparound(spaceship);

This	is	a	good	point	to	compile	your	project	and	to	test	whether	the	ship	moves	across
the	screen	as	expected.

Your	next	goal	is	to	create	a	visual	special	effect:	a	rocket-fire	image,	which	appears	to
be	coming	from	the	back	end	of	the	spaceship,	and	should	be	visible	when	(and	only
when)	the	user	is	pressing	the	key	that	makes	the	spaceship	accelerate	forward.	Ideally,
you	want	to	somehow	“attach”	this	image	to	the	spaceship,	offset	a	bit	from	the
spaceship’s	center,	and	move	the	rocket-fire	image	along	with	the	spaceship	image,	taking
into	account	the	position	and	rotation	of	the	spaceship,	as	illustrated	in	Figure	6-2.

Figure	6-2.	Spaceship	without	and	with	rocket	fire	visible	in	different	positions

In	LibGDX,	the	Group	class	was	created	for	exactly	this	purpose:	it	is	an	extension	of
the	Actor	class,	and	also	similar	to	a	Stage	in	that	you	can	add	other	Actor	objects	to
it.	The	draw	method	of	the	Group	class	calculates	the	position	and	rotation	of	all
attached	Actor	objects,	and	then	calls	their	draw	methods	in	turn.	To	adapt	your
BaseActor	class	to	take	advantage	of	this,	you	need	to	make	a	few	changes.	First,	add
the	import	statement:

import	com.badlogic.gdx.scenes.scene2d.Group;

Next,	change	the	declaration	of	the	BaseActor	class	so	that	it	extends	the	Group
class	instead	of	the	Actor	class:

public	class	BaseActor	extends	Group

At	the	end	of	the	draw	method	of	the	BaseActor	class,	you	need	to	include	the
following	line	of	code;	as	discussed	previously,	this	calls	the	draw	method	of	the	Group
class,	which	in	turn	calls	the	draw	methods	of	all	the	actors	that	have	been	attached	to
this	object:

super.draw(batch,	parentAlpha);

Then	you	initialize	the	rocketfire	object	in	the	create	method	of	the
GameScreen	class	as	follows.	Note	in	particular	that	the	rocket	fire’s	position	should	be
thought	of	as	offset	from	the	spaceship’s	position,	as	illustrated	by	the	dashed	lines	on	the
right	side	of	Figure	6-3.	Also	note	that	the	rocketfire	object	is	added	to	spaceship,
rather	than	mainStage.

rocketfire	=	new	BaseActor();
rocketfire.setPosition(-28,24);
Texture	fireTex	=	new	
Texture(Gdx.files.internal("assets/fire.png"));
fireTex.setFilter(TextureFilter.Linear,	
TextureFilter.Linear);

rocketfire.setTexture(fireTex);
spaceship.addActor(rocketfire);

Figure	6-3.	The	default	position	of	the	rocketfire	object	when	added	to	the	spaceship	(left)	and	after	setting	the	position
relative	to	the	spaceship	(right)

Recall	that	the	rocketfire	object	should	be	visible	only	if	the	player	is	pressing	the
keyboard	key	that	accelerates	the	spaceship.	This	is	accomplished	by	adding	the	following
line	of	code	to	the	update	method:

rocketfire.setVisible(Gdx.input.isKeyPressed(Keys.UP));

This	is	a	good	time	to	compile	the	code	and	run	the	game	to	verify	that	everything	is
behaving	as	expected.

Lasers
Next,	you	set	up	the	baseLaser	object,	from	which	additional	lasers	will	be	cloned	for
the	spaceship	to	shoot	at	the	rocks.	As	usual,	this	requires	you	to	load	and	store	a
Texture,	set	physics	properties	and	a	collision	shape,	and	in	this	case	you	do	want	the
laser	be	oriented	in	the	direction	of	motion,	so	you	set	autoAngle	to	true.	To
accomplish	these	tasks,	add	the	following	code	to	the	create	method	of	the
GameScreen	class:

baseLaser	=	new	PhysicsActor();
Texture	laserTex	=	new	
Texture(Gdx.files.internal("assets/laser.png"));
laserTex.setFilter(TextureFilter.Linear,	
TextureFilter.Linear);
baseLaser.storeAnimation("default",	laserTex);

baseLaser.setMaxSpeed(400);
baseLaser.setDeceleration(0);
baseLaser.setEllipseBoundary();
baseLaser.setOriginCenter();
baseLaser.setAutoAngle(true);

In	addition,	you	need	to	initialize	the	list	that	will	be	used	to	store	instances	of	laser
objects,	for	later	use	in	collision	detection:

laserList	=	new	ArrayList<PhysicsActor>();

Instances	of	lasers	are	stored	by	two	objects	in	this	game:	a	Stage	object,	which
activates	the	updating	and	drawing	of	the	actor,	and	an	ArrayList	object,	which	is	used
to	organize	the	collision	detection	code.	When	one	of	these	instances	needs	to	be	removed
from	the	game,	to	do	so	completely	requires	that	it	be	removed	from	both	the	Stage	and
the	ArrayList	that	contains	it.	The	Actor	class	contains	a	remove	method	to	remove
itself	from	the	Stage.	Inspired	by	this	functionality,	you	will	add	some	code	to	the
BaseActor	class	to	similarly	manage	removal	from	the	associated	ArrayList.	First,
in	the	BaseActor	class,	add	the	import	statement:

import	java.util.ArrayList;

Then	add	a	new	variable:	an	ArrayList	called	parentList,	which	can	store	a
reference	to	an	ArrayList	the	actor	has	been	added	to.	The	difficult	part	of	declaring
this	variable	is	choosing	the	type	of	data	that	the	ArrayList	contains:	in	general,	it
could	contain	BaseActor	objects,	or	AnimatedActor	objects,	or	PhysicsActor
objects—in	short,	any	of	the	classes	that	extend	the	BaseActor	class.	To	express	this	in
the	declaration,	the	Java	syntax	for	the	type	declaration	is	?	extends	BaseActor.	In
the	BaseActor	class,	add	the	following	line	of	code	to	the	variable	declarations:

private	ArrayList<?	extends	BaseActor>	parentList;

Then	add	a	method	to	the	BaseActor	class	that	can	be	used	to	set	this	data:

public	void	setParentList(ArrayList<?	extends	BaseActor>	pl)
{		parentList	=	pl;		}

Initialize	this	data	to	null	in	the	BaseActor	constructor	by	adding	the	following
line	of	code:

parentList	=	null;

And	finally,	add	a	method	called	destroy	that	will	cause	a	BaseActor	to	remove
itself	from	the	Stage	that	contains	it,	as	well	as	removing	it	from	its	parentList	(if	it
exists):

public	void	destroy()
{
				remove();	//	removes	self	from	Stage

				if	(parentList	!=	null)
								parentList.remove(this);
}

Next,	you	will	set	up	the	code	to	fire	a	laser.	Lasers	should	appear	to	be	coming	from
the	spaceship	object.	To	align	their	origin	coordinates	correctly,	you	must	take	into
account	the	position	of	the	target,	the	origin	of	the	target,	and	the	origin	of	the	object	being
centered.	The	results	of	taking	these	values	into	account,	one	step	at	a	time,	are	illustrated
in	Figure	6-4.

Figure	6-4.	An	illustration	of	the	effects	of	each	step	in	the	calculation	for	centering	a	small	rectangle	within	a	larger
rectangle

Since	this	is	a	commonly	needed	operation,	add	the	following	method,	named
moveToOrigin,	to	the	BaseActor	class:

public	void	moveToOrigin(BaseActor	target)
{
				this.setPosition(
								target.getX()	+	target.getOriginX()	
-	this.getOriginX(),
								target.getY()	+	target.getOriginY()	
-	this.getOriginY());
}

In	addition,	laser	objects	will	need	to	be	cloned	so	there	need	to	be	clone	methods
for	the	AnimatedActor	and	PhysicsActor	classes.	Previously,	only	BaseActor
objects	were	cloned,	so	the	analogous	methods	for	the	more	sophisticated	classes	have	not
been	introduced	until	now.	In	the	AnimatedActor	class,	add	the	following	methods.
Note	that	in	the	copy	method,	the	method	call	super.copy	activates	the	copy	method
of	the	BaseActor	class,	which	ensures	that	all	the	data	defined	in	that	class	will	also	get
copied	into	the	new	actor.

public	void	copy(AnimatedActor	original)
{
				super.copy(original);
				this.elapsedTime	=	0;
				this.animationStorage	=	original.animationStorage;
				this.activeName	=	new	String(original.activeName);
				this.activeAnim	=	this.animationStorage.get(
this.activeName);
}

public	AnimatedActor	clone()
{
				AnimatedActor	newbie	=	new	AnimatedActor();
				newbie.copy(this);
				return	newbie;
}

In	the	PhysicsActor	class,	for	similar	purposes,	add	the	following	methods:

public	void	copy(PhysicsActor	original)
{
				super.copy(original);
				this.velocity					=	new	Vector2(original.velocity);
				this.acceleration	=	new	Vector2(original.acceleration);
				this.maxSpeed					=	original.maxSpeed;
				this.deceleration	=	original.deceleration;
				this.autoAngle				=	original.autoAngle;
}

public	PhysicsActor	clone()
{
				PhysicsActor	newbie	=	new	PhysicsActor();
				newbie.copy(this);
				return	newbie;
}

Now	you	are	ready	to	return	to	implementing	game	mechanics	in	the	GameScreen
class.	Since	firing	a	laser	is	a	discrete	event,	you’ll	override	the	keyDown	method	in	the
GameScreen	class	to	handle	this	action.	If	the	space	key	is	pressed,	create	a	new
PhysicsActor,	called	laser,	by	cloning	baseLaser.	Center	the	laser	on	the
spaceship	by	using	the	newly	created	moveToOrigin	method,	set	the	velocity	so	that	it
is	aligned	with	the	angle	of	the	spaceship,	and	add	the	laser	to	the	appropriate	Stage	and
ArrayList.	Also,	an	Action	sequence	is	added	that	will	cause	the	laser	to	fade	out
quickly	after	an	initial	2-second	delay:

public	boolean	keyDown(int	keycode)
{
				if	(keycode	==	Keys.SPACE)
				{
								PhysicsActor	laser	=	baseLaser.clone();
								laser.	moveToOrigin(spaceship);
								laser.setVelocityAS(spaceship.getRotation(),	400);
								laserList.add(laser);
								laser.setParentList(laserList);
								mainStage.addActor(laser);

								laser.addAction(
												Actions.sequence(Actions.delay(2),	
Actions.fadeOut(0.5f),	Actions.visible(false)));
				}

				return	false;
}

In	the	update	method	of	GameScreen,	you	can	set	up	a	loop	to	apply	the
wraparound	method	to	each	object	in	the	laserList.	You	can	also	check	whether
any	of	the	lasers	are	invisible,	which	is	an	indicator	that	they	should	be	removed	from	the
game.	However,	an	object	can’t	be	removed	from	a	list	while	iterating	over	the	list	(this
would	cause	a	“concurrent	modification	exception”	error	and	crash	the	program).	To	work
around	this,	in	the	GameScreen	class,	there	is	an	ArrayList	called	removeList.	In
the	create	method,	it	is	initialized:

removeList	=	new	ArrayList<BaseActor>();

At	the	beginning	of	the	update	method,	its	contents	are	cleared:

removeList.clear();

Then,	if	an	object	in	laserList	is	invisible,	it	is	added	to	removeList.	Later,	you
iterate	over	removeList	and	call	the	destroy	method	on	each	of	its	elements.	This
removes	them	from	the	game	completely,	while	avoiding	the	previously	described	error:

for	(PhysicsActor	laser	:	laserList)
{
				wraparound(laser);
				if	(!laser.isVisible())
								removeList.add(laser);
}

for	(BaseActor	ba	:	removeList)
{
				ba.destroy();
}

Rocks	and	Explosions
Next,	it	is	time	to	move	on	to	the	rocks	of	the	Space	Rocks	game.	There	does	not	need	to
be	a	base	version	of	the	object	to	clone	later,	since	rocks	are	destroyed	when	hit	by	lasers,
and	no	new	rocks	spawn	at	a	later	time.1	For	simplicity,	you	could	still	create	a	base
version	and	clone	it	repeatedly	to	produce	the	set	of	rocks	drifting	around	the	screen	at	the
start	of	the	game.	However,	you	will	instead	attempt	to	make	the	individual	rocks	appear
and	act	differently	to	add	interest	to	the	game.	In	particular,	the	rocks	will	use	different
images	(the	file	names	are	rock0.png,	rock1.png,	rock2.png,	and	rock3.png),
the	initial	positions	will	be	random,	and	they	will	have	different	speeds	and	rates	of
rotation.	Here,	you	must	also	initialize	the	ArrayList	being	used	to	keep	track	of	the
rocks	for	collision	detection.	The	code	that	accomplishes	this	is	given	here:

rockList	=	new	ArrayList<PhysicsActor>();
int	numRocks	=	6;
for	(int	n	=	0;	n	<	numRocks;	n++)
{

				PhysicsActor	rock	=	new	PhysicsActor();

				String	fileName	=	"assets/rock"	+	(n%4)	+	".png";
				Texture	rockTex	=	new	
Texture(Gdx.files.internal(fileName));
				rockTex.setFilter(TextureFilter.Linear,	
TextureFilter.Linear);
				rock.storeAnimation("default",	rockTex);

				rock.setPosition(800	*	MathUtils.random(),	600	
*	MathUtils.random());
				rock.setOriginCenter();
				rock.setEllipseBoundary();
				rock.setAutoAngle(false);

				float	speedUp	=	MathUtils.random(0.0f,	1.0f);
				rock.setVelocityAS(360	*	MathUtils.random(),	75	
+	50*speedUp);
				rock.addAction(Actions.forever(Actions.rotateBy(360,	
2	-	speedUp)));

				mainStage.addActor(rock);
				rockList.add(rock);
				rock.setParentList(rockList);
}

In	the	update	method	of	the	GameScreen	class,	some	code	must	be	added	that
causes	the	rocks	to	wrap	around	the	screen	in	the	same	style	as	the	spaceship:

for	(PhysicsActor	rock	:	rockList)
{
				wraparound(rock);
}

This	is	another	good	point	to	compile	your	project	and	run	the	game	to	make	sure	that
the	rock	objects	are	behaving	as	expected.

Next,	you’ll	set	up	the	AnimatedActor	that	stores	an	animated	explosion	that	will
appear	when	lasers	collide	with	rocks.	For	animation	sequences	consisting	of	many
images,	it	is	common	practice	to	combine	all	these	images	into	a	single	image	file	called	a
sprite	sheet,	and	this	is	the	case	for	the	image	you	will	use,	pictured	in	Figure	6-5.

Figure	6-5.	A	sprite	sheet	consisting	of	images	for	an	animation	of	an	explosion

The	TextureRegion	class	has	a	method	called	split	that	divides	an	image	into
rectangular	sections,	and	returns	the	results	in	a	two-dimensional	array	of
TextureRegion	objects,	which	you	can	convert	into	an	Array	and	use	in	creating	an
Animation.	For	convenience,	I	have	written	a	static	method	named
parseSpriteSheet	that	performs	these	steps.	In	particular,	this	includes	a	nested	for
loop	that	transfers	the	contents	of	the	two-dimensional	array	into	a	single-dimensional
array	before	creating	the	animation.	This	method	is	in	a	new	helper	class	called
GameUtils;	the	code	for	this	class	is	presented	here:

import	com.badlogic.gdx.Gdx;
import	com.badlogic.gdx.graphics.Texture;
import	com.badlogic.gdx.graphics.g2d.TextureRegion;
import	com.badlogic.gdx.graphics.g2d.Animation;
import	com.badlogic.gdx.graphics.g2d.Animation.PlayMode;
import	com.badlogic.gdx.utils.Array;
import	com.badlogic.gdx.graphics.Texture.TextureFilter;

public	class	GameUtils
{
				public	static	Animation	parseSpriteSheet(String	fileName,	
int	frameCols,	int	frameRows,
								float	frameDuration,	PlayMode	mode)
				{
								Texture	t	=	new	Texture(Gdx.files.internal(fileName),	

true);
								t.setFilter(TextureFilter.Linear,	
TextureFilter.Linear);

								int	frameWidth	=	t.getWidth()	/	frameCols;
								int	frameHeight	=	t.getHeight()	/	frameRows;

								TextureRegion[][]	temp	=	TextureRegion.split(t,	
frameWidth,	frameHeight);
								TextureRegion[]	frames	=	new	TextureRegion[frameCols	
*	frameRows];

								int	index	=	0;
								for	(int	i	=	0;	i	<	frameRows;	i++)
								{
												for	(int	j	=	0;	j	<	frameCols;	j++)
												{
																frames[index]	=	temp[i][j];
																index++;
												}
								}

								Array<TextureRegion>	framesArray	=	new	
Array<TextureRegion>(frames);
								return	new	Animation(frameDuration,	framesArray,	
mode);
				}
}

Now,	returning	to	the	create	method	of	the	GameScreen	class,	this	animation-
generating	method	is	used	to	create	the	base	object	from	which	all	explosion	effects	will
be	cloned	later:

baseExplosion	=	new	AnimatedActor();
Animation	explosionAnim	=	GameUtils.parseSpriteSheet(
				"assets/explosion.png",	6,	6,	0.03f,	PlayMode.NORMAL);
baseExplosion.storeAnimation("default",	explosionAnim);
baseExplosion.setWidth(96);
baseExplosion.setHeight(96);
baseExplosion.setOriginCenter();

Finally,	return	to	the	update	method	of	the	GameScreen	class.	When	a	laser
overlaps	a	rock,	both	the	laser	and	rock	should	be	removed	from	the	game,	and	an
explosion	object	should	be	cloned	from	baseExplosion	and	centered	on	the	position
of	the	rock.	The	explosion	does	not	need	to	be	added	to	any	ArrayList;	furthermore,	an
Action	can	be	set	up	that	causes	the	explosion	to	automatically	remove	itself	from	its
Stage	after	its	animation	is	complete	(which	requires	1.08	seconds,	since	each	of	the	36

animation	images	is	displayed	for	0.03	seconds).	Since	every	possible	pair	of	lasers	and
rocks	needs	to	be	checked	for	overlaps,	the	following	code	must	be	inserted	within	the
loop	that	iterates	through	laserList:

for	(PhysicsActor	rock	:	rockList)
{
				if	(laser.overlaps(rock,	false))
				{
								removeList.add(laser);
								removeList.add(rock);
								AnimatedActor	explosion	=	baseExplosion.clone();
								explosion.moveToOrigin(rock);
								mainStage.addActor(explosion);
								explosion.addAction(
Actions.sequence(Actions.delay(1.08f),	
Actions.removeActor()));
				}
}

Next	Steps
This	completes	our	Space	Rocks	example;	the	complete	source	code	can	be	found	in	the
SpaceRocks	directory	for	this	chapter.	As	mentioned	before,	however,	this	is	by	no
means	a	completed	game.	You	should	try	your	skill	at	adding	various	features,	such	as
these:

A	menu	screen	that	contains	a	button	to	start	the	game.

Background	music	and	sound	effects	(such	as	the	sound	of	lasers
firing	or	explosions).

A	user	interface	that	lists	how	many	rocks	have	been	destroyed.

The	spaceship	explodes	when	it	collides	with	a	rock.

Limit	the	number	of	lasers	that	can	be	onscreen	at	once.

A	Congratulations	message	appears	if	all	rocks	are	destroyed.

A	Game	Over	message	appears	if	the	spaceship	is	destroyed.

Integrating	game-pad	controller	support.

Any	other	features	you	can	think	of!

Plane	Dodger
This	section	introduces	a	game	called	Plane	Dodger,	inspired	by	modern	touch-screen
games	such	as	Flappy	Bird	and	Jetpack	Joyride.	In	this	game,	the	user	controls	a	green
plane	that	can	maneuver	up	and	down	as	it	continuously	flies	through	the	game	world.

Stars	periodically	appear	in	the	sky;	the	user’s	goal	is	to	collect	as	many	as	possible.	At
the	same	time,	“enemy”	red	planes	also	appear	regularly;	dodging	these	planes	must	be	the
user’s	first	priority,	as	collision	with	them	will	end	the	game.	This	becomes	more	difficult
as	time	progresses,	as	the	speed	of	the	red	planes	will	increase.	Figure	6-6	shows	this
game	in	action.

Figure	6-6.	The	Plane	Dodger	game

The	new	game-play	mechanics	featured	by	this	game	include	the	following:

A	side-view	perspective

Creating	an	illusion	of	rightward	movement	by	scrolling	backgrounds
to	the	left

Creating	an	illusion	of	depth	by	using	parallax:	scrolling	distant
objects	more	slowly

Simulating	gravity	using	constant	acceleration

Randomizing	game	features	to	produce	different	game-play
experiences	each	time

As	was	the	case	last	time,	you	should	begin	by	creating	a	new	project	in	BlueJ	and
copying	over	the	classes	BaseGame,	BaseScreen,	BaseActor,	AnimatedActor,
and	PhysicsActor	from	the	previous	project,	as	well	as	the	recently	created	class
GameUtils.	You	should	also	create	a	launcher-style	class	and	a	class	that	extends
BaseGame,	as	usual.	In	addition,	you	should	copy	all	the	images	from	this	chapter’s
source	directory	PlaneDodger/assets	into	your	local	project’s	assets	folder.	As
in	the	last	project,	you	start	off	by	creating	a	new	GameScreen	class,	and	declaring	the

variables	you	will	need:

import	com.badlogic.gdx.Gdx;
import	com.badlogic.gdx.Input.Keys;
import	com.badlogic.gdx.graphics.Texture;
import	com.badlogic.gdx.graphics.Texture.TextureFilter;
import	com.badlogic.gdx.graphics.g2d.Animation;
import	com.badlogic.gdx.graphics.g2d.Animation.PlayMode;
import	com.badlogic.gdx.scenes.scene2d.actions.Actions;
import	com.badlogic.gdx.math.MathUtils;
import	java.util.ArrayList;

public	class	GameScreen	extends	BaseScreen
{
				private	PhysicsActor[]	background;
				private	PhysicsActor[]	ground;
				private	PhysicsActor	player;

				private	PhysicsActor	baseEnemy;
				private	ArrayList<PhysicsActor>	enemyList;
				private	float	enemyTimer;
				private	float	enemySpeed;

				private	PhysicsActor	baseStar;
				private	ArrayList<PhysicsActor>	starList;
				private	float	starTimer;

				private	AnimatedActor	baseSparkle;
				private	AnimatedActor	baseExplosion;

				private	ArrayList<BaseActor>	removeList;
				private	boolean	gameOver;

				//	game	world	dimensions
				final	int	mapWidth	=	800;
				final	int	mapHeight	=	600;

				public	GameScreen(BaseGame	g)
				{		super(g);		}

				public	void	create()
				{				}

				public	void	update(float	dt)
				{				}
}

Infinite	Scrolling	Effects

Next,	background	elements	will	be	set	up	to	provide	an	“infinite”	scrolling	effect.	This
purpose	requires	a	seamless	texture:	an	image	that	can	be	placed	side	by	side	with	itself
and	does	not	create	a	noticeable	boundary.	Two	copies	of	such	an	image	will	be	used,	each
of	which	is	at	least	as	large	as	the	screen.	The	setup	is	shown	in	Figure	6-7;	the	rectangles
with	dashed-line	boundaries	contain	the	seamless	texture,	while	the	rectangle	with	the
solid-line	boundary	represents	the	game	screen.	The	left	edge	of	image	2	is	adjacent	to	the
right	edge	of	image	1,	and	they	both	move	to	the	left	at	the	same	rate.	When	the	right	edge
of	image	1	moves	completely	past	the	left	edge	of	the	screen,	image	1	will	be	repositioned
to	the	opposite	side:	the	left	edge	of	image	1	will	become	adjacent	to	the	right	edge	of
image	2.	This	process	continues	indefinitely.

Figure	6-7.	Positioning	seamless	textures	to	create	an	infinite	scrolling	effect

To	set	this	up,	in	the	create	method	you	initialize	an	array	called	background	that
will	contain	two	PhysicsActor	objects.	After	creating	the	first	of	these,	create	a
second	instance	by	cloning	the	first	and	changing	its	x	coordinate	as	described	previously.
Then,	add	both	of	these	objects	to	background	and	also	to	mainStage.	The	code	that
accomplishes	this	is	as	follows:

background	=	new	PhysicsActor[2];

PhysicsActor	bg0	=	new	PhysicsActor();
bg0.storeAnimation("default",	new	
Texture(Gdx.files.internal("assets/sky.png")));
bg0.setPosition(0,	0);
bg0.setVelocityXY(-50,0);
background[0]	=	bg0;
mainStage.addActor(bg0);

PhysicsActor	bg1	=	bg0.clone();
bg1.setX(bg0.getWidth());
background[1]	=	bg1;
mainStage.addActor(bg1);

Next,	you	must	add	the	following	code	to	the	update	method,	to	reposition	these
elements	after	they	move	past	the	left	edge	of	the	screen:

//	manage	background	objects
for	(int	i	=	0;	i	<	2;	i++)
{
				PhysicsActor	bg	=	background[i];
				if	(bg.getX()	+	bg.getWidth()	<	0)

								bg.setX(bg.getX()	+	2	*	bg.getWidth());
}

To	create	an	infinitely	scrolling	image	of	the	ground,	repeat	the	previous	process	that
loaded	the	background	images	of	the	sky:	initialize	an	array,	set	up	the	first	object	and
clone	it	to	get	the	second,	and	so	forth.	The	only	difference	will	be	the	velocity	of	the
ground	images.	If	you	have	ever	watched	the	scenery	go	by	while	travelling	in	a	car	or	a
train,	you	may	have	noticed	that	the	more	distant	objects	appear	to	change	position	more
slowly	than	closer	objects.	This	effect,	called	parallax,	provides	an	easy	way	to	add	an
illusion	of	depth	in	a	2D	game.	Since	the	ground	should	appear	closer	to	the	player	than
the	background	images	of	the	sky,	the	ground	should	be	moving	at	a	faster	rate.	To
implement	this,	add	the	following	code	to	the	create	method:

ground	=	new	PhysicsActor[2];

PhysicsActor	gr0	=	new	PhysicsActor();
gr0.storeAnimation("default",	new	
Texture(Gdx.files.internal("assets/ground.png")));
gr0.setPosition(0,	0);
gr0.setVelocityXY(-200,0);
gr0.setRectangleBoundary();
ground[0]	=	gr0;
mainStage.addActor(gr0);

PhysicsActor	gr1	=	gr0.clone();
gr1.setX(gr0.getWidth());
ground[1]	=	gr1;
mainStage.addActor(gr1);

You	also	need	to	add	the	corresponding	code	to	the	update	method,	within	the	same
loop	you	recently	wrote	to	reposition	the	background	images:

PhysicsActor	gr	=	ground[i];
if	(gr.getX()	+	gr.getWidth()	<	0)
					gr.setX(gr.getX()	+	2	*	gr.getWidth());

This	is	a	good	point	to	compile	your	project	and	run	the	code	to	check	that	everything
appears	okay.

Player	Plane
Next,	you’ll	set	up	the	player	object:	a	green	plane	that	can	maneuver	vertically.	This
plane	is	constantly	being	pulled	down	by	the	force	of	gravity,	but	the	player	can	move	it
upward	by	pressing	a	key	on	the	keyboard	to	apply	vertical	thrust.

To	simplify	the	creation	of	the	Animation	for	this	object	(and	others	that	will
follow),	at	this	point	you	will	write	another	helper	method	in	the	new	GameUtils	class
(introduced	in	the	previous	section).	This	method,	called	parseImageFiles,	will

create	an	Animation	from	a	set	of	image	files,	provided	they	follow	a	specified	naming
convention:	the	file	names	should	be	identical	except	for	a	number	used	to	specify	the
order	in	which	they	appear.	This	process,	which	you’ve	seen	in	previous	programs,	is
carried	out	by	the	following	code:

//	creates	an	Animation	from	a	set	of	image	files
//	name	format:	fileNamePrefix	+	N	+	fileNameSuffix,	where	
0	<=	N	<	frameCount

public	static	Animation	parseImageFiles(String	
fileNamePrefix,	String	fileNameSuffix,
				int	frameCount,	float	frameDuration,	PlayMode	mode)
{
				TextureRegion[]	frames	=	new	TextureRegion[frameCount];

				for	(int	n	=	0;	n	<	frameCount;	n++)
				{
								String	fileName	=	fileNamePrefix	+	n	+	fileNameSuffix;
								Texture	tex	=	new	Texture(
Gdx.files.internal(fileName));
								tex.setFilter(TextureFilter.Linear,	
TextureFilter.Linear);
								frames[n]	=	new	TextureRegion(tex);
				}

				Array<TextureRegion>	framesArray	=	new	
Array<TextureRegion>(frames);
				return	new	Animation(frameDuration,	framesArray,	mode);
}

Returning	to	the	GameScreen	class,	the	code	for	the	player	object	will	now	be
added.	First,	initialize	it	in	the	create	method	using	the	following	code.	Note	in
particular	that	you	set	a	negative	y	component	for	acceleration	to	simulate	the	pull	of
gravity;	this	value	will	remain	unchanged	throughout	the	program.

player	=	new	PhysicsActor();
Animation	anim	=	GameUtils.parseImageFiles(
				"assets/planeGreen",	".png",	3,	0.1f,	
Animation.PlayMode.LOOP_PINGPONG);
player.storeAnimation("default",	anim);
player.setPosition(200,300);
player.setAccelerationXY(0,	-600);	//	gravity
player.setOriginCenter();
player.setEllipseBoundary();
mainStage.addActor(player);

Next,	you	add	some	code	that	enables	the	player	to	control	the	plane.	The	plane	should
be	given	an	upward	boost	in	speed	whenever	the	player	presses	a	key.	This	is	implemented

this	as	a	discrete	event	(in	the	style	of	the	game	Flappy	Bird),	and	thus	the	keyDown
method	must	be	overridden	in	the	GameScreen	class	as	follows:

public	boolean	keyDown(int	keycode)
{
				if	(keycode	==	Keys.SPACE)
								player.setVelocityXY(0,300);

				return	false;
}

However,	if	desired,	you	could	instead	adjust	the	plane’s	velocity	as	a	continuous
event	(in	the	style	of	the	game	Jetpack	Joyride);	instead	of	the	preceding	code,	you	could
poll	for	keyboard	input	in	the	update	method	and	increase	upward	velocity	as	follows:

if	(Gdx.input.isKeyPressed(Keys.SPACE))
				player.addVelocityXY(0,	25);

Notice	that	the	change	in	the	y	component	of	velocity	is	much	smaller	here	than	in	the
discrete	variation	of	the	event.	This	is	because	a	continuous	event	will	be	processed	60
times	per	second	(when	possible),	so	the	change	in	velocity	must	be	smaller	to	compensate
for	this.

Finally,	some	collision-detection	code	will	be	included	in	the	update	method.	In
particular,	if	the	player	hits	the	top	of	the	screen	or	the	ground,	the	player’s	velocity
should	be	set	to	zero,	and	the	position	of	the	player	should	be	adjusted	accordingly.	For
the	top	of	the	screen,	you	can	calculate	the	new	position	easily;	for	the	ground	objects,	you
can	take	advantage	of	the	overlaps	method,	which	will	adjust	the	position	of	a
BaseActor	object	when	the	second	parameter	is	set	to	true.

if	(player.getY()	>	mapHeight	-	player.getHeight())
{
					player.setVelocityXY(0,0);
					player.setY(mapHeight	-	player.getHeight());
}

for	(int	i	=	0;	i	<	2;	i++)
{
				PhysicsActor	gr	=	ground[i];
				if	(player.overlaps(gr,	true))
				{
								player.setVelocityXY(0,0);
				}
}

Once	again,	this	is	a	good	time	to	test	your	project	and	verify	that	everything	is
working	as	expected.

Stars	and	Sparkles
Next,	you	initialize	baseStar,	an	object	from	which	collectible	star	objects	will	be
cloned	later.	The	stars	should	appear	stationary	with	respect	to	the	ground,	so	the	velocity
of	baseStar	should	be	set	equal	to	the	velocity	of	the	ground	objects.	It	is	also
necessary	to	initialize	the	ArrayList	used	to	store	the	stars	for	use	in	the	update
method	later,	and	also	to	initialize	a	float	named	starTimer	that	will	keep	track	of
when	new	star	objects	should	be	created.

baseStar	=	new	PhysicsActor();
Texture	starTex	=	new	
Texture(Gdx.files.internal("assets/star.png"));
starTex.setFilter(TextureFilter.Linear,	
TextureFilter.Linear);
baseStar.storeAnimation("default",	starTex);
baseStar.setVelocityXY(-200,0);
baseStar.setOriginCenter();
baseStar.setEllipseBoundary();

starList	=	new	ArrayList<PhysicsActor>();
starTimer	=	0;

At	this	time,	you	also	set	up	baseSparkle,	an	object	from	which	a	sparkling
animation	effect	will	be	cloned	whenever	a	star	is	collected.	The	images	for	the
Animation	are	contained	within	a	sprite	sheet,	so	the	corresponding	method	of	the
GameUtils	class	can	be	used	here:

baseSparkle	=	new	AnimatedActor();
Animation	sparkleAnim	=	GameUtils.parseSpriteSheet(
				"assets/sparkle.png",	8,8,	0.01f,	PlayMode.NORMAL);
baseSparkle.storeAnimation("default",	sparkleAnim);
baseSparkle.setWidth(64);
baseSparkle.setHeight(64);
baseSparkle.setOriginCenter();

While	you’re	still	working	with	the	create	method,	the	ArrayList	used	for
removal	must	also	be	initialized:

removeList	=	new	ArrayList<BaseActor>();

Next,	in	the	update	method,	add	the	following	code	to	increase	starTimer
according	to	the	amount	of	time	that	has	passed	(dt).	If	more	than	1	second	has	elapsed,
reset	the	value	of	starTimer	and	create	a	new	star	via	the	clone	method	of	the
baseStar	object.	Also,	the	vertical	position	of	the	newly	cloned	star	is	randomized	so
that	the	game	play	will	be	different	for	each	game.

starTimer	+=	dt;

if	(starTimer	>	1)
{
				starTimer	=	0;
				PhysicsActor	star	=	baseStar.clone();
				star.setPosition(900,	MathUtils.random(100,500));

				starList.add(star);
				star.setParentList(starList);
				mainStage.addActor(star);
}

Finally,	you	set	the	conditions	under	which	a	star	should	be	removed	from	the	game:	if
the	star	passes	beyond	the	left	edge	of	the	screen,	or	if	the	player	overlaps	with	the	star.	In
both	situations,	the	star	is	added	to	removeList,	which	will	be	used	at	a	later	point	to
call	the	destroy	method.	In	the	latter	situation,	you	also	spawn	a	new	sparkle	object	by
cloning	baseSparkle,	and	a	sequence	of	actions	is	added	that	will	cause	the	sparkle	to
remove	itself	from	its	Stage	after	enough	time	has	passed	for	the	animation	to	complete
(since	there	are	64	images	in	the	sprite	sheet,	each	of	which	is	displayed	for	0.01	seconds,
the	animation	is	complete	after	0.64	seconds	have	passed).	These	tasks	are	accomplished
with	the	following	code:

removeList.clear();

for	(PhysicsActor	star	:	starList)
{
				if	(star.getX()	+	star.getWidth()	<	0)
								removeList.add(star);

				if	(player.overlaps(star,	false))
				{
								removeList.add(star);
								AnimatedActor	sparkle	=	baseSparkle.clone();
								sparkle.moveToOrigin(star);
								sparkle.addAction(Actions.sequence(
Actions.delay(0.64f),	Actions.removeActor()));
								mainStage.addActor(sparkle);
				}
}

for	(BaseActor	ba	:	removeList)
{
				ba.destroy();
}

Enemy	Planes
At	this	point,	you	add	the	enemy	planes	to	your	game.	This	process	closely	parallels	the

creation	and	management	of	the	star	objects	discussed	previously.	First,	in	the	create
method,	all	the	enemy-related	variables	are	initialized:	baseEnemy	for	later	cloning,
enemyList	to	store	the	enemy	objects	for	use	in	the	update	method,	enemyTimer	to
keep	track	of	when	enemies	should	be	spawned,	and	enemySpeed	to	set	the	velocity	of
each	newly	created	enemy.	Also,	the	enemy	objects	will	be	made	25	percent	larger	than
the	original	size	of	the	image.

baseEnemy	=	new	PhysicsActor();
Animation	redAnim	=	GameUtils.parseImageFiles(
				"assets/planeRed",	".png",	3,	0.1f,	
Animation.PlayMode.LOOP_PINGPONG);
baseEnemy.storeAnimation("default",	redAnim);
baseEnemy.setWidth(baseEnemy.getWidth()	*	1.25f);
baseEnemy.setHeight(baseEnemy.getHeight()	*	1.25f);
baseEnemy.setOriginCenter();
baseEnemy.setEllipseBoundary();

enemyTimer	=	0;
enemySpeed	=	-250;
enemyList	=	new	ArrayList<PhysicsActor>();

Also,	just	as	the	special	effect	baseSparkle	was	created	for	use	when	the	player
collides	with	a	star,	the	special	effect	baseExplosion	must	now	be	set	up	for	use	when
the	player	collides	with	an	enemy:

baseExplosion	=	new	AnimatedActor();
Animation	explosionAnim	=	GameUtils.parseSpriteSheet(
				"assets/explosion.png",	6,	6,	0.03f,	PlayMode.NORMAL);
baseExplosion.storeAnimation("default",	explosionAnim);
baseExplosion.setWidth(96);
baseExplosion.setHeight(96);
baseExplosion.setOriginCenter();

Since	enemies	have	the	capability	to	end	the	game,	now	is	a	good	time	to	initialize	the
Boolean	variable	gameOver,	whose	use	will	be	explained	in	what	follows.	At	the	end	of
the	create	method,	add	this	line:

gameOver	=	false;

Next,	two	major	additions	must	be	made	to	the	update	method.	First,	new	enemy
objects	must	be	created	at	regular	time	intervals,	and	at	random	vertical	positions.	An
Action	will	also	be	added	to	make	the	enemies	more	visually	interesting,	by	slowly
tilting	them	up	and	down.	This	is	accomplished	with	the	following	code:

enemyTimer	+=	dt;
if	(enemyTimer	>	3)
{
				enemyTimer	=	0;

				if	(enemySpeed	>	-800)
								enemySpeed	-=	15;
				PhysicsActor	enemy	=	baseEnemy.clone();
				enemy.setPosition(900,	MathUtils.random(100,500));
				enemy.setVelocityXY(enemySpeed,	0);

				enemy.setRotation(10);
				enemy.addAction(Actions.forever(
								Actions.sequence(Actions.rotateBy(-20,1),	
Actions.rotateBy(20,1))));

				enemyList.add(enemy);
				enemy.setParentList(enemyList);
				mainStage.addActor(enemy);
}

Next,	each	enemy	must	be	processed,	similar	to	the	way	the	stars	were	processed
earlier.	If	an	enemy	moves	beyond	the	left	edge	of	the	screen,	that	enemy	should	be	added
to	removeList.	If	the	player	overlaps	an	enemy,	then	create	an	explosion	special	effect
centered	on	the	player,	add	the	player	to	removeList,	and	set	gameOver	to	true.	To
accomplish	these	tasks,	insert	the	following	code	after	removeList	is	cleared,	but
before	the	loop	that	calls	the	destroy	method	of	all	elements	of	removeList:

for	(PhysicsActor	enemy	:	enemyList)
{
				if	(enemy.getX()	+	enemy.getWidth()	<	0)
								removeList.add(enemy);

				if	(player.overlaps(enemy,	false))
				{
								AnimatedActor	explosion	=	baseExplosion.clone();
								explosion.moveToOrigin(player);
								explosion.addAction(Actions.sequence(
Actions.delay(1.08f),	Actions.removeActor()));
								mainStage.addActor(explosion);
								removeList.add(player);
								gameOver	=	true;
				}
}

Finally,	when	gameOver	becomes	true,	new	stars	and	enemy	planes	should	no
longer	be	spawned,	but	the	background	should	continue	scrolling.	To	accomplish	this,
insert	the	following	code	in	the	update	method,	after	the	loop	that	manages	the
background	objects,	and	before	everything	else.	It	will	cause	the	update	loop	to
terminate	earlier	than	usual,	skipping	over	the	parts	of	code	you	no	longer	wish	to	run:

if	(gameOver)

				return;

Next	Steps
This	completes	the	new	game	mechanics	for	Plane	Dodger.	As	usual,	this	program	should
be	considered	a	work	in	progress,	with	plenty	of	features	remaining	to	be	added	to	create	a
quality	game.	Many	of	the	suggestions	from	the	Space	Rocks	game	are	applicable	here:	a
menu	screen,	background	music	and	sound	effects,	and	a	Game	Over	message	at	the	end
of	the	game.	Other	game-specific	features	you	may	wish	to	consider	include	the
following:

Keep	track	of	the	number	of	stars	collected,	and	display	it	on	the	user
interface.

Keep	track	of	the	player’s	total	progress;	you	could	display	one	of	the
following:

The	total	number	of	enemy	planes	dodged

The	total	time	the	player	has	been	playing

Some	measure	of	the	game	world	distance	the	player	has
travelled	(perhaps	20	pixels	per	meter)

Increase	the	challenge	by	slowly	increasing	the	spawn	frequency	of
the	enemy	planes	as	the	game	progresses,	or	by	adding	a	small	random
amount	to	the	vertical	velocity	of	the	enemy	planes	so	that	their	paths
are	less	predictable.

Add	enemy	planes	with	different	colors	or	sizes	for	variety.

When	the	game	is	finished,	calculate	and	display	some	type	of
performance	rating	for	the	player.	Here	are	two	possible	methods:

Calculate	a	final	score	using	a	formula	such	as	this:

score	=	(100	×	seconds	survived)	+	(200	×	stars	collected)

Calculate	a	rank	or	rating	(such	as	A/B/C/D/E).	Let	N	be
calculated	as	follows:

N	=	seconds	survived	+	stars	collected

Then	assign	a	rank	to	each	range	of	values.	Perhaps	rank	E
corresponds	to	0	<=	N	<=	20,	rank	D	corresponds	to	21	<=	N
<=	40,	and	so	forth.

Rectangle	Destroyer
This	section	introduces	a	game	called	Rectangle	Destroyer,	inspired	by	the	classic	arcade
game	Breakout	and	later	variations	such	as	Arkanoid	and	Quester.	In	this	game,	using
either	mouse	or	touch	controls,	the	player	moves	a	paddle	back	and	forth	along	the	bottom

of	the	screen	in	order	to	bounce	a	ball	upward	with	the	goal	of	colliding	with	(and	thereby
destroying)	rectangular	objects	called	bricks.	Occasionally,	a	destroyed	brick	will	spawn
an	item	that	typically	changes	the	game	play	in	some	way,	such	as	changing	the	size	of	the
paddle	or	the	speed	of	the	ball;	changes	may	increase	or	decrease	the	difficulty	level.
Figure	6-8	shows	this	game	in	action.

Figure	6-8.	The	Rectangle	Destroyer	game

The	new	game-play	mechanics	and	topics	introduced	by	this	game	include	the
following:

Creating	game-specific	extensions	of	your	custom	actor	classes

Implementing	circle-rectangle	collision	detection

Overloading	methods	to	provide	various	types	of	collision	responses

Creating	new	animated	effects	from	the	Action	class

Randomly	spawning	items	that	affect	game	play

As	before,	you	begin	by	creating	a	new	project	containing	the	classes	BaseGame,
BaseScreen,	BaseActor,	AnimatedActor,	PhysicsActor,	and	GameUtils.
You	should	also	create	a	launcher-style	class	and	a	class	that	extends	BaseGame.	You
will	need	to	copy	all	the	images	from	this	chapter’s	source	directory
RectangleDestroyer/assets	into	your	local	project’s	assets	folder.

Unlike	the	previously	discussed	games	in	this	chapter,	you	will	begin	by	writing	a	new
set	of	classes	before	working	with	the	GameScreen	class.	In	general,	this	is	necessary
whenever	you	have	game-specific	objects	that	require	additional	data	or	functionality
beyond	that	provided	by	your	custom	Actor	extensions.

The	Paddle
The	Paddle	class	is	the	first	of	the	custom	object	classes.	For	the	customized	collision-
detection	code	that	will	be	introduced	throughout	this	project,	Rectangle	and	Circle
objects	will	be	used	rather	than	Polygon	objects.	In	this	game,	the	paddle	doesn’t	require
any	of	the	functionality	of	the	AnimatedActor	or	PhysicsActor	classes,	so
Paddle	extends	the	BaseActor	class.	The	main	purpose	of	this	class	is	to	add	a
method	that	will	return	a	bounding	Rectangle	object	for	this	actor.	The	code	for	this
class	is	presented	here:

import	com.badlogic.gdx.math.Rectangle;

public	class	Paddle	extends	BaseActor
{
				public	Paddle()
				{		super();		}

				public	Rectangle	getRectangle()
				{		return	new	Rectangle(getX(),	getY(),	getWidth(),	
getHeight());		}
}

The	Brick
Similar	to	the	Paddle	class,	the	Brick	class	has	the	ability	to	return	a	bounding
Rectangle	object.	In	addition,	since	you’re	going	to	need	to	clone	Brick	objects	when
initializing	the	playing	area,	the	clone	method	of	BaseActor	needs	to	be	overridden
so	that	it	returns	a	Brick	object	rather	than	a	BaseActor	object.	Finally,	when	a	brick
is	destroyed,	it	is	more	visually	interesting	for	it	to	fade	out	rather	than	just	disappear	from
its	stage,	its	destroy	method	will	also	be	overridden	in	order	to	include	a	fading-out
action	before	the	actor	is	removed	from	the	stage.	This	requires	an	adjustment	to	be	made
in	the	BaseActor	class	in	the	variable	declaration	for	parentList:	it	needs	to	be
changed	from	private	to	protected,	so	that	the	Brick	class	can	access	the	variable.
The	code	for	the	Brick	class	is	as	follows:

import	com.badlogic.gdx.math.Rectangle;
import	com.badlogic.gdx.scenes.scene2d.actions.Actions;

public	class	Brick	extends	BaseActor
{
				public	Brick()
				{		super();		}

				public	Rectangle	getRectangle()
				{		return	new	Rectangle(getX(),	getY(),	getWidth(),	
getHeight());		}

				public	Brick	clone()
				{
								Brick	newbie	=	new	Brick();
								newbie.copy(this);
								return	newbie;
				}

				public	void	destroy()
				{
								addAction(Actions.sequence(Actions.fadeOut(0.5f),	
Actions.removeActor()));

								if	(parentList	!=	null)
												parentList.remove(this);
				}
}

The	Ball
Next,	the	Ball	class	will	be	introduced,	which	will	be	the	most	conceptually	complicated
of	the	classes	in	this	game	due	to	its	unique	collision-detection	and	response	algorithms.
Because	the	ball	object	will	be	moving	around	the	screen,	the	Ball	class	should	extend
the	PhysicsActor	class.	For	collision	detection,	a	Circle	will	be	used	as	the
bounding	shape.	To	this	end,	there	needs	to	be	a	getCircle	method	that	returns	a
Circle	object,	whose	parameters	are	the	x	and	y	coordinates	of	the	center	of	the	circle,
and	its	radius.	The	code	for	the	Ball	class	thus	far	is	as	follows:

import	com.badlogic.gdx.math.Circle;
public	class	Ball	extends	PhysicsActor
{
				public	Ball()
				{		super();		}

				public	Circle	getCircle()
				{		return	new	Circle(getX()	+	getWidth()/2,	getY()	
+	getHeight()/2,	getWidth()/2);		}
}

Collision	detection	and	response,	which	is	carried	out	by	the	overlaps	method,	will
be	considered	next.	In	the	BaseActor	class,	the	overlaps	method	takes	two
parameters:	another	BaseActor,	and	a	Boolean	variable	that	indicates	whether	an
overlap	should	be	“resolved.”	In	the	BaseActor	class,	resolving	a	collision	involves
adjusting	the	position	of	the	actor	calling	the	method	so	that	there	is	no	longer	any
overlap,	which	is	particularly	useful	for	simulating	collision	with	a	solid	object.	In	the
Ball	class,	you	will	overload	the	overlaps	method,	creating	two	new	versions:	one	to

handle	collision	with	a	paddle,	and	the	other	to	handle	collision	with	a	brick.	In	each	of
these	situations,	the	velocity	of	the	ball	must	be	adjusted,	and	in	different	ways.

When	a	ball	collides	with	a	paddle,	the	speed	of	the	ball	remains	the	same,	but	the
angle	of	motion	changes	depending	on	the	location	of	the	collision	on	the	paddle.	(The
ball’s	angle	of	motion	before	the	collision	has	no	effect	on	the	resulting	angle	of	motion,
in	contrast	to	the	laws	of	physics.)	If	the	ball	collides	with	the	left	side	of	the	paddle,	the
ball	bounces	to	the	left;	similarly,	collision	with	the	right	side	of	the	paddle	causes	the	ball
to	bounce	to	the	right.	Collision	with	an	intermediate	position	is	interpolated	accordingly;
in	particular,	colliding	with	the	exact	center	of	the	paddle	causes	the	ball	to	bounce
straight	up.	Sample	collision	locations	on	the	paddle	and	the	resulting	angle	of	motion	of
the	ball	are	illustrated	in	Figure	6-9.

Figure	6-9.	Bounce	angles	resulting	from	ball-paddle	collision	at	different	positions

The	method	that	performs	these	tasks	is	presented	next,	and	should	be	included	in	the
Ball	class.	Note	that,	conveniently,	the	Intersector	class	contains	an	overloaded
version	of	its	overlaps	method	that	checks	whether	a	Circle	and	Rectangle
overlap.	For	consistency	with	the	earlier	declaration	of	the	overlaps	method	in	the
BaseActor	class,	a	Boolean	parameter	is	included	that	determines	whether	the	velocity
of	the	ball	should	be	adjusted	to	simulate	bouncing	off	the	paddle,	as	described	previously.
This	parameter	is	usually	set	to	true.	First,	add	the	import	statement:

import	com.badlogic.gdx.math.Intersector;

Then,	the	code	for	the	overlaps	method	is	as	follows:

public	boolean	overlaps(Paddle	paddle,	boolean	bounceOff)
{
				if	(!Intersector.overlaps(this.getCircle(),	
paddle.getRectangle()))
								return	false;

				if	(bounceOff)
				{
								float	ballCenterX	=	this.getX()	+	this.getWidth()/2;
								float	percent	=	(ballCenterX	-	paddle.getX())	
/	paddle.getWidth();
								//	interpolate	value	between	150	and	30
								float	bounceAngle	=	150	-	percent	*	120;
								this.setVelocityAS(bounceAngle,	this.getSpeed());
				}

				return	true;
}

Next,	consider	the	situation	of	a	ball	colliding	with	a	brick.	The	code	used	in	the	past
to	determine	when	two	objects	overlap	does	not	provide	enough	information	about	the
circumstances	of	the	collision	to	calculate	the	desired	reaction:	realistic	bouncing.	In	this
game,	the	collision	response	more	closely	adheres	to	the	laws	of	physics:	the	result	of	a
collision	is	that	the	velocity	of	the	ball	will	reverse	in	either	the	x	or	y	direction	(or
possibly	both),	depending	on	which	side	or	corner	of	the	rectangle	the	ball	first	overlaps
with.	In	order	for	the	Ball	class	to	be	able	to	access	the	velocity	variable	of	the
PhysicsActor	class,	you	must	change	its	access	modifier	from	private	to
protected.	After	this	change	is	complete,	add	the	following	methods	to	the	Ball	class
that	allow	you	to	multiply	either	the	x	or	y	component	of	the	velocity	by	a	constant
(multiplying	it	by	–1	reverses	it	in	that	direction):

public	void	multVelocityX(float	m)
{		velocity.x	*=	m;		}

public	void	multVelocityY(float	m)
{		velocity.y	*=	m;		}

The	difficult	part	of	the	code	is	determining	the	side	(or	corner)	of	the	rectangle	that
the	ball	first	collided	with.	To	help	understand	this,	one	particular	case	will	be	examined
and	discussed	in	detail:	determining	whether	the	circle	collided	with	the	bottom	edge	of
the	rectangle.	In	order	for	this	to	happen,	two	conditions	must	be	met:

The	y	component	of	the	ball’s	velocity	must	be	positive,	indicating
that	it	was	moving	up.

While	the	circle	was	travelling	from	its	previous	position	to	its	current
position,	the	top	point	of	the	circle	(the	point	directly	above	the	center)
must	have	crossed	the	bottom	edge	of	the	rectangle.

This	scenario	is	illustrated	in	Figure	6-10;	the	circle	with	the	dashed	boundary
represents	its	previous	position,	the	circle	with	the	solid	boundary	represents	its	current
position,	and	the	arrow	indicates	the	direction	of	motion.

Figure	6-10.	The	line-segment	intersection	corresponding	to	the	collision	of	a	circle	with	the	bottom	edge	of	a	rectangle

It	is	simple	to	check	whether	the	y	component	of	velocity	is	positive.	More	difficult	is
checking	for	the	intersection	of	the	top	point	of	the	circle	with	the	bottom	edge	of	the
rectangle.	To	do	this,	the	previous	boundary	circle	and	the	current	boundary	circle	must	be
known,	and	a	line	segment	can	be	drawn	connecting	these	two	points;	if	this	line	segment
crosses	the	line	segment	connecting	the	bottom	two	points	of	the	rectangle,	then	the
second	condition	listed	is	satisfied.	When	both	conditions	are	true,	the	velocity	is	adjusted
by	multiplying	the	y	component	by	–1.

Checking	for	collisions	with	the	other	sides	are	analogous.	For	example,	say	the	ball
collided	with	the	left	edge	of	the	rectangle	exactly	when	the	x	component	of	velocity	is
positive,	and	the	rightmost	point	of	the	circle	crossed	the	left	edge	of	the	rectangle	as	the
ball	moved	from	its	previous	to	its	current	position.	In	this	case,	the	x	component	of
velocity	should	be	multiplied	by	–1.

If	the	ball	did	not	collide	with	one	of	the	edges	of	the	rectangle,	but	the	two	objects
overlap,	then	by	process	of	elimination	the	ball	must	have	collided	with	one	of	the	corners
of	the	rectangle,	in	which	case	both	the	x	and	y	coordinates	should	be	multiplied	by	–1.

To	implement	this	calculation	in	the	Ball	class,	you	do	the	following:

Introduce	two	new	variables	to	store	the	previous	and	current
boundary	circle.

Override	the	act	method	to	store	these	Circle	objects	before	and
after	the	act	method	of	PhysicsActor	is	called.

Create	helper	methods	that	return	the	top/bottom/left/right	points	of	a
Circle.

Create	helper	methods	that	return	the	corner	points	of	a	Rectangle.

Use	the	overlaps	method	of	the	Intersector	class	to	check	for

any	overlap	between	the	boundary	circle	of	the	ball	and	the	boundary
rectangle	of	the	brick.
Use	the	intersectSegments	method	of	the	Intersector	class
to	check	the	conditions	described	previously,	involving	a	point	on	the
circle	crossing	an	edge	of	the	rectangle.

Based	on	the	results	of	the	collision	tests,	adjust	the	ball	velocity
accordingly.

Two	import	statements	must	be	added	to	the	Ball	class:

import	com.badlogic.gdx.math.Vector2;
import	com.badlogic.gdx.math.Rectangle;

The	code	to	add	to	the	Ball	class	is	as	follows:

private	Circle	prevCircle;
private	Circle	currCircle;

public	void	act(float	dt)
{
				//	store	previous	position	before	and	after	updating
				prevCircle	=	getCircle();
				super.act(dt);
				currCircle	=	getCircle();
}

public	Vector2	getTop(Circle	c)
{		return	new	Vector2(c.x,	c.y	+	c.radius);		}
public	Vector2	getBottom(Circle	c)
{		return	new	Vector2(c.x,	c.y	-	c.radius);		}
public	Vector2	getLeft(Circle	c)
{		return	new	Vector2(c.x	-	c.radius,	c.y);		}
public	Vector2	getRight(Circle	c)
{		return	new	Vector2(c.x	+	c.radius,	c.y);		}

public	Vector2	getBottomLeft(Rectangle	r)
{		return	new	Vector2(r.getX(),	r.getY());		}
public	Vector2	getBottomRight(Rectangle	r)
{		return	new	Vector2(r.getX()	+	r.getWidth(),	r.getY()	
);		}
public	Vector2	getTopLeft(Rectangle	r)
{		return	new	Vector2(r.getX(),	r.getY()	+	r.getHeight()	
);		}
public	Vector2	getTopRight(Rectangle	r)
{		return	new	Vector2(r.getX()	+	r.getWidth(),	r.getY()	
+	r.getHeight());		}

public	boolean	overlaps(Brick	brick,	boolean	bounceOff)
{
				if	(!Intersector.overlaps(this.getCircle(),	
brick.getRectangle()))
								return	false;

				if	(bounceOff)
				{
								Rectangle	rect	=	brick.getRectangle();
								boolean	sideHit	=	false;

								if	(velocity.x	>	0	&&	Intersector.intersectSegments(
												getRight(prevCircle),	getRight(currCircle),
												getTopLeft(rect),	getBottomLeft(rect),	null))
								{
												multVelocityX(-1);
												sideHit	=	true;
								}
								else	if	(velocity.x	<	0	&&	
Intersector.intersectSegments(
												getLeft(prevCircle),	getLeft(currCircle),
												getTopRight(rect),	getBottomRight(rect),	null))
								{
												multVelocityX(-1);
												sideHit	=	true;
								}

								if	(velocity.y	>	0	&&	Intersector.intersectSegments(
												getTop(prevCircle),	getTop(currCircle),
												getBottomLeft(rect),	getBottomRight(rect),	null))
								{
												multVelocityY(-1);
												sideHit	=	true;
								}
								else	if	(velocity.y	<	0	&&	
Intersector.intersectSegments(
												getBottom(prevCircle),	getBottom(currCircle),
												getTopLeft(rect),	getTopRight(rect),	null))
								{
												multVelocityY(-1);
												sideHit	=	true;
								}

								if	(!sideHit)	//	by	process	of	elimination,	corner	was	
hit	first
								{
												multVelocityX(-1);

												multVelocityY(-1);
								}
				}

				return	true;
}

With	this	addition,	the	Ball	class	is	now	complete.

The	Power-up
When	a	brick	is	destroyed,	it	may	occasionally	spawn	a	random	item	that	falls	toward	the
bottom	of	the	screen.	If	the	player	collects	the	item	(by	touching	it	with	the	paddle),	some
feature	of	the	game	will	be	changed,	such	as	the	size	of	the	paddle.	We’ll	refer	to	these
items	as	power-ups,	even	though	their	effect	may	increase	the	difficulty	of	the	game.

The	Powerup	class	has	some	of	the	same	features	as	the	Brick	class:	it	uses	a
Rectangle	for	collision	detection,	and	because	a	base	object	will	be	used	for	spawning
power-ups	later,	the	clone	method	must	be	overridden	to	return	a	Powerup	object.	The
Powerup	class	requires	some	of	the	functionality	of	AnimatedActor	(because	it
stores	multiple	images—	one	for	each	kind	of	power-up),	as	well	as	some	of	the
functionality	of	PhysicsActor	(because	power-ups,	once	spawned,	constantly	move
downward).	Therefore,	the	Powerup	class	will	extend	the	PhysicsActor	class.	An
overlaps	method	must	be	written	to	check	for	when	a	power-up	overlaps	the	paddle.	A
randomize	method	will	also	be	created	to	randomly	select	one	of	the	stored	animations;
to	be	able	to	do	this,	you	must	make	an	alteration	to	the	AnimatedActor	class:	the
access	modifier	of	animationStorage	must	be	changed	from	private	to
protected,	so	that	the	Powerup	class	can	access	that	data.	The	complete	code	for	the
class	is	presented	here:

import	com.badlogic.gdx.math.Rectangle;
import	com.badlogic.gdx.math.MathUtils;
import	com.badlogic.gdx.math.Intersector;
import	java.util.ArrayList;

public	class	Powerup	extends	PhysicsActor
{
				public	Powerup()
				{		super();		}

				public	Rectangle	getRectangle()
				{		return	new	Rectangle(getX(),	getY(),	getWidth(),	
getHeight());		}

				public	Powerup	clone()
				{
								Powerup	newbie	=	new	Powerup();

								newbie.copy(this);
								return	newbie;
				}

				public	boolean	overlaps(Paddle	other)
				{
								return	Intersector.overlaps(this.getRectangle(),	
other.getRectangle());
				}

				//	randomly	select	one	of	the	stored	animations
				public	void	randomize()
				{
								ArrayList<String>	names	=	new	ArrayList<String>(
animationStorage.keySet());
								int	n	=	MathUtils.random(names.size()	-	1);
								setActiveAnimation(names.get(n));
				}
}

Setting	Up	the	Game
Now	that	you	have	defined	all	the	game	entities	that	you	need	for	the	Rectangle	Destroyer
game,	you	are	ready	to	begin	writing	the	GameScreen	class.	First,	you	add	the	core	code
for	the	class,	which	declares	all	the	variables	that	will	eventually	be	needed:

import	com.badlogic.gdx.Gdx;
import	com.badlogic.gdx.graphics.Color;
import	com.badlogic.gdx.graphics.Texture;
import	com.badlogic.gdx.graphics.Texture.TextureFilter;
import	com.badlogic.gdx.scenes.scene2d.actions.Actions;
import	java.util.ArrayList;

public	class	GameScreen	extends	BaseScreen
{
				private	Paddle	paddle;
				private	Ball	ball;

				private	Brick	baseBrick;
				private	ArrayList<Brick>	brickList;

				private	Powerup	basePowerup;
				private	ArrayList<Powerup>	powerupList;

				private	ArrayList<BaseActor>	removeList;

				//	game	world	dimensions

				final	int	mapWidth	=	800;
				final	int	mapHeight	=	600;

				public	GameScreen(BaseGame	g)
				{		super(g);		}

				public	void	create()
				{				}

				public	void	update(float	dt)
				{				}

}

In	the	create	method,	the	various	objects	needed	will	be	initialized:	paddle,
baseBrick,	ball,	and	basePowerup.	All	the	various	lists	must	also	be	initialized:

paddle	=	new	Paddle();
Texture	paddleTex	=	new	
Texture(Gdx.files.internal("assets/paddle.png"));
paddleTex.setFilter(TextureFilter.Linear,	
TextureFilter.Linear);
paddle.setTexture(paddleTex);
mainStage.addActor(paddle);

baseBrick	=	new	Brick();
Texture	brickTex	=	new	
Texture(Gdx.files.internal("assets/brick-gray.png"));
baseBrick.setTexture(brickTex);
baseBrick.setOriginCenter();

brickList	=	new	ArrayList<Brick>();

ball	=	new	Ball();
Texture	ballTex	=	new	
Texture(Gdx.files.internal("assets/ball.png"));
ball.storeAnimation("default",	ballTex);
ball.setPosition(400,	200);
ball.setVelocityAS(30,	300);
ball.setAccelerationXY(0,	-10);
mainStage.addActor(ball);

basePowerup	=	new	Powerup();
basePowerup.setVelocityXY(0,	-100);
basePowerup.storeAnimation("paddle-expand",
				new	Texture(Gdx.files.internal("assets/paddle-
expand.png")));
basePowerup.storeAnimation("paddle-shrink",

				new	Texture(Gdx.files.internal("assets/paddle-
shrink.png")));
basePowerup.setOriginCenter();

powerupList	=	new	ArrayList<Powerup>();

removeList	=	new	ArrayList<BaseActor>();

The	final	task	to	accomplish	in	the	create	method	is	to	initialize	a	rectangular	grid
of	bricks	by	cloning	the	baseBrick	object	created	earlier.	To	make	the	game	more
aesthetically	pleasing,	each	row	of	bricks	will	be	tinted	using	a	different	Color,	as
follows:

Color[]	colorArray	=	{	Color.RED,	Color.ORANGE,	
Color.YELLOW,
																							Color.GREEN,	Color.BLUE,	Color.PURPLE	};

for	(int	j	=	0;	j	<	6;	j++)
{
				for	(int	i	=	0;	i	<	10;	i++)
				{
								Brick	brick	=	baseBrick.clone();
								brick.setPosition(8	+	80*i,		500	-	(24	+	16)*j);
								brick.setColor(colorArray[j]);
								brickList.add(brick);
								brick.setParentList(brickList);
								mainStage.addActor(brick);
				}
}

Next,	interactivity	will	be	added	to	the	update	method.	First,	the	horizontal	position
of	the	paddle	must	be	continuously	adjusted	to	center	on	the	x	coordinate	of	the	mouse,
and	the	paddle	object	should	be	bound	to	the	screen:

paddle.setPosition(Gdx.input.getX()	-	paddle.getWidth()/2,	
32);

if	(paddle.getX()	<	0)
				paddle.setX(0);

if	(paddle.getX()	+	paddle.getWidth()	>	mapWidth)
				paddle.setX(mapWidth	-	paddle.getWidth());

Next,	code	will	be	added	to	bounce	the	ball	off	the	edges	of	the	screen.	For	testing
purposes,	the	ball	will	also	bounce	off	the	bottom	edge	of	the	screen.	(In	a	finished	version
of	this	game,	this	does	not	happen;	if	the	ball	passes	below	the	bottom	edge,	the	player
loses	the	game.)

if	(ball.getX()	<	0)
{
				ball.setX(0);
				ball.multVelocityX(-1);
}

if	(ball.getX()	+	ball.getWidth()	>	mapWidth)
{
				ball.setX(mapWidth	-	ball.getWidth());
				ball.multVelocityX(-1);
}

if	(ball.getY()	<	0)
{
				ball.setY(0);
				ball.multVelocityY(-1);
}

if	(ball.getY()	+	ball.getHeight()	>	mapHeight)
{
				ball.setY(mapHeight	-	ball.getHeight());
				ball.multVelocityY(-1);
}

To	bounce	the	ball	off	the	paddle,	call	the	overlaps	method	of	the	ball	with	the
following	line	of	code.	(Although	this	method	returns	a	Boolean	value,	we	do	not	have	a
use	for	this	value	at	this	time.	It	could	be	useful	later	when	adding	polish	to	your	game:	for
example,	if	the	ball	overlaps	the	paddle,	then	a	sound	effect	could	be	played.)

ball.overlaps(paddle,	true);

Next,	check	whether	the	ball	has	collided	with	any	of	the	bricks.	If	so,	add	the	brick	to
removeList,	which	will	later	call	the	destroy	method	of	the	brick	(which	activates
the	previously	discussed	fading-out	effect).	Also,	in	the	event	of	a	brick	being	hit,	there
will	be	a	20	percent	chance	that	a	randomized	power-up	will	be	spawned.	Using	an
Action,	an	animated	scaling	effect	will	be	added	that	will	make	the	power-up	appear	to
grow	from	a	single	pixel	to	its	full	size	over	the	course	of	half	a	second.

removeList.clear();

for	(Brick	br	:	brickList)
{
				if	(ball.overlaps(br,	true))	//	bounces	off	bricks
				{
								removeList.add(br);
								if	(Math.random()	<	0.20)
								{
												Powerup	pow	=	basePowerup.clone();

												pow.randomize();
												pow.moveToOrigin(br);

												pow.setScale(0,0);
												pow.addAction(Actions.scaleTo(1,1,	0.5f));

												powerupList.add(pow);
												pow.setParentList(powerupList);
												mainStage.addActor(pow);
								}
				}
}

You	also	need	to	check	whether	any	of	the	power-ups	have	collided	with	the	paddle.	If
so,	determine	the	name	of	the	animation	and	carry	out	the	associated	effect.	In	this	version
of	the	game,	the	only	power-up	effects	are	to	change	the	size	of	the	paddle.	Reasonable
constraints	will	be	set	on	the	maximum	and	minimum	size	the	paddle	can	attain,	and	the
change	in	size	is	animated	using	an	Action:

for	(Powerup	pow	:	powerupList)
{
				if	(pow.overlaps(paddle))
				{
								String	powName	=	pow.getAnimationName();
								if	(powName.equals("paddle-expand")	&&	
paddle.getWidth()	<	256)
								{
												paddle.addAction(Actions.sizeBy(32,0,	0.5f));
								}
								else	if	(powName.equals("paddle-shrink")	&&	
paddle.getWidth()	>	64)
								{
												paddle.addAction(Actions.sizeBy(-32,0,	0.5f));
								}

								removeList.add(pow);
				}
}

Finally,	after	all	the	collision	detection	is	complete,	iterate	over	removeList,	to
destroy	any	objects	that	should	be	removed	from	the	game:

for	(BaseActor	b	:	removeList)
{
				b.destroy();
}

Next	Steps
As	usual,	I	recommend	adding	a	Start	menu	screen,	sound	effects,	and	end-of-game
messages	to	this	program.	Additional	specific	ideas	for	this	game	include	the	following:

When	the	game	loads,	stop	the	ball	from	automatically	moving	(set
the	speed	of	the	ball	to	zero)	until	the	user	clicks	a	mouse	button	to
start	the	game;	then	launch	the	ball	upward.

Disable	collision	detection	and	response	for	the	bottom	edge	of	the
screen;	when	the	ball	passes	below	the	bottom	edge,	the	game	is	over.

Gain	a	set	number	of	points	for	each	brick	that	is	destroyed,	and
display	the	score	in	the	user	interface.	As	a	slight	variation,	bricks
could	be	worth	different	amounts	of	points	depending	on	either	their
color	or	height	on	the	screen	(bricks	that	are	higher	up	are	more
difficult	to	hit	and	could	be	worth	more	points).

For	increased	difficulty,	gradually	increase	the	speed	of	the	ball	as	the
game	progresses.

Add	new	power-ups	that	change	properties	of	the	ball	such	as	its	size
or	speed.

Add	a	fireball	power-up.	When	the	power-up	is	collected,	tint	the	ball
orange.	When	it	collides	with	a	brick,	a	moderately	sized	explosion
effect	is	spawned;	if	the	effect	overlaps	any	other	bricks,	destroy	them
as	well.

Add	a	thru-ball	power-up.	When	this	power-up	is	collected,	tint	the
ball	green.	When	checking	for	the	collision	of	the	ball	with	the	bricks
using	the	overlaps	method,	let	the	Boolean	parameter	be	false,
so	that	the	velocity	is	not	adjusted;	the	ball	will	be	able	to	pass
through	groups	of	bricks.

Add	multiball	capabilities,	enabling	multiple	balls	to	be	on	the	screen
at	a	time.	This	requires	numerous	small	changes	throughout	the
program:	most	code	involving	the	ball	object	(such	as	collision
detection)	will	need	to	be	iterated	over	a	list	of	ball	objects.	Add	a
corresponding	multiball	power-up	that	spawns	a	new	ball	(typically
from	the	position	of	the	paddle)	when	it	is	collected.

52-Card	Pickup
In	this	section,	you’ll	create	the	card	game	52-Card	Pickup.	In	this	game,	the	52	cards
from	a	standard	deck	of	playing	cards	are	randomly	scattered	around	a	playing	area,	and
the	goal	is	to	pick	up	the	cards	and	arrange	them	in	piles	according	to	matching	suit
(clubs,	hearts,	spades,	diamonds)	and	ascending	rank	(Ace,	2,	3,	4,	5,	6,	7,	8,	9,	10,	Jack,
Queen,	King).	Figure	6-11	shows	this	game	in	action.

Figure	6-11.	The	52-Card	Pickup	game

The	main	purpose	of	this	example	is	to	demonstrate	how	to	implement	two	new
mechanics:	drag-and-drop	interactions,	and	objects	that	provide	visual	hints.	These
techniques	are	useful	in	all	manner	of	card	games,	as	well	as	tile-matching	games	such	as
Bejeweled.

As	usual,	you	begin	by	creating	a	new	project	containing	the	classes	BaseGame,
BaseScreen,	BaseActor,	AnimatedActor,	PhysicsActor,	and	GameUtils.
You	should	create	a	launcher-style	class	and	a	class	that	extends	BaseGame,	and	you	will
need	to	copy	the	images	from	this	chapter’s	source	directory	52Pickup/assets	into
your	local	project’s	assets	folder.

Cards	and	Piles
In	addition	to	the	functionality	provided	by	the	BaseActor	class,	the	objects	in	this
game	need	to	store	additional	data,	and	so	you	begin	by	writing	two	extensions	of	this
class.

First,	create	a	Card	class.	This	class	contains	two	String	variables	that	store	the
rank	and	suit	of	the	card.	The	remaining	variables	are	related	to	movement	of	the	card:
offsetX	and	offsetY	store	the	coordinates	of	the	point	where	the	player	first	touches
a	card,	originalX	and	originalY	store	the	original	position	of	the	card	on	the	stage
before	it	is	dragged,	and	dragable	indicates	whether	the	card	can	be	dragged	by	the
player.	In	addition	to	the	constructor,	there	are	also	accessor	methods	for	the	private
variables	rank	and	suit,	and	a	method	getRankIndex	that	associates	a	numerical
value	to	the	rank	of	the	card.

public	class	Card	extends	BaseActor

{
				private	String	rank;
				private	String	suit;
				public	float	offsetX;
				public	float	offsetY;
				public	float	originalX;
				public	float	originalY;
				public	boolean	dragable;

				public	Card(String	r,	String	s)
				{
								super();
								rank	=	r;
								suit	=	s;
								dragable	=	true;
				}

				public	String	getRank()
				{		return	rank;		}
				public	String	getSuit()
				{		return	suit;		}

				public	int	getRankIndex()
				{
								String[]	rankNames	=	{"A",	"2",	"3",	"4",	"5",	"6",	
"7",	"8",	"9",	"10",	"J",	"Q",	"K"};
								for	(int	i	=	0;	i	<	rankNames.length;	i++)
								{
												if	(rank.equals(rankNames[i]))
																return	i;
								}
								return	-1;
				}
}

Second,	create	a	class	called	Pile	that	stores	a	list	of	Card	objects	by	using	the
ArrayList	class.	Pile	extends	the	BaseActor	class	because	it	will	be	a	visible
object	in	the	game	and	serve	as	a	drop	target	for	Card	objects.	The	various	methods
check	whether	the	list	is	empty,	add	a	Card	to	the	list,	retrieve	the	top	(most	recently
added)	Card,	and	for	convenience	check	the	rank,	suit,	and	rank	index	of	the	top	Card.

import	java.util.ArrayList;

public	class	Pile	extends	BaseActor
{
				private	ArrayList<Card>	list;

				public	Pile()
				{
								super();
								list	=	new	ArrayList<Card>();
				}

				public	boolean	isEmpty()
				{		return	list.isEmpty();		}

				public	void	addCard(Card	c)
				{		list.add(c);		}

				public	Card	getTopCard()
				{
								if	(list.isEmpty())
												return	null;
								else
												return	list.get(list.size()-1);
				}

				public	String	getRank()
				{		return	getTopCard().getRank();		}
				public	String	getSuit()
				{		return	getTopCard().getSuit();		}
				public	int	getRankIndex()
				{		return	getTopCard().getRankIndex();		}
}

Setting	Up	the	Game
Next,	you	will	set	up	the	core	of	the	GameScreen	class,	declaring	all	the	variables	you
will	require	later.	The	ArrayList	named	cardList	keeps	track	of	all	52	Card
objects	that	will	be	created,	and	the	ArrayList	named	pileList	keeps	track	of	the
four	Pile	objects,	to	which	the	player	will	be	dragging	the	Card	objects.	The	variables
glowEffect	and	hintTimer	will	be	used	to	provide	hints	to	the	player,	and	are
discussed	in	a	later	section.

import	com.badlogic.gdx.Gdx;
import	com.badlogic.gdx.Input.Keys;
import	com.badlogic.gdx.graphics.Texture;
import	com.badlogic.gdx.math.MathUtils;
import	com.badlogic.gdx.scenes.scene2d.InputEvent;
import	com.badlogic.gdx.scenes.scene2d.InputListener;
import	com.badlogic.gdx.scenes.scene2d.actions.Actions;
import	java.util.ArrayList;

public	class	GameScreen	extends	BaseScreen

{
				private	BaseActor	background;

				private	ArrayList<Card>	cardList;
				private	ArrayList<Pile>	pileList;

				private	BaseActor	glowEffect;
				private	float	hintTimer;

				//	game	world	dimensions
				final	int	mapWidth	=	800;
				final	int	mapHeight	=	600;

				public	GameScreen(BaseGame	g)
				{		super(g);		}

				public	void	create()
				{				}

				public	void	update(float	dt)
				{				}
}

First,	background	texture	should	be	initialized;	at	the	start	of	the	create	method,
insert	the	code:

background	=	new	BaseActor();
background.setTexture(new	
Texture(Gdx.files.internal("assets/felt.jpg")));
mainStage.addActor(background);

After	this,	the	Pile	objects	will	be	initialized.	An	image	of	the	back	of	a	playing	card
will	be	used	to	indicate	where	each	Pile	is	located,	and	its	size	will	be	set	to	be	slightly
larger	than	the	images	used	for	the	cards	themselves,	so	that	piles	can	be	clearly	identified
even	when	cards	are	on	top.	The	positions	of	the	piles	are	set	so	that	they	are	equally
spaced	along	the	top	of	the	screen,	and	a	rectangular	boundary	is	set	for	the	purpose	of
collision	detection	later.

pileList	=	new	ArrayList<Pile>();
Texture	pileTex	=	new	
Texture(Gdx.files.internal("assets/cardBack.png"));
for	(int	n	=	0;	n	<	4;	n++)
{
				Pile	pile	=	new	Pile();
				pile.setTexture(pileTex);
				pile.setWidth(120);
				pile.setHeight(140);
				pile.setOriginCenter();

				pile.setPosition(70	+	180*n,	400);
				pile.setRectangleBoundary();
				pileList.add(pile);
				mainStage.addActor(pile);
}

Next,	the	Card	objects	will	be	initialized.	Arrays	will	be	used	to	contain	the	names	of
the	various	ranks	and	suits,	for	use	in	initializing	the	Card	data	as	well	as	constructing	the
file	name	of	the	associated	image.	The	most	subtle	part	of	this	code	is	setting	the	z-index
of	each	card,	which	controls	the	order	in	which	they	are	rendered,	and	can	be	done	only
after	an	Actor	is	added	to	a	Stage.	Actors	with	lower	z-index	values	render	before
actors	with	higher	values,	and	thus	appear	“beneath”	them	on	the	screen.	In	52-Card
Pickup,	you	want	the	cards	that	the	player	needs	first	to	appear	on	top	of	the	other
randomly	scattered	cards.	Therefore,	the	cards	with	higher	rank	must	render	earlier
(moving	them	to	the	“bottom”),	so	their	z-index	must	be	set	to	a	small	number,	which	also
advances	all	the	cards	previously	added	(those	with	smaller	ranks)	to	a	later	rendering
position	(moving	them	to	the	“top”).	The	reason	you	set	the	z-index	to	the	particular	value
5	is	so	that	all	of	the	Card	objects	will	render	after	the	background	object	and	the	four
piles,	which	have	z-indices	0	through	4,	because	they	were	the	first	five	objects	added	to
this	stage.

String[]	rankNames	=	{"A",	"2",	"3",	"4",	"5",	"6",	"7",	
"8",	"9",	"10",	"J",	"Q",	"K"};
String[]	suitNames	=	{"Clubs",	"Hearts",	"Spades",	
"Diamonds"};

cardList	=	new	ArrayList<Card>();
for	(int	r	=	0;	r	<	rankNames.length;	r++)
{
				for	(int	s	=	0;	s	<	suitNames.length;	s++)
				{
								Card	card	=	new	Card(rankNames[r],	suitNames[s]);
								String	fileName	=	"assets/card"	+	suitNames[s]	
+	rankNames[r]	+	".png";
								card.setTexture(new	
Texture(Gdx.files.internal(fileName)));
								card.setWidth(80);
								card.setHeight(100);
								card.setOriginCenter();
								card.setRectangleBoundary();

								cardList.add(card);
								mainStage.addActor(card);
								card.setZIndex(5);	//	cards	created	later	should	
render	earlier	(on	bottom)
				}
}

At	this	point,	interactivity	can	be	added	to	the	Card	objects.	This	is	accomplished	by
adding	an	InputListener	to	each	card,	similar	to	the	approach	used	for	the	Balloon
objects	in	the	Balloon	Buster	game	from	Chapter	3,	but	with	much	greater	complexity.
Three	different	input	actions	must	be	processed:

When	the	player	first	touches	a	Card	(handled	by	the	touchDown
method),	if	the	card	is	not	draggable,	then	exit	the	method	and	do	not
process	any	other	input	actions	for	this	card.	Otherwise,	move	the	card
to	the	top	of	the	rendering	order	and	store	the	related	movement	data:
the	position	on	the	Card	that	was	touched,	as	well	as	the	original
location	of	the	Card	on	the	Stage.

When	the	player	drags	a	Card	(handled	by	the	touchDragged
method),	move	the	card	to	a	new	position.	However,	you	don’t	want	to
move	the	lower-left	corner	of	the	card	to	the	touch	position;	you	want
to	move	the	position	on	the	card	that	was	initially	touched	(stored	in
offsetX	and	offsetY)	to	this	position.	Therefore,	you	take	these
values	into	account	when	using	the	moveBy	method	of	the	card.

When	the	player	releases	a	Card	(handled	by	the	touchUp	method),
a	variety	of	actions	could	take	place.	First,	you	check	whether	the	card
is	overlapping	any	of	the	Pile	objects.	If	the	card	is	overlapping	a
pile,	and	it	is	the	next	card	in	sequence	(same	suit,	next	greater	rank
index),	then	you’ll	add	an	Action	that	slides	the	card	to	the	center	of
the	pile,	update	the	pile	data,	and	lock	the	card	in	place	by	setting
dragable	to	false.	If	the	card	is	overlapping	one	or	more	piles	but	is
not	the	next	card	in	sequence	for	any	of	them,	then	you’ll	add	an
Action	that	slides	the	card	back	to	its	original	position	(since	you
don’t	want	the	card	to	obstruct	any	part	of	the	piles	in	this	case).	If	the
card	is	not	overlapping	any	Pile	objects	when	it	is	released,	you	just
leave	it	at	that	position,	adjusting	the	position	only	if	part	of	the	card	is
off-screen.

These	tasks	are	implemented	with	the	following	code,	which	should	be	added	in	the
loop	that	initializes	all	the	Card	objects,	directly	before	the	line	of	code	that	adds	card
to	cardList:

card.addListener(
				new	InputListener()
				{
								public	boolean	touchDown(InputEvent	event,	float	x,	
float	y,
																																				int	pointer,	int	button)
								{
												if	(!card.dragable)
																return	false;

												card.setZIndex(1000);	//	render	currently	dragged	
card	on	top
												card.offsetX	=	x;
												card.offsetY	=	y;
												card.originalX	=	event.getStageX();
												card.originalY	=	event.getStageY();
												return	true;
								}

								public	void	touchDragged(InputEvent	event,	float	x,	
float	y,	int	pointer)
								{
												if	(!card.dragable)
																return;

												card.moveBy(x	-	card.offsetX,	y	-	card.offsetY);
								}

								public	void	touchUp(InputEvent	event,	float	x,	float	
y,	int	pointer,	int	button)
								{
												boolean	overPile	=	false;
												for	(Pile	pile	:	pileList)
												{
																if	(card.overlaps(pile,	false))
																{
																				overPile	=	true;
																				if	(card.getRankIndex()	==	
pile.getRankIndex()	+	1
																									&&	card.getSuit().equals(pile.getSuit()	
))
																				{
																								float	targetX	=	pile.getX()	
+	pile.getOriginX()	-	card.getOriginX();
																								float	targetY	=	pile.getY()	
+	pile.getOriginY()	-	card.getOriginY();
																								card.dragable	=	false;
																								card.addAction(Actions.moveTo(targetX,	
targetY,	0.5f));
																								pile.addCard(card);
																								return;
																				}
																}
												}

												if	(overPile)	//	overlapping	piles	but	not	the	
right	one;	move	off	the	pile

																card.addAction(Actions.moveTo(
																				card.originalX	-	card.offsetX,	
card.originalY	-	card.offsetY,	0.5f));

												//	make	sure	card	is	completely	visible	on	screen
												if	(card.getX()	<	0)
																card.setX(0);
												if	(card.getX()	+	card.getWidth()	>	mapWidth)
																card.setX(mapWidth	-	card.getWidth());
												if	(card.getY()	<	0)
																	card.setY(0);
												if	(card.getY()	+	card.getHeight()	>	mapHeight)
																	card.setY(mapHeight	-	card.getHeight());
								}
				});

When	the	game	starts,	the	Aces	should	be	positioned	on	top	of	the	four	piles,	and	all
other	cards	scattered	about	the	screen.	To	do	this,	iterate	over	cardList,	and	when	the
card	has	rank	A,	locate	the	first	empty	pile	and	move	the	card	to	that	pile.	If	the	card	has
any	other	rank,	randomize	its	position	on	the	lower	half	of	the	screen.	This	is
accomplished	with	the	following	code,	which	should	be	added	in	the	create	method,
after	the	loops	that	initialize	the	Card	and	Pile	objects:

//	move	Aces	to	piles;	randomize	positions	of	all	other	
cards
for	(Card	card	:	cardList)
{
				if	(card.getRank().equals("A"))
				{
								for	(Pile	pile	:	pileList)
								{
												if	(pile.isEmpty())
												{
																card.moveToOrigin(pile);
																pile.addCard(card);
																card.dragable	=	false;
																break;
												}
								}
				}
				else
				{
								card.setPosition(MathUtils.random(720),	
MathUtils.random(200));
				}
}

At	this	point,	the	game	is	completely	playable!	However,	in	the	interest	of	providing	a
better	player	experience	and	making	the	game	accommodating	to	a	variety	of	skill	levels,
one	additional	feature	will	be	included:	hints	that	assist	the	player	by	indicating	a	possible
course	of	action.

Providing	Visual	Hints
Sometimes	players	might	have	difficulty	finding	an	object	or	figuring	out	the	next	step	in
a	game.	Rather	than	allowing	frustration	to	build,	you	will	introduce	a	game	mechanic	that
provides	a	visual	hint	after	a	certain	amount	of	time	has	elapsed.	The	visual	indicator	in
this	game	is	provided	by	an	object	named	glowEffect	which,	as	the	name	suggests,
creates	a	glowing	effect	around	the	border	of	one	of	the	cards	that	could	currently	be
moved	to	one	of	the	piles.	You’ll	add	a	pulsing	effect	by	fading	glowEffect	in	and	out,
to	more	easily	draw	the	player’s	attention.	The	float	variable	hintTimer	keeps	track	of
how	much	time	has	passed	since	the	player	touches	a	card,	and	if	its	value	becomes	large
enough,	then	the	hint	mechanic	becomes	activated	and	glowEffect	becomes	visible.
Conversely,	whenever	the	player	touches	a	card,	the	hint	timer	will	be	reset	and
glowEffect	will	be	made	invisible.

The	first	step	in	this	process	is	to	initialize	glowEffect	and	hintTimer,	which	is
accomplished	by	including	the	following	code	in	the	create	method,	after	cardList
has	been	created	and	the	card	objects	have	been	added	to	it:

glowEffect	=	new	BaseActor();
Texture	glowTex	=	new	
Texture(Gdx.files.internal("assets/glowBlue.png"));
glowEffect.setTexture(glowTex);
glowEffect.setWidth(cardList.get(0).getWidth()	*	1.5f);
glowEffect.setHeight(cardList.get(0).getHeight()	*	1.5f);
glowEffect.setOriginCenter();
glowEffect.addAction(
				Actions.forever(Actions.sequence(Actions.fadeOut(0.5f),	
Actions.fadeIn(0.5f))));
glowEffect.setVisible(false);
mainStage.addActor(glowEffect);

hintTimer	=	0;

Then	in	the	update	method,	include	the	following	code	that	updates	the	hint	timer.
When	the	hint	mechanic	is	activated,	the	glowing	effect	and	the	selected	card	have	their	z-
index	adjusted	(via	the	toFront	method)	so	that	they	render	above	everything	else,	just
in	case	the	selected	card	had	been	previously	obscured	by	other	cards	as	the	player
dragged	them	around	the	screen.

hintTimer	+=	dt;

if	(Gdx.input.isTouched())

{
				hintTimer	=	0;
				glowEffect.setVisible(false);
}

//	activate	hint	mechanic
if	(hintTimer	>	3	&&	!glowEffect.isVisible())
{
				for	(Card	hintCard	:	cardList)
				{
								if	(hintCard.dragable)
								{
												glowEffect.setVisible(true);
												glowEffect.moveToOrigin(hintCard);
												glowEffect.toFront();
												hintCard.toFront();
												break;	//	exits	loop	at	first	chance
								}
				}
}

That	completes	the	implementation	of	the	hint	mechanic,	as	well	as	the	code	for	52-
Card	Pickup.

Next	Steps
The	standard	advice	for	improving	the	sample	games	in	this	chapter	applies	here	(adding	a
Start	menu,	sound	effects,	and	a	Congratulations	message	when	game	is	finished).	Here
are	some	suggestions	specific	to	this	game:

Instead	of	having	the	cards	appear	in	a	random	position	when
GameScreen	is	loaded,	create	an	Action	for	each	card	that	moves
it	into	its	random	starting	position	from	an	off-screen	location.

Give	the	player	the	option	to	enable/disable	hints	completely,	or	add	a
Button	that	will	activate	the	glowing	hint	effect	only	when	pressed.

Keep	track	of	the	time	elapsed	and	display	it	in	the	user	interface.

When	the	game	is	over,	celebrate	the	player’s	victory	by	adding	some
fun	visual	effects,	such	as	AnimatedActor	objects	that	contain
firework	animations,	or	have	the	cards	move	around	the	screen	in
interesting	patterns	using	the	Action	class.

An	alternative	to	polishing	this	game	is	to	create	a	completely	new	game	by	using	the
mechanics	introduced	here.	One	recommended	project	is	to	create	a	single-player	version
of	the	card	game	Crazy	Eights	(which	is	similar	to	the	popular	commercial	game	Uno).
The	setup	and	rules	are	as	follows:

There	are	two	piles:	draw,	which	initially	contains	all	52	cards,	and
discard,	which	initially	contains	no	cards.

At	the	start	of	the	game,	remove	seven	cards	from	the	draw	pile	and
arrange	them	on	the	screen;	this	becomes	your	hand.	Also,	remove
one	card	from	the	draw	pile	and	add	it	to	the	discard	pile.

At	any	time,	you	may	move	any	card	from	your	hand	to	the	top	of	the
discard	pile,	provided	that	your	card	has	the	same	rank	or	suit	as	the
top	card	of	the	discard	pile,	or	has	rank	8	(such	a	card,	which	can	be
played	at	any	time,	is	often	called	a	wild	card).

At	any	point,	you	may	remove	the	top	card	from	the	draw	pile	and	add
it	to	your	hand.

Your	goal	is	to	move	all	the	cards	from	your	hand	to	the	discard	pile
while	drawing	as	few	cards	from	the	draw	pile	as	possible.

Creating	this	game	will	require	many	additions	and	modifications	to	the	code	given	in
this	example	(for	example,	adding	a	removeCard	method	to	the	Pile	class),	but
completing	this	project	will	give	your	game	programming	skills	an	excellent	workout!

Summary
In	this	chapter,	you’ve	learned	how	to	implement	a	great	variety	of	game	mechanics	by
creating	four	new	games:	Space	Rocks,	Plane	Dodger,	Rectangle	Destroyer,	and	52-Card
Pickup.	Along	the	way,	you	gained	practical	experience	with	the	following	material:

Creating	base	objects	for	later	spawning	using	clone	methods

Simplifying	the	creation	of	Animation	objects	with	static	utility
methods

Managing	lists	of	different	types	of	actors	to	check	for	and	handle
various	interactions

Adding	new	methods	to	your	custom	Actor	extensions

Further	extending	your	custom	Actor	extensions	to	incorporate
additional	game-specific	data	or	functionality

Implementing	advanced	collision	detection	and	response

Incorporating	randomness	into	games	to	provide	new	game-play
experiences

In	the	next	chapter,	you’ll	investigate	how	to	implement	even	more	advanced	visual
effects	and	game	mechanics	by	incorporating	third-party	software,	libraries,	and
extensions.

1This	is	in	contrast	to	the	original	Asteroids	game,	in	which	larger	rocks	would	typically	spawn	multiple	smaller	rocks
after	being	hit	by	a	laser.	In	this	case,	having	a	base	object	available	to	clone	at	a	later	point	could	be	useful.

CHAPTER	7

Integrating	Third-Party	Software
This	chapter	covers	how	to	use	third-party	software	and	libraries	to	simplify	your
workflow	and	increase	the	sophistication	of	your	games.	In	particular,	you	will	use	the
following:

The	LibGDX	Particle	Editor,	to	create	visual	effects

Tiled,	a	general-purpose	map	editor,	to	simplify	the	level	design
process

Box2D,	a	physics	engine,	to	simulate	realistic	physics-based
interactions

You’ll	use	each	of	these	in	developing	new	LibGDX	projects.	The	chapter	concludes
with	a	project	that	incorporates	features	from	all	three	of	these	tools.

Working	with	Particle	Systems	in
LibGDX
A	particle	system	is	a	collection	of	many	small	images	that	can	be	used	to	create	a	variety
of	graphical	special	effects.	Some	effects	that	can	be	well	replicated	by	this	technique
include	fire,	smoke,	explosions,	fireworks,	electric	sparks,	water	fountains,	rain,	snow,	and
star	fields.	Each	of	the	small	images	in	a	particle	system	is	called	a	particle.	Every	particle
has	many	properties	(such	as	velocity,	size,	color,	and	transparency)	that	can	be	initialized
to	a	random	value	within	a	given	range,	and	these	property	values	may	be	configured	to
change	over	time.	Particles	are	produced	at	a	set	rate	by	an	object	called	an	emitter,	which
may	be	configured	to	spawn	particles	either	for	a	limited	time	or	continuously,	depending
on	the	visual	effect	being	created.

LibGDX	provides	classes	that	support	the	display	of	particle	systems.	Furthermore,	the
Particle	Editor	tool	provided	with	LibGDX	can	be	used	to	design	and	preview	particle
effects,	and	export	them	to	a	file	format	that	can	be	easily	imported	within	the	LibGDX
framework.

The	LibGDX	Particle	Editor
The	LibGDX	Particle	Editor	can	be	run	directly	from	the	source	code,	as	explained	on	the
LibGDX	wiki.1	However,	for	simplicity,	I	recommend	that	you	use	the	executable	JAR
file	I	have	created	to	run	the	Particle	Editor:	ParticleEditor.jar,	available	in	the

ParticleEditor	folder	in	the	source	code	directory	for	this	chapter.	Figure	7-1	shows
this	program	when	it	is	first	started.

Figure	7-1.	The	LibGDX	Particle	Editor	program	at	startup

A	fire	effect	appears	in	the	preview	region	in	the	upper-left	panel	of	the	Particle	Editor
window.	The	parameters	that	produce	this	effect	are	in	the	Emitter	Properties	panel	that
occupies	the	majority	of	the	right-hand	side	of	the	window.	This	panel	has	so	many
properties,	each	with	corresponding	values	and	graphs,	that	it	can	be	somewhat
overwhelming	at	first.	This	section	discusses	only	the	emitter	properties	that	have	the
greatest	impact	on	the	final	visual	effect;	for	more	thorough	coverage,	please	consult	the
LibGDX	wiki	(previously	referenced)	for	details.

Image:	From	this	area,	you	can	select	the	image	used	for	each	particle.
Particles	are	often	tinted	with	a	color;	grayscale	images	work	best	for
this	purpose.

Count:	This	area	can	be	used	to	set	the	minimum	and	maximum
number	of	particles	that	should	appear	onscreen	at	any	time.

Duration:	This	is	how	long	the	emitter	will	produce	particles.	(When
creating	a	continuous	effect,	this	value	will	be	ignored.)

Emission:	This	is	how	many	particles	will	be	emitted	per	second.

Life:	This	is	how	long	each	particle	will	be	active	in	the	particle
system.

Size:	This	is	the	size	of	the	image,	in	pixels.

Velocity:	This	is	the	particle	speed,	in	pixels	per	second.

Angle:	This	is	the	particle	direction,	in	degrees.

Tint:	This	displays	the	color(s)	used	to	tint	the	particle	image.

Transparency:	This	controls	the	transparency	of	the	images	over	time.

Additive:	When	active,	this	blends	colors	by	adding	together	the	color
components,	resulting	in	brighter	areas	where	many	particles	are
present.

Continuous:	When	active,	this	causes	the	emitters	to	continue	emitting
particles	(ignoring	the	preceding	Duration	value).

Next	to	some	of	the	parameters,	you’ll	see	text	boxes	and	a	graph,	as	shown	in	Figure
7-2,	which	can	be	used	for	fine-tuning	the	initial	values	and	changes	in	values	over	time.
(For	some	parameters,	you	will	need	to	click	the	Active	button	to	the	right	of	the
parameter	name	to	make	these	elements	appear.)

Figure	7-2.	Particle	Editor	interface	for	fine-tuning	parameter	values

The	numeric	values	in	the	High	and	Low	boxes	refer	to	the	values	of	the	top	and
bottom	edges	on	the	graph	to	the	right.	The	blue	line	on	the	graph	indicates	how	the
parameter	value	will	change	during	the	lifetime	of	the	particle.	In	the	graph	pictured	in
Figure	7-2,	the	blue	line	remains	straight	across	the	top,	indicating	that	the	parameter
value	will	remain	constant	at	the	High	value.	Figure	7-3	illustrates	two	more	possible
graphs;	the	graph	on	the	left	represents	a	continuous	decrease	from	the	High	value	to	the
Low	value,	while	the	graph	on	the	right	represents	a	parameter	that	remains	at	the	High
value	for	the	majority	of	the	lifetime	of	the	particle,	and	then	suddenly	decreases	to	the
Low	value.	I	refer	to	these	two	graphs	as	the	Gradual	Decrease	and	the	Sudden	Decrease
graphs	later	in	this	section.

Figure	7-3.	Variations	on	the	parameter	change	graph

To	modify	one	of	these	graphs,	you	can	click	anywhere	to	add	a	point,	click	and	drag
to	move	a	point	around,	and	double-click	a	point	to	remove	it.

In	addition,	next	to	the	High	and	Low	values	are	small	buttons	labelled	with	>	or	<;
these	can	be	used	to	toggle	between	one	or	two	values	appearing	in	the	corresponding	row.
When	two	values	are	displayed,	they	represent	a	range	of	values	from	which	the	High	or
Low	value	will	be	randomly	selected	for	each	particle.	This	can	be	used	to	great	effect,	as
you	will	see	later.

Finally,	let’s	discuss	how	to	set	the	parameters	for	the	Tint	property.	If	desired,	the
color	of	a	particle	can	change	over	time;	the	progression	of	the	color	is	displayed	from	the
left	to	the	right	in	the	topmost	rectangle.	For	example,	Figure	7-4	represents	a	particle	that
will	begin	tinted	red,	shift	to	blue,	and	finally	end	tinted	green.	As	with	the	parameter
change	graphs	discussed	previously,	additional	points	(represented	by	triangles)	can	be
added	by	clicking	within	the	rectangle.	Triangles	can	be	selected	by	clicking	them,	and
their	colors	can	be	adjusted	by	using	the	sliders	underneath,	which	control	the	hue,
saturation,	and	brightness	of	the	color.	The	triangles	can	be	moved	by	clicking	and
dragging,	and	they	can	be	deleted	by	double-clicking.

Figure	7-4.	The	tint	parameter	graph

Now	that	you	understand	the	user	interface	of	the	Particle	Editor,	you’ll	work	through
examples	that	show	how	to	create	particle-based	versions	of	the	effects	from	the	game
Space	Rocks.	Creating	lots	of	effects,	more	than	anything,	is	what	will	ultimately	give	you
a	feel	for	the	role	each	parameter	plays	in	crafting	a	particle-based	effect.	You	need	a
location	to	save	your	final	effects,	so	at	this	time,	create	a	new	project	in	BlueJ	called
Starscape;	within	the	project	directory,	create	an	assets	folder,	where	you	will	store
the	effect	files	created	with	the	LibGDX	Particle	Editor.

Rocket-Thruster	Effect
Your	first	goal	is	to	create	a	rocket-thruster	effect,	pictured	in	Figure	7-5.

Figure	7-5.	The	rocket-thruster	particle	effect

After	starting	the	Particle	Editor	program,	in	the	Effect	Emitters	panel	in	the	lower	left,
click	the	New	button	and	rename	the	newly	created	list	entry	thruster.	Click	the	list	item
named	Untitled	(which	corresponds	to	the	default	fire-like	example),	and	click	the	Delete
button	to	remove	it.

In	the	set	of	options	at	the	bottom	of	the	Emitter	Properties	panel,	deselect	the
Additive	check	box,	and	select	the	Continuous	check	box.	You	should	now	see	a	single
red	dot	in	the	middle	of	the	preview	panel.

First,	you	will	adjust	the	number	of	particles	that	will	be	active	at	any	given	moment.
Change	the	Count	property	Max	value	to	100.	To	achieve	this	amount,	you	also	must
change	the	Emission	property	High	value	to	200.	(Changing	this	value	to	100	would	be
insufficient,	as	each	particle	lasts	for	only	0.5	seconds,	since	500	milliseconds	is	the
default	value	for	the	Life	property.	An	emission	rate	of	100	would	result	in	only	50	active
particles	at	any	given	time.)

Next,	click	the	Active	buttons	next	to	the	Velocity	and	Angle	properties.	For	Velocity,
click	the	 	button	next	to	High,	and	enter	the	values	300	and	400.	For	Angle,	again	click
the	 	button	next	to	High,	and	enter	the	values	70	and	110.	You	should	now	see	red
particles	spraying	upward	in	a	wobbly,	cone-shaped	pattern.

Now	change	the	Tint	parameter	graph	so	that	the	tint	color	changes	from	red	at	the
start,	to	orange	in	the	middle,	and	yellow	at	the	end.	After	completing	this	step,	the
particles	in	the	preview	panel	should	appear	red	at	the	base	of	the	emitter,	and	gradually
change	colors	until	they	become	yellow	at	the	top.

Finally,	you’d	like	particles	to	shrink	and	fade	out	of	existence	at	the	end	of	their
lifetime.	To	accomplish	this,	modify	the	parameter	change	graphs	for	both	Size	and
Transparency	so	that	they	both	resemble	the	Sudden	Decrease	graph	from	Figure	7-3.

When	this	step	is	finished,	click	the	Save	button	and	save	your	file	to	your	local
Starscape/assets	directory	using	the	file	name	thruster.pfx.	Although	the
particle	effect	data	is	stored	in	a	text	file,	you	will	use	the	extension	pfx	as	a	mnemonic	to
indicate	the	type	of	data	in	the	file.	In	addition,	you	will	need	to	copy	the	image	file
particle.png	from	the	Particle	Editor	directory	to	your	local	project’s	assets
directory	as	well.

Explosion	Effect

A	classic	effect	that	you	will	now	create	is	an	explosion	effect,	as	illustrated	in	Figure	7-6.
This	effect	is	composed	of	two	emitters,	one	controlling	the	fire	that	appears	initially,	and
the	other	controlling	the	smoke	that	appears	afterward.

Figure	7-6.	The	explosion	particle	effect

Restart	the	Particle	Editor.	As	before,	create	a	new	emitter.	Name	it	fire,	and	then
delete	the	default	emitter.	You’ll	keep	the	default	option	settings:	the	Additive	check	box
should	be	selected,	and	the	Continuous	check	box	should	not.

Adjust	the	Count	property	Max	value	to	100.	Change	the	Duration	value	to	250.	To
attain	the	maximum	number	of	particles,	change	the	Emission	property	High	value	to	400.
Set	the	Size	property	High	value	to	range	from	0	to	100,	and	modify	the	graph	so	that	it
resemble	the	Gradual	Decrease	graph.	Set	the	Velocity	property	to	Active,	set	its	High
value	to	range	from	0	to	160,	and	modify	its	graph	so	that	it	resembles	the	Sudden
Decrease	graph.	Set	the	Angle	property	to	Active,	and	set	its	High	value	to	range	from	0	to
360.	Finally,	set	the	Tint	property	so	that	the	color	changes	from	red	to	orange	over	the
course	of	the	particle	lifetime.

At	this	point,	the	preview	panel	should	be	displaying	the	following	effect	repeatedly:	a
globule	shape	appears,	red	at	the	borders	and	yellow	in	the	center,	which	then	expels
fragments	that	shrink	as	they	move	away	from	the	center.

Once	you	are	pleased	with	this	effect,	create	another	emitter	and	name	it	smoke.	(Do
not	delete	the	fire	emitter!)	Select	the	smoke	emitter	from	the	list,	and	click	the	Up	button;
this	moves	it	higher	up	in	the	rendering	order.	This	is	important,	because	you	want	the
smoke	particles	to	appear	behind	the	fire	particles,	and	so	the	smoke	particles	must	be
rendered	first.	Before	continuing,	make	sure	that	in	the	emitter	list,	the	smoke	emitter	is
both	selected	(so	it	is	visible)	and	highlighted	(so	that	the	parameters	that	will	be	changed
are	those	of	the	smoke	emitter).

Now	you’ll	change	the	smoke	emitter	properties.	Set	the	Count	Max	value	to	20,	the
Duration	value	to	200,	and	the	Emission	High	value	to	100.	Set	the	Delay	property	to
Active,	and	set	its	value	to	400;	this	will	cause	the	smoke	emitter	to	begin	400
milliseconds	after	the	fire	emitter	has	started.	Next,	change	the	Size	High	value	to	64.
Activate	the	Velocity	property,	set	the	High	value	to	100,	and	modify	the	graph	so	that	it	is
gradually	decreasing.	Also	activate	the	Angle	property,	and	set	the	High	value	to	range
from	0	to	360.	Change	the	Tint	color	to	a	medium	shade	of	gray,	by	dragging	the	knob	on
the	lower-left	color	slider	all	the	way	to	the	right,	and	then	dragging	the	knob	on	the
lower-right	color	slider	to	the	middle.	Modify	the	Transparency	graph	so	that	it	is	slowly
decreasing.	Last	of	all,	uncheck	the	Additive	option.

This	completes	the	explosion	effect!	Save	your	file	to	the	Starscape/assets
directory	with	the	file	name	explosion.pfx.

The	ParticleActor	Class
At	this	point,	you	are	ready	to	begin	writing	code	for	the	Starscape	project.	First,	from
your	most	recent	project,	copy	the	usual	classes:	BaseGame,	BaseScreen,
BaseActor,	AnimatedActor,	PhysicsActor,	and	GameUtils.	You	should
create	a	launcher-style	class	and	a	class	that	extends	BaseGame,	and	you	will	need	to
copy	the	images	from	this	chapter’s	source	directory	Starscape/assets	into	your
local	project’s	assets	folder.

To	integrate	particle	effects	into	your	projects,	you	will	once	again	create	an	extension
of	the	Actor	class,	called	ParticleActor.	This	class	stores	a	ParticleEffect
object,	which	is	used	to	update	and	draw	the	effect.	Most	of	the	methods	in	this	class
simply	activate	the	methods	of	the	corresponding	ParticleEffect	object,	with
somewhat	more	intuitive	names.	The	update	and	draw	methods	of	the
ParticleEffect	will	be	activated	by	the	standard	act	and	draw	methods	common
to	all	Actor	objects,	and	a	clone	method	will	be	included	for	convenience.	The	code
for	the	ParticleActor	class	is	as	follows:

import	com.badlogic.gdx.Gdx;
import	com.badlogic.gdx.scenes.scene2d.Actor;
import	com.badlogic.gdx.graphics.g2d.Batch;
import	com.badlogic.gdx.graphics.g2d.ParticleEffect;
import	com.badlogic.gdx.graphics.g2d.ParticleEmitter;

public	class	ParticleActor	extends	Actor
{
				private	ParticleEffect	pe;

				public	ParticleActor()
				{
								super();
								pe	=	new	ParticleEffect();
				}

				public	void	load(String	pfxFile,	String	imageDirectory)
				{		pe.load(Gdx.files.internal(pfxFile),	
Gdx.files.internal(imageDirectory));		}

				public	void	start()
				{		pe.start();		}

				//	pauses	continuous	emitters
				public	void	stop()
				{		pe.allowCompletion();		}

				public	boolean	isRunning()
				{		return	!pe.isComplete();		}
				public	void	setPosition(float	px,	float	py)
				{
								for	(ParticleEmitter	e	:	pe.getEmitters())
												e.setPosition(px,	py);
				}

				public	void	act(float	dt)
				{
								super.act(dt);
								pe.update(dt);
								if	(pe.isComplete()	&&	
!pe.getEmitters().first().isContinuous())
								{
												pe.dispose();
												this.remove();
								}
				}

				public	void	draw(Batch	batch,	float	parentAlpha)
				{			pe.draw(batch);		}

				public	ParticleActor	clone()
				{
								ParticleActor	newbie	=	new	ParticleActor();
								newbie.pe	=	new	ParticleEffect(this.pe);
								return	newbie;
				}
}

With	this	class	ready	for	action,	you	can	use	it,	together	with	the	particle	effects	you
recently	generated,	in	a	demo	program	called	Starscape.

Starscape:	An	Interactive	Visual	Demo
Starscape,	which	appears	visually	similar	to	the	game	Space	Rocks,	is	more	accurately
classified	as	a	demo	than	a	fully	functional	game.	In	this	demo,	the	player	controls	a
spaceship	as	in	the	Space	Rocks	game:	the	left	and	right	arrow	keys	rotate	the	spaceship,
and	the	up	arrow	key	accelerates	the	spaceship	forward.	While	the	up	arrow	key	is
pressed,	the	thruster	particle	effect	is	visible.	However,	pressing	the	space	key	in	this
demo	doesn’t	shoot	lasers	as	it	did	in	Space	Rocks;	instead,	it	generates	an	explosion
effect	at	a	random	location	on	the	screen.	Figure	7-7	contains	a	screenshot	of	this	demo.

Figure	7-7.	The	demo	Starscape

Next,	you	will	include	the	code	for	the	GameScreen	class,	which	carries	out	the
tasks	previously	described.	The	only	tricky	part	of	this	code	pertains	to	rotating	and
scaling	a	ParticleActor,	which	is	necessary	to	align	and	resize	the	thruster	effect
before	attaching	it	to	the	spaceship	object.	Unfortunately,	the	draw	method	of	a
ParticleEffect	does	not	have	this	functionality.	To	remedy	this	situation,	you’ll
create	an	auxiliary	BaseActor	object	named	thrusterAdjuster,	add	the	thruster
effect	to	it,	and	make	the	necessary	adjustments	to	thrusterAdjuster.	Since	the
auxiliary	object	should	not	be	visible,	its	texture	will	be	an	image	consisting	of	a	single
transparent	pixel,	from	the	image	file	blank.png.

import	com.badlogic.gdx.Gdx;
import	com.badlogic.gdx.Input.Keys;
import	com.badlogic.gdx.graphics.Texture;
import	com.badlogic.gdx.graphics.Texture.TextureFilter;
import	com.badlogic.gdx.math.MathUtils;
import	java.util.ArrayList;

public	class	GameScreen	extends	BaseScreen
{
				private	PhysicsActor	spaceship;
				private	ParticleActor	thruster;
				private	ParticleActor	baseExplosion;

				public	GameScreen(BaseGame	g)
				{		super(g);		}

				public	void	create()

				{
								BaseActor	background	=	new	BaseActor();
								background.setTexture(new	
Texture(Gdx.files.internal("assets/space.png")));
								background.setPosition(0,	0);
								mainStage.addActor(background);

								spaceship	=	new	PhysicsActor();
								Texture	shipTex	=	new	
Texture(Gdx.files.internal("assets/spaceship.png"));
								shipTex.setFilter(TextureFilter.Linear,	
TextureFilter.Linear);
								spaceship.storeAnimation("default",	shipTex);
								spaceship.setPosition(400,	300);
								spaceship.setOriginCenter();
								spaceship.setMaxSpeed(200);
								spaceship.setDeceleration(20);
								mainStage.addActor(spaceship);

								thruster	=	new	ParticleActor();
								thruster.load("assets/thruster.pfx",	"assets/");
								BaseActor	thrusterAdjuster	=	new	BaseActor();
								thrusterAdjuster.setTexture(new	
Texture(Gdx.files.internal("assets/blank.png")));
								thrusterAdjuster.addActor(thruster);
								thrusterAdjuster.setPosition(0,32);
								thrusterAdjuster.setRotation(90);
								thrusterAdjuster.setScale(0.25f);
								thruster.start();
								spaceship.addActor(thrusterAdjuster);
								baseExplosion	=	new	ParticleActor();
								baseExplosion.load("assets/explosion.pfx",	"assets/");
				}

				public	void	update(float	dt)
				{
								spaceship.setAccelerationXY(0,0);

								if	(Gdx.input.isKeyPressed(Keys.LEFT))
												spaceship.rotateBy(180	*	dt);
								if	(Gdx.input.isKeyPressed(Keys.RIGHT))
												spaceship.rotateBy(-180	*	dt);
								if	(Gdx.input.isKeyPressed(Keys.UP))
								{
												spaceship.addAccelerationAS(spaceship.getRotation(),
	100);
												thruster.start();

								}
								else
								{
												thruster.stop();
								}
				}

				public	boolean	keyDown(int	keycode)
				{
								if	(keycode	==	Keys.P)
												togglePaused();

								if	(keycode	==	Keys.R)
												game.setScreen(new	GameScreen(game));

								if	(keycode	==	Keys.SPACE)
								{
												ParticleActor	explosion	=	baseExplosion.clone();
												explosion.setPosition(MathUtils.random(800),	
MathUtils.random(600));
												explosion.start();
												mainStage.addActor(explosion);
								}

								return	false;
				}
}

This	completes	the	code	for	Starscape.	Try	out	the	project,	soar	across	space,	and
enjoy	the	sights	of	harmless	explosions	against	the	starry	background.

Using	Tiled	for	Level	Design
In	many	of	the	previous	games	developed	in	this	book,	one	challenging	aspect	has	been
the	placement	of	objects;	you	often	had	to	figure	out	or	calculate	the	positions	where
actors	will	appear	on	the	main	stage.	This	section	introduces	Tiled,	which	greatly
simplifies	and	accelerates	this	process.	At	this	point,	you	should	create	a	new	project	in
BlueJ	called	TreasureQuest,	and	in	the	project	directory,	create	a	folder	named
assets	to	store	the	file	you	will	produce	using	Tiled.

Tiled	is	a	general-purpose	map	editor	that	can	be	used	for	multiple	aspects	of	the	level
design	process.	Its	primary	feature	is	to	take	a	tileset	(a	sprite	sheet	consisting	of
rectangular	images,	or	tiles,	that	represent	possible	features	of	the	game-world	terrain)	and
enable	the	user	to	create	a	tilemap	(a	selection	and	arrangement	of	tiles	that	corresponds	to
an	image	of	the	game	world).	In	addition,	Tiled	can	also	be	used	to	store	geometric	data
(such	as	the	location,	size,	and	shape	of	game	entities).	Levels	can	be	designed	for	games
with	a	top-down	perspective	or	a	side-view	perspective,	depending	on	the	tileset	being

used.

The	Tiled	software	can	be	downloaded	from	http://mapeditor.org.	It	is	both
free	and	open	source,	and	is	available	for	Windows,	OS	X,	and	Linux	platforms.	The
sections	that	follow	demonstrate	how	to	create	a	tilemap	using	Tiled,	and	then	import	it
into	a	new	game	that	you	will	create	called	Treasure	Quest.	A	screenshot	of	this	game
appears	in	Figure	7-8.	The	images	used	are	in	the	TreasureQuest/assets	folder	in
the	source	code	directory	for	this	chapter,	which	you	will	need	for	this	process;	the	images
should	be	copied	into	your	local	project’s	assets	folder.	The	final	version	of	the	map
file	is	saved	as	game-map.tmx	in	the	aforementioned	directory.

Figure	7-8.	The	game	Treasure	Quest

Creating	Tilemaps
You’ll	be	using	a	tileset	created	by	Kenney	Veugels,	part	of	his	excellent	collection	of
freely	available	game	art	assets,	available	at	http://kenney.nl.	In	your	assets
directory,	the	tileset	image	you	will	be	using	is	called	rpg-tiles-64.png	(since	each
tile	is	64	pixels	by	64	pixels),	and	is	pictured	in	Figure	7-9.

http://mapeditor.org
http://kenney.nl

Figure	7-9.	The	tileset	used	for	the	Treasure	Quest	game

Start	the	Tiled	software,	and	from	the	menu	bar,	choose	File	 	New.	For	the	Map	Size,
set	the	Width	and	Height	both	to	20	tiles.	For	the	Tile	Size,	set	the	Width	and	Height	both
to	64	pixels.	These	settings	are	illustrated	in	Figure	7-10.

Figure	7-10.	Configuring	settings	for	a	new	map	in	Tiled

Next,	from	the	menu	bar,	choose	Map	 	New	Tileset.	In	the	pop-up	window	that
appears,	click	the	Browse	button,	locate	and	select	the	image	file	rpg-tiles-64.png
from	your	assets	directory,	and	click	the	Open	button.	After	returning	to	the	New
Tileset	window,	make	sure	that	the	tile	width	and	tile	height	are	both	set	to	64	px,	and	then
click	the	OK	button.	The	tileset	should	be	visible	in	the	lower-right	panel	of	the	Tiled
window,	similar	to	Figure	7-11.

Figure	7-11.	The	Tiled	window	after	loading	a	tileset

Next,	you’ll	add	a	few	layers	to	help	keep	your	project	organized,	before	you	begin
drawing.	In	the	Layers	panel	in	the	upper-right	area	of	the	Tiled	window,	double-click	Tile
Layer	1	and	change	the	name	to	Background.	Then,	in	the	menu	bar,	choose	Layer	
Add	Tile	Layer,	and	after	it	appears	in	the	Layers	panel,	change	its	name	to	Scenery.
Repeat	this	process	one	more	time,	adding	a	tile	layer	named	Overlay.

Next,	you’ll	begin	drawing	the	tilemap.	You’ll	start	with	the	Background	layer;	this
will	be	used	for	the	tiles	that	depict	ground-level	elements:	grass,	dirt,	water,	and	so	forth.

If	the	Background	layer	is	not	highlighted	in	the	Layers	panel,	click	it	so	that	it
becomes	the	active	layer.	Next,	click	the	icon	containing	an	image	of	a	stamp;	this	selects
the	Stamp	Brush	tool,	which	is	the	tool	you	will	use	most	frequently.	In	the	Tilesets	panel
in	the	lower-right	area	of	the	Tiled	window,	click	one	of	the	rectangles	containing	a	grass-
like	pattern.	The	tile	becomes	tinted	blue	to	show	that	it	has	been	selected.	Click	anywhere
in	the	currently	empty	grid	that	represents	your	tilemap,	and	the	tile	image	you	previously
selected	appears	in	that	square.	(The	Fill	tool,	represented	by	the	icon	containing	an	image
of	a	bucket,	can	be	used	to	fill	large	areas	faster	with	the	currently	selected	tile.)	Continue
this	process,	adding	a	variety	of	tiles,	until	all	tiles	are	filled	and	you	are	satisfied	with	the
layout.

Figure	7-12	shows	one	such	possible	design,	but	feel	free	to	create	your	own;
experiment	with	the	different	ways	the	tiles	can	be	arranged	to	create	continuous	borders
and	visually	interesting	arrangements.	(The	grid	lines	that	appear	in	the	image	are	there	as
guides	and	will	not	appear	later	when	the	tilemap	is	rendered.)	If	you	want	to	change	the
tile	that	has	been	placed	in	a	given	location,	you	can	select	the	Eraser	tool	icon	at	the	top
of	the	window,	or	you	can	select	a	different	tile	and	use	the	Stamp	Brush	tool	to	replace
the	tile	at	a	given	location.	The	only	restriction	you	should	consider	at	this	stage	is	to	limit
yourself	to	the	tiles	whose	image	fills	the	entire	square.	In	other	words,	while	working	on
this	layer,	avoid	using	tiles	with	transparent	areas	(such	as	bushes,	trees,	or	fences).

Otherwise,	the	color	used	for	clearing	the	screen	(defined	in	the	render	method	of	the
BaseScreen	class)	will	appear	at	the	transparent	locations.

Figure	7-12.	One	possible	layout	for	the	Background	layer	of	the	tilemap

Next,	you’ll	add	visually	interesting	elements	that	render	on	top	of	the	background,
like	the	bushes,	trees,	and	fences	that	you	avoided	in	the	Background	layer.	Click	the
Scenery	layer	in	the	Layers	panel,	and	then	click	grid	squares	in	the	tilemap	to	add	these
images.	Notice	that	they	don’t	replace	the	tiles	previously	added	to	the	Background	layer;
instead,	they	appear	on	top.	This	is	particularly	useful	in	keeping	the	size	of	tilesets	small
while	allowing	for	a	great	variety	of	combinations.	For	example,	you	could	create	an
image	of	a	bush	on	grass	or	an	image	of	a	bush	on	dirt,	without	requiring	these	specific
combinations	to	be	available	in	the	tileset;	only	the	individual	components	need	to	be
available.

Once	again,	I	recommend	a	restriction	when	selecting	objects	to	add	to	this	layer:	there
may	be	some	tiles	that	should	be	rendered	above	the	game	characters,	such	as	roofs	of
buildings	or	the	tops	of	trees.	This	creates	an	illusion	of	depth:	the	characters	will	appear
to	underneath	the	roofs,	or	behind	the	trees.	Thus,	after	adding	elements	to	the	Scenery
layer,	select	the	layer	named	Overlay,	and	add	any	tiles	that	should	be	rendered	above	the
player.

Figure	7-13	shows	the	result	of	adding	various	bushes,	tree	trunks,	and	building	walls
to	the	Scenery	layer,	followed	by	the	result	of	adding	treetops	to	the	Overlay	layer.

Figure	7-13.	Results	of	adding	detail	to	the	Scenery	and	Overlay	layers	of	the	tilemap

Finally,	you’ll	add	some	nonvisual	data	to	this	map:	the	positions	and	sizes	of	various
in-game	objects,	such	as	the	starting	position	of	the	player	and	various	items	the	player
can	interact	with.	These	objects	aren’t	represented	by	tiles,	but	rather	by	images	that	will
be	loaded	by	the	accompanying	program	you	will	write	later.	This	data	can	be	added	by
creating	object	layers;	you’ll	create	two	of	these,	to	keep	the	data	organized.

To	begin,	choose	Layer	 	Add	Object	Layer	from	the	menu	bar,	and	name	the	newly
added	layer	ObjectData.	Repeat	this	process	to	add	another	object	layer	named
PhysicsData.

Select	the	layer	named	ObjectData,	and	you’ll	notice	that	some	of	the	tool	icons	in
the	menu	bar	(those	involving	image	manipulation,	such	as	the	Stamp	Brush	and	Eraser)
are	dimmed	and	are	no	longer	accessible.	Meanwhile,	some	of	the	previously	unavailable
tools	(those	involving	creating	geometric	shapes)	can	now	be	selected,	since	you’re
working	on	an	object	layer.

Select	the	icon	for	the	Insert	Rectangle	tool,	and	you’ll	be	able	to	click	and	drag	on	the
tilemap	to	add	rectangles	of	any	size	at	any	position.	The	first	click	sets	the	upper-left
corner	of	the	rectangle;	drag	the	mouse	downward	and	to	the	right	to	set	the	rectangle’s
size.	In	the	Treasure	Quest	game,	the	in-game	entities	the	player	can	interact	with	include
the	player,	a	key,	a	door,	and	three	coins.	You	should	add	rectangles	(using	the	Insert
Rectangle	tool)	to	store	the	position	of	each	item;	one	possible	arrangement	is	illustrated
in	Figure	7-14.

Figure	7-14.	Tilemap	with	rectangle	object	data	added	and	highlighted

To	tell	these	types	of	objects	apart,	properties	need	to	be	set	for	each	rectangle.	To	do
so,	click	a	rectangle	to	select	it,	and	in	the	Properties	panel	on	the	left	side	of	the	Tiled
window,	enter	a	name	in	the	Name	field..	Names	entered	then	appear	above	the
corresponding	rectangles	on	the	tilemap.	I	recommend	the	obvious	names	(player,	key,
door,	and	coin).	The	names	will	be	important	later,	because	they	will	be	used	when
importing	the	corresponding	data	into	the	program.	If	desired,	you	can	also	adjust	the
position	and	size	of	each	rectangle	numerically	by	using	the	Properties	panel,	or	by	using
the	Select	Objects	tool	from	the	toolbar	and	clicking	the	rectangle	that	you	want	to
reposition	or	resize.

Now	select	the	layer	named	PhysicsData,	and	you’ll	add	a	series	of	rectangles	to
represent	solid	or	impassible	objects.	For	this	example,	you	should	place	the	rectangles
over	the	water	tiles,	tree	trunks,	and	building	walls.	In	this	case,	you	won’t	add	names	to
these	objects,	as	they	all	are	used	for	the	same	purpose	and	it	is	not	necessary	to
distinguish	between	them.

Figure	7-14	shows	the	placement	of	the	rectangles	on	the	object	layers	as	discussed
previously.	Since	rectangles	in	Tiled	are	displayed	with	light	gray	borders,	for	clarity,	I
have	highlighted	the	rectangles	in	the	screenshot	using	diagonal	lines.	(Rectangles	do	not
appear	this	way	when	using	the	Tiled	software.)

Once	your	map	is	complete,	save	it	with	the	file	name	game-map.tmx	in	the
assets	folder	of	your	BlueJ	project.	In	the	next	section,	you’ll	see	how	the	built-in
LibGDX	classes	can	use	this	file	format	to	render	images	and	retrieve	geometric	data.

Treasure	Quest:	An	Adventure-Style	Exploration
Game
This	section	demonstrates	how	to	process	the	information	store	in	Tiled	map	files	in	the
context	of	making	a	new	game	called	Treasure	Quest.	Inspired	by	classic	top-down
adventure	games	such	as	The	Legend	of	Zelda,	in	this	game	the	player	controls	a	character
who	is	searching	the	countryside	for	a	key	that	will	unlock	the	door	to	a	building	filled
with	gold	coins.

Return	to	the	TreasureQuest	project	in	BlueJ,	and	as	usual,	copy	the	classes
BaseGame,	BaseScreen,	BaseActor,	AnimatedActor,	PhysicsActor,	and
GameUtils.	You	can	also	copy	a	launcher-style	class	and	a	BaseGame-extending	class
from	a	previous	project,	and	modify	their	code	as	needed.	The	only	new	class	you	need	to
code	from	scratch	is	the	GameScreen	class	(which	extends	the	BaseScreen	class),
discussed	next.

You’ll	start	with	the	core	code	for	the	GameScreen	class,	including	the	import
statements	you	will	eventually	need	(of	which	there	are	many!),	variable	declarations,	and
method	declarations	(which	will	be	filled	in	later).	You	need	various	types	of	actor
variables	for	the	player,	key,	door,	and	a	base	coin	instance	from	which	additional	coins
will	be	cloned	later.	Lists	are	needed	to	keep	track	of	the	coins	and	walls	for	collision
checking	later	in	the	update	method.	The	variables	tileSize,	tileCountWidth,
and	tileCountHeight	are	used	to	calculate	the	values	of	mapWidth	and
mapHeight.	The	integer	arrays	backgroundLayers	and	foregroundLayers
store	the	indices	of	the	tilemap	layers	to	be	rendered	before	and	after	the	main	stage,
respectively.	Most	interesting	are	the	instances	of	the	newly	imported	classes,	which
accomplish	the	following	tasks:

The	TiledMap	object	is	used	to	store	the	data	from	the	tilemap	file,
which	is	loaded	using	a	static	method	from	the	TmxMapLoader
class.

The	OrthogonalTileMapRenderer	object	is	used	to	draw	the
contents	of	the	various	layers	of	the	tilemap;	the	layers	to	be	rendered
are	specified	by	an	array	of	integers.

The	OrthographicCamera	is	used	to	determine	which	region	of	a
tilemap	layer	should	be	rendered,	analogous	to	the	role	of	the

Camera	object	that	belongs	to	each	Stage.

Without	further	ado,	here	is	the	core	code	for	the	BaseScreen	class:

import	com.badlogic.gdx.Gdx;
import	com.badlogic.gdx.Input.Keys;
import	com.badlogic.gdx.graphics.Texture;
import	com.badlogic.gdx.graphics.Texture.TextureFilter;
import	com.badlogic.gdx.graphics.g2d.Animation;
import	com.badlogic.gdx.graphics.g2d.Animation.PlayMode;
import	com.badlogic.gdx.graphics.Camera;
import	com.badlogic.gdx.math.MathUtils;
import	com.badlogic.gdx.math.Rectangle;
import	com.badlogic.gdx.graphics.GL20;

import	com.badlogic.gdx.maps.MapObject;
import	com.badlogic.gdx.maps.MapObjects;
import	com.badlogic.gdx.maps.objects.RectangleMapObject;
import	com.badlogic.gdx.maps.tiled.TiledMap;
import	com.badlogic.gdx.maps.tiled.TmxMapLoader;
import	
com.badlogic.gdx.maps.tiled.renderers.OrthogonalTiledMapRenderer;
import	com.badlogic.gdx.graphics.OrthographicCamera;

import	java.util.ArrayList;

public	class	GameScreen	extends	BaseScreen
{
				private	PhysicsActor	player;
				private	BaseActor	door;
				private	BaseActor	key;
				private	boolean	hasKey;

				private	BaseActor	baseCoin;
				private	ArrayList<BaseActor>	coinList;

				private	ArrayList<BaseActor>	wallList;
				private	ArrayList<BaseActor>	removeList;

				private	int	tileSize	=	64;
				private	int	tileCountWidth	=	20;
				private	int	tileCountHeight	=	20;

				//	calculate	game	world	dimensions
				final	int	mapWidth		=	tileSize	*	tileCountWidth;
				final	int	mapHeight	=	tileSize	*	tileCountHeight;

				private	TiledMap	tiledMap;

				private	OrthographicCamera	tiledCamera;
				private	OrthogonalTiledMapRenderer	tiledMapRenderer;
				private	int[]	backgroundLayers	=	{0,1};
				private	int[]	foregroundLayers	=	{2};

				public	GameScreen(BaseGame	g)
				{		super(g);			}

				public	void	create()
				{				}

				public	void	update(float	dt)
				{				}

				public	void	render(float	dt)
				{				}

}

Now	let’s	turn	our	attention	to	the	create	method.	The	following	code	initializes	the
player,	key,	door,	and	a	base	coin	instance.	Note,	however,	that	the	positions	of	these
objects	are	not	set	at	this	time;	this	data	will	be	set	later	after	retrieving	it	from	the	tilemap.
In	addition,	the	code	initializes	all	the	needed	lists.

player	=	new	PhysicsActor();
Texture	playerTex	=	new	Texture(
Gdx.files.internal("assets/general-single.png"));
player.storeAnimation("default",	playerTex);
player.setEllipseBoundary();
mainStage.addActor(player);

key	=	new	BaseActor();
key.setTexture(new	
Texture(Gdx.files.internal("assets/key.png")));
key.setSize(36,24);
key.setEllipseBoundary();
mainStage.addActor(key);

door	=	new	BaseActor();
door.setTexture(new	
Texture(Gdx.files.internal("assets/door.png")));
door.setRectangleBoundary();
mainStage.addActor(door);

baseCoin	=	new	BaseActor();
baseCoin.setTexture(new	
Texture(Gdx.files.internal("assets/coin.png")));
baseCoin.setEllipseBoundary();

coinList	=	new	ArrayList<BaseActor>();
wallList	=	new	ArrayList<BaseActor>();
removeList	=	new	ArrayList<BaseActor>();

Next,	you	initialize	the	objects	from	the	new	classes:

//	set	up	tile	map,	renderer,	and	camera
tiledMap	=	new	TmxMapLoader().load("assets/game-map.tmx");
tiledMapRenderer	=	new	OrthogonalTiledMapRenderer(tiledMap);
tiledCamera	=	new	OrthographicCamera();
tiledCamera.setToOrtho(false,	viewWidth,	viewHeight);
tiledCamera.update();

Now	you	will	write	the	code	that	retrieves	geometric	data	from	the	tilemap.	From	the
tilemap	object,	you	can	retrieve	the	list	of	layers,	followed	by	a	specific	layer	(by	name),
followed	by	a	list	of	MapObjects	contained	in	that	layer.	While	iterating	over	this	list,
you	can	retrieve	the	name	of	each	object	(which	you	entered	when	using	the	Tiled
program).	Since	only	rectangles	were	used	in	the	object	data	layers,	each	MapObject
can	be	safely	cast	into	a	RectangleMapObject	in	order	to	retrieve	its	position.	Then,
with	a	sequence	of	conditional	statements	that	check	the	name	of	the	object,	the	position
of	the	corresponding	game	entity	can	be	set.	If	the	MapObject	represents	a	coin,	the
base	coin	instance	must	be	cloned	and	this	new	actor	added	to	the	main	stage.

MapObjects	objects	
=	tiledMap.getLayers().get("ObjectData").getObjects();
for	(MapObject	object	:	objects)
{
				String	name	=	object.getName();

				RectangleMapObject	rectangleObject	
=	(RectangleMapObject)object;
				Rectangle	r	=	rectangleObject.getRectangle();

				switch	(name)
				{
								case	"player":
												player.setPosition(r.x,	r.y);
												break;
							case	"coin":
												BaseActor	coin	=	baseCoin.clone();
												coin.setPosition(r.x,	r.y);
												mainStage.addActor(coin);
												coinList.add(coin);
												break;
								case	"door":
												door.setPosition(r.x,	r.y);

												break;
								case	"key":
												key.setPosition(r.x,	r.y);
												break;
								default:
												System.err.println("Unknown	tilemap	object:	"	+	
name);
				}
}

You	repeat	this	process	to	gather	the	geometric	data	that	represents	solid	walls.	First,
retrieve	the	list	of	map	objects	from	the	layer	named	PhysicsData.	The	names	of	these
objects	don’t	need	to	be	retrieved;	you	didn’t	set	their	names	when	using	Tiled,	because	all
objects	in	this	layer	serve	the	same	purpose	and	it	is	not	necessary	to	distinguish	between
them.	Note	in	particular	that	no	texture	is	set	for	these	objects,	nor	are	they	added	to	any
stage.	This	is	because	the	graphics	are	already	represented	by	the	tilemap;	the	only
purposes	these	actors	serve	is	for	collision	detection,	and	so	they	only	need	to	be	added	to
the	appropriate	ArrayList	for	later	checking	in	the	update	method.

objects	
=	tiledMap.getLayers().get("PhysicsData").getObjects();
for	(MapObject	object	:	objects)
{
				RectangleMapObject	rectangleObject	
=	(RectangleMapObject)object;
				Rectangle	r	=	rectangleObject.getRectangle();

				BaseActor	solid	=	new	BaseActor();
				solid.setPosition(r.x,	r.y);
				solid.setSize(r.width,	r.height);
				solid.setRectangleBoundary();
				wallList.add(solid);
}

This	completes	the	code	for	the	create	method;	the	next	area	of	focus	is	the	contents
of	the	update	method.

The	first	part	of	the	update	method	contains	standard	game	logic	code	that	you	have
seen	in	previous	games,	such	as	player	movement	when	the	arrow	keys	are	pressed,	and
collision	detection	with	walls	and	other	objects.	The	main	difference	in	the	code	for	this
game	is	that	the	key	and	door	objects	should	be	removed	from	the	game	at	various	points
during	game	play,	but	it	is	needlessly	complex	to	create	an	ArrayList	to	hold	a	single
instance	of	each	object.	Instead,	you	can	check	whether	each	object	still	“exists”	in	the
game	by	checking	whether	it	is	still	part	of	any	stage	with	its	getStage	method.	If	this
method	returns	null,	the	object	is	not	part	of	any	stage;	this	indicates	that	the	object	has
been	removed	from	the	game,	and	thus	the	corresponding	code	does	not	need	to	be
processed.

float	playerSpeed	=	100;
player.setVelocityXY(0,0);

if	(Gdx.input.isKeyPressed(Keys.LEFT))
				player.setVelocityXY(-playerSpeed,0);
if	(Gdx.input.isKeyPressed(Keys.RIGHT))
				player.setVelocityXY(playerSpeed,0);
if	(Gdx.input.isKeyPressed(Keys.UP))
				player.setVelocityXY(0,playerSpeed);
if	(Gdx.input.isKeyPressed(Keys.DOWN))
				player.setVelocityXY(0,-playerSpeed);

for	(BaseActor	wall	:	wallList)
{
				player.overlaps(wall,	true);
}

if	(key.getStage()	!=	null	&&	player.overlaps(key,	false))
{
				hasKey	=	true;
				removeList.add(key);
}

if	(door.getStage()	!=	null	&&	player.overlaps(door,	true)	
)
{
				if	(hasKey)
								removeList.add(door);
}

for	(BaseActor	coin	:	coinList)
{
				if	(player.overlaps(coin,	false))
								removeList.add(coin);
}

for	(BaseActor	ba	:	removeList)
{
				ba.destroy();
}

In	the	update	method,	you	need	to	adjust	the	Camera	objects	used	to	render	the
graphics.	This	situation	has	arisen	before:	in	the	Cheese,	Please!	game,	since	the	game
world	was	larger	than	the	window	size,	you	had	to	adjust	the	position	of	the	camera	so	that
it	stayed	centered	on	the	player	(and	then	also	make	sure	that	the	camera’s	field	of	view
stayed	bounded	within	the	game	world).	The	main	difference	here	is	that	there	are	two
cameras	to	adjust:	one	corresponding	to	the	main	stage	and	the	other	corresponding	to	the

tilemap.	(The	positions	of	both	cameras	will	stay	in	sync.)

//	camera	adjustment
Camera	mainCamera	=	mainStage.getCamera();

//	center	camera	on	player
mainCamera.position.x	=	player.getX()	+	player.getOriginX();
mainCamera.position.y	=	player.getY()	+	player.getOriginY();

//	bound	camera	to	layout
mainCamera.position.x	=	MathUtils.clamp(
				mainCamera.position.x,	viewWidth/2,		mapWidth	
-	viewWidth/2);
mainCamera.position.y	=	MathUtils.clamp(
				mainCamera.position.y,	viewHeight/2,	mapHeight	
-	viewHeight/2);
mainCamera.update();
//	adjust	tilemap	camera	to	stay	in	sync	with	main	camera
tiledCamera.position.x	=	mainCamera.position.x;
tiledCamera.position.y	=	mainCamera.position.y;
tiledCamera.update();
tiledMapRenderer.setView(tiledCamera);

This	completes	the	contents	of	the	update	method!

In	past	projects,	after	finishing	the	create	and	update	methods	(and	occasionally
some	InputProcessor	methods	such	as	keyDown	for	processing	discrete	input),	the
project	has	been	considered	complete.	However,	there	is	one	final	step	in	this	class:	you
must	override	the	render	method	from	the	BaseScreen	class.	The	render	method
draws	the	contents	of	the	main	stage	and	user-interface	stage,	but	in	this	program	the
contents	of	the	tilemap	must	also	be	rendered,	using	the	TiledMapRenderer	object.
Furthermore,	different	layers	need	to	be	rendered	at	different	times:	the	Background	and
Scenery	layers	(indexed	by	0	and	1)	must	be	rendered	first,	followed	by	the	main	stage
(which	contains	the	player),	followed	by	the	Overlay	layer	of	the	tilemap	(since	these
objects	should	appear	above	the	player),	and	finally,	the	user-interface	stage.	This	is
accomplished	with	the	following	code,	to	be	inserted	into	the	render	method	of	the
GameScreen	class:

//	override	the	render	method	to	interleave	tilemap	
rendering
public	void	render(float	dt)
{
				uiStage.act(dt);

				//	pause	only	gameplay	events,	not	UI	events
				if	(!isPaused())
				{

								mainStage.act(dt);
								update(dt);
				}

				//	render
				Gdx.gl.glClearColor(0,0,0,1);
				Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);
				tiledMapRenderer.render(backgroundLayers);
				mainStage.draw();
				tiledMapRenderer.render(foregroundLayers);
				uiStage.draw();
}

Finally,	if	desired,	you	could	also	add	a	keyDown	method	to	the	GameScreen	class
that	enables	the	player	to	pause	or	restart	the	game	with	the	following	code:

public	boolean	keyDown(int	keycode)
{
				if	(keycode	==	Keys.P)
								togglePaused();

				if	(keycode	==	Keys.R)
								game.setScreen(new	GameScreen(game));
				return	false;
}

This	completes	the	GameScreen	class.	Now	is	a	good	time	to	test	the	game:	find	the
key	and	collect	the	treasure!

Creating	Four-Directional	Character	Animations
Although	the	finished	GameScreen	class	from	the	previous	section	results	in	a	playable
game,	one	feature	is	virtually	begging	to	be	added:	four-directional	movement	animation
for	the	player	character.	(At	present,	the	player	graphics	consists	of	only	a	single	image.)
Many	top-down	perspective	games	give	their	characters	four	animations,	representing
walking	in	the	directions	north,	south,	east,	and	west	on	the	tilemap.	You	will	implement
this	feature	in	this	section,	but	this	process	requires	a	few	steps	to	do	well.

First,	observe	that	many	sprite	sheets	containing	top-down	character	walking
animations	typically	contain	the	animation	frames	for	all	four	directions	in	a	single	sprite
sheet,	one	direction	per	row,	as	illustrated	in	Figure	7-15.2	This	layout	standard	has	been
popularized	in	particular	by	the	game	engine	software	RPG	Maker.

Figure	7-15.	A	sprite	sheet	containing	walking	animations	in	four	directions

In	order	to	process	this	kind	of	sprite	sheet	more	efficiently,	extracting	a	subset	of	the
images	to	create	an	animation,	you’ll	write	a	new	method	for	the	GameUtils	class.	In
particular,	you	will	overload	the	parseSpriteSheet	method;	this	version	will	enable
the	user	to	also	provide	an	array	of	integers	containing	the	indices	of	the	images	to	be	used
in	the	resulting	Animation.	It	will	be	assumed	that	the	images	are	numbered	starting
with	0	in	the	upper-left	corner,	increasing	first	from	left	to	right,	and	then	from	top	to
bottom.	The	code	for	this	method	is	presented	here,	and	should	be	added	to	the
GameUtils	class:

//	creates	an	Animation	from	a	single	sprite	sheet
//		with	a	subset	of	the	frames,	specified	by	an	array
public	static	Animation	parseSpriteSheet(String	fileName,	
int	frameCols,	int	frameRows,
				int[]	frameIndices,	float	frameDuration,	PlayMode	mode)
{
				Texture	t	=	new	Texture(Gdx.files.internal(fileName),	
true);
				t.setFilter(TextureFilter.Linear,	TextureFilter.Linear);

				int	frameWidth	=	t.getWidth()	/	frameCols;
				int	frameHeight	=	t.getHeight()	/	frameRows;

				TextureRegion[][]	temp	=	TextureRegion.split(t,	
frameWidth,	frameHeight);
				TextureRegion[]	frames	=	new	TextureRegion[frameCols	
*	frameRows];

				int	index	=	0;
				for	(int	i	=	0;	i	<	frameRows;	i++)
				{
								for	(int	j	=	0;	j	<	frameCols;	j++)
								{
												frames[index]	=	temp[i][j];
												index++;
								}
				}

				Array<TextureRegion>	framesArray	=	new	
Array<TextureRegion>();
				for	(int	n	=	0;	n	<	frameIndices.length;	n++)
				{
								int	i	=	frameIndices[n];
								framesArray.add(frames[i]);
				}

				return	new	Animation(frameDuration,	framesArray,	mode);
}

The	next	bit	of	functionality	will	need	to	be	added	to	the	AnimatedActor	class.	It	is
helpful	to	be	able	to	stop	an	animation	from	playing,	and	also	to	be	able	set	a	particular
frame	to	display	(which	will	be	useful	only	when	the	animation	is	paused).	In	Treasure
Quest,	the	walking	animation	should	stop	whenever	your	character	stops	moving,	and
animation	frame	1	should	be	displayed,	which	shows	the	character	standing	rather	than
striding.	(These	frames	appear	in	the	center	column	of	Figure	7-15.)	The	changes
indicated	next	should	all	be	applied	to	the	AnimatedActor	class.

First,	add	a	variable	that	keeps	track	of	whether	the	animation	is	currently	paused:

private	boolean	pauseAnim;

Then,	initialize	it	in	the	constructor	method:

pauseAnim	=	false;

Add	a	pair	of	methods	that	toggle	the	pause	state	of	the	animation:

public	void	pauseAnimation()
{		pauseAnim	=	true;		}
public	void	startAnimation()
{		pauseAnim	=	false;		}

In	the	act	method,	the	pause	state	is	used	to	determine	whether	the	elapsed	time
should	be	increased	(which	results	in	subsequent	frames	being	displayed	by	the	draw
method):

public	void	act(float	dt)
{
				super.act(dt);
				if	(!pauseAnim)
								elapsedTime	+=	dt;
}

Code	also	needs	to	be	added	to	the	already	existing	setActiveAnimation	method
in	the	AnimatedActor	class.	First,	if	an	animation	is	already	playing,	the
elapsedTime	variable	should	not	be	reset,	and	so	it	is	necessary	to	return	from	the
method	immediately	in	this	case.	Second,	the	width	and	the	height	of	the	actor	should	only
be	updated	if	these	values	have	not	been	set	(which	is	indicated	when	either	value	is
currently	zero).	The	complete	method	is	given	here,	with	the	additions	to	be	made
appearing	in	bold	font:

public	void	setActiveAnimation(String	name)
{
				if	(!animationStorage.containsKey(name))
				{
								System.out.println("No	animation:	"	+	name);
								return;
				}

				if	(name.equals(activeName))

								return;

				activeName	=	name;
				activeAnim	=	animationStorage.get(name);
				elapsedTime	=	0;

				if	(getWidth()	==	0	||	getHeight()	==	0)

				{

								Texture	tex	=	activeAnim.getKeyFrame(0).getTexture();

								setWidth(tex.getWidth());

								setHeight(tex.getHeight());

				}

}

Finally,	to	set	a	particular	frame	of	the	animation	to	display,	a	method	is	needed	that
adjusts	the	elapsed	time	of	the	animation	to	the	value	corresponding	to	when	that
particular	frame	is	displayed:

public	void	setAnimationFrame(int	n)
{		elapsedTime	=	n	*	activeAnim.getFrameDuration();		}

Now,	taking	advantage	of	this	new	functionality,	add	the	following	code	to	the
GameScreen	class.	In	the	create	method,	remove	the	line	of	code	that	sets	the	player
animation	(named	default	and	consisting	of	a	single	texture)	and	replace	it	with	the
following	code:

float	t	=	0.15f;
player.storeAnimation("down",
				GameUtils.parseSpriteSheet("assets/general-48.png",	3,	4,
								new	int[]	{0,	1,	2},	t,	PlayMode.LOOP_PINGPONG));

player.storeAnimation("left",
				GameUtils.parseSpriteSheet("assets/general-48.png",	3,	4,
								new	int[]	{3,	4,	5},	t,	PlayMode.LOOP_PINGPONG));

player.storeAnimation("right",
				GameUtils.parseSpriteSheet("assets/general-48.png",	3,	4,
								new	int[]	{6,	7,	8},	t,	PlayMode.LOOP_PINGPONG));

player.storeAnimation("up",
				GameUtils.parseSpriteSheet("assets/general-48.png",	3,	4,
								new	int[]	{9,	10,	11},	t,	PlayMode.LOOP_PINGPONG));
player.setSize(48,48);

Next,	in	the	section	of	the	update	method	that	processes	user	input,	add	the
following	code	that	sets	the	corresponding	animation	whenever	an	arrow	key	is	pressed.
Also,	the	animation	is	either	paused	or	started,	depending	on	the	speed	of	the	player
(which	determines	whether	the	player	should	appear	to	be	walking).	Here	is	the	code	that
accomplishes	these	tasks:

if	(Gdx.input.isKeyPressed(Keys.LEFT))
{
				player.setVelocityXY(-playerSpeed,0);
				player.setActiveAnimation("left");
}
if	(Gdx.input.isKeyPressed(Keys.RIGHT))
{
				player.setVelocityXY(playerSpeed,0);
				player.setActiveAnimation("right");
}
if	(Gdx.input.isKeyPressed(Keys.UP))
{
				player.setVelocityXY(0,playerSpeed);
				player.setActiveAnimation("up");
}
if	(Gdx.input.isKeyPressed(Keys.DOWN))
{
				player.setVelocityXY(0,-playerSpeed);
				player.setActiveAnimation("down");
}
if	(player.getSpeed()	<	1)
{
				player.pauseAnimation();

				player.setAnimationFrame(1);
}
else
				player.startAnimation();

With	these	changes,	try	out	the	Treasure	Quest	game	once	more,	and	enjoy	the
improved	animation	as	you	guide	your	character	around	the	map.

Simulating	Advanced	Physics	with	Box2D
Another	challenging	aspect	you’ve	encountered	in	previous	projects	is	implementing
realistic	physics,	and	in	particular,	collision	detection	and	response.	LibGDX	provides
classes	for	circle,	rectangle,	and	polygon	shapes,	and	via	methods	provided	by	the
Intersector	class,	you	can	check	for	two	rectangles	overlapping,	a	rectangle	and	a
circle	overlapping,	two	circles	overlapping,	or	two	polygons	overlapping	(but	no	other
combinations	can	be	checked	with	this	class).	Responding	to	collisions	is	even	more
difficult.	Again,	the	Intersector	class	provides	limited	functionality:	in	the	case	of
overlapping	polygons,	LibGDX	can	calculate	the	minimum	translation	vector,	which
represents	the	smallest	distance	one	of	the	polygons	must	move	so	that	the	two	shapes	are
no	longer	overlapping.	This	functionality	was	used	in	the	BaseActor	class,	which
allowed	you	to	simulate	collisions	with	solid	objects	(stopping	one	such	BaseActor
from	passing	through	another).

In	the	game	Rectangle	Destroyer	from	the	previous	chapter,	the	topic	of	collision
response	was	explored	even	further,	and	some	code	was	presented	to	simulate	a	ball
bouncing	off	a	flat	surface	(such	as	a	wall	or	a	brick).	In	the	game	Plane	Dodger,	gravity
was	simulated	by	setting	a	constant	negative	acceleration	in	the	y	direction,	and	there	were
explanations	about	how	to	simulate	upward	momentum	for	the	plane	object,	either
continuously	or	discretely.

This	section	covers	how	to	use	a	third-party	software	library	called	Box2D:	a	“physics
engine”	that	is	capable	of	handling	all	of	the	simulations	described	previously,	and	much,
much	more.	Box2D	is	freely	available	and	open	source,	originally	written	by	Erin	Catto	in
the	C++	programming	language	and	released	in	2007.	Since	then,	it	has	been	ported	to
multiple	programming	languages	(including	Java),	and	has	been	incorporated	into	many
game	development	frameworks	(such	as	LibGDX).

In	this	section,	you	will	learn	how	to	use	the	basic	features	of	Box2D	in	LibGDX
while	creating	a	new	project	called	Jumping	Jack.	This	project	falls	into	the	category	of
sandbox	games,	in	which	the	user	controls	a	character	that	can	interact	with	the
environment	in	a	variety	of	ways,	but	there	is	neither	a	well-defined	end	goal	nor	a	series
of	challenges	to	overcome	(as	is	the	case	when	playing	in	a	real-life	sandbox).	Jumping
Jack	features	platformer-style	game	play,	in	which	the	player	controls	Jack	the	Koala.	Jack
can	jump	around	the	screen	and	interact	with	a	soccer	ball	and	a	crate,	both	of	which	have
realistic	physics	behaviors.	A	screenshot	of	this	game	appears	in	Figure	7-16.

Figure	7-16.	The	sandbox	game	Jumping	Jack

Physics	Primer
Before	you	create	your	new	project,	it	is	important	to	understand	some	terms	from	physics
and	the	corresponding	objects	from	the	Box2D	library.

The	first	object	you	need	to	create	when	simulating	physics	is	an	instance	of	the
World	class;	it	manages	all	the	physics	entities,	performs	the	calculations	for	the
simulation,	and	reports	all	the	collision	events.	The	world	constructor	requires	a
Vector2	object	representing	the	strength	and	direction	of	gravity,	and	a	Boolean	variable
typically	set	to	true	to	improve	performance.	Since	the	Box2D	engine	is	optimized	for
realistic	physics	simulations,	you	will	need	to	scale	onscreen,	pixel-based	dimensions	into
a	range	more	suitable	for	physics	calculations;	you	will	use	a	scaling	factor	of	1/100	for
this	purpose.	This	means	that,	for	example,	a	100-by-100	square	displayed	on	the	screen
would	be	represented	by	a	1-by-1	square	object	in	the	physics	simulation.	Similarly,	an
onscreen	rectangle	with	width	75	and	height	250	would	be	represented	in	the	simulation
by	a	rectangle	with	width	0.75	and	height	2.50.	In	accordance	with	these	values,	you	set
the	World	gravity	to	be	the	vector	Vector2(0,	-9.8f).

Each	physics	entity	managed	by	the	world	object	is	a	Body,	whose	overall	properties
are	set	using	a	BodyDef	object,	and	whose	individual	parts	are	represented	using
Fixture	objects.	The	BodyDef	can	be	used	to	store	the	following:

The	initial	position	and	angle	of	the	body

The	initial	linear	velocity	(which	represents	a	change	in	position)	and
angular	velocity	(which	represents	the	rate	of	rotation)

Damping	values	(which,	if	set,	will	gradually	decrease	the	linear
velocity	and	angular	velocity	over	time)

The	type	of	object:	if	the	body	should	not	be	affected	by	forces	or
collisions,	and	does	not	move,	then	the	type	should	be	set	to	static
(typically	used	for	objects	corresponding	to	ground	and	walls);
otherwise,	the	type	should	be	set	to	dynamic

A	Boolean	value	that	indicates	whether	the	body	can	rotate	(which
defaults	to	true,	but	is	typically	set	to	false	for	player	objects	and
other	types	of	objects	that	should	not	tip	over	or	spin)

A	Fixture,	which	represents	a	physical	part	of	the	associated	Body,	is	initialized
using	a	FixtureDef	object	that	stores	the	following	information:

The	physical	shape	of	the	object,	which	can	be	a	circle	(via	the
CircleShape	class),	a	polygon	(via	the	PolygonShape	class),	or
a	rectangle	(which	is	implemented	via	the	setAsBox	method	of	the
PolygonShape	class).

The	density	of	the	object,	which	is	used	to	calculate	the	mass	of	the
object	(equal	to	the	product	of	the	area,	calculated	from	the	shape,	and
the	density).	Typically,	the	greater	the	density,	the	greater	the	mass,
and	the	less	of	an	effect	forces	will	have	when	applied	to	this	object.
Generally,	a	density	value	of	1.0	should	be	used	as	a	baseline,	and
thought	of	as	having	the	same	density	as	water.	Heavier	objects	will
have	a	greater	density;	lighter	objects	will	have	a	lesser	density.

The	friction	of	the	object,	which	is	used	to	calculate	an	opposing	force
when	two	objects	slide	across	each	other.	A	value	of	0	represents	a
perfectly	slippery	surface	with	no	friction;	the	velocity	of	the	two
objects	sliding	across	each	other	will	not	be	affected	at	all.	A	value	of
1	represents	high	friction;	the	speed	of	the	two	objects	will	be	greatly
decreased	while	they	are	in	contact.

The	restitution	of	the	object,	which	is	used	to	measure	the
“bounciness”	of	an	object	in	response	to	a	collision.	A	value	of	0
indicates	that	there	will	be	no	bounce	at	all	after	a	collision,	while	a
value	of	1	indicates	that	the	object	will	bounce	all	the	way	back	up	to
the	original	height	from	which	the	object	initially	fell.

A	Fixture	can	also	be	set	to	act	as	a	sensor,	which	means	that	it	will	correspond	to	a
region	of	the	Body	but	will	have	no	physical	effect	on	the	simulation;	such	an	object	can
be	used	to	determine	when	different	areas	overlap	in	the	simulation.

After	the	physics	simulation	begins,	the	position	and	velocity	of	a	Body	can	be
accessed	by	a	number	of	get	and	set	style	methods,	but	if	you	want	to	move	a	body	in	the
simulation,	the	proper	way	to	do	this	is	by	applying	forces	and	impulses.	A	force	can	be
thought	of	as	a	continuous	pushing	or	pulling	action	applied	to	an	object,	which	may	cause
its	velocity	to	change	(and	may	also	cause	the	object	to	rotate,	if	the	force	is	not	applied	to
the	center	of	the	object).	An	impulse	is	like	a	discrete	version	of	a	force,	applied	at	a	single

instant	in	time	(such	as	the	effect	of	hitting	a	nail	with	a	hammer,	or	the	effect	of	a	person
jumping	in	the	air).	The	strength	and	direction	of	a	force	or	impulse	is	indicated	by	a
Vector2	object,	and	may	be	applied	to	any	point	of	a	Body	(you	will	typically	choose
the	center	of	the	body	to	avoid	unwanted	rotation).

Finally,	every	time	that	two	bodies	collide	in	the	physics	simulation,	a	Contact
object	is	generated,	which	stores	references	to	the	two	particular	fixtures	of	the	bodies
involved	in	the	collision.	When	two	objects	collide,	that	may	have	an	effect	on	the	game
state	(such	as	when	the	player	collects	an	item).	To	access	this	information,	you	can	create
a	ContactListener	to	process	and	handle	these	events;	this	is	discussed	in	greater
detail	later.

The	Box2DActor	Class
To	integrate	the	functionality	of	the	Box2D	objects	into	your	LibGDX	framework,	you’ll
create	another	custom	extension	of	the	Actor	class	(in	particular,	the	AnimatedActor
class)	that	can	effectively	replace	the	PhysicsActor	class.	This	extension	will	be
called	Box2DActor.

You	begin	by	creating	a	new	project	in	BlueJ,	called	JumpingJack,	which	needs	to
contain	the	classes	BaseGame,	BaseScreen,	BaseActor,	AnimatedActor,
PhysicsActor,	and	GameUtils.	As	usual,	you	should	create	a	launcher-style	class
and	a	class	that	extends	BaseGame.	You	will	also	need	to	copy	the	images	from	this
chapter’s	source	directory	JumpingJack/assets	into	your	local	project’s	assets
folder.	In	addition,	you	will	need	to	add	two	JAR	files	to	your	project’s	+libs	folder:
gdx-box2d.jar	and	gdx-box2d-natives.jar.	These	can	be	downloaded	from
the	LibGDX	web	site	as	earlier	chapters	have	discussed,	or	the	files	may	be	copied	from
this	chapter’s	source	directory	JumpingJack/+libs.

Next	follows	the	basics	of	the	Box2DActor	class:	the	import	statements,	variable
declarations,	and	the	constructor,	which	initializes	the	variables.	In	addition	to	storing	a
Body	and	the	various	objects	used	to	define	its	properties,	some	Float	variables	are
added	that	can	be	used	to	set	a	cap	on	the	maximum	overall	speed,	or	the	maximum	speed
in	either	the	x	or	y	direction.	The	main	difference	between	a	Float	and	a	float
(besides	the	capitalization)	is	that	Float	extends	the	basic	Object	class	(whereas
float	is	a	primitive	data	type),	and	thus	a	Float	can	be	set	to	null.	Later,	you’ll	use
this	to	check	whether	the	user	has	chosen	to	set	any	of	these	values	(and	act	accordingly	if
they	have).

import	com.badlogic.gdx.physics.box2d.World;
import	com.badlogic.gdx.physics.box2d.Body;
import	com.badlogic.gdx.physics.box2d.BodyDef;
import	com.badlogic.gdx.physics.box2d.BodyDef.BodyType;
import	com.badlogic.gdx.physics.box2d.Fixture;
import	com.badlogic.gdx.physics.box2d.FixtureDef;
import	com.badlogic.gdx.physics.box2d.CircleShape;

import	com.badlogic.gdx.physics.box2d.PolygonShape;
import	com.badlogic.gdx.math.Vector2;
import	com.badlogic.gdx.math.MathUtils;

public	class	Box2DActor	extends	AnimatedActor
{
				protected	BodyDef	bodyDef;
				protected	Body	body;
				protected	FixtureDef	fixtureDef;

				protected	Float	maxSpeed;
				protected	Float	maxSpeedX;
				protected	Float	maxSpeedY;

				public	Box2DActor()
				{
								body							=	null;
								bodyDef				=	new	BodyDef();
								fixtureDef	=	new	FixtureDef();

								maxSpeed		=	null;
								maxSpeedX	=	null;
								maxSpeedY	=	null;
				}
}

Next,	are	the	methods	that	set	the	type	of	the	body	to	be	static	or	dynamic,	and	a
method	that	can	be	used	stop	the	body	from	rotating	(by	default,	bodies	are	able	to	rotate):

public	void	setStatic()
{		bodyDef.type	=	BodyType.StaticBody;		}

public	void	setDynamic()
{		bodyDef.type	=	BodyType.DynamicBody;		}

public	void	setFixedRotation()
{		bodyDef.fixedRotation	=	true;		}

Following	this	are	methods	relating	to	the	body’s	fixture:	methods	that	set	the	shape	to
a	circle	or	a	rectangle,	and	a	method	to	set	the	density,	friction,	and	restitution	all	at	once.
When	setting	the	shape,	recall	that	the	pixel	dimensions	must	be	scaled	to	the	physics
dimensions.	Also	note	that	the	body	positions	are	set	to	be	the	center	of	the	shape.	The
dimensions	of	a	rectangle	are	specified	using	distances	from	the	center:	half	the	total
width	and	half	the	total	length,	similar	to	how	the	radius	of	a	circle	indicates	distance	from
the	center	to	the	boundary.

public	void	setShapeRectangle()
{

				setOriginCenter();
				bodyDef.position.set((getX()	+	getOriginX())	/	100,	
(getY()	+	getOriginY())/100);
				PolygonShape	rect	=	new	PolygonShape();
				rect.setAsBox(getWidth()/200,	getHeight()/200);
				fixtureDef.shape	=	rect;
}

public	void	setShapeCircle()
{
				setOriginCenter();
				bodyDef.position.set((getX()	+	getOriginX())	/	100,	
(getY()	+	getOriginY())/100);
				CircleShape	circ	=	new	CircleShape();
				circ.setRadius(getWidth()/200);
				fixtureDef.shape	=	circ;
}

public	void	setPhysicsProperties(float	density,	float	
friction,	float	restitution)
{
				fixtureDef.density					=	density;
				fixtureDef.friction				=	friction;
				fixtureDef.restitution	=	restitution;
}

Next	are	have	a	trio	of	methods	that	enable	the	user	to	set	the	variables	corresponding
to	maximum	speeds:

public	void	setMaxSpeed(float	f)
{		maxSpeed	=	f;		}

public	void	setMaxSpeedX(float	f)
{		maxSpeedX	=	f;		}

public	void	setMaxSpeedY(float	f)
{		maxSpeedY	=	f;		}

After	using	these	methods	to	set	the	various	properties	of	the	object,	the	following
method	can	be	used	to	initialize	the	Body	based	on	the	BodyDef	(it	will	be	automatically
added	to	the	World),	and	initialize	the	Fixture	(it	will	be	automatically	added	to	the
Body).	You	can	store	additional	data	in	the	fixture,	which	may	be	any	type	of	object;
storing	a	String	containing	a	name	for	the	fixture	will	be	useful	in	the	future	when
creating	bodies	with	multiple	fixtures	that	need	to	be	identified.	You	can	also	store
additional	data	in	the	body,	and	here	you	should	store	a	reference	to	this	Box2DActor,
which	contains	the	Body.	(This	will	prove	useful	later,	in	the	collision-detection	code	in
the	main	program.)

public	void	initializePhysics(World	w)
{
				body	=	w.createBody(bodyDef);
				Fixture	f	=	body.createFixture(fixtureDef);
				f.setUserData("main");
				body.setUserData(this);
}

An	accessor	method	is	needed	to	retrieve	the	Body	of	this	actor,	if	it	will	be	necessary
to	remove	the	actor	from	the	game	later,	as	this	process	must	include	removing	the	body
from	the	physics	simulation.

public	Body	getBody()
{		return	body;		}

As	previously	discussed,	once	the	simulation	is	in	progress,	the	movement	of	the	body
can	be	affected	by	applying	either	a	force	(for	a	continuous	action)	or	an	impulse	(for	a
discrete	action).	In	either	case,	it	should	be	applied	to	the	center	of	the	body	to	avoid
spinning	the	object.	This	is	accomplished	using	the	following	methods:

public	void	applyForce(Vector2	force)
{		body.applyForceToCenter(force,	true);		}

public	void	applyImpulse(Vector2	impulse)
{		body.applyLinearImpulse(impulse,	body.getPosition(),	
true);		}

Next,	are	a	series	of	methods	used	to	get	and	set	the	velocity	and	speed	of	the	body,
used	internally	when	enforcing	the	maximum	speed	values	(if	previously	set):

public	Vector2	getVelocity()
{		return	body.getLinearVelocity();		}

public	float	getSpeed()
{		return	getVelocity().len();		}

public	void	setVelocity(float	vx,	float	vy)
{		body.setLinearVelocity(vx,vy);		}

public	void	setVelocity(Vector2	v)
{		body.setLinearVelocity(v);		}

public	void	setSpeed(float	s)
{		setVelocity(getVelocity().setLength(s));		}

Following	this	is	the	act	method,	which	serves	two	purposes.	First,	it	will	adjust	the
velocity	of	the	body	if	it	exceeds	any	of	the	set	maximum	values.	Second,	it	will	update
the	actor	properties—position	and	angle—based	on	the	properties	of	the	body.	In	this
process,	physics	units	must	be	scaled	back	to	pixel	units,	and	the	angle	of	rotation	must	be

converted	from	radians	(used	by	the	body)	to	degrees	(used	by	the	actor).

public	void	act(float	dt)
{
				super.act(dt);

				//	cap	max	speeds,	if	they	have	been	set

				if	(maxSpeedX	!=	null)
				{
								Vector2	v	=	getVelocity();
								v.x	=	MathUtils.clamp(v.x,	-maxSpeedX,	maxSpeedX);
								setVelocity(v);
				}
				if	(maxSpeedY	!=	null)
				{
								Vector2	v	=	getVelocity();
								v.y	=	MathUtils.clamp(v.y,	-maxSpeedY,	maxSpeedY);
								setVelocity(v);
				}
				if	(maxSpeed	!=	null)
				{
								float	s	=	getSpeed();
								if	(s	>	maxSpeed)
												setSpeed(maxSpeed);
				}

				//	update	image	data	-	position	and	rotation	-	based	on	
physics	data

				Vector2	center	=	body.getWorldCenter();
				setPosition(100*center.x	-	getOriginX(),	100*center.y	
-	getOriginY());

				float	a	=	body.getAngle();																						//	angle	
in	radians
				setRotation(a	*	MathUtils.radiansToDegrees);		//	
convert	from	radians	to	degrees
}

Finally,	a	clone	method	is	included	that	produces	a	new	Box2DActor.	However,
only	the	information	from	the	AnimatedActor	class	is	duplicated,	because	copies	of	a
given	object	will	likely	have	different	starting	positions,	which	affects	the	initialization	of
the	Body.

public	Box2DActor	clone()
{
				Box2DActor	newbie	=	new	Box2DActor();

				newbie.copy(this);	//	only	copies	AnimatedActor	data
				return	newbie;
}

With	this	new	class	at	your	disposal,	you	are	ready	to	create	your	physics-based
sandbox	game!

Jumping	Jack:	A	Physics-Based	Sandbox	Game
The	Jumping	Jack	game	will	contain	a	variety	of	Box2DActor	objects:	static	objects	for
the	ground,	walls,	and	platforms,	dynamic	objects	for	the	crate	and	ball,	and	sensors	for
the	coin	objects.	Since	there	are	multiple	coins	in	this	game,	you’ll	create	a	Coin	class
extending	the	Box2DActor	class	to	simplify	the	creation	and	cloning	of	these	objects,	as
follows:

import	com.badlogic.gdx.physics.box2d.World;
public	class	Coin	extends	Box2DActor
{
				public	Coin()
				{		super();		}

				public	void	initializePhysics(World	world)
				{
								setStatic();
								setShapeCircle();
								fixtureDef.isSensor	=	true;
								super.initializePhysics(world);
				}

				public	Coin	clone()
				{
								Coin	newbie	=	new	Coin();
								newbie.copy(this);
								return	newbie;
				}
}

The	final,	and	most	complicated	object	needed	in	this	class	is	the	player,	which
requires	additional	functionality	beyond	that	provided	by	the	Box2DActor	class,
motivating	the	creation	of	a	class	called	Player	that	also	extends	the	Box2DActor
class.	Platformer-style	characters	have	two	basic	types	of	movement:	moving	to	the	left
and	right,	and	jumping.	While	moving	is	relatively	straightforward	to	implement	using
forces,	jumping	is	surprisingly	complicated,	since	the	player	can	jump	only	when	standing
on	top	of	a	solid	object.	The	Player	class	will	include	a	method	named	isOnGround
that	indicates	when	this	is	the	case.	To	implement	this,	you’ll	start	by	adding	a	fixture	to
the	player	body,	set	as	a	sensor	and	positioned	beneath	the	main	fixture.	Contact	events
will	be	used	to	keep	track	of	how	many	solid	objects	the	sensor	is	overlapping,	stored	in	a

variable	named	groundCount.	Provided	this	number	is	greater	than	0,	the	bottom	of	the
player	is	touching	a	solid	object,	and	isOnGround	will	return	true.	The	code	for	the
Player	class	is	as	follows:

import	com.badlogic.gdx.physics.box2d.World;
import	com.badlogic.gdx.physics.box2d.Fixture;
import	com.badlogic.gdx.physics.box2d.FixtureDef;
import	com.badlogic.gdx.physics.box2d.PolygonShape;
import	com.badlogic.gdx.math.Vector2;

public	class	Player	extends	Box2DActor
{
				public	int	groundCount;
				public	Player()
				{
								super();
								groundCount	=	0;
				}
				public	void	adjustGroundCount(int	i)
				{		groundCount	+=	i;		}
				public	boolean	isOnGround()
				{		return	(groundCount	>	0);		}
				//	uses	data	to	initialize	object	and	add	to	world
				public	void	initializePhysics(World	world)
				{
								//	first,	perform	initialization	tasks	from	Box2DActor	
class
								super.initializePhysics(world);
								//	create	additional	player-specific	fixture
								FixtureDef	bottomSensor	=	new	FixtureDef();
								bottomSensor.isSensor	=	true;
								PolygonShape	sensorShape	=	new	PolygonShape();
								//	center	coordinates	of	sensor	box	-	offset	from	body	
center
								float	x	=	0;
								float	y	=	-20;
								//	dimensions	of	sensor	box
								float	w	=	getWidth()	-	8;
								float	h	=	getHeight();
								sensorShape.setAsBox(w/200,	h/200,	new	Vector2(x/200,	
y/200),	0);
								bottomSensor.shape	=	sensorShape;
								//	create	and	attach	this	new	fixture
								Fixture	bottomFixture	
=	body.createFixture(bottomSensor);
								bottomFixture.setUserData("bottom");

				}
}

Now,	you’re	ready	to	begin	creating	the	GameScreen	class	for	this	project!	As	usual,
you	begin	with	the	basics:	import	statements,	and	variable	and	method	declarations.

import	com.badlogic.gdx.Gdx;
import	com.badlogic.gdx.Input.Keys;
import	com.badlogic.gdx.graphics.Texture;
import	com.badlogic.gdx.graphics.Texture.TextureFilter;
import	com.badlogic.gdx.graphics.g2d.Animation;
import	com.badlogic.gdx.graphics.g2d.Animation.PlayMode;
import	com.badlogic.gdx.math.Vector2;
import	java.util.ArrayList;

import	com.badlogic.gdx.physics.box2d.World;
import	com.badlogic.gdx.physics.box2d.ContactListener;
import	com.badlogic.gdx.physics.box2d.Contact;
import	com.badlogic.gdx.physics.box2d.Manifold;
import	com.badlogic.gdx.physics.box2d.ContactImpulse;

public	class	GameScreen	extends	BaseScreen
{
				private	Player	player;
				private	World	world;
				private	int	coins	=	0;
				private	ArrayList<Box2DActor>	removeList;
				//	game	world	dimensions
				final	int	mapWidth	=	800;
				final	int	mapHeight	=	600;

				public	GameScreen(BaseGame	g)
				{		super(g);		}

				public	void	create()
				{				}

				public	void	update(float	dt)
				{				}

}

Some	of	the	objects	that	need	be	to	created	repeatedly	are	the	solid	objects	(ground,
walls,	and	platforms),	which	motivates	another	method	for	the	GameScreen	class,	called
addSolid,	that	largely	automates	this	process:

public	void	addSolid	(Texture	t,	float	x,	float	y,	float	w,	
float	h)

{
				Box2DActor	solid	=	new	Box2DActor();
				t.setFilter(TextureFilter.Linear,	TextureFilter.Linear);
				solid.storeAnimation("default",	t);
				solid.setPosition(x,y);
				solid.setSize(w,h);
				mainStage.addActor(solid);
				solid.setStatic();
				solid.setShapeRectangle();
				solid.initializePhysics(world);
}

Now	let’s	begin	listing	the	contents	of	the	create	method,	starting	with	initializing
the	World	and	an	ArrayList	for	removing	objects	later.	You’ll	also	set	up	a
background	image	and	use	the	addSolid	method	to	create	and	add	the	stationary	solid
objects	in	the	game:

world	=	new	World(new	Vector2(0,	-9.8f),	true);
removeList	=	new	ArrayList<Box2DActor>();

//	background	image
BaseActor	bg	=	new	BaseActor();
Texture	t	=	new	
Texture(Gdx.files.internal("assets/sky.png"));
bg.setTexture(t);
mainStage.addActor(bg);

//	solid	objects
Texture	groundTex	=	new	
Texture(Gdx.files.internal("assets/ground.png"));
Texture	dirtTex	=	new	
Texture(Gdx.files.internal("assets/dirt.png"));

addSolid(groundTex,	0,0,	800,32);
addSolid(groundTex,	150,250,	100,32);
addSolid(groundTex,	282,250,	100,32);

addSolid(dirtTex,	0,0,	32,600);
addSolid(dirtTex,	768,0,	32,600);

Next,	add	the	dynamic	objects	of	the	game:	the	(rectangular)	crate	and	the	(circular)
ball.

Box2DActor	crate	=	new	Box2DActor();
Texture	crateTex	=	new	
Texture(Gdx.files.internal("assets/crate.png"));
crateTex.setFilter(TextureFilter.Linear,	
TextureFilter.Linear);

crate.storeAnimation("default",	crateTex);
crate.setPosition(500,	100);
mainStage.addActor(crate);
crate.setDynamic();
crate.setShapeRectangle();
//	set	standard	density,	average	friction,	small	restitution
crate.setPhysicsProperties(1,	0.5f,	0.1f);
crate.initializePhysics(world);

Box2DActor	ball	=	new	Box2DActor();
Texture	ballTex	=	new	
Texture(Gdx.files.internal("assets/ball.png"));
ballTex.setFilter(TextureFilter.Linear,	
TextureFilter.Linear);
ball.storeAnimation("default",	ballTex);
ball.setPosition(300,	320);
mainStage.addActor(ball);
ball.setDynamic();
ball.setShapeCircle();
//	set	standard	density,	small	friction,	average	restitution
ball.setPhysicsProperties(1,	0.1f,	0.5f);
ball.initializePhysics(world);

Then	create	the	coin	objects:	a	base	coin	object,	cloned	repeatedly	for	each	instance
that	will	be	added	to	the	game.

Coin	baseCoin	=	new	Coin();
Texture	coinTex	=	new	
Texture(Gdx.files.internal("assets/coin.png"));
coinTex.setFilter(TextureFilter.Linear,	
TextureFilter.Linear);
baseCoin.storeAnimation("default",	coinTex);

Coin	coin1	=	baseCoin.clone();
coin1.setPosition(500,	250);
mainStage.addActor(coin1);
coin1.initializePhysics(world);

Coin	coin2	=	baseCoin.clone();
coin2.setPosition(550,	250);
mainStage.addActor(coin2);
coin2.initializePhysics(world);

Coin	coin3	=	baseCoin.clone();
coin3.setPosition(600,	250);
mainStage.addActor(coin3);
coin3.initializePhysics(world);

The	next	step	is	to	initialize	the	Player	object,	which	includes	setting	up	animations
for	standing,	walking,	and	jumping.	To	simplify	the	creation	of	an	animation	from
multiple	image	files,	first	add	the	following	convenience	method	to	the	GameUtils	class
that	will	load	a	series	of	files	(named	according	to	a	given	convention).	This	method,
called	parseImageFiles,	is	presented	here:

//	creates	an	Animation	from	a	set	of	image	files
//	assumes	file	name	format:	fileNamePrefix	+	N	
+	fileNameSuffix,	where	0	<=	N	<	frameCount
public	static	Animation	parseImageFiles(String	
fileNamePrefix,	String	fileNameSuffix,
								int	frameCount,	float	frameDuration,	PlayMode	mode)
{
				TextureRegion[]	frames	=	new	TextureRegion[frameCount];

				for	(int	n	=	0;	n	<	frameCount;	n++)
				{
								String	fileName	=	fileNamePrefix	+	n	+	fileNameSuffix;
								Texture	tex	=	new	
Texture(Gdx.files.internal(fileName));
								tex.setFilter(TextureFilter.Linear,	
TextureFilter.Linear);
								frames[n]	=	new	TextureRegion(tex);
				}

				Array<TextureRegion>	framesArray	=	new	
Array<TextureRegion>(frames);
				return	new	Animation(frameDuration,	framesArray,	mode);
}

Next,	let’s	return	to	the	GameScreen	class	to	initialize	the	player	and	its	animations;
a	plethora	of	physics	properties	must	be	set	for	the	player	as	well.

player	=	new	Player();

Animation	walkAnim	=	GameUtils.parseImageFiles(
								"assets/walk-",	".png",	3,	0.15f,	
Animation.PlayMode.LOOP_PINGPONG);
player.storeAnimation("walk",	walkAnim);

Texture	standTex	=	new	
Texture(Gdx.files.internal("assets/stand.png"));
standTex.setFilter(TextureFilter.Linear,	
TextureFilter.Linear);
player.storeAnimation("stand",	standTex);

Texture	jumpTex	=	new	
Texture(Gdx.files.internal("assets/jump.png"));

jumpTex.setFilter(TextureFilter.Linear,	
TextureFilter.Linear);
player.storeAnimation("jump",	jumpTex);

player.setPosition(164,	300);
player.setSize(60,90);
mainStage.addActor(player);
player.setDynamic();
player.setShapeRectangle();
//	set	standard	density,	average	friction,	small	restitution
player.setPhysicsProperties(1,	0.5f,	0.1f);
player.setFixedRotation();
player.setMaxSpeedX(2);
player.initializePhysics(world);

The	final	step	in	the	create	method	is	to	set	up	a	ContactListener,	which	will
be	added	to	the	World	object	and	is	used	to	respond	to	all	collision	events	(much	like	an
InputListener	object	is	used	to	respond	to	user	input	events).	While	the	World
object	is	running	the	physics	simulation	in	the	update	method,	if	any	two	fixtures
collide,	then	the	ContactListener	will	handle	what	should	happen	next	in	the	game
logic.

As	it	turns	out,	Contact	objects	are	a	little	tricky	to	work	with.	They	store	the
references	to	the	two	Fixture	objects	that	came	into	contact;	these	can	be	retrieved	with
the	Contact	class	methods	getFixtureA	and	getFixtureB.	However,	for	the
purposes	of	game	logic,	you	want	to	determine	whether	these	fixtures	belong	to	a	certain
type	of	object,	and	if	so,	return	that	object	(and	if	not,	return	null).	This	task	will	be
accomplished	by	a	utility	method	called	getContactObject	that	takes	as	parameters
the	Contact	object	being	examined,	as	well	as	the	Class	of	the	object	type	being
searched	for.	(Every	class	in	Java	has	a	static	field	named	class	that	can	be	used	to
identify	the	type	of	object	it	is,	such	as	Coin.class	or	Player.class.	For	an	object
whose	class	is	unknown,	you	can	use	the	getClass	method	to	determine	the	correct
class.)	If	the	Contact	object	contains	a	Fixture	of	a	Body	corresponding	to	an
Object	with	the	specified	class,	then	the	getContactObject	method	will	return	a
reference	to	that	object.

There	will	also	be	an	overloaded	version	of	the	getContactObject	method	that
additionally	has	a	String	parameter	corresponding	to	a	name,	and	returns	an	Object
only	when	the	associated	class	has	the	given	type	and	the	associated	fixture	has	the	given
name.	For	these	methods	to	work	correctly,	the	Body	user	data	must	store	a	reference	to
the	associated	object,	and	the	Fixture	user	data	must	store	the	name	of	the	fixture.	The
code	that	accomplishes	these	tasks	is	given	next,	and	should	be	included	in	the
GameUtils	class.	First,	add	the	import	statement:

import	com.badlogic.gdx.physics.box2d.Contact;

Then	add	the	following	methods:

public	static	Object	getContactObject(Contact	theContact,	
Class	theClass)
{
				Object	objA	
=	theContact.getFixtureA().getBody().getUserData();
				Object	objB	
=	theContact.getFixtureB().getBody().getUserData();

				if	(objA.getClass().equals(theClass))
								return	objA;
				else	if	(objB.getClass().equals(theClass))
								return	objB;
				else
								return	null;
}

public	static	Object	getContactObject(Contact	theContact,	
Class	theClass,	String	fixtureName)
{
				Object	objA		=	
theContact.getFixtureA().getBody().getUserData();
				String	nameA	
=	(String)theContact.getFixtureA().getUserData();
				Object	objB		=	
theContact.getFixtureB().getBody().getUserData();
				String	nameB	
=	(String)theContact.getFixtureB().getUserData();

				if	(objA.getClass().equals(theClass)	&&	
nameA.equals(fixtureName))
								return	objA;
				else	if	(objB.getClass().equals(theClass)	&&	
nameB.equals(fixtureName))
								return	objB;
				else
								return	null;
}

With	these	utility	methods	now	available,	you	can	now	return	to	the	GameScreen
class	and	write	an	anonymous	inner	class	that	implements	the	ContactListener
interface.	The	methods	that	must	be	written	are	called	beginContact,	endContact,
preSolve,	and	postSolve.	The	latter	two	are	not	needed	for	this	game,	and	so	aren’t
covered	here.	The	other	two,	beginContact	and	endContact,	are	quite	useful;	they
are	called	when	a	pair	of	fixtures	first	come	into	contact	with	each	other,	and	when	a	pair
of	fixtures	cease	being	in	contact	with	each	other,	respectively.

The	types	of	contact	events	that	are	important	to	the	game	are	as	follows:

When	a	Coin	object	and	the	“main”	fixture	of	a	Player	object	first
make	contact,	the	coin	should	be	added	to	the	removeList.	This	is
handled	in	the	beginContact	method.

If	any	solid	(that	is,	non-Coin)	object	and	the	“bottom”	fixture	of	a
Player	first	make	contact,	add	1	to	the	player’s	ground-counting
variable,	and	set	the	player’s	animation	to	stand.	This	is	also
handled	in	the	beginContact	method.

If	any	solid	(that	is,	non-Coin)	object	and	the	“bottom”	fixture	of	a
Player	leave	contact,	subtract	1	from	the	player’s	ground-counting
variable.	This	is	handled	in	the	endContact	method.

These	tasks	are	implemented	by	the	following	code:

world.setContactListener(
				new	ContactListener()
				{
								public	void	beginContact(Contact	contact)
								{
												Object	objC	=	GameUtils.getContactObject(contact,	
Coin.class);
												if	(objC	!=	null)
												{
																Object	p	=	GameUtils.getContactObject(contact,	
Player.class,	"main");
																if	(p	!=	null)
																{
																				Coin	c	=	(Coin)objC;
																				removeList.add(c);
																}

																return;	//	avoid	possible	jumps
												}
												Object	objP	=	GameUtils.getContactObject(contact,	
Player.class,	"bottom");
												if	(objP	!=	null)
												{
																Player	p	=	(Player)objP;
																p.adjustGroundCount(1);
																p.setActiveAnimation("stand");
												}
								}

								public	void	endContact(Contact	contact)

								{
												Object	objC	=	GameUtils.getContactObject(contact,	
Coin.class);
												if	(objC	!=	null)
																return;
												Object	objP	=	GameUtils.getContactObject(contact,	
Player.class,	"bottom");
												if	(objP	!=	null)
												{
																Player	p	=	(Player)objP;
																p.adjustGroundCount(-1);
												}
								}

								public	void	preSolve(Contact	contact,	Manifold	
oldManifold)	{	}

								public	void	postSolve(Contact	contact,	ContactImpulse	
impulse)	{	}

				});

At	this	point,	the	create	method	is	finished.	Because	of	all	the	game	logic	code	that
is	contained	in	the	preceding	ContactListener	object,	the	update	method	is	quite
short.	To	start,	clear	the	contents	of	removeList.	Then	activate	the	physics	simulation
using	the	step	method	of	the	World	object,	assuming	the	game	is	running	at	60	frames
per	second.	During	the	simulation,	the	ContactListener	may	be	activated	and	objects
may	be	added	to	removeList;	if	so,	remove	them	from	their	Stage	and	remove	the
corresponding	Body	from	the	World.3	Then	continuous	user	input	is	processed:	if	the
user	is	pressing	the	left	or	right	arrow	key,	a	force	is	applied	to	move	the	player	in	that
corresponding	direction.	The	stand	and	walk	animations	are	set	depending	on	the	speed
of	the	player.	(Note	that	if	the	player’s	jump	animation	is	playing,	the	only	way	to	switch
to	the	stand	animation	is	when	the	player	lands	on	the	ground,	which	was	handled	by	the
preceding	ContactListener	code.)

public	void	update(float	dt)
{
				removeList.clear();
				world.step(1/60f,	6,	2);
				for	(Box2DActor	ba	:	removeList)
				{
								ba.destroy();
								world.destroyBody(ba.getBody());
				}

				if(Gdx.input.isKeyPressed(Keys.LEFT))

				{
								player.setScale(-1,1);
								player.applyForce(new	Vector2(-3.0f,	0));
				}

				if(Gdx.input.isKeyPressed(Keys.RIGHT))
				{
								player.setScale(1,1);
								player.applyForce(new	Vector2(3.0f,	0));
				}

				if	(player.getSpeed()	>	0.1	&&	
player.getAnimationName().equals("stand"))
								player.setActiveAnimation("walk");
				if	(player.getSpeed()	<	0.1	&&	
player.getAnimationName().equals("walk"))
								player.setActiveAnimation("stand");
}

Finally,	discrete	user	input—pausing	the	game,	resetting	the	game,	and	making	the
player	jump—is	processed	using	the	keyDown	method:

public	boolean	keyDown(int	keycode)
{
				if	(keycode	==	Keys.P)
								togglePaused();

				if	(keycode	==	Keys.R)
								game.setScreen(new	GameScreen(game));

				if	(keycode	==	Keys.SPACE	&&	player.isOnGround())
				{
								Vector2	jumpVec	=	new	Vector2(0,3);
								player.applyImpulse(jumpVec);
								player.setActiveAnimation("jump");
				}

				return	false;
}

This	completes	the	code	for	Jumping	Jack.	Try	out	the	game—push	the	crate,	kick	the
ball,	and	of	course,	jump	around!	Note	in	particular	the	subtle	physics	features	being
simulated:	the	ball	rolls	around	the	screen	and	bounces	off	objects,	Jack	can	move	both	the
crate	and	the	ball	by	pushing	one	of	them	when	they	are	next	to	each	other,	and	Jack	can
jump	extra	high	from	the	top	of	the	ball	(due	to	the	ball’s	large	restitution	value).

Integrating	Multiple	Components

For	the	grand	finale	of	this	chapter,	you	will	create	a	project	that	integrates	all	of	the	topics
covered:	a	platformer-style	game	with	particle	effects	and	realistic	physics,	based	on	level
data	stored	in	a	tilemap.	In	particular,	due	to	the	high	critical	acclaim	we	anticipate	for	the
release	of	the	previous	project,	Jumping	Jack,	in	this	section,	you’ll	create	a	sequel	called
Jumping	Jack	2:	Even	More	Coins,	pictured	in	Figure	7-17.

Figure	7-17.	The	game	Jumping	Jack	2:	Even	More	Coins

In	BlueJ,	you’ll	start	a	new	project	called	JumpingJack2.	From	the	original
Jumping	Jack	game,	copy	over	all	classes	except	GameScreen,	which	will	be	different
enough	that	it	will	be	easier	to	start	from	scratch	(although	some	parts	of	the	code	will	be
identical,	so	you	may	want	to	keep	the	code	from	the	previous	GameScreen	class	handy
for	some	copying	and	pasting	later).	You	also	need	to	copy	the	ParticleActor	class
from	the	Starscape	demo.	In	addition,	download	the	images	from	the	chapter’s
JumpingJack2/assets	folder	to	your	local	project	assets	folder.

Preliminary	Setup
First,	you’ll	create	a	sparkling	special	effect	using	the	LibGDX	Particle	Editor,	illustrated
in	Figure	7-18,	which	will	appear	every	time	Jack	the	Koala	collects	a	coin.

Figure	7-18.	The	sparkle	particle	effect

To	create	this	effect,	start	the	LibGDX	Particle	Editor	and	create	a	new	emitter	named
sparkler	(and	delete	the	preloaded	example	emitter).	For	variety,	in	the	Image	property
section,	click	the	Open	button	and	select	the	file	sparkle.png.	Set	Count	Max	to	25,
Duration	to	500,	and	Emission	High	to	50.	Modify	the	Size	graph	to	re-create	the	Sudden
Decrease	shape.	Set	Velocity	to	Active,	and	set	its	High	range	from	20	to	50.	Set	Angle	to
Active,	and	set	its	High	range	from	0	to	360.	Finally,	set	the	Tint	color	to	orange.	Save	this
emitter	to	your	assets	directory	with	the	file	name	sparkle.pfx	(and	don’t	forget	to
add	the	pfx	suffix,	as	the	editor	doesn’t	automatically	add	it	for	you).

Next,	you’ll	set	up	a	tilemap	using	Tiled.	Create	a	new	tilemap	that	is	20	tiles	wide	and
10	tiles	high;	the	tiles	have	width	and	length	64	pixels.	Then	load	the	tileset	platform-
tiles-64.png	(whose	tiles	are	also	64	by	64	pixels).	To	organize	your	project	into
layers,	first	name	the	existing	layer	Tiles.	Then	from	the	menu	bar,	choose	Layer	 	Add
Image	Layer,	and	name	it	Background.	(As	you	may	have	guessed,	this	layer	can	be	used
to	display	an	image,	and	that	image	will	be	of	the	background.)	In	the	Layers	panel,	right-
click	the	Background	layer	and	select	Lower	Layer;	this	moves	the	Background	layer
under	the	Tiles	layer,	which	will	be	important	when	you	render	the	tilemap.	Finally,	add
two	Object	layers;	name	the	first	of	these	ObjectData	and	the	second	PhysicsData.

Now	it	is	time	to	design	and	construct	the	level.	First,	click	the	Background	layer,	and
in	the	Properties	panel	to	the	left,	an	Image	field	appears,	where	you	can	load	an	image.
Instead	of	typing	in	a	name,	you	can	use	the	ellipsis	button	that	appears	when	the	field	is
selected.	Select	the	image	named	background.png	from	the	assets	folder.	Next,
switch	to	the	Tiles	layer,	and	use	the	Stamp	Brush	to	design	your	level.	Figure	7-19
illustrates	one	design,	but	feel	free	to	modify	the	layout	to	your	liking.

Figure	7-19.	Tilemap	layout	for	Jumping	Jack	2

Next,	geometric	data	needs	to	be	added	to	the	object	layers.	On	the	ObjectData
layer,	add	a	rectangle	to	indicate	the	starting	position	of	the	player,	and	in	the	Properties
panel,	name	the	rectangle	player.	Also	on	the	ObjectData	layer,	add	many	rectangles
indicating	the	position	of	the	coin	objects,	and	be	sure	to	name	each	one	of	these

rectangles	coin.	For	convenience,	the	rectangle	objects	can	be	duplicated	by	right-clicking
and	selecting	Duplicate	Object;	the	new	copy	will	appear	directly	on	top	of	the	original
object,	and	can	be	dragged	to	a	new	position.	Finally,	on	the	PhysicsData	layer,	add
rectangles	that	cover	all	of	the	parts	of	tiles	that	represent	solid	surfaces,	and	add	some
rectangles	around	the	borders	of	the	tilemap	so	that	the	player	will	not	be	able	to	walk	past
the	boundaries	of	the	map	(you	may	need	to	zoom	out	to	access	the	region	beyond	the
borders	of	the	tilemap).	The	addition	of	these	rectangles	is	illustrated	in	Figure	7-20,	and
as	before,	I	have	highlighted	the	rectangles	with	diagonal	stripes	in	the	diagram	to	make
them	more	visible.	When	you	are	finished,	save	your	work	to	the	assets	directory	with
the	file	name	platform-map.tmx.

Figure	7-20.	Tilemap	with	rectangle	object	data	added	and	highlighted

With	the	particle	effect	and	tilemap	data	completed,	you	can	now	move	on	to	writing
the	code	for	Jumping	Jack	2.

Jumping	Jack	2:	Even	More	Coins
With	all	the	foundation	laid	by	the	ParticleActor	and	Box2DActor	classes,	you’re
ready	to	jump	right	into	the	code	for	the	GameScreen	class.	You	begin	with	an
astounding	number	of	import	statements:

import	com.badlogic.gdx.Gdx;
import	com.badlogic.gdx.Input.Keys;
import	com.badlogic.gdx.graphics.Texture;
import	com.badlogic.gdx.graphics.GL20;
import	com.badlogic.gdx.graphics.Texture.TextureFilter;
import	com.badlogic.gdx.graphics.g2d.Animation;
import	com.badlogic.gdx.graphics.g2d.Animation.PlayMode;
import	com.badlogic.gdx.math.MathUtils;
import	com.badlogic.gdx.math.Vector2;

import	com.badlogic.gdx.math.Rectangle;
import	java.util.ArrayList;

//	box2d	imports
import	com.badlogic.gdx.physics.box2d.World;
import	com.badlogic.gdx.physics.box2d.ContactListener;
import	com.badlogic.gdx.physics.box2d.Contact;
import	com.badlogic.gdx.physics.box2d.Manifold;
import	com.badlogic.gdx.physics.box2d.ContactImpulse;

//	tilemap	imports
import	com.badlogic.gdx.maps.MapObject;
import	com.badlogic.gdx.maps.MapObjects;
import	com.badlogic.gdx.maps.objects.RectangleMapObject;
import	com.badlogic.gdx.maps.objects.PolygonMapObject;
import	com.badlogic.gdx.maps.tiled.TiledMap;
import	com.badlogic.gdx.maps.tiled.TiledMapRenderer;
import	com.badlogic.gdx.maps.tiled.TmxMapLoader;
import	
com.badlogic.gdx.maps.tiled.renderers.OrthogonalTiledMapRenderer;
import	com.badlogic.gdx.graphics.Camera;
import	com.badlogic.gdx.graphics.OrthographicCamera;

Next	are	the	variable	declarations	and	the	necessary	methods.	There	is	a	Player
object	and	a	World	to	simulate	the	physics.	An	ArrayList	will	store	actors	to	be
removed	from	the	game,	and	a	base	instance	of	a	ParticleActor	will	be	available	for
cloning	when	necessary.	There	is	also	a	variable	to	store	the	tilemap,	and	objects	used	for
rendering	the	tilemap.

public	class	GameScreen	extends	BaseScreen
{
				private	Player	player;
				private	World	world;
				private	ArrayList<Box2DActor>	removeList;
				private	ParticleActor	baseSparkle;
				TiledMap	tiledMap;
				OrthographicCamera	tiledCamera;
				TiledMapRenderer	tiledMapRenderer;
				int[]	backgroundLayer	=	{0};
				int[]	tileLayer							=	{1};
				//	game	world	dimensions
				final	int	mapWidth	=	1280;	//	bigger	than	before!
				final	int	mapHeight	=	600;

				public	GameScreen(BaseGame	g)
				{		super(g);		}

				public	void	create()
				{				}

				public	void	update(float	dt)
				{				}

}

There	will	also	be	a	method	named	addSolid	to	generate	Box2DActors
corresponding	to	solid	objects.	However,	unlike	the	version	from	the	original	Jumping
Jack	game,	where	positions	and	dimensions	had	to	be	calculated	by	hand,	this	method	is
designed	to	extra	the	necessary	information	from	a	RectangleMapObject	from	the
tilemap	data.

public	void	addSolid(RectangleMapObject	rmo)
{
				Rectangle	r	=	rmo.getRectangle();
				Box2DActor	solid	=	new	Box2DActor();
				solid.setPosition(r.x,	r.y);
				solid.setSize(r.width,	r.height);
				solid.setStatic();
				solid.setShapeRectangle();
				solid.initializePhysics(world);
}

Next	is	the	code	for	the	create	method.	First,	world	and	removeList	are
initialized	as	usual.	A	BaseActor	is	not	needed	to	display	the	background	image,
because	the	tilemap	will	handle	that.	The	player’s	animations	are	initialized	immediately,
but	the	player’s	physics	data	will	not	be	initialized	until	after	the	player’s	position	has
been	retrieved	from	the	tilemap.	Also	initialized	in	this	section	are	the	base	instance	of	a
Coin	object	and	the	sparkle	effect	for	later	use.

world	=	new	World(new	Vector2(0,	-9.8f),	true);
removeList	=	new	ArrayList<Box2DActor>();

//	background	image	provided	by	tilemap

//	player
player	=	new	Player();

Animation	walkAnim	=	GameUtils.parseImageFiles(
								"assets/walk-",	".png",	3,	0.15f,	
Animation.PlayMode.LOOP_PINGPONG);
player.storeAnimation("walk",	walkAnim);

Texture	standTex	=	new	
Texture(Gdx.files.internal("assets/stand.png"));
standTex.setFilter(TextureFilter.Linear,	

TextureFilter.Linear);
player.storeAnimation("stand",	standTex);

Texture	jumpTex	=	new	
Texture(Gdx.files.internal("assets/jump.png"));
jumpTex.setFilter(TextureFilter.Linear,	
TextureFilter.Linear);
player.storeAnimation("jump",	jumpTex);

player.setSize(60,90);
mainStage.addActor(player);
//	set	other	player	properties	later…

//	coin
Coin	baseCoin	=	new	Coin();
Texture	coinTex	=	new	
Texture(Gdx.files.internal("assets/coin.png"));
coinTex.setFilter(TextureFilter.Linear,	
TextureFilter.Linear);
baseCoin.storeAnimation("default",	coinTex);

baseSparkle	=	new	ParticleActor();
baseSparkle.load("assets/sparkler.pfx",	"assets/");

Next,	load	the	tilemap	and	initialize	the	related	objects,	in	the	same	way	as	in	the
Treasure	Quest	game:

//	load	tilemap
tiledMap	=	new	TmxMapLoader().load("assets/platform-
map.tmx");
tiledMapRenderer	=	new	OrthogonalTiledMapRenderer(tiledMap);
tiledCamera	=	new	OrthographicCamera();
tiledCamera.setToOrtho(false,viewWidth,viewHeight);
tiledCamera.update();

Iterate	over	the	ObjectData	layer	of	the	tilemap	to	get	data	pertaining	to	the	player
and	coin	objects:

MapObjects	objects	
=	tiledMap.getLayers().get("ObjectData").getObjects();
for	(MapObject	object	:	objects)
{
				String	name	=	object.getName();
				//	all	object	data	assumed	to	be	stored	as	rectangles
				RectangleMapObject	rectangleObject	
=	(RectangleMapObject)object;
				Rectangle	r	=	rectangleObject.getRectangle();

				if	(name.equals("player"))
				{
								player.setPosition(r.x,	r.y);
				}
				else	if	(name.equals("coin"))
				{
								Coin	coin	=	baseCoin.clone();
								coin.setPosition(r.x,	r.y);
								mainStage.addActor(coin);
								coin.initializePhysics(world);
				}
				else
								System.err.println("Unknown	tilemap	object:	"	+	name);
}

Now	that	the	player’s	position	is	known,	the	player’s	physics-related	data	can	be
initialized:

player.setDynamic();
player.setShapeRectangle();
player.setPhysicsProperties(1,	0.5f,	0.1f);
player.setMaxSpeedX(2);
player.setFixedRotation();
player.initializePhysics(world);

Next,	iterate	over	the	PhysicsData	layer	of	the	tilemap,	and	using	the	preceding
addSolid	method,	initialize	the	solid	objects:

objects	
=	tiledMap.getLayers().get("PhysicsData").getObjects();
for	(MapObject	object	:	objects)
{
				if	(object	instanceof	RectangleMapObject)
								addSolid((RectangleMapObject)object);
				else
								System.err.println("Unknown	PhysicsData	object.");
}

Finally,	in	the	create	method,	the	ContactListener	needs	to	be	initialized.
This	code	is	nearly	identical	to	the	corresponding	code	from	the	original	Jumping	Jack
game.	The	only	difference	is	some	additional	code	that	spawns	a	new	sparkling	particle
effect	whenever	the	player	makes	contact	with	a	coin.

world.setContactListener(
				new	ContactListener()
				{
								public	void	beginContact(Contact	contact)
								{

												Object	objC	=	GameUtils.getContactObject(contact,	
Coin.class);
												if	(objC	!=	null)
												{
																Object	objP	
=	GameUtils.getContactObject(contact,	Player.class,	"main");
																if	(objP	!=	null)
																{
																				Coin	c	=	(Coin)objC;
																				removeList.add(c);
																				ParticleActor	sparkle	=	baseSparkle.clone();
																				sparkle.setPosition(
																								c.getX()	+	c.getOriginX(),	c.getY()	
+	c.getOriginY());
																				sparkle.start();
																				mainStage.addActor(sparkle);
																}
																return;	//	avoid	possible	jumps
												}

												Object	objP	=	GameUtils.getContactObject(contact,	
Player.class,	"bottom");
												if	(objP	!=	null)
												{
																Player	p	=	(Player)objP;
																p.adjustGroundCount(1);
																p.setActiveAnimation("stand");
												}
								}

								public	void	endContact(Contact	contact)
								{
												Object	objC	=	GameUtils.getContactObject(contact,	
Coin.class);
												if	(objC	!=	null)
																return;

												Object	objP	=	GameUtils.getContactObject(contact,	
Player.class,	"bottom");
												if	(objP	!=	null)
												{
																Player	p	=	(Player)objP;
																p.adjustGroundCount(-1);
												}
								}

								public	void	preSolve(Contact	contact,	Manifold	

oldManifold)	{	}

								public	void	postSolve(Contact	contact,	ContactImpulse	
impulse)	{	}
				});

The	update	method	and	keyDown	method	are	exactly	the	same	as	they	were	for	the
Jumping	Jack	game,	but	their	code	is	included	again	here	for	the	sake	of	completeness:

public	void	update(float	dt)
{
				removeList.clear();
				world.step(1/60f,	6,	2);

				for	(Box2DActor	ba	:	removeList)
				{
								ba.destroy();
								world.destroyBody(ba.getBody());
				}

				if	(Gdx.input.isKeyPressed(Keys.LEFT))
				{
								player.setScale(-1,1);
								player.applyForce(new	Vector2(-3.0f,	0));
				}

				if	(Gdx.input.isKeyPressed(Keys.RIGHT))
				{
								player.setScale(1,1);
								player.applyForce(new	Vector2(3.0f,	0));
				}

				if	(player.getSpeed()	>	0.1	&&	
player.getAnimationName().equals("stand"))
								player.setActiveAnimation("walk");
				if	(player.getSpeed()	<	0.1	&&	
player.getAnimationName().equals("walk"))
								player.setActiveAnimation("stand");
}

public	boolean	keyDown(int	keycode)
{
				if	(keycode	==	Keys.P)
								togglePaused();

				if	(keycode	==	Keys.R)
								game.setScreen(new	GameScreen(game));

				if	(keycode	==	Keys.SPACE	&&	player.isOnGround())
				{
								Vector2	jumpVec	=	new	Vector2(0,3);
								player.applyImpulse(jumpVec);
								player.setActiveAnimation("jump");
				}

				return	false;
}

Finally,	as	was	the	case	previously	when	working	with	tilemaps,	the	render	method
of	the	BaseScreen	class	needs	to	be	overridden	in	order	to	render	the	layers	of	the
tilemap	in	the	correct	order	with	respect	to	the	stages.	As	a	final	finishing	touch,	a	parallax
effect	is	added	to	create	the	illusion	of	depth	(as	in	the	Plane	Dodger	game):	when
calculating	the	x	coordinate	of	the	camera	for	the	background	layer	of	the	tilemap,	reduce
its	value	by	a	factor	of	4,	so	that	as	the	player	walks	across	the	level,	the	background	layer
will	appear	to	scroll	at	one-fourth	the	speed	of	the	tile	layer.

public	void	render(float	dt)
{
				uiStage.act(dt);

				//	only	pause	gameplay	events,	not	UI	events
				if	(!isPaused())
				{
								mainStage.act(dt);
								update(dt);
				}

				//	render
				Gdx.gl.glClearColor(0,0,0,1);
				Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);

				Camera	mainCamera	=	mainStage.getCamera();
				mainCamera.position.x	=		player.getX()	
+	player.getOriginX();
				//	bound	main	camera	to	layout
				mainCamera.position.x	=	MathUtils.clamp(
								mainCamera.position.x,	viewWidth/2,		mapWidth	
-	viewWidth/2);
				mainCamera.update();

				//	scroll	background	more	slowly	to	create	parallax	
effect
				tiledCamera.position.x	=	mainCamera.position.x/4	
+	mapWidth/4;
				tiledCamera.position.y	=	mainCamera.position.y;

				tiledCamera.update();
				tiledMapRenderer.setView(tiledCamera);
				tiledMapRenderer.render(backgroundLayer);

				tiledCamera.position.x	=	mainCamera.position.x;
				tiledCamera.position.y	=	mainCamera.position.y;
				tiledCamera.update();
				tiledMapRenderer.setView(tiledCamera);
				tiledMapRenderer.render(tileLayer);

				mainStage.draw();
				uiStage.draw();
}

This	completes	the	code	for	Jumping	Jack	2.	Give	the	game	a	try,	and	help	Jack	collect
all	those	coins!

Summary
In	this	chapter,	you’ve	learned	how	to	create	particle	effects,	tilemaps,	and	realistic
physics	using	third-party	tools	and	libraries,	and	you’ve	integrated	them	into	various
projects	both	separately	and	together.	These	skills	should	increase	the	efficiency	of	your
workflow	as	a	game	developer,	allowing	you	to	work	on	larger	and	more	advanced	game
projects.

1https://github.com/libgdx/libgdx/wiki/2D-Particle-Editor

2Thanks	to	Andrew	Viola	for	creating	this	character	sprite	sheet	that	we	will	be	using	in	our	game.

3Similar	to	previous	projects,	in	which	you	couldn’t	remove	an	object	from	a	list	while	iterating	through	the	list
(necessitating	the	introduction	of	removeList),	you	can’t	remove	a	body	from	a	world	while	the	physics	simulation	is
taking	place	(again	necessitating	the	use	of	removeList).

https://github.com/libgdx/libgdx/wiki/2D-Particle-Editor

CHAPTER	8

Introduction	to	3D	Graphics
This	chapter	introduces	some	of	the	3D	graphics	capabilities	of	LibGDX.	Along	the	way,
you’ll	learn	about	the	concepts	and	classes	necessary	to	describe	and	render	a	three-
dimensional	scene.	You’ll	create	a	simple	interactive	demo	that	enables	players	to	control
both	an	object	within	the	scene	and	the	camera	viewing	the	scene.	To	simplify	and
streamline	this	process,	you’ll	adapt	some	old	classes	and	write	some	new	classes	to
accomplish	the	various	tasks	involved.	Finally,	you’ll	create	a	more	sophisticated	demo
based	on	2.5D	techniques:	a	game	that	renders	advanced	three-dimensional	graphics,
while	the	underlying	game	play	is	restricted	to	a	two-dimensional	plane.

Exploring	3D	Concepts	and	Classes
As	it	turns	out,	all	of	the	previously	created	games	in	this	book	exist	in	a	three-
dimensional	space.	You	may	have	noticed	that	when	setting	the	position	of	a	camera
object,	you	have	x,	y,	and	z	components	to	set.	If	the	x	axis	and	the	y	axis	represent	the
horizontal	and	vertical	directions	on	the	screen,	respectively,	then	the	z	axis	corresponds	to
a	straight	line	pointing	toward	the	viewer,	perpendicular	to	the	xy	plane—the	plane
containing	the	x	and	y	axes.	The	camera	can	be	thought	of	as	positioned	on	the	z	axis,
pointing	straight	toward	the	xy	plane;	all	of	the	game	entities	have	implicitly	had	their	z
coordinate	set	to	0.	This	configuration	is	illustrated	in	Figure	8-1,	which	shows	roughly
how	the	camera	sees	the	Starfish	Collector	game	from	previous	chapters.

Figure	8-1.	A	camera	looking	down	the	z	axis	at	the	Starfish	Collector	game

Our	previous	projects	have	relied	heavily	on	the	Stage	class,	which	manages	the
Camera	and	a	Batch	object	(for	rendering	purposes).	To	create	3D	scenes,	you	need	the
“3D	versions”	of	these	objects,	provided	by	the	PerspectiveCamera	and

ModelBatch	classes,	which	are	covered	in	detail	next.	However,	there	is	no
corresponding	stage-like	object	to	manage	them,	and	so	you	will	create	your	own
manager	class	(called	Stage3D)	in	a	later	section.

To	render	a	scene,	you	can	use	one	of	two	types	of	cameras:	an	orthographic	camera	or
a	perspective	camera.	(The	Stage	class	uses	an	OrthographicCamera	object	for
rendering.)	The	difference	between	these	two	is	in	how	they	represent,	or	project,	a	3D
scene	onto	a	2D	surface	such	as	a	computer	screen.	To	illustrate	the	difference,	consider
one	of	the	simplest	3D	shapes:	a	cube.	Figure	8-2	shows	an	orthographic	projection	and	a
perspective	projection	of	a	cube.	In	an	orthogonal	projection,	if	the	edges	of	an	object
have	the	same	length,	then	they	will	be	drawn	as	having	the	same	length	in	the	projection,
regardless	of	their	distance	from	the	viewer.	This	is	in	contrast	to	a	perspective	projection,
in	which	objects	with	two	edges	of	the	same	length	may	appear	different	in	the	projection;
an	edge	that	is	further	away	from	the	viewer	will	appear	shorter.	This	also	has	the	side
effect	that,	if	two	edges	of	an	object	are	parallel,	then	they	remain	parallel	in	an
orthographic	projection,	but	they	appear	to	converge	in	a	perspective	projection.	(In	a
perspective	drawing,	the	point	at	which	all	such	edges	appear	to	converge	is	sometimes
called	the	vanishing	point.)

Figure	8-2.	A	cube	drawn	using	orthographic	projection	(left)	and	perspective	projection	(right)

When	initializing	a	PerspectiveCamera	object,	you	have	to	define	the	region
visible	to	the	camera,	which	has	the	shape	of	a	truncated	pyramid,	or	frustum	(illustrated
in	Figure	8-3).	This	is	specified	by	five	parameters:	the	field	of	view	(an	angle	that
represents	how	far	the	camera	can	see	to	either	side),	the	width	and	height	of	the	rectangle
onto	which	the	scene	is	being	projected	(determined	by	a	Viewport	object	in	LibGDX),
and	the	near	and	far	values	(which	represent	the	closest	and	furthest	distances	that	the
camera	will	include	while	rendering).

Figure	8-3.	A	region	visible	to	a	perspective	camera;	near	and	far	distances	are	indicated	by	shaded	planes.

The	next	new	class	is	ModelBatch.	Just	as	a	SpriteBatch	object	can	be	used	to
render	two-dimensional	Texture	objects,	ModelBatch	is	used	to	render	three-
dimensional	objects.	The	data	needed	to	describe	the	appearance	of	a	three-dimensional
object	is	contained	in	a	Model	object,	which	consists	of	two	major	components:	Mesh
and	Material.	A	mesh	is	a	collection	of	vertices,	edges,	and	triangular	faces	that	define
the	shape	of	an	object.	A	material	contains	color	or	texture	data	that	is	applied	to	the
mesh,	which	defines	its	appearance	while	rendering.	Figure	8-4	contains	two	images	of	a
teapot:	a	wireframe	representation	of	the	mesh,	and	its	appearance	after	applying	a
material.	This	particular	teapot	is	a	classic	model	called	the	Utah	teapot,	created	by	the
computer	scientist	Martin	Newell	in	1975.	Models	can	be	loaded	from	standard	3D	object
file	formats

Figure	8-4.	The	Utah	teapot,	rendered	in	wireframe	(left)	and	with	material	applied	(right)

Models	can	be	created	in	two	ways	in	LibGDX.	Using	the	ModelLoader	class,	a
model	can	be	loaded	from	standard	3D	object	file	formats	(such	as	Wavefront,	typically
indicated	by	the	.obj	file	extension),	which	may	also	contain	references	to	image	files
used	by	the	accompanying	material.	Alternatively,	some	basic	shapes	(such	as	spheres	and
boxes)	can	be	generated	at	runtime	using	the	ModelBuilder	class.	You	will	see
examples	of	both	of	these	approaches	over	the	course	of	this	chapter.

Finally,	in	order	to	give	3D	models	a	realistic	appearance,	the	effects	of	light	sources
need	to	be	considered.	In	fact,	if	lights	are	not	added	to	a	scene,	you	will	not	be	able	to	see
anything	at	all!	Lights	are	managed	by	the	Environment	class.	The	two	types	of
lighting	effects	you	will	use	are	ambient	light	and	directional	light.	Ambient	light	provides
overall	illumination,	and	shines	equally	from	all	directions.	Typically,	it	is	important	to
include	ambient	light	in	a	scene	so	that	even	the	sides	facing	away	from	a	light	source	will
still	be	somewhat	visible	(although	this	amount	may	vary	depending	on	the	type	of
location	you	are	simulating).	A	directional	light	is	used	to	simulate	light	shining
throughout	the	scene	in	a	particular	direction.	This	helps	provide	a	sense	of	depth	in	a
scene,	in	particular,	allowing	you	to	distinguish	between	different	faces	when	an	object’s
material	consists	of	just	a	single	color.

Figure	8-5,	illustrates	these	effects	with	two	renderings	of	a	cube.	In	the	image	on	the
left,	the	scene	contains	only	ambient	light,	which	makes	it	difficult	to	see	all	the	edges	of
the	cube.	The	image	on	the	right	has	a	directional	light,	primarily	aimed	toward	the	left
(and	thus	the	right	side	of	the	cube	appears	brightest).

Creating	a	Minimal	3D	Demo
Using	the	previously	mentioned	classes,	you	are	now	ready	for	a	minimal	code	example
that	renders	a	cube	in	LibGDX.	The	result	is	a	single	blue	box,	oriented	as	on	the	right
side	of	Figure	8-5.	You	begin	by	creating	a	new	project	in	BlueJ	called	Project3D.	You
don’t	need	to	copy	any	classes	or	assets	to	this	project	at	this	time.	Rather	than	starting
with	the	Game	class	as	usual	(which	implements	the	ApplicationListener	interface
methods),	you’ll	make	this	example	self-contained	and	instead	implement	the	interface
yourself.

Figure	8-5.	A	cube	illuminated	with	ambient	light	only	(left),	and	directional	light	added	(right)

First	is	the	core	code:	import	statements,	variable	declarations	(those	that	are
referenced	in	multiple	methods),	and	the	methods	required	by	the	interface.	As	usual,	the
create	method	is	used	to	initialize	objects,	while	the	render	method	handles	the	game
loop;	the	code	for	each	of	these	methods	is	presented	in	detail	later.	(The	other	methods
required	by	the	interface	aren’t	fundamental	to	this	example,	and	so	are	not	discussed
later.)

import	com.badlogic.gdx.ApplicationListener;
import	com.badlogic.gdx.Gdx;
import	com.badlogic.gdx.graphics.GL20;
import	com.badlogic.gdx.graphics.Color;
import	com.badlogic.gdx.graphics.PerspectiveCamera;
import	com.badlogic.gdx.graphics.VertexAttributes.Usage;
import	com.badlogic.gdx.graphics.g3d.Environment;
import	
com.badlogic.gdx.graphics.g3d.attributes.ColorAttribute;
import	
com.badlogic.gdx.graphics.g3d.environment.DirectionalLight;
import	com.badlogic.gdx.graphics.g3d.utils.ModelBuilder;
import	com.badlogic.gdx.graphics.g3d.Model;
import	com.badlogic.gdx.graphics.g3d.ModelBatch;
import	com.badlogic.gdx.graphics.g3d.ModelInstance;
import	com.badlogic.gdx.graphics.g3d.Material;
import	com.badlogic.gdx.math.Vector3;

public	class	TheTest	implements	ApplicationListener
{
							public	Environment	environment;

							public	PerspectiveCamera	camera;
							public	ModelBatch	modelBatch;
							public	ModelInstance	boxInstance;

							public	void	create()	{		}

							public	void	render()	{		}

							public	void	dispose()	{		}

							public	void	resize(int	width,	int	height)	{		}

							public	void	pause()	{		}

							public	void	resume()	{		}
}

The	create	method	begins	with	initializing	the	Environment,	and	adding	a
parameter	(a	subclass	of	the	Attribute	class)	that	defines	the	color	of	the	ambient	light
in	the	scene.	In	general,	shades	of	gray	are	used	for	lights	(rather	than,	say,	colors	such	as
yellow	or	blue)	so	that	your	scene	will	not	be	tinted	with	unexpected	colors.	Then	an
instance	of	a	DirectionalLight	is	created,	using	a	brighter	shade	of	gray,	and	its
direction	is	specified	(using	a	Vector3	object)	to	be	primarily	to	the	left	and	downward;
after	configuring	its	parameters,	the	light	is	added	to	the	environment.	A
PerspectiveCamera	is	then	initialized,	with	a	field	of	view	of	67	degrees,	and	with
near	and	far	visibility	set	to	0.1	and	1000,	respectively	(these	values	have	been	chosen	to
guarantee	that	the	view	area	contains	the	object	you	will	add	to	the	scene).	The	camera’s
position	is	set,	and	the	location	it	should	initially	be	looking	toward	is	specified	via	the
lookAt	method.	Finally,	a	ModelBatch	object	is	initialized,	which	will	be	used	later
when	rendering.	These	steps	“set	the	scene”	and	are	accomplished	with	the	following
code:

environment	=	new	Environment();
environment.set(new	
ColorAttribute(ColorAttribute.AmbientLight,	0.4f,	0.4f,	
0.4f,	1f));

DirectionalLight	dLight	=	new	DirectionalLight();
Color					lightColor	=	new	Color(0.75f,	0.75f,	0.75f,	1);
Vector3		lightVector	=	new	Vector3(-1.0f,	-0.75f,	-0.25f);
dLight.set(lightColor,	lightVector);
environment.add(dLight)	;

camera	=	new	PerspectiveCamera(67,	Gdx.graphics.getWidth(),	
Gdx.graphics.getHeight());
camera.near	=	0.1f;
camera.far		=	1000f;
camera.position.set(10f,	10f,	10f);

camera.lookAt(0,0,0);
camera.update();

modelBatch	=	new	ModelBatch();

The	next	task	is	to	create	instances	of	models	to	add	to	your	scene.	For	the	sake	of
simplicity	in	this	example,	you	will	use	the	createBox	method	of	the	ModelBuilder
class	to	construct	a	cube.	You	must	also	create	a	Material	to	give	the	cube	its
appearance	onscreen;	here,	a	solid	blue	diffuse	color	is	used.	(Diffuse	indicates	the
apparent	color	of	the	object	when	illuminated	by	pure	white	light.)

You	must	also	determine	what	types	of	data	each	vertex	of	the	model	should	contain:
in	every	case,	vertices	should	store	a	position,	but	for	this	example,	they	also	store	color
data	and	a	vector	(called	the	normal	vector)	that	is	used	to	determine	how	light	reflects	off
an	object,	thus	providing	shading	effects.	Each	of	these	attributes	has	a	corresponding
constant	value	defined	in	the	Usage	class;	position	data	corresponds	to
Usage.Position,	color	data	corresponds	to	Usage.ColorPacked,	normal	vector
data	corresponds	to	Usage.Normal,	and	so	forth.	When	a	combination	of	this	data	is
needed,	a	value	is	generated	by	adding	together	the	constant	values	for	each	of	the	desired
attributes.	The	resulting	value	is	passed	as	a	parameter	to	the	createBox	method.

You	also	need	to	decide	on	the	dimensions	of	the	box	itself.	Because	of	the	scale	used
by	many	modeling	programs,	these	values	are	often	in	the	range	from	1	to	10,	and	so	you
should	use	similar	ranges	of	values	when	creating	objects	with	the	ModelBuilder
class.	After	creating	the	Model	(which	you	can	think	of	as	a	template	object),	a
ModelInstance	is	initialized.	This	object	contains	a	copy	of	the	information	from	the
model,	as	well	as	a	transformation	matrix	that	stores	position,	rotation,	and	scaling	data	for
this	particular	instance.	The	following	code	performs	all	these	tasks:

ModelBuilder	modelBuilder	=	new	ModelBuilder();

Material	boxMaterial	=	new	Material();
boxMaterial.set(ColorAttribute.createDiffuse(Color.BLUE));

int	usageCode	=	Usage.Position	+	Usage.ColorPacked	
+	Usage.Normal;

Model	boxModel	=	modelBuilder.createBox(5,	5,	5,	
boxMaterial,	usageCode);
boxInstance	=	new	ModelInstance(boxModel);

Finally,	the	render	method	is	given,	which	is	where	all	the	phases	of	the	game	loop
happen.	In	this	case,	the	program	consists	of	a	static	scene,	so	there	is	no	user	input	to
process	nor	updating	tasks	to	be	done—just	rendering	to	perform.	The	code	for	this
method	should	appear	relatively	familiar.	One	difference	is	that	the	glClear	function
also	needs	to	erase	the	depth	information	generated	during	the	previous	render,	since	the
distance	from	the	camera	to	each	object	in	the	scene	may	change	if	the	camera	moves
around,	in	which	case	the	depth	values	will	need	to	be	recalculated.	Another	difference	is

that	the	ModelBatch	takes	the	PerspectiveCamera	as	input	in	its	begin	method.
The	corresponding	code	is	as	follows:

Gdx.gl.glClearColor(1,1,1,1);
Gdx.gl.glViewport(0,	0,	Gdx.graphics.getWidth(),	
Gdx.graphics.getHeight());
Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT	
|	GL20.GL_DEPTH_BUFFER_BIT);

modelBatch.begin(camera);
modelBatch.render(boxInstance,	environment);
modelBatch.end();

As	usual,	you’ll	also	need	a	launcher-style	class,	as	shown	here:

import	com.badlogic.gdx.backends.lwjgl.LwjglApplication;
import	
com.badlogic.gdx.backends.lwjgl.LwjglApplicationConfiguration;
public	class	Launcher1
{
				public	static	void	main	()
				{
								LwjglApplicationConfiguration	config	=	new	
LwjglApplicationConfiguration();
								config.width	=	800;
								config.height	=	600;
								TheTest	myProgram	=	new	TheTest();
								LwjglApplication	launcher	=	new	LwjglApplication(
myProgram,	config);
				}
}

At	this	point,	you	should	try	out	the	code.	Feel	free	to	make	some	modifications	and
rerun	the	code	to	see	the	effects	of	your	changes.	For	example,	you	could	alter	the	color	of
the	cube,	the	direction	of	the	light	source,	or	the	location	of	the	camera.

Re-creating	the	Actor/Stage	Framework
To	facilitate	and	accelerate	the	development	of	future	projects,	in	this	section	you’ll	write
some	classes	that	function	similarly	to	the	BaseActor	and	Stage	classes,	but	instead
store	data	structures	and	methods	useful	for	three-dimensional	graphics.	For	convenience,
you’ll	continue	adding	code	to	the	previously	created	project,	which	was	called
Project3D.

The	BaseActor3D	Class

To	begin,	recall	that	the	Actor	class	stored	transformation	data	(position,	rotation,	and
scale)	and	methods	to	get,	set,	and	change	these	values.	All	Actor	objects	contained	an
act	method,	which	could	be	used	to	update	their	internal	state,	and	a	draw	method,
which	the	actor	could	use	to	render	itself	with	a	given	Batch	object.	You	then	wrote	an
extension	of	the	Actor	class,	called	the	BaseActor	class,	which	additionally	stored	a
Texture,	a	Polygon	for	collision	detection,	and	related	methods.	Here	the
BaseActor3D	class	will	be	presented,	which	will	provide	similar	functionality	in	a	3D
setting.

Some	of	the	most	complicated	underlying	concepts	in	3D	graphics	are	the
mathematical	structures	used	to	store	the	transformation	data.	I	won’t	go	into	great	detail
here,1but	for	this	example,	it’s	important	to	know	what	the	objects	are	and	how	to	use	their
associated	methods.

The	transformation	data	for	a	ModelInstance	object	is	stored	in	its	transform
field	as	a	Matrix4	object:	a	four-by-four	grid	of	numbers.	From	this	object,	you	can
extract	a	Vector3	that	contains	the	position	of	the	object.	You	can	also	extract	another
Vector3	that	contains	the	scaling	factor	in	each	direction	(initialized	to	1	in	all
directions,	which	results	in	no	change	in	the	default	size).	The	transformation	also	stores
the	orientation	of	the	model,	which	cannot	be	stored	with	a	single	number	(in	contrast	to
the	rotation	value	of	an	Actor),	because	an	object	in	three-dimensional	space	can	be
rotated	any	amount	around	any	combination	of	the	x,	y,	and	z	axes.	For	many	technical
reasons	(such	as	computation,	performance,	and	avoiding	a	phenomena	known	as	gimbal
lock2),	an	object	called	a	Quaternion	(corresponding	to	a	mathematical	object	of	the
same	name)	is	used	to	store	orientation	data.	For	convenience,	rather	than	work	with	the
Matrix4	directly,	you’ll	maintain	separate	objects	to	store	the	position,	rotation,	and
scale	data	for	each	BaseActor3D	object,	and	combine	them	into	a	Matrix4	and	store
it	in	the	ModelInstance	when	needed.

The	next	code	listing	presents	the	core	of	the	BaseActor3D	class:	import
statements,	variable	declarations,	and	the	fundamental	methods.	This	first	set	of	methods
includes	the	constructor;	a	method	to	set	the	ModelInstance	for	this	actor;	the
calculateTransform	method	to	combine	the	position,	rotation,	and	scale	data	into	a
Matrix4;	the	act	method	to	update	the	transformation	data	of	the	model	instance;	and
the	draw	method	to	render	the	model	instance	using	the	supplied	ModelBatch	and
Environment.

import	com.badlogic.gdx.graphics.g3d.Environment;
import	com.badlogic.gdx.graphics.g3d.ModelBatch;
import	com.badlogic.gdx.graphics.g3d.ModelInstance;
import	com.badlogic.gdx.graphics.g3d.Material;
import	
com.badlogic.gdx.graphics.g3d.attributes.ColorAttribute;
import	com.badlogic.gdx.graphics.Color;
import	com.badlogic.gdx.math.Vector3;
import	com.badlogic.gdx.math.Quaternion;

import	com.badlogic.gdx.math.Matrix4;

public	class	BaseActor3D
{
				private	ModelInstance	modelData;
				private	final	Vector3	position;
				private	final	Quaternion	rotation;
				private	final	Vector3	scale;

				public	BaseActor3D()
				{
								modelData	=	null;
								position		=	new	Vector3(0,0,0);
								rotation		=	new	Quaternion();
								scale					=	new	Vector3(1,1,1);
				}

				public	void	setModelInstance(ModelInstance	m)
				{		modelData	=	m;		}

				public	Matrix4	calculateTransform()
				{		return	new	Matrix4(position,	rotation,	scale);		}

				public	void	act(float	dt)
				{		modelData.transform.set(calculateTransform());		}

				public	void	draw(ModelBatch	batch,	Environment	env)
				{		batch.render(modelData,	env);		}

}

Next	are	a	variety	of	methods	related	to	the	position	variable:	get	and	set	methods,	and
methods	to	add	values	to	the	current	position	coordinates.	For	convenience,	this	code
includes	overloaded	variations	of	the	methods	that	allow	either	a	Vector3	or	individual
float	inputs	to	be	used.

public	Vector3	getPosition()
{		return	position;		}

public	void	setPosition(Vector3	v)
{		position.set(v);		}

public	void	setPosition(float	x,	float	y,	float	z)
{		position.set(x,y,z);		}

public	void	addPosition(Vector3	v)
{		position.add(v);		}

public	void	addPosition(float	x,	float	y,	float	z)
{		addPosition(new	Vector3(x,y,z));		}

Next,	let’s	discuss	the	rotation	abilities	of	these	actors.	For	simplicity,	you’re	going	to
limit	the	actor	to	“turning”	left	and	right,	which	you	can	more	formally	define	as	rotating
around	the	y-axis,	which	points	upward	in	this	3D	world,	as	illustrated	in	Figure	8-1.3	We
will	refer	to	this	as	the	turn	angle.4	There	will	be	methods	to	get,	set,	and	adjust	this	value,
each	of	which	are	implemented	using	methods	from	the	Quaternion	class.

public	float	getTurnAngle()
{		return	rotation.getAngleAround(0,-1,0);		}

public	void	setTurnAngle(float	degrees)
{		rotation.set(new	Quaternion(Vector3.Y,degrees));		}

public	void	turn(float	degrees)
{		rotation.mul(new	Quaternion(Vector3.Y,-degrees));		}

Also,	methods	must	be	written	that	enable	an	actor	to	move	in	directions	relative	to	its
current	orientation.	When	a	BaseActor3D	is	first	initialized,	it	will	be	assumed	that	the
forward	direction	is	represented	by	the	vector	(0,	0,	–1),	since	the	initial	position	of	the
camera	will	have	a	positive	z	coordinate,	and	the	actor	will	be	facing	away	from	the
camera.	Similarly,	the	initial	upward	direction	is	the	vector	(0,	1,	0),	and	the	rightward
direction	is	the	vector	(1,	0,	0).	After	the	actor	has	been	rotated,	the	relative	forward,
upward,	and	rightward	directions	can	be	determined	by	transforming	these	original	vectors
by	the	actor’s	current	rotation.	Then	to	move	a	given	distance	in	one	of	these	relative
directions,	you	can	scale	the	corresponding	vector	by	the	desired	distance,	and	add	the
result	to	the	current	position.	The	methods	that	enable	the	actor	to	move	in	these	ways	are
given	here:

public	void	moveForward(float	dist)
{		addPosition(rotation.transform(new	Vector3(0,0,-1)	
).scl(dist));		}

public	void	moveUp(float	dist)
{		addPosition(rotation.transform(new	Vector3(0,1,0)	
).scl(dist));		}

public	void	moveRight(float	dist)
{		addPosition(rotation.transform(new	Vector3(1,0,0)	
).scl(dist));		}

Finally,	a	few	convenience	methods	will	be	included.	First	is	setColor,	which	can
be	used	to	change	the	color	of	the	material	belonging	to	this	particular	model	instance.	In
addition	are	copy	and	clone	methods,	to	facilitate	the	creation	of	additional
BaseActor3D	objects	from	a	given	template	instance	at	a	later	time.

public	void	setColor(Color	c)

{
				for	(Material	m	:	modelData.materials)
								m.set(ColorAttribute.createDiffuse(c));
}

public	BaseActor3D	clone()
{
				BaseActor3D	newbie	=	new	BaseActor3D();
				newbie.copy(this);
				return	newbie;
}

public	void	copy(BaseActor3D	orig)
{
				this.modelData	=	new	ModelInstance(orig.modelData);
				this.position.set(orig.position);
				this.rotation.set(orig.rotation);
				this.scale.set(orig.scale);
}

This	completes	the	BaseActor3D	class—for	now.	A	later	section	discusses	collision
detection,	and	adds	the	associated	variables	and	methods.	At	present,	let’s	turn	our
attention	to	writing	a	complementary	class	that	can	be	used	to	manage	all	these	actors:	the
Stage3D	class.

The	Stage3D	Class
Recall	that	the	LibGDX	Stage	object	handles	rendering	tasks	(using	its	internal	Camera
and	Batch	objects),	and	manages	a	list	of	Actor	objects.	There	are	also	act	and	draw
methods	in	the	Stage	class,	which	call	the	act	and	draw	methods	of	all	attached	actors.
You	will	create	similar	functionality	with	the	Stage3D	class.	First,	the	core	of	the	class	is
presented.	After	the	import	statements,	the	variables	required	for	rendering	are	declared:
Environment,	PerspectiveCamera,	and	ModelBatch.	In	the	constructor,	you
basically	copy	the	code	used	to	initialize	these	objects	from	the	previous	example.	An
ArrayList	is	declared	to	store	the	BaseActor3D	objects,	and	is	initialized	in	the
constructor.

import	com.badlogic.gdx.Gdx;
import	com.badlogic.gdx.graphics.Color;
import	com.badlogic.gdx.math.Vector3;
import	com.badlogic.gdx.graphics.PerspectiveCamera;
import	com.badlogic.gdx.graphics.g3d.Environment;
import	com.badlogic.gdx.graphics.g3d.ModelBatch;
import	
com.badlogic.gdx.graphics.g3d.attributes.ColorAttribute;
import	

com.badlogic.gdx.graphics.g3d.environment.DirectionalLight;
import	java.util.ArrayList;

public	class	Stage3D
{
				private	Environment	environment;
				private	PerspectiveCamera	camera;
				private	final	ModelBatch	modelBatch;
				private	ArrayList<BaseActor3D>	actorList;

				public	Stage3D()
				{
								environment	=	new	Environment();
								environment.set(new	
ColorAttribute(ColorAttribute.AmbientLight,	0.7f,	0.7f,	
0.7f,	1));

								DirectionalLight	dLight	=	new	DirectionalLight();
							Color	lightColor	=	new	Color(0.9f,	0.9f,	0.9f,	1);
							Vector3	lightVector	=	new	Vector3(-1.0f,	-0.75f,	
-0.25f);
							dLight.set(lightColor,	lightVector);
							environment.add(dLight)	;

								camera	=	new	PerspectiveCamera(67,	
Gdx.graphics.getWidth(),	Gdx.graphics.getHeight());
								camera.position.set(10f,	10f,	10f);
								camera.lookAt(0,0,0);
								camera.near	=	0.01f;
								camera.far	=	1000f;
								camera.update();

								modelBatch	=	new	ModelBatch();

								actorList	=	new	ArrayList<BaseActor3D>();
				}
}

Next,	are	the	act	and	draw	methods,	which	invoke	the	corresponding	methods	on	all
the	BaseActor3D	objects	contained	in	the	ArrayList.	In	addition,	the	camera	is
updated	in	the	act	method.

public	void	act(float	dt)
{
				camera.update();
				for	(BaseActor3D	ba	:	actorList)
								ba.act(dt);

}

public	void	draw()
{
				modelBatch.begin(camera);
				for	(BaseActor3D	ba	:	actorList)
								ba.draw(modelBatch,	environment);
				modelBatch.end();
}

There	are	methods	to	add	and	remove	actors,	given	by	the	following	code:

public	void	addActor(BaseActor3D	ba)
{		actorList.add(ba);		}

public	void	removeActor(BaseActor3D	ba)
{		actorList.remove(ba);		}

The	final	part	of	this	class	is	an	extensive	set	of	methods	to	adjust	the	camera.	First	are
the	methods	to	set	the	camera	position,	and	to	move	the	camera	by	a	given	amount;	these
values	may	be	specified	by	either	a	Vector3	object	or	three	float	values:

public	void	setCameraPosition(float	x,	float	y,	float	z)
{		camera.position.set(x,y,z);		}

public	void	setCameraPosition(Vector3	v)
{		camera.position.set(v);		}

public	void	moveCamera(float	x,	float	y,	float	z)
{		camera.position.add(x,y,z);		}

public	void	moveCamera(Vector3	v)
{		camera.position.add(v);		}

Next,	building	on	these	methods	are	additional	methods	that	move	the	camera	relative
to	its	current	position.	A	Camera	object	stores	two	internal	Vector3	objects:
direction,	which	determines	where	the	camera	is	currently	facing,	and	up,	which
determines	the	direction	that	should	be	oriented	toward	the	top	of	the	screen.	When
moving	the	camera	forward	and	backward	in	this	program,	the	camera	should	maintain	a
constant	height	(even	if	the	camera	is	tilted	at	an	angle),	and	so	the	y	component	of	the
vector	direction	can	be	set	to	0	in	order	to	yield	a	vector	that	moves	you	forward	in
this	way.	Once	the	vector	has	been	determined,	it	needs	to	be	scaled	by	the	distance	you
want	the	camera	to	travel,	and	then	the	vector	should	be	added	to	the	camera’s	current
position	via	the	moveCamera	function.	For	moving	to	the	left	and	right,	you	will
similarly	discard	the	y	component	of	the	vector;	to	transform	the	direction	vector	into	a
vector	pointing	to	the	right,	interchange	the	x	and	z	values	and	negate	the	z	value,	as
illustrated	by	the	example	in	Figure	8-6.	In	this	picture,	keep	in	mind	that	the	values
displayed	refer	to	the	change	in	direction	represented	by	each	of	the	vectors.

Figure	8-6.	Converting	a	forward-facing	vector	to	a	rightward-facing	vector

Moving	the	camera	upward	is	a	straightforward	task.	In	this	case,	movement	will
always	be	in	the	direction	of	the	y	axis	and	not	the	camera’s	up	vector,	since	when	the
camera	is	tilted,	its	up	vector	will	no	longer	be	pointing	in	the	same	orientation	as	the	y
axis.	The	methods	for	moving	the	camera	in	these	ways	are	as	follows:

public	void	moveCameraForward(float	dist)
{
				Vector3	forward	=	new	Vector3(camera.direction.x,	0,	
camera.direction.z).nor();
				moveCamera(forward.scl(dist));
}

public	void	moveCameraRight(float	dist)
{
				Vector3	right	=	new	Vector3(camera.direction.z,	0,	-
camera.direction.x).nor();
				moveCamera(right.scl(dist));
}

public	void	moveCameraUp(float	dist)
{		moveCamera(0,dist,0);		}

Functionality	should	also	be	provided	for	rotating	the	camera,	and	once	again,
restricting	the	types	of	possible	camera	movement	will	make	the	navigation	easier	for	the
user	to	visualize.	As	with	BaseActor3D	objects,	the	camera	will	be	able	to	turn	to	the
left	and	right,	which	corresponds	to	rotating	it	around	the	y	axis.	In	addition,	it	would	be
convenient	to	be	able	to	tilt	the	camera	up	and	down	to	look	higher	and	lower.	This	can	be
done	by	determining	the	vector	that	points	to	the	right,	as	before,	and	then	rotating	the
direction	vector	of	the	camera	around	the	vector	pointing	to	the	right.	These	two	methods,
turnCamera	and	tiltCamera,	are	given	here:

public	void	turnCamera(float	angle)
{		camera.rotate(Vector3.Y,	-angle);		}

public	void	tiltCamera(float	angle)
{
				Vector3	right	=	new	Vector3(camera.direction.z,	0,	-
camera.direction.x);
				camera.direction.rotate(right,	angle);
}

Finally,	it	is	important	to	be	able	to	orient	the	camera	to	look	at	a	particular	position.
The	is	accomplished	with	a	camera	method	called	lookAt,	but	this	method	may	have	the
undesired	result	of	tilting	the	camera	to	the	left	or	right,	making	the	horizon	no	longer
level,	which	can	be	disorienting	to	the	player.	So	after	calling	the	camera’s	lookAt
method,	the	camera’s	up	axis	needs	to	be	reset	to	the	direction	of	the	y	axis	to	correct	this
problem;	this	method	will	be	called	setCameraDirection.	As	before,	this	method
will	be	overloaded	to	take	either	a	Vector3	or	three	float	values	as	input.

public	void	setCameraDirection(Vector3	v)
{
				camera.lookAt(v);
				camera.up.set(0,1,0);
}

public	void	setCameraDirection(float	x,	float	y,	float	z)
{			setCameraDirection(new	Vector3(x,y,z));			}

This	is	all	the	functionality	you’ll	need	for	the	Stage3D	class.	You’re	now	ready	to
move	on	to	using	these	classes	to	create	your	first	interactive	3D	demo.

Creating	an	Interactive	3D	Demo
This	section	presents	an	interactive	demo	inspired	by	Figure	8-1.	This	demo	consists	of	a
screenshot	of	the	Starfish	Collector	game	on	a	flattened	box	shape,	and	cubes	with	colored
crate	textures	to	represent	the	origin	of	the	scene	and	the	directions	of	the	x,	y,	and	z	axes.
You	will	include	a	cube	textured	with	six	images	that	the	user	can	turn	and	move	in	any
direction.	Last	of	all,	you	will	enable	the	user	to	turn,	tilt,	and	move	the	camera	in	any
direction.	Figure	8-7	shows	this	demo	in	action.

Figure	8-7.	An	interactive	3D	demo

Continuing	with	the	Project3D	project,	add	the	most	recent	versions	of	the
BaseGame	and	BaseScreen	classes;	the	BaseGame	class	you’ll	be	able	to	use
without	modification,	while	the	BaseScreen	class	will	require	a	few	changes	to
incorporate	the	Stage3D	class	in	place	of	one	of	its	Stage	objects.	You’ll	also	need	a
launcher-style	class,	and	a	class	extending	the	BaseGame	class,	as	you’ve	had	in	previous
chapters;	feel	free	to	copy	any	of	these	and	modify	their	contents	as	needed.	In	addition,
copy	all	the	files	from	this	chapter’s	source	code	assets	directory	to	your	project’s	local
assets	directory.	(Although	some	of	these	files	will	not	be	needed	until	the	project
following	this	one,	it	is	convenient	to	copy	them	all	over	at	the	same	time.)

Recall	that	in	our	minimal	3D	rendering	example	at	the	beginning	of	this	chapter,	you
created	the	box	shape	by	using	the	ModelBuilder	class.	In	this	example,	you	will
repeatedly	need	to	create	cubes	with	textures	attached.	To	avoid	writing	redundant	code
and	to	simplify	the	process	of	creating	materials	(containing	both	textures	and	colors)	and
applying	them	to	models,	you’ll	create	a	utility	class	called	ModelUtils	that	includes
static	helper	functions.	This	is	similar	in	spirit	to	the	GameUtils	class	from	previous
projects,	except	that	instead	of	Animation-creating	methods,	it	will	be	devoted	to
ModelInstance-creating	methods.	The	first	part	of	the	new	ModelUtils	class	is
provided	next.	The	createBox	method	contains	code	similar	to	that	used	to	create	a	box
in	the	minimal	example	presented	at	the	beginning	of	this	chapter.	The	main	difference	is
that	the	Material	created	for	the	model	instance	in	this	method	may	also	contain	a
Texture.	However,	either	the	Texture	or	Color	parameters	may	be	passed	in	as
null,	in	which	case	the	corresponding	attribute	will	not	be	added	to	the	material.

import	com.badlogic.gdx.graphics.Color;
import	com.badlogic.gdx.graphics.Texture;

import	com.badlogic.gdx.graphics.VertexAttributes.Usage;
import	com.badlogic.gdx.graphics.g3d.Model;
import	com.badlogic.gdx.graphics.g3d.ModelBatch;
import	com.badlogic.gdx.graphics.g3d.ModelInstance;
import	
com.badlogic.gdx.graphics.g3d.attributes.ColorAttribute;
import	
com.badlogic.gdx.graphics.g3d.attributes.TextureAttribute;
import	com.badlogic.gdx.graphics.g3d.Material;
import	com.badlogic.gdx.graphics.g3d.utils.ModelBuilder;
import	com.badlogic.gdx.graphics.g3d.utils.MeshBuilder;
import	com.badlogic.gdx.graphics.g3d.utils.MeshPartBuilder;
import	com.badlogic.gdx.graphics.GL20;
import	com.badlogic.gdx.graphics.Mesh;
import	com.badlogic.gdx.math.Matrix4;
import	com.badlogic.gdx.math.Vector3;
import	com.badlogic.gdx.math.Quaternion;

public	class	ModelUtils
{
				public	static	ModelBuilder	modelBuilder	=	new	
ModelBuilder();

				public	static	ModelInstance	createBox(float	xSize,	float	
ySize,	float	zSize,
												Texture	t,	Color	c)
				{
								Material	boxMaterial	=	new	Material();
								if	(t	!=	null)
												boxMaterial.set(TextureAttribute.createDiffuse(t)	
);
								if	(c	!=	null)
												boxMaterial.set(ColorAttribute.createDiffuse(c)	
);

								int	usageCode	=	Usage.Position	+	Usage.ColorPacked
																						+	Usage.Normal	+	Usage.TextureCoordinates;

								Model	boxModel	=	modelBuilder.createBox(xSize,	ySize,	
zSize,	boxMaterial,	usageCode);
								Vector3	position	=	new	Vector3(0,0,0);

								ModelInstance	box	=	new	ModelInstance(boxModel,	
position);
								return	box;
				}
}

This	demo	also	contain	a	unit	cube	that	can	be	moved	by	the	user.	To	make	it	simpler
to	see	how	the	cube	is	oriented	(which	side	is	the	front,	which	side	is	the	back,	and	so
forth)	it	would	be	convenient	to	be	able	to	apply	a	different	texture	to	each	side.	However,
there	is	no	method	in	the	ModelBuilder	class	to	automate	such	a	construction.	Writing
such	a	method	is	a	long	and	complicated	process,	as	you	need	to	specify	coordinates	for
the	vertices	to	create	six	separate	square	meshes,	determine	normal	vectors	for	lighting
purposes,	assign	a	texture	to	each	of	the	squares,	and	combine	these	six	meshes	into	a
single	mesh	for	a	single	model.	A	method	called	createCubeTexture6	provided	in
the	chapter’s	source	code	for	the	ModelUtils	class	accomplishes	this	task,	but	as	this
method	is	rather	long,	technical,	and	unnecessary	for	the	functionality	of	this	demo	(it
simply	provides	a	different	appearance	for	the	cube),	I	will	not	include	the	code	or	any
further	discussion	of	this	method	here.	When	creating	the	user-controlled	cube,	you	may
choose	whether	to	use	the	createBox	or	createCubeTexture6	method	to	generate
the	model	instance	used	for	this	object;	if	you	choose	the	latter	option,	you	may	copy	this
method	from	the	source	code	as	described	previously.

The	final	change	you	need	to	make	to	this	framework	involves	incorporating	the
Stage3D	class	into	the	BaseScreen	class.	Begin	by	removing	all	lines	of	code	that
involve	the	Stage	object	mainStage,	except	for	the	line	involving	the	input
multiplexer,	from	which	only	the	mainStage	parameter	needs	to	be	removed.	(You	can
keep	uiStage,	because	even	three-dimensional	games	typically	have	two-dimensional
user	interfaces.)	Then	add	a	new	variable	declaration	to	the	class:

protected	Stage3D	mainStage3D;

Next,	in	the	constructor	method,	you	need	to	initialize	this	variable	with	the	following
line:

mainStage3D	=	new	Stage3D();

The	greatest	number	of	changes	occur	in	the	render	method.	You	must	insert	code	to
call	the	act	and	draw	methods	of	mainStage3D	(just	as	you	previously	did	for
mainStage).	In	addition,	the	depth	buffer	must	be	cleared	in	the	glClear	method,	and
the	rendering	area	for	mainStage3D	must	be	set	by	using	the	glViewport	method
(since	a	Viewport	object	will	not	be	incorporated	into	the	Stage3D	object	to	manage
this	task).	The	final	form	of	the	render	method	is	as	follows:

public	void	render(float	dt)
{
				uiStage.act(dt);

				if	(!isPaused())
				{
								update(dt);
								mainStage3D.act(dt);
				}

				Gdx.gl.glClearColor(0.5f,0.5f,0.5f,1);
				Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT	
+	GL20.GL_DEPTH_BUFFER_BIT);
				Gdx.gl.glViewport(0,	0,	Gdx.graphics.getWidth(),	
Gdx.graphics.getHeight());

				mainStage3D.draw();
				uiStage.draw();
}

Finally,	you’re	ready	to	write	a	class	to	run	your	interactive	3D	demo,	which	you	will
call	DemoScreen.	You	begin	by	writing	the	core	of	the	class,	as	usual:

import	com.badlogic.gdx.Gdx;
import	com.badlogic.gdx.Input.Keys;
import	com.badlogic.gdx.graphics.Texture;
import	com.badlogic.gdx.graphics.Color;
import	com.badlogic.gdx.graphics.Texture.TextureFilter;
import	com.badlogic.gdx.graphics.g3d.ModelInstance;

public	class	DemoScreen	extends	BaseScreen
{
				BaseActor3D	player;

				public	DemoScreen(BaseGame	g)
				{		super(g);		}

				public	void	create()
				{				}

				public	void	update(float	dt)
				{				}
}

The	player	is	the	only	object	that	will	be	accessed	in	both	the	create	and	update
methods	(other	than	the	mainStage3D	object,	which	was	already	declared	by	the
BaseScreen	class).	All	the	other	game	entities	will	be	declared	and	initialized	within
the	create	method.	These	other	entities	include	a	thin	box	used	to	display	the	image	of
the	Starfish	Collector	game,	and	variously	colored	cubes	with	a	crate	texture	applied.	At
the	end	of	the	create	method,	you	also	set	the	position	of	the	camera.	The	complete
code	for	this	method	is	as	follows:

BaseActor3D	screen	=	new	BaseActor3D();
Texture	screenTex	=	new	
Texture(Gdx.files.internal("assets/starfish-collector.png"),	
true);
screenTex.setFilter(TextureFilter.Linear,	
TextureFilter.Linear);

ModelInstance	screenInstance	=	ModelUtils.createBox(16,	12,	
0.1f,	screenTex,	null);
screen.setModelInstance(screenInstance);
mainStage3D.addActor(screen);

Texture	texCrate	=	new	
Texture(Gdx.files.internal("assets/crate.jpg"),	true);

BaseActor3D	markerO	=	new	BaseActor3D();
ModelInstance	modCrateO	=	ModelUtils.createBox(1,1,1,	
texCrate,	Color.PURPLE);
markerO.setModelInstance(modCrateO);
markerO.setPosition(0,0,0);
mainStage3D.addActor(markerO);

BaseActor3D	markerX	=	markerO.clone();
markerX.setColor(Color.RED);
markerX.setPosition(5,0,0);
mainStage3D.addActor(markerX);

BaseActor3D	markerY	=	markerO.clone();
markerY.setColor(Color.GREEN);
markerY.setPosition(0,5,0);
mainStage3D.addActor(markerY);

BaseActor3D	markerZ	=	markerO.clone();
markerZ.setColor(Color.BLUE);
markerZ.setPosition(0,0,5);
mainStage3D.addActor(markerZ);

player	=	new	BaseActor3D();
//	alternatively	to	using	the	createCubeTexture6	method,
//				you	can	use	create	a	model	instance	for	the	player	
object	using	the	code:
//				ModelInstance	testModel	=	ModelUtils.createBox(1,1,1,	
texCrate,	Color.YELLOW);

Texture[]	texSides	=	{
								new	Texture(Gdx.files.internal("assets/xneg.png")),
								new	Texture(Gdx.files.internal("assets/xpos.png")),
								new	Texture(Gdx.files.internal("assets/yneg.png")),
								new	Texture(Gdx.files.internal("assets/ypos.png")),
								new	Texture(Gdx.files.internal("assets/zneg.png")),
								new	Texture(Gdx.files.internal("assets/zpos.png"))		};

ModelInstance	testModel	
=	ModelUtils.createCubeTexture6(texSides);

player.setModelInstance(testModel);
player.setPosition(0,1,8);
mainStage3D.addActor(player);

mainStage3D.setCameraPosition(3,4,10);
mainStage3D.setCameraDirection(0,0,0);

Finally,	there	is	the	update	method	to	consider,	which	processes	lots	of	potential
player	input.	The	player	is	controlled	using	the	keyboard	keys	W/A/S/D,	which
correspond	to	moving	forward/left/backward/right,	a	standard	configuration	in	many
computer	games.	To	this	standard,	you	also	add	the	R	and	F	keys	for	moving	up	and	down
(which	we	think	of	as	the	Rise	and	Fall	directions).	You	also	use	the	Q	and	E	keys	to	turn
left	and	right	(which	also	seems	memorable	because	these	keys	are	positioned	above	the
keys	for	moving	left	and	right).	The	camera	can	be	controlled	in	the	same	way,	using	the
same	keys,	when	the	Shift	key	is	being	pressed	simultaneously.	The	camera	can	also	be
tilted	upward	and	downward	using	the	T	and	G	keys	(which	you	can	remember	with	the
mnemonic	words	Top	and	Ground).	The	following	is	the	code	that	accomplishes	all	of
these	tasks,	which	as	mentioned	previously,	should	be	included	in	the	update	method:

float	speed	=	3.0f;
float	rotateSpeed	=	45.0f;

if	(!(Gdx.input.isKeyPressed(Keys.SHIFT_LEFT)
							||	Gdx.input.isKeyPressed(Keys.SHIFT_RIGHT)))
{
				if	(Gdx.input.isKeyPressed(Keys.W))
								player.moveForward(speed	*	dt);
				if	(Gdx.input.isKeyPressed(Keys.S))
								player.moveForward(-speed	*	dt);
				if	(Gdx.input.isKeyPressed(Keys.A))
								player.moveRight(-speed	*	dt);
				if	(Gdx.input.isKeyPressed(Keys.D))
								player.moveRight(speed	*	dt);

				if	(Gdx.input.isKeyPressed(Keys.Q))
								player.turn(-rotateSpeed	*	dt);
				if	(Gdx.input.isKeyPressed(Keys.E))
								player.turn(rotateSpeed	*	dt);

				if	(Gdx.input.isKeyPressed(Keys.R))
								player.moveUp(speed	*	dt);
				if	(Gdx.input.isKeyPressed(Keys.F))
								player.moveUp(-speed	*	dt);
}

if	(Gdx.input.isKeyPressed(Keys.SHIFT_LEFT)
					||	Gdx.input.isKeyPressed(Keys.SHIFT_RIGHT))

{
				if	(Gdx.input.isKeyPressed(Keys.W))
								mainStage3D.moveCameraForward(speed	*	dt);
				if	(Gdx.input.isKeyPressed(Keys.S))
								mainStage3D.moveCameraForward(-speed	*	dt);
				if	(Gdx.input.isKeyPressed(Keys.A))
								mainStage3D.moveCameraRight(-speed	*	dt);
				if	(Gdx.input.isKeyPressed(Keys.D))
								mainStage3D.moveCameraRight(speed	*	dt);

				if	(Gdx.input.isKeyPressed(Keys.R))
								mainStage3D.moveCameraUp(speed	*	dt);
				if	(Gdx.input.isKeyPressed(Keys.F))
								mainStage3D.moveCameraUp(-speed	*	dt);

				if	(Gdx.input.isKeyPressed(Keys.Q))
								mainStage3D.turnCamera(-rotateSpeed	*	dt);
				if	(Gdx.input.isKeyPressed(Keys.E))
								mainStage3D.turnCamera(rotateSpeed	*	dt);

				if	(Gdx.input.isKeyPressed(Keys.T))
								mainStage3D.tiltCamera(rotateSpeed	*	dt);
				if	(Gdx.input.isKeyPressed(Keys.G))
								mainStage3D.tiltCamera(-rotateSpeed	*	dt);
}

This	completes	the	code	for	the	update	method,	as	well	as	the	code	for	the	demo.
Try	it	out	and	get	a	feel	for	moving	around	in	three-dimensional	space.

Pirate	Cruiser:	Navigating	the	Sea	in	3D
In	this	section,	you’ll	create	a	more	game-like	demo	called	Pirate	Cruiser,	in	which	the
player	steers	a	pirate	ship	through	the	sea	and	navigates	around	various	rocks.	Figure	8-8
contains	a	screenshot	of	this	game.	Most	of	the	difficult	groundwork	has	been	laid	in	the
previous	section.	The	remaining	topics	include	loading	complex	models	from	external
files,	creating	a	skydome	image	that	surrounds	the	game	world,	and	performing
simplified	collision	detection.	As	before,	you	will	continue	adding	code	to	Project3D,
as	it	already	contains	many	of	the	classes	you	will	need	(BaseGame,	the	updated	version
of	BaseScreen,	BaseActor3D,	Stage3D,	and	ModelUtils).

Figure	8-8.	The	Pirate	Cruiser	demo

The	first	task,	loading	a	model,	is	relatively	straightforward.	To	do	so,	you	need	an
instance	of	the	ModelLoader	class,	and	then	use	its	loadModel	method,	which	takes
a	FileHandle	as	input	and	returns	a	Model.	If	the	position,	rotation,	or	scale	of	the
Model	is	not	what	you’d	like	it	to	be,	you	can	adjust	the	Mesh	data	if	desired	by	applying
transformations	to	it,	which	result	in	a	permanent	change	to	the	mesh.	You	can	then	use
the	model	to	create	a	ModelInstance	and	use	it	in	a	BaseActor3D	object,	as	before.

Second,	you	need	to	surround	your	game	world	with	an	image,	so	as	to	give	the
appearance	of	a	sky	in	the	background.	In	our	previous	2D	games,	you	created	a
rectangular	object	that	simply	displayed	an	image	of	the	sky.	Because	you’re	in	a	3D
environment,	here	you’ll	create	a	spherical	object	that	is	significantly	larger	than	and
surrounds	your	game	world,	and	apply	a	texture	to	it,	such	as	the	one	shown	in	Figure	8-9.
You	may	notice	that	the	image	appears	slightly	stretched	near	the	top	(and	it	would	on	the
bottom,	too,	were	the	bottom	not	simply	a	gray	color).	This	is	because	the	image	has	been
spherically	distorted:	while	it	looks	strange	as	a	rectangle,	when	the	image	is	applied	to	a
sphere,	everything	will	appear	to	have	the	correct	proportions.	This	the	same	phenomena
that	occurs	when	trying	to	make	a	flat	rectangular	map	of	the	Earth,	which	is	roughly
spherical;	the	map	will	inevitably	contain	distorted	areas	corresponding	to	the	regions	near
the	poles.

Figure	8-9.	A	spherically	distorted	image	of	the	sky

In	this	program,	you	will	encounter	the	minor	difficulty	that,	while	the
ModelBuilder	class	can	easily	create	a	spherical	mesh,	any	materials	applied	to	it	are
displayed	only	from	the	outside,	rather	than	the	inside	(which	is	where	your	camera	and
game	entities	will	be).	Fortunately,	you	can	perform	a	geometric	trick	to	resolve	this
problem:	after	creating	the	model,	you	will	scale	the	mesh	by	–1	in	the	z	direction;	this
will	cause	the	sphere	to	turn	itself	“inside-out,”	reversing	the	sides	on	which	the	image
will	be	displayed.	Since	this	process	could	be	useful	in	many	future	projects,	you’ll
encapsulate	this	process	of	creating	and	inverting	a	sphere	in	a	method	called
createSphereInv	in	the	ModelUtils	class.	Here	is	the	code	to	accomplish	this:

public	static	ModelInstance	createSphereInv(float	r,	
Texture	t,	Color	c)
{
				Material	sphereMaterial	=	new	Material();
				if	(t	!=	null)
								sphereMaterial.set(TextureAttribute.createDiffuse(t)	
);
				if	(c	!=	null)
								sphereMaterial.set(ColorAttribute.createDiffuse(c));
				int	usageCode	=	Usage.Position	+	Usage.ColorPacked
																		+	Usage.Normal	+	Usage.TextureCoordinates;

				Model	sphereModel	=	modelBuilder.createSphere(r,r,r,	
32,32,	sphereMaterial,	usageCode);

				for	(Mesh	m	:	sphereModel.meshes)
								m.scale(1,1,-1)	;

				Vector3	position	=	new	Vector3(0,0,0);

				ModelInstance	sphere	=	new	ModelInstance(sphereModel,	
position);
				return	sphere;

}

The	third	and	final	concept	to	discuss	before	moving	onto	the	main	game	code	is
collision	detection.	To	keep	the	level	of	complexity	manageable,	the	motion	and
placement	of	your	three-dimensional	objects	will	be	restricted	to	a	two-dimensional	plane,
thus	allowing	this	project	to	reuse	collision	code	from	the	original	BaseActor	class.
This	technique	is	well-known	in	game	development.	Games	that	use	this	approach	(those
which	have	3D	graphics	but	restrict	game	play	to	a	2D	plane	and	have	restricted	camera
movement)	are	called	2.5D	games.	Figure	8-10	illustrates	how	the	game	will	appear	to	the
player,	while	on	the	right	you	can	see	the	collision	polygons	that	will	correspond	to	the
pictured	game	entities	(the	two	rocks	and	the	pirate	ship).

Figure	8-10.	The	game	world	rendered	in	3D,	and	the	corresponding	2D	collision	polygons

To	incorporate	these	changes	into	your	project,	you	need	to	make	additions	to	the
BaseActor3D	class.	First,	add	the	following	import	statements:

import	com.badlogic.gdx.math.collision.BoundingBox;
import	com.badlogic.gdx.math.Polygon;
import	com.badlogic.gdx.math.Intersector;
import	
com.badlogic.gdx.math.Intersector.MinimumTranslationVector;

Declare	a	Polygon	variable:

private	Polygon	boundingPolygon;

The	polygon	object	is	initialized	in	the	constructor	as	follows:

boundingPolygon	=	null;

Next	are	a	pair	of	methods	used	to	set	the	polygon	to	either	a	rectangular	or
approximately	elliptical	(eight-sided)	shape.	In	both	cases,	you	need	to	determine	the
dimensions	of	the	object	in	the	x	and	z	dimensions;	these	quantities	are	analogous	to	the
width	and	height	in	the	two-dimensional	case.	These	values	can	be	determined	by
calculating	the	BoundingBox	associated	to	the	model,	which	is	the	smallest	box	that
contains	the	entire	model.	A	bounding	box	stores	the	dimensions	of	the	model	using	two
Vector3	objects:	min	and	max,	which	store	the	values	of	the	smallest	and	largest

coordinates	contained	by	the	model,	respectively.	These	values	are	used	to	create	the	array
of	vertices	that	is	passed	to	the	polygon	object,	as	illustrated	here:

public	void	setRectangleBase()
{
				BoundingBox	modelBounds	=	modelData.calculateBoundingBox(
new	BoundingBox());
				Vector3	max	=	modelBounds.max;
				Vector3	min	=	modelBounds.min;

				float[]	vertices	=
								{max.x,	max.z,	min.x,	max.z,	min.x,	min.z,	max.x,	
min.z};
				boundingPolygon	=	new	Polygon(vertices);
				boundingPolygon.setOrigin(0,0);
}

public	void	setEllipseBase()
{
				BoundingBox	modelBounds	=	modelData.calculateBoundingBox(
new	BoundingBox());
				Vector3	max	=	modelBounds.max;
				Vector3	min	=	modelBounds.min;

				float	a	=	0.75f;	//	offset	amount.
				float[]	vertices	=
								{max.x,0,	a*max.x,a*max.z,	0,max.z,	a*min.x,a*max.z,
									min.x,0,	a*min.x,a*min.z,	0,min.z,	a*max.x,a*min.z	};
				boundingPolygon	=	new	Polygon(vertices);
				boundingPolygon.setOrigin(0,0);
}

Once	the	polygon	has	been	set	up,	you	can	simply	copy	the	getBoundingPolygon
and	overlaps	methods	from	the	BaseActor	class,	with	only	slight	modifications
necessary	(indicated	in	bold	font):

public	Polygon	getBoundingPolygon()
{
				boundingPolygon.setPosition(position.x,	position.z);
				boundingPolygon.setRotation(getTurnAngle());
				return	boundingPolygon;
}

public	boolean	overlaps(BaseActor3D	other,	boolean	resolve)
{
				Polygon	poly1	=	this.getBoundingPolygon();
				Polygon	poly2	=	other.getBoundingPolygon();

				if	
(!poly1.getBoundingRectangle().overlaps(poly2.getBoundingRectangle())
)
								return	false;

				MinimumTranslationVector	mtv	=	new	
MinimumTranslationVector();
				boolean	polyOverlap	
=	Intersector.overlapConvexPolygons(poly1,	poly2,	mtv);
				if	(polyOverlap	&&	resolve)
				{
								this.addPosition(mtv.normal.x	*	mtv.depth,	0,		mtv.normal.y	
*	mtv.depth);
				}
				float	significant	=	0.5f;
				return	(polyOverlap	&&	(mtv.depth	>	significant));
}

In	addition,	you	must	remember	to	copy	the	bounding	polygon	data	when	copying	an
actor,	and	so	the	following	code	must	be	added	to	the	copy	method	of	the
BaseActor3D	class:

if	(orig.boundingPolygon	!=	null)
				this.boundingPolygon	=	new	
Polygon(orig.boundingPolygon.getVertices());

Now	your	improved	framework	is	complete,	and	you	can	move	on	to	the	code	for	the
GameScreen	class.	You	start	with	import	statements,	variable	declarations,	and
required	methods.	In	this	game,	the	interactive	objects	that	need	to	be	declared	are	the
player	variable,	and	an	ArrayList	to	store	the	rock	objects,	which	will	be	checked
for	collisions	with	the	player	during	the	update	method.

import	com.badlogic.gdx.Gdx;
import	com.badlogic.gdx.Input.Keys;
import	com.badlogic.gdx.graphics.Color;
import	com.badlogic.gdx.graphics.Texture;
import	com.badlogic.gdx.graphics.Texture.TextureFilter;
import	com.badlogic.gdx.graphics.g3d.ModelInstance;
import	com.badlogic.gdx.graphics.g3d.Model;
import	com.badlogic.gdx.graphics.Mesh;
import	com.badlogic.gdx.assets.loaders.ModelLoader;
import	com.badlogic.gdx.graphics.g3d.loader.ObjLoader;
import	com.badlogic.gdx.math.Vector3;
import	com.badlogic.gdx.math.Matrix4;
import	java.util.ArrayList;

public	class	GameScreen	extends	BaseScreen

{
				BaseActor3D	player;
				ArrayList<BaseActor3D>	rockList;

				public	GameScreen(BaseGame	g)
				{		super(g);		}

				public	void	create()
				{				}

				public	void	update(float	dt)
				{				}
}

The	code	for	the	create	method	is	presented	next.	It	begins	with	initializing	a	thin
box	and	applying	an	image	of	water	to	it	to	represent	the	sea:

BaseActor3D	sea	=	new	BaseActor3D();
Texture	seaTex	=	new	
Texture(Gdx.files.internal("assets/water.jpg"),	true);
seaTex.setFilter(TextureFilter.Linear,	TextureFilter.Linear	
);
ModelInstance	seaInstance	=	ModelUtils.createBox(500,	0.1f,	
500,	seaTex,	Color.GRAY);
sea.setModelInstance(seaInstance);
mainStage3D.addActor(sea);

Next,	the	player	object	is	created.	You	will	use	a	model	of	a	pirate	ship,	loaded	from
an	external	file.	However,	the	model	should	first	be	turned	by	180	degrees,	so	that	its
forward	direction	aligns	with	the	negative	z	axis.5	To	accomplish	this,	the	meshes	of	the
ship	model	will	be	transformed	by	applying	a	rotation	matrix:

player	=	new	BaseActor3D();
player.setPosition(0,0,0);
ModelLoader	loader	=	new	ObjLoader();
Model	shipModel	
=	loader.loadModel(Gdx.files.internal("assets/ship.obj"));
for	(Mesh	m	:	shipModel.meshes)
				m.transform(new	Matrix4().setToRotation(0,1,0,	180));
ModelInstance	shipInstance	=	new	ModelInstance(shipModel);
player.setModelInstance(shipInstance);
player.setEllipseBase();
mainStage3D.addActor(player);

Now	the	skydome	is	initialized,	using	the	previously	described	createSphereInv
method	from	the	ModelUtils	class:

BaseActor3D	skydome	=	new	BaseActor3D();

Texture	skyTex	=	new	Texture(Gdx.files.internal("assets/sky-
sphere.png"),	true);
ModelInstance	skyInstance	=	ModelUtils.createSphereInv(500,	
skyTex,	Color.WHITE);
skydome.setModelInstance(skyInstance);
skydome.setPosition(0,0,0);
mainStage3D.addActor(skydome);

The	next	task	is	to	initialize	the	ArrayList	that	stores	the	rock	objects,	create	a	base
instance	of	a	rock,	and	use	the	clone	method	to	create	multiple	rocks,	repositioning	them
before	adding	them	to	the	game	world.

rockList	=	new	ArrayList<BaseActor3D>();

Model	rockModel	
=	loader.loadModel(Gdx.files.internal("assets/rock.obj"));
ModelInstance	rockInstance	=	new	ModelInstance(rockModel);
BaseActor3D	baseRock	=	new	BaseActor3D();
baseRock.setModelInstance(rockInstance);
baseRock.setEllipseBase();

BaseActor3D	rock1	=	baseRock.clone();
rock1.setPosition(2,0,2);
mainStage3D.addActor(rock1);
rockList.add(rock1);

BaseActor3D	rock2	=	baseRock.clone();
rock2.setPosition(-4,0,4);
mainStage3D.addActor(rock2);
rockList.add(rock2);

BaseActor3D	rock3	=	baseRock.clone();
rock3.setPosition(6,0,6);
mainStage3D.addActor(rock3);
rockList.add(rock3);

Finally,	the	position	of	the	camera	is	set.	You	won’t	set	the	look	direction	here,	as	that
will	be	handled	by	the	update	method	later.

mainStage3D.setCameraPosition(2,3,15);

This	finishes	the	create	method.	The	final	code	additions	take	place	in	the	update
method,	and	will	be	relatively	short.	The	three	tasks	that	must	be	accomplished	include
checking	for	collisions	between	the	player	and	the	rocks,	processing	user	input	(the	ship
will	only	be	able	to	move	forward	and	turn	left	and	right),	and	setting	the	camera	direction
so	that	it	always	faces	the	player.	These	tasks	are	accomplished	with	the	following	code,
which	should	be	added	to	the	update	method:

for	(BaseActor3D	rock	:	rockList)
				player.overlaps(rock,	true);

float	speed	=	3.0f;
float	rotateSpeed	=	45.0f;

if	(Gdx.input.isKeyPressed(Keys.W))
				player.moveForward(speed	*	dt);

if	(Gdx.input.isKeyPressed(Keys.Q))
				player.turn(-rotateSpeed	*	dt);
if	(Gdx.input.isKeyPressed(Keys.E))
				player.turn(rotateSpeed	*	dt);

mainStage3D.setCameraDirection(player.getPosition());

After	adding	this	code,	you’re	finished	with	the	GameScreen	class.	Try	it	out;	have
fun	sailing	your	new	pirate	ship	through	the	open	seas,	but	look	out	for	those	rocks!

Next	Steps
With	the	foundation	laid	in	this	chapter,	you	are	now	ready	to	try	some	exercises	and
incorporate	advanced	functionality	in	your	3D	projects.	This	section	lists	some
possibilities.	The	best	place	to	get	an	overview	and	start	reading	about	new	features	is
usually	the	LibGDX	wiki,	which	in	addition	to	containing	basic	information,	sometimes
provides	links	to	tutorials.

Compose	an	interactive	3D	scene	containing	a	variety	of	models
loaded	from	external	files.	The	following	are	some	web	sites	from
which	you	can	download	model	files	(in	a	variety	of	file	formats):

OpenGameArt:	http://opengameart.org

The	Models	Resource:	www.models-resource.com

TurboSquid:	www.turbosquid.com	(They	have	many	free
models	available;	this	can	be	specified	in	their	search	options.)

Once	you	have	download	a	3D	model,	before	loading	it	into	LibGDX,
you	can	view	and	modify	it	using	3D	graphics	software	such	as
Blender,	which	is	freely	available	at	www.blender.org.

Try	creating	a	2.5D	version	of	some	of	the	earlier	projects	from	this
book.

To	implement	advanced	3D	physics,	integrate	the	Bullet	physics
engine	into	your	project	(this	process	will	be	similar	to	your	previous
work	incorporating	the	Box2D	physics	engine	for	realistic	2D
physics).

http://opengameart.org
http://www.models-resource.com
http://www.turbosquid.com
http://www.blender.org

Add	3D	particle	effects	to	your	game;	LibGDX	provides	a	3D	particle
editor	(called	Flame)	to	help	design	the	effects	(similar	to	the	2D
Particle	Editor	discussed	in	the	previous	chapter).

Summary
This	chapter	may	have	only	scratched	the	surface	of	3D	game	programming,	but	that	in
itself	entails	a	lot	of	material.	You	explored	the	components	of	3D	scenes,	perspective
cameras,	and	lighting.	You	learned	that	3D	models	contain	meshes	and	materials,	and
instances	of	models	store	transformation	data	(position,	rotation,	and	scale)	using
matrices.	You	adapted	and	extended	your	custom	game	development	framework	to	include
3D	versions	of	actors	and	stages,	and	learned	the	many	ways	you	can	move	objects	around
in	a	three-dimensional	world.	Finally,	you	put	your	skills	(and	your	code)	to	the	test,	by
creating	a	pair	of	interactive	demo	programs.	Congratulations	on	making	it	through,	and
good	luck	in	your	future	3D	endeavors.

1For	additional	information,	two	excellent	books	about	the	mathematical	details	of	3D	graphics	are	3D	Math	Primer	for
Graphics	and	Game	Development	by	Fletcher	Dunn	and	Ian	Parberry	(A	K	Peters/CRC	Press,	2011),	and	Mathematics
for	3D	Game	Programming	and	Computer	Graphics	by	Eric	Lengyel	(Cengage	Learning	PTR,	2011).

2When	using	three	values	to	represent	the	rotations	of	an	object	around	three	axes,	gimbal	lock	refers	to	the	problem	that
occurs	when	an	object	is	in	one	of	a	few	particular	orientations	and	two	axes	of	rotation	line	up,	making	it	impossible	for
the	object	to	rotate	in	certain	ways	while	in	the	given	orientation.

3In	theory,	this	choice	of	the	y	axis	as	the	“up”	direction	is	somewhat	arbitrary,	as	you	could	orient	yourself	in	the	game
world	so	that	any	axis	corresponds	to	the	up	direction.

4The	amount	of	rotation	around	the	upward-pointing	axis	is	also	called	the	yaw	angle.	Similarly,	the	rotation	around	the
sideways-pointing	axis	(the	motion	from	tilting	your	head	up	and	down)	is	called	the	pitch	angle,	and	the	rotation	around
the	forward-pointing	axis	(the	motion	from	tilting	your	head	to	the	left	and	to	the	right)	is	called	the	roll	angle.

5The	need	for	such	a	modification	typically	becomes	apparent	only	while	testing	the	code	and	visually	inspecting	the
models.	Alternatively,	using	a	3D	modeling	program	such	as	Blender,	mentioned	later	in	this	chapter,	can	be	used	to
inspect	and	adjust	a	model’s	appearance	ahead	of	time.

CHAPTER	9

The	Journey	Continues
This	final	chapter	presents	a	variety	of	steps	to	consider	as	you	continue	on	in	game
development.	Among	these,	you’ll	explore	working	on	additional	projects,	learning	skills
in	related	areas,	and	bringing	your	games	to	a	wider	audience.	Along	the	way,	the	chapter
presents	lists	of	resources	of	all	types,	and	general	advice	for	many	situations.

Continuing	Your	Developing
This	section	covers	how	to	refine	your	current	projects	and	start	working	on	new	projects,
either	on	your	own	or	as	part	of	a	game	jam	event.	The	section	provides	a	list	of	online
resources	where	you	can	obtain	art	assets	to	help	you	along	the	way.	Finally,	I’ll	give	a
healthy	dose	of	advice	for	overcoming	the	inevitable	obstacles	that	will	arise.

Working	on	Projects
Hopefully,	you’ve	been	working	through	all	the	project	examples	in	this	book.	Many	of
the	projects	presented	have	concluded	with	a	section	titled	“Next	Steps.”	You	should	try	to
complete	as	many	of	these	suggestions	as	you	can!	This	is	vital	because	you	learn	by
doing.	No	matter	how	much	sense	a	topic	makes	when	you	read	about	it,	you	have	truly
understood	a	topic	only	when	you	can	take	the	next	steps	of	designing	and	writing	code
independently.	After	each	of	the	projects	is	functional,	you	should	always	experiment	with
the	code	and	try	your	own	variations.

Make	sure	that	you	understand	each	program	at	all	levels.	At	the	local	level,	you
should	understand	the	effects	of	each	line	of	code,	and	also	the	purpose	of	each	method
and	the	design	considerations	that	were	taken	into	account	when	each	was	written.	At	the
global	level,	you	should	know	how	all	the	classes	fit	together	as	a	unified	whole,	the
reasoning	behind	structuring	the	framework	as	it	is,	and	the	advantages	and	disadvantages
to	modifying	the	framework	in	different	ways.

After	you’ve	extracted	as	much	knowledge	and	experience	from	this	book	as	you	feel
is	possible,	it’s	time	to	strike	out	on	your	own	and	start	creating	your	own	games.	To	start,
I	recommend	creating	simple,	minimal	examples	that	implement	new	game	mechanics
(that	is,	mechanics	other	than	those	featured	in	this	book)—perhaps	a	shoot-’em-up	style
game	with	enemies	who	periodically	fire	lasers	at	you,	or	a	labyrinth	escape	game
containing	many	interconnected	rooms	that	appear	on	different	screens,	or	an	adventure
game	with	the	main	character	swinging	a	sword	to	defeat	the	enemies,	or	a	platformer
game	with	a	player	who	must	also	climb	ladders	to	navigate	the	level.	In	addition	to	the
obvious	benefits	of	knowing	how	to	program	even	more	mechanics,	the	process	of
figuring	out	how	to	do	so	is	invaluable.	Only	by	engaging	in	the	acts	of	pondering,

planning,	writing	code,	testing,	debugging,	and	rewriting	code	can	you	build	skills	like
inventiveness,	organization,	adaptability,	and	perseverance.

Once	you	become	comfortable	implementing	game	mechanics	on	your	own,	as	a	next
step	I	recommend	a	“cloning	the	classics”	approach	for	learning	purposes	(but	certainly
not	for	publication!).	Take	a	classic	game	(particularly	those	from	the	1980s)	and	attempt
to	re-create	as	many	of	its	features	as	possible:	implement	the	game	mechanics,	level
design,	artistic	(graphics	and	audio)	style,	and	user	interface	(menu	screens	and	onscreen
data	displays).

In	particular,	I	advise	creating	a	physical	list	identifying	and	prioritizing	the	game-
specific	features	within	each	category	that	you’ll	be	working	on.	Furthermore,	I
recommend	prioritizing	the	categories	of	the	features	themselves	in	the	order	presented	in
the	previous	paragraph.	For	example,	if	your	main	character	is	a	winged	archer,	don’t
worry	about	the	color	of	his	belt	until	after	the	character	is	able	to	fly	and	shoot	arrows.
(In	fact,	it	is	common	practice	for	developers	to	use	simple	colored	polygon	shapes	during
the	game-mechanics	phase	of	programming.)	Don’t	worry	if	you’re	not	an	artist;	many
web	sites	exist	with	freely	available	video	game	graphics,	and	many	artists	in	the
community	are	looking	for	collaborators.	Finally,	once	you’re	comfortable	with	your	skills
and	abilities,	it’s	time	to	develop	your	own	game,	or	join	a	team	working	on	a	game	and
lend	your	programming	skills.

Obtaining	Art	Resources
The	typical	reader	of	this	book	likely	is	mainly	interested	in	the	programming	aspects	of
game	development,	but	even	so,	every	game	still	benefits	from	quality	graphics	and	audio.
I	recommend	the	following	web	sites	for	obtaining	artistic	resources.	Most	of	these	web
sites	have	both	free	and	paid	options,	while	others	are	driven	by	user	donations:

Kenney	Game	Assets:	http://kenney.nl/

Created	by	Kenney	Vleugels,	this	site	features	over	18,000	art	assets
that	can	be	useful	in	many	genres.	In	this	book,	assets	from	this	site
were	featured	in	Space	Rocks,	Plane	Dodger,	52-Card	Pickup,
Treasure	Quest,	and	the	Jumping	Jack	series.

GameArtGuppy:	www.gameartguppy.com

Created	by	Vicki	Wenderlich,	this	site	contains	a	collection	of	high-
quality	art	crafted	especially	for	independent	game	developers.	In	this
book,	the	Koala	character	from	the	Jumping	Jack	games	was	obtained
from	this	site.

OpenGameArt:	http://opengameart.org

A	repository	for	all	types	of	media	(2D	and	3D	graphics,	as	well	as
sound	effects	and	music).	Contributions	are	community	driven.
Licensing	details	and	conditions	are	determined	by	the	individual
creators.

http://kenney.nl/
http://www.gameartguppy.com
http://opengameart.org

The	Spriters	Resource:	www.spriters-resource.com

Features	a	nearly	comprehensive	set	of	game	art	assets	from	many
game	console	systems	throughout	history.	Due	to	copyright
restrictions,	however,	these	assets	cannot	be	used	in	published	or
commercial	games.

Cool	Text:	http://cooltext.com

A	free	text	art	graphics	generator	that	can	be	useful	for	creating
graphics	for	title	screens	as	well	as	text	and	buttons	for	user	interfaces.

Textures.com:	http://textures.com

Offers	images	of	many	types	of	materials,	both	natural	and
constructed.

Bfxr:	www.bfxr.net

Randomly	generates	a	wide	range	of	retro-style	sound	effects	for	use
in	games.

Freesound:	www.freesound.org

A	collaborative	database	of	Creative	Commons	licensed	sounds,
organized	into	packs	and	also	grouped	by	tags.

Incompetech:	http://incompetech.com/

Created	by	Kevin	MacLeod,	this	web	site	features	a	collection	of
royalty-free	original	music	compositions	that	can	be	searched	by
genre,	tempo,	feel,	or	instrumentation.	In	this	book,	the	background
music	for	the	game	Starfish	Collector	(in	Chapter	4),	“Master	of	the
Feast,”	was	obtained	from	this	collection.

Participating	in	Game	Jams
One	way	to	gain	valuable	game	development	experience	is	to	participate	in	a	game	jam.	A
game	jam	is	a	gathering	of	game	developers	for	the	challenge	of	designing	and	creating	a
game	in	a	short	time	span,	typically	about	48	hours.	Participants	may	be	programmers,
artists,	writers,	or	others	with	related	skills.	Due	to	the	time	limit,	these	events	require
rapid	prototyping	and	development	skills,	and	encourage	participants	to	focus	on
creativity,	core	mechanics,	and	bringing	a	project	to	completion	(or	at	least	a	playable
state).	Individuals	often	take	part	in	these	events	for	the	express	purpose	of	increasing
their	skills	in	these	areas.	In	addition,	many	game	jams	select	a	theme	that	must	be
incorporated	by	all	games	developed	at	the	event.	The	themes	are	usually	announced	at	the
start	of	each	event,	to	discourage	advanced	planning	and	to	encourage	creativity.

Although	some	game	jams	have	panels	of	judges	and	declare	one	or	more	winners,
these	events	are	typically	informal	and	friendly,	and	they	give	participants	the	chance	to
connect	with	each	other	and	provide	a	sense	of	community.	Some	events	may	be	held	at
one	or	more	physical	locations.	Some	events	may	have	no	central	location;	developers

http://www.spriters-resource.com
http://cooltext.com
http://textures.com
http://www.bfxr.net
http://www.freesound.org
http://incompetech.com/

work	in	areas	of	their	own	choosing	(but	are	still	held	to	the	same	time	and	schedule
restrictions).	Some	notable	long-running	game	jam	events	are	as	follows:

Global	Game	Jam:	http://globalgamejam.org/

This	is	the	largest	game	jam	in	the	world—an	international	event	that
takes	place	once	each	year,	typically	at	the	end	of	January.	This	is	not
an	online	event;	on-site	participation	is	required,	so	there	are	typically
hundreds	of	physical	locations	(jam	sites)	around	the	world	where
individuals	can	attend.

Ludum	Dare:	http://ludumdare.com/

Major	events	are	held	three	times	a	year,	and	minor	(mini)	events	are
held	during	the	months	when	there	is	no	major	event.	Some
participants	attend	gatherings	at	various	sites,	but	most	developers
work	from	their	own	locations.

One	Game	a	Month:	www.onegameamonth.com

As	the	name	indicates,	these	game	jams	are	held	monthly.	The	rules
are	particularly	relaxed,	and	each	jam	takes	place	over	the	course	of
the	entire	month,	so	as	to	provide	maximum	flexibility	to	participants.
The	organizer	is	Christer	Kaitila,	who	has	also	written	a	book	called
The	Game	Jam	Survival	Guide	(Packt	Publishing,	2012)	which
discusses	these	events	in	great	detail	and	provides	a	plethora	of	advice
on	how	to	have	a	successful	experience.

Overcoming	Difficulties
On	your	journey	as	a	game	developer,	you	will	stumble	at	times.	Everyone	does.	Perhaps
you	can’t	figure	out	how	to	implement	a	particular	game	mechanic.	Perhaps	your	program
has	an	error	at	runtime	and	you’re	just	not	sure	why.	Perhaps	your	program	compiles	and
runs,	but	your	game	entities	are	behaving	in	strange	and	unexpected	ways.	Whatever	your
difficulty	may	be,	don’t	give	up!	Spend	some	time	wrestling	with	the	problem.	Try
different	approaches—perhaps	a	different	data	structure,	class,	or	algorithm	is	called	for.
Try	to	reduce	the	complexity	of	your	code,	break	a	problem	into	simpler	steps	or	methods,
or	implement	a	simpler	version	first	and	incrementally	build	up	to	your	ultimate	goal.
Remember	that	the	process	of	overcoming	difficulties	is	part	of	being,	and	helps	you	grow
as,	a	game	developer.

However,	also	remember	that	balance	is	key	in	development	(just	as	it	is	in	games).
Yes,	it	is	valuable	to	learn	how	to	debug	and	correct	malfunctioning	code,	but	if	any
particular	problem	persists	for	a	long	time,	take	a	break	before	you	become	overly
frustrated	or	discouraged.	Keep	things	in	perspective:	it	probably	isn’t	worth	spending	five
straight	hours	trying	to	figure	out	why	your	platformer	character	can’t	walk	up	a	ramp.
Spend	some	time	away	from	your	computer;	take	a	walk,	think	about	something	else,	and
come	back	to	your	problem	later	with	a	refreshed	outlook.

After	making	a	sincere	effort	to	resolve	any	difficulties	yourself,	if	you	are	still	stuck,

http://globalgamejam.org/
http://ludumdare.com/
http://www.onegameamonth.com

don’t	despair:	the	vibrant	and	active	community	of	fellow	game	developers	and
enthusiasts	out	there	may	be	of	assistance.	The	LibGDX	forums
(www.badlogicgames.com/forum)	and	Stack	Overflow
(www.stackoverflow.com)	are	two	excellent	places	to	ask	for	help.	Start	by
searching	these	sites	to	see	whether	someone	has	asked	the	same	or	a	similar	question.	If
not,	the	next	step	is	to	read	any	recommended	guidelines	for	posting	questions.

Typically,	you	should	describe	your	problem	or	goal	fully	and	concisely,	and	include
details	about	what	you	have	tried,	what	has	worked,	and	what	hasn’t.	Sometimes	you
might	even	find	that	the	process	of	phrasing	the	question	carefully	to	an	external	audience
will	help	clarify	the	problem	and	inspire	you	with	a	possible	solution	or	an	alternative
approach.	If	your	post	includes	code,	do	so	in	moderation,	but	make	sure	that	all	variables
are	defined	or	explained	to	the	reader.	Most	of	all,	be	polite	and	patient.	The	people	who
frequent	these	web	sites	often	have	full-time	jobs	elsewhere,	and	voluntarily	visit	these
forums	and	provide	general	assistance	out	of	a	sense	of	community.	It’s	perfectly	normal
that	a	posted	question	might	not	generate	a	response	for	48	hours	or	more.	(In	the
meantime,	be	active	in	the	community	and	see	if	anyone	has	posted	any	questions	that	you
might	be	able	to	answer.)

Whenever	someone	responds	to	your	question,	be	sure	to	acknowledge	them;	if	they
suggest	a	course	of	action,	write	a	follow-up	post	as	to	whether	it	worked.	And	finally,	if
you	turn	out	to	be	the	person	to	resolve	your	own	question,	or	decide	to	proceed	in	a
completely	different	direction	to	circumvent	the	problem	altogether,	you	should	post	that
information	as	well,	to	provide	future	readers	a	sense	of	closure.

Broadening	Your	Horizons
In	addition	to	increasing	your	depth	of	knowledge	and	programming	proficiency,	you
should	devote	time	to	developing	a	breadth	of	knowledge	in	game-related	areas,	as	this
will	have	a	positive	impact	on	the	quality	of	the	games	you	produce.	This	section	briefly
mentions	a	few	ways	to	work	toward	this	goal.

Playing	Different	Games
Most	game	enthusiasts	have	a	favorite	genre.	Some	people	spend	most	of	their	time
playing	first-person	shooters,	others	prefer	to	devote	their	time	to	role-playing	games,	and
so	forth.	As	a	game	developer,	you	should	consider	playing	games	from	as	wide	a	range	as
you	can:	action,	adventure,	puzzle,	strategy,	role-playing,	sports,	simulation,	storytelling,
and	so	forth.	At	the	same	time,	try	games	from	various	time	periods	(from	classic	to
modern),	and	from	different-size	developers	(from	large	professional	companies	to	smaller
studios	to	independent	game	makers	and	game	jam	competitors).

Even	if	you	don’t	find	a	particular	game	or	genre	compelling,	you	will	grow	as	a
developer	if	you	spend	some	time	playing	such	games,	especially	when	you	do	so	with	a
developer’s	mindset.	Try	to	understand	why	people	like	a	given	game.	Examine	each
game’s	level	progression,	game	play	balance,	narrative	and	character	development,	artistic
style,	and	interface	design.	Keep	an	eye	out	for	what	makes	each	game	innovative	or

http://www.badlogicgames.com/forum
http://www.stackoverflow.com

unique.	Try	to	mentally	place	yourself	in	the	role	of	the	original	game	developers	who
created	the	game	and	think	about	possible	reasons	that	they	might	have	made	the	decisions
they	did,	and	ponder	whether	you	might	have	done	the	same,	or	branched	out	in	a	different
direction.

Increasing	Your	Skill	Set
While	you	continue	to	develop	games,	you	should	also	consider	broadening	your	overall
skill	set.	A	solid	set	of	programming	skills	is	highly	desirable,	but	game	developers
(especially	those	working	independently	or	in	small	studios)	often	need	to	be	a	jack-of-all-
trades,	especially	in	the	areas	of	graphics	and	audio.	To	get	started	in	these	areas,	I
recommend	the	following	software	and	tutorials:

Inkscape:	http://inkscape.org/

Software	for	creating	vector	graphics,	freely	available.	This	web	site
contains	a	list	of	high-quality	tutorials	for	all	skill	levels.	Most
relevant	to	our	interests,	however,	is	a	set	of	game	art	tutorials	written
by	Chris	Hildenbrand,	available	here:
http://2d-game-art-
tutorials.zeef.com/chris.hildenbrand

Spine:	http://esotericsoftware.com/

A	2D	skeletal	sprite	animation	tool	designed	specifically	for	game
development.	One	of	the	main	developers	of	Spine,	Nathan	Sweet,	is
also	one	of	the	main	contributors	to	LibGDX,	and	thus	there	is	a
streamlined	process	for	integrating	animation	files	created	by	Spine
into	LibGDX	projects.

Audacity:	http://audacityteam.org/

A	multitrack	audio	editor	and	recorder,	freely	available.	The	Audacity
manual	contains	an	extensive	list	of	tutorials	that	will	teach	you	all
sorts	of	useful	recording	and	editing	skills.

Recommended	Reading
In	addition	to	broadening	your	skill	set,	broadening	your	knowledge	base	is	also
worthwhile.	A	variety	of	books	are	available	on	topics	related	to	game	development	that
will	help	you	do	exactly	that.	Of	course,	there	are	far	too	many	to	list	here,	and	no	doubt	I
have	omitted	some	high-quality	titles.	Nonetheless,	this	section	lists	a	few	representative
samples	from	across	a	range	of	fields,	a	cross	section	of	topics,	to	give	an	indication	of
what’s	available	out	there:	game	design,	literary	aspects,	history,	and	social	impact:

Fundamentals	of	Game	Design,	by	Ernest	Adams	(New	Riders,	2013)

This	book	discusses	a	variety	of	topics:	concept	development,	game-
play	design,	core	mechanics,	user	interfaces,	storytelling,	and

http://inkscape.org/
http://2d-game-art-tutorials.zeef.com/chris.hildenbrand
http://esotericsoftware.com/
http://audacityteam.org/

balancing;	exercises,	worksheets,	and	case	studies	are	also	included.

The	Ultimate	Guide	to	Video	Game	Writing	and	Design	by	Flint	Dille
and	John	Zuur	Platten	(Lone	Eagle,	2008)

Topics	covered	include	integrating	story	elements	into	a	game,	writing
a	game	script,	creating	design	documentation,	the	creative	process,
team	dynamics,	and	business	considerations.

Vintage	Games	by	Bill	Loguidice	and	Matt	Barton	(Focal	Press,	2012)

This	book	explores	the	history	of	some	of	the	most	influential	video
games	of	all	time,	with	a	particular	focus	on	their	development,
critical	reception,	and	impact	on	the	industry.

Reality	Is	Broken:	Why	Games	Make	Us	Better	and	How	They	Can
Change	the	World	by	Jane	McGonigal	(Penguin	Books,	2011)

In	this	book,	the	author	discusses	theories	from	psychology,	cognitive
science,	sociology,	and	philosophy	in	the	context	of	game	playing,	and
explains	how	games	can	make	us	more	productive	and	change	the
world	for	the	better.

It	is	also	useful	to	stay	abreast	of	current	news	and	developments	in	the	game	industry,
as	well	as	to	hear	the	opinions,	approaches,	struggles,	and	successes	of	your	fellow	game
developers.	For	these	purposes,	there	is	no	better	alternative	to	following	blogs.	The
following	are	some	particularly	substantial	sites	featuring	regular	blog	postings	(as	well	as
additional	useful	information	and	resources):

Gamasutra:	www.gamasutra.com

A	web	site	devoted	to	the	art	and	business	of	making	games	which,
among	other	resources,	contains	curated	lists	of	blog	postings	that
touch	on	all	aspects	of	the	industry.

GameDev.net:	www.gamedev.net

A	resource	for	developers	of	all	fields	and	expertise,	containing
articles	and	tutorials	on	technical,	creative,	and	business	aspects	of
game	development.

HobbyGameDev:	www.hobbygamedev.com

Maintained	by	Chris	DeLeon	(a	professional	video	game	developer,
author,	and	instructor),	this	regularly	updated	web	site	contains
articles,	advice,	tutorials,	case	studies,	interviews,	and	more.

Disseminating	Your	Games
Once	you	have	designed	and	created	some	games	of	your	own,	you	should	consider
sharing	them	with	others—after	all,	games	are	meant	to	be	played!	This	process	will

http://www.gamasutra.com
http://www.gamedev.net
http://www.hobbygamedev.com

require	you	to	package	your	work	in	a	playable	format,	and	find	an	audience	of	eager
game	enthusiasts.

Packaging	for	Desktop	Computers
The	simplest	way	to	share	your	games	is	to	create	executable	JAR	files.

1.	 To	do	so,	verify	that	your	launcher	class	contains	a	main	method
specified	as	shown	here	(adjust	the	name	and	parameters	of	your
method	to	match	this	if	necessary):

public	static	void	main	(String[]	args)

2.	 Then,	from	the	BlueJ	menu	bar,	choose	Project	ä	Create	Jar	File;	a
small	window	appears.	This	window	indicates	that	the	JAR	file	you
create	will	be	executable	if	the	main	class	is	specified.	That	is
exactly	what	you’re	hoping	to	do!	From	the	drop-down	list,	select
the	name	of	your	launcher	class.

3.	 In	addition,	your	executable	JAR	file	will	require	copies	of	all	the
LibGDX	JAR	files	used	by	BlueJ	when	developing	your	game.	If
you	have	been	storing	these	files	in	a	+libs	folder	in	your	project
directory,	you	may	skip	ahead	to	the	next	paragraph.	If	you	have
been	using	an	alternative	approach,	such	as	storing	the	LibGDX
JAR	files	in	the	BlueJ	userlibs	directory,	then	the	section	of	the
window	labelled	Include	User	Libraries	will	include	a	list	of	names
of	JAR	files,	including	those	containing	the	LibGDX	classes.	In	this
case,	be	sure	to	select	the	check	boxes	next	to	all	of	the	LibGDX
JAR	files	before	continuing.

4.	 At	this	point,	you	can	click	the	Continue	button.	A	file	directory
appears,	asking	you	to	specify	a	name	for	the	JAR	file.

5.	 Enter	the	name	of	your	game	and	then	click	the	Create	button.	Since
additional	JAR	files	are	required	by	your	application,	a	directory	is
created	in	the	location	you	specified,	and	in	that	directory	you	will
find	a	file	with	the	name	of	your	game	and	the	.jar	extension;	this
directory	should	also	contain	all	the	LibGDX	JAR	files	from	your
BlueJ	project’s	+libs	directory	or	those	that	you	selected	from	the
Create	Jar	File	window.	All	of	these	JAR	files	must	be	located	in
the	same	directory	in	order	to	be	able	to	run	your	game.	All	the
contents	of	the	other	folders	contained	in	the	BlueJ	project	directory
(such	as	the	assets	folder)	are	stored	within	your	game’s	JAR
file.

To	run	your	game,	all	you	need	to	do	is	to	double-click	your	game’s	JAR	file,	and	your
game	will	start.1	You	can	easily	share	your	game	with	others,	by	sending	them	the	set	of
files	in	this	directory.2	The	one	caveat	is	that	in	order	to	be	able	to	run	your	game,

potential	users	must	have	Java	installed	on	their	computers.	For	those	who	don’t,	you	have
two	main	options:

You	could	inform	users	that	they	need	to	install	Java,	and	direct	them
to	the	Java	web	site,	www.java.com.

You	could	use	a	third-party	tool	to	convert	your	JAR	files	into	native
executable	files	for	various	operating	systems;	one	such	tool	is	called
JWrapper,	and	is	available	from	www.jwrapper.com.

Compiling	for	Other	Platforms
Compiling	your	project	for	other	platforms	(such	as	Android,	iOS,	and	web	browsers	via
HTML5/JavaScript)	is	one	of	the	main	strengths	of	LibGDX.	However,	to	do	so
effectively	requires	the	use	of	an	advanced	integrated	development	environment.	This
section	briefly	covers	the	steps	required	to	set	up	a	LibGDX	project	for	the	Android
Studio	IDE.	For	further	details	concerning	configuring	the	IDE	setting,	compiling,	and
exporting,	you	will	need	to	consult	the	resources	listed.

1.	 Android	Studio3	is	an	IDE	based	on	the	IntelliJ	platform.	After
downloading	and	installing	this	software	(the	version	bundled	with
the	Android	SDK),	the	installer	will	most	likely	download	an
updated	set	of	packages.

2.	 After	this	process	is	complete,	visit	the	LibGDX	Wiki	project	setup
site4	and	download	gdx-tools.jar,	which	is	an	executable	JAR
file,	from	the	link	on	the	wiki	page.	Run	this	file,	and	you’ll	see	a
screen	similar	to	Figure	9-1.

http://www.java.com
http://www.jwrapper.com

Figure	9-1.	The	LibGDX	project	setup	tool

3.	 Here,	you’ll	need	to	enter	a	name	for	your	project,	a	package	name
(such	as	com.mygdx.spacerocks),	the	name	of	your	Game
class	(or	in	our	extended	framework,	the	class	that	extends
BaseGame),	the	directory	where	you’d	like	to	store	the	files,	and
the	path	where	the	Android	SDK	was	installed	when	you	installed
Android	Studio.

4.	 In	the	next	series	of	check	boxes,	you	can	specify	which	platforms
you’ll	be	developing	for	(for	starters,	I	recommend	selecting
Android	and	Desktop).	If	your	project	requires	any	third-party
libraries	or	extensions	(such	as	Box2D	or	the	game-pad	controllers
extension),	you	can	specify	that	here.

5.	 Then	click	the	Generate	button,	and	a	set	of	project	files	will	be
created	for	you	in	the	directory	you	specified	during	setup.	This
process	can	take	a	while	the	first	time	a	project	is	generated,	as	the
setup	file	will	download	a	number	of	dependency	files.

6.	 When	it	is	all	finished,	restart	Android	Studio,	select	the	Import
Project	option,	and	choose	the	file	named	build.gradle.

When	your	project	opens,	you’ll	notice	a	directory	structure	has	been	prepared	for	you,
including	directories	named	core,	android,	and	desktop.	The	latter	two	directories	contain
premade	launcher	files	for	their	corresponding	platforms.	The	core	directory	is	where	you
should	place	all	your	other	classes.	There	are	many	settings	that	you	will	need	to	configure
for	your	project,	such	as	editing	the	configuration	to	specify	a	working	directory	where
game	assets	are	located.	The	LibGDX	wiki,	referenced	earlier,	contains	details	that	you
will	need	to	read	through	to	help	get	your	project	up	and	running	should	you	decide	to
pursue	this	direction	further.

Finding	Distribution	Outlets
One	of	the	greatest	joys	of	being	a	game	developer	is	having	others	play	your	games.	Even
if	a	project	is	unfinished,	having	people	play-test	your	game	and	provide	feedback	can
help	your	creations	reach	even	greater	heights	and	attract	an	even	larger	audience.	Many
web	sites	support	independent	game	developers	and	provide	forums	for	sharing	your	work
with	the	community.	Some	of	these	web	sites	(such	as	Indie	DB	and	Game	Jolt)	will	even
provide	you	with	the	ability	to	upload	your	games	onto	their	servers	after	you	register	for
an	account.

Indie	DB:	www.indiedb.com

Game	Jolt:	http://gamejolt.com/

GameDev.net:	www.gamedev.net

The	Independent	Games	Source	(TIGSource):
www.tigsource.com

Indie	Gamer	forums:	http://forums.indiegamer.com/

If	you	post	a	game	to	one	of	these	sources,	while	you’re	waiting	to	hear	people’s
opinions	on	your	work,	you	should	strive	to	be	an	active	participant	in	their	forums.	Try
out	a	few	games	and	provide	feedback	to	your	fellow	developers.	We	all	benefit	from	a
vibrant	game	development	community,	so	be	sure	to	join	in	and	be	a	part	of	it!

With	that	final	piece	of	advice,	we	come	to	the	end	of	our	journey	together	through
this	book.	Hopefully,	however,	your	journey	as	a	game	developer	will	continue.	May	you
have	good	fortune	in	all	your	future	endeavors!

1If	your	project	runs	fine	from	within	BlueJ	but	you	encounter	difficulties	running	the	executable	JAR	file,	the	BlueJ
web	site	contains	various	suggestions	and	links	to	helpful	resources	at	www.bluej.org/help/ask-help.html.

2To	ensure	that	no	files	are	forgotten	when	sending	them	to	others,	you	may	want	to	using	a	program	such	as	7-Zip
(www.7-zip.org)	to	create	a	single	file	(called	an	archive	or	zip	file)	that	contains	all	the	JAR	files	needed	for	your
game.

http://www.indiedb.com
http://gamejolt.com/
http://www.gamedev.net
http://www.tigsource.com
http://forums.indiegamer.com/
http://www.bluej.org/help/ask-help.html
http://www.7-zip.org

3Available	at:	http://developer.android.com/sdk/index.html

4Available	at:	http://github.com/libgdx/libgdx/wiki/Project-Setup-Gradle

http://developer.android.com/sdk/index.html
http://github.com/libgdx/libgdx/wiki/Project-Setup-Gradle

APPENDIX	A

Review	of	Java	Fundamentals
This	appendix	briefly	reviews	the	core	Java	concepts	that	you	should	be	familiar	with	to
understand	the	material	presented	in	this	book.	This	is	not	a	complete	introduction	to	Java
programming,	so	if	any	of	the	topics	are	unfamiliar,	you	may	want	to	consult	a	textbook	or
tutorial	series	on	Java1	to	learn	more	about	the	corresponding	material.

Data	Types	and	Operators
Let’s	begin	by	listing	some	of	the	basic,	or	primitive,	data	types	available	in	Java:

*	int:	Integers	(numbers	with	no	decimal	part)

*	float:	Decimal	values

*	double:	Decimal	values,	stored	with	twice	the	precision	of	a
float

*	char:	A	single	character	(a	letter,	number,	or	symbol)

*	boolean:	The	value	true	or	false

Another	commonly	used	data	type	is	String,	which	represents	text:	a	set	of
characters.	Technically,	this	is	not	a	primitive	data	type,	but	it	can	be	initialized	in	a
similar	way.

Java	also	uses	the	common	binary	arithmetic	operators:	addition,	subtraction,
multiplication,	division	(or	quotient	in	the	case	of	integers),	and	remainder,	represented	by
the	symbols	+	,	-	,	*	,	/	,	and	%	,	respectively.	When	used	with	two	values	of	the	same
type,	the	result	will	also	be	of	the	same	type.	For	example,	the	value	of	5.0/2.0	is	2.5,
whereas	the	value	of	5/2	is	2.	The	results	are	different	because	in	the	first	example	the
values	have	type	double,	and	in	the	second	example	the	values	have	type	int.

When	performing	arithmetic	involving	two	types	of	values,	the	values	will	be
converted,	or	cast,	to	the	more	complex	type.	For	instance,	5.0/2	yields	a	value	of	2.5.
If	desired,	a	numeric	value	of	one	type	can	be	manually	cast	to	another	type	by	prefacing
it	with	the	name	of	the	desired	type	in	parentheses.	For	example,	(double)2	produces	a
value	of	2.0,	whereas	(int)2.5	produces	the	value	2.	(When	casting	to	an	int,	the
value	is	always	rounded	down	to	the	nearest	integer	value.)

Primitive	variables	can	be	declared	and	initialized	with	a	single	line	of	code,	with	the
following	syntax:

variableType	variableName	=	initialValue;

Alternatively,	these	tasks	can	be	carried	out	in	separate	statements:

variableType	variableName;
variableName	=	initialValue;

In	addition	to	using	=	to	assign	values	to	variables,	Java	provides	assignment
operators	(for	brevity),	which	modify	the	value	of	a	variable	by	a	constant	amount.	For
example,	the	statement	x	=	x	+	5	can	be	replaced	with	the	statement	x	+=	5.	Each	of
the	other	arithmetic	operations	has	a	corresponding	assignment	operator:	-=	,	*=	,	/=	,
and	%=.

Numeric	values	can	be	compared	with	the	conditional	operators:	==	for	equality,	!=
for	inequality,	<	for	less	than,	<=	for	less	than	or	equal	to,	>	for	greater	than,	and	>=	for
greater	than	or	equal	to.	The	result	of	a	comparison	is	a	Boolean	value—true	or	false
—and	can	be	stored	in	a	Boolean	variable	if	desired.	Boolean	values	can	be	combined
with	the	Boolean	operators:	&&	for	and,	||	for	or,	and	!	for	not.

An	array	is	an	object	that	contains	a	fixed	number	of	values	of	the	same	type.	The
length	of	the	array	is	set	when	the	array	is	created.	The	values	in	an	arrays	can	be
initialized	when	it	is	created	(and	the	size	will	be	inferred).	For	example,	the	following
creates	an	array	that	contains	five	characters:

char[]	letters	=	{	'g'	,	'a'	,	'm'	,	'e'	,	's'	}	;

Alternatively,	an	array	can	be	created	with	only	the	length	specified,	shown	here	for	an
array	that	will	contain	10	integers	(and	the	values	can	be	set	at	a	later	time):

int[]	values	=	new	int[10];

The	items	in	an	array	are	accessed	by	their	position,	or	index,	which	begins	with	the
number	0.	For	example,	given	the	preceding	array	named	letters,	letters[0]
produces	the	value	g,	letters[1]	produces	the	letter	a,	and	so	forth,	up	to
letters[4],	which	produces	s.	Note	that	the	array	has	length	5,	but	the	positions	are
numbered	0	through	4.	(This	is	true	in	general;	an	array	with	length	n	will	have	indices
numbered	0	through	n	–	1.)	Note	that	once	an	array	is	created,	its	size	cannot	be	changed;
trying	to	store	a	value	into	an	array	at	a	nonexistent	index	value	will	result	in	an	error
when	the	program	is	running.

Control	Structures
The	statements	within	a	Java	program	are	typically	run	one	after	the	other	in	sequence.
Control	structures	can	change	the	order	of	execution,	either	by	running	some	statements
only	when	certain	conditions	are	met	or	by	repeating	a	given	set	of	statements.

Conditional	Statements

An	if	statement	is	used	to	specify	that	a	certain	set	of	statements	should	be	run	only
when	a	certain	condition	(or	combination	of	conditions	or	a	Boolean	expression)	evaluates
to	true.	For	example,	the	following	code	will	add	100	to	the	variable	bonus	only	if	the
value	of	time	is	greater	than	60;	if	the	value	of	time	is	not	greater	than	60,	the	code
contained	within	the	braces	will	not	be	executed.

if	(time	>	60)
{
				bonus	+=	100;
}

Any	number	of	statements	may	be	contained	within	the	braces.	However,	if	only	one
statement	is	contained	within	the	braces,	the	braces	may	be	omitted	and	the	code	will	have
the	same	results,	as	follows:

if	(time	>	60)
				bonus	+=	100;

An	if-else	statement	is	used	when	you	need	to	provide	an	alternative	set	of
statements	that	will	be	executed	when	the	associated	condition	evaluates	to	false.	The
following	code	builds	on	the	previous	example,	adding	the	behavior	that	if	the	value	of
time	is	not	greater	than	60,	then	the	value	of	bonus	will	be	incremented	by	50	instead.

if	(time	>	60)
{
				bonus	+=	100;
}
else
{
				bonus	+=	50;
}

On	occasion,	you	may	want	to	test	a	variable	for	equality	against	a	set	of	values,	and
execute	a	different	set	of	statements	in	each	case.	For	example,	consider	the	following
code,	which	prints	a	message	depending	on	whether	the	value	of	itemCount	is	equal	to
0,	1,	2,	or	anything	else.

if	(itemCount	==	0)
				System.out.print("You	have	no	items.");
else	if	(itemCount	==	1)
				System.out.print("You	have	a	single	item.");
else	if	(itemCount	==	2)
				System.out.print("You	have	two	items.");
else
				System.out.print("You	have	many	items!");

A	switch	statement	presents	an	alternative	way	to	write	this	type	of	code	(which	is
often	easier	to	read).	The	following	code	features	a	switch	statement	that	has	exactly	the

same	effect	as	the	if-else	statements	presented	previously.	Each	of	the	value
comparisons	in	the	if-else	statements	correspond	to	an	occurrence	of	the	case
keyword	within	the	switch	code	block,	while	the	final	else	statement	corresponds	to
the	default	keyword.	After	listing	the	set	of	statements	to	be	executed	for	a	given	case,
a	break	statement	must	be	included	(otherwise,	the	statements	corresponding	to	the
following	cases	will	also	be	executed,	regardless	of	whether	the	variable	is	equal	to	the
value	presented).

switch	(itemCount)
{
				case	0:
								System.out.print("You	have	no	items.");
								break;
				case	1:
								System.out.print("You	have	a	single	item.");
								break;
				case	2:
								System.out.print("You	have	two	items.");
								break;
				default:
								System.out.print("You	have	many	items!");
}

Repetition	Statements
The	while	statement	is	used	to	repeat	a	set	of	statements	as	long	as	a	given	condition	is
true.	For	example,	the	following	code	will	continue	to	add	5	to	the	variable	score,	and
subtract	1	from	the	value	of	stars,	as	long	as	the	value	of	stars	is	greater	than	0:

while	(stars	>	0)
{
				score	+=	5;
				stars	-=	1;
}

A	while	statement	is	particularly	useful	when	a	set	of	statements	needs	to	be
repeated	an	unknown	number	of	times.	You	must	be	careful	when	using	a	while
statement,	because	if	the	associated	condition	always	remains	true,	then	the	statements
will	continue	to	execute	forever!

The	for	statement	is	used	to	repeat	a	set	of	statements	a	fixed	number	of	times.	In
typical	usage,	a	variable	is	set	to	an	initial	value,	and	as	long	as	a	condition	involving	the
variable	is	true,	a	set	of	statements	is	executed.	Afterward,	the	value	of	the	variable	is
changed	by	a	given	amount,	the	condition	is	checked	again,	and	so	forth,	until	the	given
condition	evaluates	to	false.	The	following	example	initially	sets	a	variable	n	to	1,	and
as	long	as	n	is	less	than	10,	adds	3	to	points;	the	value	of	n	is	increased	by	1	with	each

iteration	of	the	loop:

for	(int	n	=	1;	n	<	10;	n++)
{
				points	+=	3;
}

for	loops	are	particularly	useful	in	tasks	involving	arrays.	As	an	example,	the
following	code	initializes	an	array	named	numbers	to	store	five	integers,	and	the	for
loop	stores	the	value	10*n	at	each	position	n	in	the	array.	Note	that	the	loop	variable	is
initialized	to	0	(as	this	is	the	first	index	in	an	array),	and	the	condition	is	that	the	variable
is	less	than	the	length	of	the	array.	(You	must	use	the	less	than	comparison	in	the
condition,	since	the	largest	index	in	an	array	is	always	equal	to	the	length	of	the	array
minus	1.)

int[]	numbers	=	new	int[5];
For	(int	n	=	0;	n	<	numbers.length();	n++)
{
								numbers[n]	=	10	*	n;
}

A	variation	on	the	syntax	of	the	for	statement,	called	the	enhanced	for	statement,	is
convenient	for	accessing	the	values	of	an	array.	As	a	motivating	example,	consider	the
following	code,	which	takes	each	of	the	values	from	an	array	called	grades,	and	adds
them	all	to	a	variable	called	total:

for	(int	n	=	0;	n	<	grades.length();	n++)
{
				int	num	=	grades[n];
				total	+=	num;
}

The	exact	same	result	can	be	achieved	more	efficiently	with	the	following	code,	which
automatically	extracts	the	elements	of	an	array	(in	order),	and	stores	them	into	a	variable
before	proceeding	to	the	statements	contained	within	the	loop:

for	(int	num	:	grades)
{
				total	+=	num;
}

Methods
A	method	is	a	set	of	statements,	grouped	together,	that	can	be	called	upon	repeatedly	to
perform	a	task.	Every	method	has	an	associated	name,	can	take	zero	or	more	values	as
input,	and	may	or	may	not	return	a	value.	Each	method	is	contained	within	a	structure
called	a	class,	which	is	covered	in	further	detail	later.	The	syntax	for	a	method	is	presented

here,	and	the	various	components	are	summarized	immediately	afterward.

modifer	returnType	methodName	(variableType	variableName	
,	...)
{
						//	statements
}

modifier	is	a	keyword	(such	as	public	or	private)	that
indicates	where	this	method	can	be	used	in	the	program.

returnType	indicates	the	type	of	data	being	returned,	and	can	be
set	to	void	if	no	data	is	returned	by	the	method.

methodName	is	the	name	of	the	method.

Within	the	parentheses,	for	each	input	that	is	to	be	provided,	you	must
list	the	type	of	input	(indicated	by	variableType)	and	the	name	by
which	it	will	be	referred	to	in	the	statements	that	follow	(indicated	by
variableName).

For	example,	the	following	public-access	method	called	average	takes	two
float	values	as	input,	calculates	their	average	(which	is	also	a	float),	and	returns	this
value:

public	float	average(float	x,	float	y)
{
				return	(x	+	y)	/	2;
}

Methods	can	be	called	upon	in	two	ways,	depending	on	how	they	are	written.	Some
methods	may	be	called	from	the	class	that	contains	them.	For	example,	the	Math	class
contains	a	method	named	sqrt	that	calculates	the	square	root	of	a	number;	to	use	this
method	to	calculate	the	square	root	of	4,	you	would	write	Math.sqrt(4).	Alternatively,
some	methods	are	called	from	a	variable.	As	an	example,	every	String	variable	contains
a	method	named	charAt	that	returns	the	character	at	a	given	position	in	the	string.	If	you
create	a	String	named	word	that	contains	the	text	games,	then	word.charAt(2)
returns	the	character	m.

Objects	and	Classes
An	object	is	a	collection	of	related	data	and	methods	that	operate	on	that	data.	A	class	is	a
set	of	code	that	is	used	as	a	prototype	or	a	blueprint	from	which	objects	can	be	created.
Some	classes	are	automatically	available	in	Java	(such	as	the	String,	Math,	and
System	classes).	To	use	other	classes	in	your	program,	you	must	indicate	which	of	the
many	available	classes	should	be	loaded	by	using	an	import	statement.	For	example,	to

be	able	to	use	the	Random	class	in	your	program,	which	is	part	of	the	java.util
package,2	at	the	beginning	of	your	program	you	must	include	this	line:

import	java.util.Random;

To	create	an	object	from	this	class	(also	called	an	instance	of	the	class),	you	use	the
new	operator,	followed	by	a	special	method	of	the	class	called	the	constructor.	The	name
of	the	constructor	method	will	always	be	identical	to	the	name	of	the	corresponding	class,
and	it	may	require	input	values	to	initialize	the	data	that	belongs	to	the	class.	For	example,
to	create	an	instance	of	the	Random	class,	you	would	use	the	following	code:

Random	rand	=	new	Random();

Following	this,	you	could	then	use	the	methods	of	the	variable	rand,	such	as
nextInt	(which	returns	a	randomly	generated	integer)	as	follows:

int	secret	=	rand.nextInt();

The	previously	mentioned	String	class	is	special,	in	that	it	may	be	initialized	in	the
same	way	as	a	primitive	type	variable	(like	int	or	float),	but	it	may	also	be	initialized
using	the	new	operator	(which	requires	the	text	to	be	stored	in	as	input):

String	name	=	new	String("Lee");

One	of	the	most	powerful	features	of	Java	(or	any	object-oriented	programming
language)	is	the	ability	to	define	your	own	classes.	As	an	in-depth	example,	the	following
class,	called	Fraction,	stores	the	data	used	in	a	fractional	number:	a	numerator	and	a
denominator	(both	integers).	There	is	a	constructor	to	set	these	values,	a	method	to	create
a	String	representation	of	the	fraction,	and	a	method	to	convert	the	fraction	to	a	float
value	(by	calculating	the	quotient).

class	Fraction
{
				//	numerator
				int	n;
				//	denominator
				int	d;

				//	constructor
				Fraction(int	a,	int	b)
				{
								n	=	a;
								d	=	b;
				}

				//	creates	a	String	representation
				public	String	toString()
				{

								return	(n	+	"/"	+	d);
				}

				//	convert	to	a	float	value
				public	float	convertToFloat()
				{
								return	(float)n	/	d;
				}
}

Next	is	a	sample	class	that	uses	the	Fraction	class	as	defined	previously.	In
particular,	it	creates	and	initializes	a	Fraction	object,	and	then	uses	its	methods	and
prints	their	results	to	the	screen.	(A	technical	aside:	you	must	declare	the	main	method	as
static	in	order	to	be	able	to	run	the	method	directly	from	the	class	rather	than	from	an
instance	of	the	class.)

class	Sample
{
				public	static	void	main()
				{
								Fraction	frac	=	new	Fraction(3,4);
								String	fracString	=	frac.toString();
								float		fracValue		=	frac.convertToFloat();
								System.out.println("The	value	of	"	+	fracString	+	"	
is	"	+	fracValue);
				}
}

Sometimes	when	you	write	a	class,	you’ll	want	to	control	access	to	data,	either	to
restrict	the	possible	set	of	values	that	can	be	assigned,	or	to	prevent	another	part	of	the
program	from	accidentally	changing	the	data	(possibly	due	to	a	mistake	in	the	code).
Access	modifiers	are	used	in	such	situations;	they	can	be	included	to	specify	whether	other
classes	can	use	a	particular	field	or	method.	The	two	most	common	modifiers	are
public,	which	indicates	that	any	class	can	access	the	corresponding	variable	or	method,
and	private,	which	indicates	that	it	may	be	accessed	only	within	the	class	in	which	it	is
defined.	There	is	a	less	frequently	used	modifier,	protected,	which	allows	access
within	the	defining	class	and	any	subclasses	(that	is,	those	that	extend)	the	defining	class.

As	a	practical	example	of	when	access	modifiers	are	useful,	let’s	return	to	our	custom
Fraction	class.	The	denominator	of	a	fraction	should	never	be	set	equal	to	zero
(because	division	by	zero	leads	to	contradictory	mathematical	results).	You	prevent	this
unwanted	behavior	by	setting	the	class	fields	to	private,	and	rewriting	the	constructor
(or	any	other	relevant	methods)	to	take	action	in	this	case,	as	demonstrated	here:

class	Fraction
{
				//	numerator

				private	int	n;
				//	denominator
				private	int	d;

				//	constructor
				Fraction(int	a,	int	b)
				{
								n	=	a;
								if	(b	==	0)
								{
												System.err.println("Invalid	denominator;	changing	
value	to	1.");
												d	=	1;
								}
								else
								{
												d	=	b;
								}
				}

				//	other	methods	remain	the	same	as	before
}

Summary
These	topics—data	types,	operators,	control	structures,	methods,	and	classes—are	the
foundations	from	which	you	will	create	your	own	programs.	In	real	applications,	your
code	will	typically	be	much	longer	than	the	examples	presented;	your	classes	will	no
doubt	contain	multiple	import	statements,	declare	many	variables	of	various	types,	and
have	an	assortment	of	methods,	each	of	which	contains	a	significant	number	of	statements.
When	working	on	your	own	projects,	in	addition	to	writing	your	own	classes,	your
programs	will	probably	use	many	predefined	classes	as	well.	For	this	reason,	it	is	good	to
spend	some	time	becoming	familiar	with	the	style	and	type	of	information	that	is
presented	in	the	Java	documentation	format,	whether	it	be	the	official	Java	language
reference3	or	the	documentation	for	any	Java	libraries	you	include	in	your	projects.

1The	official	Java	tutorials,	maintained	by	the	Oracle	corporation,	are	available	online	at
http://docs.oracle.com/javase/tutorial/java/index.html.

2To	find	out	the	package	that	contains	a	particular	class,	you	can	consult	the	Java	documentation	or	the	documentation
for	the	particular	library	you	are	using.

3http://docs.oracle.com/javase/8/docs/api/

http://docs.oracle.com/javase/tutorial/java/index.html
http://docs.oracle.com/javase/8/docs/api/

Index
		A

Access	modifiers

Associative	array

		B
Balloon	Buster	game

anonymous	inner	classes

balloon	entities

create	and	update	method

ideas	and	suggestions

update	method

BlueJ	IDE

download	options

features

Hello,	World	application

installation

project	window

Box2D

Box2DActor	class

features

impulse

Jumping	Jack	game

addSolid	method

base	coin	object

contact	events

ContactListener	interface

GameScreen	class

keyDown	method

parseImageFiles

Player	class

physics	simulation

Bricks

		C
52-Card	Pickup	game

cards	and	piles

game	setup

input	actions

setup	and	rules

suggestions

visual	hints

Cheese,	Please!	game

abstract	class

Actor	class

audio	stage

BaseScreen	class

discrete	action

functions

game	loop	stage

handling	multiple	screen

ApplicationListener	interface

create	method

render	method

image-based	animations

interfaces

Monster	class

Person	class

Player	class

talkTo	method

main	screen

shutdown	stage

sleep	stage

Sprite	class

startup	stage

user	input

collision	detection

create	method

glClear	method

import	statements

isKeyPressed	method

render	method

user	interfaces

bitmap	fonts

cameras	and	scrolling

labels

layering

value-based	animations

Clamping

Control	structures

conditional	statements

repetition	statements

Core	Java	concepts

arithmetic	operators

arrays

assignment	operators

boolean	operators

classes

conditional	operators

control	structures

conditional	statements

repetition	statements

data	types

methods

objects	and	classes

		D
Data	structures

3D	graphics

BaseActor3D	class

concepts	and	classes

ambient	light

directional	light

mesh	and	material

orthographic	and	perspective	projection

parameters

Utah	teapot

vanishing	point

interactive	3D	demo

Minimal	3D	demo

create	method

render	method

Pirate	Cruiser

clone	method

collision	detection

create	method

createSphereInv	method

getBoundingPolygon	and	overlaps	method

update	method

Stage3D	class

Discrete	action

Driver	class

DrJava

		E,	F
Eclipse

Emitter

		G,	H
Game	jam

Gamepad	controllers

continuous	input

discrete	input

		I
Image-based	animations

Infinite	scrolling	effect

IntelliJ	IDEA

Interfaces

		J,	K
Java	Archive	(JAR)	files

Jumping	Jack	game

addSolid	method

base	coin	object

contact	events

ContactListener	interface

GameScreen	class

keyDown	method

parseImageFiles

Player	class

		L
LibGDX	library

advantages

BlueJ

driver	class

Hello,	World	program

extending	classes

HelloWorldImage	class

IDE

advantages	and	disadvantages

BlueJ

DrJava

Eclipse

IntelliJ	IDEA

NetBeans

JAR	files

particle	systems

static	methods

LibGDX	Particle	Editor

Lightweight	Java	Game	Library	(LWJGL)

		M
Methods

Multiple	component	integration

Jumping	Jack	2

preliminary	setup

		N
NetBeans

		O
Object

		P,	Q
Particle	system

Pirate	Cruiser

Plane	Dodger	game

enemy	planes

game-specific	features

infinite	scrolling	effect

mechanics

player	object

stars	and	sparkles

Polling

Project	development

artistic	resources

blog	postings

distribution	outlets

executable	JAR	files

game	design

game	jam

history

LibGDX	project	setup

literary	aspects

overcoming	difficulties

role-playing	games

skill	sets

social	impact

		R
Rectangle	Destroyer	game

additional	features

Ball	class

Brick	class

game	setup

mechanics

Paddle	class

power-ups

		S
Sandbox	games

Seamless	texture

Software	libraries

Space	Rocks	game

additional	features

create	method

goals

import	statements

lasers

mechanics

rocks	and	explosions

spaceship	object

Starfish	Collector	game

AnimatedActor	class

audio

create	method

dispose	method

music	interface

sound	interface

update	method

BaseActor	class

collision	response

copy	and	clone	method

data	structures

features

game	creation

overlaps	method

PhysicsActor	class

setEllipseBoundary	method

user	interface

bitmap-based	fonts

buttons

main	game	layout

overlay-style	menu

pause	game	layout

resource	management

start	screen	setup

title	screen	layout

UI	elements

Starscape

		T
Third-party	software

explosion	particle	effect

ParticleActor	class

particle	systems

emitter	properties

fine-tuning	parameter	values

LibGDX	particle	editor

parameter	change	graph

tint	parameter	graph

rocket-thruster	effect

Starscape

Tiled

background	layer

configuration	settings

ObjectData	layer

overlay	layer

PhysicsData

Treasure	Quest	game

BaseScreen	class

four-directional	movement

keyDown	method

MapObject

OrthogonalTileMapRenderer	object

OrthographicCamera

PhysicsData

render	method

TiledMap	object

update	method

Tilemap

Touch-screen	controls

touchpad	objects

user	interface

Treasure	Quest	game

		U
User	input

gamepad	controllers

continuous	input

discrete	input

touch-screen	controls

touchpad	objects

user	interface

User	interfaces

bitmap	fonts

labels

		V,	W,	X,	Y,	Z
Value-based	animations

Vanishing	point

	Title
	Copyright
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1 : Getting Started with Java and LibGDX
	Choosing a Development Environment
	Setting Up BlueJ
	Downloading and Installing
	Using BlueJ
	Setting Up LibGDX

	Creating a “Hello, World!” Program with LibGDX
	Advantages to Using LibGDX
	Summary

	Chapter 2 : The LibGDX Framework
	Understanding the Life Cycle of a Game
	Working with User Input
	Managing the Action
	The Sprite Class
	The Actor Class

	Implementing Visual Effects
	Value-Based Animations
	Image-Based Animations

	Introducing User Interfaces
	Labels and Bitmap Fonts
	Layering with Stage Objects
	Cameras and Scrolling

	Handling Multiple Screens
	Summary

	Chapter 3 : Extending the Framework
	Cheese, Please! Revisited
	Discrete Input
	Abstract Class Design
	Refactoring the Project

	Balloon Buster: A Mouse-Driven Game
	Balloons
	Adding Interactivity
	Next Steps

	Starfish Collector: A Game with Improved Actor Classes
	The BaseActor Class
	The AnimatedActor Class
	The PhysicsActor Class
	Creating the Game
	Next Steps

	Summary

	Chapter 4 : Adding Polish to Your Game
	Audio
	Advanced User-Interface Design
	Arranging UI Elements
	Managing Resources
	Using Customized Bitmap Fonts
	Creating Buttons
	Setting Up the Start Screen
	Creating an Overlay Menu

	Summary

	Chapter 5 : Alternative Sources of User Input
	Gamepad Controllers
	Continuous Input
	Discrete Input

	Touch-Screen Controls
	Working with a Touch Pad
	Redesigning the User Interface

	Summary

	Chapter 6 : Additional Game Case Studies
	Space Rocks
	The Spaceship
	Lasers
	Rocks and Explosions
	Next Steps

	Plane Dodger
	Infinite Scrolling Effects
	Player Plane
	Stars and Sparkles
	Enemy Planes
	Next Steps

	Rectangle Destroyer
	The Paddle
	The Brick
	The Ball
	The Power-up
	Setting Up the Game
	Next Steps

	52-Card Pickup
	Cards and Piles
	Setting Up the Game
	Providing Visual Hints
	Next Steps

	Summary

	Chapter 7 : Integrating Third-Party Software
	Working with Particle Systems in LibGDX
	The LibGDX Particle Editor
	Rocket-Thruster Effect
	Explosion Effect
	The ParticleActor Class
	Starscape: An Interactive Visual Demo

	Using Tiled for Level Design
	Creating Tilemaps
	Treasure Quest: An Adventure-Style Exploration Game
	Creating Four-Directional Character Animations

	Simulating Advanced Physics with Box2D
	Physics Primer
	The Box2DActor Class
	Jumping Jack: A Physics-Based Sandbox Game

	Integrating Multiple Components
	Preliminary Setup
	Jumping Jack 2: Even More Coins

	Summary

	Chapter 8 : Introduction to 3D Graphics
	Exploring 3D Concepts and Classes
	Creating a Minimal 3D Demo
	Re-creating the Actor/Stage Framework
	The BaseActor3D Class
	The Stage3D Class
	Creating an Interactive 3D Demo

	Pirate Cruiser: Navigating the Sea in 3D
	Next Steps
	Summary

	Chapter 9 : The Journey Continues
	Continuing Your Developing
	Working on Projects
	Obtaining Art Resources
	Participating in Game Jams
	Overcoming Difficulties

	Broadening Your Horizons
	Playing Different Games
	Increasing Your Skill Set
	Recommended Reading

	Disseminating Your Games
	Packaging for Desktop Computers
	Compiling for Other Platforms
	Finding Distribution Outlets

	Appendix A: Review of Java Fundamentals
	Data Types and Operators
	Control Structures
	Conditional Statements
	Repetition Statements

	Methods
	Objects and Classes
	Summary

	Index

