
www.allitebooks.com

http://www.allitebooks.org

Bazaar Version Control

A fast-paced practical guide to version control
using Bazaar

Janos Gyerik

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Bazaar Version Control

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2013

Production Reference: 1300513

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-356-2

www.packtpub.com

Cover Image by Andrew Caudwell (acaudwell@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Janos Gyerik

Reviewers
Alexander Belchenko

John Arbash Meinel

Yavor Nikolov

Acquisition Editors
Mary Jasmine Nadar

Llewellyn Rozario

Lead Technical Editor
Ankita Shashi

Technical Editors
Jalasha D'costa

Amit Ramadas

Lubna Shaikh

Project Coordinator
Amey Sawant

Proofreaders
Kate Elizabeth

Clyde Jenkins

Indexer
Monica Ajmera Mehta

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

About the Author

Janos Gyerik is a Software Engineer living in Paris, France. He has been using
Bazaar since its early releases to manage his personal projects, some of which are
open source and available on Launchpad (https://launchpad.net/~janos-
gyerik). Janos is passionate about Bazaar, and although he embraces other version
control systems as well, he wouldn't miss a chance to uphold Bazaar's values over
competitive solutions. Janos spends most of his free time on various personal
projects, and he is always up to something, which you can read about on his blog
at http://janosgyerik.com/.

I would like to thank my wife for putting up with my late night
writing sessions. I also give deep thanks and gratitude to my brother,
Matyas Fodor, and my friends, Hugues Merlen, Alain Vizzini,
Ivan Zimine, and Pierre-Jean Baraud, whose critical comments and
support has helped me greatly in writing and improving the quality
of this book.

I also would like to thank the reviewers Yavor Nikolov, John Meinel,
and Alexander Belchenko for their criticism and support, it was a
real pleasure working together. Finally, I thank Packt Publishing for
this great opportunity.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Alexander Belchenko is a software developer from Ukraine. He worked on
hardware and software designs of embedded systems and radio-electronic devices
as a Radio Engineer and Software Developer. In his free time, Alexander contributes
to open source projects. In 2005, he started contributing to the Bazaar VCS project,
and later worked on GUI tools for Bazaar VCS.

John Arbash Meinel is a software developer currently living in Dubai, United
Arab Emirates. He was one of the primary developers of Bazaar, and is currently
working on cloud technologies. He was employed by Canonical Ltd.

I would like to thank Martin Pool for bringing the vision for such a
wonderful version control system, and my wife and son for bringing
a balance to my life outside work.

Yavor Nikolov is a software professional living in Sofia, Bulgaria. His professional
background is mostly in Oracle Database technologies and data warehousing, and
being involved in software development, database administration, tweaking server
OS, and technical consulting.

Yavor's interests are in bettering everything in the software/knowledge world—
from personal level to team, products, and organizations as a whole. He is trying
to bring innovation and good practices in tools, technologies and infrastructure,
process of work, project management, collaboration and learning culture.

www.allitebooks.com

http://www.allitebooks.org

As a proponent of Kanban, Lean, Agile, Scrum methods, approaches, and related
practices, Yavor has been actively involved in the local communities, which
have emerged around these topics (most notably Scrum Bulgaria—http://
scrumbulgaria.org/).

Yavor often uses open source software. He uses Linux as his main OS on his
computer at work and at home. He's also been contributing to a few open source
projects, most notably DbFit—http://benilovj.github.io/dbfit, and
pbzip2—http://compression.ca/pbzip2.

Yavor discovered Bazaar and Launchpad in his way while trying to find an online
collaboration platform and source control repository for the previously mentioned
pbzip2 project. He loved the power and flexibility of Bazaar and since then has
been using it in some other projects and personal work.

When not at work, Yavor loves spending time with nature and is often found
hiking in nearby mountains.

I would like to thank the author, Janos Gyerik, and Packt Publishing
for their effort in making this great book. Thanks for involving me
in its review—particular thanks to Amey Sawant and Leena Purkait
of Packt Publishing for their professional attitude. I've been glad to
help and to be part of this project!

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to
access PacktLib today and view nine entirely free books. Simply use your login
credentials for immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Getting Started 7

Version control systems 7
Reverting a project to a previous state 8
Viewing the log of changes 8
Viewing the differences between revisions 9
Branching and merging 10
Acronyms related to version control 12

Centralized version control systems (CVCS) 13
Distributed version control systems (DVCS) 14
What is Bazaar? 16
Installing Bazaar and its plugins 17

GNU/Linux 17
Ubuntu, Debian, and derivatives 18
Red Hat, Fedora, CentOS, and derivatives 18
openSUSE and derivatives 18
Installing Bazaar using pip 18
Other installation methods 19

Windows 19
Mac OS X 20
Bazaar in a shared hosting environment 21

Interacting with Bazaar 22
Using the command-line interface 22
Using the graphical user interface 23
Using the two user interfaces together 26

Upgrading Bazaar to the latest version 26
Uninstalling Bazaar 26
Getting help 27
Summary 28

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Diving into Bazaar 29
Understanding the core concepts 29

Revision 30
Repository 31
Branch 32
Working tree 32
Putting the concepts together 34
Storing Bazaar's data in the filesystem 34

Introducing the user interfaces 35
Using the command-line interface (CLI) 35
Using Bazaar Explorer 36

Configuring Bazaar 36
Configuring the author information 36
Configuring the default editor 37
Other configuration options 38

Performing the basic version control operations 38
Putting a directory under version control 39

Using the command line 39
Using Bazaar Explorer 40

Checking the status of files and directories 42
Using the command line 43
Using Bazaar Explorer 44

Adding files to version control 45
Using the command line 45
Using Bazaar Explorer 46

Recording a new revision 49
Using the command line 49
Using Bazaar Explorer 50

Ignoring files 53
Using the command line 54
Using Bazaar Explorer 54
Checkpoint 56

Deleting files 56
Using the command line 57
Using Bazaar Explorer 57

Undoing changes 58
Using the command line 58
Using Bazaar Explorer 58

Editing files 60
Using the command line 60
Using Bazaar Explorer 60

Viewing differences in changed files 61
Using the command line 62

Table of Contents

[iii]

Using Bazaar Explorer 64
Checkpoint 65

Renaming or moving files 66
Using the command line 66
Using Bazaar Explorer 68
Checkpoint 68

Viewing the revision history 68
Using the command line 68
Using Bazaar Explorer 70

Restoring files from a past revision 71
Using the command line 71
Using Bazaar Explorer 72

Putting it all together 72
Making different kinds of changes 72
Understanding the backup files created by Bazaar 74
Understanding the .bzr directory 75
How often to commit? 75

Beyond the basics 76
Mastering the command line 76

Common flags 76
Common behavior in all the commands 76
Using shorter aliases of commands 77
Quick reference card 77

Using tags 77
Specifying revisions 78

Specifying a single revision 78
Specifying a range of revisions 79

Viewing differences between any two revisions 80
Viewing differences between any revision and the working tree 80
Viewing differences between any two revisions 81
Viewing differences going from one revision to the next 82

Cloning your project 82
Summary 83

Chapter 3: Using Branches 85
What is a branch? 86

A single branch with a linear history 86
Multiple diverged branches 86
Branches with non-linear history 87
Unrelated branches 88

What can you do with branches? 88
Creating branches 88
Comparing branches 89
Merging branches 89
Mirroring branches 90

Table of Contents

[iv]

Why use more than one branch? 90
Separating the development of new features 91
Switching between tasks 92
Experimenting with different approaches 93
Maintaining multiple versions 94

Understanding core terms and concepts 94
trunk, master, and mainline 94
The tip of a branch 94
Source and target branches 95
Parent branch 95
Diverged branches and the base revision 95
Storing branch data 96

Using a shared repository 96
Using the command line 98
Using Bazaar Explorer 98

Basic branching and merging 99
Getting the example project 99

Using the command line 99
Using Bazaar Explorer 100

Creating a feature branch 101
Using the command line 101
Using Bazaar Explorer 101

Working on a branch 102
Starting another branch 102
Merging the bugfix branch 103

Using the command line 104
Using Bazaar Explorer 104

Viewing merged revisions in the log 106
Using the command line 106
Using Bazaar Explorer 107

Using the branch command 108
Creating branches based on an older revision 109

Using the command line 109
Using Bazaar Explorer 109

Viewing basic branch information 109
Comparing branches 110

Using the command line 110
Viewing missing revisions between branches 111
Viewing the differences between branches 112

Using Bazaar Explorer 114
Viewing the tree of branches 114
Viewing missing revisions between branches 115
Viewing the differences between branches 116

Table of Contents

[v]

Merging branches 116
Performing a three-way merge 117
Completing the merge 118

Committing the merge 118
Aborting the merge 119

Resolving conflicts 119
Resolving text conflicts 120
Resolving content conflicts 124
Redoing the merge 125
Resolving other types of conflicts 126

Merging a subset of revisions 126
Merging up to a specific revision 126
Merging a range of revisions 127
Cherry-picking 128

Understanding revision numbers 128
Merging from multiple branches 130

Mirroring branches 130
Mirroring from another branch 131
Mirroring from the current branch 132

Summary 134
Chapter 4: Using Bazaar in a Small Team 135

Collaborating with others 136
Working with remote branches 136
Implementing simple workflows 137

Sharing branches over the network 138
Specifying remote branches 138

Using URL parameters 139
Using remote branches through a proxy 139

Sharing branches using a distributed filesystem 140
Sharing branches over SSH 142

Using individual SSH accounts 142
Using individual SSH accounts with SFTP 143
Using a shared restricted SSH account 143
Using SSH host aliases 145
Using a different SSH client 145

Sharing branches using bzr serve 145
Sharing branches using inetd 146
Sharing branches over HTTP or HTTPS 147

Working with remote branches 147
Working with remote branches directly 148
Using local mirror branches 148

Creating a local mirror 150
Using a shared repository 150
Updating a local mirror 150

Table of Contents

[vi]

Using remote mirror branches 151
Creating a remote mirror 151
Using a shared repository 152
Updating a remote mirror 152

Using branches without a working tree 152
Creating a local branch without a working tree 152
Creating or removing the working tree 153
Reconfiguring working trees in a shared repository 154
Creating remote branches without a working tree 154

Slicing and dicing branches 155
Implementing simple workflows 156

Using independent personal branches 157
Merging from branches repeatedly 158
Handling criss-cross merges 159
Viewing the history from different perspectives 160

Using feature branches and a common trunk 161
Merging into a common remote trunk 162
Merging feature branches in lock-step 163
Doing "code reviews" 164

Summary 164
Chapter 5: Working with Bazaar in Centralized Mode 165

The centralized mode 166
Core operations 166
The centralized workflow 167

Checkout from the central branch 167
Making changes 168
Committing changes 168
Updating from the server 169
Handling conflicts during update 170

Advantages 170
Easy to understand 170
Easy to synchronize efforts 171
Widely used 171

Disadvantages 171
Single point of failure 171
Administrative overhead of access control 171
The update operation is not safe 172
Unrelated changes interleaved in the revision history 172

Using Bazaar in centralized mode 172
Bound branches 172
Creating a checkout 173

Using the command line 173
Using Bazaar Explorer 174

Updating a checkout 176
Using the command line 177

Table of Contents

[vii]

Using Bazaar Explorer 177
Visiting an older revision 178

Committing a new revision 178
Practical tips when working in centralized mode 179

Working with bound branches 180
Unbinding from the master branch 180
Binding to a branch 181
Using local commits 182

Working with multiple branches 184
Setting up a central server 184

Using an SSH server 185
Using the smart server over SSH 185
Using individual SSH accounts 186
Using a shared restricted SSH account 186
Using SFTP 188

Using bzr serve directly 188
Using bzr serve over inetd 189

Creating branches on the central server 189
Creating a shared repository without working trees 190
Reconfiguring a shared repository to not use working trees 190
Removing an existing working tree 191
Creating branches on the server without a working tree 191

Practical use cases 191
Working on branches using multiple computers 192
Synchronizing backup branches 193

Summary 194
Chapter 6: Working with Bazaar in Distributed Mode 195

The distributed mode in general 195
Collaborators work independently 197
The mainline branch is just a convention 198
Collaborators write only to their own branches 198
The distributed mode gives great flexibility 199
Encouraging feature branches 199
The revision history depends on the perspective 200

The human gatekeeper workflow 202
Overview 203
Setting guidelines to accept merge proposals 204
The role of the gatekeeper 205
Creating a merge proposal 206

Using a Bazaar hosting site 206
Sharing the branch URL with the gatekeeper 206
Sending a merge directive 207

Table of Contents

[viii]

Rejecting a merge proposal 211
Accepting a merge proposal 212
Reusing a branch 213
Commander/Lieutenant model 214
Switching from the peer-to-peer workflow 215

The automatic gatekeeper workflow 218
Patch Queue Manager (PQM) 218
Revision history graph 219

The shared mainline workflow 219
Updating the mainline using push operations 220

Updating the mainline using a new local mirror 220
Re-using an existing local mirror 221

Updating the mainline using a bound branch 222
Updating the mainline using a new checkout 222
Reusing an existing checkout 223

Choosing a distributed workflow 224
Summary 225

Chapter 7: Integrating Bazaar in CDE 227
What is a CDE? 227
Working with Launchpad 228

Creating a Launchpad account 229
Creating an account 229
Associating bzr with Launchpad 232
Testing your setup 232

Hosting personal branches 233
Uploading personal branches 234
Using personal branches 235
Deleting branches 236

Hosting a project 236
Using the Sandbox site 236
Creating a project 237
Uploading project branches 238
Viewing project branches 238
Viewing your own branches 239
Setting a focus branch 239
Using series 242
Viewing and editing branch details 242

Using merge proposals 243
Creating a merge proposal 243
Viewing and editing a merge proposal 245
Approving / rejecting a merge proposal 246
Using the e-mail interface to handle a merge proposal 247

Browsing the content of a branch 248

Table of Contents

[ix]

Using the bug tracking system 250
Reporting bugs 250
Linking commits to bugs 251

Useful tips when using Launchpad 251
Deleting or renaming a project 251
The karma system 251
Hosting private projects 251

Integrating Bazaar into Redmine 251
Integrating Bazaar into Trac 253

Enabling the plugin globally 253
Enabling the plugin for one project only 254
Browsing Bazaar branches 254
Getting help 255

Linking commits to bug trackers 256
Configuring bug trackers in Bazaar 257
Linking to public bug trackers 259
Linking to Launchpad 259
Linking to Bugzilla 259
Linking to Trac 260
Linking to other bug trackers 260
Advanced integration with bug trackers 260

Web-based repository browsing with Loggerhead 261
Installing Loggerhead 261
Running Loggerhead locally 262
Running Loggerhead in production 264

Summary 264
Chapter 8: Using the Advanced Features of Bazaar 265

Using aliases 266
Undoing commits 267
Shelving changes 269

Putting changes "on a shelf" 270
Listing and viewing shelved changes 273
Restoring shelved changes 274
Using shelves to revert partial changes in a file 275
Using shelves to commit partial changes in a file 275

Using lightweight checkouts 275
Creating a lightweight checkout 276
Converting a checkout to a lightweight checkout 277
Converting a branch to a lightweight checkout 278
Converting from a lightweight checkout 278

Table of Contents

[x]

Re-using a working tree 278
Setting up the example 279
Preparing to switch branches 280
Switching to another branch using core commands 280
Switching to another branch by using switch 282
Using a lightweight checkout for switching branches 283

Using stacked branches 283
Signing revisions using GnuPG 284

Configuring the signing key used by Bazaar 285
Setting up a sample repository 285
Verifying signatures 286
Signing existing revisions 286
Signing a range of commits 288
Signing new commits automatically 288

Configuring a hook to send an e-mail on commit 290
Setting up the example 290
Installing the email plugin 290
Enabling commit emails 291
Testing the configuration 291
Customizing the plugin 292

Summary 293
Chapter 9: Using Bazaar Together with Other VCS 295

Working with other VCS in general 295
Working with foreign branches 296
Installing plugins 296

Installing plugins in Windows or Mac OS X 297
Installing plugins in Linux 298
Installing plugins using Pip 298
Installing additional requirements 298

Understanding the protocol overhead 298
Using shared repositories 299
Limitations 299
Issues and crashes 299

Using Bazaar with Subversion 300
Installing bzr-svn 300
Supported protocols and URL schemes 301
Using the example Subversion repository 301
Understanding branches in Subversion 302
Branching or checkout from Subversion 303

Table of Contents

[xi]

Preserving Subversion metadata 304
Preserving original revision numbers 304
Preserving versioned properties 305
Preserving revision and file IDs 305

Pulling or updating from Subversion 306
Committing to Subversion 307
Pushing to Subversion 307
Merging Subversion branches 308
Merging local branches into Subversion 309
Binding and unbinding to Subversion locations 312
Using lightweight checkouts 313
Browsing the logs 313
Limitations of bzr-svn 314
Final remarks on bzr-svn 314

Using Bazaar with Git 315
Installing bzr-git 315
Supported protocols and URL schemes 316
Using the example Git repository 316
Branching from git 317
Preserving version control metadata 318

Preserving Git revision ids 319
Preserving merged branches and revisions 320

Pulling from Git 321
Pushing to Git 322
Merging Git branches 322
Merging local branches into Git 324
Limitations of bzr-git 326
Final remarks on bzr-git 327

Migrating between version control systems 328
Installing bzr-fastimport 328
Exporting version control data 328

Exporting Subversion data 329
Exporting Git data 329
Exporting Bazaar data 330
Exporting other VCS data 331

Importing version control data 331
Querying fast-import files 332
Filtering fast-import 332

Summary 333

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[xii]

Chapter 10: Programming Bazaar 335
Using Bazaar programmatically 335

Using bzrlib outside of bzr 336
Accessing Bazaar objects 336

Accessing branch data 337
Accessing branch configuration values 338
Accessing revision history 338
Accessing the contents of a revision 339
Formatting revision info using a log format 340
More examples 341

Locating BZRLIB 342
Creating a plugin 342

Using the example plugins 343
Using the summary plugin 343
Using the customlog plugin 344
Using the appendlog plugin 344

Naming the plugin 345
Creating the plugin directory 345
Implementing the plugin 346
Writing the README file 346
Creating __init__.py 347

Setting help and documentation texts 347
Declaring the API version 348
Declaring the plugin version 348
Verifying the loaded module name 349
Registering new functionality 349
Registering a test suite 353
Performance considerations 353

Writing unit tests 354
Creating setup.py 357
Browsing existing plugins 358
Registering your plugin 359

Creating a hook 360
Hook points, hook classes, and hook types 360
Registering hooks 361
Activating hooks 362

References 362
Summary 363

Index 365

Preface
A version control system enables you to track your changes, view the history of
your revisions, revert to previous states if necessary, and allows you many other
very practical operations. Bazaar is such a system, and although these tasks are
complicated and can be really difficult to accomplish, Bazaar makes makes all
this as easy for you as possible.

I have been using Bazaar since its early days. At the time I was a happy user of
Subversion. Although I could not do everything that I wanted with it, I was not
looking for something better. I don't remember what compelled me to try Bazaar,
but I do remember that soon after I tried it, very quickly (and very easily!)
I migrated all my projects, without ever looking back.

I found my way around Bazaar little by little, mostly by reading its built-in help
pages. Based on my previous experiences with version control systems, I often
used operations the "hard way" at first, only to learn later that Bazaar had a much
easier, much more intuitive way to accomplish the same thing. I had to unlearn
many things, and again and again I was surprised by how predictable this tool
was. I could guess how some complex operations would work in a situation I
have never experienced before, and to my surprise Bazaar would prove me right.

Although Bazaar has excellent documentation both built-in and online, the idea
behind the structure of this book is to lead you on, step by step, through more and
more logically complex scenarios that you might find yourself in when working on
any project. When you start using a version control tool, you will probably try it
first by yourself, in a simple project you have, or something completely new.
As the project shapes up, you might want to share your work with your friends or
colleagues, get some feedback from them, or better yet, get actual implementations
of real improvements. The idea is to not to just go over all the possible operations
like a bullet-point list, but to put them in practical, realistic contexts, jam-packed
with good examples. The book gradually reveals the power of Bazaar, while
constantly highlighting the common intuition behind all the operations.

Preface

[2]

Using a version control system skillfully is not easy at all, and the subject should not
be taken lightly. I truly hope that this book will help you gain a solid understanding
of version control with Bazaar, and that you will become fully comfortable and
effective using this fantastic tool.

What this book covers
Chapter 1, Getting Started, explains the concept of version control and how to
install Bazaar.

Chapter 2, Diving into Bazaar, explains all the most important core operations
by using the command-line interface and the GUI.

Chapter 3, Using Branches, explains all the various branch operations.

Chapter 4, Using Bazaar in a Small Team, explains how to work together with others
in a small team, by branching and merging from each other.

Chapter 5, Working with Bazaar in Centralized Mode, explains the principles of the
centralized mode and how to work in this mode by using Bazaar.

Chapter 6, Working with Bazaar in Distributed Mode, explains common distributed
workflows and how to implement them by using Bazaar.

Chapter 7, Integrating Bazaar in CDE, explains how to integrate Bazaar into various
collaborative development environments.

Chapter 8, Using the Advanced Features of Bazaar, explains practical tips that are not
essential to using Bazaar, but can be very useful and make you more productive.

Chapter 9, Using Bazaar Together with Other VCS, explains how to use Bazaar to
interact with other version control systems.

Chapter 10, Programming Bazaar, explains how to interact with Bazaar
programmatically, and how to extend it by implementing plugins.

What you need for this book
You will need a computer where you can install Bazaar. The content of this book was
tested in Windows, GNU/Linux, and Mac OS X systems, but Bazaar should work in
any system where a supported version of Python is installed—2.4, 2.5, 2.6, or 2.7.

Preface

[3]

Who this book is for
This book is designed for anyone who may be new to version control systems. If you
are a programmer or a system administrator, you can benefit greatly by using Bazaar
in your projects. To those who are already familiar with version control systems,
this book should serve as a fast and easy way to understand Bazaar, and take
advantage of its unique features.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Commands and code words in text are shown as follows: "You can check the status
of the working tree by using the bzr status command."

A block of code is set as follows:

from bzrlib.commands import plugin_cmds
plugin_cmds.register_lazy(
 'cmd_summary', [], 'bzrlib.plugins.summary.cmd_summary')

Any command-line input or output is written as follows:

$ bzr status

added:

 .bzrignore

unknown:

 Thumbs.db

 maps/Thumbs.db

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "In
Windows, another way to launch Bazaar Explorer is from Program Files | Bazaar |
Bazaar Explorer."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message. If there is a topic that
you have expertise, and you are interested in either writing or contributing to a
book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Janos can be reached at info@janosgyerik.com.

Bugs in the examples can be reported at https://bugs.launchpad.net/bzrbook-
examples.

Questions about the examples can be posted at https://answers.launchpad.net/
bzrbook-examples.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

http://www.PacktPub.com/
http://www.PacktPub.com/support

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Getting Started
This chapter will get you started with the concept of version control, and explain
why it is indispensable for anybody working with files, regardless of the project. It
will introduce the core features of version control in general, and the basics and key
differences between centralized, and distributed version control. Finally, we will get
Bazaar up and running on your system, learn the very basics of the command-line
and graphical interfaces, and how to get help using the built-in documentation.

The following topics will be covered in this chapter:

• What is a version control system and why you should care
• What is centralized version control
• What is distributed version control
• What is Bazaar
• How to install Bazaar and its plugins
• How to interact with Bazaar using the command-line interface
• How to interact with Bazaar using the graphical interface
• How to upgrade Bazaar
• How to uninstall Bazaar
• How to get help

Version control systems
A version control system (VCS) is essentially a tool to organize and track the history
of changes to files in a project. This is more than just good book-keeping. A version
control system can change the way you work and make you more productive. How,
exactly? This will become clearer after considering the core features of a version
control system and its implications.

Getting Started

[8]

Reverting a project to a previous state
A version control system enables you to record your changes to the files in a project,
effectively building up a history of revisions. Having a complete history of changes in
your project enables you to switch back-and-forth between revisions if you need to.
For example:

• Restoring a file to a previous state; for example, to the point right before
you deleted something important from it

• Restoring files or directories that you deleted at some point of time in
the past

• Undoing changes introduced by specific revisions, affecting one or more files

These are the most obvious benefits of keeping the history. However, there is a
very powerful hidden benefit too—knowing that you can easily switch back to any
previous state liberates your mind from worries that you might break something.
Being able to return to any previous state means that you cannot really break
anything. Once a revision is recorded in the history, you can always return to that
state. Revisions are like snapshots, or milestones that you can return to anytime.

As a consequence, you can go ahead and make even drastic changes with bold
confidence. This is a crucial point. This key feature enables you to focus on the
real work itself, without the fear of losing anything.

Have you ever made a copy of a file or a directory and added a timestamp to the
original one, so that you could make experimental changes? With a version control
system, you can stop making copies and avoid getting lost in the sea of timestamped
files and directories. You are free to experiment, knowing that you can return to any
previous state at any time.

Viewing the log of changes
Having a full history of revisions is one thing. It is also important to have a simple
way of viewing the history of changes; for example, an overview of what has
changed from revision to revision, as follows:

Chapter 1

[9]

This way, in case you need to retrieve something from a past revision, the log
messages help to identify the exact point to jump to in the history. In a version
control system, this typically works by entering a brief summary when recording a
new revision. Often, the easiest way to find a particular past revision is by reading
or searching the log of these summary messages, which should serve as a readable
timeline or "changelog" of the project.

Viewing the differences between revisions
Being able to view files at any past state is great, but often what is even more
interesting is the difference between two states. With a version control system, it
is possible to make comparisons between any two states of specific files, directories,
or the entire project. For example, the difference between two revisions of a text file
can be displayed as follows:

www.allitebooks.com

http://www.allitebooks.org

Getting Started

[10]

Let's call the compared revisions base and target. The left-hand side shows the file
as it was at the base revision, while the right-hand side is at the target revision. The
coloring indicates what has changed, going from the base state to the target state:

• Lines with the red background in the left panel have been deleted
• Lines with the green background in the right panel have been added
• Lines with the blue background in both the panels have been changed; the

changed part is highlighted with a deeper shade of blue

However, this kind of a detailed view of the differences is only possible for text files.
In case of binary files, such as images, Word, or Excel files, the differences are binary
and therefore are not human readable. In case of these and other binary formats, the
only way to see the differences is to open both revisions of the file, and to compare
them side by side.

Viewing the differences is most useful in projects with mostly plaintext files, such as
software source code, system administration scripts, or other plaintext documents.

Branching and merging
Being able to revert a project's files to any previous state gives you the freedom to
make bold changes. What is even better, though, is if instead of completely undoing
a set of experimental changes, you can work on multiple experimental improvements
or ideas in parallel and switch between them easily.

Take, for example, a software project that is stable and works well at revision X.
After revision X, you can start working on a new feature. As you progress, you can
record a few revisions, but the feature is not complete yet. In fact the software is not
stable at the moment until you finish the feature. At this point, the revision history
may look something similar to the following:

stable
version

new improvement
in progress

AX

During this time, users use the stable version of the software based on revision X,
and discover a serious problem that had been overlooked. Your current version of
the project is incomplete, but you must fix the problem urgently and release a new
stable version of the software. What can you do?

Chapter 1

[11]

One solution is to revert to revision X, fix the problem, release the fixed version for
the users, restore your work on the new improvement, and continue. While this
is possible and the version control system helps by minimizing your effort, this
solution is tedious and makes the revision history confusing to follow:

back to

stable

version

bugfix
back to

new improvement

XA AX Y

Effectively, we have confined ourselves to a linear history. Although it works, the
result is awkward. Also, keep in mind that at some point you will want to reach a
state that includes both the completed new improvement and the bugfix you did
in revision Y, further confounding the revision history.

A much better and more natural solution is to break the linearity of the history
and introduce a new branch, as follows:

bugfix

X

A

Y

That is, instead of reverting your ongoing work on the new feature, create a new
branch that is isolated from your current work and fix the problem of the stable
version in that branch. A version control system can do this efficiently, using
minimal additional disk space in the process.

Now, you have two parallel versions of the project—one that is stable and another
that is a work in progress. The version control system makes it easy to switch
between the two. You could have even more branches if needed. In reality, it
is all too common that your current work must be interrupted for some reason,
and branching is a practical solution in many situations. For example:

• You realize that you need more input from a colleague or another
department to complete the current improvement you are working on

• A high priority task has come up that you have to switch to immediately
• You realize that your current approach might not be the best solution and

you would like to try another method without throwing away what you've
done so far, reserving the possibility to return later if needed

Getting Started

[12]

Our work is interrupted every day. Being able to work on multiple branches and
switch between them easily can help a lot, minimizing the impact of interruptions
and thereby saving us time and increasing our productivity.

Although being able to work on branches is great, what is even more important is
bringing the various branches together, which is called merging. In the preceding
examples and in most practical situations, having multiple branches is not the end
goal, and most of the time, branches are temporary and short-lived. The end goal
is to have all the improvements done on a project, unified in a single place, on a
single branch, as follows:

bugfix

X

A

Y Z

Revision Z is the result of merging the two branches—the stable branch and the
branch of the completed new improvement, and it should include all the work
done in these branches.

Merging is a complicated and error-prone operation. It is an important job of a
version control system to make merging as painless as possible, and intelligently
apply the changes that were recorded in the branches you are trying to merge.
However, when there are conflicting changes in two branches; for example, one
branch modified a file and another branch deleted the same file, then the version
control system cannot possibly figure out the right thing to do. In such relatively
rare cases, a user must manually resolve the conflict.

Branching and merging does not have to be an advanced operation reserved for
power users. A version control system can make this relatively easy and natural.
Once you become comfortable with this feature, it will boost your productivity,
allowing you to work on multiple ideas in parallel in an organized way. Branching
and merging are especially crucial in collaboration. Without branching and merging,
it is not possible to work in parallel; collaborators will have to work in lockstep,
with only one person recording new revisions at the same time, which can be
inefficient and unnatural.

Acronyms related to version control
There are many acronyms and names related to version control that can be
confusing sometimes, so it's probably worth clarifying them here:

Chapter 1

[13]

• Revision Control System (RCS) is exactly the same as Version Control
System (VCS)

• DVCS may be spelled as Distributed VCS or Decentralized VCS, and
they both mean exactly the same thing

• Distributed Revision Control System (DRCS) is the same as DVCS
• Source Code Management (SCM) is VCS specifically applied to the

source code in software development projects

Centralized version control systems
(CVCS)
Centralized version control systems were created to make it possible for multiple
collaborators to work on projects together. In these systems, the history of revisions
is stored on a central server, and all the version control operations by all collaborators
must go through this server. If a collaborator records a new revision, then all other
collaborators can download and apply the revision in their own environments to
update their project to the same state as the central server:

To avoid conflicting changes on the same file by multiple collaborators, such
as concurrent modifications to the same lines, collaborators have to work in
lockstep—after collaborator A has made some changes, collaborator B must
first download those changes before he can add any new changes of his own.

Getting Started

[14]

Thanks to its simplicity, this is still a very popular workflow today, used by many
large and famous projects and organizations. However, despite their popularity,
centralized systems have serious drawbacks:

• Network access to the central server is required for all the operations that
change the repository or access the revision history. As such, network outage
and slowness can seriously impact productivity.

• The central server is a single point of failure—if the server is unavailable
or lost, so is the revision history of the entire project.

• Administrative overhead—to prevent unauthorized access, user account
and permission management must be configured and maintained.

Distributed version control systems
(DVCS)
Distributed version control systems were created to make collaboration possible
without a central server, and thus overcome many of the common issues with CVCS.
This can work based on a few core principles:

• Each collaborator has the full revision history
• Collaborators can branch and merge from each other easily

The result is an architecture where there is no technical center, and any participant
can potentially be the center:

Chapter 1

[15]

Instead of a central server with the complete revision history, each collaborator has
the full history in his/her own personal branches. Although technically there is no
need for a central server, typically there is a designated common "official" public
branch aggregating the work of all collaborators:

In general, a DCVS can do everything that a CVCS can, and enable many additional
features. One of the most interesting added features is the many possible workflows
for exchanging revisions between collaborators, such as:

• Merging revisions peer-to-peer
• Centralized—a branch is designated as the "official" branch, which can be used

by collaborators in exactly the same way as in centralized version control
• Centralized with gatekeepers—the "official" branch is accessible by

designated maintainers of the project, who merge changes peer-to-peer
and publish releases in the "official" branch

Distributed version control is especially suitable for large teams with physically
disconnected collaborators, such as most open source projects. However, it can
be just as useful at smaller scales too, even in a solo project.

Getting Started

[16]

Distributed version control has important implications in terms of keeping backups
of the project. By design, it is very easy to replicate the full revision history on
a remote location or even on a local backup disk, thus providing a simple and
consistent backup method. Considering that every collaborator begins working on
new revisions by first grabbing the full history of the project, the vast majority of
the revision history is very difficult to lose; the full history can only get lost if all
the collaborators lose all their work. On the other hand, since the changes of all the
collaborators are not necessarily at a single central location but distributed across
all their local environments, there is also no single place to back up all the work
done in the project. Thus, it is up to each individual collaborator to make sure that
their local changes don't get lost before they are merged into the official branch or
into other collaborator branches. Fortunately, this is not difficult to achieve, and we
will provide examples to demonstrate how you can enjoy the benefits of distributed
version control and at the same time stay safe by replicating your new revisions at
another location.

What is Bazaar?
Bazaar is a distributed version control system, and as such one of the most powerful
version control tools that exists today. At the same time, it is friendly, flexible,
consistent, and easy to learn. It can be used effectively from very small solo projects,
to very large distributed projects, and everything else in between.

Bazaar is written in Python, it is open source and completely free, and is an official
GNU project, licensed under GPLv2. It is sponsored by Canonical, and used by
many large projects, such as the Ubuntu operating system, Launchpad, MySQL,
OpenStack, Inkscape, and many others. The official website for hosting Bazaar
projects is Launchpad (http://launchpad.net/), where you can find many
interesting projects that use Bazaar.

This book will explain how to make the most out of version control, and how to
accomplish all the features outlined earlier with Bazaar and much more. The next
chapters will explain how to use Bazaar in increasingly advanced use cases. Each
scenario will build on the previous one, gradually revealing the added benefits of
each increasingly sophisticated setup, and how they will improve your productivity,
whether you are working solo or as part of a large team.

Chapter 1

[17]

Installing Bazaar and its plugins
Bazaar is implemented in Python, therefore it should work on any system where
a supported version of Python is installed (2.4, 2.5, 2.6, or 2.7). The core module of
Bazaar consists of bzrlib, a Python library that implements the core functionality
of Bazaar, and bzr, the command-line interface. Bazaar is highly extensible, and
a wide selection of official and unofficial plugins exist enriching its functionality.
For the purpose of this book, the most important plugins to include are:

• explorer: Bazaar Explorer is the graphical user interface of Bazaar
• qbzr: This is a Qt-based frontend for Bazaar, which provides a graphical

user interface for most core bzr commands
• svn, git, and fastimport: These plugins help to interoperate with

foreign repositories

On Windows and Mac OS X, the official installer includes the core module and a
good selection of commonly used plugins by default. On GNU/Linux and other
systems, the core module and each plugin are packaged separately, and you must
install them individually.

Visit the official download page to find the right installer and installation
instructions for your system at http://wiki.bazaar.canonical.com/Download.

Here, we explain only the most typical and simple installation options. For more
advanced scenarios, please refer to the download page for details.

GNU/Linux
Most modern GNU/Linux distributions include Bazaar in their official binary
repositories, in the package bzr. This package typically includes only the core
functionality of Bazaar, and plugins are found in separate packages. The most
important plugin we will use throughout the book is the Bazaar Explorer plugin,
usually in the package bzr-explorer.

You can discover other plugins with additional functionality in packages starting
with bzr- in their name.

Getting Started

[18]

Ubuntu, Debian, and derivatives
Use your favorite package manager tool, or the following command:

$ sudo apt-get install bzr bzr-explorer

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

Red Hat, Fedora, CentOS, and derivatives
Use your favorite package manager tool, or the following command:

$ sudo yum install bzr bzr-explorer

openSUSE and derivatives
Use your favorite package manager tool, or the following command:

$ sudo zypper install bzr bzr-explorer

Installing Bazaar using pip
Keep in mind that generally it is recommended to install Bazaar using the official
binary repository of your distribution, in order to benefit from the advanced package
management features of your operating system, such as automatic security update
notifications and software upgrades.

Pip is the next generation Python package management tool. The benefit of using pip
to install Bazaar is that it provides the latest stable, and unstable versions of Bazaar,
whereas the official binary repository of your operating system may be a bit out of
date. If you prefer to have the latest version, then using pip can be a good option.
Another potential benefit of using pip is that it allows you to install Bazaar inside
your home directory rather than system-wide, thus it makes it possible to install
Bazaar even if you don't have administrator rights in a system.

If you don't already have pip, you can install it using the graphical or the
command-line package manager of your distribution; for example, in Ubuntu:

$ sudo apt-get install pip

Chapter 1

[19]

If you don't have administrator rights, another way to install pip is using
easy_install, which is the legacy package manager utility of Python:

$ easy_install --user pip

Once you have pip, you can install Bazaar system-wide to make it available
to all users, as follows:

$ sudo pip install bzr bzr-explorer

Or install only for your user (into ~/.local/), as follows:

$ pip install --user bzr bzr-explorer

To discover other Bazaar plugins with additional functionality, search for packages
starting with bzr- in their name, as follows:

$ pip search bzr-

Other installation methods
There is a more detailed explanation on the Bazaar download page, which can be
useful if you are not using the latest version of these distributions, if you are using
another distribution, or if you prefer to build and install Bazaar from source:

http://wiki.bazaar.canonical.com/DistroDownloads

Windows
The download page offers different types of the Bazaar installers, such as standalone
or Python-based at http://wiki.bazaar.canonical.com/WindowsDownloads.

The standalone installer includes all the dependencies of Bazaar, most notably a
Python interpreter. This installer is about 20 MB in size, and will use between 50 MB
to 70 MB disk space on your computer, depending upon the components and plugins
you select during installation. If you are not sure which installer to choose, then
choose this one.

The Python-based installers assume that you already have a specific version of
Python installed. This can be a good option if you want to save disk space. However,
these installers do not include some dependencies of Bazaar, and you will have to
install them by yourself. See the following documentation for details:

http://wiki.bazaar.canonical.com/BzrWin32Installer#bzr-dependencies

Depending upon the type of installer you choose, there may be different releases
of Bazaar available. It is recommended that you pick up the latest stable release.

Getting Started

[20]

During installation, you can choose the components to install. The default selection
includes the Bazaar Explorer, the documentation, and a good set of additional
plugins. You may simply accept the defaults for now. If you want to install
additional components later, simply run the installer again:

If you prefer to install Bazaar using Cygwin, you can use the standard Cygwin
installer setup.exe file and look for the package bzr.

Mac OS X
The download site offers dmg packages for recent versions of Mac OS X; it is
recommended to choose the latest stable release of Bazaar:

http://wiki.bazaar.canonical.com/MacOSXDownloads

At the time of this writing, the latest platform is Snow Leopard; there are no
installers specifically for Lion or Mountain Lion. If your Mac OS X is Lion or
above, use the Snow Leopard installer.

During installation, you can choose the components to install. By default, all
the components and plugins are selected, including the Bazaar Explorer and
documentation, which will take up about 50 MB disk space on your computer.
If you deselect some components now, you can install them later by running
the installer again:

Chapter 1

[21]

The download page explains more advanced installation options, such as using
Homebrew, MacPorts, Fink, or source.

Bazaar in a shared hosting environment
If you want to install Bazaar in a shared hosting environment, where you have
shell access, then the easiest way may be using Python package management
tools such as pip or easy_install.

pip is the next generation Python package manager. If it is not installed in your
shared hosting environment, you can try to install it with easy_install:

$ easy_install --user pip

Before installing Bazaar itself, it is recommended to install pyrex and paramiko:

$ pip install --user pyrex

$ pip install --user paramiko

At the time of this writing, when installing Bazaar with pip, it chooses the latest
beta release instead of the latest stable release. If that is not what you want, you
can specify the version like this:

$ pip install --user bzr==2.5 bzr-explorer

Getting Started

[22]

Interacting with Bazaar
The most straightforward way to interact with Bazaar is the command-line interface.
In this book, we will cover both the command-line interface and Bazaar Explorer,
which is the official graphical user interface, but keep in mind that the latter is still
beta status.

Using the command-line interface
A good way to confirm that the installation was successful is checking the version.
Open a terminal application, such as DOS prompt in Windows or terminal in other
operating systems and run the following command:

$ bzr version

The output should look something similar to the following:

Bazaar (bzr) 2.5.0

 Python interpreter: /usr/bin/python 2.6.6

 Python standard library: /usr/lib/python2.6

 Platform: Linux-3.2.0-2-amd64-x86_64-with-debian-wheezy-sid

 bzrlib: /usr/lib/python2.7/dist-packages/bzrlib

 Bazaar configuration: /home/jack/.bazaar

 Bazaar log file: /home/jack/.bzr.log

Copyright 2005-2012 Canonical Ltd.

http://bazaar.canonical.com/

bzr comes with ABSOLUTELY NO WARRANTY. bzr is free software, and

you may use, modify and redistribute it under the terms of the GNU

General Public License version 2 or later.

Bazaar is part of the GNU Project to produce a free operating system.

In addition to the version number, the command prints other useful information,
such as the location of the Python interpreter used, the Bazaar libraries (bzrlib),
and the user's configuration directory.

Chapter 1

[23]

Using the graphical user interface
The graphical user interface is called Bazaar Explorer. It is included in the
explorer plugin. In all the systems, you can start Bazaar Explorer using the
following command:

$ bzr explorer

In Windows, another way to launch Bazaar Explorer is from Program Files | Bazaar
| Bazaar Explorer.

Bazaar Explorer will open with the Welcome view as follows:

The top part is a toolbar with buttons to perform the most common version control
operations. The main part of the screen shows some typical operations you might
want to perform, such as open existing projects, start a new project, or customize
Bazaar. All of these options will be explained in the next chapter; for now, we just
wanted to confirm that it works.

Getting Started

[24]

Bazaar Explorer is similar to a regular file explorer, except that it is specialized for
viewing Bazaar project directories. When you open an existing Bazaar project, the
Working Tree panel on the right looks just like a regular file explorer, showing the
list of files and subdirectories in the project:

In addition, the Status column in the Working Tree panel and the left panel indicates
files that have not been added to version control yet (nonversioned), or files that
have been modified since the last recorded revision.

The "working tree" is the main method to interact with Bazaar
and perform the various version control operations on a project.
This concept will be explained in detail in the next chapter.

One of the nice features of Bazaar Explorer is the graphical visualization of
differences in text files, for example:

Chapter 1

[25]

Another very practical use case is browsing the change history, with the various
branches of the project presented in a nicely formatted way:

Getting Started

[26]

Using the two user interfaces together
You can perform the most common operations with whichever interface, but
each will have some advantages and disadvantages depending upon the situation.
In general, the command-line interface can be faster and more efficient when you
are already familiar with Bazaar's commands. On the other hand, typically for
viewing operations such as browsing or searching in the history, or comparing
revisions, Bazaar Explorer is often more practical. In this way, the two user
interfaces complement each other.

Throughout this book, we will focus more on the command-line interface, mainly
for the sake of clarity. Command-line expressions tend to be more accurate and
unambiguous in general. For this reason, understanding the command-line
interface is essential, while the graphical user interface is optional.

Upgrading Bazaar to the latest version
The procedure to upgrade Bazaar to the latest version depends upon your
operating system:

• Windows and Mac OS X: Simply download and run the latest version
of the installer. It will replace your existing installation.

• GNU/Linux: Use the package manager of your distribution.
• pip: Use the --upgrade flag of the install command; for example,

pip install --upgrade bzr bzr-explorer.

Uninstalling Bazaar
The procedure to uninstall Bazaar depends upon your operating system:

• Windows: Use the application wizard (appwiz.cpl) to remove Bazaar
with all its plugins

• Mac OS X: At the time of this writing, there is no standard way of
uninstalling Bazaar on Mac OS X systems

• GNU/Linux: Use the package manager of your distribution
• pip: Use the pip uninstall bzr bzr-explorer command

Chapter 1

[27]

Getting help
Bazaar has a superb built-in help system. Simply type bzr in a terminal without any
parameters, and it will give you a list of the basic commands and how to get more
detailed help:

$ bzr

Bazaar 2.5.0 -- a free distributed version-control tool

http://bazaar.canonical.com/

Basic commands:

 bzr init makes this directory a versioned branch

 bzr branch make a copy of another branch

 bzr add make files or directories versioned

 bzr ignore ignore a file or pattern

 bzr mv move or rename a versioned file

 bzr status summarize changes in working copy

 bzr diff show detailed diffs

 bzr merge pull in changes from another branch

 bzr commit save some or all changes

 bzr send send changes via email

 bzr log show history of changes

 bzr check validate storage

 bzr help init more help on e.g. init command

 bzr help commands list all commands

 bzr help topics list all help topics

Getting Started

[28]

You can use the bzr help command to read the documentation of any Bazaar
command, as well as common topics.

• bzr help: This command provides a brief summary of the basic commands
(same as simply bzr without parameters)

• bzr help some_command: This command provides a detailed help on some_
command

• bzr help commands: This command lists all commands
• bzr help topics: This command lists all topics

All the commands accept the -h or --help flag consistently, and print the same
help message as the bzr help some_command command.

If you cannot find something in the built-in documentation, then you can explore
the official online documentation, which contains everything from short tutorials
to complete in-depth references, FAQ, glossary, and further resources at
http://doc.bazaar.canonical.com/en/.

Summary
You should have a good idea why it is so important to use a version control system,
and expect that Bazaar will make this very easy for you. With Bazaar, you will be
able to revert to any past state, work on multiple ideas in parallel, and effectively
use the various operations of version control. Having Bazaar installed on your
computer, you are now ready to dive in and learn how to use all these features
of version control.

In the next chapter, you will learn to convert any directory on your computer
to a Bazaar repository, record changes, view the history of changes, and revert
to a previous state. You will be able to apply these steps to any of your existing
projects, and begin to enjoy the benefits of version control.

Diving into Bazaar
This chapter will explain and demonstrate, with examples, the basic version control
operations using Bazaar in the simplest possible scenario—working solo on a single
branch. Although the scenario is simple, the operations you will learn here are the
very core functionality of version control, and will remain relevant throughout your
experience with Bazaar, even in more complex setups with multiple collaborators
and branches.

The main topics in this chapter are as follows:

• Introducing the command-line interface and Bazaar Explorer
• First-time setup—configuring the author setting
• Performing the basic version control operations
• Beyond the basics—performing other practical operations

Understanding the core concepts
Before diving into Bazaar, it is essential to understand its four core concepts:

• Revision: This is a snapshot of the project's files
• Repository: This is a store of revisions recorded in the project
• Branch: This is an ordering of revisions – a history
• Working tree: This is a directory tree in your filesystem, which contains

your files and subdirectories associated with a branch and a revision

These concepts are central to Bazaar and appear everywhere in the documentation.
Therefore, it is crucial to understand them well.

www.allitebooks.com

http://www.allitebooks.org

Diving into Bazaar

[30]

Revision
A revision is a snapshot of the tree of files and directories in a project recorded at
some specific point in time. As you make changes to the files in the project, you
record a new snapshot, which is a new revision. In this way, the revisions will
represent logical steps forward in the evolution of the project. Recording a revision
is called committing. In addition to the state of the project, a revision contains
metadata such as:

• Committer: This represents the user who recorded the revision
• Timestamp: This represents the date and time the revision was recorded
• Message: This represents a short description of what has changed in the

revision, often called the commit log

In Bazaar, revisions on a linear timeline (on a single branch) are numbered
with an integer sequence starting from 1, and incremented by one for each
new revision recorded.

The following is an example of a commit log, which shows the aforementioned
metadata and revisions numbers:

When working on multiple branches, the timeline becomes non-linear and a dotted
notation is used. This will be explained later, but to give you an idea, the following
is an example of a commit log with multiple branches:

Chapter 2

[31]

Repository
A repository is simply a store of revisions. The content and metadata of revisions are
stored inside a repository in a compact and efficient way. Often, the total size of the
repository, including all revisions, is smaller than the total size of all the files of the
latest revision in an uncompressed form:

Diving into Bazaar

[32]

Branch
A branch represents the ordering of revisions; in other words, how the revisions
follow each other in the history.

Each revision contains a reference to its parent revision, or multiple references if
there are multiple parents, as is the case when a revision is created by the merging of
two or more other revisions. A branch has precisely one latest revision, called the tip.
By following the parent relationships from the tip, revisions form a directed acyclic
graph, representing the ordering of revisions within the branch.

Working tree
A working tree is associated with a branch. It contains the files and subdirectories of
the project at a specific revision of the branch. It looks and behaves exactly like any
other regular directory in the filesystem. In addition to the project's files, a working
tree contains a hidden subdirectory named .bzr, which is used by Bazaar to track
the state of the project's files relative to the associated revision.

To illustrate with an example—at the left is a regular directory, and at the right is the
same directory converted to a working tree. The only difference is the presence of a
hidden .bzr directory:

Chapter 2

[33]

A working tree can be set to any revision of its associated branch, effectively
resetting its content to the files and subdirectories as they existed at the given
revision. In this way, you can browse the content of the project at any past revision.

The most common use of the working tree is to view the project's files at the latest
revision of the branch, so that you can work with those files—edit their content,
add new files, or delete them. At any time, you can either revert some or all of your
pending changes to their original state (of the last revision), or commit your changes
to record the current state as a new revision of the project:

Diving into Bazaar

[34]

Putting the concepts together
When you work with a project under version control, you will use all of these
concepts together, as follows:

• You use a working tree to access and modify the files of your project. The
working tree looks and behaves like any other ordinary directory in your
filesystem, with an added hidden .bzr directory to store Bazaar's files.

• The working tree is linked to a Bazaar branch, which in turn is linked to a
Bazaar repository. The branch represents the order in which revisions are
recorded, and the repository stores the content of revisions as snapshots
in a compressed form.

• As you make changes in the working tree and record them as a new revision,
the content of the revision is added to the repository as a new snapshot, and
the branch tip is updated to point to the new revision.

The four core concepts are vital in most version control operations. Therefore,
it is good to understand what they are and how they are linked together.

Storing Bazaar's data in the filesystem
Bazaar stores its files in one or more hidden .bzr directories, depending upon
the configuration.

In this chapter, we will focus on the most simple configuration, where the working
tree data, the branch data, and the repository data are all stored in a single hidden
.bzr directory in the working tree, as follows:

/path/to/working/tree/.bzr

|-- branch # branch data (ordering of revisions)

|-- checkout # working tree data (track pending changes)

|-- repository # repository data (content of revisions)

This configuration is called a standalone tree.

Just to give you an alternative example, another common configuration is the
shared repository, which will be explained in the next chapter. In this configuration,
the repository data is stored in a .bzr directory at a higher level, as follows:

/path/to/shared/repo/

|-- .bzr

| |-- repository # repository data

Chapter 2

[35]

|-- some_branch

| |-- ... # project files in the working tree

| |-- .bzr # hidden .bzr directory

| |-- checkout # working tree data

| |-- branch # branch data

|-- another_branch

| |-- ... # project files in the working tree

| |-- .bzr # hidden .bzr directory

 |-- checkout # working tree data

| |-- branch # branch data

|-- yet_another_branch

| |-- ...

In this configuration, there are multiple working trees, each in a separate
subdirectory, corresponding to different branches. The .bzr directory of each
working tree contains the working tree data and the branch data, but not the
repository data. The repository data is stored in the .bzr directory of the parent
directory. In this setup, the repository data is shared by the branches.

Throughout the book, we will explain various configurations and their practical
use cases in detail. For now, it is enough just to be aware that the working tree
data, the branch data, and the repository data may be stored at different locations
depending upon the use case.

Introducing the user interfaces
There are two primary ways to interact with Bazaar—running bzr commands in
a terminal program, or using the Bazaar Explorer graphical user interface. Both the
interfaces have their advantages and disadvantages, but we will try to cover them
equally throughout the book whenever possible.

Using the command-line interface (CLI)
bzr is the command-line client and official user interface of Bazaar. It is the
clearest way to explain all the version control operations, and often the fastest
way to accomplish tasks.

To use bzr, you need a terminal application (or DOS prompt in Windows systems),
and basic familiarity with shell commands of your local system, in order to be able
to navigate in your local filesystem.

Diving into Bazaar

[36]

Using Bazaar Explorer
Bazaar Explorer is the graphical user interface (GUI) of Bazaar. In Windows,
you can launch it from Program Files or the Start menu. In other systems, you
can launch it by running the bzr explorer command in a terminal application.

With Bazaar Explorer, it is easy to see an overview of all the files in a project and
pending changes. In addition, it has many practical features for filtering, searching,
and history browsing that simply wouldn't be possible by using the command-line
interface. However, not all operations are available in Bazaar Explorer. For this
reason, it is important to understand the command-line interface too.

Configuring Bazaar
Before we can really dive in, it is good to configure the following user settings:

• email: This is the author information, which is recorded in each revision
• editor: This represents the default text editor used to write the revision log

messages and edit files in Bazaar Explorer

These settings are stored in the bazaar.conf file in the Bazaar configuration directory,
which you can find in the output of the bzr version command. You can view and
edit the configuration using the command-line interface or Bazaar Explorer.

Configuring the author information
The author is part of the metadata recorded, together with the content of the revision.
In Bazaar, the author is a string in the following format:

NAME <EMAIL>

For example, Janos Gyerik <janos@example.com>.

You can check the current setting by running bzr whoami without any parameters:

$ bzr whoami

Janos Gyerik <janos@testvm>

Depending upon your system, Bazaar may figure out a sensible default value based
on your user account information. In this example, the e-mail address was auto-
detected by Bazaar as my username in the system and the hostname of the system.

Chapter 2

[37]

It is recommended that you use a real e-mail address in this setting, that collaborators
can reach you by. You can update the setting by specifying the new value as a
parameter. For example:

$ bzr whoami 'Janos Gyerik <janos@example.com>'

You can change this setting anytime, however, this will only affect future revisions
you record; the author information cannot be changed in the past revisions.

The bzr whoami command effectively shows or sets the value of the e-mail setting
in the user configuration file.

In Bazaar Explorer, you can find the author settings in the Setup and personalize
Bazaar tab's Configuration item, or by selecting Settings | Configuration | User
Configuration. The most important are the Name and E-mail fields in the General tab:

Configuring the default editor
The default editor is used to enter a log message when recording a revision, and
when opening files in Bazaar Explorer for editing. It is stored in the editor setting in
the user configuration file.

You can view the value of the setting by using the following command:

$ bzr config editor

/usr/local/bin/edit

Diving into Bazaar

[38]

You can change the value of the setting by using the following command:

$ bzr config editor=/usr/local/bin/edit --scope=bazaar

Make sure to use a plaintext editor, such as Notepad or Notepad++ in Windows;
TextEdit, TextMate, or TextWrangler in Mac OS X; gedit, gvim, or vim in GNU/Linux.

Another way to confirm and edit this setting is by using Bazaar Explorer in the
same way as you would while editing the author information—in the Setup and
personalize Bazaar tab, click on Configuration, or select Settings | Configuration |
User Configuration in the Application menu.

Other configuration options
For more efficient screenshots in this book, we have disabled Toolbox in the Status
view, as its content is static and not relevant in the examples. If you want to do the
same, open the Preferences view, and on the Appearance tab, uncheck the Show
the toolbox checkbox on the Status view.

Performing the basic version control
operations
In this section, we will show how to put any regular directory under version
control using Bazaar, and demonstrate the basic version control operations on it,
such as the following:

• Checking the status of files and directories in the project
• Adding files
• Recording a new revision
• Ignoring files
• Deleting files
• Undoing changes
• Editing files
• Viewing differences in changed files
• Renaming or moving files
• Viewing the revision history
• Restoring files from a previous revision

Chapter 2

[39]

We will demonstrate each operation in the context of an example—planning a
dinner party using plaintext files. The important point of the example steps is not the
content of the files but the nature of the changes and the version control operations
that we will perform. You can repeat the steps similarly on any directory on your
computer, or download this ZIP file with the sample directory we used:

https://launchpad.net/bzrbook-examples/trunk/examples/+download/
dinner-party.zip

Extract the ZIP file anywhere on your computer; for example, to /sandbox/dinner-
party or C:\sandbox\dinner-party. The examples in this chapter will assume this
path of the sample project, but you may choose any other path you prefer.

Putting a directory under version control
To manage a directory using version control, we need three things:

• A repository to store revisions
• A branch to represent the ordering of revisions
• A working tree to view and edit the project files and interface with the

repository and the branch

Bazaar will do all this by converting the directory to a working tree. This involves
creating a hidden .bzr directory inside the selected directory, which will store
the repository, the branch, and the files for tracking the state of the working tree.
The files that existed in the directory will not be changed in any way.

Using the command line
You can convert an existing regular directory into a working tree using the bzr init
command. You can either specify the directory as a parameter, or first change into
the directory by using the cd command, then run bzr init without parameters::

$ cd /sandbox/dinner-party

$ bzr init

Created a standalone tree (format: 2a)

Diving into Bazaar

[40]

The following screenshot confirms that a hidden .bzr directory has been created:

Other than the hidden .bzr directory, nothing else has changed. If at this point,
you remove the .bzr directory, you will be back to where we started.

In the output of bzr init, Bazaar tells us that it has created a standalone tree, using
the storage format 2a. A standalone tree is when the .bzr directory contains both a
repository and a branch. We will see other configurations later, where the repository
and the branch are at different locations. The 2a storage format is the default in the
Bazaar 2.x series; it is not important for the scope of this book. Since we have not
recorded a revision yet, the repository and branch are empty at this point.

Using Bazaar Explorer
In Bazaar Explorer, you can convert an existing regular directory to a working
tree using the Initialize view. You can open this view in several ways:

• From the menu, select Bazaar | Start | Initialize
• From the Welcome view, in the Start a new project tab, select Initialize

Using the shortcuts Ctrl + N (Windows, Linux) or Cmd + N (Mac OS X). In the Location
text box, you can either type the path to the directory to convert, or click on the Browse
button and navigate to it. In the Workspace Model box, select Plain branch:

Chapter 2

[41]

After you click on OK, the Status box will show the bzr command that was executed
and its output. For example:

Run command: bzr new --plain-branch --format 2a /sandbox/dinner-party

Created branch at /sandbox/dinner-party

Typically, the commands executed by Bazaar Explorer are slightly more verbose than
what we normally use on the command line, mainly because Bazaar Explorer spells
out options with default values that normally can be omitted, such as the --format
parameter in this example.

Diving into Bazaar

[42]

After you click on Close to dismiss the Initialize view, the Status view will open,
showing the files and directories in the working tree with their status:

Checking the status of files and directories
Checking the status of the working tree is one of the most important operations
when using version control. The status command reports the outstanding changes
in the project's files and directories as compared to the last revision, such as:

• Files that have been modified
• Files and directories that have been deleted from the working tree
• Files and directories that have been renamed or moved
• Files and directories that have been explicitly added to the project
• Files and directories that are unknown—they exist in the working tree

but have not been explicitly added to the project
• Change in the execution bit of files

Chapter 2

[43]

Using the command line
You can check the status of the working tree by using the bzr status command:

$ bzr status

unknown:

 .DS_Store

 Thumbs.db

 bills/

 guests.txt

 maps/

 menu.txt

Although we have converted our sample directory into a working tree, all the files
in it are reported as unknown. This is because we have not told Bazaar that these
files should be part of the project and it does not make such assumptions.

As we demonstrate different kinds of changes to the project, we will use the status
command extensively, so you will see many more interesting examples.

When used without parameters, the status command tells you the status of the entire
working tree. If you want to see the status of only a set of files or directories, simply
specify them as parameters, for example:

$ bzr status guests.txt menu.txt

unknown:

 guests.txt

 menu.txt

When specifying a directory, Bazaar will show the status of all the files and
subdirectories within that directory. This is especially useful when there are a lot
of changes in the project and you want to see the status of only a subset of all the
files. You can specify multiple files and directories at the same time.

Diving into Bazaar

[44]

Using Bazaar Explorer
In Bazaar Explorer, you can see the status of the project's files and directories at a
glance in the Status view, as we saw earlier after initializing our sample branch:

In the left panel, we see a warning sign saying Working tree differs from revision 0.
Since we haven't recorded any revisions yet, the repository is empty. In Bazaar, this
state is "revision 0". Under the warning message, we see a list of unversioned files.
This term is a synonym of "unknown" files used by the command-line interface; both
mean that these files exist in the working tree but we have not told Bazaar that they
should be part of the project.

In the right panel, we see a list of files similar to the ones in a common file explorer.
The Status column shows the status of each file, at the moment all non-versioned,
which is yet another synonym for "unknown".

Since the terms "unknown", "unversioned", and "non-versioned", all
mean the same thing in Bazaar, we will refer to all of these as simply
"unknown" throughout this book, sticking to the language of the
command-line interface.

Chapter 2

[45]

If you click on a file listed in the left panel, Bazaar Explorer will open it in the default
text editor.

At this point, we can observe some advantages of Bazaar Explorer over the
command line. The Filter box in the right panel is very helpful in showing only a
subset of all the files—type something into the box and the view will show only the
files whose name includes the pattern; for example, txt. You can also filter files by
their status, using the combobox at the left of Filter. These features are especially
useful in large projects with many files.

The right panel of the Status view is not refreshed automatically
when making changes to the working tree outside of Bazaar Explorer,
even though the left panel is always up-to-date. When you suspect
that the right panel might be out of sync, click on the large Refresh
button in the toolbar.

Adding files to version control
Bazaar does not make assumptions about the files in your working tree, and treats
them as "unknown" until you specify that they should be part of the project under
version control.

Adding files to version control is a two-step process. First, you specify to Bazaar the
files and directories you want to add. At that point, Bazaar acknowledges your intent,
and when you check the status of the project, you will see the list of files marked for
adding. To complete the operation and really add the files, you must record a new
revision, so that the new files become part of the project's history. The second step is
recording a new revision. This step completes the operation, and only after that files
will be really added to version control, before that it's just a pending change.

Using the command line
You can mark files to be added to the project using the bzr add command. Without
parameters, it will add all the unknown files. To add only some of the unknown files,
you must specify them explicitly as parameters. For example:

$ bzr add guests.txt bills/

adding guests.txt

adding bills

adding bills/restaurant.txt

Diving into Bazaar

[46]

As a result, Bazaar prints the list of files it has marked for adding. When you
specify a directory, Bazaar adds all the unknown files in that directory and
all its subdirectories.

Let's confirm the status of the project:

$ bzr status

added:

 bills/

 bills/restaurant.txt

 guests.txt

unknown:

 .DS_Store

 Thumbs.db

 maps/

 menu.txt

Now, some of the files are marked as unknown, and the others as added. The files
are not really added yet until we record a new revision.

When specifying a directory, Bazaar will add all files and subdirectories within
that directory. You can specify multiple files and directories at the same time.

Using Bazaar Explorer
In Bazaar Explorer, you can mark files to be added to the project by clicking on the
large Add button in the toolbar or on the small plus icon in the left panel of the
Status view. This opens up the Add view, with all unknown files automatically
selected by default:

Chapter 2

[47]

In this example, we have de-selected all the .DS_Store and Thumbs.db files. These
are hidden files, automatically generated in Mac OS X and Windows systems to
cache meta information about the directory contents, to speed up browsing with
a file explorer. These files are pointless to add to version control since they are
automatically generated and do not have any useful content to track.

Diving into Bazaar

[48]

After you click on OK, the Status box will show the bzr command that was executed
and its output, as follows:

Run command: bzr add --no-recurse menu.txt maps/map1.png maps/map2.png
maps/venue1.jpg maps/venue2.jpg

adding menu.txt

adding maps

adding maps/map1.png

adding maps/map2.png

adding maps/venue1.jpg

adding maps/venue2.jpg

Click on Close to dismiss the Add view and return to the Status view. The left panel
is updated to show only one unknown file left and 7 marked to be added. Similarly,
the Status column in the right panel is also updated:

Another way to add files is to right-click on them in the right panel and select Add. If
you select a directory, all the unknown files in all its subdirectories will be marked to
be added.

Chapter 2

[49]

Recording a new revision
In the previous step, we marked the files to be added, but to really add them to
version control so that we can start tracking changes to them, we must record a
new revision, called a "commit" operation.

Once you commit a change in version control, it will become part of the history of
the project. Although you can undo anything later, you cannot remove something
once it is added. For this reason, you should always double-check what you are
adding, in order to avoid polluting the history with garbage, such as the .DS_Store
or Thumbs.db files.

Before committing a new revision, it is important to double-check what exactly will
be committed, either using the status command or the left panel of the Status view
in Bazaar Explorer.

You can commit all the pending changes at once, or you may want to include only
a subset of them. It is a good idea to commit logically-related changes together,
separating unrelated changes to multiple commits, and thus distinct revisions.

The commit operations allow us to enter a message that will be recorded together
with the selected changes to the project's files. A good message explains the changes
of the revision as briefly as possible. The commit message can be crucial later,
when looking through the history to find a specific revision.

Using the command line
You can commit the changes using the bzr commit command. Without parameters,
it will commit all the pending changes. To commit changes to only some of the files,
you must specify them explicitly as parameters. If you specify a directory, all the
changes in that directory will be included in the commit. For example:

$ bzr commit bills

This will open up a text editor with the summary of changes that will be committed:

-------------- This line and the following will be ignored --------------

added:

 bills/

 bills/restaurant.txt

Diving into Bazaar

[50]

To complete the commit, enter a brief message at the top, describing the modifications
in the new revision; for example, added bills, then save and exit the editor:

Committing to: /sandbox/dinner-party/

added bills

added bills/restaurant.txt

Committed revision 1.

You can cancel the commit by exiting the editor without saving. In this case, Bazaar
will give you the option to go ahead with the commit or cancel it as follows:

Committing to: /sandbox/dinner-party/

added bills

added bills/restaurant.txt

Commit message was not edited, use anyway? ([y]es, [n]o):

Press n here to cancel the commit. You should always write a commit message.

As the output of the commit command, Bazaar prints the URL of the branch we
are committing to, the summary of changes, and the revision number. Revisions
in a branch are numbered as a sequence of integers starting from 1.

Using Bazaar Explorer
Since we have already committed some of the changes, the warning message in the
left panel of the Status view now shows that we have differences from revision 1
instead of revision 0. To commit the remaining changes, click on the large Commit
button in the toolbar. This opens the Commit view:

Chapter 2

[51]

The Branch box at the top shows the filesystem path of the Bazaar branch.

The Message box is for entering a brief summary for the new revision.

The lower part of the dialog box shows a list of files that will be committed. Using
the checkboxes, you can deselect files you don't want to commit at this point.

If you double-click on any of the files, Bazaar will open the difference viewer tool
to show the changes in that file.

If you click on the Diff button, Bazaar will open the difference viewer tool to show
all the changes in all the files to be committed.

Diving into Bazaar

[52]

After entering the commit message, click on OK to perform the commit and record
a new revision. The Status box will show the bzr command that was executed and
its output. For example:

Run command: bzr commit -m "added guest list, menu and map files" maps
guests.txt menu.txt maps/map1.png maps/map2.png maps/venue1.jpg maps/v...

Committing to: /sandbox/dinner-party/

added maps

added maps/map1.png

added maps/map2.png

added maps/venue1.jpg

added maps/venue2.jpg

added menu.txt

added guests.txt

Committed revision 2.

Click on Close to dismiss the Commit view and return to the Status view:

As expected, the revision number has been incremented to 2, and now the
only outstanding changes are the unknown .DS_Store and Thumbs.db files.

Chapter 2

[53]

Ignoring files
Some files are better left out of version control. For example, hidden files generated
by your operating system, such as .DS_Store and Thumbs.db, or build products in
software development projects, such as *.o files in C programming, or .class files
in Java programming, and so on. Since these files are automatically generated, it's
pointless to add them to version control. Adding these files can also cause problems
in collaboration when the files are generated slightly differently depending upon
the environment of each collaborator.

You can tell Bazaar to ignore specific files or filename patterns, so that they stop
showing up in the output of the status command and in Bazaar Explorer. Bazaar
stores the ignore definitions inside a hidden file named .bzrignore. Normally,
this file is good to have under version control, so that all collaborators use the
same ignore rules.

Bazaar ignores certain files by default. You can see these with the following:

$ bzr ignore --default-rules

*.a

*.o

*.py[co]

*.so

*.sw[nop]

*~

.#*

[#]*#

__pycache__

bzr-orphans

As you can see, patterns may use wildcards such as *.o to match all files in the
project ending with .o. The pattern *.py[co] matches all files ending with .pyc
or .pyo.

You can specify exceptions using lines starting with !, which will take precedence
over regular patterns. For example, using these rules, all files ending with .class
will be ignored by Bazaar except special.class:

*.class

!special.class

Diving into Bazaar

[54]

Using the command line
You can tell Bazaar to ignore files or patterns using the bzr ignore command,
for example:

$ bzr ignore .DS_Store

This adds the specified files or patterns to .bzrignore, and if .bzrignore is not yet
in version control, Bazaar automatically marks it to be added, as if you ran bzr add
on it. You can confirm this with the status command:

$ bzr status

added:

 .bzrignore

unknown:

 Thumbs.db

 maps/Thumbs.db

Notice that all the .DS_Store files are now gone from the unknown group, since
the rule we have added to .bzrignore is already in effect. At the same time,
.bzrignore is now marked to be added. Let's confirm the content of .bzrignore:

$ more .bzrignore

.DS_Store

There is only one single line, with the parameter we specified on the command line.

To check at anytime the files that are inside the working tree, but ignored by the
defined rules, you can use the bzr ignored command:

$ bzr ignored

.DS_Store .DS_Store

maps/.DS_Store .DS_Store

The output shows the files that are ignored on the left, and the rules that cause them
to be ignored on the right.

Using Bazaar Explorer
In Bazaar Explorer, you can create ignore rules for unknown files using the Ignore
view. When there are unknown files in the working tree, they are listed in the left
panel of the Status view, with a sunglasses icon next to them. Click on this icon to
open the Ignore view:

Chapter 2

[55]

All the currently unknown files are listed at the top. Click on a file to choose an
ignore rule. By default, the No action option is selected for each file. As you change
the option, the Ignore as column is updated to show the rule that would be added
to the .bzrignore file.

In the case of the Thumbs.db file, the Ignore by basename option is most suitable.
The pattern in this case will be Thumbs.db, and as a result all Thumbs.db files in
all the subdirectories of the project will be ignored.

In contrast, if you select Ignore by fullname, the pattern is ./Thumbs.db, which
matches only the Thumbs.db file at the top-level directory of the project; other
Thumbs.db files in subdirectories will not be ignored.

If there had been more unknown files, you could select each of them one by one
to choose an appropriate action.

Diving into Bazaar

[56]

After you click on OK, the Status box will show the bzr command that was
executed and its output, as follows:

Run command: bzr ignore Thumbs.db

Click on Close to dismiss the window and return to the Status view.

Editing ignore patterns is quite limited in Bazaar Explorer. After choosing an ignore
action for an unknown file, you cannot return to edit the setting later. If you want to
edit ignore patterns later, the only way is to edit the .bzrignore file in a text editor.

Checkpoint
Let's record a new revision at this point, by adding the .bzrignore file in version
control. Use the command line or Bazaar Explorer as you prefer. Enter a suitable
message; for example, added ignore patterns.

Deleting files
Files that have been added under version control can be removed safely, because
even if you remove them accidently, they can be restored from the repository later,
if necessary.

When you tell Bazaar to remove files, they will be removed from the working tree
immediately, but a new revision will not be recorded until you commit this change.

Another way to remove files from the working tree is to simply delete them from
the filesystem. In this case, Bazaar will notice that some files are missing and assume
that you probably want to delete them. However, it is better to always explicitly
tell Bazaar to remove files, because that way it will take backups if necessary. For
example, if you have made changes to a file but haven't committed it, then it's not
safe to delete it as the changes will be lost. If you use Bazaar commands to remove
such files, Bazaar will keep the backup files as a precaution, so that you can restore
them later if needed.

Backup files are copies of the original with a postfix like .~1~; for
example, the first backup of guests.txt will be named guests.
txt.~1~, the second guests.txt.~2~, and so on. If and when you
want to clean them up, it is up to you to decide whether you do or
don't need them anymore and remove them from the working tree
accordingly. These files are not under version control, and ignored by
global ignore rules, and as such, they are listed in the output of the
bzr ignored command.

Chapter 2

[57]

Using the command line
You can tell Bazaar to delete files or directories from the project using the bzr
remove command. For example:

$ bzr remove bills/ menu.txt

deleted menu.txt

deleted bills/restaurant.txt

deleted bills

The specified files are immediately removed from the working tree, and by checking
the status, we can confirm that the files have been scheduled for removal in the
next revision:

$ bzr status

removed:

 bills/

 bills/restaurant.txt

 menu.txt

Using Bazaar Explorer
To delete files using Bazaar Explorer, right-click on the files in the Status view
and select Remove. Files that have been removed are listed in the left panel:

If you remove files from the working tree without telling Bazaar about the action,
Bazaar Explorer will show them with the status as missing instead of removing
them from the Status view.

Diving into Bazaar

[58]

Undoing changes
Changes you make in the working tree are not permanent until you commit to the
repository as a new revision. You can restore the content of the working tree to the
state of the last revision at any time. This is called a revert operation.

The revert operation can be used not only to undo uncommitted changes, but also
to restore the entire working tree or only a selected set of files to any past revision.

In the previous section, we deleted some files but have not committed the changes.
This is a good opportunity to demonstrate how to revert changes before they
are committed.

Using the command line
You can revert changes by using the bzr revert command. Without parameters,
it will revert all the changes in the entire working tree. To revert only some of
the changes, specify the files whose changes you want to undo as parameters.
For example:

$ bzr revert menu.txt

+N menu.txt

As a result, the menu.txt file is now back in the working tree, in the same state as
it was as of the last revision. The +N in front of the name of the file in the output
of the command indicates the action performed to restore the file; in this case,
add new file.

When specifying a directory, Bazaar will revert the changes in all the files and
subdirectories within that directory. This is especially useful when you want to
revert only some of the changes selectively, rather than the entire working tree.
You can specify multiple files and directories at the same time.

Using Bazaar Explorer
To revert changes using Bazaar Explorer, click on the large Work icon in the toolbar
and select the Revert Working Tree... option. This opens up the Revert view:

Chapter 2

[59]

By default, no file is selected, and for good reason. The revert operation can be
considered unsafe, as the changes you revert may be lost. Anything that was once
committed to version control is safe, because you can always return to a past
revision. But if you revert a pending change that was never recorded in a revision,
it will be lost.

Select the files to revert and click on OK. The Status box will show the bzr
command that was executed along with its output. For example:

Run command: bzr revert bills bills/restaurant.txt

+N bills/

+N bills/restaurant.txt

Click on Close to dismiss the Revert view, and return to the Status view.

Diving into Bazaar

[60]

Editing files
You can edit files in a working tree in the same way as you always do. You don't
need bzr commands or Bazaar Explorer, as you can use your editors or development
tools and make changes to the project files. Bazaar will automatically detect when
the content of some files has changed since the last revision, and will show it in the
status command or Bazaar Explorer.

Let's go ahead and make some changes:

• In guests.txt, the names are in alphabetical order, except Jason. Let's fix
that by moving the line up right after James.

• Also, in guests.txt, Franck should have been Frank. Let's fix that too.
• In menu.txt, let's add Tacos.

Using the command line
Having edited some files, let's check the status of the working tree:

$ bzr status

modified:

 guests.txt

 menu.txt

At this point, we can either commit or revert the changes, one by one, or all at
once. In general, it is a good idea to commit changes often. Changes recorded in
a revision are safe, as you can always return to them. Pending changes may get
deleted by accident, and if they have never been committed in a past revision,
they cannot be recovered.

Using Bazaar Explorer
In Bazaar Explorer, modified files are listed in the left panel of the Status view. In
the right panel, the Status column should show the value modified for these files:

Chapter 2

[61]

You can click on a file in the left panel to open it using the default text editor.
Another way to edit files is by selecting them in the right panel and clicking
on the Edit button in the lower toolbar.

Occasionally, the right panel may not be up-to-date when the working
tree is edited outside of Bazaar Explorer. You can fix this by clicking
on the large Refresh button in the toolbar.

Viewing differences in changed files
Viewing differences is one of the coolest features in a version control system.
It is especially useful when working with large files, as it highlights the changed
portion of files, so you don't overlook any changes accidently.

However, viewing the differences works only with plaintext files, such as *.txt files,
program source code, and script files. These kind of files can be compared line by
line. Binary files, such as Word, PowerPoint documents, images, or other binary data
files cannot be compared on a line by line basis. Therefore, showing differences in
these files is problematic.

Diving into Bazaar

[62]

To see how Bazaar shows differences to binary files, let's make changes to the image
files in the maps/ directory of our example project:

• Copy maps/map1.png to maps/map2.png (overwriting maps/map2.png)
• Copy maps/venue1.jpg to maps/venue2.jpg (overwriting maps/venue2.

jpg)

Using the command line
You can view the differences using the bzr diff command. Without parameters,
it will show the differences in the entire working tree. To view the differences only
in some of the files, you must specify them explicitly as parameters. For example:

$ bzr diff guests.txt

=== modified file 'guests.txt'

--- guests.txt 2013-02-10 20:46:39 +0000

+++ guests.txt 2013-02-11 21:17:27 +0000

@@ -1,12 +1,12 @@

 Guest list

 ==========

Anna

-Franck

+Frank

 Gregory

 Jack

 James

+Jason

 Martin

 Mike

 Peter

 Pierre

-Jason

The difference is shown in unified diff format, the same as used by the patch tool
in Unix and similar systems. For each file, there is a header section describing
the change (in this example modified file), and the filename before and after
the change (in this case, the same guests.txt). Deleted lines are prefixed with
a "-"marker, added lines are prefixed with a "+" marker, and a few lines before
and after the changes are shown for reference, called context. Modified lines are
represented as deleted lines followed by an added line. Reading differences in this
format can be challenging at first, but once you get used to it, it can be really useful.

Chapter 2

[63]

If you have installed the bzrtools plugin (included by default in the Windows and
Mac OS X installers), and if your terminal program supports colors, then a helpful
alternative is the bzr cdiff command, which highlights the differences using colors.
For example:

In case of binary files, for example the image files in the maps/ directory we
changed, it is not possible and would not make much sense to see the differences
line by line, as Bazaar only shows that files have changed. For example:

$ bzr diff maps/

=== modified file 'maps/map2.png'

Binary files maps/map2.png 2013-02-16 18:17:48 +0000 and maps/map2.
png 2013-02-17 03:07:58 +0000 differ

=== modified file 'maps/venue2.jpg'

Binary files maps/venue2.jpg 2013-02-16 18:17:48 +0000 and maps/
venue2.jpg 2013-02-17 03:09:01 +0000 differ

Notice that since we specified a directory as the parameter of bzr diff,
Bazaar shows the changes in all files and subdirectories under that directory.

Diving into Bazaar

[64]

Using Bazaar Explorer
Bazaar Explorer has a built-in difference viewer tool that is much more user friendly
than the command-line interface. There are multiple ways to launch the difference
viewer in the Status view:

• In the left panel, click on the icon at the left of the modified files
• In the right panel, select one or more modified files, then right-click

and select Show differences
• Click on the large Diff button in the toolbar to view all the changes

in the entire working tree

Whichever way you choose, the Diff view will open showing differences to one
or more files. Let's choose the third option and click on the large Diff button in
the toolbar:

Similar to the command-line tool, for each file there is a header section describing
the change and the timestamp of the last modification. However, the added, deleted,
and modified lines are easier to see in a side-by-side comparison:

• Modified lines are shown with a blue background, with a darker shade
of blue highlighting the changed parts.

• Added lines are shown with a green background at the right, clearly
indicating the position in the original file (at the left), where they were
inserted. In case a file was added to the project, it will be shown entirely
in green, as all the lines have been added compared to a "blank" state.

Chapter 2

[65]

• Deleted lines are shown with a red background at the left, clearly indicating
the position in the changed file (at the right) where they were deleted. In case
a file was deleted from the project, it will be shown entirely in red, as all the
lines have been deleted resulting in a "blank" state.

• In case of binary files, since the changes cannot be shown line by line, the
tool only shows the fact that the files have changed, and the difference in
their size.

• In case of image files in supported formats, the versions before and after the
change are shown in the left and right panels for side-by-side comparison.
This works with PNG files; it does not work with JPG, but might work with
other formats too:

The buttons at the top have several options to adjust the view; for example,
to show the entire files and not only their changed parts, ignored whitespaces,
and other options. Sometimes, you may also want to drag the vertical separator
between the left and right sides to adjust their width.

Checkpoint
Let's record a new revision at this point, committing the changes to guests.txt,
menu.txt, and the images in the maps/ directory. The changes to the image files are
not meaningful, and normally we should not commit them, but go ahead with this
purposefully bad commit, so that we can demonstrate how to roll back this change
later, and restore the images to their good version.

Diving into Bazaar

[66]

Renaming or moving files
When changing the names of files and directories, or moving them around within
the project, you have to tell these actions to Bazaar explicitly, so that it can track
them. In Bazaar terms, both renaming and moving are the same kind of action,
called rename operation.

Handling renames and moves is one of the unique features
of Bazaar as compared to other version control systems, as
argued by Mark Shuttleworth in his article at http://www.
markshuttleworth.com/archives/123.

If you rename files without using a Bazaar operation, for example, by drag-and-drop
in your filesystem explorer, then Bazaar will not know what happened and it will
interpret the change in the working tree as if "a file has disappeared and now there is
a new unknown file". To fix this, you can either manually undo the rename and redo
it using Bazaar, or use a Bazaar command (see below) to tell Bazaar about an already
performed rename.

Using the command line
You can rename or move files using the bzr mv command. For example:

$ bzr mv maps/ images

maps => images

The directory is instantly renamed in the working space, and using the status
command, we can confirm that Bazaar is aware of this change:

$ bzr status

renamed:

 maps/ => images/

If we rename a file or directory without telling Bazaar explicitly, it will not
be aware of the change. For example:

$ mv menu.txt test.txt

$ bzr status

removed:

 menu.txt

renamed:

 maps/ => images/

unknown:

 test.txt

Chapter 2

[67]

We have renamed menu.txt to test.txt using shell commands instead of a Bazaar
operation. Comparing the current state of the working tree with the last revision,
Bazaar interprets it as though the menu.txt file has disappeared and now there is
a new unknown file test.txt.

One way to correct this is to rename test.txt back to menu.txt, and then rename
it properly using bzr mv.

Another way is to use bzr mv with the --after flag, which tells Bazaar that the file
itself has been renamed already, and we just want to register the Bazaar operation,
as follows:

$ bzr mv menu.txt test.txt --after

menu.txt => test.txt

$ bzr status

renamed:

 maps/ => images/

 menu.txt => test.txt

Our earlier mistake is now fixed, and the rename operation is correctly registered.

To commit or revert specific rename operations (as opposed to committing or
reverting all changes in the working tree), you can specify either the original name
or the new name of the renamed files or directories. For example, in this case to
revert the renaming of menu.txt:

$ bzr revert test.txt

R snacks.txt => menu.txt

If there have been multiple renames without telling Bazaar, it can be troublesome
to correct them one by one. In this case, instead of using --after, another option
is to use the --auto flag, as follows:

$ mv menu.txt test.txt

$ bzr mv --auto

menu.txt => test.txt

That is, we again renamed menu.txt without telling Bazaar about it, and fixed it
by using the --auto flag. However, this may not work every time, especially if you
have made changes to the renamed files. As the documentation (bzr mv --help)
says, Bazaar only "guesses" renames; it cannot guarantee 100 percent correctness.

Diving into Bazaar

[68]

Using Bazaar Explorer
To rename a file or directory in Bazaar Explorer, right-click on it and select Rename
to edit the name. To move a file or directory to a different subdirectory, simply
drag-and-drop. Renames are shown in the left panel:

Checkpoint
Let's record a new revision, but selectively. Renaming maps/ to images/ makes
sense, as the image files in that directory are not all maps, but include photos.
On the other hand, the renaming of menu.txt to test.txt is completely
meaningless and was for our experimenting only, so let's revert that.

Viewing the revision history
Viewing and searching the revision history is very useful to retrace our steps,
and critical to find specific revisions that you might want to restore.

Using the command line
You can view the list of past revisions using the bzr log command. Without
parameters, it shows all the revisions in the branch, or if you specify a list of files or
directories, then it will show only the revisions that affected those files. For example:

Chapter 2

[69]

$ bzr log bills/

--

revno: 1

committer: Janos Gyerik <janos@axiom>

branch nick: dinner-party

timestamp: Sat 2013-02-16 19:06:44 +0100

message:

 added bills

By default, Bazaar uses the long format, which displays quite detailed information
about each revision:

• Revision number
• Name and email address of the committer
• Timestamp
• Commit message

The short format is a bit more compact with less details, namely the revision number,
name of the committer, date, and message:

$ bzr log bills/ --short

 1 Janos Gyerik 2013-02-16

 added bills

The line format is even more brief, with a single line per revision:

$ bzr log --line

5: Janos Gyerik 2013-02-17 renamed maps/ to images/

4: Janos Gyerik 2013-02-17 correction in text files and map images

3: Janos Gyerik 2013-02-16 added ignore patterns

2: Janos Gyerik 2013-02-16 added guest list, menu and map files

1: Janos Gyerik 2013-02-16 added bills

In addition to these formatting options, the command has a number of other useful
options, such as:

• -v: This is a verbose output, which shows the files that were changed in
each revision, except when using the single line format (with --line).

• -r ARG or --revision=ARG: This shows the log of specified revisions.
One way to specify revisions is by using the revision number. See the
Specifying revisions section in this chapter for more details.

www.allitebooks.com

http://www.allitebooks.org

Diving into Bazaar

[70]

• -l N or --limit N: This shows at most N revisions, which is useful when
you have thousands of revisions but are only interested in the recent ones.

• -m ARG or --match=ARG: This shows only those revisions whose properties
(for example, message or author) match ARG (case-insensitive).

• --match-message=ARG: This shows only those revisions whose log
message matches ARG (case-insensitive).

• --match-author=ARG: This shows only those revisions whose author
matches ARG (case-insensitive).

You can combine all these options. For example:

$ bzr log --short -v --match-author janos --match-message added --limit 1
--revision 2..3

 3 Janos Gyerik 2013-02-16

 added ignore patterns

 A .bzrignore

Using Bazaar Explorer
Viewing the history of changes is typically easier in Bazaar Explorer, as you can adjust
filters and see the result immediately, and the different viewers can be accessed from
it directly. To open the Log view, click on the large Log button in the toolbar:

Chapter 2

[71]

The view opens showing all the revisions in the branch, with the basic meta
information in the columns—revision number, message (as much as it fits within
one line), date, and author.

If you click on a revision, the box at the bottom-left shows more details about the
revision, including the full text of the commit message, and more. The box at the
bottom-right shows the list of files that were affected in the selected revision.
Double-click on a file to open the Diff view, to see the changes to that file in the
selected revision.

To filter the list of revisions, enter keywords and search patterns in the Search box
at the top and adjust the combo box at the right, depending on what you want to
filter by; for example, by message text or author name.

Click on the Diff button at the bottom-left to open the Diff view, to see all the
changes in all the files in the selected revision.

Restoring files from a past revision
We have seen earlier that the revert operation can restore files in the working tree
to their state as of the last revision, effectively undoing their pending changes.

The same operation, with additional parameters, can also be used to restore files
to their state of any past revision, not only the latest. Note that when used this way,
the affected files in the working tree will be in a changed state, as by definition their
content will have changed compared to the last revision recorded in the branch. As
such, with usual and pending changes like these, you will have the option to either
commit and record a new revision or revert (without the revision parameter)
to restore to the state of the last revision.

Using the command line
You can revert a set of files to their state as of any past revision by using the bzr
revert command and specifying the revision using the -r or --revision option.
Without parameters, it will restore the entire working tree to the specified past
state. To restore only a set of files, specify the files you want to restore. For example:

$ bzr revert -r2 guests.txt

 M guests.txt

$ bzr status

modified:

 guests.txt

Diving into Bazaar

[72]

As a result, the file is now in a changed state, and if you look at its content, you will
see that the modifications we did earlier have been reversed.

If the earlier version of this file was really what we wanted in the project, we can
commit this change now, so that the latest version of the project is as it should
be. Before committing, we can also further modify the file manually, if necessary.
Otherwise, if you don't want to commit this, then you can revert the change as
usual to restore the file back to its state as of the last revision.

In this example, we have used a revision number to revert to. This is one way
of specifying revisions. See the Specifying revisions section later in this chapter
for more details.

The right revision number to revert to, of course, depends on your project and its
revision history. Use the bzr log command or the Log view in Bazaar Explorer
to find the right revision.

Using Bazaar Explorer
To restore a file to a previous version, open the Log dialog box, find the right
revision, perhaps using filters, right-click on the file in the box in the bottom-right
corner, and select Revert to this revision.

If you want to restore multiple files or entire subdirectories to a
past revision, it might be easier to use the command line. In this
case, Bazaar Explorer can still be useful in helping to find the right
revision number to revert to.

Putting it all together
The previous sections should get you started with using the various basic operations,
but there are a couple of things not tied to any one specific operation that might
be worth clarifying here. So, you understand Bazaar better and become more
comfortable with it.

Making different kinds of changes
In the previous sections, we did only one type of change at a time—added, deleted,
edited, and renamed files. You can, of course, make many different kinds of changes
at once and commit them all together. While doing so, it helps to have a solid
understanding of the output of status and revert commands, so we will review
them here.

Chapter 2

[73]

Understanding the output the revert command
To start with a clean state, first revert all the pending changes in your example
project using bzr revert with no parameters. Next, let's revert to revision 2
and try to interpret the output:

$ bzr revert -r2

-D .bzrignore

 M guests.txt

R images/ => maps/

 M maps/map2.png

 M maps/venue2.jpg

 M menu.txt

For each file, the output of revert indicates the change Bazaar did to restore
its state:

• - means a delete operation, and D following it means that the file was
removed from the working tree

• M means the file was modified
• R means the file was renamed

If you revert again without any parameters, you will see the reversal of
these operations:

$ bzr revert

+N .bzrignore

 M guests.txt

R maps/ => images/

 M images/map2.png

 M images/venue2.jpg

 M menu.txt

No surprises for modifications and renames, as their reverse is the same kind
of Bazaar operation in both directions. The only difference is .bzrignore,
 "+" means an add operation, and N following it means that the file was added
in the working tree.

Diving into Bazaar

[74]

Understanding the output of the status command
Let's revert again to revision 2 and see the output of the status command:

$ bzr status

removed:

 .bzrignore

renamed:

 images/ => maps/

modified:

 guests.txt

 maps/map2.png

 maps/venue2.jpg

 menu.txt

unknown:

 .DS_Store

 Thumbs.db

The output is more verbose and trivial to interpret, with the different kinds
of changes divided into separate clearly identified groups.

It is always good to check the status right after a revert operation, because
the output of revert does not always tell the full story. In this example, as a
consequence of the deleted .bzrignore file, the .DS_Store and Thumbs.db files
are no longer ignored, and now listed as unknown.

Let's revert again without parameters to return to the state of the last revision.
After that, if you run bzr status again, the output will be empty, as there
should be no pending changes.

Understanding the backup files created by Bazaar
When a Bazaar operation cannot be performed safely, Bazaar creates backup files
to protect you from losing data. For example, when you revert a file that has been
changed, the changes would be lost. Let's demonstrate this by appending a line
to menu.txt and then reverting it:

$ echo hello >> menu.txt

$ bzr revert menu.txt

 M menu.txt

Chapter 2

[75]

If you now check the working tree, a new file named menu.txt.~1~ will be created,
and if you look inside, it will contain the line we appended to it. The number in the
extension ~1~ is incremented when another backup of the same file is needed. For
example, if you repeat the preceding commands, append a line and revert, then a
new file named menu.txt.~2~ will be created, and so on. This way Bazaar tries
to protect you from losing data.

These backup files are ignored by Bazaar commands—thanks to a global ignore
rule—so you don't see them in the output of status or in Bazaar Explorer. You can
find them all using the bzr ignored command:

$ bzr ignored

.DS_Store .DS_Store

Thumbs.db Thumbs.db

menu.txt.~1~ *~

In any case, these backup files are normally visible in your filesystem. If you are
sure you don't need them, then you can delete them in the same way you normally
delete files, without using Bazaar commands.

Understanding the .bzr directory
In our example project, there is a single .bzr directory in the top-level directory of
the project. All of Bazaar's data is stored there, and normally you do not need to look
inside or understand the contents of this directory, except certain advanced features,
which will be explained in the later chapters.

As long as this directory is intact, no matter what happens to the files and directories
in the working tree, you can always restore its state to the latest or any past revision.
Conversely, if you delete this directory, it will delete all of Bazaar's data, and the
working tree will become a regular directory in your filesystem.

How often to commit?
There is no one-size-fits-all rule, but consider this—any changes that are not
committed in a revision are not recoverable if the files are lost. For this reason, it
is good to not keep pending changes around for too long, and commit often. Also,
logically-related changes are usually committed together, and it is normal to include
all kinds of changes at the same time, such as modifications, renames, and deletions.

Diving into Bazaar

[76]

Beyond the basics
In the previous section, we focused on the essential operations and most common
use cases. In this section, we will go a step further and give you additional tips on
using the command-line interface, explain more options of the basic commands,
and introduce a few more useful new commands.

Mastering the command line
The command-line interface of Bazaar has an excellent built-in help system, and all
commands behave in a predictable, consistent way. Here, we highlight a few simple
tips that should greatly improve your experience with the command-line interface.

Common flags
A few flags are supported by all Bazaar commands:

• -h, --help: This shows the help message. Also, bzr somecmd -h and bzr
help somecmd are equivalent.

• -v, --verbose: This shows the verbose output and displays more
information than usual. Sometimes specifying the flag multiple times
results in increased verbosity.

• -q, --quiet: This displays only errors and warnings.
• --usage: This shows usage messages and options.

Common behavior in all the commands
Flags and command-line parameters can appear in any order. For example,
the following are equivalent:

$ bzr log --line -r1 file.txt

$ bzr log file.txt --line -r1

$ bzr log -r1 file.txt --line

Putting a space between a flag and its parameter is optional. For example,
the following are equivalent:

$ bzr log -r1

$ bzr log -r 1

When using the long version of flags, for instance --revision instead of -r,
the equal sign is optional. For example, the following are equivalent:

$ bzr log --revision=1

$ bzr log --revision 1

Chapter 2

[77]

Using shorter aliases of commands
Many commands have shorter (or possibly more intuitive) aliases that can be
used equivalently, for example:

• bzr st and bzr stat are the same as bzr status
• bzr ci and bzr checkin are the same as bzr commit
• bzr rm and bzr del are the same as bzr remove
• bzr di and bzr dif are the same as bzr diff
• bzr move and bzr rename are the same as bzr mv

The list of built-in aliases of each command is usually near the end of the help
and usage messages.

In a later chapter, we will show how to define your own
custom aliases.

Quick reference card
The Bazaar documentation includes very helpful quick references:

• http://doc.bazaar.canonical.com/bzr.dev/en/_static/en/bzr-en-
quick-reference.png

• http://doc.bazaar.canonical.com/bzr.dev/en/quick-reference/
index.html

Using tags
With tags, you can give revisions a meaningful name, which can be especially useful
to identify past milestones, or revisions that you frequently make references to for
some reason. Once you assign a tag to a revision, you can refer to that revision using
-rtag:somename in the various bzr log and bzr diff commands.

• bzr tag v2.6: This assigns the tag "v2.6" to the current revision
• bzr tag v2.6 -r117: This assigns the tag "v2.6" to revision 117
• bzr tag v2.6 -r119 --force: This reassigns the tag "v2.6" to revision 119
• bzr tag v2.6 --delete: This deletes the tag "v2.6"
• bzr tags: This shows all the tags in the current branch

Diving into Bazaar

[78]

Tags are stored in a branch, and are propagated in the various branch operations
such as merge, push, and pull, which will be explained in the next chapter.

Tags must be unique within a branch. If you try to assign the same tag to a different
revision, bzr will return an error. In this case, you can either delete the tag and recreate
with a different revision, or use the --force flag, as in the preceding example.

In general, it is not a good practice to delete or reassign tags, especially when working
together with others. As such, it is best to use unique tag names that will never need
to be reassigned; generic names such as stable or testing should be avoided.

Specifying revisions
Many Bazaar commands accept a revision parameter, which can be specified
using the -r and --revision flags.

In the most simple cases, revisions can be specified by their numbers, as shown
in the output of the log command or in Bazaar Explorer, but there are many other
interesting formats that are useful to know, such as using dates, tags, and other
special symbols.

You can find the complete documentation of revision specification formats in bzr
help revisionspec, where we highlight only a few interesting examples.

Specifying a single revision
In addition to the revision number, you can specify revisions by date, tags, and other
special symbols. For example:

• bzr log -rdate:yesterday: This selects the first revision since yesterday.
You can also use today or tomorrow similarly.

• bzr log -rdate:2013-02-17: This selects the first revision since 2013-02-17.
• bzr log -rdate:2013-02-17,04:01:12: This selects the first revision since

2013-02-17, 4 AM 1 minute 12 seconds.
• bzr log -rtag:v2.6: This selects the revision named by the tag "v2.6".
• bzr log -rbefore:date:today: This selects the first revision before the

specified date.
• bzr log -rbefore:3: This selects the first revision before the specified

revision number.

Chapter 2

[79]

• bzr log -rlast:1: This selects the last revision.
• bzr log -rlast:2: This selects the second to last revision.
• bzr log -r-1: This selects the last revision.
• bzr log -r-2: This selects the second to last revision.

Actually, in most cases the date and tag keywords can be omitted; Bazaar can
figure out that you are referring to dates and tags. This is especially useful when
using the before: keyword, thus allowing a shorter expression.

The latest revision is often called the HEAD or the tip of
the branch.

Specifying a range of revisions
Depending upon the command, a range of revisions may make sense, and can
be specified using the -r and --revision flags in the format N..M. For example:

$ bzr log -rbefore:today..last:1

The revisions N and M can be any valid single revision specifier, and both N
and M may be omitted. For example these are all valid revision ranges:

• bzr log -r2..4: This selects revisions 2 to 4
• bzr log -r2..: This selects revision 2 and all the revisions thereafter
• bzr log -r..4: This selects all the revisions up to and including 4
• bzr log -r..: This selects all the revisions

However, be warned that depending upon the Bazaar operation, ranges may
be interpreted differently.

In case of the log command, the range is a sequence of log messages, and the
range is considered closed. That is, range 2..4 includes revisions 2, 3, and 4.
Also, the end revision must be higher than the start revision.

In contrast, in case of the diff command, the range is a change between revisions,
and is considered open-ended, excluding the beginning of the range. That is, range
2..4 includes the changes done in revisions 3 and 4 but not in 2. The range can also
be reversed, with the start revision higher than the end revision. In this case, the
direction of changes is also reversed. For example, range 4..2 includes the changes
done in revisions 3 and 2 but not in 4, as if changing the project's state from revision
4 to revision 2.

Diving into Bazaar

[80]

Viewing differences between any two
revisions
We have already seen how to view the differences of pending changes in the
working tree that are not yet committed to the repository. Another very common
need is to view the differences between any two revisions, or similarly, a past
revision and the working tree.

In all the comparison operations, you can specify a list of files and directories to see
only the subset of all changes involving those files. If you do not specify any file
parameters, Bazaar will display all the changes between the two compared revisions.

At the time of this writing, the Diff view of Bazaar Explorer does not have a user
interface to choose the revisions to compare. A workaround is to launch the Diff
view from the command line using the bzr qdiff command. For all examples in
this chapter, you can simply replace all occurrences of bzr diff with bzr qdiff
to view the output in Bazaar Explorer's more friendly format, rather than in a
terminal window.

Viewing differences between any revision and the
working tree
To compare a past revision and the current state of the working tree, run the diff
command and specify the past revision. For example:

$ bzr diff -r3 menu.txt

=== modified file 'menu.txt'

--- menu.txt 2013-02-16 18:17:48 +0000

+++ menu.txt 2013-02-17 23:16:51 +0000

@@ -15,3 +15,4 @@

 - Beef burrito

 - Mixed burrito

 - Onion soup

+- Tacos

Chapter 2

[81]

An important detail that is easy to overlook is that the diff command shows
the changes that were recorded after the specified revision; it does not include
the changes in the revision itself. Take a look at the following example:

$ bzr log --line menu.txt

4: Janos Gyerik 2013-02-17 correction in text files and map images

2: Janos Gyerik 2013-02-16 added guest list, menu and map files

$ bzr diff -r4 menu.txt

$

That is, in our sample project, menu.txt was last modified in revision 4, but these
changes will not be included in the diff command output if we specify revision 4;
for that, we will have to specify revision 3.

Another important point is that when using the diff command this way, it
compares the past revision not with the latest revision, but with the current state
of the working tree. In other words, the pending changes in the working tree will
be part of the output.

Specifying the last revision is equivalent to not specifying a revision at all,
comparing the last revision with the current state of the working tree.

Viewing differences between any two revisions
To view the differences between two revisions, you must specify the revisions
as a range using the -r or --revision flags, in the format START..END. The diff
command will show the changes it would take to go from revision START to
revision END.

It is important to remember that the changes in revision START itself will not be
included in the output, because it does not fall within the definition of how the
diff command works. To include changes in that revision, you must specify a
previous revision, for example START-1, or by using the before keyword like
this: before:START.

The order of the two revisions in the range is significant. If the range is N..M, the
diff command will show the changes going from N to M (not including the changes
in revision N itself), and if you reverse the end points of the range, then the diff
command will show the changes going from M to N (not including the changes in
revision M itself).

Diving into Bazaar

[82]

Viewing differences going from one revision to the
next
This is a special case of comparing any two revisions, using a range of two revisions,
where the end revision is equal to start+1. A convenient shortcut for this case is the
-c or --change flag, that specify the revision whose changes we're interested in.
For example, you can see the changes in revision 4 as follows:

$ bzr diff -c4 menu.txt

This is equivalent to:

$ bzr diff -r3..4 menu.txt

This is also the same as viewing the diff output of selected files in selected
revisions in the Log view of Bazaar Explorer.

Cloning your project
Keeping backups is always a good idea. Using version control for your project
gives you a lot of safety already—any accidental changes can be restored from
a past revision. However, if your hard disk crashes the .bzr directory, your
entire repository will be lost with it too.

The bzr push command is normally used when working with local or remote
branches, which will be explained in later chapters. Incidentally, it is also an
excellent and very simple way to take a backup. For example:

$ bzr push /media/backups/dev/dinner-party --create-prefix

Created new branch.

This command creates a perfect clone of the working tree as a new branch at the
specified location. The path can be any suitable location where you would like to
put the clone, ideally a different hard disk. The --create-prefix flag is useful
if the parent directory of the specified path does not exist, otherwise the flag is
optional and will do nothing.

Once you created the clone, you can re-run bzr push again at any time to copy the
new revisions to it. You don't need to specify the path again, Bazaar remembers your
original push target.

Chapter 2

[83]

Summary
In this chapter, you have learned the core concepts and basic commands of Bazaar,
including everything you might need when working solo on a single branch on
your PC. In particular, now you know how to:

• Put any directory under version control
• Add, delete, and modify files
• Check the status of the working tree and view differences
• Revert or commit changes
• View the revision history
• Restore files from a past revision

In the next chapter, we will learn how to work with branches, which will open up
a whole new range of possibilities to experiment freely, without letting ideas fade
away unimplemented. Branches do not mean complexity, and being able to use
them effectively can lead to more stable projects and improved productivity.

Using Branches
This chapter will explain how to work with multiple branches. We will continue
to build on the simplistic setup of the previous chapter—working solo on a private
project, which exists only on your computer. We will add to that a new angle, using
multiple branches instead of just one.

In a solo project, using multiple branches opens many interesting new possibilities.
This can greatly improve your productivity and change the way you work. In larger
projects, with many collaborators, using branches is absolutely essential, as it is the
primary way of combining efforts.

The following topics will be covered in this chapter:

• What is a branch?
• What you can do with branches
• Why use more than one branch
• Understanding core terms
• Using a shared repository
• Basic branching and merging
• Using the branch command
• Viewing basic branch information
• Comparing branches
• Merging branches
• Mirroring branches

Using Branches

[86]

What is a branch?
In Bazaar, a branch is an ordered set of revisions up to a specific latest revision,
commonly called the tip. In the most simple cases, revisions follow one another
in a timely order. In such cases, there is only one branch and the history is linear.

However, working in a linear manner can be limiting. Branches make it possible to
work on different tasks, or different implementations of the same task at the same
time. This effectively makes the history non-linear, bringing many practical benefits.

If you think of a project as a story, a branch is like an alternative ending. At any
time, you can create a branch based on any of the revisions in the history, and
start working in a different direction.

A single branch with a linear history
When working on a single branch, revisions simply follow one another in a timely
order, resulting in a linear history:

1 2 3 4

This is a simple, well understood way of working, but it can be limiting sometimes.
It is natural to have multiple versions of a project existing simultaneously, for
example stable and unstable, with different changes going into both in parallel.
However, this is not possible using a linear history.

Multiple diverged branches
When working on multiple branches, the revision history diverges in different directions:

1 2

3’

3

4”

4

5”

4’ 6”

6”

Chapter 3

[87]

After revision 2 a new branch was started (adding revisions 3' and 4'), then after
revision 3 of the first branch, yet another branch was started (adding revisions 4",
5",...), and so on. At this point, the project has 4 branches, and therefore 4 possible
latest revisions: 4, 4', 6'' and 6'''.

The rule of numbering revisions is still the same—when recording a new revision in
a branch, increment the last revision number by one. Revision numbers are unique
per branch, but they are not unique globally in the project. As such, at this point it is
not clear what is the latest version of the project.

Using multiple active branches in parallel for different purposes is very common,
for example, to separate the stable and unstable versions of a project, or to work on
multiple features and bug fixes at the same time, but isolated from each other.

Branches with non-linear history
When merging a branch into another, the historical ordering of the merged revisions
is preserved, resulting in a non-linear history:

2 branches, both with linear history

2

3 4 5

3’ 4’

1

2 branches, the 2nd branch merged into the first

1 2

3 4 5

6

2.1.1 2.1.2

3’ 4’

Using Branches

[88]

The project diverged after revision 2—while work continued in the first branch, a
different set of changes started in another branch. After revision 5, the first branch
merged from the second branch, recording this change as revision 6. As a result, the
history of the first branch is no longer linear, as now it includes the unique revisions
of the other branch with their historical ordering preserved.

To keep revision numbers unique within the first branch, the merged revisions were
renamed using a dotted notation instead of simply an integer—revisions 3' and 4'
in the second branch were renamed to 2.1.1 and 2.1.2, respectively, in the first
branch. This numbering logic will be explained in detail later in this chapter.

Unrelated branches
If two branches have no common ancestors, that is, no common base revision that
they diverged from, then they are considered as unrelated branches:

1 2 3

1 2 3

What can you do with branches?
Being able to create branches easily is great, but that in itself is not the greatest
benefit. The real power lies in what you can do with multiple branches, how
branches can interact with each other, and most importantly, how you can combine
them to bring all the work done in the various branches into the main line of
development of the project.

Creating branches
You can create a new branch based on any revision of an existing branch, often the
latest revision. The new branch inherits the revision history up until the selected
revision. The new branch is completely independent of the original branch; you
can commit new revisions in it and create further branches based on it:

Chapter 3

[89]

1 2

2.1.1

3 4 5

6

2.1.2

Source branch, let’s call it “trunk”
1 2

2.1.1

3 4 5

6

2.1.2

New branch based on “trunk”

1

1

2

2

2.1.1

3 4

New branch based on revision 2.1.1 of “trunk”

New branch based on revision 4 in “trunk”

create new from r2.1.1

create new from r4

create new

Comparing branches
Just like you can compare any two revisions within the same branch, you can also
compare any two revisions across any two branches.

For a higher level of comparison (without the detailed differences), it can sometimes
be useful to list the revisions (along with their basic information) that exist only in
one branch but not in the other.

Merging branches
You can merge one or more branches into another branch. As a result, the merged
revisions become part of the target branch, with their historical ordering correctly
preserved as they were committed in their original branches:

merge second branch

into the first branch

2 branches, second branch merged into first

1 2

3 4 5

6

2.1.1 2.1.2

3’ 4’

1 2

3 4 5

3’ 4’

2 branches, diverged

Using Branches

[90]

Mirroring branches
It is often useful to create mirror branches that are exact replicas of the original branch.
Mirroring is used extensively to replicate local branches at another location, in order
to make them accessible by other team members, or as a way of creating backups.

Mirroring can work in two directions—a push operation creates, converts, or
updates another branch to be a mirror of the current branch, while a pull operation
converts or updates the current branch to be a mirror of another branch. Both
operations copy missing revisions and update the history of the target branch
to be identical to the source branch.

Mirroring works only between branches that have not diverged. It is only
meaningful when the source branch has all the revisions of the target branch.
In our example, the second branch can pull from the first branch, or the first
branch can push to the second branch, and the result will be the same:

2 branches, the second branch merged into the first

second branch

pull from the first

result of the second branch pulling from the first

1 2

3 4 5

6

2.1.2

3’ 4’

2.1.1

2.1.1 2.1.22.1.22.1.1

3 4 5

6

1 2

3 4 5

6

Why use more than one branch?
In small, solo projects, branches can be useful in many ways, such as the following:

• Separating the development of unrelated features that can
be implemented independently

• Switching between tasks
• Experimenting with different approaches to solve some problem

In large projects with many collaborators, using multiple branches is inevitable
in order to maintain multiple versions of the project in parallel.

Chapter 3

[91]

Separating the development of new features
By using a dedicated branch to implement some new features or a set of related
changes within the same topic, the changes can be cleanly isolated from other
work in the project. This effectively eliminates side effects and instabilities caused
by other unrelated changes in the project while working on the new feature.

Such dedicated branches are often called feature branches or topic branches.
These terms are equivalent; for simplicity, we will use the term feature branches
throughout this book.

Isolating the development of features in this way also makes the project history
cleaner—when the feature branch is merged into the main branch, the revisions
in the branch are grouped together under a single revision, hiding the low-level
details by default.

For example, merged branches are shown collapsed in the history:

Using Branches

[92]

The following screenshot shows merged branches expanded to see the detailed steps:

In this way, you can get a higher level view of the history with only the larger steps,
and can drill down into more details as needed. This also allows rolling back a
feature by reverting a single revision that performed the merge.

Switching between tasks
When you work on different features or topics in separate dedicated branches, you
can easily switch between tasks when needed. For example, if you are in the middle
of developing a new feature but suddenly something more important comes up,
then you can suspend your work in progress and switch to the urgent task. Once the
urgent task is completed, you can return to your previous task and continue where
you left off from:

Chapter 3

[93]

1 2 3 4

5” 6”

2’ 3’

4”

main branch

bugfix in progress

feature in progress

You can switch back-and-forth between multiple tasks in this way, develop them
gradually through multiple commits, and when a feature is completed, you can
merge it into the main branch of the project.

Experimenting with different approaches
In the same way that you can work on multiple features using multiple dedicated
branches, you can also try different implementations of the same feature and split
them into multiple branches.

Another typical situation is when in the middle of working on a feature, you realize
that your last few commits may be going in the wrong direction and a different
approach might be better. When this happens, you don't have to throw away what
you've done so far; it is much better to create a new branch based on the last revision
you were still happy with, and try a different approach in that new branch:

1 2 3 4

4’ 5’

5” 6”

3’

main branch

another variation

feature in progress

If at a later stage you realize that your first approach was not so bad after all,
you can still return to it easily at any time.

Using Branches

[94]

Maintaining multiple versions
In projects with ongoing development and stable milestone releases, using multiple
branches is inevitable in order to maintain multiple versions in parallel. In addition
to the main branch with ongoing development, typically at least one more branch is
needed for the occasional maintenance work and bug fixes on the last stable release.

For example, if a critical bug is discovered that needs to be fixed and released
urgently, then using the main development branch is usually not an option, as it
typically contains many changes that have not been thoroughly tested yet. One good
solution in such situations is to keep a separate branch for the last stable release,
ready to receive bug fixes and to be rereleased at a minimal risk of side effects.

In sufficiently large projects, multiple branches are essential for maintaining the
stable lifecycle of the project and to manage its releases.

Understanding core terms and concepts
There are a handful of commonly used terms and concepts when working
with branches.

trunk, master, and mainline
trunk, master, and mainline are common names for the main branch in a project,
where most of the new development happens. These terms are equivalent;
for simplicity, we will use the term trunk throughout this book.

Technically speaking, the trunk is no different from any other branch. What makes
it special is the agreement among collaborators in the project to use this branch as
the "official" version, and the basis for creating new branches for new development.

The trunk is typically not necessarily well-tested nor stable, though there are
exceptions, and in general this depends on the working style adopted by the
collaborators of the project.

The tip of a branch
The latest revision in a branch is often referred to as the tip, or the HEAD. These
terms are equivalent; for simplicity, we will use the term tip throughout this book.

Chapter 3

[95]

Source and target branches
In all branch operations, the direction of the operation is always significant,
especially when the operation modifies one of the branches.

We will use the term source branch to refer to the branch where the operation starts
from, or for a branch that is used in a read-only manner to copy data from. We will
use the term target branch to refer to the branch that is the target of the operation,
typically modified as a result of the operation.

For example:

• When creating branchB based on branchA, we will call branchA the source
and branchB the target.

• When merging branchX into branchY, we will call branchX the source
and branchY the target.

• When pushing branchP onto branchQ, we will call branchP the source
and branchQ the target.

Parent branch
When branchB is created based on another branch, branchA, then branchA is called
the parent branch of branchB. In other words, the source branch that branchB
was created from is its parent branch. Bazaar records this relationship in branchB,
and it can be useful when you want to reference the parent branch in certain branch
operations.

Diverged branches and the base revision
Two branches that have a common history only up to a certain revision, but a
different history after that point are diverged branches.

The last common revision in two related but diverged branches is called the
base revision. Identifying the base revision is important when merging branches,
in order to find the unique revisions in each branch to be merged.

The whole point of having multiple branches is, of course, to diverge—make
different kinds of changes, go in different directions. However, keep in mind that
if the further two branches diverge from each other, it may be increasingly difficult
to merge them back together later. This will be explained in more detail, later in
this chapter.

Using Branches

[96]

Storing branch data
Although branches typically evoke the image of a directed graph of revisions, in
terms of physical storage, the data of a branch in Bazaar is surprisingly simplistic—it
consists of the internal revision ID of the last revision (branch tip), along with a few
additional lightweight properties.

Since the metadata stored in each revision includes references to parent revisions,
Bazaar can reconstruct the graph of the entire revision history by starting from the
branch tip and following the parent relationships all the way until the initial revision.

Using a shared repository
The default configuration of a Bazaar project is the standalone tree. A standalone
tree includes a repository, a branch and a working tree.

When working with multiple branches, creating multiple standalone trees is
inefficient, because the revision data is duplicated in multiple repositories:

1 2
3” 4”

Repository3

11 22
3’3 4’

Repository2Repository1

1 2 3

Branch1

1 2 3’ 4’ 1 2 3” 4”

Branch3Branch2

A more efficient solution is the shared repository configuration, where branches
don't have their dedicated repository but share a single common repository.
The shared repository stores all the revisions of all the branches, eliminating
unnecessary duplication, and speeding up branch operations:

Chapter 3

[97]

Branch2 Branch3

1 2
3’ 4’

Repository y

1 2 3

Branch1

1 2 3’ 4’ 1 2 3” 4”

3” 4”3

Branch2 Branch3

A shared repository with its branches is organized as follows in the local filesystem:

/path/to/shared/repo/

|-- .bzr

| |-- repository # repository data

|-- some_branch

| |-- ... # project files in the working tree

| |-- .bzr # hidden .bzr directory

| |-- checkout # working tree data

| |-- branch # branch data

|-- another_branch

| |-- ... # project files in the working tree

| |-- .bzr # hidden .bzr directory

| |-- checkout # working tree data

| |-- branch # branch data

|-- yet_another_branch

| |-- ...

The shared repository is inside the .bzr directory at the top level.

The subdirectories correspond to branches, optionally with a working tree. In
this setup, the branches don't have their own repository; they all use the common
shared repository.

In practice, most branches differ only in a few revisions. Therefore, using a
shared repository usually makes a huge difference both in terms of storage
and speed. The larger the project, the greater the benefits of a shared repository.

In general, it is almost always better to use a shared repository right from the start
instead of a standalone tree, even if you don't expect to work with branches or
collaborate with others in the near future.

Using Branches

[98]

Using the command line
You can create a shared repository using the bzr init-repository command
with the target location as a parameter. For example:

$ bzr init-repository /tmp/shared-repo

Shared repository with trees (format: 2a)

Location:

 shared repository: /tmp/shared-repo

This creates a new directory with only a hidden .bzr directory inside. This directory
stores only a repository without branch data or working tree data. Working tree and
branch commands will not work at the root of a shared repository. For example:

$ bzr status

bzr: ERROR: No WorkingTree exists for "/tmp/shared-repo/.bzr/checkout/".

$ bzr log

bzr: ERROR: Not a branch: "/tmp/shared-repo/.bzr/branch/": location is a
repository.

The shared repository directory is a container for branches. You can create as many
branches inside as needed. The branches will store their revisions inside the shared
repository instead of their own .bzr directory. This way, all the branches can reuse
the common revisions.

Using Bazaar Explorer
In Bazaar Explorer, you can create a shared repository using the Initialize view, the
same view you used for creating branches. You can open this view in several ways:

• From the menu, select Bazaar | Start | Initialize
• From the Welcome view, in the Start a new project tab, select Initialize
• Using shortcuts such as Ctrl + N (Windows, Linux), Cmd + N (Mac OS X)

In the Location textbox, you can either type the path to the target directory, or click
on the Browse button and navigate to it. In the Workspace Model box, select either
Shared repository or Feature branches.

With the Shared repository option, Bazaar will simply create an empty shared
repository, just like the bzr init-repository command. With the Feature branches
option, Bazaar will create a shared repository and a new branch inside it named
trunk. If the target directory contains files, use Move existing files, if any, to the
working tree location to have Bazaar move those files into the new branch.

Chapter 3

[99]

Basic branching and merging
To give you an idea of how branching and merging works, we will walk through
a simple example that uses multiple branches. Our example is a simple project
containing "hello world" programs that simply print Hello World! on the console,
implemented in different languages.

Given a stable branch called trunk, we will create a branch to work on a new feature,
and before the feature is finished, we will create another branch to fix an urgent bug.
Finally, we will merge the bugfix branch back to the trunk.

In the example steps, we will focus on using the branch operations with basic
parameters, the content of the files, and the changes made are not important. In the
later sections, we will explain all branch operations in more detail.

To use branches efficiently, let us first create a shared repository using the command
line or Bazaar Explorer, as explained in the previous section. The examples will
assume the path /sandbox/hello (on Linux or Mac OS X) or C:\sandbox\hello
(on Windows), but you may choose any other path of your choice.

Getting the example project
The example project is available publicly on Launchpad (https://code.launchpad.
net/~bzrbook/bzrbook-examples/hello-start). This URL points to a Bazaar
branch. Using the branch operation, we will create a local branch that is a perfect
replica of the remote branch, with all its revisions and complete history copied locally.

The new local branch will be completely independent of the original remote branch.
We will use it as the basis of many other branch operation examples throughout
the chapter.

Using the command line
You can create a branch based on another branch by using the bzr branch command
and by specifying the URL of the source branch. Optionally, you can specify the
target directory, where you want to create the new branch. Let's try that to download
the example branch into /sandbox/hello/trunk:

$ mkdir /sandbox/hello

$ cd /sandbox/hello

$ bzr branch https://code.launchpad.net/~bzrbook/bzrbook-examples/hello-
start trunk

Branched 6 revisions.

Using Branches

[100]

Using Bazaar Explorer
You can create a branch based on another branch using the Branch view. You can
open this view in several ways:

• Click on the large Start button in the toolbar and select Branch...
• From the menu, select Bazaar | Start | Initialize

In the From: textbox, enter the URL of the source branch. In the To: textbox, you can
either type the path of the directory where you want to create the branch, or click
on the Browse button and navigate to it. In the Revision textbox, you can specify a
revision to download the history only up to that revision. In this example, we want
to download all the revisions, so simply leave it empty:

After you click on OK, the Status box will show the bzr command that was executed
along with its output. For example:

Run command: bzr branch https://code.launchpad.net/~bzrbook/bzrbook-
examples/hello-start /sandbox/hello/trunk2 --use-existing-dir

Branched 6 revisions.

Chapter 3

[101]

Creating a feature branch
At this point, the "Hello World!" implementations are very primitive. Executing
any of them simply prints the message Hello World! on the screen, and that's it.
For example:

$./hello.py

Hello World!

Let's say we want to improve the programs to accept an input parameter, and use it
to make them more personal. For example, if you run ./hello.py Jack, it should
print Hello Jack! instead of Hello World!

In order to separate the new development from the main branch, let's create a new
branch for it. Actually, you already know how to create a feature branch; the method
is the same as the one we used to download the sample branch. The only difference
is that the source branch will be a local branch, which is the trunk, instead of the
original remote branch.

Using the command line
Let's use the same method we used earlier to get the remote branch, but this time
branching from the local trunk, and let's call the new branch say-hello-to-x:

$ cd /sandbox/hello

$ bzr branch trunk say-hello-to-x

Branched 6 revisions.

Using Bazaar Explorer
To create a new branch from the trunk, open the Branch view in the same way as
you did earlier, using the menu or the large Start button in the toolbar. When coming
from the Status view, the From: textbox is prefilled with the path of the current
branch. In the To: textbox, enter the path or browse to the location to place the
new branch. For example, /sandbox/hello/say-hello-to-x2.

Using Branches

[102]

Working on a branch
The goal of our branch is to implement a new feature—change the programs to use a
parameter. Let's start with hello.sh; rewrite it as follows:

#!/bin/sh

#

if test "$1"; then

 echo "Hello $1!"

else

 echo 'Hello World!'

fi

This change seems noteworthy enough to include a memo in the README file. For
example, let's append the following to the end of the file:

Variation: "say hello to X"

- Bash

So far so good; let's commit the change using Bazaar Explorer or the command line:

$ bzr commit -m 'bash impl can say hello to X'

Committing to: /sandbox/hello/say-hello-to-x/

modified README.md

modified hello.sh

Committed revision 7.

Starting another branch
We are not yet done with the say-hello-to-x branch; we still have to change the
implementations of the other languages too. However, let's suppose that somebody
using our project has discovered a bug in the C implementation—the program does
not print a line ending character, making the output strange. Let's suppose we have
to finish this quickly, or else our good reputation is at stake here.

Instead of fixing the problem in the current branch or trunk, let's use a new dedicated
branch. For one thing, the change clearly does not belong to the say-hello-to-x
branch. And to avoid our intermediate commits in the fixing process from affecting
the trunk, using a new branch is really the cleanest solution.

Chapter 3

[103]

Let's create the new bugfix branch based on the trunk, using Bazaar Explorer or the
command line. For example:

$ cd /sandbox/hello

$ bzr branch trunk fix-c

Branched 6 revisions.

$ cd fix-c

The fix is easy enough. We can rewrite hello.c as follows:

#include "stdio.h"

int main() {
 printf("Hello World!\n");
}

So far so good, let's commit the change using Bazaar Explorer or the command line:

$ bzr commit -m 'c impl should add newline'

Committing to: /sandbox/hello/fix-c/

modified hello.c

Committed revision 7.

On a second thought, our current implementation is not great. The first line is in a
somewhat old-fashioned writing style; it would be better to change it as follows:

#include <stdio.h>

Let's commit this too, using Bazaar Explorer or the command line:

$ bzr commit -m 'use more modern include-style'

Committing to: /sandbox/hello/fix-c/

modified hello.c

Committed revision 8.

Merging the bugfix branch
Now that the work on the bugfix branch is completed, let's merge it in the trunk.

Using Branches

[104]

Using the command line
You can merge from another branch using the bzr merge command and specifying
the URL of the source branch to merge from. Let's change to the directory of the
trunk and merge from the bugfix branch:

$ cd /sandbox/hello/trunk

$ bzr merge ../fix-c/

 M hello.c

All changes applied successfully.

At this point, the changes in the bugfix branch have been applied to the working tree,
leaving it in a changed state without recording a new revision, as we can confirm
using the status command:

$ bzr status

modified:

 hello.c

pending merge tips: (use -v to see all merge revisions)

 Janos Gyerik 2013-03-03 use more modern include-style

Notice that in addition to showing that hello.c has been modified, the status
command also indicates that we are in the middle of merging. By default, Bazaar
shows the log message of the last revision in the branch that is being merged.
Use the -v flag to see all merged revisions.

After running the merge command, you should always verify the changes that
resulted by the merge and that everything in the project is still working well. If
everything looks in order, you can commit the merge. If there are problems, you
can use the revert command to undo the merge. We will revert now to try merging
using Bazaar Explorer.

Using Bazaar Explorer
To merge the bugfix branch into the trunk, you need to open the trunk in Bazaar
Explorer. You can do this by using any of the Open..., or Open location..., or Open
Recent options in the File menu, or by using the Ctrl + O keyboard shortcut in
Windows and Linux systems or Cmd + O in Mac OS X.

Having the trunk opened in the Status view, click on the large Merge button in
the toolbar to open the Merge view.

Chapter 3

[105]

By default, the Location: input box is prefilled with the location of the parent branch;
in our example, it is the remote branch we started from. Change that to the path of
the fix-c branch by directly entering the path or by using the Browse button.

As the Revision: input box suggests, we can specify a revision to merge all the
changes up to a certain revision only. But in our current example, we want to merge
everything.

After you click on Ok, the Status box will show the bzr command that was executed
along with its output. For example:

Run command: bzr merge /sandbox/hello/fix-c/

 M hello.c

All changes applied successfully.

Click on Close to dismiss the Merge view and return to the Status view of the
trunk. The left panel now shows the Pending Merge tip—the log message of the last
revision in the branch that is being merged.

Using Branches

[106]

Until you commit, the merge is in a pending state. Open the Log view to see all the
revisions that will be merged:

To finish the merge, commit the changes, ideally with a message that summarizes
the meaning of the changes in the merged branch. For example, bugfix of the C
implementation.

Viewing merged revisions in the log
When viewing the revision history in the logs, the revisions of the merged branches are
hidden by default. In this way, you get an overview of the larger steps in the project,
with the option to drill down into more details and see all the merged revisions.

Using the command line
Let's look at the recent four revisions in the trunk:

$ bzr log --line -l4 /sandbox/hello/trunk

7: Janos Gyerik 2013-03-03 [merge] bugfix of c impl

6: Janos Gyerik 2013-03-03 updated readme

5: Janos Gyerik 2013-03-03 added python and bash impl

4: Janos Gyerik 2013-03-03 ignore build products

Chapter 3

[107]

Notice [merge] in front of the log message of the last commit, where we merged the
bugfix branch. This was added by Bazaar to indicate that the revision merged other
branches. Use the -n0 or --include-merged flag to see the merged revisions too:

$ bzr log --line -l4 /sandbox/hello/trunk -n0

7: Janos Gyerik 2013-03-03 [merge] bugfix of c impl

 6.1.2: Janos Gyerik 2013-03-03 use more modern include-style

 6.1.1: Janos Gyerik 2013-03-03 c impl should add newline

6: Janos Gyerik 2013-03-03 updated readme

Using Bazaar Explorer
In the Log view, the merged revisions are collapsed by default, showing only
the revision that committed the merge:

Using Branches

[108]

To expand the revision and view the merged revisions, click on the + symbol:

Using the branch command
The purpose of the branch command is to create a new branch based on another
branch. Since Bazaar stores branches in separate directories, new branches are
created in a new directory.

When used without additional parameters, the command creates a perfect replica
of the source branch, copying its complete revision history. As each branch exists
in its own directory in the filesystem, this is a good way of separating working
environments right before starting to work on a feature branch as in the basic
example earlier.

When creating the new directory for the new branch, by default Bazaar also creates
a working tree. That is, the directory of the branch is populated with the project's
files as of the latest or the specified revision. Note, however, that ignored files and
pending changes in the source branch will not be copied, as they are not under
version control.

Chapter 3

[109]

Creating branches based on an older revision
It is often useful to create a branch that contains only the revisions up until the
specified revision, instead of cloning all the revisions in the source branch. For
example, when you realize that your recent changes have destabilized the project
and you would like to try a different approach based on the last stable point.

Using the command line
To create a branch based on an older revision of another branch, specify the
revision number with the -r or --revision flags. For example:

$ cd /sandbox/hello

$ bzr branch -r3 trunk try-different

Branched 3 revisions.

The second parameter is the name of the directory in which we create the
new branch.

When the source branch is in a different parent directory or if it is a remote branch as
in our first example earlier, then the second parameter becomes optional. In this case,
Bazaar will use the last path segment of the URL as the name for the new branch
as a sensible default. For example, the command bzr branch http://example.
com/branches/test1 without a second parameter will create the new branch in a
subdirectory called test1, unless of course such a subdirectory already exists locally.

Using Bazaar Explorer
To create a branch based on an older revision of another branch using Bazaar
Explorer, open the Branch view using the large Start button in the toolbar, then
inside the Options box enter the revision number in the Revision: textbox.

Viewing basic branch information
The bzr info command prints the basic information about a specified location or
the current working directory, such as the type of configuration, the parent branch,
and others. For example:

$ bzr info /sandbox/hello

Shared repository with trees (format: 2a)

Location:

 shared repository: /sandbox/hello

Using Branches

[110]

That is, the location is a shared repository, which is configured with the trees
option. This means that the new branches will be created with a working tree.

In the later chapters, we will see examples where it is useful to create
branches without a working tree, and will learn how to reconfigure
branches and shared repositories to use this option.

In case of the fix-c branch, we get the following:

$ bzr info /sandbox/hello/fix-c/

Repository tree (format: 2a)

Location:

 shared repository: /sandbox/hello

 repository branch: /sandbox/hello/fix-c

Related branches:

 parent branch: /sandbox/hello/trunk

That is, the location is a branch, which is in the Repository tree configuration. This
means that it is a part of a shared repository, and it has a working tree. The output
also tells the location of the shared repository and the parent branch.

You can view even more details about a branch using the -v or --verbose flags.

Comparing branches
When working with multiple branches, it is important to be able to compare them.
You can see the differences between branches with different levels of detail. You
can get a quick summary of the missing revisions between two branches, or view
the differences between any two revisions in the same way as you compare
revisions within the same branch.

The command line is more powerful, and it gives you full control over the input
parameters and the level of detail in the output. On the other hand, Bazaar Explorer is
somewhat limited in terms of input options, but it has a much easier to use interface.

Using the command line
When using the commands that compare branches, the basis of the comparison is the
current branch by default, and the other branch to be compared must be specified as
a parameter. The ordering of branches in the comparison is relevant, as comparisons
depend on the perspective.

Chapter 3

[111]

Viewing missing revisions between branches
"Missing revisions" are revisions that exist in one branch but not in the other. You
can view the list of missing revisions by using the bzr missing command. For
example:

$ cd /sandbox/hello/fix-c/

$ bzr missing ../say-hello-to-x/ --line

You have 2 extra revisions:

8: Janos Gyerik 2013-03-03 use more modern include-style

7: Janos Gyerik 2013-03-03 c impl should add newline

You are missing 2 revisions:

8: Janos Gyerik 2013-03-03 python impl can say hello to X

7: Janos Gyerik 2013-03-03 bash impl can say hello to X

The command shows the missing revisions relative to the current branch. In this
example, we are in the fix-c branch directory and compare it to the say-hello-
to-x branch. Thus we have two extra revisions and two missing revisions.

The missing revisions are shown using the same format as the log command.
For brevity, we used the --line flag in this example, but all the other log format
options work too.

To see the extra or missing revisions in only one of the branches, use the --mine-
only or --theirs-only flags. For example:

$ bzr missing ../say-hello-to-x/ --line --mine-only

You have 2 extra revisions:

8: Janos Gyerik 2013-03-03 use more modern include-style

7: Janos Gyerik 2013-03-03 c impl should add newline

$ bzr missing ../say-hello-to-x/ --line –theirs-only

You are missing 2 revisions:

8: Janos Gyerik 2013-03-03 python impl can say hello to X

7: Janos Gyerik 2013-03-03 bash impl can say hello to X

Instead of --mine-only, you can use the shorter aliases, namely --mine or --this.
Instead of --theirs-only, you can use the shorter aliases, namely --theirs or
--other.

Using Branches

[112]

Viewing the differences between branches
You can view the differences between two branches by using the bzr diff
command in the same way as you compared the revisions within the same branch.
However, you must specify the other branch by using either the --new or --old
flags, depending upon which branch should be the basis for comparison.

Without the additional parameters, the command shows the differences in the entire
project. To view the differences only to a set of files, specify the files or subdirectories
as parameters. For example, to see the changes going from the fix-c branch to the
say-hello-to-x branch affecting only the README file, as follows:

$ bzr diff --new ../say-hello-to-x/ README.md

=== modified file 'README.md'

--- README.md 2013-03-03 14:19:48 +0000

+++ README.md 2013-03-07 20:53:05 +0000

@@ -9,3 +9,9 @@

 - C

 - Java

 - Python

+

+

+Variation: "say hello to X"

+---------------------------

+- Bash

+- Python

That is, the say-hello-to-x branch added some lines in the file. Sometimes, it can
be useful to view the differences in the other direction; that is, to see the changes
going from the say-hello-to-x branch to the fix-c branch:

$ bzr diff --old ../say-hello-to-x/ README.md

=== modified file 'README.md'

--- README.md 2013-03-03 14:57:13 +0000

+++ README.md 2013-03-07 20:55:52 +0000

@@ -9,9 +9,3 @@

Chapter 3

[113]

 - C

 - Java

 - Python

-

-

-Variation: "say hello to X"

-- Bash

-- Python

We simply replaced --new with --old to reverse the direction of the differences.

Remember that you can always replace the diff command with cdiff to highlight
the differences using colors, or qdiff to view the differences in Bazaar Explorer
instead. For example:

The cdiff command is provided by the bzrtools plugin, and it requires a terminal
application that supports colors. The qdiff command is provided by the qbzr plugin.

Note that the revision parameter is always applied to the current branch. One way
to compare against a specific revision in another branch is to do it in two steps—first,
create a temporary branch based on the other branch at the desired revision, and
then compare the current branch against the temporary branch.

Using Branches

[114]

Using Bazaar Explorer
A very useful interface in Bazaar Explorer for viewing and managing multiple
branches is the Repository view. To open this view, use the Open... option in the File
menu or the Ctrl + O keyboard shortcut in Windows and Linux or Cmd + O in Mac
OS X, then navigate to the shared repository location, and click on Choose.

When the view opens, it simply shows a list of the branches in the shared repository.
For example:

Let's explore the different functions that are accessible from this main view.

Viewing the tree of branches
A very nice function in Bazaar Explorer is to show multiple branches at the same
time in the Log view. You can select multiple branches in the list by pressing the Ctrl
key and clicking in Windows and Linux, or pressing the Cmd key and clicking in Mac
OS X. To view all the branches, simply select nothing (by clicking anywhere within
the empty area) and click on the Log button:

Chapter 3

[115]

In this example, all the branches are shown in the tree, with the branch tips
highlighted with the location of the branch. This is a great way for viewing the
revisions in the different branches at a glance.

The other functions of the Log view work as usual, such as filtering and viewing
differences in each revision. However, this also means that you can only see the
differences in a single revision, and at the time of this writing, there is no user
interface for comparing two arbitrary revisions.

Viewing missing revisions between branches
When you click on a branch in the Repository view, the details panel under the
list of branches shows more details about the branch using three tabs:

• Recent History: This shows the last five commits
• Local Changes: This shows the commits that are in the branch but not in

the parent branch
• Missing Revisions: This shows the revisions that are in the parent branch

but not in the selected branch

Using Branches

[116]

For example, the say-hello-to-x branch has two revisions that are not yet in
the parent:

Viewing the differences between branches
At the time of this writing, the Repository view doesn't have an option to
parameterize the Diff view and select revisions. As a workaround, you can use the
command line to select the revisions in the same way as you do with the bzr diff
command, but instead of bzr diff, run bzr qdiff.

Merging branches
Merging branches is a complex operation in any version control system. The merge
operation in Bazaar combines the changes of another branch into the current branch,
and copies all the revision metadata including the historical ordering information
as well.

Chapter 3

[117]

Performing a three-way merge
The default merge algorithm used by Bazaar is the so-called three-way merge.
The first step in this algorithm is identifying the base revision of the two branches;
that is, the point after which the branches have diverged. For example, given the
following two branches, the base revision is 2, which is also the common ancestor
of the two branches:

2 branches, diverged

1 2

3’ 4’

543

The general logic of the three-way merge algorithm is to take the base revision as
the starting state, then automatically apply the non-conflicting changes that took
place in the two branches. For example, if a file was edited only by the first branch
or the second branch but not by both, the changed file will be included in the result
regardless of which branch it was edited in.

In case of text files that were edited by both the branches, the same logic can be
applied by evaluating the changed blocks within the file. For example, if we take
the original line Lorem ipsum at revision 2 and the same line at the latest revisions
in the two branches, then the three-way merge algorithm works out the correct
action as follows:

Line in base
revision

Line in the first
branch

Line in the
second branch

Result Comment

Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum No change
Lorem ipsum Dolor sit

amet
Lorem ipsum Dolor sit

amet
Use line from
first

Lorem ipsum Lorem ipsum Ante ipsum Ante ipsum Use line from
second

Lorem ipsum Est ipsum Est ipsum Est ipsum Same change
in both

Lorem ipsum Dolor sit
amet

Ante ipsum ? Conflict

Using Branches

[118]

That is, if none of the branches changed the line, then the line is kept unchanged.
If only one branch changed the line, the algorithm simply takes the changed line,
regardless of the branch that changed it. If both the branches changed the line the
same way, use the changed line.

However, if both the branches changed the same line in a different way, then
the algorithm cannot decide what is the right thing to do. So, it marks the file as
conflicted, which must be resolved manually by editing the file and correcting it.

The same is true for other kinds of changes; for example, the renaming of a file. If
only one of the branches renamed a file, then the file will be renamed in the result. If
both the branches renamed the file differently, then the merge operation will mark
that as a conflict that must be resolved manually by choosing the correct name.

Completing the merge
As a result of the merge, the changes in the unique revisions of the other branch
are applied to the working tree, leaving it in a changed state. You can use the usual
Bazaar commands to view what has changed, such as bzr status, bzr diff, bzr
log, and their equivalents in Bazaar Explorer.

As nothing is committed yet, you have at least two options:

• Commit the changes to record a new revision
• Abort the merge and restore the working tree

Committing the merge
If the merge operation was successful and there were no conflicts, you should
review the changes carefully. Even though there were no conflicts during the
merge operation, the changes in the other branch might have important implications
for the current branch, warranting adjustments. For this reason, it is important to
understand the changes introduced by the other branch.

After you have reviewed the changes and tested the new state of the project, you can
commit the changes as a new revision in the same way as always. In addition to the
changes, Bazaar will also record all the meta information about the merged revisions
in the other branch.

As a result, the current branch will have all the information of both the branches
combined, and you will be able to reconstruct both the original branches as they
were before the merge operation, if necessary in the future.

Chapter 3

[119]

Aborting the merge
If the merge operation was not successful, for example if it resulted in too many
conflicts, or you are simply not happy with the new state of the project, then you
can abort the merge by reverting the changes. As always, you can revert the changes
selectively by specifying files and directories, or revert all the changes at once.

Reverting all the changes will completely abort the merge and restore the working
tree to the state of the last revision in the current branch.

If you revert the files selectively, keep in mind that during a merge operation Bazaar
keeps a pending merge marker with the meta information of the merged revisions.
If you commit in such a state, Bazaar will still consider that as a merge. You can
revert the pending merge marker using the --forget-merges flag.

Resolving conflicts
When two branches have made contradicting changes, it is impossible to determine
automatically which change should take precedence, or to combine the changes in
a meaningful way. In such situations, Bazaar marks the involved files as conflicted,
and you must resolve them manually.

It is easy to think of contradictory changes. For example:

• BranchA and BranchB changed the same line of the same file differently
• BranchA and BranchB renamed the same file differently
• BranchA changed something in a file, but BranchB deleted that file
• BranchA added a file to a directory, but the directory was deleted in BranchB
• BranchA added a new file, but BranchB also added a file with the same name

but with different content

These are just a few examples of contradictory changes that can happen in two
branches and cannot be resolved automatically. You must investigate why such
contradicting changes took place in the branches, and decide the right resolution
that is appropriate and logical for the project.

When Bazaar detects a conflict, it marks the files involved in the change as conflicted.
You can view the list of conflicts by using the bzr conflicts command. As long as
there are unresolved conflicts in the working tree, Bazaar will not let you commit
a new revision.

Using Branches

[120]

Bazaar categorizes conflicts into conflict types, as documented in bzr help
conflict-types. Regardless of the conflict type, resolving a conflict involves
two main steps:

1. Make the necessary changes in the working tree to fix its state, typically
by combining the changes of the two branches in a meaningful way, or
sometimes by taking the changes of only one branch and ignoring the other.

2. Tell Bazaar that the conflict is resolved in order to clear the conflict marker.

Let's demonstrate how this works by using two common conflict types as
examples—text conflicts and content conflicts.

Resolving text conflicts
When both the branches changed the same line of the same text file in a different
way, it is called a text conflict. Let's create such a scenario using the following steps:

1. Create two new branches, namely text1 and text2, based on the trunk.
2. In text1, edit the hello.c file, change Hello World to Hi World, and

commit the change.
3. In text2, edit the hello.c file, change Hello World to HELLO World,

and commit the change.
4. In text2, merge from the text1 branch.

Using the command line as follows:

$ bzr branch trunk/ text1

Branched 7 revisions.

$ bzr branch trunk/ text2

Branched 7 revisions.

$ cd text1

$ vim hello.c # change Hello World to Hi World

$ bzr commit -m 'say Hi World'

Committing to: /sandbox/hello/text1/

modified hello.c

Committed revision 8.

$ cd ../text2

$ vim hello.c # change Hello World to HELLO World

$ bzr commit -m 'say HELLO World'

Committing to: /sandbox/hello/text2/

Chapter 3

[121]

modified hello.c

Committed revision 8.

$ bzr merge ../text1

 M hello.c

Text conflict in hello.c

1 conflicts encountered.

If we take a look at the status of the working tree, it will look similar to the following:

$ bzr status

modified:

 hello.c

unknown:

 hello.c.BASE

 hello.c.OTHER

 hello.c.THIS

conflicts:

 Text conflict in hello.c

pending merge tips: (use -v to see all merge revisions)

 Janos Gyerik 2013-03-10 say Hi World

If we use Bazaar Explorer to see the output, it will look as follows:

Using Branches

[122]

In addition to modifications in the hello.c file, Bazaar adds three new files with
.BASE, .OTHER, and .THIS suffixes, and reports a text conflict. These three new
files are different versions of hello.c that help us sort out the conflict:

• hello.c.BASE: This is a copy of the file as of the base revision
• hello.c.OTHER: This is a copy of the file as of the revision in the other branch
• hello.c.THIS: This is a copy of the file as of the revision in the current branch

Let's look at the modifications in hello.c using Bazaar Explorer:

The markers "<<<<<<<" and ">>>>>>>" are called herringbone markers, and have
been added by Bazaar to help compare the conflicting changes in two branches. The
lines between <<<<<<< TREE and ======= are as they were in the current branch
(text2), and the lines between ======= and >>>>>>> MERGE-SOURCE are as they
were in the merge source (the other branch, text1). That is, the affected area in the
file is changed following this general format:

<<<<<<< TREE

ZERO OR MORE LINES AS THEY EXIST

IN THE REVISION IN THE CURRENT BRANCH

=======

ZERO OR MORE LINES AS THEY EXIST

IN THE REVISION IN THE OTHER BRANCH (THE MERGE SOURSE)

>>>>>>> MERGE-SOURCE

Chapter 3

[123]

One solution is to edit the file, remove the herringbone markers, and make the
line look like the way it should, which depends upon the situation and cannot
be decided automatically.

A graphical merge tool can help in reviewing and resolving the conflicts. To launch
the graphical merge tool, you first need to open the Conflicts view in Bazaar
Explorer. You can either click on the small red triangle next to the list of conflicts,
or click on the large Work button in the toolbar and select Resolve Conflicts...,
or with the bzr qresolve command:

The Conflicts view shows the list of conflicts. Click on a conflict to select it, use the
Merge tool: combo box to choose a merge tool and click on Launch... to start it.
Using the merge tool you can review the conflicting blocks inside the selected file.
Depending upon the tool of your choice, you may be able to choose the changes
from one of the branches, or freely edit the file using the .THIS, .OTHER, and .BASE
versions as references; the available options and features depend on the tool.

If you made a mistake while editing the working tree to resolve the
conflicts, you can always restart from the beginning by reverting
and restarting the merge.

After correcting the file manually or with the help of a merge tool, you must tell
Bazaar that the conflict is resolved using the bzr resolve command. For example:

$ bzr resolve hello.c

1 conflict resolved, 0 remaining

With this step, Bazaar clears the conflict marker, and it also removes the temporary
.THIS, .OTHER, and .BASE files it created earlier.

Using Branches

[124]

Instead of resolving the conflicting changes one by one, sometimes the solution is
to take the changes of one branch and ignore the conflicting changes of the other.
The bzr resolve command provides convenient shortcuts for such situations
by using the --take-this and --take-other flags:

• --take-this: This resolves the conflict by using the version of the current
branch, ignoring the conflicting changes by the other branch

• --take-other: This resolves the conflict by using the version of the
other branch, ignoring the conflicting changes by the current branch

Resolving content conflicts
When both the branches changed the same file in a conflicting way that is not a text
conflict, it is called a content conflict. This can happen, for example, if a binary file
was changed by both branches, or if a file was changed by one branch and deleted
or renamed by the other.

Let's create such a scenario using the following steps:

1. Create a new branch named content1 based on the trunk.
2. Delete the hello.c file and commit the change.
3. Merge the text1 branch we created in the previous example,

which modified the hello.c file.

Using the command line:

$ bzr branch trunk/ content1

Branched 7 revisions.

$ cd content1/

$ bzr rm hello.c

deleted hello.c

$ bzr ci -m 'removed the c impl'

Committing to: /sandbox/hello/content1/

deleted hello.c

Committed revision 8.

$ bzr merge ../text1

+N hello.c.OTHER

Contents conflict in hello.c

1 conflicts encountered.

Chapter 3

[125]

If we take a look at the status of the working tree, it will looks similar to the
following:

$ bzr status

added:

 hello.c.OTHER

unknown:

 hello.c.BASE

conflicts:

 Contents conflict in hello.c

pending merge tips: (use -v to see all merge revisions)

 Janos Gyerik 2013-03-10 say Hi World

In this case, Bazaar did not add hello.c.THIS, as it would not make sense since we
deliberately deleted the file in this branch. The hello.c.OTHER file is marked to be
added. Perhaps you must rename this file and add it back under version control,
otherwise you might lose the work on it that was done by the other branch. Again,
hello.c.BASE is also created, so that you can compare hello.c.OTHER with it, and
see what the other branch has changed in it.

This is a good example where the correct resolution is probably simply taking the
changes of one branch and ignoring the other:

• If it was a mistake to remove hello.c in our branch, then we can resolve the
conflict by using bzr resolve --take-other, which will add hello.c back
in the current branch, including the changes by the other branch.

• If hello.c is to be considered obsolete and the other branch should not
have worked on it, then we can resolve the conflict by using bzr resolve
--take-this, which will simply ignore the change by the other branch.

Redoing the merge
Before you even begin trying to resolve the conflicts, it is a good idea to retry the
merge using a different algorithm. One way to do this is to abort the merge and
repeat the same merge command but with an option to specify a different merge
algorithm. For example, --diff3, --lca, --weave, or --merge-type=ARG.

An easier way is to use the bzr remerge command. This command accepts the same
options to select a merge algorithm as bzr merge, but it has a great advantage that
you can specify a subset of the files to run on. In this way, you can try different merge
algorithms depending upon what is best for a given file or a set of files. By running
only for a subset of files, remerge is more efficient than aborting and re-applying a
merge on the entire working tree, as it only needs to work with the selected files.

Using Branches

[126]

The merge algorithm that produces the best result varies from case to case. The
weave algorithm is known to produce better results when two branches frequently
merge from each other.

Another useful option is --reprocess, which tries to do additional processing to
reduce the size of the conflict regions. It makes the merge command run slower, but
usually it is worth a try.

Resolving other types of conflicts
The documentation in bzr help conflict-types explains all the conflict types you
may see in Bazaar and how they could happen, and it provides hints to resolving
them. The general logic is always the same:

1. Check the status of the project, review the content of the files that are
in conflict.

2. Use the additional temporary files created by Bazaar to compare the files
in different states—base revision, last state in this branch, or state in the
other branch.

3. Make the necessary changes in the working tree to fix the project.
4. Use the --take-this and --take-other shortcuts to resolve the conflicts by

accepting the changes from one branch and ignoring from others,
if this makes sense in the given situation.

5. Inform Bazaar about the conflicts that have been resolved.

If there are too many conflicts, you may want to re-do the merge using a different
algorithm. At any time, you may abort the merge to restore the working tree to the
last revision of the current branch and postpone the merge. Or, after resolving all
conflicts, you may commit the merge to record a new revision.

Merging a subset of revisions
By default, the merge command tries to merge all the revisions of the specified
source branch. However, in some cases, it can be useful to merge only a subset
of the missing revisions.

Merging up to a specific revision
To merge only up to and including a particular revision of the source branch, specify
that revision by using the -r or --revision options.

Chapter 3

[127]

As an example, let's merge into the trunk from the say-hello-to-x branch at
a particular revision. First, let's confirm the missing revisions in order to find
a suitable revision:

$ cd /sandbox/hello/trunk

$ bzr missing ../say-hello-to-x/ --line --other

You are missing 2 revisions:

8: Janos Gyerik 2013-03-03 python impl can say hello to X

7: Janos Gyerik 2013-03-03 bash impl can say hello to X

Revisions 7 and 8 of the say-hello-to-x branch are missing in the trunk. Use
the following command to merge only up to revision 7 and thus ignore revision 8:

$ bzr merge ../say-hello-to-x/ -r7

 M README.md

 M hello.sh

All changes applied successfully.

Using the status command with the --verbose or -v flag, we can confirm that only
revision 7 has been merged:

$ bzr status -v

modified:

 README.md

 hello.sh

pending merges:

 Janos Gyerik 2013-03-03 bash impl can say hello to X

Merging a range of revisions
If you specify a range of revisions by using -r BASE..OTHER or --revision BASE..
OTHER, only the revisions through BASE to OTHER will be merged, excluding BASE but
including OTHER. In the previous example, merging up to revision 7 is equivalent to
specifying the range 6..7.

If BASE is a revision that does not exist in the current branch, then the historical
relationship between the current branch and the specified branch segment cannot
be determined. In such a case, the merge will be treated as "cherry-picking".

Using Branches

[128]

Cherry-picking
Cherry-picking is a merge operation, where the historical relationship between the
target and the specified branches segment does not exist, or cannot be determined.
This can happen, for example, when merging changes from an unrelated branch,
or when merging from a related branch but specifying a range of revisions that
does not include a revision that already exists in the destination branch.

Bazaar does not track the revisions of a cherry-pick merge; in other words, the
individual revisions of the specified range will not be preserved, and the changes
will be applied as an independent change-set.

Understanding revision numbers
The integer revision numbers are unique per branch, but not unique globally in
the project. For example, after creating a branch at revision 100, the next revision
in the original branch will be 101, and the next revision in the other branch
(with completely different content) will also be 101:

98 99 100 101 102

101’ 102’ 103’

After a branch is merged into the current branch, its revision history is preserved,
but to keep revision numbers unique in the current branch, the merged revisions
are renumbered using a dotted notation:

98 99 100 101 102 103

100.1.1 100.1.2 100.1.3

101’ 102’ 103’

Chapter 3

[129]

The format of revisions in the dotted notation is BASE.BRANCH.REV:

• BASE: This is the base revision where the branch started from.
• BRANCH: This is the sequence number of the branch, starting from 1, and

incremented by 1 every time another branch is merged with the same base
revision.

• REV: This is the sequence number starting from 1 and incremented by 1 for
each merged revision.

In the preceding example, the original revision numbers of the second branch were
renamed as follows:

• 101 → 100.1.1

• 102 → 100.1.2

• 103 → 100.1.3

This is because the base revision of the merged branch is 100, and since this is the
first branch merged with this base revision, BASE = 100, BRANCH = 1, and the
revision numbers are incremented as usual starting from 1.

If we were to merge another branch that also started from base revision 100, then
the BRANCH number component in the renamed revisions will be 2, as shown in
the following example:

98 99 100

101 102 103

100.1.1 100.1.2 100.1.3

101’ 102’ 103’

104

100.2.1 100.2.2

101 102

www.allitebooks.com

http://www.allitebooks.org

Using Branches

[130]

Note that the merge operation does not affect the source branch. As illustrated on
the graph, even after the merge operation, the second branch still exists, completely
unaffected. Since its unique revisions have been merged into the first branch,
we can safely delete the second branch.

If needed, you can recreate the deleted second branch by branching from the first
branch at revision 100.1.3. The result will be a perfect replica of the second branch,
with the revisions 100.1.1, 100.1.2, and 100.1.3 renamed back to 101, 102,
and 103, respectively.

Merging from multiple branches
The merge operation in Bazaar works only with two branches at a time. However,
you can merge multiple branches by merging them one by one, as follows:

$ cd /path/to/target/branch

$ bzr merge /path/to/source1

$ bzr merge /path/to/source2 --force

$ bzr commit

Notice that when merging the second branch, you must use the --force flag,
because by default Bazaar refuses to merge when there are uncommitted changes
in the working tree. Since the first merge leaves the working tree in a changed state,
the --force flag is necessary to push through the second merge.

It is usually better to merge branches one by one in separate commits, as in this way
the history will be cleaner, with the merge commits appearing as distinct larger steps
in the evolution in the project.

Mirroring branches
Mirroring branches can be useful in many ways, typically to transfer branches
between computers, which is essential when collaborating with others. Another
common use is to mirror a branch to an external disk or an archive server as a
backup measure.

We have already seen that the bzr branch command can create a perfect replica
of a branch. However, as the original branch evolves, the replica becomes outdated.
Using one of the mirroring commands, it is possible to bring another branch up
to date, in sync with the original branch.

Chapter 3

[131]

Mirroring from another branch
The bzr pull command updates the current branch from another one that is some
versions ahead, but not diverged. This is useful when the current branch is used as
a mirror of another branch, and no revisions are added to it except when updating
from the source branch.

We can simulate such a scenario by creating a branch based on an older revision
of another branch. For example:

$ cd /sandbox/hello

$ bzr branch fix-c/ -r-2 sample-for-pull

Branched 7 revisions.

The sample-for-pull branch is now one revision behind the fix-c branch.
We can bring it up-to-date by pulling from its parent branch:

$ cd sample-for-pull/

$ bzr pull

Using saved parent location: /sandbox/hello/fix-c/

 M hello.c

All changes applied successfully.

Now on revision 8.

Since we did not specify the branch to pull from, Bazaar used the parent location as a
sensible default. As a result, the missing revisions are copied into the current branch
and the branch history is also updated accordingly, to be identical to the source
branch.

The two branches are now identical, which we can confirm by using the bzr
missing command:

$ bzr missing ../fix-c/

Branches are up to date.

When using bzr pull without parameters, Bazaar uses the remembered parent
branch. To pull from a different branch and remember that location as the new
parent branch, use the --remember flag. For example:

$ bzr pull ../trunk/ --remember

All changes applied successfully.

Now on revision 7.

Using Branches

[132]

We can confirm that the parent location has been changed by using the
bzr info command:

$ bzr info

Repository tree (format: 2a)

Location:

 shared repository: /sandbox/hello

 repository branch: .

Related branches:

 parent branch: /sandbox/hello/trunk

Mirroring from the current branch
The bzr push command updates another branch based on the current branch
to bring it up-to-date, if it has not diverged. This is useful when the other branch
is used as a mirror of the current branch, and no revisions are added to it except
when updating from the current branch.

We can simulate such a scenario by creating a branch based on an older revision
of another branch. For example:

$ cd /sandbox/hello

$ bzr branch fix-c/ -r-2 push-sample

Branched 7 revisions.

The push-sample branch is now one revision behind the fix-c branch. We can
bring it up-to-date by pushing to it from the fix-c branch:

$ cd fix-c/

$ bzr push ../push-sample/

All changes applied successfully.

Pushed up to revision 8.

As a result, the missing revisions are copied into the target branch and the
branch history is also updated accordingly, to be identical to the source branch.

The two branches are now identical, which we can confirm by using the bzr
missing command:

$ bzr missing ../push-sample/

Branches are up to date.

Chapter 3

[133]

When pushing a branch to another location for the first time, Bazaar remembers
to target location as the push branch. We can confirm that by using the bzr info
command:

$ bzr info

Repository tree (format: 2a)

Location:

 shared repository: /sandbox/hello

 repository branch: .

Related branches:

 push branch: /sandbox/hello/push-sample

 parent branch: /sandbox/hello/trunk

If you want to push to the same location again, you can use bzr push without
parameters.

To push to a different location and remember that location as the new push
branch use the --remember flag. For example:

$ bzr push /tmp/push-test --remember

Created new branch.

We can confirm that the push location has been changed:

$ bzr info

Repository tree (format: 2a)

Location:

 shared repository: /sandbox/hello

 repository branch: .

Related branches:

 push branch: /tmp/push-test

 parent branch: /sandbox/hello/trunk

Using Branches

[134]

Summary
In this chapter, we have explained what branches are and gave a few practical
examples where they can be useful. We have covered the core concepts and
commands that should enable you to perform all the basic branch operations,
such as creating branches, comparing, merging, and mirroring branches.

The next chapter will build on what you learned here, and show you how to
combine the various branch operations to collaborate with others in a small team.

Using Bazaar in
a Small Team

This chapter explains how to work together with others in a small team. The most
natural way to achieve this in Bazaar is by branching and merging from each other.

In essence, this is not very different from working solo and using multiple branches.
However, instead of all the branches existing on your computer, they are spread out
across multiple computers. Therefore, the branch operations between collaborators
must take place over the network.

We will show you a few simple ways of sharing branches with others over the
network, as well as a few example workflows that you can use to combine the
various branch operations and collaborator branches in an organized manner,
for the evolution of the project.

We will cover the following topics in this chapter:

• Collaborating with others
• Sharing branches over the network
• Working with remote branches
• Implementing simple workflows

Using Bazaar in a Small Team

[136]

Collaborating with others
Working together with others is technically very similar to working on multiple
branches by yourself—the same way as you would create a new branch based on
another one on your computer to work on a new feature. A collaborator can create
the new branch on his or her computer to do the same. When the feature is complete,
you can merge from a collaborator's branch in the same way as you would merge
from any of your own branches.

The most natural way to collaborate with others using Bazaar is by branching and
merging from each other. In order for this to work, the branches involved in the
operations between you and your collaborators must be accessible by Bazaar in
some way:

• You must share a branch in order to let others create their own branches
based on it, or to merge from it into their own branches

• Your collaborators must share their completed branches in order to let you
or others merge from them

The same logic also applies when you are working solo and using
different computers; for example, your desktop and a laptop. In that
case too, you need to transfer branches between computers, and
technically it is as if the other collaborator is you.

Working with remote branches
We refer to branches on your computer as local branches, and branches on other
computers as remote branches.

All the branch operations in Bazaar work completely transparently and consistently
between branches, whether they are local or remote. Even the syntax is the same;
you can simply specify remote branches by their remote URLs instead of a local
filesystem path as in the case of local branches.

Chapter 4

[137]

merge from

feature123

merge from

feature123

/branches /bugfix123

/branches /feature123

bzr+ssh://example.com/repo/feature123

Server

/branches /bugfix123

3 4 5

2 3 4

2 3 4

3 4 5

1 2

3 4

1 2

3 4

2.1.1 2.1.2

2.1.1 2.1.2

/branches /bugfix123

/branches /bugfix123

Same computer

Same computer

1 2

1

1

1 2

5

6

5

6

As long as a remote branch is accessible by a remote URL and supported protocol,
you can branch, merge, or mirror from it in exactly the same way you do with
local branches.

We will show a few simple ways of making branches accessible to others, in order to
let collaborators perform the various branch operations, such as branching, merging,
or mirroring.

Implementing simple workflows
Another important aspect in collaboration is the manner in which you and your
collaborators combine the various branch operations using the various branches
in the project.

We will show a few example workflows that you can implement when working
with a small number of peers. The workflows will involve a combination of
various branch operations, such as branching, merging, and mirroring.

Using Bazaar in a Small Team

[138]

Sharing branches over the network
When you create new branches on your computer, they are normally private
and only accessible by you. In order to work with others, you need to make your
branches accessible to your collaborators, and likewise they also need to share their
branches with you.

In this section, we will focus mainly on the technical details of making branches
accessible to others as read-only remote branches. Setting up a full-blown Bazaar
hosting server is beyond the scope of this chapter; we will only explain a few relatively
simple ways of sharing with others, including any necessary server configuration.

Not all methods may apply to you and your network environment. Feel free to
skip subsections and focus on only what is relevant in your particular case.

Specifying remote branches
In all the branch operations, you must specify the source branch to work with by
its URL. In case of local branches, the URL is simply the local filesystem path of the
branch, as we have seen in the previous chapters. In case of remote branches,
the URL starts with a prefix depending upon the transport protocol used.

Bazaar supports many protocols to work with remote branches. The complete
list is explained on the urlspec help page. For example:

$ bzr help urlspec

URL Identifiers

Supported URL prefixes:

 aftp:// Access using active FTP.

 bzr:// Fast access using the Bazaar smart server.

 bzr+ssh:// Fast access using the Bazaar smart server over SSH.

 file:// Access using the standard filesystem (default)

 ftp:// Access using passive FTP.

 http:// Read-only access of branches exported on the web.

 https:// Read-only access of branches exported on the web
using SSL

.

 sftp:// Access using SFTP (most SSH servers provide SFTP).

 ...

Chapter 4

[139]

These are the basic protocols supported by Bazaar; additional protocols are provided
by plugins. Although in general all the branch operations work transparently
regardless of the protocol, access may be limited to read-only operations, and
there may be inherent differences in performance depending upon the protocol.

Protocols that use the Bazaar smart server provide the fastest access. In case of
these methods, Bazaar is installed on the server, and incoming branch operations
are handled by the bzr serve command internally. These protocols are tuned for
performance, and can support both read-only and write operations.

Other protocols are slower than the smart server, because they cannot use the bzr
serve command. Thus the Bazaar client cannot receive assistance from the server
side and it has to do more work and transfer more data. These protocols are often
referred to as dumb servers.

The FTP and SFTP protocols support both read-only and write operations, while
the HTTP and HTTPS protocols allow only the read-only access by default.

Write operations can be possible over HTTP and HTTPS by using
the WebDAV plugin.

Using URL parameters
Depending upon the remote branch, you may need to specify the username,
password, and port number as a part of the URL. The general format of a URL
is as follows:

<protocol>://[user[:password]@]host[:port]/[path]

This format works with all the protocols. For example:

http://jack@example.com:8080/repos/myproject
bzr+ssh://jack@example.com:8022/repos/myproject

Using remote branches through a proxy
If access to the Internet must go through a proxy, you must set the URL of the
proxy server in appropriate environment variables:

• http_proxy: This is used to access a remote branch via http://
• https_proxy: This is used to access a remote branch via https://
• ftp_proxy: This is used to access a remote branch via ftp:// or aftp://

Using Bazaar in a Small Team

[140]

For example, if the proxy URL is http://proxy:8080/proxy.js, then you can set it
as follows in Windows:

$ set http_proxy=http://proxy:8080/proxy.js

$ set https_proxy=http://proxy:8080/proxy.js

$ set ftp_proxy=http://proxy:8080/proxy.js

In GNU/Linux and Mac OS X:

$ export http_proxy=http://proxy:8080/proxy.js

$ export https_proxy=http://proxy:8080/proxy.js

$ export ftp_proxy=http://proxy:8080/proxy.js

Sharing branches using a distributed
filesystem
If you and your collaborators have access to some kind of distributed filesystem,
such as a network filesystem in GNU/Linux and Mac OS X, or a network share
in Windows, then you can create remote branches without additional setup.

In GNU/Linux and Mac OS X, specify the network filesystem path to create
the remote branch. For example:

$ bzr push /path/to/nfs/path/to/create --no-tree

In Windows, specify the UNC path on the network share. For example:

$ bzr push //ServerComputerName/ShareName/path/to/create --no-tree

In both the examples, we used the --no-tree flag to tell Bazaar to skip creating
a working tree. Since the working tree is pointless and potentially confusing to
exist in a mirror branch, this is a good measure to save disk space and speed up
the push operation.

Chapter 4

[141]

1 2 3 4

User PC

/branches/feature123

1 2 3 4

User PC

/branches/feature123

ServerX

//ServerX/repo/feature123

1 2 3 4

ServerX

//ServerX/repo/feature123

bzr push

after pushbefore push

As long as collaborators have read access to the remote branches created in this way,
they can work with these branches directly or create local mirror branches based on
them. In fast local networks, the network overhead of accessing these branches may
be negligible, thus creating local mirrors may be unnecessary.

Using Bazaar in a Small Team

[142]

Sharing branches over SSH
Using an SSH server to share branches with others is very easy to set up with
minimal configuration. If you and your collaborators have access to an SSH server,
there are several ways to access branches:

• Using Bazaar's smart server and individual SSH accounts
• Using Bazaar's smart server with a shared restricted SSH account
• Using individual SSH accounts with SFTP

Using Bazaar's smart server provides fast access to branch data. However, for this
to work, Bazaar must be installed on the server, and the bzr command must be
included in the execution path of the user account used when connecting to the SSH
server. In this case, the incoming branch operations are handled by the bzr serve
command internally, which is tuned for fast performance.

Using individual SSH accounts
If Bazaar is installed on the server, you can benefit from using the smart server
by constructing the remote URL of the branch in the following format:

bzr+ssh://[user@]host/[path]

Here:

• user is the username of your SSH account
• host is the hostname of the SSH server
• path is the absolute path of the Bazaar branch in the server's filesystem

For example, if you have a user account named jack on the SSH server example.
com, and there is a Bazaar branch at the path /srv/bzr/projectx on the server, then
you can access the branch by the URL bzr+ssh://jack@example.com/srv/bzr/
projectx, as follows:

$ bzr info bzr+ssh://jack@example.com/srv/bzr/projectx

Collaborators can use their own SSH account to access the branch by simply
replacing the username in the URL. Keep in mind that standard filesystem
permissions apply; collaborators can only access the branches if their user accounts
have the appropriate filesystem permissions on the branch paths.

Chapter 4

[143]

When referring to branches under your own home directory, you can replace the home
directory part in the absolute path with ~ (tilde, the home directory indicator
in UNIX systems). For example, the following commands are equivalent:

$ bzr info bzr+ssh://jack@example.com/home/jack/bzr/projectx

$ bzr info bzr+ssh://jack@example.com/~/bzr/projectx

Since, by default, other users don't have write permission to your home directory,
it can be a suitable place to put your branches in order to provide strictly read-only
access to others.

Using individual SSH accounts with SFTP
If you cannot or don't want to install Bazaar on the SSH server, another option is
to use SFTP instead, if it is enabled on the server. You can construct the remote URL
in the same way as in the previous section, but replace the bzr+ssh:// prefix in the
branch URL with sftp://.

The main difference between these two modes is that when using SFTP, the
Bazaar smart server is not used at the server side, therefore performance is
slower. Nonetheless, this can be a suitable option if installing Bazaar on the
server is not possible.

Using a shared restricted SSH account
Instead of creating individual SSH accounts for each collaborator, an interesting
alternative is to use a shared SSH account with command restrictions.

This setup requires that collaborators use the SSH public key authentication when
connecting to the server, and that appropriate access permissions to the branches
are configured in the ~/.ssh/authorized_keys file of the shared SSH account.

Let's suppose that:

• There is a shared repository on the server in /srv/bzr/projectx
• You want to let jack create his branches in /srv/bzr/projectx/jack
• You want to let mike create his branches in /srv/bzr/projectx/mike
• The shared repository is owned by the user bzruser

Using Bazaar in a Small Team

[144]

To make this work, add the following two lines to the ~/.ssh/authorized_keys
file of bzruser:

command="bzr serve --inet --allow-writes --directory=/srv/bzr/p
rojectx/jack",no-agent-forwarding,no-port-forwarding,no-pty,no-us
er-rc,no-X11-forwarding PUBKEY_OF_JACK

command="bzr serve --inet --allow-writes --directory=/srv/bzr/pro
jectx/mike",no-agent-forwarding,no-port-forwarding,no-pty,no-user-r
c,no-X11-forwarding PUBKEY_OF_MIKE

Replace PUBKEY_OF_JACK and PUBKEY_OF_MIKE with the SSH public key of Jack and
Mike, respectively. For example an SSH public key looks similar to the following:

ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAo6+TOzByRt9EVUjpMBs5kRft9SSPa
mI3cRlvaX4DuMbRqjtfkRTO4tik+MAWaFeIHyO5EsdFBGp+XVH9BMqehXdjAQga4Wa2
oGX/w7bn+O+gdIoJE2wzMlGV2eXcaW2PKdDIqQpUn0n+xX68vjRaCiZmqGXWhVej3cVi9
dtIwIQMrcIF4T+4wONic09UjPXZKbjL2GmkzsR6SMQJBomr4TUcRgyaR5ija9R8AzvsSdN
eDKkVwf83lva3jruwEMute3aZFulM5JqvjFIFqooAlSjWjdniF8ZdweeN1c2Q2QH+eCl48h
Y2drUsdZ+oQH+xp8x6llkZiDWFE/RZLa3Glw== Joe

The command parameter restricts the login shell to the bzr serve command.
In this way, the users will not be able to do anything else on the server except run
Bazaar commands. The --directory parameter further restricts Bazaar operations
to the specified directory. To give only read-only access, simply drop the --allow-
writes flag.

The other options on the line after command are to make the SSH session as restricted
as possible, as a good measure for security.

When accessing branches in this setup, the path component in the branch URL must
be relative to the directory specified in the authorization line. For example, Jack
can access his branch in /srv/bzr/projectx/jack/feature-123, as follows:

$ bzr info bzr+ssh://bzruser@example.com/feature-123

The drawback of this setup is that you can only have one configuration line per SSH
key. One way to work around this can be by adding another shared SSH account,
configuring it to have read access to the shared repository, and creating the ~/.ssh/
authorized_keys file as follows:

command="bzr serve --inet --directory=/srv/bzr/projectx",no-agent-
forwarding,no-port-forwarding,no-pty,no-user-rc,no-X11-forwarding P
UBKEY_OF_JACK

command="bzr serve --inet --directory=/srv/bzr/projectx",no-agent-f
orwarding,no-port-forwarding,no-pty,no-user-rc,no-X11-forwarding PUBKE
Y_OF_MIKE

Chapter 4

[145]

Again, replace PUBKEY_OF_JACK and PUBKEY_OF_MIKE with the SSH public key of
jack and mike, respectively. Notice that we removed the --allow-writes flag and
adjusted the --directory parameter to specify the shared repository rather than
the per-user directories.

Using SSH host aliases
If you use the same SSH server frequently, it can be convenient to set up an alias
in your ~/.ssh/config file as follows (only in GNU/Linux and Mac OS X):

Host repo

Hostname example.com

User jack

In this way, you can omit the username and shorten the server name in the URL:

$ bzr info bzr+ssh://repo/~/myproject/mybranch

Using a different SSH client
To use a different SSH client instead of Bazaar's default, you can specify the path
of another SSH client using the BZR_SSH variable. This can be especially useful in
Windows, if you use PuTTY to store your SSH private keys. You can tell Bazaar
to use PuTTY by setting BZR_SSH, as follows:

set BZR_SSH=c:\program files\putty\plink.exe

Sharing branches using bzr serve
You can use the Bazaar smart server directly to listen to incoming connections and
serve branch data.

Use the bzr serve command to start the smart server. By default, it listens on port
4155 and serves the branch data from the current working directory in read-only
mode. It has several command-line parameters and flags to change the default
behavior. For example:

• --directory DIR: This specifies the base directory to serve the branch data
from instead of the current working directory

• --port PORT: This specifies the port number to listen on instead of the
default 4155

• --allow-writes: This allows write operations instead of strictly read-only

Using Bazaar in a Small Team

[146]

Use the -h or --help flags to see the list of supported command-line parameters.

Branches served in this way can be accessed by URLs in the following format:

bzr://host/[path]

Here, host is the hostname of the server, and path is the relative path from the base
directory as configured in the server process.

For example, if the server is example.com, and the smart server is configured to use
the directory /srv/bzr/repo, and there is a Bazaar branch at the path /srv/bzr/
repo/projectx/feature-123, then the branch can be accessed as follows:

$ bzr info bzr://example.com/projectx/feature-123

The advantage of this setup is that the smart server provides good performance.
On the other hand, it completely lacks authentication.

Sharing branches using inetd
On GNU/Linux and UNIX systems, you can configure inetd to start the
bzr serve command automatically as needed, by adding a line in the inetd.conf
file as follows:

4155 stream TCP nowait bzruser /usr/bin/bzr /usr/bin/bzr serve
--inet --directory=/srv/bzr/repo

Here:

• 4155 is the port number where the Bazaar server should listen for incoming
connection.

• bzruser is the user account the bzr serve process will run as.
• /usr/bin/bzr is the absolute path of the bzr command.
• /usr/bin/bzr serve --inet --directory=/srv/bzr/repo is the

complete command to execute when starting the server. The --directory
parameter is used to specify the base directory of Bazaar branches.

Once configured, this setup works exactly in the same way as explained in the
previous section, and it has the same advantages and disadvantages.

Chapter 4

[147]

Sharing branches over HTTP or HTTPS
If you have a website, and you have an SSH or SFTP access to the server hosting the
website, then you can make your branches available to others in read-only mode by
pushing them to somewhere visible on the website.

For example, if your website's files are in /var/www/example.com, you can push
your Bazaar branches to /var/www/example.com/bzr/projectx/ and let others
access them via the URL http://example.com/bzr/projectx, as follows:

$ bzr info http://example.com/bzr/projectx

Although in this setup the Bazaar client cannot receive assistance from the server
side, it can figure out the necessary information for completing requests by
downloading from the appropriate .bzr directories. As a result, the performance
is significantly slower compared to a smart server, and this kind of setup is referred
to as dumb server.

Although normally the HTTP and HTTPS protocols allow only read-only access,
write operations can be possible by using the WebDAV plugin.

Working with remote branches
Since all the branch operations work transparently and consistently between remote
and local branches, you can work with remote branches directly. However, it is
often more practical to work with remote branches in an indirect way, using mirror
branches. For example:

• You can speed up branch operations by using local mirror branches instead
of working with a remote branch directly

• If your collaborators don't have direct access to your local branches, you can
provide remote mirror branches at a more accessible location.

In this section, we will explain various practical considerations when working with
remote branches. In particular, it is important to become very comfortable with the
various mirroring operations in order to work with remote branches with ease.

Using Bazaar in a Small Team

[148]

Working with remote branches directly
All the branch operations work exactly in the same way with remote branches
as with local branches. For example:

• bzr info REMOTE_URL: This prints basic information about the remote branch.
• bzr log REMOTE_URL: This shows the revision history of the remote branch.
• bzr qlog REMOTE_URL: This shows the revision history of the remote branch

in Bazaar Explorer.
• bzr branch REMOTE_URL [TO_LOCATION]: This creates a new local branch

as a perfect replica of the specified remote branch. The second parameter can
be used to specify the path of the new local branch, otherwise the branch is
created as a subdirectory in the current directory.

• bzr missing REMOTE_URL: This compares the current branch with the
specified remote branch and prints the list of missing revisions in both.

• bzr diff --new REMOTE_URL: This compares the current branch with the
specified remote branch and prints the differences going from the current
branch to the remote branch. Use --old REMOTE_URL to show the differences
in the other direction.

• bzr merge REMOTE_URL: This merges the specified remote branch into the
current branch.

• bzr remerge [FILE...]: This performs a redo of the merge, possibly using
a different merge algorithm on all files or selected files only.

• bzr push REMOTE_URL: This makes the remote branch a mirror of the current
branch. It works only if the two branches have not diverged.

• bzr pull REMOTE_URL: This makes the current branch a mirror of the remote
branch. It works only if the two branches have not diverged.

However, keep in mind that due to the overhead of transferring data over the
network, all these operations will be slower as compared to when working with
local branches.

Using local mirror branches
When working with remote branches, the transport over the network poses an
overhead—all branch operations are slower because the data must travel over the
network. In addition, when working with the same remote branches repeatedly,
it can be tedious to re-enter their possibly long and complicated URLs.

Chapter 4

[149]

In such situations, instead of working with a remote branch directly, it is more
practical to create a local mirror branch and perform branch operations using the
local mirror instead of the remote branch. Provided that the remote branch has not
changed since the local mirror was created, the result of all branch operations will
be equivalent regardless of using the remote branch directly, or its local mirror.

bzr branch

1 2 3

1 2 3 4 5

1 2 3 4

1 2 3 44

1 2 3 4 5

3 4 51 2 3 4 5

ServerX ServerX

//ServerX/repo/trunk //ServerX/repo/trunk

/branches/trunk

/branches/trunk

bzr info

bzr log

bzr missing

bzr diff

...

bzr info

bzr log

bzr missing

bzr diff

...

User PC

User PC

Working with remote branches directly Working with remote branches via a local mirror

This is especially practical when merging from a remote branch. Before performing
the merge, you might want to run a series of commands to inspect the branch; for
example, using the bzr log, bzr missing, and bzr diff commands, or their
equivalents in Bazaar Explorer. After performing the merge you might want to redo
the merge with bzr remerge by using a different algorithm.

Running multiple commands directly on a remote branch while it hasn't changed
is inefficient, as Bazaar would have to transfer data over the network repeatedly.
A more efficient way is to first create a local mirror, and perform all the branch
operations you may need on the local mirror instead of the remote branch.

Using Bazaar in a Small Team

[150]

Creating a local mirror
You can create a local mirror by simply creating a local branch based on a remote
branch, by using the bzr branch command or its equivalent in Bazaar Explorer.

The local branch will be identical to the original remote branch, and the result of all
branch operations using the local branch as the source branch will be identical to
using the remote branch directly, but more efficient because the network overhead
is completely eliminated.

When creating a branch based on another branch, the source
branch is called the parent branch of the new branch.

Keep in mind that the local branch is only a mirror as long as you use it that way.
Technically speaking, a mirror branch is no different from any of your other local
branches. If you make changes and commit new revisions to a mirror branch, it will
have diverged from its parent. If you keep it as a pristine copy without committing any
new revisions to it, then you will be able to bring it up-to-date with its parent later.

Using a shared repository
When working with multiple branches, it is always a good idea to use a shared
repository, as this eliminates the unnecessary copying of revision data between
branches, saving disk space and speeding up branch operations.

Using a shared repository is especially useful when creating new local branches
based on remote branches, because Bazaar can re-use the revisions that already
exist in the shared repository, thus reducing the amount of data transferred over
the network, greatly mitigating the network overhead.

Updating a local mirror
A local mirror branch is not updated automatically when new revisions are added
in its parent branch. This comes from the fact that a mirror branch is no different
from any other branch—a local branch is only a mirror because you use it that way.

To bring a local branch up-to-date with its parent, use the bzr pull command,
or in Bazaar Explorer the large Pull button in the toolbar.

This works only if the local branch has not diverged from its parent; that is, you have
not committed any new revisions to it yourself. The pull operation only makes sense
between branches that have not diverged, otherwise Bazaar will fail with an error,
since the local branch is no longer a mirror of its parent.

Chapter 4

[151]

As long as the local branch is not changed in another way, you can pull from its
parent branch repeatedly, to download any new revisions that may have been added
at the remote side. If the local branch is already up-to-date, pulling again will simply
do nothing.

To distinguish local branches that you intend to use as read-only
local mirrors, it is a good idea to create them inside a subdirectory
within the shared repository. For example, named mirrors.

Using remote mirror branches
Branches that you create on your computer are normally not accessible by others.
In order to collaborate with others, you need to make your branches available
to them somehow.

Providing direct access to your local branches can be difficult or often impossible
due to the network topology between your computer, and the computers of your
collaborators. A common solution is to provide remote mirrors of your local
branches at a location that is accessible by your peers. Since a remote mirror
branch is identical to its parent branch, your collaborators can work with the
mirror branches and get the same result of all branch operations as if they
were accessing your local branches directly.

Creating a remote mirror
You can create a remote mirror branch from the current branch by using the bzr
push command and specifying a remote URL that supports write operations,
such as bzr://, bzr+ssh://, and ftp://, aftp://. For example:

$ bzr push bzr://example.com/path/to/create

$ bzr push bzr+ssh://jack@example.com/path/to/create

$ bzr push aftp://jack@example.com/path/to/create

Of course, in order to try these operations, you need to have access to a remote
server that is configured appropriately. See the explanation earlier in the Sharing
branches section.

Using Bazaar in a Small Team

[152]

Using a shared repository
When creating multiple remote branches on the same server, it is always a good idea
to use a shared repository, as this eliminates the unnecessary copying of revision data
between branches, therefore saving disk space and speeding up branch operations.

Using a shared repository is especially useful when creating new remote branches,
because Bazaar can re-use the revisions that already exist in the remote shared
repository, thus reducing the amount of data transferred over the network and
greatly mitigating the network overhead.

Updating a remote mirror
A remote mirror branch is not updated automatically when new revisions are added
in its parent branch. This comes from the fact that a mirror branch is no different from
any other branch—a remote branch is only a mirror because you use it that way.

To bring a remote branch up-to-date with its local parent, use the bzr push
command, or in Bazaar Explorer the large Push button in the toolbar.

This works only if the remote branch has not diverged from its parent. The push
operation only makes sense between branches that have not diverged, otherwise
Bazaar will fail with an error, since the remote branch is no longer a mirror of
its parent.

As long as the remote branch is not changed in another way, you can push to it
from the same local branch repeatedly, to upload any new revisions that you have
added locally. If the remote branch is already up-to-date, pushing again will simply
do nothing.

Using branches without a working tree
If you intend to use a branch as a mirror, then it makes sense to skip creating a
working tree. By default, Bazaar creates a working tree in new branches, but a
working tree is optional in general, and you can save disk space and speed up
operations by not creating it.

Creating a local branch without a working tree
To create a branch without a working tree, use the --no-tree flag with the bzr
branch command. For example:

$ bzr branch lp:~bzrbook/bzrbook-examples/hello-start --no-tree

Branched 6 revisions.

Chapter 4

[153]

The directory of the new branch created in this way is not populated with files; you
will find only the .bzr directory inside and none of the files of the project. All the
branch operations will work with such a branch, except operations that require a
working tree such as the bzr add, bzr remove, and bzr commit commands.

Creating or removing the working tree
You can use the bzr reconfigure command to create or remove the working
tree from the directory of an existing branch.

To remove an existing working tree from a branch, use the --branch flag.
For example:

$ bzr reconfigure --branch

To create a working tree in a branch that doesn't have one, use the --tree flag.
For example:

$ bzr reconfigure --tree

Within a shared repository, branches without a working tree are called repository
branches, and branches with a working tree are called a repository tree. Outside a
shared repository, branches without a working tree are called standalone branches,
and branches with a working tree are called a standalone tree:

With working tree Without working tree
Shared repository Repository tree Repository branch
Standalone Standalone tree Standalone branch

You can confirm the configuration of a branch by using the bzr info command.
The first line of the output tells the name of the configuration. For example:

$ bzr init /tmp/branch --no-tree

Created a standalone branch (format: 2a)

$ bzr info /tmp/branch/

Standalone branch (format: 2a)

Location:

 branch root: /tmp/branch

$ bzr reconfigure --tree /tmp/branch/

$ bzr info /tmp/branch/

Standalone tree (format: 2a)

Location:

 branch root: /tmp/branch

Using Bazaar in a Small Team

[154]

Reconfiguring working trees in a shared repository
In the default setup of a shared repository, new branches are created with a
working tree. You can change that behavior using the --with-no-trees and
--with-trees flags.

To turn off working trees by default:

$ bzr reconfigure --with-no-trees

To turn on working trees by default:

$ bzr reconfigure --with-trees

The configuration with working trees enabled is called shared repository with trees,
and without working trees is called simply shared repository. You can confirm the
configuration of a shared repository using the bzr info command; the first line
of the output tells you the name of the configuration. For example:

$ bzr init-repo /tmp/repo

Shared repository with trees (format: 2a)

Location:

 shared repository: /tmp/repo

$ bzr reconfigure --with-no-trees /tmp/repo/

$ bzr info /tmp/repo/

Shared repository (format: 2a)

Location:

 shared repository: /tmp/repo

The working trees setting affects the default behavior of the bzr branch and bzr push
commands when used to create branches within the shared repository. Changing
the setting has no effect on existing branches; you must use the bzr reconfigure
command explicitly to create or remove working trees in the existing branches.

Creating remote branches without a working tree
When creating a remote branch, by default, Bazaar will try to create a working tree
if the protocol supports it. Use the --no-tree flag to override this behavior and
skip creating a working tree.

When creating remote branches for the purpose of mirroring, it is usually better
to skip creating a working tree for two reasons:

• Save disk space and speed up push operations
• Remote mirror branches are meant to be used in branch operations only,

thus having a working tree is pointless and may become confusing

Chapter 4

[155]

Slicing and dicing branches
When working with multiple local and remote branches, it is important to be fully
comfortable with mirroring branches locally or remotely. In order to master these
operations, perhaps it helps to play around with them to see how they can be
combined in different ways that result in perfectly equivalent branches.

Given two branches branchA and branchB that have a common base revision
(common ancestor) but have diverged in different directions, let's define a few
additional branches to work with:

• Let branchA_B be the result of merging from branchB to branchA
• Let branchB_A be the result of merging from branchA to branchB
• Let branchA_old be the result of branching from branchA at a past revision
• Let branchB_old be the result of branching from branchB at a past revision

Then the following statements are all true:

• The result of bzr branch branchA_B -rlast:2 is identical to branchA
• The result of bzr branch branchB_A -rlast:2 is identical to branchB
• The result of bzr pull -d branchB branchA_B is identical to branchA_B
• The result of bzr pull -d branchA branchB_A is identical to branchB_A
• The result of bzr push -d branchA_B branchB is identical to branchA_B
• The result of bzr push -d branchB_A branchA is identical to branchB_A
• There is a revision REV in branchA_B such that the result of bzr branch

-rREV branchA_B is identical to branchB
• There is a revision REV in branchB_A such that the result of bzr branch

-rREV branchB_A is identical to branchA
• The result of bzr push -d branchA_B branchA_old is identical to

branchA_B

• The result of bzr push -d branchB_A branchB_old is identical to
branchB_A

To verify the preceding statements, you can recreate the branches in the original
assumptions, or download our sample branches using the following commands:

$ bzr init-repository /tmp/slicing-and-dicing

$ cd /tmp/slicing-and-dicing

Using Bazaar in a Small Team

[156]

$ bzr branch lp:~bzrbook/bzrbook-examples/branchA_B

$ bzr branch lp:~bzrbook/bzrbook-examples/branchB_A

$ bzr branch branchA -rlast:3 branchA_old

$ bzr branch branchB -rlast:3 branchB_old

Based on these branches you can verify all the preceding statements, make
comparisons, and test your own assumptions. For example:

• bzr missing: This should print an empty output for equivalent branches
• bzr diff: This should print an empty output for equivalent branches
• bzr merge: This should print Nothing to do. if branches are equivalent
• bzr push: This confirms when it is possible to push and when not, and the

result of the push operation
• bzr pull: This confirms when it is possible to pull and when not, and the

result of the pull operation

Going through these examples should solidify your understanding of the branch,
push and pull operations, and thereby enable you to slice and dice branches at ease.

Implementing simple workflows
There are many ways in which you can combine the various branch operations on
the various branches, created by all the collaborators in a project. We will introduce
two simple workflows suitable for small teams, which you can implement directly,
or use as an example to design your own workflows when collaborating with others.

For simplicity, we will assume direct access between collaborator branches. In
practice, you may have to work with remote mirrors of your collaborators' branches
and use local mirrors for practical reasons. However, such technical details should
not affect the main principles of the workflows.

Chapter 4

[157]

Using independent personal branches
In this workflow, each collaborator has his or her own main personal branch that
others can access in read-only mode—they can branch, merge, or pull from it, but
cannot commit or push to it. Collaborators work on the project by committing their
changes in their own branch, and by occasionally merging from the branches of others:

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

5

5

Jack

Anna

Mike

/branches/feature123

/branches/trunk

/branches/trunk

/branches/feature155

/branches/bugfix78

/branches/trunk

This workflow can be suitable in very small teams with only a few members,
especially in the beginning of a new project. As long as the team members merge
from each other frequently, their main branches will be quite similar. Over time and
as the team grows, a branch may emerge as the official, if its owner merges relatively
more often from other team members, thus making the branch the most complete
and up-to-date point of reference.

Using Bazaar in a Small Team

[158]

Merging from branches repeatedly
In this workflow, team members inevitably merge from each other's main branch
repeatedly. This means that not only are there repeated merges from branchA to
branchB, but at the same time there are also repeated merges in the other direction,
from branchB to branchA:

Merging from branches repeatedly

b
ra

n
c
h
A

b
ra

n
c
h
X

b
ra

n
c
h
B

In this example, there are two users, Jack and Mike, each working on a single branch,
and occasionally merging from each other. The timeline of their actions is as follows:

Step
no.

Jack's branch Mike's branch Summary after the step

1 Branched from
branchX

Branched from
branchX

The two branches are identical
to each other and their
common parent

2 Added new revisions Added new revisions The two branches have
diverged

3 Merged from Jack Jack's revisions are copied into
Mike's branch

4 Merged from Mike Mike's revisions are copied
into Jack's branch, plus Mike's
merge commit

The somewhat tricky part is what happens to "merges of merges" in step 4. In this
step, Mike's branch contains all the changes of the project, including Jack's revisions.
That is, when Jack performs the merge to get Mike's changes, the source branch
contains his own changes too.

Chapter 4

[159]

Bazaar handles this correctly, because in step 3 the merge operation records not just
the changes in the content of the project's files, but also the unique revision IDs of the
revisions by Jack. In this way, when merging from Mike's branch into Jack's branch
in Step 4, Bazaar recognizes that the changes involved in Jack's revisions should
not be re-applied.

Handling criss-cross merges
When two branches merge the same changes and then merge from one another,
it results in a so-called "criss-cross" in the branch history. This can cause problems
with the three-way merge algorithm, which is the default method in Bazaar to
handle merges.

The principle of the three-way merge algorithm is finding a common base revision,
in order to determine whether the differences in the two branches are due to one side
adding lines or another side removing lines. In case of a criss-cross, there is no good
choice for a base—selecting a recent merge point could cause one side's changes
to be silently discarded, while selecting older merge points could cause more than
necessary conflicts to be emitted.

The weave algorithm is not affected by this problem, because instead of using a base
revision to detect the cause of differences, it uses so-called line-origin detection.

If you encounter too many conflicts with the three-way merge, it can be a good
idea to redo the merge on selected files or the entire project using the bzr remerge
command using the --weave flag.

For more details on how the weave algorithm works, refer to the following pages
in the Bazaar documentation, and on Wikipedia:

• http://doc.bazaar.canonical.com/beta/en/user-reference/criss-
cross-help.html

• http://en.wikipedia.org/wiki/Merge_(revision_control)#Weave_
merge

Using Bazaar in a Small Team

[160]

Viewing the history from different perspectives
It is important to keep in mind that Bazaar shows the revision history from the
perspective of the current branch. In other words, each collaborator in this workflow
will see the history differently. For example, Mike sees the history as follows:

While Jack sees the history as follows:

Chapter 4

[161]

In this example, both the branches have exactly the same content in terms of project
files, but their view of the history is different. This is because Bazaar uses increasing
integer revision numbers for commits in the current branch, and renames merged
revisions using a dotted notation.

Also note that at this point, Jack's branch contains all the revisions of Mike's branch,
but the converse is not true—revision 5 in Jack's branch does not exist in Mike's
branch. The last branch that merged the other branch, will always have one revision
not in the other branch—the revision that committed the merge.

At this point, Mike can pull from Jack to make the two branches identical. As a
result, both branches will have Mike's perspective of the revision history. It might
be a good idea to pull from each other whenever possible instead of a merge,
as that would reduce the number of criss-crosses in the branch history.

Using feature branches and a common trunk
In this workflow, collaborators do all their work on dedicated feature branches.
When a feature branch is completed, its owner or another team member merges
it into the common trunk. For simplicity, we will assume that the common trunk
is available at a central location, and all collaborators have write access to it by
push operations.

1 2 3 4

1 2 3 4

Mike

/branches/mirrors/trunk

/branches/features123

Anna

1 2 3 4 5

/branches/feature155

1 2 3 4 5

/branches/bugfix78

1 2 3 4

/branches/trunk

1 2 3 4

/branches/mirrors/trunk

Jack

1 2 3 4

/branches/mirrors/trunk

1 2 3 4

/branches/trunk

ServerX

1 2 3 4

bzr+ssh://ServerX/branches/trunk

mirror

mirror

mirror

Using Bazaar in a Small Team

[162]

This workflow can be suitable in small- to medium-sized teams, because it is
not complicated to implement, and the common trunk helps in keeping the
project organized.

The workflow has several interesting features:

• The official latest version of the project can be clearly identified as
the common trunk

• It enforces the good practice of using feature branches
• It facilitates the good practice of "code reviews"

Merging into a common remote trunk
Since merge operations can only be applied to local branches, collaborators
must keep a local mirror of the common trunk. Merging a feature branch can
be performed by the following steps:

1. Create or update a local mirror
2. Merge from the feature branch into the local mirror
3. Test the improvements well and commit the merge
4. Push from the local mirror to the common remote trunk

Commit the mergeMerge into local mirror

2.1.1

41 2 3

1 2

3 4

5

2.1.1 2.1.2

2 3

Create or update local mirror Push to common trunk

2

2

3

3

4

4

1

1

1 21 3 4

1 2 3 4

1 2 3 4 1 2 3 4

1 2

3 4

5

2.1.1 2.1.2

1 2

3 4

5

2.1.1 2.1.2

1 4

Chapter 4

[163]

Use the branch command when creating the local mirrors for the first time, or to
recreate a pristine copy. Use the pull command to update an existing local mirror
that may be out of date. If you have inadvertently changed the local branch, use the
--overwrite flag with the pull command to restore its pristine state.

If the feature branch is not your own but a remote branch created by another team
member, then instead of merging from it directly, it is often more practical to create a
local mirror branch from it first and use that branch instead. In this way, you can run
multiple branch operations on it without any data transfers over the network. For
example, you may want to inspect it using the bzr missing, bzr log, and bzr diff
commands, or retry the merge using different algorithms.

Before committing the merge, make sure to test the improvements well, and look for
any possible regressions. If there are any problems, you may want to ask for help
from the author of the changes, or ask to fix bugs first and abort the merge for now.

Finally, push the branch to the common remote trunk to make it available to
your team.

Merging feature branches in lock-step
Although multiple users may have write access to the same common trunk,
simultaneous write operations are not possible. If two team members try to push
their two different branches at the same time, only the first will succeed. After the
first push succeeds, the second will fail, because the common trunk at the remote
location, and its local mirror have diverged.

The cleanest solution is to create a new local branch based upon the updated
common trunk, and repeat the merge.

Alternatively, if you prefer to reuse the local mirror and don't mind throwing away
the merge, then you can use the pull command with the --overwrite flag. This will
discard the merge, and fetch the new revisions from the common trunk, restoring
it to its pristine mirror state.

Using Bazaar in a Small Team

[164]

Doing "code reviews"
Although the term "code review" is used in software development, its meaning is
essentially the same as "peer review", and can be applied in other kind of projects
as well. The idea is to review the work done by another team member in order
to find and fix the mistakes that may have been overlooked.

When using code reviews, team members never merge their own branches into
the common trunk, but ask another member to do it. When performing the merge,
the reviewer should review the differences carefully before committing the merge.
If there are problems in the branch or room for improvement, the reviewer can either
fix the problems by committing new revisions, or abort the merge and
ask the original author to fix the problems and ask for a review again.

Code reviews can greatly improve the quality of a project. It also helps to spread
awareness of the new changes going into the project, ensuring that there are
always at least two members who understand the meaning behind a change.

Summary
In this chapter, you have learned the fundamentals of working with others by
sharing branches. We have covered the basic protocols supported by Bazaar, a few
simple ways of configuring a remote server for sharing branches, and some practical
techniques to work with remote branches efficiently and with confidence. Finally,
we wrapped it all up in two example workflows suitable for small teams.

The workflows covered in this chapter are just examples demonstrating a few ways
of managing the various branches when collaborating with others. With all the
branch operations you've seen, you should be able to slice and dice branches as
necessary to implement any workflow you will ever need.

The next chapter will show how Bazaar can work in a fully centralized mode, which
is interesting not only because it is a widely used method in many projects today,
but also because some of Bazaar's centralized features can have interesting uses
even in distributed workflows.

Working with Bazaar in
Centralized Mode

This chapter explains the principles of the centralized mode and how to work in
this mode using Bazaar.

The centralized mode assumes one or more central branches, where collaborators
share write access, and require the commit operations of all the users to be
synchronized. This is the basic workflow enforced by centralized version control
systems. This mode of operation is widely used today in many projects, and it is
often preferred in corporate environments.

Although Bazaar is distributed in nature, it includes features to fully support the
classic centralized mode. With Bazaar, you can switch in and out of the centralized
mode at any time, and implement sophisticated workflows using both centralized
and distributed elements.

The following topics will be covered in this chapter:

• The centralized mode
• Using Bazaar in the centralized mode
• Working with bound branches
• Working with multiple branches
• Setting up a central server
• Creating branches on the central server
• Practical use cases

Working with Bazaar in Centralized Mode

[166]

The centralized mode
In the centralized mode, multiple users have write access to one or more branches
on a central server. In addition, this mode requires that all commit operations be
applied to the central branches directly. This is in contrast with the default behavior
of Bazaar, where all commits are local only, and thus private by default.

In order to prevent multiple users from overwriting each other's changes, commits
must be synchronized and performed in lock-step—if two collaborators try to
commit at the same time, only the first commit will succeed. The second collaborator
has to synchronize first with the central server, merging in the changes done by
others, and try to commit again. In short, a commit operation can only succeed
if the server and the user are on the same revision right before the commit.

First, we will learn about the core operations, advantages, and disadvantages
of the centralized mode in a general context. In the next section, we will learn
in detail how the centralized mode works in Bazaar.

Core operations
The core operations in centralized mode are checkout, update, and commit:

• Checkout: This operation creates a working tree by downloading the project's
files from a central server. This is similar to the branch operation in Bazaar.

• Update: This operation updates the working tree to synchronize with the
central server, downloading any changes committed to the server by others
since the last update. This is similar to the pull operation in Bazaar.

• Commit: This operation records the pending changes in the working tree
as a new revision on the central server. This is different from the commit
operation we used in the earlier chapters, because in the centralized mode,
the commit must be performed on the central server.

Bazaar supports all these core operations, and it provides additional operations to
switch between centralized and decentralized modes, such as bind, unbind, and
the notion of local commits, which we will explain later.

Chapter 5

[167]

The centralized workflow
Since the centralized mode requires that all the commits be performed on the central
server, it naturally enforces a centralized workflow. After getting the project's files
using the checkout operation, the workflow is essentially a cycle of update and
commit operations:

1. Do a "checkout" to get the project's files.
2. Work on the files and make some changes.
3. Before committing, update the project to get the changes committed by

others in the meantime.
4. Commit the changes and return to step 2.

Checkout from the central branch
Given the central repository with its branches, the first step for a collaborator is to
get the latest version of the project. Typically, you only need to do this once in the
lifetime of the project. Later on, you can use the update operation to get the changes
that were committed by the other collaborators on the server:

Central repository

Checkout

Checkout

1 2 3

1 2 3

1 2 3

As a result of the checkout, collaborators have their own private copy of the project
to work on.

Working with Bazaar in Centralized Mode

[168]

Making changes
Collaborators make changes independently in their own working trees, possibly
working on copies of the same files simultaneously. Their environments are
independent of each other and of the server too. Their changes are local and
typically private until they commit them to the repository:

Central repository

1 2 3

1 2 3

1 2 3

Central repository

1 2 3

1 2 3

1 2 3

Committing changes
Commit operations are atomic—they cannot be interrupted or performed
simultaneously in parallel. Therefore, collaborators can only commit new revisions
one by one, not at the same time:

Central repository

2 3

1 2 3

1 2 3

1

4

4

Commit

Commit

X

Chapter 5

[169]

If two collaborators try to commit at the same time as in this example, only the first
one will succeed. The second one will fail because his copy of the project will be
out of date as compared to the server, where another revision has been added by
the other collaborator. At this point, the second collaborator will have to update his
working tree to bring it to the latest revision, downloading the revision added by
the other user who succeeded to commit first.

Updating from the server
The update operation brings the working tree up-to-date by copying any revisions
that have been added on the server since the last update or checkout. If there
are uncommitted changes in the working tree, they will be merged on top of
the incoming changes:

Central repository

2 3

1 2 3

1 2 3

1

4

4

Update

4

Working with Bazaar in Centralized Mode

[170]

After the update, the local branch will be on the same revision as the server, and
now the user may commit the pending changes:

Central repository

1 2 3

1 2 3 4

4
Commit

2 31 4 5

5

Handling conflicts during update
When there are pending changes in the working tree, the update operation will try
to rebase those changes on top of the incoming revisions. That is, the working tree
is first synchronized with the server to be on the same revision, and after that the
pending changes are applied on top of the updated working tree.

Similar to a merge operation, if the pending changes conflict with the incoming
changes, the conflicts must be resolved manually. Since there is no systematic way
to return to the same original pending state, the update operation can be dangerous
in this situation. The more pending changes and the more time has elapsed since the
last update or checkout, the greater the risk of conflicts.

Advantages
The centralized mode has several useful properties that are worth considering.

Easy to understand
The concept of a central server, where all the changes are integrated and the
work of all collaborators is kept synchronized, is simple and easy to understand.
In projects using the centralized mode, the central server is an explicit and
unambiguous reference point.

Chapter 5

[171]

Easy to synchronize efforts
Since all the commits of the collaborators are performed on the central server in lock-
step, the independent local working trees cannot diverge too far from each other; it's
as if they are always at most one revision away from the central branch. In this way,
the centralized mode helps the collaborators to stay synchronized.

Widely used
The centralized mode has a long-standing history. It is widely used today in many
projects, and it is often preferred in corporate environments.

Disadvantages
The centralized mode has several drawbacks that are important to keep in mind.

Single point of failure
Any central server is, by definition, a potential single point of failure. Since in
the centralized mode all commits must go through the central server, if it crashes
or becomes unavailable, it can slow down, hinder, or in the worst case completely
block further collaboration.

Administrative overhead of access control
When multiple users have write access to a branch, it raises questions and issues
about access control, server configuration, and maintenance:

• Who should have write access? An access control policy must be defined
and maintained.

• How to implement write access of multiple users on the central branches?
The central server must be configured appropriately to enforce the access
control policy.

• Whenever a collaborator joins or leaves the project, the server configuration
must be updated to accommodate changes in the team.

• Whenever the access policy changes, the server configuration must be
updated accordingly.

Working with Bazaar in Centralized Mode

[172]

The update operation is not safe
The centralized mode heavily relies on an inherently unsafe operation—updating
the working tree from the server while it has pending changes. Since the pending
changes are, by definition, not recorded anywhere, there is no systematic way to
return to the original state after performing the update operation.

Unrelated changes interleaved in the revision
history
When collaborators work on different topics in parallel, if they continuously commit
their changes, then unrelated changes will be interleaved in the revision history. As
a result, the revision history can become difficult to read, and if a feature needs to be
rolled back later, the revisions that were a part of the feature can be difficult to find.

Using Bazaar in centralized mode
Bazaar fully supports the core operations of the centralized mode by using
so-called bound branches. The checkout and update operations are implemented
using dedicated commands in the context of bound branches. The commit operation
works differently when used with bound branches, in order to enforce the
requirements of the centralized mode.

In addition to the classic core operations of the centralized mode, Bazaar provides
additional operations to easily turn the centralized mode on or off, which opens
interesting new ways of combining centralized and decentralized elements in
a workflow.

Bound branches
Bound branches are internally the same as regular branches; they differ only in a few
configuration values—the bound flag is set to true, and bound_location is set to the
URL of another branch. We will refer to the bound location as the master branch.

In most respects, a bound branch behaves just like any regular branch. However,
operations that add revisions to a bound branch behave differently—all the revisions
are first added in the master branch, and only if that succeeds, the operation is
applied to the bound branch.

Chapter 5

[173]

For example, the commit operation succeeds only if it can be applied to the master
branch. Similarly, the push and pull operations on a bound branch will attempt to
push and pull the missing revisions in the master branch first.

Since being bound to another branch is simply a matter of configuration, branches
can be reconfigured at any time to be bound or unbound.

Creating a checkout
The checkout operation creates a bound branch with a working tree. This
configuration is called a checkout in Bazaar. This is essentially the same as creating
a regular branch and then binding it to the source branch it was created from. The
term checkout is also used as a verb to indicate the act of creating a checkout from
another branch.

Using the command line
Let's first create a shared repository to store our sample branches:

$ mkdir -p /sandbox

$ bzr init-repository /sandbox/central

Shared repository with trees (format: 2a)

Location:

 shared repository: /sandbox/central

$ cd /sandbox/central

You can check out from another branch by using the bzr checkout command and
by specifying the URL of the source branch. Optionally, you can specify the target
directory where you want to create the new checkout. For example:

$ bzr checkout http://bazaar.launchpad.net/~bzrbook/bzrbook-examples/
hello-start trunk

You can confirm that the branch configuration is a checkout by using the bzr info
command:

$ bzr info trunk

Repository checkout (format: 2a)

Location:

 repository checkout root: trunk

 checkout of branch: http://bazaar.launchpad.net/~bzrbook/bzrbook-
examples/hello-start/

 shared repository: .

Working with Bazaar in Centralized Mode

[174]

The first line of the output is the branch configuration, in this case a "Repository
checkout", because we created the checkout inside a shared repository. Outside a
shared repository, the configuration is called simply "Checkout". For example:

$ bzr checkout trunk /tmp/checkout-tmp

$ cd /tmp/checkout-tmp/

$ bzr info

Checkout (format: 2a)

Location:

 checkout root: .

 checkout of branch: /sandbox/central/trunk

In both the cases the checkout of branch line indicates the master branch that
this one is bound to.

Using Bazaar Explorer
Performing a checkout using Bazaar Explorer can be a bit confusing, because the
buttons and menu options labeled Checkout... use a special mode of the checkout
operation called "lightweight checkouts". Lightweight checkouts are very different
from branches; we will explain them in Chapter 8, Using the Advanced Features of Bazaar.

Use the Branch view to checkout from a branch:

• From the toolbar, click on the large Start button and select Branch...
• From the menu, select Bazaar | Start | Initialize

In the From: textbox, enter the URL of the source branch. In the To: textbox, you can
either type the path to the directory where you want to create the checkout, or click
on the Browse button and navigate to it. Make sure to select the Bind new branch to
parent location box, in order to make the new branch bound to the source branch:

Chapter 5

[175]

After you click on OK, the Status box will show the bzr command that was executed
and its output. For example:

Run command: bzr branch https://code.launchpad.net/~bzrbook/bzrbook-
examples/hello-start /sandbox/central/trunk2 --bind --use-existing-dir

Branched 6 revisions.

New branch bound to https://code.launchpad.net/~bzrbook/bzrbook-examples/
hello-start

Working with Bazaar in Centralized Mode

[176]

Click on Close to return to the status view, which shows the content of the working
tree exactly in the same way as in the case of regular branches.

The Status view does not indicate whether the branch of the current working tree
is bound or not. On the other hand, the repository view uses different icons to
distinguish these configurations:

Bound branches are shown with a computer icon, and unbound branches are shown
with a folder icon.

Updating a checkout
The purpose of the update operation is to bring a bound branch up-to-date with
its master branch. If there are pending changes in the working tree, they will be
reapplied after the branch is updated. If the incoming changes conflict with the
pending changes in the working tree, the operation may result in conflicts.

As collaborators work independently in parallel, it is very common and normal
that a bound branch is out of date due to the commits done by other collaborators.
In such a state, the commit operation would fail, and the bound branch must be
updated first before retrying to commit.

Chapter 5

[177]

Similar to a pull operation, the update operation copies the missing revision data to
the repository and updates the branch data to be the same as the master branch.

If there are pending changes in the working tree at the time of performing the
update, they are first set aside and reapplied at the end. During this step conflicts
may happen, the same way as during a merge operation.

Using the command line
You can bring a bound branch up-to-date with its master branch by using the bzr
update command. To demonstrate this, let's first create another checkout based
upon an older revision:

$ cd /sandbox/central

$ bzr checkout trunk -rlast:3 last-3

$ cd last-3

$ bzr missing --line ../trunk

You are missing 2 revisions:

6: Janos Gyerik 2013-03-03 updated readme

5: Janos Gyerik 2013-03-03 added python and bash impl

That is, our new checkout is two revisions behind the trunk. Let's bring it up to date:

$ bzr update

+N hello.py

+N hello.sh

 M README.md

All changes applied successfully.

Updated to revision 6 of branch /sandbox/central/trunk

The missing revisions are added to the branch, and the necessary changes are
applied to the working tree, resulting in identical branches:

$ bzr missing ../trunk

Branches are up to date.

Using Bazaar Explorer
To bring a checkout up-to-date with its master, you can either click on the large
Update button in the toolbar, or navigate to Bazaar | Collaborate | Update
Working Tree.... in the menu.

The user interface does not take any parameters; the operation is applied
immediately and its result is shown similar to the command-line interface.

Working with Bazaar in Centralized Mode

[178]

Visiting an older revision
An interesting alternative use of the update operation is to reset the working tree
to a past state, by specifying a revision by using the -r or --revision options. For
example:

$ cd /sandbox/central/trunk

$ bzr update -r3

-D .bzrignore

 M README.md

-D hello.py

-D hello.sh

All changes applied successfully.

Updated to revision 3 of branch http://bazaar.launchpad.net/~bzrbook/
bzrbook-examples/hello-start

This may seem similar to using bzr revert, but in fact it is very different. The
changes applied to the working tree will not be considered pending changes. Instead,
the working tree is marked as out of date with its master, effectively preventing
commit operations in this state:

$ bzr status

working tree is out of date, run 'bzr update'

Another difference from the revert command is that we cannot specify a subset of
files; the update command is applied to the entire working tree.

This operation works on unbound branches too. Since an unbound branch can
be thought of as being its own master, the update command without a revision
parameter simply restores it to its latest revision.

Committing a new revision
The commit operation works in the same way as it does with unbound branches,
however, in keeping with the main principles of the centralized mode, Bazaar must
ensure that the commit is performed in two branches—first in the master branch,
followed by the bound branch.

The commit operation in the master branch succeeds only if it is at the same revision
as the bound branch. Otherwise, the operation fails, and the bound branch must first
be synchronized with its master branch using the update operation.

Chapter 5

[179]

In Bazaar Explorer, the Commit view shows an additional explanation when
committing in a bound branch, as a kind reminder that the operation will be
performed on the master branch first, keeping the local and master branches in sync:

Practical tips when working in centralized
mode
The centralized mode is simple and easy to work with in general, except for the
update operation. The update operation can be problematic when there are too
many pending changes in the working tree, and the central branch has evolved
too far since the last time the bound branch was synchronized.

Fortunately, a few simple practices can greatly reduce or mitigate the potential
conflicts that may arise during update operations:

• Always perform an update before starting to work on something new.
That is, make sure to start a new development based on the latest version
of the central branch.

• Break down bigger changes into smaller steps and commit them little by
little. Don't let too many pending changes to accumulate locally; try to
commit your work as soon as possible.

• In case of large scale changes and whenever it makes sense, use dedicated
feature branches. You can work on feature branches locally or share them
with others by pushing to the central server.

Working with Bazaar in Centralized Mode

[180]

Working with bound branches
Bazaar provides additional operations using bound branches that go beyond the
core principles of the centralized mode, such as:

• Unbinding from the master branch
• Binding to a branch
• Local commits

Essentially, these operations provide different ways to switch in and out of the
centralized mode, which is extremely useful when a central branch becomes
temporarily unavailable, or if you want to rearrange the branches in your workflow.

Unbinding from the master branch
Sometimes, you may want to commit changes even if the master branch is not
accessible. For example, when the server hosting the master branch is experiencing
network problems, or if you are in an environment with no network access such as
in a coffee shop or in a train.

You can unbind from the master branch by using the bzr unbind command. To
unbind a branch using Bazaar Explorer, you can either click on the large Work
icon in the toolbar and select Unbind Branch, or using the menu Bazaar | Work |
Unbind Branch.

Internally, this operation simply sets the bound configuration value to false. Since
the branch is no longer considered bound, subsequent commit operations will be
performed only locally, and the branch will behave as any other regular branch.

You can confirm that a branch was unbound from its master by using the bzr info
command. For example:

$ cd /sandbox/central/

$ bzr checkout trunk mycheckout

$ cd mycheckout/

$ bzr info

Repository checkout (format: 2a)

Location:

 repository checkout root: .

 checkout of branch: /sandbox/central/trunk

 shared repository: /sandbox/central

$ bzr unbind

$ bzr info

Chapter 5

[181]

Repository tree (format: 2a)

Location:

 shared repository: /sandbox/central

 repository branch: .

That is, the configuration has changed from Repository checkout to Repository
tree and the checkout of branch line disappeared from the output.

Binding to a branch
Sometimes, you may want to bind a regular independent branch to another branch,
for example to switch to using the centralized mode, or if you previously unbound
from a branch and want to bind to it again.

You can bind to a branch by using the bzr bind command and specifying the URL
of the branch. To bind a branch using Bazaar Explorer, you can either click on the
large Work icon in the toolbar and select Bind Branch..., or use the menu Bazaar
| Work | Bind Branch.... If you have previously used unbind in this branch, then
you can omit the URL parameter on the command line, and in Bazaar Explorer the
previous location is selected by default.

Internally, this operation simply updates the branch configuration—sets or updates
the value of bound_location and sets the value of bound to True. Since the branch
is now considered bound, all commit operations will be first applied to the master
branch, but the working tree is left unchanged at this point.

Although you can bind any branch to any other branch, it only makes sense to bind
to a related branch, typically a branch that is some revisions ahead of the current
branch, so that a normal pull operation would bring the local branch up-to-date with
its master branch.

After binding to a branch, you should bring the local branch up-to-date with its
master branch by using bzr update. Ideally, if the local branch is related to its new
master and is just some revisions behind, then the update operation will simply
bring it up-to-date by copying the revision data and the branch data of the master,
leaving the working tree in a clean state, ready to work in the branch.

However, if the two branches have diverged from each other, then the update
operation will perform a merge—first the working tree is updated to match the
latest revision in the master branch, after that the revisions that do not exist in the
master branch are merged in the same way as in a regular merge operation. This
is an unusual use case, but nonetheless a valid operation. After all the changes are
applied, you must sort out all conflicts, if any, and you may commit the merge. Since
the branch is now a bound branch, the merge commit will be first applied in the
master branch, and after that in the bound branch.

Working with Bazaar in Centralized Mode

[182]

Using local commits
If you want to break out of the centralized mode only temporarily, an alternative to
unbinding and rebinding later is using so-called local commits. When using local
commits, you basically stay in centralized mode, but instead of trying to commit in
the master branch, the commit operation is applied only in the local branch. This can
be very useful when the master branch is temporarily unavailable but expected to
be restored soon.

You can perform a local commit by using the bzr commit command with the
--local flag, or in Bazaar Explorer by selecting the Local commit box in the
Commit view:

You can continue to perform as many local commits as needed until the master
branch becomes available again.

As a result of local commits, the bound branch and the master branch go out of
sync. If you try to perform a regular commit in such a state, Bazaar will raise an
error and tell you to either continue committing locally, or perform an update
and then commit.

$ bzr commit -m 'removed readme'

bzr: ERROR: Bound branch BzrBranch7(file:///sandbox/central/on-the-
train/) is out of date with master branch BzrBranch7(file:///sandbox/
central/trunk/).

To commit to master branch, run update and then commit.

You can also pass --local to commit to continue working disconnected.

Chapter 5

[183]

It may seem strange at first that we have to do an update even though in this case
our local branch is clearly ahead of its master. However, the behavior is consistent
with the rule – if a bound branch is not in sync with its master branch, you must
always use the update operation to synchronize it.

As usual, the update operation will first restore the working tree to the same state as
the latest revision in the master branch. After that, it will perform a merge from the
tip of the local branch, applying the changes in the revisions that were committed
locally. Finally, it will apply the pending changes that existed at the moment the
update operation started. As a result, the working tree will be in a pending merge
state, as you can confirm by using the log and status commands. For example:

After sorting out all conflicts, if any, you may commit the merge. The local commits
will appear as if they had been on a branch and the branch has been merged. This
makes perfect sense, as indeed this is exactly what happened:

Working with Bazaar in Centralized Mode

[184]

If no new revisions were added in the master branch during your
local commits, then a simple way to bring the master up-to-date is to
do a bzr push operation instead of bzr update. It works because
in this case the two branches have not diverged; the local branch
is simply a few revisions ahead of its master. The push operation
appends the missing revisions to the master branch, and the two
branches become synchronized again, and you can continue to work
and commit normally.

Working with multiple branches
Branch operations work consistently, regardless of whether you use the centralized
mode or not.

Although the centralized mode permits multiple collaborators committing unrelated
changes continuously in the central branch, it is better to work on new improvements
in dedicated feature branches and merge them into the central branch only when
they are ready. In this way, the revision history remains easy to read, and if a feature
causes problems, then all the revisions involved in it can be reverted easily with one
swift move.

Even in a centralized workflow, you are free to use as many local private branches
as needed. You can slice and dice your local branches and when a feature is ready,
you can merge them into the central branch, and all the intermediate revisions
will be preserved in the history.

Team members can work on a feature branch together by sharing the branch on the
central server. One of the team members can start working on the feature, and at
some point push the branch on the server so that others can checkout from it and
start contributing their work. After pushing the branch to the server, the original
contributor can switch to the centralized mode using the bind command.

When working on a bound branch, keep in mind that in addition to
the commit operation, the push and pull operations too will (at least
least try to) impact its master branch.

Setting up a central server
In order to use Bazaar in the centralized mode, collaborators need to have
write access to the branches on a central server. Here, we explain a few ways
of configuring such servers.

Chapter 5

[185]

Using an SSH server
An easy and secure way to provide write access to branches at a central location is by
using an SSH server. In this setup, users authenticate via the SSH service running on
the server, and their read and write access permissions to the branches are subject to
regular filesystem permissions.

There are several ways of accessing Bazaar branches over SSH:

• Users access the server with their own SSH account
• Users access the branches with a shared restricted SSH account
• Users access the server with their own SSH account over SFTP

Using the smart server over SSH
If Bazaar is installed on the server, remote clients can benefit from the built-in
smart server when accessing branches by using the bzr+ssh:// protocol. In this
mode, the bzr serve command is invoked on the server side to handle incoming
Bazaar commands. This mode is called smart server, because remote clients receive
assistance from the server, significantly speeding up Bazaar operations.

In addition to Bazaar being installed on the server, the bzr command must be in a
directory included on the user's PATH variable. Otherwise, the absolute path of bzr
must be specified at the client side, either in the BZR_REMOTE_PATH environment
variable or in Bazaar's user configuration. For example, if bzr is installed in /usr/
local/bin/bzr, then you can execute Bazaar commands on the remote location
as follows:

$ export BZR_REMOTE_PATH=/usr/local/bin/bzr

$ bzr info bzr+ssh://user@example.com/repos/projectx

Alternatively, the remote path can be specified in the locations.conf file in
your Bazaar configuration directory as follows:

[bzr+ssh://example.com/repos/projectx]

bzr_remote_path = /usr/local/bin/bzr

See bzr help configuration for more details.

Use the bzr version command to the find the location of the Bazaar
configuration directory.

Working with Bazaar in Centralized Mode

[186]

Using individual SSH accounts
This is the easiest way to access Bazaar repositories on a remote computer. Users
with shell access to a computer can access Bazaar branches by using the bzr+ssh://
protocol. For example:

$ bzr info bzr+ssh://user@example.com/repos/projectx

The path component in the URL must be the absolute path of the branch on the
server; in this example, the branch is in /repos/projectx. If the branch is in the
user's home directory, then the home directory part can be replaced with ~; for
example, instead of /home/jack/repos/projectx, you can use the more simple
form ~/repos/projectx:

$ bzr info bzr+ssh://user@example.com/~/repos/projectx

To refer to a Bazaar branch in another user's home directory, you can use the
~username shortcut. For example:

$ bzr log bzr+ssh://user@example.com/~mike/repos/projectx

In order to let multiple users commit to the same branches, their user accounts must
have write permission to the branch and repository files used by Bazaar. One way
to do that is by adding the users to a dedicated group, and setting the ownership and
access permissions appropriately. Let's call this group bzrgroup, and let's set up a
shared repository at /srv/repos/projectx for members of the group, as follows:

$ bzr init-repository /srv/repos/projectx --no-trees

Shared repository (format: 2a)

Location:

 shared repository: /srv/repos/projectx

$ chgrp -R bzrgroup /src/repos/projectx

$ chmod g+s /src/repos/projectx

With this setup, the members of bzrgroup can create branches and commit to
them. With appropriate permissions, other users can be permitted strictly the
read-only access.

Using a shared restricted SSH account
Instead of creating individual SSH accounts for each collaborator, an interesting
alternative is to use a shared SSH account with command restrictions.

This setup requires that collaborators use the SSH public key authentication when
connecting to the server, and that appropriate access permissions to the branches
be configured in the ~/.ssh/authorized_keys file of the shared SSH account.

Chapter 5

[187]

Let's suppose that:

• There is a shared repository on the server in /srv/bzr/projectx
• You want to give Jack and Mike write access to the shared repository
• The shared repository is owned by the user bzruser

To make this work, add the following two lines to the ~/.ssh/authorized_keys
file of bzruser:

command="bzr serve --inet --allow-writes --directory=/srv/bzr/
projectx",no-agent-forwarding,no-port-forwarding,no-pty,no-user-rc,
no-X11-forwarding PUBKEY_OF_JACK

command="bzr serve --inet --allow-writes --directory=/srv/bzr/proj
ectx",no-agent-forwarding,no-port-forwarding,no-pty,no-user-rc,no-X
11-forwarding PUBKEY_OF_MIKE

Replace PUBKEY_OF_JACK and PUBKEY_OF_MIKE with the SSH public key of Jack and
Mike, respectively. For example, an SSH public key looks similar to the following:

ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAo6+TOzByRt9EVUjpMBs5kRft9SSPam
I3cRlvaX4DuMbRqjtfkRTO4tik+MAWaFeIHyO5EsdFBGp+XVH9BMqehXdjAQga4Wa2o
GX/w7bn+O+gdIoJE2wzMlGV2eXcaW2PKdDIqQpUn0n+xX68vjRaCiZmqGXWhVej3cVi9
dtIwIQMrcIF4T+4wONic09UjPXZKbjL2GmkzsR6SMQJBomr4TUcRgyaR5ija9R8Azvs
SdNeDKkVwf83lva3jruwEMute3aZFulM5JqvjFIFqooAlSjWjdniF8ZdweeN1c2Q2Q
H+eCl48hY2drUsdZ+oQH+xp8x6llkZiDWFE/RZLa3Glw== Joe

The command parameter restricts the login shell to the bzr serve command.
In this way, the users will not be able to do anything else on the server except
run Bazaar commands. The --directory parameter further restricts Bazaar
operations to the specified directory. To give only read-only access, simply
drop the --allow-writes flag.

The other options on the line after command are to make the SSH sessions
as restricted as possible, as a good measure of security.

When accessing branches in this setup, the path component in the branch URL
must be relative to the directory specified in the authorization line. For example,
the trunk in /srv/bzr/projectx/trunk can be accessed as follows:

$ bzr info bzr+ssh://bzruser@example.com/trunk

The drawback of this setup is that you can only have one configuration line per
SSH key.

Working with Bazaar in Centralized Mode

[188]

Using SFTP
If SFTP is enabled on the SSH server, you can access branches without installing
Bazaar on the server by using the sftp:// URL prefix instead of bzr+ssh://.
For example:

$ bzr info sftp://user@example.com/home/mike/repos/projectx

This type of access is called "dumb server" mode, because in this case Bazaar is not
used on the server side, and thus it cannot provide assistance to the client. In this
setup, operations will be much less efficient compared to using the smart server.

Using bzr serve directly
You can use the Bazaar smart server directly to listen to incoming connections
and serve the branch data.

Use the bzr serve command to start the smart server. By default, it listens on port
4155, and serves branch data from the current working directory in read-only mode.
It has several command-line parameters and flags to change the default behavior.
For example:

• --directory DIR: This specifies the base directory to serve the branch
data from, instead of the current working directory

• --port PORT: This specifies the port number to listen on, instead of the
default 4155 port

• --allow-writes: This allows write operations instead of strictly read-only

Use the -h or --help flags to see the list of supported command-line parameters.

Branches served in this way can be accessed by URLs in the following format:

bzr://host/[path]

Here, host is the hostname of the server, and path is the relative path from the
base directory of the server process.

For example, if the server is example.com, the smart server is running in the
directory /srv/bzr/repo, and there is a Bazaar branch at the path /srv/bzr/repo/
projectx/feature-123, then the branch can be accessed as follows:

$ bzr info bzr://example.com/projectx/feature-123

The advantage of this setup is that the smart server provides good performance.
On the other hand, it completely lacks authentication.

Chapter 5

[189]

Using bzr serve over inetd
On GNU/Linux and UNIX systems, you can configure inetd to start the
bzr serve command automatically as needed, by adding a line in the
inetd.conf file as follows:

4155 stream TCP nowait bzruser /usr/bin/bzr /usr/bin/bzr serve
--inet --directory=/srv/bzr/repo

Here:

• 4155 is the port number where the Bazaar server should listen for
incoming connection.

• bzruser is the user account the bzr serve process will run as.
• /usr/bin/bzr is the absolute path of the bzr command.
• /usr/bin/bzr serve --inet --directory=/srv/bzr/repo is the

complete command to execute when starting the server. The --directory
parameter is used to specify the base directory of Bazaar branches.

Once configured, this setup works exactly in the same way as using bzr serve
directly, with the same advantages and disadvantages.

Creating branches on the central server
Creating branches on a server works much in the same way as when creating branches
locally. Here, we emphasize on some good practices for optimal performance.

The same way as when working with local branches, it is a good idea to create a
shared repository per project to host multiple Bazaar branches. Even if you don't
intend to use multiple branches at first, you might want to do that later, and it is
easier to have a shared repository right from the start, than migrating an existing
branch later.

Another important point is to configure the shared repository to not create working
trees by default. Working trees are unnecessary on the server, because collaborators
work in their local checkouts, and Bazaar may give warnings during branch
operations if the central branch contains a working tree. In order to avoid confusion,
it is better to completely omit working trees on the server.

Working with Bazaar in Centralized Mode

[190]

Creating a shared repository without working
trees
Similar to when working with local branches, using a shared repository on the server
is a good way to save disk space. In addition, when pushing a new branch to the
server that shares revisions with an existing branch, the shared revisions don't need
to be copied, thus the push operation will be faster.

When creating the shared repository, make sure to use the --no-trees flag, so that
new branches will be created without trees by default. Although, most probably, you
will create new branches using push operations, and most protocols don't support
creating a working tree when used with push, nonetheless it is a good precaution
to set up a shared repository in this way right from the start.

Reconfiguring a shared repository to not use
working trees
You can use the bzr info command to check whether a shared repository is
configured with or without working trees. For example:

$ bzr info bzr+ssh://user@example.com/tmp/repo/

Shared repository with trees (format: unnamed)

Location:

 shared repository: bzr+ssh://user@example.com/tmp/repo/

If the first line of the output says Shared repository with trees instead of simply
Shared repository, then you should log in to the server and reconfigure it by using
the bzr reconfigure command with the --with-no-trees flag. For example:

$ cd /tmp/repo

$ bzr reconfigure --with-no-trees

$ bzr info

Shared repository (format: 2a)

Location:

 shared repository: .

Chapter 5

[191]

Removing an existing working tree
If you already have branches on the central server with a working tree, then it is
a good idea to remove them.

First, check the status of the working tree by using the bzr status command.
If there are any pending changes, then commit or revert them.

To remove the working tree, use the bzr reconfigure command with
the --branch flag.

Creating branches on the server without a
working tree
Although you can use the bzr init and bzr branch commands directly on the
server in the same way as you would do it locally, it would defeat the purpose of
the centralized setup, and invite mistakes such as creating working trees by accident.

A common way to create new branches on the server is by using a push operation
from your local branch. For example:

$ bzr push bzr+ssh://user@example.com/tmp/repo/branch1

Created new branch.

After pushing a branch, if you would like to work on it in the centralized mode,
then you can bind to the remote branch by using the :push location alias:

$ bzr bind :push

Practical use cases
The key feature of the centralized mode is that it automatically keeps bound
branches synchronized with their master branch. This opens interesting possibilities
that can be useful in many situations, regardless of the workflow or the size of a
team. To give you some idea here, we briefly introduce a few example use cases.

Working with Bazaar in Centralized Mode

[192]

Working on branches using multiple
computers
If you use multiple computers to work on a project, for example, a desktop and
a laptop, or computers at different locations, then you probably need a way to
synchronize your work done at physically different locations.

Although you can synchronize branches between the two locations by using mirror
operations such as bzr push and bzr pull, they are not automatic, and thus you
may easily find yourself in a situation that you cannot access some changes you did
on another computer, because you forgot to run bzr push before you switched off
the machine, for example.

Using the centralized mode can help here, because the synchronization between
two branches is automatic, as it takes place at the time of each commit. You can start
using the centralized mode by converting the branch you used to push to into a
master branch, and binding to it with your other branches.

Let's say you have two computers, computerA and computerB, they both can access
a branch at some location branchX, and you work on the branch sometimes by using
computerA, and at other times by using computerB. (Whether branchX is hosted on
computerA or computerB or a third computer doesn't matter, the example will still
hold true.)

You can keep your work environments synchronized by using the bzr push and bzr
pull operations, by adopting the following workflow on both the computers when
working on branches you want to share:

1. Pull from branchX.
2. Work, make changes, and commit.
3. Push to branchX.

This can be tedious and error-prone; for example, if you forget to push your changes
on one computer, then you might not be able to access those changes after switching
to the other computer, as it may have been powered down, or be inaccessible directly
over the network.

Using the centralized mode would simplify the workflow to only two steps:

1. Update from branchX.
2. Work, make changes, and commit.

Chapter 5

[193]

Not only there is one less step to do, but since in this case branchX is automatically
updated at every commit, the possibility of forgetting to run bzr push is
completely eliminated.

You can convert your existing setup to using centralized mode simply by binding
to branchX on both the computers, and then using the update command to
synchronize. Assuming that both branches have no pending changes and both
have been pushed to branchX as their last operation, you can convert them by
using the following commands:

On computerA:

$ bzr pull

$ bzr bind :push

On computerB:

$ bzr bind :push

$ bzr update

After this, you can start using branchX in the centralized mode, as a cycle of the bzr
update and bzr commit operations.

Synchronizing backup branches
An easy way to back up a branch is by pushing it to another location. For example:

$ bzr push BACKUP_URL

BACKUP_URL can be a path on an external disk, a path on a network share or network
filesystem, or any remote URL.

However, the push operation is not automatic; it must be executed manually every
time you want to update the backup.

Another way is to bind the branch to the backup location, effectively using it in the
centralized mode. In this case, all commits in the bound branch will be automatically
applied to its master branch too, keeping the backup up-to-date at all times.

You can convert the branch to this setup, simply by binding to the push location:

$ bzr bind :push

Working with Bazaar in Centralized Mode

[194]

Since this practically means switching to the centralized mode, it is important to have
fast access to BACKUP_URL, otherwise the delay at every commit might be annoying.

If you need to break out of the centralized mode, for example when the BACKUP_URL
is temporarily unavailable for some reason, then simply run bzr unbind. And after
BACKUP_URL becomes available again, you can bring the remote branch up-to-date
with bzr push, and re-bind to it by using bzr bind without additional parameters
to return to the centralized mode.

Summary
In this chapter, we explained the core principles of the centralized mode with its
advantages and disadvantages. Bazaar fully supports the centralized mode by using
bound branches, and we have demonstrated, with examples, how you can switch in
and out of this mode at any time. We have covered a few simple ways of setting up
a central server, where team members can have shared write access to branches,
and a few practical use cases.

The centralized mode in Bazaar is very flexible. It can be used for more than just
to imitate the workflow of centralized version control systems. Essentially, it
provides automatic synchronization of two branches, which can be practical in
many situations, even as a part of more sophisticated distributed workflows.

The next chapter will explain common distributed workflows and how to implement
them using Bazaar. Distributed workflows are the most scalable, and thus suitable
for projects of any size.

Working with Bazaar in
Distributed Mode

This chapter explains the common distributed workflows and how to implement
them using Bazaar. Distributed workflows are suitable for projects of any size, and
these are the only workflows that are scalable enough to use in very large projects.

Distributed workflows are essentially about organizing branches in a certain way,
and naturally involve a lot of branch operations. If you have a good understanding
of the various branch operations, especially the techniques covered in the previous
chapters, then there should be no big surprises for you here. The techniques in this
chapter should serve as new practical examples of working with branches, further
solidifying your knowledge.

The following topics will be covered in this chapter:

• Using a human gatekeeper
• Using an automatic gatekeeper
• Using a shared mainline

The distributed mode in general
The essence of the distributed workflow is that collaborators don't have write access
to a common central branch or to each other's branches. They only have write access
to their own branches, and can propose those branches to others to merge from,
and likewise, they can merge from the branches of others.

Working with Bazaar in Distributed Mode

[196]

In their most primitive form, the branches of collaborators simply evolve in parallel,
each collaborator working independently, occasionally merging from another
collaborator; for example:

1 2 3 4 5 6 7 8 9

3 4 5 1

4 5 6 7

6

4 5 6 7

distributed development

M
ik

e
Ja

ck
An

na
S

te
ve

The arrows in this graph represent child-parent relationships, child revisions
pointing to one or more parent revisions that they were derived from. All
collaborators can only commit in their own branches. They cannot write to the
branches of others, and can only share and propose their own branches for merge.
That's the only way to get one's work into other users' branches.

The graph does not identify any of the branches as central, and indeed there is no
central branch. Development takes place in a distributed manner, with no clear
"official" branch. However, and especially, as the number of collaborators grows,
the need for designating a branch as the mainline emerges. After all, without an
"official" branch, it is impossible to know which branch to use as the base when
starting a new development, for example, when a new member joins the team.

Designating a central branch does not require any special setup. It is only a
convention, ideally explained in the project's documentation or website, not a
hard rule. The only technical requirement of a mainline branch is simply that
it should be accessible by the intended audience.

Chapter 6

[197]

Ideally, the mainline branch should be a branch which has merged much of the
work done in all the other branches, something stable, mature, and well-maintained.
In this example, Mike's branch seems a good choice, as it has merged most of the
revisions, though not all, from all the other branches. However, such a branch
remains the mainline only as long as it is well-maintained, regularly merging the
work that is being done in other branches.

The challenge in a distributed collaboration is bringing all the work going on in the
various branches together into the mainline branch of the project. That said, there is
nothing really difficult or complicated about this, and it can be accomplished easily
by using the usual branching and merging operations. Doing so is not a technical
issue, but more about good organization and communication between the members.

The graph of branches and revisions in the preceding example is the most primitive
form of a distributed workflow. We can barely call it a workflow—it is a jumble
of branches, with no apparent system or organization, and no mainline branch.
Essentially, this is a peer-to-peer workflow—the team members are completely free
and independent, they merge from each other whenever they want. This working
style is not scalable if there are sufficiently many members in the project. The goal of
distributed workflows is to organize the branches in such a way that it makes good,
logical sense.

There are many ways of organizing branches in a distributed workflow; the most
suitable method depends upon the project and its members. We will introduce some
common techniques that you can use as they are, or as a baseline to build more
suitable solutions depending upon your use case.

Before we get into the details of specific techniques, let's clarify some of the main
principles of the distributed mode in general.

Collaborators work independently
First and foremost, all collaborators work independently; their workspaces are
physically disconnected from the mainline and other collaborator branches. They
can implement any workflow locally in their own workspaces and use as many
branches as they want.

Collaborators can share their work with each other in an ad-hoc manner if they want,
by publishing their local branches at some location where others have read access.
This can be accomplished by pushing selected, or all branches to a central repository
server, an SSH server, a web server, a shared folder on the local area network, or just
about any other way that permits read access to the intended audience.

Working with Bazaar in Distributed Mode

[198]

The ultimate purpose of all the work done in the independent branches is to merge
back into the mainline development, or release branches, and thus become easily
accessible as a part of the official version of the project.

The mainline branch is just a convention
Even in distributed workflows, typically there are one or more mainline branches
that are commonly understood and accepted as the official version of the project.
Having an official mainline branch makes good sense, as it makes the workflow easy
to understand, and it can serve as the starting point for new development branches.

However, a branch being "the mainline" is just a convention. In terms of technical
details and configuration, it is no different from any other regular Bazaar branch. The
mainline is the mainline simply because the drivers of the project agree that it is. Any
other branch can become the mainline, if necessary. For example, in an open source
project if the current mainline branch becomes unmaintained or disputed, then
another branch that is better maintained can emerge as the de-facto new mainline.

In short, distributed workflows have central branches too just like in a centralized
workflow. They give great flexibility to collaborators, but the end result is the
same—collaborator branches get merged into mainline branches, enriching and
driving forward the project.

Collaborators write only to their own
branches
In distributed workflows, collaborators have write access only to their own branches.
This greatly simplifies access control—there is no need to configure and maintain
access control. Only a single person has write access to any branch. Access control
cannot get simpler than that.

Branches can be made visible to others for collaboration or sharing, but there is
really no need to give write access to anybody else other than the branch owner.

In order to get their work into the mainline branches, collaborators propose their
branches for merging to maintainers of the mainline. Alternatively, it is possible
to create merge directives, which can be sent by e-mail and are very similar to,
but much more powerful than, conventional patch files.

Chapter 6

[199]

The distributed mode gives great flexibility
In distributed workflows, there are no technical restrictions with regard to the
method of sharing work. A distributed version control tool doesn't get in the way—
collaborators are free to use it in whatever way in their local workspaces, their work
ultimately culminating in a branch to propose for merging into the project's mainline.

Whether a branch is fit or not to merge into the mainline is never a technical issue. If
the work is good, there are many ways in which it can be merged into the mainline,
with proper tracking of the revision history and attribution to the original authors.

Many technical issues inherent in centralized workflows simply don't exist in the
distributed mode, such as the hassle of configuring access control, the dangers
in update operations, or having a single point of failure. Having fewer technical
rules and restrictions, the distributed workflow is more simple, easier to set up
and maintain, and much more scalable.

Encouraging feature branches
Since collaborators cannot write to each other's branches, the only way to get your
work into the branch of another collaborator is by convincing him to merge from
your branch. If the proposed branch is about a single feature, bugfix, or other specific
improvement, merging it should be relatively easy. However, if the branch contains
a mix of unrelated changes, then the merge proposal is likely to get rejected because
it is unclear and confusing. As such, distributed workflows naturally encourage the
use of feature branches.

Feature branches keep the history clean and well organized by grouping related
changes together. In this way, you can read the merge commits of feature branches
as the large steps in the evolution of the project, and you can always drill down
to the individual commits to see the full details. For example:

Working with Bazaar in Distributed Mode

[200]

The same history with merge commits expanded looks similar to the
following screenshot:

This also makes rolling back an entire feature trivially easy, by reverting the single
commit that merged the feature branch.

The revision history depends on the
perspective
It is a somewhat minor, but sometimes important detail to remember that the
graph of the revision history may depend on the perspective of each collaborator.
When looking at the revision history of a branch, revisions added by the owner are
called mainline revisions, revisions merged from other branches are called merged
revisions. Mainline revisions are numbered with increasing integers, while merged
revisions are numbered using a dot notation.

In the preceding example, Jack's view of the history is the most simple—he never
merged from other branches. Thus his view of the history is basically a straight
sequence of revisions following one another:

Chapter 6

[201]

Steve has merged Jack's revision 4 and 5. Therefore, in his view of the history these
show up as merged revisions renamed as 3.1.1 and 3.1.2, respectively:

Working with Bazaar in Distributed Mode

[202]

Mike's perspective is even more complex, as he merged from all other branches:

If we create a new branch from Mike's at revision 2.3.4, we get a perfect clone of Steve's
branch, and therefore the same perspective as his. In this case, revisions 2.3.x are
renamed to 4, 5, 6, and 7, naturally, as they are mainline revisions in Steve's branch.

The human gatekeeper workflow
This is one of the most common distributed workflows. In this workflow,
collaborators have read-only access to the mainline branch, and can propose their
own branches for merging into the mainline. The maintainer of the mainline is the
gatekeeper, who reviews merge proposals and either accepts and merges the branch
into the mainline or rejects the proposal with comments.

If a branch was rejected, its author can fix the problems and commit them in the
same branch, and propose it again for merge. This cycle can continue for as long as
necessary, until finally the branch can be accepted and merged into the mainline.

Chapter 6

[203]

Overview
The general flow with two collaborators and a gatekeeper looks similar to
the following:

mainline

8 9 10 11

Mike

12 13

Jack

11 1210

GateKeeper

8 9 10 11 12 13

11.1.1 11.1.2

9.1.1 9.1.2 9.1.3

branch

branch

merge proposal

merge proposal

The important points to be noted are as follows:

• Collaborators do not have write access directly on the mainline branch
• Collaborators can propose their branches for merging to the gatekeeper
• It is up to the gatekeeper whether or not to accept or reject a merge proposal

In the same way that Jack and Mike branched from the mainline and worked on
their local branch, the gatekeeper too does the same. In this example, the gatekeeper
first merged and accepted Mike's branch, and then merged and accepted Jack's
branch. At this point, the gatekeeper can push his branch to the mainline, resulting
in the following:

Mike

12 13

Jack

11 1210

mainline

8 9 10 11 12 13

11.1.1 11.1.2

9.1.1 9.1.2 9.1.3

Working with Bazaar in Distributed Mode

[204]

At this point, since the mainline contains all the revisions of Mike and Jack, they can
update their local branches by using bzr pull to make them exact mirrors of the
mainline. Had they added new revisions after the time their branches were merged,
bzr pull would not have worked, as the branches would have diverged.

Ideally, the proposed branch should be a feature branch, with revisions
that implement a single feature, bugfix, or specific improvement. To
work on another feature, it is better to start afresh by creating a new
branch from the current mainline rather than reusing the same one.

Setting guidelines to accept merge proposals
To reduce the turnaround of merge proposals and rejections, it is a good idea to
keep a public list of the guidelines used when evaluating merge proposals. In this
way, collaborators can know in advance what to watch out for, and avoid common
pitfalls, increasing the chance that their merge proposal will be accepted, thereby
making the review process more smooth and efficient. The guidelines can be general
practices such as:

• The changes should not break anything
• Pass automated tests, such as unit tests or schema validation
• Conform to the general best practices of the relevant domain
• The changes should be about a single feature, bugfix, or some specific

improvement
• The changes should be in line with the project strategy, not deviating from

the main direction

Since the gatekeeper is a human, inevitably there may be some subjective criteria
such as:

• Coding style (in software development projects)
• Writing style (in professional writing or translation)
• The changes should be "readable"; the gatekeeper may reject anything that

is not clear to understand

The gatekeeper's job is easiest if the branch proposed for merge passes all the
guidelines and automated tests. In that case, it can be simply accepted and merged
into the mainline.

Chapter 6

[205]

If the proposed branch does not meet some of the guidelines, it is best to reject the
proposal with appropriate comments listing what to fix. The gatekeeper should keep
rejecting a branch multiple times, if necessary, until it meets all the guidelines.

If the proposed branch does not meet all the guidelines but represents a significant
improvement, then it might be tempting for the gatekeeper to work on the branch
himself in order to make it pass the guidelines. In short, this way the improvement
will get into the mainline faster, thanks to skipping the turnaround time between the
gatekeeper and the collaborator. However, in the long term, this may very well end
up slower and more costly for the gatekeeper. If the gatekeeper does not consistently
reject branches that violate the guidelines, then the collaborator may never learn
to play by the rules, and the gatekeeper will have to keep fixing the same mistakes
over and over again.

The guidelines should be well understood by all the collaborators of the project to
avoid frustration and unnecessary turnarounds. Collaborators who are lazy to read
and understand all the guidelines will eventually get it after their merge proposals
are rejected a few times.

The longer or more rigorous the list of criteria, the more difficult to join the project.
This can be a very important point in open source software projects. In a new project,
you probably don't want to impose too many rules at first, as that can discourage
early contributors.

On the other hand, if there are not enough guidelines, it is likely to result either in a
lot of rejected proposals, or a lot of extra work for the gatekeeper. The right balance
depends upon the project and the team.

The role of the gatekeeper
At the minimum, the gatekeeper should enforce the common guidelines and
best practices of the project, thereby ensuring continued high quality.

Merge proposals should not be accepted blindly, even if they have passed the
common guidelines. It is crucial that the gatekeeper fully understands the changes
introduced by a merge proposal, and its overall impact on the project. Therefore,
naturally, the gatekeeper should be somebody with a firm grasp of the entire
project and its future direction.

In addition to knowing the project through and through, the gatekeeper role
typically involves a lot of interaction with the authors of merge proposals, for
clarification or discussion on the new changes. Therefore, communication skills
are also very important.

Working with Bazaar in Distributed Mode

[206]

Creating a merge proposal
In order to propose a branch for merging, the collaborator must make the branch
available (visible) to the gatekeeper in some way. There are several ways to do that:

• Using a Bazaar hosting site
• Sharing the branch URL with the gatekeeper
• Creating and sending a merge directive

Using a Bazaar hosting site
Ideally, projects should use a Bazaar hosting site such as Launchpad.net, where
members of the project can have their own workspaces to share branches with the
gatekeeper and other collaborators. Using such a site can greatly simplify the process
of submitting and evaluating merge proposals.

Launchpad is a collaboration and hosting platform for software projects. The merge
proposal process works as follows:

1. Upload the completed feature branch to your account on Launchpad using
a push operation

2. Use the web interface to visit your branch and propose it for merging into
another branch, along with a description and other options that may help
the gatekeeper and other reviewers. The merge proposal triggers an e-mail
notification to the gatekeeper to bring attention to the new branch ready for
merging

A Bazaar hosting site, such as Launchpad, can be very useful as the central hub of
a project, where collaborators can find the mainline branches, or push their own
branches to propose for merging. Launchpad has many other useful features,
which we will cover in the next chapter.

Sharing the branch URL with the gatekeeper
The gatekeeper can review and merge from any branch that is accessible by a
protocol supported by Bazaar. For example, the collaborator can publish a branch
with bzr push to a website, FTP server, remote filesystem, SSH server, or anywhere
that is accessible by the gatekeeper.

After making a branch available, the collaborator should tell the URL of the
branch to the gatekeeper, along with a brief summary of the changes.

Chapter 6

[207]

For example, if you run the website http://example.com/, and the files of the
website are served from the directory /var/www/example.com/, which you can
access using SSH, then you can push your branch with the following command:

$ bzr push bzr+ssh://user@example.com/var/www/example.com/feat12

As a result, the branch will become visible at the URL http://example.com/feat12,
and the gatekeeper can run Bazaar commands to inspect it and merge from it. For
example:

$ cd /path/to/local/shared/repository

$ bzr branch http://example.com/feat12

$ bzr info feat12

$ bzr qlog feat12

$ cd mainline

$ bzr merge ../feat12

Sending a merge directive
If it is not possible to make a branch accessible to the gatekeeper via a URL, the
best alternative is to generate a merge directive and send it by an e-mail.

A merge directive is like a "mini-branch" packaged into a single file, which can be
applied to other branches by using bzr merge or bzr pull. A merge directive
contains only the necessary revisions to merge from a source branch to a submit
branch. By default, the source branch is the current branch, and the submit branch
is either a previously saved submit branch or the parent branch.

To demonstrate the use of merge directives, let's fetch two sample branches into
a shared repository:

$ cd /sandbox

$ bzr init-repo using-merge-directives

Shared repository with trees (format: 2a)

Location:

 shared repository: using-merge-directives

$ bzr branch lp:~bzrbook/bzrbook-examples/hello-start trunk

Branched 6 revisions.

$ bzr branch lp:~bzrbook/bzrbook-examples/hello-fix-c fix-c

Branched 8 revisions.

Working with Bazaar in Distributed Mode

[208]

Now, we have two branches—the trunk, and a feature branch that fixes a bug.
Imagine that you have fixed a bug in your local branch, but you have no way to give
access to this branch to the gatekeeper. In such a situation, your next best option is
to create a merge directive and e-mail it to the gatekeeper.

Creating a merge directive
You can create a merge directive by using the bzr send command and specifying
the destination branch, where the merge should be applied. You must specify either
an e-mail address with the --mail-to option or a filename with the --output or
-o option. If you specify an e-mail address, Bazaar will open the default e-mail
application, pre-filled with the content of the merge directive. Alternatively,
you can save the merge directive to a file and e-mail it later.

For example, we can create a merge directive from the example fix-c branch to
the trunk, as follows:

$ cd /sandbox/using-merge-directives/fix-c

$ bzr send --output -

Bundling 2 revisions.

Bazaar merge directive format 2 (Bazaar 0.90)

revision_id: janos@axiom-20130303203100-3uy33a4q96ux5u9c

target_branch: ../trunk/

testament_sha1: 1686e71d4453af6b4b086831179bf55faac7729b

timestamp: 2013-04-04 06:20:56 +0200

examples/hello-start

base_revision_id: janos@axiom-20130303141948-m5zhycy23bkvs2xv

#

Begin patch

=== modified file 'hello.c'

--- hello.c 2013-03-03 14:14:35 +0000

+++ hello.c 2013-03-03 20:31:00 +0000

@@ -1,5 +1,5 @@

-#include "stdio.h"

+#include <stdio.h>

 int main() {

Chapter 6

[209]

- printf("Hello World!");

+ printf("Hello World!\n");

 }

Begin bundle

IyBCYXphYXIgcmV2aXNpb24gYnVuZGxlIHY0CiMKQlpoOTFBWSZTWcYlJSIAApdfgEA
QeGP//1LQ

...

The merge directive starts with a header, with important parameters describing the
mini-branch, such as the storage format used by the revisions, the latest revision ID,
and the base revision ID.

By default, the merge directive includes an optional patch, which can be helpful
especially when the changes are small, like in this example, so that the recipient
of the merge directive can get a quick idea of the changes just by reading the
e-mail. With larger changes, this might not be all that useful as it is easier to read
large changes using Bazaar Explorer's Diff view. In this case, it may be better to
completely omit the patch using the --no-patch flag.

When using the --mail-to option to e-mail the merge directive instead of saving it
in a file, Bazaar will launch the e-mail client configured in the global mail_client
setting. You can change this setting by using Bazaar Explorer, from the menu option
Setting | Configuration | User Configuration or by launching bzr qconfig, or by
editing the bazaar.conf file in your Bazaar configuration directory. The "default"
value in this setting means Bazaar will use the preferred e-mail client configured in
your system.

Merging from a merge directive
A merge directive can be used in the bzr merge and bzr pull operations as if it
was a regular branch. To demonstrate this, let's create a merge directive from the
fix-c branch to the trunk, and then try to merge it in the trunk:

$ cd /sandbox/using-merge-directives/fix-c

$ bzr send -o ../merge-directive.out ../trunk

 M hello.c

All changes applied successfully.

$ bzr diff

=== modified file 'hello.c'

Working with Bazaar in Distributed Mode

[210]

--- hello.c 2013-03-03 14:14:35 +0000

+++ hello.c 2013-04-08 05:04:26 +0000

@@ -1,5 +1,5 @@

-#include "stdio.h"

+#include <stdio.h>

 int main() {

- printf("Hello World!");

+ printf("Hello World!\n");

 }

$ bzr status -v

modified:

 hello.c

pending merges:

 Janos Gyerik 2013-03-03 use more modern include-style

 Janos Gyerik 2013-03-03 c impl should add newline

The result is exactly the same as when merging from a real branch—changes
are applied, and the revision history will be correctly preserved.

Merge directives without revision content
If the source branch is visible by a public URL, or if it has a public mirror, then it
can be a good idea to omit the bundle from the merge directive in order to make it
lighter, since in this case, the recipient can find the revisions in the public URL. For
this to work, the public URL of the source branch must be specified on the command
line or in the branch configuration file .bzr/branch/branch.conf with the public_
branch setting. Use the --no-bundle flag to create a merge directive without a
bundle. For example:

$ cd /sandbox/using-merge-directives/fix-c

$ bzr send ../trunk/ -o- --no-bundle --no-patch lp:~bzrbook/bzrbook-
examples/hello-fix-c

Bazaar merge directive format 2 (Bazaar 0.90)

revision_id: janos@axiom-20130303203100-3uy33a4q96ux5u9c

target_branch: ../trunk/

testament_sha1: 1686e71d4453af6b4b086831179bf55faac7729b

timestamp: 2013-04-08 06:45:31 +0200

Chapter 6

[211]

source_branch: lp:~bzrbook/bzrbook-examples/hello-fix-c

base_revision_id: janos@axiom-20130303141948-m5zhycy23bkvs2xv

#

In this case, the merge directive file is much smaller, and instead of a bundle at the
end, the public URL of the branch is included in the header as source_branch.
When running this command, Bazaar verifies that the public URL is indeed a Bazaar
branch and that it contains the latest revision of the current branch, otherwise the
recipient won't be able to perform the merge.

Rejecting a merge proposal
The gatekeeper should carefully verify a merge proposal before accepting it, and
put it through various tests. For example:

• Try to merge from the branch and see if there are any conflicts. This could
be a warning sign, though it may not necessarily mean that the author did
something wrong.

• Verify that the project is still working well after the merge.
• Run automated or manual non-regression tests.
• Look for inefficiencies that may cause problems and should be improved

before merging.
• Verify that the general guidelines of the project are followed correctly.
• Needless to say, the changes should be in line with the long-term strategy

of the project.

If there are any problems at any step, the gatekeeper may need assistance from the
author to complete the merge. In order to ensure the continued high quality of the
project, the gatekeeper must be wise, and should reject merge proposals that are
not good enough.

When rejecting a merge proposal, the gatekeeper should explain to the author about
the necessary improvements to make, in order to get the branch accepted. The author
should continue working on the branch and commit more revisions that fix the issues
that were pointed out by the gatekeeper. When ready, the author should propose the
branch for merging again.

This cycle should continue as long as necessary, until the branch is approved by
the gatekeeper. It is not fun for either party. Evaluating branches that have obvious
problems that could have been avoided by following the guidelines is a waste of
time for the gatekeeper, while getting rejected is frustrating for the branch author.
It is important to remain patient, tolerant, and respectful during the process.

Working with Bazaar in Distributed Mode

[212]

Although some problems can be fixed by the gatekeeper, it is better to let the branch
contributor do it, in order to learn and stop making the same mistakes in future.

By rejecting merge proposals, the gatekeeper has the power to enforce the best
practices documented in the project, even if some collaborators may be reluctant
to do so.

Accepting a merge proposal
As always, when merging from a remote branch, it is a good idea to first fetch
the remote branch, ideally into a shared repository. For example:

$ cd /path/to/shared/repo

$ bzr branch BRANCH_URL

In this way, you can run various commands to inspect the branch without
unnecessarily paying the network overhead in each operation. For example:

$ cd the_branch

$ bzr info

$ bzr qlog

$ bzr missing ../mainline

$ bzr diff --old ../mainline

If you notice issues with the branch at this point, you can point them out to the
branch author and ask to work on the branch some more. After the author updates
the branch, you can do a bzr pull to bring your local mirror up-to-date.

If the branch passes the initial tests, try to merge it into your local mirror of the
mainline, after making sure that the mirror is clean and up-to-date. For example:

$ cd ../mainline

$ bzr status

$ bzr pull

$ bzr merge ../the_branch

If the merge results in conflicts, which may be a warning sign, it does not necessarily
mean that it is the fault of the branch author. Investigate, and if necessary, ask the
branch author to help resolve the conflicts. You can also try to redo the merge by
using a different algorithm with bzr remerge, or by completely aborting the merge
with bzr revert.

Chapter 6

[213]

After all conflicts are resolved, make sure to understand the meaning of the changes
and verify carefully that the project is still working well, running automated or
manual non-regression tests, and validating the common guidelines of the project.

If everything is in order, commit the merge with a short summary of the changes
made in the branch, and push it to the central server to make it available to other
team members:

$ bzr commit -m 'implemented feature X'

$ bzr push

If doing bzr push for the first time, you may have to specify
the parent location with bzr push :parent.

The gatekeeper must be wise and responsible, and therefore very careful when
accepting changes in order to ensure the continued high quality of the project.

When working with a user-friendly Bazaar hosting site, such as Launchpad, the bzr
push step should trigger an automatic e-mail to notify the author that the merge
proposal was accepted and the branch was successfully merged.

Reusing a branch
Whenever possible, it is best to create a clean new branch from the mainline for
each new feature, bugfix, or other specific improvement. When a feature is complete,
propose the branch for merging and start a completely new branch from the latest
version of the mainline in order to work on the next improvement.

However, sometimes this may not be practical, and it may be tempting to continue
working in the same branch, even after it has already been merged into the mainline;
for example, in situations similar to the following:

• There are many configuration files in the working tree that are required
when working on the project, but cannot be added to version control because
they are specific to the local working environment of each collaborator

• After the branch was proposed for merge and while waiting for the
gatekeeper to accept or reject, you need to start working on the next feature
that depends on the changes in the pending merge proposal

• The working tree is quite large, and thus keeping multiple working trees
will be a waste of disk space

Working with Bazaar in Distributed Mode

[214]

The cleanest way of reusing a branch is to wait until the merge proposal is accepted
and merged into the mainline, then synchronize the local branch with the mainline
using a pull operation. The pull operation will copy all the missing revisions and
convert the branch to a perfect mirror of the mainline, and you may continue to
work on the next improvement or bugfix.

Another way to re-use a branch is to merge from the mainline, but
this leads to a messy history that's difficult to read, and the gatekeeper
may also have issues with the criss-cross merges when the mainline
and a collaborator branch are merged into each other repeatedly.

This effectively means working on the branch in lockstep with the gatekeeper:

1. You begin new work from a clean state, synchronized with the mainline.
2. When your improvement is completed, submit a merge request and wait

for the gatekeeper to review the merge proposal and take action.
3. The gatekeeper may reject the proposal and ask you to improve the branch.
4. After the merge proposal is accepted and the branch is merged into the

mainline, you can pull from the mainline to return the branch to the clean,
synchronized state, and begin working on the next improvement.

This is a clean way for re-using a branch for multiple improvements, with the
limitation that you have to work on improvements one by one, and refrain from
committing new revisions while a merge proposal is still pending, practically
working on the branch in lock-step with the gatekeeper.

There is a way for re-using a working tree to work on multiple branches by using
lightweight checkouts and switching branches. This is an advanced setup, which
will be explained in Chapter 8, Using Advanced Features of Bazaar.

Commander/Lieutenant model
As the project grows, it may become increasingly more difficult for the gatekeeper to
oversee all the changes going into the different parts of the project. When the project
reaches a point where the gatekeeper's job becomes impossible, the workflow can
be scaled up by adding more gatekeepers, and splitting their responsibilities over
different parts or modules of the project.

Chapter 6

[215]

In very large projects, there can be several gatekeepers who oversee different parts
of the project. This is often called the Commander/Lieutenant or Dictator/Lieutenant
model. In this model, there are two levels of gatekeepers—Lieutenants review the
merge proposals of the collaborators within their defined perimeters, but instead
of merging collaborator branches into the mainline, they merge them into their
own branches. The Commander works mostly with Lieutenants, reviewing their
merge proposals and merging them into the mainline. In other words, the
Commander is the gatekeeper of Lieutenants.

At the level of the Commander, it may be practically impossible to understand in
depth all the individual changes going into the project. Instead, the Commander
must focus on the higher-level logic of the proposed changes, and trust the
Lieutenants' judgment on lower-level details.

Switching from the peer-to-peer workflow
Switching from the peer-to-peer workflow to the human gatekeeper workflow
requires the following changes in the working style:

• Dedicate a mainline branch that is only updated by the gatekeeper
• The new work should start from the mainline branch, not from the branch

of another collaborator
• Collaborators should avoid merging from each other directly
• Collaborators should avoid re-using the same branch for multiple features,

and always start the new work in a clean, new branch based upon the
mainline branch

• The mainline branch should have mostly merge commits only,
no other changes

Working with Bazaar in Distributed Mode

[216]

If the peer-to-peer example at the beginning of the chapter had been using the
human gatekeeper workflow, the revision graph would have become something
similar to the following:

1 2 3 4 5 6 7 8 9

M
ik

e
Ja

ck
An

na
m

ai
nl

in
e

S
te

ve

distributed workflow with mainline branch and gatekeeper

10 11

9

954

4 10 11

7

63

3 4 5

We can arrive at this graph by replacing the revisions that were merges from
collaboratorB to collaboratorA with a merge from collaboratorB to the mainline,
followed by a new branch from mainline to collaboratorA. Bazaar Explorer does a
much better job at rendering such graphs:

Chapter 6

[217]

This is not the best example, because there are too many branches here, with only
a single revision. In reality, feature branches often have several revisions, and
grouping them together gives a very useful, high-level overview of the larger
steps in the evolution of the project.

Working with Bazaar in Distributed Mode

[218]

The automatic gatekeeper workflow
The automatic gatekeeper workflow is a variant of the human gatekeeper
workflow, except that the role of the gatekeeper is implemented by a program
or script performing automated tasks instead of a human. This setup has some
interesting advantages:

• It provides a mainline branch that is always up-to-date automatically,
giving the illusion of a central branch, even though collaborators still
work independently in a distributed manner

• It automates repetitive tasks, such as running non-regression tests and
other validations of the common guidelines, automatically rejecting merge
proposals that don't pass

Naturally, unlike a human gatekeeper, an automated process cannot evaluate the
merge proposals from a strategic perspective. Any change that passes the automated
test will be merged into the mainline even if it is not a good idea from a functional
point of view.

Having an automated gatekeeper is probably better than not having one at all.
Basically, it allows for an up-to-date mainline branch without human interaction,
much like in a centralized workflow, but while still enjoying all the benefits of
distributed version control.

Patch Queue Manager (PQM)
PQM is a software tool that implements the role of an automatic gatekeeper of
Bazaar branches. It is implemented in Python and it uses Bazaar's libraries and
API to perform the necessary branch operations.

PQM must be configured with write access to a dedicated branch, where it can push
accepted merge proposals. PQM performs the following operations when processing
a merge proposal:

1. Branch from the mainline.
2. Merge from the proposed branch.
3. Commit the merge.
4. Push to the mainline.

If any of these steps fail, the branch is rejected with an e-mail notification
to the author.

Chapter 6

[219]

Ideally, automated non-regression tests should be configured in a pre-commit hook
of the branch, which is triggered when PQM tries to commit. The implementation of
such a hook is specific to the project, and thus not a part of PQM itself.

PQM is merely the framework for automating the often repetitive tasks of accepting
and rejecting merge proposals. It is the responsibility of the maintainers of the project
to implement thorough non-regression tests triggered by a pre-commit hook.

The PQM project is hosted on Launchpad, and used extensively by Ubuntu projects
(https://launchpad.net/pqm).

See the project website for more information and detailed setup instructions.

Revision history graph
The end result of the revision history graph is essentially the same as in the human
gatekeeper workflow—the mainline has only merge commits, and all other branches
should be feature branches. For a realistic example, get the source code of Bazaar
itself and view its revision history:

$ bzr init-repo /tmp/bazaar

$ cd /tmp/bazaar

$ bzr branch lp:bzr # will take some time!

$ bzr qlog bzr

The shared mainline workflow
In this workflow, the mainline branch is shared among a selected set of collaborators,
possibly all of them. Collaborators do not commit directly to the mainline, but
instead work on new features and bugfixes in local feature branches. When a
feature branch is ready, either its author merges it into the mainline or asks another
collaborator to perform a review and merge the branch.

There are two main ways of updating the mainline branch:

• Using an unbound branch with pull and push operations
• Using a bound branch with update and commit operations

Both the methods achieve the same result but work slightly differently. Essentially,
these are just different working styles of updating remote branches; the preferred
method may be a matter of taste.

Working with Bazaar in Distributed Mode

[220]

In the examples demonstrating both the cases, we make the following assumptions:

• Local branches are in a shared repository located at /sandbox/repo
• The URL of the shared mainline branch is MAINLINE_URL
• The URL of the feature branch to merge is FEATURE_URL

The feature branch to merge may be a remote branch of another collaborator,
or your own branch in the local shared repository.

Updating the mainline using push operations
The basic idea of updating the mainline branch using push operations is that you
keep a pristine local mirror of the mainline branch, only for the purpose of pull,
merge, and push operations.

Before you begin a merge operation, the local mirror must be up-to-date (that is,
at the same revision as the mainline), so that after the merge is completed, you can
push from it to the mainline.

Updating the mainline using a new local mirror
In a nutshell, the following are the steps to create a local mirror of the mainline
branch, merge the feature branch into it, and push the result back into the mainline:

$ cd /sandbox/repo

$ bzr branch MAINLINE_URL mainline

$ bzr merge FEATURE_URL

$ bzr commit -m 'implemented feature X'

$ bzr push :parent

There are several things to keep in mind while performing these steps:

• The local mirror of the mainline branch will be created in /sandbox/repo/
mainline, and you should not use it for anything else except for the purpose
of merging other branches. Once created, it can be re-used to merge more
branches in the future.

• If the feature branch is a remote branch, you probably want to create a local
branch from it first by using bzr branch. Before performing the merge, you
probably want to inspect the recent revision history of the branch by using
bzr log, and maybe compare it with the mainline by using the bzr missing
and bzr diff or bzr qdiff commands.

Chapter 6

[221]

• After performing the merge, you may have to sort out conflicts, possibly
contacting the authors of the conflicting changes. Before committing, you
should run the various manual and automated non-regression tests of the
project, and verify carefully that everything still works well, including the
new evolutions introduced by the feature branch.

• When committing the merge, make sure to write an informative log message
that summarizes well the changes that were made by the feature branch.
Later, when you and other collaborators view the revision history of the
project, the intermediary revisions of the feature branch will be hidden by
default. Thus it is important to write a nice log message for merge commits.

• In the bzr push step, you can use the :parent shortcut to refer to the parent
branch location; in this case, the mainline branch we branched from. After
this, Bazaar will save this location as the push branch, so you don't need
to specify it again.

At the end of the push operation, the mainline branch and its local mirror will be
identical, and you can re-use the local mirror in the future to merge other branches.

While going through the preceding steps, if somebody else adds a change to the
mainline, then the last step with the push operation will fail. In this case, you
should start over by creating a clean new local mirror and perform the merge again.

In this case, instead of creating a clean new mirror again with bzr
branch, you can re-use the existing branch by discarding all the
changes and overwriting it with the remote mainline branch by using
bzr pull --overwrite.

Re-using an existing local mirror
If you already have a local mirror of the mainline branch, and you kept it in a
clean state without making any local changes, then you can re-use it to merge
another branch with the following steps:

$ cd /sandbox/repo/mainline

$ bzr pull

$ bzr merge FEATURE_URL

$ bzr commit -m 'implemented feature X'

$ bzr push

Working with Bazaar in Distributed Mode

[222]

The main difference compared to using a clean, new branch is that you can use bzr
pull to bring the existing branch up-to-date with the remote mainline branch instead
of creating a completely new branch by using bzr branch. This should be slightly
faster, because in this case the working tree already exists, and it doesn't need to
be completely recreated from scratch.

In terms of copying the revision data, this method might be slightly
faster, but the difference is probably negligible, as most revisions
should already exist in the shared repository.

If you have any pending changes or the branch has diverged from the mainline, then
you can overwrite it from the mainline branch by using bzr pull --overwrite,
discarding any local changes.

Another minor difference is that you don't need to specify the push location, as it is
remembered from the last push operation.

Updating the mainline using a bound branch
The basic idea of updating the mainline branch using a bound branch is that
you keep a pristine checkout of the mainline branch only for the purpose of
merging branches.

Before you begin a merge operation, the checkout must be up-to-date (that is,
at the same revision as the mainline), so that after the merge is completed,
the commit operation will succeed in the mainline.

Updating the mainline using a new checkout
In a nutshell, these are the steps to create a checkout of the mainline branch,
merge the feature branch into it, and commit the result into the mainline:

$ cd /sandbox/repo

$ bzr checkout MAINLINE_URL mainline

$ bzr merge FEATURE_URL

$ bzr commit -m 'implemented feature X'

There are several things to keep in mind while performing these steps:

• The local mirror of the mainline branch will be created in /sandbox/repo/
mainline, and you should not use it for anything else except for the purpose
of merging other branches. Once created, it can be re-used to merge more
branches in the future.

Chapter 6

[223]

• If the feature branch is a remote branch, you probably want to create a local
branch from it first by using bzr branch. Before performing the merge, you
probably want to inspect the recent revision history of the branch by using
bzr log, and maybe compare it with the mainline by using the bzr missing
and bzr diff or bzr qdiff commands.

• After performing the merge, you may have to sort out the conflicts, possibly
by contacting the authors of the conflicting changes. Before committing, you
should run the various manual and automated non-regression tests of the
project, and verify carefully that everything still works well, including the
new evolutions introduced by the feature branch.

• When committing the merge, make sure to write an informative log message
that summarizes well the changes that were made by the feature branch.
Later, when you and other collaborators view the revision history of the
project, the intermediary revisions of the feature branch will be hidden by
default. Thus it is important to write a nice log message for merge commits.

Keep in mind that in case of checkouts, the commit operation is applied directly to
the master branch; in this case the mainline. After the commit, the two branches will
be identical, and you can re-use the checkout in the future to merge other branches.

While going through the preceding steps, if somebody else adds a change to the
mainline, then the commit operation will fail, and Bazaar will tell you to run bzr
update to bring the checkout up-to-date. If the update operation is successful, you
should repeat the non-regression tests and verify carefully that everything still works
well. If everything is in order, you can proceed with the commit to complete the
merge. Otherwise, if the update operation results in too many conflicts, then it may
be better to abort the merge with bzr revert and start over.

Reusing an existing checkout
If you already have a checkout of the mainline branch, and you kept it in a clean state
without making any local changes, then you can re-use it to merge another branch
with the following steps:

$ cd /sandbox/repo/mainline

$ bzr update

$ bzr merge FEATURE_URL

$ bzr commit -m 'implemented feature X'

The main difference compared to using a clean new branch is that you can use bzr
update to bring the existing branch up-to-date with the remote mainline branch
instead of creating a completely new branch by using bzr checkout. This should
be slightly faster, because in this case the working tree already exists, and it doesn't
need to be completely recreated from scratch.

Working with Bazaar in Distributed Mode

[224]

Choosing a distributed workflow
Each distributed workflow presented here has some advantages and disadvantages;
the right one (most practical one) depends upon the project and the team.

The human gatekeeper workflow is the most restrictive, with strong control in the
hands of the gatekeeper, who decides proactively which changes should go into
the project and which should be rejected. By using a hierarchy of gatekeepers,
this workflow can be infinitely scalable. This workflow is an excellent choice for
medium to large projects. It is also well suited for open source projects, where
a wide audience of contributors is welcome, but some measure of control is
necessary to keep the mainline branch clean and on the right track.

The automatic gatekeeper workflow can be a bit difficult to set up, but once it is put
in place, it gives the benefit of a mainline branch that is always up-to-date with little
to no regular maintenance needed. The workflow eliminates the hassle of having
to perform the often repetitive merge operations, at the expense of less control
regarding what does and what doesn't go into the project. If you like openness,
where all team members are equal and their work is trusted, then this workflow
can be a good choice. It is also suitable as the Commander in the Commander/
Lieutenants model, since it is already largely based on trust in the Lieutenants,
and it may not be practical for the Commander to review all the changes in the
incoming branches from the Lieutenants.

The shared mainline workflow is somewhat similar to the automatic gatekeeper,
in the sense that all the collaborators are equally trusted. However, in this case, the
merge operations must be performed manually by the collaborators, which may
possibly be error-prone. Another drawback is that the mainline must be configured
with shared write access by multiple collaborators, which is an overhead compared
to the classic model of distributed collaboration, where collaborators only have
write access to their own branches.

These workflows are only examples of organizing distributed branches in a
logical way. You can use these models as baselines, and with your, by now, solid
understanding of the various branch operations, you can probably come up with
new and different workflows of your own.

Chapter 6

[225]

Summary
In this chapter, we explained the basics, and the various advantages of working
in a distributed manner, such as great flexibility, and the natural tendency to
use feature branches extensively.

We covered some of the common workflows used in distributed collaboration,
and how to implement them using Bazaar. These workflows are essentially about
organizing branches and combining the various branch operations in a certain way,
suitable for projects of any scale. The workflows explained here can be used as
examples to build on when designing your own custom workflows adapted to
your projects.

The next chapter will explain how to integrate Bazaar into various collaborative
development environments, such as Launchpad, various bug trackers, and
repository browsing tools.

Integrating Bazaar in CDE
A version control system is but one of the many components in the set of necessary
tools required to collaborate with others on a project. This chapter explains how
to integrate Bazaar with various collaborative development environments.

The following topics will be covered in this chapter:

• What is a CDE?
• Working with Launchpad
• Integrating Bazaar with Redmine
• Integrating Bazaar with Trac
• Linking commits to bug trackers
• Web-based repository browsing with Loggerhead

What is a CDE?
A Collaborative Development Environment (CDE) is a collection of online
collaboration tools used to manage the various aspects in the development
of a project. You can expect the following features from a CDE:

• Version control system hosting with web-based repository browsing
• Bug/issue tracking system
• Task management system/to-do list
• Document management system
• Translation management system
• Wiki
• Mailing list
• Forum or bulletin board system for discussions

Integrating Bazaar in CDE

[228]

The essential elements depend upon the project and its collaborators involved.
You might not need some of these features, or you might need all of them and more.
Often, there is no single system covering all of these functionalities; a CDE may be
composed of independent tools that can work well with each other.

Before deciding to use Bazaar in an existing infrastructure, it is an important
question to ask whether it can or not integrate well and work together with the
existing tools in the given environment. In this chapter, we will take a look at
how Bazaar can be used with various CDE tools that implement at least some
of the preceding functionalities, such as the following:

• Launchpad: This provides Bazaar hosting and web-based repository
browsing, bug tracking, task management, translation management,
and mailing lists

• Redmine: This provides web-based VCS browsing, bug tracking,
task management, document management, and wiki

• Trac: This provides web-based VCS browsing, bug tracking, task
management, document management, and wiki

• Loggerhead: This provides web-based Bazaar repository browsing

Working with Launchpad
Launchpad is an open source software hosting website for projects using Bazaar
as the version control system. It has various additional components to facilitate
collaboration, such as the following:

• Repository browsing: Viewing and browsing the files and directories of
the project, including current and past revisions

• Milestone and release management: Defining milestones that can be
targeted by bug fixes and new feature specifications

• Specifications tracking: Creating and editing new feature specifications
together with the others

• Bug tracking: Creating bug reports, linking bugs to branches or commits,
targeting bug fixes to milestone releases

• Answers: Tracking user support
• Translation management: Providing a collaborative interface to edit

translations of the project files in multiple languages

Launchpad was designed to work with Bazaar, therefore no integration is necessary;
Bazaar and Launchpad work well together out of the box.

Chapter 7

[229]

Launchpad has an excellent online tour that walks you through the main features
at https://launchpad.net/+tour/index.

In this section, we will focus mainly on Bazaar hosting, branch management,
and bug-tracking features.

Many very large and famous projects use Launchpad, such as
Ubuntu (including most of their subprojects like Unity), MySQL,
Inkscape, Zope, OpenStack, and more. Naturally, Bazaar itself is
also hosted on Launchpad.

Creating a Launchpad account
Having an account on Launchpad allows you to upload personal branches, host the
codebase of open source projects, manage bugs, create teams and mailing lists, and
so on.

In order to be able to perform write operations on branches hosted on Launchpad,
such as commit and push, you must upload your SSH public keys to associate with
your Launchpad account. Write operations by the bzr command or Bazaar Explorer
can be authorized on Launchpad if your SSH public keys are correctly configured in
your account details on Launchpad, and your Launchpad username is correctly set
in your local Bazaar configuration.

Creating an account
To create an account, visit Launchpad at https://launchpad.net/, and follow
the instructions on the screen:

Launchpad is an OpenID provider—you will be able to use your
Launchpad account as an OpenID login, with the URL:
launchpad.net/~USERNAME

Choosing a good and short username is important, because it will be part of the
URLs of your personal branches, as follows:

lp:~USERNAME/PROJECT/BRANCH

When collaborating with others, you will often need to exchange branches and tell
others about your branches. As such, you and your peers may have to type your
username frequently, thus it is probably a good idea to choose something good
and short.

Integrating Bazaar in CDE

[230]

You can change your username later. However, if you use your
Launchpad OpenID on other websites or services, keep in mind that
changing your username will change your OpenID too, and thus you
will lose access to those services. It's better to decide your username
once and never change afterwards.

Configuring your Launchpad account
The homepage of your Launchpad account can be derived from your username,
as follows:

https://launchpad.net/~USERNAME

At the top-right corner, there is a link named Change details, which takes you to
a page where you can change your personal details and preferences:

Configuring SSH public keys
On your Launchpad home page, there are many settings that you can adjust by
clicking on the pencil icons next to them. To edit your SSH public keys, click on
the pencil icon next to the SSH keys setting.

It is normal if Launchpad asks you to re-enter your username and
password when editing SSH keys. This is an additional security measure
to protect your account. If a malicious user can access this screen when
you leave your computer unattended for a few minutes, he/she could
register his/her own SSH keys and overwrite your branches and any
other branches to which your account has permissions.

Chapter 7

[231]

On the Change your SSH keys page, you can add and remove SSH public keys that
are allowed to write to Bazaar branches linked to your account, such as your own
branches and branches of other teams who invited you to work on their project. To
authorize an SSH key, copy the public key content and paste it in the large textbox.

In GNU/Linux, Mac OS X, and similar systems (UNIX, FreeBSD), your SSH public
key is usually in the file ~/.ssh/id_rsa.pub. If you don't have one already, the
following help page explains very well how to create an SSH key:

https://help.launchpad.net/YourAccount/CreatingAnSSHKeyPair

In Windows, you can use puttygen.exe to generate keys, which is part of the
PuTTY tool, and you can download it from the following URL:

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

However, when generating keys using PuTTY, you will have to convert your
public key for it to be in a single-line format, as follows:

ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAxZT0202gdMDSnlbbs0dNXZd
il2aKyEgovnCUik7kMDeC2+aF46eHIrQGUhGfL3UmIdS61wFbvdG38c4yXmg
i87yJbb9SlVl2OmDDvU9TI/emWL71JT0viRxRVlYP9vlOF+r3fqaSW76PIalLE
uJJIol3Xwp/o9tPkc1Pqz40B7xJNGR8YVXBZci3WMX68yqk98Kqhp9KcLmzKArMjF
9gslDmXakFQnJ9VFH6kGCMjKRq60DQpwnyqLzSlaX41mIjo7ZezWQIKZBKz3adw7u/r
TqBMrctP2jxMHmLwg/slhOjL5jBZnWgFeEMCuxsexaaK8t+S7pAHe6kYp7AY06TJw==
 janos@axiom

The line has three parts, each separated by a single space:

• Type of the key, typically ssh-rsa or ssh-dsa
• The public key, a Base64-encoded long string
• A comment, often in the format USERNAME@HOSTNAME

The comment part of the key will be shown on your Launchpad home page, so that
you can see at a glance the SSH keys you have authorized to access your account.
For example, as follows:

For added security, whenever your SSH keys are edited, Launchpad sends a
notification to your registered e-mail address.

Integrating Bazaar in CDE

[232]

Associating bzr with Launchpad
In order to write to branches on Launchpad with the push and commit operations
using the bzr command or Bazaar Explorer, you must tell Bazaar your Launchpad
username. You can do that either with the bzr launchpad-login command, or its
shorter alias bzr lp-login. When used without parameters, the command shows
the currently configured Launchpad username:

$ bzr lp-login

No Launchpad user ID configured.

By default, it is not configured, of course. Specify the Launchpad username to set
and save it in your user configuration:

$ bzr lp-login bzrbuddy

The command verifies if the specified user exists on Launchpad, and if successful
it updates the value of launchpad_username in your Bazaar configuration (~/.
bazaar/bazaar.conf). Bazaar operations on Launchpad branches will check
this configuration value to make the association between your actions and your
Launchpad user.

To confirm that the Launchpad username was correctly set, you can run bzr lp-
login again without parameters; it should simply print the username; for example:

$ bzr lp-login

bzrbuddy

Testing your setup
To confirm that your SSH keys and Launchpad user are correctly configured, you
can run any operation on a Launchpad branch. For example, the info command
on the official branch of the Bazaar project will provide the following output:

$ bzr info lp:bzr

Repository branch (format: 2a)

Location:

 shared repository: http://bazaar.launchpad.net/~bzr-pqm/bzr/bzr.dev/

 repository branch: http://bazaar.launchpad.net/~bzr-pqm/bzr/bzr.dev/

Related branches:

 parent branch: sftp://robertc@escudero/srv/www.bazaar-ng.org/rsync/bzr/
bzr.pqm/

Chapter 7

[233]

If you have not informed Bazaar about your Launchpad username, read-only
operations would still work, but you would get a warning similar to the following:

You have not informed bzr of your Launchpad ID, and you must do this to

write to Launchpad or access private data. See “bzr help launchpad-
login".

If you have configured a username, Bazaar will try to authenticate using your SSH
keys, even in the case of read-only operations, such as getting the info. Bazaar
will look for your SSH key matching any of the public keys registered for your
configured Launchpad username. If it cannot find a matching private key, the
operation will fail. For example:

$ bzr lp-login bzrbook # any user you don't own!

$ bzr info lp:bzr

Permission denied (publickey).

ConnectionReset reading response for 'BzrDir.open_2.1', retrying

Permission denied (publickey).

bzr: ERROR: Connection closed: Unexpected end of message. Please check
connectivity and permissions, and report a bug if problems persist.

Using private keys works in the same way as when authenticating to an SSH server.
If you have a working setup to log in to an SSH server, you don't need to perform
any additional configuration for Launchpad.

Hosting personal branches
Branches on Launchpad must belong to a user and a project. To upload branches
that are not associated with any project, you can use a special project called +junk,
which is designed exactly for this.

You can access the personal branches using URLs in the following format:

lp:~USERNAME/+junk/BRANCHNAME

Here, USERNAME is your Launchpad username and BRANCHNAME is any nickname
you can pick for your branch when you create it.

Branches in the +junk project are commonly called personal branches, or sometimes
non-project branches. Despite of the name as personal branches, these are not
private; anybody can see your personal branches on your Launchpad home page,
browse their content, and branch from them.

Integrating Bazaar in CDE

[234]

You can read more about personal branches on the following pages:
• https://help.launchpad.net/Code/PersonalBranches
• https://answers.launchpad.net/launchpad/+faq/226

In the next examples, we will use the username bzrbuddy when demonstrating
Bazaar operations on Launchpad branches. Replace it with your own Launchpad
username when working with your branches.

Uploading personal branches
You can upload a personal branch by using a push operation. As a test, let's create
an empty branch and push it to Launchpad. For example:

$ bzr init /tmp/empty-sample

Created a standalone tree (format: 2a)

$ cd /tmp/empty-sample/

$ bzr push lp:~bzrbuddy/+junk/empty1

Created new branch.

Note that when you push a branch to Launchpad for the very first time, you will
get a prompt to accept the host key of Launchpad as follows:

The authenticity of host 'bazaar.launchpad.net (91.189.95.84)' can't be
established.

RSA key fingerprint is 9d:38:3a:63:b1:d5:6f:c4:44:67:53:49:2e:ee:fc:89.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'bazaar.launchpad.net' (RSA) to the list of
known hosts.

This is the same as when connecting to an SSH server for the very first time. After
you say yes, the host key will be saved in your known hosts registry, and you won't
be prompted for this again.

To confirm that the branch was created, visit your Launchpad home page
and click on the Code tab, or use a direct URL; for example,
https://code.launchpad.net/~bzrbuddy.

This page lists all of your branches:

Chapter 7

[235]

Above the list of branches there is the bzr command to use
to push personal branches. In this example, it is bzr push
lp:~bzrbuddy/+junk/BRANCHNAME.

Keep in mind that your personal branches are not private; anybody visiting your
Launchpad home page can see them, browse their content, and branch from them.

Personal branches are a good way to store non-private branches temporarily,
or to share with others, or just to play with Launchpad.

Using personal branches
Personal branches on Launchpad work in the same way as any other remote
branches. Since these branches are public, anybody can perform read-only operations
on them, such as branch, checkout, merge, info, revno, and ls. For example:

$ bzr checkout lp:~bzrbuddy/+junk/empty1 /tmp/empty1-checkout

$ bzr branch lp:~bzrbuddy/+junk/empty1 /tmp/empty1-branch

Branched 0 revisions.

$ bzr ls lp:~bzrbuddy/+junk/empty1

$ bzr revno lp:~bzrbuddy/+junk/empty1

0

$ bzr log lp:~bzrbuddy/+junk/not-so-empty1

Integrating Bazaar in CDE

[236]

Deleting branches
To delete branches, visit your Launchpad home page, click on the Code tab, then
click on the branch you want to delete. On the detailed view of the branch, there
is a toolbox at the right-hand side with the option to delete the branch:

When you click on Delete branch, Launchpad will ask you for a confirmation.

Hosting a project
Launchpad is designed to host entire projects with all their Bazaar branches. It is free
for open source projects. There is an excellent documentation on hosting projects on
Launchpad at https://help.launchpad.net/Code/QuickStart.

For the purposes of the book, we will cover only the absolute essentials, focusing
on the points of integration with Bazaar.

Using the Sandbox site
While experimenting with the various features of Launchpad, it may be a good
idea to use the Sandbox environment instead of the official site. There is a link to
the Sandbox right at the front page of https://launchpad.net/, or you can visit
it directly at https://qastaging.launchpad.net/.

The sandbox environment is a copy of the official site, with user accounts, projects
and all other content copied over periodically. It is not safe to do any real work there
because anything you enter will be erased or over-written at some point. However,
it is perfect for experimenting without affecting your real users, teams, and projects.

Some of the examples use the official site, while others use the Sandbox. You can use
this conversion table to convert between the URLs of the two sites:

Chapter 7

[237]

Launchpad Sandbox
lp:~USERNAME lp://qastaging/~USERNAME

lp:PROJECTNAME lp://qastaging/PROJECTNAME

lp:~USERNAME/+junk/BRANCHNAME lp://qastaging/~USERNAME/+junk/
BRANCHNAME

lp:~USERNAME/PROJECTNAME/
BRANCHNAME

lp://qastaging/~USERNAME/
PROJECTNAME/BRANCHNAME

Creating a project
To create a project on Launchpad, you must be logged in, visit the Launchpad front
page (https://launchpad.net/), and click on the Register a project link:

The Register a project on Launchpad page asks you to enter various details about
your project, which should be fairly straightforward; in any case, here are some
additional remarks:

• URL: Choose the URL wisely, as it will be a part of all the branch URLs that
you will create later for the project. Although it is possible to change the URL
later, it can be extremely disruptive for your team and contributors. It is best
to pick a good name once and never change it later.

• Licenses: If you are registering an open source project, you must specify
the license.

After you complete the registration steps, the project will become available at the
URL you specified. for example:

https://launchpad.net/bzrbook-examples

The last part of the URL, bzrbook-examples, is the project's Launchpad ID, and
will appear in all the branch URLs related to the project.

Integrating Bazaar in CDE

[238]

Uploading project branches
You can upload branches for a project by pushing to a target URL in the
following format:

lp:~USERNAME/PROJECTNAME/BRANCHNAME

For example:

$ bzr push lp:~bzrbuddy/bzrbook-examples/tmp2

Using default stacking branch /+branch-id/707963 at chroot-
88678160:///~bzrbuddy/bzrbook-examples/

Created new stacked branch referring to /+branch-id/707963.

Since the Launchpad username is part of the branch URL, users effectively have
their own namespace for storing branches. Naturally, you can only upload branches
in a user's namespace if your SSH key is authorized in the configuration of the
corresponding user.

A very important feature of Launchpad is that anybody can associate branches
with a project by pushing to a URL where the PROJECTNAME part corresponds to
the Launchpad ID of the project. In this way, anybody can contribute to a project,
without having to obtain access permissions. Of course, whether the maintainers
of the project will use the branch or ignore it is a different matter, and we will
come back to that on the subject of merge proposals.

In the output of the preceding push operation example, we
created a new stacked branch. Stacked branches are another
advanced space-saving technique of Bazaar, similar to shared
repositories. It is beyond the scope of this chapter; we will
explain it in Chapter 8, Using Advanced Features of Bazaar.

Viewing project branches
To view all the branches related to a project, visit the Code tab of the project's page.
In case of the bzrbook-examples project, this corresponds to the following URL:

https://code.launchpad.net/bzrbook-examples

Chapter 7

[239]

In the main part of the page, you can see the list of all the branches by all the
contributors, with basic information about each branch, such as the URL, status,
date of last modification, and the last commit message. For example:

The preceding screenshot provides a list of branches. There are comboboxes to
filter by status, and to sort by various criteria. You can also sort by clicking on
the column headers.

Viewing your own branches
The Code tab of a project shows all the branches related to the project.

The Code tab of your account shows all your branches regardless of the project.

Setting a focus branch
Every project should have a development focus branch, which is accessible in the
Bazaar project itself commands by a simplified URL in the following format:

lp:PROJECTNAME

For example, you can access the current development focus branch of Bazaar by
the URL lp:bzr, or the MySQL project by lp:mysql, and so on.

The development focus branch is typically used as the starting point of new feature
branches. When you start contributing to a project, ideally you should branch from
the development focus branch, implement your improvement, and push your
branch to Launchpad to make it visible by the maintainers of the project.

Integrating Bazaar in CDE

[240]

When a project doesn't have a focus branch yet, Launchpad reminds you to set it.
For example, the Code tab of a newly created dummy project on the Sandbox site
shows this when you have at least one branch, but you haven't designated a focus
branch yet:

Near the top of the page, Launchpad tells us Launchpad does not know where
Example Project hosts its code, and in the table with the list of branches, there is a
warning message A development focus branch hasn't been specified, set it now.

One way to set a focus branch is to click on the set it now link in the Code tab as
shown in the preceding screenshot. Another way is on the Overview tab, by clicking
on Configure project branch in the Configuration Progress box at the right-hand
side of the page:

Chapter 7

[241]

Both the ways lead to a page where you can specify an existing Launchpad branch,
or even an external branch if it has a public URL that Launchpad can import from:

Finally, another easy alternative to set the focus branch is to push directly to the
official URL of the project. For example, in this case lp:example1.

The official URL of the project is actually an alias to the configured focus branch.
If you push to this URL, Bazaar creates the branch at the location lp:~USERNAME/
PROJECTNAME/trunk, automatically using your configured Bazaar username, the
name of the project, and trunk as the branch name. At the same time, the operation
sets the official URL to point to the pushed location.

Although anybody can upload branches associated with a project by using the
appropriate PROJECTNAME part in the URL of a push operation, only drivers of a project
can set the focus branch or push to the lp:PROJECTNAME location. When you create
a project on Launchpad, your account is automatically assigned as the driver of the
project. You can confirm and change this setting on the Overview tab of the project.

Integrating Bazaar in CDE

[242]

You can let multiple users write to the focus branch by creating a
team on Launchpad, adding all privileged users as members, and
setting the team as the driver of the project.

Using series
Branches can also be grouped within so-called “series", which are usually associated
with the different releases of the project that are maintained in parallel. For example,
the Bazaar project itself has a separate series for all the supported releases, such as
“2.5", “2.4", which are accessible by the URLs lp:bzr/2.5, lp:bzr/2.4, respectively.

You can register a series in the Overview tab of a project by using the Register a
series link.

Viewing and editing branch details
To view the details of a branch, find it in the list of branches in the Code tab of the
project and click on the URL of the branch in the Name column. This is the home
page of the branch, showing many important details and providing access to
many important functions:

Chapter 7

[243]

Near the top of the page is the basic information about the branch, such as its URL,
the user who created it, and the time of creation.

You can take many important and interesting actions on this page:

• Click on Browse the code in the middle to view the files and directories
of the branch

• Click on Change branch details at the right-hand side to edit the branch
details

• Click on Delete branch at the right-hand side to delete the branch
• At the right-hand side, you can view and edit the list of users subscribed

to notifications triggered by changes to the branch
• Click on Propose for merging to propose the branch to merge into another

branch on Launchpad
• Click on Link a bug report to associate the branch with bugs registered

on Launchpad

If you scroll further down, you can see the owner of the branch, the status of the
branch, and recent revisions added to the branch.

Using merge proposals
Merge proposals are crucial in a distributed workflow. Since collaborators can only
write to their own branches, the only way to get their work into the mainline or
to other collaborator branches is to propose them for merging. Launchpad has
excellent features to track merge proposals using a web interface.

We will demonstrate the process of merge proposals using the following
example branches:

• Bugfix branch: lp:~bzrbook/bzrbook-examples/hello-fix-c
• Mainline branch: lp:~bzrbook/bzrbook-examples/hello-trunk

Creating a merge proposal
To propose a branch for merging, open the branch details page and click on
Propose for merging.

Integrating Bazaar in CDE

[244]

In the form that appears, the only required field is Target Branch. Normally,
the development focus branch is selected by default, but you can specify
another branch by using the Other option.

When you specify a branch, you must use the complete URL. If the branch is hosted
on Launchpad, you can click on Choose... and search for branches by using a
keyword in the name of the branch or in the name of the project:

The target branch does not have to be hosted on Launchpad. It can be any Bazaar
branch that is accessible by Launchpad's servers. If you specify a foreign branch,
Launchpad will schedule to import it, so it becomes available directly on Launchpad.
The branch will be imported at lp:~USERNAME/PROJECTNAME/BRANCHNAME, where
BRANCHNAME is derived from the end part of the foreign branch URL.

Ideally, you should fill the other fields too, most importantly the Description box
to explain the changes in the proposed branch. You may also want to specify the
commit message that should be used when the branch is merged after it is approved.

Chapter 7

[245]

When ready, click on the Propose Merge button at the bottom of the page. This
will trigger an e-mail notification sent to the specified reviewer, or by default to the
project's maintainer, unless you deselected the Needs review box. The notification
e-mail includes the locations of the source and target branches, and the differences
of the two branches in a diff format.

Viewing and editing a merge proposal
A merge proposal has its own dedicated page where you can view and edit its details.

The following page appears right after submitting the merge proposal, or you can
access it later from the branch details page:

Integrating Bazaar in CDE

[246]

Everything that you entered while creating the branch proposal can be changed here,
except for the locations of the source and target branches.

The author and the reviewers of the branch can invite additional users to participate
in the review process. The status of each review is tracked near the top of the page,
where reviewers can make changes appropriately, until they ultimately approve or
disapprove the change.

The author and the reviewers can enter their comments directly on this page, or by
replying to any of the notification e-mails. In this way, they can discuss the details of
a merge proposal, or ask the author for additional changes and fixes, until the merge
proposal can be approved or disapproved.

Approving / rejecting a merge proposal
There are two kinds of statuses of a merge proposal tracked on Launchpad—the
status of reviews of the changes in the branch, and the status of the conclusion
based on all the reviews.

There can be one or more Launchpad users assigned to review a merge proposal,
and each one of them can take several actions, such as approve, disapprove, ask
for more information, or point out things to fix.

In small projects, there is typically only one reviewer; in larger projects, it may
make sense to have more. Any project member can invite more users to participate
in the review process of a merge proposal.

Based on the result of all the reviews, the owner of the branch or the driver of the
project can make the final conclusion whether to approve or disapprove the merge
proposal. This final decision is indicated by the Status value near the top of the
page, right above the table with the status of all the reviews:

Chapter 7

[247]

The status of the merge can be changed in several ways:

• Perform the merge and push the updated target branch to Launchpad
• Click on Status and change it manually
• Use the e-mail interface with an appropriate command

By performing the merge and pushing the updated target branch to Launchpad,
the status of the merge is automatically updated to Merged to reflect this action.
The merge proposal page gives a hint on how to perform the merge in this example:

To merge this branch: bzr merge lp:~bzrbook/bzrbook-examples/hello-fix-c

Assuming the merge proposal was approved by the reviewers and was well-tested,
you can perform the merge by performing the following steps:

1. Get the target branch by using bzr branch or bzr checkout.
2. Merge the proposed branch by using the command given by Launchpad.
3. Commit the merge with a good summary as a comment.

If you got the branch in the first step using bzr branch, then you must push the
branch to its parent by using bzr push :parent, in order to update the Launchpad.
If you used bzr checkout in the first step, then Launchpad is automatically updated
by the last commit. Either way, the end result is the same, and if you reload the
merge proposal page, it should now show Merged as the value of Status.

Note that the other methods of changing the status Approved or Merged do
not perform the merge. Changing the status in this way may be a good way to
indicate to the team that the proposal has been approved, but you should not
forget to perform the branch and push it to Launchpad.

Using the e-mail interface to handle a merge
proposal
Another easy way to change the status of merge proposals is by entering commands
in an e-mail sent to a special e-mail address that is associated with the merge proposal
and processed by Launchpad. This e-mail address is the one used by the notification
e-mails sent from Launchpad about updates on the merge proposal, or you can find
it on the merge proposal's page; in our current example, it is as follows:

Review via email: mp+158759@code.launchpad.net

Integrating Bazaar in CDE

[248]

The commands must be entered on separated lines, and each line must start with
a space. The following commands are supported:

• review approve: This concludes the review and marks it as approved
• review disapprove: This concludes the review and marks it as disapproved
• review abstain: This abstains from deciding
• review resubmit: This tells the collaborator to rework the change and

resubmit the merge proposal
• review needs-fixing: This tells the collaborator that some fixes are needed
• review needs-info: This tells the collaborator that more information is

needed
• merge approved: This approves the merge proposal
• merge rejected: This rejects the merge proposal
• reviewer NAME: This invites another Launchpad user to review the

merge proposal

Other lines in the e-mail will be used as a comment message, appended to the page.
You can find more details in the documentation at https://help.launchpad.net/
Code/Review.

Browsing the content of a branch
You can browse the contents of a branch by clicking on the Browse the code link on
the branch details page. In the Files tab, you can see a list of files at the latest revision:

Chapter 7

[249]

Above the list of files, you can see a detailed information about the revision, such as
the committer, the date, and the commit message.

If you click on the Changes tab at the top, you will be able to see a list of changes in a
somewhat similar way as the log viewer of Bazaar Explorer:

There are several other features available here:

• View the differences in a specific revision or in a file
• Download a revision as a diff or a tarball
• View the full content of any file
• List the revisions that changed a file
• View a file with each line annotated with revision information that

changed it

The “browse code" pages on Launchpad are powered by a software called
Loggerhead. You can find more information about it later in this chapter.

Integrating Bazaar in CDE

[250]

Using the bug tracking system
In order to use the bug tracking system of Launchpad, you must enable it in
the configuration of the project, by using the Configure bug tracker link at the
right-hand sidebar:

On the bug tracker configuration form, simply select Launchpad; the other fields are
optional. When done with the editing, click on Change at the bottom.

Launchpad projects can work with external bug trackers too, such as
Trac, Mantis, Bugzilla, and Redmine. The complete list of compatible
bug trackers is maintained at https://help.launchpad.net/
Bugs/RemoteTrackerCoverage.

Reporting bugs
On the Bugs tab, click on Report a bug and follow the instructions.

First, the page asks for the single-line summary of the bug, which will be the title
of the bug showed in the listings. After this step, Launchpad will search for the
existing bugs reported for the project and show the ones that might be similar.
This is in order to reduce duplicate bug reports of the same issue.

On the next page, you can enter the description of the bug, as detailed as possible.
You can enter details such as Status, Importance, Milestone, and Tags, and assign
the bug to a particular user. Normally, these fields are better to leave for the
maintainer of the project to enter. The default values are New and Undecided
for Status and Importance, respectively.

Chapter 7

[251]

Linking commits to bugs
See the Linking commits to bug trackers section for a general explanation and the
specific steps to be taken when using Launchpad with various bug trackers.

Useful tips when using Launchpad
There are a few additional tips that may be good to know when using Launchpad.

Deleting or renaming a project
There is no user interface for these actions. If you are really sure you want to do this,
the current official way is to create a question on the Launchpad project itself:

https://launchpad.net/launchpad

The karma system
On your account page, you may have noticed a Karma value. By using Launchpad,
you accumulate Karma points. The more active you are, the more Karma points you
will collect. However, Karma points expire with inactivity. You can learn more about
how Karma points work by clicking on the question mark icon next to it, or at the
following URL:

https://help.launchpad.net/YourAccount/Karma

Hosting private projects
It is possible to host private projects on Launchpad. You can read more about
the various commercial hosting options at the following URL (part of the
Launchpad Tour):

https://launchpad.net/+tour/join-launchpad#commercial

Integrating Bazaar into Redmine
Redmine is a flexible project management web application that integrates repository
browsing, bug tracker, wiki, forums, and so on. It supports Bazaar repositories
natively, and it is quite easy to link a Redmine project to Bazaar.

Integrating Bazaar in CDE

[252]

Configuring Redmine itself is beyond the scope of this book; here, we assume that
you already have a working Redmine installation and focus on how to enable Bazaar
for it:

1. Go to the global site, navigate to Administration | Settings | Repositories,
and make sure that Bazaar is enabled. The bzr command must be installed
and accessible by Redmine. If bzr is not on the PATH variable used by
Redmine, then you can specify the absolute path explicitly in the config/
configuration.yml file with the scm_bazaar_command setting. You will
need to restart Redmine after this change.

2. Go to the project's Settings | Modules page, and make sure that the
Repository module is enabled.

3. Go to the project's Settings | Repository page, set SCM to Bazaar, enter
the absolute path to the Bazaar branch, and enter the encoding used by
commit messages, for example, UTF-8.

After this, you should be able to browse the Bazaar branch by using the Repository
tab, as follows:

You can browse the contents of versioned files and directories and see other details
such as the following:

• View the files and directories at a specific revision
• View the differences between any two revisions
• View each line of a file annotated with the revision information that

changed it
• View the list of revisions that changed a file
• View the log of revisions in a branch

Chapter 7

[253]

Integrating Bazaar into Trac
Trac is a web application that integrates repository browsing, bug tracker, and wiki.
Support for Bazaar repositories can be enabled in Trac by installing the Trac Bazaar
plugin (also known as trac+bzr).

Configuring Trac is beyond the scope of this book; here, we assume that you already
have a working Trac installation and focus on how to enable Bazaar support for it.

Enabling the plugin globally
The best way to install Trac is by using your operating system's package manager.
Look for a package named tracbzr. Alternatively, you can install it by using Pip,
the Python package manager, or from source.

$ pip install tracbzr bzr==2.5

The Bazaar libraries are a runtime dependency of the plugin, that's why we need to
install bzr too. We specified an explicit version of bzr, because by default Pip installs
the latest unstable version of bzr, which might not always work well.

Another important point is to use the same Python version as the one Trac is running
with. For example, if you are normally using Python 2.7, but Trac is running with
Python 2.6, then in the preceding command you should use pip-2.6 instead. You
can confirm the Python version used by pip by using the command pip --version.

After the plugin is installed, enable it in the trac.ini file of the Trac project's
environment by editing or adding a components section as follows:

[components]

tracbzr.* = enabled

Finally, add your Bazaar branch locations by using the trac-admin command of
Trac:

$ trac-admin ENV repository add NICK PATH bzr

Here:

• ENV is the path to the Trac project environment
• NICK is a short name to identify the location in Trac
• PATH is the path to a directory; it can be a branch, a shared repository,

or just a plain directory

The bzr parameter at the end of the command is to indicate that this is a Bazaar
repository, so that Trac knows the right plugin to use when working with it.

Integrating Bazaar in CDE

[254]

To remove repository locations from Trac, use the remove command:

$ trac-admin ENV repository remove NICK

After adding or removing locations, you may need to resync Trac's database:

$ trac-admin ENV repository resync NICK

You can resync all locations at once by using the following command:

$ trac-admin ENV repository resync '*'

Enabling the plugin for one project only
If you don't want to install the tracbzr Python module system-wide, then another
option is to package the module as an egg file and drop it into the plugins directory
in the project environment.

You may be able to get an egg file from the Launchpad page of the Python module:

https://launchpad.net/trac-bzr

Look for the Downloads section at the right-hand side; there are usually several egg
packages corresponding to different Python versions.

If there is no download file for your version of Python, or if you prefer to build the
package yourself, that's easy enough to do. In this case, download the tarball and
build the package with the bdist_egg command as follows:

$ tar zxf TracBzr-0.4.2.tar.gz

$ cd TracBzr-0.4.2/

$ python setup.py bdist_egg

$ ls dist/

TracBzr-0.4.2-py2.7.egg

This creates the egg package inside the dist/ directory. Copy the package to the
plugins directory of your Trac project environment and restart Trac.

Browsing Bazaar branches
If the Bazaar plugin has been successfully configured, then the Browse Source
tab should be visible, and you should be able to browse the directory tree of
Bazaar branches:

Chapter 7

[255]

You can browse the contents of versioned files and directories and see other details
such as the following:

• View the files and directories at a specific revision
• View the differences between any two revisions
• View each line of a file annotated with the revision information that

changed it
• View the list of revisions that changed a file
• View the log of revisions in a branch

Beware that there are some limitations of the plugin, as documented in the
Limitations section of the plugin's homepage:

http://pypi.python.org/pypi/TracBzr

Getting help
For more details, see the plugin's Launchpad page:

https://launchpad.net/trac-bzr

Or the plugin's project homepage:

http://pypi.python.org/pypi/TracBzr

Integrating Bazaar in CDE

[256]

Linking commits to bug trackers
If you are using a bug tracker in your project, you can link Bazaar commits to
bug reports. When a commit is linked to a bug report, you will be able to:

• See the bug report's URL in the output of bzr log
• Have a clickable hyperlink to the bug report when viewing the revision

history using Bazaar Explorer
• Depending upon the bug tracker, you may be able to see the details of

the linked commits on the bug report's page

In order to link commits to bugs, you must do two things:

1. Edit the branch configuration to set the bug tracker.
2. Specify the bug ID using the --fixes flag when committing revisions.

Depending upon the bug tracker, the configuration is slightly different. Here,
we will demonstrate how to link to bugs on Launchpad, Bugzilla, Redmine, and
Trac. If you use a different bug tracker, then these examples may help you figure
out the right steps.

When viewing the revision history by using bzr log, linked bugs appear as follows:

$ bzr log --short --limit 1

 9 mike 2012-10-17

 fixes bug: https://launchpad.net/bugs/1067609

 added c++ impl

Notice the fixes bug line with the URL of the bug report on Launchpad. This
revision was committed by using the --fixes lp:1067609 option. Linked bug
reports are shown only in the short and long formats of the log command, not
in the single-line format.

When viewing the revision history using Bazaar Explorer, the revisions associated
with bug reports are highlighted with the bug's ID, and the bug's URL is shown in
the commit's details. You can click on the highlighted label of the linked bug to open
the bug report in a browser:

Chapter 7

[257]

Configuring bug trackers in Bazaar
Bug trackers can be configured globally or per branch. A bug tracker configuration
in Bazaar typically has two important pieces of information:

• A short ID to identify the bug tracker
• The parameterized URL of the tracker

The tracker ID is used when linking to a bug report with the --fixes flag of the
commit command. For example:

$ bzr commit -m 'added c++ impl' --fixes lp:1067609

Committing to: /sandbox/integration/mike/

added hello.cpp

Committed revision 9.

The parameter --fixes is in the format TRACKERID:BUGID;in this case, the tracker
ID is lp, which Bazaar automatically associates with Launchpad. The bug ID is, of
course, the ID of the bug in the bug tracking system; in this case on Launchpad.

Integrating Bazaar in CDE

[258]

The general format of a bug tracker configuration looks similar to the following:

bugtracker_TRACKERID_url = URL/{id}

Here:

• TRACKERID is your choice of a short name to identify the bug tracker
• URL is the URL template of bug report pages
• {id} is what Bazaar will substitute with the bug's ID when constructing

the bug's URL to display in the revision history

For example:

bugtracker_redmine1_url = http://example.com/redmine/issues/{id}

This configuration identifies a bug tracker named redmine1, so that if you create
a commit as follows:

$ bzr commit -m 'test commit' --fixes redmine1:123

Then the bug report's link will be shown in the revision history as follows:

$ bzr log -l1 -S

 10 Janos Gyerik 2012-10-17

 fixes bug: http://example.com/redmine/issues/123

 test commit

Bug tracker configurations can be added at different places:

• ~/.bazaar/bazaar.conf: This is the global configuration file, add your
change in the [DEFAULT] section

• .bzr/branch/branch.conf: This is the configuration file of the branch
• ~/.bazaar/locations.conf: This is the global configuration file of

repository locations

To test a bug tracker configuration, try to do a test commit in a test branch by
using the new tracker ID. The commit operation will fail if there is a problem
in the configuration. For example:

$ bzr commit -m 'test commit' --fixes myNonExistent:123

bzr: ERROR: Unrecognized bug myNonExistent:123. Commit refused.

Chapter 7

[259]

Linking to public bug trackers
Bazaar has additional support for famous public bug trackers in order to simplify
the configuration:

URL Tracker ID Example
https://bugs.
launchpad.net/

lp lp:12345

http://bugs.debian.
org/

deb deb:12345

http://bugzilla.gnome.
org/

gnome gnome:12345

You can use these trackers without any additional configuration.

Linking to Launchpad
In projects hosted on Launchpad you can use the lp tracker without any additional
configuration.

Using Launchpad has some additional benefits. For example, after you push a
branch containing references to bugs on Launchpad, the referenced bug report
pages will have a new section titled Related branches, where the branches will be
listed. Similarly, on the branch details page, links to the bug reports will be added
automatically in the Related bugs section.

You can also manually link branches to bugs, by using the Link a bug report link
in the Related bugs section. Linking branches to bug reports is very convenient
because the branch details page will show all the linked bugs with their statuses
and importance.

Linking to Bugzilla
Bazaar has additional support for Bugzilla in order to simplify the configuration:

bugzilla_TRACKER_url = URL

That is, you don't need the {id} parameter. The URL should be the base URL of
the project in Bugzilla. For example:

bugzilla_mybugz_url = http://example.com/

In this way, the bug report URLs will be generated in the following format:

http://example.com/show_bug.cgi?id=123

Integrating Bazaar in CDE

[260]

Linking to Trac
Bazaar provides additional support for Trac in order to simplify the configuration:

trac_TRACKER_url = URL

That is, you don't need the {id} parameter. The URL should be the base URL
of the project environment in Trac. For example:

trac_mytrac_url = http://example.com/trac

In this way, the bug report URLs will be generated in the following format:

http://example.com/trac/ticket/123

Linking to other bug trackers
To link to other bug trackers, you must use the format with the generic prefix
bugtracker_ as the configuration name, and the {id} parameter in the URL.
For example:

bugtracker_redmine1_url = http://example.com/redmine/issues/{id}

See bzr help bugs for more details.

Advanced integration with bug trackers
In this section, we focused mainly on linking Bazaar commits to bug trackers,
so that you can easily open bug reports from Bazaar Explorer, or by using the links
in the output of bzr log.

Depending upon the bug tracker, sometimes the reverse is also possible, and the
bug tracker can link back to Bazaar branches, showing details about the commits
related to bugs, similar to what Launchpad does.

One such example is bugzilla-vcs, an extension of Bugzilla that provides
integration with Bazaar and other version control systems. For more details,
see their project website:

https://code.google.com/p/bugzilla-vcs/

Other bug trackers may also have the extension to provide a similar functionality.

Chapter 7

[261]

Web-based repository browsing with
Loggerhead
Loggerhead is a web viewer for Bazaar branches. It lets you do the following:

• Browse the branch history
• View files at a given revision
• Annotate files showing the origin of each line

Loggerhead powers the repository browsing features on Launchpad. If you prefer to
host your Bazaar repositories yourself, you can install Loggerhead on your own server.

Installing Loggerhead
The best way to install Loggerhead is by using your operating system's package
manager. Look for a package named loggerhead. In case that is not an option
for you, we explain how to install Loggerhead by using pip and virtualenv.

When installing web tools written in Python, it is always recommended to use
virtualenv in order to isolate the tool's Python dependencies from the rest of the
Python packages in the system. This is a good way to give Loggerhead a try, and
since all of its files and dependencies will be contained within a single directory,
it is also easy to clean up after testing.

First, let's create the “virtual environment" where we will install Loggerhead:

$ virtualenv --distribute loggerhead

New python executable in loggerhead/bin/python

Installing distribute..
..
..
..........................done.

Installing pip................done.

A directory named loggerhead was just created, where all Python libraries and
scripts that we are going to install will be stored, such as Loggerhead and its
dependencies. This works by setting up environment variables such as PATH and
PYTHONPATH appropriately, which we can do easily by sourcing the activation script
of the virtual environment:

$. loggerhead/bin/activate

(loggerhead)$

Integrating Bazaar in CDE

[262]

When a virtual environment is activated, the shell prompt is changed to indicate the
name of the virtual environment; in this case the prompt became (loggerhead)$
instead of $. This simply means that now environment variables such as PATH
and PYTHONPATH are configured in a way that anything we install using pip or
python setup.py install, they will be installed within the directory of the
virtual environment.

Next, let's install Loggerhead and its dependencies using pip:

(loggerhead)$ pip install paste bzr simplejson

... (skip)

(loggerhead)$ pip install loggerhead

... (skip)

There is one more dependency, which is not available via pip, called SimpleTAL,
a template language. We need to install this in the old fashioned way, from a tarball.
You can get the latest version of the Python 2.x series from the following URL:

http://www.owlfish.com/software/simpleTAL/py2compatible/download.html

Unpack and install the python module with:

(loggerhead)$ tar zxf SimpleTAL-4.3.tar.gz

(loggerhead)$ cd SimpleTAL-4.3

(loggerhead)$ python setup.py install

... (skip)

That's it, now we are ready to run Loggerhead!

Running Loggerhead locally
An easy way to test Loggerhead is to run it by using its built-in web server:

(loggerhead)$ serve-branches file:///srv/bzr

The single parameter in this example is the path to a directory, typically the
parent directory or the shared repository that contains several Bazaar branches.

By default, the web server will listen on port 8080 of localhost. Thus if you
visit http://localhost:8080/, you should see the contents of the specified
root directory and browse its contents:

Chapter 7

[263]

In this example, there is a mix of Bazaar branches and regular directories, which can
be distinguished by their icons, and the extra information by Loggerhead such as the
latest revision number and timestamp.

When inside a branch, the view is much like on Launchpad:

For example, we can download this branch with the following command:

$ bzr branch http://localhost:8080/bzr/webtools/highlighter

Integrating Bazaar in CDE

[264]

Running Loggerhead in production
There is a lot more to Loggerhead than we can cover here. For a brief introduction
of other configuration options, such as running Loggerhead behind an Apache web
server, see the documentation in the Bazaar admin guide:

http://doc.bazaar.canonical.com/beta/en/admin-guide/code-browsing.
html#loggerhead

To see the complete list of command-line options of serve-branches, use the -h or
--help flags.

Summary
In this chapter, we introduced the various collaborative development environments
that Bazaar is known to work well with, such as Launchpad, various bug tracking
systems, and Loggerhead. You should be able to use Bazaar together with these
tools and benefit from their features in order to keep your projects organized.

There is much more to be discovered about integrating Bazaar with other tools,
and due to space limitations, we cannot cover everything here. Hopefully, the
examples in this chapter will help you integrate Bazaar with other systems in
your toolset.

In the next chapter, we will learn how to use some of the more advanced features
of Bazaar, along with additional practical tips and tricks that you may find useful,
which will further improve your productivity.

Using the Advanced
Features of Bazaar

By now, you should have a solid understanding of Bazaar's philosophy and must
be able to perform all the most important version control operations with ease.
This chapter will show additional practical tips that are not essential to using Bazaar,
but can be very useful and make you more productive.

The following topics will be covered in this chapter:

• Using aliases
• Undoing commits
• Shelving changes
• Using lightweight checkouts
• Re-using a working tree
• Using stacked branches
• Signing revisions using GnuPG
• Configuring a hook to send e-mails upon commit

Using the Advanced Features of Bazaar

[266]

Using aliases
Aliases are helpful to shorten long commands that you use often. Take for example
the log command. Running bzr log without parameters in large projects would
produce an awful lot of an output, so it is compulsory to add the --limit parameter.
Furthermore, the default output format is long. This may be too much detail for
everyday use, and the single-line format may be informative enough for most
purposes. Thus, we end up with, for example, the following:

$ bzr log --limit 5 --line

This is rather long to type if you use it often. Luckily, we can shorten it with an alias;
let's call it l5, as follows:

$ bzr alias l5='log --limit 5 --line'

You can use aliases as if they were Bazaar commands. For example:

$ bzr l5 lp:bzr

6573: Patch Queue Manager 2013-02-07 [merge] (jameinel) Fix bug #1107464,

6572: Patch Queue Manager 2012-12-10 [merge] (vila) Fix LC_ALL=C test
failur...

6571: Patch Queue Manager 2012-10-25 [merge] (gz) Set approved revision
and ...

6570: Patch Queue Manager 2012-10-14 [merge] (jelmer) Fix trivial syntax
err...

6569: Patch Queue Manager 2012-10-11 [merge] (vila) Clarify how
`mergetool` ...

To view the definition of an alias, run bzr alias with the name of the alias as a
parameter. For example:

$ bzr alias l5

bzr alias l5="log --limit 5 --line"

To see all your currently defined aliases, run bzr alias without any parameters. For
example:

$ bzr alias

bzr alias l="log --line -l10 -n0"

bzr alias l5="log --limit 5 --line"

bzr alias ll="log --line -l10"

bzr alias s="status"

Chapter 8

[267]

To remove an alias, use the --remove flag:

$ bzr alias --remove ll

Aliases are stored in the [ALIASES] section in the user configuration file ~/.bazaar/
bazaar.conf:

[ALIASES]

l = log --line -l10 -n0

s = status

l5 = log --limit 5 --line

You can either use the bzr alias command or edit the configuration directly;
the end result will be the same.

You can even override a standard Bazaar command with an alias if you prefer:

$ bzr alias log='log --short'

This example effectively overrides the default output format of bzr log, using
the short format instead of the default long format.

To temporarily disable an alias, for example, to fall back on the default Bazaar
command, you can use the --no-aliases flag.

Undoing commits
You can undo one or more of the most recent commits by using the uncommit
operation. This can be useful, for example, if you want to amend your last commit by
changing the log message or adjusting the set of changes to include. The uncommit
operation moves the branch tip marker one or more revisions back, without changing
the working tree, so that you can make any necessary adjustments and commit again.

To see how it works, let's grab a sample branch:

$ bzr branch lp:~bzrbook/bzrbook-examples/uncommit /tmp/uncommit

Branched 6 revisions.

Using the Advanced Features of Bazaar

[268]

You can undo the last commit by using the bzr uncommit command without
any parameters:

$ cd /tmp/uncommit/

$ bzr uncommit

 6 Janos Gyerik 2013-04-20

 changes just to demonstrate shelving

The above revision(s) will be removed.

Uncommit these revisions? ([y]es, [n]o): yes

You can restore the old tip by running:

 bzr pull . -r revid:janos@axiom-20130420203136-bi9iglm2cevc8tfq

Bazaar shows the short log message of the revisions it is about to uncommit, and
prompts for confirmation. To undo the listed revisions, press Y on your keyboard;
otherwise, the operation will be aborted.

As a result, the branch tip will be moved backwards to point to the previous revision,
while the working tree will be unchanged. The revision pointed to by the branch
tip previously is not deleted; you can still access it by its revision ID and restore
if necessary by using the hint in the output of the uncommit command.

The changes that were a part of the uncommitted revision will now appear pending,
which you can confirm by using the status command:

$ bzr status

renamed:

 images/ => maps/

modified:

 guests.txt

 menu.txt

At this point, you will have various options, such as the following:

• Commit again but using a different log message, for example, to fix a typo
• Commit again but using only a subset of all changes, for example, to split

a large commit to smaller chunks of changes
• Revert everything and continue in a completely different direction

Chapter 8

[269]

You can uncommit more than one revision by specifying a revision parameter by
using -r or --revision. All the revisions between the current branch tip and the
specified revision will be uncommitted; for example, the command bzr uncommit
-r23 will leave the branch at revision 23.

To uncommit using Bazaar Explorer, click on the large Work button in the toolbar
and select Uncommit Revisions..., or navigate to Bazaar | Work and select the
Uncommit Revisions... option.

Keep in mind that it is strongly discouraged to uncommit revisions in
branches that are shared with others, as your collaborators may have
already started using the branch before the tip has changed, leading to
confusion.

Shelving changes
The shelving changes feature lets you to temporarily set aside changes in the
working tree. You can select specific changes to be put "on a shelf" from where
you can restore them later. Once on the shelf, the changes are reverted in the
working tree to move them out of the way.

This is useful when in the following scenarios:

• You want to keep your commits clean—some unrelated changes got
mingled into your current main focus work and you want to set them
aside to commit later.

• You want to merge or pull from another branch but some pending
changes that you don't want to commit yet are blocking your way

• You want to revert some but not all of the changes within the files

An important thing to keep in mind is that the shelf is not part of the repository,
but is stored inside the working tree. As a consequence, it is not propagated through
branch operations, and if the working tree is deleted, the shelf will also be gone.

Using shelves is significantly easier in Bazaar Explorer as compared
to the command line. However, at the time of this writing, this feature
of Bazaar Explorer does not work reliably in all systems, thus we
will focus on the command-line interface. Throughout the examples,
replace the bzr shelve and bzr unshelve commands with bzr
qshelve and bzr qunshelve, respectively, whenever possible.

Using the Advanced Features of Bazaar

[270]

Putting changes "on a shelf"
The command to set aside changes "on a shelf" is bzr shelve. Similar to other
Bazaar commands, you can specify a set of files or directories, or run the command
without any parameters to shelve all the changes.

By default, the command runs interactively—it presents each hunk of change one
by one and prompts to decide whether to put the change on the shelf or not.

Hunk is a term commonly used when working with traditional UNIX-
style patches. It contains a changed line in unified diff format, with a
few lines of context before and after the changed line. If the changed
lines are so close to each other that their hunk would overlap, then the
two changes will appear in a single hunk.

To demonstrate how shelving works, let's grab a sample branch and revert the
last commit to have an interesting set of changes:

$ bzr branch lp:~bzrbook/bzrbook-examples/shelving /tmp/shelving

Branched 6 revisions.

$ cd /tmp/shelving

$ bzr revert -rlast:2

 M guests.txt

R maps/ => images/

 M menu.txt

Let's shelve some of the changes in menu.txt only:

$ bzr shelve menu.txt

--- menu.txt 2013-04-20 20:31:36 +0000

+++ menu.txt 2013-04-20 20:34:36 +0000

@@ -1,7 +1,7 @@

 Menu

 ====

 Guacamole

-Corn chipz

+Corn chips

 Spicy tomato sauce

 Minestrone soup

Chapter 8

[271]

 Buffalo wings

Shelve? ([y]es, [N]o, [f]inish, [q]uit): yes

@@ -15,4 +15,4 @@

 Beef burrito

 Mixed burrito

 Onion soup

-Tacoz

+Tacos

Shelve? ([y]es, [N]o, [f]inish, [q]uit): no

Selected changes:

 M menu.txt

Shelve 1 change(s)? ([y]es, [N]o, [f]inish, [q]uit): yes

Changes shelved with id "1".

For each hunk in the file, Bazaar asks to shelve or not and gives you a set of choices:

• [y]es: To shelve this change, press Y
• [n]o: To not shelve this change, press N
• [f]inish: To shelve this change and the changes selected so far and all the

remaining changes, press F
• [q]uit: To not shelve anything and exit now, press Q

After reviewing all the changes, Bazaar offers a final choice; this time also indicating
the number of changes that have been selected for shelving, and a summary of the
changes in a similar way as in the output of a commit operation.

If we check the status now, Bazaar tells us that a shelf exists:

$ bzr status

renamed:

 maps/ => images/

modified:

 guests.txt

 menu.txt

1 shelf exists. See "bzr shelve --list" for details.

Using the Advanced Features of Bazaar

[272]

Notice that menu.txt still appears to be changed, which is normal because in bzr
shelve we said "yes" to the first change but "no" to the second one. We can confirm
this by using bzr diff:

$ bzr diff menu.txt=== modified file 'menu.txt'

--- menu.txt 2013-04-20 20:31:36 +0000

+++ menu.txt 2013-04-20 20:37:47 +0000

@@ -15,4 +15,4 @@

 Beef burrito

 Mixed burrito

 Onion soup

-Tacoz

+Tacos

The first change has been reverted in the file and added to the shelf. The second
change is still there in the file, since we said "no" earlier when Bazaar asked to
shelve it or not.

You can bypass the interactive mode and shelve all changes in the specified files by
using the --all flag. For example:

$ bzr shelve --all -m 'guests and menu changes' guests.txt menu.txt

Selected changes:

 M guests.txt

 M menu.txt

Changes shelved with id "2".

This time we have specified a message by using the -m option, which will be useful
later when viewing the list of shelves.

Shelving works not only for content changes but other kinds of changes too, such as
renames, and deletions. In cases like these, when it doesn't make sense to show a diff,
Bazaar will simply ask if the change should be shelved or not. For example:

$ bzr shelve

Shelve renaming "maps" => "images"? ([y]es, [N]o, [f]inish, [q]uit): no

No changes to shelve.

Chapter 8

[273]

Listing and viewing shelved changes
To see the list of shelves, use the following command:

bzr shelve --list,

For example:

$ bzr shelve --list

 2: guests and menu changes

 1: <no message>

This shows the ID and the message string of each shelf. The ID is incremented
by one each time a new shelf is created. Using a meaningful message string when
creating a shelf is important in order to give a hint about the content of the shelf
when viewing the list of shelves later.

To see a quick summary of changes on a shelf, use bzr unshelve --dry-run:

$ bzr unshelve --dry-run

Using changes with id "2".

Message: guests and menu changes

 M guests.txt

 M menu.txt

To see the content of a shelf, use bzr unshelve --preview:

$ bzr unshelve --preview 1

Using changes with id "1".

 M menu.txt

=== modified file 'menu.txt'

--- a/menu.txt 2013-04-20 20:47:31 +0000

+++ b/menu.txt 2013-04-20 20:53:06 +0000

@@ -1,7 +1,7 @@

 Menu

 ====

 Guacamole

-Corn chipz

+Corn chips

 Spicy tomato sauce

 Minestrone soup Buffalo wings

The bzr unshelve command works with the last shelf by default. To use a different
shelf, specify the ID of the shelf, as we did in this previous example.

Using the Advanced Features of Bazaar

[274]

Restoring shelved changes
To restore changes from a shelf, use the bzr unshelve command. For example:

$ bzr shelve --all

Selected changes:

R images/ => maps/

Changes shelved with id "3".

$ bzr unshelve

Using changes with id "3".

R maps/ => images/

All changes applied successfully.

Deleted changes with id "3".

This command uses the most recent shelf by default, in order to ensure that the
changes are restored in the correct order. If you want to restore another shelf first,
you have to specify the ID of the shelf explicitly. For example:

Using changes with id "1".

 M menu.txt

All changes applied successfully.

Deleted changes with id "1".

Be careful when restoring shelves in a different order from the default, as this can
work well only when the changes on the different shelves are unrelated to each
other, otherwise there may be conflicts as a result.

By default, the restored shelf is automatically removed. To restore a shelf without
removing it, use the --keep flag:

$ bzr shelve --list

 2: guests and menu changes$ bzr unshelve --keep

Using changes with id "2".

Message: guests and menu changes

 M guests.txt

 M menu.txt

All changes applied successfully.

To remove a shelf without applying the changes in it, use the --delete-only flag:

$ bzr unshelve --delete-only

Deleted changes with id "2".

Chapter 8

[275]

Using shelves to revert partial changes
in a file
The revert command doesn't have an option to revert changes in a file partially,
but we can achieve this effect by using shelving and the --destroy flag.

When using the bzr shelve command with the --destroy flag, the selected
changes will be cleaned up in the working tree instead of saved on a shelf, thus
effectively reverting them.

Another option to achieve the same effect is to shelve the changes you want to
delete, and then either never unshelve them, or delete the shelf by using bzr
unshelve --delete-only.

Using shelves to commit partial changes
in a file
The commit command doesn't have an option to commit changes in a file partially,
but you can achieve this effect by using shelving operations.

The way to commit partial changes is to first shelve unwanted changes. Run bzr
shelve, possibly specifying the set of files to consider, and say "yes" to everything
except the changes you want to include in the commit. As a result, all the unwanted
changes will be out of the way on a shelf, and you can go ahead with your commit.

After the commit, you can either unshelve the changes you shelved earlier, to
continue working with them and perhaps include in the next commit, or discard
them by using bzr unshelve --destroy.

Using lightweight checkouts
A lightweight checkout is a special configuration with only a working tree and
a branch, but without a repository. In this configuration, the branch is bound to
another branch, named the master branch, in the same way as in a regular checkout.
Since there is no local repository, all the operations that access the revision data must
go through the master branch. In practice, this has the following consequences:

• The checkout operation is much faster as compared to a regular checkout
or branching, because the full revision history is not copied over from the
master branch.

Using the Advanced Features of Bazaar

[276]

• Operations using the revision history must access the master branch. If
the master branch is remote, then all such operations must go across the
network.

• Since there is no local repository, it is not possible to commit locally. All
commits are applied to the master branch.

A lightweight checkout can be a suitable option if the branch history is huge, but
you have very fast and reliable remote access. Another possible use occurs when
you want to get just the working tree of a project quickly and you don't intend to
use operations that involve the revision history.

Throughout the examples using lightweight checkouts, we will use a shared
repository at /sandbox/light and the branch /sandbox/light/sample created
with the following commands:

$ bzr init-repository /sandbox/light

Shared repository with trees (format: 2a)

Location:

 shared repository: /sandbox/light

$ cd /sandbox/light

$ bzr branch lp:~bzrbook/bzrbook-examples/hello-start hello

Branched 6 revisions.

Creating a lightweight checkout
To create a lightweight checkout, use the bzr checkout command with the
--lightweight flag:

$ bzr checkout --lightweight hello light123

$ bzr info light123

Lightweight checkout (format: 2a)

Location:

 light checkout root: light123

 checkout of branch: hello

 shared repository: .

Related branches:

 parent branch: bzr+ssh://bazaar.launchpad.net/~bzrbook/bzrbook-
examples/hello-start/

As usual, the first line of the output of bzr info tells the type of the branch; in this
case, Lightweight checkout.

Chapter 8

[277]

You can shorten the rather long --lightweight flag as
simply --light.

To create a lightweight checkout using Bazaar Explorer, click on the large Start
button in the toolbar and select Checkout..., or navigate to Bazaar | Start and
select the Checkout... option.

Converting a checkout to a lightweight
checkout
You can convert a regular checkout to a lightweight checkout by using the bzr
reconfigure command:

$ bzr checkout hello/ checkout123

$ bzr reconfigure --lightweight-checkout checkout123/

$ bzr info checkout123/

Lightweight checkout (format: 2a)

Location:

 light checkout root: checkout123

 checkout of branch: hello

 shared repository: .

You can shorten the rather long --lightweight-checkout
flag as simply --lightweight or even --light.

Since a lightweight checkout doesn't have a repository, the reconfiguration implies
that the local repository of the original checkout must be destroyed. If this cannot
be done safely, for example, because there are local commits that have not been
applied to the master branch yet, then the reconfiguration will fail, and Bazaar
will warn you that you must synchronize first. For example:

$ bzr checkout -rlast:2 hello/ hello-2

$ cd hello-2/

$ bzr reconfigure --light

bzr: ERROR: '/sandbox/light/hello-2/' is not in sync with /sandbox/light/
hello/. See bzr help sync-for-reconfigure.

As the output says, see bzr help sync-for-reconfigure for more details.

Using the Advanced Features of Bazaar

[278]

Converting a branch to a lightweight checkout
When converting a branch or a tree configuration to a lightweight checkout, you may
need to specify the location of the master branch to bind to by using the --bind-to
option. For example:

$ bzr branch hello branch123

Branched 6 revisions.

$ cd branch123/

$ bzr reconfigure --light --bind-to ../hello

Without the --bind-to option, Bazaar will try to re-use a previously saved bound
location, push location or parent location, in that order.

Converting from a lightweight checkout
You can convert a lightweight checkout to other configuration types by using
the reconfigure command with the appropriate flag:

• --checkout: This converts to a bound branch with a working tree
• --tree: This converts to an unbound branch with a working tree
• --branch: This converts to an unbound branch without a working tree

Since all the preceding configuration types use a local repository, the reconfigure
operation will create a new local repository and copy all the revisions from
the master branch. Keep in mind that this may take some time, especially
if the master branch is remote.

Re-using a working tree
Very often, it can be useful to re-use a working tree to work on multiple branches.

• If the working tree is very large, it can be a waste of disk space and difficult
to have multiple working trees at the same time

• If the project requires complicated configuration per working tree, then it can
be troublesome and inefficient to repeat the setup procedure for every branch

Re-using a working tree is a matter of organizing your local branches in
a certain way:

• Configure a shared repository to not create working trees by default
• Create only a single branch with a working tree, in other words a checkout,

keeping all other branches tree-less

Chapter 8

[279]

• Switch the associated branch of the checkout by using bzr bind followed by
bzr update and bzr revert, or by using bzr switch

• Use a lightweight checkout for the working tree for extra safety

Setting up the example
Let's create a shared repository with no working trees by default:

$ bzr init-repo /sandbox/reusing --no-trees

Shared repository (format: 2a)

Location:

 shared repository: /sandbox/reusing

Let's create a few sample branches:

$ cd /sandbox/reusing/

$ bzr branch lp:~bzrbook/bzrbook-examples/common-two-features trunk

Branched 3 revisions.

$ bzr branch -r1.2.3 trunk/ feature1

Branched 4 revisions.

$ bzr branch -r1.1.2 trunk/ bug1

Branched 3 revisions.

Since the shared repository is configured to create no trees, we can confirm that
all these branches have no working trees:

$ ls *

bug1:

feature1:

trunk:

Finally, we need to create a checkout with a working tree that we will use to
switch between branches and perform version control operations:

$ bzr checkout trunk/ work

As we can confirm, a checkout always has a working tree:

$ ls work/

hello.py hello.rb hello.sh screenshots todo.txt

Using the Advanced Features of Bazaar

[280]

Preparing to switch branches
There is one very important precaution to take before switching branches—make
sure you don't have uncommitted changes in the working tree. As the whole point
of switching branches is overwriting the working tree, you should make sure to
commit all the important changes before going ahead with the switch. Although the
methods explained here do not destroy the uncommitted changes by default, they
can get mingled with other changes in the process, making them extremely difficult
to recover. A wise thing to do is to commit all the pending changes before switching
branches.

Switching to another branch using core
commands
The working tree we created is currently bound to the trunk:

$ cd work

$ bzr info

Repository checkout (format: 2a)

Location:

 repository checkout root: .

 checkout of branch: /sandbox/reusing/trunk

 shared repository: /sandbox/reusing

We can switch to another branch by using bzr bind followed by bzr update,
followed by bzr revert:

$ bzr bind ../bug1/

$ bzr info

Repository checkout (format: 2a)

Location:

 repository checkout root: .

 checkout of branch: /sandbox/reusing/bug1

 shared repository: /sandbox/reusing

There is no output after bzr bind, because the command doesn't change the
working tree. When binding to a new location, the working tree must be updated
by using bzr update to synchronize it with the repository.

$ bzr update

All changes applied successfully.

Chapter 8

[281]

Updated to revision 3 of branch /sandbox/reusing/bug1

Your local commits will now show as pending merges with 'bzr status', and
can be committed with 'bzr commit'.

The way update works is, if the original branch contains revisions that are not
in the new target branch, then those revisions will be treated as local commits.

If there had been "real" local commits before this step, they would still be local
commits, naturally following the regular commits that have been converted to local
commits. However, notice the danger here—these real local commits exist only in
this branch; by definition, they have not been committed in other branches. The next
step in completing the switch is bzr revert, which will erase these local commits.
In a realistic situation, you should not have any local commits when switching
between branches, as that would risk losing work.

In our example, we are not working on local commits; we simply want to switch our
working tree to another branch. So, at this point, we want to move these changes out
of the way with bzr revert:

$ bzr revert

- hello.rb

 M todo.txt

$ bzr status

unknown:

 hello.rb

Although there is an unknown file left behind, because it existed in the previous
branch, this is not a problem. In any case, we should move it out of the way,
otherwise it might lead to conflicts when we switch to another branch later.
We can remove the file manually, or by using the bzr clean-tree command:

$ bzr clean-tree

hello.rb

Are you sure you wish to delete these? ([y]es, [n]o): yes

deleting paths:

 hello.rb

As usual, Bazaar does not make irreversible changes without asking for
confirmation. To skip the confirmation, you can use the --force flag.

With this last move, we have successfully switched the working tree to another branch.

Using the Advanced Features of Bazaar

[282]

Switching to another branch by using switch
The switch command is not a core feature, but is included in the loom plugin.
It makes switching between branches much easier:

$ bzr info

Repository checkout (format: 2a)

Location:

 repository checkout root: .

 checkout of branch: /sandbox/reusing/trunk

 shared repository: /sandbox/reusing

$ bzr switch ../feature1/

Updated to revision 4.

Switched to branch: /sandbox/reusing/feature1/

$ bzr info

Repository checkout (format: 2a)

Location:

 repository checkout root: .

 checkout of branch: /sandbox/reusing/feature1

 shared repository: /sandbox/reusing

The switch command hides most of the details involved in the process of
switching branches.

An interesting difference from using the bind-update-revert method is that
bzr switch will refuse to run if there are local commits in the branch. This is a
good thing, because it is potentially unsafe to switch branches when there are local
commits, as those commits would get lost. To switch anyway throwing away local
commits, use the --force flag.

A very useful feature of the switch command is to create a new branch from the
current one and switch to it immediately by using the -b or --create-branch option.
For example:

$ bzr switch -b ../feature2

Tree is up to date at revision 3.

Switched to branch: /sandbox/reusing/feature2/

Chapter 8

[283]

Using a lightweight checkout for switching
branches
When using a shared repository, it may seem pointless at first to use a lightweight
checkout locally—branches are already very cheap, as the revisions are not stored
directly inside the branches but in the shared repository. Whether a checkout is
lightweight or not, it makes no difference in terms of disk space, and since we are
performing branch operations locally, there is also no network latency.

However, there is still a benefit of using a lightweight checkout instead of a regular
one—by definition there cannot be local commits. Considering that you may
inadvertently delete important local commits, there exists some amount of risk
when using regular checkouts. By using lightweight checkouts, you can effectively
eliminate this risk when switching branches.

You can convert your working tree by using bzr reconfigure. For example:

$ bzr reconfigure --lightweight-checkout

$ bzr info

Lightweight checkout (format: 2a)

Location:

 light checkout root: .

 checkout of branch: /sandbox/reusing/feature2

 shared repository: /sandbox/reusing

Using stacked branches
The concept of stacked branches is a space-saving technique, which allows multiple
branches to re-use a common repository to access common revisions. A branch can be
stacked on another branch, which is called the stacked-on branch. The stacked branch
will store only the new revisions that are added to it directly, and it will re-use the
repository of the stacked-on branch, whenever it needs to access the older revisions.

This setup removes the limitation of shared repositories that all the branches must be
created within the same directory tree. A branch can be stacked on any other branch
to re-use its repository, as long as the branch and the repository are at a location that
can be accessed in read-only mode.

Using the Advanced Features of Bazaar

[284]

In practice, stacked branches make it possible to designate a read-only master
branch, and let team members create their own branches at any other location in
an efficient way, without unnecessary duplication of common revisions. Creating
new branches stacked on the master branch is fast and efficient, because the revision
history does not need to be copied.

Stacked branches are most useful in a server environment, where multiple users
need an efficient way to share revision data, without the limitation of creating all
branches within the same shared repository. Such an advanced setup is beyond
the scope of this book; we only explain the basics of the concept because it is used
on Launchpad, and occasionally you may see it mentioned in the output of certain
commands. For example:

$ bzr push lp:~bzrbook/bzrbook-examples/dinner-party-new

Using default stacking branch /+branch-id/707963 at chroot-
64745232:///~bzrbook/bzrbook-examples/

Created new stacked branch referring to /+branch-id/707963.

When working with multiple branches of a project in your local environment, it
is easiest to use a shared repository. However, if you ever need to create branches
outside the shared repository, then stacked branches can be useful to speed up
branch operations and avoid wasting disk space.

For more information on using stacked branches, refer to the following URL:

http://doc.bazaar.canonical.com/development/en/user-guide/stacked.html

Signing revisions using GnuPG
By using cryptographic signing of commits, it is possible to verify the true identity of
the committer. Revisions can be signed automatically at the time they are committed,
or later manually. Signed commits are verified automatically when viewing the logs,
or can be verified manually.

There are a few things to prepare in order to use signatures with Bazaar:

• Your digital signature key for signing
• The GnuPG tool to work with signatures
• The gpgme Python module for working with GnuPG
• The Bazaar configuration to use signatures with Bazaar commands

Chapter 8

[285]

Getting a digital signature key for signing is beyond the scope of this book. Please
refer to the following article for more information:

https://help.launchpad.net/YourAccount/ImportingYourPGPKey

GnuPG stands for GNU Privacy Guard. It is a free software
alternative to the PGP suite of cryptographic software.
For more information, see the project's homepage at
http://www.gnupg.org/.

Configuring the signing key used by Bazaar
By default, Bazaar uses the signing key that matches your identity as configured by
the bzr whoami command or the email configuration in your ~/.bazaar/bazaar.
conf file. To use a different signing key, add a configuration entry as follows:

gpg_signing_key = 12345678

You can add this configuration either in ~/.bazaar/branch.conf to be effective
globally in all your projects, or in the .bzr/branch/branch.conf file of a branch
to limit its use within that branch.

The value of the signing key comes from the pub line in the output of gpg --list-
keys. For example:

$ gpg --list-keys

/home/janos/.gnupg/pubring.gpg

pub 2048R/12345678 2012-06-24

uid Janos Gyerik <janos@example.com>

sub 2048R/23456789 2012-06-24

Setting up a sample repository
Let's create a new shared repository to test the signing revisions:

$ bzr init-repo /sandbox/signing

Shared repository with trees (format: 2a)

Location:

 shared repository: /sandbox/signing

$ cd /sandbox/signing

Using the Advanced Features of Bazaar

[286]

Next, let's grab a sample branch with several committers:

$ bzr branch lp:~bzrbook/bzrbook-examples/unsigned --standalone --no-tree

Branched 3 revisions.

Verifying signatures
Verifying signatures will help in our examples to understand first how to verify
signatures by using the bzr verify-signatures command:

$ bzr verify-signatures unsigned/

0 commits with valid signatures

0 commits with key now expired

0 commits with unknown keys

0 commits not valid

3 commits not signed

Since we didn't specify the revisions, this verified all the commits in the branch.
You can specify revisions by using the -r flag as usual, for example, to verify
only the latest revision:

$ bzr verify-signatures unsigned/ -rlast:1

0 commits with valid signatures

0 commits with key now expired

0 commits with unknown keys

0 commits not valid

1 commit not signed

As the output suggests, in addition to checking whether a commit is signed or not
signed, the command also checks for expiration, validity, and whether the key has
been imported into your key ring or not.

Signing existing revisions
First, let's create a test branch to work on:

$ bzr branch unsigned/ signed

Branched 3 revisions.

You can sign the existing revisions by using the bzr sign-my-commits command:

$ bzr sign-my-commits signed/

Signed 0 revisions

Chapter 8

[287]

As the name of the command suggests, by default, it signs only the revisions
committed by you; that is, revisions that match the value of your email
configuration or the output of the bzr whoami command. To sign the revisions
by other committers, you must specify the name of the committer as it appears
in bzr log. For example:

$ bzr log signed/ | grep committer

committer: Anna <anna@example.com>

committer: mike@example.com

committer: jack@example.com

$ bzr sign-my-commits signed/ 'Anna <anna@example.com>'

anna@example.com-20121106205046-mlbm5jq4abxkyqr7

You need a passphrase to unlock the secret key for

user: "Janos Gyerik <janos@example.com>"

2048-bit RSA key, ID 12345678, created 2012-06-24

Signed 1 revisions

The preceding steps sign all the commits whose committer information matches
precisely the one given on the command line. In this step, you must enter the
passphrase of your signing key, unless you have already stored in memory by
using gpg-agent or a similar key manager. You can confirm that the commit is
now signed correctly by re-running the bzr verify-signatures command:

$ bzr verify-signatures signed/ -rlast:1

All commits signed with verifiable keys

To see more details about the signature, take a look at the revision by using
bzr log, and specify the --signatures flag:

$ bzr log signed/ --signatures -rlast:1

--

revno: 3

committer: Anna <anna@example.com>

branch nick: unsigned

timestamp: Tue 2012-11-06 21:50:46 +0100

signature: valid signature from Janos Gyerik <janos@example.com>

message:

 added shell implementation

Using the Advanced Features of Bazaar

[288]

Bazaar Explorer also shows the signature details when viewing the revision logs.

bzr sign-my-commits has some limitations:

• It cannot sign commits of specific revisions; only of specific committers
• It cannot sign commits that already have a signature

Signing a range of commits
There is a hidden command bzr re-sign, which can be used to sign a range
of commits or commits that already have a signature:

$ bzr re-sign -rlast:2..last:1 -d signed/

You need a passphrase to unlock the secret key for

user: "Janos Gyerik <janos@example.com>"

2048-bit RSA key, ID 12345678, created 2012-06-24

You need a passphrase to unlock the secret key for

user: "Janos Gyerik <janos@example.com>"

2048-bit RSA key, ID 12345678, created 2012-06-24

Although this works, you must enter your passphrase for each revision to sign.

Signing new commits automatically
In order to sign all your new commits automatically, you need to add the following
configuration:

create_signatures = always

You can either add this configuration in the [DEFAULT] section of the global
configuration file ~/.bazaar/bazaar.conf, or in a branch configuration file .bzr/
branch/branch.conf. An easy way to set or reset this configuration is by using the
bzr config command.

Use the following command to set and reset the configuration in the current branch:

$ bzr config create_signatures=always

$ bzr config create_signatures --remove

Chapter 8

[289]

Use the following command to set and reset the configuration globally for all
your commits:

$ bzr config create_signatures=always --scope=bazaar

$ bzr config create_signatures --remove --scope=bazaar

The only currently supported value for the configuration is always; other possible
values may be added in the future. For more details, see the create_signatures
section in bzr help configuration.

When this configuration is enabled, commit operations can only succeed after the
revision is signed. If the signing fails for some reason, for example, if the entered
passphrase is incorrect, then the commit itself will fail too:

$ bzr init temp

Created a repository branch (format: 2a)

Using shared repository: /sandbox/signing/

$ cd temp/

$ date > date.txt

$ bzr add

adding date.txt

$ bzr commit -m 'just a test'

Committing to: /sandbox/signing/temp/

added date.txt

You need a passphrase to unlock the secret key for

user: "Janos Gyerik <janos@example.com>"

2048-bit RSA key, ID 12345678, created 2012-06-24

gpg: gpg-agent is not available in this session

Enter passphrase:

gpg: Interrupt caught ... exiting

bzr: interrupted

$ bzr status

added:

 date.txt

Using the Advanced Features of Bazaar

[290]

Configuring a hook to send an e-mail on
commit
Hooks provide a great way to customize the behavior of Bazaar. They can be
programmed to perform some action before or after certain Bazaar operations.

We will cover the details of hooks in Chapter 10, Programming Bazaar. Here, we only
explain how to use a very commonly used hook to send an e-mail report on every
commit. Such e-mail reports are very practical in a team, to let all the team members
know of the latest changes, and to facilitate the good practice of peer reviews within
the team.

In Bazaar, hooks are implemented as plugins. There is a list of defined Bazaar
operations named hook points that we can hook into and perform some action. To
send e-mails with the summary of changes, we will use the email plugin, triggered
by the post_commit hook point.

Setting up the example
For configuring and testing the e-mail sending, we just need a very simple repository
with a few files for making simple changes and dummy commits. You can create a
new repository with bzr init and make some random commits in it, or grab the
following sample repository:

$ bzr branch lp:~bzrbook/bzrbook-examples/common-two-features /tmp/
emailing

Branched 3 revisions.

Installing the email plugin
Depending upon your operating system and mode of installation, the email plugin
may already be installed. We can confirm this by looking at the list of plugins:

$ bzr plugins | grep email

email

 Sending emails for commits and branch changes.

If the plugin is not installed, try to get it by using the package manager of
your operating system. Alternatively, it is quite easy to install from source:

$ bzr branch lp:bzr-email

$ cd bzr-email

$ python setup.py install --user

Chapter 8

[291]

Enabling commit emails
The email plugin is pre-configured to respond to two hook points:

• post_commit: This hook point is triggered on every commit
• post_change_branch_tip: This hook point is triggered by push and

pull operations

By default, the email plugin doesn't do anything. To enable sending e-mail messages,
you must set the configuration post_commit_to to an e-mail address. Although you
can add this to your global configuration file ~/.bazaar/bazaar.conf, it probably
makes more sense to add it in each branch for which you want to receive e-mail
notifications. Let's try this in our sample branch:

$ bzr config post_commit_to=janos@example.com

Testing the configuration
Once post_commit_to is set to an e-mail address, all commits will trigger an e-mail
report. Let's make some changes and commit:

$ bzr rm hello.py

deleted hello.py

$ bzr commit -m 'deleted a file'

Committing to: /tmp/emailing/

deleted hello.py

Committed revision 4.

If you check your e-mails, you should receive an e-mail with the subject as Rev 4:
deleted a file in file:///sandbox/emailing/. That is, the subject includes
the revision number, the message of the commit, and the URL of the repository.
The message body includes more details, such as the summary of changes, and
the diffs of content changes in plaintext files.

At file:///sandbox/emailing/

--

revno: 4

revision-id: janos@example.com-20121108063451-e3ch135atoehp6x9

parent: janos@example.com-20120805100525-n8pdfboqgjji3kui

committer: Janos Gyerik <janos@example.com>

branch nick: emailing

Using the Advanced Features of Bazaar

[292]

timestamp: Wed 2012-11-07 22:34:51 -0800

message:

 deleted a file

=== removed file 'hello.py'

--- a/hello.py 2012-08-05 09:59:39 +0000

+++ b/hello.py 1970-01-01 00:00:00 +0000

@@ -1,3 +0,0 @@

-#!/usr/bin/env python

-

-print 'hello world!'

Customizing the plugin
The email plugin can be customized by setting more branch configuration options.

The branch URL used in the subject and message body of the e-mail is the public_
branch URL or the path of the branch in the file:/// format. If the branch has a
public URL, you should make sure to configure it. For example:

$ bzr config public_branch=https://repos.example.com/project1

By default, the plugin sends e-mails only on commits, not on push and pull operations.
To enable e-mails on push and pull too, set the post_commit_push_pull option:

$ bzr config post_commit_push_pull=1

Finally, you may also want to customize the sender address. By default,
it is the same as defined with bzr whoami, but you can override it with the
post_commit_sender option:

$ bzr config post_commit_sender='Janos <janos@example.com>'

If you need even more customization, then you might want to write your own hook.
See Chapter 10, Programming Bazaar, for more details.

Chapter 8

[293]

Summary
In this chapter, we have covered a few interesting advanced features of Bazaar.
Although these features are not essential in most cases and might not apply for
everyone, they can help you work more efficiently and enrich your workflows:

• Shelving changes helps you keep your commits clean
• Aliases help you do things faster
• Lightweight checkouts are a fast way to get the tip of a repository

without downloading the entire history
• Re-using a working tree is useful in most projects, especially in projects

with lots of local environment-specific configuration files
• Stacked branches are a space-saving solution for advanced repository

layouts in a server environment
• Signing commits using digital signatures makes it possible to verify

the identity of committers
• Committing e-mails is useful to track the progress of a project and

to facilitate code reviews

The next chapter will explain how Bazaar can work together with other
version control systems such as Subversion and Git.

Using Bazaar Together
with Other VCS

Bazaar is very flexible and can work well with other version control systems almost
completely transparently. In this way, even if your team is using a different VCS, you
may still have the option to use Bazaar and take advantage of its unique features.

In this chapter, we will explain how to use Bazaar to interact with other version
control systems, along with important practical tips and limitations that are good to
be aware of. We will cover, in detail, how to work with Subversion and Git directly.
As an alternative solution, we will explain fast-import, an indirect method that can
work with any VCS, at least in theory.

The following topics will be covered in this chapter:

• Working with other VCS in general
• Using Bazaar with Subversion
• Using Bazaar with Git
• Migrating between VCS using fast-import

Working with other VCS in general
Bazaar can interact with other version control systems through plugins. An
appropriate plugin can intercept version control operations between Bazaar and
the foreign system, and perform the necessary translation between the two protocols.
In this way, in theory, Bazaar can work with any other VCS.

Using Bazaar Together with Other VCS

[296]

Throughout this chapter, we will refer to other version control systems as foreign
repositories, and branches or branch-like concepts in such systems as foreign
branches. In this section, we will cover the important general subjects when working
with foreign repositories and branches, such as how to install the required plugins,
and common good practices, limitations, and known issues.

Working with foreign branches
In order to interact with foreign branches, the plugin must intercept all the
operations between Bazaar and the foreign branch, and perform the necessary
translation between the different protocols. This translation is an overhead, and
inevitably results in some slowness, especially in operations that potentially fetch
large number of revisions, such as branch, checkout, push, pull, and merge.

A very important key point to understand is that when creating a local branch by
using bzr branch or bzr checkout from a foreign branch, the new local branch
will be a native Bazaar branch. You can use the branch in your local workflows in
the same way as any of your other local native Bazaar branches; all your operations
will be native Bazaar operations.

Another key point is that in order to ensure integrity in interactions with multiple
foreign branches, Bazaar identifies unique revisions of the foreign repository even
across multiple branches, and it preserves all the necessary metadata to avoid loss
of information.

Installing plugins
Depending upon your operating system, the plugins required to work with
foreign branches may be installed by default, or you may have to install them
as separate packages.

The relevant plugins used in this chapter are as follows:

• bzr-git: This provides support to work with Git branches
• bzr-svn: This provides support to work with Subversion branches
• bzr-fastimport: This provides support to import and export

VCS-agnostic version control data

Chapter 9

[297]

You can confirm whether these plugins are already installed by using the bzr
plugins command:

$ bzr plugins

fastimport 0.14.0dev

 FastImport Plugin

git 0.6.7

 A GIT branch and repository format implementation for bzr.

svn 1.2.1

 Support for Subversion branches

For basic information about each plugin, you can use the bzr help command
by specifying the name of the plugin. For example, bzr help svn.

Installing plugins in Windows or Mac OS X
In Windows and Mac OS X, the installer includes the plugins to work with
Subversion and Git by default. If you deselected them during installation, then you
can install them later by running the installer again and selecting the plugins you
need. For example in Mac OS X:

Using Bazaar Together with Other VCS

[298]

Installing plugins in Linux
In Linux, all Bazaar plugins are in separate packages; you can install them by
using the software management tool of your distribution. The package names
of the plugins are typically prefixed with bzr-; for example, bzr-svn, bzr-git,
and bzr-fastimport.

Installing plugins using Pip
Installing plugins using Pip, the Python package manager tool, can be a good option
if you don't have administrator access or if you prefer to isolate the plugins in a
virtualenv environment. The package names of Bazaar plugins are typically prefixed
with bzr-; for example, bzr-svn, bzr-git, and bzr-fastimport. Install the plugins
you need by using pip install. For example:

$ pip install bzr-svn

Installing additional requirements
Some plugins may have additional requirements; for example, bzr-svn requires
the subvertpy Python package, and bzr-fastimport requires fastimport. These
requirements are mentioned in the relevant plugin-specific sections. To install these
requirements, follow the same steps as when installing the plugins themselves.

Understanding the protocol overhead
Keep in mind that when working with foreign branches, Bazaar must translate
between the remote protocol and its own native format. For this reason, all
the operations involving foreign branches are slower as compared to the same
operations with native Bazaar branches.

Bazaar is a distributed VCS, therefore when branching from a remote branch, it
downloads the full revision history, even if the remote branch is not a distributed
VCS. Considering that the revision information must be translated to the native
Bazaar format, this can take a very long time.

Chapter 9

[299]

Using shared repositories
When working with multiple remote branches, using a shared repository helps
reducing the overhead of network transfers, as the common revisions in the
remote branches only need to be downloaded once.

Similarly, in the case of fetching foreign branches, using a shared repository helps
reducing the overhead of translation between Bazaar and the foreign protocol, as the
common revisions in the foreign branches only need to be translated into Bazaar's
native format once. Thus, downloading a second branch from the same foreign
repository should be significantly faster than the first.

Limitations
Although a plugin can do a great job at translating the core version control
operations, some features may not be possible to implement perfectly due to
fundamental architectural differences between Bazaar and the foreign system.
This is an inevitable limitation; you should always keep this in mind when
interacting with another VCS through Bazaar.

Before you begin to use Bazaar with a foreign repository, make sure to read the
Limitations section of the plugin documentation carefully, in order to understand
the key differences. It also helps to have a good working knowledge of the given
foreign repository.

Issues and crashes
Working with foreign branches is very difficult, and unfortunately sometimes even
the most basic operations, such as the initial branching or checkout, may fail. In this
case, Bazaar dumps a stack trace, which you can use to report it as a bug, but, of
course, that's little consolation when you need to work on something immediately.

A possible last resort in such cases may be using fast-import to convert the version
control information of the foreign branch into Bazaar's native format. We cover
fast-import later in this chapter. However, this method is designed for migrating
repositories from one version control system to another, and thus is really not the
same thing as performing Bazaar operations on foreign branches.

Using Bazaar Together with Other VCS

[300]

Using Bazaar with Subversion
Bazaar works transparently with Subversion—the checkout, update, commit, branch,
pull, push, and merge commands, all work directly with Subversion repositories.
There are several advantages in working with Subversion through Bazaar:

• The benefit of being distributed is that branches carry the complete
revision history: Since Subversion is a centralized VCS; a checkout contains
only the latest revision, not the full history. Operations that involve the
history require access to the central repository, making these operations
slower, or even unusable when the server is down. If you check out from
Subversion by using Bazaar, you will have the full history locally.

• You can create local branches: In Subversion, all branches must be created
and stored on a central server. If you checkout using Bazaar, you can create
local branches and enjoy more freedom to experiment.

• Merging branches is easier: Bazaar is very good at merging branches, and
you also have the option to try different merging strategies.

• Backup, mirroring, migration: Since a checkout using Bazaar will have the
complete history, it is close to a backup of the original Subversion location.

Installing bzr-svn
The plugin to work with Subversion branches is named svn, typically in a package
named bzr-svn. Confirm whether or not it is already installed in your system by
using bzr plugins. If it is not in the list, see the Installing plugins section, and
follow the steps to install it.

In addition to bzr-svn, you also need to install subvertpy, a Python library to
interface with Subversion. Install it using your operating system's package manager
or pip. A simple way to verify that both bzr-svn and subvertpy are correctly
installed is by creating a dummy Subversion repository using Bazaar:

$ bzr init --subversion /tmp/empty-svn-repo

Initialising Subversion metadata cache in /Users/janos/.bazaar/svn-
cache/2f4f2ffe-08e1-45a5-847b-c4ce217833be.

Created a repository branch (format: subversion)

Using shared repository: /tmp/empty-svn-repo/

The --subversion flag is provided by the bzr-svn plugin. Normally, the bzr init
command does not have such options.

Chapter 9

[301]

Supported protocols and URL schemes
Bazaar supports all the standard Subversion URL formats, such as the following:

• http://server/path/to/branch

• https://server/path/to/branch

• svn://server/path/to/branch

• svn+ssh://user@server/path/to/branch

• file:///path/to/repo/branch

Although the generic URL formats, such as http://, https://, or file:///,
can be Bazaar or even other VCS, Bazaar correctly detects Subversion repositories.

Note that when using the svn+ssh:// protocol, the path to the Subversion
repository must be the full absolute path, even if the repository is in the home
directory of the user. And, unlike with bzr+ssh://, the /~/ notation to indicate
the user's home directory does not work; you must use the full path always.

Using the example Subversion repository
The best way to explore how Bazaar works with Subversion branches is by playing
with a local Subversion repository. If you are familiar with Subversion, you can
create a repository by using svnadmin, or you can download and unpack the
following sample repository:

https://launchpad.net/bzrbook-examples/trunk/examples/+download/svn-
repo.tar.gz

The svn-repo directory inside the ZIP file contains a small Subversion repository,
which will be accessible via file:/// URLs. For example, if you move the svn-repo
directory into /tmp, it will be accessible via file:///tmp/svn-repo. You can try
some other commands, such as bzr info or bzr log, on it:

$ bzr info file:///tmp/svn-repo

Repository branch (format: subversion)

Location:

 shared repository: /tmp/svn-repo

 repository branch: /tmp/svn-repo

$ bzr log file:///tmp/svn-repo/trunk --line -n0

4: gatekeeper 2012-12-02 [merge] merged from anna

Using Bazaar Together with Other VCS

[302]

 3.1.3: anna 2012-12-02 added r impl

 3.1.2: anna 2012-12-02 added python impl

 3.1.1: janos 2012-12-02 created branch for anna

3: janos 2012-11-26 merged from mike

2: janos 2012-11-26 added readme

1: janos 2012-11-26 created standard svn layout

The examples in this section will use this repository, assuming it at the path /
sandbox/svn-repo.

Understanding branches in Subversion
Before we begin to branch or check out from Subversion, it is good to be aware
of some important differences between how branches and tags work in Subversion.

A typical Subversion repository contains the following subdirectories at the
repository root:

• trunk: This is the master branch, where the main development happens
• branches: This is a container directory for branches
• tags: This is a container directory for tags

In Subversion, a branch is a lightweight copy of another directory at some specific
revision. Typically, it is created in the branches directory, and it behaves like a
directory. Tags are created in exactly the same way, that is, as lightweight copies
of specific directories at specific revisions.

Although internally Subversion stores branches and tags efficiently, when you
checkout the repository, the layout is expanded into the filesystem as regular
directories, which can take a lot of disk space. In order to avoid expanding a very
large directory tree with all the branches, make sure to use the right Subversion
URL in the checkout and branch operations.

Keep in mind that the preceding layout is a commonly used standard, not a hard
rule. It is up to the managers of the project how they organize branches and tags
inside their Subversion repository. Make sure to confirm the right URL before you
begin to checkout or branch.

Another important point to note is that although in Bazaar the smallest logical unit
that you can checkout is a branch, in Subversion it is a subdirectory.

Chapter 9

[303]

Branching or checkout from Subversion
You can branch or checkout from Subversion with the bzr branch and bzr
checkout commands, or by using Bazaar Explorer as usual. But first let's create
a shared repository:

$ bzr init-repo /sandbox/svn-examples

Shared repository with trees (format: 2a)

Location:

 shared repository: svn-examples

$ cd /sandbox/svn-examples/

It is always a good idea to use a shared repository when working with multiple
remote branches. This is especially true when working with foreign branches,
due to the added overhead of translation between Bazaar and the foreign protocol.

Next, let's checkout a few branches by using bzr checkout:

$ bzr checkout file:///sandbox/svn-repo/trunk

Initialising Subversion metadata cache in /Users/janos/.bazaar/svn-
cache/5260eff9-c761-4657-805e-432c3fbc2731.

$ bzr checkout file:///sandbox/svn-repo/branches/mike

Notice the message after the first checkout—Initializing Subversion metadata
cache. This is an optimization by Bazaar—the Subversion plugin builds a cache of
Subversion metadata in order to speed up operations when working with the same
Subversion repository again in the future. A new directory is created to store the
cache of each distinct Subversion repository you use, and the name of the directory
corresponds to the UUID of the Subversion repository, a universally unique ID
generated by Subversion when the repository was created.

Branching from Subversion works exactly in the same way as with Bazaar branches.
Regardless of the manner in which you fetch a Subversion branch, the end result
will be a native Bazaar branch.

Keep in mind that Bazaar branches store the complete revision history, and therefore
the first checkout or branch from a Subversion repository may take a long time
depending upon the size of the project and the number of commits.

Using Bazaar Together with Other VCS

[304]

Preserving Subversion metadata
When fetching a Subversion location, Bazaar preserves various metadata about
the revisions, such as the following:

• Basic revision information—committer, timestamp, and log message
• Original revision number in Subversion
• Versioned properties, such as svn:mergeinfo and svn:mime-type
• Revision IDs and file IDs

Preserving original revision numbers
Revision numbers in Subversion are not per-branch but per-repository. If you recall
that branches in Subversion behave much like directories, this makes sense.

Although both Bazaar and Subversion increments the revision number on each
commit, when fetching a subdirectory of a Subversion repository, Bazaar downloads
only the revisions that affected the specified path, which is only a subset of all the
revisions inside the entire Subversion repository. As a result, the revision numbers
in the Bazaar branch will not be the same as in the original Subversion repository.
We can confirm this by using bzr log:

$ bzr log -r3 trunk/
--

revno: 3

svn revno: 6 (on /trunk)

committer: janos

timestamp: Mon 2012-11-26 20:50:53 +0000

message:

 merged from mike

The Bazaar revision number is 3, but the Subversion revision number is 6,
because only three of the commits in Subversion affected /trunk.

You can reference the past revisions by their original Subversion revision number
by prefixing with svn:. For example:

$ bzr log -r svn:6 trunk/
--

revno: 3

svn revno: 6 (on /trunk)

committer: janos

timestamp: Mon 2012-11-26 20:50:53 +0000

message:

 merged from mike

Chapter 9

[305]

Preserving versioned properties
Versioned properties are a feature of Subversion that is not supported by Bazaar.
In Subversion, these are used for storing all kinds of metadata associated with files,
directories, and merging, such as mime-types, keywords, line-ending character, and
various other purposes, and all these metadata are versioned. Bazaar will preserve
versioned properties and write them back when pushing to a Subversion repository,
but in general, they will be ignored.

Preserving revision and file IDs
Most importantly, Bazaar preserves revision and file IDs, which we can see by
using the --show-ids flag of bzr log. For example:

$ bzr log -r3 trunk/ --show-ids

--

revno: 3

revision-id: svn-v4:5260eff9-c761-4657-805e-432c3fbc2731:trunk:6

parent: svn-v4:5260eff9-c761-4657-805e-432c3fbc2731:trunk:2

svn revno: 6 (on /trunk)

committer: janos

timestamp: Mon 2012-11-26 20:50:53 +0000

message:

 merged from mike

The revision ID is derived from the Subversion repository's UUID, the path inside
the Subversion repository, and the original Subversion revision number. In this way,
Bazaar can uniquely identify revisions that originated from a Subversion repository,
and it also keeps track of the parent-child relationships of the revisions.

The great benefit of this is that two independent Bazaar branches created from
the same Subversion location will be identical:

$ bzr branch file:///sandbox/svn-repo/trunk tmp

Branched 4 revisions.

$ bzr missing -d trunk/ tmp/

Branches are up to date.

This is especially important when merging branches, as it effectively prevents
from merging the same revisions twice.

Using Bazaar Together with Other VCS

[306]

Pulling or updating from Subversion
Updating a Bazaar branch from a Subversion parent branch works in the same way
as it does with native Bazaar branches. Let's test this by branching from an older
revision of a Subversion branch, and then pulling from it to bring the local branch
up-to-date:

$ bzr branch -rlast:2 file:///sandbox/svn-repo/trunk feature1

Branched 3 revisions.

Our local Bazaar branch is out of date, precisely one revision behind, so let's bring
it up-to-date by using bzr pull:

$ cd feature1

$ bzr pull

Using saved parent location: /sandbox/svn-repo/trunk/

+N hello.r

+N hello.tcl

All changes applied successfully.

Now on revision 4 (svn revno: 10).

Keep in mind that the pull command may rearrange the revisions in the local
branch in the same way as it works with native Bazaar branches.

Similarly, if we had used bzr checkout to get a Subversion branch, then we can
download new revisions from the Subversion server with bzr update, exactly as
if we were working with native Bazaar branches:

$ bzr checkout -rlast:2 file:///sandbox/svn-repo/trunk checkout1

$ cd checkout1/

$ bzr up

+N hello.r

+N hello.tcl

All changes applied successfully.

Updated to revision 4 of branch /sandbox/svn-repo/trunk

Chapter 9

[307]

Committing to Subversion
Committing in a branch bound to a Subversion repository works exactly in the same
way as with native Bazaar branches—changes are first committed at the remote
location, and only if that is successful, the changes are committed in the local Bazaar
branch. If the local branch is out of date, the commit will be rejected, and you will
have to update the local branch first by using bzr update.

When committing to a Subversion repository, Bazaar sets some metadata about the
revisions to re-use later when working with those revisions again, such as the author
information and other details. Bazaar stores these metadata as revision properties
named with a prefix bzr: to make it easy to filter them out if necessary. These
revision properties have no effect on Subversion operations, and are only visible in
the most detailed logs. If for some reason you want to prevent Bazaar from saving
such data, then you cannot use bzr commit; the only way is to unbind the branch,
commit your changes locally only, and use the bzr dpush command to push them to
Subversion. In this way, the extra bzr: properties won't be saved; the revisions will
be applied on the server as if they were native Subversion commits.

To see all the revision properties, including the ones set by Bazaar
operations, you can use the Subversion command svn log
--with-all-revprops --xml.

Pushing to Subversion
Pushing to a Subversion repository works in the same way as it does with native
Bazaar branches:

$ bzr branch file:///sandbox/svn-repo/trunk feature2

Branched 4 revisions.

$ cd feature2

$ bzr push file:///sandbox/svn-repo/branches/feature2

Created new branch at /branches/feature2.

Be careful when using bzr push, as it can reorder revisions to match the local
history layout at the remote repository location. This is especially important when
the Subversion repository is publicly available. To prevent such issues, Bazaar
will refuse to perform the push if that would reorder revisions.

As with committing, Bazaar saves additional metadata to Subversion when pushing
revisions. If for some reason you prefer to not save such metadata, then use bzr dpush
to push revisions instead of bzr push. If the pushed revisions do not contain a merge
from other Subversion branches, then the end result will be exactly the same.

Using Bazaar Together with Other VCS

[308]

Merging Subversion branches
Bazaar is very good at merging Subversion branches, thanks to a few notable
key factors:

• bzr-svn correctly tracks the relationships between Subversion revisions
across different branches

• Since bzr-svn converts Subversion branches to native Bazaar branches,
ultimately the merge operation is performed between Bazaar branches

• Bazaar is great at merging, thanks to proper tracking of rename operations,
and the many user-friendly and powerful features, such as bzr remerge

Let's try it out by merging /branches/jack into /trunk. We already fetched the
trunk with bzr checkout earlier; now, let's get /branches/jack and perform
the merge:

$ bzr branch file:///sandbox/svn-repo/branches/jack --no-tree

Branched 6 revisions.

$ cd trunk/

$ bzr merge ../jack/

+N hello.py

+N hello.rb

All changes applied successfully.

In this example, we fetched /branches/jack to a local Bazaar branch before merging
from it, but we could have used the remote branch URL directly. However, it is
always a good idea to fetch the branch first, as in this way you can re-use the
branch multiple times without redownloading it again from the source repository.

Also notice that we used the --no-tree flag to create the branch. In this way,
we can save disk space, as we don't need the working tree of a branch we just
want to merge from it.

Let's commit the merge:

$ bzr commit -m 'merged from jack' --author gatekeeper

Committing to: /sandbox/svn-repo/trunk

added hello.rb

added hello.tcl

Committed revision 5.

Chapter 9

[309]

Since we fetched trunk with bzr checkout, it is bound to the Subversion repository,
and as we can see in the Committed to line in the output, the revision is committed
to the Subversion repository itself. If our trunk directory had been an unbound
branch, then the merge would be committed only locally, and we could push it
to Subversion with bzr push :parent.

When committing the merge or pushing it later to Subversion, Bazaar sets the
svn:mergeinfo property used by Subversion to track merges. This is essential to
let Subversion understand correctly that the commit was in fact a merge, and appear
as if performed by using a native Subversion client. We can confirm this by using
the svn program, the command-line interface of Subversion:

$ svn pget svn:mergeinfo file:///sandbox/svn-repo/trunk

/branches/anna:7-9

/branches/mike:3-5

/branches/jack:11-13

Indeed, the property contains the information about the merge from /branches/
jack we performed earlier.

As mentioned in the previous sections, bzr push will write the additional
revision properties to the Subversion repository. Although this behavior can
be prevented by using bzr dpush instead, in that case Bazaar will also not write
svn:mergeinfo. In this situation, you would have to add svn:mergeinfo manually
later, by using a Subversion client.

Remember that with Bazaar, you can choose from different merge
algorithms, which sometimes yield better results with fewer conflicts.
The bzr remerge command is especially useful to try a different
algorithm on selected files, and the --reprocess flag may help
reducing the size of conflicted areas. See Chapter 3, Using Branches, on
branching and merging for a detailed explanation with examples.

Merging local branches into Subversion
Although you can merge local Bazaar branches into Subversion, there is a very
important difference between Bazaar and Subversion—in Bazaar, the merged
revisions are preserved and propagated to the remote location when committing
or pushing the merge, but in Subversion, this is not the case.

Using Bazaar Together with Other VCS

[310]

When merging a local Bazaar branch that does not exist in the Subversion repository,
the merge will be just a single commit in Subversion; the unique revisions of the
branch will not be copied. If you want to preserve the revisions of the local branch
in Subversion, then first you have to push that branch to a suitable location in the
Subversion repository.

Let's illustrate this with an example, through the following steps:

1. Create a local branch from the trunk.
2. Commit to the branch a few times.
3. Push the branch to Subversion.
4. Merge the branch to the trunk and commit it to Subversion.

Let's create a local branch from the trunk called feature3 and do some commits in it:

$ bzr branch trunk feature3

Branched 4 revisions.

$ cd feature3/

$ echo >> hello.pl

$ bzr commit -m 'meaningless change'

Committing to: /sandbox/svn-examples/feature3/

modified hello.pl

Committed revision 5.

$ echo >> hello.sh

$ bzr commit -m 'another meaningless change'

Committing to: /sandbox/svn-examples/feature3/

modified hello.sh

Committed revision 6.

At this point, the branch exists only locally, not in Subversion. Let's push this to
Subversion before we merge it into the trunk. We can push it after we merge too, but
in this way, the metadata will make more sense, as you will see later:

$ bzr push file:///sandbox/svn-repo/branches/feature3

Created new branch at /branches/feature3.

Chapter 9

[311]

Next, let's update our trunk and merge the branch into it. In our example, the
updating is unnecessary, as we know for a fact that nobody else has committed to
the trunk; this is just a reminder so that you don't forget to do in a real-life situation.

$ bzr update

Tree is up to date at revision 4 of branch /sandbox/svn-repo/trunk

$ bzr merge ../feature3/

 M hello.pl

 M hello.sh

All changes applied successfully.

Finally, let's commit the merge. Since our trunk is bound to the Subversion
repository, because we created it using bzr checkout, the commit will be written
back to Subversion immediately:

$ bzr commit -m 'merged from feature3 branch'

Committing to: /sandbox/svn-repo/trunk

modified hello.pl

modified hello.sh

Committed revision 5.

This commit, like all commits in Subversion, is a single revision including all the
changes we did in our local feature3 branch. If we hadn't pushed the feature3
branch to Subversion earlier, the commits in that branch would not be preserved
anywhere in Subversion. Since we did push it, the revisions are preserved, and
Bazaar also created the necessary metadata to let Subversion know about the
relationship between the trunk and the feature3 branch we pushed, as we can
confirm with svn pget:

$ svn pget svn:mergeinfo file:///sandbox/svn-repo/trunk /branches/mike:3-
5

/branches/anna:7-9

/branches/feature3:14-15

If you want to preserve the individual commits in your local branches, remember
to push the branch to Subversion before merging it into the trunk. That way, Bazaar
will record the necessary metadata correctly. If you forget to perform the operations
in this order, then you would have to create that metadata yourself.

Using Bazaar Together with Other VCS

[312]

Binding and unbinding to Subversion
locations
You can bind to and unbind from a Subversion repository in the same way as
with native Bazaar branches. The result of bzr checkout is a bound branch:

$ bzr info trunk/

Repository checkout (format: 2a)

Location:

 repository checkout root: trunk

 checkout of branch: /sandbox/svn-repo/trunk

 shared repository: .

You can unbind from the Subversion location, which can be useful, for example, if
the repository is temporarily inaccessible due to network problems, or if you want
to commit locally only:

$ cd trunk/

$ bzr unbind

$ bzr info

Repository tree (format: 2a)

Location:

 shared repository: /sandbox/svn-examples

 repository branch: .

When the connection is restored, or you are ready to merge your local commits
into Subversion, you can bind to it again:

$ bzr bind file:///sandbox/svn-repo/trunk

$ bzr update

Tree is up to date at revision 4 of branch /sandbox/svn-repo/trunk

Similarly, you can bind to a Subversion location that you branched from using
bzr branch:

$ bzr branch file:///sandbox/svn-repo/trunk tmp

Branched 4 revisions.

$ cd tmp

$ bzr bind :parent

Chapter 9

[313]

Using lightweight checkouts
An interesting feature of bzr-svn is that a lightweight checkout is actually a native
Subversion working copy:

$ bzr checkout --lightweight file:///sandbox/svn-repo/trunk light

$ ls -a light/

.

..

.svn

README.md

hello.pl

hello.py

hello.r

hello.sh

As you can see, instead of a .bzr directory, there is a .svn directory. In fact, Bazaar
can work with native Subversion working copies, as if using a Subversion client.

In general, the same limitations apply to lightweight checkouts as when using
native Bazaar branches—all the operations that work with the revision history
will be slow. In addition, due to the overhead of the conversion between protocols,
these operations will be even slower than usual.

Browsing the logs
An interesting benefit of using Bazaar to merge Subversion branches is that the
branch history is easier to view in the logs, thanks to the additional metadata added
by Bazaar:

Using Bazaar Together with Other VCS

[314]

Notice that we can see the merged revisions from Anna's branch—merged
using Bazaar, but we cannot see the merged revisions in Mike's branch—merged
using Subversion.

Limitations of bzr-svn
The plugin has the following limitations:

• Creating the first branch from a Subversion repository can be extremely
or even intolerably slow, depending upon the size of the repository.

• Creating a branch from a Subversion repository is sometimes not possible
at all, due to bugs and crashes.

• Some Subversion properties have no effect in Bazaar—svn:ignore,
svn:mime-type, svn:eol-style, svn:keywords, and svn:externals.
These properties are ignored in general, but carried over correctly in branch
operations.

• Subversion merges are not shown in Bazaar, unless the svk:merge property
(used by SVK) is also set in addition to svn:mergeinfo.

For a more complete and up-to-date list of limitations, refer to the plugin's homepage:

http://wiki.bazaar.canonical.com/ForeignBranches/Subversion

Final remarks on bzr-svn
For the most part, Bazaar works transparently with Subversion repositories. The result
of a checkout or branch operation from Subversion is a native Bazaar branch, thus all
your local operations will be native Bazaar operations that you are used to. However,
all the interactions with the remote Subversion repository will be inevitably slower
than usual, due to the translation between the protocols of these systems.

As long as you are aware of the limitations and the differences of the two systems,
you can greatly benefit from the added features of Bazaar, such as the ability to
create local branches and advanced merging capabilities.

Quick tips and cheat sheet:

• Be aware of the limitations before you start using Bazaar with Subversion
• Always use a shared repository locally when working with Subversion
• Double-check the correct Subversion URL before you checkout or branch,

in order to avoid downloading too many branches at once
• The first checkout or branch operation will take a long time; subsequent

operations should be much faster

Chapter 9

[315]

• Avoid operations directly on remote Subversion branches, check out
or branch from them first, and use the local Bazaar branch instead

• Feel free to merge Subversion branches in Bazaar to benefit from
Bazaar's advanced merging features, such as bzr remerge and the
various merging strategies

• Remember to push local branches to Subversion if you want to preserve
their revisions in the Subversion repository

• Use a lightweight checkout if you just want to view the latest version
of the project without working on it

The up-to-date details and limitations of the plugin are documented at the
following locations:

• http://wiki.bazaar.canonical.com/ForeignBranches/Subversion

• http://doc.bazaar.canonical.com/migration/en/foreign/bzr-on-
svn-projects.html

• bzr help svn

Using Bazaar with Git
Many, but not all, Bazaar operations work transparently on Git branches in the
same way as with native Bazaar branches. Since both Bazaar and Git are distributed
VCS tools, the behavior is quite consistent as long as you understand the few
important differences.

Installing bzr-git
The plugin to work with Git is named git, typically in a package named bzr-git.
Confirm if it is already installed in your system by using bzr plugins. If it is not
in the list, see the Installing plugins section and follow the steps to install it.
When installing with pip, if bzr-git doesn't work, try bzr-git-1480 instead.

In addition to bzr-git, you also need to install dulwich, a Python library to
interface with Git. Install it by using your operating system's package manager
or pip. A simple way to verify that both bzr-svn and dulwich are correctly
installed is by creating a dummy Git repository by using Bazaar:

$ bzr init --git /tmp/empty-git-repo

Created a standalone tree (format: git)

The --git flag is provided by the bzr-git plugin. Normally, the bzr init
command does not have such an option.

Using Bazaar Together with Other VCS

[316]

Supported protocols and URL schemes
Bazaar supports the following native Git URL formats:

• https://server/path/to/project.git: Git smart server
over HTTP

• git://server/path/to/project.git: Git smart server
• git@github.com:user/project.git: Projects on GitHub (Git smart

server over SSH)
• file:///path/to/repo.git: Local filesystem URL
• /path/to/repo.git: Local filesystem path

The URL format for accessing Git repositories over SSH is slightly different
from Git's native format; instead of:

ssh://user@server:path/to/repo.git

In Bazaar, it is:

git+ssh://user@server/absolute/path/to/repo.git

Notice that not only the format is different; you must specify the absolute path
to the repository. The relative path from the user's home directory doesn't work.

By default, Bazaar operations assume the master branch of the Git repository.
You can specify a different branch by using the URL path segment parameter
branch=BRANCHNAME; for example, the URL of the feature1 branch will be
as follows:

$ bzr info https://example.com/project.git,branch=feature1

Specifying a branch like this works for all supported URLs except filesystem paths,
such as /path/to/repo.git. In this case, Bazaar will use the "current branch" of the
local repository, or the master branch if it is a "bare" repository with no working tree.

Using the example Git repository
The best way to explore how Bazaar works with Git branches is by playing with a
local Git repository. If you are familiar with Git, you can create a sample repository
by using git init, or you can download and unpack the sample repository at the
following URL:

https://launchpad.net/bzrbook-examples/trunk/examples/+download
/repo.git.tar.gz

Chapter 9

[317]

The repo.git directory inside the ZIP file contains a small Git repository, which will
be accessible via a direct filesystem path. For example, if you move the repo.git
directory into /tmp, it will be accessible via the URL /tmp/repo.git. You can try
some commands, such as bzr info or bzr log, on it:

$ bzr info /tmp/repo.git/

Standalone branch (format: git-bare)

Location:

 branch root: /tmp/repo.git

$ bzr branches /tmp/repo.git

* anna

* jack

* master

* mike

* tmp1

$ bzr log /tmp/repo.git/ --line -n0

2: Janos Gyerik 2012-12-09 [merge] merged from mike

 1.1.2: Mike 2012-12-09 added perl impl

 1.1.1: Mike 2012-12-09 added shell impl

1: Janos Gyerik 2012-12-09 initial commit with only readme

Many of the examples in this section will use this repository, assuming it at the path
/sandbox/repo.git.

Branching from git
You can branch from Git by using bzr branch or Bazaar Explorer as usual.
But first, let's create a shared repository:

$ bzr init-repo /sandbox/git-examples

Shared repository with trees (format: 2a)

Location:

 shared repository: git-examples

$ cd /sandbox/git-examples/

It is always a good idea to use a shared repository when working with multiple
remote branches. This is especially true when working with foreign branches,
due to the added overhead of translation between Bazaar and the foreign protocol.

Using Bazaar Together with Other VCS

[318]

Let's get a branch from the example repository:

$ bzr branch /sandbox/repo.git

Branched 2 revisions.

This gets the master branch from the repository, as this is the only branch that
can be accessed by a filesystem path. To get another branch, we must use the
file:/// style URL. For example:

$ bzr branch file:///sandbox/repo.git,branch=anna

Branched 4 revisions.

As a result, the Bazaar branch is created in the directory anna.

The example repository is a "bare" Git repository with no
working tree. In case of non-bare Git repositories with a
working tree, Bazaar will get the current branch by default,
instead of the master.

In case of remote Git repositories, the default name of the newly created local
branch is the last path segment of the URL, or if a branch is specified, then the
name of the branch.

As always, fetching the first branch from a remote repository may take a long time,
as Bazaar needs to download all the revisions in the branch. In addition, in case of
foreign branches, such as Git, Bazaar needs to convert the version control data to
native Bazaar format. Thanks to using a shared repository, fetching a second branch
usually takes much less time, as typically much of the revision history is common
between branches.

Preserving version control metadata
Bazaar correctly preserves Git's version control metadata, such as the following:

• Basic revision metadata—committer, author, timestamp, and log message
• Git revision IDs
• Merged branches and their revisions

Chapter 9

[319]

Preserving Git revision ids
Revisions in Git are identified by a unique SHA1 hash. When branching from Git,
Bazaar creates its own revision numbers, but preserves the original Git IDs too,
as we can confirm by using bzr log:

$ bzr log master/ -r2

--

revno: 2 [merge]

git commit: a8136869caef6ef6cbbe571ac1b1675e1da80415

committer: Janos Gyerik <janos@axiom>

timestamp: Sun 2012-12-09 09:11:41 +0100

message:

 merged from mike

--

Use --include-merged or -n0 to see merged revisions.

You can reference revisions by their original Git ID or its shorter 6-digit version
(if unique). For example:

$ bzr log -r a81368 master/

--

revno: 2 [merge]

git commit: a8136869caef6ef6cbbe571ac1b1675e1da80415

committer: Janos Gyerik <janos@axiom>

timestamp: Sun 2012-12-09 09:11:41 +0100

message:

 merged from mike

--

Use --include-merged or -n0 to see merged revisions.

Bazaar also re-uses Git revision IDs in the internal revision ID of revisions, which
you can see by using the --show-ids flag of bzr log:

$ bzr log master/ -r2 --show-ids

--

revno: 2 [merge]

Using Bazaar Together with Other VCS

[320]

revision-id: git-v1:a8136869caef6ef6cbbe571ac1b1675e1da80415

parent: git-v1:b4a59b7391c18481716851d2d5985981d7b041f3

parent: git-v1:dfab9069d09c040f4abd8444f33604799ad786bd

git commit: a8136869caef6ef6cbbe571ac1b1675e1da80415

committer: Janos Gyerik <janos@axiom>

timestamp: Sun 2012-12-09 09:11:41 +0100

message:

 merged from mike

--

Use --include-merged or -n0 to see merged revisions.

Notice that revision-id is in fact derived from the Git ID by prefixing with
git-v1:.

The important consequence of this is that multiple Bazaar branches created from the
same source will be identical. The bzrbook/git-repo-example1.git repository on
GitHub is identical to our example repository. Therefore, if we branch from it, we
should get an identical Bazaar branch. Let's confirm this with a simple test:

$ bzr branch git://github.com/bzrbook/git-repo-example1.git /tmp/master2

Branched 2 revisions.

$ bzr missing -d master /tmp/master2

Branches are up to date.

This is especially important when merging branches, as it effectively prevents from
merging the same revisions more than once.

Preserving merged branches and revisions
Same as with Bazaar branches, merged branches and their revisions are preserved
when branching from Git:

$ bzr log --line -n0 master

2: Janos Gyerik 2012-12-09 [merge] merged from mike

 1.1.2: Mike 2012-12-09 added perl impl

 1.1.1: Mike 2012-12-09 added shell impl

1: Janos Gyerik 2012-12-09 initial commit with only readme

Chapter 9

[321]

The logs are especially easy to view in Bazaar Explorer:

Pulling from Git
Updating a Bazaar branch from a Git parent branch works in the same way as with
native Bazaar branches. Let's test this by branching from an older revision of a Git
branch, and then pulling from it to bring it up-to-date:

$ bzr branch -rlast:2 /sandbox/repo.git/ feature1

Branched 1 revisions.

Our local Bazaar branch is out of date, precisely one revision behind, so let's bring
it up-to-date by using bzr pull:

$ cd feature1

$ bzr pull

Using saved parent location: /sandbox/repo.git/

+N hello.pl

+N hello.sh

All changes applied successfully.

Now on revision 2.

Keep in mind that the pull command may rearrange the revisions in the local
branch in the same way as it works with native Bazaar branches.

Using Bazaar Together with Other VCS

[322]

Pushing to Git
To push a Bazaar branch to a Git repository, you must use bzr dpush instead of bzr
push. The difference between the two commands is that bzr push is meant to be
"lossless" and since some of Bazaar's metadata cannot be pushed to Git losslessly,
the command is disabled for Git repositories at the moment. bzr dpush is designed
to push revisions to foreign repositories without trying to preserve Bazaar's
metadata, and in this way, it can work with Git repositories:

$ bzr dpush file:///sandbox/repo.git,branch=tmp1

Pushed up to revision 3.

This example worked, but only because the tmp1 branch already existed in
this example repository. Unfortunately, at the moment, bzr-git cannot create
new branches when pushing to a local Git repository; it can only push to an
existing branch.

More importantly, notice that we can overwrite the tmp1 branch despite being diverged
from it, without bzr-git raising an error or at least issuing a warning. Therefore,
you must be very cautious when pushing branches to Git by using bzr dpush.

Merging Git branches
Bazaar is very good at merging Git branches, thanks to a few notable key factors:

• As bzr-git converts Git branches to native Bazaar branches,
the merge operation is ultimately performed between Bazaar branches

• Bazaar excels at merging, thanks to proper tracking of rename operations,
and the many user-friendly and powerful features, such as bzr remerge

Let's try it out by merging two branches, for example, jack into tmp1:

$ bzr branch file:///sandbox/repo.git,branch=jack --no-tree

Branched 4 revisions.

$ cd tmp1/

$ bzr merge ../jack/

+N hello.rb

+N hello.tcl

All changes applied successfully.

Chapter 9

[323]

In this example, we fetched jack to a local Bazaar branch before merging from it,
but we could have used the remote branch URL directly. However, it is always a
good idea to fetch the branch first, as in this way, you can re-use the branch multiple
times without redownloading it again from the source repository.

Also notice that we used the --no-tree flag to create the branch. In this way,
we can save the disk space, as we don't need the working tree of the branch if
we just want to merge from it.

Let's commit the merge:

$ bzr commit -m 'merged from jack' --author gatekeeper

Committing to: /sandbox/git-examples/tmp1/

added hello.rb

added hello.tcl

Committed revision 4.

The merge is now committed locally; we can push it to the remote branch by using
bzr dpush:

$ bzr dpush file:///sandbox/repo.git,branch=tmp1

Pushed up to revision 4.

You must be very careful when pushing to a branch using bzr dpush. Since this
command overwrites the remote Git branch without warning, it can be dangerous.
If the remote branch is changed by others since the last time we fetched it, those
changes would be erased. Use with caution.

Remember that with Bazaar, you can choose from different merge
algorithms, which sometimes yield better results with fewer conflicts.
The bzr remerge command is especially useful to try a different
algorithm on selected files, and the --reprocess flag may help
reducing the size of the conflicted area. See Chapter 3, Using Branches,
for a detailed explanation with examples.

Using Bazaar Together with Other VCS

[324]

Merging local branches into Git
Let's create a local branch from master named feature3, and do some commits in it:

$ bzr branch master/ feature3

Branched 2 revisions.

$ cd feature3/

$ echo >> hello.pl

$ bzr commit -m 'meaningless change'

Committing to: /sandbox/git-examples/feature3/

modified hello.pl

Committed revision 3.

$ echo >> hello.sh

$ bzr commit -m 'another meaningless change'

Committing to: /sandbox/git-examples/feature3/

modified hello.sh

Committed revision 4.

Next, let's merge this branch into our tmp1 branch, and commit the merge:

$ cd ../tmp1/

$ bzr merge ../feature3/

 M hello.pl

 M hello.sh

All changes applied successfully.

$ bzr commit -m 'merged from feature3'

Committing to: /sandbox/git-examples/tmp1/

modified hello.pl

modified hello.sh

Committed revision 5.

$ bzr dpush file:///sandbox/repo.git,branch=tmp1

Pushed up to revision 5.

Chapter 9

[325]

At this point, the revisions in the feature3 branch and the revision with the merge
commit exist only locally, not in Git yet. Naturally, these revisions don't have a Git
ID, as we can confirm in the log:

$ bzr log -l1 --show-ids

--

revno: 5 [merge]

revision-id: janos@axiom-20121209162758-r1cggic29iccu4ud

parent: git-v1:3070cdd84f89ae8fc45e2490e897dfe611464749

parent: janos@axiom-20121209162615-46kcj8x3r1czkm57

committer: Janos Gyerik <janos@axiom>

branch nick: tmp1

timestamp: Sun 2012-12-09 17:27:58 +0100

message:

 merged from feature3

--

Use --include-merged or -n0 to see merged revisions.

Let's push the branch to git, and then check the log again:

$ bzr dpush file:///sandbox/repo.git,branch=tmp1

Pushed up to revision 5.

$ bzr log -l1 --show-ids

--

revno: 5 [merge]

revision-id: git-v1:8ab5cde217d110765fef71b9f1107d65ceb43db1

parent: git-v1:3070cdd84f89ae8fc45e2490e897dfe611464749

parent: git-v1:9d3a2bb239f679c04a2104b99fe2b4a11c04f8e0

git commit: 8ab5cde217d110765fef71b9f1107d65ceb43db1

committer: Janos Gyerik <janos@axiom>

timestamp: Sun 2012-12-09 17:27:58 +0100

message:

 merged from feature3

--

Use --include-merged or -n0 to see merged revisions.

Using Bazaar Together with Other VCS

[326]

An interesting thing happened—in addition to pushing the local revisions to the Git
repository, the IDs of these local revisions have been retroactively changed to values
derived from their corresponding Git revision IDs. This may seem a bit strange at
first, but it is necessary for the integrity of future interactions with this Git repository,
and thus to prevent issues such as accidentally merging the same revisions twice.

Finally, since the parent branches are correctly tracked in Git just like in Bazaar, the
parent-child relationships are correctly preserved, as we can confirm by using bzr
log:

$ bzr log --line -n0 -l4 file:///sandbox/repo.git,branch=tmp1

5: Janos Gyerik 2012-12-09 [merge] merged from feature3

 2.2.2: Janos Gyerik 2012-12-09 another meaningless change

 2.2.1: Janos Gyerik 2012-12-09 meaningless change

4: gatekeeper <gatek... 2012-12-09 [merge] merged from jack

To conclude, local branches can be merged into Git. However, always keep in mind
that bzr dpush may overwrite the remote branch; therefore, use it with caution.

Limitations of bzr-git
The bzr-git plugin has the following limitations:

• Creating the first branch from a Git repository can be extremely or even
intolerably slow, depending upon the size of the repository

• Creating a branch from a Git repository is sometimes not possible at all,
due to bugs and crashes.

• bzr push does not work
• bzr dpush can be used instead of bzr push, but it can be dangerous,

as it rewrites the revision history without warning even if the branches
have diverged

• The metadata of bugs and renames in Bazaar cannot be transferred to Git

For a more complete and up-to-date list of limitations, refer to the plugin's homepage:

http://doc.bazaar.canonical.com/migration/en/foreign/bzr-on-git-
projects.html

Chapter 9

[327]

Final remarks on bzr-git
For the most part, Bazaar works transparently with Git repositories. The result of a
branch operation from Git is a native Bazaar branch, thus all your local operations
will be native Bazaar operations that you are used to. However, all interactions with
the remote Git repository will be inevitably slower than usual, due to the translation
between the protocols of these systems.

As long as you are aware of the limitations and the differences between the two
systems, you can use Bazaar as a Git repository client, and take advantage of its
advanced merging capabilities. However, be careful when pushing branches with
bzr dpush, as it overwrites the remote branch. To be safe, it is best to push only to
branches that are owned by you and to which others have only read-only access.

Quick tips and cheat sheet:

• Be aware of the limitations before you start using Bazaar with Git
• Always use a shared repository when working with Git
• Avoid operations directly on remote Git branches; branch from them first

and work on the local Bazaar branch instead
• Feel free to merge Git branches in Bazaar to benefit from Bazaar's unique

merging features, such as bzr remerge and the various merging strategies
• Be very cautious when pushing branches with bzr dpush, as it overwrites

the remote branch

The up-to-date details and limitations of the plugin are documented at the
following locations:

• http://wiki.bazaar.canonical.com/ForeignBranches/Git

• http://doc.bazaar.canonical.com/migration/en/foreign/bzr-on-
git-projects.html

• http://doc.bazaar.canonical.com/plugins/en/git-plugin.html

• bzr help git

Using Bazaar Together with Other VCS

[328]

Migrating between version control
systems
A common way to migrate version control data from one VCS to another is by using
the fast-export / fast-import method—export the content of the source VCS by using
fast-export, and import it into the target VCS using fast-import. The data format used
by fast-export / fast-import is VCS-agnostic; in this way, it is possible to migrate
from any VCS to any other, as long as they support this technique.

In this section, we explain how to export VCS data of other systems by using
fast-export, and then how to import that using fast-import into Bazaar.

Installing bzr-fastimport
The plugin to import the version control data that was exported by using the
fast-export method is named fastimport, typically in a package named bzr-
fastimport. Confirm if it is already installed in your system by using bzr plugins.
If it is not in the list, see the Installing plugins section, and follow the steps to install it.

In addition to bzr-fastimport, you also need to install the fastimport Python
package. Install it by using your operating system's package manager or pip. A
simple way to verify that both bzr-fastimport and fastimport are correctly
installed is by running it with dummy source and destination parameters:

$ bzr fast-import x /tmp/x

Creating destination repository ...

Shared repository with trees (format: 2a)

Location:

 shared repository: /tmp/x

bzr: ERROR: [Errno 2] No such file or directory: u'x'

We get this far only if both the requirements are correctly installed.

Exporting version control data
The bzr-fastimport plugin includes the utilities that you can use to export version
control data from Subversion, Mercurial, and DARCS. These scripts are in the
BZRLIB/plugins/fastimport/exporters directory, where BZRLIB is the path
shown in the output of bzr version. For example:

Chapter 9

[329]

$ bzr version

Bazaar (bzr) 2.5.0

 Python interpreter: /usr/bin/python2.6 2.6.1

 Python standard library: /System/Library/Frameworks/Python.framework/
Versions/2.6/lib/python2.6

 Platform: Darwin-10.8.0-i386-64bit

 bzrlib: /Library/Python/2.6/site-packages/bzrlib

 Bazaar configuration: /Users/janos/.bazaar

 Bazaar log file: /Users/janos/.bzr.log

In this case, the exporter scripts are in the directory /Library/Python/2.6/site-
packages/bzrlib/plugins/fastimport/exporters.

There exists exporters for other VCS too, such as Git, CVS, and Perforce that are not
bundled with the plugin, but you can find them elsewhere. For a complete list and
how to obtain these exporters, see the Bazaar wiki page:

http://wiki.bazaar.canonical.com/BzrFastImport/FrontEnds

Common in all exporters is that they dump version control data to standard output,
which can be compressed and redirected to a file in order to import later into Bazaar.

Exporting Subversion data
A Subversion exporter script named svn-fast-export.py is included with the bzr-
fastimport plugin. The script takes as parameter the filesystem path to a Subversion
repository, and it exports version control data to standard output:

$ svn-fast-export.py /sandbox/svn-repo/ | gzip > /tmp/svn-repo.fi.gz

The script has several options to specify the trunk and branches; use the -h or
--help flags for more details.

Exporting Git data
The Git exporter script is not included with the bzr-fastimport plugin, as the
functionality is part of Git 1.5.4 and later. You can export Git data by using the fast-
export command inside a Git working tree. For example:

$ (cd /sandbox/repo.git && git fast-export --all) | gzip > /tmp/repo.git.
fi.gz

This example exports all the branches. For more options and details, use the -h or
--help flags or refer to man git-fast-export.

Using Bazaar Together with Other VCS

[330]

Branches that have been fully merged into another branch will
be ignored and not included in the export. This should not be a
problem, of course, as you can fully access those branches through
the branches into which they were merged.

Exporting Bazaar data
Bazaar has its own fast-import exporter too, the bzr fast-export command,
should you want to migrate from Bazaar to another system. The command works
at the branch level, so if you want to export multiple branches, you have to run the
command for each branch.

Let's create an example shared repository and fetch some sample branches to export:

$ bzr init-repo /sandbox/exporting --no-trees

$ cd /sandbox/exporting

$ bzr branch lp:~bzrbook/bzrbook-examples/exporting-trunk trunk

$ bzr branch lp:~bzrbook/bzrbook-examples/exporting-anna anna

Let's export specific branches:

$ bzr fast-export -b master trunk /tmp/master.fi.gz

09:29:50 Calculating the revisions to include ...

09:29:50 Starting export of 4 revisions ...

09:29:50 Exported 4 revisions in 0:00:00

$ bzr fast-export -b anna anna /tmp/anna.fi.gz

09:36:18 Calculating the revisions to include ...

09:36:18 Starting export of 6 revisions ...

09:36:18 Exported 6 revisions in 0:00:00

In both the example branches, the -b flag is used to specify the name of the branch,
which will be used by fast-import. The first parameter to fast-export is the path
to the branch to export, and the second is the path to the export file.

If the export filename ends with .gz, Bazaar compresses the output. If the export
filename is omitted or is -, then Bazaar will write to the standard output instead of
a file. This can be used to pipe to a foreign repository directly without intermediary
export files.

Chapter 9

[331]

Exporting other VCS data
If you would like to export VCS data from another system, see the following
documentation pages. New exporters are added from time to time, especially
for well-known and widely-used systems:

http://doc.bazaar.canonical.com/plugins/en/fastimport-plugin.html

http://wiki.bazaar.canonical.com/BzrFastImport/FrontEnds

Importing version control data
Use bzr fast-import to import fast-export files. For example:

$ bzr fast-import /tmp/repo.git.fi /sandbox/imported

Creating destination repository ...

Shared repository with trees (format: 2a)

Location:

 shared repository: imported

10:02:07 Starting import of 8 commits ...

10:02:07 Updating branch information ...

 branch trunk now has 2 revisions and 0 tags

 branch anna now has 4 revisions and 0 tags

 branch jack now has 4 revisions and 0 tags

10:02:07 Updating the working tree for /sandbox/imported/trunk ...

All changes applied successfully.

10:02:07 Imported 8 revisions, updating 3 branches and 1 tree in 0:00:00

To refresh the working tree for other branches, use 'bzr update' inside
that branch.

This command creates a shared repository in the specified destination directory,
and populates it with the imported branches. If a destination directory is not
specified, Bazaar will try to create one in the current directory. If the current
directory is already a shared repository, it will be re-used.

Using Bazaar Together with Other VCS

[332]

If a "trunk" branch can be identified, the command will populate the working
directory for it. Other branches will have their working tree "out of date" with
no files. As the hint in the output of bzr fast-import says, use bzr update
to update the working trees you need. For example:

$ cd /sandbox/imported/anna/

$ bzr status

working tree is out of date, run 'bzr update'

$ bzr up

+N README.md

+N hello.pl

+N hello.py

+N hello.r

+N hello.sh

All changes applied successfully.

Updated to revision 4 of branch /sandbox/imported/anna

The command is safe to re-run for the same fast-export file or after the export file
is updated from the same source repository. Only the new revisions and branches
will be imported; any locally deleted branches will be recreated.

The import process is safe to interrupt. In case of an interruption, simply re-run
the command and the process will continue where it left off.

Querying fast-import files
In general, fast-import files are plain text and more or less readable. You can
use bzr fast-import-info to get an informative summary of what is included
in a fast-import file. This command works with plain and gzipped fast export files.

Filtering fast-import
The bzr fast-import-filter command can be very useful to include or exclude
specified files and directories. This can be useful, for example, to create a new
repository from a subset of the files, or to remove sensitive data such as passwords
that should not have been added to version control. Another common use of this
command is to re-map user IDs. For more details, see bzr fast-import-filter
--help.

Chapter 9

[333]

Summary
In this chapter, we covered how Bazaar can interact with other version control
systems such as Subversion and Git through plugins. In this way, you can take
advantage of the unique features of Bazaar that might be missing in other systems,
such as creating local branches easily, or using advanced merging features and
alternative remerge strategies, and browse the logs rendered beautifully in Bazaar
Explorer. In case a direct interaction is not possible, we explained the option of
migrating between repositories by using the fast-import method.

However, working with foreign repositories comes at a price—the initial branch
conversion into native Bazaar format can be slow, and sometimes it might not work
at all. Interactions with foreign branches are inevitably slower as compared to native
Bazaar operations, due to the overhead of translation between protocols. You should
also be aware of the differences between Bazaar and the foreign system, as well as
the limitations of the plugins.

In the next chapter, we will explain about bzrlib and Bazaar's internals, and how
to extend Bazaar's functionality by implementing custom plugins that hook into
Bazaar's architecture.

Programming Bazaar
In this chapter, we will look under the hood, and explore a few interesting ways in
which you can interact with Bazaar programmatically. This chapter assumes that
you have a working knowledge of the Python programming language.

We will start with a quick introduction of the basics—how the main objects of
version control are represented in Bazaar, and how to use them. This will enable
you to manipulate Bazaar programmatically and provide the essential knowledge
to write plugins.

Next, we will explain the details of writing plugins. Plugins are very powerful, and
are the standard way to hook into Bazaar's architecture and extend Bazaar in various
ways, such as adding new commands, modifying existing commands, or even
completely replacing existing commands. Plugins can also be used to implement
hooks that can be triggered by various steps in version control operations.

The following topics will be covered in this chapter:

• Using Bazaar programmatically
• Creating a plugin
• Creating a hook

Using Bazaar programmatically
The core functionality of Bazaar is implemented within the bzrlib Python package.
A detailed study of Bazaar's architecture is beyond the scope of this book. Instead,
we will take a pragmatic approach and show you, through examples, how to access
the main objects of version control in Bazaar and other important tips.

The main goal of this chapter is to teach you enough to be able to create your own
plugins and make simple modifications to Bazaar's behavior to better suit your needs.

Programming Bazaar

[336]

If you would like to know more about Bazaar's internals, this overview should be
a good starting point:

http://doc.bazaar.canonical.com/developers/overview.html

Using bzrlib outside of bzr
When using bzrlib within bzr, for example in plugins, the library is already
initialized. To ensure that bzrlib functions correctly when using it outside of bzr,
for example in your custom scripts, it must be initialized as follows:

>>> import bzrlib

>>> bzrlib.initialize()

Additionally, if you want to use a functionality that is implemented in plugins,
for example working with branches on Launchpad, then you must load the plugins
manually, as follows:

>>> bzrlib.plugin.load_plugins()

This should be a fast operation, as plugins normally use lazy initialization so
that their main implementation is only loaded when really used.

This example loads all the plugins at the default plugin path locations in the
same way as they are loaded when using the bzr command. Optionally, you
can pass to the function a list of paths to limit the plugin discovery process to
the specified locations.

Accessing Bazaar objects
When implementing plugins or trying to do simple operations in Bazaar, it can be
difficult to find the right modules to access the right objects, to get the information
you need. The aim of this section is to show a couple of examples for accessing
various objects of Bazaar's version control model.

The main classes and methods that will be demonstrated are as follows:

• bzrlib.branch.Branch

• bzrlib.config.BranchConfig

• bzrlib.revision.Revision

• bzrlib.revisiontree.RevisionTree

• bzrlib.log.LongLogFormatter

Chapter 10

[337]

We will demonstrate various methods for accessing Bazaar's objects using the branch:

lp:~bzrbook/bzrbook-examples/bzr-summary

You can follow the same steps as in the examples by preparing a local branch,
as follows:

$ bzr branch lp:~bzrbook/bzrbook-examples/bzr-summary /tmp/summary -r20

$ cd /tmp/summary

We used the specific revision 20 to match with the operations in the examples.

Accessing branch data
A branch is one of the most important objects in Bazaar. The class to work with
branches is named Branch in the bzrlib.branch module. You can open a local
branch by specifying its path in the filesystem as follows:

>>> from bzrlib.branch import Branch

>>> branch = Branch.open('.')

In this example, we specified "." as the path, meaning the current directory.

You can open remote branches in the same way, however, if the protocol is
implemented in a plugin such as lp: for branches on Launchpad, then you
must load the required plugins before using this method.

A Branch object has several interesting methods and attributes, such as
the following:

• repository: This is the Bazaar repository associated with the branch,
as a CHKInventoryRepository object

• revno():This returns the last revision number, as an integer
• last_revision():This returns the last revision ID, as a string
• control_url: This is the path to the .bzr/branch directory of

the branch, as a string
• get_config():This returns the branch configuration data, as a

BranchConfig object

Programming Bazaar

[338]

Accessing branch configuration values
The class to work with branch configuration data is named BranchConfig in the
bzrlib.config module. An easy way to access the configuration of a branch is by
opening the branch and then using the get_config() method on it. For example:

>>> from bzrlib.branch import Branch

>>> branch = Branch.open('.')

>>> config = branch.get_config()

This is especially useful for accessing the key-value properties in the .bzr/branch/
branch.conf file, as follows:

>>> config.get_user_option('parent_location')

u'bzr+ssh://bazaar.launchpad.net/~bzrbook/bzrbook-examples/bzr-summary/'

If the specified configuration variable does not exist, the method returns None.

Accessing revision history
The class to work with the revision history is named Revision in the bzrlib.
revision module. An easy way to access the revisions is by opening a branch and
then using the get_revision() method on its associated repository. For example:

>>> from bzrlib.branch import Branch

>>> branch = Branch.open('.')

>>> rev_id = branch.last_revision()

>>> revision = branch.repository.get_revision(rev_id)

A Revision object has several interesting methods to access the revision information.
For example:

• get_summary(): This returns the commit message of the revision
• get_history(branch.repository): This takes a Repository object

as parameter and returns the ordered list of revision IDs in the branch

Chapter 10

[339]

Accessing the contents of a revision
The class to work with the content of files and the shape of the tree of revisions is
named RevisionTree in the bzrlib.revisiontree module. An easy way to get
a RevisionTree object is from a branch and a revision ID. For example:

>>> from bzrlib.branch import Branch

>>> branch = Branch.open('.')

>>> rev_id = branch.last_revision()

>>> tree = branch.repository.revision_tree(rev_id)

An easy way to list files in the tree is by using the iter_entries_by_dir method.
For example:

>>> tree.lock_read()

<InventoryRevisionTree instance at 1019ac7d0, rev_id='janos@axiom-
20130105162648-iwv0yb9o5etwyvzh'>

>>> iter = tree.iter_entries_by_dir()

>>> print iter.next()

(u'', CHKInventoryDirectory('tree_root-20121223122411-
46c0o678h271d3jk-1', u'', parent_id=None, revision='janos@axiom-
20121223160417-9uz9ynbehy0il02t'))

>>> print iter.next()

(u'README', InventoryFile('readme-20121223154742-2ymrdwwoa9j1wva0-1',
u'README', parent_id='tree_root-20121223122411-46c0o678h271d3jk-1', sha
1='dd28845af2cdeb1b56bd67b34c4823533405d654', len=764, revision=janos@
axiom-20121230121603-50u69s9ch8o7eg41))

>>> print iter.next()

(u'__init__.py', InventoryFile('__init__.py-20121230094916-
m7i3mv0mikwdipb9-1', u'__init__.py', parent_id='tree_root-20121223122411-
46c0o678h271d3jk-1', sha1='285dce023ba62f899b592543b6627cc5a27c9341',
len=761, revision=janos@axiom-20130105162648-iwv0yb9o5etwyvzh))

>>> tree.unlock()

Programming Bazaar

[340]

In order to iterate over the entries in the tree, we must first lock the tree object.
Each iteration returns a tuple of two elements:

• The relative path of the file or directory from the project root
• The inventory object representing the entry, which can be a

CHKInventoryDirectory object in case of a directory, and an
InventoryFile object in case of a file

The first entry is the root directory of the project, thus its relative path is an empty
string, and it is a CHKInventoryDirectory object. The ordering of entries is the
same as in the output of the bzr ls command:

$ bzr ls --show-ids

README readme-20121223154742-2ymrdwwoa9j1wva0-1

__init__.py __init__.py-20121230094916-m7i3mv0mikwdipb9-1

cmd_summary.py cmd_summary.py-20121230115024-py0vs3wj3oqux5z2-1

setup.py setup.py-20121230120402-zfu8im6iax17fl7r-1

tests/ tests-20121230123000-bh7lacxmlglvq30b-1

The inventory object contains very important information, such as the file ID,
which can be used to access file content.

By using a RevisionTree object and the file ID, you can access the contents of
files using the get_file(file_id) method. For example:

>>> print tree.get_file('readme-20130108195909-jmwgut5e1y6x608x-1').
readlines()

The get_file method returns a file-like object. In this example, we used the
readline() method to print the list of lines in the file, omitting the actual output
for brevity.

Formatting revision info using a log format
The classes handling the formatting of the revision information are derived from the
LogFormatter class in the bzrlib.log module. For each log format that you can use
on the command line, there exists a different implementation of the LogFormatter
class, for example, the default long format is handled by LongLogFormatter.

Chapter 10

[341]

Formatting revision information using a log formatter involves the following steps:

1. Get the Revision object of the revision you want to format.
2. Create a LogRevision object by using the Revision object and the

revision number.
3. Create the formatter using a file-like object to write to as a

constructor parameter.
4. Use the formatter to format the LogRevision object.

For example, you can format the last revision and print to the standard output
by using the long log formatter, as follows:

>>> from bzrlib.branch import Branch

>>> branch = Branch.open('.')

>>> from bzrlib.log import LongLogFormatter, LogRevision

>>> revno, rev_id = branch.last_revision_info()

>>> revision = branch.repository.get_revision(rev_id)

>>> log_revision = LogRevision(rev=revision, revno=revno)

>>> from sys import stdout

>>> formatter = LongLogFormatter(stdout)

>>> formatter.log_revision(log_revision)

--

revno: 20

committer: Janos Gyerik <janos@axiom>

branch nick: summary

timestamp: Sat 2013-01-05 17:26:48 +0100

message:

The preceding command made the plugin docstring multiline. The output
is identical to the output of the command bzr log -r20 --long.

More examples
You will find more examples and practical tips at
http://doc.bazaar.canonical.com/developers/integration.html.

Programming Bazaar

[342]

Locating BZRLIB
Throughout the chapter, we will make references to the location BZRLIB. By that
we will mean always the base path of the bzrlib Python package, as it was created
during the installation of Bazaar. You can find this directory in the output of bzr
version. For example:

$ bzr version

Bazaar (bzr) 2.5.0

 Python interpreter: /usr/bin/python2.6 2.6.1

 Python standard library: /System/Library/Frameworks/Python.framework/
Versions/2.6/lib/python2.6

 Platform: Darwin-10.8.0-i386-64bit

 bzrlib: /Library/Python/2.6/site-packages/bzrlib

 Bazaar configuration: /Users/janos/.bazaar

 Bazaar log file: /Users/janos/.bzr.log

In this example, the path of BZRLIB is /Library/Python/2.6/site-packages/
bzrlib, from the line that contains "bzrlib:"

Creating a plugin
Plugins can serve various kinds of purposes, such as the following:

• Adding new Bazaar commands
• Extending the functionality of existing commands
• Hooking into the version control workflow and getting triggered by events,

such as commits

Regardless of the purpose, the main steps of creating a plugin are the same:

1. Choose a name for the plugin
2. Create the plugin directory somewhere on the path searched by Bazaar
3. Implement the functionality following best practices
4. Implement self-tests
5. Polish and finalize
6. Optionally register in the official plugins guide

In this section, we will review these steps briefly. In the following sections, we will
show how to apply these steps in the context of example plugins that extend Bazaar
in different ways.

Chapter 10

[343]

Using the example plugins
We have prepared a few simple plugins to use as examples for extending Bazaar's
functionality in different ways:

• summary: This plugin adds a new command to print a brief summary
of a branch and its files

• customlog: This plugin adds custom log formats, extending the
functionality of the bzr log command

• appendlog: This plugin contains a hook that can be used to automatically
append commit logs to a file configured in a branch

Although these plugins are very simplistic, you might find them useful as templates
when implementing a plugin. As all the examples in the book, these plugins are
distributed under Creative Commons license; feel free to use them in any way.

While reading this section, it may be helpful to look at the implementation of these
plugins and understand what they do. They should also serve as easy-to-follow
use cases of bzrlib components.

The installation procedure is the same for all these plugins. Simply branch from
Launchpad into your personal plugins directory, as follows:

$ mkdir -p ~/.bazaar/plugins

$ bzr branch lp:~bzrbook/bzrbook-examples/bzr-summary ~/.bazaar/plugins/
summary

$ bzr branch lp:~bzrbook/bzrbook-examples/bzr-customlog ~/.bazaar/
plugins/customlog

$ bzr branch lp:~bzrbook/bzrbook-examples/bzr-appendlog ~/.bazaar/
plugins/appendlog

Verify that the plugins are correctly installed by running the bzr plugins
command. In the output, you should see these plugins with no error messages.

Using the summary plugin
This plugin adds a summary command, which prints a brief summary of a branch
and its files. For example:

$ bzr summary -r15 --group-by-ext /sandbox/plugins/summary

Branch URL: file:///sandbox/plugins/summary/

Branch nick: summary

Revisions: 23

Programming Bazaar

[344]

Selected revno: 15

Files: 5

---: 1

py : 4

Directories: 1

Others: 0

In addition to the basic information we can get with bzr info, the command counts
the number of files and directories, optionally grouped by the file type. The -r option
can be used to select a revision; it is implemented by re-using Bazaar's built-in revision
selector you have seen in all bzr commands. As with all bzr commands, the -h and
--help flags can be used to print detailed help with all the options of the command.

Using the customlog plugin
This plugin adds custom log formats that can be used with the bzr log command.
For example:

$ bzr log /sandbox/plugins/summary/ --git --limit 1

commit janos@axiom-20130114172512-vkaw1yzw1aodr8a7

Bazaar revno: 23

Author: Janos Gyerik <janos@axiom>

Date: Mon Jan 14 18:25:12 2013 +0100

 changed "pivot revno" to "selected revno" in output

The --git flag is not a standard parameter of the bzr log command; it is added
by the plugin. The output mimics the format used by Git. Bazaar's log formats
hide merged revisions by default. In order to mimic Git's behavior, this plugin
will always show merged revisions.

The plugin is written in a way to make it easy to add other custom log formats.
After reading this section about creating a plugin, it should be straightforward
to duplicate an existing log format to create a new one.

Using the appendlog plugin
The appendlog plugin contains a hook that can be used to automatically append
commit logs to a file configured in a branch. To enable the logging, the path to the log
file must be specified in the post_config_log variable in the configuration file .bzr/
branch/branch.conf inside a branch. Let's create a dummy branch to test this:

Chapter 10

[345]

$ bzr init /tmp/dummy

Created a standalone tree (format: 2a)

And let's enable the hook in the branch configuration file by using the bzr config
command. For example:

$ cd /tmp/dummy

$ bzr config post_commit_log=/tmp/changes.log

If you commit a couple of revisions in this dummy branch, they will be logged
in the file /tmp/changes.log, using the long log format.

Naming the plugin
Bazaar plugins must be valid Python packages; therefore, you must name the
directory of a plugin accordingly, otherwise it cannot be imported. You should also
follow common naming conventions of Python packages explained in the PEP8
document at http://www.python.org/dev/peps/pep-0008/#package-and-
module-names.

In particular, Python package names should be short, all lowercase names,
and the use of underscores is discouraged.

Creating the plugin directory
During development, it is easiest to create the plugin inside your personal
plugins area:

• In GNU/Linux or Mac OS X, it is $HOME/.bazaar/plugins/
• In Windows, it is %APPDATA%\bazaar\2.0\plugins

Alternatively, you can set the BZR_PLUGIN_PATH environment variable to a directory
that contains plugins. For example, if you are developing a plugin in /sandbox/bzr-
plugins/customlog, then you should set the following:

BZR_PLUGIN_PATH=/sandbox/bzr-plugins

Bazaar discovers plugins installed in the following order of precedence:

1. BZR_PLUGIN_PATH

2. Personal plugins area
3. BZRLIB/plugins

Programming Bazaar

[346]

Implementing the plugin
The following filesystem layout is strongly recommended when implementing
a plugin:

• README: This file contains a general explanation of what the plugin does,
how to install it, and how to use it

• __init__.py: This file contains the initialization code, meta information such
as an appropriate docstring describing the plugin and version number, and
a test suite definition, the Python files, possibly organized in subpackages,
implementing the main functionality of the plugin

• tests/*: This file contains the implementation of the test suite
• setup.py: This file contains the installer script

It makes sense to implement the files in the preceding order, and test the
functionality you are adding gradually. The documentation specifies certain
conventions and writing styles to use in the implementation, in order for the plugin
to integrate well into Bazaar's architecture. It is good to follow the guidelines and
best practices, especially if you intend to share the plugin with others.

Writing the README file
Essentially, this is just a text file and not used by Bazaar itself, but you should always
include a well-written README file. The file is typically named README without a .txt
extension. A common practice is to use the markdown format, which is essentially
an easy-to-read, easy-to-write plaintext format. For example:

This is a simple plugin to define custom log formats.

Installation

The simplest way to install it for a single user is with:

 bzr branch lp:~bzrbook/bzrbook-examples/bzr-customlog ~/.bazaar/
plugins/customlog

For more, real-world examples, see the README files in the plugins included in your
installation, inside the BZRLIB/plugins directory.

Chapter 10

[347]

The syntax of the markdown format is documented at http://
daringfireball.net/projects/markdown/syntax.

Creating __init__.py
A plugin must be a valid Python package, therefore an __init__.py file must exist
in the plugin's directory. The file should contain important meta information about
the plugin that will be used in the various help commands and for determining API
compatibility with the installed version of Bazaar, namely the following:

• Help and documentation texts
• Required minimum API version
• Plugin version
• Register-added functionality in Bazaar's registries
• Register test suite

Setting help and documentation texts
The first statement in the file must be a string literal, commonly named the docstring
in Python. The first line of docstring is used as the description of the plugin when
listing plugins with bzr plugins. The full docstring is used when viewing the detailed
help of the plugin with bzr help plugins/NAME. For example, the docstring in the
example customlog plugin is as follows:

"""Custom log formats to use with ``bzr log --CUSTOMNAME``

TODO: more explanation..."""

The first line of this text will appear in the output of bzr plugins:

$ bzr plugins | grep customlog -A1

customlog 1.0.0dev

 Custom log formats to use with ``bzr log --CUSTOMNAME``

The full docstring text will appear in bzr help plugins/customlog:

$ bzr help plugins/customlog

Custom log formats to use with ``bzr log --CUSTOMNAME``

TODO: more explanation...

Programming Bazaar

[348]

Declaring the API version
The plugin should declare the bzrlib API version it depends on, as follows:

import bzrlib
from bzrlib.api import require_api
require_api(bzrlib, (2, 5, 0))

Bazaar will load the plugin only if the bzrlib API version is equal to or higher than
the specified version. If a plugin cannot be loaded because it requires a newer API
than the current Bazaar installation, the bzr plugins command will show that as
an error. For example:

$ bzr plugins | grep customlog -A1

customlog (failed to load)

 ** Unable to load plugin u'customlog'. It requested API version (3, 5,
0) of module <module 'bzrlib' from '/Library/Python/2.6/site-packages/
bzrlib/__init__.pyc'> but the minimum exported version is (2, 4, 0), and
the maximum is (2, 5, 0)

In this case, the plugin will not be loaded, and the bzr help plugins/NAME
command will not work either.

The right value to use for these settings is the lowest API version with which the
plugin was confirmed to work well. The version of bzrlib corresponds to the
version of Bazaar. Strictly speaking, you can find this version in the output of
the bzr version command, or programmatically with:

$ python -c 'import bzrlib; print bzrlib.version_info[0:3]'

(2, 5, 0)

Declaring the plugin version
The plugin should expose its own version by using the version_info variable.
For example:

version_info = (1, 0, 0, 'dev', 0)

Although it's not a requirement, it's probably a good idea to adopt the same convention
for setting the version, as explained in the __init__.py file of bzrlib itself:

same format as sys.version_info: "A tuple containing the five
components of

the version number: major, minor, micro, releaselevel, and serial. All

values except releaselevel are integers; the release level is 'alpha',

Chapter 10

[349]

'beta', 'candidate', or 'final'. The version_info value corresponding
to the

Python version 2.0 is (2, 0, 0, 'final', 0)." Additionally we use a

releaselevel of 'dev' for unreleased under-development code.

The value of this variable is used, for example, in the output of the bzr plugins
command.

Verifying the loaded module name
Although some plugins may have their entire code in the __init__.py file itself, it
is more common and often more optimal that the main code is separated into other
*.py files. In this case, when loading the modules with the main functionality, we
must use the absolute import path. For example:

def test_suite():
 from bzrlib.plugins.customlog import tests
 return tests.test_suite()

To make sure that Bazaar can resolve the absolute import path bzrlib.plugins.
customlog, it is a common practice to add this simple check:

if __name__ != 'bzrlib.plugins.customlog':
 raise ImportError(
 'The customlog plugin must be installed as'
 ' bzrlib.plugins.customlog not %s'
 % __name__)

In this way, the plugin will work only if installed in the directory customlog,
otherwise Bazaar will raise an exception and abort loading the plugin. The exception
raised is visible in all the Bazaar commands, as the __init__.py file is always
loaded for all plugins.

Registering new functionality
In order to hook into Bazaar's architecture, the plugin must register its methods
appropriately so that Bazaar can discover them. In the following sections, we
will show, with examples, how to register the following types of functionality:

• New commands added
• New log formats added
• Hooks
• Other kind of functionality

Programming Bazaar

[350]

Registering a new command
To register a new command, you must use the method bzrlib.commands.plugin_
cmds.register_lazy. For example:

from bzrlib.commands import plugin_cmds
plugin_cmds.register_lazy(
 'cmd_summary', [], 'bzrlib.plugins.summary.cmd_summary')

The register_lazy method takes three parameters:

• Name of the new Command class
• List of aliases of the command
• Import path of the module where the command class is implemented

In __init__.py, we only register the command so that Bazaar knows about it.

Note that the method to register the command is named register_lazy. At
this point, Bazaar knows that such command exists, but it will not load the
implementation until it is really used. The command will be listed in the output of
bzr help commands, but its implementation will only be loaded when executing
the command itself with bzr summary.

You can view the complete built-in documentation of the register_lazy method
by using the Python shell:

$ python

>>> import bzrlib.commands

>>> help(bzrlib.commands.plugin_cmds.register_lazy)

Registering a new log format
To register a new log format, you must use the method bzrlib.log.log_
formatter_registry.register_lazy. For example:

from bzrlib.log import log_formatter_registry

log_formatter_registry.register_lazy(

 'custom1', 'bzrlib.plugins.customlog.custom1',

 'Custom1LogFormatter',

 'Custom1 log format'

)

Chapter 10

[351]

The register_lazy method takes several parameters:

• A string to uniquely identify the new log format
• The import path of the module where the class is implemented
• The name of the class that extends the LogFormatter class
• An optional help text to briefly describe the log format

In __init__.py, we only register the log format so that Bazaar knows about it.

Notice that the method to register the command is named register_lazy. At this
point, Bazaar knows that such log format exists, but it will not load
the implementation until it is really used. The log format will be listed in the output
of bzr help log or bzr log --help, but its implementation will only be loaded
when executing bzr log with the --custom1 or --log-format=custom1 flags.

The log_formatter_registry.register_lazy method has more optional parameters.
You can view the complete built-in documentation by using the Python shell:

$ python

>>> import bzrlib.log

>>> help(bzrlib.log.log_formatter_registry.register_lazy)

Registering a hook
The method to register a hook depends upon the type of the hook. As explained in
bzr help hooks, the general format of registering hooks is as follows:

yyy.hooks.install_named_hook_lazy("xxx", …)

Here, yyy is the hook class, and xxx is the hook type. For example, BranchHook is a
hook class to plug into the steps performed during branch operations. A hook class
can include several hook types; the BranchHook hook class includes the following,
for example:

• post_commit: This is triggered after a commit to the branch is completed
• post_change_branch_tip: This is triggered after a change to the tip of the

branch was made, by push, pull, commit, or uncommit

For a complete list of hook classes and hook types, see bzr help hooks. In this
section, we will walk through an example by using the BranchHook hook class and
the post_commit hook type.

Programming Bazaar

[352]

By following the preceding pattern, we can register a post_commit hook as follows:

from bzrlib.branch import Branch
Branch.hooks.install_named_hook_lazy(
 'post_commit', 'bzrlib.plugins.appendlog.main',
 'appendlog',
 'Append commit log to a configured file'
)

The install_named_hook_lazy method takes several parameters:

• The hook type and the name of the hook action
• The import path of the module where the hook callable is implemented
• The name of the hook callable (a Python method)
• A label or very brief explanation to show in the listing of hooks with

bzr hooks

See the Creating a hook section in this chapter, for more explanation about hooks.
In the __init__.py file, we only register the hook method so that Bazaar knows
about it.

Notice that the method to register the command is named install_named_hook_
lazy. At this point, Bazaar knows that such a hook exists, but it will not load the
implementation until it is really used. The hook will be listed in the output of bzr
help appendlog or bzr hooks, but its implementation will only be loaded when
the hook is triggered; in this example, by a post_commit action.

You can view the complete built-in documentation of branch hooks by using the
Python shell:

$ python

>>> import bzrlib.branch

>>> help(bzrlib.branch.Branch.hooks)

Registering other kinds of functionalities
If you want to implement other kinds of functionalities not explained here, the best
way to get started is to find the implementation of a similar functionality in the
plugins shipped with Bazaar inside BZRDIR/plugins, or other plugins, or even core
Bazaar subpackages and modules in BZRDIR/*. Using a similar functionality as an
example, try to figure out what needs to be registered in __init__.py, and what can
be put in the other files that are loaded only when necessary.

Chapter 10

[353]

Registering a test suite
Bazaar has a framework to perform self-tests of plugins. In order to enable self-tests
for the plugin, you must define a test_suite method in __init__.py. For example:

def test_suite():
 from bzrlib.plugins.customlog import tests
 return tests.test_suite()

The method must return an instance of the unittest.TestSuite class, and should
include all the unit test cases and test suites to run for the plugin. As usual, in order
to keep __init__.py as fast as possible, the test_suite method body should be as
short as possible, and should only do minimal initialization.

Although we violate the general Python best practice of placing imports near the
top of the file, we have a good reason to do so. Defining the test_suite method is
important to let Bazaar know of the test suites, and the implementation should only
be loaded when we actually want to perform the self-tests.

Performance considerations
Throughout this section, we used the lazy registration methods in all the examples.
The reason is that every time you run a bzr command, Bazaar will load the __
init__.py file of all the Python packages it finds on the plugin path, even if some
plugins might not be used. This is the price of the great flexibility—plugins can
extend and modify all the aspects of Bazaar, and since there is no way to know in
advance what a plugin might do, Bazaar has to load the __init__.py files in order
to let the plugins register their functions and hook into Bazaar's architecture.

By using the lazy registration methods, we make sure that if a plugin is not used
during a given bzr operation, then __init__.py is the only file that gets loaded
and nothing else. When writing __init__.py, you should always be careful to
only load what is essential for the registration of the plugin, and leave the main
implementation in the other files that are only loaded when the plugin is actually
used. Otherwise, the plugin will cause slowness in all bzr commands, even the ones
that don't use the functionality of that plugin.

Following the implementation guidelines, you can implement and organize the main
functionality of the plugin more or less freely within the plugin directory. However,
in terms of coding style and certain aspects of programming in Python, there is a
relatively long list of guidelines, strongly recommended by the documentation at
http://doc.bazaar.canonical.com/developers/code-style.html.

Programming Bazaar

[354]

As this document contains many specificities, which might change over time, it is
best to find the latest version and read it carefully before you begin to work on a
plugin. Here, we will add only a few tips not mentioned in the documentation.

In terms of coding style, PEP8 is the baseline, with a few additional rules explained
in the guidelines. An easy way to create a PEP8-compliant code is by using the pep8
utility. This tool checks all the Python files in the specified directories and their
subdirectories, and warns of all PEP8 violations. It is also a good idea to review and
adjust the settings in your Python IDE, as it may have options to make it easier to
create PEP8-compliant code in the first place, rather than fixing violations later.

Another useful tool to validate the Python code and catch common mistakes is
pyflakes, typically in a package with the same name. It checks all the Python files
in the specified directories and their subdirectories, and warns of the various types
of common Python programming errors and best practice violations.

These are only additional tips. For a detailed list of guidelines, always read the
up-to-date version of the Bazaar coding style guide.

Writing unit tests
Testing is crucial. Some consider untested code broken code. Especially, if you intend
to share your plugin with others, then you should implement unit tests to make it
easy to verify it works correctly.

Bazaar has a selftest command to run unit tests defined in its core packages and
in installed plugins. In order to use Bazaar's testing framework, your environment
and the implementation of the unit tests must meet the following requirements:

• Bazaar uses the testtools Python library to run unit tests. Install it using
your system's package manager or pip.

• Unit tests must be defined in TestSuite instances of the unittest
Python package

• The __init__.py file at the top-level directory of the plugin must
define a test_suite method, which takes no parameters and returns
a TestSuite instance with all the tests to perform when running the
self-tests for the plugin

Chapter 10

[355]

A common way to organize the unit test implementation is as follows:

• Create a subpackage named tests.
• Implement unit tests in the tests/test_*.py file, named appropriately

in a way to reflect what is being tested in each file.
• Create tests/__init__.py with a test_suite method, which builds

a TestSuite object by using all the test suites in the tests/test_*.py
implementations.

• In the top-level __init__.py file of the plugin, delegate the test_suite
method call to the method in tests/__init__.py.

For example, in the customlog plugin, Git-specific unit test suites are defined
in tests/test_git.py, as follows:

from unittest import TestLoader

from bzrlib.tests import TestCaseInTempDir

def test_suite():
 return TestLoader().loadTestsFromName(__name__)

class TestGitLogFormat(TestCaseInTempDir):
 pass

The test suites in this file are loaded by tests/__init__.py as part of the complete
test suite for the entire plugin:

from bzrlib.tests import TestLoader

def test_suite():
 module_names = [__name__ + '.' + x for x in [
 'test_git',
]]
 loader = TestLoader()
 return loader.loadTestsFromModuleNames(module_names)

Programming Bazaar

[356]

The complete test suite is registered inside the top-level __init__.py file, as follows:

def test_suite():
 from bzrlib.plugins.customlog import tests
 return tests.test_suite()

Although it is possible to use doctests, and Bazaar itself uses
doctests in some cases; in general, regular unit tests are preferred
for their better separation and control of the test environment.

By default, the bzr selftest command runs all the unit tests defined within Bazaar.
This could take a long time. To run only some of the unit tests, you can specify the
import path of the plugin by using the -s flag. For example:

$ bzr selftest -s bzrlib.plugins.customlog

bzr selftest: /Users/janos/virtualenv/bzr/bin/bzr

 /Users/janos/virtualenv/bzr/lib/python2.7/site-packages/bzrlib

 bzr-2.5.0 python-2.7.3 Darwin-10.8.0-i386-64bit

--

Ran 1 test in 0.176s

OK

You can shorten bzrlib.plugins in the package name as simply
bp, for example, bzr selftest -s bp.customlog.

To see the list of tests that would be run you can use the --list-only flag.
For example:

$ bzr selftest -s bp.customlog --list-only

bzrlib.plugins.customlog.tests.test_git.TestGitLogFormat.test_format

Bazaar includes several helper classes for performing unit tests on branches.
Unfortunately, these helper classes are not well documented; the best place to
learn about them is by studying the unit tests in similar plugins or reading the
built-in documentation in Python. The most commonly used helper classes are
TestCaseInTempDir and TestCaseWithTransport.

Chapter 10

[357]

Creating setup.py
If you intend to install the plugin system-wide, or share it with other people, you
should consider writing a setup.py script. The Plugin API page in the following
documentation explains how to write this file, and includes a complete example:

http://doc.bazaar.canonical.com/developers/plugin-api.html

Apart from a setup() method at the module scope, the file should define a number
of bzr_* variables, most importantly the following:

• bzr_plugin_name: This specifies the name of the plugin in the same way as
you named the directory of the plugin

• bzr_plugin_version: This is the same as version_info in __init__.py
• bzr_minimum_version: This is the same as the minimum API version

required in __init__.py, for example, (2, 5, 0)
• bzr_commands: If the plugin adds any new commands, this variable specifies

the list of the command names, for example, ['summary']
• bzr_transports: If the plugin adds any new transports, this variable

specifies the list of their names, for example, ['hg+ssh://']

These are only the most commonly used variables to define; for the complete list, see
the documentation. Any missing variables will be given default values.

Finally, the script should call the setup() method of the distutils.core module
with appropriate parameters. It is easiest to use a simple example as a template; for
example, the one included in the documentation of our sample summary plugin:

#!/usr/bin/env python2.6

from distutils.core import setup

bzr_commands = [
 'summary',
]
bzr_plugin_version = (1, 0, 0, 'dev', 0)
bzr_minimum_version = (2, 5, 0)
if __name__ == '__main__':
 setup(
 name='summary',
 description='Show brief summary of a branch and its files',
 keywords='plugin bzr summary',
 version='1.0.0dev0',
 url='lp:~bzrbook/bzrbook-examples/bzr-summary',
 download_url='http://launchpad.net/'

Programming Bazaar

[358]

 '~bzrbook/bzrbook-examples/bzr-summary',
 license='Creative Commons',
 author='Janos Gyerik',
 author_email='info@janosgyerik.com',
 long_description="""
 Show brief summary of a branch and its files
 """,
 package_dir={
 'bzrlib.plugins.summary': '.',
 'bzrlib.plugins.summary.tests': 'tests'
 },
 packages=[
 'bzrlib.plugins.summary',
 'bzrlib.plugins.summary.tests'
]
)

To test that your setup.py file is correct and working, try to install it in your
user directory with the following command:

$ python setup.py install --user

The user directory may depend upon your system; usually it is $HOME/.local/lib/
python2.6/site-packages, and thus the plugin will be installed in the directory
$HOME/.local/lib/python2.6/site-packages/bzrlib/plugins. However, if
bzr is not installed in the user's PATH, then you have to set the BZR_PLUGIN_PATH
variable so that Bazaar includes this custom plugins directory when searching for
plugins. For example:

$ export BZR_PLUGIN_PATH=$HOME/.local/lib/python2.6/site-packages/bzrlib/
plugins

$ bzr summary

Browsing existing plugins
Before you begin to reinvent the wheel, it is probably a good idea to have a look at
what exists already. There are two plugin listings in the documentation:

• Bazaar Plugins Guide: http://doc.bazaar.canonical.com/plugins/en/
• Bazaar plugins registry: http://wiki.bazaar.canonical.com/

BzrPlugins

The list on the Plugins Guide is generated based upon the lp:bzr-alldocs project,
while the plugins registry is a wiki page. The Plugins Guide lists only the commonly
used plugins; for a complete list of registered plugins, see the plugin-registry.ini
file inside the lp:bzr-alldocs project.

Chapter 10

[359]

Registering your plugin
If you would like to share your plugin with others, it is a good idea to register it
in the official plugin registry.

It is important to clarify the license of the plugin. Although it is recommended to
use the same license as Bazaar itself, GPL v2, it is not mandatory.

Before registering the plugin, you should ensure its quality. Make sure to review
the following points:

• It has a well written README file
• It has a well written __init__.py file
• It has enough unit tests
• It works well
• It has a good documentation
• Verify that there are no coding style violations by using the pep8 tool
• Verify that there are no coding practice violations by using the pyflakes tool
• Review the Bazaar Code Style Guide, and make sure the plugin is compliant

That's not a short list, but if you are to present your work to a wide audience and if it
is to pass the rigorous checks of the Plugins Guide maintainers, it had better be good.

Registering a plugin involves branching from the lp:bzr-alldocs project, editing
the main registry file listing all the plugins, and proposing the branch for merging:

1. Branch from lp:bzr-alldocs with bzr branch lp:bzr-alldocs
2. Edit plugins-registry.ini—read the instructions carefully at the top,

and add a section for your plugin appropriately
3. Push your changes to a personal branch with bzr push lp:~youruser/bzr-

alldocs/added-plugin-NAME

4. Propose the branch for merging on Launchpad

A project maintainer will review your merge proposal and plugin, and possibly
get back to you with questions. When accepting the merge proposal, the project
maintainer may decide to add the plugin to a category listed on the Plugins
Guide page, so that the plugin will appear on the following page after the site
files are regenerated:

http://doc.bazaar.canonical.com/plugins/en/

Programming Bazaar

[360]

Creating a hook
Hooks provide an interesting way to customize the behavior of Bazaar. Many Bazaar
operations are associated with one or more hook points, and by registering a custom
method to a hook point, the method is automatically triggered when the associated
Bazaar operation is performed. Common examples are the pre-commit and post-
commit hook points, which are triggered right before or after a commit operation
in a branch, respectively.

Hook points, hook classes, and hook types
A hook point corresponds to an event in a version control operation. You can
register a method to a hook point to be called back when the associated event fires.
Hook points have the following attributes:

• Name
• Description (documentation)
• Version number, when the hook point was introduced
• Version number (optional) when the hook point was deprecated
• List of registered callback methods (optional)

Hook points are created in various parts of bzrlib. Based on their functionality,
hook points can be grouped into hook classes. Hook classes in bzrlib are derived
from the common parent Hooks class, and each hook class registers a number
of hook types. For example, the BranchHooks class registers hook types such as
post_commit, post_change_branch_tip, and the MergeHooks class registers hook
types, such as post_merge. A hook point is identified by a hook class and a hook
type registered by that class.

Hook classes keep a registry of the hooks they have registered, called a hook
dictionary. In turn, all the hook dictionaries are created by all the hook classes
form the global hooks registry within Bazaar. This is important to understand in
order to locate the implementation of the hook points listed in bzr help hooks.

For example, the output of bzr help hooks shows a hook point MergeHooks/
post_merge, but it is not quite clear where to find the right module name and how to
register callbacks to this hook point. To find this piece of information, you can look at
the registry of hooks by using the following code snippet:

import bzrlib.hooks
for item in bzrlib.hooks.known_hooks.items():
 print item

Chapter 10

[361]

This will print out a tuple for each hook class. For example:

(('bzrlib.branch', 'Branch.hooks'), <class 'bzrlib.branch.
BranchHooks'>)
(('bzrlib.commands', 'Command.hooks'), <class 'bzrlib.commands.
CommandHooks'>)
(('bzrlib.config', 'ConfigHooks'), <class 'bzrlib.config._
ConfigHooks'>)
(('bzrlib.merge', 'Merger.hooks'), <class 'bzrlib.merge.MergeHooks'>)
... many more

Each item is in the form ((MODULE, NAME), CLASS), and it uniquely identifies a
hook class and its associated hook dictionary:

• MODULE: This specifies the name of the Python module that registered the
hook dictionary

• NAME: This specifies the name of the hook dictionary
• CLASS: This specifies the hook class derived from the Hooks parent class of

all hooks

This is crucial information when registering hooks.

Registering hooks
As already explained when creating a plugin, hooks should be registered in
the __init__.py file of the plugin.

The general form for registering a hook is as follows:

from MODULE import NAME
NAME.install_named_hook_lazy(ARGS)

Here, MODULE and NAME are as printed by the snippet in the previous section
(based on items in bzrlib.hooks.known_hooks), and ARGS are as explained
earlier when creating plugins. For example:

from bzrlib.branch import Branch
Branch.hooks.install_named_hook_lazy(
 'post_commit',
 'bzrlib.plugins.appendlog.hooks',
 'post_commit_hook',
 'Append commit statistics to a log file.'
)

Programming Bazaar

[362]

Activating hooks
Registration alone does not necessarily "activate" a hook. For example, although
the email plugin registers several callback methods that are triggered by the
post_commit and post_change_branch_tip hook points, these methods do
nothing unless the appropriate configuration variables are present in the branch
configuration. Read the documentation of the relevant hook to find out how to
really activate it. For example, the appendlog sample plugin we introduced
earlier requires the post_commit_log configuration value.

An easy way to set values in the branch configuration is by using the bzr config
command. For example:

$ bzr config name=value

To see all the currently set configuration values, simply run bzr config without
any parameters.

References
For more detailed information on programming Bazaar, dive into the developer
documentation pages at http://doc.bazaar.canonical.com/developers/.

The following pages are especially useful:

• http://doc.bazaar.canonical.com/plugins/en/plugin-installation.
html: This URL provides information about plugin installation, plugin
location, running self-test, and viewing plugin help

• http://doc.bazaar.canonical.com/plugins/en/plugin-development.
html: This URL provides information about plugin development and an
overview of the main steps

• http://doc.bazaar.canonical.com/developers/plugin-api.html:
This URL provides information about plugin API, metadata, and
setup.py examples

• http://doc.bazaar.canonical.com/developers/code-style.html:
This URL provides information about the Bazaar Code Style Guide

• http://doc.bazaar.canonical.com/developers/testing.html: This
URL provides information about the testing guide, running selected unit
tests, writing tests, and shell-like tests

• http://doc.bazaar.canonical.com/beta/en/user-guide/hooks.html:
This URL provides information about how to use hooks, register them,
and examples on merging hooks

Chapter 10

[363]

Summary
In this chapter, we introduced the basics of interacting with Bazaar programmatically
in Python, using the most central objects in its architecture. You should have a good
understanding of what plugins and hooks are, what they can do and how they work,
and how to create them from scratch or using another plugin as reference.

The step-by-step guide to create plugins should give you a good idea and a
straightforward process to go about creating your own plugins and extending
Bazaar in various ways to better suit your needs.

We have covered a lot of ground in this book. By now, you should have a solid
understanding of the core principles of version control, as well as the unique
advanced features of Bazaar. There is a simple intuition that is consistently behind
all the operations in Bazaar, which should enable you to perform from simple to
advanced operations easily and confidently. You can put any project under version
control right now and start tracking your changes, collaborate with others in a
peer-to-peer, centralized-style, or decentralized-style workflow, or any custom
workflow that you can design by yourself to better suit your needs. You should
be able to combine both the command-line and the graphical interfaces effectively,
using whichever is best suited for a purpose. You can integrate Bazaar with
collaborative tools, such as Launchpad and Trac, and even use it together with
other version control systems, such as Subversion or Git.

Index
Symbols
--allow-writes 145, 188
--branch flag 278
.bzr directory 35, 75
--checkout flag 278
--directory DIR 145, 188
--directory parameter 144
--git flag 344
--help flag 76, 188
-h flag 76, 188
__init__.py file 346

creating 347
--limit N option 70
-l N option 70
--mail-to option 208
-m ARG option 70
--match=ARG option 70
--match-author=ARG option 70
--match-message=ARG option 70
--no-tree flag 154
- option 73
--port PORT 145, 188
-q flag 76
--quiet flag 76
-r ARG option 69
--remove flag, aliases 267
--reprocess option 126
--revision=ARG option 69
--revision option 178
-r option 178
--tree flag 278
--usage flag 76
-v flag 76
--verbose flag 76
-v option 69

A
account, Launchpad

configuring 230
creating 229
setup, testing 232, 233
SSH public keys, configuring 230, 231

aliases
about 266, 267
removing 267

API version
declaring 348

appendlog plugin
using 344, 345

author information
configuring 36

automatic gatekeeper workflow
about 218
Patch Queue Manager (PQM) 218
revision history graph 219

B
Bazaar

about 16
backup files 74, 75
bug trackers, configuring 257
CentOS 18
checkout 173
command-line interface, using 22
configuring 36
data, storing in filesystem 34, 35
Debian 18
documentation, URL 77
explorer 17
fastimport 17

[366]

Fedora 18
git 17
GNU/Linux distribution 17
graphical user interface, using 23, 24
help 27, 28
in shared hosting environment 21
installing 17
installing, pip used 18
integrating, into Redmine 251, 252
integrating, into Trac 253
interacting with 22
Mac OS X 20, 21
multiple interfaces, using together 26
objects, accessing 336, 337
openSUSE 18
plugins 17
qbzr 17
Red Hat 18
svn 17
Ubuntu 18
uninstalling 26
upgrading, to latest version 26
using, in centralized mode 172
using, programmatically 335, 336

Bazaar configuration
author information, configuring 36
default editor, configuring 37
options 38

Bazaar objects, accessing
about 336, 337
branch configuration values, accessing 338
branch data, accessing 337
revision contents, accessing 339, 340
revision history, accessing 338
revision info formatting, log format

used 340
bind command 184
bound branches

about 172, 180
branch, binding to 181
branch binding to, bzr bind command

used 181
local commit performing, bzr bind

command used 182, 183
local commits, using 182, 183
master branch, unbinding from 180

bound flag 172

branch command
using 108

branches
about 32, 86
backing up 193, 194
basic branch information, viewing 109
Bazaar Explorer, using 98, 100
branching and merging 99
bugfix branch, merging 103
command line, using 98, 99
comparing 89, 110
configuration values, accessing 338
content, merging 248, 249
converting, to lightweight checkout 278
creating 88
creating, on central server 189
data, accessing 337
data, storing 96
dicing 155, 156
diverged branches 95
example project, getting 99
feature branch, creating 101
feature branches 91
merging 89
mirroring 90
multiple branches, working with 184
multiple diverged branches 86, 87
multiple versions, managing 94
new branch, starting 102, 103
older version based, creating 109
parent branch 95
shared repository, using 96, 97
sharing, over network 138
slicing 155, 156
source branch 95
switching, core commands used 280, 281
switching, lightweight checkout used 283
switching, preparing for 280
switching, switch used 282
target branch 95
tasks, switching between 92
tip 94
topic branches 91
unrelated branches 88
uses 88
uses, in solo project 90
using, without working tree 152

[367]

with linear history 86
with non-linear history 87, 88
working on 102
working with, multiple computers

used 192, 193
branches, accessing

over SSH 185
branches, comparing

Bazaar Explorer, using 114
branches tree, viewing 114
command line used 110
differences between branches,

viewing 112-116
missing revisions between branches,

viewing 111-116
branches, creating on central server

about 189
shared repository, creating without

working trees 190
without working tree 191

branches, merging
aborting 119
about 116
cherry-picking 128
committing 118
completing 118
conflicts, resolving 126
content conflicts, resolving 124, 125
from multiple branches 130
reloading 125
resolving 119
revision numbers 128, 130
revisions, range 127
revision subset, merging 126
text conflicts, resolving 120-123
three-way merge 117
up to specific revision 126, 127

branches, mirroring
about 130
from another branch 131
from current branch 132, 133
pull operation 90
push operation 90

branches, older version based
Bazaar Explorer, using 109
command line, creating 109

branches, sharing
bzr serve used 145
different SSH client used 145
distributed filesystem used 140, 141
individual SSH accounts used 142
individual SSH accounts, using

with SFTP 143
inetd used 146
over HTTP 147
over HTTPS 147
over SSH 142
shared restricted SSH account,

used 143, 144
SSH host aliases used 145

branches, sharing over network
remote branches, specifying 138, 139
remote branches, using through

proxy 139, 140
URL parameters, using 139

BranchHook hook class
post_change_branch_tip 351
post_commit 351

browse code pages 249
bugfix branch

Bazaar Explorer, using 104, 105
command line, using 104
merging 103

Bugfix branch 243
bug trackers

advanced integration with 260
linking to 260

bug tracking system, Launchpad
about 250
bugs, entering 250
Linking commits to bug trackers

section 251
Bugzilla

linking to 259
bzr

associating, with Launchpad 232
bzr add command 45
bzr branch REMOTE_URL

[TO_LOCATION] 148
bzr cdiff command 63
bzr checkin. See bzr commit command
bzr ci. See bzr commit command

[368]

bzr_commands 357
bzr commit command 77
bzr del. See bzr remove command
bzr di. See bzr diff command
bzr dif. See bzr diff command
bzr diff 156
bzr diff command 77
bzr diff --new REMOTE_URL 148
bzr dpush 326
bzr-fastimport plugin

about 296
installing 328, 329

bzr-git plugin
about 296
installing 315

bzr help command 28
bzr help some_command 28
bzr help topics 28
bzr info command 109, 190
bzr info REMOTE_URL 148
bzr init-repository command 98
bzrlib

using, within bzr 336
locating 342

bzrlib.branch module 337
bzrlib.commands.plugin_cmds.register_lazy

method 350
bzrlib.revision module 338
bzr log command 68, 72
bzr log -r.. 79
bzr log -r-1 79
bzr log -r-2 79
bzr log -r2.. 79
bzr log -r2..4 79
bzr log -r..4 79
bzr log -rbefore$3 78
bzr log -rbefore$date$today 78
bzr log -rdate$2013-02-17 78
bzr log -rdate$2013-02-17,04$01$12 78
bzr log -rdate$yesterday 78
bzr log REMOTE_URL 148
bzr log -rlast$1 79
bzr log -rlast$2 79
bzr log -rtag$v2.6 78
bzr merge 156
bzr merge REMOTE_URL 148

bzr_minimum_version 357
bzr missing 156
bzr missing REMOTE_URL 148
bzr move. See bzr mv command
bzr mv command 77
bzr plugins command 343, 348
bzr_plugin_version 357
bzr pull command 131, 156
bzr pull REMOTE_URL 148
bzr push command 82, 132, 156
bzr push REMOTE_URL 148
bzr qlog REMOTE_URL 148
bzr reconfigure command 191
bzr remerge command 125
bzr remerge [FILE...] 148
bzr remove command 77
bzr rename. See bzr mv command
bzr rm. See bzr remove command
bzr serve

used, for sharing branches 145
using 188

bzr shelve command 275
bzr st. See bzr status command
bzr stat. See bzr status command
bzr status command 43, 77
bzr-svn plugin

about 296
installing 300

bzr tags 77
bzr tag v2.6 77
bzr tag v2.6 --delete 77
bzr tag v2.6 -r117 77
bzr tag v2.6 -r119 --force 77
bzrtools plugin 63, 113
bzr_transports 357
bzr uncommit command 268
bzr unshelve command 273
bzr update command 177
bzr_* variables

bzr_commands 357
bzr_minimum_version 357
bzr_plugin_name 357
bzr_plugin_version 357
bzr_transports 357

bzr verify-signatures command 286
bzr whoami command 37, 287

[369]

C
CDE

about 227
Launchpad 228
Loggerhead 228
Redmine 228
Trac 228

cdiff command 113
centralized mode

about 166, 167
Bazaar, using in 172
centralized workflow 167
using, tips for 179

Centralized version control systems. See
CVCS

centralized workflow
about 167
advantages 170
central branch, checking out from 167
changes, committing 168, 169
changes, incorporating 168
core operations 166
disadvantages 171, 172
update conflicts, handling 170
update operation 169, 170

centralized workflow, core operations
about 166
checkout operation 166
commit operation 166
update operation 166

central server
branches, creating on 189
bzr serve, using 188
bzr serve, using over inetd 189
setting up 184
SSH server, using 185

changes, undoing
Bazaar Explorer used 58, 59
command line used 58

Change your SSH keys page 231
checkout

about 173
Bazaar Explorer used 174-176
command line used 173, 174
converting, to lightweight checkout 277
updating 176

checkout operation 166
checkout, updating

about 176
Bazaar Explorer used 177
command line used 177
old revision, reusing 178

cherry-picking 128
CHKInventoryDirectory object 340
CHKInventoryRepository object 337
code reviews 164
collaboration

with others 136
Collaborative Development Environment.

See CDE
commander 215
Commander/Lieutenant model 214
command-line client (CLI) 35
command-line interface

about 76
commands, common behavior 76
commands, shorter aliases 77
common flags 76
quick references 77
using 22

command parameter 144
commit log 30
commit operation 166
commits

about 75
undoing 267, 268

committer 30
committing 30
Conflicts view 123
content conflict 124
control_url 337
criss-cross merges

handling 159
customlog plugin

using 344
CVCS 13, 14

D
Decentralized VCS. See DVCS
default editor

configuring 37

[370]

developer documentation pages
URL 362

Dictator/Lieutenant model 214
Diff button 71
diff command 80
directory

Bazaar Explorer, using 40
command line, using 39, 40
managing, version control operations

used 39
distributed filesystem

used, for sharing branches 140, 141
distributed mode

about 195-197
collaborators 197
collaborators, write access 198
distributed mode 199
feature branches, encouraging 199, 200
mainline branch 198
revision history 200-202

Distributed Revision Control System
(DRCS). See DVCS

Distributed VCS. See DVCS
Distributed version control systems. See

DVCS
distributed workflow

about 195
selecting 224

diverged branches 95
dumb servers 139
DVCS 13-15

E
easy_install 21
e-mail interface

using, to handle merge proposal 247, 248
email plugin

commit emails, enabling 291
configuration, testing 291, 292
installing 290

explorer 17

F
fastimport 17
feature branch

about 91
Bazaar Explorer, using 101
code reviews 164
command line, using 101
creating 101
merging 162, 163
merging, in lock-step 163

files and directories
Bazaar Explorer, using 44, 45
command line, using 43
status, checking 42

files, deleting
Bazaar Explorer, using 57
command line, using 57

files, editing
Bazaar Explorer, using 60, 61
command line, using 60

files, ignoring
Bazaar Explorer, using 54-56
checkpoint 56
command line, using 54

files, moving. See files, renaming
files, renaming

Bazaar Explorer, using 68
checkpoint 68
command line, using 66, 67

files, restoring from past revision
Bazaar Explorer, using 72
command line, using 71

fix-c branch directory 111
foreign branches

about 296
issues 299

G
get_config() 337
get_history(branch.repository) 338
get_revision() method 338
get_summary() 338
git 17
git-svn plugin

limitations 314
Git, through Bazaar

about 315
branches, merging 322, 323
branching from 317

[371]

bzr-git, installing 315
bzr-git plugin, limitations 326
bzr-git plugin, remarks 327
example Git repository, using 316
Git revision ids, preserving 319, 320
local branches, merging 324, 326
merged branches, preserving 320
protocols and URL schemes supported 316
pulling from 321
pushing to 322
revisions, preserving 320
version control metadata, preserving 318

GNU/Linux
Bazaar, installing 17
Bazaar, uninstalling 26

GnuPG
URL 285
used, for signing revisions 284

GNU Privacy Guard. See GnuPG
graphical user interface (GUI)

about 36
using 23, 24

H
HEAD. See tip
help command 347
help system

Bazaar 27, 28
hook

activating 362
CLASS 361
classes 360
creating 360
dictionary 360
MODULE 361
NAME 361
point 360
registering 351, 361

hook configuration
commit emails, enabling 291
e-mail plugin, customizing 292
email plugin, installing 290
example, setting up 290
testing 291
to send e-mail on commit 290

hook points 290

HTTP
branches, sharing over 147

HTTPS
branches, sharing over 147

human gatekeeper workflow
about 202
Bazaar hosting site, using 206
branch, reusing 213, 214
branch URL, sharing 206
Commander/Lieutenant model 214
Dictator/Lieutenant model 214
directive, merging without revision

content 210
guidelines, setting to accept merge

proposals 204, 205
merge directive, creating 208, 209
merge directive, merging from 209, 210
merge directive, sending 207, 208
merge proposal, accepting 212, 213
merge proposal, creating 206
merge proposal, rejecting 211
overview 203, 204
peer-to-peer workflow, switching

from 215
role 205

hunk 270

I
individual SSH accounts

using 142
using, with SFTP 143

inetd
used, for sharing branches 146

installation
Bazaar, pip used 18
Loggerhead 261, 262
other installation methods 19
Python-based installers 19
standalone installer 19

installation, plugin
about 296
in Linux 298
in Mac OS X 297
in Windows 297
Pip used 298

install_named_hook_lazy method 352

[372]

K
karma system, Launchpad 251

L
last_revision() 337
Launchpad

about 228
account, configuring 230
account, creating 229
bug tracking system 250
bzr, associating with 232
components 228
hosting projects, URL 236
karma system 251
linking to 259
merge proposals 243
online tour, URL 229
personal branches, hosting 233
private projects 251
project, hosting 236
setup, testing 232, 233
SSH public keys, configuring 230, 231
tips, for using 251
URL 16, 229

lightweight checkouts
about 174, 276
branch, converting to 278
checkout, converting to 277
converting, from 278
creating 276
used, for switching branches 283

linear history
single branch with 86

line-origin detection 159
Linking commits to bug trackers section

about 256
bug trackers, configuring 257, 258
bug trackers, linking to 260
Bugzilla, linking to 259
Launchpad, linking to 259
performing 256
public bug trackers, linking to 259
Trac, linking to 260

Linux
plugin, installing 298

local branch
about 136
creating, without working tree 152

local mirror
used, for updating mainline

branch 220, 221
local mirror branches

creating 150
shared repository used 150
updating 150, 151
using 148, 149

log format
used, for formatting revision 340

Loggerhead
about 228, 249, 261
installing 261, 262
running, in production 264
running locally 262, 263

loom plugin 282

M
Mac OS X

Bazaar, installing 20, 21
Bazaar, uninstalling 26
plugin, installing 297

mainline branch
about 219, 243
existing checkout, re-using 223
existing local mirror, re-using 221, 222
updating, bound branch used 222
updating, new checkout used 222, 223
updating, new local mirror used 220, 221
updating, push operations used 220
updating, ways for 219

mainline revisions 200
master branch 172, 275
merge approved command 248
merged branches

Bazaar Explorer, using 107, 108
command line, using 106
revisions in log, viewing 106

merge directive
creating 208, 209
merging from 209, 210
sending 207, 208
without revision content 210

[373]

merged revisions 200
merge proposals

accepting 212, 213
acceptance guidelines, setting 204, 205
creating 206
rejecting 211, 212

merge proposals, creating
Bazaar hosting site used 206

merge proposals, Launchpad
about 243
approving 246, 247
creating 243, 244
editing 245, 246
handling, e-mail interface used 247, 248
merge approved command 248
merge rejected command 248
rejecting 246, 247
review abstain command 248
review approve command 248
review disapprove command 248
reviewer NAME command 248
review needs-fixing command 248
review needs-info command 248
review resubmit command 248
viewing 245, 246

merge rejected command 248
message 30
M option 73

N
non-linear history

branches with 87, 88
non-project branches. See personal

branches, Launchpad

P
parent branch 95, 150
Patch Queue Manager. See PQM
path component 186
peer-to-peer workflow 215, 216
personal branches, Launchpad

deleting 236
hosting 233, 234
uploading 234, 235
URL 234
using 235

pip
Bazaar, uninstalling 26
used, for installing Bazaar 18

plugin
__init__.py file, creating 347
API version, declaring 348
appendlog plugin, using 344
creating 342
creating, steps for 342
customlog plugin, using 344
directory, creating 345
documentation texts, setting 347
example plugins, using 343
existing plugins, browsing 358
functionalities, registering 352
guide, URL 358
help texts, setting 347
hook, registering 351, 352
implementing 346
installation 296
limitations 299
loaded module name, verifying 349
naming 345
new command, registering 350
new functionality, registering 349
new log format, registering 351
README file, writing 346
registering 359
registry, URL 358
summary plugin 343
test suite, registering 353
version, declaring 348

post_change_branch_tip hook 291, 351
post_commit 351
post_commit hook 291
PQM 218, 219
project

cloning 82
project, Launchpad

branch details, editing 242, 243
branch details, viewing 242, 243
branches, uploading 238
branches, viewing 238, 239
creating 237
deleting 251
focus branch, setting 239-241
hosting 236

[374]

own branches, viewing 239
private projects, hosting 251
renaming 251
Sandbox site, using 236
series, using 242

protocol overhead 298
public bug trackers

linking to 259
pull operation 90
Push button 152
push operations

about 90
used, for updating mainline branch 220

push-sample branch 132
PuTTY 145

Q
qbzr 17
qdiff command 113

R
range of revisions

specifying 79
RCS 13
README file

about 346
writing 346

Redmine
about 228
Bazaar, integrating into 251, 252
integrating, into Bazaar 252

Register a project on Launchpad page 237
register_lazy command 350
register_lazy method 350, 351
remote branches

about 147
local mirror branches used 148, 149
operations 148
specifying 138, 139
URL parameters used 139
using, through proxy 139, 140
working with 136, 137

remote mirror branches
creating 151
shared repository, using 152
updating 152

using 151
remove command 254
rename operation 66
repository 31, 337
revert command

about 178
output 73

review abstain command 248
review approve command 248
review disapprove command 248
reviewer NAME command 248
review needs-fixing command 248
review needs-info command 248
review resubmit command 248
Revision Control System. See RCS
revision history

Bazaar Explorer, using 70, 71
command line, using 68, 70
viewing 68

revision numbers 128
revisions

about 30
Bazaar Explorer, using 50-52
command line, using 49, 50
contents, accessing 339, 340
formatting, log format used 340
history, accessing 338
new revision, committing 178
new revision, recording 49
one revision to next, differences viewing 82
range of revisions, specifying 79
revision and working tree, differences

viewing 80, 81
single revision, specifying 78, 79
specifying 78
two revisions, differences viewing 80, 81

revisions, signing
commits range, signing 288
existing revisions, signing 286, 287
GnuPG used 284
key, configuring 285
new commits, automatic signing 288
sample repository, setting up 285
signatures, verifying 286

RevisionTree object 340
revno() 337
R option 73

[375]

S
sample-for-pull branch 131
Sandbox 236
SCM 13
selftest command 354
setup() method 357
setup.py

creating 357, 358
SFTP

using 188
shared mainline workflow. See mainline

branch
shared repository

about 34, 154, 299
using 96
working tree, reconfiguring 154

shared restricted SSH account
using 143, 144

shelving changes
about 269
changes, putting on shelf 270-272
listing, command for 273
restoring 274
revert command 275
using, to commit partial changes 275
using, to revert partial changes 275
viewing, command for 273

single revision
specifying 78

smart server
about 185
using, over SSH 185

source branch 95
SSH

branches, sharing over 142
SSH client

using 145
SSH host aliases

using 145
SSH public keys, Launchpad

comment part 231
configuring 230, 231
type 231

SSH server
individual SSH accounts, using 186
SFTP, using 188

shared restricted SSH account,
using 186, 187

smart server, using over 185
using 185

stacked branches
using 283, 284

stacked-on branch 283
standalone tree 34
status command

about 49, 127, 268
output 74

Status view 45
subversion, through Bazaar

advantages 300
branches 302
branches, merging 308, 309
branching 303
bzr-svn, installing 300
bzr-svn, remarks 314
checkout from 303
committing to 307
example Subversion repository,

using 301, 302
file IDs, preserving 305
git-svn, limitations 314
lightweight checkouts, using 313
local branches, merging into 309-311
locations, binding to 312
locations, unbinding to 312
logs, browsing 313, 314
metadata, preserving 304
original revision numbers, preserving 304
protocols and URL schemes supported 301
pulling from 306
pushing to 307
revision, preserving 305
updating from 306
versioned properties, preserving 305

summary plugin
using 343, 344

svn 17
switch command 282

T
tags

using 77, 78

[376]

target branch 95
tests/* file 346
three-way merge

performing 117
timestamp 30
tip 86
topic branches 91
Trac

about 228
Bazaar, integrating into 253
linking to 260

Trac Bazaar integration
Bazaar branches, browsing 254
help 255
plugin, enabling for single project 254
plugin, enabling globally 253

Trac Bazaar plugin 253
trac+bzr 253
trunk 94

U
uncommit operation 267, 269
uninstalling

Bazaar 26
unit tests

writing 354-356
unrelated branches 88
update command 178
update operation 166
user interfaces

about 35
Bazaar Explorer, using 36
command-line client (CLI) 35

V
VCS

about 7, 13
branching 10-12
changes log, viewing 8, 9
merging 10-12
project, reverting to previous state 8
revisions differences, viewing 9, 10

VCS, migrating between
about 328
Bazaar data, exporting 330
bzr-fastimport, installing 328

fast-import files, querying 332
fast-import, filtering 332
Git data, exporting 329
other VCS data, exporting 331
subversion data, exporting 329
version control data, exporting 328, 329
version control data, importing 331, 332

version control
Bazaar Explorer, using 46-48
command line, using 45, 46

version control operations
about 38
Bazaar Explorer, using 41, 44
command line, using 40-46
differences in changed files, viewing 61, 62
directories status, checking 42
directory, managing 39
files, adding 45
files, deleting 56
files, editing 60
files from past revision, restoring 71
files, ignoring 53
files, moving 66
files, renaming 66
files status, checking 42
new revision, recording 49
revert operation 58
revision history, viewing 68

version control system. See VCS
viewing differences

Bazaar Explorer, using 64, 65
between any two two revisions 81
between revision and working tree 80, 81
between two revisions 80
checkpoint 65
command line, using 62, 63
from one revision to next 82
in changed files 61, 62

virtualenv environment 298

W
weave algorithm 159
Windows

Bazaar, installing 19
Bazaar, uninstalling 26
plugin, installing 297

[377]

workflows
branches, merging from 158, 159
common trunk, using 161
criss-cross merges, handling 159
feature branches, using 161
features 162
history, viewing 160, 161
implementing 156
independent personal branches used 157

working tree
about 32, 33
core commands, used for switching

branches 280, 281
creating 153
example, setting up 279
existing working tree, removing 191
in shared repository, reconfiguring 154
lightweight checkout, used for switching

to branches 283
local branch, creating without 152
remote branches, creating without 154
removing 153
reusing 278
shared repository creation, without 190
shared repository reconfiguring,

without 190
switch branches, preparing for 280
switch, used for switching branches 282

Thank you for buying
Bazaar Version Control

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Mastering Redmine
ISBN: 978-1-849519-14-4 Paperback: 366 pages

A comprehensive guide with tips, tricks and best
practices, and an easy-to-learn structure

1. Use Redmine in the most effective manner
and learn to master it

2. Become an expert in the look and feel with
behavior and workflow customization

3. Utilize the natural flow of chapters, from
initial and simple topics to advanced ones

gnuplot Cookbook
ISBN: 978-1-849517-24-9 Paperback: 220 pages

Over 80 recipes to visually explore the full range
of features of the world's preeminent open source
graphing system

1. See a picture of the graph you want to make
and find a ready-to-run script to produce it

2. Working examples of using gnuplot in your
own programming language... C, Python,
and more

3. Find a problem-solution approach with
practical examples enriched with good pictorial
illustrations and code

Please check www.PacktPub.com for information on our titles

GNU Octave Beginner's Guide
ISBN: 978-1-849513-32-6 Paperback: 280 pages

Become a proficient Octave user by learning this
high-level scientific numerical tool from the group up

1. The easiest way to use GNU Octave's power
and flexibility for data analysis

2. Work with GNU Octave's interpreter – declare
and control mathematical objects like vectors
and matrices

3. Rationalize your scripts and control
program flow

4. Extend GNU Octave and implement
your own functionality

Gnucash 2.4 Small Business
Accounting: Beginner's Guide
ISBN: 978-1-849513-86-9 Paperback: 324 pages

Manage your accounts with this desktop financial
management application

1. Help small businesses maintain their books
of accounts using feature-packed, easy-to-use
GnuCash

2. Written by an author who has "been there,
done that": who ran two small businesses,
understands the needs of small businesses,
and guides you to effectively use GnuCash

4. Instead of simply describing the features of the
software, this book focuses on how to use this
software to plan, get the right numbers, and
make the decisions to reach your business goals

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
	Version control systems
	Reverting a project to a previous state
	Viewing the log of changes
	Viewing the differences between revisions
	Branching and merging
	Acronyms related to version control

	Centralized version control systems (CVCS)
	Distributed version control systems (DVCS)
	What is Bazaar?
	Installing Bazaar and its plugins
	GNU/Linux
	Ubuntu, Debian, and derivatives
	Red Hat, Fedora, CentOS, and derivatives
	openSUSE and derivatives
	Installing Bazaar using pip
	Other installation methods

	Windows
	Mac OS X
	Bazaar in a shared hosting environment

	Interacting with Bazaar
	Using the command-line interface
	Using the graphical user interface
	Using the two user interfaces together

	Upgrading Bazaar to the latest version
	Uninstalling Bazaar
	Getting help
	Summary

	Chapter 2: Diving into Bazaar
	Understanding the core concepts
	Revision
	Repository
	Branch
	Working tree
	Putting the concepts together
	Storing Bazaar's data in the filesystem

	Introducing the user interfaces
	Using the command-line interface
	Using Bazaar Explorer

	Configuring Bazaar
	Configuring the author information
	Configuring the default editor
	Other configuration options

	Performing the basic version control operations
	Putting a directory under version control
	Using the command line
	Using Bazaar Explorer

	Checking the status of files and directories
	Using the command line
	Using Bazaar Explorer

	Adding files to version control
	Using the command line
	Using Bazaar Explorer

	Recording a new revision
	Using the command line
	Using Bazaar Explorer

	Ignoring files
	Using the command line
	Using Bazaar Explorer
	Checkpoint

	Deleting files
	Using the command line
	Using Bazaar Explorer

	Undoing changes
	Using the command line
	Using Bazaar Explorer

	Editing files
	Using the command line
	Using Bazaar Explorer

	Viewing differences in changed files
	Using the command line
	Using Bazaar Explorer
	Checkpoint

	Renaming or moving files
	Using the command line
	Using Bazaar Explorer
	Checkpoint

	Viewing the revision history
	Using the command line
	Using Bazaar Explorer

	Restoring files from a past revision
	Using the command line
	Using Bazaar Explorer

	Putting it all together
	Making different kinds of changes
	Understanding the backup files created by Bazaar
	Understanding the .bzr directory
	How often to commit?

	Beyond the basics
	Mastering the command line
	Common flags
	Common behaviour in all the commands
	Using shorter aliases of commands
	Quick reference card

	Using tags
	Specifying revisions
	Specifying a single revision
	Specifying a range of revisions

	Viewing differences between any two revisions
	Viewing differences between any revision and the working tree
	Viewing differences between any two revisions
	Viewing differences going from one revision to the next

	Cloning your project

	Summary

	Chapter 3: Using Branches
	What is a branch?
	A single branch with a linear history
	Multiple diverged branches
	Branches with non-linear history
	Unrelated branches

	What can you do with branches?
	Creating branches
	Comparing branches
	Merging branches
	Mirroring branches

	Why use more than one branch?
	Separating the development of new features
	Switching between tasks
	Experimenting with different approaches
	Maintaining multiple versions

	Understanding core terms and concepts
	trunk, master, and mainline
	The tip of a branch
	Source and target branches
	Parent branch
	Diverged branches and the base revision
	Storing branch data

	Using a shared repository
	Using the command line
	Using Bazaar Explorer

	Basic branching and merging
	Getting the example project
	Using the command line
	Using Bazaar Explorer

	Creating a feature branch
	Using the command line
	Using Bazaar Explorer

	Working on a branch
	Starting another branch
	Merging the bugfix branch
	Using the command line
	Using Bazaar Explorer

	Viewing merged revisions in the log
	Using the command line
	Using Bazaar Explorer

	Using the branch command
	Creating branches based on an older revision
	Using the command line
	Using Bazaar Explorer

	Viewing basic branch information
	Comparing branches
	Using the command line
	Viewing missing revisions between branches
	Viewing the differences between branches

	Using Bazaar Explorer
	Viewing the tree of branches
	Viewing missing revisions between branches
	Viewing the differences between branches

	Merging branches
	Performing a three-way merge
	Completing the merge
	Committing the merge
	Aborting the merge

	Resolving conflicts
	Resolving text conflicts
	Resolving content conflicts
	Redoing the merge
	Resolving other types of conflicts

	Merging a subset of revisions
	Merging up to a specific revision
	Merging a range of revisions
	Cherry-picking

	Understanding revision numbers
	Merging from multiple branches

	Mirroring branches
	Mirroring from another branch
	Mirroring from the current branch

	Summary

	Chapter 4: Using Bazaar in a Small Team
	Collaborating with others
	Working with remote branches
	Implementing simple workflows

	Sharing branches over the network
	Specifying remote branches
	Using URL parameters
	Using remote branches through a proxy

	Sharing branches using a distributed filesystem
	Sharing branches over SSH
	Using individual SSH accounts
	Using individual SSH accounts with SFTP
	Using a shared restricted SSH account
	Using SSH host aliases
	Using a different SSH client

	Sharing branches using bzr serve
	Sharing branches using inetd
	Sharing branches over HTTP or HTTPS

	Working with remote branches
	Working with remote branches directly
	Using local mirror branches
	Creating a local mirror
	Using a shared repository
	Updating a local mirror

	Using remote mirror branches
	Creating a remote mirror
	Using a shared repository
	Updating a remote mirror

	Using branches without a working tree
	Creating a local branch without a working tree
	Creating or removing the working tree
	Reconfiguring working trees in a shared repository
	Creating remote branches without a working tree

	Slicing and dicing branches

	Implementing simple workflows
	Using independent personal branches
	Merging from branches repeatedly
	Handling criss-cross merges
	Viewing the history from different perspectives

	Using feature branches and a common trunk
	Merging into a common remote trunk
	Merging feature branches in lock-step
	Doing "code reviews"

	Summary

	Chapter 5: Working with Bazaar in Centralized Mode
	The centralized mode
	Core operations
	The centralized workflow
	Checkout from the central branch
	Making changes
	Committing changes
	Updating from the server
	Handling conflicts during update

	Advantages
	Easy to understand
	Easy to synchronize efforts
	Widely used

	Disadvantages
	Single point of failure
	Administrative overhead of access control
	The update operation is not safe
	Unrelated changes interleaved in the revision history

	Using Bazaar in centralized mode
	Bound branches
	Creating a checkout
	Using the command line
	Using Bazaar Explorer

	Updating a checkout
	Using the command line
	Using Bazaar Explorer
	Visiting an older revision

	Committing a new revision
	Practical tips when working in centralized mode

	Working with bound branches
	Unbinding from the master branch
	Binding to a branch
	Using local commits

	Working with multiple branches
	Setting up a central server
	Using an SSH server
	Using the smart server over SSH
	Using individual SSH accounts
	Using a shared restricted SSH account
	Using SFTP

	Using bzr serve directly
	Using bzr serve over inetd

	Creating branches on the central server
	Creating a shared repository without working trees
	Reconfiguring a shared repository to not use working trees
	Removing an existing working tree
	Creating branches on the server without a working tree

	Practical use cases
	Working on branches using multiple computers
	Synchronizing backup branches

	Summary

	Chapter 6: Working with Bazaar in Distributed Mode
	The distributed mode in general
	Collaborators work independently
	The mainline branch is just a convention
	Collaborators write only to their own branches
	The distributed mode gives great flexibility
	Encouraging feature branches
	The revision history depends on the perspective

	The human gatekeeper workflow
	Overview
	Setting guidelines to accept merge proposals
	The role of the gatekeeper
	Creating a merge proposal
	Using a Bazaar hosting site
	Sharing the branch URL with the gatekeeper
	Sending a merge directive

	Rejecting a merge proposal
	Accepting a merge proposal
	Reusing a branch
	Commander/Lieutenant model
	Switching from the peer-to-peer workflow

	The automatic gatekeeper workflow
	Patch Queue Manager (PQM)
	Revision history graph

	The shared mainline workflow
	Updating the mainline using push operations
	Updating the mainline using a new local mirror
	Re-using an existing local mirror

	Updating the mainline using a bound branch
	Updating the mainline using a new checkout
	Reusing an existing checkout

	Choosing a distributed workflow
	Summary

	Chapter 7: Integrating Bazaar in CDE
	What is a CDE?
	Working with Launchpad
	Creating a Launchpad account
	Creating an account
	Associating bzr with Launchpad
	Testing your setup

	Hosting personal branches
	Uploading personal branches
	Using personal branches
	Deleting branches

	Hosting a project
	Using the Sandbox site
	Creating a project
	Uploading project branches
	Viewing project branches
	Viewing your own branches
	Setting a focus branch
	Using series
	Viewing and editing branch details

	Using merge proposals
	Creating a merge proposal
	Viewing and editing a merge proposal
	Approving / rejecting a merge proposal
	Using the e-mail interface to handle a merge proposal

	Browsing the content of a branch
	Using the bug tracking system
	Reporting bugs
	Linking commits to bugs

	Useful tips when using Launchpad
	Deleting or renaming a project
	The karma system
	Hosting private projects

	Integrating Bazaar into Redmine
	Integrating Bazaar into Trac
	Enabling the plugin globally
	Enabling the plugin for one project only
	Browsing Bazaar branches
	Getting help

	Linking commits to bug trackers
	Configuring bug trackers in Bazaar
	Linking to public bug trackers
	Linking to Launchpad
	Linking to Bugzilla
	Linking to Trac
	Linking to other bug trackers
	Advanced integration with bug trackers

	Web-based repository browsing with Loggerhead
	Installing Loggerhead
	Running Loggerhead locally
	Running Loggerhead in production

	Summary

	Chapter 8: Using the Advanced Features of Bazaar
	Using aliases
	Undoing commits
	Shelving changes
	Putting changes "on a shelf"
	Listing and viewing shelved changes
	Restoring shelved changes
	Using shelves to revert partial changes
in a file
	Using shelves to commit partial changes
in a file

	Using lightweight checkouts
	Creating a lightweight checkout
	Converting a checkout to a lightweight checkout
	Converting a branch to a lightweight checkout
	Converting from a lightweight checkout

	Re-using a working tree
	Setting up the example
	Preparing to switch branches
	Switching to another branch using core commands
	Switching to another branch by using switch
	Using a lightweight checkout for switching branches

	Using stacked branches
	Signing revisions using GnuPG
	Configuring the signing key used by Bazaar
	Setting up a sample repository
	Verifying signatures
	Signing existing revisions
	Signing a range of commits
	Signing new commits automatically

	Configuring a hook to send an e-mail on commit
	Setting up the example
	Installing the email plugin
	Enabling commit emails
	Testing the configuration
	Customizing the plugin

	Summary

	Chapter 9: Using Bazaar Together with Other VCS
	Working with other VCS in general
	Working with foreign branches
	Installing plugins
	Installing plugins in Windows or Mac OS X
	Installing plugins in Linux
	Installing plugins using Pip
	Installing additional requirements

	Understanding the protocol overhead
	Using shared repositories
	Limitations
	Issues and crashes

	Using Bazaar with Subversion
	Installing bzr-svn
	Supported protocols and URL schemes
	Using the example Subversion repository
	Understanding branches in Subversion
	Branching or checkout from Subversion
	Preserving Subversion metadata
	Preserving original revision numbers
	Preserving versioned properties
	Preserving revision and file IDs

	Pulling or updating from Subversion
	Committing to Subversion
	Pushing to Subversion
	Merging Subversion branches
	Merging local branches into Subversion
	Binding and unbinding to Subversion locations
	Using lightweight checkouts
	Browsing the logs
	Limitations of bzr-svn
	Final remarks on bzr-svn

	Using Bazaar with Git
	Installing bzr-git
	Supported protocols and URL schemes
	Using the example Git repository
	Branching from git
	Preserving version control metadata
	Preserving Git revision ids
	Preserving merged branches and revisions

	Pulling from Git
	Pushing to Git
	Merging Git branches
	Merging local branches into Git
	Limitations of bzr-git
	Final remarks on bzr-git

	Migrating between version control systems
	Installing bzr-fastimport
	Exporting version control data
	Exporting Subversion data
	Exporting Git data
	Exporting Bazaar data
	Exporting other VCS data

	Importing version control data
	Querying fast-import files
	Filtering fast-import

	Summary

	Chapter 10: Programming Bazaar
	Using Bazaar programmatically
	Using bzrlib outside of bzr
	Accessing Bazaar objects
	Accessing branch data
	Accessing branch configuration values
	Accessing revision history
	Accessing the contents of a revision
	Formatting revision info using a log format
	More examples

	Locating BZRLIB

	Creating a plugin
	Using the example plugins
	Using the summary plugin
	Using the customlog plugin
	Using the appendlog plugin

	Naming the plugin
	Creating the plugin directory
	Implementing the plugin
	Writing the README file
	Creating __init__.py
	Setting help and documentation texts
	Declaring the API version
	Declaring the plugin version
	Verifying the loaded module name
	Registering new functionality
	Registering a test suite
	Performance considerations

	Writing unit tests
	Creating setup.py
	Browsing existing plugins
	Registering your plugin

	Creating a hook
	Hook points, hook classes, and hook types
	Registering hooks
	Activating hooks

	References
	Summary

	Index

