
[1]

www.allitebooks.com

http://www.allitebooks.org

Application Development
with Swift

Develop highly efficient and appealing iOS applications
by using the Swift language

Hossam Ghareeb

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Application Development with Swift

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2015

Production reference: 1250815

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-817-3

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Hossam Ghareeb

Reviewers
Tyler Hackbart

David Mattia

Hossam M. Sherif

Kenneth Strickland

Commissioning Editor
Julian Ursell

Acquisition Editor
Nikhil Karkal

Content Development Editor
Shali Deeraj

Technical Editor
Prajakta Mhatre

Copy Editor
Charlotte Carneiro

Project Coordinator
Kinjal Bari

Proofreader
Safis Editing

Indexer
Tejal Soni

Graphics
Sheetal Aute

Disha Haria

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

www.allitebooks.com

http://www.allitebooks.org

About the Author

Hossam Ghareeb is a software engineer who graduated from the computer and
system engineering department of Alexandria University in 2012. Currently, he is an
iOS software engineer at Prototype Interactive in Dubai. He has a lot of experience in
iOS development and software engineering; he always keeps himself up to date with
new technologies. It is his passion to help people by sharing his experience and writing
tutorials to get people engaged quickly without problems. His favorite hobbies are
fishing and playing video games, especially FIFA and PES. If you need his help or wish
to go fishing with him, then you can contact him at hossam.ghareb@gmail.com.

I would like to thank each and every person who has been helpful
to me, from my teaching staff to my friends. A special thanks to my
lovely wife, Amira, for all her support and encouragement in spite of
all the time this book kept me away from her. I thank my son, Yusuf,
for inspiring me. I would also like to express my sincere gratitude
toward my parents for teaching me how to be a good person.

Last but not least, I would like to thank the content editors, Shali
Deeraj and Nikhil Karkal, for helping me and being nice to me, and
the reviewers for their helpful comments and suggestions.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Tyler Hackbart is a web developer, designer, and technology enthusiast with a
passion for everything in technology. Through self-learning, he gained the ability to
write his first line of code when he was only 16 years old and has just started learning
his sixth programming language. With his farm-raised work ethic, alongside a passion
for crafting amazing user interactions and doing what he loves, Tyler has successfully
worked in the technology field for 2 years. He is the cofounder of three start-ups and
works in an application design firm, all based in Waterloo, Canada.

David Mattia is a student at the University of Notre Dame with a passion for
software engineering. He has worked for General Electric Aviation and spends
much of his free time doing freelance work.

Hossam M. Sherif is a software developer. He received his bachelor's degree in
computer and system engineering from Alexandria University. He has spent several
years in software development, especially in iOS and backend development. He
has worked with many companies, such as Insidetrack, Inova LLC, and Log n Labs.
He worked on different projects and in different roles, from software developer to
team leader and manager. He served in the Egyptian Navy and participated in the
enhancement and development of the IT department. He has certificates in software
test processes and software test design. He participated in several volunteer projects
and workshops as an instructor for "Introduction to iOS Development," a summer
2014 training course for undergraduates at Alexandria University, and also other
courses, such as the Alexandria Startup 2012 weekend and IEEE ITW 2011.

www.allitebooks.com

http://www.allitebooks.org

Kenneth Strickland joined the US Army in 1986. After 4 years of active duty in
the US Army, he came across software development. That was when he picked up
his first C programming book and read it from cover to cover. Since then, he has
never looked back.

He has been a software architect for over 10 years, and currently develops
applications primarily in C/C++, Java, Objective-C, Swift, and .NET.

You can visit his website at http://kenster.guru.

www.allitebooks.com

http://kenster.guru
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface v
Chapter 1: Hello Swift 1

Introduction to Swift 1
Playgrounds 2
The code structure 4
Arrays 6

Initializing an array 7
Iterating over arrays 7
Appending items 8
Removing and updating items 8

Dictionaries 9
Initializing a dictionary 9
Appending or updating values 9
Removing items from the dictionary 10

Enum 10
Using enumerations with the switch statement 11
Enumerations with associated values 11

Functions 13
Closures 14
Summary 15

Chapter 2: Advanced Swift 17
Type casting and type checking 17

Downcasting 18
Using Any and AnyObject 18
Protocols 20

Properties 20
Methods 21
Class-only protocols 23

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Protocol compositions 23
The protocol conformance 24
The optional requirements 25
Delegation 26

Extensions 27
Adding computed properties 27
Adding new initializers 28
Adding methods 28

Generics 30
Operator functions 31
Memory management 33
Using Objective-C and Swift in a single project 35

Importing Objective-C in the Swift project 36
Importing Swift in the Objective-C project 36
Limitations 36

Summary 37
Chapter 3: Touch ID 39

What is Touch ID? 39
The LocalAuthentication framework 39
Summary 43

Chapter 4: Introduction to HealthKit 45
What is HealthKit? 45
HealthKit limitations 45
HealthKit privacy 46
Getting started with HealthKit 46

Configuring the Xcode project 47
Getting your hands dirty with HealthKit 48

The HealthKit store 48
Asking for permissions 49
Updating the UI 52
Sharing data in the Health app 59

Summary 61
Chapter 5: Introduction to Metal 63

What is Metal? 63
Features 63
3D rendering 65

Pipeline 65
Transformations 65
Projection 66

Other options to work with 3D rendering in iOS 66

Table of Contents

[iii]

Getting started with Metal 66
Devices and CAMetalLayers 68
The command queue 69
Vertex and color buffers 71
Vertex and fragment shaders 71
The render pipeline 72
The game loop and rendering 73

The display link 73
The render pass 74
The command buffer 74

Summary 75
Chapter 6: Introduction to WatchKit 77

Apple watch 77
WatchKit 78

The WatchKit app 78
Glances 79
Actionable notifications 80

Working with WatchKit 81
Xcode targets 83
Interface controllers 84
Interface elements 85

Groups 87
Navigating interfaces 89

Presenting modally 90
Animation 93
Working with glances 94

Summary 97
Chapter 7: Swift App Extensions 99

App extensions 99
Today 100
Share 102
Photo Editing 103
Document Provider 104

Understanding the Document Provider's lifecycle 107
The custom keyboard 108

Keyboard security 109
Keyboard settings 110
Working with the custom keyboard 110

Demo 111
Summary 120

Index 121

Preface

[v]

Preface
This book teaches you how to master the Swift programming language and use
it in building apps with the new technologies introduced in iOS 8. Swift is a new
programming language for iOS, OS X, and watchOS apps. In the beginning of this
book, we will give you an advanced introduction to Swift, and then we will see how
to apply this in real-app demos using the new technologies and APIs in iOS 8 such as
TouchID, watchOS, Metal, and HealthKit.

What this book covers
Chapter 1, Hello Swift, gives a quick introduction and revision about Swift. This
chapter is very important for Swift beginners and is highly recommended for
Swift developers to revise their knowledge.

Chapter 2, Advanced Swift, boosts your Swift experience by allowing you to learn
some advanced features in Swift. In this chapter, we will talk about protocols,
extensions, and memory management.

Chapter 3, Touch ID, gives your app a new flavor of authentication using Touch ID.
Users can now use their fingerprint to sign in to your app without needing to write
their username and password.

Chapter 4, Introduction to HealthKit, teaches you how to work with HealthKit and how
to share or read health data in the native Health app. If you have any apps or ideas
about health or fitness, you should give this chapter a shot.

Chapter 5, Introduction to Metal, introduces a cutting edge technology for 3D
GPU-accelerated graphics in iOS.

Chapter 6, Introduction to WatchKit, introduces a new device for you—the Apple
watch. You will learn all the new technologies needed to build apps for the Apple
watch and get your app prepared to exist on users wrists.

Preface

[vi]

Chapter 7, Swift App Extensions, teaches you how to let your users use the app
even if your app is not open, using app extensions. App extensions let you extend
your app's functionality outside your app and users can access it using system or
third-party apps.

What you need for this book
To work on this book, some programming experience is expected. Having experience
with Objective-C and iOS development will help you a lot while working with this
book. You will also need a Mac OS with Xcode 6+ installed.

Who this book is for
If you are an iOS developer with experience in Objective-C, and wish to develop
applications with Swift, then this book is ideal for you. Familiarity with the
fundamentals of Swift is an added advantage but not a necessity.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"In Swift, you use var for variables, and let for constants."

A block of code is set as follows:

var count = 5
var msg : String
var total : Double = 0

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

Protocol <protocol1, protocol2,…>

Preface

[vii]

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Xcode
helps you with this by providing the history button in the results sidebar, on the
line of the number of times."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[viii]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Hello Swift
Welcome to the developing applications with Swift book. It's my pleasure to talk
about iOS development and Swift. This book assumes that you have some basic
experience in iOS development, and a little experience of using Swift. If you don't
have any experience of Swift, don't worry, just go ahead with us and be prepared
to master the iOS development using Swift. I believe in learning by example
methodology and, starting from Chapter 3, Touch ID, we will introduce the new
technology of iOS 8, and write a simple demo on it using Swift.

In this chapter, we will talk about the Swift programming language, and get
our hands dirty with Swift. If you are familiar with Swift, you can either skip
this chapter, or you can review your Swift knowledge. We will talk about the
Swift language and its features, and how to try it using Playgrounds in Xcode 6.
Playground is a new, awesome, and innovative feature that allows you to try any
piece of code, and see the results without explicitly running, or even compiling your
code. You will become familiar with the code structure, and some important data
types such as arrays, dictionaries, and so on.

Introduction to Swift
Swift is a new (Apple has open sourced it!), scripting, programming language for
developing apps for iOS, OS X, and watchOS. Apple has introduced this language
to make things easier and fun. Unlike Objective-C, Swift is not a superset of C
programming language. But believe me, it has the power of both C and Objective-C.

It's the first time we have an alternative to Objective-C, since Apple introduced iOS
and OSX development tools. As a new programming language, Swift introduces
many new features and concepts that did not exist in Objective-C, and we will
talk about them in next sections. For Objective-C developers, Swift will be familiar
to them, as it adopts the readability of Objective-C's named parameters. Swift
is a friendly programming language. It is so expressive and funny even for new
programmers who have no experience with Objective-C.

Hello Swift

[2]

Like Objective-C, Swift is an OOP language and you can easily create classes, objects,
methods, and properties. Swift is built to make developers write safe code, and you
will feel this when you will start working with it. An example of this is that you can't
use variables without initialization. Swift saves you from making silly errors that you
could make, such as using variables before initialization.

Don't hesitate to work with Swift, and give it a shot. Swift co-exists alongside your
existing Objective-C code, and is easy to work with. You can also replace your
existing Objective-C code with Swift, or start your project from scratch with Swift
as your primary development language.

Make sure that you are familiar with Swift features to feel its power, and enjoy it.
Some of these features are new for Objective-C developers, and these will let you
love Swift, as I do:

• Closures
• Tuples
• Range operators
• Generics
• Structures
• Functional programming patterns

Playgrounds
We mentioned the Playground feature earlier—it is a new innovative feature
supported in Xcode 6 and higher. It gives you the ability to try any piece of code in
Swift, and see the results immediately without the need to compile or run the code.
So, imagine that you are learning Swift, or working in a project with Swift, and you
need to try some code, and check its result. If you are in Objective-C, you need to
create a new project, write the code, build, run, and open the simulator to see the
results! Very time consuming, isn't it? I mean, it's time consuming here, in the learning
track, but after you master the language, you don't need to use Playgrounds. You may
just need to use it in test or to check something. To play with the Playground feature
use the following steps:

1. In Swift and Xcode 6, or higher, just create a new playground (as shown
in the following screenshot) or open an existing one by choosing the
.playground file in a navigator:

Chapter 1

[3]

2. Now, enter Swift code in the .playground file, and enjoy the results in the
right-hand side sidebar. Xcode evaluates your code while you type it, and for
each statement, Xcode displays the results of it in the right-hand side sidebar.

www.allitebooks.com

http://www.allitebooks.org

Hello Swift

[4]

As you see, each line of code is examined, and its result is shown in the results
sidebar, in the right-hand side. Even the for loop statement shows you how many
times the entire code was executed. To see the value of any variable, just write it in a
separate line, and check its value in the right-hand side sidebar. (Check line 11 in the
preceding screenshot).

Another feature of Playground is the value history. In the previous for loop, we
have a piece of code that is executed repeatedly, right? But I want to know what is
going on in each iteration. Xcode helps you with this by providing the history button
in the results sidebar, on the line containing the number of times. Once you click on
it, it displays a complete graph (timeline) for the values over the time. In the graph,
x axis represents time, and y axis represents the value at this time (this iteration).

Once you click on the circle in the results view, you can see the value of this iteration:

Also, keep in mind that Playground includes the standard editing features of Xcode,
such as code completion, error checking, syntax correction, and suggestions.

The code structure
Before starting to write Swift, you have to be aware of its structure, as it is a very
important thing to know in any programming language.

As we said earlier, Swift is not a superset of C. For sure it's influenced by C and
Objective-C but easier and fun to use than both.

I will share with you a piece of code in Swift to show its structure:

import UIKit

let pi = 3.14
//Display all even numbers from 0 to 10

Chapter 1

[5]

for i in 0...10
{
 if i % 2 == 0
 {
 println("\(i) is even")
 }
}

func sayHello(name: String = "there")
{

 println("Hello \(name)")
}

sayHello(name: "John") // will print "Hello John"
sayHello() //Will print "Hello there", based on default value

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files
e-mailed direct to you.

If you check this code, you will find that we don't use semicolons. This is because in
Swift they are optional. However, compiler will not complain if you do use them.
The only area where semicolons are required is when you write multiple statements
in the same line.

In Swift, you use var for variables, and let for constants; but this doesn't mean that
Swift is not a typed language. The compiler, based on the initial value, identifies
the type implicitly. But in some cases, you have to write the type if you don't set an
initial value; or the initial value is not sufficient to identify the type.

Consider the following code for example:

var count = 5
var msg : String
var total : Double = 0

http://www.packtpub.com
http://www.packtpub.com/support

Hello Swift

[6]

In this code, the count variable is of the Int type, because its initial value is in
integer. In the msg variable, we didn't set an initial value, so we will have to explicitly
write the type of the msg variable. The same is applicable for total; we need it to be
of the Double type but as its initial value is not sufficient, the compiler will consider
it as Int.

In Swift, you will see that there is no main function to start with, as the code written
in the global scope is considered as the start of your program. So, you can imagine
that a single line of code in Swift can be considered as a program!

The last thing I want to mention is that curly braces are very important in Swift, as
they are mandatory in any control flow statements, such as if, while, and so on.

Arrays
An array is every developer's best friend and saves the collection of data in an
ordered list. In Swift, an array is very easy to use and contains many helpful methods
for use. Before exploring it, we have to clarify some important points.

Array by default is mutable so that it accepts adding, changing, or removing
items from it, except if we define it as a constant, using let. In this case, it will be
immutable, as it becomes constant.

In Objective-C, you can save any type of object, and you won't have to specify any
information about their type. In Swift, arrays are typed; this means that the type of
item should be clear, and all the items should be of the same type. The type can be
defined explicitly, or it can be inferred.

An array doesn't have to be of a class type. So, you can create an array of Int, and in
such a case, you can't insert any other value than the Int type.

The following are examples to make these points clear:

let languages = ["Arabic", "English", "French"]
//Here type is inferred as String, So this Array is of type String
//Also this array is immutable as it defined as let

var primes :[Int] = [2, 3, 5, 7, 11]
//Type is written explicitly

primes.append(13) //mutable array as it defined as var

Chapter 1

[7]

Initializing an array
To initialize and create an array, you can use the previous ways with initial values,
or you can either create it empty, or by using repeating values:

As you see in the example, it's very easy to initialize empty arrays, or arrays with
repeating values. Swift also provides a great feature to append two arrays that result
in a new array.

Iterating over arrays
The explanation is not complete without mentioning how to iterate over an array.
Actually, iterating over an array in Swift is very easy and straightforward. To iterate
over values of an array, you will use the for-in loop like this:

var seasons = ["Winter", "Spring", "Summer", "Autumn"]

for season in seasons{
 println(season)
}
/*
Winter
Spring
Summer
Autumn
*/

And if you want the index of the value in each iteration, you can use the enumerate
method. In each iteration, the method returns a tuple that is composed of an index
and value of each item in the array. Check the next example to make things clear:

for (index, season) in enumerate(seasons){

 println("Season #\(index + 1) is \(season)")
}

Hello Swift

[8]

/*
Season #1 is Winter
Season #2 is Spring
Season #3 is Summer
Season #4 is Autumn
*/

For all those who don't know tuples, tuples in Swift are used to create and pass
around a group of values. It can be used to return multiple values from a function
in a single group.

Appending items
You can append items easily by using the append method, which appends an item
at the end of an array. To append multiple items at once, append an array of
these items.

You can also use the insert method that inserts items at a specific location.

var nums = [1, 3] // [1, 3]
nums.append(4) // [1, 3, 4]
nums.insert(5, atIndex: 1) // [1, 5, 3, 4]
nums += [10, 11] // [1, 5, 3, 4, 10, 11]

Removing and updating items
An array has a built-in removeAtIndex function to remove an item at the index and
a removeLast function to remove the last item. These functions are awesome. While
you call them, they return the deleted item at the same time and thus, you don't have
to write another line of code to grab the item before deleting it.

nums.removeAtIndex(1) // return 5
nums.removeLast() // return 11
nums // [1, 3, 4, 10]
nums[0...2] = [] // array now is [10]

In this code we removed an item at index 1 and the last item, as you see in the first
two lines.

Another great feature in Swift is using ranges, which we used for replacing the items
in the range from 0-2. This replaces the first three items with an empty array. That
means the first three items have been removed. You can also replace it with an array
containing data. Now, replace the items in the range with the items in the array. The
most important thing is to be careful with the ranges that are used, and make sure
that they are an inbound of the array. The out of bound ranges will throw exceptions.

Chapter 1

[9]

Dictionaries
Dictionaries in Swift are like arrays in special characteristics, such as mutable and
strongly typed. Dictionary is mutable by default, except if used with let. Also keys
and values should be of the same type.

The dictionary type is inferred by the initial values, or you can explicitly write it
using the square brackets [keyType, valueType].

Initializing a dictionary
To initialize a dictionary, you have two options. The first option is to create an empty
one with no data. You can create it like this:

var dic1 = [String:Int]() // 0 key/value pairs

As we see in this case, we had to explicitly write the type of keys and values.

In the second option, you have the predefined values like this:

var dic2 = ["EN" : "English", "FR" : "French"]
//["EN": "English", "FR": "French"]

Here we didn't write the type of keys or the values, as it was inferred from the
initial values.

Appending or updating values
Updating or appending a value with a key in a dictionary is very similar, and can be
done like this:

dic2["AR"] = "Arabic" //Add
dic2["EN"] = "ENGLISH" //update
//["EN": "ENGLISH", "FR": "French", "AR": "Arabic"]

As you can see, in the first line it will create a new record in the dictionary, because
the "AR" key did not exist before. In the second line as the "EN" key exists, it will
update each of its values with the given one. Very simple right!

Another method to update a value for the key in the dictionary is to call
updateValue(val, forKey:). Take a look at the following example:

dic2.updateValue("ARABIC", forKey: "AR") //returns "Arabic"
//dic2 now is ["EN": "ENGLISH", "FR": "French", "AR": "ARABIC"]

Hello Swift

[10]

As you see in the code, this method returns the old value after updating the new
value. So, if you want to retrieve the old value after the update function is done,
this method is the best choice.

Removing items from the dictionary
This is the same as updating values. You have two ways to remove items from
dictionary. The first is to set the value of the key as nil, and the second is to call the
removeValueForKey(key) method. This method also returns the old value before
deleting it.

dic2["AR"] = nil
dic2.removeValueForKey("FR") //returns French
//["EN": "ENGLISH"]
dic2["FR"] // Returns nil

Enum
Enumeration is a very useful concept that is used to group related values together
and define a new type for them. You must be familiar with enumeration in
Objective-C or in C. Swift added new flavors to enum, and made it more flexible
and easy to use.

To create enum in Swift, use the enum keyword, and then you can list all the possible
cases after the case keyword:

enum LevelDifficulty{
 case Easy
 case Medium
 case Hard
 case Advanced
}

In the preceding code, we defined the new type as LevelDifficulty to group the
related values of difficulties together (Easy, Medium, Hard, and Advanced). To use
this enum, you can easily create variables with the LevelDifficulty type:

var easyMode = LevelDifficulty.Easy
//Type is inferred as LevelDifficulty

var mode : LevelDifficulty
mode = .Hard

As we see in this example, there are various ways to create enum. In the second one,
for the variable mode, we set the type first, and then gave it a value. To set the value
of a variable, we use a . (dot) operator.

Chapter 1

[11]

Using enumerations with the switch
statement
Swift makes life easy with enum. We can see this in the following example:

var power :Int
switch mode
{
case .Easy:
 power = 20
case .Medium:
 power = 30
case .Hard:
 power = 50
case .Advanced:
 power = 90
}

Very easy, isn't it? But take care of some the very important notes in the switch
statement while using it in Swift:

• It has to be exhaustive, which means that you have to cover all the possible
values of enum, and list them as cases, or use the default case.

• Swift doesn't support fallthrough. Unlike other languages, Swift doesn't
fall through the bottom of each switch case into the next one. The switch
statement finishes its execution as soon as a switch case is matched without
explicitly writing a break statement. For sure, this makes your code safer by
avoiding the execution of more than one switch case, by forgetting to add a
break statement!

Enumerations with associated values
Swift gives enumerations another flavor and a great feature. This enables you to
store the additional information for each member value. These associated values
can be any given type, and can also be different for each member value. If you
feel confused, look at the next example:

enum MissionState{
 case Accomplished(Int)
 case Attempted(String, Int)
 case UnAttempted
}

Hello Swift

[12]

In this enum, in the case of Accomplished, we provide an integer value for it, which
will represent the number of stars earned in this mission. In the case of Attempted,
we provide two values for it. One is the string that represents the most progress
achieved, and the other is the integer value for the number of attempts. The last
one is UnAttempted, where we don't have to provide any additional information.

So now, let's see how to use this type of enumerations:

var state = MissionState.Accomplished(3)
var attemptState = MissionState.Attempted("80%", 3)

It is very easy to use this type of enumeration in the switch statement:

switch attemptState
{
case .Accomplished(let stars):
 println("Mission accomplished with \(stars) stars")
case .Attempted(let progress, let count):
 println("Mission attempted \(count) times with most progress
 \(progress)")
case .UnAttempted:
 println("UnAttempted")
}

To use the associated values in enumerations, Swift gives you the ability to label or
describe these different values. This will make your code more readable and easy
to use. To recreate our previous enum with labels, use the following code:

enum MissionState{
 case Accomplished(stars:Int)
 case Attempted(missionProgress:String, attemptsCount:Int)
 case UnAttempted
}

var state = MissionState.Accomplished(stars:3)
var attemptState = MissionState.Attempted(missionProgress: "80%",
attemptsCount: 3)

You can see how the labels make the code very understandable and easier to read.

Chapter 1

[13]

Functions
In Swift, it's very easy to create the functions using the func keyword, followed
by the function name and parameters between the parentheses. Parentheses are
required even if the function doesn't take parameters. So we will use parentheses
without writing anything in between. For some other languages we need to use the
void keyword for the function that doesn't take parameters. Parameters are comma
separated and each one is combined with two items: the name and the type of
parameters, separated by : (colon). Check this example of a simple function:

func sayHi(name:String)
{
 println("Hi \(name)")
}

sayHi("John") //Hi John

One of the great features that I love in Objective-C is that you can write a full
description for each parameter in methods, which helps everyone, working in the
project, to understand the code. The same is here in Swift; you can label parameters
more easily. To do so, just type the name (description) before the parameter, or
add # before the name of parameter, if the name is sufficient as a description and
meaningful. Check these two examples:

func joinStrings(string1 str1:String, toString str2:String,
joinWith j:String)
{
 println(str1 + j + str2)
}

joinStrings(string1: "John", toString: "Smith", joinWith: ",")
//"John,Smith"

func joinStrings2(#string1:String, #toString:String, #glue:String)
{
 println(string1 + glue + toString)
}

joinStrings2(string1: "John", toString: "Deo",glue: "/") //"John/Deo"

As we saw in the first method, we wrote the description for each parameter, so that
the code would be readable and understandable. In the second one, the parameter
names were self-explained, and they needed no explanation. In such a case, we just
added # before them, and then the compiler treated them as labels for parameters.

www.allitebooks.com

http://www.allitebooks.org

Hello Swift

[14]

Like any function in any language, Swift may return results after the execution.
Functions can return multiple values and not just a value like Objective-C, thanks
to tuples! To do this, just write -> after the parentheses, and then add a tuple that
describes the results:

func getMaxAndSum(arr:[Int]) -> (max:Int, sum:Int)
{
 var max = Int.min
 var sum = 0
 for num in arr{
 if num > max
 {
 max = num
 }
 sum += num
 }
 return(max, sum)
}

let result = getMaxAndSum([10, 20, 5])
result.max //20
result.sum //35

Closures
Think of closures as a piece of code or functionality to pass around in your code.
Closures in Swift are very similar to blocks in C and Objective-C. Closures in Swift
are the first class type and it is allowed to be returned or passed as a parameter. And
as we will see, functions are just special instances of closures. The general formula
for closures is like this:

{ (params) -> returnType in

 //statements
}

As you can see, we opened curly braces, and then we added the necessary
parameters followed by the return type and the in keyword. Knowing this formula
will help you a lot in using closures, and you will not feel any frustration using it.

Chapter 1

[15]

This is an example of using closures in sorting the collection of data:

var nums = [10, 3, 20, 40, 1, 5, 11]
sorted(nums, { (number1, number2) -> Bool in
 return number1 > number2
})
//[40, 20, 11, 10, 5, 3, 1]

Here, the closure is used to identify the comparison result of any two numbers. As
we saw, the closure takes two parameters and returns a Boolean, that is the result
of the comparison.

Summary
In this chapter, we saw what Swift is, and how the code structure works. We saw its
new features by using arrays, dictionaries, functions, and closures. We also learned
how to use Playground to try any piece of code in Swift anytime, without creating
a new project, or even compiling and building your project. At the end of this
chapter, you have the basic skills to write Swift code. In the next chapter, we will talk
about some advanced features in Swift, including casting and checking, protocols,
delegation, generics, memory management, and much more. Stay tuned!

[17]

Advanced Swift
Now, you have got some experience in the Swift programming language and have
seen how funny and easy to learn it is. In this chapter, we will take you to the next
level in Swift. We will talk about more advanced topics in Swift. For sure, we can't
cover all topics in Swift, but we selected the most important and commonly used ones.

Type casting and type checking
Type casting and checking are ways used in Swift to check the type of instances and
cast them to any different type. In Swift, we use as and is to perform type casting
and type checking. Before going deep into how to use these operators, let's build an
array that we will use in next examples:

var subViews = [UILabel(), UIButton(), UILabel(), UITextField(),
UITextView()]

We created an array of UI controls, but you might question, "how did you create
array of objects of different types in Swift when you told us that Swift array is
typed?" My answer is yes, you are right, but the Swift compiler is smart enough
to check the items of the array; if they are different in type, it will search for the
common superclass for them, which is UIView. So, this array is of type UIView.

Now, let's see how to check the type of items of this array. We will use the is
operator followed by class name. Check the following code:

var labelsCount = 0
for view in subViews
{
 if view is UILabel
 {
 labelsCount++ // 2 times
 }
}

Advanced Swift

[18]

As we can see in the preceding code, we iterate through all the components in the
array and find two labels based on the checking we made, using the is operator.

Downcasting
We saw how to check the type of an item, but what will happen if we want to use
these items after checking? Imagine that we wanted to use the labels in the previous
code; to do so, you have to downcast it to UILabel so that you can access attributes
or methods specified for the UILabel class. In downcasting, we have two operators
as and as?. Use the as operator if you are sure that the downcasting will always
succeed, because the as operator will trigger runtime error if the downcasting
fails. Use the as? operator when you are not sure if the downcasting will succeed
because it will return optional value, which means that you will receive nil if the
downcasting failed. Let's check these examples:

for view in subViews
{
 if view is UILabel // (Method 1)
 {
 let label = view as UILabel
 label.text = "bla bla bla"
 }

 if let button = view as? UIButton // (Method 2)
 {
 button.titleLabel?.text = "button"
 }
}

As you have seen in the previous code, in method 1, we used the as operator because
we are sure that the view variable will be UILabel after we have checked its type
using the is operator. In method 2, we use the as? operator and the condition
will be true only if the casting succeeds and gives a non nil value.

Using Any and AnyObject
According to our explanation in the previous section about type casting and type
checking, Swift provides us with two general types to use if you don't want to
specifically type the objects:

• AnyObject: This type is used to represent instances of class types only and its
equivalent to id in Objective-C

• Any: This type is used to represent instances of any type like tuples, closures,
and so on

Chapter 2

[19]

These types are very useful, especially when you try to deal with Cocoa APIs,
because, most of the time, you will receive an array of type AnyObject. As we know,
Objective-C doesn't support a typed array. In these situations, you have to use the
is, as, and as? operators of type casting and type checking to help you deal with
Any and AnyObject types.

Let's see an example of using AnyObject:

var anyObjects = ["Str", 5, true, UILabel(), NSDateFormatter()]
anyObjects.append(11.5)
anyObjects.append([1, 2])

As we have seen in this strange array, it holds String, UILabel, and
NSDateFormatter. That works because, as we said, the compiler will try to get its
common superclass and it will end up with the AnyObject type.

But, what about array items like 5 and true, are they also objects? The answer is yes
because Swift bridged all variables and data to Foundation objects so String will be
bridged to NSString, and Int and Bool will be bridged to NSNumber. The common
superclass in that case will be NSObject, which is equivalent to AnyObject in Swift.

Please note that AnyObject is like an ID in Objective-C, so you can call any defined
(built-in) function in it without warnings, but it will give a runtime error, as this
object doesn't respond to this function. Check the following example:

var obj : AnyObject
obj = "Hello Swift"
obj = true
obj.stringByReplacingOccurrencesOfString(" ", withString: ",")

In this example, the last line will crash your app and give a runtime error because,
in this case, this object is of type Number not String, and Number doesn't response to
this function. Before using AnyObject, I suggest that you use one of type checking
and type casting methods, which are is, as, and as?, to check the type before calling
functions. In real-life coding, we will not do something like this to change the type of
an object, but this example was just for explanation.

Now, let's see how Any is different than AnyObject. Take a look at the following
example:

var whatever = [Any]()
//You can add anything you can imagine in this array :)

whatever.append(5) // Int
whatever.append(5.0) // Double

Advanced Swift

[20]

whatever.append(false) // Boolean
whatever.append((404, "Not Found")) // Tuple
whatever.append({ (str:String) -> String in
 return str.uppercaseString
}) //Closure

As we have seen in the previous example, an array of Any type can hold any type of
data you can imagine, even tuples and closures.

Protocols
Protocols are one of the most important and commonly used methodologies in
programming in iOS and OS X. In protocols, you can define a set of methods and
properties that will be implemented by classes that will conform to these protocols.
In protocols, you just describe things without any implementations. In Swift,
classes are not the only ones that can conform to protocols, but also structures
and enumerations can conform to protocols as well.

To create a protocol, just use the protocol keyword and then its name:

protocol SampleProtocol
{

}

Then, when types are going to conform to this protocol, add a colon (:) after the
name of type and list the protocols separated by commas (,). Check the following
example:

class SampleClass: SampleProtocol, AnotherProtocol {

}

Now, let's talk about protocol properties and methods.

Properties
When you list properties between {} in protocol, you specify that these properties
are required to exist in types that conform to this protocol. You define the property
name and its type and whether this property is gettable or gettable and settable. In
gettable properties, it means that instances can't set or change its value (read-only).
To do this, type {get} after property declaration. In settable and gettable properties,
instances are free to set and get its value. To do this, you can type {get set} after
property declaration.

Chapter 2

[21]

Let's see an example:

protocol VehicleProtocol
{
 var canFly:Bool {get} //Readonly
 var model:String {get set}
}

class Bicycle:VehicleProtocol
{
 var canFly:Bool
 {
 return false
 }
 var model:String = ""
}

var b1 = Bicycle()
b1.model = "model1"
b1.canFly
//b1.canFly = true //Compile error

As you have seen in previous protocol, we defined two types of properties: read-
only and settable one. The Bicycle class conforms to the protocol, so it has to define
the properties that are defined in the VehicleProtocol protocol with the same
property name and type. We set the value of the read-only canFly property in class
declarations where instances can't change it. You will receive a compile error if you
try to set this variable.

Methods
In a protocol, you can write methods to be implemented via types that will conform
to this protocol. You can write the method name, return type, and parameters. Just
write the signature of the method; there is no need to type {} or any implementation.
Check the following examples:

protocol VehicleProtocol
{
 func move()
 func fullDistance() -> Double
}

class Bicycle:VehicleProtocol
{

Advanced Swift

[22]

 func move() {
 println("move logic goes here")
 }
 func fullDistance() -> Double {
 return 0.0
 }
}

var b1 = Bicycle()
b1.move() // prints: "move logic goes here"

As we mentioned earlier, structures and enumerations can conform to protocols; you
can mark a method in protocol as mutating, which means that this method is allowed
to modify the instance itself. That's possible because structures and enumerations are
value types not reference types like classes.

To do so, just add the mutating keyword before the func keyword in declaring the
method in the protocol. Then, you can simply implement it and modify the instance
easily. Check the following example:

protocol Toggable{
 mutating func toggle()
}

enum Switch : Toggable{
 case ON
 case OFF
 mutating func toggle() {

 if self == ON
 {
 self = OFF
 }
 else
 {
 self = ON
 }
 }
}

var switch1 = Switch.OFF
switch1.toggle() //will be ON

Chapter 2

[23]

As we have seen in the previous example, the mutating keyword tells the
compiler that this method is capable of modifying the instance of value types. In
implementation, we changed self to ON or OFF based on the current state of the
instance value.

Class-only protocols
As classes, structures, and enumerations can adopt protocols, you can limit the
conformance to classes only by marking the protocol as a class-only protocol. This
can be done by adding the class keyword after the colon symbol (:) after the
protocol name. Check the following example:

protocol classOnlyProtocol :class
{

}

Only classes can adopt this protocol. If you try to conform to this protocol with
enumerations or structures, it will give you a compile-time error.

Protocol compositions
Once you create a protocol, you can use it as a type. This means that you can use it
as a return type or parameter type in methods, as a type on variables and constants,
and as a type for arrays or dictionaries.

When you use the protocol as a type, it can be used with multiple protocols using
this form:

Protocol <protocol1, protocol2,…>

Let's check an example of using protocol as a type:

func registerVehicle(vehicle: protocol<VehicleProtocol,
VehicleInfo>)
{
 println("Description :\(vehicle.fullDescription())
 Distance:\(vehicle.fullDistance())")
}

As you can see in the previous function, it takes a parameter of type protocol that is
composed of two protocols. That means that this method should take a type (class,
enum, or struct) that conforms to both the VehicleProtocol and VehicleInfo
protocols.

Advanced Swift

[24]

The protocol conformance
While classes, enumerations, and structures can conform to multiple protocols,
sometimes, you may need to check for protocol conformance or cast to a specific
protocol. We will use the same operators that we used in type checking and type
casting, which are is, as, and as?. Let's use VehicleProtocol to build an example
to check for protocol conformance:

class Bus: VehicleProtocol {
 func move() {

 }
 func fullDistance() -> Double {
 return 0.0
 }
 var canFly:Bool
 {
 return false
 }

 var model = "MM"
}

class Animal
{

}
class Bicycle:VehicleProtocol
{
 func move() {
 println("move logic goes here")
 }
 func fullDistance() -> Double {
 return 0.0
 }
 var canFly:Bool
 {
 return false
 }
 var model:String = ""
}

var objects = [Bus(), Bicycle(), Animal()]
for obj in objects

Chapter 2

[25]

{
 if let vehicle = obj as? VehicleProtocol
 {
 println("\(vehicle.model)")
 }
 else
 {
 //not vehicle
 }
}

As we can see in the example, we created another class Bus that conforms to
VehicleProtocol. We also created another class Animal that doesn't conform to any
protocol. Then, we created an array of different objects; some of them are vehicles
(conform to VehicleProtocol) and others don't. We iterated over the array and
used as? to cast VehicleProtocol if the casting succeed.

The optional requirements
Once you declare methods and properties in protocol, you are required to implement
them in the type that will conform to this protocol. In some cases, you will find that
some methods are not important for you to implement when you conform to some
protocols.

In that case, Swift gives you the option to mark methods and attributes as optional
by prefixing them with the keyword optional, so you don't have to implement such
attributes or methods.

To add optional requirements, protocols should be marked with the @objc attribute.
This attribute is written before the protocol keyword. This attribute indicates that
the protocol should be exposed to Objective-C code (check working with Swift and
Objective-C in a single project section for further information), and can be adopted
only by classes and not by structures or enumerations. Once you add optional
attributes and methods, they will return optional values when you call them. So, if
they are not implemented and you call them, you will get the nil value. Let's check
an example:

@objc protocol TableDataSource{

 func numberOfRows(#section:Int) -> Int
 optional func numberOfSections() -> Int
}

@objc class ViewController: TableDataSource
{

Advanced Swift

[26]

 func numberOfRows(#section: Int) -> Int {
 return 5
 }
}

In the previous code, we created a protocol with optional methods, and as you see,
we marked it as @objc. When we implemented the TableDataSource protocol,
we didn't implement the optional method numberOfSections() as it is marked
optional.

Delegation
Delegation is the most commonly used design pattern in iOS. In delegation, you
enable types to delegate some of its responsibilities or functions to another instance
of another type. To create this design pattern, we use protocols that will contain the
list of responsibilities or functions to be delegated. We usually use delegation when
we want to respond to actions or retrieve or get information from other sources
without needing to know the type of these sources, except that they conform to
the protocol.

A good example to explain delegation is when you use UITableView. The table view
can be used anywhere you want, and you can add it as subview in any part in your
app. To enable the table to work properly, it needs some information, such as the
number of cells and the cell that will be displayed, before displaying cells. It also
needs to know which actions were performed, such as selecting cells. In that case, the
table view has two properties called delegate and dataSource. They are protocols,
and the table deals with them when it needs to obtain any information. It doesn't need
to know the type of components that use it or the type of dataSource. They just have
to conform to the UITableViewDelegate and UITableViewDatasource protocols.
Let's check the implementation of delegate and dataSource of UITableView:

unowned(unsafe)var dataSource: UITableViewDataSource?
unowned(unsafe)var delegate: UITableViewDelegate?

As you can see, they are defined as protocols, so when any class wants to use it, it
has to be the delegate and dataSource protocol of this table.

Another thing that I want to mention is that it's very common to mark the delegate
property as optional and unowned. The unowned property will help in memory
management, and we will talk about it in detail in the further sections. The delegate
property will also help to have a default value as nil if you don't set the delegate.
This will help in situations when you call methods in delegate and if the delegate
property is not set yet; in that case, your app will not crash because you sent a
message with the nil value.

Chapter 2

[27]

Extensions
Extensions are used to add new functionality to an existing class, enumeration,
or structure. They are like categories in Objective-C, but in Swift we have two
differences:

• Extensions can be used with classes, enumerations, and structures
• Extensions don't have names

In Swift, extensions can do many things. Check this list:

• Add computed properties and computed type properties
• Add instance methods and class methods
• Define subscripts
• Add new initializers
• Make the existing type conform to protocol

To create an extension, use this form:

extension someType{
 //New functionalities go here
}

In extensions, as we said, you can add new functionalities, but you can't override an
existing one.

Adding computed properties
Extensions can add computer instance properties and computed type properties in
any existing type. Check the following example:

extension Double{

 var km : Double{
 return self / 1000.0;
 }
 var cm : Double{
 return self * 100.0
 }
}

var distance = 1500.0 // in meters
var distanceInKM = distance.km //1.5
var distanceInCM = distance.cm //150000

Advanced Swift

[28]

As we can see, we add two computed properties to the Double structure. The km
property will be calculated by dividing the double value by 1000 and the same
calculation is done for cm however it will be divided by 100. It will make your code
readable, allowing you to just call the properties, and it will compute the result for you.

Adding new initializers
In extensions, you can add the new init method to an existing type. That will allow
your type to have many options that can be be initialized, and will make your code
more readable and usable. In the example, we will add a new initializer method to
the CGRect structure. The CGRect structure has many init methods, but doesn't
have one to be initialized using the center point, width, and height. Let's use
extensions to add this new initializer to CGRect:

extension CGRect
{
 init(center:CGPoint, size:CGSize){

 let origin = CGPoint(x: center.x - size.width / 2, y:
 center.y - size.height / 2)
 self.init(x: origin.x, y: origin.y, width: size.width,
 height: size.height)
 }
}

let rect = CGRect(center: CGPoint(x: 50, y: 50), size:
CGSize(width: 20, height: 40))
//{x 40 y 30 w 20 h 40}

In the previous code, we added a new initializer to CGRect that accepts the center
point and size. Then, we used center and size to get the origin point. We then
used the built-in initializer that accepts x, y, width, and height.

Adding methods
In extensions, you can add instance methods and type methods to any existing type.
You can call these new methods easily anywhere in your code. Let's see an awesome
example in extending the Int type to contain a method that executes a piece of code
repeatedly with integer value times. Check the example:

extension Int{
 func repeatTask(task:()->()){
 for _ in 0...self
 {

Chapter 2

[29]

 task()
 }
 }
}

5.repeatTask{
 println("Hello Swift")
}

In the previous code, we added a new method called repeatTask that accepts
closure with the format () -> (), which means that it takes no parameters and
returns nothing. It just executes the piece of code inside it. This method will run this
closure integer X times. According to our example, we called the method toward the
integer 5 with closure containing a single line of code to print message. This code
will print Hello Swift five times.

The instance methods we add in extensions have the ability to modify (mutate) the
instance itself. This can happen with value types only, which are enumerations and
structures. To allow the method to do so, mark it as the mutating keyword before
the func keyword while defining your function. Let's see an example in the Int
structure:

extension Int{
 mutating func squareMe(){
 self = self * self
 }
 mutating func doubleMe(){
 self = self * 2
 }
}

Var number = 10
number.squareMe() // number will be 100
number.doubleMe() // number will be 200

In the example, we added two mutating methods to the Int structure. The first one
is called squareMe that will square the integer value itself. The second one is called
doubleMe which doubles the integer value by multiplying it by 2. The two methods
changed the integer value and mutated the instance.

Advanced Swift

[30]

Generics
The generic code is used to write usable and flexible functionalities that can
deal with any type. This helps you avoid duplication and write code that is very
clean and easy to edit and debug. Examples of using generics are when you use
Array and Dictionary. You can create an array of Int or String or any type
you want. That's because Array is generic and can deal with any type. Swift gives
you the ability to write generic code very easily, as you will see in the following
example. In the example, we will explain how to use Stack data structure. Stack is
commonly used in algorithms and data structures. You can notice the use of stack in
UINavigationController, as the view controllers are inserted in a stack, and you
can easily push or pop view controllers.

Before implementing stack in a generic way, we will build it first for the Int
type only, and then we will build it generically to see the difference. Check the
following code:

class StackInt{
 var elements = [Int]()

 func push(element:Int)
 {
 self.elements.append(element)
 }
 func pop() -> Int
 {
 return self.elements.removeLast()
 }
 func isEmpty()->Bool
 {
 return self.elements.isEmpty
 }
}

var stack1 = StackInt()
stack1.push(5) // Stack is [5]
stack1.push(10) // Stack is [5,10]
stack1.push(20) // Stack is [5,10,20]
stack1.pop() // returns 20 and stack is [5, 10]

Chapter 2

[31]

As we have seen in the previous code, we built a stack class to deal with the Int type
elements. The code is simple and works great, but what about if we wanted to create
another stack to deal with the String type or UIViewController type? For sure, we
will not create another class for each type. The solution is to create a stack that deals
with a generic type. Check how to do that in Swift:

class Stack <T>{
 var elements = [T]()
 func push(element:T)
 {
 self.elements.append(element)
 }
 func pop()->T{
 return self.elements.removeLast()
 }
}

var stackOfStrings = Stack<String>()
stackOfStrings.push("str1")
stackOfStrings.push("str2")

var stackOfInt = Stack<Int>()
stackOfInt.push(4)
stackOfInt.push(7)

As we have seen in the previous generic way, we created a stack class and wrote
<T> to indicate that this class deals with generic type. Then in later functions, refer
to the generic type with the T symbol, which means any type. After we created the
stack data structure, we implemented the most important methods such as pop and
push. We used it first with the String type and then with the Int type. Without
modifying anything, we wrote the type while declaring the stack variable using the
Stack<String>() way.

Operator functions
Operator functions or operator overloading is a way to allow structures and classes
to provide their own implementation of existing operators. Imagine that you have
two points of type CGPoint and you want to get the sum of both points. The solution
will be to create another point and set its x, y with sum of x's and y's of points. It's
simple right? But what if we override the + operator that accepts the summation of
two points. Still not clear? Check this example:

func +(lhs:CGPoint, rhs:CGPoint) -> CGPoint
{
 return CGPoint(x: lhs.x + rhs.x, y: lhs.y + rhs.y)

Advanced Swift

[32]

}

let p1 = CGPoint(x: 1, y: 4)
let p2 = CGPoint(x: 5, y: 2)

let p3 = p1 + p2 //{x 6 y 6}

In the example, we wrote the function and its name is just the + operator. It takes
two parameters, lhs and rhs, which means the left-hand side and right-hand side
of the equation is a summation. The function returns a point, which is the sum of
the two points. Then, in the code, we wrote p1 + p2. This code will call the +
function that accepts two points and returns their sum. It makes your code very
clean and readable.

Let's now override the subtraction operator -:

func -(lhs:CGPoint, rhs:CGPoint) -> CGPoint
{
 return CGPoint(x: lhs.x - rhs.x, y: lhs.y - rhs.y)
}

let p1 = CGPoint(x: 1, y: 4)
let p2 = CGPoint(x: 5, y: 2)
let p4 = p2 - p1 //{x 4 y -2}

It's very straightforward and done in the same way of addition. Let's now see more
interesting operators like unary operators. The unary operators are used with a
single target for example i++, -a, or j--. When you override operators like these,
you type the prefix or postfix keyword before func, depending on whether the
operators are coming after or before the operand. So, if you want to override –a,
you use prefix, and for i++, use postfix. Now, let's implement the operators –a
and a++ for CGPoint:

prefix func -(point:CGPoint) -> CGPoint
{
 return CGPoint(x: -point.x, y: -point.y)
}

postfix func ++(point:CGPoint) -> CGPoint
{
 return CGPoint(x: point.x + 1, y: point.y + 1)
}

Chapter 2

[33]

let p1 = CGPoint(x: 1, y: 4)
let p11 = -p1 //{x -1 y -4}

let p22 = p1++ //{x 2 y 5}

As we can see in the examples, we override the two operators, - and ++. The two
functions take only one parameter, as they are unary operators.

Other types of operators that I want to mention are compound operators, such as +=
and -=. In these types of operators, we create a function that takes two parameters,
lhs and rhs, and then we mark the lhs parameter with the inout keyword to
indicate that this parameter will be modified directly and that there is no need to
return anything in this function. Let's see an example so that things will be clear:

func +=(inout lhs:CGPoint, rhs:CGPoint)
{
 lhs = lhs + rhs
}

let p1 = CGPoint(x: 1, y: 4)
var p2 = CGPoint(x: 5, y: 2)

p2 += p1 //{x 6 y 6}

When we implemented the += operators, we marked lhs with inout, and that
helped us change the value directly without any need to return any values.

You can also override equivalence operators, such as == or !=, and you can add your
custom operators such as +++ or ---. You can try it yourself as a test.

Memory management
Memory management is one of the most important topics that every developer
should be aware of when making their app very responsive and efficient. Swift
uses Automatic Reference Counting (ARC) to manage memory. In ARC, freeing
up memory and managing it is done automatically when instances are no longer
needed. Although ARC does most of the work in memory management, you have
to care about the relations between classes to avoid memory leaks.

www.allitebooks.com

http://www.allitebooks.org

Advanced Swift

[34]

In memory, each object has a reference counting, and when it reaches zero, this object
will be deallocated from the memory. In Swift, we have two types of references:
strong and weak. The strong references retain the object and increment its reference
counting by 1; the weak references don't increment the reference counting. In Swift,
when you assign a class reference to a variable, constant, or a property, it makes a
strong reference to it and it will remain in the memory as long as you use it. Take
care while using relations between classes to avoid a very common problem-Strong
Reference Cycle. This cycle happens when two instances hold the strong references
to each other. Let's see an example of how this can happen:

class Person{
 var name:String
 var apartment:Apartment?
 init(name:String){
 self.name = name
 }
}

class Apartment {
 var apartmentNo:Int
 var owner:Person?
 init(number:Int){
 self.apartmentNo = number
 }
}

let person1 = Person(name: "John")
let apartment = Apartment(number: 100)
person1.apartment = apartment
apartment.owner = person1

As we can see in the declarations of two classes, in the Person class we defined the
property apartment to the Apartment class, which is strong. In Apartment, we
have also assigned a property to the Person class, which is also strong. Then, in
the example, we created two instances and assigned the properties to each other.
The code looks good, but unfortunately, we made a big mistake here. Imagine that
you have two dogs, and each one is attached to the other with a leash, so neither
one can escape! It's the same case here; both the objects will be allocated in memory,
and neither of them will be deallocated as each one of them is waiting for the other
to destroy the first. The solution for this is to define one of the properties as weak or
unowned. Check the differences and similarities between weak and unowned:

Chapter 2

[35]

Weak Unowned

• It doesn't keep the strong
reference to instances.

• Its default value is nil and it is
set to nil when the referenced
instance is deallocated.

• Use it with the optional delegate.

• It doesn't keep the strong reference
to instances.

• It becomes a dangling pointer when
the referenced instance is deallocated.
Accessing a dangling pointer may
crash your app.

• It is always assumed to have a value.
• It is similar to assign in Obj-C.

So, to solve our problem, we will redefine the owner property to be weak:

weak var owner:Person?

This will cause the person to retain the apartment, but the apartment will not retain
the person. This relation is called the parent–child relation: the parent has to retain
the child, but not vice versa - the child must not retain the parent. This means that
the child should always exist while the parent exists, but the child doesn't have to
exist if the parent doesn't exist. That's why we define the child to parent relation
as weak or unowned. So, take care when you define relations between classes and
understand when to use strong, weak, or unowned.

Using Objective-C and Swift in a single
project
As an iOS developer, before Apple released Swift, you may feel worried about your
old code in Objective-C and wonder if you can use them together. The answer is yes,
you can use Swift and Objective-C together in a single project, and everything will
be fine, irrespective of whether the project was originally in Swift or Objective-C.
This compatibility is very important in making the language easy to use and has
been welcomed by all developers. So, you can use Objective-C frameworks (system
frameworks or your custom frameworks) in Swift, and you can use Swift API's in
Objective-C code.

Advanced Swift

[36]

Importing Objective-C in the Swift project
To import some of your old Objective-C files in the Swift project, you will need a
bridging header file to expose these files to Swift. Xcode offers to create the bridging
header file for you once you add a Swift file in an Objective-C project or vice versa.
Check the following image, where Xcode asks you to create the header file for you:

After clicking on Yes, Xcode will create a header file with the product name,
followed by -Bridging-Header.h. In this file, you can import every Objective-C file
you want to expose to Swift. Then, all Objective-C file's functionality will be available
to use in any Swift file in your project without needing to import anything.

Importing Swift in the Objective-C project
To import Swift files in the Objective-C project, you will need Xcode-generated header
file to expose these files to Objective-C. Xcode generates an Objective-C header file
that declares Swift interfaces. The name of this file is the product name followed by
Swift.h. Then, you can import this file in your Objective-C file as follows:

#import "ProductModuleName-Swift.h"

Limitations
Although the compatibility in using Objective-C and Swift in one project is
important and mandatory, there are some limitations in using them together.
Swift has some awesome new features, but unfortunately, most of them will not be
usable in Objective-C. The following list shows the features that can't be used
in Objective-C code:

• Generics
• Tuples
• Enumerations defined in Swift

Chapter 2

[37]

• Structures defined in Swift
• Top-level functions defined in Swift
• Global variables defined in Swift
• Type aliases defined in Swift
• Swift-style variadic parameter
• Nested types
• Curried functions

Summary
In this chapter, we talked about some advanced features of Swift-like type casting
and type checking. We talked about protocols and saw how Swift added some
awesome new features to it than Objective-C. We also talked about extensions to
add more usable and powerful functionality to any existing classes, structures, and
enumerations. We introduced the operator overloading feature and generics to write
more usable code. Finally, we talked about memory management to make your app
more efficient and more responsive. We ended the chapter with how to use Swift
and Objective-C together in the same project and listed the limitations of using some
Swift features that can't be used in Objective-C.

Starting with the next chapter, we will mention a new technology in each chapter
and how to write a simple demo in Swift. In the next chapter, we will talk about
Touch ID, a new framework used to add a new flavor of authentication via finger
print sensors.

[39]

Touch ID
Starting with this chapter, I will not talk only about Swift. However, I will talk about
using Swift in developing apps with the new frameworks and tools introduced by
Apple starting with iOS8 such as Touch ID, HealthKit, Metal, WatchKit, and app
extensions. These awesome new tools let you write and add new features to your
app or come with new app ideas.

What is Touch ID?
Touch ID is a new technology used for authentication starting with iOS 7 and
iPhone 5s devices. Initially, it was used only by Apple to unlock the iPhone or
make purchases through the App store. Developers couldn't use this technology
in their apps. Starting with iOS 8, Apple has introduced a lot of new technologies,
and one of them was using Touch ID in third-party apps. In that case, users can sign
in to the apps using their fingerprints, and there is no need to enter a password! So,
you can make the users life easier and simpler using this technology.

The LocalAuthentication framework
To start using Touch ID in your app, you have to use a new framework named
LocalAuthentication. This framework provides everything you need to add Touch ID
authentication in to your app. The framework is responsible for displaying the touch
prompt to a user to provide his fingerprint for scanning to perform authentication.
Some users may refuse to use it. If the authentication failed for any reason, in that case,
you have to provide your own way for authentication like the old ways via e-mail or
something else. Now, I will show you how to use the LocalAuthentication framework
to prompt the user to authenticate himself.

Touch ID

[40]

The final result of our demo will be as follows:

The first step is to create a new iOS project with a single-view template and
make sure that you select Swift as your development language. Then add
LocalAuthentication framework, as follows:

Chapter 3

[41]

Now that your project is configured to use Touch ID, open ViewController.swift
and let's add a method called authUser() that will be used for authentication:

func authUser()
 {
 let context = LAContext()
 var authError : NSError?
 let reason = "Here explain why your app needs this
 authentication"

 if context.canEvaluatePolicy
 (LAPolicy.DeviceOwnerAuthenticationWith
 Biometrics, error: &authError)
 {
 //(1)
 }
 else{
 //(2)
 }
 }

In the previous code, we first created an authentication context that's represented
by the LAContext class; the prefix LA is an abbreviation for LocalAuthentication.
Then, we created an error variable authError; it will be set with an error that
can occur in evaluating the authentication policy. The reason string holds the
description that will appear to the user when the alert appears asking for the
Touch ID. Before authentication, we have to make sure that the context can
evaluate the DeviceOwnerAuthenticationWithBiometrics policy - whether
Touch ID can be used for authentication. If the system can evaluate the policy,
the code in part 1 will be executed, and otherwise, the code in part 2 will executed.
Let's start implementing part 2:

if let error = authError{
 switch error.code{
 case LAError.TouchIDNotAvailable.rawValue:
 println("TouchID is not available in this device")
 case LAError.TouchIDNotEnrolled.rawValue:
 println("Authentication could not start because Touch ID
 has no enrolled fingers Availability")
 default:
 println("\(error.localizedDescription)")

 }
}

Touch ID

[42]

Here, we have an error. This error will mostly occur because of two cases. First, if the
device that you are using has no Touch ID; that happen with all devices launched
before iPhone 5s. Second, if the Touch ID has no available enrolled fingers. We used
the LAError enum that contains all possible errors that may occur while dealing with
LocalAuthentication. Let's move to part 1:

context.evaluatePolicy(LAPolicy.DeviceOwnerAuthenticationWithBiome
trics, localizedReason: reason, reply: { (success, error) -> Void
in

 if success{
 println("User authenticated successfully")

 }else{
 println("\(error.localizedDescription)")
 switch error.code{

 case LAError.UserCancel.rawValue:
 println("User cancelled")
 case LAError.UserFallback.rawValue:
 println("User entered custom password")
 case LAError.SystemCancel.rawValue:
 println("System cancelled")
 default:
 println("Auth failed")
 }

 //User didn't authenticate successfully
 }
})

Here, we can evaluate that Touch ID is available, so now we can call the
evaluatePolicy function. Calling this method will prompt the user to provide
his fingerprint for authentication, and the reason text will be visible to the user
to understand why this app needs his Touch ID.

Note that your fingerprint data is protected and is never accessed
by iOS or other apps.

Chapter 3

[43]

This method has closure callback to tell you what the result of authentication is. If
success is true, the user authentication is done correctly and the user is ready to
use your app. If not, you have many different scenarios such as cancelation by the
user or the system or the user preferred to enter a password. To handle all these
cases, we will also use LAError enum that covers all the possible cases of errors.

If you decide to put Touch ID authentication into your app, it should not be the only
way for authentication. You have to provide other options because not all users may
like to use or even have this feature in their device.

Summary
In this simple chapter, we introduced Touch ID, how you can use it in third-party
applications and how to make it one of your options to sign in your app or
authenticate your users. We also talked about the LocalAuthentication framework
that performs all the magic about Touch ID authentication, simplifying everything
for you to use it. In the next chapter, we will talk about the HealthKit framework
and how to use it in developing apps related to users' health data. You will also learn
how to read and write data from the HealthKit store and how to deal with data units.

[45]

Introduction to HealthKit
Starting with iOS 8, many frameworks and new APIs have been introduced to build
awesome apps with new ideas. In this chapter, we are going to introduce one of these
new frameworks, which is HealthKit. We will see how to use it to communicate with
the native Health app in your iOS device.

What is HealthKit?
HealthKit is a new API provided by iOS 8. It enables apps to read the user's health
information using the native Health app in their devices. You can consider that the
Health app is a user interface for the HealthKit store. Other apps can write data in
the Health app, such as workouts results, or statistics, so that the user can access
them. This helps users to find all the information about their health in one location.
The health information is stored in a secure location, and the user is responsible for
deciding which data can be shared with apps. In the Health app, users can view,
add, delete, and manage all their health data, and can also edit all the permissions to
the third-party apps. HealthKit can also work with fitness or health devices, and it
can save data from Bluetooth heart rate monitors. If your device has an M7 motion
processor, HealthKit can import the step count data to it. So, all the developers who
care about health and fitness apps will need to work with this new API.

HealthKit limitations
There are some limitations that everybody needs to be aware of before deciding
to work with HealthKit:

• The HealthKit framework is introduced in iOS 8.
• HealthKit and the Health app are not available for iPad.

Introduction to HealthKit

[46]

• The HealthKit framework can't be used in the app extensions, such as
WatchKit.

• You need permission to access every type of data in the Health app. For
example, a user can let your app read the blood type info, and prevent it
from reading the heart rate or the step count info.

• The HealthKit store is encrypted, and your app can't read data when the phone
is locked. So, when your app runs in background, it may not be able to access
the store. However, your app can still write data even if the phone is locked,
as the data will be cached, and then saved when the phone is unlocked.

• Any app that uses the HealthKit framework must provide a privacy policy.

HealthKit privacy
Health information is very sensitive, and HealthKit gives its users full control
over their data to decide which data is to be shared with the third-party apps, and
which apps can share or use this data. Here, I will list some points to consider while
working with HealthKit:

• Don't use the information that is gained from HealthKit for advertising or
other similar services.

• You must not disclose any information gained to a third party without
getting permission from the user. Even with permission, you can share this
data only with those third parties that provide fitness or health services.

• You can't sell information gained from HealthKit to any other service
or platform.

• You can share this information with a third party, for medical research,
only if the user consents.

Getting started with HealthKit
To get started with HealthKit, we will create a demo that will teach you how to
request permission from the user to access his data from the Health app, read and
format this information to make it readable for the user, and write info in the Health
app. Now, go to Xcode and create a new project with a single view template, and
make sure that Swift is selected as the project language.

Chapter 4

[47]

Configuring the Xcode project
To configure our project using HealthKit, you have to first enable the HealthKit
capabilities. To do this, select your target on Xcode, and click on the Capabilities
tab. Then, enable HealthKit in the list by switching it ON; check the following
screenshot:

After enabling the HealthKit capabilities, HealthKit will be added to the list of
required device capabilities. This will prevent users from installing your app on
devices that don't support HealthKit, such as iPad. But what if HealthKit is not your
main idea or the main operation in your app? In this case, you have to open the
info.plist file of your app, and remove healthkit from the Required device
capabilities array. Now, your project is ready to work with HealthKit.

Please make sure that your app identifier is set in a developer account,
and you have enabled HealthKit on it. In the current example, I used
Xcode 7, as Apple now allows developers to run apps on devices without
the developer account, but you will have to login first with your iCloud
account. So, if you use your developer account, please make sure that the
HealthKit is enabled in the app identifier.

Introduction to HealthKit

[48]

Getting your hands dirty with HealthKit
Now, we have configured our Xcode project. In the project demo, we will take
permission for reading and writing information from HealthKit. We will ask for
reading permissions to read age, weight, and height. Then, we will ask for writing
permissions to write weight and height. Let's get started.

The HealthKit store
In your app, you need to instantiate a HKHealthStore object to be the interface
between you and the HealthKit database. Once your app is launched, you need only
one HealthKit store object per app; this is why we will declare it in AppDelegate.
swift, and access it from all the view controllers or anywhere. Now, let's open
AppDelegate.swift to import the HealthKit framework and define our store:

import UIKit
import HealthKit

let currentHealthStore = HKHealthStore()

As you see, after importing the HealthKit framework, we defined
currentHealthStore to be our store, and we will access it anywhere in our project.
Now, let's move to ViewController.swift to ask for the permission. Before this, we
have to first check whether HealthKit is available in the current device or not. To do
this, the HKHealthStore class has a class method called isHealthDataAvailable
to tell you whether HealthKit is available in the current device or not. We do so
because, as explained earlier, HealthKit is not available for iPad, and there are
some specific editions of iPhone that also don't have HealthKit. Now, go to the
viewDidLoad method in ViewController.swift, and check for the availability
of HealthKit:

if HKHealthStore.isHealthDataAvailable(){
 // HealthKit is supported in this device

 }
 else{
 let alertController = UIAlertController(title:
 "Warning", message: "HealthKit is not available in
 your device!", preferredStyle:
 UIAlertControllerStyle.Alert)
 alertController.addAction(UIAlertAction(title: "Ok",
 style: UIAlertActionStyle.Cancel, handler: nil))
 self.presentViewController(alertController, animated:
 true, completion: nil)
 }

Chapter 4

[49]

As you saw in the previous code, we first checked for availability, and if it is not
available, we displayed an alert to the user that HealthKit is not available in his or
her device.

Asking for permissions
We have checked whether HealthKit is available or not. We will now ask for
permission to read and write data. We will start with the data that we want to read.
As we said before, we will read age, height, and weight. Let's create a method that
returns all the types that we want to read:

 func dataToRead() -> NSSet{
 let heightType =
 HKObjectType.quantityTypeForIdentifier
 (HKQuantityTypeIdentifierHeight)
 let weightType =
 HKObjectType.quantityTypeForIdentifier
 (HKQuantityTypeIdentifierBodyMass)

 let birthdateType =
 HKObjectType.characteristicTypeForIdentifier
 (HKCharacteristicTypeIdentifierDateOfBirth)

 return NSSet(objects: heightType!, weightType!,
 birthdateType!)

 }

In the previous code, we created a method that returns the NSSet of objects.
These objects will be the types that we want to read. In HealthKit, all types are the
subclasses of the HKObjectType class, which has all the common functionalities
and properties of all the subclasses. In the data that we read, we used two types of
data: HKQuantityType and HKCharacteristicType. The HKQuantityType class is a
subclass of HKObjectType, and is used for quantity types that are stored as numeric
values. The HKCharacteristicType class is also a subclass of HKObjectType, and is
used to represent data that doesn't change over time, such as sex or date of birth. The
characteristic types cannot be used to create new HealthKit objects. Instead, users must
enter and edit their characteristic data using the Health app. Characteristic types are
used only when asking for permission to read data from the HealthKit store.

Introduction to HealthKit

[50]

Let's now create a method to return data that we want to write:

 func dataToWrite() -> NSSet{

 let heightType =
 HKObjectType.quantityTypeForIdentifier
 (HKQuantityTypeIdentifierHeight)
 let weightType =
 HKObjectType.quantityTypeForIdentifier
 (HKQuantityTypeIdentifierBodyMass)

 return NSSet(objects: heightType!, weightType!)
 }

The data that we write will be same as the data we read, only without the date of
birth, because it's a characteristic type, and can be changed only from the Health app.

Now that the types are ready, let's ask for permission to read and write this data. We
will use currentHealthStore in AppDelegate to ask for authorization. Update the
code in viewDidLoad to look like this:

if HKHealthStore.isHealthDataAvailable(){
 // HealthKit is supported in this device

 let typesToRead = dataToRead()
 let typesToWrite = dataToWrite()

 currentHealthStore.requestAuthorizationToShareTypes
 (typesToWrite as! Set<HKSampleType>, readTypes:
 typesToRead as! Set<HKObjectType>, completion: {
 (success, error) -> Void in

 if success{

 // We will update UI to preview data we read.
 dispatch_async(dispatch_get_main_queue(), { ()
 -> Void in

 self.updateUI()
 })

 }
 else{

Chapter 4

[51]

 print("User didn't allow HealthKit to access
 these read/write data types",
 appendNewLine:true)
 }

 })
 }

We started our authorization by calling the requestAuthorizationToShareTypes
method, which takes the read and write types as the parameters to display a view to
the user asking for permission. After the user responds to the request, the completion
block will be called with success and error. If everything goes fine, the success
variable will be true, and you can update your UI this time. Now, run your app in
the device, and you will see something like this:

As you see, this view is displayed to ask the user to approve which data type we
have access to. And as we said before, HealthKit gives users full control over which
the data type can be accessed for read or write.

Introduction to HealthKit

[52]

Updating the UI
Now, we can read and write the data types that the user has approved to access.
We will now start to display the read data types. Let's first create a new view
controller class with a subclass to UITableViewController, and it will be our
HomeViewController class. Then move all the code we wrote in ViewControlelr.
swift, to the new one that is HomeViewController.swift, as shown in the
following screenshot:

Now, switch to the Main.storyboard file to design the UI of HomeViewController.
Now, from the right-hand side menu, drag UITableViewController and set its class
to HomeViewController. Check out the following screenshot:

Chapter 4

[53]

After adding UITableViewController, we will modify it to add the static cells
that will display the information that we read from the HealthKit store. Now,
select UITableView and change Content to static cells, and Style to Grouped.
Then, add three cells to represent age, height, and weight. The design will be
something like this:

Introduction to HealthKit

[54]

Then, take outlets to these labels in your HomeViewController.swift. You will have
something like this:

 @IBOutlet weak var ageLabel: UILabel!

 @IBOutlet weak var ageValueLabel: UILabel!

 @IBOutlet weak var heightLabel: UILabel!
 @IBOutlet weak var heightValueLabel: UILabel!

 @IBOutlet weak var weightLabel: UILabel!

 @IBOutlet weak var weightValueLabel: UILabel!

Now, the UI is ready to be filled with data that we read from the HealthKit store.
Open the updateUI function, and we should read birth date, height, and weight. We
will read each type in a separate method to keep our code more readable. Let's start
with the birth date by creating a function called updateUsersAge():

func updateUsersAge(){

 do{
 var error : NSError!
 let birthdate = try
 currentHealthStore!.dateOfBirthWithError()

 let now = NSDate()

 let dateComponents =
 NSCalendar.currentCalendar().
 components(NSCalendarUnit.NSYearCalendarUnit,
 fromDate: birthdate, toDate: now, options:
 NSCalendarOptions.WrapComponents)
 let age = dateComponents.year

 self.ageValueLabel.text =
 NSNumberFormatter.localizedStringFromNumber
 (NSNumber(integer: age), numberStyle:
 NSNumberFormatterStyle.NoStyle)

 }
 catch{

 self.ageValueLabel.text = "Not Available"
 }
 }

Chapter 4

[55]

The code is straightforward—we used our store instance called
currentHealthStore to call the dateOfBirthWithError() function, to get the
user's data of birth from the Health app. The catch block will be called if there has
been any error, or if the date of birth is not available in the store. Once you get the
date of birth, you can use NSDateComponents and NSCalendar to get the difference
of years to the current year. Then, update the UI by setting the text to the outlet label
called ageValueLabel.

Now, let's see how to read height and weight. Before seeing how to read this data,
I want to explain something. In HealthStore, when you read the quantity types,
you run a query to fetch data, as this type has different values within the time. For
example, in the previous year, if you have reported your weight in the Health app 10
times with different values, and then when you read the weight data from the store,
you will have to specify which is the data that you need. In some apps, they may
need to read the weight records of the previous year, only to display a chart about
your progress in weight loss. In our app, we care only about the most recent value,
which means your current weight. This is why, in reading the quantity types, you
have to specify NSSortDescriptors, when you need to sort this data in any specific
order. You can also specify NSPredicate if you want to filter the data; for example,
read all the weights that are greater than 100 kg so that I will be able to know which
times in the year I put on weight: in summer, or winter, or during school days. The
last thing is that you can specify the limit that you want to read, for example, if you
only care about the last five records you will set the limit value as 5. It makes the
execution of the query faster if you don't need all the records, and care only about
a specific number.

So, because we only care about the most recent value, let's first use the Swift feature
of extensions to create an extension for HKHealthStore, to read the most recent value
of a specific data type. Check out the following code:

typealias MostRecentCompletionHandler = (quantity:HKQuantity!,
error:NSError!) -> Void

extension HKHealthStore{

 func getMostRecentValueOfType(quantityType:HKQuantityType,
 predicate:NSPredicate, handler:MostRecentCompletionHandler){

 let sortDescriptor = NSSortDescriptor(key:
 HKSampleSortIdentifierEndDate, ascending: false)
 let query = HKSampleQuery(sampleType: quantityType,
 predicate: predicate, limit: 1, sortDescriptors:
 [sortDescriptor]) { (query, samples, error) -> Void in

Introduction to HealthKit

[56]

 if let results = samples{

 let sample = results.first as! HKQuantitySample

 handler(quantity: sample.quantity, error: nil)

 }
 else{
 handler(quantity: nil, error: error)
 }

 }

 self.executeQuery(query)
 }
}

As we saw, in the previous extension, we created NSSortDescriptor to sort
the quantities by the end date to get the most recent record. Then, we created
HKSampleQuery object using four parameters; the quantity type that we want to read
and its passed as a parameter in the getMostRecentValueOfType method, the sort
descriptor which we have created earlier, the NSPredicate as a nil value because
we don't want to filter records, the results limit with 1 value as we want to read only
the most recent one, and finally the completion block that gives you with query,
samples and error. After executing the query, the completion block will be called;
inside the block we will call our handler that was passed also as a parameter in the
getMostRecentValueOfType method with the first quantity and error if occurred.
Now, let's go back to creating a function to read the height:

 func updateUsersHeight(){

 self.heightLabel.text = "Height (m)"
 let heightType =
 HKQuantityType.quantityTypeForIdentifier
 (HKQuantityTypeIdentifierHeight)
 currentHealthStore.getMostRecentValueOfType(heightType!,
 predicate: nil, handler: { (quantity, error) -> Void in

 if quantity != nil{

 let mUnit = HKUnit.meterUnit()
 let height = quantity.doubleValueForUnit(mUnit)

Chapter 4

[57]

 dispatch_async(dispatch_get_main_queue(), { () ->
 Void in

 self.heightValueLabel.text = "\(height)"
 })
 }
 else{
 dispatch_async(dispatch_get_main_queue(), { () ->
 Void in

 self.heightValueLabel.text = "Not Available"
 })
 }
 })
 }

As we saw in the previous code, we called the getMostRecentValueOfType
method that we added using the Swift extension. We passed the height type and the
completion handler to get the quantity and error if occurred. The quantity will be nil
if the user has not set his height in the Health app, and this is why we display the Not
Available message. If the quantity is not nil, we format the value to be in a meter
using the HKUnit class. HKUnit has many other units to use, such as inch or mile.

In the same way, we will now read the weight from the HealthKit store:

func updateUsersWeight(){
 self.weightLabel.text = "Weight (Kg)"
 let weightType =
 HKQuantityType.quantityTypeForIdentifier
 (HKQuantityTypeIdentifierBodyMass)
 currentHealthStore.getMostRecentValueOfType(weightType!,
 predicate: nil, handler: { (quantity, error) -> Void in

 if quantity != nil{

 let gUnit = HKUnit.gramUnit()
 let weight = quantity.doubleValueForUnit(gUnit) /
 1000.0
 dispatch_async(dispatch_get_main_queue(), { () ->
 Void in

 self.weightValueLabel.text = "\(weight)"
 })
 }
 else{

Introduction to HealthKit

[58]

 dispatch_async(dispatch_get_main_queue(), { () ->
 Void in

 self.weightValueLabel.text = "Not Available"
 })
 }
 })
 }

Now, update your updateUI method to be like this:

 func updateUI(){

 updateUsersAge()
 updateUsersHeight()
 updateUsersWeight()
 }

Now, if you run your app, you will see something like this:

Chapter 4

[59]

Sharing data in the Health app
We have learned how to ask for the permission, and read information from the
Health store. Now we see an example of how to share data in Health store. In this
example, when the user clicks on the weight row, a pop-up view will be displayed,
where the user will have to enter his new weight. Then, the user can save this
value in the HealthKit store. Let's start with the UI to detect click on table cells and
display the pop-up view. To detect, click on UITableViewCell, we will add the
didSelectRowAtIndexPath function, as follows:

override func tableView(tableView: UITableView,
didSelectRowAtIndexPath indexPath: NSIndexPath) {

 if indexPath.row == 2{
 //Weight cell

 let alertController = UIAlertController(title: "Your
 current weight", message: nil, preferredStyle:
 UIAlertControllerStyle.Alert)
 alertController.addTextFieldWithConfigurationHandler({
 (textField:UITextField) -> Void in
 textField.keyboardType = UIKeyboardType.DecimalPad
 })

 alertController.addAction(UIAlertAction(title: "Ok",
 style: UIAlertActionStyle.Default, handler: {
 (alertAction:UIAlertAction) -> Void in

 if let textField =
 alertController.textFields?.first {

 let value = (textField.text! as
 NSString).doubleValue
 self.saveWeightInStore(value)
 }

 tableView.deselectRowAtIndexPath(indexPath,
 animated: true)

 }))

 alertController.addAction(UIAlertAction(title:
 "Cancel", style: UIAlertActionStyle.Cancel, handler: {
 (alertAction) -> Void in

Introduction to HealthKit

[60]

 tableView.deselectRowAtIndexPath(indexPath,
 animated: true)
 }))
 self.presentViewController(alertController, animated:
 true, completion: nil)
 }
 }

We checked first that the selected row is the weight row and then displayed
UIAlertController with UITextField to enter the new height. When the user
clicks on OK, we will take the new value and save it in HealthKit store using
the function saveWeightInStore(value) that we will now implement.

Now that the new weight value is ready, let's implement the
saveWeightInStore(newValue) function:

func saveWeightInStore(weight:Double){

 let gramUnit = HKUnit.gramUnit()
 let quantity = HKQuantity(unit: gramUnit, doubleValue:
 weight * 1000.0)
 let weightType =
 HKQuantityType.quantityTypeForIdentifier
 (HKQuantityTypeIdentifierBodyMass)

 let now = NSDate()
 let sample = HKQuantitySample(type: weightType!, quantity:
 quantity, startDate: now, endDate: now)
 currentHealthStore.saveObject(sample) { (success, error) -
 > Void in

 if success{

 self.updateUsersWeight()
 }
 else{
 print("Error in saving \(error)")
 }
 }
 }

Chapter 4

[61]

To save any data in the Health store, you have to prepare the HKQuantitySample
instance that takes the quantityType parameter, which here is weightType. Then
we also have the quantity type parameter which we created using the gram unit
and the value. We multiplied the value by 1000.0 to convert it into grams. Then,
we called the saveObject method in currentHealthStore, to save the data in store,
and, if the saving operation succeeded, we refreshed the UI with the new value by
calling the updateUsersWeight method.

Summary
In this chapter, we covered in detail how to get started with HealthKit. We explained
the idea of the HealthKit framework, and how to deal with sensitive data. We
mentioned the HealthKit limitations, and its availability in the iOS devices. We saw
how the users' data is protected in the Health app, and any app that needs to access
or share any data type will need permission from user. The user can enable or disable
this permission anytime from the Health app. We also learned how to read and share
the data to the Health store, and how to deal with units. In the next chapter, we will
give a good introduction, and the basic information that is needed to get started with
Metal. Metal is a new framework for the GPU-accelerated 3D graphics in iOS.

[63]

Introduction to Metal
We are still working with the new features of iOS 8, and in this chapter, we are
going to talk about Metal. To work with graphics in mobile devices is not an easy
task especially with complex graphics and 3D. Mobile devices are limited resources,
and you have to care about your performance and battery usage. We used to use
OpenGL ES or other high-level APIs such as SceneKit, but these tools don't give you
full power and control to optimize performance. That's why Apple has come up with
Metal, and they claimed that it's the lowest overhead access to the GPU.

What is Metal?
Metal is a new framework specified for GPU-accelerated advanced 3D graphics.
Apple first introduced Metal in iOS 8. To work with Metal, you need a physical
device as it's not supported yet in iOS simulator. The physical device must also have
an Apple A7 or A8 processor or higher (at the moment there is no higher processor,
but I have included it just in case Apple introduces A9 while you are reading this
chapter). This means that you need an iPhone 5s or higher or an iPad Air or Mini
(second generation) to run Metal.

Features
Metal has a lot of features that make it a good choice to use in your 3D graphics app
or game. Here you can find a list of features of Metal:

• It provides extremely low-level access to A7 and A8 GPU to enable high
performance to your graphics rendering.

• It eliminates a lot of performance bottlenecks, such as state validation, that is
found in most common graphics APIs.

Introduction to Metal

[64]

• It is designed to be efficient with Apple hardware to ensure the highest speed
with low overhead.

• It provides up to 10x number of draw calls in your app compared to
OpenGL ES.

• A big enhancement in game is load time performance, thanks to the support
of precompiled shaders. They're an incredibly important part of rendering a
realistic gaming experience. Precompiling enables them to load faster.

• It is designed to move all expensive operations and creation of objects to be
outside the runtime of the game loop.

Although Metal is very efficient and gives you high performance, I really
don't recommend it as a choice to make a 3D game. In Metal, you will
write a lot of code to handle drawings of all your models and graphics,
which is very time consuming and a big headache. Maybe big gaming
companies will use it, but I think that they will build their own game
engines based on Metal to make their life easier.
If you are working as an individual and looking forward to building your
own game, go with SceneKit, Unity, or Unreal Engine. These game engines
are very powerful, and incredible games have been published using them.
You can also go with Metal and understand everything in it and how it
works, and then try to build your own game engine. In this case, you will
get an incredible experience in 3D graphics and game development.

As we have seen in the previous image, Metal has extremely low-level access to A7
and A8 GPU to enable high performance to your graphics rendering

Chapter 5

[65]

3D rendering
To render in 3D, you need to convert your 3D world to 2D images by applying effects
and methods to make them look plausible. You take geometric data of your world and
add perspective, material properties, lighting, and textures. Then, with some illusion
and understanding of the human visual system, you make things look real.

Pipeline
In the past, we had the "fixed-function" pipeline, which means that the hardware is
configurable, not programmable. So, you have to set certain states in the GPU to be
applied. For example, in lighting or changing graphic states for textures, you can't
write your own shaders. Then, the "programmable" pipeline that contains shaders
was introduced. Shaders are small programs to be run per pixel or vertex. In that
case, you write code that runs directly on the GPU. To make things clear, assume
that we want to display a model on the screen. The object will be passed through the
vertex shader, which projects this object on the virtual view plane. Then, the object
will be chopped into pixels, which will be passed through a fragment shader to
assign a color value for each pixel. So, to summarize, what happens in the draw call
is that each pixel gets a position in 3D space (x, y, and z) and is labeled with a color
(r, g, b, and a).

Transformations
Transformations are used for moving an object around the world. Examples for
transformations are translation, rotation, and scaling. The perspective projection is
also considered as a form of transformation and is the most commonly used in 3D
rendering.

Center of
Projection

Pr
oje

cto
rs

View
Plane

Introduction to Metal

[66]

Projection
In the process of perspective projection, we go through many coordinate spaces.
First, the points are represented in its own model space. Then, we need to move from
the model space to the world space, and then to the eye space so that we can imagine
the world from that space. In mathematics, we achieve this by matrix concatenation.

Other options to work with 3D rendering
in iOS
As we said earlier, Metal is not the only option for you to work in 3D application
or game. You have some other frameworks or third-party game engines, such as
Unity or Unreal Engine. One of the built-in native frameworks is SceneKit. SceneKit
is a very high-level engine that works with 3D models and worlds and can be
used easily with SpriteKit. Both are high level, as we said, and don't give you any
flexibility to work with low-level code or any access to GPU. For example, if you
want to render a 3D model in SceneKit, it's just a piece of cake. But in Metal, it's not
easy as it will take a lot of time and need a lot of code to be written. The trade-off is
the full power and control while drawing this model. The other option is OpenGL
ES, which is considered a great technology to work with 3D in iOS because of its
high performance and the power it gives you during work - the same for its cross-
platform. Metal gives you more power than OpenGL ES to interact with GPU. It also
has control over everything; although it's not cross-platform, it's designed to work
extremely efficient with Apple hardware.

Getting started with Metal
Now I think you have enough background knowledge to get started with Metal.
Let's start building our demo together.

Chapter 5

[67]

1. Open Xcode, create new project, and choose the Game template.

2. Then, write the name of the MetalDemo project, choose Swift as a language,
and select Metal in the Game Technology options list.

Introduction to Metal

[68]

3. Now, build and run in your device. You should see a beautiful triangle
moving in 3D.

We will go through the code together and explain the most important parts of it in
how to draw this triangle.

Devices and CAMetalLayers
Open GameViewController.swift, and you will see that we have to first import
Metal framework. Then, if you checked the first two attributes, you should see
something like this:

 let device = { MTLCreateSystemDefaultDevice() }()
 let metalLayer = { CAMetalLayer() }()

Creating devices is considered the first step in your Metal code. Devices are the
abstractions over GPU in your iOS device. Devices conform to protocol MTLDevice,
and you can consider them as the heart of Metal because they're your direct
connection to the GPU. Using devices, you can create pipelines, textures, and buffers.

The second important step in your work with Metal is creating CAMetalLayer. It is a
subclass of CALayer, but with more capabilities and special effects. This layer is your
UI interface and where you can see your Metal drawings.

Now, go to the viewDidLoad method to check some initialization:

 metalLayer.device = device
 metalLayer.pixelFormat = .BGRA8Unorm
 metalLayer.framebufferOnly = true

 self.resize()

 view.layer.addSublayer(metalLayer)

We first tell CMMetalLayer which device to listen to. Then, we set the pixel format to
BGRA8Unorm, which mean an 8-bit color format. Finally, we add CMMetalLayer as a
sublayer to the main layer of the view controller view, so we can see the drawings on
the screen.

Chapter 5

[69]

Now, after we have created CMMetalLayer, we need to resize it and update its frame
to meet the device screen size. Go and check a function called resize to set the
layer frame:

func resize() {
 if (view.window == nil) {
 return
 }

 let window = view.window!
 let nativeScale = window.screen.nativeScale
 view.contentScaleFactor = nativeScale
 metalLayer.frame = view.layer.frame

 var drawableSize = view.bounds.size
 drawableSize.width = drawableSize.width *
 CGFloat(view.contentScaleFactor)
 drawableSize.height = drawableSize.height *
 CGFloat(view.contentScaleFactor)

 metalLayer.drawableSize = drawableSize
 }

As you can see, we first get the native device screen scale and the current drawable
view size. Then, we set layer frame and its drawableSize variable, which is
calculated by the view size multiplied by the scale of device screen. This method
should be called only in the overridden viewDidLayoutSubviews method.

The command queue
In GameViewController.swift, you will find the declaration and creation of the
command queue like this:

var commandQueue: MTLCommandQueue! = nil
// in viewDidLoad
commandQueue = device.newCommandQueue()

Introduction to Metal

[70]

To submit work to the GPU, you need MTLCommandQueue, which conforms to the
protocol MTLCommandQueue. This queue is just a serial queue that dispatches your
work to the GPU. Submitting work in MTLCommandQueue is thread-safe, so you can
submit work to it through multiple threads with no problem.

In the previous figure, we can see three threads are submitting work to the command
queue in parallel, and each thread has its own command buffer.

Chapter 5

[71]

Vertex and color buffers
Anything that can be drawn in Metal is decomposed into a series of triangles by
stitching them together seamlessly and painting over them with textures. These two
buffers indicate the vertices and colors used for drawing the triangle, and they are
instances of MTLBuffer. In the list of parameters, you should see them declared
like this:

var vertexBuffer: MTLBuffer! = nil
var vertexColorBuffer: MTLBuffer! = nil

Then, to create them, we will use the device that we created earlier:

let vertexColorSize = vertexData.count *
sizeofValue(vertexColorData[0])
 vertexColorBuffer =
 device.newBufferWithBytes(vertexColorData, length:
 vertexColorSize, options: nil)

The vertexData and vertexColorData are arrays of float declared in the top of your
GameViewController.swift file. Then, we use the newBufferWithBytes instance
method in the device to create the buffer.

Vertex and fragment shaders
Shaders are small programs or functions that run on the GPU. You can find a vertex
shader and fragment shader created in the Shaders.metal file in your Xcode project.
They are written in a language such as C++ called Metal Shading Language. The
vertex shader is called once per vertex/pixel. It takes the vertex information (position
and color) as a parameter and returns modified data for position and color. In Xcode,
you can create multiple shaders in the same file or spread them across many metal
files. Metal will load all the shaders added in any metal file in your project. Check
the following figure to see the input of vertex function:

Introduction to Metal

[72]

After the vertex shader has finished its work, its output will be considered as an
input for the fragment shader. Then, it will also be called per vertex, and its job will
be to return the final color of this vertex. If you checked the Shaders.metal file, you
will find that it returns half4. It means a four-component color RGBA.

Now, to create these programs, check the viewDidLoad method. You will find
something like this:

let defaultLibrary = device.newDefaultLibrary()
 let fragmentProgram =
 defaultLibrary?.newFunctionWithName("passThroughFragment")
 let vertexProgram =
 defaultLibrary?.newFunctionWithName("passThroughVertex")

Again, we will use our device to create an instance of MTLLibrary by calling
newDefaultLibrary(). This library is a collection of functions that can be retrieved
by name. The default library consists of all the shaders that have been compiled in
your app binary.

The render pipeline
The render pipeline is considered as a precompiled set of graphic states, vertex
shader, and fragment shader. We create the pipeline in the setup of your code and
configure it with the vertex function and fragment function. The creation of pipelines
is expensive because when you create them, they takes the shader code and compile
it down to the GPU. That's why we create one in the setup and keep reference
to its state:

let pipelineStateDescriptor = MTLRenderPipelineDescriptor()
 pipelineStateDescriptor.vertexFunction = vertexProgram
 pipelineStateDescriptor.fragmentFunction = fragmentProgram
 pipelineStateDescriptor.colorAttachments[0].pixelFormat =
 .BGRA8Unorm

 var pipelineError : NSError?
 pipelineState =
 device.newRenderPipelineStateWithDescriptor
 (pipelineStateDescriptor, error: &pipelineError)
 if (pipelineState == nil) {
 println("Failed to create pipeline state, error
 \(pipelineError)")
 }

Chapter 5

[73]

As you see, the pipeline is an instance of MTLRenderPipelineDescriptor, and it
is then configured with the vertex and shader programs that we mentioned in the
previous section. Then, as usual, we will use the device to create pipelineState,
which is a compiled pipeline configuration and is efficient to use.

Vertex function and fragment function properties are essential for
MTLRenderPipeLineState.

The game loop and rendering
Now we have configured everything, it is time to write the game loop to render and
draw the triangle in each frame.

The display link
We need a function to be called every time when the device screen refreshes. To do
that, we use an instance of the CADisplayLink object, which is a timer object that
allows your application to synchronize its drawing to the refresh rate of the display.
In the viewDidLoad method, you will find it created:

timer = CADisplayLink(target: self, selector:
Selector("renderLoop"))
 timer.addToRunLoop(NSRunLoop.mainRunLoop(), forMode:
 NSDefaultRunLoopMode)

www.allitebooks.com

http://www.allitebooks.org

Introduction to Metal

[74]

Now, the timer is created and GameViewController is its target. The renderLoop()
function will be called in each frame:

func renderLoop() {
 autoreleasepool {
 self.render()
 }
 }

Inside the renderLoop method, we call the render method in which we redraw the
update triangle position.

The render pass
To perform our operations, we need a render pass descriptor, which is an instance
of MTLRenderPassDescriptor. It encapsulates which buffer texture to be rendered
and the clear color to be used to clear the texture before drawing. Check the render
function to see how to create the render pass:

let drawable = metalLayer.nextDrawable()
 let renderPassDescriptor = MTLRenderPassDescriptor()
 renderPassDescriptor.colorAttachments[0].texture =
 drawable.texture
 renderPassDescriptor.colorAttachments[0].loadAction =
 .Clear
 renderPassDescriptor.colorAttachments[0].clearColor =
 MTLClearColor(red: 0.65, green: 0.65, blue: 0.65, alpha:
 1.0)
 renderPassDescriptor.colorAttachments[0].storeAction =
 .Store

As we can see in the code, CAMetalLayer that we created earlier can give you a
drawable object that can give you a texture to draw into.

The command buffer
Do you remember the command queue that we talked about earlier to dispatch work
to GPU? Now we will see the commands that will be submitted to that queue and be
executed at this frame. Command buffers consist of encoded or rendered commands
written by the command encoders. To create a render command, check this in the
render function:

let commandBuffer = commandQueue.commandBuffer()
///
let renderEncoder =
commandBuffer.renderCommandEncoderWithDescriptor(renderPassDescrip

Chapter 5

[75]

tor)!
 renderEncoder.label = "render encoder"

 renderEncoder.pushDebugGroup("draw morphing triangle")
 renderEncoder.setRenderPipelineState(pipelineState)
 renderEncoder.setVertexBuffer(vertexBuffer, offset:
 256*bufferIndex, atIndex: 0)
 renderEncoder.setVertexBuffer(vertexColorBuffer, offset:0
 , atIndex: 1)
 renderEncoder.drawPrimitives(.Triangle, vertexStart: 0,
 vertexCount: 9, instanceCount: 1)

 renderEncoder.popDebugGroup()
 renderEncoder.endEncoding()

First, we created the commandBuffer object using the instance method
commandBuffer in the command queue that we created earlier. Then, we created
the render encoder and specified the pipelineState, vertextBuffer, and
vertextColorBuffer attributes that we created earlier. In the drawPrimitives
method, we ask the GPU to draw a set of triangles based on the vertex buffer. Each
triangle has nine vertices that start at index 0, and we have one triangle. After
finishing configuration, we will call endEncoding().

Now we are done. To make all these previous operations, we have to commit the
command buffer to start execution. To do this, we call commit() at the end of the
render method:

commandBuffer.presentDrawable(drawable)
commandBuffer.commit()

Summary
In this chapter, we talked about the new graphics framework Metal and its features.
We gave a simple introduction to 3D rendering and how it works in programming
and how computers deal with it. We used the project template that came with
Xcode in Metal to draw a moving triangle in 3D space and tried to explain all
major areas in code, such as devices, shaders, pipeline, command queue, command
buffer, and game loops. In the next chapter, we will cover a very interesting topic,
which is WatchKit development. You will learn how to start your Apple watch app
development in Xcode and what you can deliver to the users in watch app.

[77]

Introduction to WatchKit
In this chapter, we will talk about a new technology, WatchKit, and a new era of
wearable technologies. Now technology is a part of all aspects of our lives, even
wearable objects. You can see smart watches such as the new Apple watch or glasses
such as Google glass. We will go through the new WatchKit framework to learn how
to extend your iPhone app functionalities to your wrist.

Apple watch
Apple watch is a new device on your wrist that can be used to extend your iPhone
app functionality; you can access the most important information and respond in
easy ways using the watch. The watch is now available in most countries in different
styles and models so that everyone can find a watch that suits them.

Introduction to WatchKit

[78]

When you get your Apple watch, you can pair it with your iPhone. The watch can't
be paired with the iPad; it can only be paired with your iPhone. To run third-party
apps on your watch, iPhone should be paired with the watch. Once paired, when
you install any app on your iPhone that has an extension for the watch, the app will
be installed on the watch automatically and wirelessly.

WatchKit
WatchKit is a new framework to build apps for Apple watch. To run third-party
apps on Apple watch, you need the watch to be connected to the iPhone. WatchKit
helps you create apps for Apple watch by creating two targets in Xcode:

• The WatchKit app: The WatchKit app is an executable app to be installed
on your watch, and you can install or uninstall it from your iPhone. The
WatchKit app contains the storyboard file and resources files. It doesn't
contain any source code, just the interface and resource files.

• The WatchKit extension: This extension runs on the iPhone and has the
InterfaceControllers file for your storyboard. This extension just
contains the model and controller classes. The actions and outlets from the
previous WatchKit app will be linked to these controller files in the WatchKit
extension.

These bundles—the WatchKit extension and WatchKit app—are put together and
packed inside the iPhone application. When the user installs the iPhone app, the
system will prompt the user to install the WatchKit app if there is a paired watch.

Using WatchKit, you can extend your iOS app in three different ways:

The WatchKit app
As we mentioned earlier, the WatchKit app is an app installed on Apple watch
and the user can find it in the list of Watch apps. The user can launch, control, and
interact with the app. Once the app is launched, the WatchKit extension on the
iPhone app will run in the background to update a user interface, perform any
logic required, and respond to user actions.

Chapter 6

[79]

Note that the iPhone app can't launch or wake up the WatchKit extension or the
WatchKit app. However, the WatchKit extension can ask the system to launch the
iPhone app and this will be performed in the background.

Glances
Glances are single interfaces that the user can navigate between. The glance view
is just read-only information, which means that you can't add any interactive UI
controls such as buttons and switches. Apps should use glances to display very
important and timely information. The glance view is a nonscrolling view, so your
glance view should fit the watch screen. Avoid using tables and maps in interface
controllers and focus on delivering the most important information in a nice way.
Once the user clicks on the glance view, the watch app will be launched. The glance
view is optional in your app.

Introduction to WatchKit

[80]

The glance interface and its interface controller files are a part of your WatchKit
extension and WatchKit app. The glance interface resides in a storyboard, which
resides in the WatchKit app. The interface controller that is responsible for filling the
view with the timely important information is located in the WatchKit extension,
which runs in the background in the iPhone app, as we said before.

Actionable notifications
For sure, you can handle and respond to local and remote notifications in an easy
and fast way using Apple watch. WatchKit helps you build user interfaces for the
notification that you want to handle in your WatchKit app. WatchKit helps you add
actionable buttons so that the user can take action based on the notification. For
example, if a notification for an invitation is sent to you, you can take action to accept
or reject the notification from your wrist. You can respond to these actions easily in
interface controllers in WatchKit extension.

Chapter 6

[81]

Working with WatchKit
Enough talking about theory, lets see some action.

1. Go to our lovely Xcode and create a new single-view application and name
it WatchKitDemo. Don't forget to select Swift as the app language. Then
navigate to File | New | Target to create a new target for the WatchKit app:

Introduction to WatchKit

[82]

2. After you select the target, in the pop-up window, from the left side under
iOS choose Apple Watch and select WatchKit App. Check the following
screenshot:

3. After you click on Next, it will ask you which application to embed the target
in and which scenes to include. Please check the Include Notification Scene
and Include Glance Scene options, as shown in the following screenshot:

Chapter 6

[83]

4. Click on Finish, and now you have an iPhone app with the built-in WatchKit
extension and WatchKit app.

Xcode targets
Now your project should be divided into three parts. Check the following screenshot
and let's explain these parts:

As you see in this screenshot, the project files are divided into three sections. In
section 1, you can see the iPhone app source files, interface files or storyboard, and
resources files. In section 2, you can find the WatchKit extension, which contains
only interface controllers and model files. Again, as we said before, this extension
also runs in iPhone in the background. In section 3, you can see the WatchKit app,
which runs in Apple watch itself. As we see, it contains the storyboard and resources
files. No source code can be added in this target.

Introduction to WatchKit

[84]

Interface controllers
In the WatchKit extension of your Xcode project, open InterfaceController.
swift. You will find the interface controller file for the scene that exists in
Interface.storyboard in the WatchKit app.

The InterfaceController file extends from WKInterfaceController, which is
the base class for interface controllers. Forget the UI classes that you were using in
the iOS apps from the UIKit framework, as it has different interface controller classes
in WatchKit and they are very limited in configuration and customization. In the
InterfaceController file, you can find three important methods that explain the
lifecycle of your controller: awakeWithContext, willActivate, and didDeactivate.
Another important method that can be overridden for the lifecycle is called init, but
it's not implemented in the controller file. Let's now explain the four lifecycle methods:

• init: You can consider this as your first chance to update your interface
elements.

• awakeWithContext: This is called after the init method and contains context
data that can be used to update your interface elements or to perform some
logical operations on these data. Context data is passed between interface
controllers when you push or present another controller and you want to
pass some data.

• willActivate: Here, your scene is about to be visible onscreen, and its your
last chance to update your UI. Try to put simple UI changes here in this
method so as not to cause freezing in UI.

• didDeactivate: Your scene is about to be invisible and, if you want to clean
up your code, it's time to stop animations or timers.

Chapter 6

[85]

Interface elements
We talked about the interface controller and its lifecycle. Let's now talk about
interface elements in WatchKit and how they are different from UI components in
UIKit. You can create scenes in a storyboard file and assign them a corresponding
interface controller from the WatchKit extension. You can add multiple scenes in
storyboard and change its size classes because Apple watch comes in two different
sizes: 38 mm and 40 mm.

In WatchKit, the layout is completely different from the layout in iOS apps. In iOS,
you can add views and change their positions in space, and then you have full
control. In WatchKit, you add the components and let Xcode arrange them vertically
in the scene like a stack. Then you can adjust the position and size of the component,
but that too in a very limited way. For example, in a horizontal position you can
choose from left, center, and right. In size, you can set fixed size, fit content, or
relative to container.

Let's see this in action. Open the first scene in Interface.storyboard and let's
add a label:

Introduction to WatchKit

[86]

As you see in screenshot, I added a label that is the instance of the
WKInterfaceLabel class and adjusted its position to be top-center in the Attribute
Inspector. The Attribute Inspector here, as you can see, is totally different from the
one you can see in UILabel in UIKit. The + symbol that you see lets you add specific
values for different size classes. For example, you may set the font size to be 10 in
38-mm watches and 12 in 40-mm watches. Try playing with the components, and
you will see how Xcode arranges them vertically for you like a stack. Here are some
points I want you to take into consideration while working with interface elements:

• You can't customize interface elements by extending the base class as we
were doing in iOS apps. You can add your custom UILabel by adding a new
class extending from the UILabel class. In WatchKit, you can't do something
like that if you try to open the identity inspector of the label that we added,
you will see that the Class field can't be edited:

• You can't create interface elements programmatically. All scenes and
interfaces can be created only via the storyboard and no code can be used to
create any interface element.

• If you have a stack of elements and want to hide an element, you can call
setHidden(true). In that case, other interface elements below this element
will be moved automatically up to fill its place. The opposite will happen if
you try to show it again; they will move down. If you want to keep the space
of a hidden element, you can hide it by setting the alpha value to zero.

• You can't overlap interface elements on top of each other. The only thing that
can be done is to use Group to set a background image for some elements.

• There is no any layer customization like we have in UIKit by adjusting
CALayer. There is nothing similar in WatchKit, as these elements don't
extend the UIView form.

Chapter 6

[87]

Groups
In WatchKit, we have an awesome and very important element called Group. The
Group element is just a container of other elements, but it has a feature that lets you
arrange these elements vertically or horizontally. You can make the size of elements
inside Group relative to group itself. Groups can be nested, and by default, Group
has no visual representation. You can specify a background image or background
color to it. This feature can be used to specify a background image to some elements
by placing them inside Group. Let's now see an example of how to use Group:

1. Open the interface controller and, below the label we added before, drag
Group from the Object library in the right-hand side and drop it.

2. Check its Attribute Inspector; you will find settings for its layout,
background color/image, position, and size. Here, we will choose the
Horizontal layout to add two images beside each other inside Group:

I have added two images inside Group and as you can see, they are added
horizontally as we set in the layout. If you chose vertically, they will be
added above each other.
In Attribute Inspector the size of each image is set to be relative to the
container (Group), so each one will be 50 percent width and 100 percent
height.

Introduction to WatchKit

[88]

3. Now, to run on a simulator, please choose the WatchKitDemo WatchKit
App target and click on Run. Check the following screenshot:

4. After you have selected Run, to display the simulator for Apple watch, open
the iOS simulator and navigate to Hardware | External Displays | Apple
Watch – 38mm. Check the following screenshot:

Chapter 6

[89]

5. Now to build and run again, you should see a small simulator for Apple
watch. It will look like something like this:

Navigating interfaces
Your app can contain multiple numbers of interface controllers; for sure, you need
to navigate between them. In WatchKit, we have two styles used for navigation
between interface controllers, and they are mutually exclusive:

• Pages-based: In this style, you have two or more interface controllers and
only one is displayed on the screen at a time. The user can easily navigate
between them by swiping left and right. A dot indicator will be displayed
automatically at the bottom to indicate which page is displayed now.
The page-based style can be created only in the storyboard by linking
the interface controllers together with the next-page segue.

• Hierarchical: This style is the same as UINavigationController in UIKit.
You have a root interface controller, and you can push and pop between
controllers. A small back button will be displayed automatically in the
top-left corner to navigate back. You can push to another interface controller
via the push segue in the storyboard or programmatically by calling
pushControllerWithName(name, context:). The name, as we said before,
is the interface controller name in its Attribute Inspector in the storyboard.

Introduction to WatchKit

[90]

Presenting modally
As we said, we have two styles for navigation that are mutually exclusive.
Alternatively, you can interrupt the flow of navigation to present an interface
controller to ask for confirmation or display information. In that case, you can
present any interface controller modally from any other interface controller,
regardless of the navigation style that you are using.

You can present more than one interface controller at a time. These interface
controllers will be in page-based style and can't be in hierarchical style. In the
next topic, you will see the different ways of presenting them modally.

To present interface controllers modally, you have three ways:

• Modal: In storyboard, use the modal segue to connect it to the interface
controller that you want to present. In the event you want to present multiple
interface controllers in storyboard, link these controllers with the next-page
segue first as we mentioned earlier. Then link the modal segue to the first
interface controller in the page flow.

• Calling presentControllerWithName(name:, context:): Call this
method programmatically to present a single interface controller modally
given its interface name.

• Calling presentControllerWithNames(names: , contexts:): Call
this method programmatically to present more than one interface controller
modally in a page-based style.

The presented modal interface has text in the top-left corner with the interface's
controller name. This name can be set from the Attribute Inspector of the interface
controller. When the user clicks on this title, the modal interface controller will be
dismissed. You can set this title to Done, Ok, Close, or anything you need. If you
didn't specify any name, it will be Cancel by default. You can programmatically
dismiss the modal interface controller by calling dismissController().

Let's see these navigation styles in action. In the first interface controller, add two
buttons. The first one is to push a new interface controller, and the second one
to present three interface controllers in a page-based style. Drag a new interface
controller from the Object library now. Add a push segue from the first button
to this new interface controller. In this new interface controller, add a label and
button called Increment. We will add some logic to make this label read the initial
value; when clicked, the button will increment this value and update the UI. Your
storyboard should be like this now:

Chapter 6

[91]

Now, in the WatchKit extension, create a new interface controller called
SecondInterfaceController and set the class of the new interface controller in
storyboard to SecondInterfaceController. In this case, we can take an outlet to
the label and set an action for the button to increment and update the UI:

Introduction to WatchKit

[92]

Make sure that the new class is a subclass of WKInterfaceController and not
UIViewController. Now link the outlet for the label and action for button:

As you see, we updated the label in the awakeWithContext method by calling
setText().

Return to the storyboard to add the modal segue. First, drag three interface
controllers and link them together with the next-page segues. Add a label in each
interface controller and set its text with Page 1, Page 2, and Page 3. Then, link the
second button to the first interface controller in the pages flow. Your storyboard
should be like this now:

Chapter 6

[93]

Now to build and run, you should see something like this in the push and
modal styles:

Animation
Creating animation in WatchKit is not like using core animation or anything
equivalent. To present an animation on screen in WatchKit, you have to use GIF
technology to animate a series of images. For example, to display an animated
circular progress bar on screen, you have to generate an image for each state. In the
circular progress bar, you can generate 100 images and animate the, from image #0
to image #60 if you want to display 60 percent progress and so on. Check the next
section of glances, where we will display the animated progress bar in the glance
interface controller.

Introduction to WatchKit

[94]

Working with glances
We talked about glances earlier as they are a simple interface to display timely and
important information such as your next meeting in the Calendar app and your
remaining tasks in the To Do app. The glance interface is read-only and can't include
any interactive controls. Just tapping on glance view will launch your WatchKit app.
Glances are optional in your WatchKit app.

Now let's see how to build an interface for the glance screen and how to test it in a
simulator. Open storyboard and you should see a prepared InterfaceController for
glance with a glance start point. Its interface controller is called GlanceController.
swift and is located in the WatchKit extension. Xcode comes with built-in templates
for the glance screen. To see these templates, select the Glance Interface Controller
and click on Attribute Inspector. You will see templates for Upper and Lower Groups:

Chapter 6

[95]

The templates will be displayed to you after you click on the Group that you want
to customize. Now leave the default templates and, in the upper Group, add an
image and date label. In WatchKit, it has a built-in WKInterfaceDate to display the
current date and time and it updates itself automatically. The scene up to now will
be something like this:

Then, in the lower Group, we will display the animated circular progress bar. As
we said, we need a series of images to be displayed as WatchKit doesn't support
animation. You can visit this website at http://hmaidasani.github.io/
RadialChartImageGenerator/. It lets you fully customize the circular bar and
generates the image for you. In the website, it gives you the option to add middle
text and its value will be animated. If you need a special effect for text to control its
customization, you can remove the text from the images and add the text as a label in
interface builder above the progress image. But to do so, the image has to be a group
background image, as you can't interface controllers that can't be flipped above each
other. Drag an outlet for the lower Group to set the background image to it:

override func willActivate() {
 // This method is called when watch view controller is
 about to be visible to user
 self.progressGroup.setBackgroundImageNamed("progress")
 self.progressGroup.startAnimatingWithImagesInRange
 (NSMakeRange(0, 75), duration: 0.7, repeatCount: 1)

 super.willActivate()
 }

http://hmaidasani.github.io/RadialChartImageGenerator/
http://hmaidasani.github.io/RadialChartImageGenerator/

Introduction to WatchKit

[96]

Now the images will be animated starting from image #0 to image #75 over 0.7
seconds with repeating count 1. To build and run the glance, you have to choose it
first from the list of targets as we did while running the Watch app:

After you run it, you should see something like this:

Chapter 6

[97]

Summary
In this chapter, we covered a very important topic: how to develop apps for the new
wearable technology, Apple watch. We first gave a quick introduction about the
new device and how it can communicate with paired iPhones. We then talked about
WatchKit, the new framework, that enables you to develop apps for Apple watch
and design its interface. We saw how it's far more limited than UIKit because you are
constrained with a small screen size and very limited resources. Apple has designed
the watch to contain only the storyboard and resources files. All logic and operations
are performed in the iPhone app in the background. Finally, we saw different ways
to create interface controllers, how to build your layout, and different styles of
navigation between the interface controllers. In the next chapter we will talk about
iOS 8 app extensions. Stay tuned!

[99]

Swift App Extensions
We are still working with the new features and APIs introduced in iOS 8. In this
chapter, we are going to talk about app extensions. App extensions are meant to
give you the ability to extend your app functionality to be accessible outside your
app while users use other apps or the system. In iOS 8, many extensions have been
released, and in this chapter, we will talk about all these extensions. You can then
decide on which extension to use, and when.

App extensions
As we said, an app extension is just a task that can be performed and accessed
outside you app. For example, you can use an extension to display timely content
in the Today view of the notification center.

An extension for the sports app displays the currently playing games and results.
This data can be updated in real time and can really help users to reach their
content in an easy and fast way and from any place—the system or other apps.

Another extension gives you the ability to add a custom keyboard that replaces the
boring system keyboard. Users can choose which keyboard to activate choose the
one that appeals to them, and make their writing experience easier. App extensions
are introduced in iOS 8 and OS X 10.10, so some extensions exist in both iOS and
OS X, some of them in iOS only, and some are in OS X only. Here, we will list all
available app extensions that are available in iOS. All the upcoming extensions are
easy to use, thanks to Xcode, as it provides you with a working template once you
create the extension target from Xcode.

Swift App Extensions

[100]

Today
The Today extension (always called a widget) is an extension for both iOS and OS
X. As we have seen in the previous example, this extension is used for displaying
content or to perform tasks from the Today view of the notification center.

Chapter 7

[101]

The widget should be used to display important information, timely updated
content, or provide easy access to your app tasks. This extension will be very useful
in many kinds of apps. In the weather app, you can see an extension that displays
weather information for your current location. In the Sports app like the previous
screenshot, you can display the current game results and top news or transfers
between clubs. In the To Do app, you can see your to-do list for today, and you can
easily mark tasks as done through the widget or create a new task very rapidly.

Users can access their widget by swiping down their screen, and the Notification/
Today screen will be displayed. You can see the widgets in the Today view. The
Today view can also be accessed even if your iPhone is locked, but you have to
enable it from Settings. Navigate to Settings | Touch ID & Passcode; then you
can enable or disable the Today view.

Before starting to work with the Today widget, here are some notes to take into
consideration:

• Content should be up-to-date: The content that you are going to add should
be up to date because this widget is accessible from anywhere and the user
expects to see something new or important when he opens the Today view.

• Simple and important content: The content should also be important as we
said, and at the same time, it should be simple. Don't crowd the widget with
controls or unnecessary content.

• Don't add scroll view in the widget: The Today view itself is scrollable
to contain all the available widgets, so adding one scroll view inside another
scroll view will really confuse the user. Believe me, he/she will remove your
widget from the Today view.

• Memory usage: Take into account that the system will easily kill/terminate
your widget if it causes memory pressure or doesn't use memory wisely.

• No keyboard support: You can take the keyboard input through the
Today widget.

The user is able to edit the Today view to choose which widgets to be displayed and
can reorder them. It will be nice to let users edit and customize their widget through
your app. For example, in a sports app, the user can choose which league results
to be displayed or even which sport he is interested in if the app supports multiple
sports. Another example is the weather app, in which the user can choose the cities
whose weather he/she is interested in.

Swift App Extensions

[102]

Share
The Share extension is a very simple extension that is available in both iOS and OS
X. This extension lets your users share their content through your app so that you
can then post this data in a social network or send it via any API service. In any app,
when the user clicks on the Share button, a native activity view controller will be
displayed to select which share extension to share it in. For sure, there are native
ones such as Mail, SMS, Facebook, and Twitter. You can add your own extension
as well.

When you work with the Share extension and a user chooses your extension to
share the content, the extension lets you use the system-provided compose view by
default, which is very similar to the one used in sharing with Facebook or Twitter.
If the system doesn't meet your needs or you have some options or settings that can
be selected in the composer, you have the option to provide your own UI. In the
following screenshot, you will see a sample of the native compose view that your
app extension can use by default:

Chapter 7

[103]

Photo Editing
This extension is available in iOS only and enables users to edit their photos or videos
from the Photos native app using the Photo Editing extension. After selecting the
Photo Editing extension and applying changes to the photo, the new content (a new
version of the photo or video) will be available in the Photos app. For security, the
Photos app will always keep the original version of your photo or video.

The following screenshot is an example of a Photo Editing extension that can be
opened directly from the Photos app:

The Photo Editing extension is meant for editing photos and videos and not other
operations such as sharing. Use other extensions if your task is not mainly for editing
media contents. Before working with the Photo Editing extension, here is a list of
some points to take care about:

• The Photos app keeps the original version, the current version (new photo
after editing), and the set of adjustments that have been applied to the
original version.

Swift App Extensions

[104]

• When the user selects the Photo Editing extension to edit an asset, the Photos
app asks the extension if it can read the set of adjustments. If the extension can
support these adjustments, the Photos app will provide the original photo as
an input and the extension can let the users set, revert, or add new edits. If the
extension doesn't support these adjustments, the Photos app will provide the
final version of the photo and in that case the user can only apply new edits.

• For videos, the Photos app saves only the original content and, if the extension
can't read the adjustments data, it has to deal with the original content.

• Once the extension is selected, a custom view for the Photo Editing extension
will be displayed with its custom interface. The view controller that will be
used as an extension should conform to the PHContentEditingController
protocol.

• In your app, add only one extension for each media type as the Photos app will
display only a maximum of 1 extension for each media type for a single app.

• Don't add a navigation bar in your interface of extension, as it will be shown
automatically by the Photos app.

• Write high-quality and high-performance code to edit media types as the
extension is going to deal with high-resolution contents.

Document Provider
This extension is available in iOS only. The Document Provider extension is used
by apps that are dealing with specific document type. In the Document Provider
extension, you store documents for a particular type and other apps can access these
files. The Document Provider has a shared container to save these files, and other
apps can export documents easily to this shared container. Any app can access the
Document Provider files using a document picker view controller.

Chapter 7

[105]

The Document Provider extension consists of two parts:

• Document picker view controller: This provides your Document Provider's
user interface. The system displays this picker controller interface when any
app presents a document picker view controller for your document provider.
The picker interface allows users to browse and select documents from inside
your document provider. This extension can also perform basic import and
export operations.

• File provider: The file provider extension has no interface in it, and you must
create this extension if you are going to support open and move operations.
This extension grants the host app access to files outside its sandbox.

Swift App Extensions

[106]

Like all the other extensions, Xcode helps you a lot in getting started with extensions
by providing templates. So once you go to targets and add a new one, then choose
the Document Provider extension. Two extensions will be generated for you:
Document Picker and File Provider. In document picker view controller, it must
be a subclass of UIDocumentPickerExtensionViewController. This subclass will
automatically be instantiated once a user selects your Document Provider extension
from UIDocumentMenuViewController or opens your document provider directly
from UIDocumentPickerViewController.

Anyway, once your document picker view controller is instantiated, the system will
automatically present this view controller in the app's view controller. It also provides
you with a navigation bar with Locations and Done buttons. Thus, you don't have to
add a navigation bar. Take a look at the following screenshot for more clarification:

Chapter 7

[107]

Understanding the Document Provider's lifecycle
It's very important to understand the lifecycle and states of your Document Provider
extensions, as your extension will be used with other apps. Take a look at the
following screenshot for the lifecycle of the Document Provider extension:

Host app presents
UIDocumentMenuViewController

In same subclass, the method
prepareForPresentationInMode(mode:

)UIDocumentPickerMode
will be called

User selects your document provider extension

System will instantiate your
UIDocumentPickerExtensionViewController

subclass

Check
for

mode?

Open Import Export Move

Display appropriate interface based on the mode, each mode requires different
interface specially Open/Import and Export/Mode

It's highly recommended to have separate view controller for each mode and
display it as child view controller in

subclassUIDocumentPickerExtensionViewController

From the preceding screenshot, we can see the lifecycle of the Document Provider
extension and how you have to interact with the four modes: open, import,
export, and move. As we said, each mode has a different interface as each
mode has different functionality.

Swift App Extensions

[108]

The custom keyboard
The custom keyboard extension is an extension for iOS only, as its functionality is
replacing the boring system keyboard with a custom keyboard. You may create this
extension to support languages that are still not supported in the iOS or to provide a
smarter, easier, fancier, or customizable keyboard for users. When you decide to use
this extension, you have to be aware that this keyboard is a system-wide keyboard. If
the user selects it as the default keyboard, it will be available in all third-party apps
and system apps. Note that this keyboard is not specifically for your app or to make
life easier while using your app only. It will be system-wide, as we said.

Before you decide to go with the custom keyboard, you should note the following:

• Your keyboard will be system-wide.
• You must provide an option for users to switch to another keyboard. It

displays the globe key that switches your keyboard to another one when you
click on it, like the system keyboard.

Chapter 7

[109]

• Study the system keyboard well and learn how it changes itself to help users.
For example, if the layout is changed based on UIKeyboardType, when you
write an e-mail, you will find a new key appears for @, and pressing. for a
while will display a list of common used domains. So be aware of
keyboard types.

• Your keyboard should be fast and responsive. Avoid any interruption to the
user while using your keyboard.

• Handle autocapitalization at the beginning of sentences.
• Any settings, customization, or any other interactions should be placed in

your app.
• Features such as handling suggestions, autocomplete, autocorrection,

and so on should be considered.
• You are responsible for handling all the previous features; there are no

system APIs for these.

Keyboard security
For security and privacy, in some cases, your custom keyboard will not be
available and will be replaced with the system keyboard. In all fields that have
secure text such as password fields, when the user starts to type, the system
keyboard will be displayed temporarily and your custom keyboard will be back
after the user selects another field. Also, in fields that have keyboard types such as
UIKeyboardTypePhonePad or UIKeyboardTypeNamePhonePad, keyboards will be
replaced with the system one.

Anyone can reject the use of all the custom keyboards in this app—for example,
banking apps or apps that deal with sensitive data. To do so, you have to override
the shouldAllowExtensionPointIdentifier: method in AppDelegate like this:

func application(application: UIApplication,
shouldAllowExtensionPointIdentifier extensionPointIdentifier:
String) -> Bool {
 return false
 }

Another thing to know is that your keyboard extension has no access to the
microphone.

Trust is very important in your custom keyboard. When a user uses your custom
keyboard, you have access to what users are typing while using your keyboard.

Swift App Extensions

[110]

Keyboard settings
Any keyboard should have some settings such as autocorrections, enable swiping,
or shortcuts. When you navigate to Settings | General | Keyboard in an iOS
device, you will see the settings of the system keyboard. Your custom keyboard has
no settings like this and can't be accessed from here. You can add settings to your
custom keyboard in the containing app or in the Create Settings bundle for your
extension, and it can then be accessed from Settings.

Working with the custom keyboard
Before starting to work with the custom keyboard extension, you need to know the
architecture of your extension and how things work. Take a look at the following
screenshot:

App Extension
Target Template

Xcode Project

UIButton

Running Keyboard

insertText:

Lorem ipsum dolor sit amet,
consectetur adipisicing elit,
sed do eiusmod tempor
incididunt ut labore et dolore
magna aliqua.
Maecenas hello

Next Keyboard Hello

Custom
Keyboard

Custom Keyboard Target

Containing App

view

UIInputViewController

Text Input Object

Chapter 7

[111]

As you can see, your containing app contains the extension (the custom keyboard
target) and, when a user starts to edit a field, the custom keyboard appears. You
will have a subclass of UIInputViewController, which is the primary view
controller in your extension. Then you can add gestures or any interface controls
to its property inputView.

Creating a new target for the custom keyboard in Xcode manages most things for
you. You will find a subclass of UIInputViewController and configurations in the
info.plist file. You will find a prepared button for switching keyboards, as this is
the most important one, as well. By default, the keyboard has no access to an Internet
connection or to share a container with the containing app as these may affect the
trust between the keyboard extension and the user. To enable these, set the value of
the RequestsOpenAccess key to YES in the info.plist file.

There is a very important property in UIInputViewController:
textDocumentProxy. The textDocumentProxy property is the proxy to the text
input object (for example, a text field) that your custom keyboard interacts with.
Here are some examples of how to use it to insert text or delete the text backward:

 var proxy = self.textDocumentProxy as! UITextDocumentProxy
 proxy.insertText("Hi there, ") // Inserting text
 proxy.insertText("\n") // Inserting new line
 proxy.deleteBackward() // Delete a character from
 the displayed text

As we said earlier, you have to respond to the change of UIKeyboardType so the
layout should be changed based on the keyboard type. As well, your keyboard can
support multilanguages and you can do this by providing a separate keyboard for
each language; in that case, you will have multiple targets or can handle the process
dynamically and switch the layout when the primary language is changed.

Demo
Working with the app extensions is not a big deal, and Xcode templates help you so
much to get started with your extension. In this section, we will build a very simple
demo on one of the preceding extensions: the Today extension. We talked about the
Today widget and saw how it's very helpful to provide your users with appropriately
updated data in an easier way from the Today view in the notification center.

Swift App Extensions

[112]

So, in this demo we are going to make a widget that displays weather information.
We will display the weather for Venice. As you know, it's just a demo, but in the real
world you can use location services to display the weather data of the user's current
city. Also, maybe you can display a list of weather data for multiple cities that the
user sets as his favorites in your containing app.

1. Okay, now it's playtime. Create a new Xcode project with any template and
choose Swift as the language. Then navigate to File | New | Target. Take a
look at the following screenshot:

Chapter 7

[113]

2. Then, under iOS, select Application Extension and choose Today Extension:

3. Choose Swift as the language and set the name as TodayWidget. Now a
new target will be created for you. In the TodayWidget folder, you will see
two important files: TodayViewController.swift and MainInterface.
storyboard. These files are the controller and interface builder for
your widget.

4. As mentioned earlier, the Xcode template prepares everything for you. So, to
justify that, select TodayWidget as the active scheme target and click on Run:

Swift App Extensions

[114]

Now, in a simulator, you will see something like this:

As in the preceding screenshot, you will see that the simulator will open the Today
view for you and your widget appears there with the Hello World text. The display
name of the extension can be changed from the Info.plist file and the UI of the
widget will be loaded from the storyboard file.

Chapter 7

[115]

Now we are going to request the weather data for Venice, and then bind this data
in the UI. I have used this API service; it's free for limited data. You can create an
account just to get the API key to be used in requests. Let's now create a new Swift
class called WeatherManager.swift, as our model manager. It will connect to the
server to send requests and get the updated current weather for the given city. Before
going with it, visit http://www.worldweatheronline.com/api/docs/local-
city-town-weather-api.aspx to learn how to build the API request and what the
available parameters and responses are. Take a look at the following code to learn
how we have built our WeatherManager class:

let weatherKey = "add_your_key_here"

class WeatherInfo{
 let cityName:String
 let tempC:String
 let weatherDesc:String
 let weatherIcon:String

 init(city:String, tempc:String, weatherDesc:String,
 iconURL:String){
 self.cityName = city
 self.tempC = tempc
 self.weatherDesc = weatherDesc
 self.weatherIcon = iconURL
 }
}

typealias weatherResponseHandler = (info:WeatherInfo!,
error:NSError!) -> (Void)

class WeatherManager: NSObject {

 func getWeatherForCity(city:String,
 handler:weatherResponseHandler){

 let url = NSURL(string:
 "https://api.worldweatheronline.com/free/v2/
 weather.ashx?key=\(weatherKey)&q=\(city)&format=json")

 NSURLConnection.sendAsynchronousRequest(NSURLRequest(URL:
 url!), queue: NSOperationQueue.mainQueue()) { (response,
 data, error) -> Void in

http://www.worldweatheronline.com/api/docs/local-city-town-weather-api.aspx
http://www.worldweatheronline.com/api/docs/local-city-town-weather-api.aspx

Swift App Extensions

[116]

 if error == nil{
 let jsonStr = NSString(data: data, encoding:
 NSUTF8StringEncoding) // response as string

 var jsonObj =
 NSJSONSerialization.JSONObjectWithData(data,
 options: NSJSONReadingOptions.AllowFragments,
 error: nil) as! NSDictionary
 jsonObj = jsonObj["data"] as! NSDictionary
 var requestData = jsonObj["request"] as! NSArray
 var queryData = requestData[0] as! NSDictionary
 let currentConditionData =
 jsonObj["current_condition"] as! NSArray
 let currentCondition = currentConditionData[0] as!
 NSDictionary

 let cityName = queryData["query"] as! String
 let tempC = currentCondition["temp_C"] as! String
 let weatherDescData : NSDictionary =
 (currentCondition["weatherDesc"] as!
 NSArray).objectAtIndex(0) as! NSDictionary
 let weatherDesc = weatherDescData["value"] as!
 String
 let weatherIconData : NSDictionary =
 (currentCondition["weatherIconUrl"] as!
 NSArray).objectAtIndex(0) as! NSDictionary
 let weatherIconURL = weatherIconData["value"] as!
 String

 let info = WeatherInfo(city: cityName, tempc:
 tempC, weatherDesc: weatherDesc, iconURL:
 weatherIconURL)

 handler(info: info, error: nil)
 }
 else{
 handler(info: nil, error: error)
 }

 }
 }
}

Chapter 7

[117]

As we have seen, we built a class called WeatherInfo to bind the needed information
to be displayed in the weather widget. Then we created the WeatherManager class
that has a function called getWeatherForCity that takes the city name and a closure.
We explained closure in earlier chapters and used it here to pass the block of code
with parameters, which will be WeatherInfo after parsing the response and an error
if something wrong happened. Then we build the API request and send the request
asynchronously so as not to block the main thread. In API, you can set the format of
response that you prefer: XML or JSON. We parsed the JSON response and bound
the needed information in the WeatherInfo object.

Now it's time to build a simple UI to display this information in the Today widget.
Open storyboard and add an image and labels to display weather data. It should be
something like this:

Then link the outlets in TodayWidgetViewController to update the UI. We defined
the outlets and the WeatherManager object like this:

@IBOutlet weak var cityNameLabel: UILabel!

 @IBOutlet weak var weatherImageView: UIImageView!

 @IBOutlet weak var weatherDescLabel: UILabel!

 @IBOutlet weak var tempLabel: UILabel!
 let manager = WeatherManager()

Swift App Extensions

[118]

Then, you should find the function called
widgetPerformUpdateWithCompletionHandler, in which you should add your
updates such as requesting the weather and updating the UI:

func widgetPerformUpdateWithCompletionHandler(completionHandler:
((NCUpdateResult) -> Void)!) {
 // Perform any setup necessary in order to update the
 view.

 // If an error is encountered, use NCUpdateResult.Failed
 // If there's no update required, use
 NCUpdateResult.NoData
 // If there's an update, use NCUpdateResult.NewData

 manager.getWeatherForCity("Venice", handler: { (info,
 error) -> (Void) in

 if error == nil{
 println(info.cityName)
 self.cityNameLabel.text = info.cityName
 self.weatherDescLabel.text = info.weatherDesc
 self.tempLabel.text = "\(info.tempC)°"
 self.weatherImageView.image = UIImage(data:
 NSData(contentsOfURL: NSURL(string:
 info.weatherIcon)!)!)

 //Now data is available
 }

 })
 completionHandler(NCUpdateResult.NewData)
 }

As we saw, we requested the weather for Venice, and, in the completion closure,
we updated the UI. Override the following functions to change the height of your
widget based on your content. As we said before, don't use UIScrollView. The code
should be like this:

override func viewWillAppear(animated: Bool) {

 var size = self.preferredContentSize
 size.height = 100
 self.preferredContentSize = size
 }

Chapter 7

[119]

 func
 widgetMarginInsetsForProposedMarginInsets(defaultMarginInsets:
 UIEdgeInsets) -> UIEdgeInsets {
 return UIEdgeInsetsZero
 }

The edge inset is set to zero to make the widget fill the content size. Now build and
run the code, and you should see something like this:

Swift App Extensions

[120]

Summary
In this chapter, we talked about iOS app extensions and which one you should use
to meet your requirements. Extensions give a new flavor to the iOS to make the user
reach your app functionality while using other apps. We talked about the Today
widget and how it's useful to display timely information when the user opens the
Today view in the notification center. We then saw how apps can share content via
the Share extension of your app. If your app has a functionality to open and manage
specific documents, you can use the Document Provider extension and let other apps
use your extension to open, browse, or export contents. We also saw the awesome
custom keyboard extension that lets you design the new keyboard to be system-wide
and replace the system keyboard. Finally, we implemented a demo in one of these
extensions: the Today extension. We displayed the current weather of the beautiful
city of Venice in the Today screen.

I hope that this book has provided you with the information you need to master the
Swift language and use it in all your upcoming projects. I hope this book also is a
good guide for you in using the new technologies in iOS 8 with Swift, and wish you
success and glory in your life and career path!

[121]

Index
Symbols
3D rendering

about 65
in iOS 66
pipeline 65
projection 66
transformations 65

A
actionable notifications, WatchKit 80
animation

creating, in WatchKit 93
AnyObject type

using 18-20
Any type

using 18-20
app extensions

custom keyboard 108
demo 111-118
Document Provider 104-106
Photo Editing 103, 104
Share 102
Today 100, 101

Apple 1
Apple watch 77, 78
array

about 6
initializing 7
items, appending 8
items, removing 8
items, updating 8
iterating over 7

associated values
using, in enumeration 11, 12

Automatic Reference Counting (ARC) 33

C
class-only protocols 23
closures 14, 15
code, Metal

CAMetalLayers 68
color buffers 71
command queue 69, 70
Devices 68
fragment shaders 71, 72
game loop 73
rendering 73
render pipeline 72, 73
vertex buffer 71
vertex shader 71, 72

code structure 4, 5
custom keyboard extension

about 108
keyboard security 109
keyboard settings 110
working with 110, 111

D
data

sharing, in Health app 59
delegation 26
dictionary

about 9
initializing 9
items, removing from 10

[122]

values, appending 9, 10
values, updating 9, 10

Document Provider extension
about 104
document picker view controller 105
file provider 105
lifecycle 107

downcasting 18

E
enumeration

about 10
associated values, using in 11, 12
example 10
using, with switch statement 11

enum keyword 10
extensions

about 27
computed properties, adding 27
creating 27
functionalities 27
methods, adding 28, 29
new initializers, adding 28

F
functions 13, 14

G
game loop and rendering, Metal

about 73
command buffer 74, 75
display link 73, 74
render pass 74

generics 30, 31
glances

about 79, 80
working with 94-96

Google glass 77
group 87

H
half4 72
Health app

data, sharing in 59, 60

HealthKit
about 45
data, sharing in Health app 60
limitations 45, 46
permissions, taking 49-51
UI, updating 52-58
used, for configuring Xcode project 47
working with 46-48

HealthKit privacy 46
HealthKit store 48

I
interface controllers, WatchKit 84
interface elements, WatchKit

about 85, 86
group 87, 89

iOS, 3D rendering 66

L
limitations, HealthKit 45, 46
LocalAuthentication framework

about 39
adding 40-43

M
memory management 33, 34
Metal

about 63
features 63, 64
working with 66-68

Metal Shading Language 71

N
navigating interfaces, WatchKit

hierarchical 89
pages based 89

O
Objective-C

about 1, 2
importing, in Swift project 36

[123]

Objective-C, and Swift
limitations, of using together 36
using, in single project 35

Objective-C project
Swift, importing in 36

OpenGL ES 63
operator functions 31-33

P
Photo Editing extension 103, 104
pipeline 65
Playground feature

about 2
working with 2-4

projection 66
protocol conformance 24, 25
protocol compositions 23
protocols

about 20
class-only protocols 23
methods 21, 22
optional requirements 25
properties 20, 21

S
SceneKit 63
Share extension 102
Strong Reference Cycle 34
Swift

about 1, 2
importing, in Objective-C project 36

Swift project
Objective-C, importing in 36

switch statement
enumeration, using with 11

T
Today extension

about 100, 101
considerations 101

Touch ID 39
transformations 65
type casting 17
type checking 17

V
value history 4

W
WatchKit

about 46, 78
animation, creating in 93
glances 79, 80
interface controllers 84
interface elements 85, 86
navigating interfaces 89
navigating interfaces, presenting

 modally 90-92
working with 81-83
Xcode targets 83

WatchKit app 78, 79
WatchKit extension 78

X
Xcode project

configuring, HealthKit used 47
Xcode targets, WatchKit 83

Thank you for buying
Application Development with Swift

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Swift Essentials
ISBN: 978-1-78439-670-1 Paperback: 228 pages

Get up and running lightning fast with this practical
guide to building applications with Swift

1. Rapidly learn how to program Apple's newest
programming language, Swift, from the basics
through to working applications.

2. Create graphical iOS applications using Xcode
and storyboard.

3. Build a network client for GitHub repositories,
with full source code on GitHub.

Swift Cookbook
ISBN: 978-1-78439-137-9 Paperback: 392 pages

Over 50 hands-on recipes to help you create apps,
solve problems, and build your portfolio of projects
in Swift

1. Get familiar with the features of Xcode 6 with
Swift to write code that is shorter, clearer, and
runs faster on today's multi-core architectures.

2. Packed with practical recipes that will help
you gain an extra edge and use Apple's new
programming language like a professional.

3. Build your portfolio with Swift code using this
hands-on guide.

Please check www.PacktPub.com for information on our titles

Lift Application Development
Cookbook
ISBN: 978-1-84951-588-7 Paperback: 254 pages

Over 50 practical recipes to build web applications
using Lift, the most secure web framework available

1. Lift made easy with step-by-steps recipes
written by a developer for developers.

2. Practical examples covering topics from basic
to advanced levels.

3. Learn to use Schemifier to automatically create
tables and columns.

4. Understand how to integrate Lift with other
technologies and social media.

Application Development with
Parse using iOS SDK
ISBN: 978-1-78355-033-3 Paperback: 112 pages

Develop the backend of your applications instantly
using Parse iOS SDK

1. Build your applications using Parse iOS
which serves as a complete cloud-based
backend service.

2. Understand and write your code on cloud
to minimize the load on the client side.

3. Learn how to create your own applications
using Parse SDK, with the help of the
step- by- step, practical tutorials.

Please check www.PacktPub.com for information on our titles

www.allitebooks.com

http://www.allitebooks.org

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Hello Swift
	Introduction to Swift
	Playgrounds
	The code structure
	Arrays
	Initializing an array
	Iterating over arrays
	Appending items
	Removing and updating items

	Dictionaries
	Initializing a dictionary
	Appending or updating values
	Removing items from the dictionary

	Enum
	Using enumerations with the switch statement
	Enumerations with associated values

	Functions
	Closures
	Summary

	Chapter 2: Advanced Swift
	Type casting and type checking
	Downcasting

	Using Any and AnyObject
	Protocols
	Properties
	Methods
	Class-only protocols
	Protocols compositions
	The protocol conformance
	The optional requirements
	Delegation

	Extensions
	Adding computed properties
	Adding new initializers
	Adding methods

	Generics
	Operator functions
	Memory management
	Using Objective-C and Swift in a single project
	Importing Objective-C in the Swift project
	Importing Swift in the Objective-C project
	Limitations

	Summary

	Chapter 3: Touch ID
	What is Touch ID?
	The LocalAuthentication framework
	Summary

	Chapter 4: Introduction to HealthKit
	What is HealthKit?
	HealthKit limitations
	HealthKit privacy
	Getting started with HealthKit
	Configuring the Xcode project
	Getting your hands dirty with HealthKit
	The HealthKit store
	Asking for permissions
	Updating the UI
	Sharing data in the Health app

	Summary

	Chapter 5: Introduction to Metal
	What is Metal?
	Features
	3D rendering
	Pipeline
	Transformations
	Projection

	Other options to work with 3D rendering in iOS
	Getting started with Metal
	Devices and CAMetalLayers
	The command queue
	Vertex and color buffers
	Vertex and fragment shaders
	The render pipeline
	The game loop and rendering
	The display link
	The render pass
	The command buffer

	Summary

	Chapter 6: Introduction to WatchKit
	Apple watch
	WatchKit
	The WatchKit app
	Glances
	Actionable notifications

	Working with WatchKit
	Xcode targets
	Interface controllers
	Interface elements
	Groups

	Navigating interfaces
	Presenting modally

	Animation
	Working with glances

	Summary

	Chapter 7: Swift App Extensions
	App extensions
	Today
	Share
	Photo Editing
	Document Provider
	Understanding the Document Provider's lifecycle

	The custom keyboard
	Keyboard security
	Keyboard settings
	Working with the custom keyboard

	Demo
	Summary

	Index

