
Apache Struts 2
Web Application Development

Design, develop, test, and deploy your web applications
using the Struts 2 framework

Dave Newton

 BIRMINGHAM - MUMBAI

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

www.allitebooks.com

http://www.allitebooks.org

Apache Struts 2 Web Application Development

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged
to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2009

Production Reference: 2040609

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847193-39-1

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Dave Newton

Reviewers
Sandeep Jadav

Dale Newfield

Michael Minella

Sharad Sharma

Acquisition Editor
Viraj Joshi

Development Editor
Ved Prakash Jha

Technical Editor
Gaurav Datar

Copy Editors
Sumathi Sridhar

Leonard D'Silva

Indexer
Monica Ajmera

Editorial Team Leader
Akshara Aware

Project Team Leader
Lata Basantani

Project Coordinator
Abhijeet Deobhakta

Proofreader
Joel T. Johnson

Production Coordinators
Shantanu Zagade

Adline Swetha Jesuthas

Cover Work
Shantanu Zagade

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

www.allitebooks.com

http://www.allitebooks.org

About the author

Dave has been programming for as long as he can remember, and probably a bit
longer than that. He began by playing a Star Trek game on a library computer, and
quickly graduated to educating his grade school teachers about computers and the
BASIC language. Receiving a TRS-80 Model 1 was pretty much the end of his social
life, and he's never looked back.

A diverse background in both programming languages and problem spaces has
provided him with a wide range of experience. Using a diverse set of languages,
which includes Pascal, Forth, Fortran, Lisp, Smalltalk, assembly, C/C++, Java,
and Ruby, brings an appreciation for many programming paradigms. Working
on AI, embedded systems, device drivers, and both desktop and web application
programming, has brought him an appreciation for the problems and solutions that
each environment offers.

Even after thirty years of typing in his first infinite loop, he's still entertained by the
process of programming. He never tires of looking for ways to do less work, and
is convinced that he should never have to repeat himself to a computer. He still
occasionally writes an infinite loop.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

www.allitebooks.com

http://www.allitebooks.org

Acknowledgement

I'd like to thank Packt for providing me an opportunity to share what I hope is some
useful information about my favorite Java web application framework, Struts 2, and
along the way, throw in some techniques I've found my clients appreciate (and many
of them mean I get to do less work, so it's a win-win!)

My parents, of course, deserve far more thanks than I could ever hope to express.
From them, I received a robust sense of exploration and curiosity, which are traits
that have served me well during my personal and professional career. They, and the
rest of my family, have prodded me along by continually asking, "How's the book
coming?", which was surprisingly motivating. They have also provided, along with
my friends, much needed moral support during recent months.

I'd like to thank my co-workers, who have zero compunction about telling me when
I'm completely wrong, and who provide me with a constant stream of ideas about
programming, the associated processes, and how to make programming easier and
more flexible.

The creators of the frameworks and libraries we use every day deserve more than
they usually receive. Putting one's code out there for everyone to see and use is
a brave step. They're under-appreciated when everything works, and unfairly
punished when it doesn't. I hope this book pays homage to them in some small way,
and contributes back to the various communities that have made my programming
work easier.

Finally, the open source and Java communities deserve a hearty "Huzzah!" It
includes places like the Struts 2 mailing lists, where all types of developers contribute
by asking and answering questions, making suggestions, and politely reminding
those involved with the framework that our documentation could be better. It also
includes JavaRanch, where "No question is too simple", and sometimes the "simplest"
questions turn out to be surprisingly interesting. Finally, the Apache Foundation
and fellow Struts developers, who have made Struts possible in all its incarnations.
All those people who write the code that we use, contribute to discussions, and try
to help others out know who they are. I can't possibly begin to list all of them,
but thanks.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

www.allitebooks.com

http://www.allitebooks.org

About the reviewers

Sandeep Jadav has been in the IT industry for three years and is currently working
as a Software Engineer for an IT firm. Sandeep is an MCA qualified professional
and is well-versed with Java technologies. He empowers people around him to work
and play better, by helping them resolve complex issues with the simplest and most
durable solutions.

In addition to reviewing, Sandeep has a history of using his technical skills for more
practical purposes—providing technical leadership to past companies. He has an
experience in developing on a large scale, n-tier and Web applications, for business
and engineering uses.

Sandeep has a large network of friends and makes frequent contributions to a variety
of content areas in many online IT communities.

I would first like to thank Packt Publishing, and the author Dave
Newton, for spearheading this edition of Apache Struts 2 Web
Application Development, and giving me an opportunity to revisit
and improve upon the first efforts.

I am deeply grateful to my family for allowing me to encroach on
many months of what should have been my family's quality time.

I extend my deepest appreciation to my friends, for all their support,
encouragement, and guidance throughout my work.

I appreciate Packt Publishing for allowing me to gain a very new and
delighting experience of reviewing the book.

While reviewing may seem a solitary pursuit, it is actually very
much a collaborative effort, and as such, I extend my thanks and
appreciation to my author, editor, and the staff at Packt Publishing
for their support throughout this project.

Finally, I especially thank Payal for providing great support on each
and every step of my life.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

www.allitebooks.com

http://www.allitebooks.org

Dale Newfield is a computer scientist trained at Carnegie Mellon and the University
of Virginia (ABD). Mr. Newfield has designed, built, and maintained a wide variety
of systems in many languages. He has vertical knowledge in fields as disparate as
graphics, user interfaces, virtual environments, networking, network technology
design, network modeling, distributed and disconnected computation, bioinformatics,
along with both web and POS systems requiring tight integration of hardware and
software. Having built scalable web applications using both Struts1 and Struts2, his
input was helpful in keeping this text focused on teaching best practices.

Michael T Minella has been working with, and teaching about, open source
software and agile methodologies for over seven years. He holds degrees from
Northern Illinois University and DePaul University in Computer Science and
E-Commerce Technologies respectively.

Michael lives just outside Chicago, IL, and works at a major financial exchange
there. In addition to his day job, Michael currently teaches at DeVry University,
has authored a Refcard on JUnit and EasyMock (http://refcardz.dzone.
com/refcardz/junit-and-easymock), and maintains the site http://www.
michaelminella.com.

Michael would like to thank his wife Erica for her continued support
in all the ways he expands his career.

Sharad Sharma is working as a Software Engineer with a reputed MNC. He
completed his Bachelors in Technology (B.Tech) from Sikkim Manipal University,
Sikkim, and has a passion to learn and teach new technologies. He has successfully
completed many projects based on Java/J2EE technology. In spite of having less
experience, due to his dedication and hard work, he was able to achieve the top
position among all the developers of the organization. This is the first book he has
worked upon and wishes to work on many more in future.

I would like to thank my family and friends for the support they
have provided me in all the areas.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

www.allitebooks.com

http://www.allitebooks.org

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Struts and Agile Development 7

Struts 2 in a nutshell 7
The filter dispatcher 8
Interceptors 8
Actions 9
Results 9
Plug-ins 10

Agile in a nutshell 10
User stories 11
Testing 11
Refactoring 11
Short iterations 11

Real applications in a nutshell 12
Making it pretty 12
JavaScript 13
Documentation 13
All of the rest 13

Getting started 13
Creating our own applications 14

Doing it "by hand" 14
Using Maven 14

Summary 15
Chapter 2: Basic Configuration 17

Setting up our environment 17
A sanity-checking application 18
Configuring web.xml for Struts 2 19
Writing our first action 20

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Configuring our first action with XML 20
Configuring our result 21
Choosing an action method 22

Getting started with our application 23
Gathering user stories—defining our application 23
Building skeletal applications using wildcards 24
Matching multiple wildcards 25
More wildcard tricks 25
Packages and namespaces 26
Creating site navigation 26
Including external configuration files 28
Our application so far 28
Examining our configuration 29
Configuration via convention and annotations 30

The Convention Plug-in and action-less actions 30
The Convention Plug-in and action configuration 31
Configuring the Convention Plug-in with annotations 32

Summary 34
Chapter 3: Actions and ActionSupport 35

ActionSupport and its interfaces 35
The Action interface 36

Action's convenience strings 36
The TextProvider interface 36
Detour—action properties, JSPs, and more tags 38
Continuing with message lookup 41
Parameterized messages 42
The LocaleProvider interface 44
The Validateable and ValidationAware interfaces 44

Implementing our first user story 45
Refining our story 45
Creating the recipe form 46
Adding some validation 48
Displaying our error messages 49

More action interfaces 49
Detour—creating the list of interfaces to explore 50

Leveraging the IDE 50
Using the command line 51
Examining class files 52

Additional action interfaces 53
Preparable interface 53
Accessing scoped attributes (and request parameters) 53

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Accessing servlet objects 54
Request parameter/action property filtering 55

Summary 55
Chapter 4: Results and Result Types 57

The dispatcher result type 57
The redirect result type 59
The redirectAction result type 59
The chain result type (action chaining) 61
The parse parameter and a usecase detour 61

Displaying the form 62
Coding our action 63
Configuring our success result 64
Type conversion sneak attack 66
Coding the show action 66

The FreeMarker and Velocity result types 69
FreeMarker result configuration 70

The XSLT result type 71
The plaintext result 73
The stream result 73
The httpheader result 74
The Tiles and JasperReports results 74
Creating custom result types 74

Configuring our custom result type 76
Writing the action 76
Implementing our markdown result type 77

Summary 80
Chapter 5: OGNL, the Value Stack, and Custom Tags 83

OGNL 83
Contents of the value stack and the <s:property> tag 84

Escaping values 84
Default values 85
Escaping values for JavaScript 85

Other value stack objects and the debug tag 85
A dirty EL trick 87

The <s:set> tag 88
Calling static methods from OGNL 88
Conditionals 89
Collections and iteration 89

The <s:iterator> tag 90

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Table of Contents

[iv]

Tracking iteration status 91
CSS detour: Alternating table row background color 92
The <s:generator> tag 94
It's not a list, it's an iterator! 95
Silent death 95
Another potential stumper (Struts 2.0 only) 95
What is <s:generator> for? 96

The <s:append> tag 97
The <s:merge> tag 98
The <s:subset> tag 98

Arbitrary filtering with the <s:subset> tag 100
Dirty OGNL secrets 101

The <s:sort> tag 102
Are the collection tags useful? 102

Referencing other pages and actions 103
The <s:include> tag 103
The <s:action> tag 103
The <s:url> tag 105

Summary 108
Chapter 6: Form Tags 109

Form tag basics 109
The xhtml theme in a nutshell 110
The <s:head> tag 110
The <s:form> tag 111
Common input element tag attributes 112

Values, labels, and names (and keys) 112
All the rest 113

Basic rendering 113
But I don't want tables 114

Basic form input elements 114
The <s:textfield>, <s:password>, and <s:hidden> tags 114
The <s:textarea> tag 114
The <s:label> tag 115
The <s:radio> tag 115
The <s:checkbox> tag 117
The <s:checkboxlist> tag 118
Using the <s:checkboxlist> tag to implement a user story 118
The <s:select> tag 120
The <s:optgroup> tag 121
The <s:submit> tag 121
The <s:reset> tag 122

Combination form tags 122
The <s:combobox> tag 122
The <s:updownselect> tag 123

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Table of Contents

[v]

The <s:optiontransferselect> tag 124
The <s:doubleselect> tag 125

Uploading files 126
Preventing double submits with the <s:token> tag 128

Summary 129
Chapter 7: Form Validation and Type Conversion 131

Form validation 131
Manual validation 132
Configuring XML validation 132

Customizing validation messages 134
What validations are available? 135

The requiredstring validator 136
The stringlength validator 136
Detour—playing games with validation messages 137
The required and int validators 140
But wait, there's more 141
The double validator 142
The email validator 142
The url validator 142
The date validator 142
The regex validator 143
The expression and fieldexpression validators 143
Combining validation methods 145
The conversion validator 146
The visitor validator 146

Configuring validation with annotations 146
The @Validation annotation 146
The @Validations annotation 147
The @SkipValidation annotation 148
The @RequiredFieldValidator annotation 148
The @IntRangeFieldValidator annotation 149
The @DoubleRangeFieldValidator annotation 149
The remaining validation annotations 149

Client-side validation 150
Custom validators 151

Type conversion 153
The problem 154
The solution 154
Defining our own converters 155

Type conversion usecase—trimmed BigDecimals 155
Configuring conversion across the entire application 157
Custom type conversion is handy 157

Collections 158
Usecase—adding a list of ingredients 158

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Table of Contents

[vi]

Updating our new recipe form 159
Map-based collections 164

Summary 164
Chapter 8: Interceptors 167

The basics 167
Configuring interceptor stacks 168
Configuring interceptors 169
Configuring interceptors for individual actions 171
How interceptors work 172

Interceptors in the default stack 173
The exception interceptor 173
The alias interceptor 173
The servletConfig interceptor 173
The prepare interceptor 174
The i18n interceptor 175
The chain interceptor 175
The debugging interceptor 176
The profiling interceptor 176
The scopedModelDriven interceptor 177
The modelDriven interceptor 177

Getting back to the scopedModelDriven interceptor 178
The fileUpload interceptor 178
The checkbox interceptor 179
The staticParams interceptor 179
The params interceptor 180

Ordered parameters and ad hoc factory patterns 180
The conversionError interceptor 181
The validation interceptor 181
The workflow interceptor 182

Other important interceptors and interceptor stacks 182
The token interceptor 182
The store interceptor 182
The roles Interceptor 183
The clearSession interceptor 183
The paramsPrepareParamsStack interceptor stack 183

Writing our own interceptors 184
The trim interceptor 184
Configuring the trim interceptor 186
The Test Action 188
Testing the trim interceptor 188

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Table of Contents

[vii]

Modifying application flow with interceptors 189
Configuring the result 189
Writing the ResultMappingInterceptor 190
Writing the ResultMappingInterceptor and making it work 191

Summary 192
Chapter 9: Exceptions and Logging 193

Handling exceptions in Struts 2 193
Global exception mappings 194
Action-specific exception mappings 194
Accessing the exception 195
Architecting exceptions and exception handling 195

Checked versus unchecked exceptions 196
Application-specific exceptions 196
Abstracting underlying exceptions 199

Handling exceptions 200
Logging 200

Introduction to logging 201
Using the loggers 201
Configuring the loggers 203

Summary 205
Chapter 10: Getting Started with JavaScript 207

Introduction to JavaScript 208
Playing with JavaScript 208

Minor syntax and language notes 208
Unicode 208
Whitespace 208
Semicolons 209
Null and undefined values 209
The equal and strict equal operators 209
The logical OR operator 209

Variables and scoping 210
JavaScript data types 212

Numbers 212
Strings 213
Arrays 214

Exception handling 215
Introduction to JavaScript objects and OOP 216

Open objects and object augmentation 217
Object values can be functions 218
Object maker functions 218

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Table of Contents

[viii]

Functions 218
Function parameters 219

Some trickery 220
Inner functions 221
Closures 222

Introduction to JavaScript classes 223
Creating classes 223

Variable and function access 224
JavaScript's "this" keyword 226

Prototypes 227
JavaScript modules and OOP 227

Creating a namespace 228
Summary 228

Chapter 11: Advanced JavaScript, the DOM, and CSS 231
The importance of markup 232

ID or style attribute? 232
Dressing up our form 232

JavaScript modules and jQuery 235
Adding onclick handlers 236

Using a function builder 237
Accessing module data 239
The final trick 241

Adding dynamic form elements 242
Identifying where to add the elements 242
The JavaScript "Recipe" module 243

Summary 247
Chapter 12: Themes and Templates 249

Extracting the templates 249
A maze of twisty little passages 250

Creating our theme 251
Other uses of templates 254
Summary 255

Chapter 13: Rich Internet Applications 257
What this chapter is and isn't 257
Dojo tags 258

Simple use cases really are simple 258
The Dojo <sx:head> tag 258
The Dojo <sx:a> tag 259
A brief side journey on topics 261

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Table of Contents

[ix]

The Dojo <sx:div> tag 263
Finishing our user story 263
Highlighting the need to know 263

Dojo and forms 265
The REST plug-in 266

REST in a nutshell 266
The REST plug-in in a nutshell 266

REST plug-in URLs 266
REST plug-in results 267

A web browser client example 268
The REST controller 268
REST controller responses 269

An example of a useful client 271
A command-line example 273
Custom content handler example 275

YAML in a nutshell 275
Writing our YAML handler 276
Configuring our YAML handler 276
Handling our YAML 277

Summary 278
Chapter 14: Comprehensive Testing 281

Test-driven development 281
Unit testing 282

Test, code, refactor—the "heartbeat" of TDD 283
JUnit 283

Revisiting our iterator filter 283
The test environment 284
The initial test stub 284
Testing vowel recognition 285
Testing non-string parameter exceptions 286
Test granularity and test setup 287

TestNG 288
Legacy code and unit testing 290
Simple action testing 291

Detour: Dependency Injection (Inversion of Control) 291
Dependency Injection helps us test 293

Detour: Struts and Spring in a nutshell 294
Spring web.xml configuration 295
Spring context configuration file 295

Testing Struts 2 in context 296
Testing a Struts interceptor 297

Client-side (functional) testing 299
Selenium 300

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Table of Contents

[x]

Selenium RC 300
The test scenario 300
Our first Selenium test 300

Other forms of testing 304
Acceptance testing 304
Load testing 305

Load testing with JMeter 305
Recovery testing 307

Summary 308
Chapter 15: Documenting our Application 309

Documenting Java 309
Self-documenting code 310

Document why, not what 310
Make your code read like the problem 311
Contract-oriented programming 313

Javadocs 317
Always write Javadocs! 317
The first sentence 318
Add information beyond the API name 319
Write for multiple formats 320
Generating targeted Javadocs 321
The -use argument 321
Creating new Javadoc tags with the -tag argument 322
Never write Javadocs! 323
Never write inline Java comments! 323

Using UML 324
Package diagrams 324
Class diagrams 324
Sequence diagrams 325

Documenting web applications 327
High-level overviews 328
Documenting JSPs 328
Documenting JavaScript 329
Documenting interaction 333

More UML and the power of scribbling 334
Don't spend so much time making pretty pictures 334

User documentation 335
Documenting development 335

Source code control systems 336
Code and mental history 336
Commit comment commitment 336
When (and what) do we commit 337

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Table of Contents

[xi]

Branching 337
Branching discipline 338

Issue and bug management 338
Linking to the SCCS 339

Wikis 339
RSS and IRC/chat systems 340
Word processor documents 341

Summary 341
Index 343

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

www.allitebooks.com

http://www.allitebooks.org

Preface
Struts 2.1 is a modern, extensible, agile web application framework, which is suitable
for both small- and large-scale web applications.

The book begins with a comprehensive look at the basics of Struts 2.1, interspersed
with detours into more advanced development topics. You'll learn about configuring
Struts 2.1 actions, results, and interceptors via both XML and Java annotations. You'll
get an introduction to most of the Struts 2.1 custom tags, and also learn how they can
assist in rapid application prototyping and development.

From there, you'll make your way into Struts 2.1's strong support for form validation
and type conversion, which allows you to treat your form values as domain objects
without cluttering your code. A look at Struts 2.1's interceptors is the final piece of
the Struts 2.1 puzzle, which allows you to leverage the standard Struts 2 interceptors,
as well as implement your own custom behavior.

After covering Struts 2.1, you'll journey into the world of JavaScript (a surprisingly
capable language), the Document Object Model (DOM), and CSS, and learn how
to create clean and concise client-side behavior. You'll leverage that knowledge as
you move on to Struts 2 themes and templates, which give you a powerful way to
encapsulate site-wide user interface behavior.

The book closes with a look at some tools that make the application development life
cycle easier to manage, particularly in a team environment, and more automatic.

What this book covers
Chapter 1 gives us a bird's-eye view of Struts 2 and examines some useful techniques
of lightweight, agile development.

Chapter 2 gives an introduction to Struts 2 application configuration, using both XML
and annotations. It also covers the beginning of our sample application, RecipeBox.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Preface

[2]

Chapter 3 covers some of the functionality provided by Struts 2's ActionSupport
class, including I18N, and a first look at form validation. It also covers some basic
RecipeBox functionality after gathering some user stories.

Chapter 4 examines several common, standard Struts 2 result types. It also covers
how to write our own custom result types.

Chapter 5 gives an in-depth look at the generic Struts 2 custom tags. These include
tags for iteration, list generation, conditionals, and internationalization (I18N).

Chapter 6 continues our exploration of Struts 2 custom tags, focusing especially on its
form tags.

Chapter 7 examines Struts 2 form validation, including both XML and
annotation-driven validation. It also teaches more about how Struts 2 converts
our form values into domain objects, and shows how to create our own type
converters to handle custom data types.

Chapter 8 finishes our comprehensive introduction to Struts 2, by checking out
the included Struts 2 interceptors. It also discusses how to write and configure our
own interceptors.

Chapter 9 looks at how to handle errors in Struts 2, as well as discusses error and
exception handling in general. It also covers some general Java logging topics,
focusing on using Apache Commons Logging and Log4J.

Chapter 10 explores how to best leverage JavaScript and how to keep it modular.

Chapter 11 covers the client-side functionality, which depends on more than
JavaScript. By using CSS and the DOM effectively, we can accomplish a lot with a
minimal amount of code.

Chapter 12 covers Struts 2 themes and templates. The themes and templates in Struts
2 allow for application-wide functionality on the client side, keeping our JSP pages
lightweight and adaptable. Rather than writing boilerplate HTML on our pages, we
can separate it into themes and templates.

Chapter 13 takes a look at some of Struts 2's built-in support for Ajax using the Dojo
tags. It also covers the Struts 2 REST plug-in that furthers our "convention over
configuration" path.

Chapter 14 covers how to apply the TDD concepts to several testing aspects,
including unit, functional, and acceptance tests.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Preface

[3]

Chapter 15 looks at many aspects of documentation, including "self-documenting"
code, Javadocs, generators, methodologies, and so on, with a focus on automating
as much documentation as possible.

What you need for this book
You'll need all the typical Java web application development tools. An IDE is very
handy, but it doesn't matter which one you use. Almost any modern application
server can be used to run the sample application.

Having an Internet connection while reading is extremely useful. The Struts 2
download includes the documentation wiki, along with the XWork and Struts 2 API
Javadocs. However, we may also need to reference the Servlet API, various library
APIs, and so on. Having access to the Struts 2 user mailing list can also be very
beneficial, as sometimes searching the web for a question is the quickest way to
get it answered.

The most important requirements aren't dependent on a particular Java version or
specification. Curiosity, willingness to experiment, and patience will never be written
up as a JSR, but they're critical qualities in a developer. It's perfectly fine to never
learn the ins and outs of a framework. However, by digging into the documentation,
and especially the source, we gain a much better understanding of why things happen
the way they do. This increases our efficiency, our usefulness, and our value.

Who this book is for
This book is for Java developers who are interested in developing web applications
using Struts. If you need a comprehensive introduction to Struts 2.1, along with the
most important aspects of additional web application development technologies,
agile programming practices, tool creation, and application life cycle management,
this book is for you. You needn't know JavaScript and CSS to use this book, as the
author will teach you the required basics.

If you are a Struts 1 or WebWork user, and wish to go ahead and migrate to Struts 2,
this is a perfectly practical guide for you.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Preface

[4]

Code words in text are shown as follows: "ActionSupport is an XWork class that
provides validation and default implementations of several common interfaces
needed for I18N."

A block of code will be set as follows:

package com.packt.s2wad.ch03.actions.i18n;
public class TextExamplesAction extends ActionSupport
 implements TextInterface {
 private static Log log =
 LogFactory.getLog(TextExamplesAction.class);
 public String execute() throws Exception {
 log.debug(getText("from.class.props"));
 return SUCCESS;
 }
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be shown in bold:

<!-- Incorrect "validation" interceptor configuration. -->
<action name="brokenConfiguration"

Any command-line input or output is written as follows:

$ find . -name "*.java" | xargs grep -l "public interface"

./com/opensymphony/xwork2/Action.java

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Preface

[5]

To send us general feedback, simply drop an email to feedback@packtpub.com, and
mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/3391_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration, and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to any list of existing errata. Any existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If
you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Preface

[6]

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Struts and Agile Development
Congratulations! Our team has been airdropped into brand-new Java web
application with a non-existent specification and a ridiculous deadline. Thought
it couldn’t happen? Many factors can conspire to create development nightmares.
Staying light on our feet allows us to outmaneuver changes.maneuver changes.

We've chosen Struts 2 for our framework. Our deliverables not only include the deliverables not only include the
application and its associated industry-standard buzzwords, but also include
complete testing (including unit, functional, and acceptance tests), along with
full documentation.

Fortunately for our team (and the client), this is possible and enjoyable! Struts 2 not
only meets the requirements of a modern web application development, but it exceeds
them. Struts 2 fits nicely into the world of Web 2.0, and allows a rapid development
cycle, necessary for both the client and developer to remain competitive.

Struts 2 in a nutshell
Struts 2 began as WebWork. It was an answer to some of the perceived deficiencies
in Struts 1—arguably the most popular and long-lived Java web application
framework. Struts 1 was tied closely to the servlet specification and contained
several Struts 1-specific constructs. This made testing difficult. In addition, because
the constructs were Struts 1-specific, using them in non-Struts applications was more
difficult than necessary.

Struts 2 reduces (and in most cases eliminates) ties to the servlet specification,
making the testing process substantially easier. Struts 2 also allows Dependency
Injection (DI) at many levels, meaning that both testability and re-usability
are enhanced.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Struts and Agile Development

[8]

Dependency Injection (DI) or Inversion of Control (IoC) will be covered
throughout the book, from several angles. In a nutshell, this means that
rather than a class deciding which implementation it wants to use, it is
told which implementation to use through one of several mechanisms.
If you're familiar with Spring or an equivalent, then it is probable that
you're already quite comfortable with the idea.

Architecturally, S2 is conceptually simple, if somewhat more complex in practice.
The request cycle process can be summarized as: "Requests are filtered through
interceptors and are implemented by actions. The actions return results, which are by actions. The actions return results, which areactions. The actions return results, which are return results, which areresults, which are are
executed and returned to the browser."

The filter dispatcher
Under standard configuration, Struts 2 gets a chance to process every incoming
request. It is implemented as a filter (Struts 1 used a servlet) and mapped to all of
the requests (Struts 1 was generally mapped to an extension such as *.do). The
reason Struts 2 (usually) needs to examine all of the requests will be discussed later.
However, for now, it's enough to know that the filter is the first step in processing a
Struts 2 request.

Interceptors
Interceptors are similar to Servlet Filters, but specific to Struts 2. Interceptors are
configurable for an entire application, groups of Struts 2 actions, a single action,
or any combination thereof. Interceptors provide the bulk of the core framework
functionality of Struts 2. Most of the "cool stuff" lives in the interceptors!

Validation, page setup, access to session and request parameters, and so on, are all
provided by interceptors. They're great for providing wide-ranging functionality that
cuts across an entire web application or parts thereof.

For those of us familiar with Struts 1, the (somewhat close) corollary is the Struts 1
request processor. Once, where we might have extended the request processor, we
might now configure or implement an interceptor.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 1

[9]

Many application will need only the interceptors provided by Struts 2, although we
might need to configure them differently. However, many applications can benefit
from even very simple custom interceptors. We'll cover details of the most useful
and common Struts 2 interceptors as we go along. We will also cover (in Chapter 8)
detailed interceptor configuration and implementation to add impressive and
quick-to-implement functionality.

Actions
"Struts 2's actions are POJOs! Struts 2's actions are POJOs!". You'll hear that a lot.
Note the following things about Struts 2's actions:

Struts 2's actions are not (generally) tied to the servlet spec.
They are not required to use any Struts 2-specific constructs.
The actions handle form data more elegantly than Struts 1's ActionForm and
return simple strings instead of the ActionForward used in Struts 1.

Every Struts 2 action could be a POJO. Unless we want the cool built-in functionality
of Struts 2 such as form validation, I18N, and little things like that.

Let's put it this way: Struts 2's actions are more like POJO than ever before and
aren't tied to the servlet spec (unless we specifically tie them to it, which is
necessary on some occasions). The non-POJO aspects are wrapped up in the
ActionSupport superclass, which provides a default implementation of the
most useful non-POJO functionality.

This makes testing and reusing actions much easier, and eliminates one of the biggest
Struts 1 headaches (we'll cover actions in depth in Chapter 3).

Results
Results determine what will be sent back to the browser, typically a JSP that
produces HTML. Struts 2 has several other result types defined in addition to the
standard dispatch to a JSP. These include redirection, redirection to actions, action
chaining, FreeMarker templates, file streaming, JasperReports, and more.

We can also create and configure our own result types to provide additional
application functionality that is not available in the standard Struts 2 distribution.
We'll cover results, configuration, and creation of custom result types in Chapter 4.

•

•

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Struts and Agile Development

[10]

Plug-ins
Struts 2 is extensible using its plug-in mechanism. Plug-ins can be used to provide
additional functionality such as the JasperReports result. They could also be used
to completely change the way we use Struts 2. An example of this is the REST
plug-in, which provides Ruby on Rails-like URL handling and lessens our XML
configuration. Plug-ins are a neat way to encapsulate functionality that can be used
across our own applications, or even released into the wild for others to use.

Agile in a nutshell
Extreme Programming (XP) was the buzzword several years ago. It involves
test-first development, pair programming, on-site customers, and more. Compare
and contrast this with the waterfall method (or BDUF: Big Design Up Front), where
detailed requirements are built upfront, followed by the application design. Finally,
comes the implementation, verification, and maintenance part. It's still (arguably) the
most common development model, despite repeated failures.

Many companies are pretty firmly entrenched in the waterfall method (XP or
anything like it borders on heresy). The problem is that as soon as the toner on the
specification has cooled, it's probably already incomplete or incorrect. As soon as
development begins, the unanticipated will almost certainly appear.

At this point, either the original spec (or more likely, an emailed copy of a Word
document with a date appended to the filename) might be updated to reflect the new
reality, or the software will continue developing until it barely resembles the original
design document. Generally, there will either be a formal change management
process, or a customer that doesn’t end up with what they wanted. (Or ends up with
what they thought they wanted, but they were wrong.).

If the application and specification are significantly out-of-sync, the specification is
no longer a useful document. A developer being introduced to the project for the first
time needs to either ignore the specification and look only at the code, or reconcile
differences between the two.

Whether or not a client buys in to a full-blown agile methodology may not be up
to us (the consultant). However, by picking and choosing components typically
associated with the agile development, we can get many of the benefits.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

[11]

User stories
One of the more useful XP concepts is the "user story". User stories capture system
interaction at a fairly high level. Details that are unable to be determined without
testing, or that are not as important as the basic functionality, may be omitted during
the design phase (and may never be formally specified). We'll cover user stories as
we develop the sample application.

Testing
One of the most important aspects of agile development is testing and testability.
It allows for both minor and localized changes, as well as sweeping application
changes, while ensuring that the functionality isn't broken.

Applications can be tested at various levels. At one end of the spectrum is unit
testing, focusing on small units of functionality, and preferably not involving any
of the other system's components.

Functional testing focuses on the overall system, and can consist of testing the
application by using a browser driven by any of several methods. We'll discuss
several types of testing in depth in Chapter 14. However, we will touch upon testing
issues throughout the book.

Refactoring
Refactoring includes the process of identifying and consolidating similar functionality
at any level in the application. Consistent and correct refactoring is made possible
(or at least made much easier and more reliable) by the presence of tests. Without the
ability to test easily, refactoring becomes an error-prone, hit-or-miss proposition.

Aggressive refactoring at all levels in the application (Java, JSP, HTML, CSS, and so
on) can significantly reduce absolute code size, along with the cognitive overhead
needed to understand the application.

Short iterations
Which one of the following options would you choose:

1. Design and code an application, present it to the client, and be presented
with a list of changes that necessitate changing the internals of the
application itself.

2. Present small chunks of functionality, so that changes in design or
implementation are identified early, and hence the impact is as minimal
as possible.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Struts and Agile Development

[12]

Yes, the first option gives us a chance to do the mythical "complete rewrite".
However, clients rarely seem willing to fund the development of the same
application twice. Moreover, refactoring is, in essence, a chance to rewrite early
and often.

XP's take on this (and it is extreme) is that there should be a client on site during
much of the development, providing immediate feedback on the direction of
application development. This gives the developers a chance to nip problems in the
bud, whether they're issues with the domain model, user interface, documentation,
and so on.

While an on-site client might not be possible (or desirable!) it’s easy to give clients
access to the work-in-progress. This allows the client to review functionality
and provide feedback early in the process. Both functionality and design can be
addressed in parallel. This can help identify usability issues, application flow
changes, functional requirement changes, and so on.

However, along with shorter iterations comes a responsibility to keep the client
informed about the real cost of change, both now and in the future. Big changes
(or lots of little ones) may require a change in the schedule, the deliverable, or both.

Real applications in a nutshell
Real-world web applications are much more than just the underlying web
framework. Database access, CSS, Ajax, reporting, testing, the build and deploy
cycle, documentation, and administration, all factor in to deliver a complete
application that can be handed off to a client.

Making it pretty
We'll cover some of the most basic aspects of making our application look
good, using CSS and Struts 2’s themes and templates. These offload the bulk of
"prettification" to FreeMarker templates and keep our JSP (or FreeMarker) pages
fairly clean.

We'll include some CSS basics, while focusing on separating content from
presentation. We will also see how we can use CSS, along with JavaScript, to provide
us with easy ways to enhance functionality, usability, and testability. Along with
making our applications look nice, markup that is intelligent and semantic also gives
us more ways to manipulate our pages with JavaScript and Ajax.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 1

[13]

JavaScript
We'll spend some time looking at JavaScript, which is the dominant player in
the browser. While this isn't a complete JavaScript book, it's very important to
understand how to use it to good effect, as it's a remarkably powerful language.

Grasping some of the more advanced topics makes working with existing libraries
(for example, jQuery, which is used later in the book) much easier. It also makes our
own JavaScript much cleaner, safer, and easier to maintain. Like any other language,
using JavaScript effectively takes time, but the time it saves over using it poorly is
well worth the effort.

Documentation
Documentation, perhaps one of the least entertaining aspects of application
development, can be made to be a relatively automated process by using a
combination of existing tools and custom tools. A small amount of effort throughout
the life of a project can make a big difference and enhance our final deliverable.

All of the rest
Scattered throughout the book will be tips and tricks that can be used to ease
our development process, facilitate the creation of useful tools, and open the
development process for automation. These tips and tricks enhance our "bag of
tricks", making our lives easier, and our clients happier.

Getting started
At the time of writing this book, the most recent version of Struts is 2.1.6.
Downloading a release is straightforward, just follow the links on the Struts website.
There are currently five downloads: "all", "apps", "lib", "docs", and "src". The "all"
download, of course, includes everything. The "apps" download includes all of the
Struts 2 sample applications, including the "blank" application (which isn't totally
blank, but close).

The "lib" download includes all of the libraries required by Struts 2. This includes
Struts 2 core libraries, Struts 2 plug-in libraries, and all of their dependencies.
The "docs" download contains...wait for it...the documentation, including the API
JavaDocs for both Struts 2 and XWork, as well as the entire Struts 2 documentation
wiki. Finally, the "src" download contains the source for Struts 2, but not for XWork.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Struts and Agile Development

[14]

Creating our own applications
There are several ways in which we can create a Struts 2 application:

1. By copying the "blank" sample application
2. By manually using the libraries download
3. By using a Maven archetype

AppFuse also allows the use of Struts 2 for the backend.

Again, we're assuming some general familiarity with JEE web application
development, and comfort with whatever development environment we're using.

Doing it "by hand"
We could just grab the necessary libraries from the "lib" distribution and do things
completely by hand. It works, and it's simple (in a way). Determining which libraries
are necessary can be surprisingly irritating. However, poking inside the blank
sample application tells us that we really only need a few.

Getting that list of libraries is left as an exercise for the reader. This
seems unnecessarily cruel. However, I really want to foster an attitude of
exploration, discovery, and familiarization, with the framework and the
tools we can use to expand our own knowledge and skills. Yes, I'm a little
mean. By poking around we learn much more than having all the answers
handed to us on a silver platter. (Especially, as it's a simple matter of
looking inside the blank application WAR file. That’s a hint for
the future.)

The biggest drawback to this approach, despite its simplicity, is that as soon as
we start adding libraries (which we do in the next chapter), we don't necessarily
understand the relationships between required libraries. In other words, we may
not understand which libraries depend on which other libraries.

Using Maven
One of the tasks Maven was created to tackle is transitive dependencies. Simply put,
Maven allows us to say: "I want to use so-and-so library", and Maven will respond
with: "Oh, okay, you also need these other libraries in order to do that, and here they
are for you." (Maven is actually capable of much more.)

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 1

[15]

When we look at the source for the blank sample application, we start getting
a handle on how Maven works (sort of), so that we can declare a project's
dependencies. However, some of the magic is hidden, as the blank application
relies on a non-local resource that declares the bulk of the dependencies.

Another option is to use a Maven "archetype". In this case, it would be a representative
Struts 2 application that includes everything necessary to get started. There are a
few Struts 2 Maven archetypes, including a generic blank application, a RESTful
application (discussed later), and so on. The Struts 2 documentation wiki explains the
process of using Maven archetypes. However, you are encouraged to read the Maven
documentation if that's the chosen path.

This book takes a non-committal approach to its source. The apps are
available as Maven projects, or as complete non-Maven bundles. If you're
interested in using Maven archetypes and typing the code yourself
(or copying the source into a Maven project), then that's fine. For the
most part, I will completely ignore environmental issues to focus solely
on the issue(s) at hand.

Summary
Struts 2 is a flexible web application framework that can be used to create
highly-functional applications very quickly. The features provided by Struts 2
give developers many ways to increase functionality, while keeping the
development cost low and the client happy. By leveraging the power of standard
browser technologies, along with a combination of existing and custom tools, Struts
2 can be used as an integral part of an agile development process, which eases the
creation of complete applications, satisfies the client, and helps the consultant lookcomplete applications, satisfies the client, and helps the consultant lookapplications, satisfies the client, and helps the consultant look
good in the process.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Basic Configuration
There are several ways we can configure our Struts 2 applications. These include
using everybody's favorite, XML, annotations, and some agile convention-over
-configuration methods.

In this chapter we'll cover the minimum necessary to get an application up and
running, deferring more complex topics until they're necessary. We'll also begin our
journey into lightweight application specification capture by introducing the "user
story" concept. Along the way, we'll also begin coding our sample application.

Setting up our environment
Our first task is to get a minimal Struts 2 application running. We're not concerned
with application functionality at this point. Our goal is to make sure our builds and
deploys are working properly, and to sanity-check our Struts 2 configuration.

We won't cover any IDE-specific setup requirements, or discuss application-server
-specific deployment issues. We'll assume an environment including Java 1.5, Servlet
2.4, and JSP 2+.0.

Struts 2.0 is shipped with a set of JAR files usable under Java 1.4. Struts
2.1 no longer ships those libraries. The build process, however, still
supports their creation. Struts 2 states a requirement of Servlet 2.4;
however, full applications have been run under Servlet 2.3. Again, this
capability may not always exist.

The sample applications are available in both a Maven-based distribution and a
typical non-Maven directory layout. When we refer to source code, it will almost
always be obvious where the directories and files belong (if you're not very familiar
with Maven and wish to do things the "Maven way", there's an introduction to the
Maven directory layout on the Maven website). The book text assumes that we're
already able to get a Java web application compiled and deployed.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Basic Configuration

[18]

Being dependent on an IDE's build process is, in general, a bad idea.
Creating a build file allows our build process to be replicated across
developers, IDEs, and tools. For example, a build file might be used by
a Continuous Integration server to automate compilation, testing, and
deployment. We won't delve deeply into the various build process
options. Therefor, you may build the book source code in whatever
manner you're most accustomed to, including relying on only an IDE.

A sanity-checking application
Our sanity-checking application will be as simple as possible. It will consist of only
the minimum libraries necessary to get:

A Struts 2 application running
The Struts 2 Configuration Browser Plug-in
Apache Log4J for logging

The Struts 2 Configuration Browser Plug-in lets us check out what Struts 2 thinks our
configuration is. (Believe it or not, we do occasionally make mistakes. And ultimately
it's the framework that decides what works, not us!)

Log4J is the ubiquitous logging framework. We'll discuss logging later in the book;
however, we will use logging before then. Logging statements in the code can be
safely ignored until then. The following is the table listing the minimum jar files to
get a Struts 2 application running:

Required JAR file(s) The Struts 2 application
struts2-core-2.1.6.jar Struts 2 framework.
xwork-2.1.2.jar XWork framework.
ognl-2.6.11.jar OGNL, an expression language similar

to JSP's EL, used by the Struts 2 tags.
freemarker-2.3.13.jar FreeMarker, a templating library used

to implement Struts 2's UI custom tags.
commons-fileupload-1.2.1.jar

commons-io-1.3.2.jar

commons-logging-1.1.1.jar

FileUpload and IO are used for Struts 2's
file uploading capabilities. Logging is used
as a logging library wrapper.

struts2-config-browser-Plug-in-
2.1.6.jar

Struts 2 Config Browser Plug-in, used
to examine application configuration.

log4j-1.2.14.jar Ubiquitous logging library.

•

•

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 2

[19]

The dependency on the Commons FileUpload package and IO libraries is required,
even if we're not uploading files in our application (not having them will cause
the application to fail on startup). Note that we can decide to use other file
upload libraries.

Including a Struts 2 plug-in may introduce additional dependencies.
For example, if we were using the Spring or JasperReports plug-ins,
we would need to include their dependencies as well. Otherwise, our
application may fail on startup. This is one area in which Maven is
particularly handy. (There are dependency managers for Apache Ant
as well. However, if we're gluttons for punishment, we can figure out
the dependencies on our own.)

Configuring web.xml for Struts 2
Struts 2 dispatches requests with a filter (Struts 1 used a servlet). By default, Struts 2
expects to have a look at all requests. This allows Struts 2 to serve static content from
the classpath. This includes JavaScript files for Dojo/Ajax support and FreeMarker
templates for Struts 2's custom tags.

The default filter configuration defines the filter and its mapping.

<filter>
 <filter-name>struts2</filter-name>
 <filter-class>
org.apache.struts2.dispatcher.ng.filter.StrutsPrepareAndExecuteFilter

 </filter-class>
</filter>

<filter-mapping>
 <filter-name>struts2</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

Note that we map the Struts 2 filter to /*, and not to /*.action (the default Struts 2
extension). We can check whether our server and environment are correctly configured
or not. If we visit any URL ending with .action, such as /sanity/foo.action,
we should see an error message along the lines of: There is no Action mapped for
namespace / and action name foo. This lets us know that Struts 2 at least attempted
to process our request, but it couldn't.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Basic Configuration

[20]

If we don't see a similar error message, we have to troubleshoot our build and
deploy environment. We can place a simple JSP file in our web context root to
determine if we're able to process any request, and to determine whether we're
processing JSP files correctly. (The URLs shown in the text won't include host or
port information, and assume the root context.)

The specifics of troubleshooting are environment, IDE, and server-specific. These
won't be covered here. The usual suspects include classpath and deployment issues.

Writing our first action
We'll start by writing one of the simplest actions possible:

package com.packt.s2wad.ch02.sanity;
public class VerySimpleAction {
 public String execute() {
 return "success";
 }
}

As could be seen from above, the action doesn't extend or implement anything—it
just has a method named execute() that returns a String. The execute() method
is the method Struts 2 will call by default (we'll see how to call others a bit later on).

Configuring our first action with XML
Struts 2 configuration files are expected to be on the classpath (in Struts 1 they were
typically located under /WEB-INF). By default, Struts 2 will look for a file named
struts.xml in the root of the classpath. The top-level elements of our Struts 2
configuration file are shown here:

<struts>
 <constant name="struts.devMode" value="true"/>
 <package name="default" namespace="/" extends="struts-default">
 <!-- Action configurations... -->
 </package>
</struts>

The constant element defining struts.devMode puts Struts 2 into "developer
mode", increasing the variety and quantity of error messages, reloading Struts 2
configuration files when they change, and so on.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 2

[21]

It's also possible to define constants in our web.xml file; this is useful
when we don't need an XML-based configuration. Either is acceptable:
which is used depends on our needs and preferences. We can also define
constants in a file named struts.properties, also on the classpath,
but this is not preferred.

The <package> element defines a unit of configuration that our actions will live in.
We'll learn more about packages later on. For now, it's enough to know that Struts 2
packages are a way of dividing up an application's functionality and configuration.
The namespace attribute defines the URL prefix used for all actions in the package,
and should begin with a slash (/).

We configure our simple action by placing an action element inside our package
and giving our action a result—a JSP in this case.

<action name="verysimple"
 class="com.packt.s2wad.ch02.sanity.VerySimpleAction">
 <result>/WEB-INF/jsps/verysimple.jsp</result>
</action>

For the most part, every action will have name and class attributes. The name
attribute is used to map a URL to the action class, specified by the class attribute.

Visiting /verysimple.action should display the contents of our JSP file. If it
doesn't, we need to troubleshoot our deployment.

Configuring our result
Results determine what gets returned to the browser after an action is executed.
The string returned from the action should be the name of a result. Results are
configured per-action as above, or as a "global" result, available to every action in
a package.

Results have optional name and type attributes. The default name value is success.
In the previous example, we didn't give our result a name. This is because we're
returning success from the execute() method, so we don't need to provide the
name explicitly.

We also did not define the type attribute of the result. However, we can surmise that
as we provided the pathname of a JSP file and we end up seeing the JSP contents in
the browser, it's some sort of dispatching process. In fact, the default result type is
dispatcher, which dispatches to our JSP using the normal JEE mechanism.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Basic Configuration

[22]

We could have specified both the name and the type attributes as seen here:

<action name="verysimple"
 class="com.packt.s2wad.ch02.sanity.VerySimpleAction">
 <result name="success" type="dispatcher">
 /WEB-INF/jsps/verysimple.jsp
 </result>
</action>

If we have a JSP that needs no additional processing, we can omit the action's class
attribute. Struts 2 will forward to the JSP (similar to Struts 1's ForwardAction).

<action name="verysimple">
 <result>/WEB-INF/jsps/verysimple.jsp</result>
</action>

This keeps our JSP files hidden from direct access, and normalizes our application to
use only action-based URLs. If we later modified the action to use an action class, the
URL wouldn't need to be changed.

Choosing an action method
Our very simple action had a single method, execute(), which will be called by
default. Consider an action with multiple action methods:

package com.packt.s2wad.ch02.sanity;
public class MethodSelectionAction {
 public String method1() { return "success"; }
 public String method2() { return "success"; }
}

We can define which method to call using the method attribute as seen here:

<action name="method1" method="method1"
 class="com.packt.s2wad.ch02.sanity.MethodSelectionAction">
 <result>/WEB-INF/jsps/method1.jsp</result>
</action>

<action name="method2" method="method2"
 class="com.packt.s2wad.ch02.sanity.MethodSelectionAction">
 <result>/WEB-INF/jsps/method2.jsp</result>
</action>

Some people prefer creating separate classes for every action, rather than filling an
action with several methods. Which route to take can depend on several factors,
including personal preference. In some cases it makes perfect sense to keep related
functionality in a single class, in other cases it may not.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 2

[23]

This last example seems repetitive—the method and result names are the same
and the JSPs have similar naming conventions. Struts 2 allows wildcard mapping
in several ways, which we'll use now to help lay out our application flow.

Getting started with our application
The traditional model of application development generally starts with the gathering
of requirements, followed by separate design, implementation, verification, and
maintenance phases. This is called the waterfall method and has been around for
many years.

In contrast, more agile models of development focus on the user experience, rapid
turnaround of functionalities, and iterative development. This allows our clients to
provide feedback in parallel with development, requesting changes in functionality,
detecting usability and application flow issues, and so on, early in the process.
In many circumstances, this lightweight development cycle can greatly speed up
the development time, and deliver an application that more accurately meets the
client's needs.

Gathering user stories—defining our
application
Our client is building a recipe swapping website, which allows us to build a
shopping list from a set of selected recipes. Even without any further requirements,
we know we'll need at least five pages—home, recipe search, recipe list, recipe entry,
and shopping list.

The first tool we'll explore for capturing application functionality are user stories.
User stories are very short descriptions of functionalities (often captured on index
cards) that represent a user experience.

User stories do not contain implementation or specification details. A simple
example might be: "A user can search for recipes." This might even be expanded
to read: "A user can search for recipes by name, ingredients, and so on." Anything
significantly more detailed than that is (usually) better expressed as additional,
equally short stories.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Basic Configuration

[24]

At this stage in our application requirements gathering, we have five user stories;
a couple of them with some minor reminders of expected functionality:

Users see an informational homepage
Users can enter recipes to share
Users can list recipes

Users can list either their own recipes or recipes from all users
Users can mark recipes to create a shopping list

Users can search recipes
Users can search by the recipe's name, ethnicity, ingredients,
and so on

Users can see a shopping list of ingredients needed for their selected recipes

Obviously, this isn't a complete application specification. However, it is enough to
get started on coding the most basic website pages, organizing our development
effort, and defining a tangible set of deliverables for the client. Even at this stage, the
client might identify some missing functionalities, poor application flow, and so on.

We already know enough to define our action mappings to create skeletons of these
pages, although they're a bit heavy considering our simple needs. Struts 2 provides
handy wildcard configuration mechanisms making early prototyping really simple.

Building skeletal applications using wildcards
Wildcard action definitions are a quick way to create the skeleton of an application.
The following configuration, along with the required JSP files, is enough:

<action name="*">
 <result>/WEB-INF/jsps/{1}.jsp</result>
</action>

The {1} refers to the first (in this case only) wildcard in the action's name attribute.
In this case, visiting /foo.action would return the /WEB-INF/jsps/foo.jsp file.

Supplying a JSP page for each story creates an outline of the application. We might
use the previously shown wildcard technique and create home.jsp, recipesearch.
jsp, recipelist.jsp, recipenew.jsp, and shoppinglist.jsp. Visiting /home.
action would give us /WEB-INF/jsps/home.jsp. We're not actually going to do it
this way: the URLs are ugly, and we suspect there must be a better way.

•

•

•

°

°

•

°

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 2

[25]

Matching multiple wildcards
We have at least two different major divisions in our application—recipes and
shopping lists. In the examples above we had pages such as /recipenew.action,
rather than the more natural and hierarchical /recipe/new.action.

One solution would be to use multiple wildcards. Multiple wildcards allow us to
map individual portions of the URL to action names, JSPs, directories, and so on.
For example, see the following:

<action name="*/*">
 <result>/WEB-INF/jsps/{1}/{2}.jsp</result>
</action>

Here, we use the first wildcard as a directory (like /WEB-INF/jsps/recipe). The
second defines the page (JSP) to be shown, such as list.jsp, new.jsp, and so
on. Now the cleaner /recipe/list.action URL would return /WEB-INF/jsps/
recipe/list.jsp.

Using this method means that we have a slash (/) in our action name. To
do this, we must set the struts.enable.SlashesInActionNames in
our struts.xml file (shown next), our web.xml, or (not preferred) our
struts.properties file.
<constant name="struts.enable.SlashesInActionNames"
value="true"/>

More wildcard tricks
We can also use wildcards to define action methods and/or action classes. Class
names, of course, must still be legal Java class names. If we're using a wildcard to
create a Java class name, we'll have mixed-case URLs, and they are case-sensitive.
The following definition demonstrates a possible configuration that differentiates
between class names and methods within those classes:

<action name="*/*"
 class="com.packt.s2wad.ch02.examples.{1}Action"
 method="{2}">
 <result>/WEB-INF/jsps/{1}/{2}.jsp</result>
</action>

Assume UserAction and GroupAction classes, both with list() and create()
methods. Visiting /User/list.action would call the UserAction.list() method
then dispatch to /WEB-INF/jsps/User/list.jsp as the result.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Basic Configuration

[26]

Just to reiterate, the case of the word User in the URL is significant. The class name
created by appending the wildcard contents to the package name is the class that
Struts 2 will attempt to instantiate.

Using wildcards is a flexible way to break up our application. However, for large
and complex applications, it can lead to a brittle configuration, bizarre URLs, and
more trouble than they're worth. Naturally, there's another way, which can be used
alone or in combination with wildcards.

Packages and namespaces
Packages and namespaces help group and classify various configuration elements,
delineate areas of responsibility, provide package-specific resources, and so on. In
our recipe application, we do not yet have much functionality. However, we can still
draw a "line in the sand" between our two obvious sections, recipes and shopping,
and intuit that each of these might deserve their own package.

Packages can declare a namespace, which is effectively a portion of the URL.
Adding to our original default package, our first look at defining some packages
looks like this:

<package name="default" namespace="/" extends="struts-default">
 <action name="*">
 <result>/WEB-INF/jsps/{1}.jsp</result>
 </action>
</package>

<package name="recipe" namespace="/recipe" extends="struts-default">
 <action name="*">
 <result>/WEB-INF/jsps/recipe/{1}.jsp</result>
 </action>
</package>

Visiting /recipe/list.action puts us in the recipe package, whereas visiting
/home.action leads us to our default package.

Creating site navigation
We'll use <jsp:include> tags as our templating mechanism to keep things simple.
Our pages will have a navigation bar at the top, and contents underneath.

We'll peek ahead at our first Struts 2 custom tag—<s:url>. This tag is used to create
URLs. We could also use JSTL's <c:url> tag, but we'll discover some reasons for
sticking with <s:url> in a bit.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 2

[27]

Full documentation for the <s:url> tag (and all the other tags) is available on the
Struts 2 wiki, which is also exported in the distribution. For now we'll only concern
ourselves with the action and the namespace attributes. However, I always
encourage people to read the documentation and consider it a necessary resource.

The action attribute specifies the Struts 2 action of the link (without the .action
suffix, which is added by the tag). The namespace attribute defines the namespace
the action is in. Our simple navigation page, /WEB-INF/jsps/shared/nav.jsp,
contains links to each of our story pages:

<%@ taglib prefix="s" uri="/struts-tags" %>
<a href="<s:url namespace="/" action="home"/>">Home
<a href="<s:url namespace="/recipe" action="list"/>">
 List Recipes
<a href="<s:url namespace="/recipe" action="search"/>">
 Search Recipes
<a href="<s:url namespace="/recipe" action="new"/>">
 Create Recipe
<a href="<s:url namespace="/shopping" action="list"/>">
 Shopping List

Why specify the namespace as a separate attribute as opposed to just including it
in the action name or URL? The <s:url> tag is namespace-aware: creating links
within a namespace doesn't require the namespace attribute. Actions within other
namespaces require the namespace to be specified. Navigation links, which must
work no matter what namespace we're in, can just use it all the time.

The slash (/) in a namespace is not optional. Without it, Struts 2 will not know that
we're in a namespace and will prefix an additional namespace to the URL, thereby
breaking it.

Namespaces allow us to use common sense links within a package. For example,
if we were administering a large number of simple data models (users, groups, and
so on), we could split them in to packages, each getting a namespace, and each with
a list action.

On a page in the "users" package, <s:url action="list"/> would refer to the
"users" package's list action. To link to the "groups" package list action, we
specify the namespace: <s:url action="list" namespace="groups"/>.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Basic Configuration

[28]

Including external configuration files
Struts 2 configuration files can include additional configuration files with the
<include> element. For example, we might configure our shopping list package
in its own file and include it after our other packages were defined as seen here.

 <!-- ... existing config file ... -->
 </package>
 <include file="com/packt/s2wad/ch02/shopping/shopping.xml"/>
</struts>

The shopping.xml file is placed in our shopping package and referred to by
a classpath-relative path, like any other classpath resource. We can put the
configuration files wherever we want—we could just as easily keep it at the
root level.

This is a simple way to break up areas of responsibility, delineate application
functionality, reduce potential edit conflicts, and keep configuration as local to
the implementation as possible.

Our application so far
To complete our wireframe application, which is just enough to show our user
stories, we need to create several JSP files to match our story URLs. The / namespace
holds the home action, so we create /WEB-INF/jsps/home.jsp. The /recipe
namespace holds the recipe list, new recipes, and recipe search pages. Each JSP is
named as we'd expect, and in /WEB-INF/jsps/recipe/. The /shopping namespace
contains only the shopping list action with its JSP in /WEB-INF/jsps/shopping/
list.jsp.

Each of these skeletal JSP files contains our navigation JSP and a header letting us
know which page we're on. For example, our home.jsp file is mostly HTML.

<html>
 <head>
 <title>Home</title>
 </head>

 <body>
 <div id="nav">
 <jsp:include page="/WEB-INF/jsps/shared/nav.jsp"/>
 </div>

 <div id="content">
 <h1>Home</h1>
 <p>Home page.</p>
 </div>
 </body>
</html>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 2

[29]

When we visit /home.action, we'll see the navigation links at the top and a big
"Home" headline. Visiting /recipe/list.action is the same, but with a big
"Recipes" headline. Not terribly exciting, but we already see the beginnings of
the functionality.

Examining our configuration
We can use the Configuration Browser Plug-in to examine what Struts 2 believes
our configuration is. (Struts 2 doesn't always agree with us, but is nice enough to tell
us when we're wrong.) We just add the library to our classpath.

To browse our configuration, we visit /config-browser/index.action, where we'll
see something similar to the following:

From here, we can examine our action configurations, result attributes, and so on.
It's a handy way to compare what we think our configuration is with what Struts 2
thinks it is. Struts 2 is running the show, and its version wins even if we think
it's wrong.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Basic Configuration

[30]

Configuration via convention and annotations
Hate XML? The Convention Plug-in allows us to operate completely
configuration-free, and to use annotations when the defaults aren't quite what
we need. The Convention Plug-in is also used by the REST Plug-in (discussed
later in the book).

Using the plug-in is almost as simple as dropping its JAR file into our classpath,
but not quite easy. The Convention Plug-in has its own library dependencies.
Maven makes this trivial. Without Maven, it's easiest to grab the libraries from
the REST Plug-in showcase application.

In this example, we won't use a Struts 2 configuration file. We'll set all of our
constants in our web.xml file. For example, we'll still set struts.devMode to true.

<filter>
 <filter-name>struts2</filter-name>
 <filter-class>
org.apache.struts2.dispatcher.ng.filter.StrutsPrepareAndExecuteFilter
 </filter-class>
 <init-param>
 <param-name>struts.devMode</param-name>
 <param-value>true</param-value>
 </init-param>
</filter>

The Convention Plug-in and action-less actions
When we make a request for which there is no mapping and no action, the
Convention Plug-in will attempt to locate a reasonable result. For example, if we
request /sanity or /sanity.action (the ".action" extension is optional), the plug-in
will look for a result in /WEB-INF/content/sanity.*, checking for .jsp, .ftl, and
.vm files.

The Convention Plug-in has many configuration parameters, including one to set
the root location for result files. We'll add another filter parameter:

<init-param>
 <param-name>struts.convention.result.path</param-name>
 <param-value>/WEB-INF/jsps</param-value>
</init-param>

Now the Convention Plug-in will search for files under /WEB-INF/jsps. Our
previous request would look for /WEB-INF/jsps/sanity.jsp (and .ftl and .vm).
If no file is found, we'll get an error message in our browser (or a 404 if development
mode isn't activated) saying that there's no action mapped for our request.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

www.allitebooks.com

http://www.allitebooks.org

Chapter 2

[31]

The Convention Plug-in allows us to create a skeletal application with no XML
configuration whatsoever—we need only create the necessary JSP files.

The Convention Plug-in and action configuration
The Convention Plug-in can detect and configure our action classes on application
startup as well. The plug-in will scan for implementations of com.opensymphony.
xwork2.Action (as the ActionSupport superclass does) in Java packages whose
names contain "struts", "struts2", "action", and "actions", and whose classname ends
in "Action".

There are several parameters we can set to fine-tune the Convention
Plug-in. Set the packages to scan via the struts.convention.
package.locators constant. Set struts.convention.package.
locators.disable to true to disable scanning. Exclude a list of
packages from scanning with the struts.convention.exclude.
packages constant. However, be aware that the Convention Plug-in
already sets this to a default value. We must set the default, as well
as our own value, for this to work well. To change the suffix of action
classnames, set the struts.convention.action.suffix constant
(for example, the REST Plug-in changes the suffix to Controller).

Our first Convention-based action has an execute()method returning
success—that's it. The Convention Plug-in will search for results in the same way
as with action-less requests, but will use the action class name as part of the file name
to search for. Our first result test action contains the following (imports elided):

package com.packt.s2wad.ch02.convention.actions;
public class SanityAction extends ActionSupport {
 public String execute() {
 System.out.println("***** Hello from SanityAction!");
 return "success";
 }
}

We're getting a sneak peek at the ActionSupport class. If we request /sanity, we'll
see our println() call on the console, and our JSP displayed in the browser.

The Convention plug-in will also search for action-named JSPs with the result string
appended; we could also have named our sanity.jsp file sanity-success.jsp.
The Convention Plug-in will use files with appended result codes first. In other
words, if our action returns success, the file named sanity-success.jsp will be
rendered, even if there's a file named sanity.jsp.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Basic Configuration

[32]

To demonstrate, consider an action returning odd or even based on the current time:

package com.packt.s2wad.ch02.convention.actions;
public class WhichresultAction extends ActionSupport {
 private long ctm;
 public String execute() {
 ctm = System.currentTimeMillis();
 return ((ctm & 1L) == 1L) ? "odd" : "even";
 }
 public long getCtm() { return ctm; }
}

We'll create two JSP files under /WEB-INF/jsps—whichresult-odd.jsp and
whichresult-even.jsp. Here's the meat of whichresult-odd.jsp:

 <h1><s:property value="ctm"/> is odd!</h1>

It's not a coincidence that our action class has a property named ctm and we're
using the <s:property> tag to access something named ctm in the JSP. Remember
setting values into request scope, or ActionForm? No more of that! We'll get to this
magic soon!

When we request /whichresult, we'll see either the odd or the even page. After a
few clicks, we'll likely see both results, letting us know the magic of Convention
is working.

Configuring the Convention Plug-in with
annotations
If Convention's defaults don't suit us, we can use its annotations to configure the
action. For example, the @Action annotation can change or add action mappings
beyond what Convention automatically provides. Complete documentation, along
with many examples, is available on the Struts 2 documentation wiki.

We can also configure results with Convention's annotations. We don't have to
rely on the Convention plug-in's idea of what our result JSP files should be named.
We can define results manually using the @Result annotation, and the @Results
annotation if we need multiple results. (We can use the @Results annotation only
at the class level, while the @Action and @Actions annotations are available at
the method level. We can define multiple results at the action level via the @Action
annotation's results property.)

We'll create MoreresultsAction to demonstrate some of this. Its execute() method
is the same as in WhichresultAction, and accessible through /moreresults. We'll
add a tristate() method and configure it to respond to the /tristate URL:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 2

[33]

 @Action(value = "/tristate")
 public String tristate() {
 ctm = System.currentTimeMillis();
 long tmp = ctm - ((ctm / 10L) * 10L);
 if (tmp <= 3) return "three";
 if (tmp <= 6) return "six";
 return "nine";
 }

The JSP pages are located under /WEB-INF/jsps, and are named tristate-three.
jsp, tristate-six.jsp, and tristate-nine.jsp. Let's say we want the JSPs
to live under /WEB-INF/jsps/tristate, we can add to the following to the
tristate()'s @Action annotation:

 @Action(value = "/tristate",
 results = {
 @Result(name="three",
 location="/WEB-INF/jsps/tristate/tristate-three.jsp"),
 @Result(name="six",
 location="/WEB-INF/jsps/tristate/tristate-six.jsp"),
 @Result(name="nine",
 location="/WEB-INF/jsps/tristate/tristate-nine.jsp")
 })

We can also configure results at the class level. We'll modify MoreresultsAction, so
both execute() and tristate() use a result defined at the action level.

@Results({
 @Result(name="nine",
 location="/WEB-INF/jsps/tristate/tristate-nine.jsp")
})
public class MoreresultsAction extends ActionSupport {
 @Action(value = "/tristate",
 results = {
 @Result(name="three",
 location="/WEB-INF/jsps/tristate/tristate-three.jsp"),
 @Result(name="six",
 location="/WEB-INF/jsps/tristate/tristate-six.jsp")
 })
 public String tristate() {
 // ...
 }
}

The nine result is now defined at the class level, and is accessible to both execute()
and tristate(). Only tristate() may use the three and six results.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Basic Configuration

[34]

If we stick with Convention's naming patterns, we can remove a fair amount of
annotations, but we know we can override the defaults if they don't work for us.

There are a few more games we can play with Convention's annotations—set an
action's namespace using the @Namespace annotation (only at the class level),
define an action's parent package, configure interceptors, and more.

Summary
This chapter gives us an overview of Struts 2 configuration, covering the very
basics of action configuration, and a bit about the Convention Plug-in. The chapter
introduces some basic Struts 2 concepts at a foundational level, along with certain
ways to break up application functionalities into logical or functional portions.
We also see our first Struts 2 custom tag.

The chapter quickly covers user stories as a way to capture functional requirements
in a high-level, abstract way. Even with minimal specifications, we can create enough
functionality to begin creating the code, design, layout, and flow.

In the next chapter, we'll explore Struts 2 actions in more depth and discover some
of the functionalities that Struts 2 gives us for free through the ActionSupport class.

References
A reader can refer to the following:

XML-based configuration elements:
 http://struts.apache.org/2.x/docs/configuration-elements.html

Struts 2 and XWork API Javadocs:
 http://struts.apache.org/2.x/struts2-core/apidocs/index.html

Convention Plug-in (and its annotations):
 http://struts.apache.org/2.1.6/docs/convention-Plug-in.html

Struts 2 tags (link to <s:url> and all the rest):
 http://struts.apache.org/2.x/docs/tag-reference.html

User Stories:
 http://en.wikipedia.org/wiki/User_story

Java Web Application Basics:
 http://www.onjava.com/lpt/a/671 (oldie but a goodie)
 http://java.sun.com/javaee/technologies/webapps/
(all the best from Sun)

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Actions and ActionSupport
In the previous chapter, we had a crash course on how to configure our Struts 2
application and got a (very) small taste of Struts 2 actions—the place where our
application does its work. Even if the bulk of our application's functionality resides
in service objects, actions are where the service objects are instantiated and used.

In this chapter, we'll examine Struts 2 actions further. While the mantra of "actions
are POJOs" echoes in our heads, extending the ActionSupport class provides us
with quite a bit of functionality, including internationalization (I18N), validation,
and so on.

Much of this functionality is provided by a combination of interface implementations
and interceptors. We'll cover ActionSupport, a utility class implementing most
of the commonly used interfaces, as well as a few other handy interfaces. We'll
see how we can get a lot out of the framework, without covering how some of the
functionality is actually implemented.

We'll implement a prototype of our first user story, entering a recipe. We'll also
take a quick detour into some ways of exploring code, including the usefulness of
Unix-like command line utilities, and how the ability to create ad hoc tools can really
be handy.

ActionSupport and its interfaces
ActionSupport is an XWork class that provides default implementations of
validation and I18N interfaces. Since many actions require both, it makes a
convenient "default" action base class. It's not required for our actions to subclass
ActionSupport, but it's handy.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Actions and ActionSupport

[36]

ActionSupport implements the following six interfaces:

Action

Validateable

ValidationAware

TextProvider

LocaleProvider

Serializable

We'll take a brief look at each of these except Serializable (it's boring, and is
already familiar to Java developers).

The Action interface
The Action interface defines a single method:

public String execute();

One benefit of implementing Action is that reflection isn't required to check for the
execute() method. We can just cast to Action and call execute().

Action's convenience strings
ActionSupport, via the Action interface, exposes several typical result name
strings. For example, we've already seen actions returning "success" and "error".
ActionSupport defines these as SUCCESS and ERROR respectively. It also defines
INPUT, LOGIN, and NONE. Each of these has the value we'd expect.

NONE is a bit different from the rest. It is used when no view is shown by the
framework, as when we write directly to the response.

The TextProvider interface
I18N support is provided by the TextProvider implementation along with the
LocaleProvider (discussed later in this chapter). The TextProvider interface
provides access to standard Java ResourceBundles and the messages defined in
them. Ultimately, TextProvider provides two methods:

getText()which provides an access to a single message
getTexts() which returns an entire ResourceBundle

Both the listed methods have several method signatures. We'll focus on the many
variants of getText().

•
•

•

•
•
•

•

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 3

[37]

The getText() method comes in several flavors. The simplest is the String
getText(String key)method, which retrieves the named message from a resource
file. Messages are retrieved in the hierarchical fashion. Messages are retrieved in the
following order:

1. ${actionClassName}.properties.
2. ${baseClass(es)}.properties.
3. ${interface(es)}.properties.
4. ModelDriven's model, if action implements ModelDriven (discussed later).

Steps 1-3 are performed for the model class. However, we'll ignore this
feature for now.

5. package.properties (and any parent package's package.properties).
6. I18N message key hierarchy.
7. Global resource properties.

To demonstrate the process of locating messages, we'll create the following package
and file hierarchy:

/com/packt/s2wad/ch03/i18n/
/com/packt/s2wad/ch03/i18n/package.properties
/com/packt/s2wad/ch03/i18n/TextExampleAction.java
/com/packt/s2wad/ch03/i18n/TextExampleAction.properties
/com/packt/s2wad/ch03/i18n/TextInterface.java
/com/packt/s2wad/ch03/i18n/TextInterface.properties
/com/packt/s2wad/ch03/i18n/sub/
/com/packt/s2wad/ch03/i18n/sub/package.properties
/com/packt/s2wad/ch03/i18n/sub/TextExampleSubAction.java
/com/packt/s2wad/ch03/i18n/sub/TextExampleSubAction.properties

We see a Java package containing package.properties, an action class
(TextExamplesAction), and an interface (TextInterface). Each has a corresponding
property file. TextExamplesAction extends ActionSupport and implements
TextInterface. We have a subpackage with its own package.properties file.
The subpackage also contains an action class (TextExamplesSubAction) extending
TextExamplesAction with its own property file.

Our first sanity check will be simple. We'll test our TextExamplesAction class by
looking up a message from the TextExamplesAction.properties file. From the
list we saw earlier, Struts 2 will look for messages in a property file named after
the class.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Actions and ActionSupport

[38]

We'll use the Convention plug-in again, avoiding XML. The action will log the results
of a getText() call. TextExampleAction.properties contains a single entry:

from.class.props=Hello from TextExamples.properties!

As we're using the Convention plug-in, we need to create a JSP file for our
Convention-based action, else Struts 2 will give us an error. For now, we create
a dummy JSP file in /WEB-INF/jsps/i18n/text-example.jsp. The expurgated
version (it's the one without the gannet) of our action looks like this:

package com.packt.s2wad.ch03.actions.i18n;
public class TextExamplesAction extends ActionSupport
 implements TextInterface {
 private static Log log =
 LogFactory.getLog(TextExamplesAction.class);
 public String execute() throws Exception {
 log.debug(getText("from.class.props"));
 return SUCCESS;
 }
}

When we access our action at /i18n/text-examples, we should see something
resembling the following (assuming we're using the log4j.properties contained in
the chapter's project):

DEBUG com.packt.s2wad.ch03.actions.i18n.TextExamplesAction.execute: 15
- Hello from TextExamples.properties!

If no message is found for a given key, getText() will return null.

To avoid going to the console to check our output, let's figure out a way to display
our messages on our JSP page. Our first detour serves two purposes:

It provides a very brief introduction to how Struts 2 exposes values to
our JSPs
It gives us another acronym to add to our growing collection

Detour—action properties, JSPs,
and more tags
Traditionally, accessing application data from our JSP page would involve putting
a value into either request or session scope. Some frameworks handle it more
automatically, for example, Struts 1 would put an ActionForm into either request
or session scope.

•

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 3

[39]

Struts 2 works in a similar fashion. However, Struts 2 simply puts the entire action
into scope. (It's actually a bit more complex. The action is actually pushed onto a
stack that's in scope, but we'll cover that later.) We then access action properties
using Struts 2 custom tags and OGNL (Object Graph Navigation Language),
another expression language similar to JSP EL. Another option is to use JSP EL
(thanks to Struts 2's custom request wrapper).

Using the Struts 2 custom tags and OGNL gives us another advantage.
We can access action methods, including those that take parameters,
directly from our JSP. This is in contrast to JSP EL, which allows access
only to properties (although access to functions may appear in JEE 6).

Right now, we just want to display localized messages on our JSP page. As
mentioned earlier, we can call action methods from our JSP using Struts 2 tags and
OGNL. One of the custom tags is <s:property>, which is the most basic way to
access action properties (and methods). We specify the action property (or method)
with the value attribute.

Our stub JSP, which is no longer a stub, will contain the following (the remaining
examples in this file will just show the relevant portions):

<%@ taglib prefix="s" uri="/struts-tags" %>
 <html>
 <body>
 <dl>
 <dt>From TextExamplesAction.properties via property tag,
 using getText(...):</dt>
 <dd>
 <s:property value="getText('from.class.props')"/>
 </dd>
 </dl>
 </body>
 </html>

This JSP will produce output similar to our console output, but in the browser:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Actions and ActionSupport

[40]

This is a little unwieldy. Being lazy programmers, we want to minimize typing as
much as possible. As we have access to action properties as well as methods, we
could simply put the results of the getText() call into an action property.

Action properties are exposed via public getter methods:

public String getText1() {
 return getText("from.class.props");
}

Now, we can access the text in our JSP via the text1 action property:

<s:property value="text1"/>

Struts 2.1 doesn't actually require a public getter method if we declare
the property itself public. OGNL will access public properties without
a getter. Whether or not this is a good practice is a debatable issue. The
biggest drawback of not following the JavaBean specification is that not
all tools or libraries will be as forgiving as OGNL.

Finally, as mentioned, we can access the property via JSP EL. This is achieved using
the simplified property access notation introduced in JSP 2.0, reducing the JSP code
to a terse:

${text1}

Struts 2 wraps requests in a StrutsRequestWrapper. This class is
responsible for accessing scoped attributes. StrutsRequestWrapper
will check for properties on the Struts 2 value stack first. If no property
is found in the stack, it will defer to the default request wrapper, which
searches the normal JEE scopes.

Even with the JSP EL shortcut, this is still a fair amount of work, and it doesn't
seem reasonable that we have to write Java code just to look up a message. Struts 2
provides an <s:text> tag, meaning more work in our JSP, but less in our Java.

<s:text name="from.class.props"/>

To protect against missing messages, we can use <s:text> tag's body to provide a
default message value:

<s:text name="an.unlikely.message.name">
 Default message if none found
</s:text>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 3

[41]

This is similar to the functionality provided by the getText(String, String) method.

Which method we use is largely a matter of preference. The <s:text> tag is arguably
the cleanest, as it's short and it's all in one file.

Continuing with message lookup
Next on the list of places to look for messages are the superclass property files.
Our TextExampleSubAction class extends TextExampleAction. Hence, messages
in TextExampleAction.properties are available to TextExampleSubAction.
Messages defined in both files will resolve to the more specific, giving us the ability
to override messages for subclasses, just like we can override class functionality.

To demonstrate, we'll add a message under the key overridden.message to both
TextExampleAction.properties and TextExampleSubAction.properties.
However, the values will be different (you can guess which file contains
the following).

overridden.message=I am from TextExampleSub.properties

We'll add a property and value for the same overridden key to TextExampleAction.
properties, only in the superclass property file:

overridden.message=I am from TextExample.properties
superclass.message=Who's your superclass?

We'll add some <s:text> tags to a new JSP for the subclass, and to our
superclass JSP:

<s:text name="overridden.message"/>
<s:text name="superclass.message"/>

When we visit /i18n/sub/text-examples-sub, we'll see the overridden message
from the subclass property file, and also the message defined in the superclass's
property file.

Messages may also be placed in interface property files, following class and package
hierarchy. Similarly, messages placed in a Java package's package.properties
file are available to any class contained in that package. What might be slightly
less obvious is that Struts 2 will continue searching up the package hierarchy for
package.properties files until either the message is found or Struts 2 runs out of
packages to search.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Actions and ActionSupport

[42]

If we have application-wide message resources, and our actions are not arranged
under a single package, we can create and define a global resources bundle. We add
an initialization parameter to our web.xml file, which defines two more message
resource files:

 <init-param>
 <param-name>struts.custom.i18n.resources</param-name>
 <param-value>
 ch03-global-messages,
 com/packt/s2wad/ch03/misc/misc-messages
 </param-value>
 </init-param>

These resource files would also be used to resolve message keys. Multiple files,
separated by commas, can be defined, and these files may reside anywhere in the
class hierarchy.

Parameterized messages
Messages may also be parameterized via the getText(String, List) and
getText(String, String[]) methods. As with getText(String), there are also
signatures that take a default message (see the API documentation for details).

Parameterized messages take positional parameters. For example, we'll put the
following message that takes two parameters into a package.properties file in the
same package as the TextExamplesAction class:

params.msg1=You passed {0} and {1}.

The {0} and {1} placeholders are filled with the values passed in the parameter list.
Calling from Java looks exactly like we'd expect.

public String getParams1() {
 return getText("params.msg1", new ArrayList() {{
 add("Foooo!");
 add("Baaar!");
 }});
 }

Funky Java Alert: The code following the ArrayList instantiation is
normal Java code, although it doesn't look like it. Code like this drives
people crazy, and there are situations in which it's wholly inappropriate.
However, it is a useful trick to know, and it's not really much of a trick.
It's left as an exercise for the reader (including determining when, and
why, it might not be appropriate!).

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 3

[43]

We can also parameterize the text tag in several ways using the <s:param> tag.
The first way is to just put the parameter values in the tag body:

<s:text name="params.msg1">
 <s:param>Fooooo!</s:param>
 <s:param>Baaaar!</s:param>
</s:text>

We can also use the param tag's value attribute and pass in a string. It's very
important to note the extra quotes around the value:

<s:text name="params.msg1">
 <s:param value="'Foooo!'"/> <!-- See the extra quotes? -->
 <s:param value="'Baaar!'"/> <!-- Don't forget them! -->
</s:text>

The value attribute is an object, not an immediate value. In other words, the contents
of the value attribute are evaluated. If we left the quotes off, we'd see null in our
output and a warning in our log file (if devMode is turned on).

This gives us a handy way to include action properties in our messages. If we add
action properties named foo and bar to our TextExamplesAction class, initialized
to "Foooo!" and "Baaar!" respectively, we could write the following:

<s:text name="params.msg1">
 <s:param value="foo"/>
 <s:param value="bar"/>
</s:text>

Given the previous code fragments and assumptions, visiting /i18n/text-examples
will produce the same output as the text tags using the immediate values
shown earlier.

Our final example of parameterized messages is pretty cool (as cool as parameterized
I18N message can be) In addition to providing message parameters using a list
(or array) as shown above, we can access action properties directly in our messages.

Instead of using the positional {n} syntax, we can access action properties using the
${...} construct, the same syntax as the param tags. For example:

params.from.action=From action: ${foo}, ${bar}... wow!

The text tag to access this message is as we'd expect:

<s:text name="params.from.action"/>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Actions and ActionSupport

[44]

Our action's foo and bar properties will be inserted into the message with no
additional work on our part, saving us some JSP code. The expressions allowed in the
property file are the same as those allowed in the JSP. This means that we could call
action methods, including those that take arguments. This ability may not be useful all
the time, but it can often save some irritating Java and/or JSP code on occasion.

The LocaleProvider interface
LocaleProvider allows TextProvider to get locale information and look up
resources based on Java property file names. LocaleProvider provides one
method, getLocale(). The default locale value comes from the browser via the
I18N interceptor. By overriding this method we could, for example, return a user's
preferred locale from a database.

The Validateable and ValidationAware
interfaces
Discussing the complete functionality of Validateable and ValidationAware
at this point is problematic. Much of the functionality depends on several Struts
2 custom tags. We'll defer those details to Chapter 6. Here we'll learn only the
minimum necessary.

Validateable contains a single method, void validate(). ActionSupport
contains a default implementation that allows for both XML-based and/or
annotation-based configurations.

We can implement our own validate method in our actions and manually perform
validation . We can include default framework validation by calling super.
validate(). Combining XML- or annotation-driven validation with manual
validation (including "business-logic level" validation), along with the ability to
define our own custom validators (covered later), covers all of our validation needs.

ValidationAware provides a group of methods used to collect error messages
related to specific form fields or the action in general. It is also used to collect general
informational messages and determine if any errors or messages are present.

These two interfaces work together with the default Struts 2 interceptor stack
(specifically the "validation" and "workflow" interceptors) to validate forms and
direct application flow based on validation results (specifically the presence of error
messages). In a nutshell, if the validation succeeds, the appropriate action method is
executed normally. If the validation fails, we're returned to the "input" result.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 3

[45]

Implementing our first user story
We actually know enough at this point to prototype one of our user stories. We'll
implement this story by hand as a useful exercise, and to help build appreciation for
the framework (and reduce your appreciation for your author—however, I can take it!)

One of our user stories, as you can recall, was the following:

Users can enter recipes to share

The followers of more "traditional" requirement methodologies will be nothing less
than horrified by this minimal description of a functional requirement. A traditional
version of this story could run across a dozen pages, capturing (or attempting to
capture) every nuance of the concept of "recipe entry" including the user interface
design, complex validation rules, every possible form field, the underlying data
model, and so on.

Once this (portion of the) specification is printed, and the toner has cooled, it will
invariably be wrong. Something will have been forgotten. An edge case will have
been overlooked. Half a dozen questions about the user interface will surface, all
without having written any code or having used even the most minimal of recipe
entry systems.

By minimizing functionality, we can very quickly create a low-fidelity prototype,
allowing us to vet the basics of our system. While it's not a finished product, it's a
way of determining what the finished product will be. Using our prototype can help
determine user interface design decisions, spot overly-complex application flow,
highlight missing form fields, and so on.

And really, that single sentence does capture the essence of what we need to do, if
not all the specifics.

Refining our story
Since we're still learning Struts 2 and prototyping our application, we can afford to
make some low-fidelity (lo-fi) assumptions. We'll assume that a "recipe" has an "id",
a "name", a "description", a list of "ingredients", and some "directions".

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Actions and ActionSupport

[46]

For now, each of these will be a string (except for an Integer id). Low-fidelity
prototypes, especially early in the development cycle, don't need to reflect the final
product with regards to looks, functionality, data models, and so on. Our Recipe
class is simply a POJO with appropriately named properties. The only note of
interest is that the Recipe class should have a toString() method, giving us a
human-readable version of the object.

public String toString() {
 return String.format("Recipe (%s) [id=%d, name=%s]",
 super.toString(), id, name);
}

Including the default toString() in our toString() methods lets us
tell at a glance if two string representations are the same object. This isn't
always appropriate, particularly if we'd rather use toString() output
on a webpage. String.format() was a long overdue addition!

The last story refinement is that we require the name and the ingredients, but not
the description and the directions. The form will have text inputs for the name
and description, and text areas for the ingredients and description (remember—this
is a lo-fi prototype).

Creating the recipe form
We'll now flesh out our "new recipe" JSP stub with some input tags. We'll be
implementing this form by hand. If you're already familiar with the Struts 2 form
tags, bear with me. Starting off on our own makes us much more appreciative of
the framework.

Our recipe action will have a recipe property, which is the Recipe POJO described
in the previous section. We'll put our form headers and input elements into a table.
Here's a representative element, the recipe name (or at least what we have so far):

<tr>
 <td>Name</td>
 <td><input name="recipe.name" type="text" size="20"/></td>
</tr>

The most interesting thing (so far) is the name attribute. Struts 2 will do the right
thing (in general) when encountering request parameters. It will attempt to convert
them to the correct type and set the corresponding action property.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 3

[47]

In this case, we have a nested object. The recipe property is of the type Recipe.
The name property of the recipe is just a string. When we see a form element name,
such as the recipe.name, what happens (more or less) is roughly equivalent to
the following:

getCurrentAction().getRecipe().setName(value from form);

On top of that, Struts 2 will take care of instantiating a Recipe object if one doesn't
exist. We can verify this functionality by creating a stub action to process form
submissions. We'll call it NewRecipe (extending ActionSupport). However, for now,
we'll just print the recipe to our standard output (hopefully), containing values from
the form. Our stub action looks like this (getters and setters elided):

package com.packt.s2wad.ch03.actions.recipes;
public class NewRecipe extends ActionSupport {
 private Recipe recipe;
 public String execute() throws Exception {
 System.out.println(recipe);
 return SUCCESS;
 }
}

This is just a sanity check to show that the recipe is, indeed, being instantiated and
populated. However, at this time there's no real functionality, no results, and so on.

This is another principle of agile development. Do one thing at a time,
verify that it works, and then continue. Here, we're doing something
similar to TDD (Test Driven Development). However, we're the testers.
We'll cover TDD later.

The final piece of our current puzzle is the form tag in the JSP itself. We'll use a
plain HTML form tag. As we're staying in our recipe package, and we're using
Convention, we can use a relative action path. The form tag will look like this:

<form action="new-recipe" method="post">

Visiting the page at /recipes/new-recipe-input (following the naming
conventions of the Convention plug-in) should show us the form. We fill the form
using "Java Soup" for the recipe name (along with other details). Now, when we
submit the form and look at the console, we should see something like this:

Recipe (com.packt.s2wad.ch03.models.Recipe@921fc7) [id=null, name=Java
Soup, etc...])

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Actions and ActionSupport

[48]

As unassuming as this is, it's actually pretty cool. Struts 2 instantiated a Recipe
object and filled it with values from our form without any intervention on our part.
We don't need to grab values from the request parameters, or use ActionForm. It
was just a model and an action.

Adding some validation
Now that we know we have a recipe object that can be validated, we'll do that.
As our action extends ActionSupport (which implements Validateable), we
can override the validate() method, which unsurprisingly performs validation.
Inside the validate() method, we use ActionSupport's implementation of
ValidationAware, which includes methods for adding form field errors, keyed by
the input element's name.

Our action's validate() method implements our refined user story—name and
ingredients are required, but not the description and the directions. We'll use Apache
Commons Lang's StringUtils.isBlank() method. There's no point in creating
yet another implementation of a null or whitespace check. (Some folks disagree, and
their concerns that it's another dependency and adds a large API for just one method
are understandable.)

Each blank field gets an error message, keyed to the name of the input
element, and added to a collection of field errors using the ValidationAware's
addFieldError(String fieldName, String message) method.

Our action's validation method is simple:

public void validate() {
 if (StringUtils.isBlank(recipe.getName())) {
 addFieldError("recipe.name",
 getText("recipe.name.required"));
 }
 if (StringUtils.isBlank(recipe.getIngredients())) {
 addFieldError("recipe.ingredients",
 getText("recipe.ingredients.required"));
 }
}

The validation process depends on interceptors. For now, it's enough to know that if
there are any field errors, we'll be returned to our "input" result. We'll add results to
our action, an "input" result for when the validation fails, and a "success" result for
when it succeeds. Our "input" result will be the same JSP reached through the
/recipes/new-recipe-input request, whereas our "success" result is a simple
thank you page. We'll put the thank you page in /WEB-INF/content/recipes/
new-recipe-success.jsp.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 3

[49]

If we navigate back to our form and try to submit an empty form, we'll
find ourselves back on the input form. However, our URL will change from
/recipes/new-recipe-input to /recipes/new-recipe, which is what we'd
expect. Adding the required fields and resubmitting shows us our thank-you page.
The validation portion of the story is working, but we don't see our validation
errors displayed.

Displaying our error messages
ActionSupport provides an implementation of ValidationAware's
getFieldErrors(), which returns a map of field errors keyed by field names.
Each map entry is an array. We'll take a sneak peek at another Struts 2 tag, <s:if>
and use it to determine whether an error message for a specific field exists or not.

We'll add a test to each field to see if an error message exists for that field. If the
message exists, we'll display it in a span. For the name property, we end up with this:

<s:if test="getFieldErrors().get('recipe.name') != null">
 <div class="error">
 <s:property
 value="getFieldErrors().get('recipe.name')[0]"/>
 </div>
</s:if>
<input name="recipe.name" type="text" size="20"
 value="<s:property value="recipe.name"/>" />

For now, we can assume there's only one error message for each field, as that's all our
validate() method does. For multiple errors, we'd have to iterate over all messages.
Also, we're using the <s:property> tag to reload the field's value. Hence, our form
contents are restored when the validation fails.

A simple user story turned into a lot of work! You'll either be delighted, or irritated, to
learn that we didn't have to do a large portion of what we just did, thanks to Struts 2's
form tags. In fact, most of our JSPs will disappear. We'll cover these tags later.

More action interfaces
We've seen the interfaces supported by the ActionSupport class. Combining
interfaces (implemented by an action) with interceptors (either the framework's
or your own) is how Struts 2 implements the bulk of its functionality.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Actions and ActionSupport

[50]

We can implement additional interfaces to get additional capabilities. We'll cover
quite a few useful interfaces here, from both XWork and Struts 2, after a brief detour
to explore... ways to explore.

Detour—creating the list of interfaces to
explore
As a side note, reinforcing the idea of exploration and ad hoc tool creation, let's think
for a moment about how to find information about the environment we're working
in. I knew I wanted a list of interfaces from both XWork and Struts 2. However, if we
look at the Javadocs for Struts 2 (which, by the way includes the XWork Javadocs),
there's no quick way to get a list of all the interfaces.

Standard Javadocs indicate interfaces with italics in the classes frame (lower left by
default). That's not a particularly efficient system discovery method, although it
works. We could define our own stylesheet that highlights the interfaces, but that's a
fair amount of work. We'll see a few ways (out of many available) to extract this kind
of information.

Leveraging the IDE
If we're developing in an IDE, there's most likely some form of source or library
browser available. For example, Eclipse has a Java Code Browser perspective.
Selecting a package shows us a list of the defined types, an icon indicating the
interface, class, and so on. We can also filter our view to show only interfaces.

We're currently interested in the interfaces provided by XWork. Browsing the
Action interface shows us something similar to the following:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 3

[51]

This is helpful. However, if we're trying to get an overview of the system, identify
relationships, create printed documentation, and so on, it's not as helpful as it
could be.

Using the command line
One quick-and-dirty way to get information like this from a source tree (if we have
access to the source code, we can also examine the contents of a JAR file) is by using
the grep command, available on all Unix-like systems (and Windows via Cygwin).

If we're running Windows and not using Cygwin, we're selling ourselves
short. Cygwin provides much of a Unix-like environment, including the
Bash shell and all of the incredibly useful file and text processing tools
such as find, grep, sort, sed, and so on. The importance of these tools
cannot be over-emphasized, but I'll try. They're really, really important!
Really! Honestly, they should be in the arsenal of every developer.

By chaining a few of these simple utilities together, we can create a list of interfaces
defined in the source code. With some minor formatting, the output is a list of
interfaces we can then explore via Javadocs or the source. The following is one way
to get a list of all files in a source tree that declare an interface. Continuing our look
at XWork, running the following command line will produce the terse, but useful
output here:

$ find . -name "*.java" | xargs grep -l "public interface"

./com/opensymphony/xwork2/Action.java

./com/opensymphony/xwork2/ActionEventListener.java

./com/opensymphony/xwork2/ActionInvocation.java

./com/opensymphony/xwork2/ActionProxy.java

./com/opensymphony/xwork2/ActionProxyFactory.java

./com/opensymphony/xwork2/config/Configuration.java

./com/opensymphony/xwork2/config/ConfigurationProvider.java

... etc.

Not the prettiest output, but it quickly provides a high-level view of the interfaces
defined in the XWork source code without any actual effort. The argument to the
grep command is a regular expression. Never underestimate the power of regular
expressions. A mastery of regular expressions is an awesome timesaver in so
many circumstances, from finding a file to doing incredibly complicated
search-and-replace operations.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Actions and ActionSupport

[52]

Repeating the same command in the Struts 2 source tree would generate a list
of Struts 2 interfaces. Never underestimate the usefulness of the find/grep
combination as a "first line of attack" tool set, particularly when we know regular
expressions well.

Examining class files
The last method involves looking at Java class files, in this case, extracted from the
XWork and Struts 2 core library files. From there, the ASM bytecode manipulation
library is used to extract information about each interface that is defined in the
class files.

Bytecode manipulation sounds scary, but it's easier (and more useful!)
than you might think. There's a good chance that you're already using
some libraries (such as Hibernate or Spring) that use it for some of
their functionalities.

The following image was created with a Java byte code exploration tool with a
Graphviz back end. The ability to query our code and libraries can be a valuable aid for
understanding by suggesting areas of a framework or library to explore, and more.

xwork2

interface
Action

interface
TextProvider

interface
LocaleProvider

interface
Validateable

interface
ValidationAware

interface
Preparable

interceptor

interface
NoParameters

interface
ParameterNameAware

interface
ScopedModelDriven

interface
ModelDriven

We see a few interfaces we've already touched upon (Action, ValidationAware,
Validateable, TextProvider, LocaleProvider), and several we haven't (but will).

Using the tools we already have, or the tools that we create on an as needed basis, we
can facilitate development and learning efforts.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 3

[53]

Additional action interfaces
We'll take a brief look at a few more useful interfaces provided by XWork and Struts.
We can use our own exploring methods (or just scan the Javadocs) to discover more.
Just like it's difficult to over-emphasize how important command line mastery is, it's
tough to oversell the value of exploration, writing example and test code, and so on.

Preparable interface
The Preparable interface works in concert with the prepare interceptor. It defines
a single method, prepare(), which is executed before any action method. For
example, this can be used to set up a data structure used in a JSP page, perform
database access, and so on. Preparable is most useful when an action has multiple
methods, each needing identical initialization. Rather than calling a preparation
method each time, we implement Preparable, and the framework calls it for us.

Actions with only a single method might not benefit from Preparable. The
benefit of Preparable is that it can remove initialization and setup code from the
mainline code. The disadvantage is that it requires the developer to know that
the preparable methods are being called by the framework during the request
handling process.

Actions containing multiple methods can implement method-specific Preparable
methods. For example, if we have an action method doSomething(), we'd create
prepareDoSomething(). The prepare interceptor would call this method after the
prepare() method, if it exists.

Accessing scoped attributes (and request
parameters)
As we've seen, the request parameters will be set as action properties by the
framework. Some web applications will also need access to application-scoped,
session-scoped, or request-scoped attributes. A trio of interfaces cover this
requirement, another adds accessing request parameters in case we need to
access them directly.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Actions and ActionSupport

[54]

These four interfaces, each containing a single method, work in concert with the
servletConfig interceptor. They allow actions to access scoped data, without tying
our actions to the servlet specification. This has a compelling consequence. We can
use these actions out of our application server environment, including in standalone
applications, or unit and functional tests. (We'll explore testing topics later in
the book.)

void setApplication(Map application); // ApplicationAware
void setSession(Map session); // SessionAware
void setRequest(Map request); // RequestAware
void setParameters(Map parameters); // ParameterAware

Note that we can access the same objects via ActionContext methods. For example,
we can access the session attributes with:

Map session = ActionContext.getContext().getSession();

This is, however, less testable. Therefore, implementing SessionAware is preferable.

Accessing servlet objects
While it's not recommended, there are (hopefully rare) times when we absolutely
need access to Servlet specification objects, rather than just their attribute or
parameter maps. Implementing these interfaces will provide these objects, but
tie our action to the Servlet specification.

// ServletContextAware
void setServletContext(ServletContext context);
// ServletRequestAware
void setServletRequest(HttpServletRequest request);
// ServletResonseAware
void setServletResponse(HttpServletResponse response);

Similar to the attribute and parameter maps, we can also access these objects using a
utility class. For example, we could access the HTTP request with:

HttpServletRequest req = ServletActionContext.getRequest();

As indicated before, this is not the preferred method, as it's more flexible to
implement the interface.

Along the same line as the other *Aware interfaces is the CookiesAware interface,
which works with the cookie interceptor to provide our action with a map of
Cookies. This also ties our action to the Servlet specification, although perhaps with
less consequence.

void setCookiesMap(Map cookies); // CookiesAware

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 3

[55]

Request parameter/action property filtering
The NoParameters interface (interestingly defined by both XWork and Struts 2,
although the Struts 2 version does not appear to add any additional functionality)
effectively turns off the normal request parameter framework processing. In other
words, implementing NoParameters means that our action won't have its properties
set from request parameters. This is only a marker interface and defines no methods.

The ParameterNameAware interface allows an action to declare whether or not it will
accept a parameter of a given name via the acceptableParameterName() method.
The method should return true if the action will accept a parameter. Otherwise it
should return false.

boolean acceptableParameterName(String parameterName);

This interface also works in conjunction with the params method. There are various
ways to use this method. We could create a white list of parameters to accept, or a
blacklist to ignore. We'll discover another way to get the same functionality using a
parameter filter interceptor, thereby avoiding Java code. However, it's nice to know
that the functionality is there.

Summary
This chapter delves into ActionSupport. It explains how ActionSupport, along
with a few interfaces and a few Struts 2 tags, allows us to implement a fair amount
of functionality. The chapter covers a bit about the I18N and validation support
provided by ActionSupport.

The chapter also takes a quick took at a few other interfaces that provide access to
scoped attributes (and if needed, direct access to request parameters). We can also
access Servlet specification objects, such as the request and response, if we really
need to.

All of these interfaces work in concert with interceptors, which we'll discuss in detail
later. Even without in-depth knowledge of interceptors, we are already using them.
And we could see that they're something worth paying attention to—much of Struts
2's functionality depends on them.

Next on our plate is more about Struts 2 results, including a look at the framework's
default result types. We'll also look further at result configuration, type conversion,
and how to create our own custom result types.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Actions and ActionSupport

[56]

We'll also add a bit more functionality to our recipe application, sneak a peak at
some additional Struts 2 tags (that will make you wonder why I made you type all
that JSP in this chapter!), and get our first look at how to fake some data—smoke and
mirrors, but handy!

References
A reader can refer to the following:

Struts 2 and XWork Javadocs (reflects the latest version—may be ahead
of releases!):
http://struts.apache.org/2.x/struts2-core/apidocs/index.html

Cygwin (for those of us unlucky enough not to use a Unix-like system):
http://www.cygwin.com/

Linux command line reference (not all applicable, but still useful):
http://www.pixelbeat.org/cmdline.html

Regular Expressions:
http://en.wikipedia.org/wiki/Regular_expression

ASM bytecode manipulation and analysis framework:
http://asm.objectweb.org/

Graphviz:
http://www.graphviz.org/

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Results and Result Types
In the previous chapter, we looked at Struts 2 actions and some of the functionality
provided by the ActionSupport class. In this chapter, we will look at the other end
of action processing—results. Results determine the type of response sent back to
the browser after a request. The result configuration is what maps an action's return
value (a simple string) to a JSP page, a redirect, another action, and so on.

We've already seen dispatcher, the default result type used to dispatch to JSP
pages. We'll examine it along with some of the more common result types such as
the redirect and FreeMarker results. We'll also create our own custom result type
and see how we can integrate it into our application.

The dispatcher result type
The dispatcher result type is the default type, and is used if no other result type is
specified. It's used to forward to a servlet, JSP, HTML page, and so on, on the server.
It uses the RequestDispatcher.forward() method.

We saw the "shorthand" version in our earlier examples, where we provided a JSP
path as the body of the result tag.

<result name="success" type="dispatcher">
 /WEB-INF/jsps/recipe/thanks.jsp
</result>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Results and Result Types

[58]

We can also specify the JSP file using a <param name="location"> tag within the
<result...> element, in case we don't feel we've typed enough.

<result name="success" type="dispatcher">
 <param name="location">
 /WEB-INF/jsps/recipe/thanks.jsp
 </param>
</result>

We can also supply a parse parameter, which is true by default. The parse
parameter determines whether or not the location parameter will be parsed for
OGNL expressions. We'll discuss this functionality later in the chapter. However,
if you immediately suspect that it could be very useful, you are right.

Configuring results using annotations in Struts 2.1.6 is significantly different from
that in Struts 2.0. In Struts 2.0, there was an @Result annotation in the Struts 2
configuration package. In Struts 2.1.6, we'd use the @Result annotation of the
Convention Plug-in.

Convention-based action results only need to be configured manually if we're not
using the default, "conventional" result. As an example, consider the following
(least-exciting-ever nominee) action:

package com.packt.s2wad.ch04.actions.examples;
import com.opensymphony.xwork2.ActionSupport;
public class DispatchResultExampleAction
 extends ActionSupport {
}

Assuming the default location for the Convention result pages (JSP in our case), we'd
have a JSP located in /WEB-INF/content/examples/dispatch-result-example.
jsp. To configure a different result location, we can annotate either the entire class or
an individual action method.

@Results({
 @Result(name = "success",
 location = "/WEB-INF/content/examples/dre.jsp")
})
public class DispatchResultExampleAction
 extends ActionSupport {
}

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 4

[59]

When we visit /examples/dispatch-result-example, we'll get the contents in
the dre.jsp file. Note that the name annotation parameter is required even for the
default success value. Also note that as with XML, we could supply the type of the
result—in this case "dispatcher", with the "type" annotation parameter. This is an
additional change from Struts 2.0, where the type parameter was a Class.

The Convention Plug-in does not have a similar parse parameter.

The redirect result type
The redirect result type does exactly what we'd expect. It calls the standard
response.sendRedirect() method, causing the browser to create a new request to
the given location. As it's a redirect, request parameters will be lost. Struts 2 provides
some mechanisms for handling this, which we'll see later.

As with the dispatcher result type, we can provide the location either in the body of
the <result...> element or as a <param name="location"> element. Redirect also
supports the parse parameter. Here's an example configured using XML:

<action name="redirect-result-example">
 <result type="redirect">
 /sanity.action
 </result>

</action>

@Result(name = "success", type = "redirect",
 location = "/examples/dispatch-result-example")
public class RedirectResultExample extends ActionSupport {
}

The redirectAction result type
We'll often want to redirect to another action. While we could do that using a
redirect result type, we'd need to append the .action (by default) suffix, preceded
by a namespace if necessary. A redirectAction result type is quite common, and
allows the use of only the action's name without the extension.

<result type="redirectAction">home</result>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Results and Result Types

[60]

We can provide the action name as the result tag's contents, as shown in the
previous section, or by using a <param name="actionName"> element. Providing a
namespace value is only possible using a <param name="namespace"> element.

<result type="redirectAction">
 <param name="namespace">/</param>
 <param name="actionName">home</param>
</result>

Using Convention's @Result annotation to do the same task looks like the following
code snippet.

@Result(name = "success", type = "redirectAction",
 location = "dispatch-result-example")
public class RedirectActionResultExample
 extends ActionSupport {
}

Supporting a redirect to an action in a different namespace involves using the
params annotation parameter. The params parameter accepts an array of parameter
name and value pairs. Some sort of map might be more useful, but Java annotations
impose some limitations.

As a further example of the Convention Plug-in, we'll use its @Action annotation to
create an additional mapping inside the action class.

@Results({
 @Result(name = "success", type = "redirectAction",
 location = "dispatch-result-example"),
 @Result(name = "ns", type = "redirectAction",
 location = "home",
 params = {"namespace", "/"})
})
public class RedirectActionResultExample
 extends ActionSupport {
 @Action("nsresult")
 public String useNamespacedResult() {
 return "ns";
 }
}

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 4

[61]

This action class creates the standard Convention-based mapping for
ActionSupport.execute() and creates an additional mapping for an nsresult
action in the same namespace. The nsresult action method returns ns, which names
an additional result definition. Note the use of the params parameter, where we set
the namespace parameter to a home action.

The @Action annotation is a way to map a URL to a specific action method, similar
to using the method attribute inside an XML-based <action> configuration element.

The chain result type (action chaining)
The chain result type allows us to execute another action as a result of the current
action. This means that the output shown to the browser is ultimately controlled by
the action being chained to.

It's similar to a forward, but includes the chained action's interceptor stack, results,
and so on. In addition, the request parameters will be copied from the original
request. The action being chained from is left on the value stack for access by the
chained action.

The use of action chaining is controversial at best, and is actively discouraged. There
are few valid use cases for it. It can lead to confusing application flow, surprise us
with unexpected interactions with various interceptors (validation, for one, can
become irritating), and so on. When we find ourselves thinking that action chaining
would be a good idea, it's better to take a step back, and examine both our code and
our assumptions. We should also see if a functionality can be moved from an action
into a service layer, a prepare() method, or some other option.

So no example! And if we decide to use it, we get what we deserve. Note that there
are examples provided on the Struts 2 documentation wiki. However, there is almost
always a better way to provide whatever functionality we think we need from
chaining actions.

The parse parameter and a usecase
detour
Earlier, it was hinted that the parse parameter controlled parsing of OGNL
expressions in the location parameter. In our JSP pages, we access action
properties using OGNL. It turns out that we have the same capability in our result
configuration (including annotations). This is a big win when used appropriately.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Results and Result Types

[62]

As a simple example, we'll use this functionality to implement a somewhat contrived
use case (think administrative functionality).

A user can enter a recipe ID and view the recipe with that ID.

To keep the JSP size down, we'll use some tags, which we haven't yet
introduced—they were hinted at in the previous chapter. Struts 2 has several
custom form tags that make the creation of low-fidelity (but functional and
reasonable-looking) forms, quick and easy. We'll also start to look at some coding
practices. These will ultimately lead us to practices we can put to use to keep
our applications agile, changeable, and easier to maintain.

Displaying the form
Our form for entering a recipe ID will contain a single text field, the recipe ID,
and a submit button. We'll use some I18N functionality already introduced for the
page title and the text field label. Setting the key attribute of the form field tags
automagically looks up the form element label, sets the form element name, and
retrieves the appropriate value from the action when necessary. We'll learn a lot
more about form tags in an upcoming chapter. However, sometimes a little teaser
can be entertaining.

We'll use the Convention plug-in again. Our action will have only a few
responsibilities, including displaying the form, validating the form, and directing
us to the action that will actually display the recipe. We don't have to write anything
beyond the action definition to display the form:

package com.packt.s2wad.ch04.actions.recipes;
import com.opensymphony.xwork2.ActionSupport;
public class ViewByIdAction extends ActionSupport { }

We'll create a package.properties file containing a title and form element label
entry. The important bits of our JSPs are reduced to the following:

<s:form action="view-by-id-process">
 <s:textfield key="recipe.id"/>
 <s:submit/>
</s:form>

Don't worry! It will all be explained later on. However, much of it is obvious. Also,
as you've probably read some of the Struts 2 tag documentation, you've already run
across these.

Again, following convention, this will be located in /WEB-INF/content/recipes/
view-by-id.jsp.

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 4

[63]

If we view the generated source, we'll see output nearly identical to the table-based
HTML that we created in the previous chapter. The logic for displaying form
validation error messages is included as well. Hooray, custom tags. Notice that
our <s:form> tag's action attribute points to an action we haven't defined yet.

We haven't shown the <s:head> tag here, but it's actually important. The
tag loads the default Struts 2 style sheet, and colors error messages red
(not exciting, but we'll run into it again later).

Coding our action
We'll submit our form to another Convention-based action, as seen previously. We'll
define this action using Convention's @Action annotation that we saw earlier, and
create another method in our existing ViewByIdAction:

@Action(value = "view-by-id-process",
 results = {
 @Result(name = INPUT,
 location =
 "/WEB-INF/content/recipes/view-by-id.jsp")
 })
public String process() {
 return SUCCESS;
}

Notice our @Result annotation. We've configured an "input" result manually, and
determined that it will use the conventionally located JSP page containing our form.
We'll learn more about the validation process in a later chapter. However, we can
conclude that if there are any validation errors, Struts 2 will return us to the "input"
result, our form in this case.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Results and Result Types

[64]

Validating the form will add the following code to our action:

public void validate() {
 if (recipe == null || recipe.getId() == null) {
 addFieldError("recipe.id", "Recipe ID is required.");
 }
}

If we submit the form without entering a recipe ID, we should see something similar
to the following screenshot. The custom tag checks for and displays error messages
on a per-field basis—all for free.

Remember when I said you'd wonder why we went through all the trouble of doing
it on our own?

Configuring our success result
The next step is to configure a success result, that is, what is to be done when
validation passes. To demonstrate dynamic results (using OGNL in our results
configuration), we'll create a result that redirects to a view action, used to view a
recipe, potentially from various other pages (like a list of recipes).

We'll add another @Result annotation to our @Action annotation's
results parameter:

@Result(name = SUCCESS,
 type = "redirectAction",
 location = "show",
 params = {"recipe.id", "%{recipe.id}"})

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 4

[65]

This @Result uses the redirectAction result, sending us to an action named show.
The annotation also includes a parameter. Here, we're sending a parameter named
recipe.id, and its value is ${recipe.id}.

The %{recipe.id} parameter value is an OGNL expression—the same as we'd
use in a Struts 2 custom tag—wrapped in %{} characters. We can also wrap OGNL
expressions in %{} when we use Struts 2 custom tags. This is compulsory in
some cases.

We can use the same OGNL expressions in our Struts 2 XML configuration files
as well, also wrapped in %{} characters. It's important to note that in much of the
existing documentation, we'll see OGNL expressions in both XML and annotations
using the ${} notation. This is still supported, but changed to include the use of %{}
to better match how we use OGNL in our JSP pages.

The bottom line is that we're sending a parameter named recipe.id to the show
action (which we haven't written yet), and giving it a value of our recipe's ID, which
is entered using our form.

The complete action method, along with its annotations, will look like this:

@Action(value = "view-by-id-process",
 results = {
 @Result(name = SUCCESS,
 type = "redirectAction",
 location = "show",
 params = {"recipe.id", "%{recipe.id}"}),
 @Result(name = INPUT,
 location =
 "/WEB-INF/content/recipes/view-by-id.jsp")
 })
 public String process() {
 log.debug(String.format("Enter: recipe.id=%d.",
 recipe.getId()));
 return SUCCESS;
 }

Note that we've put a logging statement in our process() method (logging will
be discussed in more detail in a later chapter). The reason for this is about to
become apparent.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Results and Result Types

[66]

Type conversion sneak attack
If we run the code at this point and submit the form with a reasonable integer value
in the form field, we'll notice something rather interesting. When we submit the
form, we'll see a log statement that displays the ID we entered.

No big deal, right? The Recipe class's id property is defined as a java.lang.
Integer. As we all know, forms can submit only strings. However, it's working.

In case you didn't know, forms submit strings. This is a source of much
confusion. For example, if you looked at the network traffic for a form
submission, you'd see only strings. There won't be any type information,
no strange binary formats, just strings (file uploads are a bit special).
Every form field is submitted as a string, no matter what.

XWork has type conversions built right in for many common types. This means that
simple conversions, such as the string-to-Integer seen above, are generally handled
transparently by the framework. This saves a fair amount of time and headache
during coding. You might not have even noticed. It just seems so natural, and it is.
Converting form values to Java objects on our own was tedious, error-prone, and it
cluttered up the code that did the real work. We'll cover more about type conversion
in Chapter 6.

Something else is happening as well. Even though we have no code that creates
a Recipe object, we're logging (to the console) a bit of the recipe property. The
framework is creating a Recipe instance as well. Remember instantiating everything
on our own? Remember pulling request parameters out on our own, converting
them, and copying them into our model object? In many cases, particularly the most
common ones, we don't have to do that anymore. This is very helpful in many ways.
It saves code, cognitive overhead, and duplication of effort.

Coding the show action
Our view action receives the recipe.id parameter, again into a Recipe object,
instantiated and filled by the framework without any intervention from us. Now
that's quite handy. For now, as we're not using a database, we're going to look up
some fake, hard-coded data—but from where?

One very important principle of agile software development is to decouple our
application as much as possible. This means that our individual code chunks should
strive to do only one thing, and do it well.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 4

[67]

In the past, we would load up our servlets (or framework classes) with all the code to
do everything. In Struts 2 terms, we would code a database lookup into our action,
handle database exceptions in our action code, marshal (say) a JDBC result set into a
business model, and who knows what else.

This is a horrible idea.

However, as we progress through the book, we'll see many reasons why (and how)
doing it differently is a really good idea. One of the easiest reasons to highlight
is that it makes our code much longer. This increases the cognitive overhead
necessary to understand how a particular section of code works, what its purpose
is, and so on.

One of the easiest chunks to move out of the mainline code is database access and
data marshaling. We'll return to this topic in force in later chapters, especially when
we cover testability, Spring, and the mysterious-sounding Inversion of Control
(IoC) (also known as Dependency Injection).

Until then, we'll write a class that pretends it's retrieving recipes from a
database—but it's really just a map of hard-coded recipes. We will, however,
create a parallel interface that our recipe service will implement. This allows us to
write other recipe services that implement the same interface. The code in the action
shouldn't have to change once we're retrieving recipes from the database.

For now, it's enough to know that there is an interface, RecipeService, which we
can use to retrieve a single recipe by ID.

Notice that it's not called IRecipeService. Interfaces can be thought
of as classes with multiple implementations. Each implementation is
a RecipeService for all intents and purposes. Prefixing an interface
name with an "I" isn't necessary. The distinction should come on the
implementation side, not the interface definition.

For now, the interface defines only what we need—the ability to find a recipe by
its ID.

package com.packt.s2wad.ch04.services;
public interface RecipeService {
 Recipe findById(Integer id);
}

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Results and Result Types

[68]

Our implementation is called (somewhat accusingly) FakeRecipeService, and is
really simple. Some of the code is elided here to make the snippet shorter. The key
point to remember is that there's a map of recipes, and we can retrieve them through
the findById() method.

public class FakeRecipeService implements RecipeService {
 private static Map<Integer, Recipe> recipes =
 new LinkedHashMap<Integer, Recipe>() {{
 put(1, new Recipe(1, "Spicy Lentil Pot", ...));
 put(2, new Recipe(2, "Bread and Water", ...));
 ...
 }};

 public Recipe findById(Integer id) {
 return recipes.get(id);
 }
}

For simplicity, our low-fidelity prototype recipe service returns a
null if no recipe is found (whether or not to return a null value is a
long-running discussion). Personally, I think it causes problems later
on—I'd return a statically-defined notfound recipe with a known ID and
check for a valid recipe, rather than a null. Null values cause code to blow
up, whereas a non-null, but possibly invalid value, may lead to puzzling
behavior. However, nothing actually explodes.

Finally, we code our view action, which for now, simply instantiates an instance
of the FakeRecipeService and uses it to look up our ID (getters and setters not
shown). We'll see better ways to handle getting our recipe service later in the book.

public class ShowAction extends ActionSupport {
 private Recipe recipe;
 private RecipeService recipeService =
 new FakeRecipeService();
 public String execute() throws Exception {
 recipe = recipeService.findById(recipe.getId());
 return recipe != null ? SUCCESS : "notfound";
 }
}

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 4

[69]

Note that we're returning notfound when we don't find a recipe. The Convention
plug-in will look for /WEB-INF/content/recipes/show-notfound.jsp, and will
build the JSP file name using the action name and the action's return value.

Our recipe show-success.jsp page just displays the recipe's title, description, and
so on. Here's a fragment:

<h1><s:text name="recipe.show-recipe.header"/></h1>
<h2><s:text name="ingredients"/></h2>
<p>${recipe.ingredients}</p>
<p>${recipe.description}</p>
...

Note that we're using the I18N features in several more places. During our
prototyping / low-fidelity phase, we probably don't care if we do that or not.
However, it gives us a chance to again see how we can use action properties
in our messages. The recipe.show-recipe.header message is defined in
package.properties as follows:

recipe.show-recipe.header=Recipe: ${recipe.name}

This gives us a localized "Recipe" header along with our recipe's name. Of course,
this works only if we don't have localized recipe names… but think low-fidelity!

The FreeMarker and Velocity result types
JSP may be the most common JEE view technology in use. However, it has
its detractors due to its verbosity and inability to render outside a server
container (in general). Two other popular view technologies are FreeMarker and
Velocity—both Java templating engines with simplified markup (compared to JSP).

FreeMarker is used within Struts 2 to create its custom tags (as opposed to
using standard Java- or JSP-based tags), so I'll focus on the FreeMarker results
(a Velocity discussion would look very similar). FreeMarker will also be covered
a bit more when we look at custom themes and templates. FreeMarker does have
a few advantages over Velocity. It includes the ability to use custom tags (only
Java-based at the time of writing this book, JSP 2.0 tag files aren't yet supported),
capture template output into a variable, use built-in conversion and formatting
capabilities, and so on. It is a capable replacement for JSP in the view layer.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Results and Result Types

[70]

FreeMarker result configuration
The FreeMarker support in Struts 2 is built-in. Hence, configuring a FreeMarker
result looks like the other results types we've seen. Only the FreeMarker library
(already a dependency of Struts 2) is required—no additional libraries or
plug-ins are necessary. In addition to the location and parse parameters,
FreeMarker results may also specify the contentType parameter (which defaults
to "text/html") to allow writing other content types. (This is surprisingly handy, for
example, when producing XML, CSV, and so on.) The writeIfCompleted (false by
default) may also be specified, which will write the output to the stream only if there
were no errors while processing the template.

As a simple example of using a FreeMarker result, we'll create another show recipe
method in our existing action. However, we will use FreeMarker instead of JSP to
view the results. Our new method just returns the value of our existing execute()
method. However, as we're using Convention's @Action annotation, it will search
for files named after our action name. This means Convention will look for fmshow-
success.ftl and fmshow-notfound.ftl. (It will actually look for the same files, but
with a JSP extension. If it doesn't find those, it will look for FreeMarker files next).

@Action(value = "fmshow")
 public String fmshow() throws Exception {
 return execute();
 }

Remember, this is a low-fidelity prototype at this point. We only have
guesses for what the final functionality and data structures will look like.
However, we can make semi-intelligent guesses along the way. The more
we can show a potential client without coding ourselves into a corner, the
better off we are. Our guesses will usually be close, and will help to better
identify what the client really wants.

Our FreeMarker template looks much like you'd expect it to (assuming you expected
FreeMarker and not JSP). The portion that displays the recipe header and title looks
very similar to that of our JSP file:

<h1><@s.text name="recipe.show-recipe.header"/></h1>
<h2>
 <@s.text name="recipe.show-recipe.description.header"/>
</h2>
<div id="description">
 ${recipe.description}
</div>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

www.allitebooks.com

http://www.allitebooks.org

Chapter 4

[71]

The Struts 2 custom tags are used, but with the <@s.tagname...> syntax. We can
also use FreeMarker's EL notation inside the ${} characters, just like in JSP, to access
the value stack.

The FreeMarker result type may also be used to create various text-based result types
very easily because of its contentType parameter. For example, by using one of the
comma-separated value content types, such as "text/csv", you could create a page
that could then be imported into a spreadsheet application. The default dispatcher
result type for JSP pages does not have a similar contentType parameter, meaning
that we must define the content type in the JSP page itself.

With its ability to use Struts 2 custom tags and its concise syntax, FreeMarker can
be a compelling replacement for JSP views. There are a few potential gotchas when
using FreeMarker results. They are discussed in the Struts 2 documentation wiki in
the Tag Developers Guide.

Perhaps the most glaring gotcha is FreeMarker's requirement that tags be declared
as "inline" or "block" tags with an inability to switch between the two. For the sake of
convenience, some Struts 2 tags are defined as "inline" tags, that is, tags that accept
no inner content. For example, the <s:action> tag is defined as an inline tag.

As we'll see in the next chapter, the <s:action> tag may be used with nested
<s:param> tags. This use case is currently not possible using FreeMarker.

The XSLT result type
The XSLT result type allows us to transform an action using a specified XSLT file.
We don't have to output XML, which is then styled. We simply access our action's
properties in our XSLT file, as if we were transforming XML. If we're already
invested heavily in XSLT, this result type can be very helpful.

During development, it's handy to turn off Struts 2's built-in stylesheet caching using
a "constant" element in our Struts 2 configuration file, or in our web.xml. We'll add
an initialization parameter to our web.xml entry for our Struts 2 filter dispatcher.

<init-param>
 <param-name>struts.xslt.nocache</param-name>
 <param-value>true</param-value>
</init-param>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Results and Result Types

[72]

To test the XSLT result, we'll create a simple test action, configured using XML.
Why aren't we using the Convention plug-in for this example? It turns out that we
must play some games with how the Convention plug-in is configured—the default
implementations support only a few result types. It's neither impossible nor difficult
to extend Convention to handle XSLT results.

public class XsltExample extends ActionSupport {
 private String headerText;
 private String testString =
 "really awesome property inserted";
 private List<String> listProperty =
 new ArrayList<String>() {{
 add("Item number one");
 add("The second item");
 add("Yet another item: the third");
 }};

 @Override
 public String execute() throws Exception {
 headerText = getText("header.key");
 return SUCCESS;
 }

One significant difference with XSLT results is that we do not have access to the
Struts 2 tags in our result. Any value we need in our XSLT page must be an exposed
action property. This means that our action code must include getters for localized
text messages and so on.

The XSLT result assumes our Struts 2 action is exposed with a root element result.
This is mandatory. The transformation just displays the header text and iterates over
the exposed list.

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="html" version="4.0"
 encoding="iso-8859-1" indent="yes"/>
 <xsl:template match="result">
 <html>
 <head>
 <title>
 <xsl:value-of select="headerText"/>
 </title>
 </head>
 <body>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 4

[73]

 <h1><xsl:value-of select="headerText"/></h1>
 <table>
 <tr><th>String from list</th></tr>
 <xsl:for-each select="listProperty/*">
 <tr>
 <td><xsl:value-of select="."/></td>
 </tr>
 </xsl:for-each>
 </table>
 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>

The XSLT result type takes two optional parameters for including
(matchingPattern) and excluding (excludingPattern) action properties.

The plaintext result
The plain text result type escapes the text sent to the browser, allowing you to see a
raw view of a JSP, for example. The plain text is sent back without any interpretation:
JSP pages won't execute any custom tags, FreeMarker pages won't execute their
directives, and so on. No example is necessary, it's just plain text.

The stream result
The stream result type allows straightforward file downloading from an
InputStream. We can set various parameters such as contentType and
contentDisposition, which do what we would expect them to.

The only requirement for this result type is that our action must either implement
InputStream getInputStream() or a getter for the property specified in the
inputName parameter. However, I suspect the default of inputStream is perfectly
adequate. This getter will be called the source of the stream sent to the browser.

The showcase example shows the results of a resourceAsStream(...)
call being returned directly in the getInputStream() method. In
general, we'll probably attempt resource stream creation in an action's
execute() method (or whichever method we're executing) to allow for
the possibility of throwing an exception for a missing file and acting on it,
and so on.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Results and Result Types

[74]

As this example consists of opening a FileInputStream (just like the showcase
example, we can open a file as a resource stream, as long as it is on the application
classpath), we won't examine it further—let it be an exercise to the reader...

The httpheader result
The HTTP header result type allows the status, error code and message, as well as
arbitrary headers, to be set. It also accepts the parse parameter, allowing the use of
action properties in the results. This could allow, for example, the error message to
come from an S2 property file. We'll skip an example of this as well since that's all we
can do with it, and it should be self-explanatory.

The Tiles and JasperReports results
These result types are beyond the scope of this book, as each requires knowledge of
its respective technology.

Tiles allows the definition of page fragments, which are then composited into
complete pages. Tiles results allow tile definitions to be used as the end result of an
action execution. Those familiar with Tiles from Struts 1 will recognize the Tiles 2
configuration and tags, although they have changed somewhat.

JasperReports is a reporting engine that can produce reports in several output
formats including PDF. The Jasper result tag allows an easy mechanism for
rendering the results of an action as a report of any supported output format.

Creating custom result types
Even though Struts 2 ships with most of the results we'll need (and a few we
probably won't), there are times when only creating our own results will do. We'll
look at a contrived example where having a custom result type saves us some
development time upfront.

Let's assume for a moment that our client already has a large number of recipes
stored on their file system in a custom format that is neither JSP nor FreeMarker.
These recipes, over a thousand of them, are kept in Markdown format. To avoid the
overhead of converting the recipes to the site's database format, it's decided that they
will be served directly by the application.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 4

[75]

Markdown is a lightweight markup used to create HTML. Several
blogging engines use it as their default markup because it's very simple
and reads well as plain text. It is of limited use in a web application as
it has no concept of variables (at least for now). However, it makes for a
short, convenient, and contrived example.

The Markdown recipe files are very simple (as is our sample recipe).

The # characters indicate a header level
Items prefaced with a * character are put into an unordered list
Items prefaced with a 1. are put into a numbered list

Macaroni and Cheese
A simple baked macaroni and cheese.
Ingredients
* Macaroni
* Cheese
* Whole milk
Directions
1. Cook the macaroni.
1. Mix it with the cheese and milk.
1. Bake at 325F for 35 minutes or until bubbly.

By creating a MarkdownResult result type, we can serve these files directly using
an action. It will act like a normal dispatcher result that can serve a JSP page, but it
serves a converted Markdown file instead.

Again, keeping things simple, we'll ignore things like caching and efficiency, and
focus only on the small amount of code necessary to create our own custom result.
This task is made easier by subclassing Struts 2's StrutsResultSupport, a class
implementing Result that provides some typical functionality, such as the parse
and location parameters, which we've seen in other result types.

We'll be using the "markdownj" library, available on SourceForge.

•

•

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Results and Result Types

[76]

Configuring our custom result type
We'll work a bit backwards, starting with our result configuration. This is a sort
of built-in test-driven development step. Our application will fail unless we finish
writing our custom result type. We add the following to the top of our struts.xml
file in our default package element:

<package name="default" namespace="/"
 extends="struts-default">
 <result-types>
 <result-type name="markdown"
 class="com.packt.s2wad.ch04.examples.MarkdownResult"/>
 </result-types>
 ...

This tells Struts 2 that we can now use a result type markdown, and that it is
implemented by the MarkdownResult class.

Writing the action
Our action is simple, because we're making assumptions in the interests of brevity
(as usual).

package com.packt.s2wad.ch04.examples;
import com.opensymphony.xwork2.ActionSupport;
public class MarkdownAction extends ActionSupport {
 private String mdid;
 public String getMdid() { return mdid; }
 public void setMdid(String mdid) { mdid = mdid; }
}

The XML action configuration is similarly simple:

<action name="viewmd"
 class="com.packt.s2wad.ch04.examples.MarkdownAction">
 <result type="markdown">
 /WEB-INF/mdrecipes/${mdid}.md
 </result>
</action>

The biggest assumptions are:

1. All of our Markdown-based recipe files live in /WEB-INF/mdrecipes.
2. The filenames are all valid URL parameters.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 4

[77]

In our case, they're just named 1.md, 2.md, and so on. This is not, of course,
production-ready code.

We see again how useful accessing action properties in our result configuration can
be. Struts 2 handles what essentially is a miniature templating mechanism, saving us
the trouble of building up strings ourselves.

Implementing our markdown result type
We need only three simple steps to implement our custom result type:

1. Read the Markdown file.
2. Process the Markdown file.
3. Write the Markdown file.

In real life, we'd pay more attention to error handling.

Our Markdown result looks like this (imports, getters, and setters not shown):

package com.packt.s2wad.ch04.examples;

public class MarkdownResult extends StrutsResultSupport {
 private String defaultEncoding = "ISO-8859-1";

 public void doExecute(final String finalLocation,
 final ActionInvocation invocation)
 throws Exception {
 String markdownInput =
 readFromContextPath(invocation, finalLocation);
 if ((markdownInput == null)
 || (markdownInput.length() == 0)) {
 // FIXME Like our error handling?
 }

 MarkdownProcessor p = new MarkdownProcessor();
 String markdown = p.markdown(markdownInput);

 ActionContext actionContext =
 invocation.getInvocationContext();
 HttpServletResponse response =
 (HttpServletResponse)
 actionContext.get(StrutsStatics.HTTP_RESPONSE);
 byte[] markdownBytes =
 markdown.getBytes(defaultEncoding);
 response.setContentLength(markdownBytes.length);
 response.setContentType("text/html;charset="
 + this.defaultEncoding);

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Results and Result Types

[78]

 PrintWriter out = response.getWriter();
 out.print(markdown);
 }

 private String
 readFromContextPath(ActionInvocation invocation,
 String finalLocation) {
 ServletContext servletContext =
 ServletActionContext.getServletContext();
 File inFile =
 new File(servletContext.getRealPath(finalLocation));
 if (!inFile.exists()) {
 // FIXME More awesome error handling.
 return "";
 }

 try {
 return FileUtils.readFileToString(inFile,
 defaultEncoding);
 } catch (IOException e) {
 e.printStackTrace();
 }
 return "";
 }
}

The entry point into StrutsResultSupport classes is the doExecute() method. It
receives the current action invocation and the location of the result, which is parsed
for OGNL expressions if necessary. In our case, we're passing the Markdown recipe
ID from the action into the location using OGNL. Therefore, the finalLocation
parameter would be 1.md if we passed an mdid value of 1.

We read the Markdown file in the readFromContextPath() method. Reading a
file into a String is boring, so we've used Apache Commons IO's FileUtils class.
(Commons IO is required for the default Struts 2 file uploading process; so we
shouldn't feel too bad about adding another dependency.) What is (slightly) less
boring is how we access things like the ServletContext from within our custom
result. This highlights a simple way to get access to the servlet context on the rare
occasions we need to tie ourselves to the servlet API (we also saw this in the chapter
covering Struts 2 actions).

ServletActionContext.getServletContext()

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 4

[79]

I won't talk about it much because using this method ties us to the servlet
specification, and we try to avoid that whenever possible. In this case, it was
unavoidable as I've packaged the Markdown-based recipe files into our web
application for easy deployment, but not on the classpath. Typically, they would
live outside the application.

Other than that, it's just a matter of using the MarkdownJ package to transform the
Markdown markup into HTML and returning it to the browser with the appropriate
headers set. The rest of the doExecute() method uses a MarkdownJ processor to
convert the Markdown file contents and write it directly to the response.

When we make a request to /viewmd.action?mdid=1, our result gets the location,
/WEB-INF/mdrecipes/1.md, thanks to our result configuration. The file contents
are run through the Markdown conversion process and get transformed into HTML
which, without any styling, will present us with something resembling this:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Results and Result Types

[80]

Summary
The chapter covers most of the standard result types, leaving a few of the more
complicated, and a few of the most simple for self-study. The chapter also takes a
quick look at the process for creating new result types, should our application need
custom functionality.

The chapter also tells how action properties can be interpolated in our result
configuration, which can be a very useful technique.

The use case scenario gives us a teasing look at some of the Struts 2 form tags, which
help eliminate the bulk of the JSP we wrote on our own in the previous chapter. It
would also help us start on the path to agile action coding, which will eventually
lead to keeping our code more easily testable (coming up a bit later).

Next on our list are Struts 2's non-form-oriented custom tags, some of which
we've already seen (such as <s:property>, <s:if>). We'll also dive into OGNL,
everybody's favorite expression language, and the value stack, from which OGNL
gets its data.

References
A reader can refer to the following:

The struts-default.xml defines standard result types (and much more
of interest!):

 http://struts.apache.org/2.x/docs/struts-defaultxml.html

The standard result types:
 http://struts.apache.org/2.x/docs/result-types.html

Struts 2 Type Conversion:
 http://struts.apache.org/2.x/docs/type-conversion.html

FreeMarker:
 http://freemarker.sourceforge.net/

XSLT:
 http://www.w3.org/TR/xslt.html

Tiles:
 http://tiles.apache.org/

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 4

[81]

SiteMesh:
 http://www.opensymphony.com/sitemesh/

JasperReports:
 http://jasperforge.org/plugins/project/project_home.php?group_
id=102

Markdown:
 http://daringfireball.net/projects/markdown/

MarkdownJ:
 http://sourceforge.net/projects/markdownj/

•

•

•

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

OGNL, the Value Stack,
and Custom Tags

The previous chapter detailed the standard Struts 2 result types, and how to create
our own result types. We also saw how to use OGNL expressions in our result
configurations to pass along action properties.

Struts 2 uses OGNL as the expression language (EL) for its extensive collection of
custom tags, both general tags and those related to user-interface. In this chapter,
we'll look at OGNL and the general tags, leaving the UI (form) tags for the next
chapter along with form handling.

OGNL
A complete discussion of OGNL's capabilities and syntax is beyond the scope of this
book. However, as we go along, we'll cover the most important points necessary to
get things done.

Efforts are underway to allow the use of other expression languages such
as JSP EL and MVEL, rather than OGNL (or at least provide the option for
doing so).

For now, one of the most important aspects about Struts 2 and OGNL that needs to
be understood is the concept of the "value stack". We've already seen that when an
action is executed, it's pushed onto the stack, giving us access to its properties from
our JSP.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

OGNL, the Value Stack and Custom Tags

[84]

It's more than just a simple stack. It also contains named values, similar to the
request and session attributes we're already familiar with. We'll refer to these as
stack context values to differentiate them from the objects pushed on to the stack
itself. I think of it as both a stack and a scope. We'll also see how we can set our own
values in the stack context.

OGNL allows access to both value properties and methods. Value properties are
available with a simple named reference, identical to JSP EL. Value methods are
called by providing the full method name followed by parenthesis, just like a
standard Java call. We're also able to call methods with parameters, as we've
already seen.

Contents of the value stack and the
<s:property> tag
We've already seen that an action's properties are available on a JSP result page.
This is because after an action is executed, it is pushed on to the value stack before
moving to the result. So, under most circumstances, the action will be the topmost
object on the stack when we get to our result.

We access action properties using the <s:property> tag, as already seen—it's a
window into the value stack context. It's interesting to note that action properties do
not need a public getter method to be accessible—a public property with no getter is
also accessible. In fact, a public property with a private getter will also be found
(it would be a bit weird, of course). Whether or not this is a good thing is debatable.
In general, I recommend sticking to JavaBean conventions, keeping properties
private (or protected) and providing public getters and setters.

Escaping values
By default, the <s:property> tag will escape HTML-like characters inside it. If a
String property's value is "This string's HTML-ish", it will display exactly
that, complete with HTML tags. If we want the markup to be recognized by the
browser, we must set the escape attribute to false.

<s:property value="propWithHtml" escape="false"/>

Any time we render an unescaped property, we must ensure that
the property being displayed is properly sanitized and/or escaped
before being displayed in order to avoid any of the various Cross-site
scripting (XSS) attacks. As a simple example, consider a property that
had a <script> element in it. If we don't escape the property, the
JavaScript will be executed when the page is displayed.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 5

[85]

Default values
The <s:property> tag also allows us to set a default value, which will be displayed
when the property itself is null:

<s:property value="nullExample" default="A default value."/>

Escaping values for JavaScript
We can also specify that property values be escaped for use in JavaScript expressions
using the escapeJavaScript attribute. Setting escapeJavaScript="true" will
escape both single (') and double (") quotes for use in JavaScript strings by inserting a
backslash (\) before them.

For example, assume our action has the following property:

private String javascriptExample =
 "I haven't got enough \"quotes\".";

Also, assume that our JSP page contains the following JavaScript block:

<script type="text/javascript">
 var jsFromTag1 = '<s:property value="javascriptExample"
 escapeJavaScript="true"/>';
 document.writeln(jsFromTag1);
</script>

If we view our document source, we'll see the following:

var jsFromTag1 = 'I haven\'t got enough "quotes".';

When both the escapeJavaScript and escape attributes are used, the correct
behavior occurs. If the previous example had set escape="false", the "
characters would not have been replaced by the HTML entities. However, the
escapeJavaScript="true" seting would cause a leading backslash (\) to be
included as with the single-quote examples shown.

If we hadn't used escapeJavaScript="true", we'd have gotten a JavaScript
error on the page. The first single-quote in our string would signal the end of the
JavaScript string, and the rest of the string is obviously not valid JavaScript.

Other value stack objects and the debug tag
There are several other important properties on the value stack that can be accessed
by name. These properties are in the stack context, and must be referred to using
the # character As of this writing, is appears as though this is no longer necessary in
many circumstances due to changes in the way stack context values are looked up.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

OGNL, the Value Stack and Custom Tags

[86]

We can get a view of everything on the stack by using the <s:debug> tag, which
creates an HTML view on our page of the stack and stack context. During
development, it's often handy to include this as the last content on the page. It
renders a link, which when clicked, exposes the stack and stack context in all its
glory. A portion of its expanded output is shown in the following screenshot:

Most importantly, the application, session, and request scopes of our application
are all exposed directly (unsurprisingly) using the #application, #session, and
#request names. Request parameters are available using the #parameters name.
The code snippet shown here directly accesses an attribute in each of the scopes:

<s:property value="#application.anAppAttribute"/>
<s:property value="#session.aSessionAttribute"/>
<s:property value="#request.aRequestAttribute"/>
<s:property value="#parameters.aRequestParameter"/>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 5

[87]

Note specifically that there is no #page name, and in order to access page-scoped
attributes, we must use the #attr name. Using the #attr name will cause all scopes
to be searched in a typical JSP EL order—application, session, request, and page.
The following snippet will return the same results as the previous snippet (assuming
there are no "shadowing" attributes, that is, attributes of the same name in different
scopes). This is the lengthy equivalent to using the JSP EL shorthand.

<s:property value="#attr.anAppAttribute"/>
<s:property value="#attr.aSessionAttribute"/>
<s:property value="#attr.aRequestAttribute"/>
<s:property value="#attr.aPageAttribute"/>

Of course, accessing scoped attributes can also be done using the normal JSP 2.0 EL
${} or with JSTL's <c:out> constructs.

There are some other debugging options available by using the debug
request parameter. For example, if we append debug=xml to a request,
we'll get back an XML representation of the value stack. However, that's
all we'll get back, meaning that in some browsers we'd have to view the
page's source to get a readable view.
We can also use debug=console and get a pop-up box allowing us to
query the value stack using OGNL expressions directly, drilling down
into objects contained on the stack interactively.
These options require that the debug interceptor is active (which it is in
the default interceptor stack).

The <s:debug> tag is handy as we can just add it to the bottom of our page and get
a collapsible view of the stack with essentially zero effort. Note that in Struts 2.0,
the <s:debug> tag does not escape property values, which can lead to unexpected
consequences, particularly if we have <script> tags in the displayed value. This is
resolved in Struts 2.1.

A dirty EL trick
Referring to a simple property, such as anActionProperty, with an <s:property>
tag feels like a throwback to the beloved <c:out> days. Struts 2 provides a custom
request wrapper allowing the use of JSP 2.0 EL to access properties without the
syntactic noise of <s:property>, allowing us to use the shorter JSP 2.0 EL notation
to refer to objects on the value stack.

${anActionProperty}

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

OGNL, the Value Stack and Custom Tags

[88]

Struts 2 does this by first checking the value stack of the named property. If it isn't
found on the value stack, it's passed off to the normal JSP lookup, which will check
the various JEE scopes. This is very convenient, but can throw people off if they're
not aware of the trick being played. Note that this dirty EL trick, as it uses the normal
Struts 2 stack lookup mechanism first, follows the same property/getter access rules
described earlier.

Some people don't like mixing paradigms like this. This decision is
a stylistic one, rather than a technical decision. While I try to avoid
mixing Struts 2 and JSTL tags in the same JSP, using the ${...}
notation saves time (and typing).

The <s:set> tag
The set tag assigns the results of an OGNL expression to a variable, optionally setting
a scope (defaults to action scope, rather than the four typical servlet scopes). This
tag is useful when we have a complicated or deeply nested expression, we need
to access it over and over again, and don't want to type much. Such deeply nested
expressions can also be very computationally expensive. Using an <s:set> tag can
save typing as well as execution time.

<s:set name="shorter" value="deeply.nested.value.getter"/>
...
<s:property value="#shorter"/>

The "#" character is now optional—current documentation doesn't reflect this. We
can also reference stack context values without the leading "#".

Calling static methods from OGNL
OGNL allows us to call static methods by using the @full.package@methodName()
notation. In order to use this functionality, we must enable static method access
in any of our configuration methods (struts.properties—not recommended, a
struts.xml constant, or a web.xml Struts 2 filter initialization parameter). Setting
struts.ognl.allowStaticMethodAccess=true enables static method access.

As a simple example, consider a utility class that repeats a string a given number of
times. We can call it from a JSP page such as:

<s:property
 value="@com.packt.s2wad.utils.UtilClass@repeat(20, '*')"/>

This will return the asterisk repeated twenty times.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 5

[89]

Conditionals
Struts 2 provides three tags for dealing with conditionals: <s:if>, <s:elseif>, and
<s:else>. Unlike JSTL's if construct, we can have a complete if-elseif-else
decision tree without a surrounding <c:choose> tag, making the Struts 2 version
slightly cleaner. Both <s:if> and <s:elseif> take a single attribute test, which
does what we'd expect.

<s:if test="aBooleanExpression">
 Printed when test is true.
</s:if>
<s:elseif test="aDifferentBooleanExpression">
 Printed if previous test was false and this one is true.
</s:elseif>
<s:else>
 Printed if neither were true.
</s:else>

The test attribute accepts any valid OGNL expression, including expressions that
call action methods, static methods (assuming static method access is enabled), and
so on.

One OGNL expression gotcha is often encountered when testing string. In OGNL,
a single character inside single quotes is a character, not a string. If we assume an
action property testMe, a string containing a single letter A, the following test will
not work:

<s:if test="testMe == 'A'">
 This won't print; 'A' is a character, not a string.
</s:if>

We can force OGNL to compare strings using double quotes around A:

<s:if test='testMe == "A"'>
 Ah, much better--this prints.
</s:if>

Collections and iteration
There are several tags provided for dealing with collections, from the typical
iteration to some fairly sophisticated tags for manipulating lists and defining
custom iteration. OGNL, too, provides some sneaky tricks that we'll cover briefly.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

OGNL, the Value Stack and Custom Tags

[90]

The <s:iterator> tag
In its simplest form, <s:iterator> is a compact way to iterate over a list. First, we'll
iterate over a list of strings, displaying the current item by using <s:property/>
with no attributes. This works because the iterator tag pushes each item on to the
top of the stack, and a property tag with no value attribute will display the object
on the top of the stack. This is convenient. However, as we'll see later, it can lead to
an interesting gotcha! when the object in the collection has a property with the same
name as an action property.

 <s:iterator value="listOfStrings">
 <s:property/>
 </s:iterator>

The object of the current iteration can also be named using the var attribute (id in
Struts 2.0). The following is equivalent to the previous snippet, the only difference
being that we now name the current object of the iteration. However, the named
object is still on the top of the stack. We can access it either using the name as
shown here, or using a bare property tag as shown above.

 <s:iterator value="listOfStrings" var="anItem">
 <s:property value="anItem"/>
 </s:iterator>

Iterating over a java.util.Map.Entry is similar. When iterating over a map, each
item is a Map.Entry. We can access the map key and map value by using the key
and value, again using the convenience of having each item in the collection being
pushed on to the stack.

 <s:iterator value="mapStringString">

 <s:property value="key"/> : <s:property value="value"/>

 </s:iterator>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 5

[91]

Again, we can still use the var attribute to name each entry value:

 <s:iterator value="mapStringString" var="entry">

 <s:property value="#entry.key"/> ==
 <s:property value="#entry.value"/>

 </s:iterator>

Tracking iteration status
Tracking iteration status—which iteration we're on, whether it's an even or odd
iteration, and so on—are pretty common needs. The iterator tag's status attribute
defines an IteratorStatus instance, accessible using the # prefix (because it's
a variable we're creating, not pushing onto the stack) that defines several useful
properties that can be used for a host of functionality.

<table>
 <s:iterator value="list1" status="stat">
 <tr>
 <td><s:property value="#stat.index"/></td>
 <td><s:property value="#stat.count"/></td>
 <td><s:property value="#stat.even"/></td>
 <td><s:property value="#stat.odd"/></td>
 <td><s:property value="#stat.first"/></td>
 <td><s:property value="#stat.last"/></td>
 <td><s:property value="#stat.modulus(2)"/></td>
 <td><s:property value="#stat.modulus(4)"/></td>
 <td><s:property value="#stat.count % 4"/></td>
 </tr>
 </s:iterator>
</table>

The index and count properties are similar. However, index is zero based and
count is one based. The even, odd, first, and last properties are exactly what
we'd expect, booleans that are true if their respective conditions are true. The
modulus method is a convenience method that can be used instead of an
equivalent OGNL expression, which is also shown above.

The even and odd properties, as well as the modulus method, are based
on the count attribute and not on the index attribute. The iterator
status provides a modulus method. Using it creates code that's just as
long as using the "%" operator. It's not clear to me that the modulus
method is particularly convenient, since it's just as many characters,
and arguably less clear, than using "%".

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

OGNL, the Value Stack and Custom Tags

[92]

CSS detour: Alternating table row background color
One common use of these properties is for alternating row coloring in a table. This
can be done in several ways. One of the ways could be to name our style classes
evenTrue and evenFalse, and then using the even property (of course, the same
applies for the odd property). The other option is to create row0 and row1 classes
(or however many class names we need for our chosen modulus), and using either
the modulus attribute or an expression using the modulus operator "%".

It's also possible, and probably more readable to create variables using <s:set> and
using them in our CSS class names, especially if we're using only even/odd classes.
The following example shows several of these possibilities. I wouldn't recommend
using all of them at once. However, by picking and choosing among techniques, it's
possible to come up with some relatively cleaner ways of styling simple HTML
tables. (CSS tricks and tips are discussed in more detail in a later chapter, but this
is an easy one.)

Note again that the dirty EL trick can be used here too, rather than embedding large
quantities of <s:property> tags. It makes a substantially cleaner, easier-to-read
JSP page.

Using the combination of appropriate class names, the status iterator variable, and
the dirty EL trick, we've created a simple, but effective table layout. We'll assume that
we have a requirement that the first and last rows have their own styles. We alternate
between two styles for each row, except that the last column alternates between four
styles. (Contrived scenarios are beautiful for highlighting functionalities, aren't they?)
Here is the example:

<%@ taglib prefix="s" uri="/struts-tags" %>
...
<style>
 table { border-collapse: collapse; }
 td { padding: 0.24em; }
 .firsttrue { border-top: 2px solid black; }
 .lasttrue { border-bottom: 2px solid black; }
 .firstfalse { }
 .lastfalse { }
 .row0 { background: #fff; }
 .row1 { background: #aaa; }
 .row2 { background: #555; color: white; }
 .row3 { background: #000; color: white; }
</style>
...
<table>
 <s:iterator value="list1" status="stat">
 <tr class="row${stat.count % 2}
 first${stat.first} last${stat.last}">

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 5

[93]

 <td>${stat.count}</td>
 <td><s:property/></td>
 <td class="row${stat.count % 4}">${stat.count % 4}</td>
 </tr>
 </s:iterator>
</table>

Rather than explicitly check for the first and last rows, we give each row several
class names—one created from the current iteration count modulus two (giving us
our alternating rows), and two created by appending the first and last status
attributes of the iterator's status. Note that when we access the stat variable using
JSP EL's ${} notation, we do not use a # character. Using it may result in an error in
many recent JSP containers.

In our CSS, we create classes that reflect a "true" status for the first and last rows,
and apply it to our table row elements. Hence, each row will always define either a
firsttrue or firstfalse class. However, only firsttrue is defined as a class
(the same thing for last). This will produce output similar to the following:

We could, of course, use a combination of <s:if> and <s:set> tags, similar to the
following, to achieve the same effects. However, it's nearly not so contrived. Kidding
aside, code similar to the previous code snippet is a double-edged sword. It's concise
and interesting, but not always easy to maintain. This is where documentation comes
in handy. A simple JSP comment can clear things up. The "maintainable" way looks
like this:

<s:if test="#stat.first">
 <s:set var="trFl" value="'firsttrue'"/>
</s:if>
<s:elseif test="#stat.last">
 <s:set var="trFl" value="'lasttrue'"/>
</s:elseif>
<s:else>
 <s:set var="trFl" value="''"/>
</s:else>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

OGNL, the Value Stack and Custom Tags

[94]

Notice that we're using immediate string values as the value attribute arguments in
the <s:set> tags. We'd then use ${trFl} (for tr first/last—naming variables is
hard!) as a class for our table row elements.

<tr class="row${stat.count % 2} ${trFl}">

Is the trade-off worth it? The HTML sent to the browser will be shorter, but we've
added nine lines to the JSP code that produces it. Decisions like this are what make
programming so entertaining.

Personally, I like playing little tricks and reducing code size, as long as it remains
maintainable. This has led co-workers to claim that I won't be happy until the entire
application is a single line. I'm okay with that accusation, as it meshes nicely with my
Lisp background! To be clear, I don't advocate using tricks just for the sake of using
them. Also, obfuscating code just to appear "clever" is not a good idea. But code
can be expressed clearly and succinctly, as I believe it should be, even when using
advanced techniques.

The <s:generator> tag
We may never need to use the generator tag. However, we'll discuss it briefly.
It's used to generate a list, which is pushed on to the value stack (and popped on
the closing tag). We give it a string val attribute (that is, surrounded by quotes)
with each element separated by the character specified in the separator attribute.
(You may wonder why it is "val" and not "value". That's the beauty of open source
volunteer projects) The resulting list can be iterated using the iterator tag.

<s:generator val="'1, 2, 3, 4'" separator=",">

 <s:iterator>
 <s:property/>
 </s:iterator>

</s:generator>

We can also supply a var attribute (id in Struts 2.0), which names the generated
collection, allowing an iterator tag to reference it by name. This allows us to use the
generator without nesting our iterator inside the generator tag.

<s:generator val="'1, 2, 3, 4'" separator="," var="to4list"/>
...

 <s:iterator value="to4list">
 <s:property/>
 </s:iterator>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 5

[95]

There are two potential gotchas though.

It's not a list, it's an iterator!
A list created by the generator tag isn't really a list—it's an iterator. Once the iterator
has been iterated over, we can't iterate over it again. We must re-generate the iterator
with another generator tag.

<s:generator val="'1, 2, 3, 4'" separator="," var="to4list"/>
<s:iterator value="to4list"><s:property/></s:iterator>
<s:iterator value="to4list"><s:property/></s:iterator>

Only the first <s:iterator> tag will do what we want. The second will produce no
output because the to4list iterator has nothing left to iterate.

Silent death
Here's a subtle and completely silent gotcha! Take a look at the following code:

<s:generator val="'1, 2, 3, 4" separator=",">

 <s:iterator>
 <s:property/>
 </s:iterator>

</s:generator>

It might be fairly obvious in isolation. However, in the thick of a JSP, it might slip by
unnoticed, breaking your render. If you didn't see it, check in the val attribute and
look for a missing single quote. This will fail silently. You've been warned.

Another potential stumper (Struts 2.0 only)
As mentioned, the id attribute is deprecated (use the var attribute in Struts 2.1).
However, in Struts 2.0, accessing the named generator is a bit counter intuitive. We
cannot simply use the #theId notation. You must use the #attr.theId notation, as
shown here:

<s:generator val="%{'1, 2, 3, 4'}" separator="," id="myList">

 <s:iterator value="#attr.myList">
 <s:property/>
 </s:iterator>

</s:generator>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

OGNL, the Value Stack and Custom Tags

[96]

In Struts 2.1.1+, we can simply refer to it as #myList (my lasting contribution to the
Struts 2 project is in a tag that most people will never use… the generator's value was
placed into page scope in Struts 2.0) .

What is <s:generator> for?
At first, it's not clear why we'd want to use a generator tag, as we can do the previous
task by creating an immediate list to use in an iterator tag as we do next:

 <s:iterator value="{1, 2, 3, 4}">
 <s:property/>
 </s:iterator>

Note the subtle difference between how the list is being created—the value in the
iterator tag is a list, an immediate OGNL list. The generator tag creates a list by
parsing a string. Therefore, if we received a comma-separated string from an action,
we could easily process each item by using the generator tag. This is a big benefit
when we don't have the ability to modify the action code ourselves, as the list
parsing functionality arguably belongs in the action itself.

The generator tag has two other attributes—count and converter. These attributes
further control the iterator created by the tag. The count attribute puts an upper
bound on the number of elements included in the iterator. For example, if a list could
contain 100 items, setting the count to 10 would mean only the first 10 items in the
list would be included in the iterator.

The converter attribute expects an implementation of IteratorGenerator.
Converter, which defines a single method, Object convert(String). This
method defines how to convert each element of the generated iterator.

As an example, we'll consider a use case where we need a list of sequential dates,
seven days starting today. Our action defines a getter, returning a Converter
implementation, that just adds the integer value of each item in the generator to
the current date (imports elided):

package com.packt.s2wad.ch05.actions.examples;
public class GeneratorConverterAction {
 public IteratorGenerator.Converter getCalConverter()
 extends ActionSupport {
 return new IteratorGenerator.Converter() {
 private Calendar cal = Calendar.getInstance();
 private Date now = new Date();
 public Object convert(String sOffset) {

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 5

[97]

 int offset = Integer.parseInt(sOffset);
 cal.setTime(now);
 cal.add(Calendar.DAY_OF_MONTH, offset);
 return cal.getTime();
 }
 };
 }
}

The JSP uses the generator tag and specifies a converter. We output the converted
generator value with an <s:date> tag. We'll cover this in a moment. For now, just
assume it does precisely what it looks like it does.

<s:generator val="%{'0,1,2'}"
 var="dates" separator=","
 converter="calConverter"/>
<s:iterator var="aData" value="#dates">
 <s:date name="#aData" format="yyyy-MM-dd"/>
</s:iterator>

It outputs something similar to the following (depending on the date, of course):

2009-02-18 2009-02-19 2009-02-20

Our action creates a Calendar instance, and uses it in the Converter implementation
as the "base date" to add our offset to (mandatory error handling removed for
clarity). Only the Converter implementation is interesting.

The <s:append> tag
The append tag takes a number of collections using <s:param> tags and creates one
big collection. We must supply a var attribute (id in Struts 2.0) with the append tag.
(Oddly, in Struts 2.0, we do not need to use the #attr.theId as described in the
generator tag. We can simply use #theId as shown here.)

The param tags provide unnamed parameters, with each value being a list. The
resulting iterator does exactly what we'd expect. It iterates over each collection
in order. Here, we'll provide immediate lists in the param tags. We can also use
collection properties from an action, values from a generator tag, and so on.

<s:append var="append1">
 <s:param value="{1, 2, 3}"/>
 <s:param value="{'a', 'b', 'c'}"/>
</s:append>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

OGNL, the Value Stack and Custom Tags

[98]

<s:iterator value="append1">
 <s:property/>
</s:iterator>

This will produce the following:

1 2 3 a b c

The <s:merge> tag
The merge tag is similar to the append tag. However, it will "weave" the given
collections together, returning the first item of each collection first, followed by
the second item in each collection, and so on. If the lists are of different lengths,
the woven collection will weave up to the shorter list's length and continue by
completing the iterations using only the longer-length lists. It won't stop after the
shortest list has been exhausted.

<s:merge var="merge1">
 <s:param value="{0, 1, 2}"/>
 <s:param value="{'a', 'b', 'c', 'd', 'e', 'f'}"/>
</s:merge>

<s:iterator value="merge1">
 <s:property/>
</s:iterator>

This snippet will produce the following:

1 a 2 b 3 c d e f

Notice that all items in both lists are iterated over, and that the values of the two
lists are woven together until the short list runs out of elements, at which point the
iteration continues with items from the longer list. The same logic applies regardless
of how many lists there are.

The <s:subset> tag
The subset tag is used to filter a collection, resulting in an iterator we can use in an
iterator tag. In its simplest form, you can filter based on the start index of the collection
and/or limit the number of items from the collection that will be iterated over.

As with the other collection tags, we can define the name of the iterator for later use
using the var attribute (id in Struts 2.0). The collection being filtered is specified
using the source attribute (neither val nor value… I know…)

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 5

[99]

The following code shows examples of the start and count attributes on immediate
lists, with the produced output shown immediately below the JSP that produces it.

<s:subset source="{1, 2, 3, 4, 5, 6, 7, 8}" start="3">
 <s:iterator> <s:property/> </s:iterator>
</s:subset>

This will produce the following:

4 5 6 7 8

<s:subset source="{1, 2, 3, 4, 5, 6, 7, 8}" count="3">
 <s:iterator> <s:property/> </s:iterator>
</s:subset>

This will produce the following:

1 2 3

<s:subset source="{1, 2, 3, 4, 5, 6, 7, 8}"
 start="3" count="3">
 <s:iterator> <s:property/> </s:iterator>
</s:subset>

This will produce the following:

4 5 6

As with the earlier collections tags, it will also accept a collection on the top of the
stack. We could write the last example using a generator tag.

<s:generator separator="," val="%{'1, 2, 3, 4, 5, 6, 7, 8'}">
 <s:subset start="3" count="3">
 <s:iterator>
 <s:property/>
 </s:iterator>
 </s:subset>
</s:generator>

This will produce the following:

4 5 6

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

OGNL, the Value Stack and Custom Tags

[100]

Can you spot the difference? Just in case the difference isn't obvious, do something
like displaying the class name of each item of the iteration. I'd leave how to do
that as an exercise for the reader, but it's so handy I won't make you work for it:
<s:property value="class.name"/>. But you already knew that!

Arbitrary filtering with the <s:subset> tag
For arbitrary filtering, we supply a decider attribute, which specifies an
implementation of the SubsetIteratorFilter.Decider interface. Decider defines
a single method, boolean decide(Object), which determines if an object in the
collection should be included in the subset. For example, to filter a small list of letters
for vowels, we can create a Decider implementation that will allow only vowels to
be included in our subset. Again, we create a getter in our action that returns the
anonymous implementation, named in tribute to our great once-leader (imports
elided… there's another political joke here):

package com.packt.s2wad.ch05.actions.examples;
public class SubsetFilterAction extends ActionSupport {
 public SubsetIteratorFilter.Decider getTheDeciderer() {
 return new SubsetIteratorFilter.Decider() {
 public boolean decide(Object o) throws Exception {
 String s = (String) o;
 return s.matches("[aeiou]");
 }
 };
 }
}

On the JSP side, we generate a list of several letters and supply the subset tag with
our Decider implementation:

<s:generator separator="," val="%{'a, b, c, d, e, f'}">
 <s:subset decider="theDeciderer">
 <s:iterator> <s:property/> </s:iterator>
 </s:subset>
</s:generator>

This will produce the following:

a e

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 5

[101]

The Decider implementation, of course, can be arbitrarily complex and operate on
any type of object, giving us the ability to easily filter lists in our view layer. Should
we? Well, that's a debate for another book. Some folks might argue that this type of
work should be done at a higher level, say in our action or service object.

Dirty OGNL secrets
We can play some really interesting games with OGNL. Again, whether these games
should be played in our JSP pages is debatable, but it's all very fun. What we just did
by creating a new class and using one of the lonelier Struts 2 tags, can be done in a
single OGNL construct using only the iterator tag. OGNL has some functionality that
will be familiar to users of Lisp and Smalltalk—the ability to collect items from a list
that match a specified criterion.

Yes, that is what we did in the previous example. However, we can do it entirely in
OGNL, in a single line (even if it causes our friends to stop speaking to us):

<s:generator separator="," val="%{'a, b, c, d, e, f'}"
 var="letters"/>
<s:iterator value='%{#letters.{?#this.matches("[aeiou]")}}'>
 <s:property/>
</s:iterator>

I am going to let this example stand on its own, mentioning only that #this
refers to each element contained in the list. This functionality is covered in the
OGNL documentation.

We can also project across collections, that is, gather only specified properties from
each object in the collection. For example:

<s:iterator value="{1,'a',4.5}.{class.name}">
 <s:property/>
 </s:iterator>

This produces:

java.lang.Integer java.lang.Character java.lang.Double

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

OGNL, the Value Stack and Custom Tags

[102]

There are a lot of dirty OGNL secrets. Use them at your own risk. However,
remember that your peers will be forced to give you cool points—right after
beating you about the head and shoulders...

Remember: Work is in progress on the road to Struts 2.1 to make
the EL pluggable. So, you may or may not be able to make use of
the OGNL functionality that will be presented here. However, it
will probably always remain as one of the EL options if your project
chooses to use it.

The <s:sort> tag
The last collection tag we'll cover is the sort tag, which takes a source attribute
for the collection (like the subset tag). It also takes a comparator attribute, which
specifies a java.util.Comparator implementation exposed by the action. The
sorted collection may be exposed (a sordid collection?!) with the var attribute (id in
Struts 2.0) if we'd rather refer to it later.

We'll cheat a little bit by using java.lang.String's CASE_INSENSITIVE_ORDER static
Comparator because writing our own is uninteresting. (You knew about that, right?
Running through the API documentation is always a good idea!) We'll use OGNL's
ability to reference static members and use it directly.

<s:generator separator="," val="%{'f, d, C, a, E, B'}">
 <s:sort
 comparator="@java.lang.String@CASE_INSENSITIVE_ORDER">
 <s:iterator>
 <s:property/>
 </s:iterator>
 </s:sort>
</s:generator>

This will produce the following:

a B C d E f

Are the collection tags useful?
Iterator is unquestionably useful, especially for those of us who prefer not to
mix-and-match JSTL and Struts 2 tags whenever possible. The other tags are
debatable, it's largely a matter of preference. They're certainly handy in small doses.
They can be used to speed up page development, occasionally reduce the amount of
Java code, and in cases where a decider or comparator could be returned based on
action logic.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 5

[103]

Referencing other pages and actions
Struts 2 includes a three-page URL-related function used to include the output of a
servlet, JSP, or action, or create a URL for later use.

The <s:include> tag
The Struts 2 <s:include> tag is equivalent to JSTL's <jsp:include> tag. It takes a
value attribute to specify the JSP (or servlet; it's just a RequestDispatcher.include
under the covers) and an id attribute, which doesn't appear to do anything.

We can specify an arbitrary number of request parameters by nesting the
<s:param> tags. Of course, when we dispatch to a JSP or servlet, we can't access
those parameters with Struts 2 tags because no value stack will be created (this only
happens for action-based URLs). However, we can access the parameters using the
HttpServletRequest object—for example, by using JSP EL and the params object.

The <s:action> tag
The <s:action> tag allows the inclusion of action execution. It's like using a
<jsp:include>, but with an action instead of a servlet.

The most important attributes are name— naming the action to include, and
namespace—the namespace of the action, which defaults to the current namespace.

<s:action name="includedAction"/>

If we try using this tag as shown above, we hit a snag as nothing shows up in our
browser where the action's output should be. To get the rendered output of the
action referenced by the <s:action> tag, we must set the executeResult attribute
to true. We then see the normal output of the action rendered in the page containing
the <s:action> tag.

<s:action name="includedAction" executeResult="true"/>

That naturally leads us to wonder why we'd want to use the <s:action> tag
without the executeResult attribute. The answer to that lies in the var attribute
(id in Struts 2.0). The var attribute will put a named instance of the action class itself
in the stack context (for this use we must use the "#" character or it won’t work!)
allowing us to access the action's properties.

<s:action name="someOtherAction" var="includedAction"/>
<s:property value="#includedAction.propertyOfAction"/>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

OGNL, the Value Stack and Custom Tags

[104]

Some people use this technique as a way to initialize data and use it in a page. In
some ways, it's the same as action chaining with finer-grained control. We only need
to execute the actions to initialize their properties needed on a specific page. While a
valid technique, such initialization probably belongs in a service object used by any
action that needs that data. (As we'll see later, we can get that type of functionality
very easily by using Spring.)

Another interesting <s:action> attribute is ignoreContextParams, which
determines whether or not the context parameters (such as action properties, and
so on) from the current request are included in the request to the action referenced
by the <s:action> tag.

There is a somewhat ugly gotcha regarding the ignoreContextParams
attribute. Under some circumstances, it may look as though it's being
completely ignored. This has to do with the interceptor configuration.
By default, it includes the "chain" interceptor, which copies the current
action's context (including properties) to the included action, even
if ignoreContextParams is set to true. This is only an issue if the
included action has properties with the same name as the action you're
using the <s:action> tag from, and we don't want the properties
copied. There are a few ways around this, which we'll discuss in Chapter
8. For now, just be aware that our interceptor configuration can produce
subtle, difficult-to-diagnose behavior under certain circumstances.

As with the <s:include> tag, we can use the <s:param> tag to supply an arbitrary
number of parameters to the included action. Unlike <s:include>, we can make
better use of those parameters without resorting to scriptlets. We can pass in typed
parameters as well. For example, if the action being included has a List<String>
property named list1, the code snippet shown next will pass a List to the action.
The List can be used by the action itself or in its view.

<s:action name="includedAction" executeResult="true">
 <s:param name="foo">I'm a simple String.</s:param>
 <s:param name="list1" value="{'11','22','33','44'}"/>
</s:action>

You might notice that I didn't use a simple value="{1,2,3,4}"
in the previous code snippet: that would actually create a list of
integers. I also didn't use value="{'1', '2', '3', '4'}", as
that would create an array of characters. Putting multiple characters
in single quotes forces OGNL to create a String instead of a
Character. The right way to define this immediate List<String>
is to use value='{"1", "2", "3", "4"}'. OGNL can sneak up
on us sometimes.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 5

[105]

Finally, <s:action>'s flush attribute works similar to <jsp:include>'s flush.

Note that the action tag can introduce subtle issues under certain circumstances.
Details have been discussed on the Struts user mailing list.

The <s:url> tag
The <s:url> tag is used to create (wait for it...) URLs that can be used by standard
HTML anchor tags or, as we'll see when we discuss Struts 2's Ajax capabilities, the
Struts 2 Ajax tags.

There are two ways to create a URL with the url tag—using the value attribute
for non-action URLs, and the action and namespace attributes when referring to
an action.

We use the value attribute when we refer to nonaction resources inside our webapp.
This can be used if the application isn't based entirely on Struts 2. For example, if we
have servlets or raw JSP pages as well as configured actions, used for image tags,
CSS files, and so on.

It can also be used to create external references. Doing so requires a scheme included
in the value attribute, although it doesn't need to be a valid scheme. Any value, as
long as there's a ":" after the first character, will create a non-context-relative URL.

As with other tags we've seen, we can store the generated URL in the stack context by
using the var attribute (id in Struts 2.0), and refer to it later with an <s:property> tag
using the # OGNL stack context reference character.

<a href="<s:url value='localJsp.jsp'/>">Local Resource
<s:url value="http://struts.apache.org" var="strutsUrl"/>
<a href="<s:property value="#strutsUrl"/>">Struts Home
<!-- Using JSP EL in a JSP 2.0 container -->
Struts Home

Creating a URL to a configured action uses the action attribute, using the name
(alias) of the action as the value of the attribute. Note that using an invalid action
name will not result in an error on the page. However, if the struts.devMode
constant is set to true, we'll see an error in the log file.

<s:url action="anAction" var="localAction"/>
Action in current namespace

Use the namespace attribute to refer to an action in a different namespace.

<s:url action="anAction" namespace="differetNamespace"
 id="nsAction"/>
differentNamespace

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

OGNL, the Value Stack and Custom Tags

[106]

The method attribute allows us to specify a specific method in the action class to be
run. By default, the execute() method of an action is run. As we've already seen,
configuring an action and including a method attribute in a Struts 2 configuration file
is another way to specify which action method is run by default.

<s:url action="anAction" method="anActionMethod"/>
<!-- Produces .../anAction!anActionMethod.action -->

Recall that the exclamation point is associated with dynamic method invocation,
which lets us specify an action's method in the URL. This feature is enabled by
default, but might be considered a security risk. We can disable dynamic method
invocation by setting the struts.enable.DynamicMethodInvocation constant in
our Struts 2 configuration file or in our web.xml.

I occasionally find using dynamic method invocation to be helpful. Others either
perceive it as a security risk or think of it as tying the JSP too closely to the Java
implementation. It depends on the application and how its security is configured.
This is another one of those features that may not work for every project or
organization. Turning it off is quick and easy. The same functionality (specifying a
particular method to run on an action class) can be achieved by configuring another
action in the Struts 2 configuration file without any risk, or by using an @Action
annotation in a Convention-based action.

The configuration and JSP snippets shown next will execute the action method
specified, irrespective of whether or not the dynamic method invocation has
been enabled.

<!-- struts.xml snippet -->
<action name="actionRunningMethod" class="anActionClass"
 method="anActionMethod">
...
<!-- JSP snippet -->
<s:url action="actionRunningMethod"/>

Of course, we could create a link to an action using the value attribute by simply
putting in the URL (along with the action suffix—by default ".action") or by using
JSTL's <c:url> tag. While a minor point, doing so makes it more difficult to change
action extensions, and is indicative of the fact that we can't use a few of <s:url>'s
other attributes.

Adding an anchor attribute will allow us to specify a named location on the
destination page.

<s:url action="anAction" anchor="top">
<!-- Appends "#top" to the URL created by the tag. -->

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 5

[107]

As with the <s:action> tag, we can use the <s:param> tag to add request
parameters to the generated URL. The encode attribute of <s:url> controls whether
or not the parameter values are URL-encoded. The escapeAmp attribute of <s:url>
controls whether or not any ampersands between parameters are encoded, which is
required for XHTML.

The includeParams attribute controls whether or not request parameters from
the current request will be included in the generated URL. It currently defaults to
get. Our next example assumes we've visited a page with the URL /recipe/show.
action?id=5 (we're assuming we're already in the /recipe namespace). A value of
all will include all parameters (like a form POST) and is rarely what we'll want.

<s:url action="edit" includeParams="get"/>
<!-- Produces /recipe/edit.action?id=5 -->
<s:url action="edit" includeParams="none"/>
<!-- Produces /recipe/edit.action -->

We can define an application-wide setting for includeParams in our Struts 2
configuration file. The default is get, which is probably not what we want. In
general, it's easiest to set the default to none, and on occasions, we need included
parameters to set the option in the <s:url> tag, usually set to get.

<struts>
 <constant name="struts.url.includeParams" value="none"/>
...

The last three attributes are forceAddSchemeHostAndPort, scheme, and
includeContext, each of which controls what we'd expect. Setting a value in the
scheme attribute will cause the generated URL to use whatever scheme is specified.
Normally, we won't need to set this.

The forceAddSchemeHostAndPort, when set to true, will create a complete URL
including the scheme, host, and port. Again, it's rare we'd use this.

Lastly, includeContext (set either to true or false) determines if the web
application context will be included in the generated URL. This defaults to
true, which is what we want.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

OGNL, the Value Stack and Custom Tags

[108]

Summary
In this chapter, we cover Struts 2's generic (read: non-user-interface) tags, including
the most useful ones, such as iterator, if-elseif-else, and url. The chapter also
covers several tags which we're not likely to use, such as generator and merge. (But
it's nice to know they're there and you never know, they might be the exact answers
we need some day!)

The chapter explores the power of OGNL—an unusually expressive language (when
in the right hands) for those brave enough to use all of its capabilities. We also cover
the value stack—both a stack and a context, which can throw people off.

In the next chapter, we'll take a look at the Struts 2 form tags. We'll also take a quick
look at file uploading and how to prevent double-submits (assuming our business
model doesn't depend on charging people twice for every purchase).

References
A reader can refer to the following:

Struts 2 Generic (non-UI) Tags:
 http://struts.apache.org/2.x/docs/generic-tag-reference.html

Struts 2 OGNL and OGNL Basics:
 http://struts.apache.org/2.x/docs/ognl.html

 http://struts.apache.org/2.x/docs/ognl-basics.html

Opensymphony OGNL URL:
 http://www.opensymphony.com/ognl/

•

•

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Form Tags
The previous chapter explored the Struts 2 generic tags and ventured a bit further
into the wild lands of OGNL. In this chapter, we'll take a look at the Struts 2 form
tags that handle the usual HTML form input elements. We will also take a look at
some combination tags that group two or more form controls together, creating
more complex controls.

As we look at the form tags, we'll get our first introduction to Struts 2 themes and
templates, which control the HTML emitted by the UI tags. We'll also take a look at
how to upload files, and one way to help prevent double submits using Struts 2.

Form tag basics
We saw earlier that we could do all our form tags and error reporting manually
using JSP, some conditionals, and some OGNL. A chapter later, we saw that there
was an easier way to do it, and we cursed the author.

We'll explore the topics of themes and templates later in the book. For now, all we
really need to know is that entire applications, single forms, or individual form
elements have a theme. Themes determine how the Struts 2 form tags are rendered
on our page.

Struts 2 form tags are rendered by FreeMarker templates (Struts 2.1.6 also saw the
addition of a few pure Java tags). The templates handle the basic form element
HTML. Most of them also include some layout, field error checks, and so on.

Different themes use different templates. The nutshell version of theme functionality
is that the simple theme does nothing for us other than render HTML input
elements. The "xhtml" theme uses a table layout and includes field error messages
(as do the rest), whereas the css_xhtml puts everything inside <div> tags and relies
on CSS for layout. Finally, the ajax theme embeds Ajax functionality, but otherwise it
is the "xhtml" theme.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Form Tags

[110]

A theme can be set at the application level for use in every form element by setting
a configuration constant—struts.ui.theme. Here, we'll set the default theme to
"xhtml" (already the default) in a Struts 2 configuration file (as usual, we can also
use a filter initialization parameter, or the struts.properties file):

<struts>
 <constant name="struts.ui.theme" value="xhtml"/>

We can set the theme in several other ways, each overriding a less-specific setting.
The theme of a tag is determined by:

1. Checking the theme attribute of the Struts 2 form input element itself.
2. Checking the theme attribute of the Struts 2 form tag that surrounds it.
3. Checking a scoped theme attribute (as usual, following the page-request-

session-application hierarchy).
4. Finally, checking the configuration file value.

The rest of this chapter assumes the "xhtml" theme (handy for prototyping), but will
occasionally set the theme to simple when we don't want any of the table markup.

The "xhtml" theme in a nutshell
The "xhtml" theme, as mentioned, uses a table layout. The <s:form> tag emits an
HTML <form> tag and a <table> tag inside it. Each "xhtml" theme form element tag
renders a two-column table row—the first column holding the label and the second
column holding the input element.

If a form is validated and has field errors, the input element templates will also
render individual field errors above the input element and change the CSS class of
the label to indicate the error.

This is handy most of the time, but a bit irritating occasionally (we'll learn how to
fix the irritation in Chapter 12). However, during these irritating times, however, we
can always look back at the amount of work we did in Chapter 3 to duplicate a small
portion of the "xhtml" theme. We can also recognize that for simple use cases, it's an
overall win. And when it isn't a win, we can either revert to doing it by hand, using a
different theme, modifying an existing theme, or creating our own.

The <s:head> tag
The <s:head> tag is a bit different in that it's not actually a form tag. However, it
does include both Struts 2 JavaScript utilities, and a theme-specific style sheet. The
<s:head> tag should be in the <head> section of our pages. It loads the default CSS
styles and the Struts 2 javascript from the Struts 2 static directory.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 6

[111]

Any stylesheet we load after the <s:head> tag will take precedence.
Hence, we can still use our own styles for form elements, labels,
errors messages, and so on.

The <s:form> tag
The <s:form> tag, of course, renders an HTML <form> element. In the "xhtml" theme,
it also renders a <table> tag in preparation for the form element tags to come:

<s:form action="anAction">
</s:form>
<!-- Renders as: -->
<form id="anAction" name="anAction"
 action="path/to/action" method="post">
 <table class="wwFormTable">
 </table>
</form>

We'll look at styling in Chapter 12, but it's convenient to see which classes are
used in certain circumstances. The "xhtml" theme renders the form table with the
wwFormTable class.

The <s:form> tag takes a slew of parameters, all of which are detailed in the official
Struts 2 documentation. We need only a few to get basic functionality.

The action attribute defines which Struts 2 action the form will be submitted to. We
don't put the .action extension (or whatever the action extension is) on the attribute
value. Leaving out an action attribute indicates that we're submitting the action that
rendered the <s:form> tag to the current action (postback).

If the action is in a different namespace, we use the namespace attribute, as with the
<s:url> tag.

The method attribute does the same as in an HTML <form> element—setting the
form submission type as either GET or POST. It defaults to POST. This attribute does
not define the action method to be run, it is the form submission type.

The validate attribute determines if some client-side validation will be performed.
However, it defaults to false indicating that only server-side validation will be run
(when applicable). We'll discuss client-side validation further when we cover the
various validation configuration options.

The form's id attribute will default to the value of the action attribute. We can
define our own with the id attribute. We can also set our own CSS styles and
classes with the cssStyle and cssClass attributes.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Form Tags

[112]

Common input element tag attributes
Each input element tag has a slew of possible attributes, but we need only a few for
the most basic functionality. The big three are name, value, and label, which can all
be set with the key attribute. However, we'll go over what they all mean.

Values, labels, and names (and keys)
The name attribute determines the name of the submitted value, just like the name
attribute of an HTML form input element. As we've already seen, if the action we're
submitting to contains a property of the same name, the form value will be set on
that property (with the help of XWork's type conversion).

<!-- Value will be initialized to action's "foo" property
 value (null values will be blank, *not* "null") -->
<s:textfield name="foo" />

The value attribute, if specified, sets the initial value of the input element. If no
value is specified, the value will be initialized from the action property in the name
attribute. The value attribute can be an OGNL expression.

<!-- Sets text element's value to "hello" -->
<s:textfield name="foo" value="%{'hello'}" />
<!-- Sets text element's value to "10" -->
<s:textfield name="foo" value="%{5 + 5}" />

The %{} syntax forces Struts 2 to evaluate the expression. The Struts 2 tag
documentation lists which attributes are evaluated (in theory), but that may mean
by default. The value attribute is listed as not being evaluated. However, when
wrapped in the OGNL escape sequence %{}, the attribute will be evaluated. Some
people prefer to use the %{} characters around all OGNL expressions to resolve any
ambiguity. Suppose that we use the following:

value="hello"

This would actually put the word hello into the text input, without calling
getHello() in our action. In this particular case, we must use the %{} characters to
force evaluation:

value="%{hello}"

In this case, our action's getHello() method is called.

The label attribute sets the label of the input element. We can set this to a simple
string and use our action's getText() methods, if we extended ActionSupport
(remember Chapter 3?). We might set an input element's label as we see here:

<s:textfield name="text1" label="%{getText('text1')}" />

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 6

[113]

This uses the same resource lookup logic we've seen previously.

The key attribute replaces all three attributes, cleaning up our JSP pages quite a bit. It
does the label text lookup and sets the name attribute. For the key attribute to work
properly, our action must extend ActionSupport, as we're relying on its getText()
methods. The key attribute reduces the most common use case to:

<s:textfield key="text1" />

One possible disadvantage of the key attribute is that our label messages must have
the exact same name as our field names. Sometimes, we'll see labels named by the
field name, and a prefix or suffix, such as text1.label.

If our application is not internationalized with messages stored in resource files,
this might seem like an extra, unnecessary step. In some cases, particularly in
smaller applications, it can be frustrating and is arguably not worth the extra hassle.
However, separating text like this can make both development and documentation
easier. It may also provide long-term benefits not originally anticipated.

All the rest
Most of the standard HTML input element attributes are supported. As with
<s:form>, CSS styles and classes are handled with the cssStyle and cssClass
attributes. All the event handler attributes are supported. A complete attribute list
for each tag is available on the Struts 2 documentation wiki.

Basic rendering
The next question is: how does the label and input element get rendered in
relationship to the table element that was rendered by the <s:form> tag. To answer
this briefly, the label goes in the first table cell and the input element in the second.
Given the Struts 2 form defined like this:

<s:form action="anAction">
 <s:textfield key="text1" />
</s:form>

We'll get (once it's formatted nicely) something like the following:

<form id="anAction" name="anAction" ...>
 <table>
 <tr>
 <td class="tdLabel">
 <label for="anAction_text1" class="label">
 Text1 label from resource file
 </label>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Form Tags

[114]

 </td>
 <td class="tdLabel">
 <input type="text" name="text1" id="anAction_text1"/>
 </td>
 </tr>
 </table>
</form>

We'll see later that the tags also render error messages if there are any errors present.

But I don't want tables
The default table layout may not work for a particular application. In that case, we
can use the simple theme (which may actually be too simple, as error messages are
not rendered) or the css_xhtml theme. If neither of these work, we must either create
a custom theme (which can be as simple as taking an existing theme and tweaking it
slightly, or as complicated as completely redoing every template) or avoid the Struts
2 form tags altogether, which may make sense in some circumstances.

Basic form input elements
We'll cover the basic form input elements briefly, leaving a more detailed exploration
for the official Struts 2 documentation. However, it's helpful to get a quick flavor
of what's available. Most of it is obvious. However, when it's not, we'll go a bit more
in depth.

The <s:textfield>, <s:password>, and
<s:hidden> tags
We've already seen <s:textfield> in the previous examples. It renders a text
input element and accepts the maxlength and size attributes as a normal HTML text
input element. It is used to enter strings, numbers, and so on. The <s:password> and
<s:hidden> tags render password and hidden fields, respectively. The <s:hidden>
tag does not render a label.

<s:textfield key="firstname" />
<s:password key="password" />
<s:hidden key="hiddenField" />

The <s:textarea> tag
The <s:textarea> tag renders an HTML <textarea> tag, taking similar attributes
like cols, rows, and so on.

<s:textarea key="directions" />

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 6

[115]

The <s:label> tag
The <s:label> tag isn't an input element per se, but can still be useful. It renders
a table row, as the other input elements do, and emits two HTML <label> tags.
The first label is like the other input elements—the label is either defined explicitly
using the label attribute or by lookup using the key attribute.

The second label is the value of the named element. Instead of rendering an input
element, the <s:label> tag renders the value in an HTML <label> tag, providing
a read-only view of the value. For example, assume that our action property
firstname is set to Albert (and we have a message named firstname):

<s:label key="firstname" />

It will be rendered as:

<tr>
 <td>
 <label for="firstname" class="label">
 First Name:
 </label>
 </td>
 <td><label id="firstname">Albert</label></td>
</tr>

Styling the label containing the data can be done using the normal cssClass
and/or the cssStyle attributes. Note that this only styles the label containing the
data (column two) and not the label for the label (column one). We can use CSS tricks
and style label elements, but it is just not as flexible as it could be.

The <s:radio> tag
The <s:radio> tag renders a collection of radio buttons. As such, the tag requires a
List or Map to be used for the radio button values. There are various ways to control
what gets rendered as the radio button value and label. The simplest method is to
supply a List of any type. Its toString() representation will be used as both the
value and the label. In our action:

public List<String> getGenderOptions() {
 return new ArrayList<String>() {{
 add("Male"); add("Female"); add("Other");
 }};
}

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Form Tags

[116]

We then use the radio tag, providing a list attribute value. Here, we use the key
attribute to retrieve both the form element label and define the action property that
will be set.

<s:radio key="gender" list="genderOptions" />

We can also use an immediate list:

<s:radio key="gender" list="{'male', 'female', 'other'"/>

This renders a row of radio buttons like this:

Relying on the toString() representation is fine for simple types, such as strings or
integers. However, complex values usually require the specification of listKey and
listValue attributes. These attributes specify which bean properties will be used for
the radio button value and label. Perhaps confusingly, the listKey property is used
as the radio button value, while the listValue property will be used as the label.

For example, our action property coolBeans is a collection of beans, each with id
and text fields. We could specify our <s:radio> tag like this:

<s:radio key="stringFromRadio" list="coolBeans"
 listKey="id" listValue="text"/>

Radio button collections can also be created from maps. The map keys will be used
as the radio button values, the map entry's toString() being used as the label.
We cannot use the listKey and listValue with maps. If we use them, we'll get a
FreeMarker exception.

This is a bit of a hassle, as that means we can only use a map containing simple objects,
or we must provide a toString() method suitable for use on our view side. In other
words, we can't have a more complete toString(), which could be used for logging,
and so on.

Maps, of course, are generally unordered. If we need the radio buttons to appear in a
specific order, we'd need to use a TreeMap or another ordered map.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 6

[117]

The <s:checkbox> tag
The <s:checkbox> tag renders a single checkbox. At the time of this writing it only
works well with Boolean (or boolean) properties. Attempting to preselect a checkbox
with, for example, a string value only works if the string is true or false.

<s:checkbox key="checkbox1" />

We can set the value that will be sent back to the browser with the
fieldValue attribute:

<s:checkbox key="checkbox1" value="Y" fieldValue="Y"/>

Browsers do not send a value for unchecked checkboxes to the server on a form
submit. This causes some confusion, particularly among those who choose not to
learn how browsers work. In the "xhtml" theme, the <s:checkbox> tag also renders
a hidden element containing the current value of the checkbox property.

<tr>
 <td valign="top" align="right"></td>
 <td valign="top" align="left">
 <input type="checkbox" name="checkbox1" value="true"
 id="forms1_checkbox1"/>
 <input type="hidden" id="__checkbox_forms1_checkbox1"
 name="__checkbox_checkbox1" value="true" />
 <label for="forms1_checkbox1" class="checkboxLabel">
 Checkbox 1
 </label>
 </td>
</tr>

Notice the funky name for the hidden input element. The hidden form value is
used by the checkbox interceptor. The checkbox interceptor looks for request
parameters with a leading __checkbox_. If anything is found with no corresponding
checkbox value, it indicates that the checkbox wasn't checked and the hidden
value is set on the checkbox's action property. It's a nice way to work around how
browsers handled unchecked checkboxes, neatly encapsulated in a custom tag and
an interceptor. Our mainline code doesn't have to worry about any of this anymore
(Yes, no more ActionForm.reset())

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Form Tags

[118]

The <s:checkboxlist> tag
The <s:checkboxlist> tag, of course, renders a list of checkboxes. It operates
similar to the <s:radio> tag, except that the action property being set should be a
collection (or array) rather than a single value. Similar to the <s:radio> tag, using
a map will result in the map keys being the checkbox value and the map entry's
toString() as the label. You may also use the listKey and listValue attributes,
as with the radio tag.

<s:checkboxlist key="cblist" list="listOfCbs"/>

At the time of writing this chapter, the hidden fields rendered by the <s:checkbox>
tag are not rendered by <s:checkboxlist>. For example, if we needed to do
something with the collection of options that were unselected, we'd need to do
that on our own.

Moreover, as of this writing, <s:checkboxlist> ignores the cssClass and
cssStyle attributes, making styling it a bit more problematic than the other UI tags.

Using the <s:checkboxlist> tag to implement a
user story
Let's return to our recipe application for a moment, create a user story, and prototype
an implementation. This user story, like all user stories, is short and sweet:

Users can check off any number of recipe types (like "appetizer", "dessert",
and so on).

First, we'll create a RecipeType class, which seems to consist only of an integer ID
and a string name. Mercifully, we won't list the code here (it's as we'd expect).

We'll also create a RecipeTypeService interface and a fake implementation, as we
did with the recipes. We give the interface a getAll() method, returning a list of
RecipeTypes. The fake implementation just returns a hard-coded list.

For now, our recipe class will get a List<String> recipeTypes to hold its
collection of recipe type names, and our FakeRecipeService is modified to add
some recipe types to each of our test recipes.

We'll also take this opportunity to modify our new recipe form to use Struts 2 tags,
significantly cleaning it up and again making us crabby as we didn't do it that way
in the first place. As a brutal reminder, here's what the JSP looked like for just the
recipe name:

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 6

[119]

<tr>
 <th>Name</th>
 <td>
 <s:if test="getFieldErrors().get('recipe.name') != null">
 <div class="error">
 <s:property
 value="getFieldErrors().get('recipe.name')[0]" />
 </div>
 </s:if>
 <input name="recipe.name" type="text" size="20"
 value="<s:property value="recipe.name"/>" />
 </td>
</tr>

Converting the form to use Struts 2 form tags, putting our labels in a resource file,
and adding the new recipe type field, reduces our form JSP to this:

<s:form action="newRecipe">
 <s:textfield key="recipe.name" />
 <s:textfield key="recipe.description" />
 <s:checkboxlist key="recipe.recipeTypes"
 list="recipeTypeOptions"
 listKey="name" listValue="name" />
 <s:textarea key="recipe.ingredients" rows="5" cols="40" />
 <s:textarea key="recipe.directions" rows="5" cols="40" />
 <s:submit />
</s:form>

It's marginally cleaner (just like I have a marginal penchant for understatement).

In the above JSP fragment, we see that we're providing the list of recipe type options
using an action property named recipeTypeOptions. Here's the rub: to get to our
form we're requesting /recipes/new-recipe, and relying on Convention Plug-in to
create the backing action for us. We need a way to get the recipe types into our action
for use on the JSP.

There are several ways to accomplish this. We could just put the recipe types into
application scope, so they can be used across the application with no database calls.
However, this is not contrived enough for a book example. Therefore, we'll look at
two additional options.

One solution would be to create a recipe action subclass—NewRecipeAction. It
would implement the Preparable interface and contain a recipeTypeOptions
property. We'd put code in its prepare()method to load up the recipe types.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Form Tags

[120]

We'll go a second route. We'll create a single class, NewRecipeAction, which
implements Preparable, and uses the @Action annotation to create another
URL handler. Both the initial form display (handled by ActionSupport's default
execute() method) and the form submit (defined using the @Action annotation)
are handled in the same class. The action, minus saving new recipes, and without
imports, getters, and setters is shown next:

package com.packt.s2wad.ch06.actions.recipes;
public class NewRecipeAction extends ActionSupport
 implements Preparable {

 private Recipe recipe;
 private Collection<RecipeType> recipeTypeOptions;
 private static RecipeTypeService recipeTypeService =
 new FakeRecipeTypeService();

 public void prepare() throws Exception {
 recipeTypeOptions = recipeTypeService.getAll();
 }

 @Action(value = "new-recipe-process")
 public String process() {
 // Handle saved recipe.
 return "thanks";
 }
}

We'd also need to make sure that validation errors return us to /recipes/new-
recipe. There are several ways we could do this with the Convention Plug-in,
including using the @Result annotation to define an "input" result.

The <s:select> tag
The <s:select> tag renders a select box, with the options filled from its list
attribute, similar to the radio and checkbox list tags.

As with the other collection-oriented tags, if our collection is contained in a map,
the map key will be used as the value, and the map's toString() value will be
used as the option text. When using a map, the listKey and listValue attributes
are ignored. However, the select tag doesn't give us a FreeMarker exception. The
attributes are just ignored, and we get a select box with empty
values and text.

The optional headerKey and headerValue attributes specify an <option>
rendered first, at the top of the list of options. This can be used to specify
instructional text—for example, "-- Select State --" or similar. The headerKey
attribute specifies the header option value, while the headerValue specifies
the header option's text.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 6

[121]

The emptyOption attribute specifies whether or not a blank <option> will be
generated at the top of the <option>s, although, if one is specified after the
header option. In general, it's likely that only one of the emptyOption and
headerKey/headerValue attributes is used—it's not a requirement though
(it's fine to use both, at least from a technical standpoint).

The <s:select> tag also accepts a multiple attribute, which does what we expect.
Additionally, if the value passed to the tag (through either the key or the value
attributes) is a collection, the multiple preselects will be rendered appropriately.

The <s:optgroup> tag
The <s:optgroup> tag provides an HTML <optgroup> element within a <s:
select> tag. It takes a label attribute to specify the label of the option group.
It can either be an immediate value or a getText() call as we've seen previously.

The <s:optgroup> tag is a bit quirky when using a list as an argument to the list
attribute. If we use a map as the list argument, everything is fine (although once
again, providing listKey and listValue attributes produce a FreeMarker exception).
When we use a List, we must provide both the listKey and listValue attributes, or
we'll receive a FreeMarker template exception.

One potential gotcha with <s:optgroup> is that if all our options are contained in
optgroups, we must still provide a list to the surrounding select tag because the list
attribute is required. We can use OGNL's immediate list syntax to provide this:

<s:select name="optg1" list="{}">

Not a huge deal, but it is something to keep in mind.

The <s:submit> tag<s:submit> tag
The <s:submit> tag renders a "submit" input element. Either the key or the value
attributes may be used to specify the text of the submit button. As usual, the key
attribute will perform a property lookup, while the value attribute will use its value
as the button text.

The submit button accepts a type attribute, which may be input, button, or image.
The input type renders a normal submit input element, while the button and
image types render what we'd expect. IE (of course) has certain issues with button
input elements. However, if we are targeting other browsers, button inputs are nice
because we can use different values for the button text and value.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Form Tags

[122]

The <s:submit> tag also accepts the action and method parameters. These require
a bit of hackery on the server side to let us specify the action we'll submit to, and/or
the action method to execute, when we click to submit.

If we specify an action attribute and examine the emitted HTML (always a good
idea), we'll notice that the input element's name attribute has changed to action:
plus whatever we specified as the action attribute's value. Similarly, specifying a
method attribute sets the name to method: plus the value of the method attribute.

If we specify both, the input element's name attribute is set to action: plus the action
and method attributes joined by "!" (an exclamation mark). The action-plus-method
attributes require that dynamic method invocation is enabled, and may not always
leave the expected URL in the browser's address bar, if such things matter to us.

The <s:reset> tag
This tag renders a "reset" input element. It accepts the same attributes as the
<s:submit> tag. However, if neither the action nor the method attributes are
specified as a normal HTML reset, it will just clear the form and will not perform
a submit.

Combination form tags
Struts 2 provides a set of "combination" form tags that combine several HTML input
elements together and provides some enhanced functionality (think of them as
simple HTML/JavaScript widgets).

Getting these tags to do what we want can sometimes be more trouble than it's
worth. While these tags do provide some value for simple use cases, we'll often
find that using their functionality within an existing design can be problematic.
It may be a better idea to either create our own components or graduate to a real
client-side framework.

<s:combobox> tag
The <s:combobox> tag renders both a text input element and a select box.

<s:combobox key="combo1" list="hellos" />

The text element can be filled directly, or by changing the select box's value. The text
value is updated only when the select box value changes, meaning, we'll almost always
want to include either the emptyOption or the headerKey/headerValue attributes.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 6

[123]

As the text box won't be filled (or cleared) if the select box value is empty, the default
behavior of the <s:combobox> tag may not always be what we want. Also, selecting an
empty option will not clear the text box—the JavaScript checks for nonempty values.

Using a map for the list attribute will again act in a way that is a bit counter
intuitive. The listKey and the listValue attributes are ignored completely,
although no exception is thrown. However, if the map uses something like an
integer as its key, the text box will be filled with an integer rather than text,
opposite of what we probably want.

The <s:updownselect> tag
The <s:updownselect> tag renders a select box along with an optional set of buttons
for moving the currently selected list item (or items) up or down in the list, or to
select all items in the list. Note that all the items in the list are submitted. This is a
control for ordering a list, not for selecting individual list items.

<s:updownselect key="updown1" list="goodbyes"/>

The creation of the buttons is controlled by three attributes—allowMoveUp,
allowMoveDown, and allowSelectAll—each of which controls the button we would
expect. The label for each may be specified with the moveUpLabel, moveDownLabel,
and selectAllLabel attributes. The defaults are "^", "v", and "*".

Again, the listKey and listValue attributes are ignored if the list attribute
evaluates to a map, but no exception is thrown.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Form Tags

[124]

The <s:optiontransferselect> tag
The <s:optiontransferselect> tag renders two select boxes along with a set of
buttons for moving selected options between the two selects, moving all elements
from one to the other, and ordering selections within each. Button rendering and
button labels are controlled by a long list of attributes.

The only required attributes are:

list: Specifies the options for the lefthand select box (the "select from" list)
doubleList: For the righthand select box (the "select to" list, allowing for
initially selected items)
doubleName: Provides a name for the entire component—the action property
that will be set on form submission

The simplest use looks like this, and renders as follows:

<s:optiontransferselect label="Transfer" list="options"
 doubleList="{}" doubleName="rightList" />

The usual suspects for list-oriented attributes are available for both the rendered
select boxes—prefix the attribute name with double to apply to the second
(righthand) select box. The same applies for event handler attributes. For example,
the onclick attribute is for the lefthand list, whereas the doubleOnclick attribute is
for the righthand list.

•

•

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 6

[125]

All entries of the righthand select box are submitted.

Leaving the doubleName element blank, might, at the minimum,
cause the tag to be nonfunctional, and might actually lock up some
browsers and spike the CPU.
Note that the previous image also used some minimal CSS to get
the empty righthand box. If there are no preselected list items,
it will collapse on itself, would be narrow, and would look odd.

All of the control buttons are optional and are controlled using tag attributes. For
example, the buttons labeled <<-- and -->> (which move the original list of items into
the lefthand or righthand boxes) can be removed by setting the allowAddAllToLeft
and/or allowAddAllToRight attributes to false.

Perhaps surprisingly, removing the "add all" buttons won't change the height of the
combination control. Setting the size attribute doesn't quite work either. We actually
need to set both size and doubleSize to reduce the height of the entire control.

There are also attributes for specifying JavaScript to run on the click of any of the
buttons, and so on (see the Struts 2 documentation wiki for an exhaustive list).

The <s:doubleselect> tag
Finally, the <s:doubleselect> tag renders two select boxes where selecting an
item in the first select box (the lefthand select) determines which values are visible
in the second select box (the righthand select). The collection for the second select
box is chosen using an OGNL expression. The example provided on the Struts 2
documentation wiki looks something like the following, but has only two elements
in the lefthand list. Here, we're using a three-element list, making the doubleList
attribute's OGNL a bit awkward.

<s:doubleselect
 doubleName="dsel2"
 list="{'one', 'two', 'three'}"
 doubleList="top == 'one' ? {'1a', '1b'}
 : top == 'two' ? {'2a', '2b'}
 : {'3a', '3b'}"/>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Form Tags

[126]

At the time of writing this book, the JavaScript generated for this tag fails under
Convention-based actions because of the hyphen in the action names (this will
be addressed later). Note also that we must use CSS if we want equally sized
select boxes.

For longer lists (in either select box), the immediate lists aren't really an option.
However, we recall that OGNL can call arbitrary methods with parameters. Using
this and the idea that the currently-selected item in the first select box is called
"top", leads us to the following solution. It's more realistic because in many (most?)
applications, both sets of lists will come from the server.

<s:doubleselect doubleName="dsel4"
 list="doublelist1"
 doubleList="getDoublemap1(top)"/>

Here, we've created a method getDoublemap1(String s) in our action that returns
the appropriate collection type for our application. We just use the currently selected
value of the first list to determine the contents of the second list.

Uploading files
The <s:file> tag renders a standard file form element. The file upload itself is
handled using the upload interceptor, included in the default interceptor stack
(we'll cover that part later). For now, it's enough to know that the file upload
interceptor puts uploaded files in a temporary directory and (as we'll discover),
deletes them after the action executes.

Handling a single file is straightforward. The temporary uploaded file is available
to us as a java.io.File in the action, as are the original filename and content
type. Let's say we want to upload a single file to an action property named
(unimaginatively) file1:

<s:form action="file1" enctype="multipart/form-data">
 <s:file key="file1"/>
 <s:submit/>
</s:form>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 6

[127]

Our action has a File property, as well as string properties, for both the file name
and content type (getters and setters not shown).

private File file1;
private String file1ContentType;
private String file1Name;

The upload interceptor sets those action properties for us. The File's filename
will be system-generated and will consist of the default temporary directory and
a temporary file name. The file name property will be the name of the file on the
client's computer and will vary depending on what browser the client is using. Some
browsers return the full pathname of the file, while others return only the file name.

We can change the temporary upload directory (it defaults to the container's
javax.servlet.context.tempdir property) by setting a parameter on the upload
interceptor (which we'll see in Chapter 8).

Note that we must download the Commons File Upload and the IO libraries
(unless we want to use and configure a different multipart parser) and include
them on our web app's classpath. The standard download doesn't (as of this writing)
include these dependencies. Even if we're not uploading files, we must have those
libraries on the classpath, or our application will fail on startup.

If we're paying attention (and have our logging set up to show INFO-level
messages from the Struts 2 hierarchy) after our action processes the file upload
form submission, we'll see a message from the upload interceptor saying that it has
deleted the temporary file.

This means that, by default, we must copy uploaded files to a permanent location if
we need them after the action executes. This is made trivial with the Commons
IO library FileUtils.copyFile(File, File), or a similar method. Expecting the
file to be saved in the temporary upload directory is a common file upload gotcha.
If we want to keep uploaded files after action execution, we must copy them to their
final destination(s).

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Form Tags

[128]

Preventing double submits with the
<s:token> tag
We all hate being charged twice for a single purchase and double submits are really
irritating (and occasionally expensive). Struts 2 provides the <s:token> tag (along
with two interceptors, token and tokenSession) to help eliminate double submits.
We'll sneak a peek at the token interceptor's configuration to see how to use the
<s:token> tag.

The default interceptor stack doesn't include the token interceptor. We must
add it to the actions that need it (or our default interceptor stack) in our Struts
2 configuration file, or using the @InterceptorRefs and the @InterceptorRef
annotations of our Convention Plug-in.

<action name="dsub"
 class="com.packt.s2wad.ch06.examples.DoubleSub">
 <interceptor-ref name="token"/>
 <interceptor-ref name="defaultStack"/>
 <result name="input">/WEB-INF/content/examples/doublesub.jsp
 </result>
 <result name="invalid.token">
 /WEB-INF/content/examples/doublesub.jsp</result>
 <result type="redirectAction">thanks</result>
</action>

We then put the <s:token/> tag in our form:

<s:form action="dsub">
 <s:token/>
 <s:textfield key="text1"/>
 <s:submit/>
</s:form>

The <s:token/> tag puts a unique identifier in the form that's checked by the
token interceptor. The first time we submit the form, we're redirected to the
"thanks" page. If we hit the back button in our browser (taking us back to the form)
and submit again (or if we double-click the submit button), we're taken to the same
page—courtesy the result named invalid.token, returned by the token interceptor
(not our action).

The session token interceptor handles a double submit with a bit more sophistication
(we'll cover it briefly in Chapter 8).

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 6

[129]

Another common technique to avoid double-submits is to disable
the submit button or link using JavaScript, eliminating the need for
techniques such as the <s:token/> and the interceptor combination.

Summary
This chapter covers the Struts 2 user interface tags and how they can be used to
significantly reduce the amount of clutter on our JSP pages. The chapter also takes
a quick look at file uploading and double submission prevention. We also get a hint
of the power and the utility of the themes and templates used by Struts 2 to generate
tag HTML.

In the next chapter, we'll take a look at form validation using both XML and
annotations, avoiding manual validation, thereby cleaning up our action code
further. We'll also see how to create our own validators. We'll also look at the
closely related topic of type conversion, that is, taking form values (always strings,
remember) and converting them into useful Java objects. We've already seen some
examples of this. However, we'll now cover more, including collection support and
how to create our own type converters.

References
A reader can refer to the following:

Struts 2 UI Tags Documentation:
 http://struts.apache.org/2.x/docs/ui-tag-reference.html

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

www.allitebooks.com

http://www.allitebooks.org

Form Validation and
Type Conversion

In the previous chapter, we covered the Struts 2 form tags. We started to see how the
framework, including its interceptors, themes, and templates, provide a lot of out of
the box power. In this chapter, we'll continue our exploration of form topics, looking
at form validation and its spooky cousin, type conversion.

Validation helps to ensure that only appropriate data is passed to our actions. Type
conversion converts form data (which is always sent from the browser as a string)
to various Java types such as Integers, Dates, or our own custom conversions.

In this chapter, we'll take a more detailed look at:

How to configure form validation in various ways
The validations supplied by the framework
The basics of type conversion
How to customize type conversion and validations for our specific
application needs

Form validation
Validation is a topic that could fill up a book in itself. There's client-side validation,
server-side validation through either XML or annotations (or both) available on both
actions and models, Ajax validation, custom validation, interceptor stack interaction,
issues relating to type conversion, manual validation, and so on.

We'll whittle this down somewhat and provide a basic validation overview,
highlighting how using even a small amount of configuration or annotations,
we can create complex and robust validations.

•

•

•

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Form Validation and Type Conversion

[132]

Manual validation
As we saw during our discussion regarding ActionSupport's Validateable and
ValidationAware interfaces, the validate() method will be run during the default
workflow, returning to the "input" result if there are any validation errors.

In Chapter 3, we implemented some simple validation on some recipe fields by
manually calling Commons Lang StringUtil.isBlank() on our action properties,
adding field errors for each blank field.

We can, of course, run any code in the validate() method. This means that
validation can run the entire gamut, from the simple presence of a value to
arbitrarily complex business-side validation, using services or in the validation
method (not recommended in general).

However, for simple form validation it can be quicker and easier to use either
XML-based validation or annotation-based validation.

Configuring XML validation
Struts 1 users will be familiar with XML-based validation. Struts 2 provides similar
XML-based validation with an added bonus, which is similar to the message
resource file lookup. Validation configuration files are located hierarchically,
named after an action, its parent classes, or its interfaces.

To get started, we'll rework our simplistic recipe validation to use XML-based
validation. Previously, we were validating manually in our new recipe action's
validate() method.

public void validate() {
 if (StringUtils.isBlank(recipe.getName())) {
 addFieldError("recipe.name",
 getText("recipe.name.required"));
 }
 if (StringUtils.isBlank(recipe.getIngredients())) {
 addFieldError("recipe.ingredients",
 getText("recipe.ingredients.required"));
 }
}

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 7

[133]

We'll delete that method. Our XML-based form validation will mirror our original
manual validation criteria—the name and the ingredients must not be blank.
We'll create an XML validation file in the same package as our action, and name
it NewRecipeAction-validation.xml. The naming convention is simple; it's our
action's class name with an appended-validation.xml. There are a few additional
naming conventions detailed on the Struts 2 documentation wiki.

<!DOCTYPE validators PUBLIC
 "-//OpenSymphony Group//XWork Validator 1.0.2//EN"
 "http://www.opensymphony.com/xwork/xwork-validator-1.0.2.dtd">
<validators>
 <validator type="requiredstring">
 <param name="fieldName">recipe.name</param>
 <message>Recipe name is required.</message>
 </validator>

 <field name="recipe.ingredients">
 <field-validator type="requiredstring">
 <message>Recipe ingredients are required.</message>
 </field-validator>
 </field>
</validators>

The first thing we notice from the above code is that there are two different ways to
specify validation for a specific field. We can either use a <validator> element and
provide the field name in a <param> element, or use a <field> element.

When we have a single validation for a field, it really doesn't matter which
convention we use. As validation becomes more complex, the <field> convention
becomes more readable because it groups validations more logically.

If we submit our form with one of the required fields missing, we are taken back to
the form, our field label is red, and the appropriate messages from our validation file
for the missing fields are displayed.

Let's add an additional validation. We'll now require that the recipe name must
be at least three characters long. We add the following to our validation XML file:

<validators>
 ...
 <validator type="stringlength">
 <param name="fieldName">recipe.name</param>
 <param name="minLength">3</param>
 <message>
 Directions must be at least ${minLength} characters long.
 </message>
 </validator>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Form Validation and Type Conversion

[134]

Perhaps we can now see one reason why the <field> element makes more sense
for field-specific validations. Using <validator> elements and supplying the
field name parameters gives a disjointed view of what's actually intended, even
though it works. It makes more sense to group validations by field, rather than by
validation type:

<field name="recipe.name">
 <field-validator type="requiredstring">
 <message>Recipe name is required.</message>
 </field-validator>
 <field-validator type="stringlength">
 <param name="minLength">3</param>
 <message>
 Directions must be at least %{minLength} characters long.
 </message>
 </field-validator>
</field>

We're able to include the minLength parameter in our error message. Validation
messages can include OGNL expressions and refer to anything available on the
OGNL value stack. (Yes, that includes action properties—another big win.)

Note again that as of Struts 2.1, we can use the same %{} OGNL notation in our
property and validation files (as we do here) as we use in our JSP pages. Previously,
only the ${} notation was supported, which led to some confusion.

Customizing validation messages
There are several ways to customize and improve our validation messages,
which have so far been specified explicitly. The first thing we notice is that
our validation messages repeat, more or less, the field names defined in our
package.properties file.

Because we can use OGNL to access the value stack, even in our validation files,
we can use our action's getText() method to include the field name defined in the
property file. (This may not always be possible due to grammar, capitalization, or
other requirements, but we'll get to that.) Here's a fragment showing this technique
with the recipe name field.

<field name="name">
 <field-validator type="requiredstring">
 <message>%{getText(fieldName)} is required.</message>
 </field-validator>
 <field-validator type="stringlength">
 <param name="minLength">3</param>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 7

[135]

 <message>
 %{getText(fieldName)} must be at least %{minLength}
 characters long.
 </message>
 </field-validator>
</field>

The fieldName value is set with the <field> element's name attribute by Struts 2.
This allows us to remove a common point of duplication and eliminate field label
and validation message field name mismatches.

Our next observation is that the entire message can be localized. We can move
our messages into our package.properties file (or another file in the file lookup
hierarchy), while maintaining our OGNL method calls and parameters. The
<message> elements now use a key attribute to define the messages, for example:

<field name="name">
 <field-validator type="requiredstring">
 <message key="requiredstring"/>
 </field-validator>
 <!-- etc. -->

Our property file now has an entry containing our original message verbatim.

requiredstring=%{getText(fieldName)} is required.

Eventually, we might move global validation messages like this into either a global
resource file or a root package.properties file.

Also note that we've already run into a potential grammar problem due to
our "ingredients" validation with our requiredstring message. The message
"Ingredients is required" sounds awkward to many English speakers. Instead, it is
better expressed as "Ingredients are required"—the perils of obsessive-compulsive
web application development!

What validations are available?
The default validations are defined in the XWork 2 library and include a basic set
of validators. It is likely that most projects will either need to define their own
custom validators, or use a combination of pre-built and manual validation. Manual
validation is particularly useful when there are complex business-side validations
that cannot be expressed in XML, or are too awkward to be expressed. It also allows
the re-use of existing business logic.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Form Validation and Type Conversion

[136]

The requiredstring validator
We've already seen the requiredstring validator, but there is a parameter available
we didn't cover. The trim parameter defines whether or not the string will be
trimmed using the java.lang.String.trim() method prior to performing the
validation. The parameter has true as its default value. Hence, if we want the user
to be able to enter only spaces, we must set the trim parameter to false using the
<param> element.

 <field-validator type="requiredstring">
 <param name="trim">false</param>
 <message key="requiredstring"/>
 </field-validator>

In general, this is rarely what we want, which is why it defaults to true.

The trim parameter only trims the string for the length check. It does not
trim the field value itself—don't expect a trimmed string in the action.
We'll see a few ways around this as we move through the book.

Note that the requiredstring validator is not the same as the required validator,
and has a different behavior. The required validator (covered shortly) checks for
nullness. Browsers send an empty string (""), not null, when a text element isn't
filled in. This means a text input field element's action property will never be null,
it will always be the empty string. Therefore, the required validator's check won't
work for a text input field.

The stringlength validator
We've also seen the stringlength validator, but not its maxLength or trim
parameters. The trim parameter works the same way as it does with the
requiredstring validator.

The maxLength parameter does what we'd expect—setting an upper bound on
the length of the field value. To demonstrate maxLength, we'll change our recipe
name validation to require a name between three and eight characters and create a
validation message including the upper and lower bounds.

<field-validator type="stringlength">
 <param name="minLength">3</param>
 <param name="maxLength">8</param>
 <message key="stringlength"/>
</field-validator>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 7

[137]

Creating a parameterized stringlength message is similarly easy.

stringlength=%{getText(fieldName)} must be between %{minLength} and
%{maxLength} characters.

However, this isn't a generic string length validation message. Some length
requirements apply only to a minimum number of characters, with no limit set
for maximum number of characters (or the opposite). Fixing this leads us to a
side trip into the world of validation messages.

Detour—playing games with validation messages
There are many games we can play to create robust, human-readable error messages
under very complex circumstances. The easiest solution to fix our stringlength
validation message is to provide separate messages depending on whether or not
we've specified the minLength and/or maxLength parameters.

stringminlength=%{getText(fieldName)} must be at least %{minLength}
characters.
stringmaxlength=%{getText(fieldName)} must be under %{maxLength}
characters.
stringminmaxlength=%{getText(fieldName)} must be between %{minLength}
and ${maxLength} characters.

We then use the appropriate message key in our field validator configuration,
and rely on the developer to use the correct message. We'll come back to this, as
developers rarely do the right thing.

Next, we'll create a new requirement, which states that we must echo the data
entered back to the user along with the number of characters actually entered,
focusing on the recipe name field.

At the time of writing this book, there appears to be no trivial way to
access the actual value being validated from an external message file.
Hence, we will be going back to using messages in our validation file.

Once again, we'll rely on OGNL's ability to call arbitrary methods.

<field-validator type="stringlength">
 <param name="minLength">3</param>
 <param name="maxLength">8</param>
 <message>
 Name must be between %{minLength} and %{maxLength}
 characters; '%{recipe.name.trim()}' is
 %{recipe.name.trim().length()} characters.
 </message>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Form Validation and Type Conversion

[138]

Our next requirement change is that we must use the stringMinLength or
stringMaxLength messages (currently defined in our properties file) depending
on whether or not the value we entered is too long or too short. This provides a
more specific error message. Again, OGNL allows us to do this relatively easily.

<message>
 <![CDATA[%{name.trim().length() < minLength ?
 getText('stringMinLength') :
 getText('stringMaxLength') }
]]>
</message>

The CDATA allows us to use the < comparison operator. OGNL's ternary operator
allows us to check the length of the trimmed data and retrieve the appropriate
message. The last requirement we'll give ourselves is to put our message in a
property file (for I18N), but retain the use of our minimum length and maximum
length messages. This is harder.

As noted, the current crop of XWork validators don't provide trivial access to the
value being validated, but they're still accessible using OGNL and some knowledge
of the value stack during validation. During validation, the top-most stack item is
the validator itself (meaning it would be trivial to expose the value being validated).
The next item down the stack is our action, meaning our action properties are
also available.

By using OGNL's map-style access to action properties, we can construct an ugly,
but requirement-achieving OGNL statement allowing us to move our message
into a property file, giving us a stringminmaxlength message that looks like this
(formatted nicely):

stringminmaxlength=
 %{[1][fieldName].trim().length() < minLength
 ? getText('stringminlength')
 : getText('stringmaxlength') }

We already know that fieldName refers to the name of the field being validated.
The weird bit is the [1], which looks like an array reference without the array.
This is OGNL-speak. An [n] by itself references the stack minus the first n elements.
This means that when our expression is evaluated against the value stack, we'll
start searching from the nth element and move down. The [fieldName] portion
uses map-style notation to access the action property named inside the brackets
(here, whatever value fieldName contains).

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 7

[139]

With clever use of OGNL, we can put all sorts of functionality in our validation
messages (and any other message, for that matter), including I18N-ed pluralization
rules. Sometimes it looks a little scary, but we laugh in the face of danger to meet our
client's many and perverse requirements.

I have been a bit deceptive (here, by "a bit", I mean "a lot") because the
above capability just discussed is very cool and handy. Now, let's talk
about our big but... Our current recipe action is using a Recipe class
instance in the form. Our OGNL treachery will work only if the field
name isn't nested.
In other words, we're validating recipe.name. This means we're
trying to use the OGNL expression ${[1]['recipe.name']}, which
we'll discover doesn't work. This breaks some of the convenience of the
message tricks we have just discussed.

As we'd expect, there's a workaround, though bulkier. Recall that ActionSupport's
getText() method comes in many flavors, including one that takes a list of message
parameters. This sounds promising, and it turns out that it fixes all our problems
(at least those surrounding this particular validation message requirement).

In our validation file, where we have easy access to our recipe.name property,
we can define our message as follows:

<message>
 <![CDATA[
 ${recipe.name.trim().length() < minLength
 ? getText('stringminlength', {recipe.name,
 recipe.name.length()})
 : getText('stringmaxlength', {recipe.name,
 recipe.name.length()}) }
]]>
</message>

We also update our stringminlength and stringmaxlength messages and use
the standard Java positional parameter notation (not OGNL, there's no "$" or
"%") to access the parameters passed in with the getText() call (we'll only show
stringminlength).

stringminlength=${getText(fieldName)} must be at least
 ${minLength} characters; ''{0}'' has a measly {1}.

Of course, we went a bit crazy in this example, choosing the minimum or maximum
message when we could have used a single message. This was more to show off
some of the capabilities provided to us by OGNL at several levels of the validation
message process.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Form Validation and Type Conversion

[140]

The required and int validators
The required validator checks for the nullness of a form field. This is a little bit
misleading. However, as even empty form fields are sent to the server, they won't be
null, the HTTP parameters are empty strings. The notable exceptions are unchecked
checkboxes. Even that is not entirely true with the use of the Struts 2 <s:checkbox>
tag (recall its use of hidden fields), so even checkbox properties won't be null.

To explain a bit further, we'll show a first attempt at validating two numbers
(example form just has text fields for both):

<s:form action="reqint">
 <s:textfield key="reqint"/>
 <s:textfield key="reqInteger"/>
 <s:submit/>
</s:form>

Our action has reqint and reqInteger properties—the first a primitive, the second
an object. The reason for having one of each will become clear shortly (getters and
setters elided):

public int reqint;
public Integer reqInteger;

Our first attempt at a validation file defines an int validator for each field, expected
to be in the range of 10 to 20 (both inclusive).

<field name="reqint">
 <field-validator type="int">
 <param name="min">10</param>
 <param name="max">20</param>
 <message>
 'int' must be between ${min} and ${max} (inclusive).
 </message>
 </field-validator>
</field>
<field name="reqInteger">
 <field-validator type="int">
 <param name="min">10</param>
 <param name="max">20</param>
 <message>
 'Integer' must be between ${min} and ${max} (inclusive).
 </message>
 </field-validator>
</field>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 7

[141]

When we visit the form URL, we notice that the input element for the int field
reqint is already filled in with a "0", whereas the Integer field reqInteger is
empty. This is because the default value of a primitive int is 0, while the default
value of an Integer is null (this alone may determine whether we use primitives
or objects as properties).

If we submit the form as is, we'll get the message saying that reqint must be
between 10 and 20. However, there is no message for the reqInteger field even
though it's empty, and clearly not between 10 and 20.

Why? The int validator (more precisely, its parent class) does not do the range
comparison if the value is null. This is where the required validator makes an
appearance. It must be used for non-primitive properties that should have a value.

We just add the required validator to the reqInteger <field>:

<field-validator type="required">
 <message>Missing the 'Integer' value.</message>
</field-validator>

When we submit a fresh form, we'll now get an appropriate error message when the
reqInteger field is empty.

But wait, there's more
Everything looks good until we enter a non-numeric value. If we enter "adf" in both
fields, we get back two different messages for each field. The int field gives us the
int error, the Integer field gives us the required error, and both claim that there's
an "Invalid field value". Something has happened behind the scenes, producing a
message we didn't define.

This error message appears due to a type conversion error ("adf" is not a valid
numeric value, at least in base 10) and is added to our field-specific by the
conversionError interceptor. We can disable this by removing the interceptor
from our action's interceptor stack if it meets our application's needs.

We can override the type conversion error message in our property file. We can
either override the global I18N key xwork.default.invalid.fieldvalue or create
individual error messages for each field by creating messages named invalid.
fieldvalue.xxx, where xxx is the name of the field.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Form Validation and Type Conversion

[142]

The double validator
The double validator works like an int validator, but validates doubles. However, the
double validator has parameters for both inclusive and exclusive range comparisons
(the int validator is always inclusive). Because floating point numbers are inherently
inaccurate, we might occasionally need both inclusive and exclusive comparisons.

The parameters are named minInclusive, maxInclusive, minExclusive, and
maxExclusive, each being what we'd expect. Any parameter that is set will be
checked, and any combination is legal. For example, we would specify both
inclusive parameters and only one exclusive parameter, and so on.

Using a Double property requires the use of the required parameter, as with the
int validator. Primitive double parameters will be filled beforehand in the form
with their default value "0.0" (unless of course our action initializes it in some way).

The email validator
The email validator ensures that a field is a valid email address. Technically, it
only validates most email addresses, but covers the majority of common addresses.
The regular expression for validating an RFC-compliant email address is about one
page long, and is not to be trifled with. (To paraphrase an old joke: I had a problem
validating email addresses. I decided to use regular expressions, and then I had
two problems.)

The email validator is a subclass of the regex validator discussed next. One
potential gotcha is that if we're using a string property for the address, we must
use the requiredstring validator to make sure there's an email address to validate.

The url validator
The url validator, unlike the email validator, is not a regex validator subclass. It
uses an XWork utility class to check for valid URLs using the default java.net.URL
constructor (with a trivial hack so HTTPS URLs are properly validated).

As with the email validator, if we use a string property for the URL, we'd need to
use the requiredstring validator if a URL is required.

The date validator
As the name suggests, the date validator validates dates, with optional min
and/or max parameters for validating date ranges. Our action property is usually
a java.util.Date.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 7

[143]

Recall again that the server receives a string parameter from the form—everything
comes from the browser as a string. We'll cover how this type conversion works in a
bit. For now, the short explanation is that XWork has a default set of type converters,
one of which knows how to convert strings into dates. By default, XWork will use
the Date.SHORT format for the appropriate locale. Failing to do this, it will use the
default system locale.

The regex validator
The regex validator accepts arbitrary regular expressions (Java syntax) and validates
the input field against that expression. If the field being validated with the regex
validator is required, we need to use the requiredstring validator, as we've
already seen.

The regex validator also accepts the trim parameter and an additional
caseSensitive parameter if the regular expression is case sensitive.
The default value is true.

A complete discussion of regular expressions is outside the scope of this book.
However, they're very useful as a general tool. Having a reasonable grasp of
regular expressions is among the most valuable tools in our toolbox.

The expression and fieldexpression validators
Both the expression and fieldexpression validators take arbitrary OGNL
expressions in their expression parameters, which are evaluated and used to
determine a validation's success or failure. Almost any validation can be performed
using one of these two validators, although the supplied convenience validators
should be used when possible.

In general, anything more complex than the convenience validators should
probably be encapsulated in business logic and used in a validate() method
rather than encoded in our validation configuration. However, in some instances,
these validators are handy. This is particularly true for simple expressions, such as
comparing email and email confirmation fields.

That being said, as OGNL lets us call arbitrary methods (static or not), almost any
validation can be captured using these validators. If we have exposed business
logic, it may be easier to use those services using OGNL. Different people prefer
different techniques.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Form Validation and Type Conversion

[144]

As a quick example, we'll validate an email address against a confirmation email
address. We will stipulate that it must not start with the string "dave" (as people
named Dave are generally a little shifty). We'll use the fieldexpression validator
(to keep out those nasty Daves), and will use the expression validator for the
confirmation address validation.

Our validation for our two email addresses looks like this:

<field name="email">
 <field-validator type="email">
 <message key="email.required"/>
 </field-validator>

 <field-validator type="requiredstring">
 <message key="required"/>
 </field-validator>

 <field-validator type="fieldexpression">
 <param name="expression">!email.startsWith('dave')</param>
 <message key="keep.daves.out"/>
 </field-validator>
</field>

<field name="cemail">
 <field-validator type="email">
 <message key="email.required"/>
 </field-validator>

 <field-validator type="requiredstring">
 <message key="required"/>
 </field-validator>
</field>

Our expression validator is not tied to a specific field, unlike the other validations
we've seen so far.

<validator type="expression">
 <param name="expression">email.equals(cemail)</param>
 <message key="confirm"/>
</validator>

Submitting this form with non-matching emails, along with the condition
stated above (name shouldn't start with the string "dave"), doesn't display our
confirmation error message. Only field-specific error messages are displayed by
the standard Struts 2 form tags. We must use the <s:actionerror> tag to display
the nonfield errors:

<s:actionerror/>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 7

[145]

This displays a bulleted list of all non-field-specific error messages. There are
corresponding <s:actionmessage> and <s:fielderror> tags, each displaying what
we'd expect. The <s:fielderror> tag accepts either a value attribute or <s:param>
elements that name the field whose errors will be displayed.

Note that our check for strings not starting with "dave" could also call a utility
method (for example, a service object injected into our action). Business-oriented
rules such as this one, whenever possible, should exist in re-usable objects, so that
can be used throughout the application.

Assuming such an object exists, our fieldexpression validation might look
like this:

<field-validator type="fieldexpression">
 <param name="expression">
 !emailService.excluded(email)
 </param>
 <message key="email.excluded"/>
</field-validator>

Combining validation methods
We can also combine manual and XML validation by implementing validate()
in our action, calling super.validate() to run the XML validation. We can
then perform any additional validation. For example, we could remove the email
exclusion check from our XML validation and put it in our action's validate()
method, as shown here:

public void validate() {
 super.validate();
 if (emailService.excluded(email)) {
 addFieldError("email",
 getText("email.excluded",
 new String[] { getText("email.label") }));
 }
}

Moving the field validation into our action means we need to manually pass the
name of the field (retrieved from our property file) to our validation error message.
The field name will no longer refer to the fieldName value, but would instead be a
standard Java resource positional parameter.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Form Validation and Type Conversion

[146]

The conversion validator
The conversion validator checks to see if there was a conversion error on the field in
question. This can be used if the conversion interceptor is not in our interceptor stack
(which we'll discuss later), and we want a specific conversion error message. We've
already seen how other validator's error messages are enough to catch conversion
errors, rendering the conversion validator unnecessary in many circumstances.

The visitor validator
The visitor validator is used primarily when we're implementing the ModelDriven
interface or validating domain objects directly, which we haven't discussed yet.
In short, using the visitor validator allows us to validate a form field using
a model-specific validation file. This can make more sense than action-specific
validation, depending on our application.

Configuring validation with annotations
All of the validations we've seen so far can be configured using annotations rather
than XML. Validation annotations can be applied at the action method level using
the @Validations annotation, or the property level by annotating property setters.

Annotation validators require a message parameter, even if a key element is
specified. It's used as a default message if the message specified by the key can't be
found in a resource file. It can be a blank string, a message from a getText() call, a
warning message saying the key is missing, an actual error message, and so on.

OGNL expressions are available to our annotations, just like our XML.

The @Validation annotation
Classes that will be validated using annotations may use the @Validation
annotation at the type (class or interface) level. It is a marker annotation taking
no parameters. It used to be required, but isn't anymore.

On a side note, making the @Validation annotation optional may be marginally less
work for us, but makes it marginally more difficult for tools to determine if a class
has validation annotations. It's not a major issue from a technical standpoint, but is
an example of the typical tradeoffs developers often make.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 7

[147]

The @Validations annotation
As mentioned, there are two ways annotations can be used for form validation. They
can be applied at the property level by annotating setter methods, or at the action
method level by grouping them with the @Validations annotation.

The @Validations annotation accepts several parameters that group similar
validations together. This allows all required validations to be grouped together,
all email validations to be grouped together, and so on. There is a group element for
each included validation type (except for double, as we'll discuss soon).

The following groupings are available:

1. requiredFields

2. requiredStrings

3. intRangeFields

4. stringLengthFields

5. regexFields

6. emails

7. urls

8. dateRangeFields

9. expressions

10. fieldExpressions
11. customValidators
12. visitorFields

As a brief example, we'll look at a @Validations example for an email address and
some required fields. We might validate the action class as follows:

@Validations(
 emails = { @EmailValidator(fieldName="email",
 message = "Invalid email address.",
 key="valEmail") },
 requiredStrings = {
 @RequiredStringValidator(fieldName="email",
 message="Email is required.", key="required") },
 requiredFields = {
 @RequiredFieldValidator(fieldName="aRequiredInteger",
 message="Integer is required.", key="required"),
 @RequiredFieldValidator(fieldName="aRequiredDouble",
 message="Double is required.", key="required")
 }
)

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Form Validation and Type Conversion

[148]

When specifying field-level validations with the @Validations annotation, the
fieldName element must be provided to tie validations to fields.

There are a couple of issues we must take into consideration while deciding if we'll
use the action-method-specific validations using the @Validations annotation, or if
we'll annotate each property setter method.

The first is that if we have an action class with multiple methods, which we want to
execute and validate separately, we'll have an issue. The @Validations annotation
is not method-specific. Regardless of which method is annotated and which one is
executed, all validations found within the @Validations annotation will be executed
for all methods.

Another less serious issue is that specifying a @DoubleRangeFieldValidator
using the @Validations annotation is more trouble than it's worth, as the
@Validations annotation (for now) does not have a double validations grouping.
We can still validate doubles by using a customValidators block. For fun, we'll see
what that would look like.

customValidators = {
 @CustomValidator(type="double", fieldName="reqDouble",
 message="dblMinMax", key="dblMinMax",
 parameters={@ValidationParameter(name="minInclusive",
 value="-10.0"),
 @ValidationParameter(name="maxInclusive",
 value="10.0")})
}

That wasn't as much fun as we'd hoped for. It does show how custom validations
can be specified through annotations, even if the parameter passing is a bit unwieldy.

The @SkipValidation annotation
@SkipValidation marks methods that should be excluded from validation.
Depending on our requirements, we can use this annotation to work around the
limitation of the @Validations annotation. It's particularly helpful if we have
validations handled using setter validation annotations, but want to skip them for
certain action methods.

The @RequiredFieldValidator annotation
This is the annotation analogous to the required validator and there is nothing
much interesting to add to the discussion. However, remember that the message
element is required, even if you provide a key element with a resource key.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 7

[149]

The @IntRangeFieldValidator annotation
The annotation version of the int validator accepts the min and max elements, and
operates in the same way as its XML counterpart. If we're validating an Integer
(a non-primitive integer), we must also specify the @RequiredFieldValidator, just
as we would with XML-based validation.

Specifying multiple validation annotations on a property setter is a simple matter
of listing each appropriate annotation and no grouping is necessary as with action
methods. A required Integer property can then be annotated as follows.

@RequiredFieldValidator(key="required",
 message="!!! MISSING required MESSAGE !!!")
@IntRangeFieldValidator(key="intMinMax", min="-10", max="10",
 message="!!! MISSING intMinMax MESSAGE !!!")
public void setReqInteger(Integer reqInteger) {
 this.reqInteger = reqInteger;
}

Again, our message element could include an actual error message, complete
with arbitrary OGNL expressions. Here, we're warning that the error message
wasn't found.

The @DoubleRangeFieldValidator annotation
This is analogous to the double validator and accepts all the configuration
elements as its XML counterpart. As mentioned, the only caveat regarding the
@DoubleRangeFieldValidator is that if used at the action method level inside a
@Validations annotation, we need to pretend it's a custom validator. This works,
but it adds a fair amount of syntactic overhead to define its parameters.

The remaining validation annotations
Each of the remaining validation annotations are similar to the annotations already
discussed and are analogous to their XML counterparts. Their documentation is
available both on the Struts 2 documentation wiki and in the Struts 2/XWork 2
API documentation.

For the sake of completeness, we'll list them here:

1. @EmailValidator

2. @UrlValidator

3. @DateRangeFieldValidator

4. @StringRegexValidator

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Form Validation and Type Conversion

[150]

5. @ExpressionValidator

6. @FieldExpressionValidator

7. @ConversionErrorFieldValidator

8. @VisitorFieldValidator

(You didn't really want me to rewrite the existing documentation, did you?)

Client-side validation
In addition to server-side validation available using both XML and annotations, we
can also use client-side validation. This is handled using JavaScript injected by the
Struts 2 form tags. Client-side validation is turned on by setting the <s:form> tag's
validate attribute to true.

The client-side validation mechanism depends on the theme being used. When using
the "xhtml" or css_xhtml themes, it's pure JavaScript client-side validation, whereas
using the ajax theme uses Ajax-based validation.

Client-side validation requires the presence of XML or annotation
validation. The server-side configuration is used to create the
appropriate JavaScript.

When using the @Validations annotation on an action method, we must remember
to provide the fieldName element for our field validations. Failure to provide the
fieldname element will result in the failure of our client-side validation with a
FreeMarker exception. We must use the fieldName element anyway, but forgetting
it sometimes leads to a difficult-to-diagnose error.

Client-side validation supports a smaller number of validators, which are listed here:

1. required

2. requiredstring

3. stringlength

4. regex

5. email

6. url

7. int

8. double

There are a couple of things to remember when using client-side validation.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 7

[151]

The client-side required validator works differently than the server-side. The
client-side version checks and flags empty strings. The server-side version checks
for a null value, which doesn't work for string fields (empty fields are empty strings,
not null).

Lastly, the Struts 2 form element tags have a required attribute. The required
attribute is not tied to any validation process. It just controls whether or not there is
a required indicator (by default, an asterisk "*") rendered in the form field's label.

In other words, if we need a form field to be required, we must still use the required
or requiredstring validators. Adding the required attribute to a form input
element tag alone is not enough.

Custom validators
The built-in validators are great for simple validations. The regex and expression
family can handle more complicated validations. We will, however, need a custom
validator sometimes.

The bulk of string-related validations can be handled by the regex validator, or
by combining it with one or more expression validators—particularly if we're well
versed in regular expressions. (If you haven't already noticed, I think regex fluency
is very important.)

When our system has existing business-side validation rules, however, using a
custom validator makes sense. In our newest contrived example, we'll say our
system has a classification field, and we have existing business logic that
validates the format of this field.

As there's already code, duplicating the functionality using the regex validator is
unnecessary. And worse, it introduces another potential failure point in our system.
In addition, if the validation ever changes (for example, the number of digits can
either be three or four, but four-digit classifications must begin with "1" or "2"),
we'd have to change our code in two places and not just one. This is generally a
recipe for disaster.

Instead of using the regex validator, we can create and register a validator
that uses the existing classification validation code rather than run the
risk inherent in repeating ourselves. The existing validation logic exists in a
ClassificationService class containing a static validation method with the
signature boolean isValidClassification(String).

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Form Validation and Type Conversion

[152]

We're implementing a field validator, so we'll extend Xwork's
FieldValidatorSupport. We need to implement only the validate
method—void validate(Object). Validation errors are signaled by
the presence of field errors in our action's field errors collection
(which ActionSupport provides, or we can implement manually).

The following is the majority of our classification validator (imports elided):

package com.packt.s2wad.ch07.examples.classification;
public class ClassificationValidator extends FieldValidatorSupport {
 public void validate(Object o) throws ValidationException {
 String val = (String) getFieldValue(getFieldName(), o);
 if (!ClassificationService.isValidClassification(val)) {
 addFieldError(getFieldName(), o);
 }
 }
}

During normal operation, the validate() method gets an instance of the action
we've submitted to. Here, we're getting the value of the field from the action, and
adding field errors to our action.

We must register our validator, so Struts 2 knows what we're referring to in our
validation configuration. We create a validators.xml and place it in the root of our
classpath. (Earlier versions of Struts 2 required us to include the default validators,
which is no longer a requirement.)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE validators PUBLIC
 "-//OpenSymphony Group//XWork Validator Config 1.0//EN"
 "http://www.opensymphony.com/xwork/xwork-validator-config-1.0.dtd">
<validators>
 <validator name="classification"
class="com.packt.s2wad.ch07.examples.classification.
ClassificationValidator"/>
</validators>

We can now use our classification validator in our action using annotations.
(We could just as easily use it in our validation XML, but we're bored of that. It's
too easy in the XML, we just use the classification type.)

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 7

[153]

In this example, our action has a single classification property. We annotate its
setter with the @CustomValidator annotation. We have no parameters, so we can
keep things clean.

@CustomValidator(type="classification",
 message="Invalid classification")
public void setClassification(String classification) {
 this.classification = classification;
}

We could even assume a static property in the classification service that defines an
invalid classification message:

@CustomValidator(type="classification",
message="${@com.packt.s2wad.ch07.examples.classification.
ClassificationService@INVALID_CLASSIFICATION}")

Okay, so OGNL's static method is a thing of both beauty and horror.

We could also do this validation in an action's validate() method. If our
classification service is injected, it might be cleaner. (We'll discuss injection when
we cover testing. It's not as scary as it sounds, and no needles are involved.)

Deciding where to put this type of logic might include considering the
implementation of the validation logic, how often the "classification"
validation is used, organization coding standards, and so on. Having
declarative (or annotation-driven) validation can also ease the creation of
various documentation (as opposed to Java-only validation).

It's quite easy to use our custom validator in either @Validations annotations using
the @CustomValidator annotation or on a property setter. Unfortunately, at the time
of writing this book, the ability to create a custom validation annotation (instead
of using @CustomValidator) was difficult to integrate into the default XWork
annotation validation configuration.

Type conversion
We've already seen some type conversions, often without even being aware of it.
Remember our int and Integer form validations? Our action simply declared
values as the int and the Integer, and we didn't give it any more thought, even
when we mysteriously ended up with a new Recipe object.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Form Validation and Type Conversion

[154]

The problem
As has been mentioned already, web browsers only and always send back strings. In
times not-so-long past, we could see a lot of code fragments similar to the following
(assuming an anInt property):

String s = request.getParameter("anInt");
int anInt = NumberUtils.toInt(s, 0);
doSomething(anInt);

Okay, that's not much extra code because we're making use of Apache Commons
Lang and its NumberUtils class to hide the potential NumberFormatException.
We are also making use of Java 1.5's auto-boxing for the int to Integer conversion.

However, in Struts 2 the code is simply:

doSomething(anInt);

Busting out our trusty command line tool wc (for "word count"—it's pretty handy
for low-resolution size comparisons), we confirm that it's one-third the line count
and one-fifth the character count. There's more to this than simply less typing. There
is a significant reduction in cognitive overhead, as our code is more focused on what
we're actually doing. The conversion code was ancillary to our actual task, doing
something to our Integer.

The solution
Type conversion! Well, the above old school code was type conversion too, but
it happened "in the foreground" and we were doing it manually. Ideally, the type
conversion should happen behind-the-scenes, letting us focus on what we're
really trying to accomplish. Our goal, after all, isn't converting integers—it's doing
something with them.

Struts 2 has built-in type conversion that is usually intuitive. We didn't really
think about it when we did our integer validation. The validators depend on type
conversion to convert the form values into something they can use. It's entirely
possible to never need to understand most of how type conversion works (except,
perhaps, collections).

Obviously, there's out of the box support for integers, both primitive and objects.
Numeric support includes bytes, shorts, longs, doubles, BigIntegers, and
BigDecimals. Date and Calendar types are also supported. There is also support
for Maps and Lists. We'll take a look at that next, after looking at how to create our
own converters.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 7

[155]

Nested conversions are also possible. In other words, if we have a domain object, such
as a recipe, its properties can be converted. Our recipe had only string properties, so
we don't need it yet. We'll look at an example later when we cover collections.

Defining our own converters
We can also create our own type converters to supply functionality not included by
default. For example, the included BigDecimal type conversion breaks if our input
string has extra spaces at the end (an oversight, I'm sure). We'd like to fix that.
(Note that we'll learn a better way to implement this in Chapter 8.)

Type conversion usecase—trimmed BigDecimals
The default Java BigDecimal parsing doesn't really like extra spaces. (We already
know that we should be using the BigDecimal class for accurate calculations
involving money, among other things, right?)

We could work around this in several ways. We could use a string property, trim
it ourselves, and do the BigDecimal conversion in our action. However, this
completely defeats the purpose of the type conversion process. Let's create a custom
type converter (which seems like the best solution, given the section of the book
we're in).

Custom type conversions generally implement the ognl.TypeConverter
interface or, a bit more cleanly, extend the StrutsTypeConvertor class. It
defines two methods, convertFromString(Map, String[], Class) and
convertToString(Map, Object), which do as we'd expect (although the
parameters look odd at first).

We've left the error handling and logging in place not only to show how
simple error handling and logging is (perhaps a bit over-done here), but
also to highlight how little application code has to do with the actual
problem being solved. There's also a potential subtle exception message
issue, just to see if you're paying attention!
Often, there's a lot of boilerplate code dedicated to two goals: making
sure our code doesn't break, and if it does, ensuring that it's easy to figure
out why it broke, and how to fix it. We'll discuss error handling and
logging soon.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Form Validation and Type Conversion

[156]

Our conversion implementation is reasonably straightforward.

public class BigDecimalConverter extends StrutsTypeConverter {
 public Object convertFromString(Map context,
 String[] values,
 Class toClass) {
 if (values == null) {
 return null;
 }
 if (values.length != 1) {
 String msg = String.format("Array too big: [%s]",
 StringUtils.join(values, ", "));
 throw new TypeConversionException(msg);
 }
 return values[0] == null ? null
 : new BigDecimal(values[0].trim());
 }

 public String convertToString(Map context, Object o) {
 if (!(o instanceof BigDecimal)) {
 String msg =
 String.format("No BigDecimal supplied; object was %s",
 o.getClass().getCanonicalName());
 throw new TypeConversionException(msg);
 }
 BigDecimal val = (BigDecimal) o;
 if (val == null) {
 return null;
 }
 return val.toString();
 }
}

The last step is to inform Struts 2 that we'd like to use this type converter for a
specific property on our form. If we assume an action TestBigDecimal with an
exposed BigDecimal property myBigOne, we can create a file in the same package
as TestBigDecimal named TestBigDecimal-conversion.properties, which will
look like this:

myBigOne=com.packt.s2wad.ch07.examples.conversion.BigDecimalConverter

We name the property that will use our type converter and provide the class of the
type converter to use. Pretty straightforward, but very XML-ish! We can also use an
annotation and eliminate another external file.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 7

[157]

To use our BigDecimalConverter with annotations, we annotate our action class
with the @Conversion marker annotation, so that it's scanned for @TypeConversion
annotations. The @TypeConversion annotation is applied on property setters and is
straightforward as shown here:

@TypeConversion(converter =
 "com.packt.s2wad.ch07.examples.conversion.BigDecimalConverter")
public void setBig(BigDecimal big) {
 this.big = big;
}

Configuring conversion across the entire
application
The only issue left is that we have to configure all BigDecimal properties using
either XML or annotations. This is not a big deal for occasional needs, but hardly
convenient if they're scattered across an entire application. To configure type
conversions across an entire application, we create a file named xwork-conversion.
properties on the root of our classpath and fill it with type and converter pairs:

java.math.BigDecimal=
 com.packt.s2wad.ch07.examples.conversion.BigDecimalConverter

Custom type conversion is handy
Using whatever parsing mechanism necessary, it is similarly straightforward
to create arbitrarily complex type converters such as coordinates (for example,
convert a string "5, 10" into a Point object), URLs (there's a url validator, but the
result is stored in a string—it could just as easily be a URL object, and probably
should be), and so on. Ultimately, we're still turning a string (repeat after me: the
browser always sends strings!) into a domain object—we're just doing it in an
unobtrusive way.

Hiding this functionality and keeping type conversion out of our mainline code
is really handy. It reduces the amount of code contained in our actions and the
cognitive load needed to understand that code. We still need to remember that
type conversion is taking place—it's another place to look if things go wrong.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Form Validation and Type Conversion

[158]

Collections
Struts 2 also provides automatic type conversion for collections, including maps.
By using OGNL's array (or map) syntax in our forms, Struts 2 will not only
automatically convert specific data types, but will also put that data into a collection.
Our actions receive a collection of domain objects, with no intervention from us.

Usecase—adding a list of ingredients
To demonstrate this capability, we'll return to our client's application. As it stands,
the ingredients are a simple text area. One of the requirements is to have a list of
individual ingredients, with each ingredient having a quantity and a name.

Recall that we have already created a ShoppingListItem class with the name and
quantity properties. We'll modify our Recipe class and change its ingredients
property to use the existing ShoppingListItem (getter and setter not shown).

private List<ShoppingListItem> ingredients;

We will also update our recipe view page and iterate over the ingredients:

<s:iterator value="recipe.ingredients">
 <tr>
 <td><s:property value="quantity"/></td>
 <td><s:property value="name"/></td>
 </tr>
</s:iterator>

We will also change our FakeRecipeService to use the new data type. Notice that
the Recipe class has been graced with an addIngredient() method. This might
seem like an unnecessary addition, but we'll consider two things after looking at
how we create sample data.

Recipe recipe2 = new Recipe(2, "Java");
recipe2.setRecipeTypes(new ArrayList<String>() {{
 add(FakeRecipeTypeService.RECIPE_TYPE2.getName());
 add(FakeRecipeTypeService.RECIPE_TYPE4.getName());
}});
recipe2.addIngredient(new ShoppingListItem("1",
 "Large lack of abstractions"));
recipe2.addIngredient(new ShoppingListItem("Lots", "typing"));

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 7

[159]

Why add addIngredient()?
The most obvious benefit is also the least interesting—there's a little less typing.
We might skip the convenience method, so that adding an ingredient looks more
like this:

recipe2.getIngredients().
 add(new ShoppingListItem("Lots", "typing"));

That's longer, but not ridiculously so. The actual big win is that we're exposing that
much less of our Recipe class's implementation. Remember how object-oriented
programming was supposed to hide implementation details? There's nothing hidden
about a getIngredients() call. No big deal, we say.

In this case, that's probably true. However, consider the very simple case of changing
how we store our collection of ingredients. Let's say we now need to store our
ingredients in a map, indexed by the ingredient ID. Suddenly, our decision to expose
our list doesn't seem so good, and we must change all of our code that uses the
getIngredients() method, as it's tied to using a list (well, collection).

By using an addIngredient() method, we've provided a layer of isolation from the
underlying implementation. Assuming that we don't need to pass in any additional
information when adding an ingredient, the only code that has to change is isolated
within the Recipe class's implementation.

Sometimes, a small amount of effort up front can reduce potential development
hassles down the road, even when it seems trivial and unimportant.

Updating our new recipe form
Our new requirement states that a recipe form will have fields for ten ingredients
(ShoppingListItems). (We'll see how to add rows dynamically when we cover
JavaScript, one of the world's most misunderstood languages.) There are several
changes to be made in order to meet our new requirements.

First, we need to generate appropriate form tags for each of the ten ingredients. In
order to make use of the built-in collection conversions, our form tags need to end
up looking like typical array notation, one for each ingredient.

<input type="text" name="recipe.ingredients[0].name"/>
<input type="text" name="recipe.ingredients[1].name"/>
<!-- ... and so on ... -->

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Form Validation and Type Conversion

[160]

We could do this manually, but that seems like a poor solution. A quick solution is to
build the text tags inside an iterator.

<s:iterator value="{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}"
 var="idx" status="stat">
 <s:textfield name="recipe.ingredients[%{#stat.index}].quantity"/>
 <s:textfield name="recipe.ingredients[%{#stat.index}].name"/>
</s:iterator>

Struts 2.1.7+'s iterator tag includes "begin", "end", and "step" attributes, to support
looping similar to JSTL's "forEach" tag.

The name attribute includes an OGNL expression inside the field name, and is similar
to the OGNL we've already seen. It simply uses the index of the iterator as the array
index of the recipe's ingredients list.

Simply, you say? What's simple about [%{#stat.index}]?! The
#stat.index, which we've already seen, just refers to the iterator tag's
status. The %{} forces OGNL evaluation, so we get the index value inside
the square brackets. The rest is simple array notation. Piece of cake! The
coolest part hasn't even happened yet, though.

Note that we don't really need the array index notation here. Struts 2 will notice
that there are multiple values for the same form parameter, and will do the right
thing. However, if we need to guarantee an order, it's best to leave them in. Recipe
ingredients are usually listed in the order of use. Hence, order is significant here.

If we visit our new recipe form at /recipes/new, we see something like this
(truncated after a couple of our new ingredient fields):

We're definitely on the right track, but there are a few glaring deficiencies. We need a
label for our ingredient fields, and it'd be a lot nicer if the ingredient's quantity and
name fields were lined up on the same row.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 7

[161]

We can create labels in a resource file, as we've done in the past. Our default label
will be Ingredient #n where n will be the list element from our iterator, the numbers
1 through 10. There are actually two ways in which we could do this. As we define
a var attribute in our <s:iterator> tag, we know there's a variable named idx
available on the value stack, and we remember that the value stack is available in
our message resources. We could then create a message resource such as this:

recipe.ingredientn=Ingredient #${idx}

(Here, the # symbol has nothing to do with OGNL—it just means a number!)

We could add the label to one of the text fields using the getText() call as
shown here:

<s:textfield label="%{getText('recipe.ingredientn')}" size="5"
 name="recipe.ingredients[%{#stat.index}].quantity"/>

This is acceptable, but it creates a dependency between our JSP page and our
resource file. If a developer changes the name of the iterator (the iterator tag's
var attribute), the message will be broken. We're lazy, and we're certain to break
this later.

Instead, we'll use the same getText() trick we've used before, and pass in an
argument to the message resource. Our message will look like this:

recipe.ingredient=Ingredient #{0}

To use this message, our text tag will contain the following label attribute:

label="%{getText('recipe.ingredient', { #idx })}"

Slightly tricky OGNL, but it's still relatively straightforward. Our array of arguments
to getText() is an OGNL immediate list. It consists of a single element, the named
var of our iterator, with the # notation as usual. We could also just use the status
variable, and pass in #status.count.

In Java, this call would look like this:

getText("recipe.ingredient", new String[] { idx });

The other issue was that our ingredient's quantity and name text fields are putting
themselves in separate table rows because we're using the default "xhtml" theme.
We'd like them on a single line, and will associate a label with each line.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Form Validation and Type Conversion

[162]

We're not up to themes and templates yet, but here's a simple trick. We can set
the theme for a single element by using the theme attribute. The simple theme
renders only the input element—no table rows, no table cells, and no labels. Also,
there are no error messages. Hence, there's still a hole in our solution, but we have
to stop somewhere.

Our solution (for this chapter) will build the table row and table cells, normally built
by the Struts 2 tags and the "xhtml" theme, on our own. In the first cell, where Struts
2 puts its labels, we'll put our label, using the Struts 2 property tag. The second cell
gets the text inputs. We'll force them to render themselves using the simple theme,
which renders no extraneous stuff.

<s:iterator value="{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}" status="stat">
 <tr>
 <td>
 <s:property value="getText('recipe.ingredientn',
 { #stat.count })"/>
 </td>
 <td>
 <s:textfield theme="simple" size="5"
 name="recipe.ingredients[%{#stat.index}].quantity"/>
 <s:textfield theme="simple" size="30"
 name="recipe.ingredients[%{#stat.index}].name" />
 </td>
 </tr>
</s:iterator>

Visiting our page now shows a more reasonable form, as shown in the
following figure:

We'll skip ingredient validation. However, recall that an action's validate()
method can easily call super.validate(), which will call any XML- or
annotation-based validation. It will then add other validation logic such as
iterating over recipe ingredients and checking for values, and so on. But we
still need to get the recipe ingredients into our Recipe instance, right?

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 7

[163]

Before we cover submission of this form, we'll take a quick look at our Recipe
class again, looking at its toString() method. Here, it's creating a verbose,
human-readable dump of the important bits, useful in console output.

public String toString() {
 return String.format("%s [id=%d, name=%s, type(s)=[%s],
 ingredients=[%s]]",
 super.toString(), id, name,
 StringUtils.join(recipeTypes, ", "),
 StringUtils.join(ingredients, ", "));
}

It just returns a string that combines all the data we need together (using Apache
Commons Lang's StringUtils.join() method because we've spent a lot of
time poring over the Apache Commons Javadocs, right?). We looked at Recipe.
toString(), so we'd understand what's in our NewRecipe action's execute() method.

public String execute() throws Exception {
 System.out.println(recipe.toString());
 return SUCCESS;
}

Not much, but we know that after we submit the form, we can check our console and,
in theory, we should see a nice readable dump of our new recipe, complete with its
ingredient list. However, we're worried because we haven't really written any code.

Sure, we wrote a Recipe class and a ShoppingListItem. We also wrote a JSP that
pretended like our form was returning instances of ShoppingListItem in our
recipe's ingredients list. Our form had already assumed that we could blithely use
recipe.name, and it would be put into a Recipe object.

For the Struts 1 coders out there, remember copying ActionForm
properties into a domain object with BeanUtils.copyProperties()?.
Also, make ActionForm and BeanUtils.copyProperties() Or
worse yet, copying the properties over by hand? Wasn't it fun?

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Form Validation and Type Conversion

[164]

The above figure shows the form we're submitting. After we hit the submit
button, the Struts 2 type conversion process takes hold. For example, it knows
that when we specify a text field named recipe.name on our form, we don't just
have a string, but rather a Recipe class with a name property. Better yet, on seeing
recipe.ingredients[0].quantity, it assumes that the Recipe class has a list of
ShoppingListItems, each having a quantity property. And we didn't have to tell
it anything.

When we check our console, we see the following (formatted for some amount
of legibility):

com.packt.s2wad.ch07.models.Recipe@7c6dff [
 id=null,
 name=S2 App,
 type(s)=[Main Dish, Dessert],
 ingredients=[
 ShoppingListItem@ed5f47 [quantity=1,
 item=Mediocre programming language],
 ShoppingListItem@a4662 [quantity=1,
 item=Awesome expression language],
 ShoppingListItem@92fe37 [quantity=Lots,
 item=of great ideas], ...

Something really helpful has happened. We're not dealing with strings, but with
domain objects, without writing any of the code ourselves! This is a thing of beauty.
Our mainline code is about as simple as anything can be.

Map-based collections
Maps are handled similarly, using the map key in OGNL's [] syntax instead of an
array index. (OGNL's () (parentheses) syntax is used only for indexed collection
access, discussed on the Struts 2 documentation wiki.) For our current requirements,
we will just use a list. However, putting values into maps is a very common need
when dealing with collections of data relating to a specific instance (such as a
checkbox list of recipe IDs, and so on).

Summary
This chapter covers the basics of Struts 2 form validation, configurable through both
XML and annotations. We also see that it's easy to combine manual and automatic
validation by calling super.validate() to run the automatic validation, and
implementing additional validation manually

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 7

[165]

The chapter also explains how to create custom validators that can be used as
easily as built-in validators when configured using XML, and nearly as easily
using annotations.

Struts 2 also provides a basic set of type converters and can automagically
marshal form values into our domain objects, saving a tremendous amount
of boilerplate code.

In the next chapter, we will finally take the framework functionality that we've put
off for the first seven chapters. This is primarily to reinforce the idea that it's possible
to accomplish quite a bit without having an in-depth knowledge of one of the
fundamental components of Struts 2—interceptors.

Are you excited yet?

References
A reader can refer to the following:

Struts 2 validation:
 http://struts.apache.org/2.x/docs/validation.html

Struts 2 Type Conversion (covers more complex use cases than we had
room for):
 http://struts.apache.org/2.x/docs/type-conversion.html

•

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Interceptors
In the previous chapter, we looked at form validation, which is configurable using
both XML and annotations. We also saw how to create our own custom validators.
We examined type conversion, and realized that it's both more intuitive and less
intrusive to let the framework handle mundane housekeeping chores.

Now, we'll cover one of the "holy grails" of Struts 2—interceptors. In many ways,
interceptors are the heart of Struts 2. We've already seen that quite a bit of behavior
is implemented by interceptors, even without understanding precisely how they
work or are configured. Validation, type conversion, file uploads, double submit
tokens, action chaining, and the Preparable interface are all behaviors tightly
coupled to interceptors.

In this chapter, we will cover:

How to configure interceptors and interceptor stacks (ordered groups
of interceptors)
The interceptors we've already used (and some we haven't)
Ways to use custom interceptors to implement "cross-cutting" functionality
required across the entire application (or parts of the application)

The basics
Interceptors are similar to servlet filters. They're executed in the order in which
they're declared. Each has access to the same action invocation, just as each filter
has access to the same request. Each can modify program flow. Each wraps request
processing, allowing processing before and after the request.

•

•

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Interceptors

[168]

Interceptors are grouped into interceptor stacks, which are named and ordered
collections of interceptors. Stacks can be configured both per-package and per-action.
The most specific configuration is the one that's used. In other words, if we have
configured an action to use a specific stack that would be the only stack used.

Configuring interceptor stacks
Struts 2 ships with several pre-configured interceptor stacks. We've been using
the default stack (configured in the struts-default.xml file, which configures
the struts-default package). For many purposes, it's all that's necessary. The
struts-default.xml file defines the standard interceptors and a number of stacks
that contain various combinations of the standard interceptors.

Looking at the struts-default.xml file's struts-default package definition, we
see two major parts to the <interceptors> element:

<interceptor> elements: to define interceptor names and classes
<interceptor-stack>: to name and group together both individual
interceptors and other named interceptor stacks

If nothing else, knowing how interceptors and stacks are defined allows us to find
the class names, and hence the Javadocs of the interceptors we're using. Here's a
representative portion of the interceptors in the struts-default package:

<package name="struts-default" abstract="true">
 ...
 <interceptors>
 <interceptor name="fileUpload"
 class="org.apache.struts2.interceptor.FileUploadInterceptor"/>
 <interceptor name="i18n"
 class="com.opensymphony.xwork2.interceptor.I18nInterceptor"/>
 <interceptor name="token"
 class="org.apache.struts2.interceptor.TokenInterceptor"/>
 <!-- etc. -->

Each interceptor element consists of a unique name and a fully-qualified
implementation class.

Interceptor stacks are named, ordered collections of interceptors. For example, Struts
2 defines an interceptor stack named basicStack as follows:

<interceptor-stack name="basicStack">
 <interceptor-ref name="exception"/>
 <interceptor-ref name="servletConfig"/>
 <interceptor-ref name="prepare"/>
 <interceptor-ref name="checkbox"/>

•

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 8

[169]

 <interceptor-ref name="params"/>
 <interceptor-ref name="conversionError"/>
</interceptor-stack>

In this case, each of the <interceptor-ref> elements refers to a specific interceptor.
However, the definition of the validationWorkflowStack is slightly different:

<interceptor-stack name="validationWorkflowStack">
 <interceptor-ref name="basicStack"/>
 <interceptor-ref name="validation"/>
 <interceptor-ref name="workflow"/>
</interceptor-stack>

One reference is to the basicStack interceptor stack, while the other two are
individual interceptors. Recall that interceptors are executed in order. This includes
interceptor stacks. If we're using the validationWorkflowStack, each interceptor in
the basicStack is executed, followed by the validation and workflow interceptors.

Configuring interceptors
An interceptor's configuration also accepts parameters in <param> elements. For
example, we've already seen that validation is skipped for an action's input()
method. This is possible because the validation interceptor subclasses the
MethodFilterInterceptor, which defines an excludeMethods parameter. The
parameter is interpreted as a comma-separated list of method names for which the
interceptor should not be executed.

We'd add a parameter to configure our previous validationWorkflowStack
from above, in order to exclude a list of methods from validation (as the
defaultStack does).

<interceptor-stack name="validationWorkflowStack">
 ...
 <interceptor-ref name="validation">
 <param name="excludeMethods">
 input,back,cancel,browse
 </param>
 </interceptor-ref>
 ...

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Interceptors

[170]

The default stack for a package is defined using the <default-interceptor-ref>
element inside a package definition. For example, the struts-default package
defines the default interceptor like this:

<package name="struts-default" abstract="true">
 <!-- ... -->
 <default-interceptor-ref name="defaultStack"/>
</package>

We can create our own interceptor stacks within our packages and modify the
default behavior using interceptor configuration parameters. This includes creating a
default interceptor stack to use for all actions within the package.

As a simple (but realistic) example, we might want to create a default stack that
removes interceptors that our application never uses. We'll assume that we don't
want to use the profiling and modelDriven interceptors, along with the chain
and alias interceptors because we never chain our actions. Our package definition
would include the following, copied from the strutsDefault stack, with several
interceptors removed:

<interceptors>
 <interceptor-stack name="appDefault">
 <interceptor-ref name="exception"/>
 <interceptor-ref name="servletConfig"/>
 <interceptor-ref name="prepare"/>
 <interceptor-ref name="i18n"/>
 <interceptor-ref name="debugging"/>
 <interceptor-ref name="fileUpload"/>
 <interceptor-ref name="checkbox"/>
 <interceptor-ref name="staticParams"/>
 <interceptor-ref name="actionMappingParams"/>
 <interceptor-ref name="params">
 <param name="excludeParams">dojo\..*,^struts\..*</param>
 </interceptor-ref>
 <interceptor-ref name="conversionError"/>
 <interceptor-ref name="validation">
 <param name="excludeMethods">
 input,back,cancel,browse
 </param>
 </interceptor-ref>
 <interceptor-ref name="workflow">
 <param name="excludeMethods">
 input,back,cancel,browse
 </param>
 </interceptor-ref>
 </interceptor-stack>
</interceptors>
<default-interceptor-ref name="appDefault"/>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 8

[171]

Again, we see the excludeMethods parameter for the validation interceptor. If our
action method naming convention differed from the Struts 2 assumptions, we could
create our own list of excluded method names.

Configuring interceptors for individual
actions
We can declare and configure interceptors on a per-action basis in our <action>
elements. Configuration done this way affects the action being configured.

It's important to note that if we declare any interceptor for an action, we
must declare all interceptors for that action.

To demonstrate, let's assume that we have an action method named
doNotValidate() for which validation should not be run. We could configure
the validation interceptor to ignore that method (along with the others) like so
(note that this is an incorrect example):

<!-- Incorrect "validation" interceptor configuration. -->
<action name="brokenConfiguration"
 class="com.packt.s2wad.ch08.BrokenConfigurationAction">
 <interceptor-ref name="validation">
 <param name="excludeMethods">
 input,back,cancel,browse,doNotValidate
 </param>
 </interceptor-ref>
</action>

Technically, this will do what we want. It won't validate the doNotValidate()
method. However, we've actually configured only the validation interceptor here.
None of the other defaultStack interceptors will be run. This is almost never what
we want (particularly as the validation process relies on the workflow interceptor).

As declaring all the interceptors just to change the excludeMethods parameter
would be silly, another mechanism exists. The easiest way is to use the
defaultStack stack and configure just the validation interceptor.
This is shown here:

<action name="correctConfiguration"
 class="com.packt.s2wad.ch08.NowWorkingAction">
 <interceptor-ref name="defaultStack">
 <param name="validation.excludeMethods">

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Interceptors

[172]

 input,back,cancel,browse,doNotValidate
 </param>
 </interceptor-ref>
</action>

This will configure the action to use a defaultStack stack and configure the
excludeMethods parameter for the validation interceptor. The syntax is obvious
and simple—interceptorName.parameterName will set the named parameter
on the named interceptor. This affects the interceptor stack for only this particular
action. When we define interceptors for an individual action, we're actually creating
new instances of those interceptors, specific to the action.

The same configuration method can be used for other interceptors and interceptor
stacks, including our own. If we're using a stack that contains multiple stacks,
we can also set parameters using a <param> element. The syntax would be
stackName.interceptorName.parameterName.

How interceptors work
Interceptors implement the Interceptor interface, which defines three methods:
void destroy(), void init(), and String intercept(ActionInvocation
invocation). We'll cover implementation details when we start writing our own
interceptors, but we'll look at some basics in order to understand how the included
interceptors do their work.

Some interceptors do their work regardless of the action being invoked. Some
only execute after checking for marker interfaces implemented by the action. The
ActionInvocation has an action property, which is the actual action instance
being invoked. By performing an instanceof check on the action being invoked,
an interceptor can determine if it should process the request or continue normally.

The intercept() method returns a string, the return type of typical action methods.
This allows interceptors to return their own result, or allows the action invocation
to continue normally by returning the results of the ActionInvocation's invoke()
method. This method passes the action invocation to the next interceptor or, finally,
the action itself.

As interceptors have access to the action being invoked, they are free to
change the state of the action in arbitrary ways. Because of this power,
it's important to understand how interceptors work, and to be aware of
interceptor and interceptor-action interaction. It's a powerful mechanism,
but can lead to very interesting behavior at times. Actions do not exist in
a vacuum.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 8

[173]

Interceptors in the default stack
We'll introduce ourselves to many of the interceptors defined by Struts 2, focusing
first on those in the default stack (defaultStack). The default stack contains around
a dozen and a half interceptors, several of which we've already used (even if we
didn't know it).

We'll cover the interceptors in the same order they're declared in the default stack
because order is important. As we read through the next sections, we'll try to keep in
mind that these interceptors are executed in this order, for every action invocation,
when using the default stack. After we cover the default stack interceptors, we'll take
a quick look at a few additional ones that are handy to know about.

The exception interceptor
The exception interceptor maps exception classes to the named Struts 2 results. In
a nutshell, the exception interceptor wraps the entire action invocation, allowing
exceptions thrown by the remaining interceptors and our actions (and anything
called by our actions) to be caught and handled within the framework. We'll explore
exceptions in the next chapter.

The alias interceptor
The alias interceptor allows us to rename an action property between actions and is
primarily used with action chaining. For example, one action might have a property
named "foo" while another action uses the name "bar". The alias interceptor lets us
put the "foo" property into the second action's "bar" property.

If you think this seems like a good way to cause yourself trouble, you're probably
right. However, it may be invaluable under certain (pathological?) circumstances.
One (reasonably) legitimate use would be to transform parameters from our actions
to third-party actions. A stretch, perhaps, but one never knows.

The servletConfig interceptor
The servletConfig interceptor sets various servlet-specification-related variables
(for example, the session attribute map) on appropriate actions. We discussed
the servletConfig interceptor when we covered the ApplicationAware,
SessionAware, RequestAware, ParameterAware, ServletRequestAware,
ServletResponseAware, and the ServletContextAware interfaces.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Interceptors

[174]

All this interceptor does is check for the implementation of each of the interfaces
listed earlier (plus PrincipalAware) and set the appropriate action property if the
action implements the corresponding interface.

For example, if our action implements SessionAware, it must implement the
method void setSession(Map). The servletConfig interceptor checks for an
implementation of SessionAware. If found, it casts the action to SessionAware and
sets the session attribute map using the setSession() method, using code similar
to the following (it's more or less the same idea for the other interfaces):

public String intercept(ActionInvocation invocation)
 throws Exception {
 Object action = invocation.getAction();
 ActionContext context =
 invocation.getInvocationContext();
 if (action instanceof SessionAware) {
 ((SessionAware) action) setSession(context.getSession());
 }

Interceptors are not always complicated. The behavior they encapsulate
may be simple, as shown in the above example. The beauty of interceptors
is that they provide a known place to put cross-cutting functionality
without polluting mainline code.

The prepare interceptor
The prepare interceptor checks for actions that implement Preparable, and when it
finds one, it executes the action's prepare() method. We also saw that we can define
method-specific "preparable" methods.

The interceptor checks for prepareXxx() methods using reflection, where Xxx is the
action method being invoked. If we were executing an action method list(), the
interceptor checks for prepareList() (and prepareDoList()) and calls it if found.

The prepareXxx() method is called before the prepare() method.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 8

[175]

The prepare interceptor accepts an alwaysInvokePrepare parameter, controlling
whether or not the prepare() method is invoked. It defaults to true. If we have
no prepareXxx() methods, setting it to false just means that prepare() won't be
called—probably not what we want. Consider a scenario where we have multiple
methods for the same action. For one of them we don't want prepare() to be called,
but still want its prepareXxx() method to be called. The prepare interceptor can be
really handy in such situations.

The last bit of potential confusion is that the prepare interceptor is a subclass of
MethodFilterInterceptor. This means we could configure the interceptor to skip
calling any of the prepare() methods, based on the action method being invoked
by using the excludeMethods or the includeMethods parameters. By default, it is
configured to include all action methods.

The use of Preparable requires diligence. It creates non-locality between our action's
code and its behavior. As the prepare methods aren't being called explicitly, it can
create confusion, particularly to those unfamiliar with the framework. Although
it's convenient, knowing the complete request flow, including the interceptors, is
important. "Spooky action at a distance", applied to web frameworks.

The i18n interceptor
The i18n interceptor handles setting the locale by examining the request for a
parameter named request_locale (by default). Including the parameter sets the
locale in the user's session. The interceptor then removes the parameter, so the
framework doesn't try to set it on our actions.

This interceptor accepts an optional parameterName parameter, naming the
parameter the interceptor will look for. It also accepts an attributeName
parameter, defining the session key where the locale will be stored.

The chain interceptor
The chain interceptor works along with action chaining, which we examined earlier.
The chain interceptor makes the current action's properties available to the next.

The chain interceptor accepts both the excludes and the includes parameters,
defining defining lists of parameters that will be excluded or included between the
actions. If an includes parameter is provided, only those parameters will be set on
the chained action.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Interceptors

[176]

The debugging interceptor
The debugging interceptor examines the request for a debug parameter. If it finds
one, the interceptor can present several views into the current OGNL value stack.
Acceptable debug values are "xml", "console", "command", and "browser".

Using xml returns an XML document containing the parameters, context, session,
and value stack. Console pops up a window where we can type OGNL expressions,
which will be evaluated and displayed. Command is used by the console debugger
and evaluates an OGNL expression, returning a string. Browser displays the field
values of the object passed in the object parameters.

Note that if "xml" is chosen, the document returned will contain only the XML OGNL
dump, not the actual page being requested. For this reason, it can sometimes be more
useful to use the <s:debug> tag in the JSP—the OGNL dump is then included on the
page being requested.

The profiling interceptor
The profiling interceptor provides minimal interceptor and action profiling
information when in development mode, and the profiling request parameter
is set to true.

The profiling parameter name may be changed using the profiling interceptor's
profilingKey parameter. This allows us to use a different parameter (other than
profiling) if, for instance, we already have a profiling parameter in our form.
The interceptor removes the profiling parameter, so it won't be set on our action.

Bear in mind that only interceptors configured after the profiling interceptor will
be timed. The default stack puts the profiling interceptor near the middle of the
stack. This means some interceptors won't be profiled.

The profiling output appears in our console, and looks similar to the following:

2008-08-27 20:47:10,306 INFO com.opensymphony.xwork2.util.profiling.
UtilTimerStack.info:31 - [102ms] - invoke:
 [102ms] - interceptor: scopedModelDriven
 [102ms] - invoke:
 [102ms] - interceptor: modelDriven
 [102ms] - invoke:
 [102ms] - interceptor: fileUpload
 [102ms] - invoke:
 [102ms] - interceptor: checkbox
...

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 8

[177]

It's a low-resolution way to get a quick sanity-check on how long things are taking,
including our action invocation.

The scopedModelDriven interceptor
The scopedModelDriven interceptor is closely related to the modelDriven
interceptor discussed below, but retrieves a model object from a specified scope if the
action being invoked implements the ScopedModelDriven interface. Because of the
overlap with the modelDriven interceptor, we'll look at the modelDriven interceptor
first, and then return to scopedModelDriven.

The modelDriven interceptor
The modelDriven interceptor checks to see if the action being invoked implements
ModelDriven. If it does, this interceptor calls the action's getModel() method and
pushes the results onto the stack.

The model will be pushed only if it is not null.

This means that in our JSP, the model object, and not the action, will be the topmost
object on the stack. OGNL expressions are applied against the model object first.

Consider the following example. We have a ModelDriven action, getModel()
returns an instance of the Recipe class, and our JSP page uses the property tag to
access the name property:

<s:property value="name"/>

We'll be calling getName() to the topmost stack item—the Recipe instance.
Similarly, a form tag whose name attribute is name will set the value of the object
returned by getModel(), which again is our Recipe instance.

This can be both useful and confusing, as accessing action properties directly
becomes a bit trickier. It's particularly irritating if both the model and the action
expose a property of the same name and we need the action's version. We then resort
to tricky OGNL. For example, if we've implemented ModelDriven, and our model
and action both expose a property named hideAndSeek, we can access the action's
property in our JSP as shown here:

<s:property value="[1].hideAndSeek"/>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Interceptors

[178]

The [] notation provides a way to directly access the nth object on the stack. [0]
would refer to the model object and [1] is our action. (What's [2]? Usually a
DefaultTextProvider). Further value stack exploring is left as an exercise for
the reader.

If all the properties we need are in our model object, there aren't any issues.

Getting back to the scopedModelDriven interceptor
The scopedModelDriven interceptor automatically retrieves the model object from
the configured scope (it defaults to request, but session may be more appropriate).
The scopedModelDriven interceptor accepts three parameters:

className defines the class of the model object
name defines the key under which to store the model object
scope defines the scope

If a model object cannot be retrieved from the configured scope, one will
be instantiated.

The scopedModelDriven interceptor can be very handy for creating wizard-like
sequences or multi-page forms. The same caveat about accessing action properties
as discussed above applies equally to scopedModelDriven.

The fileUpload interceptor
The fileUpload interceptor, as we'd expect, helps with file uploads. We may recall
that when we uploaded the files, there were several file-related action properties
available to us. It is the fileUpload interceptor which sets these properties.

The fileUpload interceptor takes two parameters— maximumSize and
allowedTypes. The maximumSize parameter sets the maximum file size
allowed (the default is approximately 2MB).

Note that our server may set its own limit. For example, Tomcat
sets a ~2MB limit. Therefore, this parameter alone may not
produce the expected behavior.

The allowedTypes parameter is a comma-separated list of accepted content
(MIME) types .

•

•

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 8

[179]

The fileUplaod interceptor uses several default error message keys:

struts.messages.error.uploading indicates a general upload error
struts.messages.error.file.too.large indicates a maximumSize
violation
struts.messages.error.content.type.not.allowed indicates that an
unallowed type was uploaded

We can substitute our own values for these messages in our own resource files.

Recall from the chapter on form handling that the file upload interceptor deletes
the file once the action is executed. We must copy the file in our action if we need
it preserved.

The checkbox interceptor
The checkbox interceptor is responsible for submitting the value of unchecked
checkboxes. If we recall the <s:checkbox> tag discussed earlier, we'll remember
that it generated a hidden <input> element along with the checkbox element.

The hidden element is named by appending "__checkbox_" to the name of the related
checkbox field. The checkbox interceptor first checks for the checkbox value itself.
(Remember! Unchecked checkboxes are not submitted at all, which is just how
browsers work.) If it's not checked, it's not submitted, and the checkbox interceptor
adds the unchecked value to the request parameters.

The default unchecked value is Boolean.FALSE.toString(). The checkbox
interceptor takes a setUncheckedValue parameter that can be used to override this
default value, but it's important to note that the unchecked value is the same for all
checkboxes on a page.

The staticParams interceptor
The staticParams interceptor sets the action parameters defined in the Struts 2
configuration file using the <param> elements inside of the action configurations.
In addition, if the action implements the Parameterizable interface, a map of static
parameters will be set on the action.

This doesn't mean the parameters are declared with the Java static keyword. They
are "static" in the sense that they're defined in a configuration file.

•

•

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Interceptors

[180]

The params interceptor
We've seen the params interceptor throughout the book, which sets the action
properties from the request parameters. The default rules for what parameters may
be set are somewhat complicated, but basically boil down to ensuring the parameter,
and parameter value, isn't something that would cause a security issue through
crafting values that are meaningful to OGNL (assignment, multiple expressions, or a
context reference), aren't method executions, aren't protected Struts variables, and so
on. (Looking at the interceptor parameters in the struts-default.xml file gives the
exact definition.)

If the action being invoked implements ParameterNameAware, the params
interceptor will query the action for a whitelist of parameters to allow or
a blacklist of parameters to ignore, set using the includeParams and
excludeParams respectively.

The params interceptor also accepts an ordered parameter (which is false by
default) that, if set, guarantees that action properties are set top-down. This means
subcomponent properties will be set after the top-level action properties. This would
be very useful, though a bit difficult to understand without further explanation.

Finally, the params interceptor also extends MethodFilterInterceptor. So, if
there's an action method for which no parameters should be set, we can configure it
to exclude a set of methods.

If our action implements NoParameters, no parameters will be set on it.

Ordered parameters and ad hoc factory patterns
Ordered parameter setting using the ordered parameter allows for ad hoc factory
patterns without using the Preparable interface. The nutshell version is that the
number of periods (.) in a property's name determines its depth. If we have an action
property named userId, it will be set before a property named user.firstName and
user.firstName would be set before address.label.fullName.

Implementing a factory is as simple as having, for example, a modelClass
property and instantiating an instance of that class in the setModelClass(String
modelClass) method. If we then have model parameters, such as model.firstName,
ordered parameter setting guarantees that they'll be set after the modelClass
property (after the object has been instantiated by the setModelClass() method).

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 8

[181]

We can also use a primary key action property to retrieve a persisted object from
the database. For example, if we expose a userId action property, the userId
setter can retrieve an actual user object from the database. User parameters, such as
user.firstName and user.email, are then set after the userId property that was
used to retrieve the user object itself.

Using ordered parameters can be a very handy technique and provides an
alternative to the Preparable interface.

The conversionError interceptor
The conversionError interceptor checks for type conversion errors. If found, the
errors are then added to our action's error list, which will then be checked by the
workflow interceptor (detailed shortly). Often, our conversion errors will also be
reflected by validation errors, leading to multiple error messages for the same field
(we've already seen this!).

This can be avoided by creating an interceptor stack with the conversionError
interceptor removed, as we saw when we looked at configuring our own interceptor
stacks. This may or may not be what a particular application requires. I don't
recommend removing it by default, but at least now we know how to remove it.

The validation interceptor
We've already used the validation interceptor, which runs all appropriate
validation on our action, adding field and action error messages if appropriate.
However, the interceptor does not alter the request flow. The next interceptor in the
default stack—workflow—determines what happens if there are validation errors
(when appropriate).

The validation interceptor is also a subclass of MethodFilterInterceptor. As
such, it accepts an excludeMethods parameter. This is a comma-separated list of
action method names for which validation should not be run.

The default stack's default list of excluded methods (input, back, cancel, and
browse) is defined in struts-default.xml. If we have a consistent list of methods
for which validation should not be run, we can create our own interceptor stack and
set the excludeMethods parameter, or we can configure it on a per-action basis
(as seen earlier).

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Interceptors

[182]

The workflow interceptor
The workflow interceptor just checks to see if the action being invoked implements
ValidationAware and, if it does, checks for the presence of validation errors.
If errors are present, the workflow interceptor does not continue normal action
invocation. It returns the string "input", bringing us back to the page that caused the
validation error. This interceptor modifies the application flow based on the presence
of validation errors.

The result returned when there are validation errors is configured with the
inputResultName parameter, the default is "input". If our action returned normally
to the input form on a successful submit, we might just set inputResultName to
success. However, if we do a redirect, we will lose our validation error messages
(but a dispatch will always work).

The workflow interceptor is another subclass of MethodFilterInterceptor. We
can configure a list of methods to be excluded from workflow processing with the
excludeMethods parameter (or to include using includeMethods).

Other important interceptors and
interceptor stacks
There are a few other important interceptors not included in the default interceptor
stack and a predefined interceptor stack (in addition to the default stack) which are
often helpful.

The token interceptor
We saw the token interceptor briefly during our discussion of the <s:token> tag.
Remember, it's not included in the default interceptor stack. The token interceptor
is also a subclass of MethodFilterInterceptor.

The store interceptor
The store interceptor can save (and restore) action errors and messages in session
for preservation across redirects. This is useful, for example, for multiple-screen
forms (such as wizards) where we need to redirect to an earlier action. Normally,
action errors and messages are stored in the request (technically, they're stored in
the action, which is created per-request), so they're lost across redirects.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 8

[183]

The most common means of configuring this interceptor is by providing an
operationMode parameter in the action configuration. Setting operationMode to
STORE will put the action errors and messages into session. The action that needs to
retrieve the messages would configure the interceptor by setting operationMode
to RETRIEVE. This causes the interceptor to get the errors and messages from the
session, and then set them on the action.

The roles Interceptor
The roles interceptor allows an action to configure a list of roles which are either
allowed or denied to execute privileges for an action. The default implementation
uses the standard HttpServletRequest.isUserInRole() method to determine the
current user's roles.

This interceptor can be a handy one to subclass if, for example, our application uses
roles defined in our application database. By creating our own implementation of the
isAllowed(HttpServletRequest request, Object action), we could check a
user object in session for a given role using our own role mechanism.

The clearSession interceptor
The clearSession interceptor does exactly what it says—it clears the session.
Typically, this would be configured on a per-action basis, probably by just adding
it before the application's default stack. For example, this interceptor would be one
way of handling that aspect of a logout process.

The paramsPrepareParamsStack
interceptor stack
The paramsPrepareParamsStack interceptor stack is similar to the default stack,
but includes an additional params interceptor before the prepare interceptor. In the
default stack, the params interceptor is called after the prepare interceptor calls an
action's prepare() method(s) (if the action implements Preparable, of course).

With the default stack, if the prepare method requires a parameter (for example,
the primary key of a persisted object used to retrieve it from a database), it will fail
because the parameters are set on the action after the prepare method is called.

The paramsPrepareParamsStack sets parameters on the action before calling the
prepare method(s), and then sets parameters again afterwards.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Interceptors

[184]

Writing our own interceptors
The interceptors included in Struts 2 are enough to write entire applications, and the
default stack is often perfectly adequate for our needs. However, interceptors are
a great place to put functionality required across broad sections of an application.
Checking for login status, action logging (for clickstreams, audit trails, etc.), and so
on, are easily implemented using interceptors.

As an example, we'll write an interceptor that trims input strings and configure it
so that it runs before the params interceptor. This fixes an issue in the current type
conversion system—a field being converted to a numeric format, for example, will
end up as a conversion error if there are leading or trailing spaces entered in the
form field.

Our BigDecimal type converter included string trimming, but they were the only
types that benefitted. Other numeric conversions suffer from the same issue. A better
solution is to trim all form fields (with a simple implementation to exclude properties
from trimming), so the existing type converters always work with trimmed strings.
This avoids an entire class of potential errors. Also, we wouldn't need to trim string
properties in our action.

It is important to note that interceptors must be thread-safe. Unlike actions, which
are instantiated for every request, interceptors are instantiated once per interceptor
stack. Also note that when we configure interceptors on a per-action basis, we're
actually creating new interceptor instances. So, the parameters we set on interceptors
inside action configurations affect neither the default interceptor stack, nor the
interceptor stacks of other actions.

The trim interceptor
Interceptors must implement the Interceptor interface:

public interface Interceptor extends Serializable {
 void destroy();
 void init();
 String intercept(ActionInvocation invocation)
 throws Exception;
}

As with many of the other interceptors, we'll subclass MethodFilterInterceptor,
giving us the ability to turn off string trimming for specified methods
(although we might never need to). MethodFilterInterceptor extends the
AbstractInterceptor class, which also provides default implementations of
init() and destroy().

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 8

[185]

MethodFilterInterceptor expects subclasses to implement doIntercept(). The
intercept() method handles the decision making of whether or not the interceptor
should be invoked for the current method. If the interceptor should be invoked,
the method then runs the subclass's doIntercept() method. Here's the complete
implementation, imports elided:

package com.packt.s2wad.ch08.interceptors;
public class TrimInterceptor extends MethodFilterInterceptor {
 private List<String> excluded = new ArrayList<String>();

 public String doIntercept(ActionInvocation invocation)
 throws Exception {
 Map<String, Object> parameters =
 invocation.getInvocationContext().getParameters();
 for (String param : parameters.keySet()) {
 if (isIncluded(param)) {
 String[] vals =
 (String[]) parameters.get(param);
 for (int i = 0; i < vals.length; i++) {
 vals[i] = vals[i].trim();
 }
 }
 }
 return invocation.invoke();
 }

 public boolean isIncluded(String param) {
 for (String exclude : excluded) {
 if (param.startsWith(exclude)) {
 return false;
 }
 }
 return true;
 }

 public void setExcludedParams(String excludedParams) {
 for (String s : StringUtils.split(excludedParams, ",")) {
 excluded.add(s.trim());
 }
 }
}

We'll work our way from the bottom up.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Interceptors

[186]

The setExcludedParams() method handles the excludedParams configuration
parameter, which is a comma-separated list of parameters to be excluded from
trimming. It's there to:

Handle cases where a field might need leading or trailing spaces
Help prove that it works

It simply splits the string (again using Apache Commons Lang's StringUtils)
and then puts each value into a list of excluded parameter names, which are actually
prefixes (we'll get to that).

The isIncluded() method determines if a parameter should be trimmed or not.
It simply checks to see if the parameter name starts with anything found in the
excluded list. This helps us exclude something like a JavaBean by specifying just
the bean name. A bean's nested and/or indexed properties, like bean.aProperty
or bean[0].firstName, would also be excluded. In a production-ready version, we
might lean towards a regular expression-based solution.

The doIntercept() method actually processes the invocation. It loops through all
the parameters, checking to see if they should be included in the trimming process.
If a given parameter has to be trimmed, it loops over the parameter values, trimming
each. When finished, it continues with the normal program flow.

Configuring the trim interceptor
We'll set up a package just for testing this interceptor. We'll define a shortened
interceptor stack which only includes the interceptors we need for the test, and
inserts the new trim interceptor before the params interceptor.

We'll also configure two actions, implemented by the same class, differing only in the
trim parameter configuration:

<!DOCTYPE struts PUBLIC
 "-//Apache Software Foundation//DTD Struts Configuration 2.0//EN"
 "http://struts.apache.org/dtds/struts-2.0.dtd">

<struts>
 <package name="interceptor-examples"
 namespace="/interceptors" extends="struts-default">
 <interceptors>
 <interceptor name="trim"
 class="com.packt.s2wad.ch08.interceptors.TrimInterceptor" />

 <interceptor-stack name="testTrim">

•

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 8

[187]

 <interceptor-ref name="exception" />
 <interceptor-ref name="trim"/>
 <interceptor-ref name="params">
 <param name="excludeParams">
 dojo\..*,^struts\..*
 </param>
 </interceptor-ref>
 <interceptor-ref name="conversionError" />
 <interceptor-ref name="validation">
 <param name="excludeMethods">
 input,back,cancel,browse
 </param>
 </interceptor-ref>
 <interceptor-ref name="workflow">
 <param name="excludeMethods">
 input,back,cancel,browse
 </param>
 </interceptor-ref>
 </interceptor-stack>
 </interceptors>

 <default-interceptor-ref name="testTrim"/>

 <action name="trim"
 class="com.packt.s2wad.ch08.interceptors.TrimAction">
 <result type="redirectAction">trim!input</result>
 <result name="input">
 /WEB-INF/jsps/interceptors/trim-input.jsp
 </result>
 </action>

 <action name="trim2"
 class="com.packt.s2wad.ch08.interceptors.TrimAction">
 <interceptor-ref name="testTrim">
 <param name="trim.excludedParams">excludedParam</param>
 </interceptor-ref>
 <result type="redirectAction">trim!input</result>
 <result name="input">
 /WEB-INF/jsps/interceptors/trim-input.jsp
 </result>
 </action>
 </package>
</struts>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Interceptors

[188]

Note that we wedged our new interceptor between the exception and the params
interceptors. Our actions are very simple. They are identical except that "trim2" sets
the "excludedParams" interceptor parameter on the new "trim" interceptor.

The Test Action
Our test action is similarly straightforward. It defines two BigDecimal properties.
We use validation annotations to make them both required and within a double range,
with no range specified—it's just to make sure they're numeric. Imports elided again.

package com.packt.s2wad.ch08.interceptors;
public class TrimAction extends ActionSupport {
 private BigDecimal includedParam;
 private BigDecimal excludedParam;

 public String execute() {
 System.out.println(String.format(
 "Included: %f, Excluded: %f",
 includedParam, excludedParam));
 return SUCCESS;
 }

 @RequiredFieldValidator(message="Included is required")
 @DoubleRangeFieldValidator(message="Included BigDecimal Error")
 public void setIncludedParam(BigDecimal included) {
 includedParam = includedLong;
 }

 @RequiredFieldValidator(message="Excluded is required")
 @DoubleRangeFieldValidator(message="Excluded BigDecimal Error")
 public void setExcludedParam(BigDecimal excluded) {
 excludedParam = excluded;
 }
}

The execute() method dumps our values to the console, so that we can verify
that they were converted. The form itself has just two text fields, one for each
action property.

Testing the trim interceptor
When we visit /interceptors/trim!input.action, we see the two form fields.
If we add leading and/or trailing spaces to our values, and submit the form (we use
numeric values), we'll be returned to the input form.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 8

[189]

If we visit /interceptors/trim2!input.action and enter a number of leading
and/or trailing spaces for both values, we'll get something different on form
submission—the value we excluded from trimming signals a conversion error. We
see the included value returned to the form in its trimmed state while the excluded
value maintains its extra spaces. It wasn't trimmed.

Modifying application flow with interceptors
One thing we might want to do with an interceptor is to modify the application flow
(after the action executes but before the result is rendered). We might need to check
the state of something at the application level that could have changed, check for
a particular exception thrown by an action, and so on. This is what the workflow
interceptor does—if there are validation errors, we're returned to our "input" result.

Our contrived use case for this functionality is that we're using Struts 2 actions
written by a third-party. We don't have access to the source, and the string results
they return don't match our application's naming convention. Therefore, we need to
map their result values to ours. (Cut me some slack here—it could happen.)

We'll write a ResultMappingInterceptor to deal with the third-party's choices of
values returned by the actions. The action CrazyResultNames has three methods:
execute(), input(), and notmapped(). These methods return strangeSuccess,
irritatingInput, and notmapped respectively. We'd like to have execute() and
input() return success and input, and leave the notmapped() result alone.

Configuring the result
In this example, we'll start off by imagining how we'd like to configure the
interceptor. Here, we'll configure a single action to use the interceptor:

<action name="mapping"
 class="com.packt.s2wad.ch08.interceptors.CrazyResultNames">
 <interceptor-ref name="defaultStack" />
 <interceptor-ref name="resultMapper">
 <param name="resultMap">

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Interceptors

[190]

 #{"strangeSuccess" : "success", "irritatingInput" : "input"}
 </param>
 </interceptor-ref>
 <result name="input">
 /WEB-INF/jsps/interceptors/crazy-input.jsp
 </result>
 <result name="success">
 /WEB-INF/jsps/interceptors/crazy-success.jsp
 </result>
 <result name="notmapped">
 /WEB-INF/jsps/interceptors/crazy-notmapped.jsp
 </result>
</action>

We're using the default stack, but adding the mapping interceptor. Here, we're just
appending it to the end of the default interceptor stack. This means it will run after
all the interceptors in the default stack have been executed. This may not always be
what we want.

The parameter supplied to the resultMapper interceptor looks odd. However, the
intent is clear—we want to provide a map of "from, to" pairs. The first element is
the result name returned by the action, the second is what we'd want the action to
return. The interceptor will then look for an occurrence of the first string and, when
found, return the second string instead.

In fact, the unusual syntax is a simple OGNL. The #{} characters create an immediate
map. It's not quite that simple because our interceptor will receive a string. Fortunately
we can simply evaluate it ourselves. We could pass in a comma-separated list of
strings, "from1, to1, from2, to2" and so on. However, in this case, we feel that the map
syntax expresses our intent more clearly.

Writing the ResultMappingInterceptor
Our first stab looks like this (don't type it in yet—trust me. Imports elided):

package com.packt.s2wad.ch08.interceptors;
public class ResultMappingInterceptor extends AbstractInterceptor {
 private Map<String, String> mappings;

 public String intercept(ActionInvocation invocation)
 throws Exception {
 return mapResult(invocation.invoke());
 }

 public String mapResult(String from) {

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 8

[191]

 return mappings.containsKey(from)
 ? mappings.get(from) : from;
 }

 public void setResultMap(String resultMap) {
 try {
 Object o = Ognl.getValue(resultMap, null);
 if (o != null && o instanceof Map) {
 mappings = (Map) o;
 }
 } catch (OgnlException e) {
 e.printStackTrace();
 }
 }
}

We'll work backwards again. We use a JavaBean-style property setter to process
our interceptor's parameter. In the setMap() method, we use an OGNL utility
method, getValue(), to evaluate our interceptor parameter (error handling
has been elided for brevity).

The mapResult() method just checks the map for the result key and, if found,
returns the map value—the result that we really want the action to return. If the
result isn't mapped, it just returns the original result value.

The intercept() method gets the invocation result and returns the mapped result.

But it doesn't really work. If we visit /interceptors/mapping.action, we get
an error message, claiming that the result string was strangeSuccess despite the
presence of our interceptor. A trip to /interceptors/mapping!input.action is
met with a similar fate. Visiting /interceptors/mapping!notmapped.action, of
course, works since there's a result mapping and a JSP file. But something has clearly
gone wrong.

Writing the ResultMappingInterceptor and making
it work
It turns out that calling invocation.invoke() actually returns after the result has
already been rendered. This is somewhat counter-intuitive (in this case, we need to
change our intuition, as that's just how it is).

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Interceptors

[192]

There is a solution, of course—adding a PreResultListener to the action
invocation. PreResultListener defines a single method, beforeResult(), which
is run before the result is executed. The result code is provided as an argument to
beforeResult(). We use that value to map the result, setting the mapped result on
the invocation. Finally, our modified intercept() method ends up looking like this:

public String intercept(ActionInvocation invocation)
 throws Exception {
 invocation.addPreResultListener(new PreResultListener() {
 public void beforeResult(ActionInvocation invocation,
 String resultCode) {
 invocation.setResultCode(mapResult(resultCode));
 }
 });
 return mapResult(invocation.invoke());
}

Now, when we visit the previous URLs, we find that we're correctly mapping from
the crazy result names of our third-party actions and are sent to the appropriate
result pages.

Summary
In this chapter, we explore Struts 2 interceptors. The chapter covers most of the
interceptors provided by the framework, including some of the most important ones
dealing with form parameters and validation, and also how they can be configured.
The chapter also tells us how we can create our own interceptors to provide
application-wide functionality not provided by Struts 2, along with some ideas
about the ways in which these interceptors can be applied to our own applications.

In the next chapter, we'll cover some topics relating to exception handling,
application logging, and error handling in general.

References
A reader can refer to the following:

Struts 2 Interceptors and Writing Struts 2 Interceptors:

 http://struts.apache.org/2.x/docs/interceptors.html

 http://struts.apache.org/2.x/docs/writing-interceptors.html

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Exceptions and Logging
In the previous chapter, we were introduced to interceptors, one of the most
powerful aspects of Struts 2. In this chapter, we'll cover something much more
mundane, but critical—exception handling and logging. We will explore:

The Struts 2 declarative exception handling mechanism
Some general exception handling practices that will help us create
robust applications
Logging configuration and practices to help us take a peek inside our
application's execution, and help determine what went wrong when
errors occur

Handling exceptions in Struts 2
Struts 2 provides a declarative exception handling mechanism that can be configured
globally (for an entire package), or for a specific action. This capability can reduce
the amount of exception handling code necessary inside actions under some
circumstances, most notably when underlying systems, such as our services, throw
runtime exceptions (exceptions that we don't need to wrap in a try/catch or declare
that a method throws).

To sum it up, we can map exception classes to Struts 2 results.

The exception handling mechanism depends on the exception
interceptor we saw in the previous chapter. If we modify our interceptor
stack, we must keep that in mind. In general, removing the exception
interceptor isn't preferred.

•

•

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Exceptions and Logging

[194]

Global exception mappings
Setting up a global exception handler result is as easy as adding a global
exception mapping element to a Struts 2 configuration file package definition and
configuring its result. For example, to catch generic runtime exceptions, we could
add the following:

<global-exception-mappings>
 <exception-mapping result="runtime"
 exception="java.lang.RuntimeException"/>
</global-exception-mappings>

This means that if a java.lang.RuntimeException (or a subclass) is thrown, the
framework will take us to the runtime result. The runtime result may be declared
in a <global-results> element, an action configuration, or both. The most specific
result will be used. This implies that an action's result configuration might take
precedence over a global exception mapping.

For example, consider the global exception mapping shown in the previous code
snippet. If we configure an action as follows, and a RuntimeException is thrown,
we'll see the locally defined runtime result, even if there is a global runtime result.

<action name="except1"
 class="com.packt.s2wad.ch09.examples.exceptions.Except1">
 <result name="runtime">
 /WEB-INF/jsps/ch9/exceptions/except1-runtime.jsp
 </result>
 ...

This can occasionally lead to confusion if a result name happens to collide with a
result used for an exception. However, this can happen with global results anyway
(a case where a naming convention for global results can be handy).

Action-specific exception mappings
In addition to overriding the result used for an exception mapping, we can also
override a global exception mapping on a per-action basis. For example, if an action
needs to use a result named runtime2 as the destination of a RuntimeException, we
can configure an exception mapping specific to that action.

<action name="except2"
 class="com.packt.s2wad.ch09.examples.exceptions.Except1">
 <exception-mapping result="runtime2"
 exception="java.lang.RuntimeException"/>
 ...

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 9

[195]

As with our earlier examples, the runtime2 result may be configured either as a
global result or as an action-specific result.

Accessing the exception
We have many options regarding how to handle exceptions. We can show the user
a generic "Something horrible has happened!" page, we can take the user back and
allow them to retry the operation or refill the input form, and so on. The appropriate
course of action depends on the application and, most likely, on the type of exception.

We can display exception-specific information as well. The exception interceptor
pushes an exception encapsulation object onto the stack with exception and
exceptionStack properties. While the stack trace is probably not appropriate
for user-level error pages, the exception can be used to help create a useful error
message, provide I18N property keys for messages (or values used in messages),
suggest possible remedies, and so on.

The simplest example of accessing the exception property from our JSP is to simply
display the exception message. For example, if we threw a RuntimeException, we
might create it as follows:

throw new
 RuntimeException("Runtime thrown from ThrowingAction");

Our exception result page, then, could access the message using the usual property
tag (or JSTL, if we're taking advantage of Struts 2's custom request processor):

<s:property value="exception.message"/>

The underlying action is still available on the stack—it's the next object on the value
stack. It can be accessed from the JSP as usual, as long as we're not trying to access
properties named exception or exceptionStack, which would be masked by the
exception holder. (We can still access an action property named exception using
OGNL's immediate stack index notation—[1].exception.)

Architecting exceptions and exception
handling
We have pretty good control over what is displayed for our application
exceptions. It's customizable based on exception type, and may be overridden
on a per-action basis. However, to make use of this flexibility, we require a
well-thought-out exception policy in our application. There are some general
principles we can follow to help make this easier.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Exceptions and Logging

[196]

Checked versus unchecked exceptions
Before we start, let's recall that Java offers two main types of exceptions—checked
and unchecked. Checked exceptions are exceptions we declare with a throws
keyword or wrapped in a try/catch block. Unchecked exceptions are runtime
exceptions or a subclass.

It isn't always clear what type we should use when writing our code or creating our
exceptions. It's been the subject of much debate over the years, but some guidelines
have become apparent.

One clear thing about checked exceptions is that they aren't always worth the
aggravation they cause, but may be useful when the programmer has a reasonable
chance of recovering from the exception.

One issue with checked exceptions is that unless they're caught and wrapped in
a more abstract exception (coming up next), we're actually circumventing some
of the benefits of encapsulation. One of the benefits being circumvented is that
when exceptions are declared as being thrown all the way up a call hierarchy, all
of the classes involved are forced to know something about the class throwing the
exception. It's relatively rare that this exposure is justifiable.

Application-specific exceptions
One of the more useful exception techniques is to create application-specific
exception classes. A compelling feature of providing our own exception classes is
that we can include useful diagnostic information in the exception class itself.
These classes are like any other Java class. They can contain methods, properties,
and constructors.

For example, let's assume a service that throws an exception when the user calling
the service doesn't have access rights to the service. One way to create and throw this
exception would be as follows:

throw new RuntimeException("User " + user.getId()
 + " does not have access to the 'update' service.");

However, there are some issues with this approach. It's awkward from the Struts 2's
standpoint. Because it's a RuntimeException, we have only one option for handling
the exception—mapping a RuntimeException to a result. Yes, we could map the
exception type per-action, but that gets unwieldy. It also doesn't help if we need to
map two different types of RuntimeExceptions to two different results.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 9

[197]

Another potential issue would arise if we had a process that examined exceptions
and did something useful with them. For example, we might send an email with user
details based on the above exception. This would amount to parsing the exception
message, pulling out the user ID, and using it to get user details for inclusion in
the email.

This is where we'd need to create an exception class of our own, subclassed
from RuntimeException. The class would have encapsulated exception
related information, and a mechanism to differentiate between the different
types of exceptions.

A third benefit comes when we wrap lower-level exceptions—for example, a
Spring-related exception. Rather than create a Spring dependency up the entire
call chain, we'd wrap it in our own exception, abstracting the lower-level exception.
This allows us to change the underlying implementation and aggregate differing
exception types under one (or more) application-specific exception.

One way of creating the above scenario would be to create an exception class that
takes a User object and a message as its constructor arguments:

package com.packt.s2wad.ch09.exceptions;
public class UserAccessException extends RuntimeException {
 private User user;
 private String msg;
 public UserAccessException(User user, String msg) {
 this.user = user;
 this.msg = msg;
 }
 public String getMessage() {
 return "User " + user.getId() + " " + msg;
 }
}

We can now create an exception mapping for a UserAccessException (as well as
a generic RuntimeException if we need it). In addition, the exception carries along
with it the information needed to create useful messages:

throw new UserAccessException(user,
 "does not have access to the 'update' service.");

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Exceptions and Logging

[198]

While we'll explore other aspects of "self-documenting" code in Chapter 14, it's
worth pointing out that this could be made even safer, in the sense of ensuring that
it's only used in the ways in which it is intended. We could add an enum to the class
to encapsulate the reasons the exception can be thrown, including the text for each
reason. We'll add the following inside our UserAccessException:

 public enum Reason {
 NO_ROLE("does not have role"),
 NO_ACCESS("does not have access");
 private String message;
 private Reason(String message) {
 this.message = message;
 }
 public String getMessage() { return message; }
 };

We'll also modify the constructor and getMessage() method to use the new
Reason enumeration.

 public UserAccessException(User user, Reason reason) {
 this.user = user;
 this.reason = reason;
 }
 public String getMessage() {
 return String.format("User %d %s.",
 user.getId(), reason.getMessage());
 }

Now, when we throw the exception, we explicitly know that we're using the
exception class correctly (at least type-wise). The string message for each of the
exception reasons is encapsulated within the exception class itself.

throw new UserAccessException(user,
 UserAccessException.Reason.NO_ACCESS);

With Java 5's static imports, it might make even more sense to create static helper
methods in the exception class, leading to the concise, but understandable code:

throw userHasNoAccess(user);

I've been accused of wanting my entire application to be a single line of code. What
I do know is that the easier it is to read a chunk of code, the better the application is.
There are limits on how far this should be taken—the static helper method may be
beyond the point of usefulness, but the idea is sound.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 9

[199]

Reading our code out loud is often a useful indicator of how "fluent"
it is (this will be covered in Chapter 14). However, it can be an
enlightening exercise.

Abstracting underlying exceptions
Another useful technique also involves creating application-specific exceptions
whose purpose is largely to encapsulate and abstract underlying exceptions.

For example, consider a service object that may throw one of several vendor-specific
checked exceptions that don't share a common subclass. Rather than configure Struts
2 to handle each exception separately (particularly when we don't care about the
specifics at the application level, beyond the fact that there was a general service
failure), we can configure a single application-specific exception that encapsulates
both the underlying cause, and provides more contextual information as compared
to the underlying exception.

We might have several implementations of a given service class. We might have an
implementation that uses Hibernate to perform actual database access and another
that uses hard-coded test data for testing failure modes. If the service object is
designed to return a general-purpose service exception, we need to only configure
that exception, leaving our application free of implementation details regarding the
underlying service.

Our actual service implementation might look like the following, where
SpecificDaoException is something thrown from a deeper layer, such as Hibernate:

public void aServiceMethod(...) {
 try {
 ourDao.daoOperation(...);
 } catch (SpecificDaoException e) {
 throw new ApplicationSpecificServiceException(
 "Exception handling the operation");
 }
}

On the other hand, a test service implementation, might just throw an exception
while we're testing failure modes (we'll cover this further in the testing chapter):

public void aServiceMethod(...) {
 throw new ApplicationSpecificServiceException(
 "Testing failure mode foo");
}

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Exceptions and Logging

[200]

In addition, the general-purpose, application-specific exception could provide
a constructor accepting a Throwable. This means the underlying exception
information isn't lost and can be logged for later examination. (Yes, exception
chaining can lead to mile-long stack traces, and is not always appropriate.)

Handling exceptions
Have you ever seen code like this?

try {
 doSomething();
} catch (Exception e) {
}

Don't ever write that. If you see it, fix it. It's assuming several things, the worst of
which is that the thrown exception is harmless. It might be harmless, but it might
also be an EndOfTheWorldException we actually care about. It also assumes that
the action taken during the catch is appropriate for all thrown exceptions—again,
possible, but unlikely.

As mentioned in the earlier sections, it might make sense to convert the underlying
exception to an application-specific exception. For example, if our imaginary
database layer threw a UninitializedCollectionException while retrieving a
recipe's ingredients, we might wrap it in a RecipeServiceException. We might
even wrap it in an even more generic DatabaseException, making sure we pass the
UninitializedCollectionException in its constructor to preserve the context of
the original exception.

Logging
Most Struts 2 systems provide detailed logging information. Logging can be
configured on several levels to control what systems are logged, and how much
information each system logs.

Most of the systems use the Commons Logging library, a thin wrapper around
various logging libraries. XWork uses its own log wrapper (and there are valid
reasons not to use Commons Logging), but it is similarly configurable.

We'll take a look at how to configure Log4J, a popular logging library, and one of
the logging systems Commons Logging works with. The only requirement for using
Log4J is to provide the Log4J library on our classpath—Commons Logging knows
how to initialize it.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 9

[201]

Introduction to logging
There are two main things we should keep in mind about logging:

1. There are several logging levels that control logging verbosity.
2. Log types and levels are configurable for package hierarchies

(including specific classes), and the most specific log configuration wins.

Log4J (and Commons Logging) defines six logging levels, ordered here by verbosity
level (TRACE is the most verbose):

1. TRACE
2. DEBUG
3. INFO
4. WARN
5. ERROR
6. FATAL

Java's java.util.logging.Level defines its own set of standard logging
levels: ALL, FINEST, FINER, FINE, CONFIG, INFO, WARNING, SEVERE,
and OFF. Which level we target depends on the logging library chosen and/or
our runtime environment.

Each of our log messages, then, will exist in one of these levels. For example,
exceptions might be logged at the ERROR level, whereas detailed program
flow might be logged at the TRACE level, which would normally be seen only
during development.

Logging is configured at the package and class level. First, we'll look at how to use
logging in our Java code, and then we'll look at logging configuration.

Using the loggers
In general, we'll use Log objects in our classes. Logs accept a Java class argument and
this is probably the most common usage pattern. For example, an action class might
declare a log as follows:

private static final Log LOG = LogFactory.getLog(ThisAction.class);

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Exceptions and Logging

[202]

We can then use the logger throughout our code, calling the various methods
corresponding to the logging levels we saw in the previous section. The following
pseudocode shows several logging levels and how they might be used:

public String execute() throws Exception {
 log.trace("Enter.");
 if (StringUtils.isBlank(name)) {
 return SUCCESS;
 }
 Exception ex = null;
 try {
 log.debug(" Constructing " + name + "...");
 ex = (Exception) Class.forName(name).newInstance();
 } catch (Exception e) {
 log.error("Exception during instantiation: "
 + e.getMessage(), e);
 }
 if (ex != null) {
 log.trace(" Throwing " + name + "...");
 throw ex;
 }
 log.debug(" Could not create instance; returning...");
 return SUCCESS;
}

We see three different log levels—TRACE, DEBUG, and ERROR. TRACE is used for
the lowest-level diagnostic information possible, and is used for very fine-grained
execution tracing. DEBUG is used for showing information useful to debugging.
Finally ERROR is used for showing actual errors. Actually, it's arguable that the
ERROR-level log statement above really belongs at the WARN level, which is a little
less serious. INFO level messages (not used above) are for bits of information that
will generally be displayed. For example, this might include configuration details.

The styles we use for the contents of our log messages are many and varied. We
might indent our log messages based on the nesting inside the method and use
periods at the end of statements that are complete in and of themselves. We might
also use ellipses (...) for statements made before an operation occurs and also before
statements that are a continuation of a chain of events. These aren't hard-and-fast
rules—just conventions. Developing a consistent set of conventions can help while
wading through large log files.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 9

[203]

There are also log methods for determining if a specific log level is set. For example,
if we had a collection we wanted to log if the DEBUG level was active, we would
write the following:

if (log.isDebugEnabled()) {
 for (Object baz : bazzes) {
 log.debug(baz);
 }
}

It's true that we don't need the test to see if the DEBUG level is enabled. However,
by wrapping the entire loop inside the check, we avoid looping through the entire
collection and not printing anything out. If a debug message is unusually expensive
to construct, for whatever reason, the same method can be used. For example, we
might use String.format() to create a log message as shown here:

log.debug(String.format(" Throwing %s...", throwsClassname));

If it was an expensive format, it might be worth the extra "noise" to surround it
if an isDebugEnabled() is called to avoid a potentially unnecessary call to
String.format().

Configuring the loggers
We can configure Log4J by using either XML or a properties file. We'll briefly look at
the properties file configuration, and then configure various Struts 2 subsystems and
our application to log at whichever level we prefer. Further configuration options
can be found in the Log4J documentation or in the documentation for whatever
logging implementation we decide to use.

We'll break up the properties file into chunks and discuss each one individually
to help make things a bit more clear. When I refer to properties, I'll leave the
log4j prefix as seen here:

log4j.rootLogger=INFO, A1

The rootLogger property defines the broadest level of logger. Any logging not
specifically configured will be handled by the rootLogger definition. Here, we've
set the log level to INFO and listed a single log appender A1.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Exceptions and Logging

[204]

Appenders determine how the logging occurs. For example, log statements can be
directed to the console (as shown below), a file, a rolling file that is limited in size but
keeps a specified number of historic log files, a database, and so on. These options
are detailed in the Log4J documentation. We'll examine how to set up a console log
appender. This is particularly useful when developing using an IDE with a console
view, such as Eclipse, or for production servers.

log4j.appender.A1=org.apache.log4j.ConsoleAppender
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d %-5p %c.%M:%L - %m%n

In the example above, we define the appender as a Log4J ConsoleAppender class,
which writes log messages to the console. Note that the appender A1, which we
named in our rootLogger, is used after the appender property name. This lets Log4J
know which appender we're defining.

We define the layout of log statements using the layout property, again appended
to the property name. The PatternLayout creates a log statement template, where
each character following the % character represents some specific information
(for example, %d is the date).

log4j.logger.com.packt.s2wad=DEBUG
log4j.logger.org.apache.struts2=INFO
log4j.logger.com.opensymphony.xwork2=INFO
log4j.logger.ognl=INFO
log4j.logger.org.apache.struts2.util.StrutsTypeConverter=DEBUG

The remainder of our Log4J configuration file consists of setting the log level for
package- and class-specific logs. The logger property defines the log level for
whatever package (and optionally classname) follows it in the property name.

We just now configured the DEBUG level for our entire application, as all our Java
classes are in the com.packt.s2wad package. All classes in that package will be
configured to log DEBUG-level messages and higher-priority messages (such as
INFO or ERROR).

We configured Struts 2 itself (and XWork and OGNL) to log only INFO-level
messages (and above). However, we have configured the StrutsTypeConverter
class at the DEBUG level. This means that everything in Struts 2, except the
StrutsTypeConverter class, will log at the INFO level, also including other
classes in the org.apache.struts.util package.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 9

[205]

The ability to turn on DEBUG-level logging with this granularity can be very helpful.
It allows us to keep all of our log statements in our application, but still choose
the level at which to run logging in a single location. During development, we'll
generally run at the TRACE or DEBUG levels. Once we move into production, it's
more likely that we'd run at the INFO or WARN levels.

Turning up the logging levels can often produce gigantic log files, especially at the
DEBUG and TRACE levels. Different libraries produce different amounts of logging
at different levels. However, it is very instructive to crank up the log levels at regular
intervals, particularly when first learning a library, system, or technology. This is
required to get a feel of some of what's going on "under the hood". Turning up log
levels can also help track down configuration issues, particularly at startup.

Summary
This chapter introduces us to the Struts 2 declarative exception handling mechanism,
showing us how we can define both global- and action-specific exception mappings
and results. The chapter also looks at ways to make our exceptions more useful by
encapsulating exception-specific data in the exception class.

We also get an overview of how to configure logging for our Struts 2 application,
including how to set the log levels for each of the major Struts 2 subsystems—
XWork, OGNL, and Struts 2 itself.

In the next chapter, we'll move away from Struts 2 a bit and examine everybody's
favorite web application language—JavaScript. Really, it's been misunderstood and
abused for too long. Despite some warts, it's a capable, dynamic language that can be
used to a wonderful effect, as long as it's written well. And yes, it is possible to write
clean and safe JavaScript!

References
A reader can refer to the following:

Exceptions
 http://java.sun.com/docs/books/tutorial/essential/exceptions/

The Great Exception Debate
 http://www.ibm.com/developerworks/java/library/j-jtp05254.html
 http://www.mindview.net/Etc/Discussions/CheckedExceptions

Commons Logging, Log4J
 http://commons.apache.org/logging/
 http://logging.apache.org/log4j/index.html

•

•

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Getting Started with
JavaScript

In the previous chapter, we covered how Struts 2 can use both application- and
action-specific exception configurations to deal with application errors. We also
looked at ways to enhance our exception classes by including application-specific
information. Finally, we saw how to configure logging, so that we can see what's
going on behind the scenes in both the framework and our own code.

In this chapter, we'll take a look at JavaScript—a common element of many
web applications. Having a solid foundation in JavaScript and the Document
Object Model (DOM) is critically important for developing reactive, functional
web applications, and is particularly important when we start developing
Ajax-based applications.

JavaScript is a much-maligned language, particularly by those without a grounding
in other dynamic languages such as Lisp, Smalltalk, Self, and so on. JavaScript is
an incredibly flexible and capable language when used in ways that play to its
strengths. Applying non-JavaScript design patterns to JavaScript will produce
inefficient code that is needlessly complex and difficult to debug.

We'll first look at some JavaScript gotchas, and will then explore some of the
more advanced uses as seen in many JavaScript libraries, including a discussion
of JavaScript's versions of object-oriented programming. We'll conclude by using
JavaScript to create a more dynamic version of our ingredient list input fields,
allowing an arbitrary number of ingredients to be entered.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Getting Started with JavaScript

[208]

Introduction to JavaScript
JavaScript has a syntax similar to C, C++, and Java. It is an object-oriented (OO)
language, but not in the same way as Java. Understanding JavaScript's OO nature
can bring a huge boost in productivity. While it's possible to program JavaScript in a
"cookbook-style" manner (or worse, "code sample-oriented programming"), today's
highly interactive applications can benefit from a deeper understanding of JavaScript.

While we won't cover the entirety of JavaScript for which there are other appropriate
materials, we'll get a high-level overview of the language. We will then delve deeper
into some of the more useful JavaScript and DOM patterns.

Playing with JavaScript
The easiest way to play around with JavaScript is to use Firefox combined with the
Firebug plug-in. There are also some solutions for Internet Explorer if you're running
on a platform that supports it. In this chapter's code, we'll sometimes assume we're
in the Firebug console, allowing us to type in and execute code immediately. The rest
of the code will be run inside a webpage. It will usually be obvious from the context.

Minor syntax and language notes
There are some minor syntax notes to be kept in mind, particularly some differences
that can cause headaches to Java programmers.

Unicode
Modern JavaScript supports Unicode. Prior to ECMAScript v3, Unicode was allowed
only in comments or string literals. Modern browsers (in theory) allow Unicode to
be used anywhere, even in variable names. Personally, I'd avoid Unicode except in
comments or string literals, but that may just be paranoia on my part.

Whitespace
Whitespace is ignored in JavaScript, except inside string literals. However, you can
use the "\" character to continue a line, including in the middle of string literals. This
will not insert a new line in the string.

var s = "Hello, \
world!";
alert(s); // Will alert with the string "Hello, world!".

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 10

[209]

Semicolons
To make JavaScript easier, it was decided that semicolons at the end of statements
should be optional. This can lead to some strange issues, as they can be inserted by
the JavaScript compiler in places where we don't necessarily expect. The return,
break, and continue statements are the primary culprits. The canonical example is
the following code:

return
 true;

This will be interpreted as:

return;
true;

This is almost never what we mean. The answer for this is to always use semicolons,
and never rely on semicolon insertion.

Null and undefined values
JavaScript has both null and undefined values. Variables declared, but not
initialized, are undefined, not null.

The equal and strict equal operators
Both == (equal) and === (strict equal), and their negated (using a prefixed !)
counterparts may be used for equality operations. They behave differently. The
equal operator does type conversion, the strict equal operator doesn't. We'll briefly
examine type coercion later. In general, we'll usually want to use ===. Equal (==) and
strict equal (===) also behave differently when comparing null and undefined values.
With ==, null and undefined are equal, whereas with ===, they are not.

The logical OR operator
The || (logical OR) operator can be used to ensure a variable has a value.

var aVariable = anotherVariable || "Default value";

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Getting Started with JavaScript

[210]

If the value of anotherVariable is null (or undefined), the value of aVariable
will be set to "Default value", else it will be set to whatever there is in
anotherVariable. This is a very common shorthand notation for the following
code, and is seen a lot in good JavaScript code.

var aVariable;
if (anotherVariable == null) {
 aVariable = "Default value";
} else {
 aVariable = anotherVariable;
}

The same thing can be represented using the ?: operator as:

var aVariable = (anotherVariable == null) ? "Default value"
 : anotherVariable;

We can also express this by using JavaScript's liberal notion of truthiness:

var aVariable = anotherVariable ? "Default value"
 : anotherVariable;

Variables and scoping
Scoping in JavaScript is different from that in Java. One of the biggest differences
is that undeclared variables (variables that don't use the var keyword) are
automatically assumed to be global variables. This can cause endless headaches.
Leaving off a var keyword inside a function can produce surprising results.

var i = 1;
function modifyGlobalByAccident() {
 // Re-use of global i but was
 // intended to be local to function!
 for (i = 0; i < 10; i++) {
 // ...
 }
}
modifyGlobalByAccident();
alert(i); // Now contains 10, NOT 1!

It can be difficult to track down interactions like this, particularly when there is a lot
of code between a variable's initial declaration and its subsequent overwriting. If we
intended to modify the global variable, this code is fine (we'll see how to make things
more obvious later). However, it does underscore the stance that global variables are
evil and can lead to difficult-to-debug code.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 10

[211]

The other potential scoping gotcha is that in JavaScript only functions have their
own scope. For example, blocks inside a for loop do not have their own scope, and
variables declared within such a block will overwrite variables of the same name
outside the block.

This is quite different from Java, where anything inside curly brackets ({}) is its own
block and enjoys a distinct variable space. In the example that follows, the initial
value of aName will be overwritten:

var aName = "Dave";
var names = ["Dave", "Nick", "Omar"];
for (var i = 0; i < names.length; i++) {
 var aName = names[i];
}
alert(aName); // Alerts "Omar", NOT "Dave" (sorry, Nick).

Even though we used the var keyword, we are not creating a new variable named
aName. It's the same one. This is at least as bad as the default global scope. Perhaps
it is worse when coming from a Java background. In Java, we believe we can create
unique variables wherever we want. In JavaScript, we can't. If we're not vigilant, this
can cause subtle bugs that are hard to track down, particularly if we're not looking
for scope-related issues.

Using, the var keyword inside functions does create a new variable.

var aName = "Dave";
var names = ["Dave", "Nick", "Omar"];
function foo() {
 for (var i = 0; i < names.length; i++) {
 var aName = names[i];
 }
 alert(aName); // Contains "Omar"; local to function.
}
foo();
alert(aName); // Contains "Dave"--the global value.

In the code above, notice that inside the function foo(), we still have access to the
aName variable, even though we're outside the for loop. The for loop does not create
its own variable scope. Only the function foo has its own scope. It doesn't matter
where in the function we put the var aName.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Getting Started with JavaScript

[212]

By the same token, if we create a variable inside a function and attempt to refer to it
outside of that function, it will be an error.

function bar() {
 var baz = "Hello";
 alert(baz); // This works.
}
alert(baz); // This doesn't.

JavaScript data types
JavaScript has only a few data types when compared to Java. One important
difference is that variables in JavaScript are not statically typed. This implies that a
variable initialized to a string in one place can be assigned a number somewhere else.
Doing this is rarely a good idea, and can be a source of frustration.

Numbers
Tired of all the numeric types available in Java? JavaScript has only one—64-bit
floating point. Even numbers that look like integers are actually floating point
internally. This isn't always an issue, but it is something to be aware of. This should
also be remembered when performing what we think is integer division—the result
may not be an integer.

Floating point numbers may be represented conventionally, such as 3.14159, or by
using scientific notation, such as 6.02e23.

JavaScript has several built-in values that may be returned from a numeric
calculation, the most important being NaN and Infinity. Interestingly, Infinity
can be either positive or negative.

NaN is noncomparable using the normal numeric operators, so a isNaN(obj)
function is provided. Similarly, isFinite(obj) will test for positive or negative
Infinity (when obj is not NaN).

JavaScript provides a Math object that has more complex mathematical operations
available. A complete reference is beyond the scope of this book. The object provides
many of the expected operations such as Math.sqrt(), Math.sin(), Math.cos(),
and so on.

Decimal, hex, octal
Numbers can be represented in decimal, hex, or octal. Hex numbers are prefixed
with a 0x, whereas octal numbers are prefixed with a 0.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 10

[213]

Conversions
Numbers can be converted to strings with the String(obj) method. However,
numbers created in scientific notation will not necessarily be converted to a string
containing scientific notation. For example, String(6.23e5) will return 623000,
whereas String(6.23e21) will return 6.23e+21 (at least in Firefox).

Strings
JavaScript strings can be delimited with either single or double quotes. There is no
functional difference between these two types of quotes. For example, if our string
contains a quote of one kind, we can quote the entire string with the other quote. An
alternative is to escape either type of quote with a leading backslash (\) character.

JavaScript supports many of the typical string escape sequences, such as \n, \t, and
so on. Unicode characters may be embedded in a string by escaping with a \uXXXX,
where XXXX is the four hexadecimal digits of the Unicode character.

Strings can be concatenated using the plus operator (+). This is similar to Java in
the way memory is allocated and a new string is created. If there are a lot of string
concatenations, particularly inside a loop, it can be more efficient to use the join
method from the Array object:

aString = ["lots", " of", ..., " strings"].join("");

We shouldn't do this unless we're joining a lot of strings—creating the array and
calling the join() method is more expensive when there are only a few strings.

Length and conversions
String objects have a length property used to determine the length of the string in
Unicode characters.

String objects contain several useful methods. Again, a complete reference is
beyond the scope of this book, but a few methods are worth noting. In addition
to the expected charAt, indexOf, lastIndexOf, substring, toLowerCase, and
toUpperCase functions, strings also have several regular expression functions
(including split, which can take either a string separator or a regular expression
to split on). The match, replace, and search functions all take regular expressions.
As we've seen previously, a good command of regular expressions can be extremely
valuable—true in the case of JavaScript as well.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Getting Started with JavaScript

[214]

JavaScript has a convenient syntax for regular expressions—we put the expression
inside slashes (//). For example, the following example removes HTML <pre> tags
from a string:

s = s.replace(/<pre.*>/i, "").replace(/<\/pre>/i, "");

Okay, I'll only make it a partial exercise for the reader. First, we're using method
chaining, which we see in Java. The "i" makes it a case-insensitive regex. The purpose
of the backslash in the second regex is to escape the forward slash. Otherwise,
JavaScript would think our regex was done being defined, and would promptly
blow up since the rest of the line wouldn't be legal JavaScript.

Conversions to other types
Strings can be converted to numbers using the Number(obj) method. However,
Number("010"), despite the leading 0, will return 10 decimal, not 8 octal. So, we've
been warned for all those times when we would be dealing with octal numeric data
in strings.

We can also use the parseInt(obj) function. It defaults to base 10 numbers. The
parseInt function takes an optional radix parameter, parseInt(obj, radix). This
function will stop converting as soon as it sees a character in the string that doesn't
make sense in the assumed radix. This can lead to an interesting result if the string
passed in contains a leading 0. If we call parseInt("08"), we'll actually get the
number 0 back. This is because the leading zero makes parseInt believe it's parsing
an octal number, and 8 is not a legal octal digit.

The plus (+) operator is also a unary operator that, when applied to a string, will
convert it to a number. We'll look at this a bit further when we look at type coercion.

Arrays
JavaScript arrays are objects. In Java, they're sort of objects, but don't share many
object semantics, and require java.lang.reflect.Array for direct manipulation.
As in Java, they can be created with an immediate syntax, using brackets [] around
the array values.

var array1 = [1, 2, 3, 4, 5];

Individual array elements can then be accessed using an array index, which starts at
zero. For example, array1[0] will return the number 1.

Unlike Java, JavaScript arrays are actually always associative arrays, more similar to
maps than arrays. When we access array1[0], the index is converted to a string.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 10

[215]

Because of this we can say things such as array1["foo"] = "bar", which is more
like a map than the Java arrays we're familiar with. This implies that arrays can
actually be used like a structure (although objects are probably a better choice, as
we'll see next).

Arrays have a length property which is used to determine the length of the array.
The length property can also be used to append objects to the end of an array as
shown here:

var a1 = [1, 2, 3];
a1[a1.length] = 4; // a1 now contains [1, 2, 3, 4].

We can also add elements beyond the end of an array:

a1[8] = 42;

This puts the number 42 at array index 8 (arrays are zero-based, so the 9th position).
What about the values at uninitialized indices? They're filled with the undefined
value (not null).

Array functions
Arrays have their own handy collection of functions (not covered in detail here). To
cover in brief, the following are some methods included in the collection:

concat: For concatenating one array to another
join: For joining array elements, which takes an optional separator argument
(the default is ",") and returns a string
pop and push: For using arrays like a stack
slice: For getting a portion of an array
sort: For sorting arrays, taking an optional function as an argument (we'll
look at this later)
splice: Exhibits fairly complicated behavior.

Exception handling
JavaScript has exception handling similar to that of Java, but slightly different. One
difference is that we can use only a single catch block. We still have finally blocks.

Throwing an exception is slightly different. We have (at least) two options. We can
throw a new JavaScript Error object as follows:

function foo() {
 throw new Error("Foo threw me");
}

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Getting Started with JavaScript

[216]

If this exception occurs outside of a try/catch block under Firefox with Firebug,
we'll see the string we passed to the Error function in the JavaScript console.

We can actually throw an object of any type, not just JavaScript's Error object. For
example, we might just create an anonymous object with the "name" and "message"
properties (we'll get to anonymous objects next):

function foo() {
 throw { name: "FooException", message: "Foo threw me." };
}

If we call foo() outside of a try/catch block, the behavior is browser specific.
For example, under Firefox with Firebug, we'll see a message in our console
similar to this:

uncaught exception: [object Object]

This is not particularly useful. We can give our anonymous object a toString()
method, but that starts to make our throw statement bulky. A more convenient way
is to create a function that returns the exception object, complete with a toString()
function. We'll see many ways to go about this in the next section. We create our
own exception objects for the same reason we do it in Java—the ability to add
exception-specific data that can be acted upon, displayed, and so on.

Introduction to JavaScript objects
and OOP
Objects are at the heart of JavaScript, although functions (which are objects
themselves) play a surprisingly significant role once we get more advanced. While
there are a few ways to create a new object in JavaScript, the canonical method,
particularly for structure-like objects, is to use the {} notation, which creates an
anonymous object.

var o = {};

JavaScript objects can be thought of as a unification of objects and hash tables. An
object is simply an unordered collection of name-value pairs. A name can be any
string. Similarly, a value can be any value—including numbers, strings, arrays, other
objects, and even functions. In a sense, every JavaScript object is a tiny database.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 10

[217]

This is underscored by the JavaScript anonymous object syntax. By supplying a
comma-separated list of name-value pairs, we can create our own data structures,
which can then be accessed in an intuitive way:

var aDude = {
 fname: "Dave",
 lname: "Newton",
 age: Infinity // Notice no trailing comma!
};
aDude.fname; // Returns "Dave".
aDude["fname"]; // *Also* returns "Dave".

When we create a name-value pair, we do not need to quote the "name" string, unless
it is a JavaScript reserved word. Note that there are many JavaScript reserved words
that aren't actually used in the language (this is historical and somewhat confusing).
Also notice that the last name-value pair does not have a trailing comma. This is
significant, as not all browsers will allow a trailing comma.

Recall that we said an object can hold any value type; this includes other objects too.

var aDude =
 fname: "Dave",
 lname: "Newton",
 age: Infinity,
 address: {
 street: "271828 E St",
 state: "Confused",
 zip: "69042"
 }
};

We can access members of aDude's address object as expected—
aDude.address.state. This usage of anonymous object is known as
JSON (JavaScript Object Notation).

Open objects and object augmentation
Values can be added to objects at any time. For example, we could add an
arbitrary property to the aDude object after it's created by using either dot
notation or array notation.

aDude.newProperty = "I'm a new property.";
aDude["anotherNewProperty"] = "Another new property.";

Properties may be accessed using either dot or array notation.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Getting Started with JavaScript

[218]

Object values can be functions
We'll explore this further as we go along. However, note that we can use a function
as a value in an object. In other words, functions can be the value of a variable.
Functions are first class objects in JavaScript.

aDude.toString = function() {
 return "aDude [fname=" + this.fname + ", lname="
 + this.lname + "]";
}
alert(aDude); // Alerts "aDude [fname=Dave, lname=Newton]".

Notice the this keyword used in the snippet. It is similar to Java's this, but
significantly different depending on the situation in which it is used (we'll talk about
this a bit later). A complete treatise of JavaScript OOP is well beyond the scope of
this book, but we'll cover some basics.

Object maker functions
Objects can be created by dedicated creation functions. This methodology can be
used to make sure objects are always created in a specific way, are assigned default
values (if no specific value is specified), and so on. We'll learn more about JavaScript
constructors a bit later on (they're also just functions, although not the specialized
ones within a class as in Java).

function makeAdude(fname, lname) {
 return { fname: fname, lname: lname };
}
var aNewDude = makeAdude("Omar", "Velous");
aNewDude.fname; // Returns "Omar".

Here, we're simply returning an anonymous object from our function. However, the
function ensures that at least the object's fname and lname values are initialized.

Functions
We've already seen that functions are first class objects. We've also seen one way
in which this can be exploited—the toString() function in our object above was a
function value. We'll cover some interesting aspects of JavaScript functions, some of
which may not seem useful until we begin discussing modules and encapsulation.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 10

[219]

When we declare a normal function in JavaScript, we're actually creating a variable
that holds that function as its value—that's what the function keyword does. This is
shorthand for the function operator, which takes an optional name, a parameter list,
and a block of statements. The two examples given here are functionally equivalent:

function f1() {
 alert("Hello from f1");
}
var f2 = function () {
 alert("Hello from f2");
};
f1();
f2();

Function parameters
Function parameters, like all JavaScript variables, are untyped. In addition, we can
call a function with fewer (or more) parameters than listed in the function definition.

function f1(param1, param2) {
 ...
}
f1(); // That's fine: param1 and param2 are undefined.
f1("foo", "bar", "baz", "plugh"); // That's fine too...

This alone can make JavaScript a bit tricky at times, but that's the nature of the
beast. We can always check for a specific number of parameters. We can even
check for their types to a degree. However, this is surprisingly uncommon (at least
to Java programmers).

Parameters that don't receive a value from the function call are undefined, not null.
Recall that using == (equal) will not show the difference between undefined and
null, whereas using === (strict equal) will show the difference. For example, if we
called the function with a single parameter:

f1("hello");

Inside f1(), the parameter param1 would be filled with "hello". Param2, on the
other hand, would be undefined (not null). If null was a legitimate value for
param2, we might need to distinguish between null (implying the parameter was
potentially passed) and undefined (implying that the parameter wasn't passed in).

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Getting Started with JavaScript

[220]

Using the || operator allows us to supply default parameter values if we don't
receive one in the call. For example, let's assume the param2 parameter is optional.
When it's not provided, we'll supply a default value of 42 as shown here:

function f1(param1, param2) {
 param2 = param2 || 42;
 ...
}

Accessing arguments beyond those listed in the function definition resembles
array access, but only in appearance. Functions receive a pseudo-parameter named
arguments. It acts like a JavaScript array in a way that we can access its length
property and elements using array notation's [] (square brackets). However, the
arguments value does not inherit Array's methods like join, sort, and so on
(it's not an Array, but is dressed as one).

function f1(param1) {
 var anArg = arguments[1] || "Default value";
 ...
}

Some trickery
To make matters even a bit more confusing, we can actually apply Array's methods
on the arguments parameter using Array's prototype (we'll cover prototypes in a
little while).

function f1() {
 var csvArgs = Array.prototype.join.apply(arguments);
 alert(csvArgs);
}

While this is actually useful sometimes, it can cause headaches for those
unclear about how JavaScript works. It can also cause headaches for those
who do know JavaScript.

One way of testing to see if our function has received the proper number of
arguments is to check against a value inside the method, such as:

function f1(param1, param2) {
 if (arguments.length != 2) {
 alert("Error!");
 return;
 }
 ...
}

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 10

[221]

This works, but requires us to remember updating the length to check against. For
example, if we changed our method to require three arguments or a single argument,
we'd have to remember to update our argument length check. We can automate this
length checking by using the length property of the function objects (it used to be
called arity).

function f1(param1, param2) {
 if (arguments.length != f1.length) {
 alert("Error!");
 return;
 }
 ...
}

The length property refers to how many arguments the function was created
with—two in this case. Note how we refer to the function's name inside the function
we're defining. The function f1 can be referred to as f1 inside itself (remember
what we said about headaches?) We could also throw an exception rather than
show an alert. Which is more appropriate depends on the application and our
JavaScript architecture.

Inner functions
As a variable can hold a function, we can define a function at any place where a
value is expected, including inside other functions.

function f1() {
 function f2() {
 alert("Meh.");
 }
 f2();
}
f1();
f2(); // Will this work? Nope.

Function f2() is not available once we've exited the f1() function, for two reasons:

The equivalence of the two ways of declaring functions (including the
implicit var)
The scoping rules of functions we discussed earlier, which state that
variables declared within a function with the var keyword are available
only in that function

•

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Getting Started with JavaScript

[222]

This is one way to hide functionality to avoid conflicts with our own or third-party
JavaScript libraries. We'll also learn some other ways. However, this is still an
important aspect of functions that comes in to play occasionally, and can always be
used when a function needs to be used only locally, or we want to restrict its usage.

Closures
Closures are one of the terms often used by programming language junkies. They're
an extremely powerful concept, occasionally difficult to grasp, and capable of both
wondrous and terrifying behavior.

To put it briefly, closures are functions evaluated in a context containing other
bound variables. In some ways, it sounds more complicated than it actually is.

What this actually means is that an inner function (as described in the previous
section) has access to the variables from the outer function. As a simplistic example,
consider the following:

function f1() {
 var s = "Hello";
 function f2() {
 alert(s);
 }
 f2();
}
f1();

Although this is not particularly useful, it illustrates the point. How can we make
this useful? One key consideration is that the inner function will maintain its
reference to the outer variable's value at the time of the outer function's invocation.
Here's a canonical example of closures, which highlights this feature:

function makeAdder(x) {
 return function(n) {
 return n + x;
 };
}

The makeAdder() function relies on two things:

We can use a function as a value. Here, the makeAdder() function returns a
new function.
The value of the argument x given to makeAdder()is saved across
invocations. In other words, each time we call makeAdder(), the function
returned maintains the value of x—the value we passed to makeAdder().

•

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 10

[223]

We can then call the function returned by makeAdder(). It will add the value of
x, passed to makeAdder(), to the argument we pass to the function returned by
makeAdder(). Remember what I said about headaches? This is much easier to
demonstrate than to explain:

var add10 = makeAdder(10);
add10(1); // Returns 11.
add10(32); // Returns 42.

The code above creates a function that will add the value passed to makeAdder(),
to any value we pass to the function created, by calling makeAdder(). As the value
x passed to makeAdder()is unique to each invocation, we can easily make functions
that add different values to their arguments.

var add10 = makeAdder(10);
var add30 = makeAdder(30);
add10(32); // Returns 42.
add30(12); // Also returns 42.

Again, the makeAdder() function itself isn't particularly useful, but the idea of
closures is an important concept that can be used to neatly encapsulate functionality
and reduce code size in many situations (we'll see closures again in a little bit).

Introduction to JavaScript classes
JavaScript is an object oriented language, but not in the same way that Java is. The
bottom line is that JavaScript doesn't have classes. JavaScript has a new keyword,
which actually adds to the confusion.

OOP without classes can be disturbing to those of us familiar only with more typical
OO languages such as Java or C++. JavaScript uses prototypal inheritance, where
inheritance is achieved by cloning existing objects and adding new (or modifying
existing) functionality. So how does the new keyword fit in?

Creating classes
We can model classical inheritance in JavaScript using functions and the new
keyword. It will look different from what we're used to, and it may not be the best
way to program JavaScript. However, it's used to a considerable extent, and hence
it's important to understand the mechanisms.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Getting Started with JavaScript

[224]

Instead of creating a class, we'll create a function. However, to differentiate
it from a normal function, we'll call it a constructor function and name it starting
with an upper-case letter. This is a convention, not a rule. However, for Java
programmers, it helps ease the transition into what is ultimately a very different
programming paradigm.

Like Java, JavaScript has a this keyword. However, it is used differently depending
upon context, and there are some restrictions regarding when it can be used (and
how it will work). We'll get to one of the bigger issues with the this keyword in a
bit. For now, we'll assume we can use it in a somewhat similar way to how we use it
in Java.

function OurFirstClass(aParam) {
 this.aParam = aParam;
}

We can use this in our JavaScript code by applying the new operator to the
OurNewClass function.

var inst1 = new OurFirstClass("Hello");
inst1.aParam; // "Hello"

Variable and function access
In Java, our classes have both data and methods. We can do something similar in
JavaScript, although it looks fairly unfamiliar in its raw form. What makes it more
confusing is the fact there are two ways to accomplish similar looking, but different
things. Also, there are scoping rules which will add to the confusion. JavaScript has
an interesting access model.

To try and pace out the confusion, we'll examine several ways of defining variables
and functions in our pseudo-classes. First, we'll look at three ways of defining
functions in our pseudo-classes. (Why pseudo-classes? JavaScript doesn't have
classes! These are functions.) We'll try to relate JavaScript concepts to Java,
wherever applicable; JavaScript purists will take (justifiable) umbrage.

function Pseudo1() {
 function aPrivateFunc() {
 ...
 }
 this.aPrivilegedFunc = function () {
 ...
 }
}
Pseudo1.prototype.aPublicFunc = function () {
 ...
}

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 10

[225]

The aPrivateFunc() function is as its name implies—private. It cannot be called
outside of the object. It's not even available from the pseudo-class's public functions.

The aPrivilegedFunc() function can access private variables and functions, and
is available to both public and private functions. Also note that privileged functions
can be deleted or replaced from the public side, which may or may not be something
we want to allow.

The aPublicFunc() function, defined outside our pseudo-class function, is a true
public function. Adding a function to a pseudo-classes prototype is the normal way
of adding public methods. Functions added to a prototype are available to objects
that inherit from the prototype (which we'll examine later).

We create an instance of our pseudo-class the same way we've seen previously.

var inst1 = new Pseudo1();

We can call both the prototype function aPublicFunc(), and the privileged function
aPrivilegedFunc() at our top level.

inst1.aPublicFunc();
inst1.aPrivilegedFunc();

What about accessing any of these functions from the remaining functions?
(Remember what we said about headaches? Hang on.)

We cannot call the private function aPrivateFunc() from a reference to inst1.

The prototypal function aPublicFunc() can access aPrivilegedFunc(), but must
use the this prefix.

Pseudo1.prototype.aPublicFunc = function () {
 alert("aPublicFunc");
 this.aPrivilegedFunc();
}

The privileged function aPrivilegedFunc() may call aPrivateFunc(), but must
not use the this prefix. Also, it may call aProtoFunc(), but must use the this
prefix. (The aProtoFunc() function is coming up in the next section—be patient!)

 this.privilegedFunc = function () {
 alert("privilegedFunc");
 privateFunc();
 this.protoFunc();
 }

Privileged functions may call other privileged functions, but must use the
this prefix.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Getting Started with JavaScript

[226]

JavaScript's "this" keyword
Private functions may call neither prototypal nor privileged functions, unless we
play a trick on JavaScript (which we do often). Because of the way the this operator
was defined, it's a bit wrong when it comes to private functions. However, if we
create a private variable (conventionally called that), we can access the instance
from private methods.

function Pseudo1() {
 var that = this;
 function aPrivateFunc() {
 alert("aPrivateFunc");
 that.anotherPrivilegedFunc();
 that.aProtoFunc();
 }
 this.anotherPrivilegedFunc = function () {
 alert("priv2");
 }
 this.aPrivilegedFunc = function () {
 alert("aPrivilegedFunc");
 aPrivateFunc();
 }
}
Pseudo1.prototype.aProtoFunc = function () {
 alert("aProtoFunc");
}
var inst1 = new Pseudo1();
inst1.aPrivilegedFunc();

This and that (oh, another this pun—we've got a million of them), brings up the
topic of class variables, but they're simpler than functions. They're not commonly
added to the prototype. Although there's no reason they can't be, it would be like a
static variable in Java, and mutable.

Private variables, such as that (covered in the above code), are accessible by private
and privileged functions, but not prototypal (public) functions. Privileged variables
(this.xxx variables) are accessible by public (prototypal) and privileged functions
by using the this keyword, and by private functions by using the that trick, as
demonstrated above.

The last thing to consider (for now) is that public members can be created at any
time by adding them to the pseudo-class's prototype. Neither private nor privileged
members can be added outside the constructor function.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 10

[227]

Prototypes
We've seen some hints about the prototypal inheritance of JavaScript above, when
we created a function on a class's prototype:

Pseudo1.prototype.aProtoFunc = function () {
 alert("aProtoFunc");
}

This is another way to add functions to a class. Each instance of Pseudo1 will have a
aProtoFunc function. How is this used for inheritance? Let's say we want to subclass
Pseudo1, a subclass named (uncreatively) Pseudo2:

function Pseudo2() {};
Pseudo2.prototype = new Pseudo1();

If we create an instance of Pseudo2, we can call aProtoFunc() on it:

var pseudo2 = new Pseudo2();
pseudo2.aProtoFunc(); // This works.

Pseudo2 may contain its own methods, defined using either its prototype or in the
Pseudo2 function body (using the this keyword, as seen previously). Creating
subclasses this way is a bit unwieldy. There are several ways to make this more
concise. The canonical method uses a function to encapsulate creating the subclass
function, setting the prototype, and returning an instance (the following is Douglas
Crockford's version):

function object(o) {
 function F() {}
 F.prototype = o;
 return new F();
}

JavaScript modules and OOP
What's probably more important is how we can write JavaScript that's unlikely to
conflict with other JavaScript libraries, methods, and data, (including our own) and
we don't even need the package keyword.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Getting Started with JavaScript

[228]

Creating a namespace
The easiest way to isolate our JavaScript code is to just put it inside an anonymous
object. This is the tactic taken by many major JavaScript libraries, and is wonderfully
simple. For simply isolating functions and variables, it's a reasonable technique. It's
also safer than putting all of our functions and variables into the global namespace.

As a simple example, we might create an object named MOD1 for the JavaScript
specific to a given page. It doesn't matter what we call it, but it should be unique
on the page.

var MOD1 = {
 myAlert: function (s) {
 alert(s);
 }
}

We'd then call the myAlert() function by prefacing it with the module name.

MOD1.myAlert("Hi!");

This way, if any other JavaScript loaded after ours has a function named myAlert(),
our page's myAlert() won't be replaced by the newer definition. It's hidden inside
the MOD1 object. We only need to refer to it through our module.

In the next chapter, we'll return to this methodology and see how it can be
broken down depending on our requirements, and learn some additional
modularization tricks.

Summary
JavaScript. Whew. Gotta love it (or not). The previous sections will, however, help
us understand some of what we'll see in the wild, and start us on the path to actually
enjoying JavaScript. It is, as Dr. Sobel says, a process.

This chapter looks at some of the syntactical quirks of JavaScript, particularly
those that can trip up Java programmers. The chapter also gives an overview of
JavaScript's version of object-oriented programming, and there's more to come.

What's next? More JavaScript! We're now going to start utilizing it in our application.
In order to do that we'll start diving in to the DOM, the internal representation of our
webpages, and Cascading Style Sheets (CSS), used both for styling our webpages
and for identifying DOM elements of interest.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 10

[229]

References
A reader can refer to the following:

Firebug (its usefulness cannot be overstated):
 http://getfirebug.com/

Douglas Crockford's JavaScript pages (with links to the highly
recommended videos):
http://javascript.crockford.com/

•

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Advanced JavaScript,
the DOM, and CSS

In the previous chapter, we had a crash course in some of JavaScript's more esoteric,
but useful features, particularly those related to how JavaScript implements
Object-Oriented Programming (OOP).

JavaScript is only one aspect of the browser we need to be conversant with when
developing a modern web application. We also need to be conversant in the
Document Object Model (DOM). It is the internal representation of our rendered
HTML and CSS, and does more than simply providing a means to design and style
our pages.

There are approximately eighteen hundred million JavaScript frameworks. At the
time of writing this book, Struts 2 ships Dojo 0.4.3. This is significantly different from
Dojo's current 1.0 release, and relatively heavy for the type of programming we'll be
doing in this chapter. For our JavaScript explorations, we'll actually use jQuery—an
elegant, minimal JavaScript library that embraces JavaScript's approach to OOP. Any
other JavaScript framework is likely to have similar functionality. The techniques
used here are generally applicable.

 In this chapter, we'll start applying our new-found JavaScript-Fu to our application,
by adding an expandable list of ingredients in our recipe entry form. Rather than
limit users to a fixed number, we'll allow the addition of an arbitrary number of
ingredients by dynamically adding form fields.

We'll also add some minor styling elements to help our form look a little better.
A full discussion of CSS's styling abilities is beyond the scope of this book, but there
are a few tricks we can use to help make our low-fidelity prototype look better than
unadorned HTML. We'll also begin looking at Struts 2's internal stylesheets and
discover some limitations of the default Struts 2 themes.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Advanced JavaScript, the DOM, and CSS

[232]

The importance of markup
Markup refers to both general markup languages and annotations used within the
language. HTML is considered a markup language. We apply annotations to text to
control how it is rendered. Markup can also refer to individual annotations within
our HTML, such as putting headline tags around a headline, and so on.

It can also include markup not necessarily intended to control appearance. For
example, we might surround the name of an ingredient with a span tag, giving it an
"ingredient" class. This markup, which falls under the "semantic markup" definition,
can often be used in unexpected ways.

It's hard to overstate the importance of comprehensive markup in our HTML. It is
only by giving DOM elements an ID or CSS styles that we can refer (easily) to the
elements later, whether for styling (appearance) or for the construction of semantic
information. Elements without an ID or a named style are difficult to reference and
may lead to fragile, order-dependent DOM manipulations.

What does this imply from a practical standpoint? We should mark up our JSP and
HTML as much as is practical, paying particular attention to elements we're likely
to refer to later, or that others might be interested in referring to (screen-scraping is
much more enjoyable when there's known elements to scrape).

ID or style attribute?
The id attribute of DOM elements is meant to be unique per webpage. This means
that an ID should be used only once on any page. Therefore, IDs are specifically for
elements we know will be unique.

On the other hand, styles may appear multiple times on a page and can be used
to identify elements for both styling and reference purposes. We can also apply
multiple styles to a DOM element, allowing us to build up the styles and/or
references we need.

Dressing up our form
Recall that the default "xhtml" theme puts our form inside a table, one row per form
element, with labels for the form elements. However, our ingredient form felds
needed to be handled differently, so that our quantity fields would be on the same
line as the ingredient name fields. Those fields were handled manually, using the
simple theme.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 11

[233]

The <s:head> tag includes a CSS stylesheet on our page. The styles defined in
it include:

Styles Usage
.wwFormTable The class of the table our form is contained in
.label <label> element class
.errorLabel <label> element class if there was a validation error
.errorMessage element's class when enclosing field errors
.checkboxLabel Not used in our current form, but self-explanatory
.checkboxErrorLabel Not used in our current form, but self-explanatory
.required element's class for the required indicator when

the form element sets the required attribute to true
.tdLabel <td> element's class containing the form field's label

With just a few text fields, a text area, and a submit button, our form is easy to dress
up. One of the easiest form element dress-ups is creating a solid, one pixel border
around form fields. This alone can take a drab, 1990's form into at least the current
century. We'll load our own stylesheet after the Struts 2 head tag, in order for our
styles to take precedence.

<%@ taglib prefix="s" uri="/struts-tags" %>
<html>
 <head>
 <title><s:text name="new.title"/></title>
 <s:head/>
 <link rel="stylesheet" type="text/css"
 href="<s:url value="/styles/main.css"/>" />
 </head>
 ...

In order to get the web app context, we're using Struts 2's <s:url> tag to create
the full pathname of our CSS file. We're assuming a separate directory for our
stylesheets, which we're placing in /styles.

We'll use this style for all our input elements and the text area. However, we would
like to restrict its use to elements found inside our form's table to ensure that we
don't mess up any other styling (maybe our own or of any third party) on the page.
We can apply the style across the entire page, but that's not as much fun.

While we're at it, we'll add a border around the entire form. We create our own
stylesheet with an entry for the wwFormTable class. CSS classes are indicated by
putting a period (.) before the class name as shown here:

.wwFormTable {
 border: 1px solid #669;
 padding: 1em;
}

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Advanced JavaScript, the DOM, and CSS

[234]

This defines a solid, one pixel, dark-bluish border. It also adds some padding to
the table border, so that the border isn't too close to the text. To style input fields
contained within the table, we'll style both the input elements created by the text
field tags, along with the text area (although it isn't an "input" element technically
like most other elements). In this case, we can style them both at the same time as
shown here:

.wwFormTable input, .wwFormTable textarea {
 border: 1px solid #bbb;
 background: #fef;
}

Now, all input and text area elements within an element with the wwFormTable class
will be styled as we've defined—a light blue-grey background and a grey, one-pixel
border. There are two important things to be noted in this example.

The first is that we can define the style for multiple CSS selectors by separating the
selectors with commas. The second is that we're using CSS selectors. CSS selectors
are the official names for the way we select which elements to style (the stuff outside
the brackets) with our style definitions (the stuff inside the brackets).

CSS selectors can be annoyingly complex and deserve more attention than we'll give
them here. However, as we are striving towards rapid prototyping, for the most part,
we would keep these CSS selectors mercifully simple.

Here, we use the "class" selector. The "." prefix means that we're defining a CSS class.
If we used the "#" character, we'd be defining a style for a specific DOM element by ID.

We'll also create some styles for input errors and modify our form JSP to include
the cssErrorClass attribute. For example, the recipe name text field tag will look
like this:

<s:textfield key="recipe.name" cssErrorClass="inputError"/>

Our inputError class, defined for both input and text area elements, changes the
input element color a bit and puts a dotted red line around it (not shown). Along
with some other minor style changes, we'll remove most of the ingredient fields in
anticipation of adding them. When we submit the form without a recipe name, we'll
see something similar to the screenshot here:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 11

[235]

It's still not the world's most attractive form. However, for less than 40 lines of
CSS, it's not that bad. If we focus on the error message for a moment, we'll start to
understand how the default "xhtml" theme can make some things difficult.

For example, if we want the text left aligned, we find the undertaking nontrivial.
This is because even though the text itself is inside a span element with the class
errorMessage, the span is inside of a table row with no ID or class. Subtle gotchas
like this is one reason why it pays to be aware when creating DOM elements.
Elements with no ID or classes are difficult (not impossible) to access
and modify.

Before we get to that, we're going to drop back into the land of JavaScript for
a moment.

JavaScript modules and jQuery
We ended our last chapter by looking at a simple way to hide our JavaScript, in
order to protect it from being overwritten by a conflicting library. We're going to
return to that conversation for a moment and show one way that particular module
methodology might break down.

We'll also take a first look at jQuery, as we build an example page that adds onclick
handlers to a group of links. It's another contrived example. However, the techniques
used here will be utilized regularly in JavaScript-driven applications, even if we're
not using jQuery.

First, we make sure that jQuery is loaded. We'll then put the reference into our
HTML head section, using Struts 2's URL tag, to generate the preamble to our
jQuery location.

<head>
 <script type="text/javascript"
 src="<s:url value="/jquery/jquery-1.2.6.js"/>" >
 </script>
</head>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Advanced JavaScript, the DOM, and CSS

[236]

Note that we use a <script ...></script> element rather than a single
<script/>. Some browsers require the use of the first form, else our JavaScript
won't work.

Our JSP will just create three links using the iterator tag. We don't really care about
the content of the links, but we do care that we're adding a CSS class to each one.
We'll also create another link (we'll see why in a moment) that also goes nowhere.

 <s:iterator value="{'Link 1', 'Link 2', 'Link 3'}"
 var="linkText" status="stat">

 ${linkText}

 </s:iterator>
 We don't care about this link.

Adding onclick handlers
To add onclick handlers to our links, we'll use a combination of CSS selectors,
jQuery, and JavaScript. We'll build up the JavaScript one bit at a time. The following
will wrap up all of our JavaScript:

<script type="text/javascript">
 $(function () {
 ...
 });
</script>

This is jQuery-speak for "run the defined function when the page's DOM is ready".
The "$" is actually the name of a jQuery function, $(). It takes several types of
arguments, and behaves differently based on the type of argument passed in. When
the argument is a function, the function will be run when the DOM is ready. It's
convenient shorthand, despite its mysterious appearance.

Inside that block we'll use $() again, but this time we'll pass in a string. More
specifically, a CSS selector designed to return all the links on the page with a class
including "notifier". When we pass a string to the $() function, it interprets
it as a CSS selector and will query the DOM, returning an object containing the
selected elements.

<script type="text/javascript">
 $(function () {
 $("a.notify").each(

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 11

[237]

 ...
);
 });
</script>

The each() function expects another function as its argument, which takes the index
of the object and the object itself as its arguments. Also, supplied as an argument
inside the function, the this keyword refers to the current element of iteration.
However, we'll use the function argument for now. Our onclick handler then just
pops up an accusatory alert box and returns false, so the link won't be followed.
Here's the final first iteration of our code:

<script type="text/javascript">
 $(function () {
 $("a.notify").each(function (i, theLink) {
 theLink.onclick = function () {
 alert("You clicked me.");
 return false;
 };
 });
 });
</script>

If you're not used to seeing the function keyword so much, this can be somewhat
disturbing. Just to rehash:

The first function is the function that will be run when the DOM is ready
The second function is the one that will be called for each object selected by
our CSS selector (it's the argument to jQuery's each() function)
The final function is used as the onclick handler for each of the
selected links

Using a function builder
Our next requirement is that the onclick handler shows the link number. We get the
index in the each() method. We have easy access to it in the function we define as
our onclick handler. A slight modification to the code gives us the following:

$("a.notify").each(function (i, el) {
 el.onclick = function () {
 alert("You clicked link " + (i+1));
 return false;
 };
});

•

•

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Advanced JavaScript, the DOM, and CSS

[238]

Remember our discussion about closures? We're using one here, even if we didn't
know it. In our onclick handler function, the value of i is retained by each of our
handler functions. The handler function is created in the context of the function
being called by jQuery's each() function.

However, we would like our onclick handler function to be part of a JavaScript
module. (In this usage, it's not as important. However, if the handler is significantly
longer, we'd probably want to abstract it away from the code that attached the
handler to the links.)

Our first attempt at the modularized version looks like this:

var MOD = {
 linkClickHandler: function () {
 alert("You clicked link...");
 }
};

However, we are missing our link number. We can't just pass it to the onclick
handler and attach it with jQuery. Consider the following code to add our handler:

 el.onclick = MOD.linkClickHandler(i);

It would call the function when the DOM is ready, and not when the link is clicked!
We need another layer, a layer that builds our click handler. We'll then change the
code in our module to this:

var MOD = {
 buildClickHandler: function (i) {
 return function () {
 alert("You clicked link #" + (i+1));
 };
 }
};

Again, we're utilizing our new favorite term—closure. The function we're returning
is enclosed by the buildClickHandler() function, and will retain the value of "i" we
passed to buildClickHandler(). Now, the code that sets onclick handlers for our
links will look like this:

$(function () {
 $("a.notify").each(function (i, el) {
 el.onclick = MOD.buildClickHandler(i);
 });
});

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 11

[239]

Each link's onclick handler is set to the function returned by the
MOD.buildClickHandler() function, which receives the link index. The value
of the link index is preserved in the onclick handler because of closures.

Of what value is this
You're probably thinking to yourself: "Man, couldn't we have just added the onclick
handler to the link tag?! Why did we go through all this?" That's certainly a valid
question, and in this particular case, it might have been better to do it that way.

Remember when we used to add style attributes to our elements? Remember how
CSS meant we didn't have to do that anymore? The idea of removing JavaScript from
our markup is very similar. In the same way, we can mark up our elements to control
how they're rendered. We can also mark them up to control their behavior.

It's another layer of abstraction, but now we're making behavioral abstractions
instead of rendering abstractions. By separating our behavior, we have three levels
of abstraction:

Our content (the links)
Style (how the link is rendered)
Behavior (what happens when we do things to the link, such as clicking it)

Although not readily apparent in this example, if we had a lot of links to add handlers
to (or whatever else we’re doing), we would be doing it all in one place. If our code
was embedded in our HTML, changes would have to be made in many places. This
way it’s a matter of only a few lines of code, isolated in a single location.

Also, consider a case where the link needing a particular onclick handler is decided
at render time—for example, when each link had a dynamically specified style
attribute. By adding our behavior later in the game, we can save lot of noisy JSP
needed to determine the onclick handler.

Accessing module data
We'll now add some actual functionality. Let's say our JavaScript module includes
some data such as a module name, a lookup table, or something similar.
It's defined in our module as we'd expect.

var MOD = {
 title: "Module MOD",
 ...

•

•

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Advanced JavaScript, the DOM, and CSS

[240]

We'd like our handler to access the title property. Our first attempt
(which I predict may fail) looks like this:

buildClickHandler: function (i) {
 return function () {
 alert("You clicked link #" + (i+1) + " from "+title);
 };
}

This won't work because title isn't defined in the context of the click handler
function. Instead, we get a JavaScript error complaining about an undefined variable.
Our second attempt (also doomed) uses the this keyword.

buildClickHandler: function (i) {
 return function () {
 alert("You clicked link #" + (i+1)
 + " from " + this.title);
 };
}

This doesn't give us an error, but it also doesn't give us the title in our alert box.
Puzzled, we add the following:

buildClickHandler: function (i) {
 alert(this.title);
 return function () {
 alert("You clicked link #" + (i+1)
 + " from " + this.title);
 };
}

Interestingly this works, and displays the module title during the page loading
process, every time buildClickHandler() is called. As we've seen, this means
different things that we'd often prefer. Here, we'll use the that trick again:

buildClickHandler: function (i) {
 var that = this;
 return function () {
 alert("You clicked link #" + (i+1)
 + " from " + that.title);
 };
}

That gives us the result we want. The data from our module is correctly displayed
when we click the links with a notify CSS style. Remember, in JavaScript, this
won't always work the way we expect it to be!

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 11

[241]

The final trick
The final trick is something we'll see in the wild, although we may never use it
ourselves. It's possible for us to bury our module data even further, so that it can't
be accidentally overwritten and isn't visible to any other JavaScript. It's another
technique for creating modules and relies on immediate function execution.

First, we'll take a quick look at what this actually means, before we start muddying
the waters by making it do something. See the following JavaScript:

var temp = function () {
 return function (s) {
 alert(s);
}();

What could be the result of the execution of this JavaScript? Notice the final ()
characters. We already know that's how we invoke a function. Here, we're defining
a function, and then we are invoking it. And the function we're invoking returns a
function. The temp variable is set to the return value of our outer function, which is a
function that calls alert.

temp("Wow.");

Now, what will this code do? It will pop up an alert box that says "Wow."

We can translate our existing example to this module pattern:

var MOD = function () {
 var title = "Module MOD";
 return {
 buildClickHandler: function (i) {
 return function () {
 alert("You clicked link #" + (i+1)
 + " from " + title);
 };
 }
 };
}();

One thing to notice is that we no longer need to refer to the module title using the
that trick. We can refer to it directly (hooray, closure). Another difference is that
nothing else has access to the title, except the code inside our module. In this case,
that's not a particularly useful feature. However, consider a case where a user of our
module would need to be restricted to only the functionality or the data we exposed.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Advanced JavaScript, the DOM, and CSS

[242]

We could, of course, add a getTitle() method to our return object that returns
the value, title. However, the title could not be set unless we also provided a
setTitle() function. And they said JavaScript wasn't a real programming language!

Adding dynamic form elements
Many applications have a requirement to be able to add rows to a form at runtime.
Doing so in a conventional web application requires a combination of JavaScript and
DOM manipulation.

Our example will use a simple link as the trigger for adding a new recipe ingredient
row. Each new row will appear above the Add Ingredient link, and the input
focus will be set to the quantity field of the new row. This allows a smooth input
flow when using the keyboard. To enter a quantity, the user must hit Tab, enter a
name, and hit Tab again. If a new ingredient row is to be entered, the user must hit
RETURN on the Add Ingredient link.

Our requirements imply several things. We must know where to add the row on the
page (hence in the DOM). We must keep track of the number of ingredient rows in
order to maintain the array notation used by each row's form input fields. We must
be able to reference the last row added in order to set the focus on the new form
field. We should also try to keep the JavaScript as small and isolated as possible.

Identifying where to add the elements
The first requirement is pretty easy as we already know that the standard Struts 2
form tags will create a row for each element in the form (by default, our form currently
mixes the default "xhtml" theme with the simple theme, as we need two form elements
on each row). We'll simply create a new table row with an ID. Each new ingredient
row will be added immediately before the table row with the link in it.

NOTE: We're abandoning our "unobtrusive JavaScript" for brevity. An
accessible, robust site would have a real link in the href attribute that
would re-render the page with an addition ingredient row, and we'd
add the onclick handler after the DOM is ready. This allows the site to
degrade gracefully under browsers with no JavaScript, and aids meeting
accessibility requirements.

<tr id="addRow">
 <td> </td>
 <td>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 11

[243]

 Add Ingredient

 </td>
</tr>

We haven't written our JavaScript yet, but we'll assume a Recipe JavaScript module
with an addRow() function. We'll keep our JavaScript in an external file, so we won't
have access to the ingredient label defined in our property file. It's obvious when we
think about it. However, with so many layers involved, we sometimes forget when
we can do what.

We'll also assume that our Recipe module has a prepare() function that takes the
label argument and the index of the first new ingredient row. The code for loading
the JavaScript and preparing our Recipe module for use is a boring JavaScript as
seen here:

<script src="<s:url value="/js/recipe/recipe.js"/>"
 type="text/javascript"></script>
<script type="text/javascript">
 Recipe.prepare('<s:text name="recipe.ingredient"/>', 3);
</script>

The JavaScript "Recipe" module
Here comes a bunch of JavaScript. As usual, we'll work through it bit-by-bit, at
least the bits that need explaining. In reality, only a few aspects of it are particularly
interesting and/or problematic. Much of it is actually refactored functions that
concatenate strings.

var Recipe = function () {
 var ingredientLabel;
 var ingredientCount;

 function getNamePrefix() {
 return "recipe.ingredients[" + ingredientCount + "]";
 };

 function createIngredientLabel() {
 return ingredientLabel+' #' + (ingredientCount+1)+':';
 };

 function createInputTag(name, size, id) {
 var s = '<input type="text" size="' + size
 + '" name="' + name + '"';
 if (id) { s += ' id="' + id + '"'; }
 return s + '/>';
 }

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Advanced JavaScript, the DOM, and CSS

[244]

 function createQuantityInput() {
 return createInputTag(getNamePrefix() + ".quantity",
 5, "count_" + ingredientCount);
 };

 function createNameInput() {
 return createInputTag(getNamePrefix() + ".name", 30);
 };

 function createIngredientRow() {
 return [
 '<tr>',
 ' <td class="tdLabel">',
 ' <label class="label">',
 ' ' + createIngredientLabel(),
 ' </label>',
 ' </td>',
 ' <td>',
 ' ' + createQuantityInput(),
 ' ' + createNameInput(),
 ' </td>',
 '</tr>'
].join("\n");
 }

 return {
 prepare: function (label, count) {
 ingredientLabel = label;
 ingredientCount = count;
 },

 addRow: function (label) {
 $("#addRow").before(createIngredientRow());
 $("#count_" + ingredientCount).focus();
 ingredientCount++;
 return false;
 }
 };
}();

Working backwards, once again we see the trailing () characters (we know this
trick). This means the Recipe variable, along with our module, will be set to the
results of the execution of our function—the two functions we return.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 11

[245]

The first function, prepare(), is an initialization function. It sets the module's
ingredientLabel and ingrediantCount. We pass the results of a Struts 2 text tag.
And since we manually created three ingredient rows, the next index (not count)
is three.

This function, and all the rest that use the ingredient's label and count, is relying on
closures. Even though we've returned the functions, they're being evaluated in the
context of the Recipe module. As we've seen, this means that the returned methods
retain their access to the ingredient's label and count. It's like magic.

The addRow() function is the onclick handler for our Add Ingredient link. It uses
jQuery's $() function and a CSS selector, as we've already seen. Recall when we first
discussed selectors, we defined a style for a particular ID with the "#" character. The
CSS selectors work identically when accessing elements with jQuery. $("#addRow")
will return a collection of all the DOM elements with an ID, addRow.

In this case, it will only return one object in the collection. However, we don't need
to worry about it being in a collection because jQuery's functions are designed to
work with $(). JQuery's before() function adds DOM objects immediately before
(clever!) the selected DOM objects. In our case, it's a single object, our row with the
add link.

The next statement sets the focus on the newly-created ingredient row's quantity
input element. Here, we've built the CSS selector from a constant string and the
current index value. We increment the ingredient count and return false, so
the link won't be followed.

The remaining functions are "private", that is, they're accessible only from the two
methods we return when we evaluate the module function. If we add a function to
the Recipe module outside of our initial function execution, it won't have access to
the private functions.

The createIngredientRow() function returns a string containing all the HTML
for an ingredient row. JQuery's before() function can take an HTML string and
turn it into DOM elements. Some people prefer direct DOM manipulation, for both
performance and technical reasons. However, in this example, we're aiming strictly
for convenience.

The createIngrediantRow() function, in turn, calls the remaining functions to
build up the more complicated strings. None of them are particularly interesting,
although createInputTag() does use JavaScript's ability to accept fewer (or more)
parameters than the function is declared with. Here, we use it to optionally provide
an id attribute, so that can refer to the quantity field during the addRow() function
and set the input focus (as described earlier).

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Advanced JavaScript, the DOM, and CSS

[246]

Now, when we click on the Add Ingredient link, we'll generate a new ingredient
row, and the focus is set to its quantity field. Our JavaScript is encapsulated. It's
relatively easier to modify the generated HTML if our requirements should change,
and we can confuse our co-workers with our mad JavaScript skills. What more could
one ask for?

The next question of how to dynamically delete a row is left as an exercise for the
reader. Oh, snap! Kidding aside, deleting a row adds a considerable amount of
irritation to the process. The order of ingredients is usually significant in a recipe, so
we would need to either re-compute the indices or remove empty list items on the
server side.

With a few minor CSS changes, we end up with the following page, showing
one extra ingredient row. It won't win any beauty contests, but we're getting the
basic idea.

The idea is to communicate how the application behaves to determine if it's on the
right track. Obviously, there's a lot more to be done, but we nearly have enough to
get the basic idea of how our application will work.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 11

[247]

Summary
This chapter looks at CSS, which is used for both styling and adding behavior to a
page. With only a very minimal amount of CSS, some clean JavaScript, and effective
use of the framework, we learn to produce a partially-functional prototype quickly
and easily. Bear in mind that as it stands, we're right around a thousand lines of
code. For Java, that isn't all that bad.

In the next chapter, we'll look at themes and templates of Struts 2. We will focus on
modifying one of the default themes to allow some currently missing functionality,
focusing on enhancements that will allow us to have more fun with CSS, and exercise
our mad JavaScript skills. We'll also look at FreeMarker, the template language used
by Struts 2, which can also be used in place of JSP.

References
A reader can refer to the following:

jQuery:
 http://jquery.com/

CSS Selectors:
 http://www.w3.org/TR/css3-selectors/
 http://css.maxdesign.com.au/selectutorial/

Unobtrusive JavaScript:
 http://en.wikipedia.org/wiki/Unobtrusive_JavaScript
 http://www.alistapart.com/articles/behavioralseparation/

•

•

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Themes and Templates
We've already seen some general information regarding Struts 2's built-in themes
and templates. These themes and templates define the HTML emitted by Struts
2's form tags, including the table tags around form inputs. The form tags are
implemented with the FreeMarker template language.

To test the waters of defining our own theme (and its templates), we'll introduce a
requirement to our recipe entry screen to have some different behavior when there
is a validation error. The default behavior now is to change the style of the label and
print the error message above the field. We'd like to highlight the entire row as a
gentle reminder that our user has left out something important.

Extracting the templates
The first step to modifying an existing theme or creating our own is to extract
the templates from the Struts 2 distribution. This actually has the advantageous
performance side effect of keeping the templates in the file system (as opposed to in
the library file), which allows FreeMarker to cache the templates properly. Caching
the templates provides a performance boost and involves no work other than
extracting the templates. The issue with caching templates contained in library
files, however, will be fixed.

If we examine the Struts 2 core JAR file, we'll see a /template folder. We just need
to put that in our application's classpath. The best way to do this depends on your
build and deploy environment. For example, if we're using Eclipse, the easiest
thing to do is put the /template folder in our source folder; Eclipse should deploy
them automatically.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Themes and Templates

[250]

A maze of twisty little passages
Right now, our form has only text fields and a submit button. We'll start by looking
at the template for the text field tag. For the most part, Struts 2 custom tags are
named similarly to the template file that defines it. As we're using the "xhtml" theme,
we'll look in our newly-created /template/xhtml folder. Templates are found in a
folder with the same name as the theme.

We find the <s:textfield> template in /template/xhtml/text.ftl file.
However, when we open it, we are disappointed to find it implemented by
the following files—controlheader.ftl file retrieved from the current theme's
folder, text.ftl from the simple theme, and controlfooter.ftl file from "xhtml"
theme. This is curious, but satisfactory for now.

We'll assume what we need is in the controlheader.ftl file. However, upon
opening that, we discover we actually need to look in controlheader-core.ftl
file. Opening that file shows us the table rows that we're looking for.

Going walkabout through source code, both Java and FreeMarker, can be frustrating,
but ultimately educational. Developing the habit of looking at framework source can
lead to a greater mastery of that framework. It can be frustrating at times, but is a
critical skill.

Even without a strong understanding of the FreeMarker template language,
we can get a pretty good idea of what needs to be done by looking at the
controlheader-core.ftl file. We notice that the template sets a convenience
variable (hasFieldErrors) when the field being rendered has an error. We'll use
that variable to control the style of the table row and cells of our text fields. This is
how the class of the text field label is being set.

We notice a fair amount of work being done to support the labels being positioned
on top of the form field. We're not doing that in our form, so we’ll ignore that
completely and will focus only on our immediate task. If we were creating our own
template, we might completely remove the unused portions of the template file in
order to simplify future work.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 12

[251]

Creating our theme
To keep the template clean for the purpose of education, we'll go ahead and create
a new theme. (Most of the things will be the same, but we'll strip out some unused
code in the templates we modify.) While we have the possibility of extending an
existing theme (see the Struts 2 documentation for details), we'll just create a new
theme called s2wad by copying the xhtml templates into a folder called s2wad. We
can now use the new theme by setting the theme in our <s:form> tag by specifying a
theme attribute:

<s:form theme="s2wad" ... etc ...>

Subsequent form tags will now use our new s2wad theme. Because we decided not
to extend the existing "xhtml" theme, as we have a lot of tags with the "xhtml" string
hard coded inside. In theory, it probably wasn't necessary to hard code the theme
into the templates. However, we're going to modify only a few tags for the time
being, while the remaining tags will remain hard coded (although incorrectly). In
an actual project, we'd either extend an existing theme or spend more time cleaning
up the theme we've created (along with the "xhtml" theme, and provide corrective
patches back to the Struts 2 project).

First, we'll modify controlheader.ftl to use the theme parameter to load the
appropriate controlheader-core.ftl file. Arguably, this is how the template
should be implemented anyway, even though we could hard code in the new
s2wad theme.

Next, we'll start on controlheader-core.ftl. As our site will never use the top
label position, we'll remove that. Doing this isn't necessary, but will keep it cleaner
for our use. The controlheader-core.ftl template creates a table row for each
field error for the field being rendered, and creates the table row containing the field
label and input field itself.

We want to add a class to both the table row and table cells containing the field label
and input field. By adding a class to both, the row itself and each of the two table
cells, we maximize our ability to apply CSS styles. Even if we end up styling only
one or the other, it's convenient to have the option.

We'll also strip out the FreeMarker code that puts the required indicator to the left
of the label, once again, largely to keep things clean. Projects will normally have a
unified look and feel. It's reasonable to remove unused functionality, and if we're
already going through the trouble to create a new theme, then we might as well
do that.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Themes and Templates

[252]

We're also going to clean up the template a little bit by consolidating how we handle
the presence of field errors. Instead of putting several FreeMarker <#if> directives
throughout the template, we'll create some HTML attributes at the top of the
template, and use them in the table row and table cells later on.

Finally, we'll indent the template file to make it easier to read. This may not always
be a viable technique in production, as the extra spaces may be rendered improperly,
(particularly across browsers), possibly depending on what we end up putting in the
tag. For now, imagine that we're using the default "required" indicator, an asterisk,
but it's conceivable we might want to use something like an image. Whitespace is
something to be aware of when dealing with HTML.

Our modified controlheader-core.ftl file now looks like this:

<#assign hasFieldErrors = parameters.name?exists && fieldErrors?exists
&& fieldErrors[parameters.name]?exists/>
<#if hasFieldErrors>
 <#assign labelClass = "class='errorLabel'"/>
 <#assign trClass = "class='hasErrors'"/>
 <#assign tdClass = "class='tdLabel hasErrors'"/>
<#else>
 <#assign labelClass = "class='label'"/>
 <#assign trClass = ""/>
 <#assign tdClass = "class='tdLabel'"/>
</#if>

<#if hasFieldErrors>
 <#list fieldErrors[parameters.name] as error>
 <tr errorFor="${parameters.id}" class="hasErrors">
 <td> </td>
 <td class="hasErrors"><#rt/>
 ${error?html}<#t/>
 </td><#lt/>
 </tr>
 </#list>
</#if>

<tr ${trClass}>
 <td ${tdClass}>
 <#if parameters.label?exists>
 <label <#t/>
 <#if parameters.id?exists>
 for="${parameters.id?html}" <#t/>
 </#if>
 ${labelClass}

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 12

[253]

 ><#t/>
 ${parameters.label?html}<#t/>
 <#if parameters.required?default(false)>
 *<#t/>
 </#if>
 :<#t/>
 <#include "/${parameters.templateDir}/s2e2e/tooltip.ftl" />
 </label><#t/>
 </#if>
 </td><#lt/>

It's significantly different when compared to the controlheader-core.ftl file of
the "xhtml" theme. However, it has the same functionality for our application, with
the addition of the new hasErrors class applied to both the table row and cells for
the recipe's name and description fields. We've also slightly modified where the
field errors are displayed (it is no longer centered around the entire input field row,
but directly above the field itself).

We'll also modify the controlheader.ftl template to apply the hasErrors style to
the table cell containing the input field. This template is much simpler and includes
only our new hasErrors class and the original align code. Note that we can use the
variable hasFieldErrors, which is defined in controlheader-core.ftl. This is a
valuable technique, but has the potential to lead to spaghetti code. It would probably
be better to define it in the controlheader.ftl template.

<#include "/${parameters.templateDir}/${parameters.theme}/
controlheader-core.ftl" />
 <td
<#if hasFieldErrors>
 class="hasErrors"<#t/>
</#if>
<#if parameters.align?exists>
 align="${parameters.align?html}"<#t/>
</#if>
><#t/>

We'll create a style for the table cells with the hasErrors class, setting the
background to be just a little red. Our new template sets the hasErrors class on both
the label and the input field table cells, and we've collapsed our table borders, so this
will create a table row with a light red background.

.hasErrors td {
 background: #fdd;
}

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Themes and Templates

[254]

Now, a missing Name or Description will give us a more noticeable error, as shown
in the following screenshot:

This is fairly a simple example. However, it does show that it's pretty
straightforward to begin customizing our own templates to match the requirements
of the application. By encapsulating some of the view layer inside the form tags, our
JSP files are kept significantly cleaner.

Other uses of templates
Anything we can do in a typical JSP page can be done in our templates. We don't
have to use Struts 2's template support. We can do many similar things in a JSP use Struts 2's template support. We can do many similar things in a JSP
custom tag file (or a Java-based tag), but we'd lose some of the functionality that's
already been built.

Some potential uses of templates might include the addition of accessibility features
across an entire site, allowing them to be encapsulated within concise JSP notation.
Enhanced JavaScript functionality could be added to all fields, or only specific fields
of a form, including things such as detailed help or informational pop ups. This
overlaps somewhat with the existing tooltip support, we might have custom usage
requirements or our own framework that we need to support.

Struts 2 now also ships with a Java-based theme that avoids the use of FreeMarker
tags. These tags provide a noticeable speed benefit. However, only a few basic
tags are supported at this time. It's bundled as a plug-in, which can be used as a
launching point for our own Java-based tags.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 12

[255]

Summary
Themes and templates provide another means of encapsulating functionality and/or
appearance across an entire application. The use of existing themes can be a great
benefit, particularly when doing early prototyping of a site, and are often sufficient
for the finished product.

Dealing effectively with templates is largely a matter of digging through the existing
template source. It also includes determining what our particular needs are, and
modifying or creating our own themes, adding and removing functionality as
appropriate. While this chapter only takes a brief look at templates, it covers the
basics and opens the door to implementing any enhancements we may require.

In the next chapter, we'll dive into Rich Internet Applications (RIA) and the Struts 2
REST plug-in. We will also take a brief look at the legacy Dojo tags that provide some
Ajax functionality out of the box.

References
A reader can refer to the following:

FreeMarker
 http://freemarker.org

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Rich Internet Applications
Remember when a website was a static HTML page with an occasional form?
Remember when we wrote a low-fidelity prototype that was functional (but ugly)
without much flair? The entire web used to be like that, without even the minimal
we've used or our brief plunge into JavaScript treachery.

There were glimmers back in the day (do you recall applets—applications delivered
over the web that used a platform-neutral language?). Now, instead of Java, we're
using JavaScript, Flash, Silverlight, JavaFX, or a combination. Within the "browser
with JavaScript" space lies another complete set of solutions. It includes lower-level
solutions ssuch as Prototype and jQuery (and widget libraries built on the same), up
to full-blown application environments such YUI, Dojo, GWT, and more.

What this chapter is and isn't
This chapter has changed quite a bit over its writing. Originally, there were separate
RIA and Struts 2 Dojo tag chapters. However, the Struts 2 Dojo tags are based on
Dojo 0.4.3, which is quite different from Dojo 1.0+. Updating the tags has become
impractical, and the Dojo tags have been deprecated.

Another issue is that there are quite a few solutions for creating AJAX applications.
No matter what we cover in the few pages available here, it would suit only a small
number of readers and would be out-of-date more quickly as compared to the Java
technologies we've been discussing.

This chapter briefly covers Struts 2 Dojo tags, along with general RIA background
information, the Struts 2 REST plug-in (Struts 2.1+), and various approaches that can
be of use when creating Struts 2-based RIAs.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Rich Internet Applications

[258]

There are a lot of applications that require only a few fancy features, and still others
that depend on only a fraction of the capabilities of the libraries they use. Once we
move beyond fairly simple use cases, it's generally more efficient to dive into the
library we've chosen and make full use of it. Even the Struts 2 Dojo plug-in requires a
good understanding of how Dojo works, once we move beyond the basics. As we get
more comfortable with high-level JavaScript, it's often more convenient to just use
raw Dojo or whatever JavaScript framework we're most familiar with.

Dojo tags
The Struts 2.1 Dojo Plug-in moves the AJAX tags into a plug-in and updates the
AJAX tags found in Struts 2.0. The tags make simple Dojo use cases very simple.
There are a few points working against the tags:

The tags support only Dojo 0.4.3, while Dojo is in 1.x territory.
The default Struts 2 profile creates many requests per-page for Dojo files.
More complicated use cases require enough JavaScript and Dojo
understanding that it's arguably easier to just use raw Dojo.

We must also consider that many people have strong investments in other
frameworks, including Prototype, jQuery, YUI, GWT, and so on. For some people,
the Struts 2 Dojo tags don't make sense (although the cleanliness is compelling for
simple uses).

Simple use cases really are simple
There are many degrees to Web 2.0. Some sites may have very minor
requirements—click this button, and something shows up somewhere else.
Submit a form in-place and update something based on the submission.
You know the drill—a little Web 2.0 pizzazz. Low-fidelity prototype? No
problem—for simple use cases there will only be a minor penalty for using a
different library. Nobody knows JavaScript or Dojo? That's okay. For the really
easy stuff, it's not a requirement.

The Dojo <sx:head> tag
We'll cover several simple use cases using the Struts 2.1 Dojo Plug-in. Like any other
custom tag library, we must use the taglib directive. The convention is to use sx as
the Dojo tag prefix.

<%@ taglib prefix="sx" uri="/struts-dojo-tags" %>

•

•

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 13

[259]

In addition to the normal taglib directive, we must also use the <sx:head> tag. This
is so the appropriate Dojo JavaScript libraries are included in our page. Note that the
JavaScript files are served from within Struts. We do not need to have our own copy
of Dojo, the plug-in has its own copy. (If we need to serve the files ourselves we can
have a copy of Dojo.)

The Dojo head tag allows us to turn on Dojo debugging using the debug attribute. It's
a good idea to keep debugging turned on during development, particularly if we're
not using a tool like Firebug.

<sx:head debug="true" />

We'll occasionally need to use the non-compressed, non-cached Dojo, as shown
below. Generally, the debug attribute gives us enough to go on, and we're less likely
to forget to remove the cache and compressed attributes when we check in the
production version of our code.

<sx:head debug="true" cache="false" compressed="false" />

When we look at the documentation for the head tag (we've looked, right?),
we see a few other Dojo-specific attributes not discussed here. However, they
serve as a reminder that the Struts 2 Dojo plug-in integrates an entirely different
JavaScript-based ecosystem into our application and development environment.

Abstracting the underlying technology by generating HTML and JavaScript using
custom tags can be a tremendous time- and sanity-saver. However, it's important to
understand what the tags actually do. It's a good idea to examine the code emitted
by the Dojo tags to get a better idea of how things work under the covers.

Make sure you're looking at the correct Dojo documentation since looking at Dojo 1.0
docs will just lead to frustration and confusion. (By the time this is published, the new
jQuery plug-in might be a bit more mature—stay light on your feet!)

The Dojo <sx:a> tag
The <sx:a> (anchor) tag's primary purpose is to put the results of an AJAX request
into an element on the calling page (typically, a <div> or).

When we look at the documentation for the anchor tag, we're deluged with a number
of tag attributes. We can ignore almost all of them for simple use cases. Indeed, the
only attributes we really need are href, to define the request target, and targets,
to define the element(s) in which to put the request result.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Rich Internet Applications

[260]

The href attribute should be built with the <s:url> tag. A simple example
that displays two links, the results of which will be put in a <div>, looks like
the following:

<%@ taglib prefix="s" uri="/struts-tags" %>
<%@ taglib prefix="sx" uri="/struts-dojo-tags" %>
<html>
 <head>
 <sx:head debug="true"/>
 </head>
 <body>
 <s:url action="simple1" var="simple1" />
 <s:url action="simple2" var="simple2" />

 <sx:a href="%{simple1}" targets="results">Simple #1</sx:a>
 <sx:a href="%{simple2}" targets="results">Simple #2</sx:a>

 <div id="results"></div>
 </body>
</html>

Note that even though we're creating a variable in the <s:url> tag, we do not use
the "#" character when referencing it later in the <sx:a> tags (if we do, it won't
work). Also note that the targets attribute is not plural by mistake. We can update
multiple elements with the same results by supplying a comma-separated list of
target IDs.

This simplistic requirement, encountered commonly in the wild, requires no
hand-written JavaScript and is drop-dead simple. It may not stay that simple, but
even more complicated functionality may be implemented using only tag attributes.

We can highlight and fade out the element that was updated using the
highlightColor (no default) and highlightDuration (defaults to 2000
milliseconds, or two seconds). Suddenly, our application has its Web 2.0 bona
fides and everybody loves it.

<sx:a href="%{simple2}" targets="results"
 highlightColor="#c99" highlightDuration="750">
 Simple #2
</sx:a>

If we're really bored, we can try clicking on the link again before the highlight has
completed its color fade. We can then think about how to fix it. (Have fun with
that—several other libraries suffer from the same issue!)

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 13

[261]

Do we need to show a Web 2.0-certified, spinning AJAX wheel? The indicator
attribute defines the ID of an element to be shown while making the request—drop a
spinny AJAX image into the element and we're all set. (We could buck the trend and
show some text in a <div>, but that's not nearly as impressive.)

<sx:a href="%{simple2}" targets="results"
 indicator="lookHere">
 Simple #2
</sx:a>

Whatever is in the lookHere element will be shown for the duration of the AJAX
request. If we're bucking the spinny AJAX image trend and using only text, and
the text can be displayed in the target element(s), we can set the showLoadingText
attribute to true (it defaults to false) to show the loading text in the target element.
We can set the loadingText attribute (it defaults to "Loading...") to specify the text
that will appear.

<sx:a href="%{simple1}" targets="results"
 showLoadingText="true">Simple #1</sx:a>

There is a specific issue with Internet Explorer when the target element is contained
in the same parent as the anchor tag. In this case, it's best to use the indicator
attribute. Setting showLoadingText to false, and using an indicator outside
of the element containing the target element, will fix the IE issue.

We may want to use this method anyway. For example, if we want the loading text
to always appear in the upper right corner or center of the browser window.

A brief side journey on topics
Dojo topics are a way of creating a publish/subscribe (pub/sub) model for event
handling. Topics are a way of sending a message saying, "Hey! something on the
page did X", defining what X is, and allowing things to happen when all those
arbitrary Xs occur.

Let's examine a possible scenario where we could use the anchor tag, topics, our
next tag <sx:div>, along with some JavaScript and Dojo, and get recipe ingredient
information in one screen area and update another area of the screen with a list of
recipes that also use that ingredient. (As we're still in low-fidelity prototype mode,
the data itself will be fake. It will be enough to demonstrate the purpose and intent
of the functionality.)

We'll capture our user story as simply as possible.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Rich Internet Applications

[262]

When viewing a recipe, clicking an ingredient will:

Show the ingredient information in an information area
Update a list of recipes containing that ingredient in a sidebar

As we've already seen, we can use the anchor tag to create the first part. The URL
that we'll use is different, and we need to pass in the ingredient ID. On our recipe
display page, we will then see something similar to the following:

<s:iterator value="recipe.ingredients" var="ring">
 <s:url action="show" namespace="/ingredients" var="ingUrl">
 <s:param name="ingredientId" value="#ring.ingredient.id"/>
 </s:url>

 <sx:a href="%{ingUrl}"
 targets="ingredientInfo"
 highlightColor="#c99"
 highlightDuration="750"
 afterNotifyTopics="/updateRecipes"
 id="ing_%{#recIng.ingredient.id}">
 <s:property value="#ring.ingredient.name"/>
 </sx:a>

</s:iterator>

Nothing new here. We click on the ingredient name and insert the results of the
action into the ingredientInfo element.

However, the second part of our requirement is a bit more mysterious. We need
to update a different element with a list of recipes that use the ingredient we
clicked. We start this process by using the afterNotifyTopics attribute of the
anchor tag. afterNotifyTargets accepts a comma-separated list of topic names
that will be published on a successful request. For now, we assume the requests
will succeed—low-fidelity prototype, remember!

Here, we publish a single topic, /updateRecipes, when the link is clicked. We'll use
our next tag, <sx:div>, to "consume" this topic and update a content area after the
ingredient information is displayed on the page. (I've followed the original Struts
2/Dojo convention and used a "/" prefix for topic names.)

In Dojo, a topic can be published with additional data. We'd like to use the
ingredient ID as the additional data. This will allow us to request a list of recipes
using that ingredient. However, there is not an immediately obvious way to bind this
data to the topic using the Dojo tags. So, we're going to cheat a little bit. But first, the
<sx:div> tag.

•

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 13

[263]

The Dojo <sx:div> tag
The <sx:div> tag creates an HTML <div> that loads its content using AJAX and
Dojo. It can be used to automatically refresh its contents after an arbitrary time
period (this can be continuous, the timer may be stopped and started, and so on).
It is also used with the tabbed panel component to define the contents of each tab.

In its simplest form, the <sx:div> tag is similar to the anchor tag, but creates its own
<div> for use as its target.

Finishing our user story
In our user story the requirement was to display a list of recipes using the clicked
ingredient. We have an action that performs a service call and returns a list of
recipes. We'll use this action as the target of our <sx:div> tag as shown next
(we highlight this <div> as well, so we're aware when something happens):

<s:url action="recipesWithIngredient" namespace="/recipes"
 var="rwiUrl"/>
<sx:div id="recipesWithIngredient" href="%{rwiUrl}"
 preload="false" listenTopics="/updateRecipes"
 afterNotifyTopics="/resetUrl"
 highlightColor="#c99" highlightDuration="750">
</sx:div>

When we click an ingredient, we only get the recipe list header in our <div> tag.
We're not passing in an ingredient ID because there's no way to attach the data to
our topic in our <sx:a> tag. So, we don't see any recipes. This is bad.

Highlighting the need to know
This very simple usage scenario immediately highlights the need to know something
about the underlying Dojo framework that makes these convenience tags possible.
While it's possible to use the tags without knowing anything about Dojo, it's best to
dive into Dojo if our usage moves beyond what is provided (trivially) by the tags.

Without having an understanding of what the tags are doing, it's much more difficult
to add functionality or debug problems. A good working knowledge of JavaScript is
also required once we move beyond the functionality included in the standard tags.
(This is true with any JavaScript library, not just Dojo.)

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Rich Internet Applications

[264]

Here's one of the difficulties of Struts 2 and the Dojo tags: since they're based on Dojo
0.4.3, the documentation is a bit sparser than we might prefer. In fact, I couldn't find
(in a timely fashion) an "approved" way to implement this functionality, so I punted.
This is an often unfortunate reality when developing under pressure in tight, agile
release cycles.

Our implementation then consists of some JavaScript, some Dojo, and another topic.
In a nutshell, when we click on an ingredient and the ingredient information request
is completed (and successful), we'll change the URL of our <sx:div> tag to include
the ingredient ID. When that request is done, we'll change the URL back to what it
was before we added the ingredient ID in order to be ready for the next request.

To accomplish this, we'll give an ID (that includes the ingredient ID) to our first anchor
tag (normally, a Dojo widget will create its own id). From our earlier <sx:a> tag:

 id="ing_%{#recIng.ingredient.id}"

To use this embedded ID, we'll use Dojo to bind a JavaScript function to our topic,
which is published upon a successful recipe information request. We also use Dojo to
retrieve the original URL of our new <sx:div> tag—we'll use it to reset the URL in
a moment.

var baseUrl; // A global! Don't do this in a real app.
dojo.event.topic.subscribe("/updateRecipes",
 function(data, request, widget) {
 var ingredientId = widget.widgetId.split("_")[1];
 var dest = dojo.widget.byId("recipesWithIngredient");
 baseUrl = dest.href; // Referencing a global!
 dest.href += "?ingredientId=" + ingredientId;
 });

This binds a JavaScript function to the /updateRecipes topic, published upon a
successful ingredient information request (from our anchor tag, <sx:a>, previously).
When this function executes, it receives the Dojo widget as the third parameter. From
this, we can retrieve its ID (which includes our ingredient ID!), get the <sx:div> tag
(a Dojo widget), and update its URL to include the ingredient ID.

However, as it stands, it's broken. As we click on ingredients, each ingredient ID will
be appended to our <sx:div> URL. We defined a afterNotifyTopics topic on our
<sx:div> tag as shown here:

afterNotifyTopics="/resetUrl"

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 13

[265]

We use the same Dojo/JavaScript binding to bind a function that resets the URL.

dojo.event.topic.subscribe("/resetUrl",
 function(data, request, widget) {
 widget.href = baseUrl; // Restore URL from global!
 });

To keep things simple, we didn't use our JavaScript techniques for hiding global
variables and functionality. This shows how even a seemingly innocent user story
can lead to much more work than anticipated. (You can tell your boss I said so.)

It also highlights why working with Dojo in its "natural state" may be a good option
for anything but the simplest use cases. Not only would we get the latest Dojo, but
we'd also have more recent, maintained documentation, additional functionality, and
complete control.

Dojo and forms
We can submit forms using Dojo and AJAX by using the <sx:submit> tag. In its
simplest usage, we can submit a form and update a target element with the results
returned by an action as with the <sx:a> tag, but via a form submission. The
<sx:submit> element can be contained in a form element, or can live outside the
form by using the formId element.

Our user story concocted to demonstrate this is simple. We type in a string, search
for recipes with that string in the title, and list the results in an HTML <div> on the
same page.

The JSP containing the form looks like any other form, except that we use the <sx:
submit> tag instead of the <s:submit> tag. The tag does all the busywork. We have
almost nothing special to do.

<s:form action="showContainingWord">
 <s:textfield label="Recipe Word" name="recipeWord"/>
 <sx:submit targets="recipesWithWord"
 highlightColor="#ccc" highlightDuration="500"/>
</s:form>
<div id="recipesWithWord"></div>

Similar to the <sx:a> tag, we specify a target element to update with the results of
the form submission. To snaz it up, we add highlight color and duration attributes.
The action specified in the <s:form> tag is a normal Struts 2 action. Note that we
do not need to set the theme to "ajax". Although, as we'd expect, we need to use the
<sx:head> tag to load the Dojo JavaScript files.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Rich Internet Applications

[266]

The REST plug-in
Struts 2.1's REST plug-in provides a mechanism for Struts 2 to act more
REST-like, and includes convention-based URLs (think Ruby on Rails), various
output formats (JSON and XML for consumption, XHTML for us humans), and
so on. The REST plug-in builds on the Convention plug-in we've already covered
(so a lot of knowledge is immediately useful).

REST in a nutshell
REpresentational State Transfer—now that we know why we abbreviate it, what
does it really mean? In the context of a web application, it means we're exposing a
set of resources (such as a "recipe" or an "ingredient" in our case) through a uniform
interface (such as /recipe/1 for a recipe with an ID as 1, as expressed by a URI), and
that the HTTP methods (GET, PUT, and so on) are used to indicate the type of action
we're performing on the selected resource.

The REST plug-in in a nutshell
The Struts 2 REST plug-in allows a Struts 2 application to behave more RESTfully.
It provides support for Ruby on Rails-like URLs (with one minor exception, which
is noted below), automatically returns an appropriate result type based on the
request URL, and uses convention-over-configuration to automatically determine
where view-side pages (JSP, FreeMarker, Velocity, and so on) are located in the
web application.

REST plug-in URLs
The REST plug-in makes several assumptions about the URL and the underlying
action methods they map to. For example, if we make a GET request to the /recipe
URL, the REST plug-in will call the index() method in the recipe action class,
which should list recipes. A POST to the same URL will call Recipe.create().
A GET request to /recipe/1 will call the show() method and set the action's id
property to "1".

The only diversion from typical REST URL/method mapping is /recipe/new, which
will call editNew() (not new() as we might expect) as we can't have a new() method
in Java.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 13

[267]

The following table is adapted from the Struts 2 REST plug-in Wiki page:

HTTP Method URI method Parameters
GET /recipe index()
POST /recipe create()
PUT /recipe/1 update() id=1
DELETE /recipe/1 destroy() id=1
GET /recipe/1 show() id=1
GET /recipe/1/edit edit() id=1
GET /recipe/new editNew()

REST plug-in results
When we use the REST plug-in, we don't configure our results using XML or
annotations, yet the plug-in still returns XML, JSON, and HTML (by default, we can
define other content handlers). How does the plug-in decide what to send back?

In the URL table above, we don't show any extensions. By default, the plug-in will
look for and return an XHTML response, but can be configured to return XML
or JSON—a serialized version of the action, similar to how the XSLT and JSON
responses work. To select the return type we add an extension. For example, if we
request /recipe/1.json, we'll get a JSON result back (surprise!).

The default can be changed by setting the struts.rest.defaultExtension
property to any valid string, the default being xhtml. (At the time of writing this
book, the documentation states the default is xml. Diving into source or library files
is often a necessary skill!)

The REST plug-in also redefines the struts.action.extension configuration
parameter, setting it to xhtml,,xml,json (the two commas are intentional).
This allows the framework to accept these three extensions, and a fourth empty
extension. The empty extension allows extension-less URLs, which will default as
described above.

We'll see how to create our own result content handler in a little bit. We'll usually use
one of the default handlers.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Rich Internet Applications

[268]

A web browser client example
Configuring our first example looks similar to the configuration used for Convention
(almost no configuration at all)—because the REST plug-in builds
on Convention. Our Struts 2 filter configuration is as follows:

<filter>
 <filter-name>struts2</filter-name>
 <filter-class> org.apache.struts2.dispatcher.ng.filter.
StrutsPrepareAndExecuteFilter
 </filter-class>
<init-param>
 <param-name>struts.devMode</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>struts.rest.defaultExtension</param-name>
 <param-value>xml</param-value>
 </init-param>
</filter>

The REST controller
Controllers look like regular actions. The REST plug-in uses the name "controller" to
differentiate them from regular actions. The controller below is a POJO—it doesn't
extend ActionSupport. In our example, we're just retrieving either a single recipe or
a list of all recipes and sending it back to the browser as JSON, XML, or XHTML.

public class RecipeController implements ModelDriven<Object> {
 private Long id;
 private Recipe recipe;
 private Collection<Recipe> recipes;
 private RecipeService recipeService =
 new FakeRecipeService();

 public HttpHeaders index() {
 modelObject = recipeService.getAll();
 return new
 DefaultHttpHeaders("index").disableCaching();
 }

 public String show() {
 modelObject = recipeService.findById(id);
 return "show";
 }

 private Object modelObject;

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 13

[269]

 public Object getModel() {
 return modelObject;
 }
 // ... Getters and setters elided
}

Before looking at the results of a query to this controller, there are a few things worth
pointing out. Note that we're implementing ModelDriven<Object>. If we don't,
the REST plug-in will serialize the entire controller in our response, including the
service. This is almost never what we want. Implementing ModelDriven<Object>
tells the REST plug-in to only serialize the model object.

We're using a generic Object as the model. This allows us to set the model to either a
list of recipes or a single recipe. Yes, we lose a certain amount of type safety by going
this way, but it also allows us to put related functionality into the same controller,
while retaining the ability to control serialization.

Finally, notice that the index() method returns an HttpHeaders object, while
the show() method returns a string. Returning an HttpHeaders object gives us
fine-grained control over the headers, so that we could use Etags, control caching,
and so on. The string argument is used by the XHTML response to help find the JSP
(or FreeMarker, or Velocity) template to use. The string return signature skips the
HttpHeaders control, with the string value used to look up the result as with the
HttpHeaders constructor.

REST controller responses
When we request /recipe, we'll get an XML representation of the recipe list.
Because of the way the REST plug-in serializes XML, we don't get a completely
bare representation of the collection:

<java.util.Arrays_-ArrayList>

 <com.packt.s2wad.models.Recipe>
 <id>2</id>
 <name>Water and Oil</name>
 <description>Some water and oil</description>
 <ingredients>
 <com.packt.s2wad.models.RecipeIngredient>
 <id>1</id>
 <index>1</index>
 <quantity>2 T</quantity>
 <ingredient>
 <id>4</id>
 <name>Olive oil</name>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Rich Internet Applications

[270]

 <description>Olive oil</description>
 </ingredient>
 </com.packt.s2wad.models.RecipeIngredient>
 <!-- ... etc ... -->

However, as long as we know what we're getting back, it should be okay. (We'll see
how this assumption can bite us in the next section, when we look at using the XML
result to populate an Ext-JS grid. There's always something!)

It begins to get interesting when we request /recipe.json. Now we get back the
following:

[
 { "id" : 2,
 "name" : "Water and Oil",
 "description" :"Some water and oil",
 "ingredients" :
 [
 { "index" : 1,
 "ingredient" : { "description" : "Olive oil",
 "name" : "Olive oil",
 "id" : 4
 },
 "quantity" : "2T",
 "id" : 1
 },
 { "index" : 2,
 "ingredient" : { "description" : "Water",
 "name" : "Water",
 "id" : 6
 },
 "quantity" : "2 c",
 "id" : 2
 }
]
 },
 { "id" : 3,
 "name" : "Tomato Soup",
 // ... etc ...
 }
]

Now that we're JavaScript wizards, we know this is simply an array of anonymous
objects, each with a set of properties (some of which are also anonymous objects).

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 13

[271]

If we make a request to /recipe.xhtml, the REST plug-in will find a view page
using a method similar to Convention, but slightly different. The REST plug-in will
look for the view file created by the controller name (recipe in this case) and the
method name (index in this case), and then string them together with a hyphen in
the middle. Here, it will look for a file named recipe-index.jsp.

Our JSP file can look like any other JSP file, keeping in mind that we'll be accessing
the model controller property. (We could also access the recipe list from a recipes
property, but since we have the model object anyway, we might as well use it.)

Accessing a single recipe is similar, and the defaults of the REST plug-in make it
fairly straightforward. Remember that a request to /recipe/1 will, by default, set
the controller's id property. In our default case, we'll get back an XML response.
Requesting /recipe/1.json returns JSON, and /recipe/1.xhtml will look for
a file named recipe-show.jsp (or .ftl and .vm, for FreeMarker and Velocity).

Note that the methods called by the REST URLs are customizable. For example, the
index method name is set with the struts.mapper.indexMethodName parameter,
as is the name of the id property using the struts.mapper.idParameterName
parameter. See the REST plug-in documentation for further configuration parameters.

An example of a useful client
In isolation, the REST plug-in may not immediately seem useful, as we don't usually
want to show the user JSON or XML (although with a style sheet, maybe we do).
Ext-JS is a popular JavaScript client library that includes its own utilities and
widgets, and can be a replacement for, or adjunct to, the jQuery library we've
been using.

Here's the catch, at least for the time being: as of Ext-JS 2.2, XML whose elements
may contain the "." character (as ours does), throws off how Ext works. Partial
workarounds are available. However, I am not aware of a full solution, if one is
available. The following code only works with a modified version of Ext (for those
who care, it's in the DomQuery code), and doesn't quite work all the way at that.

A better way around the issue would be to change the way the REST
plug-in serializes our action's mode. For example, by eliminating the
package prefix and including only the actual class name. Hacking Ext is
an incomplete and fragile solution.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Rich Internet Applications

[272]

The following code, in the recipe-index.jsp, includes the JavaScript in the JSP file.
In this case, we are breaking away from the best practices, but we'll let it go for the
sake of simplicity.

<%@ taglib prefix="s" uri="/struts-tags" %>

<html>
 <head>
 <link rel="stylesheet" type="text/css"
href="<s:url value='/ext-2.2/resources/css/ext-all.css' />"/>
 <script type="text/javascript"
 src="<s:url value='/ext-2.2/adapter/ext/ext-base.js'/>">
 </script>
 <script type="text/javascript"
 src="<s:url value='/ext-2.2/ext-all-debug.js'/>">
 </script>
 </head>

 <body>
 <div id="example-grid"></div>

 <script type="text/javascript">
 Ext.onReady(function() {
 var store = new Ext.data.Store({
 url: '<s:url value="/recipe"/>',
 reader: new Ext.data.XmlReader({
 record: "com.packt.s2wad.models.Recipe",
 id: 'id'
 }, ['name', 'description'])
 });

 var grid = new Ext.grid.GridPanel({
 store: store,
 columns: [
 { header: "Name",
 width: 110,
 dataIndex: 'name',
 sortable: true },
 { header: "Description",
 width: 410,
 dataIndex: 'description',
 sortable: true }
],
 renderTo: 'example-grid',
 width: 540,
 height: 200,
 frame:true,

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 13

[273]

 title:'Recipe List'
 });

 store.load();
 });
 </script>
 </body>
</html>

It's not our goal to learn Ext (that's a subject for a different book). The key lines to
note are where we set the store variable's url property to our recipe controller's
index method. We then tell our Ext XmlReader that the recipe records are contained
in the com.packt.s2wad.models.Recipe elements. We would also want to pay
attention to the ID, name, and description elements contained as child elements
of each.

With the code above, when we visit /recipe.xhtml, we'll get the following page,
which is complete with sortable Name and Description columns.

A command-line example
Some of us still use the command line! It's a useful tool for testing and running
quick-and-dirty functionality. It's often faster than firing up a browser and clicking
our way through a task. REST gives us a convenient way to access web applications
without having to drive a browser.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Rich Internet Applications

[274]

For a simple example, we'll create a Ruby script that retrieves a recipe by ID and
displays it in a human-readable format. We'll get the recipe in an XML format and
use Ruby's REXML to pull out the information we want to see. In this case, we'll
display just the title and description. By using Ruby's rest_client library, the code
for displaying the list of recipes from the command line is quite short (the following
code is located in the code bundle for Chapter 13). For those of us who only use Java,
it will seem too short.

require 'rest_client'
require 'rexml/document'

begin
 url = "http://localhost:8080/recipe"
 r = RestClient::Resource.new(url)
 doc = REXML::Document.new(r.send("get"))

 recipes = []
 doc.elements.each("java.util.Arrays_-ArrayList/a/com.packt.s2wad.
 models.Recipe") do |el|
 recipes << [el.elements['id'].text.to_i,
 el.elements['name'].text]
 end

 recipes.sort! {| a,b | a[0] <=> b[0] }

 recipes.each do |r|
 puts "ID #{r[0]}: #{r[1]}"
 end
rescue RestClient::Exception => e
 puts e.response.body if e.respond_to? :response
 raise
end

While this isn't a particularly useful example, it does show how a very small
amount of code can be used to create useful tools and utilities. One of the
advantages of RESTful web applications is that they're accessible from arbitrary
clients. Browsers, command-line utilities, Swing applications, Lisp applications,
and so on. Anything that can make web requests, and without the complexities of
a full-blown SOAP-style interface

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 13

[275]

Custom content handler example
We can also create our own content handlers, in case the default REST plug-in
handlers either don't do precisely what we need, or if we need to emit a content type
that is not supported out of the box. For example, we might provide our own XML
handler tailored to our client library that doesn't use the "." character as the package
name separator to support Ext-JS better.

In the spirit of moving away from XML, we might want to create YAML output
when we request a resource with the .yaml extension. YAML is a lightweight syntax
for representing data. It is similar to XML, but uses indentation rather than closing
tags to separate elements. It's more human-readable than XML, and is sufficient in a
wide variety of situations.

YAML in a nutshell
YAML stands for YAML Ain't a Markup Language. (At least it does now. This
is a retronym, as it was originally called Yet Another Markup Language) It uses
indentation to indicate structure (whereas XML uses opening and closing tags). It
can represent lists, hashes, and maps. It can refer to previously-defined elements and
copy them, optionally overriding properties, and so on.

For example, a shopping list in YAML might look like this:

--- # Shopping list

date: 2008-01-24

user:
 fname: Dave
 lname: Newton

items:
 - name: tomato paste
 quantity: 8oz
 - name: garlic
 quantity: 4 cloves
 - name: salt
 quantity: 1t

For the most part, this should be self-explanatory. The list items are marked with a
"-" and hash entries get a "key: value" pair. The leading "---" is optional, but allows
us to have multiple documents in the same file. See the references at the end of the
chapter for additional YAML information.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Rich Internet Applications

[276]

Writing our YAML handler
We'll look only at the interface we need to implement where we will add our
own content type handler and the code necessary to create YAML output.
Our YAML handler will implement org.apache.struts2.rest.handler.
ContentTypeHandler, which defines four methods:

getExtension(): Returns the extension handled by the YAML handler
getContentType(): Does as we'd expect
toObject(): To handle conversion to and from YAML
fromObject(): Same as toObject()

We'll only look at the fromObject() method, which ends up being only a few lines
long thanks to the JYaml library. The fromObject() method takes an object and
serializes it to YAML. The REST plug-in itself determines if the content handler
needs to serialize the entire action, or just the model, by checking to see if the action
implements ModelDriven, as we had already seen.

public class YamlHandler implements ContentTypeHandler {
 public String fromObject(Object o, String s,
 Writer writer)
 throws IOException {
 if (o == null) {
 log.debug("Not serializing null object.");
 return null;
 }
 writer.write(Yaml.dump(o));
 return null;
 }
 // ... etc ...
}

Now that's pretty simple code. Thanks, JYaml!

Configuring our YAML handler
We must also configure the REST plug-in, and let it know that our new YAML
handler exists. This is done in a struts.xml file, for both the bean definition and
some constants. The constants could be moved to our web.xml file, as we've done
with other constants. In this case, as the bean and constants are so closely related,
I prefer to keep them in the struts.xml file. However, there's probably no good
reason for this other than preference. The struts.xml file for this example consists
of the following:

•

•

•

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 13

[277]

<struts>
 <bean name="yaml"
 type="org.apache.struts2.rest.handler.ContentTypeHandler"
 class="com.packt.s2wad.yaml.YamlHandler" />
 <constant name="struts.rest.handlerOverride.yaml"
 value="yaml"/>
 <constant name="struts.action.extension"
 value="xhtml,,xml,json,yaml" />
</struts>

The <bean> element defines our content handler. The handlerOverride constant
registers the YAML content handler bean and provides the file extension. The
struts.action.extension constant tells Struts 2 that actions with a .yaml
extension should map to an action.

Handling our YAML
Once our YAML is handled, we can make a request to /recipe.yaml and receive a
YAML representation of our recipe list. We can also request /recipe/1.yaml and
retrieve the YAML representation of the recipe with an id of 1. The following is the
recipe's YAML representation:

--- !com.packt.s2wad.models.Recipe
name: Lentil Soup
description: A simple lentil soup
id: &1 !java.lang.Long 1
ingredients:
 - !com.packt.s2wad.models.RecipeIngredient
 id: *1
 index: 1
 ingredient: !com.packt.s2wad.models.Ingredient
 description: Basic red lentils
 id: *1
 name: Lentils
 quantity: 1 c
 - !com.packt.s2wad.models.RecipeIngredient
 id: !java.lang.Long 2
 index: 2
 ingredient: !com.packt.s2wad.models.Ingredient
 description: Water
 id: !java.lang.Long 6
 name: Water
 quantity: 2 c
 - !com.packt.s2wad.models.RecipeIngredient
 id: !java.lang.Long 3

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Rich Internet Applications

[278]

 index: 3
 ingredient: !com.packt.s2wad.models.Ingredient
 description: Vinegar
 id: !java.lang.Long 5
 name: Vinegar
 quantity: 1 T

Notice that JYaml also includes some Java type information used for deserializing
from a YAML stream.

Arguably, not many clients consume YAML directly (and that's a fair point).
However, this short example does show how the REST plug-in can be extended
to handle custom content types. We could just as easily serve CSV using the same
techniques by adding an appropriate content handler.

Summary
This chapter takes a look at some of Struts 2's support for Ajax through the Dojo
tags. It also highlights that some use-cases require in-depth knowledge of Dojo,
even though the tags make the easiest tasks very easy. However, as many of our
applications will require custom behavior, this isn't necessarily the "worst thing"
in the world.

The chapter also covers the Struts 2 REST plug-in that furthers our "convention over
configuration" path. The REST plug-in returns data in several formats, including
XHTML, JSON, and XML, which can be consumed by client-side libraries. We
also see that it's easy to produce our own content type handlers in case the default
content types aren't enough.

In the next chapter, we'll look at how we can test our application using different
types of testing, including unit testing and functional testing, and by driving a
browser to test our application in its native habitat.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 13

[279]

References
A reader can refer to the following:

Dojo:
 http://www.dojotoolkit.org
REST:
http://en.wikipedia.org/wiki/Representational_State_Transfer

REST Plug-in:
http://struts.apache.org/2.x/docs/rest-plugin.html

JSON:
http://www.json.org

rest_client (for Ruby):
 http://rest-client.heroku.com/rdoc
YAML:
http://www.yaml.org

http://en.wikipedia.org/wiki/YAML

JYaml
http://jyaml.sourceforge.net

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Comprehensive Testing

In the previous chapter, we looked at the aspects of Struts 2 related to Rich Internet
Application (RIA) development. We'll now move into testing, a key component of
robust deliverables.

"Testing is for the weak! We are strong!", "QA does our testing", "It's so simple, it
doesn't need testing", or "It takes too long to write tests!", and so on. There are plenty
of excuses. However, having a comprehensive suite of application tests of various
types, frees our minds so that we can worry about more important things such as
application functionality and resilience to change.

Instead of worrying if our latest refactoring broke the application, or wondering if
the junior (or senior!) developer's awesome new functor library she/he found on
the Internet broke the entire application or a rarely-used (but critical) portion of it,
we can make changes both small and large with (relative) impunity. It's difficult to
oversell the beauty and comfort of never having to say: "I don't want to touch that
because I'm not sure what will happen."

Tests can also be used as a part of the acceptance process. By creating tests that
follow user stories, it's easier to know when we're done, easier to prove to our clients
we're done, easier to understand how the application should behave under various
circumstances, and so on.

In this chapter, we'll take a look at the various ways we can test our application,
ways that Struts 2 aids in our testing endeavors, and how tests can be used as a part
of our application's documentation and deliverables.

Test-driven development
In simple words, Test-driven development (TDD) means that we first write the tests
and then the code that makes them pass. Pure TDD states that we write code only to fix
a failing test, meaning we must first verify that our test has failed. It sounds obvious,
but without knowing when we fail, we can't know if we've done something right.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Comprehensive Testing

[282]

In a very real sense, by writing the tests first, we are designing our application as we
go. Rather than using Big Design Up Front (BDUF)—a waterfall-style method—we
use our tests as a way to refine our system even as we code. It provides us with live
feedback on our API, as well as a way to verify that it works as intended. Think of
it as another use case of our API besides the application itself. The more usage data
points we have, the happier we are!

Pay as we go
Writing tests does take time—like any investment, the returns may not be seen
immediately (although sometimes there are immediate benefits, particularly when
writing tests expose use cases we hadn't thought of, flaws in design, and so on). As
we go into the details of testing, we'll see some reasons why the initial investment is
worth the effort, and generally ends up saving time and aggravation down the road.

Unit testing
Unit testing is probably the most familiar aspect of TDD. Even if we're not using
pure TDD, it's easy to add unit tests to new codebases. Simply put, unit testing is
supposed to exercise and validate a small area (a unit) of code functionality. Unit
tests provide a repeatable way to prove our code works (or doesn't work). Adding
unit tests to existing code is more difficult, particularly if the code was not written
with testability in mind.

Unit tests focus code intent
In addition to providing executable documentation of our code, which in itself is
probably worth the initial test-writing overhead, unit testing can help focus the
intent of our code. As unit tests are, according to definition, focused on testing small
bits of functionality, it helps remind us to keep our code small and contained. Rather
than writing a large, monolithic method that scatters its focus across concerns,
we're more likely to divide that method into smaller, more focused, and more
easily testable units of work.

Keep tests small
As unit tests are targeted at small, focused units of work, most should run quite
quickly. Tests that take too long to run, won't be run, thus negating any benefit.
However, sometimes long-running tests are required. When this occurs, it's
reasonable to break long-running tests into a separate test suite. The tests should
still be run. However, both the application and its tests can be segmented in such a
way that the small and fast tests can be run frequently, while the long-running tests
would be required to run only after major changes.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 14

[283]

An example of long-running tests that may be required to run only under specific
circumstances are tests that access an actual database. Because of the communication
overhead, possible initialization delays, and query performance, some groups of
tests might take several minutes, or even hours, to run, rather than the desired
several seconds.

In this case, we can break the database tests into a separate suite and run them only
when the database access code changes, as a part of acceptance testing on code
checking, as part of a continuous integration process, and so on.

Test, code, refactor—the "heartbeat" of TDD
In Test Driven, Lasse Koskela refers to the process of test, code, and refactor
as the "heartbeat" of TDD. The sequence becomes automatic after consistent
implementation. Write failing tests. Write the code that makes them pass.
Refactor, lather, rinse, repeat as necessary. It's an iterative process—the stronger
the heartbeat, the stronger the code.

JUnit
JUnit was one of the first comprehensive Java unit testing frameworks. There are
resources available by way of its website, books, articles, and so on. It is supported
by Ant, Maven, and essentially every common Java IDE.

We'll now take a quick look at using JUnit as a part of TDD, by specifying some
functionality, writing the initial tests, and then implementing the functionality itself.
We'll create the tests using JUnit and then TestNG (another unit testing framework).
We will again use JUnit to create tests for a Struts 2 action. Finally, we'll return to
TestNG to show how we can test a Struts 2 interceptor.

Revisiting our iterator filter
Let's take another look at our iterator filter from Chapter 5, where our (gleefully
contrived) requirement was to create an iterator filter that removed strings without
vowels when using a view-side iterator tag. It's actually a pretty simple requirement,
and complete testing might involve the interaction of the iterator itself. However,
some testing can be done in isolation.

The code for our SubsetIteratorFilter.Decider consisted of the implementation
of the decide() method defined by the Decider interface. Let's pretend we didn't
already write the code and that we're creating it using the TDD mindset—write tests
that fail, and then create the code that makes them pass.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Comprehensive Testing

[284]

Our requirements for the decider are the following:

Allow only strings to be compared. Throw an exception if we get a
non string.
If a string has a vowel, return true, otherwise, return false.

Pretty simple! We may argue that something this simple doesn't require testing.
TDD states that nothing is so simple it doesn't require testing. Note that our original
version of the filter was for a single-character string. Now we're assuming that the
string can be of any length.

The test environment
There are several ways to create and run our tests. Full coverage is beyond the scope
of this book. We can run our tests from the command line, using a build process,
through an IDE, as part of a continuous integration process, and so on.

For the example in the following section, we'll use the Eclipse JUnit test creation for
JUnit 4.x and not delve into the intricacies of all the possibilities. There are several
books, along with a multitude of articles and tutorials available, that discuss various
ways of integrating tests into the development process. The following test will be
runnable with a few clicks in nearly any IDE.

The initial test stub
Eclipse will create an initial test stub for testing our decide() method. By default,
it simply fails—recall that when following the pure TDD paradigm, we always
want to start with failing tests. If we run the following stub class as a JUnit test, it
fails. Mission accomplished!

package com.packt.s2wad.ch14.examples;

import static org.junit.Assert.*;
import org.junit.Test;

public class TestVowelDecider {
 @Test public void testDecide() {
 fail("Not yet implemented");
 }
}

As seems common with the phrase "Mission accomplished!", we're not finished
just yet.

•

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 14

[285]

Testing vowel recognition
First, we'll create a test to make sure we get back the right Boolean value for
various string values. Recall that we want a true for strings with vowels and
false otherwise. Again, we write the test first.

Our test is simple—we pass in some strings and make sure we get the right value back.

@Test public void testVowelRecognition() throws Exception {
 VowelDecider vd = new VowelDecider();
 assertTrue("Has vowels", vd.decide("has vowels"));
 assertFalse("Has no vowels", vd.decide("hsnvwls"));
}

The string arguments to assertTrue/False() are human-readable strings that
describe the test being run. The second argument is expected to return a boolean.
In this case, the decide() method returns a boolean, so no antics are required to
manipulate the results of the class under test.

When writing our test, as it is focused very tightly on vowel recognition, we
immediately see a hole in our specification. We haven't explicitly specified what
happens if there's an empty string. Of course, empty strings don't contain vowels, so
technically it should fail the test. However, our use case might demand otherwise.
This is a specification ambiguity that should be cleared up and stated explicitly,
either in the specification or in the test. In this case, we'll assume that an empty string
should return false and should add the appropriate assertion (seen below), as it has
no vowels. (We'll handle a null check in the next test case, don't panic.)

assertFalse("Empty string has no vowels", vd.decide(""));

We'll also assume that we created a default implementation of VowelDecider.
decide() using Eclipse. Normally, boolean methods will return false by default,
which is just fine for now.Our primary goal is to ensure that our tests can fail—we'll
make them pass soon enough.

When we run our test against our new default implementation, we should get an
immediate failure. Our first test checks for vowels, and the stub implementation
returns false. For example, using the Eclipse JUnit integration, we'll see something
similar to the following when we attempt the test:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Comprehensive Testing

[286]

We add our first stab at implementation using the String's matches() method,
which should work for us.

public boolean decide(Object o) throws Exception {
 String s = (String) o;
 return s.matches(".*[aeiouy]+.*");
}

The regular expression says to accept any number of occurrences (including none)
of any character, followed by at least one vowel, followed again by any number of
occurrences (including none) of any character. We'll also add some sanity check tests
to make sure single-character strings work for both a vowel and a non-vowel (which
could help identify a broken regular expression).

Testing non-string parameter exceptions
We probably would have written this test in parallel, or in the same method as our
first test. We've broken it out to keep things simple. Moreover, this test checks for a
very different error.

Now we'll check that we get an exception if we pass decide() a null or non-String
parameter. Again, our goal is to write failing tests first, before implementing the code
that makes the test pass. If we can't verify that our tests can fail, we can't trust the test
when it passes.

The desired behavior is to throw an IllegalArgumentException for both null and
non-String parameters. JUnit 4's @Test annotation optionally accepts a Throwable,
with the exception expected to be thrown. In order to test both nulls and non-strings,
it's easier to just write two tests, although we could forgo the convenience of the
annotations and wrap the separate tests in try/catch blocks.

It's a matter of taste, but the annotation method is more concise and arguably
expresses our intent more clearly. In addition, the annotation allows documentation
generation tools to pull out more information programmatically.

Our illegal argument tests now look like the following. Remember that we haven't
yet implemented the argument-checking functionality in our class under test—we
must have failing tests.

@Test(expected=IllegalArgumentException.class)
public void testNonStringArgument() throws Exception {
 VowelDecider vd = new VowelDecider();
 vd.decide(1);
}

@Test(expected=IllegalArgumentException.class)

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 14

[287]

public void testNullArgument() throws Exception {
 VowelDecider vd = new VowelDecider();
 vd.decide(null);
}

Now, when we run our test, it fails because we have no code implementing
the parameter type checking shown below. To get our test to pass, we add the
highlighted code to our filter implementation. It's as simple as you would expect:

public boolean decide(Object o) throws Exception {
 if ((null == o) || !(o instanceof String)) {
 throw new
 IllegalArgumentException(
 "Expects non-null String");
 }
 String s = (String) o;
 return s.matches(".*[aeiouy]+.*");
}

Now our tests pass and, in theory, we have specification-compliant code. Any changes
to the code earn a run of the unit tests to make sure we didn't accidentally break
something. The tests are run before the code is checked into our source control system.

It's important to note that this method of checking exceptions only ensures we're
throwing the appropriate class. It can't be used to check for things such as custom
exception values. If we need to test the returned exception for anything other than
the type, we need to wrap our class under test in a try/catch block and perform our
asserts manually.

Test granularity and test setup
One consequence of how we structured our tests is that the first test failure in a
test method will stop the test execution immediately. This may not be the desired
behavior. We might want to run each test individually and have more granularity
over our test successes and failures.

We can also posit that we may not want to construct a new test object
(VowelDecider, in this case) for every test. In this case, it doesn't matter. However,
if the test setup is particularly time consuming (as we'll see a bit later when we fire
up a browser to run client-based tests via Selenium), we'll want to initialize our test
harness only once per set of tests.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Comprehensive Testing

[288]

We first create a test method for each of our asserts (and exception checking) from
above, giving us the following collection of methods (code not shown to save space,
you're welcome)

@Test public void testSingleVowel() throws Exception {...}
@Test public void testWordsWithVowels() throws Exception {...}
@Test public void testSingleConsonant() throws Exception {...}
@Test public void testNoVowels() throws Exception {...}
@Test public void testEmptyString() throws Exception {...}
{...}

If we want to use the same instance of the VowelDecider for each test, we can create
a test class property to hold the filter and instantiate it in a setup method. In JUnit,
we annotate a test setup method with the @BeforeClass annotation. This method
will be run when the test class is instantiated.

private VowelDecider vd;
@BeforeClass public static void setup() {
 vd = new TddVowelDecider();
}

As we would expect, there is a corresponding @AfterClass annotation we can use
when we need to perform cleanup on anything used in our test fixture.

JUnit also provides @Before and @After annotations—methods annotated with
these will be run before (or after) every test in the class. For example, if the class
under test held some internal state that needed to be cleared before every test, the
code could be put in a @Before method.

TestNG
TestNG is a JUnit alternative that may suit some people. It was created to address
some of the perceived shortcomings in JUnit, particularly before JUnit 4.x was released.
The underlying basics are very similar and it shares support similar to that of JUnit.
However, I'd guess it's not as popular due to the name recognition JUnit enjoys.

A TestNG conversion of our TestVowelDecider, NgTestVowelDecider, looks
nearly identical, and by statically importing TestNG's JUnit assertion methods, it
looks even more identical.

TestNG also provides @BeforeClass and @AfterClass annotations. The basic
@Test annotation is the same. Tests can use a Java assert for the actual test, or with
the JUnit-compatibility static imports, use JUnit-like assertTrue, assertFalse,
and so on. Testing for exceptions is also similar, but we can use an array of expected
exception types. An equivalent TestNG test class would look similar to our JUnit test:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 14

[289]

package com.packt.s2wad.ch14.examples;

import static org.testng.AssertJUnit.assertFalse;
import static org.testng.AssertJUnit.assertTrue;
import org.testng.annotations.BeforeClass;
import org.testng.annotations.Test;

public class NgTestVowelDecider {

 private VowelDecider vd;

 @BeforeClass public void setup() {
 vd = new VowelDecider();
 }

 @Test public void testDecide() throws Exception {
 assertTrue("Has vowels", vd.decide("has vowels"));
 assertFalse("Has no vowels", vd.decide("hsnvwls"));
 assertFalse("Empty string has no vowels",
 vd.decide(""));
 }

 @Test(expectedExceptions=IllegalArgumentException.class)
 public void testNonStringArgument() throws Exception {
 vd.decide(1);
 }

 @Test(expectedExceptions=IllegalArgumentException.class)
 public void testNullArgument() throws Exception {
 vd.decide(null);
 }
}

TestNG's capabilities go far beyond this limited example. One of my favorite features
is the ability to group tests using a simple string name. Rather than grouping tests by
package or creating suites manually, we can tag tests with a string and run just those
tests. A canonical example is to group tests on the basis of their execution speed.
In our current example, they're all pretty fast. So, I'll create an exception-handling
group by annotating the two tests that check the exception handling.

@Test(groups="exceptions",
 expectedExceptions=IllegalArgumentException.class)
public void testNullArgument() throws Exception {
 vd.decide(null);
}

@Test(groups="exceptions",
 expectedExceptions=IllegalArgumentException.class)
public void testNonStringArgument() throws Exception {
 vd.decide(1);
}

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Comprehensive Testing

[290]

No matter how we're running the tests, we can choose to run only those tests
belonging to the exceptions group. For example, the Eclipse TestNG plug-in
integrates with the Run dialog allowing us to define a configuration to include only
specific test groups. It can often be more convenient to run some tests from our IDE
than using an Ant or Maven process. Test groups are cool and can help avoid manual
test grouping.

However, when we try to run the exceptions group, it fails. This is because our
@BeforeClass setup method is not assigned to a group. We must either assign it
to the exceptions group (this is a bad idea, because we need to for all the groups)
or add a alwaysRun parameter to the @BeforeClass annotation. Now, our setup
method looks like this:

@BeforeClass(alwaysRun=true)
public void setup() {
 vd = new VowelDecider();
}

We can also specify that an entire test class belongs to a given group (while still
allowing individual methods to belong to additional groups).

There is a lot more we can do with TestNG's annotations—we can specify test
ordering dependencies using @Test's dependsOnGroups or dependsOnMethods
parameters. We can supply data to test methods using the @DataProvider or
@Parameters annotations, or we can supply parameters to the @Test annotation
(these are very powerful and allow a variety of ways to parameterize test data).
We can specify the number of times to invoke the test method. There's a lot
more—spending some time with the TestNG documentation will most likely
get us at least a little bit more excited about unit testing.

TestNG is a powerful testing framework that deserves a look if we're not already tied
to JUnit. Either framework provides a tremendous amount of functionality and peace
of mind when used as part of a comprehensive testing practice.

Legacy code and unit testing
Adding unit tests to legacy code provides several benefits. For poorly-documented
codebases, it is a method of documentation. It increases a developer's understanding
of the existing code. It provides a basis against which to refactor and prove the
correctness of the refactoring.

Retroactive unit testing might not be as easy as doing it up-front, but can provide a
way to reduce existing design debt, and adds value beyond the cost of writing and
verifying the tests.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 14

[291]

Simple action testing
Struts 2's actions can also be unit tested. Some testing requires a fair amount of setup.
We won't cover that here, saving it for an advanced Struts 2 book. However, we can
easily test a large amount of action functionality using techniques we've seen so far.

Remember when we hinted that we would look at Dependency Injection, otherwise
known as Inversion of Control (IoC), again? We're here!

Detour: Dependency Injection (Inversion of Control)
Dependency Injection (DI) is a common technique for deciding which
implementation of an interface is used. In order to use DI effectively, we think in
terms of using interfaces rather than implementations—this is a good idea anyway.
For example, when we use an ArrayList, we almost always declare the type of the
variable as List, rather than ArrayList as shown here:

List aList = new ArrayList();

We're doing the same thing in our action used to view recipes. Our
FakeRecipeService implements the RecipeService interface:

public class View extends ActionSupport {
 private RecipeService recipeService =
 new FakeRecipeService();
 public String execute() throws Exception {
 recipe = recipeService.findById(recipe.getId());
 return SUCCESS;
 }
...

One implication is that when we use our recipe service we care only about its
RecipeService-ness, not that we're using the FakeRecipeService implementation.

Another implication is that if we create another RecipeService implementation,
HibernateRecipeService (that uses Hibernate), the code in the execute() method
doesn't need to change. We only need to change recipeService's initialization.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Comprehensive Testing

[292]

In this code, the View class chooses the RecipeService implementation to use.
DI turns this on its head by letting something else determine the implementation
we'll use for our recipeService. There are several options for defining which
implementation to use. Most options depend on some combination of configuration
files, publicly-accessible setter methods, or annotations. We'll look at using Spring
and a configuration file in a moment.

public class View extends ActionSupport {
 private Recipe recipe;
 private RecipeService recipeService;
 public String execute() throws Exception {
 recipe = recipeService.findById(recipe.getId());
 return SUCCESS;
 }
 public void setRecipeService(RecipeService
 recipeService) {
 this.recipeService = recipeService;
 }
 public void setRecipe(Recipe recipe) {
 this.recipe = recipe;
 }
}

Note that our above code could still choose the RecipeService implementation,
but we also allow external forces to set the RecipeService implementation for the
class. In fact, we could just instantiate this class, set all the appropriate values,
and call execute():

View view = new View();
view.setRecipeService(new FakeRecipeService());

Recipe recipe = new Recipe();
recipe.setId(1);

view.setRecipe(recipe);

String result = view.execute();

Assuming no exception is thrown, we should get the string success in result.

For now, just remember that DI means that the implementation of an interface can be
set outside of the class that uses the implementation.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 14

[293]

Dependency Injection helps us test
Our current recipe view action returns success no matter what. It might be better if
we return a different result depending on whether or not the recipe in question was
found. We'll add a requirement (only partially contrived!) that if the service doesn't
find a recipe for the supplied recipe ID, we'll return a notFound message. This would
allow us to create a result for our action that might show an error page, a page with a
search box, and so on.

Then our mini-user story for this is as follows:

Users may search for a recipe by recipe ID

With the following mini stories by way of clarification:

Show an error page if no recipe is found
Otherwise, show the recipe

We can test part of this functionality by making sure our view action returns the
appropriate value, notFound or success, under the appropriate conditions.

We already have a FakeRecipeService containing a known set of recipes. It's easy
to write a test that will exercise our action (recalling that we must first write a failing
test). Our test class is very straightforward and utilizes our new-found love of DI.

package com.packt.s2wad.ch14.test.actions;
...
public class TestRecipeViewAction {
 private View view;
 private Recipe recipe;

 @BeforeClass public void setup() {
 view = new View();
 view.setRecipeService(new FakeRecipeService());
 }

 @Test(groups="actions")
 void testRecipeFoundResult() throws Exception {
 recipe = new Recipe(1, null);
 view.setRecipe(recipe);
 assertTrue(view.execute().equals("success"),
 "Recipe found returns 'success'");
 }

 @Test(groups="actions")
 void testRecipeNotFoundResult() throws Exception {
 recipe = new Recipe(42, null);
 view.setRecipe(recipe);
 assertTrue(view.execute().equals("notFound"),
 "Recipe found returns 'success'");
 }
}

•

•
•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Comprehensive Testing

[294]

As we can set the RecipeService implementation used by our recipe viewing action,
we can tell it to use our FakeRecipeService. We know the FakeRecipeService has
a recipe with ID == 1, and doesn't have one for ID == 42, we'll use those as our
tests. (In a real system, we might define known IDs in the fake recipe service.)

The testRecipeFoundResult() test passes, as our action always returns success
at the moment. Our other test fails, so that we've at least partially satisfied our "tests
must fail" requirement. We then tweak our action slightly:

public String execute() throws Exception {
 recipe = recipeService.findById(recipe.getId());
 if (recipe.notFound()) {
 return "notFound";
 }
 return SUCCESS;
}

The Recipe's notFound() method is a convenient method to check if
the recipe instance is equal to a static Recipe instance we used to indicate
a recipe wasn't found. This helps us get rid of the process of null checking
of recipes returned by our services, eliminating one class of possible
application errors. It's a matter of some debate as to which method is
best—scattering null-checks throughout an entire codebase, or creating
"empty" objects to represent non existence.

Our tests now pass. We've exercised one portion of our recipe view tests.

This is nice, but how can we configure our Struts 2 application to use a particular
implementation of RecipeService across the entire application—not just in
test fixtures?

Detour: Struts and Spring in a nutshell
Spring, among a great many other things, is a Dependency Injection container. This
means that we can use Spring to manage our DI. For example, we can configure
our application to always use our FakeRecipeService implementation via a
configuration file.

Struts 2 integrates with Spring with the Struts 2 Spring plug-in. We still need
the Spring library—the plug-in provides only the Spring integration, not Spring
itself. We'll take a quick look at how to configure our application to use our
FakeRecipeService for its RecipeService needs.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 14

[295]

Spring web.xml configuration
We use Spring's ContextLoaderListener to load our Spring configuration files.
This is configured in our web.xml file. We will also define a context parameter to tell
Spring where to find our Spring configuration files. Here, we'll define them to lie
anywhere on our classpath and be named applicationContext*.xml, giving us the
option of breaking up our Spring configuration in whatever way seems reasonable.

<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>
 classpath*:applicationContext*.xml
 </param-value>
</context-param>

<listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
</listener>

At the time of writing this book, it was also necessary to set a Struts 2 configuration
variable relating to Spring autowiring (it may not be necessary by the time
you're reading this). We add the following <init-param> element to our
Struts 2 filter definition:

<init-param>
 <param-name>
 struts.objectFactory.spring.autoWire.alwaysRespect
 </param-name>
 <param-value>true</param-value>
</init-param>

Spring context configuration file
We'll put an applicationContext.xml file at the root of our classpath, using the
XSD-based configuration introduced in Spring 2.0. The outline looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/
 spring-beans-2.5.xsd">
 ...
</beans>

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Comprehensive Testing

[296]

We can define a recipe service bean in our Spring context file with the following
short XML fragment:

<bean name="recipeService"
 class="com.packt.s2wad.ch14.recipe.FakeRecipeService"/>

Now, something scary happens: if we visit our view-by-id action, even though
we don't define a recipe service in the action, we get a recipe back on a valid ID.
The magic here is "autowiring by name". The default behavior is that when a class
managed by Spring (as our actions are under the Spring plug-in) contains a public
property with the same name as a bean defined in a Spring configuration file, that
bean will be injected into the class.

In this case, our recipe view action has a public setter method setRecipeService(),
and our FakeRecipeService Spring bean is named recipeService. This means
when the action class is instantiated, the action's setRecipeService() method will
be called and will be given a new instance of FakeRecipeService.

If we need to use a different RecipeService implementation, we just update our
Spring configuration file, and any Spring-managed objects (like our actions) that
have a setRecipeService() method will get an instance of the recipeService's type.
Rather than changing all the classes that need a RecipeService implementation,
we can change the behavior of the entire application through Spring. This is handy
(and I am the King of Understatements).

However, we shouldn't forget that when we rely on magic, particularly
name-based magic, it can turn around and bite us in uncomfortable places. If
our bean names happen to match a property expected elsewhere, it can lead to
spectacular stack traces, mysterious class cast exceptions, and much cursing.
Actions can also be configured explicitly. Some people prefer this methodology,
and it can often eliminate mysterious problems.

Testing Struts 2 in context
Earlier, we tested a Struts 2 action by calling its execute() method. This is helpful,
and may be sufficient in many cases. However, it would be more robust to call action
methods in the context of things such as a particular interceptor stack configuration.

It's the same with interceptors. We might be able to abstract the bulk of an interceptor's
code and test it independently. However, ideally we'd like to call the interceptor's
intercept() method (or doIntercept(), and so on, depending on the interceptor's
superclass) with an action invocation. This is particularly true if the interceptor is
supposed to act only on actions implementing a specific marker interface.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 14

[297]

Testing a Struts interceptor
Here, we'll test our trim interceptor with an action invocation. For the most part,
things look like a regular unit test. The main difference is that we need to set up
some framework objects in order to create a mock action invocation.

We'll use TestNG's @BeforeClass annotation to create a TrimInterceptor instance
and set its excluded parameters list. We'll also set up some XWork configuration
objects which we can use to generate action invocations. The test class's imports
and setup method looks like this:

package com.packt.s2wad.ch14.test.interceptors;

import static org.testng.Assert.assertFalse;
import static org.testng.Assert.assertTrue;

import java.util.HashMap;
import java.util.Map;

import org.testng.annotations.BeforeClass;
import org.testng.annotations.Test;

import com.opensymphony.xwork2.ActionContext;
import com.opensymphony.xwork2.ActionProxyFactory;
import com.opensymphony.xwork2.config.Configuration;
import com.opensymphony.xwork2.config.ConfigurationManager;
import com.opensymphony.xwork2.inject.Container;
import com.opensymphony.xwork2.mock.MockActionInvocation;
import com.opensymphony.xwork2.util.XWorkTestCaseHelper;

import com.packt.s2wad.ch14.interceptors.TrimInterceptor;

public class TestTrimInterceptor {

 private TrimInterceptor trim;
 protected ConfigurationManager configurationManager;
 protected Configuration configuration;
 protected Container container;
 protected ActionProxyFactory actionProxyFactory;

 @BeforeClass
 public void setup() throws Exception {
 trim = new TrimInterceptor();
 trim.setExcludedParams(
 "simple, nested.simple, indexed, complex.foo");

 configurationManager = XWorkTestCaseHelper.setUp();
 configuration =
 configurationManager.getConfiguration();
 container = configuration.getContainer();

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Comprehensive Testing

[298]

 actionProxyFactory =
 container.getInstance(ActionProxyFactory.class);
 }

 ...
}

Our test is simple since all the work is done in the helper method. The
testTrimming() method takes three arguments—the name of the request parameter,
its value, and the value we expect after running through the interceptor.

The request parameter would be the name of the parameter found in a form
submission. The trim interceptor uses its excludedParams property to determine
whether a particular request parameter should be trimmed.

@Test(groups="interceptors")
public void testTrimming() {
 testTrimming("foo", " hello ", "hello");
 testTrimming("complex.nar", " hello ", "hello");
 testTrimming("simple", " hello ", " hello ");
 testTrimming("complex.foo[1]", " hello ", " hello ");
}

For example, based on the excludedParams we set in the setup() method, we
would expect a request parameter named foo to be trimmed. Therefore, our first
test passes our test helper the untrimmed form submission value, along with the
trimmed value we expect the interceptor to pass on to our actions. (There are better
ways to consolidate the excludedParams value and the parameter/expected value
pairs than what we're using here.)

The testTrimming() method creates the action invocation, runs the interceptor's
doIntercept() method, and makes sure we're getting the value we want back.

private void testTrimming(final String param,
 final String val,
 final String expected) {
 MockActionInvocation i = setupInvocation(param, val);
 try {
 trim.doIntercept(i);
 Map<String, Object> params =
 i.getInvocationContext().getParameters();
 assertTrue(params.containsKey(param),
 "Parameters contains param key");
 String newVal = ((String[]) params.get(param))[0];
 assertTrue(newVal.equals(expected),
 "Trim operation correct.");

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 14

[299]

 } catch (Exception e) {
 assertTrue(false, "Should not have gotten exception");
 }
}

For simplicity, this test assumes that each request parameter name
contains a single value, and it's true in our tests. A comprehensive test
would also test multiple values.

The setupInvocation() method accepts a parameter name and value, and sets the
request parameter. It then creates a mock action invocation, to which we attach the
action context containing the request parameters.

private MockActionInvocation setupInvocation(
 final String param,
 final String val) {
 Map<String, Object> params =
 new HashMap<String, Object>() {{
 put(param, new String[] { val });
 }};
 MockActionInvocation i = new MockActionInvocation();
 ActionContext c = ActionContext.getContext();
 c.setParameters(params);
 i.setInvocationContext(c);
 return i;
}

If we were testing an interceptor that required a specific action
(for example, to test an interceptor that acted only on actions that
implemented a specific interface), we could provide the action invocation
with an instance of the action being invoked.

These techniques allow us to test an interceptor in the context of an action invocation.

Client-side (functional) testing
Testing our Java code is obviously very important, but it's equally (or maybe even
more) important to test the application in its native habitat, that is, in the browser.
In some ways, this is among the most important means of testing our application,
as the application itself (which lives in the browser) is the deliverable seen by the
application's user.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Comprehensive Testing

[300]

Selenium
Selenium allows us to test web applications by running a browser. We can use it
to click links, check for DOM elements and their contents, submit forms, and
so on. Basically, anything that a user can do with our web application can be
done using Selenium.

Selenium can drive several browsers, including Internet Explorer, Firefox, and Safari.
These examples were tested using Firefox, but they're simple and should work across
browsers. Note that as of IE 6 there were, as seems typical, the occasional gotcha.
When possible, it's often easier to test using Firefox.

Selenium RC
In order to integrate our Selenium tests into our unit testing, we'll use Selenium
RC (Remove Control) and the Java client driver. In a nutshell, our tests use the
client driver to communicate with the Selenium RC server, which in turn drives
the browser.

For our purposes, we're just going to run the server from the command line, which is
as easy as starting up the server jar:

$ java -jar selenium-server.jar

The test scenario
For our tests, we'll look at a quick iteration of a login screen and make sure that
what we expect to see on the screen actually shows up under various scenarios. The
login screen is a typical login, containing both email and password fields. There's a
message for failed logins, and we're taken to a welcome page on a successful login.

For this example, we'll keep things simple and contained to a single class. Not
all of the source will be presented here. It's quite likely you'll find your own set
of convenience classes, methods, suites, and so on. This is just an overview of
the process.

Our first Selenium test
The first sanity check is to make sure the appropriate form fields are displayed in
the browser. We can use Selenium to check for DOM elements with given IDs,
so this is not a problem. Following the TDD methodology, we write our test first,
before creating the page. In this case, we actually created the page stub first. In pure
TDD, we'd first test for the presence of the page, and it would probably be a valuable
test to add.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 14

[301]

Our test class needs to perform some Selenium housekeeping. We'll use TestNG's @
BeforeClass and @AfterClass annotations to do this for us. We're simply starting
up a browser at the beginning of all the tests in the class and closing it afterwards. If
we had a lot more test classes, we'd probably want to create the browser before all
the tests ran. This will help avoid the additional overhead of browser startups.

Remember that tests must be as fast as is practically possible, but shouldn't be much
faster. The functional tests we're showing here might live in their own TestNG
group, giving us the ability to run them separately from other groups:

private static String LOGIN_INPUT_URL =
 "http://localhost:8080/user/login!input.action";
private Selenium selenium;

@BeforeClass public void setup() {
 selenium = new DefaultSelenium(
 "localhost", 4444, "*firefox", LOGIN_INPUT_URL);
 selenium.start();
}

@AfterClass public void tearDown() {
 selenium.stop();
}

We'll add a convenience method to test for the presence of an element in the
DOM, taking an explanatory message and a Selenium selector. (See the Selenium
documentation for a complete explanation of querying the DOM. There are many
ways we can query elements, including CSS selectors.)

public void assertElementPresent(final String msg,
 final String selector) {
 assertTrue(msg + ": '" + selector + "'",
 selenium.isElementPresent(selector));
}

We'll then write our first simple test (designed to fail) that tests the presence of the
form, the two form text inputs, and a login button with the text Login.

@Test(groups="functional")
public void testLoginFormFields() {
 selenium.open(LOGIN_INPUT_URL);
 assertElementPresent("login form", "id=loginForm");
 assertElementPresent("userName field", "id=email");
 assertElementPresent("password field", "id=password");
 assertElementPresent("Login button",
 "//input[@value='Login']");
}

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Comprehensive Testing

[302]

The test will fail because the form doesn't exist. We create the login form as a normal
Struts 2 form, nothing terribly exciting here:

<s:form id="loginForm" action="login" method="post">
 <s:textfield id="email" name="email" label="Email"/>
 <s:password id="password" name="password" label="Password"/>
 <s:submit value="Login"/>
</s:form>

Running the test again confirms that the form fields we expect to exist are now
present. We continue writing our tests to verify proper validation behavior. If
either field is missing, we should get an error message to that effect. Shown
below is the email validation test. Password validation is essentially identical.
(The typeOrClear() method is a helper that enters text into text fields.)

@Test public void testEmailValidation() {
 testLoginFormFields();

 typeOrClear("email", null);
 typeOrClear("password", "ohai");

 selenium.click("//input[@value='Login']");
 selenium.waitForPageToLoad("10000");

 // Should not have moved to /welcome.action.
 assertUrlEndsWith("/login.action");
 assertElementPresent("An error message span",
 "css=span[class~='errorMessage']");
 String text =
 selenium.getText("css=span[class~='errorMessage']");
 assertTrue(text.equals("Email is required."));
}

Note that if both fields are omitted, there will be two errorMessage spans. It
becomes more difficult to get the text in that case. However, as any CSS selector may
be used, it's simple enough to build up the appropriate selector. At the same time,
we probably don't want to do that. It's much cleaner to appropriately assign an ID
to the span, table row, or similar objects. This is another great opportunity to further
customize our FreeMarker tag templates to mark up our HTML in order to make
testing easier (and hopefully, much more likely to be done).

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 14

[303]

Our next test is to make sure a failed login puts an action error in the JSP. We'll specify
that action errors will appear in a <div> with an id of flash and a class of error.
The important consideration is that we're specifying how we'll identify page elements
much earlier. As we've seen, the more we can mark things up, the better off we are.

The relevant portion of the test looks like following:

assertUrlEndsWith("/login.action");
assertElementPresent("The flash span",
 "css=div[id=flash][class~='error']");
String text =
 selenium.getText("css=div[id=flash][class~='error']");
assertTrue(text.indexOf("Login failed") > -1);

Our initial run will fail. Our action doesn't set an action error, and our JSP doesn't do
anything with action errors that don't exist. Remember, TDD says write failing tests
first. Tests that cannot fail are useless.

In our JSP, we test for the presence of action errors. If there are any, we render
a <div> with our expected ID and class, using the standard Struts 2 <s:
actionerror/> tag inside, at least for now.

The last test we'll look at is the results of a successful login. This is little more than
checking the subsequent URL, although in the actual system we might check to make
sure that user-specific information was on the page, and so on. We've configured a
"welcome" action in our default package, and we know its URL.

assertUrlEndsWith("/welcome.action");

A real test system might process any Struts 2 configuration files to avoid needing to
know the actual URL. We could also check for the URL. However, we prefer using
configuration information to determine the action suffix, and so on.

The tests might also be prototyped using the Selenium IDE. This is a Firefox plug-in
that can record browser sessions. This tool can be used by the developer, or with a
good testing or QA department. These tests may be manipulated by a developer to
create the unit tests (it can output Java code directly, but it usually needs work),
or used to test from within the browser.

Client-side testing can become very complex, particularly with the addition of
AJAX and other rich client behavior. With today's heavy use of JavaScript and DOM
manipulation, the ability to mechanically verify behavior is very important, even if
it's not practical to verify every bit of HTML or behavior on a page.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Comprehensive Testing

[304]

Other forms of testing
There are many other forms of testing and development methodologies, and ways
of integrating them into the process. We'll take a very brief look at other test tools in
our arsenal. There are essentially an unlimited number of ways any of these methods
fit into our development process. It is often dependent on the type of application, the
nature of the client relationship, and so on.

It's possible to develop every application with some level of the following practices
in place. The peace of mind they can provide is generally worth the additional effort,
and when automated, they provide free benefits for the rest of the life of the project.

Acceptance testing
The client-focused Selenium testing discussed earlier may be used as a part of an
acceptance testing process. Acceptance testing can be used to verify the correct
operation of our user stories (remember those?)

When we unit-tested our Struts 2 action for listing recipes, we had a couple of "mini
stories" accompanying it. They wouldn't necessarily belong in a user story, but might
belong in an acceptance test.

Acceptance testing is a mechanism for determining the correct application behavior.
It provides a metric for knowing the system is as the client requires. Therefore,
acceptance tests are best-owned by our client, as they're the ones to whom the
tests will be delivered and they should be most interested in knowing when the
application is done.

Acceptance tests should preferably be written by the client with us (the developer),
in a non-technical language (the language should match the domain of the
application). The tests should be focused, precise, and clear. They should focus on
underlying functionality and not bring in too much detail of how that functionality
is being implemented.

By focusing on "what" and not "how", we get a verifiable snapshot of the system's
behavior. For web applications, this looks a lot like the client-side testing we've
already discussed. Indeed, a subset of the client-side tests may very well be used as
a part of an acceptance test suite. By driving a browser, we're testing our deliverable
from the standpoint of a user.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 14

[305]

Acceptance testing might also include various database processes such as batch
jobs, complicated queries, actions across systems, and similarly complex tasks. My
admittedly simplistic take on this is that they're a subset of unit and client-side tests.
However, they may exist as a separate documentation (or however they're being
expressed), and hence are different, even if only in intent.

Load testing
Load testing the system should be done fairly early in the process, and not as an
afterthought. Integrating an automated load test into a continuous build system can
provide much needed input towards identifying problems early in the process—it's
easier to confront issues immediately upon noticing them. Load testing can help
point out configuration errors, database bottlenecks, scalability issues, shared data
abuse, and more. Even a small amount of load testing can be valuable.

Load testing with JMeter
JMeter is a Java-based desktop application that performs functional load testing.
It can simulate any number of users making variably-timed requests, including
ramping up usage over time. JMeter is designed primarily as a load tester and
not as a functional tester (for which we've used Selenium). Its main purpose is
to make requests, rather than examining the results of those requests, and to time
the requests.

JMeter includes a GUI for creating and running the test plans. Test plans are saved
in an easy-to-understand XML format, allowing simple and automated test plan
generation through any language that can manipulate XML.

JMeter provides many ways to vary the requests being made, including timing
differences, request parameter variation, normal and Ajax requests, GET and
POST requests, request interleaving, and more (see the JMeter documentation
for further details).

As a simple example, we'll configure a load test of an ingredient list page, simulating
25 users, ramping up over a period of 30 seconds, each requesting the ingredient
list page, in HTML format, four times, with a delay of 0.5-1.5 seconds between each
request. This sounds complicated, but it only scratches the surface of what JMeter
and similar tools are capable of.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Comprehensive Testing

[306]

It might sound like JMeter provides more than what is necessary, but understanding
how our application works under various types of loads can be critically important.
Not all applications are used constantly throughout the day. Some might experience a
heavy load early in the morning, or during end-of-the-week reporting, and so on.

The JMeter GUI screenshot shown above shows a tree on the left, which represents
the test plan and its nested elements. Each thread group (represented by a spool of
thread) represents a certain number of users. Here, we see a single thread group,
each containing a simple loop controller that repeats itself a specified number of
times. We'll request our ingredient list, wait a variable amount of time, and repeat.
We've also specified various views of our requests, which we'll cover in a moment.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 14

[307]

The thread group contains 25 users, ramping up their requests over 30 seconds,
which will loop twice (we won't show a picture of this here, but we'll see it when
we look at the XML test plan). The request is simply a GET request to our HTML
ingredient list page. The Gaussian Random Timer element allows us to choose a
constant offset, which specifies the minimum time delay, and a random component.

When we run this test plan, we can examine the results in several ways. The View
Results Tree element provides a view of each request, including the response data.
On the previous screen, we see the basic HTML returned by our test ingredient listing.

We can also get an aggregate report of our test plan, which will return the number
of samples, the average time-per-request, the minimum and maximum times, and
so on. This provides a high-level view of the load test results.

Our test plans are saved in an XML format. The test plan shown above creates
around 200 lines of XML code. We'd never create these XML test plans by
hand—we'd either use the GUI or generate them programmatically. One feature
not discussed here allows our test plans to use data sets to generate requests, form
parameters, and so on. These data sets could also be generated automatically from
actual system data.

Recovery testing
Recovery testing is not so much an issue of application testing, but of process testing,
on several levels. It includes making sure that the source control system is set up
properly. It includes ensuring the build processes is repeatable, including across build
machines, along with deployment and configuration scripts, and so on—basically
anything that is involved throughout the entire life of application development.

How much recoverability testing is required is closely related to the deliverables. If
we're just delivering a WAR file, we may not feel the need to test our local backup
system (but we have a working one, right?) or other well-known processes. If the
deliverable includes a turn-key, source- and design-included application along with
training, then a higher standard needs to be followed and be integrated into the
client's preferred mechanisms if possible.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Comprehensive Testing

[308]

Summary
Testing provides a huge amount of freedom. It can reduce the amount of written
documentation and provide an executable specification. Testing covers a wide range
of topics, from the smallest unit of code to the behavior of the system as a whole,
under various scenarios.

In the next chapter, we'll continue looking at application documentation
(remember, tests are documentations!), but from a more traditional standpoint,
that is, documenting our code the old-fashioned way. We will also discover some
tools and methodologies that go beyond simple Javadocs.

References
A reader can refer to the following:

Test-driven development
 http://en.wikipedia.org/wiki/Test-driven_development
 http://c2.com/cgi/wiki?TestDrivenDevelopment

JUnit
 http://www.junit.org

TestNG
 http://testng.org

Dependency Injection/Inversion of Control
 http://en.wikipedia.org/wiki/Dependency_injection

Spring
 http://www.springsource.org/

Struts 2 Spring Plugin
 http://struts.apache.org/2.x/docs/spring-plugin.html

Selenium
 http://seleniumhq.org/

JMeter
 http://jakarta.apache.org/jmeter/

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Documenting our Application
Every developer's favorite task is documenting their application (or so I've heard).
As irritating as documentation can be, delivering a complete solution implies
comprehensive, usable documentation. This goes beyond (but includes) typical
Javadocs. However, more is required in order to understand how a particular
application works, how its parts fit together, where dependencies lie, and so on. Even
us, the developers, benefit from having a wide variety of documentation available.

In this chapter, we'll look at the ways in which we can document our applications,
coding styles that can aid in understanding, tools and techniques for creating
documentation from application artifacts, different types of documentation for
different parties, and so on.

Documenting Java
Everybody knows the basics of documenting Java, so we won't go into much
detail. We'll talk a bit about ways of writing code whose intention is clear, mention
some Javadoc tricks we can use, and highlight some tools that can help keep our
code clean. Clean code is one of the most important ways we can document our
application. Anything we can do to increase readability will reduce confusion later
(including our own).

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Documenting our Application

[310]

Self-documenting code
We've all heard the myth of self-documenting code. In theory, code is always clear
enough to be easily understood. In reality, this isn't always the case. However, we
should try to write code that is as self-documenting as possible.

Keeping non-code artifacts in sync with the actual code is difficult. The only artifact
that survives a project is the executable, which is created from code, not comments.
This is one of the reasons for writing self-documenting code. (Well, annotations,
XDoclet, and so on, make that somewhat less true. You know what I mean.)

There are little things we can do throughout our code to make our code read as much
like our intent as possible and make extraneous comments just that: extraneous.

Document why, not what
Over-commenting wastes everybody's time. Time is wasted in writing a comment,
reading it, keeping that comment in sync with the code, and, most importantly, a lot
of time is wasted when a comment is not accurate.

Ever seen this?

a += 1; // increment a

This is the most useless comment in the world.

Firstly, it's really obvious we're incrementing something, regardless of what that
something is. If the person reading our code doesn't know what += is, then we
have more serious problems than them not knowing that we're incrementing, say,
an array index.

Secondly, if a is an array index, we should probably use either a more common array
index or make it obvious that it's an array index. Using i and j is common for array
indices, while idx or index is less common. It may make sense to be very explicit in
variable naming under some circumstances. Generally, it's nice to avoid names such as
indexOfOuterArrayOfFoobars. However, with a large loop body it might make sense
to use something such as num or currentIndex, depending on the circumstances.

With Java 1.5 and its support for collection iteration, it's often possible to do away
with the index altogether, but not always.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 15

[311]

Make your code read like the problem
Buzzphrases like Domain Specific Languages (DSLs) and Fluent Interfaces
are often heard when discussing how to make our code look like our problem.
We don't necessarily hear about them as much in the Java world because other
languages support their creation in more "literate" ways. The recent interest in
Ruby, Groovy, Scala, and other dynamic languages have brought the concept back
into the mainstream.

A DSL, in essence, is a computer language targeted at a very specific problem. Java
is an example of a general-purpose language. YACC and regular expressions are
examples of DSLs that are targeted at creating parsers and recognizing strings of
interest respectively.

DSLs may be external, where the implementing language processes the DSL
appropriately, as well as internal, where the DSL is written in the implementing
language itself. An internal DSL can also be thought of as an API or library, but one
that reads more like a "little language".

Fluent interfaces are slightly more difficult to define, but can be thought of as an
internal DSL that "flows" when read aloud. This is a very informal definition, but
will work for our purposes.

Java can actually be downright hostile to some common DSL and fluent techniques for
various reasons, including the expectations of the JavaBean specification. However, it's
still possible to use some of the techniques to good effect. One typical practice of fluent
API techniques is simply returning the object instance in object methods. For example,
following the JavaBean specification, an object will have a setter for the object's
properties. For example, a User class might include the following:

public class User {
 private String fname;
 private String lname;
 public void setFname(String fname) { this.fname = fname; }
 public void setLname(String lname) { this.lname = lname; }
}

Using the class is as simple as we'd expect it to be:

User u = new User();
u.setFname("James");
u.setLname("Gosling");

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Documenting our Application

[312]

Naturally, we might also supply a constructor that accepts the same parameters.
However, it's easy to think of a class that has many properties making a full
constructor impractical. It also seems like the code is a bit wordy, but we're
used to this in Java. Another way of creating the same functionality is to include
setter methods that return the current instance. If we want to maintain JavaBean
compatibility, and there are reasons to do so, we would still need to include normal
setters, but can still include "fluent" setters as shown here:

public User fname(String fname) {
 this.fname = fname;
 return this;
}
public User lname(String lname) {
 this.lname = lname;
 return this;
}

This creates (what some people believe is) more readable code. It's certainly shorter:

User u = new User().fname("James").lname("Gosling");

There is one potential "gotcha" with this technique. Moving initialization into
methods has the potential to create an object in an invalid state. Depending on the
object this may not always be a usable solution for object initialization.

Users of Hibernate will recognize the "fluent" style, where method chaining is used
to create criteria. Joshua Flanagan wrote a fluent regular expression interface, turning
regular expressions (already a domain-specific language) into a series of chained
method calls:

Regex socialSecurityNumberCheck =
 new Regex(Pattern.With.AtBeginning
 .Digit.Repeat.Exactly(3)
 .Literal("-").Repeat.Optional
 .Digit.Repeat.Exactly(2)
 .Literal("-").Repeat.Optional
 .Digit.Repeat.Exactly(4)
 .AtEnd);

Whether or not this particular usage is an improvement is debatable, but it's certainly
easier to read for the non-regex folks.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 15

[313]

Ultimately, the use of fluent interfaces can increase readability (by quite a bit in most
cases), may introduce some extra work (or completely duplicate work, like in the
case of setters, but code generation and/or IDE support can help mitigate that), and
may occasionally be more verbose (but with the benefit of enhanced clarity and IDE
completion support).

Personally, I'm of the opinion that regular expressions are so incredibly important
that it's worth learning them in their native form, as they can be used in many
environments, including the IDEs so loved by Java developers. Large expressions can
be broken down into components and created by concatenating strings. But the point
here is more about the style of fluent programming, rather than this specific example.

Contract-oriented programming
Aspect-oriented programming (AOP) is a way of encapsulating cross-cutting
functionality outside of the mainline code. That's a mouthful, but essentially it
means is that we can remove common code that is found across our application and
consolidate it in one place. The canonical examples are logging and transactions, but
AOP can be used in other ways as well.

Design by Contract (DbC) is a software methodology that states our interfaces
should define and enforce precise specifications regarding operation.

"Design by Contract" is a registered trademark of Interactive Software
Engineering Inc. Other terms include Programming by Contract (PbC),
or my personal favorite, Contract Oriented Programming (COP), which
is how I'll refer to it from now on. I have a lot of respect for Eiffel and its
creator, but this type of trademarking bothers me. Maybe I'll trademark
"Singleton"?!

How does COP help create self-documenting code? Consider the following portion
of a stack implementation:

public void push(final Object o) {
 stack.add(o);
}

This seems simple enough. The information available to us is that we can push an
object, whatever pushing means.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Documenting our Application

[314]

What happens if we attempt to push a null? Let's assume that for this
implementation, we don't want to allow pushing a null onto the stack.

/**
 * Pushes non-null objects on to stack.
 */
public void push(final Object o) {
 if (o == null) return;
 stack.add(o);
}

Once again, this is simple enough. We'll add the comment to the Javadocs stating
that null objects will not be pushed (and that the call will fail/return silently). This
will become the "contract" of the push method—captured in code and documented
in Javadocs.

The contract is specified twice—once in the code (the ultimate arbiter) and again
in the documentation. However, the user of the class does not have proof that the
underlying implementation actually honors that contract. There's no guarantee that
if we pass in a null, it will return silently without pushing anything.

The implied contract can change. We might decide to allow pushing nulls. We
might throw an IllegalArgumentException or a NullPointerException on a
null argument. We're not required to add a throws clause to the method declaration
when throwing runtime exceptions. This means further information may be lost in
both the code and the documentation.

As hinted, Eiffel has language-level support for COP with the require/do/ensure/
end construct. It goes beyond the simple null check in the above code. It actively
encourages detailed pre- and post-condition contracts. An implementation's push()
method might check the remaining stack capacity before pushing. It might throw
exceptions for specific conditions. In pseudo-Eiffel, we'd represent the push()
method in the following way:

push (o: Object)
 require
 o /= null
 do
 -- push
 end

A stack also has an implied contract. We assume (sometimes naively) that once
we call the push method, the stack will contain whatever we pushed. The size
of the stack will have increased by one, or whatever other conditions our stack
implementation requires.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 15

[315]

One aim of COP is to formalize the nature of contracts. Languages such as Eiffel
have one solution to that problem, and having it built-in at the language level
provides a consistent means of expressing contracts.

Java, of course, doesn't have built-in contracts. However, it does contain a mechanism
that can be used to get some of the benefits for a conceptually-simple price. The
mechanism is not as complete, or as integrated, as Eiffel's version. However, it
removes contract enforcement from the mainline code, and provides a way for both
sides of the software to specify, accept, and document the contracts themselves.

Removing the contract information from the mainline code keeps the implementation
clean and makes the implementation code easier to understand. Having programmatic
access to the contract means that the contract could be documented automatically
rather than having to maintain a disconnected chunk of Javadoc.

SpringContracts
SpringContracts is a beta-level Java COP implementation based on Spring's AOP
facilities, using annotations to state pre- and post-contract conditions. It formalizes
the nature of a contract, which can ease development.

Let's consider our VowelDecider that was developed through TDD. We can also use
COP to express its contract (particularly the entry condition). This is a method that
doesn't alter state, so post conditions don't apply here.

Our implementation of VowelDecider ended up looking (more or less) like this:

public boolean decide(final Object o) throws Exception {
 if ((o == null) || (!(o instanceof String))) {
 throw new IllegalArgumentException(
 "Argument must be a non-null String.");
 }
 String s = (String) o;
 return s.matches(".*[aeiouy]+.*");
}

Once we remove the original contract enforcement code, which was mixed
with the mainline code, our SpringContracts @Precondition annotation looks
like the following:

@Precondition(condition="arg1 != null && arg1.class.name == 'java.
lang.String'",
 message="Argument must be a non-null String")
public boolean decide(Object o) throws Exception {
 String s = (String) o;
 return s.matches(".*[aeiouy]+.*");
}

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Documenting our Application

[316]

The pre-condition is that the argument must not be null and must be (precisely)
a string. (Because of SpringContracts' Expression Language, we can't just say
instanceof String in case we want to allow string subclasses.)

We can unit-test this class in the same way we tested the TDD version. In fact,
we can copy the tests directly. Running them should trigger test failures
on the null and non-string argument tests, as we originally expected an
IllegalArgumentException. We'll now get a contract violation exception
from SpringContracts.

One difference here is that we need to initialize the Spring context in our test. One
way to do this is with JUnit's @BeforeClass annotation, along with a method that
loads the Spring configuration file from the classpath and instantiates the decider as
a Spring bean. Our class setup now looks like this:

@BeforeClass public static void setup() {
 appContext = new ClassPathXmlApplicationContext(
 "/com/packt/s2wad/applicationContext.xml");
 decider = (VowelDecider)
 appContext.getBean("vowelDecider");
}

We also need to configure SpringContracts in our Spring configuration file. Those
unfamiliar with Spring's (or AspectJ's) AOP will be a bit confused. However, in the
end, it's reasonably straightforward, with a potential "gotcha" regarding how Spring
does proxying.

<aop:aspectj-autoproxy proxy-target-class="true"/>

<aop:config>
 <aop:aspect ref="contractValidationAspect">
 <aop:pointcut id="contractValidatingMethods"
 expression="execution(*
 com.packt.s2wad.example.CopVowelDecider.*(..))"/>
 <aop:around pointcut-ref="contractValidatingMethods"
 method="validateMethodCall"/>
 </aop:aspect>
</aop:config>

<bean id="contractValidationAspect"
class="org.springcontracts.dbc.interceptor.
ContractValidationInterceptor"/>

<bean id="vowelDecider"
 class="com.packt.s2wad.example.CopVowelDecider" />

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 15

[317]

If most of this seems like a mystery, that's fine. The SpringContracts documentation
goes into it a bit more and the Spring documentation contains a wealth of
information regarding how AOP works in Spring. The main difference between
this and the simplest AOP setup is that our autoproxy target must be a class,
which requires CGLib. This could also potentially affect operation.

The only other modification is to change the exception we're expecting to
SpringContract's ContractViolationCollectionException, and our test
starts passing. These pre- and post-condition annotations use the @Documented
meta-annotation, so the SpringContracts COP annotations will appear in the
Javadocs. It would also be possible to use various other means to extract and
document contract information.

Getting into details
This mechanism, or its implementation, may not be a good fit for every situation.
Runtime performance is a potential issue. As it's just some Spring magic, it can be
turned off by a simple configuration change. However, if we do, we'll lose the value
of the on-all-the-time contract management.

On the other hand, under certain circumstances, it may be enough to say that once
the contracts are consistently honored under all of the test conditions, the system
is correct enough to run without them. This view holds the contracts more as
an acceptance test, rather than as run-time checking. Indeed, there is an overlap
between COP and unit testing as the way to keep code honest. As unit tests aren't
run all the time, it may be reasonable to use COP as a temporary runtime unit test or
acceptance test.

Javadocs
We'll cover only a few things regarding Javadocs. I'm sure we're all very familiar
with them, but there are a few tips that might be helpful occasionally.

Always write Javadocs!
The first bit of advice is to always write Javadocs, except when they're not really
needed. Getters and setters that have no additional functionality really don't need
them. However, as soon as a getter or setter does more than just get or set its value,
it may deserve documentation. Even minor functionality that's trivial to understand
when looking at the code may deserve Javadocs. We may not have access to the
source or we may only want to look at the API documentation.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Documenting our Application

[318]

The first sentence
The first sentence of a Javadoc comment is used as the summary documentation.
It isn't necessary to encapsulate every nuance of the member being documented in
the first sentence, but it's important to give a very clear and concise overview of the
member. By default, the first sentence is everything up to the first "." (period). Some
tools will complain if the first sentence is not properly terminated.

The proper way to describe the grammar of the first sentence is something along
the lines of: "use a verb phrase in the third person declarative form." What does that
mean in real life?

/**
 * Builds and returns the current list of ingredients.
 *
 * @return List of ingredients.
 */
public List<Ingredient> buildIngredientList() { ... }

In the case of methods, the Javadoc summary should answer the question: "What
does this member do?" One answer could be: "buildIngredientList() builds and
returns the list of ingredients." This is opposed to saying something such as "Build
and return list of ingredients", which doesn't work as an answer to the question. This
is the "verb phrase" part.

The "third person declarative" part (informally) means that we answer the question
as directly as possible. Sentence fragments are okay here. Additional exposition
harms clarity. For example, we probably would not want to write the following:

/**
 * This method builds and returns the current list
 * of ingredients.
 */

That's not a direct answer to the question "What does buildIngredientList() do?".
Therefore, this probably is not the best style of documentation.

This method is simple enough. Therefore, we may not need the @return Javadoc tag.
What it returns is already specified in the first sentence. However, some tools may
complain about missing Javadoc tags.

For variables, a simple descriptive sentence such as the following is usually fine:

/** Pre-built recipe summary. */
private String summary;

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 15

[319]

Is it okay to have member variables without Javadocs? The answer is yes, if the
purpose is self-evident from the name. However, if our build process includes a tool
that enforces Javadoc requirements, we'll either get irritating warnings or we'll need
to specify what to exclude from checking.

If there aren't any Javadoc requirements, then all bets are off. However, bear in
mind that Javadocs are also used by the IDE to provide information in various forms
such as roll-over Javadoc pop-ups. It often boils down to whether or not we are able
to come up with a good variable or method name. If we can, then the benefits of
essentially repeating the same information in a Javadoc comment are very low and
are probably not worth it.

Add information beyond the API name
In our buildIngredientList() example seen earlier, our first sentence really
doesn't tell us much more than the name of the method does. This is good because
it means that our method name (the API name) is probably correct and sufficient.
However, let's assume that the method actually does something interesting during
the construction of the ingredient list. That information should then be added to
the Javadocs.

The information does not (necessarily) belong in the summary. Therefore, we can
simply continue with another sentence (this is a bit contrived, since it could be
merged into the first sentence quite easily).

/**
 * Builds and returns the current list of ingredients.
 * Initializes ingredient information if necessary.
 */

The summary information will consist of only the first sentence, but both sentences
will be in the complete Javadocs. Note that in this case, it might make more sense to
use a single sentence similar to the following:

/**
 * Builds and returns the current list of ingredients,
 * initializing ingredient info when necessary.
 */

The trick is to consistently make good decisions regarding what the most essential
information is, and communicating it cleanly and concisely.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Documenting our Application

[320]

Write for multiple formats
Javadocs should be written with the thought that they might be read in several
formats. Some common ways of viewing Javadocs include embedded in source code,
using an IDE or an IDE popup/hover, the results of a grep, and so on. They may
also be viewed as HTML, such as after they've been processed with the Javadoc tool.
Javadoc comments may even be included in a wiki, through some sort of snippet
mechanism or by including it in various forms of documentation.

In our example above, we have two sentences in a row. Let's say that we need to
highlight the fact that the ingredient information will be initialized if necessary.
Our first attempt just adds a bold Note to the second sentence.

/**
 * Builds and returns the current list of ingredients.
 *
 * Note: Initializes ingredient information if
 * necessary.
 */

The word Note: will stand out in the HTML output, but will appear connected to
the opening sentence. Javadoc doesn't honor text-based line breaks. We must use
HTML to format our Javadocs. Creating separate paragraphs requires the use of
paragraph tags.

By formatting our Javadoc as indented HTML, we can create documentation that
reads reasonably well in both text and HTML formats. Additionally, with judicious
use of HTML tags, we can use doclets that create printable PDF documentation
(or other printable formats).

/**
 * Builds and returns the current list of ingredients.
 *
 * <p>
 * Note: Initializes ingredient information
 * if necessary.
 * </p>
 */

As usual, this example is a bit contrived. We'd probably just want to put it all in the
first sentence.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 15

[321]

Generating targeted Javadocs
One reason people give for not writing Javadocs for a particular method is that the
method isn't necessarily designed to be used by others, or that exposing even the
documentation isn't a good idea. The Javadoc tool gives us a few ways to restrict
what documentation is generated.

Visibility
The most obvious way to restrict what documentation is generated is based on
visibility. By default, Javadoc will generate documentation for all of the public and
protected classes. By using the -public, -protected, -package, and -private flags,
we can control the level of visibility for which documentation will be generated.
Note that we need to specify only one flag—any member with equal or greater
visibility will have documentation generated for it.

For example, running Javadoc with the -public flag will generate documentation
for only public members, creating Javadocs suitable for the users of an API. Running
with the -private flag will generate documentation for all of the members, making
the documentation suitable for the developers of the same API.

The -exclude argument
The -exclude argument allows us to supply package names that will be excluded
from Javadoc generation. For example, if we want to create documentation that
specifically excludes an "internal-use only" package (security through obscurity?),
we can use the -exclude argument to provide a ":" (colon) separated list of packages
for which no Javadocs will be generated.

javadoc -exclude com.packt.s2wad.internal {...}

No classes in the com.packt.s2wad.internal package will be documented.

The -use argument
The -use argument will generate a "Use" page for each class C being documented.
The "Use" page will contain an entry for each package, class, method, and fields
"using" class C. Uses include subclasses, methods that use the class as a parameter,
and methods that return an instance of the class.

This page may not be as useful as a graphical representation of the class
interdependencies, but it's an option that's available out of the box. Creating
various diagrams is possible with add-on Javadoc doclets such as yDoc or
UmlGraph, as well as with non-Javadoc-oriented tools.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Documenting our Application

[322]

Creating new Javadoc tags with the -tag argument
One Javadoc capability that's trivial to take advantage of is creating our own Javadoc
tags. These tags are similar to the @param and @return tags that Javadoc recognizes
by default. This capability may or may not fit into your organization or coding
style, but it's simple enough to use that it's worth an introduction. Another potential
issue is that our IDE or build process probably won't be capable of validating the
information contained in the tag, unlike the default tags. For example, Eclipse can
flag a warning if a method's parameters don't have corresponding @param tags.

We could document an action that puts a variable into session by creating a
@session Javadoc tag. By telling the Javadoc tool to pay attention to that tag,
we can create output for it just like the built-in @param tag. An action's Javadocs
might look like this:

/**
 * Retrieves recipe, creating session parameters as needed.
 *
 * @session CONSTANTS.LAST_RECIPE The last recipe accessed.
 *
 * @returns SUCCESS or ERROR if retrieval fails.
 */

We instruct the javadoc tool to pay attention to our new tag by giving it -tag
arguments. The easiest method is to just add -tag session to the javadoc
command. How this is done depends on your build environment. It can be done
using an Ant script, via an IDE javadoc frontend, and so on.

Adding the -tag session argument instructs javadoc to create output for @session
tags similar to @param and @returns tags. The generated output will appear after
the standard tags. If we want to change the order in the HTML we must supply a
complete list of -tag arguments including the built-in tags as well. Each tag's output
is generated in the order specified on the command line. If we wanted to see the
@session documentation before the @return tag's documentation, then we'd specify
both documentations on the command line as follows:

-tag session -tag return

We can also specify the header for a custom Javadoc tag. To set a header for the
session tag we use colon-separated values (ignoring the a for now):

-tag session:a:"Session attributes accessed:"

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 15

[323]

Note that the header label for built-in tags can be modified in the same way,
provided we have a good reason to do so. However, we will probably never have
a good reason to do so.

The "a" we snuck in there determines where in the source code we can use the tag,
with "a" meaning anywhere we want. A complete list of determinants is found in the
javadoc tool documentation, but includes "t" for types (classes and interfaces), "m"
for methods, "f" for fields, and so on. These may be combined, so a tag to identify
injected entities for both types and fields could be specified as follows:

-tag injected:tf:"Injected entities:"

If we now try to use our new @injected tag in a method declaration, the Javadoc
tool will signal an error, as it's been specified as being valid only for types and fields.

Note that this functionality of javadoc may overlap some use of annotations. For
example, assume we're using an interceptor that loads and saves an annotated
variable from and to the JEE session. It would make more sense to use a doclet that
included this information from the annotation, rather than writing (and worse,
maintaining) the Javadoc manually—the more we can do automatically, the better.

Never write Javadocs!
I know what you're thinking—but as soon as we write Javadocs, we've entered into
an implicit contract to always keep them up-to-date, in perpetuity, over the life of
the program. If we can't do that, it may be better not to write any. Remember, wrong
documentation is worse than having no documentation.

There are many cases where it makes sense to write detailed Javadocs, describing
a complicated or non-obvious algorithm being chief among them. However, it's
arguable whether such documentation belongs in the application's non-code
documentation or in a wiki.

Never write inline Java comments!
If we find ourselves writing chunks of comments inside methods to explain each
section of a method, we might be better off refactoring the chunk into its own
method. Of course, some code lends itself to this more readily than others, which
might be impractical for a variety of reasons. There's always a trade-off. However,
there is always a cost associated with non-code documentation, as it is ultimately
maintained separately from the code itself.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Documenting our Application

[324]

Using UML
UML (Unified Markup Language) can handle a wide range of documentation
duties, much more than will be covered here. Even UML-like diagrams can be of
great assistance in many aspects of documentation. It's not necessary to follow all
of the UML notation or diagrams completely, purchase an expensive enterprise
UML tool, and so on. However, a basic understanding of UML is very handy when
documenting our own application, or reading the documentation of other projects
that use UML.

There are many ways to integrate UML into the development and documentation
process. It might be used to generate source code, it can be included in both
developer and end-user documentation (where appropriate), and so on. Two of
the more common UML diagrams related directly to Java code are the package
and class diagrams, which most of us are already familiar with.

Package diagrams
Package diagrams are similar to class diagrams, but provide a very high-level
overview of an application's package and package dependencies. We saw a portion
of a package diagram back in Chapter 3 when we looked at a portion of the XWork
2 packages. There, we only looked at the XWork interfaces and did not highlight
package coupling.

Class diagrams
One of the most useful and commonplace UML diagrams is probably the class
diagram. The class diagram is used to show the relationship between different
classes in a system. Class diagrams can be created at various levels of detail to
provide very high-level overviews or extremely detailed information, including
all of a class's properties.

For example, a portion of our com.packt.s2wad.recipe package's class diagram
can be represented by the following UML class diagram. Note that this is an
incomplete diagram and doesn't show our implementation of RecipeService.
It's also fairly high-level, and doesn't show any class properties or methods.

However, it's still useful because it's obvious that we have two classes that use
a RecipeService, and two classes that have a relationship to the Recipe class.
This type of high-level overview is particularly important when first learning an
application, identifying high-level class-coupling issues, and so on.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 15

[325]

<<Interface>>
RecipeService

ListAction ViewAction RecipeAction

Recipe

1

1

1

1

1

1

1

1

A class diagram for an entire application can be a bit overwhelming, and isn't
always useful due to the sheer amount of information. Restricting what is visible at
both the class and package level can be very useful allowing usable documentation
to be generated.

The previous image was generated with ArgoUML, an open source UML tool from
application source. It was then edited by hand to improve the layout, to remove class
members and operations, and so on.

Java source can also be generated from UML models. Several IDEs and modeling
tools supply this functionality. The direction of generation, whether generating UML
from source or source from UML, is largely a matter of preference, culture, and how
well the available tools work for our style (or the style of our client).

Sequence diagrams
Another popular and useful UML diagram, which is relatively lightweight, is the
sequence diagram. These diagrams are used to document interactions between
entities. These entities are normally classes. However, it's not unreasonable to extend
the sequence diagram metaphor beyond the official definition when necessary, such
as adding user interactions, browser functionality, and so on.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Documenting our Application

[326]

As a quick example, we can take a look at the typical Struts 2 form validation
processing sequence, compressing the non-related interceptors into a single entity:

Struts 2 Validation Processing

Struts 2 Filter Interceptors... Validation Interceptor Workflow Interceptor

User

cond
[Validation errors]

An Action

Rendered Result
Result

Result

Submit Form
new()

Invoke
Invoke

Validate()

INPUT result

[No Validation errors]

Invoke

Action result

Invoke

INPUT result
Invoke

Action result

Here, we're representing the user action of submitting a form in the sequence
diagram. This (in simplified form) causes the Struts 2 filter to instantiate the
appropriate action class, indicated by the new() message. The rest is (I'd imagine)
largely self-explanatory.

Sequence diagrams are often easier to comprehend than plain text and can be more
convenient than the code itself, as they aggregate as many classes as needed. As
usual, they can suffer from decay, as the code continues to be modified and the
diagrams aren't being generated automatically or being actively maintained.

This diagram was created using the Quick Sequence Diagram Editor, which creates
an exportable diagram using simple text-based input (I was tempted to call it a DSL,
but managed to stop myself). The input for this diagram is relatively short.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 15

[327]

#![Struts 2 Validation Processing]

user:Actor "User"
s2f: "Struts 2 Filter"
etc: "Interceptors..."
val: "Validation Interceptor"
workflow: "Workflow Interceptor"
/action: "An Action"
user:s2f.Submit form
s2f:action.new()

s2f:Result=etc.Invoke
etc:Result=val.Invoke

val:action.validate()

[c:cond Validation errors]
 val:INPUT result=workflow.Invoke
--[No validation errors]
 val:Action result=workflow.Invoke
 workflow:Action result=action.Invoke
[/c]

s2f:user.Rendered Result

Personally, I think the send/receive messages are defined backwards. It's pretty
easy to create our own DSL (for example, in Ruby) that corrects this error. It's also
relatively straightforward to create a log format that could be parsed to create
diagrams from actual code. Therefore, running unit tests could also be a part of the
documentation process.

Documenting web applications
Documenting an entire web application can be surprisingly tricky because of
the many different layers involved. Some web application frameworks support
automatic documentation generation better than others. It's preferable to have fewer
disparate parts. For example, Lisp, Smalltalk, and some Ruby frameworks are little
more than internal DSLs that can be trivially redefined to produce documentation
from the actual application code.

In general, Java frameworks are more difficult to limit to a single layer. Instead,
we are confronted with HTML, JSP, JavaScript, Java, the framework itself, its
configuration methodologies (XML, annotations, scripting languages, etc.), the
service layers, business logic, persistence layers, and so on—feeling sleepy? Complete
documentation generally means aggregating information from many disparate
sources and presenting them in a way that is meaningful to the intended audience.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Documenting our Application

[328]

High-level overviews
The site map is obviously a reasonable overview of a web application. A site map
may look like a simple hierarchy chart, showing a simple view of a site's pages
without showing all of the possible links between pages, how a page is implemented,
and so on.

Home

Search
Recipes

New
Recipe

List

View
Recipe

Register

Thanks

This diagram was created by hand and shows only the basic outline of the
application flow. It represents minor maintenance overhead since it would need to
be updated when there are any changes to the application.

Documenting JSPs
There doesn't seem to be any general-purpose JSP documentation methodology. It's
relatively trivial to create comments inside a JSP page using JSP comments or a regular
Javadoc comment inside a scriptlet. Pulling these comments out is then a matter of
some simple parsing. This may be done by using one of our favorite tools, regular
expressions, or using more HTML-specific parsing and subsequent massaging.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 15

[329]

Where it gets tricky is when we want to start generating documentation that
includes elements such as JSP pages, which may be included using many different
mechanisms—static includes, <jsp:include.../> tags, Tiles, SiteMesh, inserted
via Ajax, and so on. Similarly, generating connections between pages is fraught with
custom cases. We might use general-purpose HTML links, Struts 2 link tags, attach a
link to a page element with JavaScript, ad infinitum/nauseum.

When we throw in the (perhaps perverse) ability to generate HTML using Java,
we have a situation where creating a perfectly general-purpose tool is a major
undertaking. However, we can fairly easily create a reasonable set of documentation
that is specific to our framework by parsing configuration files (or scanning a
classpath for annotations), understanding how we're linking the server-side to our
presentation views, and performing (at least limited) HTML/JSP parsing to pull out
presentation-side dependencies, links, and anything that we want documented.

Documenting JavaScript
If only there was a tool such as Javadoc for JavaScript. Fortunately, I was not the only
one that had that desire! The JsDoc Toolkit provides Javadoc-like functionality for
JavaScript, with additional features to help handle the dynamic nature of JavaScript
code. Because of the dynamic nature, we (as developers) must remain diligent in
both in how we write our JavaScript and how we document it.

Fortunately, the JsDoc Toolkit is good at recognizing current JavaScript
programming paradigms (within reason), and when it can't, provides Javadoc-like
tags we can use to give it hints.

For example, consider our JavaScript Recipe module where we create several private
functions intended for use only by the module, and return a map of functions for
use on the webpage. The returned map itself contains a map of validation functions.
Ideally, we'd like to be able to document all of the different components.

Because of the dynamic nature of JavaScript, it's more difficult for tools to figure out
the context things should belong to. Java is much simpler in this regard (which is
both a blessing and a curse), so we need to give JsDoc hints to help it understand our
code's layout and purpose.

A high-level flyby of the Recipe module shows a layout similar to the following:

var Recipe = function () {
 var ingredientLabel;
 var ingredientCount;
 // ...
 function trim(s) {
 return s.replace(/^\s+|\s+$/g, "");

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Documenting our Application

[330]

 }
 function msgParams(msg, params) {
 // ...
 }
 return {
 loadMessages: function (msgMap) {
 // ...
 },
 prepare: function (label, count) {
 // ...
 },
 pageValidators: {
 validateIngredientNameRequired: function (form) {
 // ...
 },
 // ...
 }
 };
}();

We see several documentable elements: the Recipe module itself, private variables,
private functions, and the return map which contains both functions and a map of
validation functions. JsDoc accepts a number of Javadoc-like document annotations
that allow us to control how it decides to document the JavaScript elements.

The JavaScript module pattern, exemplified by an immediately-executed function,
is understood by JsDoc through the use of the @namespace annotation.

/**
 * @namespace
 * Recipe module.
 */
var Recipe = function () {
 // ...
}();

(Yes, this is one of those instances where eliminating the comment itself would be
perfectly acceptable!) We'll look at the JsDoc output momentarily after covering a
few more high-level JsDoc annotations.

We can mark private functions with the @private annotation as shown next:

/**
 * @private
 * Trims leading/trailing space.
 */
function trim(s) {
 return s.replace(/^\s+|\s+$/g, "");
}

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 15

[331]

(Again the JsDoc comment could be replaced by creating a better function
name. Really—I named it poorly so that I could bring up the documentation issues.)

It gets interesting when we look at the map returned by the Recipe module:
return /** @lends Recipe */ {
 /**
 * Loads message map.
 *
 * <p>
 * This is generally used to pass in text resources
 * retrieved via <s:text.../> or <s:property
 * value="getText(...)"/> tags on a JSP page in lieu
 * of a normalized way for JS to get Java I18N resources
 * </p>
 */
 loadMessages: function (msgMap) {
 _msgMap = msgMap;
 },
 // ...

The @lends annotation indicates that the functions returned by the Recipe module
belong to the Recipe module. Without the @lends annotation, JsDoc doesn't know
how to interpret the JavaScript in the way we probably intend the JavaScript to be
used, so we provide a little prodding.

The loadMessages() function itself is documented as we would document a Java
method, including the use of embedded HTML.

The other interesting bit is the map of validation functions. Once again, we apply the
@namespace annotation, creating a separate set of documentation for the validation
functions, as they're used by our validation template hack and not directly by our
page code.

/**
 * @namespace
 * Client-side page validators used by our template hack.
 * ...
 */
pageValidators: {
 /**
 * Insures each ingredient with a quantity
 * also has a name.
 *
 * @param {Form object} form
 * @type boolean
 */
 validateIngredientNameRequired: function (form) {
 // ...

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Documenting our Application

[332]

Note also that we can annotate the type of our JavaScript parameters inside curly
brackets. Obviously, JavaScript doesn't have typed parameters. We need to tell it
what the function is expecting. The @type annotation is used to document what the
function is expected to return. It gets a little trickier if the function returns different
types based on arbitrary criteria. However, we never do that because it's hard to
maintain—right?

Overloading JavaScript return values is typical because JavaScript
has a wider range of truthiness and falseness than Java. This is
okay, even though it gives Java programmers conniptions. That's
okay too, and can be mildly entertaining to boot.

JsDoc has the typical plethora of command-line options, and requires the
specification of the application itself (written in JavaScript, and run using Rhino)
and the templates defining the output format. An alias to run JsDoc might look like
the following, assuming the JsDoc installation is being pointed at by the ${JSDOC}
shell variable:

alias jsdoc='java -jar ${JSDOC}/jsrun.jar
 ${JSDOC}/app/run.js -t=${JSDOC}/templates/jsdoc'

The command line to document our Recipe module (including private functions
using the -p options) and to write the output to the jsdoc-out folder, will now look
like the following:

jsdoc -p -d=jsdoc-out recipe.js

The homepage looks similar to a typical JavaDoc page, but more JavaScript-like:

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 15

[333]

A portion of the Recipe module's validators, marked by a @namespace annotation
inside the @lends annotation of the return map, looks like the one shown in the next
image (the left-side navigation has been removed):

We can get a pretty decent and accurate JavaScript documentation using JsDoc, with
only a minimal amount of prodding to help with the dynamic aspects of JavaScript,
which is difficult to figure out automatically.

Documenting interaction
Documenting interaction can be surprisingly complicated, particularly in today's
highly-interactive Web 2.0 applications. There are many different levels of interactivity
taking place, and the implementation may live in several different layers, from the
JavaScript browser to HTML generated deep within a server-side framework.

UML sequence diagrams may be able to capture much of that interactivity, but fall
somewhat short when there are activities happening in parallel. AJAX, in particular,
ends up being a largely concurrent activity. We might send the AJAX request, and
then do various things on the browser in anticipation of the result.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Documenting our Application

[334]

More UML and the power of scribbling
The UML activity diagram is able to capture this kind of interactivity reasonably
well, as it allows a single process to be split into multiple streams and then joined up
again later. As we look at a simple activity diagram, we'll also take a quick look at
scribbling, paper, whiteboards, and the humble digital camera.

Don't spend so much time making pretty pictures
One of the hallmarks of lightweight, agile development is that we don't spend all
of our time creating the World's Most Perfect Diagram™. Instead, we create just
enough documentation to get our points across. One result of this is that we might
not use a $1,000 diagramming package to create all of our diagrams. Believe it or not,
sometimes just taking a picture of a sketched diagram from paper or a whiteboard is
more than adequate to convey our intent, and is usually much quicker than creating
a perfectly-rendered software-driven diagram.

Yes, the image above is a digital camera picture of a piece of notebook paper with a
rough activity diagram. The black bars here are used to indicate a small section of
parallel functionality, a server-side search and some activity on the browser. I've also
created an informal means of indicating browser programming, indicated by the
black triangles. In this case, it might not even be worth sketching out. However, for
moderately more complicated usage cases, particularly when there is a lot of both
server- and client-side activity, a high-level overview is often worth the minimal effort.

The same digital camera technique is also very helpful in meetings where various
documentation might be captured on a whiteboard. The resulting images can be
posted to a company wiki, used in informal specifications, and so on.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 15

[335]

User documentation
Development would be substantially easier if we didn't have to worry about those
pesky users, always wanting features, asking questions, and having problems
using the applications we've developed. Tragically, users also drive our paycheck.
Therefore, at some point, it can be beneficial to acknowledge their presence and
throw them the occasional bone, in the form of user documentation.

Developing user documentation is a subject unto itself, but deserves to be brought
up here. We can generally assume that it will not include any implementation details,
and will focus primarily on the user interface and the processes our applications use.

When writing user documentation, it's often sufficient to take the user stories,
decorate them with screenshots and extra expository text, and leave it at that.
It really depends on the client's requirements how much (if any) user-specific
documentation is needed. If it's an application which will be used inside the client's
business, it may be sufficient to provide one or more onsite training sessions.

One thing worth mentioning is that a screenshot can often save oodles of writing
effort, communicate ideas more clearly, and remain easily deliverable through the
application itself, in a training environment, and so on.

Screenshots can be a valuable documentation tool at many levels,
including communications with our client when we're trying to illustrate
a point difficult to communicate via text or still images alone.

Documenting development
The last form of documentation we'll look at is development documentation. This
goes beyond our UML diagrams, user manual, functional specification, and so on.
Development documentation includes the source control and issue tracking systems,
the reasoning behind design decisions, and more. We'll take a quick look at some
information we can use from each of these systems to create a path through the
development itself.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Documenting our Application

[336]

Source code control systems
A Source Code Control System (SCCS) is an important part of the development
process. Our SCCS is more than just a place to dump our source code—it's an
opportunity to give a high-level overview of system changes.

The best ways to use our SCCS are dependent on which SCCS we use. However,
there are a few quick ideas we can adopt across any SCCS and use them to extract a
variety of information about our development streams.

Most clients will have their preferred SCCS already in place. If our deliverable includes
source, it's nice if we can provide it in a way that preserves our work history.

Code and mental history
The history of change can be used on several levels, in several ways. There are
products available that can help analyze our SCCS, or we can analyze it ourselves
depending on what kind of information we're looking for.

For example, the number of non-trivial changes made to a file provides information
in itself—for whatever reason, this file gets changed a lot. It's either an important
document, a catchall, a candidate for parameterization, and so on. If two files are
always modified together, then there's a chance of an unnecessarily tight coupling
between them.

Sometimes, we just need to know what we were working on a for a particular
date(s). We can retrieve all of our SCCS interaction for auditing purposes, to help
determine what we were doing on a particular date, as part of a comprehensive
change and time tracking system, and so on.

Commit comment commitment
We should view our commit comments as an important part of development
documentation. One way to normalize commit comments is to create them as
Javadoc-like comments, but different. Mostly, this just means that the first sentence is
a succinct summary of the unit of work done, and the remaining sentences describe
what was actually done.

What that first sentence includes is somewhat dependent on the rest of the
development infrastructure. It's reasonable to put an issue tracking reference
(see next section) as the most prominent part of that comment, perhaps followed
by the same summary sentence as the issue item, or a summary if that's too long.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 15

[337]

The rest of the commit comment should include any information deemed useful,
and might include general change information, algorithm changes, new tests, and
so on. This is the section for comments such as "Aaaaaaaaarg!", which aren't useful
summaries, although it's often the most accurate.

Having a summary commit comment sentence also allows tools to get the output
of history or log commands, and create a new view of existing information when
necessary. For example, getting a list of files we changed between certain dates,
along with a summary of why the files were changed. These can be used as a part
of release notes, high-level summaries, and so on.

When (and what) do we commit
We should tend to commit more rather than less. The more recently a change was
made, the easier it is to remember why and what was modified. Update the spelling
in a single comment? Sure, might as well commit. When that file is changed later,
and you're code-reviewing the changes, it's easier to look at only significant changes,
and not at some trivial changes such as a punctuation change made the day before.

Also, while combining related commits, strive to keep them as granular as possible.
For example, let's say we've updated some functionality in an action. As we were
doing that, we corrected a couple of spelling errors in some other files. In an ideal
world, even minor non-code changes would get their own commit, rather than being
lumped in with changes to the code itself. If we see a commit message of "corrected
spelling", we can probably ignore it. If it's lumped in to an issue-specific commit,
we need to check the file itself to know if it's really part of the issue, and we'll be
disappointed to find out it was to fix a misspelled Javadoc.

However, in the real world, we're not always so disciplined. In that case, the commit
would be commented with information about the actual issue being addressed.
However, in the comments, we might note that some spelling changes were included
in the commit.

Note that some SCCSs make the task of breaking up our commits easier than others.

Branching
Even relatively simple changes in application functionality might warrant an
experimental branch in which we could play with reckless abandon. By indicating
the start of a unit of work in our SCCS, we allow all of the changes related to that
unit of work to be easily reproduced.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Documenting our Application

[338]

It also creates a mini repository within which we can keep revision control of our
development spike. It keeps the experimental code and its changes out of our
mainline code and isolates the changes based on a distinct unit of work, which
makes us feel better about life in general.

If the experimental branch lasts a long time, it should be updated with the current
trunk (the head revision) as the mainline development proceeds. This will ease
integration of the experimental patch when it's completed and merged back into
the mainline code.

Branching discipline
Just as commits should be as granular as possible, any branches we create should
be tied as closely as possible to the underlying work being done. For example, if
we're working on refactoring in an experimental branch, we shouldn't begin making
unrelated changes to another system in the same branch. Instead, hold off on making
those changes, or make them in the parent revision and update our revision against
the mainline code.

Branches of branches? Perhaps, but the management of multiple branches gets very
irritating very quickly and is rarely worth the effort.

Issue and bug management
It's equally important to maintain a list of defects, enhancements, and so on. Ideally,
everyone involved in a project will use the same system. This will allow developers,
QA, the the client, or anybody else involved, to create help tickets, address
deficiencies, and so on.

Note that the structure for doing this varies wildly across organizations. It will
not always possible or appropriate to use our client's system. In cases like this,
it's still a good idea to keep an internal issue management system in place for
development purposes.

Using an issue tracking system can consolidate the location of our high-level to-do
list, our immediate task list, our defect tracking, and so on. In a perfect world, we
can enter all issues into our system and categorize them in a way meaningful to us
and/or our clients. A "bug" is different from an "enhancement" and should be treated
as such. An enhancement might require authorization to implement, it could have
hidden implications, and so on. On the other hand, a bug is something that is not
working as expected (whether it's an implementation or specification issue), and
should be treated with appropriate urgency.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 15

[339]

The categories chosen for issue tracking also depend on the application environment,
client, and so on. There are a few that are safe, such as bug, enhancement, and
so on. We can also have labels such as "tweak" "refactoring" and so on. These are
primarily intended for internal and developmental use in order to indicate that it's a
development-oriented issue and not necessarily client driven.

Issue priorities can be used to derive work lists. (And sometimes it's nice to knock off
a few easy, low-priority issues to make it seem like something was accomplished.)
A set of defined and maintained issue priorities can be used as part of an acceptance
specification. One requirement might be that the application shouldn't contain any
"bug"-level issues with a priority higher than three, meaning all priority one and
priority two bugs must be resolved before the client accepts the deliverable.

This can also lead to endless, wildly entertaining discussions between us and the client,
covering the ultimate meaning of "priority" and debating the relative importance of
various definitions of "urgent", and so on. It's important to have an ongoing dialog
with the client, in order to avoid running into these discussions late in the game.
Always get discrepancies dealt with early in the process, and always document them.

Linking to the SCCS
Some environments will enjoy a tight coupling between their SCCS and issue
tracking systems. This allows change sets for a specific issue to be tracked and
understood more easily.

When no such integration is available, it's still relatively easy to link the SCCS to the
issue tracking system. The two easiest ways to implement this are providing issue
tracking information prominently in the SCCS commit comment (as discussed in an
earlier section) or by including change set information in the issue tracking system
(for example, when an issue is resolved, include a complete change set list).

Note that by following a convention in commit comments, it's usually possible to
extract a complete list of relevant source changes by looking for a known token in the
complete history output. For example, if we always referenced issue tracking items
by an ID such as (say) "ID #42: Fix login validation issue", we could create a regular
expression that matches this, and then get information about each commit that
referenced this issue.

Wikis
We all know what a wiki is, but I'd like to advocate a moment to highlight
their use as a way to create documentation and why they're well-suited to an
agile environment.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Documenting our Application

[340]

Wikis lower the cost of information production and management in many ways,
particularly when it's not clear upfront all that will be required or generated. By
making it easy to enter, edit, and link to information, we can create an organic set of
documentation covering all facets of the project. This may include processes used,
design decisions, links to various reports and artifacts—anything we need and want.

The collaborative nature of wikis makes them a great way for everyone involved
in a project to extend and organize everything related to the project. Developers,
managers, clients, testers, deployers, anybody and everybody related to the project
may be involved in the care and upkeep of the project's documentation.

Developers might keep detailed instructions on a project's build process, release
notes, design documents (or at least links to them), server and data source
information, and so on. Some wikis even allow the inclusion of code snippets from
the repository, making it possible to create a "literate programming" environment.
This can be a great way to give a high-level architectural overview of an application
to a developer, who may be unfamiliar with the project.

Many wikis also provide a means of exporting their content, allowing all or part
of the wiki to be saved in a PDF format suitable for printed documentation. Other
export possibilities exist including various help formats, and so on.

Lowering the barrier to collaborative documentation generation enables wide-scale
participation in the creation of various documentation artifacts.

RSS and IRC/chat systems
RSS allows us quick, normalized access to (generally) time-based activities. For
example, developers can keep an RSS feed detailing their development activities. The
feed creation can come from an internal company blog, a wiki, or other means. The
RSS feed can also be captured as a part of the development process documentation.

Particularly in distributed development environments, a chat system can be
invaluable for handling ad hoc meetings and conversations. Compared to email,
more diligence is required in making sure that decisions are captured and recorded
in an appropriate location.

Both RSS and IRC/chat can be used by our application itself to report on various
issues, status updates, and so on, in addition to more traditional logging and email
systems. Another advantage is that there are many RSS and chat clients we can keep
on our desktops to keep us updated on the status of our application.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Chapter 15

[341]

And let's face it, watching people log in to our system and trailing them around the
website can be addictive.

Word processor documents
Personally, I'm not in favor of creating extensive word processor documents as the
main documentation format. There are quite a few reasons for that: it can be more
difficult to share in their creation, more difficult to extract portions of documents for
inclusion in other documents, some word processors will only produce proprietary
formats, and so on.

It's substantially more flexible to write in a format that allows collaborative
participation such as a Wiki, or a text-based format such as DocBook that can be
kept in our SCCS and exported to a wide variety of formats and allow linking in to,
and out of, other sections or documents.

When proprietary formats must be used, we should take advantage of whatever
functionality they offer in terms of version management, annotations, and so on.
When a section changes, adding a footnote with the date and rationalization for
the change can help track accountability.

Note that some wikis can be edited in and/or exported to various formats, which
may help them fit in to an established corporate structure more readily. There are
also a number of services popping up these days that help manage projects in a more
lightweight manner than has been typically available.

Summary
We've examined the many ways of creating documentation throughout the entire
development process. In particular, we've tried to highlight ways in which we can
use existing tools, artifacts, and processes in order to help generate a wide variety
of information.

We've also learned that documentation can be a project in itself. We have also
seen that a lot of documentation, while potentially invaluable, may also represent
a liability if we are forced to maintain it manually. This leads us to assume that
documentation generated from the code itself (or as a by-product of running that
code) is easier to sell to both ourselves and our management.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Documenting our Application

[342]

References
A reader can refer to the following:

Fluent Interfaces:
http://www.martinfowler.com/bliki/FluentInterface.html

Aspect Oriented Programming:
http://en.wikipedia.org/wiki/Aspect-oriented_programming

Design by Contract:
http://en.wikipedia.org/wiki/Design_by_contract

SpringContracts:
http://springcontracts.sourceforge.net

yDoc:
http://www.yworks.com/en/products_ydoc.html

UmlGraph:
http://www.umlgraph.org

ArgoUML:
http://argouml.tigris.org

Quick Sequence Diagram Editor:
http://sdedit.sourceforge.net/

JsDoc Toolkit:
http://code.google.com/p/jsdoc-toolkit/

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Index
Symbols
$() function 236
$, jQuery function 236
%{} character 65
%{recipe.id} parameter value 65
-exclude argument 321
-private flag 321
-use argument 321
.checkboxErrorLabel style 233
.checkboxLabel style 233
.errorLabel style 233
.errorMessage style 233
.label 233 style
.required style 233
.tdLabel style 233
.wwFormTable style 233
</s:generator> 95, 96
<@s.tagname...> syntax 71
<c:url> tag 27
<global-exception-mappings> 194
<global-results> element 194
<init-param> element 295
<interceptor-stack> 168
<interceptors> element 168
<package...> element 21
<param> elements 169
<param name= 58, 59
<result...> element 58
<s:action> attribute 104
<s:action> tag 103, 105
<s:action…> tag 71
<s:append> tag 97, 98
<s:date> tag 97
<s:debug/> tag 86, 87
<s:else> tag 89

<s:elseif> tag 89
<s:generator> tag 94
<s:head> tag

.checkboxErrorLabel 233

.checkboxLabel 233

.errorLabel 233

.errorMessage 233

.label 233

.required 233

.tdLabel 233

.wwFormTable 233
about 233

<s:if> tag 89
<s:include> tag 103
<s:iterator> tag 95

about 91
iteration status, tracking 91
value attribute 90
var attribute 90, 91

<s:merge> tag 98
<s: property...> 39
<s: property/> 90
<s: property> tag 84, 87

default values, setting 85
escape attribute 84
escaping values 84
escaping values, for JavaScript 85

<s:set> tag 88
<s: sort> tag:comparator attribute 102
<s:subset> tag

about 98, 100
arbitary filtering 100, 101

<s:text> tag 40, 41
<s:url> tag

about 27, 105, 106
anchor attribute 106

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

[344]

forceAddSchemeHostAndPort attribute
107

includeContext attribute 107
includeParams attribute 107
method attribute 106
namespace attribute 105
scheme attribute 107
value attribute 105

<s:checkbox> tag, form input elements 117
<s:checkboxlist> tag, form input elements

118
using, to implement user story 118, 120

<s:combobox> tag, combination form tags
122

<s:doubleselect> tag, combination form tags
125

<s:file> tag 126
<s:form> tag

about 251
action attribute 111
id attribute 111
method attribute 111
namespace attribute 111
validate attribute 111

<s:head> tag 110
<s:hidden> tag, form input elements 114
<s:label> tag, form input elements 115
<s:optgroup> tag, form input elements 121
<s:optiontransferselect> tag, combination

form tags 124, 125
<s:password> tag, form input elements 114
<s:radio> tag, form input elements 115, 116
<s:reset> tag, form input elements 122
<s:select> tag, form input elements 120
<s:submit> tag, form input elements 121,

122
<s:textarea> tag, form input elements 114
<s:textfield> tag, form input elements 114
<s:textfield> template 250
<s:token> tag

double submits, preventing 128, 129
<s:updownselect> tag, combination form

tags 123
<s:url> tag 260
<sx:a> tag 259-261
<sx:div> tag 263, 265
<sx:head> tag 258, 259

<sx:submit> tag 265
@Action annotation 32, 61
@AfterClass annotation 288
@BeforeClass annotation 288, 316
@BeforeClass setup method 290
@DataProvider annotations 290
@DoubleRangeFieldValidator 148
@DoubleRangeFieldValidator annotation

149
@full.package@methodName() notation 88
@injected tag 323
@InterceptorRef annotation 128
@InterceptorRefs annotation 128
@IntRangeFieldValidator annotation 149
@lends annotation 331
@Namespace annotation 34, 330
@namespace annotation 331
@Override 72
@Parameters annotations 290
@param tags 322
@Precondition annotation 315
@private annotation 330
@RequiredFieldValidator annotation 148
@Result annotation 32, 58
@returns tags 322
@SkipValidation annotation 148
@Test annotation 290
@type annotation 332
@TypeConversion annotation 157
@Validation annotation 146
@Validations annotation 147, 148

A
acceptance testing 304
action

about 9
configuring, with XML 20, 21
method, selecting 22
result, configuring 21, 22
writing 20

action attribute 27
action chaining 61
ActionContext method 54
action element 21
Action interface, ActionSupport 36
action interfaces

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

[345]

class files, examining 52
command line, using 51, 52
diagrammatic representation 52
listing 50
NoParameters interface 55
Preparable interface 53
scoped attributes, accessing 53, 54
servlet objects, accessing 54

ActionInvocation 172
Actions convenience strings, ActionSupport

36
ActionSupport

about 120
Action interface 36
Actions convenience strings 36
interfaces 36
LocaleProvider interface 44
Serializable interface 36
TextProvider interface 36, 37
Validateable interface 44
ValidationAware interface 44

addIngredient() method 159
addRow() function 245
Agile

functional testing 11
in nutshell 10
refactoring 11
short iterations 11, 12
testing 11
user story 11

ajax theme 109
alias interceptor 173
allowAddAllToLeft attribute,

<s:optiontransferselect> tag 125
allowAddAllToRight attribute,

<s:optiontransferselect> tag 125
allowedTypes parameter, fileUpload

interceptor 178
allowMoveDown, <s:updownselect> tag

123
allowMoveUp, <s:updownselect> tag 123
anchor attribute 106
AOP

about 313
references 342

application
configuration, examining 29

defining 23, 24
external configuration files 28
multiple wildcards, matching 25
namespaces 26
packages 26
site navigation, creating 26, 27
skeletal application building, wildcards

used 24
user stories, collecting 23, 24
wildcard, tricks 25, 26

aPrivateFunc() function 225
aPrivilegedFunc() function 225
aProtoFunc function 227
aPublicFunc() function 225
ArgoUML

references 342
arguments parameter 220, 221
array functions, JavaScript data types

concat 215
join 215
pop and push 215
slice 215
sort 215
splice 215

ArrayList() 291
ASM Bytecode manipulation 52

references 56
Aspect-oriented programming. See AOP
assertFalse 289
assertTrue 289

B
BDUF 10, 282
BigDecimal conversion 155
Big Design Up Front. See BDUF
buildClickHandler() function 240

C
chain interceptor

excludes parameter 175
includes parameter 175

chain result type (action chaining) 61
charAt function, strings 213
checkbox interceptor 117

setUncheckedValue parameter 179

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

[346]

checked exception versus unchecked
exception 196

class attribute 21
class diagrams 324, 325
classes, JavaScript

about 223
creating 223

classname parameter, scopedModelDriven
interceptor 178

clearSession interceptor 183
client-side (functional) testing

Selenium 300
client-side validation

about 150
double validator 150
email validator 150
int validator 150
regex validator 150
requiredstring validator 151
required validator 151
stringlength validator 150
url validator 150
validators 150

closures. JavaScript 222, 223
collections, type conversion

addIngredient() method 159
getIngredients() method 159
map-based collections 164
new recipe form, updating 159-164
usecase, ingredients list, adding 158

collection tags
<s:append> tag 97, 98
<s:iterator> tag 90, 91
<s:merge> tag 98
<s:sort> tag 102
<s:subset> tag 98, 100
comparator attribute 102
importance 102

combination form tags
<s:combobox> tag 122
<s:doubleselect> tag 125
<s:optiontransferselect> tag 124, 125
<s:updownselect> tag 123

command-line, example 274
commit comment

about 337
need for 337

commons-fileupload-1.2.1.jar 18
commons-logging-1.1.1.jar 18
commons logging Log4J

references 205
conditionals

<s:else> tag 89
<s:elseif> tag 89
<s:if> tag 89
test attribute 89

ConsoleAppender class 204
constant element 20
contentType parameter 71
Contract Oriented Programming. See COP
controlheader-core.ftl file 253
controlheader-core.ftl file, modifying 252,

253
controlheader.ftl 251
convention plug-in

about 30
and action-configuration 31, 32
and action-less actions 30
configuration parameters 30
configuring, annotations used 32-34
references 34

convention plug-in configuring, annotations
used

@Actions annotation 32
@Namespace annotation 34
@Result annotation 32

conversionError interceptor 181
conversions, strings

parseInt(obj) function 214
parseInt function 214
plus (+) operator 214

conversion validator 146
converter attribute 96
CookiesAware interface 54
COP

about 313-315
SpringContracts 315, 317

count attribute 96
CrazyResultNames action, methods

execute() 189
input() 189
notmapped() 189

createIngredientRow() function 245
CSS selectors 234

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

[347]

references 247
custom content handler, example

YAML, handling 277, 278
YAML, in nutshell 275
YAML handler, configuring 276, 277
YAML handler, writing 276

custom result types
action, writing 76, 77
configuring 76
creating 74
markdown result type, implementing 77-79

custom type conversion 157
custom validators 151
Cygwin 51

references 56

D
date validator 142
DbC

about 313
references 342

debug attribute
use cases 259

debugging interceptor 176
DEBUG level 201, 202
decide() method 284
decider attribute 100
Dependency Injection. See DI
Design by Contract. See DbC
destroy() method 184
detour

purpose 38
development, documenting

about 335
bug management 338, 339
IRC/chat systems 340
RSS 340
source code control systems (SCCS) 336
Wikis 339, 340
word processor documents 341

DI
about 8, 291
references 308

dispatcher result type
about 59
RequestDispatcher.forward() method 57

documentation 13
Document Object Model. See DOM
doExecute() method 79
doIntercept() method 185, 186, 298
Dojo

references 279
Dojo tags

<sx:submit> tag 265
about 258
Dojo <sx:a> tag 259-261
Dojo <sx:div> tag 263
Dojo <sx:head> tag 258, 259
Dojo head tag 259
Dojo topics 261, 262
use cases 258

DOM 207
Domain Specific Languages. See DSL
DOM element

id attribute 232
style attribute 232

doNotValidate() method 171
doubleList attribute, <s:doubleselect> tag

125, 126
doubleList attribute,

<s:optiontransferselect> tag 124
doubleName attribute,

<s:optiontransferselect> tag 124
doubleOnclick attribute,

<s:optiontransferselect> tag 124
double validator, client-side validation

about 150
maxExclusive parameter 142
maxInclusive parameter 142
minExclusive parameter 142
minInclusive parameter 142
parameters 142

DSL 311, 312
dynamic form elements

adding 242
JavaScript Recipe module 243-247

E
each() function 237
email validator, client-side validation

142, 150
emptyOption attribute 121

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

[348]

encode attribute 107
environment, setting up 17
equal (==) operators, JavaScript syntax notes

209
ERROR level 201, 202
escape attribute 85
escapeJavaScript attribute 85
exception handling, JavaScript 215, 216
exception handling, Struts 2

about 200
action-specific exception, mappings 194,

195
application-specific exception 196-198
checked versus unchecked exception 196
exception, abstracting 199, 200
exception, accessing 195
exception, architecting 195
global exception, mappings 194

exception interceptor 173, 195
exceptions

references 205
exceptionStack properties 195
excludeMethods parameter, validation

interceptor 181
excludeMethods parameter, workflow

interceptor 182
excludeParams parameter, params

interceptor 180
execute() method 20, 292
expression validator 143
Extreme Programming. See XP

F
FakeRecipeService 68, 293, 294
FATAL level 201
fieldexpression validator 143-145
file hieararchy, creating 37
FileInputStream 74
FileUpload, jar file 18
fileUpload interceptor

allowedTypes parameter 178
default error message keys 179
maximumSize parameter 178
parameters 178

filter dispatcher 8
findById() method 68

Firebug
references 229

first action
action method, selecting 22
configuring, with XML 20, 21
result, configuring 21, 22
writing 20

Fluent Interfaces
about 311
references 342

foo() 216
forceAddSchemeHostAndPort attribute 107
form input elements

<s:checkbox> tag 117
<s:checkboxlist> tag 118
<s:checkboxlist> tag, using to implement

user story 118, 120
<s:hidden> tag 114
<s:label> tag 115
<s:optgroup> tag 121
<s:password> tag 114
<s:radio> tag 115, 116
<s:reset> tag 122
<s:select> tag 120
<s:submit> tag 121, 122
<s:textarea> tag 114
<s:textfield> tag 114

form tags
<s:form> tag 111
<s:head> tag 110
about 109, 110
combination form tags 122
common input element tag, attributes 112
double submits preventing, <s:token> tag

used 128, 129
files, uploading 126, 127
form input elements 114

form validation
about 131
manual validation 132
validation messages, customizing 134, 135
XML validation, configuring 132-134

FreeMarker
about 255
references 80

FreeMarker, jar file 18
freemarker-2.3.13.jar 18

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

[349]

FreeMarker result type
<@s.tagname...> syntax 71
<s:action…> tag 71
about 69
contentType parameter 71
FreeMarker result, configuration 70

freemarker result type
freemarker result, configuration 71

fromObject() method 276
functional testing 11
functions, JavaScript

about 218
closures 222, 223
function operator 219
function parameters 219, 220
inner functions 221, 222
length property 221

functions, strings 213

G
generator tag, attributes

convertor attribute 96
count attribute 96

getContentType() method 276
getExtension() method 276
getHello() method 112
getIngredients() method 159
getLocale() method 44
getMessage() method 198
getName() 177
getText() call 40
getText() method 112

String getText(String key) 37
getText(String) method 42
getText(String, List) method 42
getText(String, String[]) method 42
getTitle() method 242
graph visualization

references 56
great exception debate

references 205
grep command 51

H
hasFieldErrors 250
HibernateRecipeService 292

href attribute 260
httpheader result type 74

I
I18N 36
i18n interceptor 175

attributeName parameter 175
parameterName parameter 175

id attribute, DOM element 232
if-elseif-else decision tree 89
ignoreContextParams attribute 104
IllegalArgumentException 286, 287
includeContext attribute 107
includeMethods parameter, workflow

interceptor 182
includeParams attribute controls 107
includeParams parameter, params

interceptor 180
indexOf function, strings 213
Infinity 212
INFO level 201
init() 184
inner functions. JavaScript 221, 222
input element tag, attributes

key attribute 113
label attribute 112
name attribute 112
value attribute 112

inputError class 234
inputResultName parameter, workflow

interceptor 182
InputStream getInputStream() 73
interaction, doccumenting

UML activity diagram 334
interaction, documenting 333, 334
intercept() method 172, 185, 191
interceptors 8

about 167
application flow, modifying 189
configuring 169, 171
configuring, for individual actions 171
result, configuring 189
ResultMappingInterceptor, writing 190
stacks, configuring 168
trim interceptor 184
working 172
writing 184

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

[350]

interceptors, in default stack
alias interceptor 173
chain interceptor 175
checkbox interceptor 179
conversionError interceptor 181
debugging interceptor 176
exception interceptor 173
fileUpload interceptor 178
i18n interceptor 175
ModelDriven interceptor 177
params interceptor 180
prepare interceptor 174
profiling interceptor 176, 177
scopedModelDriven interceptor 177, 178
servletConfig interceptor 173
staticParams interceptor 179
validation interceptor 181
workflow interceptor 182

interceptors, writing
about 184
application flow, modifying 189
references 192
result, configuring 189
ResultMappingInterceptor, writing 190, 191
test action 188
trim interceptor 184-186
trim interceptor, configuring 186-188
trim interceptor, testing 188

interceptor stacks, configuring 168
basicStack, example 168, 169

Internet Application (RIA) development
281

int validator, client-side validation 140, 141,
150

Inversion of Control. See IoC
invocation.invoke() 191
IO, jar file 18
IoC 8
IRC/chat systems 340
isDebugEnabled() 203
isIncluded() method 186
iterator filter, JUnit 283, 284
IteratorStatus instance 91

J
jar files

commons-fileupload-1.2.1.jar 18

commons-io-1.3.2.jar 18
commons-logging-1.1.1.jar 18
freemarker-2.3.13.jar 18
log4j-1.2.14.jar 18
ognl-2.6.11.jar 18
struts2-config-browser-plugin-2.1.6.jar 18
struts2-core-2.1.6.jar 18
xwork-2.1.2.jar 18

JasperReports
references 81

JasperReports result type 74
Jasper result tag 74
Java, documenting

about 309
contract-oriented programming (COP) 313,

315
Javadocs 317
need for 310
UML used 324

Java alert 42
Javadocs

about 50
-exclude argument 321
-use argument 321
first sentence 318, 319
information, adding 319
multiple formats, writing for 320
new Javadoc tags creating, -tag argument

used 322, 323
targeted, getting 321
visibility 321
writing 317

JavaScript
about 13, 208
classes 223
data types 212
exception handling 215, 216
functions 218
language notes 208
objects 216
references 247
scoping 210, 212
syntax notes 208
variables 210, 211

JavaScript, classes
classes, creating 223
function access 224, 225

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

[351]

JavaScript’s 226
prototypal inheritance 223
prototypes 227
variable access 224, 225

JavaScript, data types
arrays 214, 215
arrays, functions 215
numbers 212
numbers, conversions 213
numbers, decimal 212
numbers, hex 212
numbers, octal 212
strings 213
strings, conversions to other types 214
strings, length 214

JavaScript, documenting 329-333
JavaScript, modules and OOP

namespace, creating 228
JavaScript, syntax notes

equal (==) operators 209
logical-or (||) operator 209, 210
null and undefined values 209
semicolons 209
strict equal (===) operators 209
whitespace 208

JavaScript objects
object augmentation 217
object maker functions 218
object values 218
open objects 217

JavaScript Recipe module
about 243, 244
addRow() function 245
before() function 245
createIngredientRow() function 245
prepare() function 245

Java web application basics
references 34

JMeter
load testing with 305, 307
references 308

join method, strings 213
jQuery 235, 236

references 247
JsDoc Toolkit

references 342

JSON
references 279

JSP 39
JSPs, documenting 328, 329
JUnit

about 283
granularity, testing 287, 288
initial test stub 284
iterator filter 283, 284
non-string parameter exceptions, testing

286, 287
references 308
test environment 284
vowel recognition, testing 285

JYaml
references 279

K
key attribute, input element tag 113

L
lable attribute, input element tag 112
Lasse koskela, TDD 283
lastIndexOf function, strings 213
layout property 204
legacy code

and unit tests 290
length property, strings 213
Linux command line reference

references 56
List 291
list attribute, <s:optiontransferselect> tag

124
listKey property 116
listValue attributes 118
listValue property 116
loadingText attribute 261
loadMessages() function 331
load testing

about 305
wit JMeter 305-307

LocaleProvider interface, ActionSupport 44
getLocale() method 44

location parameter 58

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

[352]

Log4J
about 18
logging levels 201

log4j-1.2.14.jar 18
logger property 204
logging

about 201
loggers, configuring 203, 204
loggers, using 201-203

logging, jar file 18
logging levels, Log4J

DEBUG 201-205
ERROR 201-205
FATAL 201-205
INFO 201-205
TRACE 201-205
WARN 201

logical-or operator, JavaScript syntax notes
209, 210

M
makeAdder() function 222
manual validation 132
mapResult() method 191
Markdown

about 75
markdownj library 75
MarkdownResult result type 75
recipe files 75
references 81

Markdown, recipe files
character 75
* character 75
1 75

MarkdownJ
references 81

markdownj library 75
MarkdownResult result type

about 75
implementing 77-79

marker interface 55
markup

about 232
id attribute 232
style attribute 232

match function, strings 213
Math object 212

Maven 14
Maven archetypes 14
maximumSize parameter, fileUpload

interceptor 178
maxLength parameter 136
maxLength parameters 137
method attribute 22, 106
MethodFilterInterceptor 184
minLength parameters 137
ModelDriven’s model 37
ModelDriven action 177
ModelDriven interceptor 177
myAlert() function 228

N
name annotation parameter 59
name attribute 21
name parameter, scopedModelDriven

interceptor 178
namespace attribute 21, 105
namespaces

and packages 26
NaN 212
new keyword 223
NewRecipeAction 119
NONE 36
NoParameters, params interceptor 180
NoParameters interface 55
nsresult action 61
null and undefined values, JavaScript

syntax notes 209
numbers, JavaScript data types

about 212
conversions 213
decimal 212
hex 212
Infinity 212
Math object 212
NaN 212
octal 212

O
Object Graph Navigation Language. See

OGNL
objects, JavaScript 216, 217
OGNL

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

[353]

about 39, 83, 84
disadvantages 101, 102
EL trick 87
static methods, calling 88

OGNL, jar file 18
ognl-2.6.11.jar 18
OGNL basics 108
OGNL Home 108
onclick attribute, <s:optiontransferselect>

tag 124
onclick handlers, adding

$, jQuery function 236
about 236, 237
buildClickHandler() function 240
each() function 237
function builder, using 237-239
functions 237
getTitle() method 242
module data, accessing 239, 240

operationMode parameter, store interceptor
183

ordered parameter, params interceptor 180

P
package, creating 37
package.properties 37
package diagrams 324
packages

and namespaces 26
Parameterizable interface 179
parameterized messages 42-44
ParameterNameAware interface

about 55
acceptableParameterName() method 55

params annotation parameter 60
params interceptor

excludeParams parameter 180
includeParams parameter 180
ordered parameter 180

paramsPrepareParamsStack interceptor
stack 183

param tag’s value attribute 43
parseInt(obj) function, strings 214
parseInt function, strings 214
parse parameter 58, 61

form, displaying 62

PatternLayout 204
PbC 313
plaintext result type 73
plus (+) operator, strings 213, 214
Preparable interface 53, 180
prepare() function 243-245
prepare() method 53, 119
prepare interceptor 174

alwaysInvokePrepare parameter 175
prepareXxx() method 174
PreResultListener 192
println() call 31
profiling interceptor 176, 177
profilingKey parameter, profiling

interceptor 176
Programming by Contract. See PbC
prototypal inheritance 223
prototypes, JavaScript

aProtoFunc function 227
push() method 314

Q
Quick Sequence Diagram Editor

references 342

R
Real applications

in nutshell 12
recipe.show-recipe.header message 69
Recipe class 46
recipe form

${} character 65
%{} character 65
%{recipe.id} parameter value 65
action, coding 63, 64
creating 46
displaying 62
FakeRecipeService 68
findById() method 68
NewRecipe 47
recipe.id 65
recipe.name 47
recipe object 48
recipe property 46
RecipeService interface 67
redirectAction result 65

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

[354]

show action, coding 66, 67
success result, configuring 64
type conversions 66

Recipe module 329, 330
recipe property 46
RecipeService implementation 291, 292
RecipeService interface 67, 291
Recipes notFound() method 294
RecipeType class 118
RecipeTypeService interface 118
recovery testing 307
redirectAction result type

@Action annotation 61
about 59
ActionSupport.execute() 61
nsresult action 61
params annotation parameter 60

redirect result type
about 59
response.sendRedirect() method 59

refactoring 11
references

AOP 342
ArgoUML 342
ASM Bytecode manipulation 56
commons logging Log4J 205
convention plug-in 34
CSS selectors 247
Cygwin 56
Design by Contract 342
DI/Inversion of control 308
Dojo 279
exceptions 205
Firebug 229
Fluent Interfaces 342
FreeMarker 80, 255
graph visualization 56
great exception debate 205
interceptors 192
interceptors, writing 192
JasperReports 81
JavaScript 247
Java web application basics 34
JMeter 308
jQuery 247
JsDoc Toolkit 342
JSON 279

JUnit 308
JYaml 279
Linux command line reference 56
Markdown 81
MarkdownJ 81
Quick Sequence Diagram Editor 342
regular expressions 56
REST 279
rest_client (for Ruby) 279
REST plug-in 279
Selenium 308
SiteMesh 81
Spring 308
SpringContracts 342
standard result types 80
struts-default.xml 80
Struts 2 and XWork API Javadocs 34
Struts 2 and XWork Javadocs 56
Struts 2 Spring Plugin 308
Struts 2 tags 34
Struts 2 Type Conversion 80
TDD 308
TestNG 308
tiles 80
UmlGraph 342
user stories 34
XML-based configuration elements 34
XSLT 80
YAML 279
yDoc 342

regex validator, client-side validation
143, 150

regular expressions
references 56

replace function, strings 213
REpresentational State Transfer. See REST

plug-in, Struts2.1
RequestDispatcher.forward() method 57
requiredstring validator, client-side

validation 136, 151
required validator, client-side validation

151
response.sendRedirect() method 59
REST

references 279
rest_client (for Ruby)

references 279

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

[355]

REST controller 269
REST plug-in, Struts 2.1

about 266
command-line, example 273
custom content handler, example 275
in nutshell 266
references 279
REST controller 269
REST controller responses 269, 271
results 267
URLs 266, 267
useful client, example 271-273
web browser client, example 268

resultMapper interceptor 190
results 9
result type

chain result type (action chaining) 61
dispatcher 59
dispatcher result type 59
FreeMarker result type 69
httpheader result type 74
JasperReports result type 74
plaintext result type 73
redirectAction result type 59, 60
redirect result type 59
stream result type 73, 74
tiles result type 74
velocity result type 69
XSLT result type 71-73

roles interceptor 183
rootLogger property 203
RSS 340
RuntimeException 194, 196

S
S2. See Struts 2
s2wad theme, creating 251
sanity-checking application 18
SCCS

about 336
branching 337
branching, discipline 338
code and mental history 336
commit, need for 337
commit comment commitment 336, 337
linking to 339

scheme attribute 107
scopedModelDriven interceptor 177

className parameter 178
name parameter 178
parameters 178
scope parameter 178

scope parameter, scopedModelDriven
interceptor 178

search function, strings 213
Selenium, client-side (functional) testing

about 300
first test 300-303
references 308
Selenium RC (Remove Control) 300
test scenario 300

Selenium RC (Remove Control) 300
self-documenting code 310
semicolons, JavaScript syntax notes 209
sequence diagrams 325-327
servletConfig interceptor 54, 173, 174
servlet specification object, accessing 54
setExcludedParams() method 186
setModelClass() method 180
setRecipeService() method 296
setSession() method 174
setUncheckedValue parameter, checkbox

interceptor 179
setupInvocation() method 299
simple action testing 291

Dependency Injection (Inversion of Control)
291, 292

Dependency Injection, to test 293, 294
simple theme 109
SiteMesh

references 81
Source Code Control System. See SCCS
SpecificDaoException 199
Spring

references 308
Spring context configuration file 295
SpringContracts

about 315-317
references 342

Spring web.xml configuration 295
stack content 86
standard result types

references 80

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

[356]

staticParams interceptor 179
status attribute 91
store interceptor

operationMode parameter 182
stream result type 73, 74

FileInputStream 74
InputStream getInputStream() 73

strict equal (===) operators, JavaScript
syntax notes 209

String.format() 203
String getText(String key), getText() method

messages, retrieving 37
stringlength validator

maxLength parameter 136
trim parameter 136

stringminlength message 139
strings, JavaScript data types

about 213
conversions to other types 214
functions 213
join method 213
lengths 213
plus operator (+) 213

Struts
testing, in context 296

struts-default.xml
references 80

struts.devMode 20
Struts 1 7
Struts 2

actions 9
exceptions, handling 193
filter dispatcher 8
form validation 131
in nutshell 7
interceptor, testing 297-299
interceptors 8
logging 200
plug-in 10
results 9
s2wad theme, creating 251
templates, extracting 249
testing, in context 296
type conversion 153

struts2-config-browser-plugin-2.1.6.jar 18
struts2-core-2.1.6.jar 18
Struts 2.0

about 17
application, configuring 23
combination form tags 122
environment, setting up 17
interceptors 167
web.xml, configuring 19, 20

Struts 2.0 application, configuring
actions in namespace 29, 30
application, defining 23, 24
configuration, examining 29
convention plug-in, configuring with

annotations 32-34
convention plug-in used 30, 31
external configuration files 28
multiple wildcards, matching 25
namespaces 26
packages 26
packages, defining 26
sanity-checking application 18
site navigation, creating 26, 27
skeletal application building, wildcards

used 24
via convention 30
ways 17
wildcards, tricks 25, 26

Struts 2.0 application, jar files. See jar files
Struts 2.0 configuration file, elements

<package...> element 21
action element 21
constant element 20

Struts 2.0 custom tag
<s:url> tag 27

Struts 2.1 17
Struts 2 and XWork API Javadocs

references 34
Struts 2 and XWork Javadocs

references 56
Struts 2 application, creating ways

by copying the 14
by manually using ibraries download 14

Struts 2 Configuration Browser Plugin 18
Struts 2 generic (non-UI) tags 108
Struts 2 OGNL 108
Struts 2 Spring Plugin

references 308
Struts 2 tags

references 34

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

[357]

Struts 2 Type Conversion
references 80, 165

Struts 2 UI Tags Documentation 129
Struts and Spring, in nutshell

Spring context configuration file 295, 296
Spring web.xml configuration 295

StrutsRequestWrapper 40
style attribute, DOM element 232
SubsetIteratorFilter.Decider 283
substring function, strings 213
super.validate() 44

T
TDD

about 281, 282
Lasse koskela 283
references 308

templates
uses 254

templates, extracting 249
Test-driven development. See TDD
test attribute 89
testing

about 11
acceptance testing 304
client-side (functional) testing 299
forms 304
load testing 305
recovery testing 307
Struts, in context 296
Struts, interceptor 297-299

TestNG 288
@AfterClass annotations 288
@BeforeClass annotations 288
about 289
references 308

testRecipeFoundResult() test 294
testTrimming() method 298
TextExampleAction.properties 38
TextExamplesAction 37
TextExamplesAction.properties file 37
TextExampleSubAction class 41
TextInterface 37
TextProvider interface, ActionSupport

getText() method 36, 37
getTexts() method 36

methods 36
text tag, parameterizing

<s:param> tag used 43
theme

ajax theme 109
creating 251
simple theme 109
xhtml theme 109

theme, setting 110
this keyword 224-226
this prefix 225
tiles

references 80
tiles result type 74
token interceptor 182
toLowerCase function, strings 213
toObject() method 276
toString() method 46, 116
TRACE level 201, 202
trim interceptor 298

about 184
configuring 186, 187, 188
testing 188

TrimInterceptor instance 297
trim parameter 136
tristate() 33
try/catch block 216
type annotation parameter 59
type attribute 21
type conversion

about 153
addIngredient() method 159
collections 158
convertors, defining 155
for collections 158
issue 154
references 165
solution 154
usecase, ingredients list adding 158, 159
usecase-trimmed BigDecimals 155-157

U
UML, using for Java documenting

class diagrams 324, 325
package diagrams 324
sequence diagrams 325-327

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

[358]

UmlGraph
references 342

undeclared variables 210
unit testing

about 11, 282
and legacy code 290
code indent 282
Dependency Injection (Inversion of Control)

291
JUnit 283
Keep tests small 283
keep tests small 282
simple action testing 291
Struts and Spring in a nutshell 294
TestNG 288, 290

url validator 142
url validator, client-side validation 150
useful client, example 271-273
UserAccessException 198
user documentation 335
userId action property 181
user stories

references 34
user stories, collecting 24
user story

about 11
error messages, displaying 49
finishing 263
implementing 45
refining 45
StringUtils.isBlank() method 48
validate() method 48
validation, adding 48, 49

V
validate() method 48, 132
Validateable, ActionSupport

about 44
void validate() method 44

validation
configuring, annotations used 146
conversion validator 146
date validator 142
double validator 142
email validator 142
expression validator 143

fieldexpression validator 143-145
form validation 131
int validator 140, 141
manual validation 132
methods. combining 145
regex validator 143
requiredstring validator 136
stringlength validator 136
url validator 142
validation messages, customizing 134, 135
visitor validator 146
XML validation, configuring 132-134

ValidationAware, ActionSupport 44
validation configuring, annotations used

@DoubleRangeFieldValidator 148
@DoubleRangeFieldValidator annotation

149
@IntRangeFieldValidator annotation 149
@RequiredFieldValidator annotation 148
@SkipValidation annotation 148
@Validation annotation 146
@Validations annotation 147, 148
other validation annotations 149, 150

validation interceptor 171
excludeMethods parameter 181

value attribute 43, 105
value stack content 84, 85
ValueStack debug 86
var keyword 210
visitor validator 146
void validate() method 44
VowelDecider 287, 288, 315

W
WARN level 201
waterfall model 23
web.xml, configuring for Struts 2 19, 20
web applications, documenting

about 327
high-level overviews 328
interaction, documenting 333, 334
JavaScript, documenting 329-333
JSPs, documenting 328, 329
user documentation 335

web browser client, example 268
whitespace, JavaScript syntax notes 208

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

[359]

Wikis 340
workflow interceptor

excludeMethods parameter 182
includeMethods parameter 182
inputResultName parameter 182

writeIfCompleted 70
wwFormTable class 111, 233

X
xhtml theme 109, 110, 251
XML-based configuration elements

references 34
XML validation, configuring 132-134

validation messages, customizing 134, 135
XP 10
XSLT

references 80
XSLT result type 71-73
XWork

interfaces 52

xwork-2.1.2.jar 18
XWork class

ActionSupport 35

Y
YAML

about 275
handler, configuring 276
handler, writing 276
handling 277, 278
references 279

YAML Ain’t a Markup Language. See
YAML

YAML Another Markup Language. See
YAML

yDoc
references 342

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Thank you for buying
Apache Struts 2
Web Application Development

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing Apache Struts 2 Web Application Development, Packt will
have given some of the money received to the Apache Struts project.
In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

JasperReports for Java
Developers
ISBN: 1-904811-90-6 Paperback: 344 pages

Create, Design, Format and Export Reports with the
world's most popular Java reporting library

1. Get started with JasperReports, and develop the
skills to get the most from it

2. Generate report data from a wide range
of datasources

3. Integrate Jasper Reports with Spring,
Hibernate, Java Server Faces, or Struts

JBoss Tools 3 Developers Guide
ISBN: 978-1-847196-14-9 Paperback: 408 pages

Develop JSF, Struts, Seam, Hibernate, jBPM, ESB,
web services, and portal applications faster than
ever using JBoss Tools for Eclipse and the JBoss
Application Server

1. Develop complete JSF, Struts, Seam,
Hibernate, jBPM, ESB, web service, and
portlet applications using JBoss Tools

2. Tools covered in separate chapters so you can
dive into the one you want to learn

3. Manage JBoss Application Server through JBoss
AS Tools

4. Explore Hibernate Tools including reverse
engineering and code generation techniques

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

Liferay Portal 5.2 Systems
Development
ISBN: 978-1-847194-70-1 Paperback: 420 pages

Build Java-based custom intranet systems on top of
Liferay portal

1. Learn to use Liferay tools to create your
own applications as a Java developer, with
hands-on examples

2. Customize Liferay portal using the JSR-286
portlet, extension environment, and Struts
framework

3. Build your own Social Office with portlets,
hooks, and themes and manage your
own community

4. The only Liferay book aimed at Java developers

Grails 1.1 Web Application
Development
ISBN: 978-1-847196-68-2 Paperback: 250 pages

Reclaiming Productivity for faster Java Web
Development

1. Ideal for Java developers new to Groovy and
Grails—this book will teach you all you need to
create web applications with Grails

2. Create, develop, test, and deploy a web
application in Grails

3. Take a step further into Web 2.0 using AJAX
and the RichUI plug-in in Grails

4. Packed with examples and clear instructions
to lead you through the development and
deployment of a Grails web application

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by Paul Corcorran on 5th July 2009

8601 ave. p #1, , lubbock, , 79423

	Cover
	Table of Contents
	Preface
	Chapter 1: Struts and Agile Development
	Struts 2 in a nutshell
	The filter dispatcher
	Interceptors
	Actions
	Results
	Plug-ins

	Agile in a nutshell
	User stories
	Testing
	Refactoring
	Short iterations

	Real applications in a nutshell
	Making it pretty
	JavaScript
	Documentation
	All of the rest

	Getting Started
	Creating our own applications
	Doing it "by hand"
	Using Maven

	Summary

	Chapter 2: Basic Configuration
	Setting up our environment
	A sanity-checking application
	Configuring web.xml for Struts 2
	Writing our first action
	Configuring our first action with XML
	Configuring our result
	Choosing an action method

	Getting started with our application
	Gathering user stories—defining our application
	Building skeletal applications using wildcards
	Matching multiple wildcards
	More wildcard tricks
	Packages and namespaces
	Creating site navigation
	Including external configuration files
	Our application so far
	Examining our configuration
	Configuration via convention and annotations
	The Convention Plug-in and action-less actions
	The Convention Plug-in and action configuration
	Configuring the Convention Plug-in with annotations

	Summary

	Chapter 3: Actions and ActionSupport
	ActionSupport and its interfaces
	The Action interface
	Action's convenience strings

	The TextProvider interface
	Detour—action properties, JSPs, and more tags
	Continuing with message lookup
	Parameterized messages
	The LocaleProvider interface
	The Validateable and ValidationAware interfaces

	Implementing our first user story
	Refining our story
	Creating the recipe form
	Adding some validation
	Displaying our error messages

	More action interfaces
	Detour—creating the list of interfaces to explore
	Leveraging the IDE
	Using the command line
	Examining class files

	Additional action interfaces
	Preparable interface
	Accessing scoped attributes (and request parameters)
	Accessing servlet objects
	Request parameter/action property filtering

	Summary

	Chapter 4: Results and Result Types
	The dispatcher result type
	The redirect result type
	The redirectAction result type
	The chain result type (action chaining)
	The parse parameter and a usecase detour
	Displaying the form
	Coding our action
	Configuring our success result
	Type conversion sneak attack
	Coding the show action

	The FreeMarker and Velocity result types
	FreeMarker result configuration

	The XSLT result type
	The plaintext result
	The stream result
	The httpheader result
	The Tiles and JasperReports results
	Creating custom result types
	Configuring our custom result type
	Writing the action
	Implementing our markdown result type

	Summary

	Chapter 5: OGNL, the Value Stack, and Custom Tags
	OGNL
	Contents of the value stack and the <s:property> tag
	Escaping values
	Default values
	Escaping values for JavaScript

	Other value stack objects and the debug tag
	A dirty EL trick

	The <s:set> tag
	Calling static methods from OGNL
	Conditionals
	Collections and iteration
	The <s:iterator> tag
	Tracking iteration status
	CSS detour: Alternating table row background color
	The <s:generator> tag
	It's not a list, it's an iterator!
	Silent death
	Another potential stumper (Struts 2.0 only)
	What is <s:generator> for?

	The <s:append> tag
	The <s:merge> tag
	The <s:subset> tag
	Arbitrary filtering with the <s:subset> tag
	Dirty OGNL secrets

	The <s:sort> tag
	Are the collection tags useful?

	Referencing other pages and actions
	The <s:include> tag
	The <s:action> tag
	The <s:url> tag

	Summary

	Chapter 6: Form Tags
	Form tag basics
	The xhtml theme in a nutshell
	The <s:head> tag
	The <s:form> tag
	Common input element tag attributes
	Values, labels, and names (and keys)
	All the rest

	Basic rendering
	But I don't want tables

	Basic form input elements
	The <s:textfield>, <s:password>, and <s:hidden> tags
	<s:textarea> tag
	<s:label> tag
	<s:radio> tag
	<s:checkbox> tag
	<s:checkboxlist> tag
	Using the <s:checkboxlist> tag to implement a user story
	<s:select> tag
	<s:optgroup> tag
	<s:submit> tag
	<s:reset> tag

	Combination form tags
	<s:combobox> tag
	<s:updownselect> tag
	<s:optiontransferselect> tag
	<s:doubleselect> tag

	Uploading files
	Preventing double submits with the <s:token> tag

	Summary

	Chapter 7: Form Validation and Type Conversion
	Form validation
	Manual validation
	Configuring XML validation
	Customizing validation messages

	What validations are available?
	The requiredstring validator
	The stringlength validator
	Detour—playing games with validation messages
	The required and int validators
	But wait, there's more
	The double validator
	The email validator
	The url validator
	The date validator
	The regex validator
	The expression and fieldexpression validators
	Combining validation methods
	The conversion validator
	The visitor validator

	Configuring validation with annotations
	The @Validation annotation
	The @Validations annotation
	The @SkipValidation annotation
	The @RequiredFieldValidator annotation
	The @IntRangeFieldValidator annotation
	The @DoubleRangeFieldValidator annotation
	The remaining validation annotations

	Client-side validation
	Custom validators

	Type conversion
	The problem
	The solution
	Defining our own converters
	Type conversion usecase—trimmed BigDecimals
	Configuring conversion across the entire application
	Custom type conversion is handy

	Collections
	Usecase—adding a list of ingredients
	Updating our new recipe form
	Map-based collections

	Summary

	Chapter 8: Interceptors
	The basics
	Configuring interceptor stacks
	Configuring interceptors
	Configuring interceptors for individual actions
	How interceptors work

	Interceptors in the default stack
	The exception interceptor
	The alias interceptor
	The servletConfig interceptor
	The prepare interceptor
	The i18n interceptor
	The chain interceptor
	The debugging interceptor
	The profiling interceptor
	The scopedModelDriven interceptor
	The modelDriven interceptor
	Getting back to the scopedModelDriven interceptor

	The fileUpload interceptor
	The checkbox interceptor
	The staticParams interceptor
	The params interceptor
	Ordered parameters and ad hoc factory patterns

	The conversionError interceptor
	The validation interceptor
	The workflow interceptor

	Other important interceptors and interceptor stacks
	The token interceptor
	The store interceptor
	The roles Interceptor
	The clearSession interceptor
	The paramsPrepareParamsStack interceptor stack

	Writing our own interceptors
	The trim interceptor
	Configuring the trim interceptor
	The Test Action
	Testing the trim interceptor
	Modifying application flow with interceptors
	Configuring the result
	Writing the ResultMappingInterceptor
	Writing the ResultMappingInterceptor and making it work

	Summary

	Chapter 9: Exceptions and Logging
	Handling exceptions in Struts 2
	Global exception mappings
	Action-specific exception mappings
	Accessing the exception
	Architecting exceptions and exception handling
	Checked versus unchecked exceptions
	Application-specific exceptions
	Abstracting underlying exceptions

	Handling exceptions

	Logging
	Introduction to logging
	Using the loggers
	Configuring the loggers

	Summary

	Chapter 10: Getting Started with JavaScript
	Introduction to JavaScript
	Playing with JavaScript

	Minor syntax and language notes
	Unicode
	Whitespace
	Semicolons
	Null and undefined values
	The equal and strict equal operators
	The logical OR operator

	Variables and scoping
	JavaScript data types
	Numbers
	Strings
	Arrays

	Exception handling
	Introduction to JavaScript objects and OOP
	Open objects and object augmentation
	Object values can be functions
	Object maker functions

	Functions
	Function parameters
	Some trickery

	Inner functions
	Closures

	Introduction to JavaScript classes
	Creating classes
	Variable and function access
	JavaScript's "this" keyword

	Prototypes

	JavaScript modules and OOP
	Creating a namespace

	Summary

	Chapter 11: Advanced JavaScript, the DOM, and CSS
	The importance of markup
	ID or style attribute?
	Dressing up our form
	JavaScript modules and jQuery

	Adding onclick handlers
	Using a function builder
	Accessing module data
	The final trick

	Adding dynamic form elements
	Identifying where to add the elements
	The JavaScript "Recipe" module

	Summary

	Chapter 12: Themes and Templates
	Extracting the templates
	A maze of twisty little passages
	Creating our theme

	Other uses of templates
	Summary

	Chapter 13: Rich Internet Applications
	What this chapter is and isn't
	Dojo tags
	Simple use cases really are simple
	The Dojo <sx:head> tag
	The Dojo <sx:a> tag
	A brief side journey on topics
	The Dojo <sx:div> tag
	Finishing our user story
	Highlighting the need to know

	Dojo and forms

	The REST plug-in
	REST in a nutshell
	The REST plug-in in a nutshell
	REST plug-in URLs
	REST plug-in results

	A web browser client example
	The REST controller
	REST controller responses

	An example of a useful client
	A command-line example
	Custom content handler example
	YAML in a nutshell
	Writing our YAML handler
	Configuring our YAML handler
	Handling our YAML

	Summary

	Chapter 14: Comprehensive Testing
	Test-driven development
	Unit testing
	Test, code, refactor—the "heartbeat" of TDD
	JUnit
	Revisiting our iterator filter
	The test environment
	The initial test stub
	Testing vowel recognition
	Testing non-string parameter exceptions
	Test granularity and test setup

	TestNG
	Legacy code and unit testing
	Simple action testing
	Detour: Dependency Injection (Inversion of Control)
	Dependency Injection helps us test

	Detour: Struts and Spring in a nutshell
	Spring web.xml configuration
	Spring context configuration file

	Testing Struts 2 in context
	Testing a Struts interceptor

	Client-side (functional) testing
	Selenium
	Selenium RC
	The test scenario
	Our first Selenium test

	Other forms of testing
	Acceptance testing
	Load testing
	Load testing With JMeter

	Recovery testing

	Summary

	Chapter 15: Documenting our Application
	Documenting Java
	Self-documenting code
	Document why, not what
	Make your code read like the problem
	Contract-oriented programming

	Javadocs
	Always write Javadocs!
	The first sentence
	Add information beyond the API name
	Write for multiple formats
	Generating targeted Javadocs
	The -use argument
	Creating new Javadoc tags with the -tag argument
	Never write Javadocs!
	Never write inline Java comments!

	Using UML
	Package diagrams
	Class diagrams
	Sequence diagrams

	Documenting web applications
	High-level overviews
	Documenting JSPs
	Documenting JavaScript
	Documenting interaction
	More UML and the power of scribbling
	Don't spend so much time making pretty pictures

	User documentation

	Documenting development
	Source code control systems
	Code and mental history
	Commit comment commitment
	When (and what) do we commit
	Branching
	Branching discipline

	Issue and bug management
	Linking to the SCCS

	Wikis
	RSS and IRC/chat systems
	Word processor documents

	Summary
	Index

	Index

