
www.allitebooks.com

http://www.allitebooks.org

Apache Solr 3 Enterprise
Search Server

Enhance your search with faceted navigation, result
highlighting, relevancy ranked sorting, and more

David Smiley

Eric Pugh

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Apache Solr 3 Enterprise Search Server

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author(s), nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2009

Second published: November 2011

Production Reference: 2041111

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-606-8

www.packtpub.com

Cover Image by Duraid Fatouhi (duraidfatouhi@yahoo.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
David Smiley

Eric Pugh

Reviewers
Jerome Eteve

Mauricio Scheffer

Acquisition Editor
Sarah Cullington

Development Editors
Shreerang Deshpande

Gaurav Mehta

Technical Editor
Kavita Iyer

Project Coordinator
Joel Goveya

Proofreader
Steve Maguire

Indexers
Hemangini Bari

Rekha Nair

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Born to code, David Smiley is a senior software engineer with a passion for
programming and open source. He has written a book, taught a class, and presented
at conferences on the subject of Solr. He has 12 years of experience in the defense
industry at MITRE, using Java and various web technologies. Recently, David has
been focusing his attention on the intersection of geospatial technologies with Lucene
and Solr.

David first used Lucene in 2000 and was immediately struck by its speed and
novelty. Years later he had the opportunity to work with Compass, a Lucene based
library. In 2008, David built an enterprise people and project search service with
Solr, with a focus on search relevancy tuning. David began to learn everything there
is to know about Solr, culminating with the publishing of Solr 1.4 Enterprise Search
Server in 2009—the first book on Solr. He has since developed and taught a two-day
Solr course for MITRE and he regularly offers technical advice to MITRE and its
customers on the use of Solr. David also has experience using Endeca's competing
product, which has broadened his experience in the search field.

On a technical level, David has solved challenging problems with Lucene and Solr
including geospatial search, wildcard ngram query parsing, searching multiple
multi-valued fields at coordinated positions, and part-of-speech search using Lucene
payloads. In the area of geospatial search, David open sourced his geohash prefix/
grid based work to the Solr community tracked as SOLR-2155. This work has led to
presentations at two conferences. Presently, David is collaborating with other Lucene
and Solr committers on geospatial search.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgement

Most, if not all authors seem to dedicate their book to someone. As simply a reader
of books I have thought of this seeming prerequisite as customary tradition. That
was my feeling before I embarked on writing about Solr, a project that has sapped
my previously "free" time on nights and weekends for a year. I chose this sacrifice
and want no pity for what was my decision, but my wife, family and friends did not
choose it. I am married to my lovely wife Sylvie who has easily sacrificed as much
as I have to work on this project. She has suffered through the first edition with an
absentee husband while bearing our first child—Camille. The second edition was
a similar circumstance with the birth of my second daughter—Adeline. I officially
dedicate this book to my wife Sylvie and my daughters Camille and Adeline, who
I both lovingly adore. I also pledge to read book dedications with new-found first-
hand experience at what the dedication represents.

I would also like to thank others who helped bring this book to fruition. Namely, if it
were not for Doug Cutting creating Lucene with an open source license, there would
be no Solr. Furthermore, CNET's decision to open source what was an in-house
project, Solr itself, in 2006, deserves praise. Many corporations do not understand
that open source isn't just "free code" you get for free that others write: it is an
opportunity to let your code flourish in the outside instead of it withering inside.
Last, but not the least, this book would not have been completed in a reasonable
time were it not for the assistance of my contributing author, Eric Pugh. His own
perspectives and experiences have complemented mine so well that I am absolutely
certain the quality of this book is much better than what I could have done alone.

Thank you all.

David Smiley

www.allitebooks.com

http://www.allitebooks.org

Eric Pugh has been fascinated by the "craft" of software development, and has been
heavily involved in the open source world as a developer, committer, and user for
the past five years. He is an emeritus member of the Apache Software Foundation
and lately has been mulling over how we solve the problem of finding answers in
datasets when we don't know the questions ahead of time to ask.

In biotech, financial services, and defense IT, he has helped European and American
companies develop coherent strategies for embracing open source search software.
As a speaker, he has advocated the advantages of Agile practices with a focus on
testing in search engine implementation.

Eric became involved with Solr when he submitted the patch SOLR-284 for Parsing
Rich Document types such as PDF and MS Office formats that became the single
most popular patch as measured by votes! The patch was subsequently cleaned
up and enhanced by three other individuals, demonstrating the power of the
open source model to build great code collaboratively. SOLR-284 was eventually
refactored into Solr Cell as part of Solr version 1.4.

He blogs at http://www.opensourceconnections.com/

www.allitebooks.com

http://www.opensourceconnections.com/
http://www.allitebooks.org

Acknowledgement

When the topic of producing an update of this book for Solr 3 first came up, I
thought it would be a matter of weeks to complete it. However, when David Smiley
and I sat down to scope out what to change about the book, it was immediately
apparent that we didn't want to just write an update for the latest Solr, we wanted
to write a complete second edition of the book. We added a chapter, moved around
content, rewrote whole sections of the book. David put in many more long nights
than I over the past 9 months writing what I feel justifiable in calling the Second
Edition of our book. So I must thank his wife Sylvie for being so supportive of him!

I also want to thank again Erik Hatcher for his continuing support and mentorship.
Without his encouragement I wouldn't have spoken at Euro Lucene, or become
involved in the Blacklight community.

I also want to thank all of my colleagues at OpenSource Connections. We've come
a long way as a company in the last 18 months, and I look forward to the next 18
months. Our Friday afternoon hack sessions re-invigorate me every week!

My darling wife Kate, I know 2011 turned into a very busy year, but I couldn't be
happier sharing my life with you, Morgan, and baby Asher. I love you.

Lastly I want to thank all the adopters of Solr and Lucene! Without you, I wouldn't
have this wonderful open source project to be so incredibly proud to be a part of! I
look forward to meeting more of you at the next LuceneRevolution or Euro Lucene
conference.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Jerome Eteve holds a MSc in IT and Sciences from the University of Lille (France).
After starting his career in the field of bioinformatics where he worked as a
Biological Data Management and Analysis Consultant, he's now a Senior Application
Developer with interests ranging from architecture to delivering a great user
experience online. He's passionate about open source technologies, search engines,
and web application architecture.

He now works for WCN Plc, a leading provider of recruitment software solutions.

He has worked on Packt's Enterprise Solr published in 2009.

Mauricio Scheffer is a software developer currently living in Buenos Aires,
Argentina. He's worked in dot-coms on almost everything related to web application
development, from architecture to user experience. He's very active in the open
source community, having contributed to several projects and started many projects
of his own. In 2007 he wrote SolrNet, a popular open source Solr interface for
the .NET platform. Currently he's also researching the application of functional
programming to web development as part of his Master's thesis.

He blogs at http://bugsquash.blogspot.com.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

This book is published by Packt Publishing. You might want to visit Packt's website
at www.PacktPub.com and take advantage of the following features and offers:

Discounts
Have you bought the print copy or Kindle version of this book? If so, you can get a
massive 85% off the price of the eBook version, available in PDF, ePub, and MOBI.

Simply go to http://www.packtpub.com/apache-solr-3-enterprise-search-
server/book, add it to your cart, and enter the following discount code:

as3esebk

Free eBooks
If you sign up to an account on www.PacktPub.com, you will have access to nine
free eBooks.

Newsletters
Sign up for Packt's newsletters, which will keep you up to date with offers,
discounts, books, and downloads.

You can set up your subscription at www.PacktPub.com/newsletters.

Code Downloads, Errata and Support
Packt supports all of its books with errata. While we work hard to eradicate
errors from our books, some do creep in. Meanwhile, many Packt books have
accompanying snippets of code to download.

You can find errata and code downloads at www.PacktPub.com/support.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.allitebooks.org

PacktLib.PacktPub.com

PacktLib offers instant solutions to your IT questions. It is Packt's fully searchable
online digital book library, accessible from any device with a web browser.

•	 Contains every Packt book ever published. That's over 100,000 pages of
content.

•	 Fully searchable. Find an immediate solution to your problem.
•	 Copy, paste, print, and bookmark content.
•	 Available on demand via your web browser.

If you have a Packt account, you might want to have a look at the nine free books
which you can access now on PacktLib. Head to PacktLib.PacktPub.com and log in
or register.

http://PacktLib.PacktPub.com
http://PacktLib.PacktPub.com

Table of Contents
Preface	 1
Chapter 1: Quick Starting Solr	 7

An introduction to Solr	 7
Lucene, the underlying engine	 8
Solr, a Lucene-based search server	 9
Comparison to database technology	 10

Getting started	 11
Solr's installation directory structure	 12
Solr's home directory and Solr cores	 14
Running Solr	 15

A quick tour of Solr	 16
Loading sample data	 18
A simple query	 20
Some statistics	 23
The sample browse interface	 24

Configuration files	 25
Resources outside this book	 27
Summary	 28

Chapter 2: Schema and Text Analysis	 29
MusicBrainz.org	 30
One combined index or separate indices	 31

One combined index	 32
Problems with using a single combined index	 33

Separate indices	 34
Schema design	 35

Step 1: Determine which searches are going to be powered by Solr	 36
Step 2: Determine the entities returned from each search	 36
Step 3: Denormalize related data	 37

Table of Contents

[ii]

Denormalizing—'one-to-one' associated data	 37
Denormalizing—'one-to-many' associated data	 38

Step 4: (Optional) Omit the inclusion of fields only used in search results	 39
The schema.xml file	 40

Defining field types	 41
Built-in field type classes	 42

Numbers and dates	 42
Geospatial	 43

Field options	 43
Field definitions	 44

Dynamic field definitions	 45
Our MusicBrainz field definitions	 46
Copying fields	 48
The unique key	 49
The default search field and query operator	 49

Text analysis	 50
Configuration	 51
Experimenting with text analysis	 54
Character filters	 55
Tokenization	 57
WordDelimiterFilter	 59
Stemming	 61

Correcting and augmenting stemming	 62
Synonyms	 63

Index-time versus query-time, and to expand or not	 64
Stop words	 65
Phonetic sounds-like analysis	 66
Substring indexing and wildcards	 67

ReversedWildcardFilter	 68
N-grams	 69
N-gram costs	 70

Sorting Text	 71
Miscellaneous token filters	 72

Summary	 73
Chapter 3: Indexing Data	 75

Communicating with Solr	 76
Direct HTTP or a convenient client API	 76
Push data to Solr or have Solr pull it	 76
Data formats	 76
HTTP POSTing options to Solr	 77
Remote streaming	 79

Solr's Update-XML format	 80

Table of Contents

[iii]

Deleting documents	 81
Commit, optimize, and rollback	 82
Sending CSV formatted data to Solr	 84

Configuration options	 86
The Data Import Handler Framework	 87

Setup	 88
The development console	 89
Writing a DIH configuration file	 90

Data Sources	 90
Entity processors	 91
Fields and transformers	 92

Example DIH configurations	 94
Importing from databases	 94
Importing XML from a file with XSLT	 96
Importing multiple rich document files (crawling)	 97

Importing commands	 98
Delta imports	 99

Indexing documents with Solr Cell	 100
Extracting text and metadata from files	 100
Configuring Solr	 101
Solr Cell parameters	 102
Extracting karaoke lyrics	 104
Indexing richer documents	 106

Update request processors	 109
Summary	 110

Chapter 4: Searching	 111
Your first search, a walk-through	 112
Solr's generic XML structured data representation	 114
Solr's XML response format	 115

Parsing the URL	 116
Request handlers	 117
Query parameters	 119

Search criteria related parameters	 119
Result pagination related parameters	 120
Output related parameters	 121
Diagnostic related parameters	 121

Query parsers and local-params	 122
Query syntax (the lucene query parser)	 123

Matching all the documents	 125
Mandatory, prohibited, and optional clauses	 125

Boolean operators	 126
Sub-queries	 127

Table of Contents

[iv]

Limitations of prohibited clauses in sub-queries	 128
Field qualifier	 128
Phrase queries and term proximity	 129
Wildcard queries	 129

Fuzzy queries	 131
Range queries	 131

Date math	 132
Score boosting	 133
Existence (and non-existence) queries	 134
Escaping special characters	 134

The Dismax query parser (part 1)	 135
Searching multiple fields	 137
Limited query syntax	 137
Min-should-match	 138

Basic rules	 138
Multiple rules	 139
What to choose	 140

A default search	 140
Filtering	 141
Sorting	 142
Geospatial search	 143

Indexing locations	 143
Filtering by distance	 144
Sorting by distance	 145

Summary	 146
Chapter 5: Search Relevancy	 147

Scoring	 148
Query-time and index-time boosting	 149
Troubleshooting queries and scoring	 149

Dismax query parser (part 2)	 151
Lucene's DisjunctionMaxQuery	 152
Boosting: Automatic phrase boosting	 153

Configuring automatic phrase boosting	 153
Phrase slop configuration	 154
Partial phrase boosting	 154

Boosting: Boost queries	 155
Boosting: Boost functions	 156

Add or multiply boosts?	 157
Function queries	 158

Field references	 159
Function reference	 160

Mathematical primitives	 161
Other math	 161

Table of Contents

[v]

ord and rord	 162
Miscellaneous functions	 162

Function query boosting	 164
Formula: Logarithm	 164
Formula: Inverse reciprocal	 165
Formula: Reciprocal	 167
Formula: Linear	 168

How to boost based on an increasing numeric field	 168
Step by step…	 169
External field values	 170

How to boost based on recent dates	 170
Step by step…	 170

Summary	 171
Chapter 6: Faceting	 173

A quick example: Faceting release types	 174
MusicBrainz schema changes	 176

Field requirements	 178
Types of faceting	 178
Faceting field values	 179

Alphabetic range bucketing	 181
Faceting numeric and date ranges	 182

Range facet parameters	 185
Facet queries	 187
Building a filter query from a facet	 188

Field value filter queries	 189
Facet range filter queries	 189

Excluding filters (multi-select faceting)	 190
Hierarchical faceting	 194
Summary	 196

Chapter 7: Search Components	 197
About components	 198
The Highlight component	 200

A highlighting example	 200
Highlighting configuration	 202

The regex fragmenter	 205
The fast vector highlighter with multi-colored highlighting	 205

The SpellCheck component	 207
Schema configuration	 208
Configuration in solrconfig.xml	 209

Configuring spellcheckers (dictionaries)	 211
Processing of the q parameter	 213
Processing of the spellcheck.q parameter	 213

Building the dictionary from its source	 214

Table of Contents

[vi]

Issuing spellcheck requests	 215
Example usage for a misspelled query	 217

Query complete / suggest	 219
Query term completion via facet.prefix	 221
Query term completion via the Suggester	 223
Query term completion via the Terms component	 226

The QueryElevation component	 227
Configuration	 228

The MoreLikeThis component	 230
Configuration parameters	 231

Parameters specific to the MLT search component	 231
Parameters specific to the MLT request handler	 231
Common MLT parameters	 232

MLT results example 	 234
The Stats component	 236

Configuring the stats component	 237
Statistics on track durations	 237

The Clustering component	 238
Result grouping/Field collapsing	 239

Configuring result grouping	 241
The TermVector component	 243
Summary	 243

Chapter 8: Deployment	 245
Deployment methodology for Solr	 245

Questions to ask	 246
Installing Solr into a Servlet container	 247

Differences between Servlet containers	 248
Defining solr.home property	 248

Logging	 249
HTTP server request access logs	 250
Solr application logging	 251

Configuring logging output	 252
Logging using Log4j	 253
Jetty startup integration	 253
Managing log levels at runtime	 254

A SearchHandler per search interface?	 254
Leveraging Solr cores	 256

Configuring solr.xml	 256
Property substitution	 258
Include fragments of XML with XInclude	 259

Managing cores	 259
Why use multicore?	 261

Table of Contents

[vii]

Monitoring Solr performance	 262
Stats.jsp	 263
JMX	 264

Starting Solr with JMX	 265
Securing Solr from prying eyes	 270

Limiting server access	 270
Securing public searches 	 272
Controlling JMX access	 273

Securing index data	 273
Controlling document access	 273
Other things to look at	 274

Summary	 275
Chapter 9: Integrating Solr	 277

Working with included examples	 278
Inventory of examples	 278

Solritas, the integrated search UI	 279
Pros and Cons of Solritas	 281

SolrJ: Simple Java interface	 283
Using Heritrix to download artist pages	 283
SolrJ-based client for Indexing HTML	 285
SolrJ client API	 287

Embedding Solr	 288
Searching with SolrJ	 289
Indexing	 290

When should I use embedded Solr?	 294
In-process indexing	 294
Standalone desktop applications	 295
Upgrading from legacy Lucene	 295

Using JavaScript with Solr	 296
Wait, what about security?	 297
Building a Solr powered artists autocomplete widget with jQuery
and JSONP	 298
AJAX Solr	 303

Using XSLT to expose Solr via OpenSearch	 305
OpenSearch based Browse plugin	 306

Installing the Search MBArtists plugin	 306
Accessing Solr from PHP applications	 309

solr-php-client	 310
Drupal options	 311

Apache Solr Search integration module	 312
Hosted Solr by Acquia	 312

Ruby on Rails integrations	 313
The Ruby query response writer	 313

Table of Contents

[viii]

sunspot_rails gem	 314
Setting up MyFaves project	 315
Populating MyFaves relational database from Solr	 316
Build Solr indexes from a relational database	 318
Complete MyFaves website	 320

Which Rails/Ruby library should I use?	 322
Nutch for crawling web pages	 323
Maintaining document security with ManifoldCF	 324

Connectors	 325
Putting ManifoldCF to use	 325

Summary	 328
Chapter 10: Scaling Solr	 329

Tuning complex systems	 330
Testing Solr performance with SolrMeter	 332
Optimizing a single Solr server (Scale up)	 334

Configuring JVM settings to improve memory usage	 334
MMapDirectoryFactory to leverage additional virtual memory	 335

Enabling downstream HTTP caching	 335
Solr caching	 338

Tuning caches	 339
Indexing performance	 340

Designing the schema	 340
Sending data to Solr in bulk	 341
Don't overlap commits	 342
Disabling unique key checking	 343
Index optimization factors	 343

Enhancing faceting performance	 345
Using term vectors	 345
Improving phrase search performance	 346

Moving to multiple Solr servers (Scale horizontally)	 348
Replication	 349
Starting multiple Solr servers	 349

Configuring replication	 351
Load balancing searches across slaves	 352

Indexing into the master server	 352
Configuring slaves	 353

Configuring load balancing	 354
Sharding indexes	 356

Assigning documents to shards	 357
Searching across shards (distributed search)	 358

Combining replication and sharding (Scale deep)	 360
Near real time search	 362

Where next for scaling Solr?	 363
Summary	 364

Table of Contents

[ix]

Appendix: Search Quick Reference	 365
Quick reference	 366

Index	 369

www.allitebooks.com

http://www.allitebooks.org

Preface
If you are a developer building an application today then you know how important a
good search experience is. Apache Solr, built on Apache Lucene, is a wildly popular
open source enterprise search server that easily delivers powerful search and faceted
navigation features that are elusive with databases. Solr supports complex search
criteria, faceting, result highlighting, query-completion, query spellcheck, relevancy
tuning, and more.

Apache Solr 3 Enterprise Search Server is a comprehensive reference guide for every
feature Solr has to offer. It serves the reader right from initiation to development to
deployment. It also comes with complete running examples to demonstrate its use
and show how to integrate Solr with other languages and frameworks.

Through using a large set of metadata about artists, releases, and tracks courtesy of
the MusicBrainz.org project, you will have a testing ground for Solr, and will learn
how to import this data in various ways. You will then learn how to search this data
in different ways, including Solr's rich query syntax and "boosting" match scores
based on record data. Finally, we'll cover various deployment considerations to
include indexing strategies and performance-oriented configuration that will enable
you to scale Solr to meet the needs of a high-volume site.

What this book covers
Chapter 1, Quick Starting Solr, will introduce Solr to you so that you understand its
unique role in your application stack. You'll get started quickly by indexing example
data and searching it with Solr's sample "/browse" UI.

Chapter 2, Schema and Text Analysis, explains that the first step in using Solr is writing
a Solr schema for your data. You'll learn how to do this including telling Solr how to
analyze the text for tokenization, synonyms, stemming, and more.

Preface

[2]

Chapter 3, Indexing Data, will explore all of the options Solr offers for importing data,
such as XML, CSV, databases (SQL), and text extraction from common documents.

Chapter 4, Searching, you'll learn the basics of searching with Solr in this chapter.
Primarily, this covers the query syntax, from the basics to boolean options to more
advanced wildcard and fuzzy searches.

Chapter 5, Search Relevancy, in this advanced chapter you will learn how Solr scores
documents for relevancy ranking. We'll review different options to influence the
score, called boosting, and apply it to common examples like boosting recent
documents and boosting by a user vote.

Chapter 6, Faceting, faceting is Solr's killer feature and this chapter will show you how
to use it. You'll learn about the three types of facets and how to build filter queries
for a faceted navigation interface.

Chapter 7, Search Components, you'll discover how to use a variety of valuable search
features implemented as Solr search components. This includes result highlighting,
query spell-check, query suggest/complete, result grouping, and more.

Chapter 8, Deployment, will guide you through deployment considerations in this
chapter to include deploying Solr to Apache Tomcat, to logging, and to security.

Chapter 9, Integrating Solr, will explore some external integration options to interface
with Solr. This includes some language specific frameworks for Java, Ruby, PHP,
and JavaScript, as well as a web crawler, and more.

Chapter 10, Scaling Solr, you'll learn how to tune Solr to get the most out of it. Then
we'll show you two mechanisms in Solr to scale out to multiple Solr instances when
just one instance isn't sufficient.

Appendix, Search Quick Reference, is a convenient reference for common search related
request parameters.

What you need for this book
In Chapter 1, the Getting Started section explains what you need in detail. In summary,
you should obtain:

•	 Java 6, a JDK release. Do not use Java 7.
•	 Apache Solr 3.4.
•	 The code supplement to the book at:

http://www.solrenterprisesearchserver.com/

Preface

[3]

Who this book is for
This book is for developers who want to learn how to use Apache Solr in their
applications. Only basic programming skills are needed.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "You should use LRUCache because the
cache is evicting content frequently."

A block of code is set as follows:

<fieldType name="title_commonGrams" class="solr.TextField"
 positionIncrementGap="100"">
<analyzer type="index">
<tokenizer class="solr.StandardTokenizerFactory"/>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<filter class="solr.EnglishMinimalStemFilterFactory"/>
<filter class="solr.CommonGramsQueryFilterFactory"
 words="commongrams.txt" ignoreCase="true""/>
</analyzer>
</fieldType>

Any command-line input or output is written as follows:

>>unzip mb_releases.csv.zip

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "While you
can use the Solr Admin statistics page to pull back these results".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a
note in the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@
packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any
list of existing errata, under the Errata section of that title. Any existing errata can
be viewed by selecting your title from http://www.packtpub.com/support. The
authors are also publishing book errata to include the impact that upcoming Solr
releases have on the book. You can find this on their website:
http://www.solrenterprisesearchserver.com/

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Quick Starting Solr
Welcome to Solr! You've made an excellent choice in picking a technology to power
your search needs. In this chapter, we're going to cover the following topics:

•	 An overview of what Solr and Lucene are all about
•	 What makes Solr different from databases
•	 How to get Solr, what's included, and what is where
•	 Running Solr and importing sample data
•	 A quick tour of the admin interface and key configuration files

An introduction to Solr
Solr is an open source enterprise search server. It is a mature product powering
search for public sites such as CNET, Zappos, and Netflix, as well as countless other
government and corporate intranet sites. It is written in Java, and that language is
used to further extend and modify Solr through simple plugin interfaces. However,
being a server that communicates using standards such as HTTP and XML and
JSON, knowledge of Java is useful but not a requirement. In addition to the standard
ability to return a list of search results for some query, Solr has numerous other
features such as result highlighting, faceted navigation (as seen on most e-commerce
sites), query spell correction, query completion, and a "more like this" feature for
finding similar documents.

You will see many references in this book to the term faceting, also
known as faceted navigation. It's a killer feature of Solr that most people
have experienced at major e-commerce sites without realizing it. Faceting
enhances search results with aggregated information over all of the
documents found in the search. Faceting information is typically used as
dynamic navigational filters, such as a product category, date and price
groupings, and so on. Chapter 6, Faceting is dedicated to this technology.

Quick Starting Solr

[8]

Lucene, the underlying engine
Before describing Solr, it is best to start with Apache Lucene, the core technology
underlying it. Lucene is an open source, high-performance text search engine library.
Lucene was developed and open sourced by Doug Cutting in 2000 and has evolved
and matured since then with a strong online community and is the most widely
deployed search technology today. Being just a code library, Lucene is not a server
and certainly isn't a web crawler either. This is an important fact. There aren't even
any configuration files.

In order to use Lucene, you write your own search code using its API, starting
with indexing documents: first you supply documents to it. A document in Lucene
is merely a collection of fields, which are name-value pairs containing text or
numbers. You configure Lucene with a text analyzer that will tokenize a field's text
from a single string into a series of tokens (words) and further transform them by
chopping off word stems, called stemming, substitute synonyms, and/or perform
other processing. The final tokens are said to be the terms. The aforementioned
process starting with the analyzer is referred to as text analysis. Lucene indexes
each document into its so-called index stored on disk. The index is an inverted
index, which means it stores a mapping of a field's terms to associated documents,
along with the ordinal word position from the original text. Finally you search for
documents with a user-provided query string that Lucene parses according to its
syntax. Lucene assigns a numeric relevancy score to each matching document and
only the top scoring documents are returned.

The brief description just given of how to use Lucene is how
Solr works at its core. It contains many important vocabulary
words you will see throughout this book—they will be explained
further at appropriate times.

The major features found in Lucene are:

•	 An inverted index for efficient retrieval of documents by indexed terms. The
same technology supports numeric data with range queries too.

•	 A rich set of chainable text analysis components, such as tokenizers and
language-specific stemmers that transform a text string into a series of terms
(words).

•	 A query syntax with a parser and a variety of query types from a simple term
lookup to exotic fuzzy matching.

•	 A good scoring algorithm based on sound Information Retrieval (IR)
principles to produce the more likely candidates first, with flexible means to
affect the scoring.

Chapter 1

[9]

•	 Search enhancing features like:
°° A highlighter feature to show query words found in context.
°° A query spellchecker based on indexed content or a supplied

dictionary.
°° A "more like this" feature to list documents that are statistically

similar to provided text.

To learn more about Lucene, read Lucene In Action, 2nd Edition by
Michael McCandless, Erik Hatcher, and Otis Gospodnetić.

Solr, a Lucene-based search server
Apache Solr is an enterprise search server based on Lucene. Lucene is such a big part
of what defines Solr that you'll see many references to Lucene directly throughout
this book. Developing a high-performance, feature-rich application that uses Lucene
directly is difficult and it's limited to Java applications. Solr solves this by exposing
the wealth of power in Lucene via configuration files and HTTP parameters, while
adding some features of its own. Some of Solr's most notable features beyond
Lucene are:

•	 A server that communicates over HTTP via XML and JSON data formats.
•	 Configuration files, most notably for the index's schema, which defines the

fields and configuration of their text analysis.
•	 Several caches for faster search responses.
•	 A web-based administrative interface including:

°° Runtime search and cache performance statistics.
°° A schema browser with index statistics on each field.
°° A diagnostic tool for debugging text analysis.

•	 Faceting of search results.
•	 A query parser called dismax that is more usable for parsing end user

queries than Lucene's native query parser.
•	 Geospatial search for filtering and sorting by distance.
•	 Distributed-search support and index replication for scaling Solr.
•	 Solritas: A sample generic web search UI demonstrating many of Solr's

search features.

www.allitebooks.com

http://www.allitebooks.org

Quick Starting Solr

[10]

Also, there are two contrib modules that ship with Solr that really stand out:

•	 The DataImportHandler (DIH): A database, e-mail, and file crawling data
import capability. It includes a debugger tool.

•	 Solr Cell: An adapter to the Apache Tika open source project, which can
extract text from numerous file types.

As of the 3.1 release, there is a tight relationship between Solr and
Lucene. The source code repository, committers, and developer mailing
list are the same, and they release together using the same version
number. This gives Solr an edge over other Lucene based competitors.

Comparison to database technology
There's a good chance you are unfamiliar with Lucene or Solr and you might be
wondering what the fundamental differences are between it and a database. You
might also wonder if you use Solr, whether you need a database.

The most important comparison to make is with respect to the data model—that is
the organizational structure of the data. The most popular category of databases is
a relational database—RDBMS. A defining characteristic of a relational database
is a data model based on multiple tables with lookup keys between them and a
join capability for querying across them. RDBMSs have a very flexible data model,
but this makes it harder to scale them easily. Lucene instead has a more limiting
document oriented data model, which is analogous to a single table without join
possibilities. Document oriented databases, such as MongoDB are similar in this
respect, but their documents can have a rich nested structure similar to XML or
JSON, for example. Lucene's document structure is flat, but it does support multi-
valued fields—that is a field with an array of values.

Taking a look at the Solr feature list naturally reveals plenty of search-oriented
technology that databases generally either don't have, or don't do well. Notable
features are relevancy score ordering, result highlighting, query spellcheck, and
query-completion. These features are what drew you to Solr, no doubt.

Chapter 1

[11]

Can Solr be a substitute for your database? You can add data to it and get it back
out efficiently with indexes; so on the surface it seems plausible, provided the flat
document-oriented data model suffices. The answer is that you are almost always better
off using Solr in addition to a database. Databases, particularly RDBMSs, generally excel
at ACID transactions, insert/update efficiency, in-place schema changes, multi-user
access control, bulk data retrieval, and supporting rich ad-hoc query features. Solr
falls short in all of these areas but I want to call attention to these:

•	 No updates: If any part of a document in Solr needs to be updated, the entire
document must be replaced. Internally, this is a deletion and an addition.

•	 Slow commits: Solr's search performance and certain features are made
possible due to extensive caches. When a commit operation is done to finalize
recently added documents, the caches are rebuilt. This can take between
seconds and a minute or even worse in extreme cases.

I wrote more about this subject online: "Text Search, your
Database or Solr" at http://bit.ly/uwF1ps

Getting started
We're going to get started by downloading Solr, examine its directory structure, and
then finally run it. This sets you up for the next section, which tours a running Solr
server.

Get Solr: You can download Solr from its website: http://lucene.apache.org/
solr/. The last Solr release this book was written for is version 3.4. Solr has had
several relatively minor point-releases since 3.1 and it will continue. In general I
recommend using the latest release since Solr and Lucene's code are extensively
tested. For book errata describing how future Solr releases affect the book content,
visit our website: http://www.solrenterprisesearchserver.com/. Lucid
Imagination also provides a Solr distribution called "LucidWorks for Solr". As of this
writing it is Solr 3.2 with some choice patches that came after to ensure its stability
and performance. It's completely open source; previous LucidWorks releases were
not as they included some extras with use limitations. LucidWorks for Solr is a good
choice if maximum stability is your chief concern over newer features.

Get Java: The only prerequisite software needed to run Solr is Java 5 (a.k.a. java
version 1.5) or later—ideally Java 6. Typing java –version at a command line will
tell you exactly which version of Java you are using, if any.

Quick Starting Solr

[12]

Use latest version of Java!
The initial release of Java 7 included some serious bugs that were
discovered shortly before its release that affect Lucene and Solr. The
release of Java 7u1 on October 19th, 2011 resolves these issues. These
same bugs occurred with Java 6 under certain JVM switches, and Java
6u29 resolves them. Therefore, I advise you to use the latest Java release.

Java is available on all major platforms including Windows, Solaris, Linux, and Apple.
Visit http://www.java.com to download the distribution for your platform. Java
always comes with the Java Runtime Environment (JRE) and that's all Solr requires.
The Java Development Kit (JDK) includes the JRE plus the Java compiler and various
diagnostic utility programs. One such useful program is jconsole, which we'll discuss
in Chapter 8, Deployment and Chapter 10, Scaling Solr and so the JDK distribution is
recommended.

Solr is a Java-based web application, but you don't need to be
particularly familiar with Java in order to use it. This book assumes
no such knowledge on your part.

Get the book supplement: This book includes a code supplement available at our
website: http://www.solrenterprisesearchserver.com/. The software includes a
Solr installation configured for data from MusicBrainz.org, a script to download and
index that data into Solr—about 8 million documents in total, and of course various
sample code and material organized by chapter. This supplement is not required to
follow any of the material in the book. It will be useful if you want to experiment
with searches using the same data used for the book's searches or if you want to see
the code referenced in a chapter. The majority of code is for Chapter 9, Integrating Solr.

Solr's installation directory structure
When you unzip Solr after downloading it, you should find a relatively
straightforward directory structure:

•	 client: Convenient language-specific client APIs for talking to Solr.

Ignore the client directory
Most client libraries are maintained by other organizations, except for
the Java client SolrJ which lies in the dist/ directory. client/ only
contains solr-ruby, which has fallen out of favor compared to rsolr—
both of which are Ruby Solr clients. More information on using clients
to communicate with Solr is in Chapter 9.

Chapter 1

[13]

•	 contrib: Solr contrib modules. These are extensions to Solr. The final JAR
file for each of these contrib modules is actually in dist/; so the actual files
here are mainly the dependent JAR files.

°° analysis-extras: A few text analysis components that have large
dependencies. There are some "ICU" Unicode classes for multilingual
support, a Chinese stemmer, and a Polish stemmer. You'll learn more
about text analysis in the next chapter.

°° clustering: A engine for clustering search results. There is a 1-page
overview in Chapter 7, Search Component, referring you to Solr's
wiki for further information: http://wiki.apache.org/solr/
ClusteringComponent.

°° dataimporthandler: The DataImportHandler (DIH)—a very
popular contrib module that imports data into Solr from a database
and some other sources. See Chapter 3, Indexing Data.

°° extraction: Integration with Apache Tika– a framework for
extracting text from common file formats. This module is also called
SolrCell and Tika is also used by the DIH's TikaEntityProcessor—
both are discussed in Chapter 3, Indexing Data.

°° uima: Integration with Apache UIMA—a framework for extracting
metadata out of text. There are modules that identify proper names in
text and identify the language, for example. To learn more, see Solr's
wiki: http://wiki.apache.org/solr/SolrUIMA.

°° velocity: Simple Search UI framework based on the Velocity
templating language. See Chapter 9, Integrating Solr.

•	 dist: Solr's WAR and contrib JAR files. The Solr WAR file is the main artifact
that embodies Solr as a standalone file deployable to a Java web server.
The WAR does not include any contrib JARs. You'll also find the core of
Solr as a JAR file, which you might use if you are embedding Solr within
an application, and Solr's test framework as a JAR file, which is to assist in
testing Solr extensions. You'll also see SolrJ's dependent JAR files here.

•	 docs: Documentation—the HTML files and related assets for the public Solr
website, to be precise. It includes a good quick tutorial, and of course Solr's
API. Even if you don't plan on extending the API, some parts of it are useful
as a reference to certain pluggable Solr configuration elements—see the
listing for the Java package org.apache.solr.analysis in particular.

Quick Starting Solr

[14]

•	 example: A complete Solr server, serving as an example. It includes the Jetty
servlet engine (a Java web server), Solr, some sample data and sample Solr
configurations. The interesting child directories are:

°° example/etc: Jetty's configuration. Among other things, here you
can change the web port used from the pre-supplied 8983 to 80
(HTTP default).

°° exampledocs: Sample documents to be indexed into the default Solr
configuration, along with the post.jar program for sending the
documents to Solr.

°° example/solr: The default, sample Solr configuration. This should
serve as a good starting point for new Solr applications. It is used in
Solr's tutorial and we'll use it in this chapter too.

°° example/webapps: Where Jetty expects to deploy Solr from. A copy
of Solr's WAR file is here, which contains Solr's compiled code.

Solr's home directory and Solr cores
When Solr starts, the very first thing it does is determine where the Solr home
directory is. Chapter 8, Deployment covers the various ways to tell Solr where it is,
but by default it's the directory named simply solr relative to the current working
directory where Solr is started. You will usually see a solr.xml file in the home
directory, which is optional but recommended. It mainly lists Solr cores. For
simpler configurations like example/solr, there is just one Solr core, which uses
Solr's home directory as its core instance directory. A Solr core holds one Lucene
index and the supporting Solr configuration for that index. Nearly all interactions
with Solr are targeted at a specific core. If you want to index different types of data
separately or shard a large index into multiple ones then Solr can host multiple Solr
cores on the same Java server. Chapter 8, Deployment has further details on multi-core
configuration.

A Solr core's instance directory is laid out like this:

•	 conf: Configuration files. The two I mention below are very important, but
it will also contain some other .txt and .xml files which are referenced by
these two.

•	 conf/schema.xml: The schema for the index including field type definitions
with associated analyzer chains.

•	 conf/solrconfig.xml: The primary Solr configuration file.
•	 conf/xslt: Various XSLT files that can be used to transform Solr's XML

query responses into formats such as Atom and RSS. See Chapter 9,
Integrating Solr.

Chapter 1

[15]

•	 conf/velocity: HTML templates and related web assets for rapid UI
prototyping using Solritas, covered in Chapter 9, Integrating Solr. The soon to
be discussed "browse" UI is implemented with these templates.

•	 data: Where Lucene's index data lives. It's binary data, so you won't be doing
anything with it except perhaps deleting it occasionally to start anew.

•	 lib: Where extra Java JAR files can be placed that Solr will load on startup.
This is a good place to put contrib JAR files, and their dependencies.

Running Solr
Now we're going to start up Jetty and finally see Solr running albeit without any data
to query yet.

We're about to run Solr directly from the unzipped installation. This is
great for exploring Solr and doing local development, but it's not what
you would seriously do in a production scenario. In a production
scenario you would have a script or other mechanism to start and stop
the servlet engine with the operating system—Solr does not include
this. And to keep your system organized, you should keep the example
directly as exactly what its name implies—an example. So if you want
to use the provided Jetty servlet engine in production, a fine choice
then copy the example directory elsewhere and name it something else.
Chapter 8, Deployment, covers how to deploy Solr to Apache Tomcat,
the most popular Java servlet engine. It also covers other subjects like
security, monitoring, and logging.

First go to the example directory, and then run Jetty's start.jar file by typing the
following command:

>>cd example

>>java -jar start.jar

The >> notation is the command prompt. These commands will work across *nix and
DOS shells. You'll see about a page of output, including references to Solr. When it is
finished, you should see this output at the very end of the command prompt:

2008-08-07 14:10:50.516::INFO: Started SocketConnector @ 0.0.0.0:8983

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com (url). If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support (url) and register to have the files e-mailed directly to you.

Quick Starting Solr

[16]

The 0.0.0.0 means it's listening to connections from any host (not just localhost,
notwithstanding potential firewalls) and 8983 is the port. If Jetty reports this, then it
doesn't necessarily mean that Solr was deployed successfully. You might see an error
such as a stack trace in the output if something went wrong. Even if it did go wrong,
you should be able to access the web server: http://localhost:8983. Jetty will give
you a 404 page but it will include a list of links to deployed web applications, which
will just be Solr for this setup. Solr is accessible at: http://localhost:8983/solr,
and if you browse to that page, then you should either see details about an error if
Solr wasn't loaded correctly, or a simple page with a link to Solr's admin page, which
should be http://localhost:8983/solr/admin/. You'll be visiting that link often.

To quit Jetty (and many other command line programs for that
matter), press Ctrl+C on the keyboard.

A quick tour of Solr
Start up Jetty if it isn't already running and point your browser to Solr's admin
site at: http://localhost:8983/solr/admin/. This tour will help you get your
bearings on this interface that is not yet familiar to you. We're not going to discuss it
in any depth at this point.

This part of Solr will get a dramatic face-lift for Solr 4. The current
interface is functional, albeit crude.

Chapter 1

[17]

The top gray area in the preceding screenshot is a header that is on every page of
the admin site. When you start dealing with multiple Solr instances—for example,
development versus production, multicore, Solr clusters—it is important to know
where you are. The IP and port are obvious. The (example) is a reference to the name
of the schema—a simple label at the top of the schema file. If you have multiple
schemas for different data sets, then this is a useful differentiator. Next is the current
working directory cwd, and Solr's home. Arguably the name of the core and the
location of the data directory should be on this overview page but they are not.

The block below this is a navigation menu to the different admin screens and
configuration data. The navigation menu includes the following choices:

•	 SCHEMA: This retrieves the schema.xml configuration file directly to the
browser. This is an important file which lists the fields in the index and
defines their types.

Most recent browsers show the XML color-coded and with controls to
collapse sections. If you don't see readable results and won't upgrade
or switch your browser, you can always use your browser's View
source command.

•	 CONFIG: This downloads the solrconfig.xml configuration file directly
to the browser. This is also an important file, which serves as the main
configuration file.

•	 ANALYSIS: This is used for diagnosing query and indexing problems
related to text analysis. This is an advanced screen and will be discussed
later.

•	 SCHEMA BROWSER: This is an analytical view of the schema reflecting
various heuristics of the actual data in the index. We'll return here later.

•	 REPLICATION: This contains index replication status information. It is only
shown when replication is enabled. More information on this is in
Chapter 10, Scaling Solr.

•	 STATISTICS: Here you will find stats such as timing and cache hit ratios. In
Chapter 10, Scaling Solr we will visit this screen to evaluate Solr's performance.

•	 INFO: This lists static versioning information about internal components to
Solr. Frankly, it's not very useful.

•	 DISTRIBUTION: This contains rsync-based index replication status
information. This replication approach predates the internal Java based
mechanism, and so it is somewhat deprecated. There is a mention in Chapter 10,
Scaling Solr of it that ultimately refers you to Solr's wiki for how to use it.

Quick Starting Solr

[18]

•	 PING: This returns an XML formatted status document. It is designed to
fail if Solr can't perform a search query you give it. If you are using a load
balancer or some other infrastructure that can check if Solr is operational,
configure it to request this URL.

•	 LOGGING: This allows you to adjust the logging levels for different parts
of Solr at runtime. For Jetty as we're running it, this output goes to the
console and nowhere else. See Chapter 8, Deployment for more information on
configuring logging.

•	 JAVA PROPERTIES: This lists Java system properties, which are basically
Java oriented global environment variables.

•	 THREAD DUMP: This displays a Java thread dump useful for experienced
Java developers in diagnosing problems.

After the main menu is the Make a Query text box where you can type in a simple
query. There's no data in Solr yet, so there's no point trying that right now.

•	 FULL INTERFACE: This brings you to a search form with more options.
The form is still very limited, however, and only allows a fraction of the
query options that you can submit to Solr. With or without this search form,
you will soon wind up directly manipulating the URL using this book as a
reference.

Finally, the bottom Assistance area contains useful information for Solr online. The
last section of this chapter has more information on such resources.

Loading sample data
Solr comes with some sample data and a loader script, found in the example/
exampledocs directory. We're going to use that for the remainder of this chapter
so that we can explore Solr more without getting into schema design and deeper
data loading options. For the rest of the book, we'll base the examples on the digital
supplement to the book—more on that later.

We're going to invoke the post.jar Java program, officially called SimplePostTool
with a list of Solr-formatted XML input files. Most JAR files aren't executable but
this one is. This simple program iterates over each argument given, a file reference,
and HTTP posts it to Solr running on the current machine at the example server's
default configuration—http://localhost:8983/solr/update. Finally, it will send
a commit command, which will cause documents that were posted prior to the last
commit to be saved and visible. Obviously, Solr must be running for this to work, so
ensure that it is first. Here is the command and its output:

Chapter 1

[19]

>> cd example/exampledocs

>>java -jar post.jar *.xml

SimplePostTool: version 1.4

SimplePostTool: POSTing files to http://localhost:8983/solr/update..

SimplePostTool: POSTing file gb18030-example.xml

SimplePostTool: POSTing file hd.xml

SimplePostTool: POSTing file ipod_other.xml

… etc.

SimplePostTool: COMMITting Solr index changes..

If you are using a Unix-like environment, you have an alternate option of using the
post.sh shell script, which behaves similarly by using curl. I recommend examining
the contents of the post.sh bash shell script for illustrative purposes, even if you
are on Windows—it's very short.

The post.sh and post.jar programs could be used in a production
scenario, but they are intended just for demonstration of the
technology with the example data.

Let's take a look at one of these XML files we just posted to Solr, monitor.xml:

<add>
<doc>
 <field name="id">3007WFP</field>
 <field name="name">Dell Widescreen UltraSharp 3007WFP</field>
 <field name="manu">Dell, Inc.</field>
 <field name="cat">electronics</field>
 <field name="cat">monitor</field>
 <field name="features">30" TFT active matrix LCD, 2560 x 1600,
 .25mm dot pitch, 700:1 contrast</field>
 <field name="includes">USB cable</field>
 <field name="weight">401.6</field>
 <field name="price">2199</field>
 <field name="popularity">6</field>
 <field name="inStock">true</field>
 <!-- Buffalo store -->
 <field name="store">43.17614,-90.57341</field>
</doc>
</add>

Quick Starting Solr

[20]

The XML schema for XML files that can be posted to Solr is very simple. This file
doesn't demonstrate all of the elements and attributes, but it shows most of what
matters. Multiple documents, represented by the <doc> tag, can be present in series
within the <add> tag, which is recommended in bulk data loading scenarios. The
other essential tag, not seen here, is <commit/> which post.jar and post.sh send
in a separate post. This syntax and command set may very well be all that you use.
More about these options and other data loading choices will be discussed in Chapter 3,
Indexing Data.

A simple query
On Solr's main admin page, run a simple query that searches for the word monitor.
Simply type this word in and click on the Search button. The resulting URL will be:

http://localhost:8983/solr/select/?q=monitor&version=2.2&start=0&rows
=10&indent=on

Both this form and the Full Interface one are standard HTML forms; they are as
simple as they come. The form inputs become URL parameters to another HTTP GET
request which is a Solr search returning XML. The form only controls a basic subset
of all possible parameters. The main benefit to the form is that it applies the URL
escaping for special characters in the query, and for some basic options, you needn't
remember what the parameter names are. It is convenient to use the form as a
starting point for developing a search, and then subsequently refine the URL directly
in the browser instead of returning to the form.

Solr's search results are by default in XML. Most modern browsers, such as Firefox,
provide a good XML view with syntax coloring and hierarchical structure collapse
controls. Solr can format responses in JSON and other formats but that's a topic for
another time. They have the same basic structure as the XML you're about to see, by
the way.

The XML response consists of a <response/> element, which wraps the entire
message. The first child element contains request header metadata. Here is the
beginning of the response:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">3</int>
 <lst name="params">
 <str name="indent">on</str>
 <str name="rows">10</str>
 <str name="start">0</str>
 <str name="q">monitor</str>

Chapter 1

[21]

 <str name="version">2.2</str>
 </lst>
</lst>
…

Here we see:

•	 status: Is always zero unless there was a serious problem.
•	 QTime: Is the duration of time in milliseconds that Solr took to process the

search. It does not include streaming back the response. Due to multiple
layers of caching, you will find that your searches will often complete in a
millisecond or less if you've run the query before.

•	 params: Lists the request parameters. By default, it only lists
parameters explicitly in the URL; there are usually more specified in a
<requestHandler/> in solrconfig.xml.

More information on these parameters and many more are
in Chapter 4, Searching.

Next up is the most important part, the results.

<result name="response" numFound="2" start="0">

The numFound number is the number of documents matching the query in the entire
index. start is the index offset into those matching documents that are returned in
the response below. Notice there is a search parameter by the same name as seen
in the response header. There is also a parameter rows which specifies how many
matching documents to return—just 10 in this example.

Often, you'll want to see the score of each matching document, which is a number
assigned to it based on how relevant the document is to the search query. This search
response doesn't refer to scores because it needs to be explicitly requested in the fl
parameter—a comma separated field list. The full interface form includes the score
by default. A search that requests the score will have a maxScore attribute in the
<result/> element, which is the maximum score of all documents that matched the
search. It's independent of the sort order or result paging parameters.

Quick Starting Solr

[22]

The content of the result tag is a list of documents that matched the query. The
default sort is by descending score. Later, we'll do some sorting by specified fields.

<doc>
 <arrname="cat">
 <str>electronics</str>
 <str>monitor</str>
 </arr>
 <arr name="features">
 <str>30" TFT active matrix LCD, 2560 x 1600,.25mm dot pitch,
 700:1 contrast</str>
 </arr>
 <str name="id">3007WFP</str>
 <bool name="inStock">true</bool>
 <str name="includes">USB cable</str>
 <str name="manu">Dell, Inc.</str>
 <str name="name">Dell Widescreen UltraSharp 3007WFP</str>
 <int name="popularity">6</int>
 <float name="price">2199.0</float>
 <str name="store">43.17614,-90.57341</str>
 <float name="weight">401.6</float>
</doc>
<doc>
...
</doc>
</result>
</response>

The document list is pretty straightforward. By default, Solr will list all of the stored
fields. Not all of the fields are necessarily stored—that is, you can query on them but
not retrieve their value—an optimization choice. Notice that it uses the basic data
types str, bool, date, int, and float. Also note that certain fields are multi-valued,
as indicated by an arr tag.

This was a basic keyword search. As you start adding more options like faceting and
highlighting, you will see additional XML following the result element.

Chapter 1

[23]

Some statistics
Let's take a look at the statistics admin page: http://localhost:8983/solr/
admin/stats.jsp. Before we loaded data into Solr, this page reported that numDocs
was 0, but now it should be 17. If you are using a version of Solr other than 3.4, then
this number may be different. The astute reader might observe we posted fewer
XML files to Solr. The discrepancy is due to some XML files containing multiple
Solr documents. maxDocs reports a number that is in some situations higher due to
documents that have been deleted but not yet committed. That can happen either
due to an explicit delete posted to Solr or by adding a document that replaces
another in order to enforce a unique primary key. While you're at this page, notice
that the request handler named /update has some stats too:

name /update
class org.apache.solr.handler.XmlUpdateRequestHandler
version $Revision: 1165749 $
description Add documents with XML
stats handlerStart: 1317530339671

requests: 15
errors: 0
timeouts: 0
totalTime: 5276
avgTimePerRequest: 351.73334
avgRequestsPerSecond: 1.0589994E-4

Another request handler you'll want to examine is named search, which has been
processing our search queries.

These statistics are calculated only for the current running Solr, they are
not stored to disk. As such, you cannot use them for long-term statistics.

Quick Starting Solr

[24]

The sample browse interface
The final destination of our quick Solr tour is to visit the so-called browse interface—
available at http://localhost:8983/solr/browse. It's for demonstrating various
Solr features:

•	 Standard keyword search. You can experiment with Solr's syntax.
•	 Query debugging: You can toggle display of the parsed query and document

score explain information.
•	 Query-suggest: Start typing a word like "enco" and suddenly "encoded" will

be suggested to you.
•	 Highlighting: The highlighting is in italics, which might not be obvious.
•	 More-Like-This: provides related products.
•	 Faceting: Field value facets, query facets, numeric range facets, and date

range facets.
•	 Clustering: You must first start Solr as the on-screen instructions describe.
•	 Query boosting: By price.
•	 Query spellcheck: Using it requires building the spellcheck index and

enabling spellcheck with a parameter. Chapter 7, Search Component, describes
how to do this.

•	 Geospatial search: You can filter by distance. Click on the spatial link at the
top-left to enable this.

This is also a demonstration of Solritas, which formats Solr requests using templates
based on Apache Velocity. The templates are VM files in example/solr/conf/
velocity. Solritas is primarily for search UI prototyping. It is not recommended for
building anything substantial. See Chapter 9, Integrating Solr for more information.

The browse UI as supplied assumes the default example Solr
schema. It will not work out of the box against another schema
without modification.

Here is a screenshot of the browse interface. Not all of it is captured in this image.

Chapter 1

[25]

Configuration files
The configuration files in example/solr/conf are extremely well documented.
We're not going to go over the details here but this should give you a sense of what
is where.

Unlike typical database software in which the configuration files don't need
to be modified much if at all from their defaults, you will modify Solr's
extensively—especially the schema. The as-provided state of these files is
really just an example to both demonstrate features and document their
configuration and should not be taken as the only way of configuring Solr.

Quick Starting Solr

[26]

Solr's schema for the index is defined in schema.xml. It contains field type definitions
within the <types> element and then the index's fields within the <fields> element.
You will observe that the names of the fields in the documents we added to Solr
intuitively correspond to the sample schema. Aside from the fundamental parts of
defining the fields, you may also notice <copyField> elements, which copy an input
field as provided to another field. There are various reasons for doing this, but they
boil down to needing to index data in different ways for specific search purposes.
You'll learn all that you could want to know about the schema in the next chapter.

Solr's solrconfig.xml file contains lots of parameters that can be tweaked. At the
moment, we're just going to take a peak at the request handlers, which are defined
with <requestHandler> elements. They make up about half of the file. In our first
query, we didn't specify any request handler, so we got the default one:

<requestHandler name="search" class="solr.SearchHandler
default="true">
 <!-- default values for query parameters can be specified, these
 will be overridden by parameters in the request
 -->
 <lst name="defaults">
 <str name="echoParams">explicit</str>
 <int name="rows">10</int>
 </lst>
 <!-- … many other comments … -->
</requestHandler>

Each HTTP request to Solr, including posting documents and searches, goes through
a particular request handler. Handlers can be registered against certain URL paths by
naming them with a leading "/". When we uploaded the documents earlier, it went
to the handler defined like this, in which /update is a relative URL path:

<requestHandler name="/update" class="solr.XmlUpdateRequestHandler" />

The qt URL parameter can refer to a request handler by name as well.

Requests to Solr are nearly completely configurable through URL parameters
or POST'ed form parameters. They can also be specified in the request handler
definition within the <lst name="defaults">, element, such as how rows is set to
10 in the previously shown request handler. The well-documented file also explains
how and when they can be added to appends, or invariants named lst blocks.
This arrangement allows you to set up a request handler for a particular application
that will be searching Solr without forcing the application to specify all of its query
parameters. More information on request handlers is in Chapter 4, Searching.

Chapter 1

[27]

Resources outside this book
The following are some Solr resources other than this book:

•	 Apache Solr 3.1 Cookbook is another Solr book published by Packt. It is a style
of book that is comprised of a series of posed questions or problems followed
by their solution. http://www.packtpub.com/solr-3-1-enterprise-
search-server-cookbook/book

•	 Solr's Wiki: http://wiki.apache.org/solr/ has a lot of great
documentation and miscellaneous information. For a Wiki, it's fairly
organized too. In particular, if you are going to use a particular app-server in
production, then there is probably a Wiki page there on specific details.

•	 Within the Solr installation, you will also find that there are README.txt files
in many directories within Solr and that the configuration files are very well
documented. Read them!

•	 The solr-user@lucene.apache.org mailing list contains a wealth of
information. If you have a few discriminating keywords then you can find
nuggets of information in there with a search engine. The mailing lists
of Solr and other Lucene sub-projects are best searched at: http://www.
lucidimagination.com/search/ or http://search-lucene.com/solr or
Nabble.com.

I highly recommend that you subscribe to the Solr-users mailing
list. You'll learn a lot and potentially help others too.

•	 Solr's issue tracker contains information on enhancements and bugs. It's at
http://issues.apache.org/jira/browse/SOLR and it uses Atlassian's
JIRA software. Some of the comments attached to these issues can be
extensive and enlightening.

Notation convention: Solr's JIRA issues are referenced like this: SOLR-
64. You'll see such references in this book and elsewhere. You can easily
look these up at Solr's JIRA. You may also see issues for Lucene that
follow the same convention, for example, LUCENE-1215.

There are of course resources for Lucene, like the Lucene In Action book. If you intend
to dive into Solr's internals then you will find Lucene resources helpful, but that is
not the focus of this book.

http://search-lucene.com/solr

Quick Starting Solr

[28]

Summary
This completes a quick introduction to Solr. In the ensuing chapters, you're really
going to get familiar with what Solr has to offer. I recommend that you proceed in
order from the next chapter through Chapter 7, Search Components, because these
build on each other and expose nearly all of the capabilities in Solr. These chapters
are also useful as a reference to Solr's features. You can of course skip over sections
that are not interesting to you. Chapter 9, Integrating Solr, is one you might peruse at
any time, as it may have a section applicable to your Solr usage scenario. Finally, be
sure that you don't miss the appendix for a search quick-reference cheat-sheet.

The digital supplement to the book is available at http://www.
solrenterprisesearchserver.com/ which includes both source
code and a large multi-core Solr index. Our website should also
include post-publication errata that should ideally be reviewed before
continuing.

Schema and Text Analysis
The foundation of Solr is based on Lucene's index—the subject of this chapter. You
will learn about:

•	 Schema design decisions in which you map your source data to Lucene's
limited structure. In this book we'll consider the data from MusicBrainz.
org.

•	 The structure of the schema.xml file where the schema definition is defined.
Within this file are both the definition of field types and the fields of those
types that store your data.

•	 Text analysis—the configuration of how text is processed (tokenized and so
on) for indexing. This configuration affects whether or not a particular search
is going to match a particular document.

The following diagram shows the big picture of how various aspects of working with
Solr are related. In this chapter we are focusing on the foundational layer—the index:

www.allitebooks.com

http://www.allitebooks.org

Schema and Text Analysis

[30]

In a hurry?
This is a fairly important foundational chapter; that said, the subject
of text analysis can be skimmed in lieu of using the predefined field
types provided with Solr's example schema. Eventually, you will want
to return to make adjustments.

MusicBrainz.org
Instead of continuing to work with the sample data that comes with Solr, we're going
to use a large database of music metadata from the MusicBrainz project at http://
musicbrainz.org. The data is free and is submitted by a large community of users.
One way MusicBrainz offers this data is in the form of a large SQL file for import
into a PostgreSQL database. In order to make it easier for you to play with this
data, the online code supplement to this book includes the data in formats that can
readily be imported into Solr. Alternatively, if you already have your own data then
I recommend starting with that, using this book as a guide.

The MusicBrainz.org database is highly relational. Therefore, it will serve as an
excellent instructional data set to discuss Solr schema choices. The MusicBrainz
database schema is quite complex, and it would be a distraction to go over even half
of it. I'm going to use a subset of it and express it in a way that has a straightforward
mapping to the user interface seen on the MusicBrainz website. Each of these tables
depicted in the following diagram can be easily constructed through SQL sub-
queries or views from the actual MusicBrainz tables.

(albumjoin)

Release
(album,

albummeta)

Release-Event
(release) (country)

(language)

Artist Track

Chapter 2

[31]

To describe the major tables above, I'll use some examples here from my favorite
band, the Smashing Pumpkins.

•	 The Smashing Pumpkins is an artist with a type of "group" (a band). Some
artists (groups in particular) have members who are also other artists of type
"person". So this is a self-referential relationship. The Smashing Pumpkins has
Billy Corgan, Jimmy Chamberline, and others as members.

•	 An artist is attributed as the creator of a release. The most common type
of release is an "album" but there are also singles, EPs, compilations, and
others. Furthermore, releases have a "status" property that is either official,
promotional, or bootleg. A popular official album from the Smashing
Pumpkins is titled "Siamese Dream".

•	 A release can be published at various times and places which MusicBrainz
calls an "event" (a release-event). Each event contains the date, country,
music label, and format (CD or tape).

•	 A release is composed of one or more tracks. Siamese Dream has 13 tracks
starting with "Cherub Rock" and ending with "Luna". Note that a track is part
of just one release and so it is not synonymous with a song. For example, the
song "Cherub Rock" is not only a track on this release but also on a "Greatest
Hits" release, as well as quite a few others in the database. A track has a
PUID (PortableUniqueIdentifier), an audio fingerprinting technology quasi-
identifier based on the actual sound on a track. It's not foolproof as there are
collisions, but these are rare. Another interesting bit of data MusicBrainz
stores is the PUID "lookup count", which is how often it has been requested
by their servers—a decent measure of popularity.

By the way, I'll be using the word "entity" occasionally here in the data modeling
sense—it's basically a type of thing represented by the data. Artist, release, event, and
track are all entity types with respect to MusicBrainz. In a relational database, most
tables correspond to an entity type and the others serve to relate them or provide for
multiple values. In Solr, each document will have a primary entity type, and it may
contain other entities as a part of it too.

One combined index or separate indices
The following discussion concerns how to manage the searching of different types
of data, such as artists and releases from MusicBrainz. In the example MusicBrainz
configuration, each document of each type gets their own index but they all share the
same configuration. Although I wouldn't generally recommend it, this approach was
done for convenience and to reduce the complexity for this book at the expense of a
one-size-fits-all schema and configuration.

Schema and Text Analysis

[32]

A Solr server hosts one or more Solr Cores. A Solr Core is an instance of
Solr to include the configuration and index, sometimes the word "core"
is used synonymously with "index". Even if you have one type of data to
search for in an application, you might still use multiple cores (with the
same configuration) and shard the data for scaling. Managing Solr Cores
is discussed further in the deployment chapter.

One combined index
A combined index might also be called an aggregate index. As mentioned in the first
chapter, an index is conceptually like a single-table relational database schema, thus
sharing similarities with some NoSQL (non-relational) databases. In spite of this
limitation, there is nothing to stop you from putting different types of data (say,
artists and releases from MusicBrainz) into a single index. All you have to do is
use different fields for the different document types, and use a field to discriminate
between the types. An identifier field would need to be unique across all documents
in this index, no matter what the type is, so you could easily do this by concatenating
the field type and the entity's identifier. This may appear ugly from a relational
database design standpoint, but this isn't a database! More importantly, unlike a
database, there is no overhead whatsoever for some documents to not populate some
fields. This is where the spreadsheet metaphor can break down, because a blank cell
in a spreadsheet takes up space, but not in an index.

Here's a sample schema.xml snippet of the fields for a single combined index
approach:

<field name="id" ... /><!-- example: "artist:534445" -->
<field name="type" ... /><!-- example: "artist", "track", "release",
... -->
<field name="name" ... /><!-- (common to various types) -->

<!-- track fields: -->
<field name="PUID" ... />
<field name="num" ... /><!-- i.e. the track # on the release -->
<!-- ... -->
<!-- artist fields: -->
<field name="startDate" ... /><!-- date of first release -->
<field name="endDate" ... /><!-- date of last release -->
<field name="homeCountry" ... />
<!-- etc. -->

Chapter 2

[33]

A combined index has the advantage of being easier to maintain, since
it is just one configuration. It is also easier to do a search over multiple
document types at once since this will naturally occur assuming you search
on all relevant fields. For these reasons, it is a good approach to start off
with. However, consider the shortcomings to be described shortly.

For the book, we've taken a hybrid approach in which there are separate Solr Cores
(indices) for each MusicBrainz data type, but they all share the same configuration,
including the schema.

Problems with using a single combined index
Although a combined index is more convenient to set up, there are some problems
that you may face while using a single combined index:

•	 There may be namespace collision problems unless you prefix the field
names by type such as: artist_startDate and track_PUID. In the
example that we just saw, most entity types have a name. Therefore, it's
straightforward for all of them to have this common field. If the type of the
fields were different, then you would be forced to name them differently.

•	 If you share the same field for different entities like the name field in the
example that we just saw, then there are some problems that can occur when
using that field in a query and while filtering documents by document type.
These caveats do not apply when searching across all documents.

°° You will get scores that are of lesser quality due to sub-optimal
document frequency values, a component of the IDF part of the
score. The document frequency is simply the number of documents
in which a queried term exists for a specific field. If you put different
types of things into the same field, then what could be a rare word
for a track name might not be for an artist name. Scoring is described
further in Chapter 5, Search Relevancy.

°° Prefix, wildcard, and fuzzy queries will take longer and will be more
likely to reach internal scalability thresholds. If you share a field
with different types of documents, then the total number of terms to
search over is going to be larger, which takes longer for these query
types. It will also match more terms than it would otherwise, while
possibly generating a query that exceeds the maxBooleanClauses
threshold (configurable in solrconfig.xml).

Schema and Text Analysis

[34]

•	 The scores will be of lesser quality due to sub-optimal total document count
figure, a component of the IDF part of the score. The total document count
ends up being inflated instead of being limited to a specific document type
(although the problem isn't as bad as the sub-optimal document frequency).
Scoring is described further in Chapter 5, Search Relevancy.

•	 For a large number of documents, a strategy using multiple indices will
prove to be more scalable. Only testing will indicate what "large" is for your
data and your queries, but less than a million documents will not likely
benefit from multiple indices. Ten million documents has been suggested as
a reasonable maximum number for a single index. There are seven million
tracks in MusicBrainz, so we'll definitely have to put tracks in its own index.

•	 Committing changes to a Solr index invalidates the caches used to speed
up querying. If this happens often, and the changes are usually to one type
of entity in the index, then you will get better query performance by using
separate indices.

Separate indices
For separate indices, you simply develop your schemas independently. You can use
a combined schema as previously described and use it for all of your cores so that
you don't have to manage them separately; it's not an approach for the purists but
it is convenient and it's what we've done for the book example code. The rest of the
discussion here assumes the schemas are independent.

To share the same schema field type definitions (described soon) across
your schemas without having to keep them in sync, use the XInclude
feature. XInclude is described in Chapter 8, Deployment.

If you do develop separate schemas and if you need to search across your indices
in one search then you must perform a distributed search, described in the last
chapter. A distributed search is usually a feature employed for a large corpus but
it applies here too. Be sure to read more about it before using it since there are
some limitations. As in the combined-schema, you will need a unique ID across all
documents and you will want a field "type" to differentiate documents in your search
results. You don't need commonly named fields to search on since the query will be
processed at each core using the configuration there to determine, for example, what
the default search field is.

Chapter 2

[35]

You can't go wrong with multiple indices (Solr Cores); it's just a bit more
to manage. And just because you have multiple indices doesn't preclude
sharing as much of the configuration (including the schema) as you want
to amongst the cores. The deployment chapter will discuss configuring
the cores including sharing them and parameterizing them.

Schema design
A key thing to come to grips with is that the queries you need Solr to support
completely drive your Solr schema design. Conversely, relational databases typically
use standard third normal form decomposition of the data, largely because they have
strong relational-join support. Since queries drive the Solr schema design, all the data
needed to match a document, that is the criteria, must be in the document matched,
not in a related one. To satisfy that requirement, data that would otherwise exist
in one place is copied into related documents that need it to support a search. For
example, an artist's name in MusicBrainz would not just exist on an artist document
but also in a track document to support searching for tracks by artist. This may feel
dirty because you're probably used to thinking in terms of relational databases.

Even if you're not working with a database as your source data,
these concepts still apply. So pay close attention to this important
subject in any case.

At this point I'm going to outline a series of steps to follow in order to arrive at one
or more Solr schemas to power searches for an application of any sort. For specifics,
we will consider the MusicBrainz.org website and hypothetically how it could
work. It goes as far as listing the fields but not into text analysis or making changes
for particular search features, like faceting. In truth, schema design is somewhat
creative and it's always evolutionary—so consider these steps a guide for your first time
at it, not a foolproof process.

Schema and Text Analysis

[36]

Step 1: Determine which searches are going
to be powered by Solr
Any text search capability is going to be Solr powered. At the risk of stating the
obvious, I'm referring strictly to those places where a user types in a bit of text and
subsequently gets some search results. On the MusicBrainz website, the main search
function is accessed through the form that is always present on the left. There is also
a more advanced form that adds a few options but is essentially the same capability,
and I treat it as such from Solr's point of view. We can see the MusicBrainz search
form in the following screenshot:

Once we look through the remaining steps, we may find that Solr should
additionally power some faceted navigation in areas that are not accompanied by
text search (that is, the facets are of the entire data set, not necessarily limited to the
search results of a text query alongside it). An example of this at MusicBrainz is the
"Top Voters" tally, which I'll address soon.

Step 2: Determine the entities returned from
each search
For the MusicBrainz search form, this is easy. The entities are: Artists, Releases,
Tracks, Labels, and Editors. It just so happens that in MusicBrainz, a search will only
return one entity type. However, that needn't be the case. Note that internally, each
result from a search corresponds to a distinct document in the Solr index and so each
entity will have a corresponding document. This entity also probably corresponds to
a particular row in a database table, assuming that's where it's coming from.

The book examples and digital companion data only make use of
MusicBrainz artists, releases, and tracks.

Chapter 2

[37]

Step 3: Denormalize related data
For each entity type, find all of the data in the schema that will be needed across all
searches of it. By "all searches of it," I mean that there might actually be multiple
search forms, as identified in Step 1. Such data includes any data queried for (that
is, criteria to determine whether a document matches or not) and any data that is
displayed in the search results. The end result of denormalization is to have each
document sufficiently self-contained, even if the data is duplicated across the
index(es). Again, this is because Solr does not (yet) support relational joins.

Use Solr 4 to get join support
Solr 4 is not released yet as of this writing, but it includes many features
already committed, including join support. A join allows a query to
match a document based on data in another document related by some
field in common. Without this feature, you need to denormalize data but
that can be prohibitive in some circumstances. For more information, see:
http://wiki.apache.org/solr/Join

Let's see an example. Consider a search for tracks matching Cherub Rock:

Denormalizing—'one-to-one' associated data
A MusicBrainz track's name and duration are definitely in the track table, but the
artist and album names are each in their own tables in the MusicBrainz schema.
This is a relatively simple case, because each track has no more than one artist or
album. Both the artist name and album name would get their own field in Solr's flat
schema for a track. They also happen to be elsewhere in our Solr schema, because
artists and albums were identified in Step 2. Since the artist and album names are not
unambiguous references, it is useful to also add the IDs for these tables into the track
schema to support linking in the user interface, among other things.

Schema and Text Analysis

[38]

Denormalizing—'one-to-many' associated data
One-to-many associations can be easy to handle in the simple case of a field requiring
multiple values. Unfortunately, databases usually make this harder than it should be
if it's just a simple list. However, Solr's fields directly support the notion of multiple
values. Remember in the MusicBrainz schema that an artist of type group can have
some number of other artists as members. Although MusicBrainz's current search
capability doesn't leverage this, we'll capture it anyway because it is useful for more
interesting searches. The Solr schema to store this would simply have a member
name field that is multi-valued. The member_id field alone would be insufficient,
because denormalization requires that the member's name be copied into the artist.
This example is a good segue to how things can get a little more complicated…

If we only record the member name, then it is problematic to do things like have
links in the UI from a band member to that member's detail page. This is because we
don't have that member's artist ID, only their name. So we'll add a multi-valued field
for the member's ID. Multi-valued fields maintain ordering so that the two fields
would have corresponding values at a given index. Beware, there can be a tricky case
when one of the values can be blank, and you need to come up with a placeholder.
The client code would have to know about this placeholder.

What you should not do is try to shove different types of data into the
same field by putting both the artist IDs and names into one field. It
could introduce text analysis problems, as a field would have to satisfy
both types, and it would require the client to parse out the pieces. The
exception to this is when you are merely storing it for display, not
searching it. Then you can store whatever you want in a field.

A problem with denormalizing one-to-many data comes into play when multiple
fields from the other entity are brought in, and you need to search on more than
one of those fields at once. For a hypothetical example, imagine a search for releases
that contain a track with a particular word in the name and with a particular
minimum duration. Both the track name and duration fields on a release would
be multi-valued, and a search would have criteria for both. Unfortunately, Solr
would erroneously return releases where one track's name satisfied the criteria and
a separate track's duration satisfied the criteria but not necessarily for the same
track. One work-around is searching the track index instead of the release one and
using Solr's new result grouping feature to group by release. This solution of course
depends on an additional index holding entity relationships going the other way. If
you are faced with this challenge but can't create this additional index because the
index would be prohibitively large for your data, then you may have to wait till Solr
4's join support.

Chapter 2

[39]

Step 4: (Optional) Omit the inclusion of fields
only used in search results
It's not likely that you will actually do this, but it's important to understand the
concept. If there is any data shown on the search results that is not queryable, not
sorted upon, not faceted on, nor are you using the highlighter feature for, and for
that matter are not using any Solr feature that uses the field except to simply return
it in search results, then it is not necessary to include it in the schema for this entity.
Let's say, for the sake of argument, that the only information queryable, sortable, and
so on is a track's name, when doing a query for tracks. You can opt not to inline the
artist name, for example, into the track entity. When your application queries Solr
for tracks and needs to render search results with the artist's name, the onus would
be on your application to get this data from somewhere—it won't be in the search
results from Solr. The application might look these up in a database, in some caching
middleware, or perhaps even query our Solr artist index.

This clearly makes generating a search results screen more difficult, because you
now have to get the data from more than one place. Moreover, to do it efficiently,
you would need to take care to query the needed data in bulk, instead of each row
individually. Additionally, it would be wise to consider a caching strategy to reduce
the queries to the other data source. It will, in all likelihood, slow down the total
render time too. However, the benefit is that you needn't get the data and store it into
the index at indexing time. It might be a lot of data, which would grow your index,
or it might be data that changes often, necessitating frequent index updates.

If you are using distributed search, as discussed in Chapter 9, Integrating Solrh there
is some performance gain in not sending too much data around in the requests. Let's
say that you have song lyrics for each track, it is distributed on 20 machines, and you
get 100 results. This could result in 2,000 records being sent around the network. Just
sending the IDs around would be much more network efficient, but then this leaves
you with the job of collecting the data elsewhere before display. The only way to
know if this works for you is to test both scenarios. In general, if the data in question
is not large then keep it in Solr.

Schema and Text Analysis

[40]

At the other end of the extreme is storing all data in Solr. Why not? At least in the
case of MusicBrainz, it wouldn't be appropriate. Take for example the Top Voters
tally. The account names listed are actually editors in MusicBrainz terminology. This
piece of the screen tallies an edit, grouped by the editor who performed the edit. It's
the edit that is the entity in this case. The following screenshot shows the Top Voters
(aka editors), which are tallied by the number of edits:

This data simply doesn't belong in an index, because there's no use case for searching
edits, only lookup when we want to see the edits on some other entity like an artist.
If you insisted on having the voter's tally (as seen above) powered by Solr, then
you'd have to put all this data (of which there is a lot!) into an index, just because you
wanted a simple statistical list of top voters. It's just not worth it!

One objective guide to help you decide on whether to put an entity in Solr or not is to
ask yourself if users will ever be doing a text search on that entity—a feature where
index technology stands out from databases. If not, then you probably don't want the
entity in your Solr index.

The schema.xml file
Let's finally explore a Solr schema.

Before we continue, find a schema.xml file to follow along. This file belongs in
the conf directory for a Solr instance configuration. For simple single-core Solr
setups, this is the same as a Solr home directory. In the example code distributed
with the book, available online, I suggest looking at cores/mbtype/conf/schema.
xml. If you are working off of the Solr distribution, you'll find it in example/solr/
conf/schema.xml. The example schema.xml is loaded with useful field types,
documentation, and field definitions used for the sample data that comes with Solr.

Chapter 2

[41]

I prefer to initialize a Solr configuration by copying the example Solr
home directory and liberally modifying it as needed, ripping out
or commenting what I don't need (which is often a lot). This is half
way between starting with nothing, or starting with the example and
making essential modifications. If you do start with Solr's example
configuration, be sure to revisit your configuration at some point to
clean out what you aren't using. In addition, it's tempting to keep the
existing documentation comments, but you can always refer back to
what comes with Solr as needed and keep your config file clean.

At the start of the file is the schema opening tag:

<schema name="musicbrainz" version="1.4">

We've set the name of this schema to musicbrainz, the name of our application. If
we used different schema files, then we should name them differently to
differentiate them.

Defining field types
The first section of the schema is the definition of the field types. In other words,
these are the data types. This section is enclosed in the <types/> element and will
consume lots of the file's content. The field types declare the types of fields, such as
booleans, numbers, dates, and various text flavors. They are referenced later by the
field definitions under the <fields/> element. Here is the field type for a boolean:

<fieldType name="boolean" class="solr.BoolField"
sortMissingLast="true" omitNorms="true"/>

A field type has a unique name and is implemented by a Java class specified by the
class attribute.

A fully qualified classname in Java looks like org.apache.solr.
schema.BoolField. The last piece is the simple name of the class,
and the part preceding it is called the package name. In order to make
configuration files in Solr more concise, the package name can be
abbreviated to just solr for most of Solr's packages.

Attributes other than the name and class represent configuration options; most are
applicable to all types, like omitNorms, and some are specific to the implementing
class. They can usually be overridden at the field declaration too. In addition to these
attributes, there is also the text analysis configuration that is only applicable to text
fields. That will be covered later in this chapter.

Schema and Text Analysis

[42]

Built-in field type classes
There are a number of built-in field types and nearly all are present and documented
to some extent in Solr's example schema. We're not going to enumerate them all here,
but instead highlight some of them worthy of more explanation.

Numbers and dates
There are no less than five different field types to use to store an integer, perhaps six
if you want to count string! It's about the same for float, double, long, and date. And
to think that you probably initially thought this technology only did text! I'll explain
when to use which, using Integer as an example. Most have an analogous name for
the other numeric and date types. The field types with names starting with "Trie" should
serve 95% of your needs. To clean up your schema, consider deleting the others.

•	 TrieIntField (with precisionStep = 0), commonly named "int". This is a
good default field suitable for most uses.

•	 TrieIntField (with precisionStep> 0), commonly named "tint". If you
expect to do numeric range queries (which include faceted ranges) over
many values, then this field type has unbeatable performance at query
time at the expense of a little more disk and indexing time cost. The default
value configured in Solr's example schema is 8 for numeric and 6 for
date; I recommend keeping these defaults. Smaller numbers (but > 0) will
increase indexing space and time for query range performance; although the
performance gains rapidly diminish with each step.

•	 SortableIntField, commonly named "sint". This is similar to Trie with
precisionStep = 0 with the additional option of being able to specify
sortMissingFirst and sortMissingLast, described shortly. DateField
doesn't follow this naming convention but it also qualifies here.

•	 IntField, commonly named "pint". This is a legacy implementation; don't
use it.

•	 BCDIntField (Binary Coded Decimal). Don't bother with it.

All of these numeric types sort in their natural numeric order instead of
lexicographically.

Finally, there is a field type called ExternalFileField, which reads its float values
from a plain text file instead of the index. It was designed for sorting or influencing
scores of documents based on data that might change quickly (for example, a rating
or click-through) without having to re-index a document. Remember that Lucene
fundamentally cannot update just a single field; entire documents need to be re-
indexed. This is a work-around for certain usecases. It is discussed further
in Chapter 5, Search Relevancy.

Chapter 2

[43]

Geospatial
Solr's geospatial support spans multiple parts of Solr from field types to query
parsers, to function queries. Instead of having you read relevant parts of three
chapters, I've consolidated it into Chapter 4, Searching.

Field options
The attributes listed here are common attributes applicable to most if not all
field types.

These options are assumed to be boolean (true/false) unless indicated,
otherwise. Most default to false except for indexed and stored.
Some of these options can be specified in the field type definition when
applicable to any field of this type. The indented options defined below,
underneath indexed (and stored) imply indexed (and stored) must
be true.

•	 indexed: Indicates that this data can be searched and sorted. The only
purpose a non-indexed field has is to be returned by Solr in search results.

°° sortMissingLast, sortMissingFirst: Sorting on a field with one of
these set to true indicates on which side of the search results to put
documents that have no data for the specified field, regardless of the
sort direction. The default behavior for such documents is to appear
first for ascending and last for descending.

°° omitNorms: (advanced) Basically, if you don't want the length of a field
to affect its scoring (see Chapter 5, Search Relevancy) or it isn't used in
the score any way (such as for faceting), and you aren't doing index-
time document boosting (introduced in the next chapter), then enable
this. Aside from its affect on scores, it saves a little memory too.

°° omitPositions: (advanced, Solr 3.4) Omits term position
information from the index to save a little space. Phrase queries won't
work any more.

°° omitTermFreqAndPositions: (advanced) Omits term frequency and
term positions from the index to save a little space. Phrase queries
won't work and scores will be less effective.

Schema and Text Analysis

[44]

°° termVectors: (advanced) This will tell Lucene to store information
that is used in a few cases to improve search performance. If a field
is to be used by the MoreLikeThis feature, or for highlighting of a
large text field, then try enabling this. It can substantially increase the
index size and indexing time so do a before-and-after measurement.
There are two more options which add more data to term vectors:
termPositions and termOffsets. The FastVectorHighlighter
requires these.

°° positionIncrementGap: (advanced) For a multiValued field,
this is the number of (virtual) non-existent words between each
value to prevent inadvertent phrase queries matching across field
values. For example, if A and B are given as two values for a field, a
positionIncrementGap of more than 1 prevents the phrase query "A
B" from matching.

•	 stored: Indicates that the field is eligible for inclusion in search results.
Usually fields are stored, but sometimes the same data is copied into multiple
fields that are indexed differently (which you'll begin to understand here),
and so the redundant fields would not be marked as stored.

°° compressed: No longer supported. This option was removed
as of Solr v1.4.1 because the committers were unhappy with its
implementation. It is expected to return: SOLR-752.

•	 multiValued: Enable this if a field can contain more than one value. Order is
maintained from that supplied at index-time.

There is a helpful table on Solr's wiki showing most of the options
with some use cases that need them:
http://wiki.apache.org/solr/FieldOptionsByUseCase

Field definitions
The definitions of the fields in the schema are located within the <fields/> element.
In addition to the field options defined above, a field has these attributes:

•	 name: Uniquely identifies the field. There aren't any restrictions on the
characters used nor any words to avoid, except for score.

•	 type: A reference to one of the field types defined earlier in the schema.
•	 default: (optional) The default value, if an input document doesn't

specify it. A common use of this is to timestamp documents: <field
name="indexedAt" type="tdate" default="NOW/SECOND" />. For
information on specifying dates, see DateMath in Chapter 4, Searching.

Chapter 2

[45]

•	 required: (optional) Set this to true if you want Solr to fail to index a
document that does not have a value for this field.

Dynamic field definitions
The very notion of a dynamic field definition highlights the flexibility of Lucene's
index, as compared to typical relational database technology. Not only can you
explicitly name fields in the schema, but you can also have some defined on the fly
based on the name supplied for indexing. Solr's example schema contains some
examples of this, such as:

<dynamicField name="*_dt" type="date" indexed="true" stored="true"/>

If at index time a document contains a field that isn't matched by an explicit field
definition, but does have a name matching this pattern (that is, ends with _dt such as
updated_dt), then it gets processed according to that definition. A dynamic field is
declared just like a regular field in the same section. However, the element is named
dynamicField, and it has a name attribute that must either start or end with an
asterisk (the wildcard). It can also be just *, which is the final fallback.

The * fallback is most useful if you decide that all fields attempted to
be stored in the index should succeed, even if you didn't know about
the field when you designed the schema. It's also useful if you decide
that instead of it being an error, such unknown fields should simply be
ignored (that is, not indexed and not stored).

In the end, a field is a field, whether explicitly defined or defined dynamically
according to a name pattern. Dynamic field definitions are just a convenience that
makes defining schemas easier. There are no performance implications of using
dynamic field definitions.

Schema and Text Analysis

[46]

Our MusicBrainz field definitions
What follows is a first cut of our MusicBrainz schema definition. There are additional
fields that will be added in other chapters to explore other search features. This
is a combined schema defining all core entity types: artists, releases (AKA albums),
and tracks. This approach was described earlier in the chapter. Notice that I chose
to prefix field names by a character representing the entity type it is on (a_, r_,
t_), to avoid overloading the use of any field across entity types. I also used this
abbreviation when I denormalized relationships like in r_a_name (a release's artist's
name).

<!-- COMMON TO ALL TYPES: -->
<field name="id" type="string" required="true" />
 <!-- Artist:11650 -->
<field name="type" type="string" required="true" />
 <!-- Artist | Release | Label -->
<field name="indexedAt" type="tdate" default="NOW/SECOND" />

<!-- ARTIST: -->
<field name="a_name" type="title" />
 <!-- The Smashing Pumpkins -->
<field name="a_name_sort" type="string" stored="false" />
 <!-- Smashing Pumpkins, The -->
<field name="a_alias" type="title" stored="false" multiValued="true"
/>
<field name="a_type" type="string" />
 <!-- group | person -->
<field name="a_begin_date" type="tdate" />
<field name="a_end_date" type="tdate" />
<field name="a_member_name" type="title" multiValued="true" />
 <!-- Billy Corgan -->
<field name="a_member_id" type="long" multiValued="true" />
 <!-- 102693 -->

<!-- RELEASE -->
<field name="r_name" type="title" />
 <!-- Siamese Dream -->
<field name="r_name_sort" type="string" stored="false" />
 <!-- Siamese Dream -->
<field name="r_a_name" type="title" />
 <!-- The Smashing Pumpkins -->
<field name="r_a_id" type="long" />
 <!-- 11650 -->
<field name="r_attributes" type="int" indexed="false"
multiValued="true" />
 <!-- ex: 0, 1, 100 -->
<field name="r_type" type="rType" stored="false" multiValued="true" />
 <!-- Album | Single | EP |... etc. -->

Chapter 2

[47]

<field name="r_official" type="rOfficial" stored="false"multiValued="
true" />
 <!-- Official | Bootleg | Promotional -->
<field name="r_lang" type="string" indexed="false" />
 <!-- eng / latn -->
<field name="r_tracks" type="int" indexed="false" />
<field name="r_event_country" type="string" multiValued="true" />
 <!-- us -->
<field name="r_event_date" type="tdate" multiValued="true" />

 <!-- TRACK -->
<field name="t_name" type="title" />
 <!-- Cherub Rock -->
<field name="t_num" type="int" indexed="false" />
 <!-- 1 -->
<field name="t_duration" type="int"/>
 <!-- 298133 -->
<field name="t_a_id" type="long" />
 <!-- 11650 -->
<field name="t_a_name" type="title" />
 <!-- The Smashing Pumpkins -->
<field name="t_r_name" type="title" />
 <!-- Siamese Dream -->
<field name="t_r_tracks" type="int" indexed="false" />
 <!-- 13 -->

Put some sample data in your schema comments.
You'll find the sample data helpful and anyone else working
on your project will thank you for it! In the examples above, I
sometimes use actual values and on other occasions I list several
possible values separated by |, if there is a predefined list.

Also, note that the only fields that we can mark as required are those common to all,
which are ID and type, because we're doing a combined schema approach.

In our schema we're choosing to index most of the fields, even though MusicBrainz's
search doesn't require more than the name of each entity type. We're doing this
so that we can make the schema more interesting to demonstrate more of Solr's
capabilities. As it turns out, some of the other information in MusicBrainz's query
results actually are queryable if one uses the advanced form, checks use advanced
query syntax, and your query uses those fields (example: artist:"Smashing
Pumpkins").

Schema and Text Analysis

[48]

At the time of writing this, MusicBrainz used Lucene for its text
search and so it uses Lucene's query syntax. http://wiki.
musicbrainz.org/TextSearchSyntax. You'll learn more
about the syntax in Chapter 4.

Copying fields
Closely related to the field definitions are copyField directives. A copyField
directive copies one or more input field values to another during indexing. A
copyField directive looks like this:

<copyField source="r_name" dest="r_name_sort" maxChars="20" />

This directive is useful when a value needs to be copied to additional field(s) to be
indexed differently. For example, sorting and faceting require a single indexed value.
Another is a common technique in search systems in which many fields are copied to
a common field that is indexed without norms and not stored. This permits searches,
which would otherwise search many fields, to search one instead, thereby drastically
improving performance at the expense of reducing score quality. This technique is
usually complemented by searching some additional fields with higher boosts. The
dismax query parser, which is described in a later chapter, makes
this easy.

At index-time, each supplied field of input data has its name compared against the
source attribute of all copyField directives. The source attribute might include
a * wildcard so it's possible the input might match more than one copyField. If
a wildcard is used in the destination, then it must refer to a dynamic field, and
furthermore the source must include a wildcard too—otherwise a wildcard in the
destination is an error. A match against a copyField has the effect of the input value
being duplicated but using the field name of the dest attribute of the directive. If
maxChars is optionally specified, the copy is truncated to this many characters. The
duplicate does not replace any existing values that might be going to the field so be
sure to mark the destination field as multiValued if needed.

Finally, note that copying data to additional fields means longer
indexing times and larger index file sizes.

Chapter 2

[49]

The unique key
Near the bottom of the schema is the <uniqueKey> declaration specifying which field
uniquely identifies each document, if any. This is what we have in our MusicBrainz
schema:

<uniqueKey>id</uniqueKey>

Although it is technically not always required, you should define a unique ID field.
In our MusicBrainz schema, the ID is a string that includes an entity type prefix
type so that it's unique across the whole corpus, spanning multiple Solr Cores.
Example: Artist:11650. If your source data does not have an ID field that you can
propagate, then you may want to consider using a Universally Unique Identifier,
a UUID, according to RFC-4122. Simply have a field with a field type for the class
solr.UUIDField and either provide a UUID to Solr or supply the special value of
"NEW", such as with setting defaultField and Solr will generate a UUID for you
automatically. Solr's UUID support is based on java.util.UUID.

The default search field and query operator
Near the bottom of the schema file are a couple of configuration elements pertaining
to search defaults when interpreting a query string:

<!-- <defaultSearchField>text</defaultSearchField>
<solrQueryParserdefaultOperator="AND"/> -->

The defaultSearchField declares the particular field that will be searched for
queries that don't explicitly reference one. The solrQueryParser setting has a
defaultOperator attribute which lets you specify the default search operator (that is
AND, or OR) here in the schema. These are essentially defaults for searches that are
processed by Solr request handlers defined in solrconfig.xml.

I strongly recommend that you ignore the
solrQueryParserdefaultOperator attribute and not rely on
the defaultSearchField. Instead, I configure the query parser
in a request handler as desired in solrconfig.xml—documented
in Chapter 4, Searching. These settings are optional here, and I've
commented them out in the MusicBrainz schema.

Schema and Text Analysis

[50]

Text analysis
Text analysis is a topic that covers text-processing steps such as tokenization, case
normalization, stemming, synonyms, and other miscellaneous text processing. The
analysis is applied to a text field at index time and as part of query string processing
at search time. It's an important part of search engines since the details have an effect
on getting good search results, especially to recall—a dimension of search result
quality pertaining to whether all relevant documents are in the search results.

This material is almost completely Lucene-centric and so also applies
to any other software built on top of Lucene. For the most part, Solr
merely offers XML configuration for the code in Lucene that provides
this capability. For information beyond what is covered here, including
writing your own analysis components, read the Lucene In Action 2 book.

Text analysis converts text for a particular field into a sequence of terms. A term
is the fundamental unit that Lucene actually indexes and searches. The analysis is
used on the original incoming value at index time; the resulting terms are ultimately
recorded onto disk in Lucene's index structure where it can be searched. The analysis
is also performed on words and phrases parsed from the query string; the resulting
terms are then searched in Lucene's index. An exception to this is prefix, wildcard
and fuzzy queries which all skip text analysis. You'll read about them in
Chapter 4, Searching.

In a hurry?
As a starting point, you should use the existing field types in Solr's
default schema, which includes a variety of text field types for different
situations. They will suffice for now and you can return to this chapter
later. There will surely come a time when you are trying to figure out
why a simple query isn't matching a document that you think it should,
and it will quite often come down to your text analysis configuration.

Chapter 2

[51]

Non-English text analysis
I try to cover Solr in a comprehensive fashion, but in the area of
text analysis for non-English languages I'm going to refer you to
this excellent Solr wiki page: http://wiki.apache.org/solr/
LanguageAnalysis. There are 35 languages listed as of this writing.
You'll notice that there is some variation in how to configure Solr
for each of them, and that some languages have multiple options.
Most language-specific elements are the stemmer and the stop word
list, and for eastern languages, the tokenizer too. There is also a set
of International Components for Unicode, ICU, related analysis
components new to Solr 3.1, some of which you can use for mapping
some non-Latin characters to Latin equivalents.

Configuration
Solr has various field types as we've previously explained, and the most important
one is solr.TextField. This is the field type that has an analyzer configuration. Let's
look at the configuration for the text_en_splitting field type definition that comes
with Solr's example schema. It uses a diverse set of analysis components. I added in a
character filter, albeit commented, to show what it looks like. As you read about text
analysis in this chapter, you may want to flip back to see this configuration.

<fieldType name="text_en_splitting" class="solr.TextField"
 positionIncrementGap="100" autoGeneratePhraseQueries="true">
 <analyzer type="index">
<!--<charFilter class="solr.MappingCharFilterFactory"
 mapping="mapping-ISOLatin1Accent.txt"/>-->
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.StopFilterFactory"
 ignoreCase="true"
 words="stopwords_en.txt"
 enablePositionIncrements="true"
 />
 <filter class="solr.WordDelimiterFilterFactory"
 generateWordParts="1" generateNumberParts="1"
 catenateWords="1" catenateNumbers="1"
 catenateAll="0" splitOnCaseChange="1"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.KeywordMarkerFilterFactory"
 protected="protwords.txt"/>
 <filter class="solr.PorterStemFilterFactory"/>
 </analyzer>
 <analyzer type="query">
 <!--<charFilter class="solr.MappingCharFilterFactory"
 mapping="mapping-ISOLatin1Accent.txt"/>-->
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>

Schema and Text Analysis

[52]

 <filter class="solr.SynonymFilterFactory" synonyms="synonyms.
 txt" ignoreCase="true" expand="true"/>
 <filter class="solr.StopFilterFactory"
 ignoreCase="true"
 words="stopwords_en.txt"
 enablePositionIncrements="true"
 />
 <filter class="solr.WordDelimiterFilterFactory"
 generateWordParts="1" generateNumberParts="1"
 catenateWords="0" catenateNumbers="0" catenateAll="0"
 splitOnCaseChange="1"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.KeywordMarkerFilterFactory"
 protected="protwords.txt"/>
 <filter class="solr.PorterStemFilterFactory"/>
 </analyzer>
</fieldType>

The configuration example defines two analyzers, each of which specifies an ordered
sequence of processing steps that convert text into a sequence of terms. The type
attribute, which can hold a value of index or query, differentiates whether the
analyzer is applied at index time or query time, respectively. If the same analysis
is to be performed at both index and query times, then you can specify just one
analyzer without a type. When both are specified as in the example above, they
usually only differ a little.

Analyzers, Tokenizers, Filters, oh my!
The various components involved in text analysis go by various names,
which are about to be defined. They are all conceptually the same: they
take in text and spit out text, sometimes filtering, sometimes adding new
terms, and sometimes modifying terms. The difference is in the specific
flavor of input and output for them: either character based or token
based. Also, term, token, and word are often used interchangeably.

An analyzer can optionally begin with one or more character filters, which operate
at a streaming character level to perform manipulations on original input text. These
are most commonly used to normalize characters, like remove accents, for example.
Following any optional character filters is the tokenizer—the only mandatory
piece of the chain. This analyzer takes a stream of characters and tokenizes it into a
stream of tokens, usually with a simple algorithm such as splitting on whitespace.
The remaining analysis steps, if any, are all token filters (often abbreviated to
just filters), which perform a great variety of manipulations on tokens. The final
tokens at the end, usually referred to as terms at this point, are what Lucene
actually indexes or searches, depending on context. Note that some filters such as
WordDelimeterFilterFactory actually perform a tokenization action, but they do it
on a token whereas a bonafide tokenizer works from a character stream.

Chapter 2

[53]

The class names all end with "Factory". This is a convention for
the names of Solr's Java classes that accept the configuration and
instantiate Lucene's analysis components that have the same
simple name, less the "Factory" suffix. References to these analysis
components in this book and elsewhere sometimes include the
"Factory" suffix and sometimes not; no distinction is intended.

Finally, I want to point out the autoGeneratePhraseQueries boolean attribute—an
option only applicable to text fields. If search-time query text analysis yields more
than one token, such as Wi-Fi tokenizing to Wi and Fi, then by default these tokens
are simply different search terms with no relation to their position. If this attribute is
enabled, then the tokens become a phrase query, such as "WiFi" and consequently
these tokens must be adjacent in the index. This automatic phrase query generation
would always happen prior to Solr 3.1 but now it is configurable and defaults
to false.

I recommend disabling autoGeneratePhraseQueries
There is conflicting opinion amongst experts on a suitable setting; setting
it to false increases recall but decreases precision—two dimensions of search
result quality. I favor that choice, since you'll learn in Chapter 5, Search
Relevancy how to do automatic phrase boosting to get the most relevant
documents (those that would match the phrase "Wi Fi") at the top of the
results.

Schema and Text Analysis

[54]

Experimenting with text analysis
Before we dive into the details of particular analysis components, it's important
to become comfortable with Solr's analysis page, which is an experimentation and
a troubleshooting tool that is absolutely indispensable. You'll use this to try out
different configurations to verify whether you get the desired effect, and you'll use
this when troubleshooting to find out why certain queries aren't matching certain
text that you think they should. In Solr's admin pages, you'll see a link named
[ANALYSIS] which takes you to this screen:

The first choice at the top of the page is required. You pick whether you want to
choose a field type directly by its name, or if you want to indirectly choose one based
on the name of a field. In this example, I'm choosing the text_en_splitting field
type that has some interesting text analysis. This tool is mainly for the text oriented
field types, not boolean, date, and numeric oriented types. You may get strange
results if you try those.

At this point you can analyze index or query text or both at the same time. You
activate that analysis by putting some text into the text box; otherwise it won't
do that phase. If you are troubleshooting why a particular query isn't matching a
particular document's field value, then you'd put the field value into the Index box
and the query text into the Query box. Technically that might not be the same thing
as the original query string, because the query string may use various operators
to target specified fields, do fuzzy queries, and so on. You will want to check off
verbose output to take full advantage of this tool. The highlight matches option is
applicable when you are doing both query and index analysis together and want to
see matches in the index part of the analysis corresponding with a query.

Chapter 2

[55]

The output after clicking on the Analyze button is a bit verbose with verbose output
checked and so I've disabled it for this upcoming screenshot. I encourage you to try it
yourself.

Each row shown represents one step in the chain of processing as configured in the
analyzer. For example, the third analysis component is WordDelimeterFilter and
the results of its processing are shown in the third row. Columns separate the tokens,
and if more than one token shares the same column, then they share the same term
position. The distinction of the term position pertains to how phrase queries work.
One interesting thing to notice about the analysis results is that Quoting ultimately
became quot after stemming and lowercasing. Also, the word and was omitted by
the StopFilter which is the second row.

Character filters
Character filters, declared with the <charFilter> element, process a stream of text
prior to tokenization. There are only a few. This feature is not commonly used except
for the first one described here which is configured to strip accents.

Schema and Text Analysis

[56]

•	 MappingCharFilterFactory: This maps a character (or string) to another—
potentially none. In other words, it's a find-replace capability. There is a
mapping attribute in which you specify a configuration file. Solr's example
configuration includes two such configuration files with useful mappings:

°° mapping-FoldToASCII.txt: A comprehensive mapping of
non-ASCII characters to ASCII equivalents. For further details
on the characters mapped, read the comments at the top of
the file. This char filter has a token filter equivalent named
ASCIIFoldingFilterFactory that should run faster and is
recommended instead.

°° mapping-ISOLatin1Accent.txt: A smaller subset covering just the
ISO Latin1 accent characters (like ñ to n). Given that FoldToASCII is
more comprehensive, it's likely to be a better default than this one.

This analysis component and quite a few others have an attribute in
which you specify a configuration file. Usually you can specify more than
one file, separated by comma but some components don't support that.
They are always in the conf directory and UTF-8 encoded.

•	 HTMLStripCharFilterFactory: This is used for HTML or XML, and it need
not be well formed. Essentially it removes all markup, leaving just the text
content of elements. The text of script and style elements are removed. Entity
references (for example: &) are resolved.

Instead of stripping markup at the analysis stage, which is very
late, consider if this should be done at an earlier point with a
DataImportHandler transformer, or some other pre-Solr stage.
If you need to retain the markup in Solr's stored value, then you
will indeed need to perform this step here.

•	 PatternReplaceCharFilterFactory: Performs a search based on a regular
expression given as the pattern attribute, replacing it with the replacement
attribute. The implementation involves a buffer window defaulting to
10,000 characters configurable with maxBlockChars. There is a regular
expression based tokenizer and token filter too. Only use this char filter if the
replacement should affect tokenization, such as by introducing a space.

Chapter 2

[57]

The regular expression specification supported by Solr is the one that
Java uses. It's handy to have this reference bookmarked: http://
download.oracle.com/javase/6/docs/api/java/util/
regex/Pattern.html

Tokenization
A tokenizer is an analysis component declared with the <tokenizer> element that
takes text in the form of a character stream and splits it into so-called tokens, most
of the time skipping insignificant bits like whitespace and joining punctuation. An
analyzer has exactly one tokenizer. Your tokenizer choices are as follows:

•	 KeywordTokenizerFactory: This tokenizer doesn't actually do any
tokenization! The entire character stream becomes a single token. The
string field type has a similar effect but doesn't allow configuration of text
analysis like lower-casing, for example. Any field used for sorting or most
uses of faceting will require an indexed field with no more than one term per
original value.

•	 WhitespaceTokenizerFactory: Text is tokenized by whitespace (that is,
spaces, tabs, carriage returns).

•	 StandardTokenizerFactory: This is a general-purpose tokenizer for most
Western languages. It tokenizes on whitespace and other points specified
by the Unicode standard's annex on word boundaries. Whitespace and
punctuation characters at these boundaries get removed. Hyphens are
considered a word boundary, making this tokenizer less desirable for use
with WordDelimiterFilter.

As of Solr 3, the former StandardTokenizer was renamed to
ClassicTokenizer and likewise StandardFilter was renamed to
ClassicFilter. The current StandardTokenizer is new.

•	 UAX29URLEmailTokenizer: This behaves like StandardTokenizer with
the additional property of recognizing e-mail addresses and URLs as single
tokens.

•	 ClassicTokenizerFactory:(formerly the StandardTokenizer) This
is a general-purpose tokenizer for English. On English text it does do a
few things better than StandardTokenizer. Acronyms using periods are
recognized, leaving the final period in place which would otherwise be
removed – like I.B.M.; hyphens don't split words when the token contains a
number; and e-mail addresses and Internet hostnames survive as one token.

Schema and Text Analysis

[58]

Additionally, there is a ClassicFilter token filter that is usually configured
to follow this tokenizer. It will strip the periods out of acronyms and remove
any trailing apostrophes (English possessive). It will only work with Clas-
sicTokenizer.

•	 LetterTokenizerFactory: This tokenizer considers each contiguous
sequence of letters (as defined by Unicode) as a token and disregards other
characters.

•	 LowerCaseTokenizerFactory: This tokenizer is functionally equivalent to
LetterTokenizer followed by LowerCaseFilter, but faster.

•	 PatternTokenizerFactory: This regular expression based tokenizer can
behave in one of two ways:

°° To split the text on some separator specified by a pattern, you can use
it like this: <tokenizer class="solr.PatternTokenizerFactory"
pattern=";*" />. This example would be good for a semi-colon
separated list.

°° To match only particular patterns and possibly use only a subset
of the pattern as the token. Example: <tokenizer class="solr.
PatternTokenizerFactory" pattern="\'([^\']+)\'"
group="1" />. The group attribute specifies which matching group
will be the token. If you had input text like aaa 'bbb' 'ccc', then
this would result in tokens bbb and ccc.

•	 PathHierarchyTokenizerFactory: This is a configurable tokenizer that
tokenizes strings that follow a simple character delimiter pattern, such as file
paths or domain names. It's useful in implementing hierarchical faceting, as
discussed in Chapter 6, Faceting or simply filtering documents by some root
prefix of the hierarchy. As an example, the input string /usr/local/apache
would be tokenized to these three tokens: /usr, /usr/local, /usr/local/
apache. This tokenizer has four configuration options:

°° delimiter: The character delimiter—default: /
°° replace: A replacement character for delimiter (optional)
°° reverse: A boolean to indicate if the root of the hierarchy is on the

right, such as with a host name—default: false
°° skip: The number of leading root tokens to skip—default: 0

•	 WikipediaTokenizerFactory: An experimental tokenizer for Mediawiki
syntax, such as that used in Wikipedia.

Chapter 2

[59]

There are some other tokenizers that exist for languages such as Chinese and
Russian, as well as the ICUTokenizer which detects the language (or "script") used
and tokenizes accordingly. And furthermore, NGramtokenizers will be discussed
later. See http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
for more information on some of these tokenizers, or the API documentation.

WordDelimiterFilter
There may only be one official tokenizer in an analyzer, however the token filter
named WordDelimiterFilter is essentially a tokenizer too:

<filter class="solr.WordDelimiterFilterFactory"
generateWordParts="1" generateNumberParts="1"
catenateWords="1" catenateNumbers="1"
catenateAll="0" splitOnCaseChange="1"/>

(not all options were just shown) The purpose of this analyzer is to both split and join
compound words with various means of defining compound words. This one is
typically used with WhitespaceTokenizer, not StandardTokenizer, which removes
punctuation-based intra-word delimiters, thereby defeating some of this processing.
The options to this analyzer have the values 1 to enable and 0 to disable.

This analysis component is the most configurable of all and it can be a
little confusing. Use Solr's ANALYSIS screen that is described in the
Experimenting with text analysis section to validate your configuration.

The WordDelimiterFilter will first tokenize the input word, according to
configured options. (Note: the commas on the right side of the following examples
denote separate terms, and options are all true by default):

•	 split on intra-word delimiters: Wi-Fi to Wi, Fi
•	 split on letter-number transitions: SD500 to SD, 500 (if splitOnNumerics)
•	 omit any delimiters: /hello--there, dude to hello, there, dude
•	 remove trailing 's: David's to David (if stemEnglishPossessive)
•	 split on lower to upper case transitions: WiFi to Wi, Fi (if

splitOnCaseChange)

At this point, the resulting terms are all filtered out unless some of the following
options are enabled. Since they all default to false, you would always enable at least
one of them.

•	 If generateWordParts or generateNumberParts is set, then all-alphabetic
terms or all-number terms pass through (meaning, they are not filtered).
Either way, they are still considered for the concatenation options.

Schema and Text Analysis

[60]

•	 To concatenate a consecutive series of alphabetic terms, enable
catenateWords (example: wi-fi to wifi). If generateWordParts is enabled,
then this example would also generate wi and fi but not otherwise. This will
work even if there is just one term in the series, thereby generating a term
that disabling generateWordParts would have omitted. catenateNumbers
works similarly but for numeric terms. catenateAll will concatenate all
of the terms together. The concatenation process will take care to not emit
duplicate terms.

•	 To preserve the original word, enable preserveOriginal.

Here is an example exercising all aforementioned options:

WiFi-802.11b to Wi,Fi,WiFi,802,11,80211,b,WiFi80211b, WiFi-802.11b

Internally, this filter assigns a type to each character (like letter, number) before
looking for word boundaries. The types are determined by Unicode character
categories. If you want to customize how the filter determines what the type of each
character is, then you can provide one or more mapping files with the types option.
An example use-case would be indexing Twitter tweets in which you want "#" and
"@" treated as type ALPHA. For more details on this esoteric feature, see SOLR-2059.

Lastly, if there are a certain limited number of known input words that you want this
filter to skip (that is pass through), then they can be listed in a file referred to with
the protected option. Some other filters share this same feature.

Solr's out-of-the-box configuration for the text_en_splitting field type is a
reasonable way to use the WordDelimiterFilter: generation of word and number
parts at both index and query-time, but concatenating only at index time since doing
so at query time too would be redundant.

Chapter 2

[61]

Stemming
Stemming is the process for reducing inflected or sometimes derived words to their
stem, base, or root form. For example, a stemming algorithm might reduce Riding
and Rides, to just Ride. Stemming is done to improve search result recall, but at the
expense of some precision. If you are processing general text, then you will improve
your search results with stemming. However, if you have text that is mostly proper
nouns, such as an artist's name in MusicBrainz, then anything more than light
stemming will hurt the results. If you want to improve the precision of search results
but retain the recall benefits, then you should consider indexing the data in two
fields, one stemmed and one not, and then perform searches over both fields.

Many stemmers will generate stemmed tokens that are not correctly spelled words,
like Bunnies becoming Bunni instead of Bunny or stemming Quote to Quot; you'll
see this in Solr's analysis screen. This is harmless since stemming is applied at both
index and search times; however, it does mean that a field that is stemmed like
this also cannot be used for query spell-check, wildcard searches, or search term
auto-complete—features described in later chapters. Those features directly use the
indexed terms.

A stemming algorithm is very language specific compared to other text
analysis components; remember to visit http://wiki.apache.org/
solr/LanguageAnalysis as advised earlier for non-English text. It
includes information on a Solr token filter that performs decompounding,
which is useful for certain languages (not English).

Here are stemmers suitable for the English language:

•	 SnowballPorterFilterFactory: This one lets you choose amongst many
stemmers that were generated by the so-called Snowball program, hence the
name. It has a language attribute in which you make the implementation
choice from a list. Specifying English uses the "Porter2" algorithm—
regarded as a slight improvement over the original. Specifying Lovins uses
the Lovins algorithm for English—regarded as an improvement on Porter
but too slow in its current form.

•	 PorterStemFilterFactory: This is the original English "Porter" algorithm.
It is said to be twice as fast as using Snowball English.

•	 KStemFilterFactory: This English stemmer is less aggressive than Porter's
algorithm. This means that it will not stem in as many cases as Porter will
in an effort to reduce false-positives at the expense of missing stemming
opportunities. I recommend this as the default English stemmer.

Schema and Text Analysis

[62]

•	 EnglishMinimalStemFilterFactory: This is a simple stemmer that only
stems on typical pluralization patterns. Unlike most other stemmers,
the stemmed tokens that are generated are correctly spelled words; they
are the singular form. A benefit of this is that a single Solr field with this
stemmer is usable for both general search and for query term auto-complete
simultaneously, thereby saving index size and making indexing faster.

Correcting and augmenting stemming
These stemmers are algorithmic instead of being based on a vetted thesaurus for the
target language. Languages have so many spelling idiosyncrasies that algorithmic
stemmers are imperfect—they sometimes stem incorrectly or don't stem when
they should.

If there are particularly troublesome words that get stemmed, then you can prevent
it by preceding the stemmer with a KeywordMarkerFilter with the protected
attribute referring to a file of newline-separated tokens that should not be stemmed.
An ignoreCase boolean option is available too. Some stemmers have or used to have
a protected attribute that worked similarly, but that old approach isn't advised
any more.

If you need to augment the stemming algorithm so you can tell it how to stem some
specific words, then precede the stemmer with StemmerOverrideFilter. It takes a
dictionary attribute referring to a UTF8-encoded file in the conf directory of token
pairs, one pair per line, and a tab is used to separate the input token from the output
token (the desired stemmed form of the input). An ignoreCase boolean option is
available too. This filter will skip tokens already marked by KeywordMarkerFilter
and it will keyword-mark all tokens it replaces itself, so that the stemmer will
skip them.

Here is a sample excerpt of an analyzer chain showing three filters in support of
stemming:

<filter class="solr.KeywordMarkerFilterFactory"
 protected="protwords.txt" />
<filter class="solr.StemmerOverrideFilterFactory"
 dictionary="stemdict.txt" />
<filter class="solr.PorterStemFilterFactory" />

Chapter 2

[63]

Synonyms
The purpose of synonym processing is straightforward. Someone searches using a
word that wasn't in the original document but is synonymous with a word that is
indexed, so you want that document to match the query. Of course, the synonym
need not be strictly those identified by a thesaurus, and they can be whatever you
want including terminology specific to your application's domain.

The most widely known free thesaurus is WordNet: http://wordnet.
princeton.edu/. Solr 3.4 adds the ability to read WordNet's "prolog"
formatted file via a format="wordnet" attribute on the synonym
filter. However don't be surprised if you lose precision in the search
results—it's not a clear win. For example, "Craftsman" in context might
be a proper noun referring to a brand, but WordNet would make it
synonymous with "artisan". Synonym processing doesn't know about
context; it's simple and dumb.

Here is a sample analyzer configuration line for synonym processing:

<filter class="solr.SynonymFilterFactory" synonyms="synonyms.txt"
ignoreCase="true" expand="true"/>

The synonyms reference is to a file in the conf directory. Set ignoreCase to true for
case-insensitive lookup of synonyms.

Before describing the expand option, let's consider an example. The synonyms file is
processed line-by-line. Here is a sample line with an explicit mapping that uses
the arrow =>:

i-pod, i pod =>ipod

This means that if either i-pod (one token) or i then pod (two tokens) are found
in the incoming token stream to this filter, then they are replaced with ipod. There
could have been multiple replacement synonyms, each of which might contain
multiple tokens. Also notice that commas are what separates each synonym which
is then split by whitespace for multiple tokens. To customize the tokenization to
be something more sophisticated than whitespace, there is a tokenizerFactory
attribute but it's rarely used.

Alternatively you may have lines that look like this:

ipod, i-pod, i pod

Schema and Text Analysis

[64]

These lines don't have a => and are interpreted differently according to the expand
parameter. If expand is true, then it is translated to this explicit mapping:

ipod, i-pod, i pod =>ipod, i-pod, i pod

If expand is false then it becomes this explicit mapping, in which the first source
synonym is the replacement synonym:

ipod, i-pod, i pod =>ipod

It's okay to have multiple lines that reference the same synonyms. If a source
synonym in a new rule is already found to have replacement synonyms from another
rule, then those replacements are merged.

Multi-word (aka Phrase) synonyms
For multi-word synonyms to work, the analysis must be applied at index-
time and with expansion so that both the original words and the combined
word get indexed. The next section elaborates on why this is so. Also, be
aware that the tokenizer and previous filters can affect the tokens that
the SynonymFilter sees. So, depending on the configuration, hyphens,
other punctuations may or may not be stripped out.

Index-time versus query-time, and to expand or not
If you are doing synonym expansion (have any source synonyms that map to
multiple replacement synonyms or tokens), then do synonym processing at either
index-time or query-time, but not both. Doing it in both places would yield correct
results but would perform slower. I recommend doing it at index-time because of
these problems with doing it at query time:

•	 A source synonym containing multiple words (for example: i pod) isn't
recognized at query-time because the query parser tokenizes on whitespace
before the analyzer gets it.

•	 The IDF component of Lucene's scoring algorithm (discussed in Chapter 5,
Search Relevancy) will be much higher for documents matching a synonym
appearing rarely, as compared to its equivalents that are common. This
reduces the scoring effectiveness.

•	 Prefix, wildcard, and fuzzy queries aren't analyzed, and thus won't match
synonyms.

However, any analysis at index-time is less flexible, because any changes to the
synonyms will require a complete re-index to take effect. Moreover, the index will
get larger if you do index-time expansion—perhaps too large if you have a large set
of synonyms such as with WordNet. It's plausible to imagine the issues above being
rectified at some point. In spite of this, I usually recommend index-time.

Chapter 2

[65]

Alternatively, you could choose not to do synonym expansion. This means that
for a given synonym token, there is just one token that should replace it. This
requires processing at both index-time and query-time to effectively normalize
the synonymous tokens. However, since there is query-time processing, it suffers
from the problems mentioned above (with the exception of poor scores, which isn't
applicable). The benefit to this approach is that the index size would be smaller,
because the number of indexed tokens is reduced.

You might also choose a blended approach to meet different goals. For example,
if you have a huge index that you don't want to re-index often, but you need to
respond rapidly to new synonyms, then you can put new synonyms into both a
query-time synonym file and an index-time one. When a re-index finishes, you
empty the query-time synonym file. You might also be fond of the query-time
benefits, but due to the multiple word token issue, you decide to handle those
particular synonyms at index-time.

Stop words
There is a simple filter called StopFilterFactory that filters out certain so-called
stop words specified in a file in the conf directory, optionally ignoring case.
Example usage:

<filter class="solr.StopFilterFactory" words="stopwords.txt"
ignoreCase="true"/>

When used, it is present in both index and query analyzer chains.

For indexes with lots of text, common uninteresting words like "the", "a", and so on,
make the index large and slow down phrase queries that use them. A simple solution
to this problem is to filter them out of fields where they show up often. Fields likely
to contain more than a sentence are ideal candidates. Our MusicBrainz schema
does not have content like this. The trade-off when omitting stop words from the
index is that those words are no longer queryable. This is usually fine, but in some
circumstances like searching for To be or not to be, it is obviously a problem.

The ideal solution to the common word problem is not to remove
them. Chapter 10 discusses an approach called common-grams
implemented with CommonGramsFilterFactory that can be used
to improve phrase search performance, while keeping these words.
It is highly recommended.

Schema and Text Analysis

[66]

Solr comes with a decent set of stop words for the English language. You may want
to supplement it or use a different list altogether if you're indexing non-English
text. In order to determine which words appear commonly in your index, access the
SCHEMA BROWSER menu option in Solr's admin interface. A list of your fields
will appear on the left. In case the list does not appear at once, be patient. For large
indexes, there is a considerable delay before the field list appears because Solr is
analyzing the data in your index. Now, choose a field that you know contains a
lot of text. In the main viewing area, you'll see a variety of statistics about the field
including the top-10 terms appearing most frequently.

Phonetic sounds-like analysis
Another useful text analysis option to enable searches that sound like a queried word
is phonetic translation. A filter is used at both index and query-time that phonetically
encodes each word into a phoneme. There are four phonetic encoding algorithms
to choose from: Caverphone, DoubleMetaphone, Metaphone, RefinedSoundex,
and Soundex. Anecdotally, DoubleMetaphone appears to be the best, even for
non-English text. However, you might want to experiment in order to make your
own choice. RefinedSoundex declares itself to be most suitable for spell check
applications. However, Solr can't presently use phonetic analysis in its spell check
component (described in a later chapter).

Solr has three tools for more aggressive inexact searching: phonetic
sounds-like, query spellchecking, and fuzzy searching. These are all
employed a bit differently.

The following is a suggested configuration for phonetic analysis in the schema.xml:

<!-- for phonetic (sounds-like) indexing -->
<fieldType name="phonetic" class="solr.TextField"
 positionIncrementGap="100" stored="false" multiValued="true">
 <analyzer>
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.WordDelimiterFilterFactory"
 generateWordParts="1" generateNumberParts="0"
 catenateWords="1" catenateNumbers="0" catenateAll="0"/>
 <filter class="solr.DoubleMetaphoneFilterFactory"
 inject="false" maxCodeLength="8"/>
 </analyzer>
</fieldType>

Chapter 2

[67]

Note that the encoder options internally handle both upper and lower case.

In the MusicBrainz schema that is supplied with the book, a field named a_phonetic
is declared to use this field type, and it has the artist name copied into it through a
copyField directive. In Chapter 4, Searching you will read about the dismax query
parser that can conveniently search across multiple fields with different scoring
boosts. It could be configured to search not only the artist name (a_name) field, but
also a_phonetic with a low boost, so that regular exact matches will come above
those that match phonetically.

Using Solr's analysis admin page, it can be shown that this field type encodes
Smashing Pumpkins as SMXNK|XMXNK PMPKNS (the use of a vertical bar | here
indicates both sides are alternatives for the same position). This is not supposed to be
meaningful, but it is useful for comparing similar spellings to detect its effectiveness.

The example above used the DoubleMetaphoneFilterFactory analysis filter, which
has these two options:

•	 inject: A boolean defaulting to true that will cause the original words to
pass through the filter. It might interfere with other filter options, querying,
and potentially scoring. Therefore, it is preferred to disable this, and use a
separate field dedicated to phonetic indexing.

•	 maxCodeLength: The maximum phoneme code (that is phonetic character,
or syllable) length. It defaults to 4. Longer codes are truncated. Only
DoubleMetaphone supports this option.

In order to use one of the other three phonetic encoding algorithms, you must use
this filter:

<filter class="solr.PhoneticFilterFactory" encoder="RefinedSoundex"
 inject="false"/>

The encoder attribute must be one of those algorithms listed in the first paragraph of
this section.

Substring indexing and wildcards
Usually, text indexing technology is employed to search entire words. Occasionally
however, there arises a need for a query to match an arbitrary substring of an
indexed word or across them. Solr supports wildcards on queries (for example:
mus*ainz) but there is some consideration needed in the way data is indexed.

Schema and Text Analysis

[68]

It's useful to first get a sense of how Lucene handles a wildcard query at the index
level. Lucene internally scans the sorted terms list on disk starting with the non-
wildcard prefix (mus in the previous example). One thing to note about this is that
the query takes exponentially longer for each fewer prefix character. In fact Solr
configures Lucene to not accept a leading wildcard to ameliorate the problem.
Another thing to note is that stemming, phonetic, and other non-trivial text analysis
will interfere with these kinds of searches. For example, if running is stemmed to
run, then runni* would not match.

Before employing these approaches, consider if what you really
need is better tokenization for special codes. For example, if
you have a long string code that internally has different parts
that users might search on separately, then you can use a
PatternReplaceFilterFactory with some other analyzers to
split them up.

ReversedWildcardFilter
Solr doesn't permit a leading wildcard in a query unless you index the text in a
reverse direction in addition to the forward direction. Doing this will also improve
query performance when the wildcard is very close to the front. The following
example configuration would appear at the end of the index analyzer chain:

<filter class="solr.ReversedWildcardFilterFactory" />

It has several performance-tuning options you can investigate further at its JavaDocs,
but the defaults are reasonable. http://lucene.apache.org/solr/api/org/
apache/solr/analysis/ReversedWildcardFilterFactory.html

Solr does not support a query with both a leading and trailing wildcard, for
performance reasons. Given my explanation of the internals, I hope you
understand why.

Wildcard queries can be slow, even if you use this reversing filter. If they
are still too slow, consider looking at the next major release of Solr, v4.x
(which is "trunk" in source control as of this writing) that contains some
amazing performance improvements in this area. For still further ways
to increase performance, read on to learn about n-grams.

Chapter 2

[69]

N-grams
N-gram analysis slices text into many smaller substrings ranging between a
minimum and maximum configured size. For example, consider the word Tonight.
An NGramFilterFactory configured with minGramSize of 2 and maxGramSize of
5 would yield all of the following indexed terms: (2-grams:) To, on, ni, ig, gh, ht,
(3-grams:) Ton, oni, nig, igh, ght, (4-grams:) Toni, onig, nigh, ight, (5-grams:) Tonig,
onigh, night. Note that Tonight fully does not pass through because it has more
characters than the maxGramSize. N-gram analysis can be used as a token filter, and
it can also be used as a tokenizer with NGramTokenizerFactory, which will emit
n-grams spanning across the words of the entire source text.

The following is a suggested analyzer configuration using n-grams to match
substrings:

<fieldType name="nGram" class="solr.TextField"
 positionIncrementGap="100" stored="false" multiValued="true">
 <analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <!-- potentially word delimiter, synonym filter, stop words,
 NOT stemming -->
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.NGramFilterFactory" minGramSize="2"
 maxGramSize="15"/>
 </analyzer>
 <analyzer type="query">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <!-- potentially word delimiter, synonym filter, stop words,
 NOT stemming -->
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
</fieldType>

Notice that the n-gramming only happens at index-time. The range of gram sizes
goes from the smallest number of characters you wish to enable substring searches
on (2 in this example), to the maximum size permitted for substring searches (15 in
this example).

This analysis would be applied to a field created solely for the purpose of matching
substrings. Another field would exist for typical searches, and the dismaxquery
parser, described in Chapter 4, Searching would be configured for searches to use both
fields using a smaller boost for this field.

www.allitebooks.com

http://www.allitebooks.org

Schema and Text Analysis

[70]

Another variation is EdgeNGramTokenizerFactory and EdgeNGramFilterFactory,
which emit n-grams that are adjacent to either the start or end of the input text. For
the filter-factory, this input-text is a term, and the tokenizer is the entire input. In
addition to minGramSize and maxGramSize, these analyzers take a side argument
that is either front or back. If only prefix or suffix matching is needed instead of
both, then an EdgeNGram analyzer is for you.

N-gram costs
There is a high price to be paid for n-gramming. Recall that in the earlier example,
Tonight was split into 15 substring terms, whereas typical analysis would probably
leave only one. This translates to greater index sizes, and thus a longer time to index.
Let's look at the effects of this in the MusicBrainz schema. The a_name field, which
contains the artist name, is indexed in a typical fashion and is stored. The a_ngram
field is fed by the artist name and is indexed with n-grams ranging from 2 to 15
characters in length. It is not a stored field because the artist's name is already
stored in a_name.

a_name a_name + a_ngram Increase
Indexing Time 46 seconds 479 seconds > 10x
Disk Size 11.7 MB 59.7 MB > 5x
Distinct Terms 203,431 1,288,720 > 6x

The preceding table shows a comparison of index statistics of an index with just a_
name versus both a_name and a_ngram. Note the ten-fold increase in indexing time
for the artist name, and a five-fold increase in disk space. Remember that this is just
one field!

Given these costs, n-gramming, if used at all, is generally
only done on a field or two of small size where there is a clear
requirement for substring matches.

The costs of n-gramming are lower if minGramSize is raised and to a lesser extent if
maxGramSize is lowered. Edge n-gramming costs less too. This is because it is only
based on one side. It definitely costs more to use the tokenizer-based n-grammers
instead of the term-based filters used in the example before, because terms are
generated that include and span whitespace. However, with such indexing, it is
possible to match a substring spanning words.

Chapter 2

[71]

Sorting Text
Usually, search results are sorted by relevancy via the magic score pseudo-field,
but it is common to need to support conventional sorting by field values too. And in
addition to sorting search results, there are ramifications to this discussion in doing a
range query and when showing facet results in sorted order.

Sorting limitations: A field needs to be indexed, not be multi-
valued, and for text it should not have multiple tokens (either there is
no text analysis or it yields just one token).

It just happens that MusicBrainz already supplies alternative artist and label names
for sorting. When different from the original name, these sortable versions move
words like "The" from the beginning to the end after a comma. We've marked
the sort names as indexed but not stored since we're going to sort on it but not
display it—deviating from what MusicBrainz does. Remember that indexed and
stored are true by default. Because of the special text analysis restrictions of fields
used for sorting, text fields in your schema that need to be sortable will usually be
copied to another field and analyzed differently. The copyField directive in the
schema facilitates this task. The string type is a type that has no text analysis and
so it's perfect for our MusicBrainz case. As we're getting a sort-specific value from
MusicBrainz, we don't need to derive something ourselves. However, note that in
the MusicBrainz schema there are no sort-specific release names. We could opt to not
support sorting by release name, but we're going to anyway. One option is to use
the string type again. That's fine, but you may want to lowercase the text, remove
punctuation, and collapse multiple spaces into one (if the data isn't clean). You could
even use PatternReplaceFilterFactory to move words like "The" to the end. It's
up to you. For the sake of variety in our example, we'll be taking the latter route;
we're using a type title_sort that does these kinds of things.

By the way, Lucene sorts text by the internal Unicode code point. You probably
won't notice any problem with the sort order. If you want sorting that is more
accurate to the finer rules of various languages (English included), you should try
the CollationKeyFilterFactory. Since it isn't commonly used and it's already
well documented, I'll refer you to the wiki: http://wiki.apache.org/solr/
UnicodeCollation

Schema and Text Analysis

[72]

Miscellaneous token filters
Solr includes many other token filters:

•	 ClassicFilterFactory: (formerly named StandardFilter prior to Solr
3.1) Works in conjunction with ClassicTokenizer. It will remove periods in
between acronyms and s at the end of terms:
"I.B.M. cat's" => "IBM", "cat"

•	 EnglishPossessiveFilterFactory: Removes trailing's.
•	 TrimFilterFactory: Removes leading and trailing whitespace. This is

useful for text-analysis on a sort field given dirty input data.
•	 LowerCaseFilterFactory: Lowercases all text. Don't put this before

WordDelimeterFilterFactory if you want to split on case transitions.
•	 KeepWordFilterFactory: Omits all of the words, except those in the

specified file:
<filter class="solr.KeepWordFilterFactory" words="keepwords.txt"
ignoreCase="true"/>

If you want to ensure a certain vocabulary of words in a special field, then
you might enforce it with this.

•	 LengthFilterFactory: Filters out the terms that do not have a length within
an inclusive range.
<filter class="solr.LengthFilterFactory" min="2" max="5" />

•	 LimitTokenCountFilterFactory: Caps the number of tokens passing
through to that specified in the maxTokenCount attribute. Solr also has a
<maxFieldLength/> setting in solrconfig.xml that applies to all fields,
which can be commented out to make the default unlimited. Even without
any hard limits, you are effectively limited by the memory allocated to Java—
reach that and Solr will throw an error.

•	 RemoveDuplicatesTokenFilterFactory: Ensures that no duplicate terms
appear at the same position. This can happen, for example, when synonyms
stem to a common root. It's a good idea to add this to your last analysis step
if you are doing a fair amount of other analysis.

•	 ASCIIFoldingFilterFactory: See MappingCharFilterFactory in the
earlier "Character filters" section.

•	 CapitalizationFilterFactory: Capitalizes each word according to
the rules that you specify. For more information, see the Javadocs at
http://lucene.apache.org/solr/api/org/apache/solr/analysis/
CapitalizationFilterFactory.html.

Chapter 2

[73]

•	 PatternReplaceFilterFactory: Takes a regular expression and replaces
the matches. Example:
<filter class="solr.PatternReplaceFilterFactory" pattern=".*@(.*)"
 replacement="$1" replace="first" />

This example is for processing an e-mail address field to get only the domain
of the address. This replacement happens to be a reference to a regular
expression group, but it might be any old string. If the replace attribute is
set to first, then only the first match is replaced; if replace is all, the
default, then all matches are replaced.

•	 Write your own: Writing your own filter is an option if the existing ones
don't suffice. Crack open the source code to Solr for one of these to get a
handle on what's involved. Before you head down this path though, you'd
be surprised at what a little creativity with PatternReplaceFilterFactory
and some of the others can offer you. For starters, check out the rType field
type in the schema.xml that is supplied online with this book.

There are some other miscellaneous Solr filters I didn't mention for various reasons.
For common-grams or shingling, see Chapter 10, Scaling Solr. See the all known
implementing classes section at the top of http://lucene.apache.org/solr/api/
org/apache/solr/analysis/TokenFilterFactory.html for a complete list of
token filter factories, including documentation.

Summary
At this point, you should have a schema that you believe will suit your needs—for
now anyway. But do expect to revisit the schema. It is quite normal to start with
something workable, and then subsequently make modifications to address issues,
and implement features that require changes. The only irritant with changing the
schema is that you probably need to re-index all of the data. The only exception to
this would be an analysis step applied only at query-time. In the next chapter, you'll
learn about the various ways to import data into the index.

Indexing Data
In this chapter we're going to explore ways to get data into Solr. The process of
doing this is referred to as indexing, although importing is used too. This chapter is
structured as follows:

•	 Communicating with Solr
•	 Sending data in Solr's Update-XML format
•	 Commit, optimize, rollback, and deleting
•	 Sending data in CSV format
•	 Direct database and XML import through Solr's DataImportHandler (the

DIH)
•	 Extracting text from rich documents through Solr's

ExtractingRequestHandler (also known as Solr Cell)
•	 Document post-processing with UpdateRequestProcessors

You will also find some related options in Chapter 9, Integrating Solr that have to do
with language bindings and framework integration, including a web crawler. Most
use Solr's Update-XML format.

In a hurry?
There are many approaches to get data into Solr and you don't need
to be well versed in all of them. The section on commit and optimize
is important for everyone because it is universal. If you plan to use
a Solr integration framework that handles indexing data, such as
Sunspot for Ruby on Rails, then you can follow the documentation
for that framework and skip this chapter for now. Otherwise, the
DataImportHandler will likely satisfy your needs.

Indexing Data

[76]

Communicating with Solr
There are quite a few options in communicating with Solr to import data. In this
section we'll look at a few choices to be made, and then follow up with interaction
examples. Details on specific formats such as Solr's Update-XML comes later.

Direct HTTP or a convenient client API
Applications interact with Solr over HTTP. This can either be done directly using any
HTTP client API of your choice, or indirectly via a Solr integration API such as SolrJ
or Sunspot that will handle the HTTP interaction details. Such APIs are discussed in
Chapter 9, Integrating Solr. This HTTP Solr interaction doesn't imply that the data to
be indexed needs to move over this channel; you will learn soon that you can tell Solr
to fetch the data.

Another option is to embed Solr into your Java application instead
of running it as a server. The SolrJ API is conveniently used for
both remote and embedded use. More information about SolrJ and
Embedded Solr can be found in Chapter 9, Integrating Solr.

Push data to Solr or have Solr pull it
Even though an application will be communicating with Solr over HTTP, it does not
have to send Solr documents over this channel. Solr supports what it calls remote
streaming in which it's given a URL to the data. It might be an HTTP URL, but more
likely it is a file-system based URL, applicable when the data is already on Solr's
machine or network drive. This option avoids the overhead of HTTP. Another way
to ask Solr to pull data is to use the DataImportHandler (DIH) which can pull data
from a database and other sources. The DIH offers an extensible framework that can
be adapted to custom data sources.

Data formats
The following are various data formats for indexing data into Solr:

•	 Solr's Update-XML: Solr accepts documents expressed in XML conforming
to a simple Solr-specific format. It has commands to delete documents and to
perform optimizes and commits too.

°° Other XML (Solr 3.4): Any arbitrary XML can be given to Solr along
with an XSLT file that Solr will use to translate the XML to the
Update-XML format for further processing. There is a short example
of this in the DIH section, by way of comparison.

Chapter 3

[77]

•	 Solr's Update-JSON: A JavaScript Object Notation variation of Solr's Update-
XML. For more details, see: http://wiki.apache.org/solr/UpdateJSON

•	 Java-Bin: An efficient binary variation of Solr's Update-XML. Officially, only
the SolrJ client API supports this, but there is a third-party Ruby port too.

•	 CSV: A comma (or other character) separated value format.
•	 Rich documents: Most user file formats such as PDF, XLS, DOC, PPT; text

and metadata is extracted from these formats and put into various Solr fields.
This is enabled via the Solr Cell contrib module.

The DataImportHandler contrib module is a flexible data importing
framework with out-of-the-box supports for importing arbitrary XML
formats and e-mail, via the IMAP protocol. It is best known for pulling
data from a relational database, though that isn't really a format, per-se.

We'll demonstrate Solr's capability to import MusicBrainz data in XML, CSV, and
from a database. Other examples will include rich document import both via the DIH
to crawl files and via Solr Cell. Most likely, an application would use just one format.

Before these approaches are described, we'll discuss cURL and remote streaming,
which are foundational topics.

HTTP POSTing options to Solr
Solr receives commands and possibly document data through HTTP POST.

Solr lets you use HTTP GET too, such as direct web browser access.
However, this is an inappropriate HTTP verb for anything other than
retrieving data. For more information on this concept, read about
REST at http://en.wikipedia.org/wiki/Representational_
State_Transfer

One way to send an HTTP POST is through the Unix command line program curl
(also available on Windows through Cygwin: http://www.cygwin.com) and that's
what we'll use here in the examples. An alternative cross-platform option that comes
with Solr is post.jar located in Solr's example/exampledocs directory. To get some
basic help on how to use it, run the following command:

>> java –jar example/exampledocs/post.jar -help

You'll see in a bit that you can post name-value pair options as HTML form data.
However, post.jar doesn't support that, so you'll be forced to specify the URL and
put the options in the query string.

Indexing Data

[78]

There are several ways to tell Solr to index data, and all of them are through
HTTP POST:

•	 Send the data as the entire POST payload. curl does this with --data-
binary (or some similar options) and an appropriate content-type header for
whatever the format is.

•	 Send some name-value pairs akin to an HTML form submission. With curl,
such pairs are preceded by -F. If you're giving data to Solr to be indexed as
opposed to it looking for it in a database, then there are a few ways to
do that:

°° Put the data into the stream.body parameter. If it's small, perhaps
less than a megabyte, then this approach is fine. The limit is
configured with the multipartUploadLimitInKB setting in
solrconfig.xml, defaulting to 2GB. If you're tempted to increase
this limit, you should reconsider your approach.

°° Refer to the data through either a local file on the Solr server using
the stream.file parameter or a URL that Solr will fetch through
the stream.url parameter. These choices are a feature that Solr calls
remote streaming.

Here is an example of the first choice. Let's say we have a Solr Update-XML file
named artists.xml in the current directory. We can post it to Solr using the
following command line:

>> curl http://localhost:8983/solr/mbartists/update -H 'Content-
type:text/xml; charset=utf-8' --data-binary @artists.xml

If it succeeds, then you'll have output that looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
 <int name="status">0</int><int name="QTime">128</int>
</lst>
</response>

To use the stream.body feature for the preceding example, you would do this:

curl http://localhost:8983/solr/mbartists/update -F stream.body=@artists.
xml

Chapter 3

[79]

In both cases, the @ character instructs curl to get the data from the file instead of
being @artists.xml literally. If the XML is short, then you can just as easily specify
it literally on the command line:

curl http://localhost:8983/solr/mbartists/update -F stream.body=' <commit
/>'

Notice the leading space in the value. This was intentional. In this example,
curl treats @ and < to mean things we don't want. In this case, it might be more
appropriate to use form-string instead of -F. However, it's more typing, and I'm
feeling lazy.

Remote streaming
In the preceding examples, we've given Solr the data to index in the HTTP message.
Alternatively, the POST request can give Solr a pointer to the data in the form of
either a file path accessible to Solr or an HTTP URL to it.

The file path is accessed by the Solr server on its machine, not the client,
and it must also have the necessary operating system file permissions too.

Just as before, the originating request does not return a response until Solr has
finished processing it. If the file is of a decent size or is already at some known URL,
then you may find remote streaming faster and/or more convenient, depending on
your situation.

Here is an example of Solr accessing a local file:

curl http://localhost:8983/solr/mbartists/update -F stream.file=/tmp/
artists.xml

To use a URL, the parameter would change to stream.url, and we'd specify a URL.
We're passing a name-value parameter (stream.file and the path), not the actual
data.

Security risk
Use of remote streaming (stream.file or stream.url), is enabled by
default in solrconfig.xml (search for enableRemoteStreaming).
This can be considered a security risk; so only turn it on if Solr is
protected. See Chapter 8, Deployment, for more information.

Indexing Data

[80]

Solr's Update-XML format
Using an XML formatted message, you can supply documents to be indexed, tell Solr
to commit changes, to optimize the index, and to delete documents. Here is a sample
XML file you can HTTP POST to Solr that adds (or replaces) a couple documents:

<add overwrite="true">
 <doc boost="2.0">
 <field name="id">5432a</field>
 <field name="type" ...</field>
 <field name="a_name" boost="0.5"></field>
 <!-- the date/time syntax MUST look just like this -->
 <field name="begin_date">2007-12-31T09:40:00Z</field>
 </doc>
 <doc>
 <field name="id">myid</field>
 <field name="type" ...
 <field name="begin_date">2007-12-31T09:40:00Z</field>
 </doc>
 <!-- more doc elements here as needed -->
</add>

A valid XML document has one root element. If you want to send
multiple XML-based commands to Solr in the same message/file, then
you can use an arbitrarily named root element to contain the XML
elements Solr understands.

The overwrite attribute defaults to true to guarantee the uniqueness of values in
the field that you have designated as the unique field in the schema, assuming you
have such a field. If you were to add another document that has the same value for
the unique field, then this document would overwrite the previous document. You
will not get an error.

If you are sure that you will be adding a document that is not a duplicate,
then you can set overwrite to false to get a small performance
improvement since Solr won't check uniqueness of the unique key field.

The boost attribute affects the scores of matching documents in order to affect
ranking in score-sorted search results. Providing a boost value, whether at the
document or field level, is optional. The default value is 1.0, which is effectively
a non-boost. Technically, documents are not boosted, only fields are. The effective
boost value of a field is that specified for the document multiplied by that specified
for the field.

Chapter 3

[81]

Specifying boosts here is called index-time boosting, which is rarely done
as compared to the more flexible query-time boosting. Index-time boosting
is less flexible because such boosting decisions must be decided at
index-time and will apply to all of the queries. You'll learn more about
boosting and scoring in Chapter 5, Search Relevancy.

Deleting documents
You can delete a document by its unique field. Here we delete two documents:

<delete><id>Artist:11604</id><id>Artist:11603</id></delete>

To more flexibly specify which documents to delete, you can alternatively use a
Lucene/Solr query:

<delete><query>timestamp:[* TO NOW-12HOUR]</query></delete>

The contents of the delete tag can be any number of id and query tags if you want
to batch many deletions into one message to Solr.

The query syntax is discussed in Chapter 4, Searching. Since we haven't gotten to that
yet, I'll explain the preceding example. Let's suppose that all of your documents
had a timestamp field with a value of the time it was indexed, and you have an
update strategy that bulk loads all of the data on a daily basis. If the loading process
results in documents that shouldn't be in the index anymore, then we can delete
them immediately after a bulk load. This query would delete all of the documents
not indexed within the last 12 hours. Twelve was chosen somewhat arbitrarily, but
it needs to be less than 24 (the update process interval) and greater than the longest
time it might conceivably take to bulk-load all the data.

If you want to delete the entire index in the course of development (or
perform major schema changes in production), then simply delete the
data directory while Solr is shut down.

Indexing Data

[82]

Commit, optimize, and rollback
Data sent to Solr is not immediately searchable, nor do deletions take immediate
effect. Like a database, changes must be committed first. The easiest way to do this
is to add a commit=true request parameter to a Solr update URL. The request to
Solr could be the same request that contains data to be indexed then committed or
an empty request—it doesn't matter. For example, you can visit this URL to issue
a commit on our mbreleases core: http://localhost:8983/solr/mbreleases/
update?commit=true. You can also commit changes using the XML syntax by
simply sending this to Solr:

<commit />

There are three important things to know about commits that are unique to Solr:

•	 Commits are slow. Depending on the index size, Solr's auto-warming
configuration, and Solr's cache state prior to committing, a commit can take
a non-trivial amount of time. Typically, it takes a few seconds, but it can take
some number of minutes in extreme cases. To learn how to decrease this
time, read about realtime search in Chapter 10, Scaling Solr.

•	 There is no transaction isolation. This means that if more than one Solr client
were to submit modifications and commit them at overlapping times, it is
possible for part of one client's set of changes to be committed before that
client told Solr to commit. This applies to rollback as well. If this is a problem
for your architecture then consider using one client process responsible for
updating Solr.

•	 Simultaneous commits should be avoided, particularly more than two. The
problem actually pertains to simultaneous query warming which is the latter
and lengthy part of a commit. Solr will use a lot of resources and it might
even yield an error indicating there is too much simultaneous warming—
though the commit will eventually still have its effect.

Chapter 3

[83]

When you are bulk loading data, these concerns are not an issue since you're
going to issue a final commit at the end. But if Solr is asynchronously updated by
independent clients in response to changed data, commits could come too quickly
and might overlap. To address this, Solr has two similar features, autoCommit
and commitWithin. The first refers to a snippet of XML configuration commented
in solrconfig.xml in which Solr will automatically commit at a document-count
threshold or time-lapse threshold (time of oldest uncommitted document). In this
case, Solr itself handles committing and so your application needn't send commits.
commitWithin is a similar time-lapse option that is set by the client on either the
<add commitWithin="…"> element or the <commit commitWithin="…"/> element
of an XML formatted update message or set a request parameter (as of Solr 3.4) in
order to express another option available. It will ensure a commit occurs within the
specified number of milliseconds. Here's an example of a 30 second commit window:

<commit commitWithin="30000"/>

commitWithin is preferred to autoCommit
The commitWithin attribute on an add or commit element is preferable
to the autoCommit in solrconfig.xml because the latter is global and
can't be disabled. Also, be careful not to pick a time window shorter than
how long a commit takes since then commits will start to overlap, which
is very bad!
Look for a future version of Solr to have what's called near realtime
search—a much sought after feature. This will make commits cheap,
thereby enabling Solr to be updated asynchronously when data changes
and have it be searchable almost immediately.

Lucene's index is internally composed of one or more segments. When a buffer
of indexed documents gets flushed to disk it creates a new segment. Deletes get
recorded in another file, but they go to disk too. Sometimes, after a new segment
is written, Lucene will merge some of them together. When Lucene has just one
segment, it is in an optimized state. The more segments there are the more query
performance degrades. Of course, optimizing an index comes at a cost; the larger
your index is, the longer it will take to optimize. Finally, an optimize command
implies commit semantics. You can specify an optimize command in all the places
you specify a commit. So, to use it in a URL, try this: http://localhost:8983/
solr/mbreleases/update?optimize=true. For the XML format, simply send this:

<optimize />

Indexing Data

[84]

It is recommended to explicitly optimize the index at an opportune time like after
a bulk load of data and/or a daily interval in off-peak hours, if there are sporadic
updates to the index. The performance chapter has a tip on optimizing to more than
one segment if the optimizes are taking too long.

Both commit and optimize commands take two additional boolean options that
default to true:

<optimize waitFlush="true" waitSearcher="true"/>

If you were to set these to false, then commit and optimize commands return
immediately, even though the operation hasn't actually finished yet. So if you wrote
a script that committed with these at their false values and then executed a query
against Solr, you may find that the search will not reflect the changes yet. By waiting
for the data to flush to disk (waitFlush) and waiting for a new searcher to be ready
to respond to changes (waitSearcher), this circumstance is avoided. These options
are useful for executing an optimize command from a script that simply wants to
optimize the index and otherwise doesn't care when newly added data is searchable.

No matter how long a commit or optimize command takes, Solr still
executes searches concurrently—there is no read lock.

There is one final indexing command to discuss—rollback. All uncommitted changes
can be cancelled by sending Solr the rollback command either via a URL parameter
such as: http://localhost:8983/solr/mbreleases/update?rollback=true or
with this XML:

<rollback />

Sending CSV formatted data to Solr
If you have data in a CSV format or if it is more convenient for you to get CSV than
XML or JSON, then you may prefer the CSV option. Solr's CSV support is fairly
flexible. You won't be able to specify an index-time boost but that's an uncommon
need.

CSV is uniquely the only format that Solr supports for round-tripping
data. As such, you can query for CSV formatted data that is suitable
to be added right back into Solr (for stored fields only, of course). The
XML and JSON query output formats are structured differently than
their input formats so they don't count.

Chapter 3

[85]

To get some CSV data out of a local PostgreSQL database for the MusicBrainz tracks,
I ran this command:

psql -U postgres -d musicbrainz_db -c "COPY (\

select 'Track:' || t.id as id, 'Track' as type, t.name as t_name,
t.length/1000 as t_duration, a.id as t_a_id, a.name as t_a_name,
albumjoin.sequence as t_num, r.id as t_r_id, r.name as t_r_name, array_
to_string(r.attributes,' ') as t_r_attributes, albummeta.tracks as t_r_
tracks \

from (track t inner join albumjoin on t.id = albumjoin.track \

 inner join album r on albumjoin.album = r.id left join albummeta on
albumjoin.album = albummeta.id) inner join artist a on t.artist = a.id \

) to '/tmp/mb_tracks.csv' CSV HEADER"

And it generated about 7 million lines of output that looks like this (first three lines):

id,type,t_name,t_duration,t_a_id,t_a_name,t_num,t_r_id,t_r_name,t_r_
attributes,t_r_tracks

Track:183326,Track,In the Arms of Sleep,254,11650,The Smashing
Pumpkins,4,22471,Mellon Collie and the Infinite Sadness (disc 2: Twilight
to Starlight),0 1 100,14

Track:183328,Track,Tales of a Scorched Earth,228,11650,The Smashing
Pumpkins,6,22471,Mellon Collie and the Infinite Sadness (disc 2: Twilight
to Starlight),0 1 100,14

…

This CSV file is provided with the code supplement to the book. To get Solr to import
the CSV file, type this at the command line:

curl http://localhost:8983/solr/update/csv -F f.t_r_attributes.split=true
-F f.t_r_attributes.separator=' ' -F overwrite=false -F commit=true -F
stream.file=/tmp/mb_tracks.csv

The CSV options were specified via form values (-F) here; you can alternatively
encode them into the query portion of the URL—it doesn't matter.

Consider the Unix mkfifo command
When I actually did this I had PostgreSQL on one machine and Solr on
another. I used the Unix mkfifo command to create an in-memory data
pipe mounted at /tmp/mb_tracks.csv. This way, I didn't have to
actually generate a huge CSV file. I could essentially stream it directly
from PostgreSQL into Solr. Details on this approach and PostgreSQL
are out of the scope of this book.

Indexing Data

[86]

Configuration options
The following are the names of each configuration option with an explanation.
For the MusicBrainz track CSV file, the defaults were used with the exception of
specifying how to parse the multi-valued t_r_attributes field and disabling
unique key processing for performance.

•	 separator: The character that separates each value on a line. Defaults to a
comma.

If you're using curl and need to specify a tab character or some other
character that isn't visible other than a space, then the easiest way to do
this is to specify this parameter on the URL as a query parameter instead
of with -F. Remember to URL encode it. For example: …/update/
csv?separator=%09 –F … and so on.

•	 header: Is set to true if the first line lists the field names (the default).
•	 fieldnames: If the first line doesn't have the field names, then you'll have to

use this instead to indicate what they are. They are comma separated. If no
name is specified for a column, then its data is skipped.

•	 skip: The fields to not import in the CSV file.
•	 skipLines: The number of lines to skip in the input file. Defaults to 0.
•	 trim: If true, then removes leading and trailing whitespace as a final step,

even if quoting is used to explicitly specify a space. Defaults to false. Solr
already does an initial pass trim, but quoting may leave spaces.

•	 encapsulator: This character is used to encapsulate (that is surround,
quote) values in order to preserve the field separator as a field value instead
of mistakenly parsing it as the next field. This character itself is escaped
by doubling it. It defaults to the double quote, unless escape is specified.
Example:
11604, foo, "The ""second"" word is quoted.", bar

•	 escape: If this character is found in the input text, then the next character is
taken literally in place of this escape character, and it isn't otherwise treated
specially by the file's syntax. Example:
11604, foo, The second\, word is followed by a comma., bar

•	 keepEmpty: Specified whether blank (zero length) fields should be indexed as
such or omitted. It defaults to false.

•	 overwrite: It indicates whether to enforce the unique key constraint of the
schema by overwriting existing documents with the same ID. It defaults to
true. Disable this to increase performance, if you are sure you are passing
new documents.

Chapter 3

[87]

•	 split: This is a field-specific option used to split what would normally be
one value into multiple values. Another set of CSV configuration options
(separator, and so on) can be specified for this field to instruct Solr on how to
do that. See the previous tracks MusicBrainz example on how this is used.

•	 map: This is another field-specific option used to replace input values with
another. It can be used to remove values too. The value should include a
colon, which separates the left side which is replaced with the right side.
If we were to use this feature on the tracks of the MusicBrainz data, then
it could be used to map the numeric code in t_r_attributes to more
meaningful values. Here's an example of such an attempt:
-F keepEmpty=false -F f.t_r_attributes.map=0:
 -F f.t_r_attributes.map=1:Album -F f.t_r_attributes.map=2:Single

This causes 0 to be removed, because it seems to be useless data, as nearly all
tracks have it, and we map 1 to Album and 2 to Single.

The Data Import Handler Framework
Solr includes a very popular contrib module for importing data known as the
DataImportHandler (DIH in short). It's a data processing pipeline built specifically
for Solr. Here's a summary of notable capabilities:

•	 Imports data from databases through JDBC (Java Database Connectivity)
°° Supports importing only changed records, assuming a last-updated

date
•	 Imports data from a URL (HTTP GET)
•	 Imports data from files (that is it crawls files)
•	 Imports e-mail from an IMAP server, including attachments
•	 Supports combining data from different sources
•	 Extracts text and metadata from rich document formats
•	 Applies XSLT transformations and XPath extraction on XML data
•	 Includes a diagnostic/development tool

Furthermore, you could write your own data source or transformation step once you
learn how by seeing how the existing ones are coded.

Indexing Data

[88]

Consider DIH alternatives
The DIH's capabilities really have little to do with Solr itself yet the DIH
is tied to Solr (to a Solr core, to be precise). Consider alternative data
pipelines such as those referenced here: http://wiki.apache.org/
solr/SolrEcosystem—this includes building your own. Alternatives
can run on another machine to reduce the load on Solr when there is
significant processing involved. And in being agnostic of where the data
is delivered, your investment in them can be re-used for other purposes
independent of Solr. With that said, the DIH is a strong choice because it
is integrated with Solr and it has a lot of capabilities.

The complete reference documentation for the DIH is here: http://wiki.apache.
org/solr/DataImportHandler. It's rather thorough. In this chapter I'll demonstrate
some of its features but you'll need to turn to the wiki for further details.

Setup
The DIH is not considered a core part of Solr, even though it comes with the Solr
download, and so you must add its Java JAR files to your Solr setup to use it. If
this isn't done, you'll eventually see a ClassNotFoundException error. The DIH's
JAR files are located in Solr's dist directory: apache-solr-dataimporthandler-
3.4.0.jar and apache-solr-dataimporthandler-extras-3.4.0.jar. The easiest
way to add JAR files to a Solr configuration is to copy them to the <solr_home>/
lib directory; you may need to create it. Another method is to reference them
from solrconfig.xml via <lib/> tags—see Solr's example configuration for
examples of that. You will most likely need some additional JAR files as well. If you'll be
communicating with a database, then you'll need to get a JDBC driver for it. If you
will be extracting text from various document formats then you'll need to add the
JARs in /contrib/extraction/lib. Finally, if you'll be indexing e-mail then you'll
need to add the JARs in /contrib/dataimporthandler/lib.

The DIH needs to be registered with Solr in solrconfig.xml like so:

<requestHandler name="/dih_artists_jdbc"
 class="org.apache.solr.handler.dataimport.DataImportHandler">
 <lst name="defaults">
 <str name="config">mb-dih-artists-jdbc.xml</str>
 </lst>
</requestHandler>

This reference mb-dih-artists-jdbc.xml is located in <solr-home>/conf, which
specifies the details of a data importing process. We'll get to that file in a bit.

http://wiki.apache.org/solr/SolrEcosystem

Chapter 3

[89]

The development console
Before describing a DIH configuration file, we're going to take a look at the DIH
development console. Visit this URL (modifications may be needed for your host,
port, core, and so on):

http://localhost:8983/solr/mbartists/admin/dataimport.jsp

If there is more than one request handler registered, then you'll see a simple page
listing them with links to continue to the development console for that handler. The
development console looks like the following screenshot:

The screen is divided into two panes: on the left is the DIH control form and on the
right is the command output as raw XML.

The control form is further subdivided into a development/debugging section to
include temporary editing of the configuration file, and is followed by a master list of
major DIH command buttons at the bottom.

Indexing Data

[90]

The editable configuration is not saved to disk! It is purely for live trial-
and-error debugging. Once you are satisfied with any changes, you'll
need to save them back to the file yourself and then take some action to
get Solr to reload the changes, such as by clicking on the Reload Config
button, and then reload the page to pick up the changes on the screen.
Furthermore, only the Debug Now button uses this text; not the buttons
at the bottom.

The last section on DIH in this chapter goes into more detail on submitting a
command to the DIH.

Writing a DIH configuration file
The key pieces of a DIH configuration file include a data source, an entity, some
transformers, and a list of fields. There can be variable numbers of these things and
sometimes they can be omitted. At first I'll list the various types of each of these DIH
components with a simple description. Each has further details on usage that you'll
need to see the wiki for. Then I'll show you a few sample configuration files to give
you a sense of how it all comes together.

Data Sources
A <dataSource/> specifies, as you might guess, the source of data referenced by an
entity. This is the simplest piece of the configuration. The type attribute specifies the
type, which defaults to JdbcDataSource. Depending on the type, there are further
configuration attributes (not listed here). There could be multiple data sources but
not usually. Furthermore, with the exception of JdbcDataSource, each type handles
either binary or text but not both. The following is a listing of available data source
types. They all have a name ending with DataSource.

•	 JdbcDataSource: A reference to a database via JDBC; usually relational.
•	 FieldStreamDataSource, FieldReaderDataSource: For extracting binary or

character data from a column from a JdbcDataSource.
•	 BinFileDataSource, FileDataSource: Specify a path to a binary or text file.
•	 URLDataSource: Specify a URL to a text resource.
•	 BinContentStreamDataSource, ContentStreamDataSource: Receives

binary or text data posted to the DIH instead of the DIH pulling it from
somewhere.

Chapter 3

[91]

ContentStreamDataSource is very interesting because it lets you use
the DIH to receive asynchronous on-demand data processing instead
of the typical scheduled batch-process mode. It could be used for many
things, even a Web Hook: http://www.webhooks.org/.

If you were looking for a MailDataSource, then there isn't any. The
MailEntityProcessor was coded to fetch the mail itself instead of decoupling that
function to a data source.

Entity processors
Following the data sources is a <document/> element, which contains one or more
<entity/> elements referencing an Entity Processor via the processor attribute; the
default is SqlEntityProcessor. An entity processor produces documents when it
is executed. The data to produce the documents typically comes from a referenced
data source. An entity that is an immediate child of <document> is by default a root
entity, which means its documents are indexed by Solr. If the rootEntity attribute
is explicitly set to false, then the DIH recursively traverses down until it finds one
that doesn't have this marking. There can be sub-entities, which execute once for
each parent document and which usually reference the parent document to narrow
a query. Documents from a sub-entity are merged into its root entity's document,
producing multi-valued fields when more than one document with the same field is
produced by the sub-entity.

This explanation is surely quite confusing without having seen
several examples. You may want to read this again once you get to
some examples.

The entity processors have some common configuration attributes and some that are
unique to each one.

There is a threads attribute, new to Solr 3. This allows you to specify
how many concurrent Solr indexing threads are used, in order to index
documents faster.

Entity processors all have a name ending with EntityProcessor. The following are
a list of them:

•	 SqlEntityProcessor: References a JdbcDataSource and executes a
specified SQL query. The columns in the result set, map to fields by the same
name. This processor uniquely supports delta-import.

Indexing Data

[92]

•	 CachedSqlEntityProcessor: Like SqlEntityProcessor, but caches every
record in memory for future lookups instead of running the query each time.
This is only an option for sub-entities of a root entity.

•	 XPathEntityProcessor: Processes XML from a text data source. It separates
the XML into separate documents according to an XPath expression. Fields
reference a part of the XML via an XPath expression.

•	 PlainTextEntityProcessor: Takes the text from a text data source putting
it into a single field.

•	 LineEntityProcessor: Takes each line of text from a text data source,
creating a document from each one. A suggested use is for an input file of
URLs that are referenced by a sub-entity like Tika.

•	 FileListEntityProcessor: Finds all files meeting the specified criteria,
creating a document from each one with the file path in a field. A sub-entity
like Tika could then extract text from the file.

•	 TikaEntityProcessor: Extracts text from a binary data source, using
Apache Tika. Tika supports many file types such as HTML, PDF, and
Microsoft Office documents. This is an alternative approach to Solr Cell,
described later.

•	 MailEntityProcessor: Fetches e-mail from an IMAP mail server, including
attachments processed with Tika. It doesn't use a data source. You can
specify a starting date but unfortunately it doesn't support DIH's delta-
import.

Fields and transformers
Within an <entity/> are some <field/> elements that declare how the columns in
the query map to Solr. The field element must have a column attribute that matches
the corresponding named column in the SQL query. The name attribute is the Solr
schema field name that the column is going into. If it is not specified, then it defaults
to the column name. When a column in the result can be placed directly into Solr
without further processing, there is no need to specify the field declaration, because
it is implied.

When importing from a database, use the SQL AS keyword to
use the same names as the Solr schema instead of the database
schema. This reduces the number of <field/> elements and
shortens existing ones.

Chapter 3

[93]

An attribute of the entity declaration that we didn't mention yet is transformer.
This declares a comma-separated list of transformers that create, modify, and delete
fields and even entire documents. The transformers are evaluated in-order, which
can be significant. Usually the transformers use attributes specific to them on a given
field to trigger that it should take some action, whether it be splitting the field into
multiple values or formatting it or whatever. The following is a list of transformers:

•	 TemplateTransformer: Overwrites or modifies a value based on a string
template. The template can contain references to other fields and DIH
variables.

•	 RegexTransformer: Either performs a string substitution, splits the field
into multiple values, or splits the field into separately named fields. This
transformer is very useful!

•	 DateFormatTransformer: Parses a date-time format according to a specified
pattern. The output format is Solr's date format.

•	 NumberFormatTransformer: Parses a number according to a specified locale
and "style" (that is number, percent, integer, currency). The output format is
a plain number suitable for one of Solr's numeric fields.

•	 HTMLStripTransformer: Removes HTML markup according to
HTMLStripCharFilter (documented in the previous chapter). By performing
this step here instead of a text analysis component, the stored value will also
be cleansed, not just the indexed (that is, searchable) data.

•	 ClobTransformer: Transforms a CLOB value from a database into a plain
string.

•	 LogTransformer: Logs a string for diagnostic purposes, using a string
template like TemplateTransformer. Unlike most transformers, this is
configured at the entity since it is evaluated for each entity output document,
not for each field.

•	 ScriptTransformer: Invokes user-defined code in-line defined in a
<script/> element. This transformer is specified differently within the
transformers attribute—use …,script:myFunctionName,… where
myFunctionName is a named function in the provided code. The code is
written in JavaScript by default but most other languages that run on the
JVM languages can be used too.

Indexing Data

[94]

The ScriptTransformer is powerful!
You should certainly use the other transformers as appropriate, but there
is nearly nothing you can't do with this one. Your script function can
emit multiple records by returning an array of them, and it can omit a
record by returning null. You may want to consider testing your script by
using a separate script file and writing unit tests for it.

By the way, DIH transformers are similar to Solr UpdateRequestProcessors
described at the end of this chapter. The former operates strictly within the DIH
framework whereas the latter is applicable to any importing mechanism.

Example DIH configurations
A DIH configuration file tends to look different depending on whether the source is
a database, the content is XML, or if text is being extracted from documents.

It's important to understand that the various data sources, data formats,
and transformers, are mostly independent. The next few examples pick
combinations to demonstrate a variety of possibilities for illustrative
purposes. You should pick the pieces that you need.

Importing from databases
The following is the mb-dih-artists-jdbc.xml file with a rather long SQL query:

<dataConfig>
 <dataSource name="jdbc" driver="org.postgresql.Driver"
 url="jdbc:postgresql://localhost/musicbrainz_db"
 user="musicbrainz" readOnly="true" autoCommit="false" />
 <document>
 <entity name="artist" dataSource="jdbc" pk="id" query="
 select
 a.id as id,
 a.name as a_name, a.sortname as a_name_sort,
 a.begindate as a_begin_date, a.enddate as a_end_date,
 a.type as a_type,
 array_to_string(
 array(select aa.name from artistalias aa
 where aa.ref = a.id),
 '|') as a_alias,
 array_to_string(
 array(select am.name from v_artist_members am
 where am.band = a.id order by am.id),
 '|') as a_member_name,

Chapter 3

[95]

 array_to_string(
 array(select am.id from v_artist_members am
 where am.band = a.id order by am.id),
 '|') as a_member_id,
 (select re.releasedate from release re inner join
 album r on re.album = r.id where r.artist = a.id
 order by releasedate desc limit 1)
 as a_release_date_latest
 from artist a
 "
 transformer="RegexTransformer,DateFormatTransformer,
 TemplateTransformer">
 <field column = "id" template="Artist:${artist.id}" />
 <field column = "type" template="Artist" />
 <field column = "a_begin_date"
 dateTimeFormat="yyyy-MM-dd" />
 <field column = "a_end_date"
 dateTimeFormat="yyyy-MM-dd" />
 <field column = "a_alias" splitBy="\|" />
 <field column = "a_member_name" splitBy="\|"/>
 <field column = "a_member_id" splitBy="\|" />
 </entity>
 </document>
</dataConfig>

If the type attribute on dataSource is not specified (it isn't here) then it defaults
to JdbcDataSource. Those familiar with JDBC should find the attributes in this
example familiar, and there are others available. For a reference to all of them, see
the wiki.

Efficient JDBC configuration
Many database drivers in the default configurations (including those
for PostgreSQL and MySQL) fetch all of the query results into memory
instead of on-demand or using a batch/fetch size! This may work well
for typical database usage in which a relatively small amount of data
needs to be fetched quickly, but is completely unworkable for ETL
(Extract Transform and Load) usage such as this. Configuring the driver
to stream the data will sometimes require driver-specific configuration
settings. Settings for some specific databases are at http://wiki.
apache.org/solr/DataImportHandlerFaq.

Indexing Data

[96]

The main piece of an <entity/> used with a database is the query attribute, which is
the SQL query to be evaluated. You'll notice that this query involves some sub-queries,
which are made into arrays and then transformed into strings joined by spaces. The
particular functions used to do these sorts of things are generally database specific.
This is done to shoehorn multi-valued data into a single row in the results. It may
create a more complicated query, but it does mean that the database does all of the
heavy lifting so that all of the data Solr needs for an artist is in one row.

Sub-entities
There are numerous examples on the DIH wiki depicting entities within
entities (assuming the parent entity is a root entity). This is an approach
to the problem of getting multiple values for the same Solr field. It's also
an approach for spanning different data sources. I advise caution against
that approach because it will generate a separate query in response to
each source record, which is very inefficient. It can be told to cache just
one query to be used for future lookups but that is only applicable to
data shared across records that can also fit in memory. If all required data
is in your database, I recommend the approach illustrated above instead.

Importing XML from a file with XSLT
In this example, we're going to import an XML file from disk and use XSLT to do
most of the work instead of DIH transformers.

Solr 3.4 added direct support for using XSLT to process input XML
without requiring use of the DIH as we show in this simple example.
The following command would have the same effect:
curl 'http://localhost:8983/solr/mbartists/update/
xslt?tr=artists.xsl&commit=true' -H 'Content-type:text/
xml' --data-binary @downloads/artists_veryshort.xml

<dataConfig>
 <dataSource name="artists" type="FileDataSource" encoding="UTF-8"/>
 <document name="artists">
 <entity name="artist" dataSource="artists"
 url="downloads/artists_veryshort.xml"
 processor="XPathEntityProcessor"
 xsl="cores/mbtype/conf/xslt/artists.xsl"
 useSolrAddSchema="true">
 </entity>
 </document>
</dataConfig>

Chapter 3

[97]

This dataSource of type FileDataSource is for text files. The entity URL is relative
to the baseUrl on the data source; since it's not specified then it defaults to the
current working directory of the server. The referenced XSLT file is relative to the
current working directory instead of the conf directory—a known bug: SOLR-1226.
To see the referenced XSLT file, download the code supplement for the book.

An interesting thing about this example is not just the use of XSLT but
useSolrAddSchema which signifies that the resulting XML structure follows Solr's
XML <add><doc><field name=… structure. Our input file is an HTML table and the
XSLT file transforms it. These two options are best used together.

There are some other examples at the DIH wiki illustrating XML
processing. One of them shows how to process a Wikipedia XML
file dump, which is rather interesting.

Importing multiple rich document files (crawling)
In this example, we have a configuration that crawls all PDF files in a directory and
then extracts text and metadata from them.

<dataConfig>
 <dataSource type="BinFileDataSource" />
 <document>
 <entity name="f" dataSource="null" rootEntity="false"
 processor="FileListEntityProcessor"
 baseDir="/my/file/path" fileName=".*pdf"
 recursive="true">
 <entity name="tika-test" processor="TikaEntityProcessor"
 url="${f.fileAbsolutePath}" format="text">
 <field column="Author" name="author" meta="true"/>
 <field column="title" name="title" meta="true"/>
 <field column="text" name="text"/>
 </entity>
 </entity>
 </document>
</dataConfig>

The FileListEntityProcessor is the piece that does the file crawling. It doesn't
actually use a data source but it's required. Because this entity is not a root entity,
thanks to rootEntity="false", it's the sub-entity within it that is a root entity
which corresponds to a Solr document. The entity is named f and the sub-entity
tika-test refers to the path provided by f via f.fileAbsolutePath in its url. This
example uses the variable substitution syntax ${…}.

Indexing Data

[98]

Speaking of which, there are a variety of variables that the DIH makes available for
substitution, including those defined in solr.xml and solrconfig.xml. Again, see
the DIH wiki for further details.

The TikaEntityProcessor part is relatively straightforward. Tika makes a variety
of metadata available about documents; this example just used two.

Importing commands
The DIH is issued one of several different commands to do different things.
Importing all data is called a full import, in contrast to a delta import that will
be described shortly. Commands are given to the DIH request handler with the
command attribute. We could tell the DIH to do a full import just by going to this
URL: http://localhost:8983/solr/mbartists/dataimport?command=full-
import. On the command line we would use:

curl http://localhost:8983/mbartists/solr/dataimport
 -F command=full-import

It uses HTTP POST, which is more appropriate than GET as discussed earlier.

Unlike the other importing mechanisms, the DIH returns an HTTP response
immediately while the import continues asynchronously. To get the current status of
the DIH, go to this URL http://localhost:8983/solr/mbartists/dataimport,
and you'll get output like the following:

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">15</int>
 </lst>
 <lst name="initArgs">
 <lst name="defaults">
 <str name="config">mb-dih-artists-jdbc.xml</str>
 </lst>
 </lst>
 <str name="status">idle</str>
 <str name="importResponse"/>
 <lst name="statusMessages"/>
 <str name="WARNING">This response format is experimental. It is
likely to change in the future.</str>
</response>

The command attribute defaults to status, which is what this output shows. When an
import is in progress, it shows statistics on that progress along with a status state
of busy.

Chapter 3

[99]

Other boolean parameters named clean, commit, and optimize may accompany the
command, and they all default to true. clean is specific to DIH, and it means that
before running the import, it will delete all documents first. To customize exactly
which documents are deleted, you can specify a preImportDeleteQuery attribute on
a root entity. You can even specify documents to be deleted after an import by using
the postImportDeleteQuery attribute. The query syntax is documented in
Chapter 4, Searching.

Beware that these defaults are inconsistent with other Solr importing
mechanisms. No other importing mechanism will delete all documents
first, and none will commit or optimize by default.

Two other useful commands are reload-config and abort. The first will reload
the DIH configuration file, which is useful for picking up changes without having to
restart Solr. The second will cancel any existing imports in progress.

Delta imports
The DIH supports what it calls a delta import, which is a mode of operation in
which only data that has changed since the last import is retrieved. A delta import is
only supported by the SqlEntityProcessor and it assumes that your data is time-
stamped. The official DIH approach to this is prominently documented on the wiki.
It uses a deltaImportQuery and deltaQuery pair of attributes on the entity, and a
delta-import command. That approach is verbose, hard to maintain, and it's slow
compared to a novel alternative documented here: http://wiki.apache.org/solr/
DataImportHandlerDeltaQueryViaFullImport.

Essentially, what you do is introduce a timestamp check in your SQL's WHERE clause
using variable substitution, along with another check if the clean parameter was
given to the DIH in order to control whether or not a delta or full import should
happen. Here is a concise <entity/> definition on a fictitious schema and data set
showing the relevant WHERE clause:

<entity name="item" pk="ID"
 query="SELECT * FROM item
 WHERE '${dataimporter.request.clean}' != 'false'
 OR last_modified > '${dataimporter.last_index_time}'">

Notice the ${…} variable substitution syntax. To issue a full import, use the
full-import command with clean enabled: /dataimport?command=full-
import&clean=true. And for a delta import, we still use the full-import command
but we set clean to false: /dataimport?command=full-import&clean=false&
optimize=false. I also disabled the index optimization since it's not likely this is
desired for a delta import.

http://wiki.apache.org/solr/DataImportHandlerDeltaQueryViaFullImport
http://wiki.apache.org/solr/DataImportHandlerDeltaQueryViaFullImport

Indexing Data

[100]

Indexing documents with Solr Cell
While most of this book assumes that the content you want to index in Solr is in a
neatly structured data format of some kind, such as in a database table, a selection of
XML files, or CSV, the reality is that we also store information in the much messier
world of binary formats such as PDF, Microsoft Office, or even images and music files.

Your author Eric Pugh first became involved with the Solr community when he
needed to ingest the thousands of PDF and Microsoft Word documents that a client
had produced over the years. The outgrowth of that early effort is Solr Cell providing
a very powerful and simple framework for indexing rich document formats.

Solr Cell is technically called the ExtractingRequestHandler. The
current name came about as a derivation of "Content Extraction Library"
which appeared more fitting to its author, Grant Ingersoll. Perhaps a
name including Tika would have been most appropriate considering
that this capability is a small adapter to Tika. You may have noticed
that the DIH includes this capability via the appropriately named
TikaEntityProcessor.

We'll look at how to leverage Solr Cell for extracting karaoke song lyrics from MIDI
files. Just think you can build a Solr powered index of all your favorite karaoke
songs! The complete reference material for Solr Cell is available at http://wiki.
apache.org/solr/ExtractingRequestHandler.

Extracting text and metadata from files
Every file format is different, and all of them provide different types of metadata,
as well as different methods of extracting content. The heavy lifting of providing a
single API to an ever expanding list of formats is delegated to Apache Tika:

Apache Tika is a toolkit for detecting and extracting metadata and structured text
content from various documents using existing parser libraries.

Tika supports a wide variety of formats, from the predictable to the unexpected.
Some of the most commonly used formats supported are Adobe PDF, Microsoft
Office including Word, Excel, PowerPoint, Visio, and Outlook. Other formats that are
supported include extracting metadata from images such as JPG, GIF, and PNG, as
well as from various audio formats such as MP3, MIDI, and Wave audio. Tika itself
does not attempt to parse the individual document formats. Instead, it delegates
the parsing to various third-party libraries, while providing a high level stream of
XML SAX events as the documents are parsed. A full list of the supported document
formats supported by the 0.8 version used by Solr 3.4 is available at http://tika.
apache.org/0.8/formats.html.

Chapter 3

[101]

Solr Cell is a fairly thin adapter to Tika consisting of a SAX ContentHandler that
consumes the SAX events and builds the input document from the fields that are
specified for extraction.

Some not so obvious things to keep in mind when indexing binary documents are:

•	 You can supply any kind of supported document to Tika, and Tika will
attempt to discover the correct MIME type of the document in order to use
the correct parser. If you know the correct MIME type then you can specify it
via the stream.type parameter.

•	 The default SolrContentHandler that is used by Solr Cell is fairly
simplistic. You may find that you need to perform extra massaging
of the data being indexed beyond what Solr Cell offers to reduce the
junk data being indexed. One approach is to implement a custom Solr
UpdateRequestProcessor, described later in this chapter. Another is to
subclass ExtractingRequestHandler and override createFactory() to
provide a custom SolrContentHandler.

•	 Remember that during indexing you are potentially sending large binary files
over the wire that must then be parsed by Solr, which can be very slow. If
you are looking to only index metadata, then it may make sense to write your
own parser using Tika directly, extract the metadata, and post that across to
the server. See the SolrJ: Indexing section in Chapter 9, Integrating Solr for an
example of parsing out metadata from an archive of a website and posting
the data through SolrJ.

You can learn more about the Tika project at http://tika.apache.org/.

Configuring Solr
In /examples/cores/karaoke/conf/solrconfig.xml lies the request handler for
parsing binary documents:

<requestHandler name="/update/extract"
 class="org.apache.solr.handler.extraction.ExtractingRequestHandler">
 <lst name="defaults">
 <str name="map.Last-Modified">last_modified</str>
 <str name="uprefix">metadata_</str>
 </lst>
</requestHandler>

Here we can see that the Tika metadata attribute Last-Modified is being mapped
to the Solr field last_modified, assuming we are provided that Tika attribute. The
parameter uprefix is specifying the prefix to use when storing any Tika fields that
don't have a corresponding matching Solr field.

Indexing Data

[102]

Solr Cell is distributed as a contrib module and is made up of the apache-solr-
cell-3.4.0.jar and roughly 25 more JARs that support parsing individual
document formats. In order to use Solr Cell, we placed the Solr Cell JAR and
supporting JARs in the lib directory for the karaoke core,./examples/cores/
karaoke/lib/, as it is not included by default in solr.war and none of the other
cores need those JARs. The JAR files placed in this lib directory are available only to
the karaoke core. To share these libs across multiple cores you would add them to ./
examples/cores/lib/ and specifying the directory as a shared lib in solr.xml:

<solr persistent="false" sharedLib="lib">

For this example, we are parsing karaoke files that are recorded in the MIDI format
using the standard Java package javax.audio.midi. If you know which specific
document types you are parsing you can pick and choose which JARs you want,
which would make your deployment smaller; however, for completeness we put all
of the supporting JARs such as pdfbox, poi, and icu4j in ./cores/karaoke/lib.

Solr Cell parameters
Before jumping into examples, we'll review Solr Cell's configuration parameters, all
of which are optional. They are organized below and ordered roughly by when they
are used.

At first, Solr Cell (or more specifically Tika) determines the format of the document.
It generally makes good guesses, but it can be assisted with these parameters:

•	 resource.name: This is an optional parameter for specifying the name of the
file. This assists Tika in determining the correct MIME type.

•	 stream.type: This optional parameter allows you to explicitly specify the
MIME type of the document being extracted to Tika, taking precedence over
Tika guessing.

Tika converts all input documents into a basic XHTML document, including
metadata in the head section. The metadata becomes fields and all text within the
body goes into the content field. These parameters further refine this:

•	 capture: XHTML element name (for example, "p") to be copied into its own
field; can be set multiple times.

•	 captureAttr: Set to true to capture XHTML attributes into fields named
after the attribute. A common example is for Tika to extract href attributes
from all the <a/> anchor tags for indexing into a separate field.

Chapter 3

[103]

•	 xpath: Allows you to specify an XPath query to filter which element's text
is put into the content field. To return only the metadata, and discard
all the body content of the XHMTL you would use xpath=/xhtml:html/
xhtml:head/descendant:node(). Notice the use of the xhtml: namespace
prefix for each element. Note that only a limited subset of the XPath
specification is supported. See http://tika.apache.org/0.8/api/org/
apache/tika/sax/xpath/XPathParser.html. The API fails to mention that
it also supports /descendant:node()

•	 literal.[fieldname]: Allows you to supply the specified value for this
field, for example, for the ID field.

At this point each resulting field name is potentially renamed in order to map into
the schema. These parameters control this process:

•	 lowernames: Set to true to lower-case the field names and convert non-
alphanumeric characters to an underscore. For example Last-Updated
becomes last_updated.

•	 fmap.[tikaFieldName]: Maps a source field name to a target field name.
For example, fmap.last_modified=timestamp maps the metadata field
last_modified generated by Tika to be recorded in the timestamp field defined
in the Solr schema.

•	 uprefix: This prefix is applied to the field name, if the unprefixed name
doesn't match an existing field. Used in conjunction with a dynamic field for
mapping individual metadata fields separately:
uprefix=meta_

<dynamicField name="meta_*" type="text_general" indexed="true"
stored="true" multiValued="true"/>

•	 defaultField: Field to use if uprefix isn't specified, and no existing field
matches. Can be used to map all the metadata fields into one multi-valued
field:
defaultField=meta

<field name="meta" type="text_general" indexed="true"
stored="true" multiValued="true"/>

Ignoring metadata fields
If you don't want to index the metadata fields, then you can throw
them away by mapping them to the ignored_ dynamic field by
setting uprefix="ignore_" and using the ignored field type:
<dynamicField name="ignored_*" type="ignored"
multiValued="true"/>

Indexing Data

[104]

Other miscellaneous parameters:

•	 boost.[fieldname]: Boost the specified field by this factor to affect scoring.
•	 extractOnly: Set to true to return the XHTML structure of the document as

parsed by Tika without indexing the document. Typically done in conjunction
with wt=json&indent=true to make the XHTML easier to read. The purpose
of this option is to aid in debugging.

•	 extractFormat: (when extractOnly=true) Defaults to xml to produce the
XHMTL structure. Can be set to text to return the raw text extracted from
the document.

Extracting karaoke lyrics
We are now ready to extract karaoke lyrics by posting MIDI files to our Solr /
update/extract request handler. Some classic ABBA tunes for your enjoyment
are available in the ./examples/3/karaoke/ directory, gratefully sourced from
FreeKaraoke at http://www.freekaraoke.com/.

In order to index the song Angel Eyes from the command line using curl, the
simplest command to run is:

>> curl 'http://localhost:8983/solr/karaoke/update/extract?fmap.
content=text' -F "file=@angeleyes.kar"

Don't forget to commit your changes:

>> curl http://localhost:8983/solr/karaoke/update?commit=true

You could trigger a commit in the same request that submits the document with the
commit=true query parameter; however, this is very inefficient if you are indexing
many documents!

We have a single fmap.content=text parameter that specifies the default field
for content extracted from the source. In this case, the lyrics from angeleyes.
kar should be stored in the Solr field text. Now go look for the results at http://
localhost:8983/solr/karaoke/select/?q=*:*. You should see:

<result name="response" numFound="1" start="0">
 <doc>
 <arr name="text">
 <str>

Chapter 3

[105]

 Angel Eyes by Abba sequenced by Michael Boyce
 tinker@worldnet.att.netSoft karaoke@KMIDI KARAOKE
 FILEWords@LENGL@TAngel Eyes@TABBA\Last night I was taking a walk
 along the river/And I saw him together with a young girl/And the
 look that he gave made me shiver/'Cause he always used ...
 </str>
 </arr>
 </doc>
</result>

You've now indexed information about the song and the lyrics in the text field that
forms the textual content of the MIDI file. However, what about the metadata, for
the MIDI file that Tika also exposes? Well, this is where dynamic fields come in very
handy. Every binary format has a set of metadata that to a varying extent overlaps
with other formats. Fortunately, it is very easy to specify to Solr Cell how you would
want to map metadata fields by using the uprefix property. We specify that all of
the metadata_* fields should be created using dynamic fields in schema.xml:

<dynamicField name="metadata_*" type="string" indexed="true"
 stored="true" multiValued="true"/>

Since handling metadata properly is something we want to standardize on, we add
to the configuration element in solrconfig.xml:

<str name="uprefix">metadata_</str>

If you know ahead of time some of the metadata fields and have a named field for
them, then you can just map them:

<str name="fmap.content_type">content_type</str>

When you search for all documents, you should see indexed metadata for Angel Eyes,
prefixed with metadata_ except for the content_type:

<str name="content_type">audio/midi</str>
<arr name="metadata_patches"><str>0</str></arr>
<arr name="metadata_stream_content_type"><str>application/octet-
stream</str></arr>
<arr name="metadata_stream_size"><str>55677</str></arr>
<arr name="metadata_stream_source_info"><str>file</str></arr>
<arr name="metadata_tracks"><str>16</str></arr>

Indexing Data

[106]

Obviously, in most use cases, every time you index the same file you don't want to
index a separate Solr document. If your schema has a uniqueKey field defined such
as id, then you can provide a specific ID by passing a literal value using literal.
id=34. Each time you index the file using the same ID it will delete and insert that
document. However, that implies that you have the ability to manage IDs through
some third-party system like a database. If you want to use the metadata, such as the
stream_name provided by Tika to provide the key, then you just need to map that
field using fmap.stream_name=id. To make the example work, update ./examples/
cores/karaoke/schema.xml to specify <uniqueKey>id</uniqueKey>.

>> curl 'http://localhost:8983/solr/karaoke/update/extract?fmap.
content=text&fmap.stream_name=id' -F "file=@angeleyes.kar"

This assumes that you've defined <uniqueKey>id</uniqueKey> to be of type string,
not a number!

Indexing richer documents
Indexing karaoke lyrics from MIDI files is a fairly trivial example. We basically just
stripped out all of the contents, and stored them in the Solr text field without trying
to make any sense of the structure of the document.

However, the structure of other documents, such as PDFs, can be much more
complicated, and just grabbing all the text may not lead to great searchable content.
Let's look at Take a Chance on Me, a complex PDF file that explains what a Monte
Carlo simulation is, while making lots of puns about the lyrics and titles of various
songs by ABBA!

Open ./examples/3/karaoke/mccm.pdf, and you will see a complex PDF
document with multiple fonts, background images, complex mathematical
equations, Greek symbols, and charts. Despite the complexity of the PDF document,
indexing is as simple as the prior karaoke example:

>> curl 'http://localhost:8983/solr/karaoke/update/extract?map.
content=text&commit=true' -F "file=@mccm.pdf"

If you do a search for the document using the filename as the stream_name via
http://localhost:8983/solr/karaoke/select/?q=stream_name:mccm.pdf,
then you'll also see that the last_modified field that we mapped in solrconfig.
xml is being populated by the Tika extracted metadata property Last-Modified.

The lowercase=true property that was set as a default translates Last-Modified to
last_modified to make field names consistent with typical conventions:

<doc>
 <arr name="id">

Chapter 3

[107]

 <str>mccm.pdf</str>
 </arr>
 <arr name="last_modified">
 <str>Sun Mar 03 15:55:09 EST 2002</str>
 </arr>
 <arr name="text">
 <str>
 Take A Chance On Me

So with these richer documents, how can we get a handle on the metadata and
content that is available? Passing extractOnly=true on the URL will output what
Solr Cell has extracted as an XML document, including metadata fields, without
actually indexing them.

Appending wt=json makes it easier to parse out the embedded XML content:

>> curl 'http://localhost:8983/solr/karaoke/update/extract?extractOnly=tr
ue&wt=json&indent=true' -F "file=@mccm.pdf"

Copy and paste the XML embedded in the JSON output and use your favorite HTML
tidy tool to clean up the output. I used TextMate's HTML plugin; another great
option is the free formatter service at http://xmlindent.com/:

<html>
 <head>
 <meta name="stream_source_info" content="file">
 <meta name="subject" content="Monte carlo condensed">
 <meta name="Last-Modified" content="2002-03-03T20:55:09Z">
 <meta name="Author" content="Andrew" n.=">
 <meta name="xmpTPg:NPages" content="11">
 <meta name="Creation-Date" content="2002-03-03T20:53:14Z">
 <meta name="Keywords" content="ABBA">
 <title>
 Take A Chance On Me
 </title>
 </head>
 <body>
 <p>
 "\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
 </p>
 <div class="page">
 \n\n
 <p>
 Take A Chance On MeMonte Carlo Condensed MatterA very brief
guide to Monte Carlo simulation.An explanation of what I do.A chance
for far too many ABBA puns.

Indexing Data

[108]

 </p>\n
 </div>
 <p>
 \n
 </p>
 <div class="page">
 \n\n
 <p>
 What's The Name Of The Game?Simulation:'I have a dream,
a fantasy,to help me through reality'Given some model many-body
system.Simulate the evolution of the system.We can then measure
various observables.Attempt to predict properties of real systems.
Eg Equilibrium Properties All about knowing free-energies, phase
behavior, compressibility, specific heat,knowing M(E), knowing m.
 </p>\n
 </div>

This returns an XHMTL document that contains the metadata extracted from the
document in the <head/> stanza, as well as the basic structure of the contents
expressed as XHTML.

Binary file size
Take a Chance on Me is a 372 KB file located at ./examples/3/
karaoke/mccm.pdf, and highlights one of the challenges of using Solr
Cell. If you are indexing a thousand PDF documents that each average
372 KB, then you are shipping 372 megabytes over the wire, assuming
the data is not already on a file system accessible by Solr. However, if
you extract the contents of the PDF on the client side and only send that
over the Web, then what is sent to the Solr text field is just 5.1 KB. Look
at ./examples/3/karaoke/mccm.xml to see the actual text extracted
from mccm.pdf. Generously assuming that the metadata adds an extra 1
KB of information, then you have a total content sent over the wire of 6.1
megabytes ((5.1 KB + 1.0 KB) * 1000).
Solr Cell offers a quick way to start indexing the vast amount of
information stored in previously inaccessible binary formats without the
overhead of resorting to custom code development per binary format.
However, depending on the files, you may be needlessly transmitting
a lot of raw data, only to extract a small portion of that data. Moreover,
you may find that the tools provided by Solr Cell for parsing and
selecting just the data you want to index may not be rich enough. In that
case you may be better off building a dedicated client-side tool that does
all of the parsing and munging you require.

Chapter 3

[109]

Update request processors
No matter how you choose to import data, there is a final configuration point within
Solr that allows manipulation of the imported data before it gets indexed. The Solr
request handlers that update data put documents on an update request processor
chain. If you search solrconfig.xml for updateRequestProcessorChain then
you'll see an example.

You can specify which chain to use on the update request with the update.chain
parameter (formerly update.processor prior to Solr 3.2). It could be useful, but
you'll probably always use one chain. If no chain is specified, you get a default chain
of LogUpdateProcessorFactory and RunUpdateProcessorFactory. The following
are the possible update request processors to choose from. Their names all end in
UpdateProcessorFactory.

•	 SignatureUpdateProcessorFactory: This generates a hash ID value based
off of other field values you specify. If you want to de-duplicate your data
(that is you don't want to add the same data twice accidentally) then this
will do that for you. For further information see http://wiki.apache.org/
solr/Deduplication.

•	 UIMAUpdateProcessorFactory: This hands the document off to the
Unstructured Information Management Architecture (UIMA), a Solr contrib
module that enhances the document through natural language processing
(NLP) techniques. For further information see http://wiki.apache.org/
solr/SolrUIMA.

Although it's nice to see an NLP integration option in Solr, beware
that NLP processing tends to be computationally expensive. Instead of
using UIMA in this way, consider performing this processing external
to Solr and cache the results to avoid re-computation as you adjust
your indexing process.

•	 LogUpdateProcessorFactory: This is the one responsible for writing the log
messages you see when an update occurs.

•	 RunUpdateProcessorFactory: This is the one that actually indexes the
document; don't forget it or the document will vanish! To decompose this
last step further, it hands the document to Lucene, which will then process
each field according to the analysis configuration in the schema.

More processors are expected in the future that do interesting tasks, including a
scriptable one similar to the DIH's ScriptTransformer; see SOLR-1725. You can of
course write your own. It's a recognized extensibility point in Solr that consequently
doesn't require modifying Solr itself.

http://wiki.apache.org/solr/SolrUIMA
http://wiki.apache.org/solr/SolrUIMA

Indexing Data

[110]

Summary
At this point, you should have a schema that you believe will suit your needs, and
you should know how to get your data into it. From Solr's native XML to JSON to
CSV to databases to rich documents, Solr offers a variety of possibilities to ingest
data into the index. Chapter 9, Integrating Solr will discuss some additional language
and framework integration choices for importing data. In the end, usually one or
two mechanisms will be used. In addition, you can usually expect the need to write
a little code, perhaps just a simple bash or ant script to implement the automation of
getting data from your source system into Solr.

Now that we've got data in Solr, we can finally start searching it. The next chapter
will describe Solr's query syntax in detail, which includes phrase queries, range
queries, wildcards, boosting, as well as the description of Solr's DateMath syntax.
The chapters after that will get to more interesting searching topics that of course
depend on having data to search on!

Searching
At this point, you have Solr running and some data indexed, and you're finally ready
to put Solr to the test. Searching with Solr is arguably the most fun aspect of working
with it, because it's quick and easy to do. While searching your data, you will learn
more about its nature than before. It is also a source of interesting puzzles to solve
when you troubleshoot why a search didn't find a document or conversely why it
did, or similarly why a document wasn't scored sufficiently high.

In this chapter, you are going to learn about:

•	 Request handlers
•	 Query parameters
•	 Solr's "lucene" query syntax
•	 The "dismax" query parser (part 1)
•	 Filtering
•	 Sorting
•	 Geospatial

The subject of searching will progress into the next chapter for debugging queries,
relevancy (that is, scoring) matters, function queries—an advanced capability used
commonly in relevancy but also in sorting and filtering, and geospatial search.

In a hurry?
This chapter has a lot of key information on searching that is
important. That said, if you're in a hurry you can skim/skip query
parsers, local-params, and the query syntax—you'll use dismax
instead. And you can skip dismax's "min-should-match" too. Read
about geospatial if it's applicable.

Searching

[112]

Your first search, a walk-through
We've got a lot of data indexed, and now it's time to actually use Solr for what it is
intended—searching, also known as querying. When your application interacts with
Solr, it will use HTTP, either directly via common APIs or indirectly through one
of Solr's client APIs. However, as we demonstrate Solr's capabilities in this chapter,
we'll use Solr's web-based admin interface. Surely you've noticed the search box on
the first screen of Solr's admin interface. It's a bit too basic; so instead click on the
[FULL INTERFACE] link to take you to a query form with more options.

The following screenshot is seen after clicking on the [FULL INTERFACE] link:

The URL is http://localhost:8983/solr/mbartists/admin/form.jsp. Contrary
to what the label FULL INTERFACE might suggest, this form only has a fraction
of the options you might possibly specify to run a search. Let's do a quick search.
In the Solr/Lucene Statement box, we'll leave the default of: *:* (an asterisk, colon,
and then another asterisk). That is admittedly cryptic if you've never seen it before,
but it basically means "match anything in any field", which is to say, it matches all
documents. Much more about the query syntax will be discussed soon enough. Click
on the Search button, and you'll get output like this:

http://localhost:8983/solr/mbartists/admin/form.jsp

Chapter 4

[113]

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">392</int>
 <lst name="params">
 <str name="explainOther"/>
 <str name="fl">*,score</str>
 <str name="indent">on</str>
 <str name="start">0</str>
 <str name="q">*:*</str>
 <str name="hl.fl"/>
 <str name="qt"/>
 <str name="wt"/>
 <str name="fq"/>
 <str name="version">2.2</str>
 <str name="rows">10</str>
 </lst>
</lst>
<result name="response" numFound="399182" start="0" maxScore="1.0">
 <doc>
 <float name="score">1.0</float>
 <arr name="a_member_id">
 <long>123122</long><long>346621</long>
 </arr>
 <arr name="a_member_name">
 <str>Backslash</str><str>Thomas Woznik</str>
 </arr>
 <str name="a_name">Plasticmen</str>
 <str name="a_type">group</str>
 <str name="id">Artist:309843</str>
 <date name="indexedAt">2011-07-15T05:20:06Z</date>
 <str name="type">Artist</str>
 </doc>
 <doc>
 <float name="score">1.0</float>
 <str name="a_name">Gnawa Njoum Experience</str>
 <str name="id">Artist:215841</str>
 <date name="indexedAt">2011-07-15T05:20:06Z</date>
 <str name="type">Artist</str>
 </doc>
 <doc>
 <float name="score">1.0</float>
 <str name="a_name">Ultravoice vs. Rizo</str>

Searching

[114]

 <str name="a_type">group</str>
 <str name="id">Artist:482488</str>
 <date name="indexedAt">2011-07-15T05:20:06Z</date>
 <str name="type">Artist</str>
 </doc>
<!-- ** 7 other docs omitted for brevity ** -->
</result>
</response>

Browser note
Use Firefox for best results when searching Solr. Solr's search results return
XML, and Firefox renders XML color coded and pretty-printed. Safari on
Mac OS X Lion finally gained this feature too. For other browsers (notably
an older Safari or Chrome), you may find yourself having to use the View
Source feature or using a response format other than XML to see the
results. Even in Firefox, however, there are cases where you will use View
Source in order to look at the XML with the original indentation, which is
relevant when diagnosing the scoring debug output.

Solr's generic XML structured data
representation
Solr has its own generic XML representation of typed and named data structures.
This XML is used for most of the response XML and it is also used in parts of
solconfig.xml too. The XML elements involved in this partial XML schema are:

•	 <lst>: A named list. Each of its child nodes should have a name attribute.
This generic XML is often stored within an element that is not part of this
schema, like <doc>, but is in effect equivalent to lst.

•	 <arr>: An array of values. Each of its child nodes is a member of this array.

The following elements represent simple values with the text of the element storing
the value. The numeric ranges match that of the Java language. They will have a
name attribute if they are underneath lst (or an equivalent element like doc), but
not otherwise.

•	 <str>: A string of text
•	 <int>: An integer in the range -2^31 to 2^31-1
•	 <long>: An integer in the range -2^63 to 2^63-1
•	 <float>: A floating point number in the range 1.4e-45 to about 3.4e38
•	 <double>: A floating point number in the range 4.9e-324 to about 1.8e308

Chapter 4

[115]

•	 <bool>: A boolean value represented as true or false. When supplying
values in a configuration file: on, off, yes, and no are also supported.

•	 <date>: A date in the ISO-8601 format like so: 1965-11-30T05:00:00Z,
which is always in the UTC time zone represented by Z. Even if your data
isn't actually in this time zone, when working with Solr you might pretend
that it is because Solr doesn't support anything else.

Solr's XML response format
The <response/> element wraps the entire response.

The first child element is <lst name="responseHeader">, which is intuitively the
response header that captures some basic metadata about the response.

•	 status: Always 0. If a Solr error occurs, then the HTTP response status code
will reflect it and a plain HTML page will display the error.

•	 QTime: The number of milliseconds Solr takes to process the entire request
on the server. Due to internal caching, you should see this number drop to
a couple of milliseconds or so for subsequent requests of the same query. If
subsequent identical searches are much faster, yet you see the same QTime,
then your web browser (or intermediate HTTP Proxy) cached the response.
Solr's HTTP caching configuration is discussed in Chapter 10.

•	 Other data may be present depending on query parameters.

The main body of the response is the search result listing enclosed by this: <result
name="response" numFound="1002272" start="0" maxScore="1.0">, and it
contains a <doc> child node for each returned document. Some of the fields are
explained below:

•	 numFound: The total number of documents matched by the query. This is not
impacted by the rows parameter and as such may be larger (but not smaller)
than the number of child <doc> elements.

•	 start: The same as the start request parameter, described shortly, which is
the offset of the returned results into the query's result set.

•	 maxScore: Of all documents matched by the query (numFound), this is the
highest score. If you didn't explicitly ask for the score in the field list using
the fl request parameter, described shortly, then this won't be here. Scoring
is described in the next chapter.

Searching

[116]

The contents of the resultant element are a list of doc elements. Each of these
elements represent a document in the index. The child elements of a doc element
represent fields in the index and are named correspondingly. The types of these
elements use Solr's generic data representation, which was described earlier. They
are simple values if they are not multi-valued in the schema. For multi-valued
values, the field would be represented by an ordered array of simple values.

There was no data following the results element in our demonstration query.
However, there can be, depending on the query parameters enabling features such
as faceting and highlighting. When we cover those features, the corresponding XML
will be explained.

Parsing the URL
The search form is as basic as they come. It submits the form using HTTP GET,
essentially resulting in the browser loading a new URL with the form elements
becoming part of the URL's query string. Take a good look at the URL in the browser
page showing the XML response. Understanding the URL's structure is very
important for grasping how searching Solr works:

http://localhost:8983/solr/mbartists/select?indent=on&version=2.2&q=*
%3A*&fq=&start=0&rows=10&fl=*%2Cscore&qt=&wt=&explainOther=&hl.fl=

•	 The /solr/ is the web application context where Solr is installed on the Java
servlet engine. If you have a dedicated server for Solr, then you might opt to
install it at the root. This would make it just /. How to do this is out of scope
of this book, but letting it remain at /solr/ is fine.

•	 After the web application context is a reference to the Solr core named
mbartists. If you are experimenting with Solr's example setup then you
won't see a core name because it has a default one. We'll learn more about
configuring Solr cores in Chapter 8, Deployment.

•	 The /select in combination with the qt= parameter is a reference to the Solr
request handler. More on this is covered next.

•	 Following the ?, is a set of unordered URL parameters, also known as query
parameters in the context of searching. The format of this part of the URL is
an & separating set of unordered name=value pairs. As the form doesn't have
an option for all query parameters, you will manually modify the URL in
your browser to add query parameters as needed.

Chapter 4

[117]

Text in the URL must be UTF-8 encoded then URL-escaped so that the URL complies
with its specification. This concept should be familiar to anyone who has done web
development. Depending on the context in which the URL is actually constructed,
there are API calls you should use to ensure this escaping happens properly. For
example, in JavaScript, you would use encodeURIComponent(). In the URL above,
Solr interpreted the %3A as a colon and %2C as a comma. The most common escaped
character in URLs is a space, which is escaped as either + or %20. Fortunately, when
experimenting with the URL, browsers are lenient and will permit some characters
that should be escaped. For more information on URL encoding see http://
en.wikipedia.org/wiki/Percent-encoding.

Request handlers
Searching Solr and most other interactions with Solr, including indexing for that
matter, is processed by what Solr calls a request handler. Request handlers are
configured in the solrconfig.xml file and are clearly labeled as such. Most of them
exist for special purposes like handling a CSV import, for example. Our searches
in this chapter have been directed to the default request handler because we didn't
specify one in the URL. Here is how the default request handler is configured:

<requestHandler name="standard" class="solr.SearchHandler"
 default="true">
 <!-- default values for query parameters -->
 <lst name="defaults">
 <str name="echoParams">explicit</str>
 <int name="rows">10</int>
 <str name="fl">*</str>
 <str name="version">2.1</str>
 </lst>
</requestHandler>

The request handlers that perform searches allow configuration of two things:

•	 Establishing default parameters and making some unchangeable
•	 Registering Solr search components such as faceting and highlighting

Create a request handler configuration for your application.
Instead of using the default request handler for use by the application
you are building, I recommend that you create a request handler for each
type of search that your application does. In doing so, you can change
various search options more easily in Solr through re-configuration,
instead of having your application hard-wired more than it has to be.
This centralizes the search configuration a bit more too. Finally, this gives
you better granularity of search statistics on Solr's STATISTICS screen.

Searching

[118]

Let's say that in the MusicBrainz search interface we have a search form that searches
for bands. We have a Solr core just for artists named mbartists but this contains
not only bands but also individual band members. When the field named a_type
is "group", we have a band. To start, copy the default configuration, removing the
attribute default="true", and give it a name such as bands. We can now use this
request handler with qt=bands in the URL as shown below:

/solr/mbartists/select?qt=bands&q=Smashing&.....

An alternative to this is to precede the name with /. Now this handler is invoked
like this:

/solr/mbartists/bands&q=Smashing&.....

Let's now configure this request handler to filter searches to find only the bands,
without the searching application having to specify this. We'll also set a few
other options.

<requestHandler name="bands" class="solr.SearchHandler">
 <lst name="defaults">
 <str name="echoParams">none</str>
 <int name="rows">20</int>
 </lst>
 <lst name="appends">
 <str name="fq">a_type:group</str>
 </lst>
 <lst name="invariants">
 <str name="facet">false</str>
 </lst>
</requestHandler>

Request handlers have several lists to configure. These use Solr's generic XML data
structure, which was described earlier.

•	 defaults: These simply establish default values for various request
parameters. Parameters in the request will override them.

•	 appends: For parameters that can be set multiple times, like fq, this section
specifies values that will be set in addition to any that may be specified by
the request.

•	 invariants: This sets defaults that cannot be overridden. This is useful for
security purposes—a topic for Chapter 8, Deployment.

Chapter 4

[119]

•	 first-components, components, last-components: These list the Solr
search components to be registered for possible use with this request handler.
By default, a set of search components are already registered to enable
functionality such as querying and faceting. Setting first-components or
last-components would prepend or append to this list respectively, whereas
setting components would override the list completely. For more information
about search components, read Chapter 7, Search Components.

Query parameters
There are a great number of request parameters for configuring Solr searches,
especially when considering all of the components like faceting and highlighting.
Only the core search parameters not specific to any query parser are listed here.
Furthermore, in-depth explanations for some lie further in the chapter.

For the boolean parameters, a true value can be any one of true, on, or
yes. False values can be any of false, off, and no.

Search criteria related parameters
The parameters affecting the query are as follows:

•	 q: The user query or just "query" for short. This typically originates directly
from user input. The query syntax is determined by the defType parameter.

•	 defType: A reference to the query parser for the user query in q. The default
is lucene with the syntax to be described shortly. You'll most likely use
dismax or edismax discussed later in the chapter.

Prefer dismax for user queries
For processing queries from users, I highly recommend using dismax
or edismax, which is described later in the chapter. It supports several
features that enhance relevancy, and more limited syntax options
that prevent a user from getting unexpected results or an error if they
inadvertently use the lucene native syntax.

Searching

[120]

•	 fq: A filter query that limits the scope of the user query, similar to a WHERE
clause in SQL. Unlike the q parameter, this has no effect on scoring. This
parameter can be repeated as desired. Filtering is described later in the
chapter.

•	 qt: A reference to the query type, more commonly known as the request
handler, described earlier. An alternative is to name the request handler
with a leading / such as /artists and then use /artists in your URL path
instead of /select?....

Result pagination related parameters
A query could match any number of the documents in the index, perhaps even all
of them, such as in our first example of *:*. Solr doesn't generally return all the
documents. Instead, you indicate to Solr with the start and rows parameters to
return a contiguous series of them. The start and rows parameters are
explained below:

•	 start: (default: 0) This is the zero-based index of the first document to be
returned from the result set. In other words, this is the number of documents
to skip from the beginning of the search results. If this number exceeds the
result count, then it will simply return no documents, but it's not considered
an error.

•	 rows: (default: 10) This is the number of documents to be returned in the
response XML starting at index start. Fewer rows will be returned if there
aren't enough matching documents. This number is basically the number of
results displayed at a time on your search user interface.

Solr is not yet optimized to do "deep paging" or return a large number
of results. This issue is tracked as SOLR-1726. Until this is addressed, the
further from the beginning you need results (the greater start+rows
is), Solr will respond exponentially slower. At least for the first thousand
documents or so, it shouldn't be noticeable. As a consequence, consider
preventing users and web crawlers from paging far into the results.

Chapter 4

[121]

Output related parameters
The output related parameters are explained below:

•	 fl: This is the field list, separated by commas and/or spaces. These fields are
to be returned in the response. Use * to refer to all of the fields but not the
score. In order to get the score, you must specify the pseudo-field score.

•	 sort: A comma-separated field listing to sort on, with a directionality
specifier of asc or desc after each field. Example: r_name asc, score desc.
The default is score desc. You can also sort by functions, which is a more
advanced subject for the next chapter. There is more to sorting than meets the
eye; read more about it later in this chapter.

•	 wt: The response format, also known as writer type or query response
writer, defined in solrconfig.xml. Since the subject of picking a
response format has to do with how you will integrate with Solr, further
recommendations and details are left to Chapter 9, Integrating Solr. For now,
here is the list of options by name: xml (the default and aliased to standard),
json, python, php, phps, ruby, javabin, csv, xslt, velocity.

•	 version: The requested version of Solr's response structure, if different than
the default. This is not particularly useful at the time of writing. However, if
Solr's response structure changes, then it will do so under a new version. By
using this in the request, a best-practice for your automated searches, you
reduce the chances of your client code breaking if Solr is updated.

Diagnostic related parameters
These diagnostic parameters are helpful during development with Solr. Obviously,
you'll want to be sure NOT to use these, particularly debugQuery, in a production
setting because of performance concerns.

•	 indent: A boolean option that will indent the output to make it easier to
read. It works for most of the response formats.

Searching

[122]

•	 debugQuery: If true, then following the search results is <lst
name="debug"> with diagnostic information. It contains voluminous
information about the parsed query string, how the scores were computed,
and millisecond timings for all of the Solr components to perform their part
of the processing such as faceting. You may need to use the View Source
function of your browser to preserve the formatting used in the score
computation section. Debugging queries and enhancing relevancy is documented
further in the next chapter.

°° explainOther: If you want to determine why a particular
document wasn't matched by the query or why it wasn't scored
high enough, then you can put a query for this value, such as
id:"Release:12345", and debugQuery's output will be sure to
include the first document matching this query in its output.

•	 echoHandler: If true, then this emits the Java class name identifying the Solr
request handler.

•	 echoParams: Controls if any query parameters are returned in the response
header, as seen verbatim earlier. This is for debugging URL encoding
issues or for verifying the complete set of parameters in effect, taking into
consideration those defined in the request handler. Specifying none disables
this, which is appropriate for production real-world use. The standard
request handler is configured for this to be explicit by default, which
means to list those parameters explicitly mentioned in the URL. Finally, you
can use all to include those parameters configured in the request handler in
addition to those in the URL.

Finally, there is another parameter not easily categorized above called timeAllowed
in which you specify a time limit in milliseconds for a query to take before it is
interrupted and intermediate results are returned. Long-running queries should
be very rare and this allows you to cap them so that they don't over-burden your
production server.

Query parsers and local-params
A query parser parses a string into an internal Lucene query object, potentially
considering request parameters and so-called local-params—parameters local to the
query string. Only a few parsers actually do real parsing and some parsers like those
for geospatial don't even use the query string. The default query parser throughout
Solr is named lucene and it has a special leading syntax to switch the parser to
another and/or to specify some parameters. Here's an example choosing the dismax
parser along with two local-params and a query string of "billy corgan":

{!dismax qf="a_name^2 a_alias" tie=0.1}billy corgan

Chapter 4

[123]

It's not common to see this syntax in the user query, q, since its parser
is conveniently set via defType.

There are a few things to know about the local-params syntax:

•	 The leading query parser name (for example, dismax) is optional. Without
it, the parser remains as lucene. Furthermore, this syntax is a shortcut for
putting the query parser name in the type local-param.

•	 Usually, a query parser treats local-params as an override to request
parameters in the URL.

•	 A parameter value can refer to a request parameter via a leading $, for
example v=$qq.

•	 The special parameter v can be used to hold the query string as an alternative
to it following the }. Some advanced scenarios require this approach.

•	 A parameter value doesn't have to be quoted if there are no spaces. There
wasn't any for the tie parameter in the example above.

For an interesting example, see the sub-query syntax later.

Solr includes quite a few different query parsers. In the next section you'll learn
all about lucene. For processing user queries, you should typically use dismax or
edismax (short for extended-dismax), which are described afterwards. The other
query parsers are for special things like geospatial search, also described at the
end of this chapter. This book only explores the most useful parsers; for further
information, see: http://wiki.apache.org/solr/SolrQuerySyntax.

Query syntax (the lucene query parser)
Solr's native / full query syntax is implemented by the query parser named lucene.
It is based on Lucene's old syntax with a few additions that will be pointed out
explicitly. In fact, you've already seen the first addition which is local-params.

The best practice for the user query (the q parameter) is to use the dismax
or edismax query parsers, not the default lucene query parser described
here. dismax only supports a basic essential subset of the full syntax that is
unlikely to cause unintended behavior by a general user, whereas edismax
supports the syntax here but is safer and has many bonus features. You'll
read more about these query parsers in the next section.

Searching

[124]

The lucene query parser does have a couple query parameters that can be set.
Usually these aren't specified as Lucene is rarely used for the user query and because
Lucene's query syntax is easily made explicit to not need these options.

•	 q.op: The default query operator, either AND or OR to signify if all of the
search terms or just one of the search terms need to match. If this isn't
present, then the default is specified in schema.xml near the bottom in the
defaultOperator attribute. If that isn't specified, then the default is OR.

•	 df: The default field that will be searched by the user query. If this isn't
specified, then the default is specified in schema.xml near the bottom in the
<defaultSearchField> element. If that isn't specified, then a query that
does not explicitly specify a field to search will be an error.

In the following examples:

•	 If you are using the example data with the book, you could use the search
form here: http://localhost:8983/solr/mbartists/admin/. No changes
are needed.

•	 q.op is set to OR (which is the default choice, if it isn't specified anywhere).
•	 The default search field was set to a_name in the schema. Had it been

something else, we'd use the df parameter.
•	 You may find it easier to scan the resulting XML if you set fl (the field list)

to a_name, score.

Use debugQuery=on
To see a normalized string representation of the parsed query tree,
enable query debugging. Then look for parsedquery in the debug
output. See how it changes depending on the query.

A final point to be made is that there are query capabilities within Lucene that are
not exposed in query parsers that come with Solr. Notably, there is a family of so-
called "span queries" which allow for some advanced phrase queries that can be
composed together by their relative position. To learn more about that, I advise
reading the Lucene In Action book. There is also the ability to search for a term
matching a regular expression.

http://localhost:8983/solr/mbartists/admin/
http://localhost:8983/solr/mbartists/admin/

Chapter 4

[125]

Matching all the documents
Lucene doesn't natively have a query syntax to match all documents. Solr enhanced
Lucene's query syntax to support it with the following syntax:

:

When using dismax, it's common to set q.alt to this match-everything query so that
a blank query returns all results.

Mandatory, prohibited, and optional clauses
Lucene has a unique way of combining multiple clauses in a query string. It is
tempting to think of this as a mundane detail common to boolean operations in
programming languages, but Lucene doesn't quite work that way.

A query expression is decomposed into a set of unordered clauses of three types:

•	 A clause can be mandatory: +Smashing
This matches only artists containing the word Smashing.

•	 A clause can be prohibited: -Smashing
This matches all artists except those with Smashing. You can also use an
exclamation mark as in !Smashing but that's rarely used.

•	 A clause can be optional: Smashing

It's okay for spaces to come between + or - and the search word.
However, when Solr 4 arrives, this will no longer be the case.

The term "optional" deserves further explanation. If the query expression contains
at least one mandatory clause, then any optional clause is just that—optional. This
notion may seem pointless, but it serves a useful function in scoring documents that
match more of them higher. If the query expression does not contain any mandatory
clauses, then at least one of the optional clauses must match. The next two examples
illustrate optional clauses.

Here, Pumpkins is optional, and my favorite band will surely be at the top of the list,
ahead of bands with names like Smashing Atoms:

+Smashing Pumpkins

Searching

[126]

In this example there are no mandatory clauses and so documents with Smashing
or Pumpkins are matched, but not Atoms. My favorite band is at the top because it
matched both, followed by other bands containing only one of those words:

Smashing Pumpkins –Atoms

If you would like to specify that a certain number or percentage of optional clauses
should match or should not match, then you can instead use the dismax query parser
with the min-should-match feature, described later in the chapter.

Boolean operators
The boolean operators AND, OR, and NOT can be used as an alternative syntax to arrive
at the same set of mandatory, optional, and prohibited clauses that were mentioned
previously. Use the debugQuery feature, and observe that the parsedquery string
normalizes-away this syntax into the previous (clauses being optional by default
such as OR).

Case matters! At least this means that it is harder to accidentally
specify a boolean operator.

When the AND or && operator is used between clauses, then both the left and right
sides of the operand become mandatory if not already marked as prohibited. So:

Smashing AND Pumpkins

is equivalent to:

+Smashing +Pumpkins

Similarly, if the OR or || operator is used between clauses, then both the left and
right sides of the operand become optional, unless they are marked mandatory or
prohibited. If the default operator is already OR then this syntax is redundant. If the
default operator is AND, then this is the only way to mark a clause as optional.

To match artist names that contain Smashing or Pumpkins try:

Smashing || Pumpkins

The NOT operator is equivalent to the - syntax. So to find artists with Smashing but
not Atoms in the name, you can do this:

Smashing NOT Atoms

Chapter 4

[127]

We didn't need to specify a + on Smashing. This is because it is the only optional
clause and there are no explicit mandatory clauses. Likewise, using an AND or OR
would have no effect in this example.

It may be tempting to try to combine AND with OR such as:

Smashing AND Pumpkins OR Green AND Day

However, this doesn't work as you might expect. Remember that AND is equivalent
to both sides of the operand being mandatory, and thus each of the four clauses
becomes mandatory. Our data set returned no results for this query. In order to
combine query clauses in some ways, you will need to use sub-queries.

Sub-queries
You can use parenthesis to compose a query of smaller queries, referred to as
sub-queries or nested queries. The following example satisfies the intent of the
previous example:

(Smashing AND Pumpkins) OR (Green AND Day)

Using what we know previously, this could also be written as:

(+Smashing +Pumpkins) (+Green +Day)

But this is not the same as:

+(Smashing Pumpkins) +(Green Day)

The preceding sub-query is interpreted as documents that must have a name with
either Smashing or Pumpkins and either Green or Day in its name. So if there was a
band named Green Pumpkins, then it would match.

Solr added another syntax for sub-queries to Lucene's old syntax that allows the sub-
query to use a different query parser including local-params. This is an advanced
technique so don't worry if you don't understand it at first. The syntax is a bit of a
hack using a magic field named _query_ with its value being the sub-query, which
practically speaking, needs to be quoted. As an example, suppose you have a search
interface with multiple query boxes, whereas each box is for searching a different
field. You could compose the query string yourself but you would have some query
escaping issues to deal with. And if you wanted to take advantage of the dismax
parser then with what you know so far, that isn't possible. Here's an approach using
this new syntax:

+_query_:"{!dismax qf=a_name v=$q.a_name}" +_query_:"{!dismax qf=a_
alias v=$q.a_alias}"

Searching

[128]

This example assumes that request parameters of q.a_name and q.a_alias are
supplied for the user input for these fields in the schema. Recall from the local-
params definition that the parameter v can hold the query and that the $ refers to
another named request parameter.

Limitations of prohibited clauses in sub-queries
Lucene doesn't actually support a pure negative query, for example:

-Smashing -Pumpkins

Solr enhances Lucene to support this, but only at the top level query such as in the
preceding example. Consider the following admittedly strange query:

Smashing (-Pumpkins)

This query attempts to ask the question: Which artist names contain either Smashing
or do not contain Pumpkins? However, it doesn't work and only matches the first
clause—(4 documents). The second clause should essentially match most documents
resulting in a total for the query that is nearly every document. The artist named
Wild Pumpkins at Midnight is the only one in my index that does not contain
Smashing but does contain Pumpkins, and so this query should match every
document except that one. To make this work, you have to take the sub-expression
containing only negative clauses, and add the all-documents query clause: *:*, as
shown below:

Smashing (-Pumpkins *:*)

Interestingly, this limitation is fixed in the edismax query parser. Hopefully a future
version of Solr will fix it universally, thereby making this work-around unnecessary.

Field qualifier
To have a clause explicitly search a particular field, you need to precede the relevant
clause with the field's name, and then add a colon. Spaces may be used in-between,
but that is generally not done.

a_member_name:Corgan

This matches bands containing a member with the name Corgan. To match, Billy
and Corgan:

+a_member_name:Billy +a_member_name:Corgan

Chapter 4

[129]

Or use this shortcut to match multiple words:

a_member_name:(+Billy +Corgan)

The content of the parenthesis is a sub-query, but with the default field being
overridden to be a_member_name, instead of what the default field would be
otherwise. By the way, we could have used AND instead of + of course. Moreover,
in these examples, all of the searches were targeting the same field, but you can
certainly match any combination of fields needed.

Phrase queries and term proximity
A clause may be a phrase query: a contiguous series of words to be matched in that
order. In the previous examples, we've searched for text containing multiple words
like Billy and Corgan, but let's say we wanted to match Billy Corgan (that is, the
two words adjacent to each other in that order). This further constrains the query.
Double quotes are used to indicate a phrase query, as shown in the following code:

"Billy Corgan"

Related to phrase queries is the notion of the term proximity, aka the slop factor or
a near query. In our previous example, if we wanted to permit these words to be
separated by no more than say three words in–between, then we could do this:

"Billy Corgan"~3

For the MusicBrainz data set, this is probably of little use. For larger text fields, this
can be useful in improving search relevance. The dismax query parser, which is
described in the next chapter, can automatically turn a user's query into a phrase
query with a configured slop.

Wildcard queries
A plain keyword search will look in the index for an exact match, subsequent to
text analysis processing on both the query and input document text (for example,
tokenization, lowercasing). But sometimes you need to express a query for a partial
match expressed using wildcards.

There is a highly relevant section in the text analysis chapter
on partial/substring indexing. In particular, read about
ReversedWildcardFilterFactory. N-Grams is a different
approach that does not work with wildcard queries.

www.allitebooks.com

http://www.allitebooks.org

Searching

[130]

There are a few points to understand about wildcard queries:

•	 No text analysis is performed on the search word containing the wildcard,
not even lowercasing. So if you want to find a word starting with Sma, then
sma* is required instead of Sma*, assuming the index side of the field's type
includes lowercasing. This shortcoming is tracked on SOLR-219. Moreover,
if the field that you want to use the wildcard query on is stemmed in the
analysis, then smashing* would not find the original text Smashing because
the stemming process transforms this to smash. Consequently, don't stem.

•	 Wildcard queries are one of the slowest types you can run. Use of
ReversedWildcardFilterFactory helps with this a lot. But if you have
an asterisk wildcard on both ends of the word, then this is the worst-case
scenario.

•	 Leading wildcards will result in an error in Solr unless
ReversedWildcardFilterFactory is used.

To find artists containing words starting with Smash, you can do:

smash*

Or perhaps those starting with sma and ending with ing:

sma*ing

The asterisk matches any number of characters (perhaps none). You can also use ? to
force a match of any character at that position:

sma??*

That would match words that start with sma and that have at least two more
characters but potentially more.

As far as scoring is concerned, each matching term gets the same score regardless of
how close it is to the query pattern. Lucene can support a variable score at the expense
of performance but you would need to do some hacking to get Solr to do that.

Here's a trick question: What would this query do: * (just an asterisk)?
Based on intuition, it appears it should match all documents that have
at least one indexed value for a_name. What will actually happen
depends on whether there is any field type in the schema, even an
unused one that has ReversedWildcardFilterFactory in its index
chain. If so, the * works intuitively on any field, if not then you get an
error about leading wildcards not being supported. See SOLR-1982 for
the bug report. The official way to find all documents with at least a
value will be explained shortly.

Chapter 4

[131]

Fuzzy queries
Fuzzy queries are useful when your search term needn't be an exact match, but
the closer the better. The fewer the number of character insertions, deletions, or
exchanges relative to the search term length, the better the score. The algorithm used
is known as the Levenshtein Distance algorithm, also known as the edit distance.
Fuzzy queries have the same need to lowercase and to avoid stemming just as
wildcard queries do. For example:

Smashing~

Notice the tilde character at the end. Without this notation, simply Smashing would
match only four documents because only that many artist names contain that word.
Smashing~ matched 578 words and it took my computer 359 milliseconds. You can
modify the proximity threshold, which is a number between 0 and 1, defaulting to
0.5. For instance, changing the proximity to a more stringent 0.7:

Smashing~0.7

25 matched documents resulted and it took 174 milliseconds. If you want to use
fuzzy queries, then you should consider experimenting with different thresholds.

To illustrate how text analysis can still pose a problem, consider the search for:
SMASH~

There is an artist named S.M.A.S.H., and our analysis configuration emits smash as
a term. So SMASH would be a perfect match, but adding the tilde results in a search
term in which every character is different due to the case difference and so this
search returns nothing. As with wildcard searches, if you intend on using fuzzy
searches then you should lowercase the query string.

Range queries
Lucene lets you query for numeric, date, and even text ranges. The following query
matches all of the bands formed in the 1990s:

a_type:2 AND a_begin_date:[1990-01-01T00:00:00.000Z TO
1999-12-31T24:59:99.999Z]

Observe that the date format is the full ISO-8601 date-time in UTC, which Solr
mandates (the same format used by Solr to index dates and that which is emitted in
search results). The .999 milliseconds part is optional. The [and] brackets signify
an inclusive range, and therefore it includes the dates on both ends. To specify an
exclusive range, use { and }. In Solr 3, both sides must be inclusive or both exclusive;
Solr 4 allows both. The workaround in Solr 3 is to introduce an extra clause to
include or exclude a side of the range. There is an example of this below.

Searching

[132]

Use the right field type
To get the fastest numerical/date range query performance,
particularly when there are many indexed values, use a trie
field (for example, tdate) with a precisionStep. It was
discussed in Chapter 2, Schema and Text Analysis.

For most numbers in the MusicBrainz schema, we only have identifiers, and so it
made sense to use the plain long field type, but there are some other fields. For the
track duration in the tracks data, we could do a query such as this to find all of the
tracks that are longer than 5 minutes (300 seconds, 300,000 milliseconds):

t_duration:[300000 TO *]

In this example, we can see Solr's support for open-ended range queries by using *.
This feature is not available in Lucene.

Although uncommon, you can also use range queries with text fields. For this to
have any use, the field should have only one term indexed. You can control this
either by using the string field type, or by using the KeywordTokenizer. You may
want to do some experimentation. The following example finds all documents where
somefield has a term starting with B. We effectively make the right side of the range
exclusive by excluding it with another query clause.

somefield:([B TO C] -C)

Both sides of the range, B and C, are not processed with text analysis that could exist
in the field type definition. If there is any text analysis like lowercasing, you will
need to do the same to the query or you will get no results.

Date math
Solr extended Lucene's old query parser to add date literals as well as some simple
math that is especially useful in specifying date ranges. In addition, there is a way to
specify the current date-time using NOW. The syntax offers addition, subtraction, and
rounding at various levels of date granularity, like years, seconds, and so on down to
milliseconds. The operations can be chained together as needed, in which case they
are executed from left to right. Spaces aren't allowed. For example:

r_event_date:[* TO NOW-2YEAR]

Chapter 4

[133]

In the preceding example, we searched for documents where an album was released
over two years ago. NOW has millisecond precision. Let's say what we really wanted
was precision to the day. By using / we can round down (it never rounds up):

r_event_date:[* TO NOW/DAY-2YEAR]

The units to choose from are: YEAR, MONTH, DAY, DATE (synonymous with DAY),
HOUR, MINUTE, SECOND, MILLISECOND, and MILLI (synonymous with MILLISECOND).
Furthermore, they can be pluralized by adding an S as in YEARS.

This so-called DateMath syntax is not just for querying dates; it is for
supplying dates to be indexed by Solr too! When supplying dates to Solr
for indexing, consider concatenating a rounding operation to coursen
the time granularity sufficient for your needs. There is an example below
on how to use it. Solr will evaluate the math and index the result. Full
millisecond precision time takes up more disk space and is slower to
query than a courser granularity. Another index-time common usage is to
timestamp added data. Using the NOW syntax as the default attribute of
a timestamp field definition makes this easy. Here's how to do that:
<field name="indexedAt" type="tdate" default="NOW/
SECOND" />

Score boosting
You can easily modify the degree to which a clause in the query string contributes to
the ultimate relevancy score by adding a multiplier. This is called boosting. A value
between 0 and 1 reduces the score, and numbers greater than 1 increase it. You'll
learn more about scoring in the next chapter. In the following example, we search for
artists that either have a member named Billy, or have a name containing the
word Smashing:

a_member_name:Billy^2 OR Smashing

Here we search for an artist name containing Billy, and optionally Bob or Corgan,
but we're less interested in those that are also named Corgan:

+Billy Bob Corgan^0.7

Searching

[134]

Existence (and non-existence) queries
This is actually not a new syntax case, but an application of range queries. Suppose
you wanted to match all of the documents that have an indexed value in a field. Here
we find all of the documents that have something in a_name:

a_name:[* TO *]

As a_name is the default field, just [* TO *] will do.

This can be negated to find documents that do not have a value for a_name, as shown
in the following code:

-a_name:[* TO *]

Due to an unintended side effect of having
ReversedWildcardFilterFactory somewhere in the schema, just *
is equivalent. Similarly, -* for negation. Even though it's more intuitive
than a range query, do not rely on this working until (and if) a future Solr
officially supports this. See SOLR-1982.

Like wildcard and fuzzy queries, these are expensive, slowing down as the number
of distinct terms in the field increases.

Performance tip
If you need to perform these frequently, perhaps because you
want to do dynamic faceting, consider adding this to your schema:
<field name="fields" type="string" stored="false"
multiValued="true" /> and at index time add the name of fields
that have a value to it. There is a patch in SOLR-1280 providing an
UpdateRequestProcessor to do this automatically. Alternatively,
you could do this yourself somewhere like a DIH transformer or in
your client code. The query would then simply be fields:a_name
which is as fast as it gets.

Escaping special characters
The following characters are used by the query syntax, as described in this chapter:

+ - && || ! () { } [] ^ " ~ * ? : \

In order to use any of these without their syntactical meaning, you need to escape
them by a preceding \ such as seen here:

id:Artist\:11650

Chapter 4

[135]

This also applies to the field name part. In some cases such as this one where the
character is part of the text that is indexed, the double-quotes phrase query will also
work, even though there is only one term:

id:"Artist:11650"

If you're using SolrJ to interface with Solr, the ClientUtils.
escapeQueryChars() method will do the escaping for you.

A common situation in which a query needs to be generated, and thus escaped
properly, is when generating a simple filter query in response to choosing a field-
value facet when faceting. This syntax and suggested situation is getting ahead
of us but I'll show it anyway since it relates to escaping. The query uses the term
query parser as follows: {!term f=a_type}group. What follows } is not escaped at
all, even a \ is interpreted literally, and so with this trick you needn't worry about
escaping rules at all.

The Dismax query parser (part 1)
The lucene query parser we've been using so far for searching offers a rich syntax,
but it doesn't do anything more. A notable problem with using this parser is that
the query must be well formed according to the aforementioned syntax rules,
such as having balanced quotes and parenthesis. Users might type just about
anything for a query, not knowing anything about this syntax, possibly resulting
in an error or unexpected results. The dismax query parser, named after Lucene's
DisjunctionMaxQuery, addresses this problem and adds many features to enhance
search relevancy (that is good scoring). The features of this query parser that have a
more direct relationship to scoring are described in part 2, in the next chapter. Use of
this parser is so important that we introduce it here.

You'll see references here to edismax whereby the "e" stands for "extended". This is
an evolution of dismax new to Solr 3.1 that adds features. In a future Solr version,
perhaps as soon as the next release, I expect dismax to refer to the enhanced version
while the older one will likely exist under another name.

Almost always use defType=dismax
The dismax (or edismax) query parser should almost always be chosen
for parsing user queries – q. Set it in the request handler definition for
your app. Furthermore, I recommend use of edismax which has seen
plenty of production use. The only consideration to consider against this
is whether it's a problem for users to be able to use Solr's full syntax,
whether inadvertently or maliciously. This is explained shortly.

Searching

[136]

Here is a summary of the features that the dismax query parser has over the lucene
query parser:

•	 Searches across multiple fields with different score boosts through Lucene's
DisjunctionMaxQuery.

•	 Limits the query syntax to an essential subset. edismax permits Solr's full
syntax assuming it parses correctly.

•	 Automatic phrase boosting of the entire search query. edismax boosts
contiguous portions of the query too.

•	 Convenient query boosting parameters, generally for use with function
queries.

•	 Can specify the minimum number of words to match, depending on the
number of words in a query string.

•	 Can specify a default query to use when no user query is specified.

edismax was only mentioned a couple of times in this list but it improves on the
details of how some of these features work.

Use debugQuery=on
Enable query debugging to see a normalized string representation of
the parsed query tree, considering all value-add options that dismax
performs. Then, look for parsedquery in the debug output. See how
it changes depending on the query.

These features will subsequently be described in greater detail. But first, let's take a
look at a request handler I've set up for searching artists. Solr configuration that is
not related to the schema is located in solrconfig.xml. The following definition is a
simplified version of the one in this book's code supplement:

<requestHandler name="mb_artists" class="solr.SearchHandler">
 <lst name="defaults">
 <str name="defType">edismax</str>
 <str name="qf">a_name a_alias^0.8 a_member_name^0.4</str>
 <str name="q.alt">*:*</str>
 </lst>
</requestHandler>

In Solr's full search interface screen, we can refer to this with a Query Type of
mb_artists. This value aligns with the qt parameter, which you will observe in
the URL when you submit the form. It wasn't necessary to set up such a request
handler, because Solr is fully configurable from a URL, but it's a good practice and
it's convenient for Solr's search form.

Chapter 4

[137]

Searching multiple fields
You use the qf parameter to tell the dismax query parser which fields you want to
search and their corresponding score boosts. As explained in the section on request
handlers, the query parameters can be specified in the URL or in the request handler
configuration in solrconfig.xml—you'll probably choose the latter for this one.
Here is the relevant configuration line from our dismax based handler
configuration earlier:

<str name="qf">a_name a_alias^0.8 a_member_name^0.4</str>

This syntax is a space-separated list of field names that can have optional boosts
applied to them using the same syntax for boosting that is used in the query syntax.
This request handler is intended to find artists from a user's query. Such a query
would ideally match the artist's name, but we'll also search aliases, and bands that
the artist is a member of. Perhaps the user didn't recall the band name but knew the
artist's name. This configuration would give them the band in the search results,
most likely towards the end.

The score boosts do not strictly order the results in a cascading fashion.
An exact match in a_alias that matched only part of a_name will
probably appear on top. If in your application you are matching
identifiers of some sort, then you may want to give a boost to that field
that is very high, such as 1000, to virtually assure it will be on top.

One detail involved in searching multiple fields is the effect of stop words (for
example, "the", "a", …) in the schema definition. If qf refers to some fields using stop
words and others that don't, then a search involving stop words will usually return
no results. edismax fixes this by making them all optional in the query unless the
query is entirely stop words. With dismax, you can ensure the query analyzer chain
in queried fields filter out the same set of stop words.

Limited query syntax
The edismax query parser will first try to parse the user query with the full syntax
supported by the lucene query parser, with a couple tweaks. If it fails to parse, it
will fall back to the limited syntax of the original dismax in the next paragraph.
Some day, this should be configurable but it is not at this time. The aforementioned
"tweaks" to the full syntax is that, or and and boolean operators can be used in a
lower-case form, and pure-negative sub-queries are supported.

Searching

[138]

When using dismax (or edismax, the user query failed to parse with the lucene
query parser), the parser will restrict the syntax permitted to terms, phrases, and
use of + and - (but not AND, OR, &&, ||) to make a clause mandatory or prohibited.
Anything else is escaped if needed to ensure that the underlying query is valid. The
intention is to never trigger an error but unless you're using edismax, you'll have to
code for this possibility due to outstanding bugs (SOLR-422, SOLR-874).

The following query example uses all of the supported features of this
limited syntax:

"a phrase query" plus +mandatory without -prohibited

Min-should-match
With the lucene query parser, you have a choice of the default operator being OR,
thereby requiring just one query clause (that is word) to match, or choosing AND
to make all clauses required. This of course only applies to clauses not otherwise
explicitly marked required or prohibited in the query using + and -. But these are
two extremes, and it would be useful to pick some middle ground. The dismax
parser uses a method called min-should-match, a feature which describes how many
clauses should match, depending on how many there are in the query—required and
prohibited clauses are not included in the numbers. This allows you to quantify the
number of clauses as either a percentage or a fixed number. The configuration of this
setting is entirely contained within the mm query parameter using a concise syntax
specification that I'll describe in a moment.

This feature is more useful if users use many words in their queries—at
least three. This in turn suggests a text field that has some substantial
text in it but that is not the case for our MusicBrainz data set.
Nevertheless, we will put this feature to good use.

Basic rules
The following are the four basic mm specification formats expressed as examples:

3 3 clauses are required, the rest are optional.
-2 2 clauses are optional, the rest are required.
66% 66% of the clauses (rounded down) are required, the rest are optional.
-25% 25% of the clauses (rounded down) are optional, the rest are required.

Chapter 4

[139]

Notice that - inverses the required/optional definition. It does not make any number
negative from the standpoint of any definitions herein.

Note that 75% and -25% may seem the same but are not due to
rounding. Given five queried clauses, the first requires three, whereas
the second requires four. This shows that if you desire a round-up
calculation, then you can invert the sign and subtract it from 100.

Two additional points about these rules are as follows:

•	 If the mm rule is a fixed number n, but there are fewer queried clauses, then
n is reduced to the queried clause count so that the rule will make sense.
For example: if mm is -5 and only two clauses are in the query, then all are
optional. Sort of!

•	 Remember that in all circumstances across Lucene (and thus Solr); at least
one clause in a query must match, even if every clause is optional. So in the
example above and for 0 or 0%, one clause must still match, assuming that
there are no required clauses present in the query.

Multiple rules
Now that you understand the basic mm specification format, which is for one simple
rule, I'll describe the final format, which allows for multiple rules. This format is
composed of an ordered space-separated series of the following: number<basicmm—
which can be read as "If the clause count is greater than number, then apply
rule basicmm". Only the right-most rule that meets the clause count threshold is
evaluated. As they are ordered in an ascending order, the chosen rule is the one
that requires the greatest number of clauses. If none match because there are fewer
clauses, then all clauses are required—that is a basic specification of 100%.

An example of the mm specification is given in the following example:

2<75% 9<-3

This reads: If there are over nine clauses, then all but three are required (three are
optional, and the rest are required). If there are over two clauses, then 75% are
required (rounded down). Otherwise (one or two clauses) all clauses are required,
which is the default rule.

I find it easier to interpret these rules if they are read right to left.

Searching

[140]

What to choose
A simple configuration for min-should-match is making all of the search terms
optional. This is effectively equivalent to a default OR operator in the Lucene query
parser. This is configured as shown in the following example:

0%

Conversely, the other extreme is requiring all of the terms, and this is equivalent to a
default AND operator. This is configured as shown in the following example:

100%

For MusicBrainz searches, I do not expect users to be using many terms, but I expect
most of them to match. If a user searches for three or more terms, then I'll let one be
optional. Here is the mm spec:

2<-1

You may be inclined to require all of the search terms; and that's a good
common approach—it's the default in fact. However, if just one word
isn't found then there will be no search results—an occurrence that
most search software tries to minimize. Even if you make some of the
words optional, the matching documents that have more of the search
words will be towards the top of the search results assuming score-
sorted order (you'll learn why in the next chapter). There are other ways
to approach this problem like performing a secondary search if the first
returns none or too few. Solr doesn't do this for you but it's easy for the
client to do. This approach could even tell the user that this was done
which would yield a better search experience.

A default search
The dismax query parser supports a default search, which is used in the event the user
query, q, is not specified. This parameter is q.alt and it is not subject to the limited
syntax of dismax. Here's an example of it used for matching all documents, from
within the request handler defaults in solrconfig.xml:

<str name="q.alt">*:*</str>

This parameter is usually set to *:* to match all documents and is often specified in
the request handler configuration in solrconfig.xml. You'll see with faceting in the
next section, that there will not necessarily even be a user query, and so you'll want
to display facets over all of the data. If you'd rather it not match any documents
(0 results), simply use -*:*.

Chapter 4

[141]

Filtering
Separate from the q parameter (that is the user query), you can specify additional
so-called filter queries that will filter the search results. Arguably the user query is
also a filter but you instead see the word "search" used for that. Filter queries don't
affect scoring, unlike the user query. To add a filter, simply use the fq parameter.
This parameter can be added multiple times for additional filters. A document must
match all filter queries and the user query for it to be in the results.

As an example, let's say we wanted to make a search form for MusicBrainz that lets
the user search for bands, not individual artists, and those that released an album
in the last 10 years. Let's also say that the user's query string is Green. In the index,
a_type is either person for an individual or group for a band, or 0 if unknown.
Therefore, a query that would find non-individuals would be this, combined with
the user's query:

+Green -a_type:person +a_release_date_latest:[NOW/YEAR-10YEARS TO *]

However, you should not use this approach. Instead, use multiple fq
query parameters:

q=Green&fq=-a_type%3Aperson&fq=a_release_date_latest%3A%5BNOW/YEAR-
10YEARS+TO+*%5D

Remember that in the URL snippet above we needed to URL Encode special
characters like the colons.

Filter queries have some tangential benefits. They:

•	 Improve performance, because each filter query is cached in Solr's filter
cache and can be applied extremely quickly.

•	 Clarify the logs, which show what the user searched for without it being
confused with the filters.

In general, raw user input doesn't wind up being part of a filter-query. Instead, the
filters are either known by your application in advance or are generated based on
your data, for example, in faceted navigation. Although it wouldn't necessarily be a
problem for user query text to become a filter, there may be scalability issues if many
unique filter queries end up being performed that don't get re-used and so consume
needless memory.

Searching

[142]

Solr 3.4 added the ability to disable caching of a filter by setting the cache
local-param to false. This is useful for avoiding pollution of the filter
cache when you know the query is not likely to be used again. And if the
query is a function query (discussed in Chapter 5, Search Relevancy), there
is a potential performance benefit because non-cached function queries
are evaluated on a fraction of the total documents instead of all of them.
For further details on this advanced technique, see the wiki: http://
wiki.apache.org/solr/CommonQueryParameters#Caching_of_
filters

Sorting
The sorting specification is specified with the sort query parameter. The default
is score desc. score is not a field but a special reference to a relevancy number,
described in detail in the next chapter. desc means descending order, use asc for
ascending order. In the following example, suppose we searched for artists that are
not individuals (a previous example in the chapter), and then we might want to ensure
that those that are surely bands, get top placement ahead of those that are unknown.
Secondly, we want the typical descending score search. This would simply be:

sort=a_type desc,score desc

Pay attention to the field types and text analysis you're using in
your schema for fields that you sort on. Basically, fields need to be
single valued, indexed, and not-tokenized. Some but not all support
sortMissingFirst and sortMissingLast options. See the section
on sorting in Chapter 2, Schema and Text Analysis for further information.

In addition to sorting on field values and the score, Solr supports sorting on a
function query. Function queries are usually mathematical in nature and used for
things like computing a geospatial distance or a time difference between now and
some field value. Function queries are discussed in detail in the next chapter, but
here's a simple example sorting by the difference between the artist begin and
end date:

sort=sub(a_end_date,a_begin_date) desc

An interesting use-case that has nothing to do with math is a trick to sort based on
multi-valued field data in limited circumstances. For example, what if we wanted
to sort on MusicBrainz releases which are declared to be of type Album (r_type is a
multi-valued field remember):

sort=query({!v="r_type:Album"}) desc

Chapter 4

[143]

To understand how to parse and understand this admittedly complicated expression,
read the earlier section on query parsers and local-params, and read the definition
of the query() function query in the next chapter. We had to use the local-params v
parameter to specify the query string instead of simply using the query because of
syntax restrictions in the context of the how the sort parameter value is parsed.

Sorting and memory usage
When you ask Solr to sort on a field, every indexed value is put into an
array in memory in the "field cache". This is more of a problem with text
than other fields. Not only does this use a lot of memory, but the first
time this happens, it takes time to bring in all the values from disk. You
should add a query that sorts on the fields your app might sort on into
newSearcher in solrconfig.xml.

Geospatial search
Geospatial search broadly refers to a search that in some way uses geospatially-
indexed locations. A common specific need is filtering search results by distance
from a center point and also to sort the results by that distance. Other uses are
influencing relevancy order and faceting by distance ranges. Spatial search is
similar but based on a 2-dimensional Cartesian plane instead of geospatial's sphere
/ planetary orientation. For documentation on the less useful spatial search, go to
Solr's wiki.

The geospatial support about to be described is entirely new to Solr 3.1.
This is just the beginning; expect much more in future releases. It may
very well work quite differently in the future.

Indexing locations
You need raw location data in the form of a latitude and longitude to take advantage
of Solr's geospatial capabilities.

If you have named locations (for example, "Boston, MA") then the data
needs to be resolved to latitudes and longitudes using a gazetteer like
Geonames—http://www.geonames.org. If all you have is free-form
natural language text without the locations identified, then you'll have
to perform a more difficult task that uses Natural Language Processing
techniques to find the named locations. These approaches are out of
scope of this book.

Searching

[144]

The principle field type in Solr for geospatial is LatLonType, which stores a single
latitude-longitude pair. Under the hood, this field type copies the latitude and
longitude into a pair of indexed fields using the provided field name suffix. In the
following excerpt taken from Solr's example schema, given the field name store,
there will be two additional fields named store_0_coordinate and store_1_
coordinate, which you'll see in Solr's schema browser.

<fieldType name="location" class="solr.LatLonType"
 subFieldSuffix="_coordinate"/>
<!-- … -->
<field name="store" type="location" indexed="true"
 stored="true"/>
<!-- … -->
<dynamicField name="*_coordinate" type="tdouble"
 indexed="true" stored="false"/>

When providing data to this field, it is formatted as a string with the latitude and
longitude separated by a comma like this:

<field name="store">43.17614,-90.57341</field>

Geohashes
Another geospatial field type to be aware of is GeoHashField, but there
is no point in using it at this time. Geohashes have the opportunity for
multi-valued data, indexed shape data other than points, and very fast
filtering. However the implementation presently in Solr doesn't leverage
any of this—for one that does, take a look at SOLR-2155—a patch of mine.
There is a good chance this will make it into Solr 4 in some form.

Filtering by distance
Perhaps the most common geospatial need is to filter search results to those
documents within a distance radius from a center point. If you are building an
application in which the user is presented with a map, perhaps using Google Maps,
then the center point is the center of the map the user is looking at and the distance
radius is the distance from the center to the nearest map edge. Such a query is
generally specified using a Solr filter query (fq parameter) leaving q open for the
possibility of a combined keyword search if desired. Both the geofilt and bbox
query parsers perform geospatial filtering. geofilt implements a point-distance
based filter, a circle shape, whereas bbox uses the minimum bounding latitude-
longitude box surrounding that circle.

Chapter 4

[145]

bbox is preferred
The bbox query parser is faster than geofilt because it is able to make
simple latitude and longitude numeric range searches whereas geofilt
must compute every distance using the Haversine algorithm, which
is more expensive. Furthermore, as the user is probably looking at a
latitude-longitude box, having the query shape be a box makes sense too.

Here is a quick example based on Solr's example schema and data set, showing the
URL parameters needed to do the search:

q=*:*&fq={!bbox}&sfield=store&pt=45.15,-93.85&d=5

The parameters that geofilt and bbox require can be specified as either local-
params (between the parser name and closing bracket) or standard request
parameters as shown above. The advantage to the latter is that a subsequent distance
sort can re-use the same parameters, as you'll see in a bit. Here are geofilt and
bbox's parameters:

•	 sfield: The name of the location field.
•	 pt: A latitude-comma-longitude pair for the center point of the query.
•	 d: The query distance from pt as measured in kilometers.

Sorting by distance
Geospatial distance sorting is implemented using a Solr function query that
calculates the distance. There are a few such functions but the primary one you
should use is geodist() which is the only one I'll document here. It returns the
Earth geospatial distance using the Haversine formula between a pair of points.
The points are each taken from the first available of: an argument, the parameter
pt, or the parameter sfield. Any of these might be absent but at least two must be
specified. When a point is specified as an argument, it can simply be a geospatial
field or a pair of typical arguments (a field name or constant) to the latitude and
longitude. Here's an example of both: geodist(store,42.4,-71.1)

By design, these parameter names align with those for the geofilt
and bbox query parsers, which pairs well with geodist().
Consequently it is rare to supply arguments.

Searching

[146]

To apply a distance sort to the earlier example filtering by distance, simply add
&sort=geodist()+asc to the URL parameter list.

Returning the distance in search results
A future version of Solr (certainly 4.0) will support returning the results
of a function query in the search results. In the meantime, the only way
this is possible is by using the func query parser to process q in which
the document score is the result of the function. A keyword search, if
needed, would then be displaced to a filter query in which it will not be
able to influence relevancy (although use of the query() function query
in the sort could be a way around that). Here's an example URL snippet:
q={!func}geodist()&fl=*,score
&fq={!bbox}&sfield=store&pt=45.15,-93.85&d=5

Summary
At this point, you've learned the essentials of searching in Solr, from request
handlers, to the full query syntax, to dismax, and more. We spent a lot of time on
the query syntax because you'll see the syntax pop-up in several places across Solr,
not just the user's query. Such places include filter queries, delete queries, boost
queries, facet queries, embedded within certain function queries, and query warming
(discussed in later chapters). Even if you don't wish to expose the syntax to your
users, you will probably be using it for various things. Finally, you got a taste of
geospatial search. The subject of searching continues in the next chapter with a focus
on relevancy / scoring matters. This starts with an explanation of Lucene/Solr's
scoring model, and then various tools Solr gives you to influence the score such as
function queries—also useful in sorting and filtering.

Search Relevancy
At this point you know how to search, filter, and sort. You've undoubtedly been
sorting by score in descending order, the default, but have no understanding as to
where those scores came from. This chapter is all about search relevancy, which
basically means it's about scoring but it's also about other non-trivial methods of
sorting to produce relevant results. A core Solr feature enabling these more advanced
techniques called "function queries" will be introduced. The major topics covered in
this chapter are:

•	 Factors influencing the score
•	 Troubleshooting queries, to include scoring
•	 Dismax part 2: features that enhance relevancy
•	 Function queries

In a hurry?
Use the edismax query parser for user queries by setting the defType
parameter. Configure the qf (query fields) as explained in the previous
chapter, set pf (phrase fields) considering the call-out tip in this chapter,
and set tie to 0.1. If at some point you need help troubleshooting a query
(and you will!) then return to read Troubleshooting queries and scoring.

Search Relevancy

[148]

Scoring
Scoring in Lucene is an advanced subject, but in spite of this it is important to at least
have a basic understanding of it. Instead of presenting the algorithm, comprehension
of which is a bit of an advanced subject not suitable for this book, we will discuss the
factors influencing the score and where to look for diagnostic scoring information.
If this overview is insufficient for your interest, then you can get the full details here
at http://lucene.apache.org/java/3_3_0/api/core/org/apache/lucene/
search/Similarity.html

An important thing to understand about scores is not to attribute much meaning to a
score by itself; it's almost meaningless. The relative value of an individual score to the
max score is more relevant. A document scored as 0.25 might be a great match or not,
there's no telling. But if you compare this score to another from the very same search
and find it to be twice as large, then it is fair to say that the document matched the
query twice as well. This being said, you will usually find that scores in the vicinity
of 0.5 or better are decent matches. The factors influencing the score are as follows:

•	 Term frequency—tf: The more times a term is found in a document's field,
the higher the score it gets. This concept is most intuitive. Obviously, it
doesn't matter how many times the term may appear in some other field,
it's the searched field that is relevant (whether explicit in the query or the
default).

•	 Inverse document frequency—idf: The rarer a term is in the index, the
higher its score is. The document frequency is the number of documents in
which the term appears, on a per-field basis, of course. It is the inverse of the
document frequency that is positively correlated with the score.

•	 Co-ordination factor—coord: The greater the number of query clauses that
match a document, the greater the score will be. Any mandatory clauses
must match and the prohibited ones must not match, leaving the relevance of
this piece of the score to situations where there are optional clauses.

•	 Field length—fieldNorm: The shorter the matching field is, measured in
number of indexed terms, the greater the matching document's score will be.
For example, if there was a band named just Smashing, and another named
Smashing Pumpkins, then this factor in the scoring would be higher for the
first band upon a search for just Smashing, as it has one word, while the other
has two. Norms for a field can be marked as omitted in the schema with the
omitNorms attribute, effectively neutralizing this component of the score.

These factors are the intrinsic components contributing to the score of a document in
the results. If you introduce other components of the score then that is referred to as
boosting. Usually, boosting is a simple multiplier to a field's score, either at index or
query time, but it's not limited to that.

Chapter 5

[149]

Query-time and index-time boosting
At index-time, you have the option to boost a particular document specified at
the document level or at a specific field. The document level boost is the same
as boosting each field by that value. This is internally stored as part of the norms
number. Norms must not be omitted in the relevant fields in the schema. It's
uncommon to perform index-time boosting because it is not as flexible as query-time.
That said, I do find index-time boosting to have a more predictable and controllable
influence on the final score.

At query-time, we described in the previous chapter how to explicitly boost a
particular clause of a query higher or lower if needed using the trailing ^ syntax. We
also showed how the dismax query parser's qf parameter not only lists the fields to
search but allows a boost for them as well. There are a few more ways dismax can
boost queries that you'll read about shortly.

Troubleshooting queries and scoring
An invaluable tool in diagnosing scoring behavior (or why a document isn't in the
result or is but shouldn't be) is enabling query debugging with the debugQuery
query parameter. There is no better way to describe it than with an example.
Consider the fuzzy query:

a_name:Smashing~

We would intuitively expect that documents with fields containing Smashing would
get the top scores, but that didn't happen. Execute the preceding query mentioned
with debugQuery=on, and ensure that you're looking at the original indentation by
using the View Source feature in your browser. Try right-clicking the XML to see
the option.

The top score is 2.664175, and there were two documents matching, neither with
Smashing. One had Mashina, and the other had Smashin'.

 <doc>
 <float name="score">2.664175</float>
 <str name="a_name">Mashina</str>
 </doc>
 <doc>
 <float name="score">2.664175</float>
 <str name="a_name">Smashin'</str>
 </doc>
 <doc>
 <float name="score">2.5235493</float>
 <str name="a_name">Smashing Atoms</str>
 </doc>

Search Relevancy

[150]

The first two documents have words that differ from smashing by only two
characters (remember the case difference). The third document finally matched
Smashing. Its score was a little less, but not enough to overtake the top two. What's
going on here? Let's look at the following debug output, showing the first and the
third document. We'll skip the second, as it has the same score as the first:

<lst name="explain">
 <str name="Artist:227132">
2.664175 = (MATCH) sum of:
 2.664175 = (MATCH) weight(a_name:mashina^0.42857146 in 286945),
 product of:
 0.20176922 = queryWeight(a_name:mashina^0.42857146),
 product of:
 0.42857146 = boost
 13.204025 = idf(docFreq=1, numDocs=399182)
 0.035655525 = queryNorm
 13.204025 = (MATCH) fieldWeight(a_name:mashina in 286945),
 product of:
 1.0 = tf(termFreq(a_name:mashina)=1)
 13.204025 = idf(docFreq=1, numDocs=399182)
 1.0 = fieldNorm(field=a_name, doc=286945)
 </str>
<!-- skip 2nd doc ...-->
 <str name="Artist:93855">
2.5235493 = (MATCH) sum of:
 2.5235493 = (MATCH) weight(a_name:smashing^0.75 in 9796),
 product of:
 0.32859424 = queryWeight(a_name:smashing^0.75),
 product of:
 0.75 = boost
 12.287735 = idf(docFreq=4, numDocs=399182)
 0.035655525 = queryNorm
 7.6798344 = (MATCH) fieldWeight(a_name:smashing in 9796),
 product of:
 1.0 = tf(termFreq(a_name:smashing)=1)
 12.287735 = idf(docFreq=4, numDocs=1002272)
 0.625 = fieldNorm(field=a_name, doc=9796)
 </str>

Chapter 5

[151]

What we see here is the mathematical breakdown of the various components of the
score. We see that mashina (the term actually in the index) was given a query-time
boost of 0.43, whereas smashing was given a query-time boost of 0.75. We expected
this because the fuzzy matching was going to give higher weights to stronger
matches, and it did. However, other factors pulled the final score in the other
direction. Notice that the fieldNorm for mashina was 1.0 whereas smashing had a
fieldNorm of 0.625. This is because the document we wanted to score higher had
a field with more indexed terms (Smashing Atoms) versus just the one that Mashina
had. So arguably, Mashina is a closer match than Smashing Atoms to the fuzzy
query Smashing~.

How might we "fix" this? Well it's not broken, and the number three spot in
the search results isn't bad. This is also a fuzzy query which is fairly unusual
and arguably isn't a circumstance to optimize for. The first thing to do is to
try and lowercase a fuzzy query so that there isn't a case difference. If that is
insufficient then try enabling omitNorms in the schema, at the expense of no score
differentiation on matches in shorter versus longer fields. There are other things
to try for more experienced developers like experimenting with something called
SweetSpotSimilarity—Google it for more information.

Dismax query parser (part 2)
In the previous chapter you were introduced to the dismax query parser as the
preferred choice for user queries, the q parameter. The parser for user queries is set
with the defType parameter. The syntax, the fields that are queried (with boosts)—
qf, the min-should-match syntax—mm, and the default query—q.alt, were already
described. We're now going to complete your education on this parser by discussing
the remaining features which are most closely related to scoring.

Any mention herein to dismax applies to the edismax query parser
too, unless specified otherwise. As explained in the previous chapter,
edismax is the extended dismax parser that is expected to replace
dismax in a future release. edismax is generally superior to dismax as
you'll see in this section.

Search Relevancy

[152]

Lucene's DisjunctionMaxQuery
The ability to search across multiple fields with different boosts in this query parser
is a feature powered by Lucene's DisjunctionMaxQuery query type. Let's start with
an example. If the query string is simply rock, then dismax might be configured to
turn this into a DisjunctionMaxQuery similar to this:

fieldA:rock^2 OR fieldB:rock^1.2 OR fieldC:rock^0.5

Advanced topic warning
The following discussion is advanced, and you needn't understand it. Just
know that a dismax query is ideal for searching multiple fields and to set
the tie parameter to 0.1, which is a reasonable choice.

The boolean query mentioned above is not quite equivalent to what the dismax
query actually does; the difference is in the scoring. A boolean query, such as
this, will have a score based on the sum of each of the three clauses whereas a
DisjunctionMaxQuery takes the maximum of each (this is a simplification). The
dismax behavior should produce better scores for this use case, which is where you
are looking in multiple fields for the same term, where some fields are deemed to be
more significant than others. An example from the API docs of this feature explains
that if a user searched for albino elephant, then dismax ensures that albino
matching one field and elephant matching another gets a higher score than albino
matching both fields but elephant neither.

Another wrinkle on this description of dismax scoring is the tie parameter, which
is between zero (the default) and one. By raising this value above zero, the scoring
begins to favor documents that matched multiple terms over those that were boosted
higher. This can be moved to the extreme by using 1—resulting in scoring that is
closer to that of a boolean query. In practice, a small value like 0.1 is effective.

Chapter 5

[153]

Boosting: Automatic phrase boosting
Suppose a user searches for Billy Joel. This is interpreted as two terms to search
for, and depending on how the request handler is configured, either both must be
found in the document or just one. Perhaps for one of the matching documents,
Billy is the sole name of a band, and it has a member named Joel. Great, Solr found
this document and perhaps it is of interest to the user, after all, it contained both
words the user typed. However, it's a fairly intuitive observation that a document
field containing the entirety of what the user typed, Billy Joel, represents a closer
match to what the user is looking for. Solr would certainly find such a document
too, without question, but it's hard to predict what the relative scoring might be. To
improve the scoring, you might be tempted to automatically quote the user's query,
but that would omit documents that don't have the adjacent words. What the dismax
handler can do is add a phrased version of the user's query onto the original query as
an optional clause. So, in a nutshell, it rewrites this query:

Billy Joel

into

+(Billy Joel) "Billy Joel"

The queries here illustrate phrase boosting in its most basic form. It
doesn't depict the DisjunctionMaxQuery that dismax uses.

The rewritten query depicts that the original query is mandatory by using +, and it
shows that we've added an optional phrase. A document containing the phrase Billy
Joel not only matches that clause of the rewritten query, but it also matches Billy
and Joel—three clauses in total. If in another document the phrase didn't match, but
it had both words, then only two clauses would match. Lucene's scoring algorithm
would give a higher coordination factor to the first document, and would score it
higher, all other factors being equal.

Configuring automatic phrase boosting
Automatic phrase boosting is not enabled by default. In order to use this feature, you
must use the pf parameter, which is an abbreviation of "phrase fields". The syntax
is identical to qf. You should start with the same value and then make adjustments.
Common reasons to vary pf from qf:

•	 To use different (typically lower) boost factors so that the impact of phrase
boosting isn't overpowering. Some experimentation may guide you to make
such adjustments.

Search Relevancy

[154]

•	 To omit fields that are always one term, such as an identifier because there's
no point in searching the field for phrases.

•	 To omit some of the fields that have lots of text since that might slow down
search performance too much.

•	 To substitute a field for another that has the same data but analyzed
differently. For example, you might choose to perform shingling (a text
analysis technique described in Chapter 10, Scaling Solr) into a separate
field instead of shingling the original field. Such a shingling configuration
would be a little different than described in that chapter; you would set
outputUnigrams to false.

pf Tips
Start with the same value used as qf, but with boosts cut in half. Remove
fields that are always one term, such as an identifier. Also, use of
common-grams or shingling, as described in Chapter 10, Scaling Solr, is
highly recommended to increase performance.

Phrase slop configuration
In the previous chapter, we had mentioned the phrase slop, aka term proximity, by
following a phrase with a tilde and a number, as shown below:

"Billy Joel"~1

dismax adds two parameters to automatically set the slop: qs for any explicit phrase
queries that the user entered and ps for the phrase boosting mentioned previously.
If slop is not specified, then there is no slop, which is equivalent to a value of zero.
For more information about slop, see the corresponding discussion in the previous
chapter. Here is a sample configuration of both slop settings:

<str name="qs">1</str>
<str name="ps">0</str>

Partial phrase boosting
In addition to boosting the entire query as a phrase, edismax supports boosting
consecutive word pairs if there are more than two queried words and consecutive
triples if there are more than three queried words. These are configured by setting
pf2 and pf3, respectively, in the same manner that the pf parameter is defined. For
example, this query:

how now brown cow

Chapter 5

[155]

Would become:

+(how now brown cow) "how now brown cow" "how now" "now brown" "brown
cow" "how now brown" "now brown cow"

This feature is not affected by the ps (phrase slop) parameter, which only applies to
the entire phrase boost.

You can certainly expect the relevancy to improve for longer queries,
but of course these queries are going to be even slower now. To speed
up such queries, use common-grams or shingling, described Chapter 10,
Scaling Solr. If you are using pf2 or pf3, consider a maxShingleSize
of 3 (but monitor its impact on index size!), and consider omitting the
larger text fields from pf2 or pf3.

Boosting: Boost queries
Continuing with the boosting theme is another way to affect the score of documents:
boost queries. The dismax parser lets you specify multiple additional queries using
bq parameter(s), which, like the automatic phrase boost, get added onto the user's
query in a similar manner. Remember that boosting only serves to affect the scoring
of documents that already matched the user's query in the q parameter. If a matched
document also matches a bq query, then it will be scored higher.

For a realistic example of using a boost query, we're going to look at MusicBrainz
releases data. Releases have an r_type field containing values like Album, Single,
Compilation, and others, and an r_official field containing values like Official,
Promotion, Bootleg, and Pseudo-Release. We don't want to sort search results
based on these since we want the natural scoring algorithm to consider the user's
query in the relevancy; however, we might want to influence the score based on
these. For example, let's say albums are the most relevant release type whereas a
compilation is the least relevant. And let's say that an official release is more relevant
than bootleg or promotional or pseudo-releases. We might express this using a boost
query like this (defined in the request handler):

<str name="bq">r_type:Album^2 (*:* -r_type:Compilation)^2 r_
official:Official^2</str>

Search Relevancy

[156]

Searching releases for "airplane flies" showed that this boost query did what it
should by breaking a score tie in which the release names were the same but these
attributes varied. In reality the boosting on each term, all three in this example, would
be tweaked to have the relevancy boost desired by carefully examining the debugQuery
output. One oddity in this query is (*:* -r_type:Compilation)^2 which boosts all
documents except compilations. Using r_type:Compilation^0.5 would not work
since it would still be added to the score. To understand why *:* is needed, read the
previous chapter on the limitations of pure negative queries.

Boost queries are not as useful as boost functions, described in the next
section—especially since edismax supports a multiplied boost, which is
generally more desirable than addition. Even in the preceding example,
it's awkward to tune the boost of each query clause because of the inverse
document frequency (IDF) that varies for each term. For example, you
might want the effect of r_type being Album and r_official being
Official to have an equivalent boost. You would need to perform a query
with debugQuery enabled to look at what the score is for each of these
terms, which will be different, and then use disproportionate boosts (not
both as in the example) so that when multiplied by their intrinsic score,
they wind up being the same. This is a pain and it's brittle.

Boosting: Boost functions
Boost functions offer a powerful way to either add or multiply the result of a user-
specified formula to a document's score. By formula I refer to a composition of Solr
function queries, which are described in detail next in this chapter. To add to the
score, specify the function query with the bf parameter. edismax adds support for
multiplying the result to the score in which you specify the function query with the
boost parameter. You can specify bf and boost each as many times as you wish.

For a thorough explanation of function queries including useful
MusicBrainz examples, see the next section.

An example of boosting MusicBrainz tracks by how recently they were released is:
<str name="boost">recip(map(rord(r_event_date_earliest),0,0,99000)
 ,1,95000,95000)</str>

There cannot be any spaces within the function. The bf and boost parameters
are actually not parsed in the same way. The bf parameter allows multiple boost
functions within the same parameter, separated by space, as an alternative to
using additional bf parameters. You can also apply a multiplied boost factor to the
function in bf by appending ^100 (or another number) to the end of the function
query. This is just a convenience for using the mul() function query, described later.

Chapter 5

[157]

Finally, ensure newSearcher in solrconfig.xml has a sample query using the
boost functions you're using. In doing so you ensure that any referenced fields are
in Lucene's field cache instead of penalizing the first query with this cost. Chapter 10,
Scaling Solr has more information on performance tuning.

Add or multiply boosts?
In a nutshell, if you can tame the difficulty in additive boosting (bf param) then
you'll probably be more satisfied with the scoring. Multiplicative boosting (boost
param) is easier to use, especially if the intended boost query is considered less than
or equal to the user query, which is usually true.

If you describe how you'd like the scoring to work as: "I'd like 2/3 of the document
score to come from the user query and the remainder 1/3 to be from my formula" (or
whatever ratios) then additive scores are for you. The trick is that you need to know
the top score for an excellent match on the user query in order to balance out the
proportions right. Try an exact match on a title (a highly boosted field in the query)
and see what the top score is. Do this a bunch of times for a variety of documents,
looking for reasonable consistency. So if, for example, the top end of the user query
ends up being 1.5, and you want the function query to make up about half as much
as the user query does in the final score, then adjust the function query so its upper
bound is 0.75. Simply multiply by that if you already have the function query in the
0-1 nominal range. Even if these instructions don't seem too bad, in practice tuning
additive scores is tricky since Lucene will react to every change you do by changing
the queryNorm part of the score out from under you, which you have no control over.
As it does this, keep your eye on the overall ratios that you want between the added
boost part and the user query part, not the particular score values. Another bigger
problem is that your experiments in gauging the maximum score of the user query
will change as your data changes, which will mean some ongoing monitoring of
whatever values you choose.

The other way of thinking about your boost function is as a user query score
multiplier (a factor). With multiplication you don't need to concern yourself with
whatever a "good" user query score is—it has no bearing here. The tricky part of
multiplicative boosts is weighting your boost, so it has the relative impact you want.
If you simply supply your nominal range (0-1) function directly as the boost then
it has the same weight as the user query. As you shift the function's values above 0
then you reduce the influence it has relative to the user query. For example, if you
add 1 to your nominal 0-1 range so that it goes from 1-2, then it is weighted roughly
half as much (formula: (2-1)/2 = 0.5).

Search Relevancy

[158]

It's possible to use multiplicative boosts that are weighted as more relevant than the
user query but I haven't fully worked out the details. A place to start experimenting
with this is boosting the boost function by a power, say 1.7, which appeared to about
double the weight.

Function queries
A function query is a user-specified composition of Solr-provided functions, most of
which are mathematical in nature. It is evaluated on each matching document, taking
constants and references to single-valued fields as input and returning a floating-
point number via its score. Because they are technically queries, albeit strange ones,
they can be used in any place you see queries in Solr (search, filtering, and so on.)
and since Solr 3 they can be used to sort on too.

There are quite a few ways in which you can incorporate a function query into your
searches in Solr:

Despite the multitude of options here, you'll most likely just use them
in boosting with the dismax parser. It's good to know about other
possibilities, though.

•	 Dismax query parser using the bf or boost parameters:
These two parameters add or multiply the function query to the user query
score for boosting. They were previously described in the chapter but you'll
see in-depth examples on deriving a function query coming up.

•	 Boost query parser:
Like dismax's boost parameter, this query parser lets you specify a function
query that is multiplied to the main query. Unlike dismax, the query string is
parsed by the lucene query parser. Here is an example query:
{!boost b=log(t_trm_lookups)}t_name:Daydreaming

•	 Lucene query parser using the _val_ pseudo-field hack:
Here is an example:
t_name:Daydreaming && _val_:"log(t_trm_lookups)"^0.01

There is no field named _val_; this just triggers the query parser to treat
the quoted part as a function query instead of as a field value to search. It'll
match all documents, so combine it with other required clauses to actually
limit the results. The score is added to the other parts of the query.

Chapter 5

[159]

•	 Func query parser:
The func query parser is particularly useful in debugging a function query,
and as of Solr 3 it is the only way to get the computed result of a function
query in the search results. Solr 4 will support returning function query
results without requiring this parser, but Solr 4 isn't released yet. Here is an
example URL snippet:
q=log(t_trm_lookups)&defType=func&fl=t_trm_lookups,score

The score of each document in the results is the evaluation of the function
query.

•	 Frange (function range) query parser:
This query parser is similar to the func query parser but it also filters
documents based on the resulting score being in a specified range, instead
of returning all documents. It takes an l parameter for the lower bound, a u
parameter for the upper bound, and incl and incu boolean parameters to
specify whether the lower or upper bounds are inclusive—which they are by
default. The parameters are optional but you will specify at least one of u or l
for meaningful effect. Here's an example URL snippet from its
documentation:
fq={!frange l=0 u=2.2}sum(user_ranking,editor_ranking)

•	 Sorting:
In addition to sorting on field values, as mentioned in the previous chapter,
Solr 3 adds sorting on function queries too. Here's an example URL snippet
sorting by geospatial distance. It assumes use of the geofilt query parser—
partially omitted here:
sort=geodist(pt=… sfield=… d=…) asc

Field references
For fields used in a function query, the constraints are the same as sorting.
Essentially this means the field must be indexed, not multi-valued, and if text fields
are used then they must analyze down to no more than one token. And like sorting,
all values get stored in the field cache. The implication of the field cache is that
you should have enough memory and also that you should have a suitable query
in newSearcher in solrconfig.xml so that the first search after a commit isn't
penalized with the initialization cost.

Search Relevancy

[160]

If you have a multi-valued field you hoped to use, you'll instead have to
put a suitable value into another field during indexing. This might be a
simple minimum, maximum, or average calculation. If you are using the
Data Import Handler (DIH, see Chapter 3, Indexing Data), you should
consider a DIH transformer, or you could simply do this on the client
before sending the data to Solr.

If there is no value in the field for the document then the result is zero, otherwise,
numeric fields result in the corresponding numeric value. But what about other field
types? For TrieDateField you get the ms() value, explained shortly. Note that 0
ambiguously means the date might be 1970 or blank. For older date fields, you get
the ord() value, also explained shortly. For boolean fields, true is 2 and false is 1—
rather unexpected but it is immaterial. For text fields, you get the ord() value. Some
functions can work with the text value—in such cases you'll need to explicitly use the
literal() function.

Function reference
This section contains a reference of the majority of function queries in Solr.

An argument to a function can be a literal constant such as a number, a field
reference, or an embedded function. String constants are quoted. One interesting
thing you can do is pull out any argument into a separate named request parameter
(in the URL) of your choosing and then refer to it with a leading $:

&defType=func&q=max(t_trm_lookups,$min)&min=50

The parameter might be in the request or configured into the request handler
configuration. If this parameter dereferencing syntax is familiar to you, then that's
because it works the same way in local-params too, as explained in
Chapter 4, Searching.

Not all arguments can be of any type. For the function definitions below,
any argument named x, y, or z can be any expression: constants, field
references, or functions. Other arguments like a, or min require a literal
constant. If you attempt to do otherwise, then you will get an unhelpful
parsing error.

Chapter 5

[161]

Mathematical primitives
These functions cover basic math operations and constants:

•	 sum(x,y,z,...) aliased to add: Sums, that is adds, all of the arguments.
•	 sub(x,y): Subtracts y from x as in the expression x-y.
•	 product(x,y,z,...), aliased to mul: Multiplies the arguments together.
•	 div(x,y): Divides x by y as in the expression x/y.
•	 log(x), ln(x): The base-10 logarithm and the natural logarithm.
•	 sqrt(x), cbrt(x), ceil(x), floor(x), rint(x), pow(x,y), exp(x), e(): See

the java.lang.Math API http://download.oracle.com/javase/6/docs/
api/java/lang/Math.html

Geometric/Trigonometric:

•	 rad(x), deg(x): Converts degrees to radians, and radians to degrees.
•	 sin(x), cos(x), tan(x), asin(x), acos(x), atan(x), sinh(x), cosh(x),

tanh(x), hypot(x,y), atan2(y,x), pi(): See the java.lang.Math API
•	 Geospatial functions are covered later.

Other math
These are useful and straightforward mathematical functions:

•	 map(x,min,max,target,def?): If x is found to be between min and max
inclusive, then target is returned. Otherwise if def (an optional parameter)
is supplied then that is returned. Otherwise x is returned. This is useful for
dealing with default values or to limit x, to ensure that it isn't above or below
some threshold.

•	 max(x,c): Returns the greater value of x and c.
•	 scale(x,minTarget,maxTarget): Returns x scaled to be between

minTarget and maxTarget. For example, if the value of x is found to be one-
third from the smallest and largest values of x across all documents, then x is
returned as one-third of the distance between minTarget and maxTarget.

scale() will traverse the entire document set and evaluate the
function to determine the smallest and largest values for each query
invocation, and it is not cached. This makes it impractical for many
uses, as it is too slow.

Search Relevancy

[162]

•	 linear(x,m,c): A macro for sum(product(m,x),c) for convenience and
speed.

•	 recip(x,m,a,c): A macro for div(a,linear(x,m,c)) for convenience and
speed.

ord and rord

Before ms() was introduced in Solr 1.4, ord() and rord() were mediocre
substitutes. You probably won't use them. ms() is described next.

As mentioned earlier, ord(fieldReference) is implied for references to text fields
in the function query.

•	 ord(fieldReference): Given a hypothetical ascending sorted array of all
unique indexed values for fieldReference, this returns the array position,
in other words, the ordinal of a document's indexed value. fieldReference
is of course a reference to a field. Unlike most other functions it cannot be any
other kind of expression. The order of the values is in an ascending order and
the first position is 1. A non-existent value results in 0.

•	 rord(fieldReference): The same as ord(), but with the ordering reversed.

A definition of ord is not sufficient to fully convey its ramification. Suppose five
documents are added to an index with the following values in a field x: 70, 70, 90,
95, 98. Even though there are five documents, ord(x) is going to return values
ranging from 1 to 4, because there are only four distinct values; one of them, 70,
is repeated. There is another difference that is subtler. The original values are not
distributed in a linear fashion. They are more clumped together towards the higher
values (do not consider duplicates). ord and rord in-effect linearizes the data so that
the distribution of the original value is lost, assuming it was non-linear.

To determine how high ord/rord can get, you can use Solr's web admin interface.
Go to the Schema Browser. Click on an indexed field, and observe the
distinct number.

Miscellaneous functions
There are multiple ways to use the ms() function to get a date-time value since its
arguments are all optional. Times are in milliseconds since the commonly used time
epoch of 1970-01-01T00:00:00Z which is zero. Times before then are negative. Note
that any field reference to a time will be ambiguous to a blank value, which is zero.

Chapter 5

[163]

•	 ms(date1?,date2?): If no arguments are supplied you get the current time.
If one argument is supplied, its value is returned; if two are supplied, the
second is subtracted from the first. The date reference might be the name of a
field or Solr's date math. For example: ms(NOW/DAY,a_end_date)

Interestingly, there are a couple function queries which return the score results of
another query. It's a fairly esoteric feature but it has its uses. One such use is to sort by
whether a field has a value. See the previous chapter for an example.

•	 query(q,def?): Returns the document's score as applied to the query
given in the first argument. If it doesn't match then the optional second
parameter is returned if supplied, otherwise 0 is. Due to the awkward
location of the query during function query parsing, it can't be entered
plainly. The query can be put in another parameter and referenced, like this:
query($param)¶m=t_trm_attributes:4
or it can be specified using local-params with the query in v, like this:
query({!v="t_trm_attributes:4"}).

•	 boost(q,boost): Similar to query(q) but with the score multiplied by the
boost constant.

Another interesting function query is one that calculates the string distance between
two strings based on a specified algorithm. The values are between 0 and 1.

•	 strdist(x,y,alg): The first two arguments are strings to compute the
string distance on. Next is one of jw (Jaro Winkler), edit (Levenshtein),
or ngram in quotes. The default ngram size is 2 but you can supply an
additional argument for something else.

There are a few ways to calculate geospatial distance. The primary one you should
use is geodist() which is the only one I'll document here:

•	 geodist(…): Returns the Earth geospatial distance using the Haversine
formula between a pair of points. The points are each taken from the first
available of: an argument, the parameter pt, or the parameter sfield. Any
of these might be blank but at least two must be specified. When a point is
specified as an argument, it can be simply a LatLonType based field or a pair
of typical arguments (a field name or constant) to the latitude and longitude.
Here's an example of both: geodist(store,42.4,-71.1)

By design these parameter names align with those for the geofilt query
parser, which pairs well with geodist(). Consequently it is rare to
supply arguments.

Search Relevancy

[164]

There are some function queries I chose to omit for various reasons. Solr's wiki
http://wiki.apache.org/solr/FunctionQuery has the full list with some
descriptions. I omitted vector(), dist(), sqedist(), ghhsin(), geohash(), top(),
and literal(). The vector calculations look interesting but a real use-case is not clear.

Function query boosting
The overall process to function query boosting is as follows:

1.	 Pick a formula that has the desired plotted shape.
2.	 Plug in values specific to your data.
3.	 Decide the relative weighting of the boost relative to the user query (for

example, 1/3).
4.	 Choose additive or multiplicative boosting and then apply the relative

weighting according to the approach you chose (see Add or multiply boosts?).
The upcoming examples address common scenarios with ready-made formulas
for you.

If you want to work on formulas instead of taking one provided here as
is, I recommend a tool such as a graphing calculator or other software to
plot the functions. If you are using Mac OS X as I am, then your computer
already includes Grapher, which generated the charts in this chapter.
I highly recommend it. You might be inclined to use a spreadsheet
like Microsoft Excel, but that's really not the right tool. With luck,
you may find some websites that will suffice, perhaps http://www.
wolframapha.com.
If your data changes in ways causing you to alter the constants in your
function queries, then consider implementing a periodic automated test
of your Solr data to ensure that the data fits within expected bounds. A
Continuous Integration (CI) server might be configured to do this task.
An approach is to run a search simply sorting by the data field in question
to get the highest or lowest value.

Formula: Logarithm
The logarithm is a popular formula for inputs that grow without bounds, but the
output is also unbounded. However, the growth of the curve is stunted for larger
numbers. This in practice is usually fine even when you ideally want the output to be
capped. The logarithm cannot be inverted without the risk of a negative score, which
should be avoided.

Here is a graph of our formula, given inputs from a future example.

http://wiki.apache.org/solr/FunctionQuery
http://wiki.apache.org/solr/FunctionQuery

Chapter 5

[165]

And here is the formula:

c is a number greater than 1 and is a value of your choosing that will alter how the
curve bends. I recommend 10 as seen in the preceding graph. Smaller values make
it too linear and greater values put a knee bend in the curve that seems too early.
m is the inverse of what I'll call the horizon. At this value, the result is 1. With the
logarithm, further values advance the output steadily but at a shallow slope that
slowly gets shallower. Here is the Solr function query to use, simplified for when c is
10: log(linear(x,m,1))

•	 x: The input; typically a field reference. It must not be negative.
•	 m: 9/horizon where horizon is as described above.

Verify your formula by supplying 0 which should result in 0, and then supply horizon
(as defined above) which should result in 1. Now that you have your formula, you
are ready to proceed with the other function query boosting steps.

Formula: Inverse reciprocal
In general, the reciprocal of a linear function is favorable because it gives results that
are bounded as the input grows without bounds.

Search Relevancy

[166]

Here is a sample graph to show the curve. The inputs are from a later how-to. The
arrow in the following graph shows where the "horizon" (1/m) lies:

Here is the formula:

Here, max is the value that this function approaches, but never quite reaches. It
should be greater than 1 and less than 2; 1.5 works well. You can experiment with
this to see how it changes the bend in the curve below. m is the inverse of what I'll call
the horizon. At this value, the result is 1, and larger inputs only increase it negligibly.

Here is the Solr function query to use: sum(recip(x,m,a,c),max)

•	 x: The input; typically a field reference. It must not be negative.
•	 m: 1/horizon where horizon is as described above.
•	 a: max-max*max
•	 c: max – 1
•	 max: 1.5 or otherwise as defined above.

Verify your formula by supplying 0 which should result in 0, to horizon (as defined
above) which should result in 1. Now that you have your formula, you are ready to
proceed with the other function query boosting steps.

Chapter 5

[167]

Formula: Reciprocal
The reciprocal is an excellent formula to use when you want to maximally boost at
input 0 and boost decreasingly less as the input increases. It is often used to boost
newly added content by looking at how old a document is.

Here is a sample graph to show the curve. The inputs are from a later how-to. The
arrow roughly shows where the horizon input value is.

The formula is simply:

Which translates easily to a Solr function query as recip(x,1,c,c).

•	 x: The input—a field or another function referencing a field. It should not be
negative.

•	 c: Roughly 1/10 the horizon input value. As larger values are supplied, the
boost effect is negligible.

Verify your formula by supplying 0 which should result in 1, and then horizon (as
defined above) which should result in a number very close to 0.09. Now that you
have your formula, you are ready to proceed with the other function query
boosting steps.

Search Relevancy

[168]

Formula: Linear
If you have a value in your schema (or a computed formula) that you are certain will
stay within a fixed range, then the formula to scale and shift this to the 0-1 nominal
range is easy. We're also assuming that there is a linear relationship between the
desired boost effect and the input.

Simply use the linear(x,m,c) function with appropriate values. Below, a refers to
the end of the range that will have the least significant boost. So if your input ranges
from 5 to 10 and if 5 is least relevant compared to 10, then a is 5. b takes the other
side of the input range:

•	 x: The input, typically a field.
•	 m: Compute 1/(b – a) and plug in.
•	 c: Compute a/(a - b) and plug in.

Verify your formula by supplying a value from each end of the range and verifying
its 0 or 1 with 1 being the biggest boost. Now that you have your formula, you are
ready to proceed with the other function query boosting steps.

How to boost based on an increasing
numeric field
In this section I'm going to describe a few ways to boost a document based on one
of its numeric fields. The greater this number is for a document, the greater boost
this document should receive. This number might be a count of "Like" or "Thumbs-
Up" votes by users, or the number of times a user accessed (for example, clicked) the
referenced document, or something else.

In the MusicBrainz database, there are TRM and PUID lookup counts. TRM and
PUID are MusicBrainz's audio fingerprint technologies. These identifiers roughly
correspond to a song, which in MusicBrainz appears as multiple tracks due to
various releases that occur as singles, compilations, and so on. By the way, audio
fingerprints aren't perfect, and so a very small percentage of TRM IDs and PUIDs
refer to songs that are completely different. Since we're only using this to influence
scoring, imperfection is not a problem.

Chapter 5

[169]

MusicBrainz records the number of times one of these IDs are looked up from its
servers, which is a good measure of popularity. A track that contains a higher lookup
count should score higher than one with a smaller value, with all other factors being
equal. This scheme could easily be aggregated to releases and artists, if desired. In
the data loading I've arranged for the sum of TRM and PUID lookup counts to be
stored into our track data as t_trm_lookups with the following field specification in
the schema:

<field name="t_trm_lookups" type="tint" />

About 25% of the tracks have a non-zero value. The maximum value is nearly
300,000 but further inspection shows that only a handful of records exceed a value
of 90,000.

Step by step…
The first step is to pick a formula. Since this is a classic case of an increasing number
without bound in which the greater the number is, the greater the boost should
be, the inverse reciprocal is a very good choice. Next, we plug in our data into the
formula specified earlier and we end up with this function query:

sum(recip(t_trm_lookups,0.0000111,-0.75,0.5),1.5)

We verify the formula by plugging in 0 and 90,000, which maps to 0 and 1.

The next step is to choose between additive boosts versus multiplicative.
Multiplicative with edismax is easier so we'll choose that. And let's say this function
query should weigh 1/3 of the user query. According to earlier instructions, adding
to our function query will reduce its weight. Adding 2 shifts the 0-1 range to 2-3
and (3-2)/3 results in the 1/3 boost we're looking for. Since our function query
conveniently has sum() as its outer function, we can simply add another argument of
2. Here is a URL snippet showing relevant parameters:

q=cherub+rock&defType=edismax&qf=t_name
&boost=sum(recip(t_trm_lookups,0.0000111,-0.75,0.5),1.5,2)

This boost absolutely had the desired effect, altering the score order as we wanted.
One unintended outcome is that the top document scores used to be ~8.6 and now
they are ~21.1, but don't worry about it! The actual scores are irrelevant—a point
made in the beginning of the chapter. The goal is to change the relative order of score
sorted documents.

Search Relevancy

[170]

External field values
As you may recall from Chapter 3, Indexing Data, Solr does not support updating a
document; instead the entire document must be added again. If you were to consider
doing this just to increase a number every time a user clicked on a document or
clicked some "Thumbs-Up" button, and so on, then there is quite a bit of work Solr
is doing just to ultimately increase a number. For this specific use-case, Solr has a
specialized field type called ExternalFileField which gets its data from a text file
containing the field's values. This field type is very limited–the values are limited to
floating point numbers and the field can only be referenced within Solr in a function
query. You do still need to issue a commit to Solr for any changes to be picked up.
As already explained in Chapter 3, Indexing Data, don't commit too frequently since
commits are slow and resource-intensive. An application using this feature would
generate this file on a periodic basis on par with the commit frequency. For more
information on how to use this advanced feature, consult the API docs: http://
lucene.apache.org/solr/api/org/apache/solr/schema/ExternalFileField.
html and search Solr's mailing list.

How to boost based on recent dates
Using dates in scores presents some different issues. Suppose when we search for
releases, we want to include a boost that is larger for more recent releases. At first
glance, this problem may seem just like the previous one, because dates increase as
the scores are expected to, but it is different in practice. Instead of the data ranging
from zero to some value that changes occasionally, we now have data ranging from
a non-zero value that might change rarely to a value that we always know, but
changes continuously—the current date. Instead, approach this from the other side,
that is, by considering how much time there is between the current date and the
document's date. So at x=0 in the graph (x representing time delta), we want 1 for the
greatest boost, and we want it to slope downward towards 0, but not below it.

Step by step…
The first step is to pick a formula. The reciprocal is perfect for this scenario. The
function query form as detailed earlier is recip(x,1,c,c).

Based on this scenario, x is the age—a time duration from the present. Our
MusicBrainz schema has r_event_date, which is a promising candidate; however,
multi-valued fields are not supported by function queries. I made a simple addition
to the schema and index to record the earliest release event date: r_event_date_
earliest. With that done, now we can calculate the age with the two-argument
variant of ms(). As a reminder to show how to run these function queries while
debugging, here's a URL snippet:

http://lucene.apache.org/solr/api/org/apache/solr/schema/ExternalFileField.html
http://lucene.apache.org/solr/api/org/apache/solr/schema/ExternalFileField.html

Chapter 5

[171]

q={!func}ms(NOW,r_event_date_earliest)
&fl=id,r_name,r_event_date_earliest,score&sort=score+asc

The book's data set has been constant but at the time I received it, I observed
some releases were in the future! What I would have seen then is reproducible by
substituting NOW-4YEARS instead of NOW in the function, as I write this. The first
documents (score ascending) have negative values which means they are from the
future. We can't have negative inputs, so instead we'll wrap this function with the
absolute value using abs(). Another thing to fine-tune is the cache-ability of the
function query. Instead of using NOW, using NOW/DAY makes this query re-usable by
subsequent requests for a 24 hour period.

The other aspect of the inputs to the reciprocal function is finding out what the
horizon is. This should be a duration of time such that any longer durations have a
negligible boost impact. Without too much thought, 20 years seems good. Here's
a query to have Solr do the math so we can get our millisecond-count: q={!func}
ms(NOW,NOW-20YEARS) which is about 6.3E11. In the documentation for the
reciprocal formula, we take 1/10 of that for c. Here is our function query:

recip(abs(ms(NOW/DAY,r_event_date_earliest)),1,6.3E10,6.3E10)

At this point you can follow the final steps in the previous how-to.

Summary
In this chapter, we've covered the most advanced topics the book has to offer—
scoring and function queries. We began with a fundamental background on Lucene
scoring. Next, we saw a real-world example of using the debugQuery parameter to
diagnose a scoring issue. That exercise might be the most important exercise in the
chapter, since it gives you the tools to diagnose why a document matched or didn't
match a query. Next, we concluded the coverage of the dismax query parser. Even
if you aren't inclined to use fancy boosting function queries, you can improve your
search relevancy simply by configuring phrase boosting. dismax's boost function
parameters was the segue to the second half of the chapter: function queries. Even
if you aren't a math whiz, you should be able to use formulas provided to you here,
especially if you worked through the how-to's.

You might say this is the last of the foundational chapters. The next two cover
specific search value-adds that are each fairly compartmentalized. The stand-out
feature that contributes to much of Solr's popularity is faceting, covered next in
its own chapter.

Faceting
Faceting is Solr's killer-feature. It's a must-have feature for most search
implementations, especially those with structured data like in e-commerce, yet there
are few products that have this capability, especially in open source. Of course search
fundamentals, including highlighting, are critical too but they tend to be taken for
granted. Faceting enhances search results with aggregated information over all the
documents found in the search, not the entire index. It can answer questions about
the MusicBrainz data such as:

•	 How many releases are official, bootleg, or promotional?
•	 What were the top five most common countries in which the releases

occurred?
•	 Over the past ten years, how many were released in each year?
•	 How many releases have names in these ranges: A-C, D-F, G-I, and so on?
•	 How many tracks are < 2 minutes long, 2-3, 3-4, or longer?

In a hurry?
Faceting is a key feature. Look through the upcoming
example, which demonstrates the most common type of
faceting, and review the faceting types.

Faceting in the context of the user experience is often referred to as faceted
navigation, but also faceted search, faceted browsing, guided navigation, or
parametric search. The facets are typically displayed with clickable links that apply
Solr filter queries to a subsequent search. Now might be a good time for a screenshot
but instead I'll direct you to a collection of them at Endeca's excellent UX Design
Pattern Library: http://patterns.endeca.com/ and click on "Faceted Navigation"

Faceting

[174]

If we revisit the comparison of search technology to databases, then faceting is more
or less analogous to SQL's GROUP BY feature on a column with count(*). However,
in Solr, facet processing is performed subsequent to an existing search as part of a
single request-response with both the primary search results and the faceting results
coming back together. In SQL, you would need to perform a series of separate
queries to get the same information. Furthermore, faceting works so fast that its
search response time overhead is almost always negligible. For more information on
why implementing faceting with relational databases is hard and doesn't scale, visit
this old article: http://web.archive.org/web/20090321120327/http://www.
kimbly.com/blog/000239.html

A quick example: Faceting release types
Observe the following search results. echoParams is set to explicit (defined in
solrconfig.xml) so that the search parameters are seen here. This example is using
the default lucene query parser. dismax is more typical but it plays no bearing on
these examples. The query parameter q is *:*, which matches all documents. In this
case, the index I'm using only has releases. If there were non-releases in the index,
then I would add a filter fq=type:Release to the URL or put this in the request
handler configuration, as that is the data set we'll be using for most of this chapter.
Filter queries are used in conjunction with faceting a fair amount so be sure you are
already familiar with them from Chapter 4, Searching. I wanted to keep this example
brief so I set rows to 2. Sometimes when using faceting, you only want the facet
information and not the main search, so you would set rows to 0.

It's critical to understand that the faceting numbers are computed over
the entire search result—603,090 releases, which is all of the releases in
this example, and not just the two rows being returned.

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">160</int>
 <lst name="params">
 <str name="wt">standard</str>
 <str name="rows">2</str>
 <str name="facet">true</str>
 <str name="q">*:*</str>
 <str name="fl">*,score</str>
 <str name="qt">standard</str>
 <str name="facet.field">r_official</str>

Chapter 6

[175]

 <str name="f.r_official.facet.missing">true</str>
 <str name="f.r_official.facet.method">enum</str>
 <str name="indent">on</str>
 </lst>
</lst>
<result name="response" numFound="603090" start="0" maxScore="1.0">
 <doc>
 <float name="score">1.0</float>
 <str name="id">Release:136192</str>
 <str name="r_a_id">3143</str>
 <str name="r_a_name">Janis Joplin</str>
 <arr name="r_attributes"><int>0</int><int>9</int>
 <int>100</int></arr>
 <str name="r_name">Texas International Pop Festival
 11-30-69</str>
 <int name="r_tracks">7</int>
 <str name="type">Release</str>
 </doc>
 <doc>
 <float name="score">1.0</float>
 <str name="id">Release:133202</str>
 <str name="r_a_id">6774</str>
 <str name="r_a_name">The Dubliners</str>
 <arr name="r_attributes"><int>0</int></arr>
 <str name="r_lang">English</str>
 <str name="r_name">40 Jahre</str>
 <int name="r_tracks">20</int>
 <str name="type">Release</str>
 </doc>
</result>
<lst name="facet_counts">
 <lst name="facet_queries"/>
 <lst name="facet_fields">
 <lst name="r_official">
 <int name="Official">519168</int>
 <int name="Bootleg">19559</int>
 <int name="Promotion">16562</int>
 <int name="Pseudo-Release">2819</int>
 <int>44982</int>
 </lst>
 </lst>
 <lst name="facet_dates"/>
 <lst name="facet_ranges"/>
</lst>
</response>

Faceting

[176]

The facet related search parameters are highlighted at the top. The facet.missing
parameter was set using the field-specific syntax, which will be explained shortly.

Notice that the facet results (highlighted) follow the main search result and are given
the name facet_counts. In this example, we only faceted on one field, r_official,
but you'll learn in a bit that you can facet on as many fields as you desire. Within
<lst name="r_official"> lie the facet counts for this field. The name attribute,
like "Official", holds a facet value, which is simply an indexed term, and the integer
following it is the number of documents in the search results containing that term—the
facet count. The last facet has the count but no corresponding name. It is a special facet
to indicate how many documents in the results don't have any indexed terms. The next
section gives us an explanation of where r_official and r_type came from.

MusicBrainz schema changes
In order to get better self-explanatory faceting results out of the r_attributes field
and to split its dual-meaning, I modified the schema. r_attributes is an array of
numeric constants, which signify various types of releases and it's official-ness, for
lack of a better word. As it represents two different things, I created two new fields:
r_type and r_official. It isn't truly necessary to map the numbers to their names,
as the user interface, which is going to present the data, could very well map it on
the fly.

At this point there are two paths to take, with similar results. The recommended path
is to modify the import process to map specific constants to their named values into
these two new fields. For example, if you were using the Data Import Handler from
Chapter 3, Indexing Data this would occur in a DIH transformer. We'll take another
path here to illustrate what can be done with a little text analysis. The stored value, if
we chose to mark the fields as stored, would hold the original set of constants, which
is less than ideal. And in this scenario, we're forced to mark both fields as multi-
valued even though one of them isn't.

Let's continue with the text analysis based approach. I used copyField directives to
copy r_attributes into both new fields:

<field name="r_attributes" type="int" multiValued="true"
 indexed="false" /><!-- ex: 0, 1, 100 -->
<field name="r_type" type="rType" multiValued="true"
 stored="false" /><!-- Album | Single | EP |... etc. -->
<field name="r_official" type="rOfficial" multiValued="true"
 stored="false" /><!-- Official | Bootleg | Promotional -->

Chapter 6

[177]

And:

<copyField source="r_attributes" dest="r_type" />
<copyField source="r_attributes" dest="r_official" />

In order to map the constants to human-readable definitions, I created two field
types: rType and rOfficial that use a regular expression to pull out the desired
numbers and a synonym list to map from the constant to the human-readable
definition. Conveniently, the constants for r_type are in the range1-11, whereas r_
official are 100-103. I removed the constant 0, as it seemed to be bogus.

<fieldType name="rType" class="solr.TextField"
 sortMissingLast="true" omitNorms="true">
 <analyzer>
 <tokenizer class="solr.KeywordTokenizerFactory"/>
 <filter class="solr.PatternReplaceFilterFactory"
 pattern="^(0|1\d\d)$" replacement="" replace="first" />
 <filter class="solr.LengthFilterFactory" min="1" max="100" />
 <filter class="solr.SynonymFilterFactory"
 synonyms="mb_attributes.txt"
 ignoreCase="false" expand="false"/>
 </analyzer>
</fieldType>

The definition of the type rOfficial is the same as rType, except it has this regular
expression: ^(0|\d\d?)$.

The presence of LengthFilterFactory is to ensure that no zero-length (empty-
string) terms get indexed. Otherwise, this would happen because the previous
regular expression reduces text fitting unwanted patterns to empty strings.

The content of mb_attributes.txt is as follows:

from: http://bugs.musicbrainz.org/browser/mb_server/trunk/
cgi-bin/MusicBrainz/Server/Release.pm#L48
#note: non-album track seems bogus; almost everything has it
0=>Non-Album\ Track
1=>Album
2=>Single
3=>EP
4=>Compilation
5=>Soundtrack
6=>Spokenword
7=>Interview
8=>Audiobook
9=>Live

Faceting

[178]

10=>Remix
11=>Other

100=>Official
101=>Promotion
102=>Bootleg
103=>Pseudo-Release

It does not matter if the user interface uses the name (for example,
Official) or constant (for example, 100) when applying filter queries when
implementing faceted navigation, as the text analysis will let the names
through and will map the constants to the names. This is not necessarily true
in a general case, but it is for the text analysis as I've configured it above.

Field requirements
The principal requirement of a field that will be faceted on is that it must be indexed;
it does not have to be stored. And for text fields, tokenization is usually undesirable.
For example, Non-Album\ Track appears in mb_attributes.txt with the space
escaped with a\. Otherwise, faceting on r_type would show tallies for Non-Album
and Track separately. On the other hand, tag-clouds, hierarchical faceting, and term-
suggest are faceting use-cases that handle tokenization just fine. Keep in mind that
with faceting, the facet values returned in search results are the actual indexed terms,
and not the stored value, which isn't used.

If you have conflicting indexing needs for a field, which is not
uncommon, you will find it necessary to have a copy of a field
just for faceting.

Types of faceting
Solr's faceting is broken down into three types. They are as follows:

•	 field values: This is the most common type of faceting which counts the
number of occurrences of each indexed term in a field. The facet counts are
grouped in the output under the name facet_fields.

Solr 4 includes a new variation for field values called Pivot
Faceting (that is Decision Tree). Essentially, it performs
recursive faceting for a series of fields.

Chapter 6

[179]

•	 ranges: Given a numeric or date field, this creates facets for a set of ranges.
The facet counts are grouped in the output under the name facet_ranges.

Solr 3 deprecated "date faceting" with the introduction of
the generic range faceting. I won't document it further.

•	 queries: This is a very flexible type of faceting which counts the number of
documents matching each specified query. The facet counts are grouped in
the output under facet_queries.

In the rest of this chapter, we will describe how to do these different types of facets.
But before that, there is one common parameter to enable faceting:

•	 facet:It defaults to blank. In order to enable faceting, you must set this to
true or on. If this is not done, then the faceting parameters will be ignored.

In all of the examples here, we've obviously set facet=true.

Faceting field values
Field value faceting is the most common type of faceting. The first example in this
chapter demonstrated it in action. Solr, in essence, iterates over all of the indexed
terms for the field and tallies a count for the number of searched documents that
have the term. Sophisticated algorithms and caching makes this so fast that its
overhead is usually negligible. The following are the request parameters for using it:

•	 facet.field: You must set this parameter to a field's name in order to facet
on that field. Repeat this parameter for each field to be faceted on. See the
previous Field requirements section.

The remaining faceting parameters can be set on a per-field basis,
otherwise they apply to all faceted fields that don't have a field-specific
setting. You will usually specify them per-field, especially if you are
faceting on more than one field so that you don't get your faceting
configuration mixed up. For example: f.r_type.facet.sort=lex
(r_type is a field name, facet.sort is a facet parameter).

•	 facet.sort: It is set to either count to sort the facet values by descending
totals or to index to sort lexicographically, as if you sorted on the field. If
facet.limit is greater than zero (it's 100 by default), then Solr picks count
as the default, otherwise index is chosen.

Faceting

[180]

•	 facet.limit: It defaults to 100. It limits the number of facet values returned
in the search results of a field. As these are usually going to be displayed
to the user, it doesn't make sense to have a large number of these in the
response. If you need all of them then disable the limit with a value of -1.

•	 facet.offset: It defaults to 0. It is the index into the facet value list from
which the values are returned. This enables paging of facet values when used
with facet.limit.

•	 facet.mincount: This defaults to 0. It filters out facet values that have facet
counts less than this. This is applied before limit and offset so that paging
works as expected. It is common to set this to 1 since 0 is almost useless.

•	 facet.missing: It defaults to blank and is set to true or on for the facet
value listing to include an unnamed count at the end, which is the number of
searched documents that have no indexed terms. The first facet example in
the chapter demonstrates this.

•	 facet.prefix: It filters the facet values to those starting with this value. This
is applied before limit and offset so that paging works as expected. At the
end of this chapter you'll see how this can be used for hierarchical faceting. In
the next chapter you'll see how faceting with this prefix can be used to power
query term-suggest.

•	 facet.method: (advanced) Tells Solr which of its 3 different field value
faceting algorithms to use, in order to influence memory use, query
performance, and commit speed. Solr makes good choices by default. You
can specify one of: enum or fc; or neither and Solr will under the right
circumstances choose the third, known as UnInvertedField. fc refers to the
field cache which is only for single-valued fields that are not tokenized. Trie
based fields that are configured for fast range queries (for example, tint,
not int) are only facetable with UnInvertedField. If you set facet.method
incorrectly then Solr will ignore it.

When to specify facet.method
Normally you should not specify facet.method, thereby letting Solr's
internal logic choose an appropriate algorithm. However, if you are
faceting on a multi-valued field that only has a small number of distinct
values (less than 100, but ideally perhaps 10), then it is advisable to
explicitly set this to enum. Solr will use a filter cache entry for each value,
so keep that in mind when optimizing that cache's size. Solr uses enum
by default for boolean fields only, as it knows there can only be two
values. Another parameter I'll mention for completeness is facet.
enum.cache.minDf, which is the minimum document frequency for
filter cache entries (0—no minimum by default). If the field contains
rarely used values occurring less than ~30 times, then setting this
threshold to 30 makes sense.

Chapter 6

[181]

Alphabetic range bucketing
Solr does not directly support alphabetic range bucketing (A-C, D-F, and so on).
However, with a creative application of text analysis and a dedicated field, we can
achieve this with little effort. Let's say we want to have these range buckets on the
release names. We need to extract the first character of r_name, and store this into
a field that will be used for this purpose. We'll call it r_name_facetLetter. Here is
our field definition:

<field name="r_name_facetLetter" type="bucketFirstLetter"
 stored="false" />

And here is the copyField:

<copyField source="r_name" dest="r_name_facetLetter" />

The definition of the type bucketFirstLetter is the following:

<fieldType name="bucketFirstLetter" class="solr.TextField"
 sortMissingLast="true" omitNorms="true">
 <analyzer type="index">
 <tokenizer class="solr.PatternTokenizerFactory"
 pattern="^([a-zA-Z]).*" group="1" />
 <filter class="solr.SynonymFilterFactory"
 synonyms="mb_letterBuckets.txt"
 ignoreCase="true"
 expand="false"/>
 </analyzer>
 <analyzer type="query">
 <tokenizer class="solr.KeywordTokenizerFactory"/>
 </analyzer>
</fieldType>

The PatternTokenizerFactory, as configured, plucks out the first character, and
the SynonymFilterFactory maps each letter of the alphabet to a range like A-C.
The mapping is in conf/mb_letterBuckets.txt. The field types used for faceting
generally have a KeywordTokenizerFactory for the query analysis to satisfy a
possible filter query on a given facet value returned from a previous faceted search.
After validating these changes with Solr's analysis admin screen, we then re-index
the data. For the facet query, we're going to advise Solr to use the enum method,
because there aren't many facet values in total. Here's the URL to search Solr:

http://localhost:8983/solr/mbreleases/select?indent=on&q=*%3A*
&facet=on&facet.field=r_name_facetLetter&facet.sort=lex&facet.
missing=on&facet.method=enum

Faceting

[182]

The URL produced results containing the following facet data:

<lst name="facet_counts">
 <lst name="facet_queries"/>
 <lst name="facet_fields">
 <lst name="r_name_facetLetter">
 <int name="A-C">99005</int>
 <int name="D-F">68376</int>
 <int name="G-I">60569</int>
 <int name="J-L">49871</int>
 <int name="M-O">59006</int>
 <int name="P-R">47032</int>
 <int name="S-U">143376</int>
 <int name="V-Z">33233</int>
 <int>42622</int>
 </lst>
 </lst>
<lst name="facet_dates"/>
</lst>
<lst name="facet_ranges"/>
</lst>

Faceting numeric and date ranges
Solr has built-in support for faceting numeric and date fields by a range and a
divided interval. You can think of this as a convenience-feature that calculates the
ranges for you with succinct input parameters and output versus you calculating
and submitting a series of facet queries. Facet queries are described after this section.
Range faceting is particularly useful for dates. I'll demonstrate an example against
MusicBrainz release dates and another against MusicBrainz track durations, and
then describe the parameters and their options.

Date faceting is the date-specific predecessor of range faceting and it's
deprecated as of Solr 3. Date faceting uses similar parameters starting
with facet.date and it has similar output under facet_dates.
Range faceting doesn't support distributed search (that is sharding); you
may have to resort to generating your own facet queries instead. This has
been fixed in SOLR-1709—committed for Solr 4.

<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">298</int>

Chapter 6

[183]

 <lst name="params">
 <str name="facet.range.other">all</str>
 <str name="facet">on</str>
 <str name="echoParams">explicit</str>
 <str name="f.r_event_date_earliest.facet.range.start">
 NOW/YEAR-5YEARS</str>
 <str name="indent">on</str>
 <str name="q">smashing</str>
 <str name="facet.range">r_event_date_earliest</str>
 <str name="facet.range.end">NOW/YEAR</str>
 <str name="facet.range.gap">+1YEAR</str>
 <str name="qt">mb_releases</str>
 <str name="rows">0</str>
 </lst>
</lst>
<result name="response" numFound="248" start="0"/>
<lst name="facet_counts">
 <lst name="facet_queries"/>
 <lst name="facet_fields"/>
 <lst name="facet_dates"/>
 <lst name="facet_ranges">
 <lst name="r_event_date_earliest">
 <lst name="counts">
 <int name="2006-01-01T00:00:00Z">3</int>
 <int name="2007-01-01T00:00:00Z">11</int>
 <int name="2008-01-01T00:00:00Z">0</int>
 <int name="2009-01-01T00:00:00Z">0</int>
 <int name="2010-01-01T00:00:00Z">0</int>
 </lst>
 <str name="gap">+1YEAR</str>
 <date name="start">2006-01-01T00:00:00Z</date>
 <date name="end">2011-01-01T00:00:00Z</date>
 <int name="before">97</int>
 <int name="after">0</int>
 <int name="between">14</int>
 </lst>
 </lst>
</lst>
</response>

Faceting

[184]

This example demonstrates a few things, not only range faceting:

•	 qt=mb_releases is a request handler using dismax to query appropriate
release fields.

•	 q=smashing indicates that we're faceting on a keyword search instead of
all the documents. We kept the rows at zero, which is unrealistic, but not
pertinent.

•	 The facet start date was specified using the field specific syntax for
demonstration purposes. You would do this with every parameter or none
depending on if you need to do a range facet on other fields.

•	 The <date name="end"> part below the facet counts indicates the upper
bound of the last facet count. It may or may not be the same as facet.
range.end (see facet.range.hardend explained in the next section).

•	 The before, after, and between counts are for specifying facet.range.
other. We'll see shortly what this means.

The results of our facet range query shows that there were three releases released in
2006, and eleven in 2007. There is no data after that, since the data is out of date at
this point.

Here is another example, this time using range faceting on a number—MusicBrainz
track durations (in seconds):

<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">5</int>
 <lst name="params">
 <str name="facet.range.other">after</str>
 <str name="facet">on</str>
 <str name="echoParams">explicit</str>
 <str name="indent">on</str>
 <str name="q">Geek</str>
 <str name="facet.range.start">0</str>
 <str name="facet.range">t_duration</str>
 <str name="facet.range.end">240</str>
 <str name="facet.range.gap">60</str>
 <str name="qt">mb_tracks</str>
 <str name="rows">0</str>
 </lst>
</lst>
<result name="response" numFound="552" start="0"/>
<lst name="facet_counts">
 <lst name="facet_queries"/>

Chapter 6

[185]

 <lst name="facet_fields"/>
 <lst name="facet_dates"/>
 <lst name="facet_ranges">
 <lst name="t_duration">
 <lst name="counts">
 <int name="0">128</int>
 <int name="60">64</int>
 <int name="120">111</int>
 <int name="180">132</int>
 </lst>
 <int name="gap">60</int>
 <int name="start">0</int>
 <int name="end">240</int>
 <int name="after">117</int>
 </lst>
 </lst>
</lst>
</response>

Taking the first facet, we see that there are 128 tracks that are 0-59 seconds long,
given the keyword search "Geek".

Range facet parameters
All of the range faceting parameters start with facet.range. As with most other
faceting parameters, they can be made field specific in the same way. The parameters
are explained as follows:

•	 facet.range: You must set this parameter to a field's name to range-facet
on that field. The trie based numeric and date field types (those starting with
"t" as in tlong and tdate) perform best, but others will work. Repeat this
parameter for each field to be faceted on.

The remainder of these range faceting parameters can be specified
on a per-field basis in the same fashion that the field-value faceting
parameters can. For example: f.r_event_date_earliest.
facet.range.start.

•	 facet.range.start: Mandatory, this is a number or date to specify the start
of the range to facet on. For dates, see the Date math section in
Chapter 4, Searching. Using NOW with some Solr date math is quite effective as
in this example: NOW/YEAR-5YEARS, which is interpreted as five years ago,
starting at the beginning of the year.

Faceting

[186]

•	 facet.range.end: Mandatory, this is a number or date to specify the end of
the range. It has the same syntax as facet.range.start. Note that the actual
end of the range may be different (see facet.range.hardend).

•	 facet.range.gap: Mandatory, this specifies the interval to divide the range.
For dates, it uses a subset of Solr's Date Math syntax, as it's a time duration
and not a particular time. It should always start with a +. Examples: +1YEAR
or +1MINUTE+30SECONDS. Note that after URL encoding, + becomes %2B.

Note that for dates, the facet.range.gap is not necessarily
a fixed length of time. For example +1MONTH is different
depending on the month.

•	 facet.range.hardend: It defaults to false. This parameter instructs Solr
on what to do when facet.range.gap does not divide evenly into the facet
range (start | end). If this is true, then the last range will be shortened.
Moreover, you will observe that the end value in the facet results is the same
as facet.range.end. Otherwise, by default, the end is essentially increased
sufficiently so that the ranges are all equal according to the gap value.

•	 facet.range.other: It defaults to none. This parameter adds more faceting
counts depending on its value. It can be specified multiple times. See the
example using this at the start of this section.

°° before: Count of documents before the faceted range
°° after: Count of documents following the faceted range
°° between: Documents within the faceted range
°° none: (disabled) The default
°° all: Shortcut for all three (before, between, and after)

•	 facet.range.include: It defaults to lower. Specifies which range
boundaries are inclusive. The choices are lower, upper, edge, outer, and all
(all being equivalent to all the others). This parameter can be set multiple
times to combine choices. Instead of defining each value, I will describe when
a given boundary is inclusive:

°° The lower boundary of a gap-based range is included if lower is
specified. It is also included if it's the first gap range and edge is
specified.

°° The upper boundary of a gap-based range is included if upper is
specified. It is also included if it's the last gap range and edge is
specified.

Chapter 6

[187]

°° The upper boundary of the before range is included if the boundary
is not already included by the first gap-based range. It's also included
if outer is specified.

°° The lower boundary of the after range is included if the boundary is
not already included by the last gap-based range. It's also included if
outer is specified.

Avoid double-counting
The default facet.range.include of lower ensures that an
indexed value occurring at a range boundary is counted in exactly one
of the adjacent ranges. This is usually desirable, but your requirements
may differ. To ensure you don't double-count, don't choose both
lower and upper together and don't choose outer.

Facet queries
This is the final type of faceting, and it offers a lot of flexibility. Instead of choosing
a field to facet its values on or faceting a specified range of values, we specify some
number of Solr queries that each itself becomes a facet. For each facet query specified,
the number of documents matching the facet query that also match the main search
is counted. Each facet query with its facet count is returned in the results under the
facet_queries section. Facet queries are each cached in the filter cache.

There is only one parameter for configuring facet queries:

•	 facet.query: A Solr query to be evaluated over the search results. The
number of matching documents (the facet count) is returned as an entry
in the results next to this query. Specify this multiple times to have Solr
evaluate multiple facet queries.

In general, if field value faceting or range faceting don't do what you want, you can
probably turn to facet queries. For example, if range faceting is too limiting because
facet.range.gap is fixed, then you could specify a facet query for each particular
range you need. Let's use that scenario for our example. Here are search results
showing a few facet queries on MusicBrainz release dates. I've used echoParams to
make the search parameters clear instead of showing a lengthy URL.

<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">8</int>
 <lst name="params">
 <str name="facet">on</str>

Faceting

[188]

 <str name="echoParams">explicit</str>
 <str name="indent">on</str>
 <arr name="facet.query">
 <str>a_release_date_latest:[NOW/DAY-1YEAR TO *]</str>
 <str>a_release_date_latest:[NOW/DAY-5YEAR TO *]</str>
 <str>a_release_date_latest:[NOW/DAY-20YEAR TO *]</str>
 </arr>
 <str name="qt">mb_artists</str>
 <str name="rows">0</str>
 </lst>
</lst>
<result name="response" numFound="399182" start="0"/>
<lst name="facet_counts">
 <lst name="facet_queries">
 <int name="a_release_date_latest:[NOW/DAY-1YEAR TO *]">0</int>
 <int name="a_release_date_latest:[NOW/DAY-5YEAR TO *]">25501</int>
 <int name="a_release_date_latest:[NOW/DAY-20YEAR TO *]">82181</int>
 </lst>
 <lst name="facet_fields"/>
 <lst name="facet_dates"/>
 <lst name="facet_ranges"/>
</lst>
</response>

In this example, the facet.query parameter was specified three times showing
releases released in the past 1 year, 5 years, and 20 years. An interesting thing to note
about the facet query response is that the name of each of these facets is the
query itself.

Building a filter query from a facet
When faceting is used, it is usually used in the context of faceted navigation in
which a facet value becomes a navigation choice for the user to filter on. In Solr
that becomes an additional filter query in a subsequent search. The total matching
documents of that search should be equal to the facet value count. In this section
we'll review how to build the filter queries. I won't show an example for facet
query faceting because there's nothing to do—the facet query is a query and can be
supplied directly as an fq parameter.

To keep the filter queries easier to read I won't show them
URL encoded.

Chapter 6

[189]

Field value filter queries
For the case of field value faceting, consider the first example in the chapter where
r_official has a value like Bootleg. Generating a filter query for this couldn't be
simpler: fq=r_official:Bootleg. But what if the value contained a space or some
other problematic character? You'd have to escape it using quoting or backslash
escaping as explained in Chapter 4, Searching. This is a separate issue from URL
encoding, which I'm omitting here for clarity; this pertains to the query syntax.
Another potential problem relates to the fact that the value, even if escaped, still
might have to go through text analysis in the field type configuration, which could
modify the value resulting in a failed match. This is a rare circumstance and it's
impossible with the string field type, but nonetheless it's something to watch out
for, particularly for tag-cloud like use-cases. A solution to both problems is to use
the term query parser, introduced in Solr 3.2, like so: fq={!term f=r_official}
Bootleg in which there is no escaping needed of the value as it sidesteps text
analysis.

Consider using the term query parser for all text field value
faceting as it avoids escaping problems.

You might be wondering how to generate a filter query for the facet.missing
facet, as there is no value to filter on. Chapter 4, Searching covered a little known trick
to query for a field with no indexed data involving a range query. Here it is for r_
official, without URL encoding: fq=-r_official:[* TO *]

Facet range filter queries
Range faceting is the most complicated to generate filter queries for. Consider the
first date range example. The first facet returned is:

<int name="2006-01-01T00:00:00Z">3</int>

The gap is +1YEAR. The facet's name attribute is the start of the range. The end of the
range is the next facet value. If there are no more, then the final range's end point
depends on facet.range.hardend—if it is false, the default, then you add facet.
range.gap. For numbers you calculate this math yourself but for dates you can
conveniently concatenate the string like so: 2006-01-01T00:00:00Z+1YEAR. On
the other hand if there is a hard end, then the last range end point is simply facet.
range.end.

Faceting

[190]

At this point, you might think the filter query for the first range is fq=r_event_
date_earliest:[2006-01-01T00:00:00Z TO 2007-01-01T00:00:00Z]. However,
that is incorrect! You must now consider the implications of facet.range.include. If
you set this parameter to both lower and upper then the aforementioned filter query
would be correct, but by default it's just lower (which is generally a good default
that doesn't double-count). If a date falls on precisely New Year's Eve of the new
2007 year then we don't want to count that date.

Solr 4 allows mixed use of [] and { } bracket styles to vary inclusivity
and exclusivity but until then you must use the same type on both ends.

The solution I favor is the following: fq=r_event_date_earliest:([2006-01-
01T00:00:00Z TO 2007-01-01T00:00:00Z] NOT "2007-01-01T00:00:00Z")
It is verbose, but the approach works universally for both date and numeric types.
Another approach is to simply append -1MILLI to the end date range or for numeric
range faceting on integers you would actually perform the math of subtracting 1. But
this approach might have problems for floating point numbers. Again, adding the
NOT clause and the end point is universal, if perhaps verbose.

Generating filter queries for the before and after ranges isn't too hard. Here is
the filter query for the before range which is exclusive of the facet.range.start
point: fq=r_event_date_earliest:{* TO 2006-01-01T00:00:00Z}

Excluding filters (multi-select faceting)
Consider a scenario where you are implementing faceted navigation and you want
to let the user pick several values of a field to filter on instead of just one. Typically,
when an individual facet value is chosen, this becomes a filter. The filter makes
subsequent faceting on that field almost pointless because the filter filters out the
possibility of seeing other facet choices—assuming a single-valued field. In this
scenario, we'd like to exclude this filter for this facet field.

Chapter 6

[191]

The preceding screenshot is from http://search-lucene.com in which you can
search across the mailing lists, API documentation, and other places that have
information about Lucene, Solr, and other related projects. This screenshot shows
that it lets users choose more than one type of information to filter results on at the
same time, by letting users pick as many check boxes as they like.

I'll demonstrate the problem that multi-select faceting solves with a MusicBrainz
example and then show how to solve it.

Here is a search for releases containing smashing, faceting on r_type. We'll leave
rows at 0 for brevity, but observe the numFound value nonetheless. At this point, the
user has not chosen a filter (therefore no fq).

http://localhost:8983/solr/mbreleases/select?indent=on&qt=mb_re
leases&rows=0&q=smashing&facet=on&facet.field=r_type&facet.
mincount=1&facet.sort=index

And the output of the previous URL is:

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">24</int>
</lst>
<result name="response" numFound="248" start="0"/>
<lst name="facet_counts">
 <lst name="facet_queries"/>
 <lst name="facet_fields">
 <lst name="r_type">
 <int name="Album">29</int>
 <int name="Compilation">41</int>
 int name="EP">7</int>

http://search-lucene.com
http://search-lucene.com

Faceting

[192]

 <int name="Interview">3</int>
 <int name="Live">95</int>
 <int name="Other">19</int>
 <int name="Remix">1</int>
 <int name="Single">45</int>
 <int name="Soundtrack">1</int>
 </lst>
 </lst>
 <lst name="facet_dates"/>
 <lst name="facet_ranges"/>
</lst>
</response>

Now the user chooses the Album facet value. This adds a filter query. As a result, now
the URL is as before but has &fq=r_type%3AAlbum at the end and has this output:

<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">17</int>
</lst>
<result name="response" numFound="29" start="0"/>
<lst name="facet_counts">
 <lst name="facet_queries"/>
 <lst name="facet_fields">
 <lst name="r_type">
 <int name="Album">29</int>
 </lst>
 </lst>
 <lst name="facet_dates"/>
</lst>
</response>

Notice that the other r_type facet counts are gone because of the filter, yet in this
scenario we want these to show the user what their counts would be if the filter
wasn't there. The reduced numFound of 29 is good though, because at this moment
the user did indeed filter on a value so far.

Chapter 6

[193]

Solr can solve this problem with some additional metadata on both the filter query
and the facet field reference using Local-Params. The local-params syntax was
described in Chapter 4, Searching where it appears at the beginning of a query to
switch the query parser and to supply parameters to it. As you're about to see, it can
also be supplied at the start of facet.field—a bit of a hack, perhaps, to implement
this feature. The previous example would change as follows:

•	 fq would now be {!tag=foo}r_type:Album
•	 facet.field would now be {!ex=foo}r_type

Remember to URL Encode this added syntax when used in the URL.
The only problem character is =, which becomes %3D.

Explanation:

•	 tag is a local parameter to give an arbitrary label to this filter query.
•	 The tag name foo was an arbitrarily chosen name to illustrate that it doesn't

matter what it's named. If multiple fields and filter queries are to be tagged
correspondingly, then you would probably use the field name as the tag
name to differentiate them consistently.

•	 ex is a local parameter on a facet field that refers to tagged filter queries to
be excluded in the facet count. Multiple tags can be referenced with commas
separating them. For example, {!ex=t1,t2,t3}r_type.

•	 Advanced usage: Not shown here is an optional facet field local-param called
key that provides an alternative label to the field name in the response. By
providing an alternative name, the field can be faceted on multiple times
with varying names and filter query exclusions.

The new complete URL is:

http://localhost:8983/solr/mbreleases/select?indent=on&qt=mb_relea
ses&rows=0&q=smashing&facet=on&facet.field={!ex%3Dfoo}r_type&facet.
mincount=1&facet.sort=index&fq={!tag%3Dfoo}r_type%3AAlbum.

And here is the output. The facet counts are back, but numFound remains at the
filtered 29:

<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">4</int>
</lst>

Faceting

[194]

<result name="response" numFound="29" start="0"/>
<lst name="facet_counts">
 <lst name="facet_queries"/>
 <lst name="facet_fields">
 <lst name="r_type">
 <int name="Album">29</int>
 <int name="Compilation">41</int>
 <int name="EP">7</int>
 <int name="Interview">3</int>
 <int name="Live">95</int>
 <int name="Other">19</int>
 <int name="Remix">1</int>
 <int name="Single">45</int>
 <int name="Soundtrack">1</int>
 </lst>
 </lst>
 <lst name="facet_dates"/>
 <lst name="facet_ranges"/>
</lst>
</response>

At this point, if the user chooses additional values from this facet, then the filter
query would be modified to allow for more possibilities, such as: fq={!tag=foo}
r_type:Album r_type:Other (not URL escaped for clarity) which filters for releases
that are either of type Album or Other as the default query parser boolean logic is OR.

Hierarchical faceting
Imagine if your documents have some sort of taxonomy or other hierarchical label.
This might be a file path or URL path. It could be a geographic location organized by
continent, country, state/province, and then city. Or it might be a large company's
organizational hierarchy for employees. A faceted navigation experience for such
data might be a tree browser common in file navigation with an added facet count
at each node.

Chapter 6

[195]

The preceding screenshot is from Amazon, which has a simple hierarchical interface
easily implemented with Solr.

Solr does not directly feature hierarchical faceting but it has the
underlying capabilities for you to achieve it without modifying Solr, as
you're about to see. Solr's wiki on this subject: http://wiki.apache.
org/solr/HierarchicalFaceting contains information on a couple
patches in Solr's JIRA that add direct support for this.

There are a number of ways to go about implementing hierarchical faceting; no best-
practice approach has emerged yet. A big cause of the variation is that applications
have different requirements. The requirement that has the biggest impact on the
ultimate approach, in my opinion, is the answer to this question: Will the user
navigate the tree incrementally, one level at a time? Or will the application expand
the tree automatically, possibly with a threshold like a depth or facet count for
large trees?

If the tree is only going to be navigated incrementally by the user, then the solution
set is quite simple. Simply specify a string field for each level that exists in the
hierarchy and index the data directly into them without doing anything special.
At query time, you use the field value faceting skills you've learned in this chapter
without need for any special tricks. The details are left as an exercise to the reader. If
the data is multi-valued, then the solution is mildly more complicated. For each field
you need to prefix the value with an ancestor path to disambiguate it. For example,
if you have a country field with USA and a province field with MA and a city field
with Boston, then these fields would instead hold USA, USA/MA, USA/MA/
Boston, respectively. You'll strip these prefixes out for display purposes, and you
will need to use the facet.prefix parameter in your facet queries.

If the tree is going to be automatically expanded by depth, then the simplest
approach I can suggest is to use Solr 4's new Pivot faceting feature, which was
committed a long time ago. You would still need to index the data as I just described
for incremental navigation. There are more complicated solutions involving a single
tokenized field, which scales better to arbitrary hierarchy depths. In pursuing such
a strategy, you would likely use PathHierarchyTokenizer. I haven't found a
complete approach using this technique that doesn't require a Solr patch.

Another hierarchical faceting requirement to consider is whether you want to
expand each ancestor node from the current selected node. Amazon does not do this,
so you won't see it in the screenshot. To implement this, facet on each ancestor level
field above the current level with facet.prefix. You will need to use the {!ex …}
filter query exclusion to reveal facet filtered away by the current navigation filter.

http://wiki.apache.org/solr/HierarchicalFaceting
http://wiki.apache.org/solr/HierarchicalFaceting

Faceting

[196]

Summary
Faceting is possibly the most valuable and popular Solr search component. We've
covered the three types of faceting, how to build filter queries from them, and some
interesting use cases such as alphabetic range bucketing and hierarchical faceting.
Now you have the essential knowledge to put it to use in faceted navigation based
user interfaces and other uses.

In the next chapter, we'll cover Solr Search Components. You've actually been using
them already because performing a query, enabling debug output, and faceting
are each actually implemented as search components. But there's also search result
highlighting, spelling correction, term-suggest, suggesting similar documents,
collapsing/rolling up search results, editorially elevating or evicting results,
and more!

Search Components
Solr's primary extension mechanism is called a Search Component. You've actually
been using several of them already: QueryComponent performs the actual searches
(notably the q parameter), DebugComponent outputs the invaluable query debugging
information when setting debugQuery, and FacetComponent performs the faceting
we used in Chapter 6, Faceting. In addition, there are many more that do all sorts of
useful things that can really enhance your search experience:

•	 Highlighting: For returning highlighted text snippets of matching text in the
original data

•	 Spell checking: For suggesting alternative queries; often called "Did you
mean?"

•	 Suggester*: For suggesting complete queries based on partially typed input;
often called query autocomplete

•	 Query elevation: For manually modifying search results for certain queries
•	 More-like-this: For finding documents similar to another document or

provided text
•	 Stats: For mathematical statistics of indexed numbers
•	 Clustering: For organizing search results into statistically similar clusters
•	 Result grouping*: For grouping search results by a field and limiting the

number of results per group
•	 Terms and TermVector: For retrieving raw indexed data

[*] These aren't really search components but they similarly add value to the search
experience.

Search Components

[198]

In a hurry?
Search features like search result highlighting, query spell-checking,
and query autocomplete suggestions are high-value for most search
applications; don't miss them. Take a peak at the others to see if they
are applicable to you.

About components
At this point you should be familiar with the <requestHandler/> definitions
defined in solrconfig.xml—this was explained in Chapter 4, Searching. Any request
handlers with class="solr.SearchRequestHandler" are intuitively related to
searching. The Java code implementing org.apache.solr.SearchRequestHandler
doesn't actually do any searching! Instead, it maintains a list of SearchComponents
that are invoked in sequence for a request. The search components used and their
order are of course configurable.

What follows is our request handler for MusicBrainz releases but modified to
explicitly configure the components:

<requestHandler name="mb_releases" class="solr.SearchHandler">
 <!-- default values for query parameters -->
 <lst name="defaults">
 <str name="defType">edismax</str>
 <str name="qf">r_name r_a_name^0.4</str>
 <str name="pf">r_name^0.5 r_a_name^0.2</str>
 <str name="qs">1</str>
 <str name="ps">0</str>
 <str name="tie">0.1</str>
 <str name="q.alt">*:*</str>
 </lst>
 <!-- note: these components are the default ones -->
 <arr name="components">
 <str>query</str>
 <str>facet</str>
 <str>mlt</str>
 <str>highlight</str>
 <str>stats</str>
 <str>debug</str>
 </arr>
 <!-- INSTEAD, "first-components" and/or
 "last-components" may be specified. -->
</requestHandler>

Chapter 7

[199]

The named search components in the above XML comment are the default ones
that are automatically registered if you do not specify the components section. This
named list is also known as the standard component list. To specify additional
components, you can either re-specify components with changes, or you can add
it to the first-components or last-components lists, which are prepended and
appended respectively to the standard component list.

Many components depend on other components being executed
first, especially the query component, so you will usually add
components to last-components.

Search components must be registered with Solr to be activated so that they can
then be referred to in a components list. All of the standard components are pre-
registered. Here's an example of how a search component named elevator is
registered in solrconfig.xml:

<searchComponent name="elevator" class="solr.QueryElevationComponent">
 <str name="queryFieldType">string</str>
 <str name="config-file">elevate.xml</str>
</searchComponent>

The functionality in QueryComponent, FacetComponent, and DebugComponent has
been described in previous chapters. The rest of this chapter describes other search
components that come with Solr.

Doing a distributed-search?
A Solr Distributed-search is having Solr search across multiple Solr
cores/servers (shards in distributed-search lingo) as if it were one logical
index. It is discussed in Chapter 10, Scaling Solr. One thing to be aware of
is that a sharded request will by default go to the default request handler,
even if your client issued a request to another handler. To ensure that the
relevant search components are still activated on a sharded request, you
can use the shards.qt parameter just as you would qt.

Search Components

[200]

The Highlight component
You are probably most familiar with search highlighting when you use an Internet
search engine like Google. Most search results come back with a snippet of text from
the site containing the word(s) you search for, highlighted. Solr can do the same
thing. In the following screenshot we see Google highlighting a search including Solr
and search (in bold):

A non-obvious way to make use of the highlighting feature is to not actually do any
highlighting. Instead Solr's highlighter can be used to inform the user which fields
in the document satisfied their search, not to actually highlight the matched values.
In this scenario, there would be a search that searches across many fields or a catch-
all field and then hl.fl (the highlighted field list) is set to *. Solr will generate a
snippet, but you ignore it aside from recognizing which field matched.

A highlighting example
Admittedly the MusicBrainz data set does not make an ideal example to show off
highlighting because there's no substantial text, but it can be useful nonetheless.

The following is a sample use of highlighting on a search for Corgan in the artist
MusicBrainz data set. Recall that the mb_artists request handler is configured to
search against the artist name, alias, and members fields.

http://localhost:8983/solr/mbartists/select?indent=on&q=corgan&rows=3
&qt=mb_artists&hl=true

And here is the output of the above URL:

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">89</int>
</lst>
<result name="response" numFound="5" start="0">
 <doc>
 <date name="a_begin_date">1967-03-17T05:00:00Z</date>
 <str name="a_name">Billy Corgan</str>

Chapter 7

[201]

 <date name="a_release_date_latest">
 2005-06-21T04:00:00Z</date>
 <str name="a_type">1</str>
 <str name="id">Artist:102693</str>
 <str name="type">Artist</str>
 </doc>
 <doc>
 <str name="a_name">Billy Corgan & Mike Garson</str>
 <str name="a_type">2</str>
 <str name="id">Artist:84909</str>
 <str name="type">Artist</str>
 </doc>
 <doc>
 <arr name="a_member_id"><str>102693</str></arr>
 <arr name="a_member_name"><str>Billy Corgan</str></arr>
 <str name="a_name">Starchildren</str>
 <str name="id">Artist:35656</str>
 <str name="type">Artist</str>
 </doc>
</result>
<lst name="highlighting">
 <lst name="Artist:102693">
 <arr name="a_name">
 <str>Billy Corgan</str>
 </arr>
 </lst>
 <lst name="Artist:84909">
 <arr name="a_name">
 <str>Billy Corgan & Mike Garson</str>
 </arr>
 </lst>
 <lst name="Artist:35656">
 <arr name="a_member_name">
 <str>Billy Corgan</str>
 </arr>
 </lst>
</lst>
</response>

Search Components

[202]

What should be noted in this example is the manner in which the highlighting results
are in the response data. Also note that not all of the result highlighting was against
the same field.

It is possible to enable highlighting and discover that some of the results
are not highlighted. Sometimes this can be due to complex text analysis;
although more likely it could simply be that there is a mismatch between
the fields searched and those highlighted.

Highlighting configuration
Highlighting, like most parts of Solr searching, is configured through request
parameters. You can specify them in the URL, but it is more appropriate to specify
the majority of these in your application's request handler in solrconfig.xml
because they are unlikely to change between requests. Some parts of the highlighting
configuration have defaults configured within the <highlighting/> element if you
wish to change them there.

Understand that like faceting, nearly all of these parameters can be overridden on a
per-field basis. The syntax looks like f.fieldName.paramName=value for example:
f.allText.snippets=0

So many configuration options!
There are more highlighting configuration parameters than any other
part of Solr! However, it's the simplest to use, so don't let all these options
overwhelm you. Like most things in Solr, the defaults are quite reasonable.
The only parameter required is hl, which enables highlighting. You'll
probably set hl.fl, and enable hl.usePhraseHighlighter and
hl.highlightMultiTerm and a couple others that suit your fancy.

The following are the parameters observed by the highlighter search component:

•	 hl: Set to true to enable search highlighting. Without this, the other
parameters are ignored, and highlighting is effectively disabled.

•	 hl.fl: A comma or space separated list of fields that will be highlighted.
It is important for a field to be marked as stored in the schema in order
to highlight on it. If this parameter is omitted, then it defaults to the
default field(s) used by the query parser: the df parameter for the lucene
query parser or the qf parameter for the dismax query parser. You may
use an asterisk wildcard to conveniently highlight on all of the text
fields, such as * or r_*. If you use a wildcard, then consider enabling the
hl.requireFieldMatch option.

Chapter 7

[203]

•	 hl.requireFieldMatch: If set to true, then a field will not be highlighted
for a result unless the query also matched against that field. This is set to
false by default, meaning that it's possible to query one field and highlight
another and get highlights back as long as the terms searched for are found
within the highlighted field. If you use a wildcard in hl.fl, then you will
probably enable this. However, if you query against an all-text catch-all field
(probably using copy-field directives), then leave this as false so that the
search results can indicate from which field the query text was found in.

•	 hl.usePhraseHighlighter: If the query contained a phrase (it was quoted),
then this will ensure that only the phrase is highlighted and not the words
out of context of the queried phrase. So, if "a b c" is the query with quotes,
then the "b" in the stored text "x b z" will not be highlighted if this option is
enabled. This is strangely set to false by default. You should probably always
enable this.

°° hl.highlightMultiTerm: If any wildcard or fuzzy queries
are used, then this will ensure that the highlighting matches
such terms correctly. This defaults to false and it requires
hl.usePhraseHighlighter. You should probably enable this.

•	 hl.snippets: This is the maximum number of highlighted snippets (aka
fragments) that will be generated per field. It defaults to 1, which you will
probably not change. By setting this to 0 for a particular field (example:
f.allText.hl.snippets=0), you can effectively disable highlighting for that
field. You might do that if you used a wildcard for hl.fl and want to make
an exception.

•	 hl.fragsize: The maximum number of characters returned in each snippet
(aka fragment), measured in characters. The default is 100. If 0 is specified,
then the field is not fragmented and whole field values are returned.
Obviously, be wary of doing this for large text fields.

•	 hl.mergeContiguous: If set to true, then overlapping snippets are merged.
The merged fragment size is not limited by hl.fragsize. The default is
false, but you will probably set this to true when hl.snippets is greater
than zero and fragsize is non-zero.

•	 hl.maxAnalyzedChars: The maximum number of characters in a field that
will be sought for highlighting. If you want to disable the limit, then set this
to -1. The default is 51200 characters. If your Solr instance has documents of
substantial size then you should consider raising this, at the expense of some
performance loss.

Search Components

[204]

•	 hl.alternateField: If a snippet couldn't be generated (no terms matched)
for a field, then this parameter refers to a field that will be returned as the
snippet. You might use some sort of summary field for a document or
potentially the searched field itself. There is none by default. If you always
want to ensure there is some data from the document to show in the event
highlighting fails, then enable this.

°° hl.maxAlternateFieldLength: The maximum number of characters
to return for hl.alternateField. It's 0 by default, which means
unlimited. Set this to something reasonably close to hl.snippets *
hl.fragsize to maintain consistent sizing in the results.

•	 hl.fragmenter: Choose the snippet fragmenting algorithm. This parameter
refers to a named <fragmenter/> element in <highlighting/> in
solconfig.xml. gap is the default typical choice based on a fragment size.
regex is an alternative in which the highlighted fragment boundaries can be
defined with a regular expression. See below for regex-specific options.

•	 hl.formatter: Choose how to format the highlighting. This parameter refers
to a named <formatter/> element in <highlighting/> in solconfig.xml.
The default implementation (and only option) named html further specifies
two more parameters:

°° hl.simple.pre and hl.simple.post: (for the html formatter)
This is the text that will be inserted immediately before and after
matched terms in the snippet in order to demarcate them from the
surrounding text. The default is and (HTML emphasis
tags). Note that the circumstantial presence of whatever values are
chosen in the original text, such as HTML with pre-existing emphasis
tags, are not escaped, and in rare circumstances may lead to a false
highlight.

•	 hl.encoder: Choose the escaping/encoding algorithm to be applied to
the final snippet response. It isn't applied to the surrounding markup that
is introduced (for example,). This is a reference to a named
<encoder/> element in <highlighting/> in solconfig.xml. The default
configuration uses an HTML escaping algorithm. There is another choice
with the class solr.highlight.DefaultEncoder that doesn't do any
escaping.

The formatter and encoder options have web centric defaults. If the
output is not going to be rendered on a web page, then consider
changing them.

Chapter 7

[205]

The regex fragmenter
The various options available for the regex fragmenter are as follows:

•	 hl.regex.pattern: This is a regular expression matching a block of text
that will serve as the snippet/fragment to subsequently be highlighted. The
default is [-\w ,/\n\"']{20,200}, which roughly looks for sentences. If
you are using the regex fragmenter, then you will most likely tune a regular
expression to your needs. The regular expression language definition used by
Java and thus Solr is here at http://download.oracle.com/javase/1.5.0/
docs/api/java/util/regex/Pattern.html.

•	 hl.regex.slop: This is the factor to which hl.fragsize can vary to
accommodate the regular expression. The default is 0.6, which means that
fragment sizes may vary between 40 and 160 if hl.fragsize is 100.

•	 hl.increment: Sets the minimum Lucene position increment gap from
one term to the next to trigger a new fragment. There is no regex in the
parameter name, but it is indeed only for the regex fragmenter. It defaults to
50, which is fine.

•	 hl.regex.maxAnalyzedChars: For performance reasons, this puts a limit on
the number of leading characters of the field that are fragmented based on
the regular expression. After this limit is exceeded, the remaining characters
up to hl.maxAnalyzedChars are fragmented in a fashion consistent with the
gap fragmenter, which is faster. The default is 10000 characters.

The fast vector highlighter with multi-colored
highlighting
New in Solr 3.1 is the fast vector highlighter (FVH), which is an alternative
underlying algorithm with additional schema field requirements. When in use for a
field, highlighting on that field is faster, especially for long text common in indexing
full documents. As an added bonus, it has the option of highlighting each query
term with different markup such as a distinct color. The field requirements are:
indexed="true" stored="true" termVectors="true" termPositions="true"
termOffsets="true".

Use the fast vector highlighter for web or document indexing
If your use of Solr involves large text fields, as is common in web or
document crawling, then use the FVH for that text field. You needn't
index all fields this way, just the big ones—probably just one. Instructing
Lucene to store term vectors with positions and offsets will increase disk
requirements. A very rough estimate is 20% of the stored field value size.

Search Components

[206]

Some previously mentioned parameters are ignored or unsupported:
hl.highlightMultiTerm, hl.mergeContiguous, hl.maxAnalyzedChars,
hl.fragmenter, and hl.formatter (the FVH has its own variants of these last two).
The following are additional configuration parameters specific to the fast vector
highlighter:

•	 hl.useFastVectorHighligher: This must be set to true to enable the
fast vector highlighter, as it defaults to false. Additionally, the field to be
highlighted must meet the aforementioned schema requirements. If the
requirements are not met then the default (non-FVH) algorithm is used; it is
not an error condition. This is evaluated on a field-by-field basis as listed in hl.fl.

•	 hl.fragListBuilder: Choose the snippet fragmenting algorithm.
This parameter refers to a named <fragListBuilder/> element in
<highlighting/> in solconfig.xml. The default is named simple. Another
is named single which returns the entire field contents as one snippet.

The simple one does not take care to create snippets at word
boundaries—see LUCENE-1824. As a quick fix, you could manually
trim the start and end of the snippet to the nearest whitespace
character before displaying it to the user.

•	 hl.fragmentsBuilder: Choose how to format the highlighting.
This parameter refers to a named <fragmentsBuilder/> element in
<highlighting/> in solconfig.xml. The default, named default, uses
 HTML markup to highlight the text. The other pre-configured
choice is named colored which uses HTML markup that looks like this: <b
style="background:yellow"> where the color varies over ten different
ones.

°° hl.tag.pre and hl.tag.post: This is the text that will be inserted
immediately before and after matched terms in the snippet in order
to demarcate them from the surrounding text. If commas are present,
it is treated as a list. The fragments builder will use a consistent index
into the list for a queried term. If there are more queried terms than
pre or post tags then it loops back to the front of the array recursively.

Notice that hl.tag.pre and hl.tag.post is a different pair of
parameters than hl.simple.pre and hl.simple.post for the
non-FVH. Since the FVH is typically used on a subset of highlighted
fields, you should configure both pairs of parameters consistently to get
consistent highlighting tags. It is this way by default.

Chapter 7

[207]

°° hl.multiValuedSeparatorChar: This is the character that separates
one value from the next in a snippet that spans more than one value
for a multi-valued field. It's a space character by default. Arguably
the snippet shouldn't span values in the first place—the non-FVH
will not.

•	 hl.phraseLimit: This performance optimization limits the number of
phrases examined to find the highest-scoring phrase. It defaults to -1, which
means no limit.

Set hl.phraseLimit to 5000 to protect against pathologically
bad cases on large documents. You might even consider a value like
1 if it is sufficient to simply highlight the first possible phrase in
the document instead of the highest scoring one, in exchange for a
substantial improvement in highlighting performance.

The SpellCheck component
One of the better ways to enhance the search experience is by offering spelling
corrections. This is sometimes presented at the top of search results with such text as
"Did you mean ...". Solr supports this with the SpellCheckComponent.

A related technique is to use fuzzy queries using the tilde syntax.
However, fuzzy queries don't tell you what alternative spellings were
used, are not as scalable for large indexes, and might require more
programming than using this search component.

For spelling corrections to work, Solr must clearly have a corpus of words (a
dictionary) to suggest alternatives to those in the user's query. "Dictionary" is meant
loosely as the collection of correctly known spelled words, and not their definitions.
Solr can be configured in either of the following two ways:

•	 A text file of words: For a freely available English word list, check out
SCOWL (Spell Checker Oriented Word Lists) at http://wordlist.
sourceforge.net. In addition, see the dictionary files for OpenOffice which
supports many languages: http://wiki.services.openoffice.org/wiki/
Dictionaries

•	 Indexed content: This is generally preferred, principally because your data
contains proper nouns and other words not in a dictionary.

http://wordlist.sourceforge.net

Search Components

[208]

Before reading on about configuring spell checking in solrconfig.
xml, you may want to jump ahead and take a quick peek at an example
towards the end of this section, and then come back.

Schema configuration
If your dictionary is going to be based on indexed content as is recommended,
then a field should be set aside exclusively for this purpose. This is so that it can
be analyzed appropriately and so that other fields can be copied into it as the
index-based dictionary uses just one field. Most Solr setups would have one field;
our MusicBrainz searches, on the other hand, are segmented by the data type
(artists, releases, tracks), and so one for each would be best. For the purposes of
demonstrating this feature, we will only do it for artists.

In schema.xml, we need to define the field type for spellchecking. This particular
configuration is one I recommend for most scenarios:

<!--
SpellCheck analysis config based off of http://wiki.apache.org/solr/
SpellCheckingAnalysis
-->
<fieldType name="textSpell" class="solr.TextField"
 positionIncrementGap="100" stored="false" multiValued="true">
 <analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.SynonymFilterFactory"
 synonyms="synonyms.txt" ignoreCase="true"
 expand="true"/>
 <filter class="solr.StopFilterFactory" ignoreCase="true"
 words="stopwords.txt"/>
 <filter class="solr.StandardFilterFactory"/>
 <filter class="solr.RemoveDuplicatesTokenFilterFactory"/>
 </analyzer>
 <analyzer type="query">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.StopFilterFactory" ignoreCase="true"
 words="stopwords.txt"/>
 <filter class="solr.StandardFilterFactory"/>
 <filter class="solr.RemoveDuplicatesTokenFilterFactory"/>
 </analyzer>
</fieldType>

Chapter 7

[209]

A field type for spellchecking is not marked as stored because the spellcheck
component only uses the indexed terms. The important thing is to ensure that the
text analysis does not do stemming as the corrections presented would suggest the
stems, which would look very odd to the user for most stemmer algorithms. It's also
hard to imagine a use-case that doesn't apply lowercasing.

Now we need to create a field for this data:

<field name="a_spell" type="textSpell" />

And we need to get data into it with some copyField directives:

<copyField source="a_name" dest="a_spell" />
<copyField source="a_alias" dest="a_spell" />

Arguably, a_member_name may be an additional choice to copy as well, as the dismax
search we configured (seen in the following code) searches it too, albeit at a reduced
score. This, as well as many decisions with search configuration, is subjective.

Configuration in solrconfig.xml
To use any search component, it needs to be in the components list of a request
handler. The spellcheck component is not in the standard list so it needs to be added.

<requestHandler name="mb_artists" class="solr.SearchHandler">
 <!-- default values for query parameters -->
 <lst name="defaults">
 <str name="defType">dismax</str>
 <str name="qf">a_name a_alias^0.8 a_member_name^0.4</str>
 <!-- etc. -->
 </lst>
 <arr name="last-components">
 <str>spellcheck</str>
 </arr>
</requestHandler>

This component should already be defined in solrconfig.xml. Within the
spellchecker search component, there are one or more XML blocks named
spellchecker so that different dictionaries and other options can be configured.
These might also be loosely referred to as the dictionaries, because the parameter
that refers to this choice is named that way (more on that later). We have three
spellcheckers configured as follows:

•	 a_spell: An index-based spellchecker that is a typical recommended
configuration.

Search Components

[210]

•	 jarowinkler: This uses the same built dictionary, spellcheckIndexDir,
as a_spell, but contains an alternative configuration setting for
experimentation.

•	 file: A sample configuration where the input dictionary comes from a file
(not included).

A complete MusicBrainz implementation would have a different spellchecker for
each MB data type, with all of them configured similarly.

Following the excerpt below is a description of all options available:

<!-- The spell check component can return a list of
 alternative spelling suggestions. -->
<searchComponent name="spellcheck"
 class="solr.SpellCheckComponent">
 <str name="queryAnalyzerFieldType">textSpell</str><!-- 'q'
 only -->

 <lst name="spellchecker">
 <str name="name">a_spell</str>
 <str name="field">a_spell</str>
 <str name="buildOnOptimize">true</str>
 <str name="spellcheckIndexDir">./spellchecker_a_spell</str>
 </lst>
 <lst name="spellchecker">
 <!-- Use previous spellchecker index with different
 distance measure -->
 <str name="name">jarowinkler</str>
 <str name="field">a_spell</str>
 <str name="distanceMeasure">
 org.apache.lucene.search.spell.JaroWinklerDistance</str>
 <str name="spellcheckIndexDir">./spellchecker_a_spell</str>
 </lst>
 <!-- just an example -->
 <lst name="spellchecker">
 <str name="name">file</str>
 <str name="classname">solr.FileBasedSpellChecker</str>
 <str name="sourceLocation">spellings.txt</str>
 <str name="characterEncoding">UTF-8</str>
 <str name="spellcheckIndexDir">./spellcheckerFile</str>
 </lst>
</searchComponent>

Chapter 7

[211]

Configuring spellcheckers (dictionaries)
The double layer of spellchecker configuration is perhaps a little confusing. The outer
one just names the search component—it's just a container for configuration(s). The
inner ones are distinct configurations to choose at search time.

The following options are common to both index and file based spellcheckers:

•	 name: The name of the spellcheck configuration. It defaults to default. Be
sure not to have more than one configuration with the same name.

•	 classname: The implementation of the spellchecker. It defaults to solr.
IndexBasedSpellChecker; the other is solr.FileBasedSpellChecker.
Further information on these is just ahead.

•	 spellcheckIndexDir: This is a reference to the directory location where
the spellchecker's internal dictionary is built, not its source. It is relative to
Solr's data directory, which in turn defaults to being within the Solr home
directory. This is actually optional, which results in an in-memory dictionary.

In our spellchecker named jarowinkler, we're actually referring
to another spellchecker's index so that we can try other configuration
options without having to duplicate the data or building time. If this
is done, be sure to use the spellcheck.reload command for this
dictionary if it changes, as described later.

For a high load Solr server, an in-memory index is appealing. Until
SOLR-780 is addressed, you'll have to take care to tell Solr to build the
dictionary whenever the Solr core gets loaded. This happens at startup
or if you tell Solr to reload a core.

•	 buildOnCommit and buildOnOptimize: These boolean options (defaulting to
false) enable the spellchecker's internal index to be built automatically when
either Solr performs a commit or optimize. Most likely you'll set one of these.

•	 accuracy: Sets the minimum spelling correction accuracy to act as a
threshold. It falls between 0 and 1 with a default of 0.5. The higher this
number is, the simpler the corrections are.

•	 distanceMeasure: This is a Java class name implementing the algorithm
to gauge similarity between a possible misspelling and a candidate
correction. By the way, it defaults to org.apache.lucene.search.
spell.LevensteinDistance which is the same algorithm used in fuzzy
query matching,. Alternatively, org.apache.lucene.search.spell.
JaroWinklerDistance works quite well.

Search Components

[212]

•	 fieldType: This is a reference to a field type in schema.xml for performing
text-analysis on words to be spellchecked by the spellcheck.q parameter
(not q). If this isn't specified, then it defaults to the field type of the field
parameter (used only by the index-based spellchecker) and if not specified,
then defaults to a simple whitespace delimiter, which most likely would
be a misconfiguration. When using the file-based spellchecker with
spellcheck.q, be sure to specify this.

IndexBasedSpellChecker options
The IndexBasedSpellChecker gets the dictionary from the indexed content of a
field in a Lucene/Solr index, and the options are explained as follows:

•	 sourceLocation: If specified, then it refers to an external Lucene/Solr index
path. This is an unusual choice, but shows that the source dictionary does
not need to come from Solr's main index; it could be from another location,
perhaps from another Solr core. This is an advanced option. If you are doing
this, then you'll probably also need to use the spellcheck.reload command
mentioned later.

Warning: This option name is actually common to both types of
spellcheckers but is defined differently.

•	 field: It is mandatory and refers to the name of the field within the index
that contains the dictionary. Furthermore, it must be indexed as the data
is taken from there, and not from the stored content, which is ignored.
Generally, this field exists expressly for spell correction purposes and other
fields are copied into it.

•	 thresholdTokenFrequency: Specifies a document frequency threshold,
which will exclude words that don't occur often. This is expressed as a
fraction in the range 0-1, defaulting to 0, which effectively disables the
threshold, letting all words through.

If there is a lot of data and lots of common words, as opposed to proper
nouns, then this threshold should be effective. If testing shows spelling
candidates including strange fluke words found in the index, then
introduce a threshold that is high enough to weed out such outliers. The
threshold will probably be less than 0.01—1 percent of documents.

Chapter 7

[213]

FileBasedSpellChecker options
The FileBasedSpellChecker gets the dictionary from a plain text file.

•	 sourceLocation: This is mandatory and references a plain text file with each
word on its own line. Note that an option by the same name but different
meaning exists for the index-based spellchecker.

•	 characterEncoding: This is optional but should be set. It is the character
encoding of sourceLocation, defaulting to that of your operating system,
which is probably not suitable. Examples: US-ASCII or UTF-8 or ISO-8859-1.

We've not yet discussed the parameters to a search with the spellchecker component
enabled. But at this point of the configuration discussion, understand that you have a
choice of just letting the user query, q get processed or you can use spellcheck.q.

Processing of the q parameter
When a user query (q parameter) is processed by the spellcheck component to look
for spelling errors, Solr needs to determine what words are to be examined. This is
a two-step process. The first step is to pull out the queried words from the query
string, ignoring any syntax such as AND. The next step is to process the words with an
analyzer so that, among other things, lowercasing is performed. The analyzer chosen
is through a field type specified directly within the search component configuration
with queryAnalyzerFieldType. It really should be specified, but it's actually
optional. If left unspecified, there would be no text-analysis, which would in all
likelihood be a misconfiguration.

This algorithm is implemented by a spellcheck query
converter—a Solr extension point. The default query converter,
known as SpellingQueryConverter, is probably fine.

Processing of the spellcheck.q parameter
If the spellcheck.q parameter is given (which really isn't a query per se), then the
string is processed with the text analysis referenced by the fieldType option of the
spellchecker being used. If a file-based spellchecker is being used, then you should
set this explicitly. Index-based spellcheckers will sensibly use the field type of the
referenced indexed spelling field.

The dichotomy of the ways in which the analyzer is configured
between both q and spellcheck.q, arguably needs improvement.

Search Components

[214]

Building the dictionary from its source
Each spellchecker requires it to be built, which is the process in which the dictionary
is read and is built into the spellcheckIndexDir. If it isn't built, then no corrections
will be offered, and you'll probably be very confused. You'll be even more confused
troubleshooting the results if it was built once but is far out of date and needs to be
built again.

The DirectSolrSpellChecker feature has already been completed for
the upcoming Solr 4, which uses the Solr index directly without requiring
a separate spellchecker index that needs building.

Generally, building is required if it has never been built before, and it should be built
periodically when the dictionary changes. It need not necessarily be built for every
change, but it obviously won't benefit from any such modifications.

Using buildOnOptimize or buildOnCommit is a low-hassle way to keep
the spellcheck index up to date. If you rarely optimize or if you commit too
frequently then you'll instead have to issue build commands manually on
a suitable time period. Furthermore, setting spellcheckIndexDir will
ensure the built spellcheck index is persisted between Solr restarts.

In order to perform a build of a spellchecker, simply enable the component with
spellcheck=true, add a special parameter called spellcheck.build, and set it to
true:

http://localhost:8983/solr/mbartists/select?&qt=mb_
artists&rows=0&spellcheck=
true&spellcheck.build=true&spellcheck.dictionary=jarowinkler

The other spellcheck parameters will be explained shortly. It is important to note
that only one spellchecker (dictionary) was built. To build more than one, separate
requests must be issued. Anecdotally, the time it took to build this dictionary
of nearly 400K documents, each of which were very small, was 25 seconds on a
mediocre machine.

There is an additional related option similar to spellcheck.build called
spellcheck.reload. This doesn't rebuild the index, but it basically re-establishes
connections with the index (both sourceLocation for index-based spellcheckers and
spellcheckIndexDir for all types). If you've decided to have some external process
build the dictionary or simply share built indexes between spellcheckers as we've
done, then Solr needs to know to reload it to see the changes—a quick operation.

Chapter 7

[215]

Issuing spellcheck requests
At this point, we've covered how to configure the spellchecker and dictionaries but
not how to issue requests that actually use it. Let's finally do it! Fortunately, there
aren't many search parameters governing this end of the component. The parameters
are as follows:

•	 spellcheck: A boolean switch that must be set to true to enable the
component in order to see suggested spelling corrections.

•	 spellcheck.dictionary: The named reference to a dictionary (spellchecker)
to use configured in solrconfig.xml. It defaults to default.

•	 spellcheck.q or q: The string containing words to be processed by this
component can be specified as the spellcheck.q parameter, and if not
present, then the q parameter. Please look for the information presented
earlier on how these are processed.

Which should you use?: spellcheck.q or q
Assuming you're handling user queries to Solr that might contain
some query syntax, then the default q is right, as Solr will then know
to filter out possible uses of Lucene/Solr's syntax such as AND, OR,
fieldname:word, and so on.). If not, then spellcheck.q is preferred,
as it won't go through that unnecessary processing. It also allows its
parsing to be different on a spellchecker-by-spellchecker basis, which
we'll leverage in our example.

•	 spellcheck.count: The maximum number of corrections to offer per word.
The default is 1. Corrections are ordered by those closest to the original, as
determined by the distanceMeasure algorithm.

Although counter-intuitive, raising this number affects the suggestion
ordering—the results get better! The internal algorithm sees ~10 times
as many as this number and then it orders them by closest match.
Consequently, use a number between 5 and 10 or so to get quality results.

•	 spellcheck.onlyMorePopular: A boolean switch that will offer spelling
suggestions for queried words that were found in the index, provided that
the suggestions occur more often. This is in addition to the normal behavior
of only offering suggestions for queried words not found in the index. If
extendedResults is also enabled, then looking for origFreq being greater
than 0 will indicate when this happens. This is disabled by default.

Search Components

[216]

This parameter is good for situations where the user's query returns very
few results, or when no results and no spellcheck suggestion was offered
due to the query being correctly spelled (correctlySpelled is true
in extended output). When this happens, consider automatically issuing
a secondary search with this parameter enabled and with spellcheck.
collateExtendedResults enabled to check if there is a collated
query result that has more hits than the user's original query did. This
shouldn't be enabled in the first search.

•	 spellcheck.extendedResults: A boolean switch that adds frequency
information, both for the original word and for the suggestions. It's helpful
when debugging.

•	 spellcheck.collate: A boolean switch that adds a revised query string to
the output that alters the original query (from spellcheck.q or q) to use the
top recommendation for each suggested word. It's smart enough to leave any
other query syntax in place. The following are some additional options for
use when collation is enabled, (added in Solr 3):

°° spellcheck.maxCollations: The maximum number of collations to
return, defaulting to 1.

°° spellcheck.maxCollationTries: The maximum number of
collations to try (verify it yields results), defaulting to 0. If this is non-
zero, then the spellchecker will not return collations that yield no
results.

°° spellcheck.maxCollationEvaluations: The maximum number
of word correction combinations to rank before the top candidates
are tried (verified). Without this limit, queries with many misspelled
words could yield a combinatoric explosion of possibilities. The
default is 10000, which should be fine.

°° spellcheck.collateExtendedResults: A boolean switch that
adds more details to the collation response. It adds the collation hits
(number of documents found) and a mapping of misspelled words to
corrected words.

Enable spellcheck.collate as a user interface will most likely want
to present a convenient link to use the spelling suggestions. Furthermore,
ensure the collation is verified to return results by setting spellcheck.
maxCollationTries to a small non-zero number—perhaps 5.

Chapter 7

[217]

Example usage for a misspelled query
We'll try out a typical spellcheck configuration that we've named a_spell.
jarowinkler is almost the same but has slightly different results (bettor or worse
is subjective), so we won't bother showing it here. I've disabled showing the query
results with rows=0 because the actual query results aren't the point of these
examples. In this example, it is imagined that the user is searching for the band
Smashing Pumpkins, but with a misspelling.

Here are the search results for Smashg Pumpkins using the a_spell dictionary:

<?xml version="1.0"?>
<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">124</int>
 <lst name="params">
 <str name="spellcheck">true</str>
 <str name="indent">on</str>
 <str name="spellcheck.extendedResults">true</str>
 <str name="spellcheck.collateExtendedResults">true</str>
 <str name="spellcheck.maxCollationTries">5</str>
 <str name="spellcheck.collate">true</str>
 <str name="rows">0</str>
 <str name="echoParams">explicit</str>
 <str name="q">Smashg Pumpkins</str>
 <str name="spellcheck.dictionary">a_spell</str>
 <str name="spellcheck.count">5</str>
 <str name="qt">mb_artists</str>
 </lst>
</lst>
<result name="response" numFound="0" start="0"/>
<lst name="spellcheck">
 <lst name="suggestions">
 <lst name="smashg">
 <int name="numFound">5</int>
 <int name="startOffset">0</int>
 <int name="endOffset">6</int>
 <int name="origFreq">0</int>
 <arr name="suggestion">
 <lst>
 <str name="word">smash</str>
 <int name="freq">36</int>

Search Components

[218]

 </lst>
 <lst>
 <str name="word">smashing</str>
 <int name="freq">4</int>
 </lst>
 <lst>
 <str name="word">smashign</str>
 <int name="freq">1</int>
 </lst>
 <lst>
 <str name="word">smashed</str>
 <int name="freq">5</int>
 </lst>
 <lst>
 <str name="word">smasher</str>
 <int name="freq">2</int>
 </lst>
 </arr>
 </lst>
 <bool name="correctlySpelled">false</bool>
 <lst name="collation">
 <str name="collationQuery">smashing Pumpkins</str>
 <int name="hits">1</int>
 <lst name="misspellingsAndCorrections">
 <str name="smashg">smashing</str>
 </lst>
 </lst>
 </lst>
</lst>
</response>

In this scenario, I intentionally chose a misspelling that is closer to another word:
"smash". Were it not for maxCollationTries, the suggested collation would be
"smash Pumpkins" which would return no results. There are a few things I want to
point out regarding the spellchecker response:

•	 Applications consuming this data will probably only use the collation query,
despite the presence of a lot of other information.

•	 The suggestions are ordered by the so-called edit-distance score (closest
match), which is not displayed. It may seem here that it is ordered by
frequency, which is a coincidence.

Chapter 7

[219]

There is an extension point to the spellchecker to customize the
ordering—search Solr's wiki for comparatorClass for further
information. You could write one that orders results based on a formula
fusing both the suggestion score and document frequency.

•	 startOffset and endOffset are the index into the query of the spellchecked
word. This information can be used by the client to display the query
differently, perhaps displaying the corrected words in bold.

•	 numFound is always the number of suggested words returned, not the total
number available if spellcheck.count were raised.

•	 correctlySpelled is intuitively true or false, depending on whether all of
the query words were found in the dictionary or not.

Query complete / suggest
One of the most effective features of a search user interface is automatic/instant-
search or completion of query input in a search input box. It is typically displayed as
a drop-down menu that appears automatically after typing. There are several ways
this can work:

•	 Instant-search: Here, the menu is populated with search results. Each row
is a document, just like the regular search results are. At your discretion,
you might opt to consider the last word partially typed. Examples of this
are the URL bar in web browsers and various person search services. This
is particularly effective for quick lookup scenarios against identifying
information like a name / title / identifier. It's less effective for broader
searches. One way to implement the search with the last word as a prefix is
to put the last word into a filter query as a prefix query (that is with a trailing
"*"). This word could be added as a dismax boost query too, to get an exact
match at the top of the results. This is the gist of it; there are many details I
am omitting.

•	 Query log completion: If your application has sufficient query volume,
then you should perform the query completion against previously executed
queries that returned results. The pop-up menu is then populated with
queries others have typed. This is what Google does. It's a bit of work to set
this up. To get the query string and other information, you could write a
custom search component, or parse Solr's log files, or hook into the logging
system and parse it there. The query strings could be appended to a plain
query log file, or inserted into a database, or added directly to a Solr index.
Putting the data into a database before it winds up in a Solr index affords
more flexibility on how to ultimately index it in Solr.

Search Components

[220]

Finally, at this point you could index the field with an EdgeNGramTokenizer
and perform searches against it, or use a KeywordTokenizer and then use
one of the approaches listed for query term completion below. I recommend
reading this excellent article by Jay Hill on doing this with EdgeNGrams:
http://www.lucidimagination.com/blog/2009/09/08/auto-suggest-
from-popular-queries-using-edgengrams/.

Monitor your user's queries!
Even if you don't plan to do query log completion, you should capture
useful information about each request for ancillary usage analysis,
especially to monitor which searches return no results. Capture the
request parameters, the response time, the result count, and add a
timestamp.

•	 Query term completion: The last word of the user's query is searched within
the index as a prefix, and other indexed words starting with that prefix are
provided. This type is an alternative to query log completion and it's easy to
implement. There are several implementation approaches: Facet the word
using facet.prefix, use Solr's new Suggester feature, or use the Terms
component. You should consider these choices in that order.

•	 Facet / field value completion: This is similar to query term completion
but it is done on data that you would facet or filter on. The pop-up menu of
choices will give suggestions across multiple fields with a label telling you
which field it is filtering on, and the value will be the exact field value, not
the subset of it that the user typed. This is particularly useful when there
are many possible filter choices. I've seen it used at Mint.com and elsewhere
to great effect, but it is under-utilized in my opinion. My recommended
implementation approach is to build a search index dedicated to this
information. For each value, a document would be created containing a field
referencing the field in the main index and another for the value using typical
tokenized text analysis.

There are other interesting query completion concepts I've seen on sites too, and
some of these can be combined effectively. I'll now describe the three approaches to
implementing Query term completion. It's a popular type of query completion, and
the three approaches highlight different technologies within Solr.

Chapter 7

[221]

Query term completion via facet.prefix
Most people don't realize that faceting can be used to implement query term
completion, but it can. This approach has the unique and valuable benefit of
returning completions filtered by filter queries (that is faceted navigation state), and
by query words prior to the last one being completed. This means the completion
suggestions that, if chosen, will result in a search that has results, which is not the
case for the other techniques. However, there are limits to its scalability in terms of
memory use and inappropriateness for real-time search applications…

Faceting on a tokenized field is going to use an entry in the field value cache (based
on UnInvertedField) to hold all words in memory. It will use a hefty chunk of
memory for many words and it's going to take a non-trivial amount of time to
build this cache on every commit during the auto-warming phase. For a data point,
consider MusicBrainz' largest field: t_name (track name). It has nearly 700K words in
it. It consumes nearly 100 MB of memory and it took 33 seconds to initialize on my
machine. The mandatory initialization per-commit makes this approach unsuitable
for real-time-search applications (See Chapter 10, Scaling Solr for more information).

Measure this for yourself. Perform a trivial query to trigger its
initialization and measure how long it takes. Then search Solr's statistics
page for fieldValueCache. The size is given in bytes next to memSize.
This statistic is also logged quite clearly.

For this example, we have a search box searching track names and it contains:

michael ja

All of the words here except the last one become the main query for the term-
suggest. For our example, this is just michael. If there isn't anything, then we'd want
to ensure that the request handler used would search for all documents. The faceted
field is a_spell, and we want to sort by occurrence. We also want there to be at
least one occurrence, and we don't want more than five suggestions. We don't need
the actual search results either. This leaves the facet.prefix faceting parameter to
make this work. This parameter filters the facet values to those starting with
this value.

Remember that facet values are the final result of text analysis, and
therefore are probably lowercased for fields you might want to do term
completion on. You'll need to pre-process the prefix value similarly, or
else nothing will be found.

Search Components

[222]

We're going to set this to ja, the last word that the user has partially typed. Here is a
URL for such a search:

http://localhost:8983/solr/mbartists/select?q=michael&qt=mb_artists
&wt=json&indent=on&facet=on&rows=0&facet.limit=5&facet.mincount=1
&facet.field=a_spell&facet.prefix=ja

When setting this up for real, I recommend creating a request handler
just for term completion with many of these parameters defined there,
so that they can be configured separately from your application.

In this example, we're going to use Solr's JSON response format. Here is the result:

{
 "responseHeader":{
 "status":0,
 "QTime":5},
 "response":{"numFound":2498,"start":0,"docs":[]
},
 "facet_counts":{
 "facet_queries":{},
 "facet_fields":{
 "a_spell":[
 "jackson",18,
 "james",16,
 "jason",4,
 "jay",4,
 "jane",3]},
 "facet_dates":{},
 "facet_ranges":{}}}

This is exactly the information needed to populate a pop-up menu of choices that the
user can conveniently choose.

However, there are some issues to be aware of with this feature:

•	 You may want to retain the case information of what the user is typing so
that it can then be re-applied to the Solr results. Remember that facet.
prefix will probably need to be lowercased depending on text analysis.

Chapter 7

[223]

•	 If stemming text analysis is performed on the field at the time of indexing,
then the user might get completion choices that are clearly wrong. Most
stemmers, namely Porter-based ones, stem off the suffix to an invalid
word. Consider using a minimal stemmer if any, but ideally none at all.
For stemming and other text analysis reasons, you might want to create a
separate field with suitable text analysis just for this feature. In our example
here we used a_spell on purpose because spelling suggestions and term
completion have the same text analysis requirements.

•	 If you would like to do term-completion of multiple fields, then you'll be
disappointed that you can't do that directly. The easiest way is to combine
several fields at index-time. Alternatively, a query searching multiple fields
with faceting configured for multiple fields can be done. It would be up to
you to merge the faceting results based on ordered counts.

Query term completion via the Suggester
New in Solr 3 is a high-speed approach to implement term completion, called the
Suggester. The Suggester is not its own search component; it's an extension of
the spell-check component. This means that it's not necessarily as up-to-date as
your index and it needs to be built, but the Suggester only takes a couple seconds
or so for this, and you are not forced to do this per-commit, unlike with faceting.
The Suggester principally features the fastest search performance—a handful
of milliseconds per search at most. The performance characteristics are largely
determined by a configuration choice, shown later, called lookupImpl, in which I
recommend org.apache.solr.suggest.fst.FSTLookup (new in Solr 3.3) almost
always. The FST uses ~1/20th the memory of faceting's UnInvertedField data
structure. Additionally, the Suggester uniquely includes a method of loading its
dictionary from a file that optionally includes a sorting weight.

Solr does not include a sample configuration of how to use the Suggester, so I'll
provide one here. We're going to use it for MusicBrainz artist name completion. The
following goes in solrconfig.xml:

<requestHandler name="/suggest" class="solr.SearchHandler">
 <lst name="defaults">
 <str name="spellcheck">true</str>
 <str name="spellcheck.dictionary">a_suggest</str>
 <str name="spellcheck.onlyMorePopular">true</str>
 <str name="spellcheck.count">5</str>
 <str name="spellcheck.collate">true</str>
 </lst>
 <arr name="components">
 <str>suggest</str>

Search Components

[224]

 </arr>
</requestHandler>

<searchComponent name="suggest" class="solr.SpellCheckComponent">
 <lst name="spellchecker">
 <str name="name">a_suggest</str>
 <str name="classname">
org.apache.solr.spelling.suggest.Suggester</str>
 <str name="lookupImpl">
org.apache.solr.spelling.suggest.fst.FSTLookup</str>
 <str name="field">a_spell</str>
 <!-- <float name="threshold">0.005</float> -->
 <str name="buildOnOptimize">true</str>
 <int name="weightBuckets">100</int><!-- an FST option -->
 </lst>
</searchComponent>

The first part of this is a request handler definition just for using the Suggester.
Note that spellcheck.onlyMorePopular was an atypical option for spell-check
suggestions, but in the Suggester, this parameter means that the results should
be sorted by frequency (versus alphabetically)—almost certainly what is desired.
The weightBuckets option is specific to FSTLookup. The FST approximates the
frequency of the terms it stores into a discrete set of buckets, defaulting to 10. It can
range between 1 and 255.

Increase weightBuckets
In my experience, increasing weightBuckets to 100 or more
improves the fidelity of the weights, resulting in more relevant
suggestions. It will come at some performance cost, though. It is
unclear at what value it is negligible or not.

The second part of this is an instantiation of the spell-check search component
but named suggest. What makes this use the Suggester is the classname setting
referencing the implementation code. The dictionary here is loaded from the
a_spell field in the main index, but if a file is desired, then you can provide the
sourceLocation parameter. The document frequency threshold for suggestions is
commented here because MusicBrainz has unique names that we don't want filtered
out. However, in common scenarios this threshold is advised.

Chapter 7

[225]

As the Suggester is based on the spell-check component, it needs to be built, which
is the process of loading the dictionary into memory. If you try to get suggestions
beforehand, there will be no results. Suggestions only take a couple seconds or so to
build and so I recommend building it automatically on startup via a firstSearcher
warming query in solrconfig.xml:

<query>
…
 <listener event="firstSearcher" class="solr.QuerySenderListener">
 <arr name="queries">
 <lst>
 <str name="qt">/suggest</str>
 <str name="spellcheck.build">true</str>
 </lst>
 …
 </arr>
 </listener>
…
</query>

To be kept up-to-date, it needs to be re-built from time to time. If commits
are infrequent, you should use the buildOnCommit setting. We've chosen the
buildOnOptimize setting.

Now let's issue a request to the Suggester. Here's a completion for the incomplete
query string sma:

http://localhost:8983/solr/mbartists/suggest?q=sma&wt=json

And the output, indented:

{
 "responseHeader":{
 "status":0,
 "QTime":1},
 "spellcheck":{
 "suggestions":[
 "sma",{
 "numFound":4,
 "startOffset":0,
 "endOffset":3,
 "suggestion":["sma",
 "small",
 "smaak",
 "smack"]},
 "collation","sma"]}}

Search Components

[226]

For more information about the Suggester, see the wiki: http://wiki.
apache.org/solr/Suggester. You'll find information on alternatives
to the FST implementation, and other details. However, some secrets of
the Suggester are still undocumented, buried in the code.

Query term completion via the Terms
component
The Terms component is used to expose raw indexed term information, including
term frequency, for an indexed field. It has a lot of options for paging into this
voluminous data and filtering out terms by term frequency.

For implementing suggestion functionality, the terms component has the benefit of
using no Java heap memory and consequently there is no initialization penalty. It's
always up to date with the indexed data, like faceting but unlike the Suggester. The
performance is typically good but for high query load on large indexes, it will suffer
compared to the other approaches. An interesting feature unique to this approach
is a regular expression term match option. This can be used for case-insensitive
matching, but it probably doesn't scale too many terms.

Here is how to set it up in solrconfig.xml for suggestions of MusicBrainz artist
names:

<searchComponent name="terms" class="solr.TermsComponent"/>

<!-- A request handler for demonstrating the terms component for query
term-complete/suggest-->
<requestHandler name="/termsSuggest" class="solr.SearchHandler">
 <lst name="defaults">
 <bool name="terms">true</bool>
 <str name="terms.fl">a_spell</str>
 <str name="terms.sort">count</str>
 <int name="terms.limit">5</int>
 <!-- <int name="terms.mincount">2</int> -->
 </lst>
 <arr name="components">
 <str>terms</str>
 </arr>
</requestHandler>

Chapter 7

[227]

And here is a request to complete the word sma:

http://localhost:8983/solr/mbartists/termsSuggest?terms.prefix=sma&wt=
json&omitHeader=true

And here's the response, indented:

{
 "terms":{
 "a_spell":[
 "small",110,
 "smart",50,
 "smash",36,
 "smalley",9,
 "smallwood",9]}}

For more information about this component, visit Solr's wiki:

http://wiki.apache.org/solr/TermsComponent

The QueryElevation component
At times, it may be desired to make editorial / manual modifications to the search
results of particular user queries. This might be done as a solution to a popular
user query that doesn't score an expected document sufficiently high—if it even
matched at all. The query might have found nothing at all, perhaps due to a common
misspelling. The opposite may also be true: the top result for a popular user
query might yield a document that technically matched according to your search
configuration, but certainly isn't what you were looking for. Another usage scenario
is implementing a system akin to paid keywords for certain documents to be on top
for certain user queries.

This feature isn't a general approach to fix queries not yielding effective
search results; it is a band-aid for that problem. If a query isn't returning
an expected document scored sufficiently high enough (if at all), then
use Solr's query debugging to observe the score computation. You
may end up troubleshooting text analysis issues too, if a search query
doesn't match an expected document—perhaps by adding a synonym.
The end result may be tuning the boosts or applying function queries to
incorporate other relevant fields into the scoring. When you are satisfied
with the scoring and just need to make an occasional editorial decision,
then this component is for you.

Search Components

[228]

Configuration
This search component is not in the standard component list and so it must be
registered with a handler in solrconfig.xml. Here we'll add it to the mb_artists
request handler definition, just for this example, anyway.

<requestHandler name="mb_artists" class="solr.SearchHandler">
 <lst name="defaults">
…
 </lst>
 <arr name="last-components">
 <str>elevateArtists</str>
 </arr>
</requestHandler>

<searchComponent name="elevateArtists"
 class="solr.QueryElevationComponent">
 <str name="queryFieldType">text</str>
 <str name="config-file">elevateArtists.xml</str>
 <str name="forceElevation">false</str>
</searchComponent>

This excerpt also reveals the registration of the search component using the same
name as that referenced in last-components. A name was chosen reflecting the
fact that this elevation configuration is only for artists. There are three named
configuration parameters for a query elevation component, and they are explained
as follows:

•	 config-file: This is a reference to the configuration file containing the
editorial adjustments. As most other configuration files, it can be located in
Solr's conf directory.

config-file can also be placed within the data directory (usually
a sibling to conf) where it will be reloaded, when Solr's internal
IndexReaders get reloaded which occurs for commits of new data, Solr
core reloads, and some other events. This presents an interesting option if
the elevation choices need to be loaded more often.

•	 queryFieldType: This is a reference to a field type in schema.xml. It is used
to normalize both a query (the q parameter) and the query text attribute
found in the configuration file for comparison purposes. A field type might
be crafted just for this purpose, but it should suffice to simply choose one
that at least performs lowercasing. By default, there is no normalization.

Chapter 7

[229]

•	 forceElevation: The query elevation component fools Solr into thinking
the specified documents matched the user's query and scored the highest.
However, by default, it will not violate the desired sort as specified by the
sort parameter. In order to force the elevated documents to the top no
matter what sort is, set this parameter to true.

Let's take a peek at elevateArtists.xml:

<elevate>
 <query text="corgan">
 <doc id="Artist:11650" /><!--the Smashing Pumpkins-->
 <doc id="Artist:510" /><!-- Green Day -->
 <doc id="Artist:35656" exclude="true" /><!-- Starchildren -->
 </query>
 <!-- others queries... -->
</elevate>

In this elevation file, we've specified that when a user searches for corgan, the
Smashing Pumpkins then Green Day should appear in the top two positions
in the search results (assuming typical sort of a descending score) and that the
artist Starchildren is to be excluded. Note that query elevation kicks in when
the configured query text matches the user's query exactly, while taking into
consideration configured text analysis. Thus a search for billy corgan would not be
affected by this configuration.

This component is quite simple with unsurprising results, so an example of this
in action is not given. The only thing notable about the results when searching for
corgan with the configuration mentioned above is that the top two results, the
Smashing Pumpkins and Green Day, have scores of 1.72 and 0.0 respectively, yet
the maxScore value in the result element is 11.3. Normally a default sort results
in the first document having the same score as the maximum score, but in this case
that happens at the third position, as the first two were inserted by this component.
Moreover, normally a result document has a score greater than 0, but in this case one
was inserted by this component that never matched the user's query.

Search Components

[230]

The MoreLikeThis component
Have you ever searched for something and found a link that wasn't quite what you
were looking for but was reasonably close? If you were using an Internet search
engine such as Google, then you may have tried the "more like this…" link next
to a search result. Some sites use other language like "find similar..." or "related
documents…" As these links suggest, they show you pages similar to another page.
Solr supports more-like-this (MLT) too.

The MLT capability in Solr can be used in the following three ways:

•	 As a search component: The MLT search component performs MLT analysis
on each document returned in a search. This is not usually desired and so it
is rarely used.

•	 As a dedicated request handler: The MLT request handler will give MLT
results based on a specific indexed document. This is commonly used in
reaction to a user clicking a "more like this" link on existing search results.
The key input to this option is a reference to the indexed document that you
want similar results for.

•	 As a request handler with externally supplied text: The MLT request
handler can give MLT results based on text posted to the request handler. For
example, if you were to send a text file to the request handler, then it would
return the documents in the index that are most similar to it. This is atypical,
but an interesting option nonetheless.

The essences of the internal workings of MLT operate like this:

1.	 Gather all of the terms with frequency information from the input document:
°° If the input document is a reference to a document within the

index, then loop over the fields listed in mlt.fl, and then the term
information needed is readily there for the taking if the field has
termVectors enabled. Otherwise get the stored text, and re-analyze
it to derive the terms (slower).

°° If the input document is posted as text to the request handler, then
analyze it to derive the terms. The analysis used is that configured for
the first field listed in mlt.fl.

2.	 Filter the terms based on configured thresholds. What remains are only the
interesting terms.

3.	 Construct a query with these interesting terms across all of the fields listed in
mlt.fl.

Chapter 7

[231]

Configuration parameters
In the following configuration options, the input document is either each search
result returned if MLT is used as a component, or it is the first document returned
from a query to the MLT request handler, or it is the plain text sent to the request
handler. It simply depends on how you use it.

Parameters specific to the MLT search component
Using the MLT search component adorns an existing search with MLT results for
each document returned.

•	 mlt: You must set this to true to enable MLT when using it as a search
component. It defaults to false.

•	 mlt.count: The number of MLT results to be returned for each document
returned in the main query. It defaults to 5.

Parameters specific to the MLT request handler
Using the MLT request handler is more like a regular search except that the results
are documents similar to the input document. Additionally, any filters (the fq
parameter) that are specified are also in effect.

•	 q, start, rows: The MLT request handler uses the same standard parameters
for the query start offset, and row count as used for querying. But in this
case, start and rows is for paging into the MLT results instead of the results
of the query. The query is typically one that simply references one document
such as id:12345 (if your unique field looks like this). start defaults to 0
and rows to 10.

•	 mlt.match.offset: This parameter is the offset into the results of q for
picking which document is the input document. It defaults to 0 so that the
first result from q is chosen. As q will typically search for one document, this
is rarely modified.

•	 mlt.match.include: The input document is normally included in the
response if it is in the index (see the match element in the output of the
example) because this parameter defaults to true. Set this to false to
exclude this if that information isn't needed.

Search Components

[232]

•	 mlt.interestingTerms: If this is set to list or details, then the so-called
interesting terms that the MLT uses for the similarity query are returned with
the results in an interestingTerms element. If you enable mlt.boost, then
specifying details will additionally return the query boost value used for
each term. none or blank, the default, disables this. Aside from diagnostic
purposes, it might be useful to display these in the user interface, either listed
out or in a tag cloud.

Use mlt.interestingTerms while experimenting with the results to
get an insight into why the MLT results matched the documents it did.

•	 facet, ...: The MLT request handler supports faceting the MLT results. See
the previous chapter on how to use faceting.

Additionally, remember to configure the MLT request handler in
solrconfig.xml. An example of this is shown later in the chapter.

Common MLT parameters
These parameters are common to both the search component and request handler.
Some of the thresholds here are for tuning which terms are interesting to MLT.
In general, expanding thresholds (that is, lowering minimums and increasing
maximums) will yield more useful MLT results at the expense of performance. The
parameters are explained as follows:

•	 mlt.fl: A comma or space separated list of fields to consider in MLT. The
interesting terms are searched within these fields only. These field(s) must be
indexed. Furthermore, assuming the input document is in the index instead
of supplied externally (as is typical), then each field should ideally have
termVectors set to true in the schema (best for query performance although
index size is larger). If that isn't done, then the field must be stored so that
MLT can re-analyze the text at runtime to derive the term vector information.
It isn't necessary to use the same strategy for each field.

•	 mlt.qf: Different field boosts can optionally be specified with this parameter.
This uses the same syntax as the qf parameter used by the dismax query
parser (for example: field1^2.0 field2^0.5). The fields referenced should
also be listed in mlt.fl. If there is a title or similar identifying field, then this
field should probably be boosted higher.

Chapter 7

[233]

•	 mlt.mintf: The minimum number of times (frequency) a term must be used
within a document (across those fields in mlt.fl anyway) for it to be an
interesting term. The default is 2. For small documents, such as in the case of
our MusicBrainz data set, try lowering this to 1.

•	 mlt.mindf: The minimum number of documents that a term must be used
in for it to be an interesting term. It defaults to 5, which is fairly reasonable.
For very small indexes, as little as 2 is plausible, and maybe larger for large
multi-million document indexes with common words.

•	 mlt.minwl: The minimum number of characters in an interesting term. It
defaults to 0, effectively disabling the threshold. Consider raising this to 2 or
3.

•	 mlt.maxwl: The maximum number of characters in an interesting term. It
defaults to 0 and disables the threshold. Some really long terms might be
flukes in input data and are out of your control, but most likely this threshold
can be skipped.

•	 mlt.maxqt: The maximum number of interesting terms that will be used in an
MLT query. It is limited to 25 by default, which is plenty.

•	 mlt.maxntp: Fields without termVectors enabled take longer for MLT to
analyze. This parameter sets a threshold to limit the number of terms to
consider in a given field to further limit the performance impact. It defaults
to 5000.

•	 mlt.boost: This boolean toggles whether or not to boost each interesting term
used in the MLT query differently, depending on how interesting the MLT
module deems it to be. It defaults to false, but try setting it to true and
evaluating the results.

Usage advice
For ideal query performance, ensure that termVectors is enabled for the
field(s) referenced in mlt.fl. In order to further increase performance,
use fewer fields, perhaps just one dedicated for use with MLT. Using the
copyField directive in the schema makes this easy. The disadvantage
is that the source fields cannot be boosted differently with mlt.qf.
However, you might have two fields for MLT as a compromise. Use a
typical full complement of text analysis including lowercasing, synonyms,
using a stop list (such as StopFilterFactory), and aggressive
stemming in order to normalize the terms as much as possible. The
field needn't be stored if its data is copied from some other field that is
stored. During an experimentation period, look for interesting terms that
are not so interesting for inclusion in the stop word list. Lastly, some of
the configuration thresholds which scope the interesting terms can be
adjusted based on experimentation.

Search Components

[234]

MLT results example
Firstly, an important disclaimer on this example is in order. The MusicBrainz data set
is not conducive to applying the MLT feature, because it doesn't have any descriptive text.
If there were perhaps an artist description and/or widespread use of user-supplied
tags, then there might be sufficient information to make MLT useful. However,
to provide an example of the input and output of MLT, we will use MLT with
MusicBrainz anyway.

We'll be using the request handler method, the recommended approach. The MLT
request handler needs to be configured in solrconfig.xml. The important bit is the
reference to the class, the rest of it is our prerogative.

<requestHandler name="mlt_tracks" class="solr.MoreLikeThisHandler">
 <lst name="defaults">
 <str name="mlt.fl">t_name</str>
 <str name="mlt.mintf">1</str>
 <str name="mlt.mindf">2</str>
 <str name="mlt.boost">true</str>
 </lst>
</requestHandler>

This configuration shows that we're basing the MLT on just track names. Let's now
try a query for tracks similar to the song "The End is the Beginning is the End" by
The Smashing Pumpkins. The query was performed with echoParams to clearly
show the options used:

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">2</int>
 <lst name="params">
 <str name="mlt.mintf">1</str>
 <str name="mlt.mindf">2</str>
 <str name="mlt.boost">true</str>
 <str name="mlt.fl">t_name</str>
 <str name="rows">5</str>
 <str name="mlt.interestingTerms">details</str>
 <str name="indent">on</str>
 <str name="echoParams">all</str>
 <str name="fl">t_a_name,t_name,score</str>
 <str name="q">id:"Track:1810669"</str>
 <str name="qt">mlt_tracks</str>
 </lst>

Chapter 7

[235]

</lst>
<result name="match" numFound="1" start="0"
 maxScore="16.06509">
 <doc>
 <float name="score">16.06509</float>
 <str name="t_a_name">The Smashing Pumpkins</str>
 <str name="t_name">The End Is the Beginning Is the End</str>
 </doc>
</result>
<result name="response" numFound="853390" start="0"
 maxScore="6.352738">
 <doc>
 <float name="score">6.352738</float>
 <str name="t_a_name">In Grey</str>
 <str name="t_name">End Is the Beginning</str>
 </doc>
 <doc>
 <float name="score">5.6811075</float>
 <str name="t_a_name">Royal Anguish</str>
 <str name="t_name">The End Is the Beginning</str>
 </doc>
 <doc>
 <float name="score">5.6811075</float>
 <str name="t_a_name">Mangala Vallis</str>
 <str name="t_name">Is the End the Beginning</str>
 </doc>
 <doc>
 <float name="score">5.6811075</float>
 <str name="t_a_name">Ape Face</str>
 <str name="t_name">The End Is the Beginning</str>
 </doc>
 <doc>
 <float name="score">5.052292</float>
 <str name="t_a_name">The Smashing Pumpkins</str>
 <str name="t_name">The End Is the Beginning Is the End</str>
 </doc>
</result>
<lst name="interestingTerms">
 <float name="t_name:end">1.0</float>
 <float name="t_name:is">0.7420872</float>
 <float name="t_name:the">0.6686879</float>
 <float name="t_name:beginning">0.6207893</float>
</lst>
</response>

Search Components

[236]

The <result name="match"> element is there due to mlt.match.include
defaulting to true. The <result name="response" …> element has the main
MLT search results. The fact that so many documents were found is not material
to any MLT response; all it takes is one interesting term in common. The interesting
terms were deliberately requested so that we can get an insight on the basis of the
similarity. The fact that is and the were included shows that we don't have a stop
list for this field—an obvious thing we'd need to fix. Nearly any stop list is going to
have such words.

For further diagnostic information on the score computation, set
debugQuery to true. This is a highly advanced method but exposes
information invaluable to understand the scores. Doing so in our
example shows that the main reason the top hit was on top was not only
because it contained all of the interesting terms as did the others in the
top 5, but also because it is the shortest in length (a high fieldNorm).
The #5 result had "Beginning" twice, which resulted in a high term
frequency (termFreq), but it wasn't enough to bring it to the top.

The Stats component
The Stats component computes some mathematical statistics of specified numeric
fields in the index. The main requirement is that the field be indexed. The following
statistics are computed over the non-null values (except missing which counts
the nulls):

•	 min: The smallest value.
•	 max: The largest value.
•	 sum: The sum.
•	 count: The quantity of non-null values accumulated in these statistics.
•	 missing: The quantity of records skipped due to missing values.
•	 sumOfSquares: The sum of the square of each value. This is probably the

least useful and is used internally to compute stddev efficiently.
•	 mean: The average value.
•	 stddev: The standard deviation of the values.

Chapter 7

[237]

Configuring the stats component
This component performs a simple task and so as expected, it is also simple to
configure.

•	 stats: Set this to true in order to enable the component. It defaults to false.
•	 stats.field: Set this to the name of the field to perform statistics on. It

is required. This parameter can be set multiple times in order to perform
statistics on more than one field.

•	 stats.facet: Optionally, set this to the name of the field in which you want
to facet the statistics over. Instead of the results having just one set of stats
(assuming one stats.field), there will be a set for each value in this field,
and those statistics will be based on that corresponding subset of data. This
parameter can be specified multiple times to compute the statistics over
multiple fields' values. In addition, you can use the field-specific parameter
name syntax for cases when you are computing stats on different fields and
you want to use a different facet field for each statistic field. For example,
you can specify f.t_duration.stats.facet=tracktype assuming a
hypothetical field tracktype to categorize the t_duration statistics on. The
field should be indexed and not tokenized.

Due to bug SOLR-1782, a stats.facet field should not be multi-
valued, and it should be limited to a string. If you don't heed this advice
then the results are in question and you may get an error!

Statistics on track durations
Let's look at some statistics for the duration of tracks in MusicBrainz at:

http://localhost:8983/solr/mbtracks/select/?rows=0&indent=on&qt=
mb_tracks&stats=true&stats.field=t_duration

And here are the results:

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">5202</int>
</lst>
<result name="response" numFound="6977765" start="0"/>
<lst name="stats">
 <lst name="stats_fields">
 <lst name="t_duration">

Search Components

[238]

 <double name="min">0.0</double>
 <double name="max">36059.0</double>
 <double name="sum">1.543289275E9</double>
 <long name="count">6977765</long>
 <long name="missing">0</long>
 <double name="sumOfSquares">5.21546498201E11</double>
 <double name="mean">221.1724348699046</double>
 <double name="stddev">160.70724790290328</double>
 </lst>
 </lst>
</lst>
</response>

This query shows that on average, a song is 221 seconds (or 3 minutes 41 seconds) in
length. An example using stats.facet would produce a much longer result, which
won't be given here in order to leave space for other components. However, there is
an example at http://wiki.apache.org/solr/StatsComponent.

The Clustering component
The Clustering component is a Solr contrib module that provides an extension point
to integrate a clustering engine. Clustering is a technology that groups documents
into similar clusters, using sophisticated statistical techniques. Each cluster is
identified by a few words that were used to distinguish the documents in that cluster
from the other clusters. As with the MoreLikeThis component which also uses
statistical techniques, the quality of the results is hit or miss.

The primary means of navigation / discovery of your data should
generally be search and faceting. For so-called un-structured text use
cases, there are, by definition, few attributes to facet on. Clustering search
results and presenting tag-clouds (a visualization of faceting on words)
are generally exploratory navigation methods of last-resort in the absence
of more effective document metadata.

Presently, there are two search-result clustering algorithms available as part of the
Carrot2 open source project that this module has adapters for. Solr ships with the
needed third-party libraries—JAR files. The clustering component has an extension
point to support document clustering with anticipation of a solution coming from
the Apache Mahout open source project, but it has yet to materialize. Document
clustering is different than search-result clustering as in that it is calculated on the
entire corpus in advance of searches.

Chapter 7

[239]

To get started with exploring this feature, I'll direct you to Solr's wiki: http://wiki.
apache.org/solr/ClusteringComponent. There is "quick start" set of instructions
in which you'll be clustering Solr's example documents in under five minutes. It
should be easy to copy the necessary configuration to your Solr instance and modify
it to refer to your document's fields. As you dive into the technology, Carrot2's
powerful GUI workbench should be of great help in tuning it to get more effective
results. For a public demonstration of Carrot2's clustering, go here: http://search.
carrot2.org/stable/search

Result grouping/Field collapsing
Result Grouping and Field Collapsing are two names that suggest different ways of
looking at the same Solr feature. Result grouping, the preferred name, is the ability
to group the search results by a field value or some other criteria. This is very useful
in using Solr for reporting but also for presenting top search results from multiple
document categories. Field collapsing, the original name, is having the ability to
collapse (that is remove / withhold) search result documents that have the same
field value as a previous document. A common use-case is to mimic how Google
only shows one result for a website. The feature is roughly similar to a SQL group
by query; but the SQL incarnation returns aggregate summary rows for each group
whereas in Solr you get back a configurable number of the top rows for each group.

This important feature was officially first released in Solr 3.3. Solr
3.4 added post-group faceting and Solr 3.5, not yet released as I
write this, will have distributed-search support. Expect to see other
various improvements soon.

For an example of this feature in MusicBrainz, consider attempting to provide a
search for tracks where the tracks collapse to the artist. If a search matches multiple
tracks produced by the same artist, then only the highest scoring track will be
returned for that artist. That particular document in the results can be said to have
"rolled-up" or "collapsed" those that were removed.

A track's artist ID is stored in t_a_id with field type long. The grouping capability
in Solr 3 is limited to grouping on string fields; doing otherwise yields an error. I
added a string variant of this field named t_a_id_str with a copyField to copy
the value from t_a_id. Here's the URL for a search for Cherub Rock using the mb_
tracks request handler collapsing on t_a_id_str:

http://localhost:8983/solr/mbtracks/select?qt=mb_tracks
&q=Cherub+Rock&fl=score,id,t_a_id,t_a_name,t_name,t_r_name
&rows=2&group=true&group.field=t_a_id_str&group.ngroups=true

http://wiki.apache.org/solr/ClusteringComponent

Search Components

[240]

We only asked for two rows, for brevity. Here are the results:

<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">299</int>
</lst>
<lst name="grouped">
 <lst name="t_a_id_str">
 <int name="matches">87</int>
 <int name="ngroups">18</int>
 <arr name="groups">
 <lst>
 <str name="groupValue">11650</str>
 <result name="doclist" numFound="69" start="0"
 maxScore="14.219993">
 <doc>
 <float name="score">14.219993</float>
 <str name="id">Track:414903</str>
 <long name="t_a_id">11650</long>
 <str name="t_a_name">The Smashing Pumpkins</str>
 <str name="t_name">Cherub Rock</str>
 <str name="t_r_name">Cherub Rock</str>
 </doc>
 </result>
 </lst>
 <lst>
 <str name="groupValue">33677</str>
 <result name="doclist" numFound="1" start="0"
 maxScore="13.9314">
 <doc>
 <float name="score">13.9314</float>
 <str name="id">Track:6855353</str>
 <long name="t_a_id">33677</long>
 <str name="t_a_name">Razed in Black</str>
 <str name="t_name">Cherub Rock</str>
 <str name="t_r_name">Cherub Rock: A Gothic-Industrial
 Tribute to the Smashing Pumpkins</str>
 </doc>
 </result>
 </lst>
 </arr>
 </lst>
</lst>
</response>

Chapter 7

[241]

I've highlighted the beginning part of the grouping, which reflects that a grouped
response has a fairly different response structure than a regular one. The matches
number is 87 which is equivalent to numFound attribute when there is no grouping—
the number of matching documents. ngroups is 18, which is the number of groups
found. Each group begins by showing the group's value and then a document list
structure that looks just like normal search results. Instead of this grouped response,
you'll see a parameter soon that will use the normal response format but it lacks
information like how many documents are in the group.

Configuring result grouping
Result grouping is actually not a Solr component but it feels like one because it modifies
the response and it has its own set of parameters that start with a common prefix.
Due to the ways it must interact with the search, it is implemented internally as an
adjunct to the Query component.

Grouping is either by field value, as we have explained thus far, or by documents
that match a given query. This is analogous to how the facet component features
field value faceting (facet.field) and facet queries (facet.query), but for
grouping. You can set the corresponding grouping parameters any number of times,
but you must set at least one of them or you'll get an error. Each grouping list is
independent.

The following are a list of the query parameters to configure result grouping:

•	 group: This must be set to true to enable result grouping.
•	 group.field: The name of the field to group results on. The field

requirements are the same as sorting—one indexed token. Additionally, the
field can only be a string; however, Solr 4 lifts that restriction. This parameter
can be set multiple times, which adds separate group lists to the response.

Grouping on multiple fields as one grouping is not supported.
You can achieve this by creating a combined field in the index
and grouping on that.

•	 group.query: A Solr query that will group all documents that match it
into a single group. This parameter can be set multiple times, which adds
separate group lists to the response. This parameter is analogous to facet.
query but for grouping.

Search Components

[242]

•	 group.truncate: (new in Solr 3.4) A boolean option that, when enabled,
will make the Facet and Stats components only use the first document in each
group, ignoring all other documents. This feature is also known as post group
faceting. It's disabled by default but it's likely you should enable it.

Multi-select faceting (tagging and excluding filters) doesn't work with
group.truncate—see SOLR-2780. It might be fixed by Solr 3.5.

•	 rows and start and sort: These parameters page across the groups and sort
the groups. So, rows means the number of groups to return, not the number
of documents, which might be more depending on group.limit. If group.
format is changed to simple, then rows and start (but not sort) retains the
original document based meaning.

•	 group.limit: The number of documents to return within each group. By
default, this is set to 1—typical usage for a field collapsing scenario.

•	 group.offset: The offset into the result documents of each group to page
into. Defaults to 0.

•	 group.sort: The sort order for the documents within each group. If not
specified, it sorts by how the groups are sorted.

•	 group.ngroups: A boolean that, when enabled, will return the number of
matching groups in the response. It's disabled by default for performance
reasons.

•	 group.format: The response format: grouped (the default) or simple (that
is flat). The simple format appears like a flattened version of grouped, as it
is a single list of documents. It does not contain information on how many
documents in total matched each group because each group is not delineated.
The start and rows parameters now operate on the resulting flat document
list instead of the groups.

•	 group.main: A boolean option that, when true, will make the response
formatted like a normal non-grouped search, taking the documents from the
first group only. It forces group.format to simple, and therefore the start
and rows parameters work normally.

•	 group.cache.percent: The grouping cache size, expressed in terms of the
percentage of the number of documents in the index (0-100). It defaults to 0.
A plain keyword search or match-all-docs query performs best without the
cache, whereas other queries perform better. If you wish to use caching, a
suggested number is 20. The cache is an intermediate transient one used in
the course of the grouping query execution.

Chapter 7

[243]

There are some features that have already been implemented in the Solr 4 codebase
that are unlikely to happen in Solr 3, like grouping by function query, and grouping
on all field types (not just string). Remember that result grouping is fairly new, with
improvements to it happening at a quick pace. Support for distributed-search (see
Chapter 10, Scaling Solr) is coming in Solr 3.5, for example, but it doesn't support
group.truncate. For the latest information, see Solr's Wiki: http://wiki.apache.
org/solr/FieldCollapsing

The TermVector component
This component is used to expose the raw term vector information for fields that
have this option enabled in the schema—termVectors set to true. It is false by
default. The term vector is per field and per document. It lists each indexed term
in order with the offsets into the original text, term frequency, and document
frequency. It's not that useful so I'll refer you to the wiki for further information:

http://wiki.apache.org/solr/TermVectorComponent

Summary
Consider what you've seen with Solr search components: highlighting search results,
suggesting search spelling corrections, query autocomplete, editorially modifying
query results for particular user queries, suggesting documents "more like this",
calculating mathematical statistics of indexed numbers, grouping/collapsing search
results. By now it should be clear why the text search capability of your database is
inadequate for all but basic needs. Even Lucene-based solutions don't necessarily
have the extensive feature-set that you've seen here. You may have once thought
that searching was a relatively basic thing, but Solr search components really
demonstrate how much more there is to it.

The chapters thus far have aimed to show you the majority of the features in Solr
and to serve as a reference guide for them. The remaining chapters don't follow
this pattern. In the next chapter, you're going to learn about various deployment
concerns, such as logging, testing, security, and backups.

http://wiki.apache.org/solr/TermVectorComponent
http://wiki.apache.org/solr/TermVectorComponent

Deployment
Now that you have identified the information you want to make searchable, built
the Solr schema to support your expected queries, and made the tweaks to the
configuration you need, you're ready to deploy your Solr based search platform
into production. While the process of deployment may seem simple after all of the
effort you've gone through in development, it brings its own set of challenges. In
this chapter, we'll look at the issues that come up when going from "Solr runs on my
desktop" to "Solr is ready for the enterprise".

We'll see the following topics in this chapter:

•	 Implementation methodology
•	 Install Solr into a Servlet container
•	 Logging
•	 A SearchHandler per search interface
•	 Solr cores
•	 Monitoring Solr
•	 Securing Solr

Deployment methodology for Solr
There are a number of questions that you need to ask yourself in order to inform the
development of a smooth deployment strategy for Solr. The deployment process
should ideally be fully scripted and integrated into the existing Configuration
Management (CM) process of your application.

Deployment

[246]

Configuration Management is the task of tracking and controlling
changes in the software. CM attempts to make the changes
knowable that occur in software as it evolves to mitigate mistakes
caused due to those changes.

Questions to ask
The list of questions that you'll want to answer to work in conjunction with your
operations team include:

•	 How similar is my deployment environment to my development and test
environments? Can I project that if one Solr instance was enough to meet
my load requirements in test then it is also applicable to the load expected in
production based on having similar physical hardware?

•	 Do I need multiple Solr servers to meet the projected load? If so, then what
approach am I to use? Replication? Distributed Search? We cover this topic in
Chapter 10, Scaling Solr.

•	 Do I have an existing build tool such as Ant/MSBuild/Capistrano with
which to integrate the deployment process into? Does my organization use a
deployment tool such as Puppet or Chef that I can leverage?

•	 How will I import the initial data into Solr? Is this a one time only process
that might take hours or days to perform and needs to be scheduled ahead of
time? Is there a nightly process in the application that will perform this step?
Can I trigger the load process from the deploy script?

•	 Have I changed the source code required to build Solr to meet my own
needs? Do I need to version it in my own source control repository? Can I
package my modifications to Solr as discrete components instead of changing
the source of Solr and rebuilding?

•	 Do I have full access to index data in the production environment, or do
I have to coordinate with an Operations Team who are responsible for
controlling access to production? If Operations is performing the indexing
tasks, are the steps required properly documented and automated?

•	 Do I need to define acceptance tests for ensuring Solr is returning the
appropriate results for a specific search before moving to production?

•	 What are the defined performance targets, such as requests per second,
time to index data, time to perform query that Solr needs to meet? Are these
documented as a Service Level Agreement (SLA)?

•	 Into what kind of servlet container (Tomcat, Jetty, and so on) will Solr be
deployed? Does how I secure Solr change depending on the servlet container?

Chapter 8

[247]

•	 What is my monitoring strategy for making sure Solr is performing properly?
This isn't just about Solr's response time or error monitoring but critically
includes the user queries. The single best tool for improving your search
relevance is to look at your user queries. A reasonable user query that returns
zero results directly points to how to improve your relevancy.

•	 Do I need to store index data directories separately from application code
directories, for instance on a separate hard drive? If I have small enough
indexes to fit in RAM, can I use a memory-based filesystem?

•	 What is my backup strategy for my indexes, if any? If the indexes can be
rebuilt quickly from another data source, then backups may not be needed.
But if the indexes are the "Gold Master", such as from crawling the Web for
data that can't be re-crawled, or the lead time to rebuild an index is too great,
then frequent backups are crucial.

•	 Are any scripted administration tasks required, for example performing
index optimizations, old backups removal, deletion of stale data, or
rebuilding spell check dictionaries?

•	 Am I better off with an externally hosted Solr capability? There are a number
of companies that have launched SaaS offerings for Solr, from Acquia
offering hosted Solr search specifically for Drupal based sites to WebSolr and
SolrHQ providing generic Solr hosting.

Installing Solr into a Servlet container
Solr is deployed as a simple WAR (Web application archive) file that packages
up servlets, JSP pages, code libraries, and all of the other bits that are required to
run Solr. Therefore, Solr can be deployed into any Java EE Servlet Container that
meets the Servlet 2.4 specification, such as Apache Tomcat, Websphere, JRun, and
GlassFish, as well as Jetty, which ships with Solr to run the example app.

Deployment

[248]

Differences between Servlet containers
The key thing to resolve when working with Solr and the various Servlet containers
is that technically you are supposed to compile a single WAR file and deploy that
into the Servlet container. It is the container's responsibility to figure out how to
unpack the components that make up the WAR file and deploy them properly. For
example, with Jetty you place the WAR file in the /webapps directory, but when you
start Jetty, it unpacks the WAR file in the /work directory as a subdirectory, with
a somewhat cryptic name that looks something like Jetty_0_0_0_0_8983_solr.
war__solr__k1kf17. In contrast, with Apache Tomcat, you place the solr.war file
into the /webapp directory. When you either start up Tomcat, or Tomcat notices
the new .war file, it unpacks it into the /webapp directory. Therefore, you will have
the original /webapp/solr.war and the newly unpacked (exploded) /webapp/
solr version. The Servlet specification carefully defines what makes up a WAR file.
However, it does not define exactly how to unpack and deploy the WAR files, so
your specific steps will depend on the Servlet container you are using.
For information specific to various servlet containers, see Solr's wiki:
http://wiki.apache.org/solr/SolrInstall

If you are not strongly predisposed to choosing a particular Servlet
container, then consider Jetty, which is a remarkably lightweight, stable,
and fast Servlet container. While written by the Jetty project, they have
provided a reasonably unbiased summary of the various reasons to
choose Jetty at http://www.webtide.com/choose/jetty.jsp

Defining solr.home property
Probably the biggest thing that trips up folks deploying into different containers is
specifying the solr.home property. Solr stores all of its configuration information
outside of the deployed webapp, separating the data part from the code part for
running Solr. In the example app, while Solr is deployed and running from a
subdirectory in /work, the solr.home directory is pointing to the top level /solr
directory, where all of the data and configuration information is kept. You can think
of solr.home as being analogous to where the data and configuration is stored for a
relational database like MySQL. You don't package your MySQL database as part of
the WAR file, and nor do you package your Lucene indexes.

By default, Solr expects the solr.home directory to be a subdirectory called /solr
in the current working directory as defined by the Servlet container. With both Jetty
and Tomcat you can override that by passing in a JVM argument that is somewhat
confusingly namespaced under the solr namespace as solr.solr.home:

-Dsolr.solr.home=/Users/epugh/solrbook/solr

Chapter 8

[249]

Alternatively, you may find it easier to specify the solr.home property by
appending it to the JAVA_OPTS system variable. On Unix systems you would do:

>>export JAVA_OPTS=\"$JAVA_OPTS -Dsolr.solr.home=/Users/epugh/
 solrbook/solr"

Or lastly, you may choose to use JNDI with Tomcat to specify the solr.home
property as well as where the solr.war file is located. JNDI (Java Naming and
Directory Interface) is a very powerful, if somewhat difficult to use, directory service
that allows Java clients such as Tomcat to look up data and objects by name.

By configuring the stanza appropriately, I was able to load up the solr.war (cit)
file and home directory from the example configuration shipped with Jetty using
Tomcat instead. The following stanza went in the /apache-tomcat-6-0.18/conf/
Catalina/localhost directory that I downloaded from http://tomcat.apache.
org, in a file called
solr.xml:

<Context docBase="/Users/epugh/solr_src/example/webapps/solr.war"
 debug="0" crossContext="true" >
<Environment name="solr/home" type="java.lang.String"
 value="/Users/epugh/solr_src/example/solr" override="true" />
</Context>

I had to create the ./Catalina/localhost subdirectories manually.

Note the somewhat confusing JNDI name for solr.home is solr/
home. This is because JNDI is a tree structure, with the home variable
being specified as a node of the Solr branch of the tree. By specifying
multiple different context stanzas, you can deploy multiple separate
Solr instances in a single Tomcat instance.

Logging
Solr's logging facility provides a wealth of information, from basic performance
statistics, to what queries are being run, to any exceptions encountered by Solr. The
log files should be one of the first places to look when you want to investigate any
issues with your Solr deployment. There are two types of logs:

•	 The HTTP server request style logs, which record the individual web
requests made to Solr.

•	 The Solr application logging that uses SLF4J (Simple Logging Framework for
Java, a logging façade),which uses the built-in Java JDK logging facility to log
the internal operations of Solr.

Deployment

[250]

HTTP server request access logs
The HTTP server request logs record the requests that come in and are defined by the
Servlet container in which Solr is deployed. For example, the default configuration
for managing the server logs in Jetty is defined in jetty.xml:

<Ref id="RequestLog">
 <Set name="requestLog">
 <New id="RequestLogImpl" class="org.mortbay.jetty.NCSARequestLog">
 <Arg><SystemProperty name="jetty.logs"
 default="./logs"/>/yyyy_mm_dd.request.log</Arg>
 <Set name="retainDays">90</Set>
 <Set name="append">true</Set>
 <Set name="extended">false</Set>
 <Set name="LogTimeZone">GMT</Set>
 </New>
 </Set>
</Ref>

The log directory is created in the subdirectory of the Jetty directory. If you have
multiple drives and want to store your data separately from your application
directory, then you can specify a different directory. Depending on how much traffic
you get, you should adjust the number of days to preserve the log files.

I recommend you keep the log files for as long as possible by archiving them. The
search request data in these files is some of the best data available to help you
improve the relevancy of your search results. By using web analytics tools such as
a venerable commercial package WebTrends or the open source AWStats package
to parse your request logs, you can quickly visualize how often different queries
are run, and what search terms are frequently being used. This leads to a better
understanding of what your users are searching for.

Tailing the HTTP logs is one of the best ways to keep an eye on a deployed
Solr. You'll see each request as it comes in and can gain a feel for what types of
transactions are being performed, whether it is frequent indexing of new data, or
different types of searches being performed. A pause in the logging will quickly
highlight Garbage Collection issues!

The request time data will let you quickly see performance issues. Here is a sample
of some requests being logged. You can see the first request is a POST to the /solr/
update URL from a browser running locally (127.0.0.1) with the date. The request
was successful, with a 200 HTTP status code being recorded. The POST took 149
milliseconds. The second line shows a request for the admin page being made, which
also was successful and took a slow 3,816 milliseconds, primarily because in Jetty,
the JSP page is compiled the first time it is requested.

Chapter 8

[251]

The last line shows a search for dell being made to the /solr/select URL. You can
see that up to 10 results were requested and that it was successfully executed in 378
milliseconds.

On a faster machine with more memory and a properly "warmed" Solr cache, you
can expect a few 10s of millisecond result time. Unfortunately, you don't get to see
the number of results returned, as this log only records the request.

127.0.0.1 - - [25/02/2009:22:57:14 +0000] "POST /solr/update HTTP/1.1"
200 149
127.0.0.1 - - [25/02/2009:22:57:33 +0000] "GET /solr/admin/ HTTP/1.1"
200 3816
127.0.0.1 - - [25/02/2009:22:57:33 +0000] "GET /solr/admin/
 solr-admin.css
 HTTP/1.1" 200 3846
127.0.0.1 - - [25/02/2009:22:57:33 +0000] "GET /solr/admin/favicon.ico
 HTTP/1.1" 200 1146
127.0.0.1 - - [25/02/2009:22:57:33 +0000] "GET /solr/admin/
 solr_small.png
 HTTP/1.1" 200 7926
127.0.0.1 - - [25/02/2009:22:57:33 +0000] "GET /solr/admin/favicon.ico
 HTTP/1.1" 200 1146
127.0.0.1 - - [25/02/2009:22:57:36 +0000] "GET /solr/select/?q=dell%0D
%0A&version=2.2&start=0&rows=10&indent=on
 HTTP/1.1" 200 378

While you may not see things quite the same way Neo did in the movie The Matrix,
you will get a good gut feeling about how Solr is performing!

AWStats is a full-featured open source request log file analyzer
under the GPL license and available from http://awstats.
sourceforge.net.

Solr application logging
Logging events is a crucial part of any enterprise system. Veteran Java programmers
know that the history of Java and logging is complicated, resulting in a fragmented
landscape. As of Version 1.4, Solr standardized on using the Simple Logging Facade
for Java (SLF4J) package, which logs to another target logging package selected at
runtime instead of at compile time. The default distribution of Solr targets Java's
built-in logging (aka JDK logging), but now alternative more powerful packages like
Log4j or Logback are easily supported.

Deployment

[252]

Configuring logging output
By default, Solr's JDK logging configuration sends its logging messages to the
standard error stream:

2009-02-26 13:00:51.415::INFO: Logging to STDERR via org.mortbay.log.
StdErrLog

Obviously, in a production environment, Solr will be running as a service, which
won't be continuously monitoring the standard error stream. You will want the
messages to be recorded to a log file instead. In order to set up basic logging to a file,
create a logging.properties file at the root of Solr with the following contents:

Default global logging level:
.level = INFO

Write to a file:
handlers = java.util.logging.ConsoleHandler, java.util.logging.
FileHandler

Write log messages in human readable format:
java.util.logging.FileHandler.formatter = java.util.logging.
SimpleFormatter
java.util.logging.ConsoleHandler.formatter = java.util.logging.
SimpleFormatter

Log to the logs subdirectory, with log files named solrxxx.log
java.util.logging.FileHandler.pattern = ./logs/solr_log-%g.log
java.util.logging.FileHandler.append = true
java.util.logging.FileHandler.count = 10
java.util.logging.FileHandler.limit = 10000000 #Roughly 10MB

When you start Solr, you need to pass the following code snippet in the location of
the logging.properties file:

>>java -Djava.util.logging.config.file=logging.properties -jar
 start.jar

By specifying two log handlers, you can send output to the console as well as log
files. The FileHandler logging is configured to create up to 10 separate logs, each
with 10 MB of information. The log files are appended, so that you can restart Solr
and not lose previous logging information. Note, if you are running Solr as a service,
it is probably going to redirect the STDERR output from the ConsoleHandler
to a log file as well. In that case, you will want to remove the java.util.
ConsoleHandler from the list of handlers. Another option is to reduce how much is
considered as output by specifying java.util.logging.ConsoleHandler.level =
WARNING.

Chapter 8

[253]

Logging using Log4j
Most Java developers prefer Log4j over JDK logging. You might choose to configure
Solr to use it instead, for any number of reasons:

•	 You're using a Servlet container that itself uses Log4j, such as JBoss. This
would result in a more simplified and integrated approach.

•	 You wish to take advantage of the numerous Log4j appenders available,
which can log to just about anything, including Windows Event Logs, SNMP,
syslog, and so on.

•	 To use a Log4j compatible logging viewer such as:
°° Chainsaw—http://logging.apache.org/chainsaw/

°° Vigilog—http://vigilog.sourceforge.net/

•	 Familiarity—Log4j has been around since 1999 and is very popular.

The latest supported Log4j JAR file is in the 1.2 series and can be downloaded here
at http://logging.apache.org/log4j/1.2/. Avoid 1.3 and 3.0, which are defunct
releases that don't have wide adoption.

In order to change Solr to use Log4j, just remove the slf4j-jdk14-1.5.5.jar from
the webapp/WEB-INF/lib directory and replace it with slf4j-log4j12-1.5.5.jar.
Of course, you must also place Log4j's JAR file in that directory. You can find the
various SLF4J distributions at http://www.slf4j.org/dist/. Make sure that you
download the distribution that matches the version of SLF4J packaged with Solr
or upgrade Solr's versions. Otherwise you may end up with JAR compatibility
issues. As Erik Hatcher in a post to the solr-dev mailing list memorably called it:
JARmageddon.

More information on configuring Log4j is available at http://logging.apache.
org/log4j/.

Jetty startup integration
Regardless of which logging solution you go with, you don't want to make the
startup arguments for Solr more complex. You can leverage Jetty's configuration
to specify these system properties during startup. Edit jetty.xml and add the
following stanza to the outermost <Configure id="Server" class="org.
mortbay.jetty.Server"/> element:

<Call class="java.lang.System" name="setProperty">
<Arg>log4j.properties</Arg>
<Arg>file:/Users/epugh/log4j.properties</Arg>
</Call>

Deployment

[254]

Managing log levels at runtime
Sometimes you need more information than you are typically logging to debug a
specific issue, so Solr provides an admin interface at http://localhost:8983/
solr/admin/logging to change the logging verbosity of the components in Solr.
Unfortunately, it only works with JDK logging.

While you can't change the overall setup of your logging strategy, such as the
appenders or file rollover strategies at runtime, you can change the level of detail to
log without restarting Solr. If you change a component like org.apache.solr.core.
SolrCore to FINE level of logging, then make a search request to see more detailed
information. One thing to remember is that these customizations are NOT persisted
through restarts of Solr. If you find that you are reapplying log configuration
changes after every restart, then you should change your default logging setup to
specify custom logging detail levels.

Even if you adjust the logging levels here to something more detailed,
you still probably won't see the messages in the console. By default,
the ConsoleHandler has an INFO level threshold. You can lower
it with this in your logging.properties: java.util.logging.
ConsoleHandler.level = FINE

One of the challenges with logging is that you need to log enough
details to troubleshoot issues, but not so much that your log files
become ridiculously large and you can't winnow through the
information to find what you are looking for.
Tools have arisen to manage those log files and make actionable
decisions on the information stored within. Splunk is one
commercial product, another is Loggly, a cloud based logging tool
that is based on Solr!
More information is available at http://www.splunk.com/ and
http://www.loggly.com.

A SearchHandler per search interface?
Two questions to answer early on when configuring Solr and thinking about who the
consumers of the search services are:

•	 Are you providing generic search services that may be consumed by a
variety of end user clients?

•	 Are you providing search to specific end user applications?

http://www.splunk.com/
http://www.splunk.com/

Chapter 8

[255]

If you are providing generic search functionality to an unknown set of clients, then
you may have just a single request handler handling search requests at /solr/
select, which provides full access to the index. However, it is likely that Solr is
powering interfaces for one or more applications that you know are going to make
certain specific kinds of searches.

For example, say you have an e-commerce site that supports searching for products.
In that case, you may want to only display products that are available for purchase.
A specifically named request handler that always returns the stock products (using
appends, as fq can be specified multiple times) and limits the rows to 50 (using
invariants) would be appropriate:

<requestHandler name="/products" class="solr.SearchHandler" >
 <lst name="invariants">
 <int name="rows">50</int>
 </lst>
 <lst name="appends">
 <str name="fq">inStock:true</str>
 </lst>
</requestHandler>

However, the administrators of the same site would want to be able to find all
products, regardless of if they are in stock or not. They would be using a different
search interface and so you would provide a different request handler that returns all
of the information available about your products:

<requestHandler name="/allproducts" class="solr.SearchHandler" />

Later on, if your site needs to change, or if the internal searching site changes,
particularly with respect to tuning search relevancy, you can easily modify the
appropriate request handler without impacting other applications interacting
with Solr.

You can always add new request handlers to meet new needs by
requiring the qt request parameter to be passed in the query like this: /
solr/select?qt=allproducts. However, this doesn't look quite as
clean as having specific URLs like /solr/allproducts. A fully named
request handler can also have access to them controlled by use of Servlet
security (see the Securing Solr from prying eyes section later in this chapter).

Deployment

[256]

Leveraging Solr cores
Recall from Chapter 2, Schema and Text Analysis that you can either put different types
of data into a single index or use separate indexes. Up to this point, the only way you
would know how to use separate indexes is to actually run multiple instances of Solr.
However, adding another complete instance of Solr for each type of data you want to
index is a rather cumbersome process!

Solr cores allow multiple separate indexes to exist within a single Solr server
instance as well as bringing features like hot core reloading and swapping that make
administration easier.

Each Solr core consists of its own configuration files and data. Performing searches
and indexing in a multicore setup is almost the same as using Solr without cores.
You just add the name of the core to the individual URLs. Instead of doing a search
through the URL:
http://localhost:8983/solr/select?q=dave%20matthews

In a multicore environment, you would search a core named mbartists via:
http://localhost:8983/solr/mbartists/select?q=dave%20matthews

Other than the introduction of the core name in the URL, you still perform all of your
management tasks, searches, and updates in the same way as you always did in a
single core setup.

Configuring solr.xml
When Solr starts up, it checks for the presence of a solr.xml file in the solr.home
directory. If one exists, then it loads up all the cores defined in solr.xml. We've used
multiple cores in the sample Solr setup shipped with this book to manage the various
indexes used in the examples.

You can see the multicore configuration at ./examples/cores/solr.xml:
<solr persistent="false" sharedLib="lib">
 <coresadminPath="/admin/cores" shareSchema="true">

 <core name="mbtracks" instanceDir="mbtype"
 dataDir="../../cores_data/mbtracks" />
 <core name="mbartists" instanceDir="mbtype"
 dataDir="../../cores_data/mbartists" />
 <core name="mbreleases" instanceDir="mbtype"
 dataDir="../../cores_data/mbreleases" />

 <core name="crawler" instanceDir="crawler"
 dataDir="../../cores_data/crawler" />
 <core name="karaoke" instanceDir="karaoke"
 dataDir="../../cores_data/karaoke" />
 </cores>
</solr>

Chapter 8

[257]

Notice that three of the cores: mbtracks, mbartists, and mbreleases all share the
same instanceDir of mbtype? This allows you to make configuration changes in
one location and affect all three cores.

Some of the key multicore configuration values are:

•	 persistent="false" specifies that any changes we make at runtime to the
cores, like renaming them, are not persisted. If you want to persist changes
to the cores between restarts, then set persistent="true". Note, this means
the solr.xml file is regenerated without any original comments and requires
the user running Solr to have write access to the filesystem.

•	 sharedLib="lib" specifies the path to the lib directory containing shared
JAR files for all the cores. On the other hand, if you have a core with its own
specific JAR files, then you would place them in the core/lib directory. For
example, the karaoke core uses Solr Cell (see Chapter 3, Indexing Data) for
indexing rich content, so the JARs for parsing and extracting data from rich
documents are located in ./examples/cores/karaoke/lib/.

•	 adminPath specifies the URL path at which the cores can be managed at
runtime. There's no need to change it from "/admin/cores". See below for
details on the various operations you perform to cores.

•	 shareSchema allows you to use a single in-memory representation of the
schema for all the cores that use the same instanceDir. This can cut down
on your memory use and startup time, especially in situations where you
have many cores, like if you are streaming in data and generating cores on
the fly. If you are interested in using many cores, you should keep an eye on
SOLR-1293 which is the umbrella JIRA issue for Solr that fully supports lots
of cores. I have seen Solr run with dozens of cores with no issues beyond
increased startup time.

•	 defaultCoreName, if present defines the core to use if you don't include the
core name in the URL, that is /solr/select?q=*:*. This makes it easier to
upgrade from a single core Solr to a multicore setup without changing client
URLs.

Each core is configured via a fairly obvious set of properties:

•	 name specifies the name of the core, and therefore what to put in the URL to
access the core.

•	 instanceDir specifies the path to the directory that contains the conf
directory for the core, and data directory too, by default. A relative path
is relative to solr.home. In a basic single-core setup, this is typically set to
the same place as solr.home. In the preceding example we have three cores
using the same configuration directory, and two that have their own specific
configuration directories.

Deployment

[258]

•	 dataDir specifies where to store the indexes and any other supporting data,
like spell check dictionaries. If you don't define it, then by default each core
stores its information in the <instanceDir>/data directory.

•	 properties="test.properties" allows you to specify a properties file
made up of name value pairs to load for the core. This is either an absolute
path or relative to the instanceDir.

Property substitution
Property substitution allows you to externalize configuration values, which can be
very useful for customizing your Solr install with environmental specific values.
For example, in production you might want to store your indexes on a separate
solid state drive, then you would specify it as property: dataDir="${ssd.dir}".
You can also supply a default value to use if the property hasn't been set as well:
dataDir="${ssd.dir:/tmp/solr_data}". This property substitution works in
solr.xml, solrconfig.xml, schema.xml, and DIH configuration files.

You can supply the property value in a number of ways:

•	 You can pass in the property as a Java system property: -Dssd.dir=/
Volumes/ssd.

•	 You can specify the property in solr.xml:<property name="ssd.dir"
value="/Volumes/ssd"/>. You can provide properties at two scoping
levels, within a core by defining it inside the <core/> element, and then at
the container level by defining inside the <solr/> element. If you define
it at both the container level and the core level, then the core level will take
precedence. This is a very powerful tool for defining global values and then
letting you override them on a core by core basis!

•	 Classic properties file. As listed in the various core attributes above, you can
specify in your core definition the full path to a properties file to load. You
may have a pattern that your properties file will always be in /etc/solr/
solr.properties on your filesystem, and you just drop in a new Solr install
and it picks up whatever environmental values, like database parameters for
DIH or replication values, that may be needed.

The examples/cores/solr.xml file displayed above may look rather verbose
because of the dataDir parameter being essentially copied over and over. We could
have used property substitution at the solrconfig.xml level to specify the data
directory like this: <dataDir>${solr.data.dir}/${solr.core.name}</dataDir>

Chapter 8

[259]

I like to manage my environment settings by checking them
into source, so I'll have development.properties, test.
properties, staging.properties, production.
properties. I add to my environment variables (or JAVA_OPTS)
solr.environment=staging, and then load the correct
properties file based on that variable: <core name="mycore"
properties="${solr.environment}.properties"/>.

Include fragments of XML with XInclude
XInclude stands for XML Inclusions and is a W3C standard for merging a chunk
of XML into another document. Solr has support for using XInclude tags in
solrconfig.xml to incorporate a chunk of xml at load time.

In ./examples/cores/karaoke/conf/solrconfig.xml I have externalized the
<query/> configuration into three flavors: a default query cache setup, a no caching
setup, and a big query cache setup:

<xi:includehref="cores/karaoke/conf/${karaoke.xinclude.query}"
 parse="xml" xmlns:xi="http://www.w3.org/2001/XInclude">
 <xi:fallback>
 <xi:include href="cores/karaoke/conf/solrconfig-query-default.
 xml"/>
 </xi:fallback>
</xi:include>

The ${karaoke.xinclude.query} property is defined in the core definition:

<core name="karaoke" instanceDir="karaoke"
 dataDir="../../cores_data/karaoke">
<property name="karaoke.xinclude.query"
 value="solrconfig-query-nocache.xml"/>
</core>

If the XML file defined by the href attribute isn't found, then the xi:fallback
included file is returned. The fallback metaphor is primarily if you are including XML
files that are loaded via HTTP and might not be available due to network issues.

Managing cores
While there isn't a nice GUI for managing Solr cores the way there is for some other
options, the URLs you use to issue commands to Solr cores are very straightforward,
and they can easily be integrated into other management applications. The response
by default is XML, but you can also return results in JSON by appending wt=json to
the command. If you specify persistent="true" in solr.xml, then these changes
will be preserved through a reboot by overwriting solr.xml to reflect the changes.

Deployment

[260]

We'll cover a couple of the common commands using the example Solr setup in
./examples. The individual URLs listed below are stored in plain text files in ./
examples/8/ to make it easier to follow along in your own browser:

•	 STATUS: Getting the status of the current cores is done through http://
localhost:8983/solr/admin/cores?action=STATUS. You can select
the status of a specific core, such as mbartists through http://
localhost:8983/solr/admin/cores?action=STATUS&core=mbartists.
The status command provides a nice summary of the various cores, and it is
an easy way to monitor statistics showing the growth of your various cores.

•	 CREATE: You can generate a new core called karaoke_test based on the
karaoke core, on the fly, using the CREATE command through http://
localhost:8983/solr/admin/cores?action=CREATE&name=karaoke_te
st&instanceDir=karaoke&config=solrconfig.xml&schema=schema.
xml&dataDir=./examples/cores_data/karaoke_test. If you create a new
core that has the same name as an old core, then the existing core serves up
requests until the new one is generated, and then the new one takes over.

•	 RENAME: Renaming a core can be useful when you have fixed names of cores
in your client, and you want to make a core fit that name. To rename the
mbartists core to the more explicit core name music_brainz_artists,
use the URL http://localhost:8983/solr/admin/cores?action=RENA
ME&core=mbartists&other=music_brainz_artists. This naming change
only happens in memory, as it doesn't update the filesystem paths for the
index and configuration directories and doesn't make much sense unless you
persist on the name change to solr.xml.

•	 SWAP: Swapping two cores is one of the key benefits of using Solr cores.
Swapping allows you to have an offline "on deck" core that is fully populated
with updated data. In a single fast atomic operation, you can swap out the
current live core that is servicing requests with your freshly populated "on
deck" core. As it's an atomic operation, there isn't any chance of mixed data
being sent to the client. As an example, we can swap the mbtracks core with
the mbreleases core through http://localhost:8983/solr/admin/cor
es?action=SWAP&core=mbreleases&other=mbtracks. You can verify the
swap occurred by going to the mbtracks admin page and verifying that Solr
Home is displayed as cores/mbreleases/.

Chapter 8

[261]

•	 RELOAD: As you make minor changes to a core's configuration through
solrconfig.xml, schema.xml, and supporting files you don't want to be
stopping and starting Solr constantly. In an environment with even a couple
of cores, it can take some tens of seconds to restart all the cores during which
Solr is unavailable. By using the reload command, you can trigger just a
reload of a specific core without impacting the others. An example of this is
if you use synonyms.txt for query time synonym expansion. If you modify
it you can just reload the affected core! A simple example for mbartists is
http://localhost:8983/solr/admin/cores?action=RELOAD&core=mbar
tists.

•	 UNLOAD: Just like you would expect, the unload action allows you to remove
an existing core from Solr. Currently running queries are completed, but
no new queries are allowed. A simple example for mbartists is http://
localhost:8983/solr/admin/cores?action=UNLOAD&core=mbartists.

•	 MERGEINDEXES: (for advanced users) The merge command allows you to
merge one or more indexes into yet another core. This can be very useful if
you've split data across multiple cores and now want to bring them together
without re-indexing the source data all over again. You need to issue
commits to the individual indexes that are sources for data. After merging,
issue another commit to make the searchers aware of the new data. This all
happens at the Lucene index level on the filesystem, so functions such as
deduplication that work through request handlers are never invoked.

The full set of commands using curl is listed in ./8/MERGE_COMMAND.txt.

Why use multicore?
Solr's support of multiple cores in a single instance enables you to serve multiple
indexes of data in a single Solr instance. Multiple cores also address some key needs
for maintaining Solr in a production environment:

•	 Rebuilding an index: While Solr has a lot of features to handle such as
doing sparse updates to an index with minimal impact on performance,
occasionally you need to bulk update significant amounts of your data. This
invariably leads to performance issues, as your searchers are constantly being
reopened. By supporting the ability to populate a separate index in a bulk
fashion, you can optimize the offline index for updating content. Once the
offline index has been fully populated, you can use the SWAP command to
take the offline index and make it the live index.

Deployment

[262]

•	 Testing configuration changes: Configuration changes can have very
differing impacts depending on the type of data you have. If your production
Solr has massive amounts of data, moving that to a test or development
environment may not be possible. By using the CREATE and the MERGE
commands, you can make a copy of a core and test it in relative isolation
from the core being used by your end users. Use the RELOAD command to
restart your test core to validate your changes. Once you are happy with
your changes, you can either SWAP the cores or just reapply your changes to
your live core and RELOAD it.

•	 Merging separate indexes together: You may find that over time you have
more separate indexes than you need, and you want to merge them together.
You can use the MERGEINDEXES command to merge two cores together into
a third core. However, note that you need to do a commit on both cores and
ensure that no new data is indexed while the merge is happening.

•	 Renaming cores at runtime: You can build multiple versions of the same
basic core and control which one is accessed by your clients by using
the RENAME command to rename a core to match the URL the clients are
connecting to.

Should I use multiple cores?

Multi core support was first added in Solr 1.3, matured further in Solr
1.4, and now is almost required in Solr 3.x. We strongly encourage you
to start with the multiple core approach, even if your solr.xml only
has a single core listed! While slightly more complex then just having
a single index, using multi core allows you to take advantage of all the
administrative goodness of cores. We expect the concept of a single core
will be deprecated in the future as multiple cores are the key to Solr's
support for massively distributed indexes and/or huge numbers of
individual indexes.

You can learn more about Solr core related features at http://wiki.apache.org/
solr/CoreAdmin.

Monitoring Solr performance
Ensuring that Solr is meeting the SLA expectations of the enterprise is the goal of
monitoring. Solr provides both XML and JMX hooks to allow you to integrate Solr
into your enterprise monitoring platform.

Chapter 8

[263]

Don't have your own monitoring platform? There are two offerings,
available from New Relic (http://newrelic.com) and Sematext
(http://sematext.com/spm/) that provide a comprehensive
monitoring solution. Both are cloud based which communicate via a
small agent installed into Solr and provide a wealth of statistics and
analysis about the JVM, as well as Solr specific metrics such as request
response time and throughput, cache hit rate, and indexing performance.

Stats.jsp
From the admin interface, when you click on the Statistics link you receive a web
page of information about a specific index. However, what isn't immediately obvious
is that this information is actually being served up to the browser as XML with an
embedded link to an XSL style sheet that transforms it in the browser into HTML.
This means that if you perform a GET request on stats.jsp you get back XML:

>>curl http://localhost:8983/solr/mbartists/admin/stats.jsp

Open the downloaded file and you will see all the data as XML. Below is an excerpt
of the statistics available for the cache that stores individual documents and the
standard request handler with the metrics you might want to monitor highlighted.

<entry>
 <name>documentCache</name>
 <class>org.apache.solr.search.LRUCache</class>
 <version>1.0</version>
 <description>LRU Cache(maxSize=512, initialSize=512)</description>
 <stats>
 <stat name="lookups">3251</stat>
 <stat name="hits">3101</stat>
 <stat name="hitratio">0.95</stat>
 <stat name="inserts">160</stat>
 <stat name="evictions">0</stat>
 <stat name="size">160</stat>
 <stat name="warmupTime">0</stat>
 <stat name="cumulative_lookups">3251</stat>
 <stat name="cumulative_hits">3101</stat>
 <stat name="cumulative_hitratio">0.95</stat>
 <stat name="cumulative_inserts">150</stat>
 <stat name="cumulative_evictions">0</stat>
 </stats>
</entry>
<entry>

Deployment

[264]

 <name>standard</name>
 <class>org.apache.solr.handler.component.SearchHandler</class>
 <version>$Revision: 1052938 $</version>
 <description>Search using components:
 org.apache.solr.handler.component.QueryComponent,
 org.apache.solr.handler.component.FacetComponent</description>
 <stats>
 <stat name="handlerStart">1298759020886</stat>
 <stat name="requests">359</stat>
 <stat name="errors">0</stat>
 <stat name="timeouts">0</stat>
 <stat name="totalTime">9122</stat>
 <stat name="avgTimePerRequest">25.409472</stat>
 <stat name="avgRequestsPerSecond">0.446995</stat>
 </stats>
</entry>

While integrating into each monitoring system will be different, as an example you
can look at ./examples/8/check_solr.rb for a simple Ruby script that queries a
core and checks if the average hit ratio and the average time per request are above
certain thresholds:

>> ./check_solr.rb -w 13 -c 20 -imbtracks
CRITICAL - Average Time per request more than 20 milliseconds old:
39.5

JMX
Java Management Extensions (JMX) is a Java standard API for monitoring and
managing applications and network services. Originally meant to help with
server administration, it was added to J2SE Version 5. JMX enabled applications
and services expose information and available operations for resources such as
MBeans (Managed Bean). MBeans can be managed remotely by a wide variety of
management consoles such as the JConsole GUI that comes with Java and the web-
based JMX Console that comes with the JBoss application server.

As of Version 1.4, Solr exposes information about its components through MBeans.
However, actual management operations, such as re-indexing information, are not
exposed through JMX. You can leverage JMX to monitor the status of Solr, such
as finding out how many documents have been indexed, and in large enterprise
environments the JMX standard simplifies integrating monitoring tasks into existing
monitoring platforms.

Chapter 8

[265]

The information exposed via JMX Mbeans is now exposed as XML
as well: http://localhost:8983/solr/mbartists/admin/
mbeans/. This is an easier way to quickly query for JMX information.

Starting Solr with JMX
In solrconfig.xml, the stanza <jmx/> needs to be uncommented to enable JMX
support. In order to actually start up with JMX, you need to provide some extra
parameters to support remote connections, including the port to be connected to:

>>java -Dcom.sun.management.jmxremote -Dcom.sun.management.jmxremote.
port=3000 -Dcom.sun.management.jmxremote.ssl=false -Dcom.sun.
management.jmxremote.authenticate=false -jar start.jar

However, this configuration is totally insecure. In a production environment, you
would want to require usernames and passwords for access. For more information,
please refer to the JMX documentation at http://java.sun.com/j2se/1.5.0/
docs/guide/management/agent.html#remote.

J2SE ships with JConsole, a GUI client for connecting to JMX servers. In order to start
it, run the following command:

>> [JDK_HOME]/bin/jconsole

In order to connect to Solr, choose the Remote tab, and enter localhost for the Host
or IP and 3000 for the Port. As we have started without requiring authentication, you
do not need to enter a username and password:

Deployment

[266]

For Solr, the key tabs to use in JConsole are Memory and MBeans. Memory provides
a visual charting of the consumption of memory and can help you monitor low
memory situations and when to start optimizing your indexes (as discussed
in Chapter 9, Integrating Solr).

You can also monitor the various components of Solr by choosing the MBeans
tab. In order to find out how many documents you've indexed, you would look
at the SolrIndexSearch Mbean. Select solr from the tree listing on the left, and
drill down to the searcher folder and select the org.apache.solr.search.
SolrIndexSearcher component. You can see in the following screenshot that there
are currently 15 documents indexed and the most ever was 25 documents. While
you can pull this type of information out of the admin statistics web page, the JMX
standard provides a much simpler method that can be easily integrated into
other tools.

Chapter 8

[267]

In order to save yourself typing in the extra startup parameters, see the previous Jetty
Startup Integration section for how to add these JMX startup parameters like -Dcom.
sun.management.jmxremote to your Jetty configuration.

Take a walk on the wild side! Use JRuby to extract JMX
information
While JConsole is useful as a GUI application, it is hard to integrate into a larger
environment. However, by leveraging the standard nature of JMX, we can easily
script access to Solr components to use in our own monitoring systems. This makes it
easy to expose extra information to our users such as "15 documents are available for
searching". There are a number of scripting packages for Java that you might look at,
including Jython, Groovy, and BeanShell; however, in this example we are going to
use JRuby.

Deployment

[268]

JRuby is an implementation of the Ruby language running on the Java Virtual Machine
that blends the library support of Java with the simplicity of the Ruby language in a
winning combination. More information is available at http://jruby.org.

JRuby is very simple to install on Windows and Unix using your operating system's
package manager.

Once you have JRuby installed, you need to install the jmx4r gem that provides the
simple interface to JMX. The Ruby standard is to package functionality in gems,
which are similar to traditional Java JAR files.

>>jruby -S gem install jmx4r

Assuming you have started Solr with JMX enabled on port 3000, you are now ready
to interactively query Solr for status through JMX using the JRuby Interactive
Browser (JIRB) tool. JIRB allows you to type in Ruby code and interactively
manipulate your environment.

Start JIRB from the command line by running the following command:

>>jirb

Enter the following commands at the interpreter prompts:

require 'rubygems'

require 'jmx4r'

JMX::MBean.establish_connection :port => 3000

You now have an interactive connection to the running Solr through JMX. In order to
find out how many queries have been issued, you just request the searcher MBean by
name solr:type=searcher,id=org.apache.solr.search.SolrIndexSearcher:

searcher = JMX::MBean.find_by_name
 "solr:type=searcher,id=org.apache.solr.search.SolrIndexSearcher"

You may need to use JConsole to figure out the name of the MBean that you want.
Simply select the Info tab for a specific MBean, and use the MBean name attribute.
Once you have the MBean, you can view all available attributes in a hash data
structure by typing the following snippet of code:

irb(main):013:0>searcher.attributes
=> {"source_id"=>"sourceId", "category"=>"category",
"description"=>"description", "source"=>"source", "name"=>"name",
"version"=>"version", "searcher_name"=>"searcherName",
"caching"=>"caching", "num_docs"=>"numDocs", "max_doc"=>"maxDoc",
"reader"=>"reader", "reader_dir"=>"readerDir", "index_
version"=>"indexVersion", "opened_at"=>"openedAt", "registered_
at"=>"registeredAt", "warmup_time"=>"warmupTime"}

Chapter 8

[269]

The attribute searcher.num_docs will return the current number of indexed
documents in Solr.

Returning to our previous example of finding out how many documents are in the
index, you just need to issue the following:

>>jirb
require 'rubygems'
require 'jmx4r'
JMX::MBean.find_by_name
 ("solr:type=searcher,id=org.apache.solr.search.
SolrIndexSearcher").num_docs => "15"

You can now integrate this Ruby script into some sort of regular process that saves
the number of documents in your database, so you can display that information to
your users.

You also can now start getting information about other parts of the system, like how
many search queries have been issued per second, and how long they are averaging,
by looking at the search handler MBean:

search_handler = JMX::MBean.find_by_name
 "solr:type=standard,id=org.apache.solr.handler.component.
 SearchHandler"
search_handler.avg_requests_per_second
=> .0043345
search_handler.avg_time_per_request
=> 45.0

In order to see all the available Solr Mbean's and their JMX names, just issue:

puts JMX::MBean.find_all_by_name("solr:*").map{ |mbean|
 mbean.object_name}

Ruby is a wonderful language for scripting utility tasks that interact with Solr and
other systems.

Jmx4r is hosted at http://github.com/jmesnil/jmx4r/ and has
a comprehensive suite of tests and example code. It's a good library to
look at for tips on using JRuby.

http://github.com/jmesnil/jmx4r/
http://github.com/jmesnil/jmx4r/

Deployment

[270]

Securing Solr from prying eyes
Solr, by default, comes completely open. Anyone can make search requests, anyone
can upload documents, anyone can access the administration interface, and anyone
can delete data. However, it isn't difficult to lock down Solr to use in any kind of
environment. We can do this by making use of the standard practices, which you
would apply to any kind of web application or server software.

Limiting server access
The single biggest thing you can do to secure Solr is to lock down who has access to
the server. Using standard firewall techniques, you can control what IP addresses are
allowed to connect to the Solr through the 8983 port.

Unless you have very unusual needs, you won't expose Solr to the Internet directly;
instead users will access Solr through some sort of web application, that in turn
forwards requests to Solr, collects the results, and displays them to your users. By
limiting the IP addresses that can connect to Solr to just those belonging to your web
farm, you've ensured that random Internet users and internal users don't mess
with Solr.

If you lock down access via IP addresses, then don't forget that if you
have external processes uploading content, you need to make sure
those IP addresses are added.

Using IP addresses to control access is crude and basic; it doesn't help if someone is
connecting to Solr from one of the valid IP addresses. Fortunately, Solr is just a WAR
file deployed in a Servlet container, so you can use all of the capabilities of Servlet
containers to control access. In order to limit access to /solr/update* and /solr/
admin/* in Jetty by requiring BASIC authentication from your users, you merely edit
the web.xml in your Solr WAR adding the following stanza at the bottom:

<security-constraint>
 <web-resource-collection>
 <web-resource-name>Solr Admin</web-resource-name>
 <url-pattern>/admin/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>admin</role-name>
 </auth-constraint>
</security-constraint>
<security-constraint>
 <web-resource-collection>

Chapter 8

[271]

 <web-resource-name>Solr Update</web-resource-name>
 <url-pattern>/update*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>admin</role-name>
 <role-name>content_updater</role-name>
 </auth-constraint>
</security-constraint>

<login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>Test Realm</realm-name>
</login-config>

This specifies that access to the /update* URLs is limited to anyone in the roles of
admin or content_updater, although only admin users can access the /admin/*
URLs. The realm-name is what ties the security constraints to the users configured
in Jetty.

Customizing web.xml in Jetty
Sometimes cracking open a WAR file just to customize the web.xml can
be a pain. But if you are a Jetty user, then you can put the changes into the
./etc/webdefault.xml file and Jetty will apply the changes to any
WAR file deployed. This is a nice trick if you have just a single webapp in
the Jetty container. See ./examples/solr/etc/webdefault.xml and
./examples/solr/etc/jetty.xml for an example.

Edit the jetty.xml file and uncomment the <Set name="UserRealms"/> stanza so
that it looks like the following:

<Set name="UserRealms">
 <Array type="org.mortbay.jetty.security.UserRealm">
 <Item>
 <New class="org.mortbay.jetty.security.HashUserRealm">
 <Set name="name">Solr Realm</Set>
 <Set name="config">
 <SystemProperty name="jetty.home" default="."/>/etc/
 realm.properties
 </Set>
 </New>
 </Item>
 </Array>
</Set>

Deployment

[272]

The ./etc/realm.properties file contains a list of users with their password and
roles to which they belong. We've specified that the user named administrator has
the roles of content_updater and admin, and therefore can access any /update and
/admin URLs. However, the user eric can only access the /update URLs:

administrator: $ecretpa$$word,content_updater,admin
eric: mypa$$word, content_updater
guest: guest,read-only

Adding authentication introduces an extra roadblock for automated scripts that
need to interact with Solr to upload information. However, if you use BASIC
authentication, then you can easily pass the username and password as part of
the URL request. The only downside is that the password is being transmitted in
cleartext, and you should wrap the entire request in SSL for maximum security:

http://USERNAME:PASSWORD@localhost:8080/solr/update

Normally you wouldn't want to store passwords in plain text on the
server in a file such as realm.properties that isn't encrypted.
More information is available at http://docs.codehaus.org/
display/JETTY/Realms.

Securing public searches
Although typically you access Solr through an intermediate web application, you
may want to expose Solr directly to the Internet, albeit in a limited way. One scenario
for this is exposing a search in an RSS/Atom feed made possible with Solr's XSLT
support (see Chapter 4, Searching for more on XSLT). Another is using JavaScript,
AJAX, and JSONP callbacks from the browser to directly connect to Solr and issue
searches. We discuss this more in the next chapter. There may be other scenarios
where firewall rules and/or passwords might still be used to expose parts of Solr,
such as for modifying the index, but some search requests must be exposed to direct
Internet access. In this case, you need to configure the exposed request handlers with
invariants and/or appends clauses as applicable. For a limited example of this, see
the A SearchHandler per search interface? section earlier in this chapter.

If there are certain records that need to be excluded from public access, then
you'll need to specify an appropriate fq (filter query). If there are certain fields on
documents that need to be kept private, then this can be problematic to completely
secure, especially if you are working with sensitive data. It's simple enough to
specify fl (field list) through invariants, but there are a good number of other
parameters that might expose the data (for example, highlighting, maybe faceting) in
ways you didn't realize.

Chapter 8

[273]

<lst name="invariants">
 <int name="fl">public_id,public_description</int>
 <str name="fq">public:true</int>
</lst>

Therefore, if you are working with sensitive data then exposing Solr in this way is
not recommended.

Controlling JMX access
If you have started Solr with JMX enabled, then you should also have a JMX
username and password configured. While today the JMX interface only exposes
summary information about the Solr components and memory consumption, in
future versions actual management options like triggering optimizing indexes will
most likely be exposed through JMX. So, putting JMX access under lock and key is a
good idea.

Securing index data
One of the weaknesses of Solr due to the lack of a built-in security model is that
there aren't well defined approaches for controlling which users can manipulate
the indexes by adding, updating, and deleting documents, and who can search
which documents. Nevertheless, there are some approaches for controlling access to
documents being searched.

Controlling document access
You can start off with some of the ideas talked about in the A SearchHandler per search
interface? section to control search access to your index. However, if you need to
control access to documents within your index and must control it based on the user
accessing the content, then one approach is to leverage the faceted search capabilities
of Solr. You may want to look back at Chapter 5, Search Relevancy to refresh your
memory on faceting. For example, you may have a variety of documents that have
differing visibility depending on if someone is a member of the public or an internal
publicist. The public can only see a subset of the data, but a publicist can see more
information, including information that isn't ready for public viewing. When
indexing documents, you should store in a separate multiValued field the roles that
a user must belong to in order to gain access to the document:

<field name="roles" type="text" indexed="true" stored="true"
 multiValued="true" />

Deployment

[274]

A document that was for everyone would be indexed with the role values Public and
Publicist. Another document that was for internal use would just have the Publicist
role. Then, at query time, you could append extra request parameters to limit what is
returned depending on the roles that someone belonged to by treating the roles as a
facet:

/solr/select/?q=music&start=0&facet=on&facet.
field=roles&fq=role%3Apublic

In the preceding example, we are querying for music that is accessible by anyone
with the role public. Obviously, this requires significant logic to be implemented on
the client side interfacing with Solr, and is not as robust a solution as we may wish.

Other things to look at
Remote streaming is the ability to give Solr the URL to a remote resource or local
file and have Solr download the contents as a stream of data. This can be very useful
when indexing large documents as it reduces the amount of data that your updating
process needs to move around. However, it means that if you have the /debug/dump
request handler enabled, then the contents of any file can be exposed. Here is an
example of displaying to anyone my ~/.ssh/authorized_keys file:

http://localhost:8983/solr/debug/dump?stream.file=/Users/epugh/.ssh/
authorized_keys

If you have this turned on, then make sure that you are monitoring the log files, and
also that access to Solr is tightly controlled. The example application has this function
turned on by default.

In addition, in a production environment, you want to comment out the /debug/
dump request handler, unless you are actively debugging an issue.

Just as you need to be wary of a SQL injection attack for a relational database, there is
a similar concern for Solr. Solr should not be exposed to untrusted clients if you are
concerned about the risk of a denial of service attack. This is also a concern if you are
lax in how your application acts as a broker to Solr. It's fairly easy to bring down Solr
by, say asking it to sort by every field in the schema, which would result in sudden
exorbitant memory usage. There are other similar attacks if an attacker can submit an
arbitrary function query as part of their query.

Chapter 8

[275]

Summary
We briefly covered a wide variety of the issues that surround taking a Solr
configuration that works in a development environment and getting it ready for the
rigors of a production environment. Solr's modular nature and stripped down focus
on search allows it to be compatible with a broad variety of deployment platforms.
Solr offers a wealth of monitoring options, from log files, to HTTP request logs, to
JMX options. Nonetheless, for a really robust solution, you must define what the key
performance metrics are that concern you, and then implement automated solutions
for tracking them.

Now that we have set up our Solr server, we need to take advantage of it to build
better applications. In the next chapter, we'll look at how to easily integrate Solr
search through various client libraries.

Integrating Solr
As the saying goes, if a tree falls in the woods and no one hears it, did it make a
sound? Similarly, if you have a wonderful search engine, but your users can't access
it, do you really have a wonderful search engine? Fortunately, Solr is very easy to
integrate into a wide variety of client environments via its modern easy-to-use REST-
like interface and multiple data formats. In this chapter, we will:

•	 Quickly prototype a search UI using "Solritas" (the /browse UI).
•	 Look at accessing Solr results through various language-based clients,

including Java, Ruby, and PHP.
•	 Learn how you can call Solr from from a web browser via AJAX.
•	 Briefly cover building your own Google-like search engine by crawling the

MusicBrainz.org site with the Nutch web crawler.
•	 Translate search results into the OpenSearch XML standard via XSLT.
•	 Review ManifoldCF, a framework for synching content from external

repositories that respects external document access rules.

There are so many possible topics we could have covered in this chapter and only
so much space available. For information on accessing Solr from .NET, Python,
and many other client environments, see: http://wiki.apache.org/solr/
IntegratingSolr. That page also contains information on integrating Solr with
other frameworks and applications, such as Django. There is a similar page that we
started on the wiki called the "Solr Ecosystem": http://wiki.apache.org/solr/
SolrEcosystem. It is larger in scope than the "Integrating Solr" page, referencing
document processing pipelines, crawlers, and more.

http://wiki.apache.org/solr/IntegratingSolr
http://wiki.apache.org/solr/IntegratingSolr

Integrating Solr

[278]

In a hurry?
This chapter covers a wide variety of integrations with Solr. If you are in
a hurry, jump to the next section Inventory of examples to find source code
that you can immediately start using. Then read the sections that apply
to the environment you are working in.

We will be using our MusicBrainz dataset to power these examples. You can
download the full sample code for these integrations from our website http://www.
SolrEnterpriseSearchServer.com. This includes a prebuilt Solr and scripts to load
mbtracks with seven million records and mbartists with 400,000 records. When you
have downloaded the zipped file, you should follow the setup instructions in the
README.txt file.

Working with included examples
We have included a wide variety of sample integrations that you can run as
you work through this chapter. The examples stored in ./examples/9/ of the
downloadable ZIP file are as self-contained as we could make them, are detailed in
this chapter, and you shouldn't run into any problems making them work. Check the
support section of the book website for any errata.

Inventory of examples
This is a quick summary of the various examples of using Solr, available unless
otherwise noted in ./examples/9/.

•	 ajaxsolr is an example of building a fully featured Solr Search UI using just
JavaScript.

•	 php is a barebones example of PHP integration with Solr.
•	 solr-php-client is a richer example of integrating Solr results into a PHP

based application.
•	 Solritas, a web search UI using template files in the /cores/mbtypes/conf/

velocity directory.
•	 jquery_autocomplete is an example of using the jQuery Autocomplete

library to provide search suggestions based on Solr searches.
•	 myfaves is a Ruby on Rails application using the Ruby Solr client library

Sunspot to search for music artists.
•	 nutch is a simple example of the Nutch web crawler integrated with Solr.
•	 crawler is a more complex example of doing web crawling and indexing into

Solr using the SolrJ Java client and Heritrix crawler.

Chapter 9

[279]

Solritas, the integrated search UI
The contrib module velocity, nicknamed Solritas, is a simple template engine that
lets you build user interfaces directly in Solr using Apache Velocity, a very simple
macro language to generate the HTML. It's similar to JSPs, ASPs, PHPs, and so on,
but simpler with a syntax consisting of just a handful of commands. It is very simple
to pick up as you can see in the following snippet of code for rendering two lines of
HTML displaying the ID and name of an artist pulled from the first Solr document in
a list of results:

#set($doc = $response.results.get(0))
#set($id = $doc.getFieldValue("id"))
<div>ID: $id</div>
<div> Name: #field('a_name')</div>

When a Velocity template is invoked, Solritas places some objects, indicated
with a $ character, into a rendering context that you can use, like $response and
$request. In the preceding example you can see the first result in the response is
assigned to the $doc object variable using the #set command. Java methods like
getFieldValue() are easily called in Velocity, allowing you to access the full power
of Java within a scripting environment that is evaluated at runtime. Velocity also
supports building your own functions, like the #field() function for displaying a
field from a document.

You can try out an interface optimized for searching for MusicBrainz artists by
browsing to http://localhost:8983/solr/mbartists/browse/. This web
interface supports faceted browsing, auto-completion of queries, boosting of artists
based on recency of release, More Like This based on artist name, and even "Did You
Mean" spell checking!

When the browser invokes the URL, Solr hands the request off to a request handler
with the name /browse which is a search request handler that works like any other.
The point where the request takes a different turn is in rendering the response,
which in Solr is configured with the wt parameter. Short for "writer type", the choices
are better known as response writers. Instead of letting it default to xml, it's set to
velocity. The Velocity response writer uses the v.layout and v.template and
parameters to determine which template file to use for the overall page layout as
well as what template for the specific page to render. The templates are located in
the conf/velocity/ directory relative to the Solr core, and they end in .vm. To use
another directory, set the v.base_dir parameter. Note that the use of parameters to
choose the template allows you to override it in the URL if desired.

http://localhost:8983/solr/mbartists/browse
http://localhost:8983/solr/mbartists/browse

Integrating Solr

[280]

<?xml version="1.0"?>
<requestHandler name="/browse" class="solr.SearchHandler">
<lst name="defaults">
<str name="wt">velocity</str>
<str name="v.template">browse</str>
<str name="v.layout">layout</str>
<str name="title">MusicBrainz</str>

<str name="defType">edismax</str>
<str name="mm">1</str>
<str name="q.alt">*:*</str>
<str name="rows">10</str>
<str name="fl">*,score</str>
<str name="qf">a_name^1.5 a_member_name^1.0</str>
<str name="pf">a_name^1.5 a_member_name^1.0</str>

<str name="mlt.qf">a_name^1.5 a_member_name^1.0</str>
<str name="mlt.fl">a_name,a_member_name</str>
<int name="mlt.count">3</int>
<int name="mlt.mintf">1</int>
<int name="mlt.mindf">2</int>
<str name="mlt.boost">true</str>

<str name="facet">on</str>
<str name="facet.field">a_type</str>
<str name="facet.field">type</str>
<str name="facet.mincount">1</str>
<str name="facet.range">a_release_date_latest</str>
<str name="f.a_release_date_latest.facet.range.start">NOW/YEAR-
10YEARS</str>
<str name="f.a_release_date_latest.facet.range.end">NOW</str>
<str name="f.a_release_date_latest.facet.range.gap">+1YEAR</str>
<str name="f.a_release_date_latest.facet.range.other">before</str>
<str name="f.a_release_date_latest.facet.range.other">after</str>

<str name="spellcheck">on</str>
<str name="spellcheck.dictionary">a_spell</str>
<str name="spellcheck.collate">true</str>

<str name="hl">on</str>
<str name="hl.fl">a_name a_member_name</str>
<str name="f.a_name.hl.fragsize">0</str>
<str name="f.a_name.hl.alternateField">a_name</str>
</lst>

Chapter 9

[281]

<arr name="last-components">
<str>spellcheck</str>
</arr>
</requestHandler>

Pros and Cons of Solritas
As great as it is to impress your boss by quickly building a remarkably full featured
search interface using Solritas, there are some cons to keep in mind:

•	 While many of the various Velocity files are fairly agnostic about the
structure of the data being rendered, there are enough places where you
have to both configure some parameters in solrconfig.xml and hardcode
them in the Velocity template and that means you'll have to customize the
templates to fit your schema. This can be a bit of a gotcha!

•	 Using Velocity to render UI for a high volume website isn't a good idea as
you are putting the entire search and render load on the same server, and
Solr isn't optimized for serving up assets such as CSS or JavaScript files.

•	 Building a web application based only on a collection of page templates,
no matter if the technology is Velocity, JSPs, ASPs, or PHPs, gets harder to
maintain and comprehend as it grows in complexity. Arguably, the /browse
out-of-the-box interface has reached that complexity point since there is no
strong MVC model to follow.

•	 Integrating a Velocity driven UI in a larger system isn't simple since you can't
easily add your own Java-based logic without modifying Solr itself.

However, some aspects of what I really love about Solritas are:

•	 The ability to quickly prototype an interface. I find that most end users
don't know what fields they want searchable until they have something
they can play with. Quickly prototyping a search interface for the business
stakeholders is powerful.

Integrating Solr

[282]

•	 If you need to need to emit a small chunk of HTML to integrate Solr
into another application, or even other text formats such as JSON
or custom XML, then this can be a simple yet powerful integration
method. This query: http://localhost:8983/solr/mbartists/
select?limit=1&q=corgan&qt=mb_artists&wt=velocity&v.
template=fragment returns a small fragment of HTML rendered by the
completely standalone Velocity template fragment.vm:

•	 Velocity is great for quickly building small tools for internal users to perform
tasks like debugging why certain search results come back. These aren't
meant for mass consumption, so the fact they run on the search server is fine.
The example UI has nice toggle explain and toggle all fields options that let
you see the detailed scoring which is nice for debugging:

http://localhost:8983/solr/mbartists/select?limit=1&q=corgan&qt=mb_artists&wt=velocity&v.template=fragment
http://localhost:8983/solr/mbartists/select?limit=1&q=corgan&qt=mb_artists&wt=velocity&v.template=fragment
http://localhost:8983/solr/mbartists/select?limit=1&q=corgan&qt=mb_artists&wt=velocity&v.template=fragment

Chapter 9

[283]

To learn more about building your own Velocity based interface, look at the example
code in /cores/mbtype/conf/velocity. The example application that ships with
Solr also has some good examples of exposing Solr features such as spatial search
using Velocity. You can get more information about the list of tools and objects
added to the rendering context from the wiki at http://wiki.apache.org/solr/
VelocityResponseWriter. More information about Velocity is available from
http://velocity.apache.org/.

SolrJ: Simple Java interface
SolrJ is the simple Java client interface to Solr that insulates you from the dirty
details of parsing and sending messages back and forth between your application
and Solr, and by default communicates using a fast binary format instead of XML.
You work in the familiar world of objects like SolrQuery, QueryResponse, and
SolrDocument. SolrJ is a core part of the Solr project, and typically, though not
always, it is updated as soon as new features are added to Solr on the server side.

We'll demonstrate using SolrJ to index web pages downloaded from MusicBrainz.
org and stored in a binary format called ARC using the crawler Heritrix. If you want
to run Heritrix yourself, proceed to the next section. If you want to use the already
downloaded ARC files in ./examples/9/crawler/heritrix-3.0.0/jobs with the
SolrJ client, then skip down to the section SolrJ-based client for Indexing HTML.

Using Heritrix to download artist pages
Heritrix is an extremely full featured and extensible web crawler used by the
InternetArchive for archiving the contents of the Internet. The InternetArchive is a
non-profit organization established to preserve websites by taking regular snapshots
of them. You may be more familiar with the site under the name The Wayback
Machine. By looking back at the original indexed version of the Solr homepage
taken on January 19th, 2007 at http://web.archive.org/web/*/http://lucene.
apache.org/solr, we learn that Solr had just graduated from the Apache
Incubator program!

Going into the full details of using Heritrix is outside the scope of this book.
However, you can play with a version configured for crawling only artist pages on
MusicBrainz.org in ./examples/9/crawler/heritrix-2.0.2/. Start Heritrix by
running:

>> ./bin/heritrix -a admin:admin

http://wiki.apache.org/solr/VelocityResponseWriter

Integrating Solr

[284]

And then browsing to the secure web interface at https://localhost:8443/
and logging in using the username and password you specified through the -a
parameter. You will see a web console with a single Engine configured. Click on it to
see the profiles configured for it. You should see a musicbrainz-only-artists profile;
click on Copy, and choose the default option of generating a new ready-to-run job.

You will now have a new job configured with a name similar to musicbrainz-
only-artists-20090501142451. Click on Launch to start the crawler covering the
MusicBrainz.org site. You will see the console interface of the crawler and can
monitor the progress of downloading content:

The crawler can take a while to complete a crawl, as it is designed to not overload
the sites being crawled and we only have 25 threads configured. MusicBrainz.
org has roughly 119,000 distinct pages, and in my testing, running Heritrix for
10 hours only downloaded 6,600 pages. The pages being crawled are stored in
the compact text format called an ARC file that contains multiple web resources
individually compressed using .gzip. There are various options for checkpointing
the resulting ARC files as they are generated so that you can start using them while
it continues to crawl. Learn more about checkpointing and more advanced features
at Heritrix's site at http://crawler.archive.org/. The resulting ARC file is
stored in the ./crawler/heritrix-2.0.2/jobs/[THE_NAME_OF_YOUR_JOB]/arcs/
directory. For the rest of this example, we will work with the already generated
ARC files in./crawler/heritrix-2.0.2/jobs/completed-musicbrainz-only-
artists-20090707185058/arcs that contains 1,532 downloaded pages.

Chapter 9

[285]

You can view the meta information of the resources in an ARC file such as the
timestamp, mime type, and URL by running the arcreader command line client (the
first response is listed below):

>> ./bin/arcreader jobs/completed-musicbrainz-only-
artists-20090707185058/arcs/IAH-20090707185106-00000-budapest.local.arc

20090430202747 72.29.166.157 http://musicbrainz.org/show/
artist/?artistid=217990 text/html - - 3700547 28627 IAH-20090707185106
-00000-budapest.local

SolrJ-based client for Indexing HTML
Solr does provide some basic support for working with HTML documents that
can that makes indexing simpler. For example, if you look at ./examples/cores/
crawler/conf/schema.xml, you can see that the schema has been optimized for
storing HTML documents. There are two new field types defined: html-text and
html-shingle. Both field types leverage the HTMLStripStandardTokenizerFactory
tokenizer to strip out the various HTML related tags and just preserve the textual
content of the web page during indexing for searching against. However, html-
shingle is designed specifically for multiword phrase searches by using a technique
called shingling that results in faster phrase queries at the expense of more disk
use and indexing time. The html-text field is indexed in a more straightforward
manner. We delve more into shingling in Chapter 10, Scaling Solr.

The fields we are storing are:

<fields>
<field name="url" type="string" />
<field name="mimeType" type="string" />
<field name="host" type="string" />
<field name="path" type="string" />
<field name="docText" type="html-text"/>
<field name="docTextShingle" type="html-shingle" stored="false" />
</fields>

<copyField source="docText" dest="docTextShingle" />

<uniqueKey>url</uniqueKey>
<defaultSearchField>docText</defaultSearchField>

With the url being the unique key and the docText being the default field for
searches, Host and path fields give us something with which to facet our results.

Integrating Solr

[286]

There is a very simple Java application in ./examples/9/crawler/
SolrJforMusicBrainz that deletes any existing records, parses the individual
records from the ARC files, and inserts them into Solr if they have the MIME type of
text/html. SolrJforMusicBrainz is built using the Maven project management/
build tool. Maven is an Apache project at http://maven.apache.org/ that brings
a specific approach to structuring Java projects and introduced the concept of public
repositories for storing JAR dependencies.

Solr uses Ant as the official supported build, but it includes a Maven
build option as well. For each Solr release, the build artifacts get
published to Maven's central repository.

In order to compile the application yourself, assuming you have installed Maven 3,
execute the following command from the ./SolrJforMusicBrainz directory:

>>mvn package

You will download all of the JAR dependencies for both Solr and Heritrix, resulting
in a roughly 12 megabyte executable JAR file in ./SolrJforMusicBrainz/target/
SolrJForMusicBrainz-1.1.jar.

In order to index the web pages stored in the ARC format, execute the JAR file,
passing in parameters that specify the directory in which the ARC files are located,
whether you are using a remote or local Solr connection, and the specific connection
information. In order to connect to your already running Solr, run:

>>java -jar target/SolrJForMusicBrainz-1.1.jar ../heritrix-2.0.2/jobs/
completed-musicbrainz-only-artists-20090707185058/arcs/ REMOTE http://
localhost:8983/solr/crawler

You should see a long list of URLs being indexed, along with how many milliseconds
it took to process all of the documents:

http://musicbrainz.org/show/artist/?artistid=317388
http://musicbrainz.org/show/artist/?artistid=593877
http://musicbrainz.org/show/artist/?artistid=419076
Execution time was 12454 ms for 210 documents

In order to index the ARC files into an embedded Solr, run:

>>java -jar target/SolrJForMusicBrainz-1.1.jar ../heritrix-2.0.2/
jobs/completed-musicbrainz-only-artists-20090707185058/arcs/ EMBEDDED
../../../cores

Chapter 9

[287]

You will see similar output as before, but interleaved with the logging messages
generated by the embedded Solr instance as well:

http://musicbrainz.org/show/artist/?artistid=334589
May 4, 2009 9:06:45 PM org.apache.solr.update.processor.
LogUpdateProcessor finish
INFO: {add=[http://musicbrainz.org/show/artist/?artistid=334589]} 0 17
May 4, 2009 9:06:45 PM org.apache.solr.core.SolrCore execute
INFO: [crawler] webapp=null path=/update params={} status=0 QTime=17

SolrJ client API
SolrJ has a very straightforward object model for representing interaction with
Solr. You can play with the basic methods for interacting with Solr by running the
BrainzSolrClient class in your IDE. BrainzSolrClient merely provides some
settings to pass into an instance of Indexer, the main class that parses ARC records
and indexes them into Solr. Regardless of whether you choose the remote or the
embedded approach for interacting with Solr, you use the same interface defined in
org.apache.solr.client.solrj.SolrServer.

Starting a connection to a remote Solr is very simple, with the only parameter being
the URL to the Solr instance. Note the inclusion of the crawler core in the URL:

public org.apache.solr.client.solrj.SolrServer startRemoteSolr()
 throws MalformedURLException,
 SolrServerException {
 CommonsHttpSolrServer solr = new
 CommonsHttpSolrServer("http://localhost:8983/solr/crawler");
 solr.setRequestWriter(new BinaryRequestWriter());
 return solr;
}

Solr supports the ability to specify requests and responses in a Java binary format
called javabin that is much smaller and faster than XML. javabin avoids doing
XML parsing, and the data being transmitted over the wire is in a much smaller more
compact format. Setting the request writer to use the BinaryRequestWriter turns this
on. By default, the SolrJ client performs updates using the javabin format.

You need to make sure that both your SolrJ client and Solr server are
using the same version when using the javabin format. If your server is
Solr 1.4 and your client is Solr 3.1 then you will get a runtime error. You
may be okay with a minor version change like 3.1 to 3.2.

Integrating Solr

[288]

Embedding Solr
One of the interesting aspects of SolrJ is that because Solr and SolrJ are both written
in Java, you can instantiate Solr and interact with it directly instead of starting up
Solr as a separate process. While this speeds up indexing by removing the cost of
transporting data over the wire, it does tie you to running your client on the same
local box as Solr so that it can access the Solr configuration files and Lucene indexes
directly. It's typically simpler and almost as fast to use Solr's remote streaming
feature (the stream.file parameter) to maximize indexing performance with CSV
uploads and rich document extraction. The following is an example of using an
EmbeddedSolrServer class and SolrJ to interface with Solr.

Starting up an embedded Solr is a bit more complex, as you are starting Solr with a
specific core instead of running it in a separate servlet container:

public SolrServer startEmbeddedSolr() throws IOException,
 ParserConfigurationException, SAXException,
 SolrServerException {
 File root = new File("../../../cores");
container = new CoreContainer();

 SolrConfig config = new SolrConfig(root + "/crawler",
 "solrconfig.xml",null);
 CoreDescriptor descriptor = new CoreDescriptor(container,
 "crawler",root + "/solr");
 SolrCore core = new SolrCore("crawler", root +
 "/../cores_data/crawler", config, null, descriptor);

container.register(core, false);
 EmbeddedSolrServer solr = new EmbeddedSolrServer(container,
 "crawler");
return solr;
}

The SolrConfig and CoreDescriptor classes wrap the information about
solrconfig.xml and your specific named core. Both of these are used to define the
SolrCore, which is then registered in a CoreContainer. Both EmbeddedSolrServer
and CommonsHttpSolrServer implement the same SolrServer interface, so you can
specify at runtime the connectivity method to use.

Chapter 9

[289]

Searching with SolrJ
Performing a query is very straightforward:

SolrQuery solrQuery = new SolrQuery("Smashing Pumpkins");
QueryResponse response = solr.query(solrQuery);

You can customize the query, for instance, by adding faceting to find out the most
popular hosts and paths indexed by the crawler using the methods provided by
SolrJ client:

SolrQuery solrQuery = new SolrQuery("*:*");
solrQuery.setRows(0);
solrQuery.setFacet(true);
solrQuery.addFacetField("host");
solrQuery.addFacetField("path");
solrQuery.setFacetLimit(10);
solrQuery.setFacetMinCount(2);
QueryResponse response = solr.query(solrQuery);

The result in XML makes it easy to display results faceted by host and path:

<result name="response" numFound="1446" start="0"/>
<lst name="facet_fields"
<lst name="host">
<int name="musicbrainz.org">1432</int>
<int name="blog.musicbrainz.org">3</int>
<int name="stats.musicbrainz.org">3</int>
<int name="musicbrainz.uservoice.com">2</int>
<int name="www.musicbrainz.org">2</int>
</lst>
<lst name="path">
<int name="/showartist.html">473</int>
<int name="/browseartists.html">381</int>
<int name="/show/artist/">209</int>
<int name="/show/user/">65</int>
<int name="/mod/search/pre/editor-open.html">64</int>
<int name="/browselabels.html">29</int>
</lst>
</lst>

Integrating Solr

[290]

As part of the indexing process, we want to clear out the existing index. So we
use the deleteByQuery, and specify the entire index. Obviously, this can be very
dangerous, and if you have a really large Solr index it will take a while to actually
commit that change to the file system. Note, in real life you would want to use the
multiple core feature of Solr to build a new index in the background and just swap it
with the live one when indexing was completed!

solr.deleteByQuery("*:*"); // delete everything!
solr.commit();

Any type of query that you would want to do with Solr is available through the SolrJ
client. SolrJ also makes deleting documents simple by providing two easy methods:
deleteByQuery() and deleteById(). deleteById() takes in a value for the defined
uniqueKey field (in this case, the URL). Removing the Contact Us page is as simple
as running:

solr.deleteById("http://musicbrainz.org/doc/ContactUs");

Indexing
In the following example, you can see the heart of the loop for parsing through
the list of ARC files and extracting and indexing the information. As previously
mentioned, we only want HTML pages to be indexed, so we check for a MIME type
of text/html. Every 100 documents that are added to Solr triggers a commit to be
issued to Solr. At the end of the loop, a single optimize request is issued:

File arcFiles[] = arcDir.listFiles(new ArcFilenameFilter());
int hits = 1;
for (File arcFile : arcFiles) {
System.out.println("Reading " + arcFile.getName());
 ArchiveReader r = ArchiveReaderFactory.get(arcFile);
r.setDigest(true);

for (ArchiveRecord rec : r) {
if (rec != null) {
 ArchiveRecordHeader meta = rec.getHeader();
if (meta.getMimetype().trim().startsWith("text/html")) {
 ByteArrayOutputStream baos = new
 ByteArrayOutputStream();
rec.dump(baos)
if (indexIntoSolr) {
 SolrInputDocument doc = new SolrInputDocument();

doc.addField("url", meta.getUrl(), 1.0f);

Chapter 9

[291]

doc.addField("mimeType", meta.getMimetype(),
 1.0f);
doc.addField("docText", baos.toString());
 // should parse out HTML body and specify character encoding
 URL url = new URL(meta.getUrl());
doc.addField("host", url.getHost());
doc.addField("path", url.getPath());
solr.add(doc);
 }
hits++;
 }
 }
rec.close();

 }
}
solr.commit();
solr.optimize();

In order to optimize the performance, we could potentially batch send documents to
Solr by building a Collection of SolrInputDocuments, and then add them all
at once:

Collection<SolrInputDocument> docs = new
 ArrayList<SolrInputDocument>();
// Loop through Archive Records and add documents via docs.add(doc);
server.add(docs);

This requires more memory on the client side and it's hard to know how many
documents to batch. Instead, SolrJ includes a streaming multi-threaded subclass
of CommonsHttpSolrServer called StreamingUpdateSolrServer. It opens a
configurable number of HTTP connections on-demand with a document queue
buffer in front of each. add() now becomes an asynchronous operation. That means
it returns immediately if the buffers have capacity, and an indexing error would
not be thrown since it is triggered in another thread. To handle errors, you need to
subclass StreamingUpdateSolrServer and override handleError(). You can see
the performance gain by running the following command:

>>java -jar target/SolrJForMusicBrainz-1.1.jar ../heritrix-2.0.2/jobs/
completed-musicbrainz-only-artists-20090707185058/arcs/ STREAMING http://
localhost:8983/solr/crawler

Integrating Solr

[292]

On my machine I saw a 40 percent gain in performance by streaming the documents
using three threads processing a queue of 20 documents.

If indexing speed is of critical importance to you, consider updating
to Solr 4, the current trunk branch, which hasn't been released yet.
There are some incredible indexing performance improvements
already completed there that you can achieve if you have many
CPUs, plenty of RAM, and a fast disk.

Indexing POJOs
POJOs (Plain Old Java Objects) typically follow the JavaBean naming pattern for
properties that each have a getter and setter method. Moreover, in many use cases,
you want to index information that is exposed as Java objects, such as a product
versus document oriented data such as the ARC records in the previous example.
Often these objects are backed by a relational database of some type, and you
manage them through object relational mapping tools such as Hibernate, JPA, or
JDO. Working with objects can provide much richer types of manipulations than
working with documents and allows you to leverage the power of strong typing to
validate your code.

Annotations provide a richer means of supplying extra information to tools and
libraries beyond what is in the Java code itself. For example, the classic JavaDoc
tag @throws SolrServerException on the method startEmbeddedSolr()
can be thought of as a type of annotation that has meaning to the JavaDoc tools.
However, unlike JavaDoc tags, annotations can be read from source files, class
files, and reflectively at runtime. Solr leverages annotations to markup a POJO with
information that SolrJ needs to know how to properly index it.

./SolrJForMusicBrainz/src/main/java/solrbook/RecordItem.java is an
example of a JavaBean that imports the Solr Field class and allows each property to
be annotated. In the following example, RecordItem has the properties id and html
mapped to the differently named Solr fields url and docText while host and path
map to the identically named Solr fields host and path:

import org.apache.solr.client.solrj.beans.Field;

public class RecordItem {

@Field("url")
 String id;

 @Field
 String mimeType;

@Field("docText")
 String html;

Chapter 9

[293]

 @Field
 String host;

 @Field
 String path;

Indexing the RecordItem POJOs is very similar to using the SolrDocument directly:

RecordItem item = new RecordItem();

item.setId(meta.getUrl());
item.setMimeType(meta.getMimetype());
item.setHtml(baos.toString());
URL url = new URL(meta.getUrl());
item.setHost(url.getHost());
item.setPath(url.getPath());
solr.addBean(item);

You can also index a collection of beans through solr.addBeans(collection).
Performing a query that returns results as POJOs is very similar to returning normal
results. You build your SolrQuery object the exact same way as you normally
would, and perform a search returning a QueryResponse object. However, instead
of calling getResults() and parsing a SolrDocumentList object, you would ask for
the results as POJOs:

public List<RecordItem> performBeanSearch(String query) throws
 SolrServerException {
 SolrQuery solrQuery = new SolrQuery(query);
 QueryResponse response = solr.query(solrQuery);
 List<RecordItem> beans = response.getBeans(RecordItem.class);
System.out.println("Search for '" + query + "': found " +
 beans.size() + " beans.");
return beans;
}
>> Perform Search for '*:*': found 10 beans.

You can then go and process the search results, for example rendering them in
HTML with a JSP.

Integrating Solr

[294]

When should I use embedded Solr?
There has been extensive discussion on the Solr mailing lists on whether removing
the HTTP layer and using a local embedded Solr is really faster than using the
CommonsHttpSolrServer. Originally, the conversion of Java SolrDocument
objects into XML documents and sending them over the wire to the Solr server
was considered fairly slow, and therefore embedded Solr offered big performance
advantages. However, as of Solr 1.4, the binary javabin format is used to transfer
messages, which is more compact and requires less processing than XML. The
common thinking is that storing a document in Solr is typically a much smaller
portion of the time spent on indexing compared to the actual parsing of the original
source document to extract its fields. Additionally, by putting both your data
importing process and your Solr process on the same computer, you are limiting
yourself to only the CPUs available on that computer. If your importing process
requires significant processing, then by using the HTTP interface you can have
multiple processes spread out on multiple computers munging your source data.

There are several use cases where using embedded Solr is really attractive:

•	 Indexing locally available content directly into Solr
•	 Standalone desktop Java applications where you are embedding Solr to

supply search
•	 Upgrading from an existing Lucene search solution to a Solr based search

In-process indexing
If you expect to index large amounts of content from a single file system, which is
mounted on the same server as Solr, and indexed in a fairly straightforward manner
as quickly as possible, then embedded Solr can be very useful. This is especially true
if you don't want to go through the hassle of firing up a separate process or have
concerns about having a servlet container, such as Jetty, running.

Consider writing a custom DIH DataSource instead
Instead of using SolrJ for fast importing, consider using Solr's
DataImportHandler (DIH) framework. Like embedded Solr, it will
result in in-process indexing, and it has the added performance boost
option of parallelized/multi-threaded indexing. Look at the org.
apache.solr.handler.dataimport.DataSource interface and
existing implementations like JdbcDataSource. Using the DIH gives you
supporting infrastructure like starting and stopping imports, a debugging
interface, chained transformations, and the ability to integrate with data
available from other DIH data-sources.

Chapter 9

[295]

A good example of an open source project that took the approach of using embedded
Solr is Solrmarc. Solrmarc (hosted at http://code.google.com/p/solrmarc/)
is a project to parse MARC records, a standardized machine format for storing
bibliographic information. Solrmarc uses an embedded Solr just to index the content.
After it is optimized, the index is moved to a Solr server to perform search queries.

Standalone desktop applications
In my mind, the most compelling reason for using the embedded Solr approach is
when you have a rich client application developed using technologies such as Swing
or JavaFX which is running in a much more constrained client environment. Adding
search functionality using the Lucene libraries directly is a more complicated lower-
level API and it doesn't have any of the value-add that Solr offers, like faceting.
By using embedded Solr you can leverage the much higher level API's of Solr for
search, and you don't need to worry about the environment your client application
exists in blocking access to ports or exposing the contents of a search index through
HTTP. It also means that you don't need to manage spawning another Java process
to run a Servlet container, leading to fewer dependencies. Additionally, you still
get to leverage skills in working with the typically server based Solr on a client
application—a win-win situation for most Java developers!

Upgrading from legacy Lucene
A common situation is when you have an existing Java-based web application that
was architected prior to Solr becoming the well-known and stable product that it is
today. Many web applications leverage Lucene as the search engine with a custom
layer to make it work with a specific Java web framework such as Struts. As these
applications grow older, and Solr has progressed, revamping them to keep up
with the features that Solr offers has become increasingly difficult. However, these
applications have many ties into their homemade Lucene based search engines.
Performing the incremental step of migrating from directly interfacing with Lucene
to directly interfacing with Solr through embedded Solr can reduce risk. Risk is
minimized by limiting the impact of the change to the rest of the application by
isolating change to the specific set of Java classes that previously interfaced directly
with Lucene. Moreover, this does not require a separate Solr server process to be
deployed. A future incremental step would be to leverage the scalability aspects of
Solr by moving away from the embedded Solr to interfacing with a separate Solr
server.

Integrating Solr

[296]

Using JavaScript with Solr
During the Web 1.0 epoch, JavaScript was primarily used to provide basic client-
side interactivity such as a roll-over effect for buttons in the browser for what
were essentially static pages generated by the server. However, in today's Web
2.0 environment, AJAX has led to JavaScript being used to build much richer web
applications that blur the line between client-side and server-side functionality. Solr's
support for the JavaScript Object Notation format (JSON) for transferring search
results between the server and the web browser client makes it simple to consume
Solr information by modern Web 2.0 applications. JSON is a human-readable format
for representing JavaScript objects, which is rapidly becoming a defacto standard for
transmitting language independent data with parsers available to many languages,
including Java, C#, Ruby, and Python, as well as being syntactically valid JavaScript
code! The eval() function will return a valid JavaScript object that you can
then manipulate:

var json_text = ["Smashing Pumpkins","Dave Matthews Band","The
 Cure"];
var bands = eval('(' + json_text + ')');
alert("Band Count: " + bands.length()); // alert "Band Count: 3"

While JSON is very simple to use in concept, it does come with its own set of quirks
related to security and browser compatibility. Anytime you are performing an
eval() you are risking crashing the browser. To learn more about the JSON format,
the various client libraries that are available, and how it is and is not like XML, visit
the homepage at http://www.json.org.

As you may recall from Chapter 4's discussion of query parameters, you change the
format of the response from Solr from the default XML to JSON by specifying the
JSON writer type as a parameter in the URL via wt=json. Here is the result with
indent=on:

{
 "responseHeader":{
 "status":0,
 "QTime":1,
 "params":{
 "q":"hills rolling",
 "wt":"json",
 "indent":"on"}},
 "response":{"numFound":44,"start":0,"docs":[
 {
 "a_name":"Hills Rolling",
 "a_release_date_latest":"2006-11-30T05:00:00Z",
 "a_type":"2",

Chapter 9

[297]

 "id":"Artist:510031",
 "type":"Artist"}
…
]
}}

There is another parameter affecting the JSON, Ruby, and Python formats for field
value faceting: json.nl. Yes, it's not just for JSON, and it technically affects output
of Solr's so-called NamedList internal data but only in rare circumstances. The
default choice, flat, is inconvenient to work with despite its succinctness, so other
options are available. Note that the map choice does not retain the ordering once
it is materialized in memory. Here is a table showing the affects of each choice on
faceting on the MusicBrainz artist type:

flat "a_type":["person",126,"group",71,"0",0]

map "a_type":{"person":126,"group":71,"0":0}

arrarr "a_type":[["person",126],["group",71],["0",0]]

arrmap "a_type":[{"person":126},{"group":71},{"0":0}]

You may find that you run into difficulties while parsing JSON in various client
libraries, as some are stricter about the format than others. Solr does output very
clean JSON, such as quoting all keys and using double quotes and offers some
formatting options for customizing handling of lists of data. If you run into
difficulties, a very useful website for validating your JSON formatting is http://
www.jsonlint.com/. This can be invaluable for finding issues like an errant
trailing comma.

Wait, what about security?
If requests to Solr come from a web browser, then you must consider security. You
may recall from Chapter 8, Deployment that one of the best ways to secure Solr is to
limit what IP addresses can access your Solr install through firewall rules. Obviously,
if users on the Internet are accessing Solr through JavaScript, then you can't do this.
However, if you look back at Chapter 8, Deployment, there is information on how to
expose a read-only request handler that can be safely exposed to the Internet without
exposing the complete admin interface. Also make sure that any filters that MUST be
applied to your data, such as a filter query enforcing only active products are shown
is applied as an appends parameter in your request handler. Additionally, you might
proxy Solr requests to ensure the parameters meet a whitelist, to include their values.
This can be where you apply various business rules such as preventing a malicious
user from passing parameters such as rows=1000000!

Integrating Solr

[298]

Building a Solr powered artists autocomplete
widget with jQuery and JSONP
It's well established now in the search industry that some form of query auto-
completion remarkably improves the effectiveness of a search application. There
are several fundamentally different types of autocompletion—be sure to read
about them in Chapter 7, Search Components. Here is a screenshot of Google showing
completions based on search queries it has seen before:

Building an autocomplete text box powered by Solr is very simple by leveraging the
JSON output format and the very popular jQuery JavaScript library's Autocomplete
widget.

jQuery is a fast and concise JavaScript library that simplifies
HTML document traversing, event handling, animating, and
AJAX interactions for rapid web development. It has gone through
explosive usage growth in 2008 and is one of the most popular AJAX
frameworks. jQueryUI is a sub project that provides widgets such as
Autocomplete. You can learn more about jQuery at http://www.
jquery.com and http://www.jqueryui.com.

Chapter 9

[299]

A working example using search-result based completions (versus query
log completion or term completion) is available at /examples/9/jquery_
autocomplete/index.html that demonstrates suggesting an artist as you type in his
or her name. You can read the doc and see a live demo of various auto-completions
online at http://jqueryui.com/demos/autocomplete/.

There are three major sections to the HTML page:

•	 the JavaScript script import statements at the top
•	 the jQuery JavaScript that actually handles the events around the text being

input
•	 a very basic HTML page for the form at the bottom

We start with a very simple HTML form that has a single text input box with the
id="artist" attribute:

<div class="ui-widget">
 <label for="artist">Artist: </label>
 <input id="artist" />
</div>

We then add a function that runs, after the page has loaded, to turn our basic input
field into a text field with suggestions:

$("#artist").autocomplete({
 source: function(request, response) {
 $.ajax({
 url: "http://localhost:8983/solr/mbartists/select/?wt=json&json.
wrf=?",
 dataType: "jsonp",
 data: {
 q: request.term,
 rows: 10,
 fq: "type:Artist",
 qt: "artistAutoComplete"
 },
 success: function(data) {
 response($.map(data.response.docs,function(doc) {
 return {
 label: doc.a_name,
 value: doc.a_name,
 }
 }));

Integrating Solr

[300]

 }
 });
 },
 minLength: 2,
 select: function(event, ui) {
 log(ui.item ?
 "Selected: " + ui.item.label :
 "Nothing selected, input was " + this.value);
 },
 open: function() {
 $(this).removeClass("ui-corner-all").addClass
 ("ui-corner-top");
 },
 close: function() {
 $(this).removeClass("ui-corner-top").addClass
 ("ui-corner-all");
 }
});

The $("#artist").autocomplete() function takes in the URL of our data source,
in our case Solr, and an array of options and custom functions and ties it to the
input form element. The source: function(request, response) function
supplies the list of suggestions to display via a $.ajax callback. The dataType:
"jsonp" option informs jQuery that we want to retrieve our data using JSONP.
JSONP stands for JSON with Padding, an admittedly not very intuitive name! It
means that when you call the server for JSON data, jQuery will dynamically create
a JavaScript callback function wrapping the JSON data structure that is evaluated
by the browser to actually do something with your JSON objects ("the padding").
This allows you to work around web browser cross-domain scripting issues of
running Solr on a different URL and/or port from the originating web page.
jQuery takes care of all of the low level plumbing to create the callback function,
which is supplied to Solr through the json.wrf=? URL parameter. If you look
at the Solr logs, you will see the name of a function passed in: json.wrf=jQue
ry15104412757297977805_1309313922023.

Notice the data structure:

data: {
 q: request.term,
 rows: 10,
 fq: "type:Artist",
 qt: "artistAutoComplete"
},

Chapter 9

[301]

These items are tacked onto the URL, which is passed to Solr.

Following the best practices, we have created a specific request handler called
artistAutoComplete, which uses the dismax query parser to search over all of the
fields in which an artist's name might show up: a_name, a_alias, and a_member_
name, so arguably this is more of an instant search versus word autocompletion! The
handler is specified via qt=artistAutoComplete parameter.

The response() function is called to convert the JSON result data from Solr into the
format Autocomplete requires. It consists of a map() function that takes the returned
JSON data structure for the documents returned and calls an anonymous function
for each document. The anonymous function parses out the value to use as the label
and value, in our case just the artist name.

Once the user has selected a suggestion, the select() function is called, and the
name of the selected artist is appended to the <div id="log"> div.

You now have a nice Solr powered text autocomplete field so that when you enter
Rolling, you get a list of all of the artists including the Stones:

Integrating Solr

[302]

One thing that we haven't covered is the pretty common use case for an
Autocomplete widget that populates a text field with data that links back to a specific
row in a table in a database. For example, in order to store a list of artists, I would
want the Autocomplete widget to simplify the process of looking up the artists, but
would need to store the list of selected artists in a database. You can still leverage
Solr's superior search ability, but tie the resulting list of artists to the original
database record through a primary key ID, which is indexed as part of the
Solr document.

If you try to lookup the primary key of an artist using the name of the artist, then
you may run into problems such as having multiple artists with the same name or
unusual characters that don't translate cleanly from Solr to the web interface to your
database record.

Instead, a hidden field stores the primary key of the artist and is used in your server-
side processing in place of the text typed into the search box:

<input type="hidden" id="artist_id"/>
<input id="artist" />

We use the change() function to ensure freeform text that doesn't result in a match
is ignored by clearing out the artist_id form field and returning false from
the function:

change: function(event, ui) {
if (!ui.item){
log("term " + $(this).val() + " was not found, clearing");
 $(this).val("");
return false;
 }
else {
log("hidden field artist_id:" + ui.item.id);
 $("#artist_id").val(ui.item.id);
return true;
 }
}

Look at /examples/9/jquery_autocomplete/index_with_id.html for a complete
example. Change the field artist_id from input type="hidden" to type="text"
so that you can see the ID changing more easily as you select different artists. Make
sure you click away from the suggestion box to see the change occur!

Chapter 9

[303]

Where should I get my results to display as suggestions?
There are many approaches for supplying the list of suggestions for
autocomplete, and even the nomenclature of autosuggest, autocomplete,
or suggest as you type have loosely defined meanings. If the user is looking
for a specific document by name or other identifier, then simple search-
results based autocompletion as we've done here is very effective. This is
sometimes called "Search as Navigation" because you can skip the search
results page. We demo it in./jquery_autocomplete/index.html. For
broader searching, query log or search-term based completion is typically
used. ./jquery_autocomplete/index_terms.html provides an
example of using terms as the source data for autocompletion. For more
detail, flip back to the information in Chapter 7, Search Components on query
completion.

AJAX Solr
AJAX Solr is an excellent Solr search UI framework or building AJAX based search
interfaces. It is an off-shoot of an older project call SolrJS which is now defunct.
AJAX Solr adds some interesting visualizations of result data, including widgets for
displaying tag clouds of facets, plotting country code-based data on a map of the
world using the Google Chart API, and filtering results by date fields. When it comes
to integrating Solr into your web application, if you are comfortable with JavaScript,
then this can be a very effective way to add a really nice AJAX view of your search
results without changing the underlying web application. If you're working with an
older web framework that is brittle and hard to change, such as IBM's Lotus Notes
and Domino framework, then this keeps the integration from touching the actual
business objects, and keeps the modifications in the client layer via HTML and
JavaScript.

Integrating Solr

[304]

The AJAX Solr project homepage is at http://evolvingweb.github.com/ajax-
solr/ and provides a great demo of searching Reuters business news wire results:

A slightly tweaked copy of the demo is at /examples/9/ajaxsolr/reuters.html.

AJAX Solr provides rich UI functionality through widgets—small blocks of JavaScript
that render a specific UI component. It comes with widgets like autocompletion of field
values, a tag cloud, a facet view, a country code, and calendar based date ranges, as
well as displaying the results with paging. They all inherit from an AbstractWidget
and follow pretty much the same pattern. They are configured in the file reuters/
js/reuters.js by passing in a set of options. Here is an example of configuring the
autocomplete widget to populate the search box with autocomplete suggestions drawn
from the topics, organizations, and exchanges fields:

Manager.addWidget(new AjaxSolr.AutocompleteWidget({
id: 'text',
target: '#search',
field: 'allText',
fields: ['topics', 'organisations', 'exchanges']
 }));

http://evolvingweb.github.com/ajax-solr/

Chapter 9

[305]

A central AjaxSolr.Manager object coordinates the event handling between the
various widgets, makes the queries to Solr, and messages the widgets. Shown above
is the call to add the widget to the AjaxSolr.Manager object. Working with AJAX
Solr and creating new widgets for your specific display purposes comes easily to
anyone who comes from an object-oriented background.

The various widgets that come with AJAX Solr serve more as a
foundation and source of ideas rather than as a finished set of widgets.
You'll find yourself customizing them extensively to meet your specific
display needs.

We've developed a MusicBrainz based example at ./examples/9/ajaxsolr/
mbtracks.html for browsing track data. It is based on the Reuters example with
a custom widget for term autocompletion using the facet.prefix technique.
We did not configure Solr to load these facets via Solr's firstSearcher event in
solrconfig.xml because this is the only demo that uses it and it takes up to 30
seconds to load given the large index. Therefore, be patient waiting for the first
completion results.

Using XSLT to expose Solr via
OpenSearch
A relatively unknown, but powerful way to integrate with Solr is via its support
for XSLT, eXtensible Stylesheet Language Transformations. XSLT is a specification
for transforming XML documents into other XML formats, which includes HTML.
There are various implementations of this specification and Java includes one.
Solr provides a query response writer that executes a provided XSLT stylesheet, to
transform Solr's XML search results into some other format. Solr comes with a couple
of examples in ./conf/xslt/. Here is an example of transforming search results into
an RSS feed:

http://localhost:8983/solr/mbartists/select/?q=marley&wt=xslt&tr=e
xample_rss.xsl

The wt parameter triggers the use of XSLT, and the tr parameter supplies the name
of the stylesheet to be used.

Integrating Solr

[306]

There are some caveats to keep in mind for XSLT support. Compiling XSLT
transformations is an extra step, and while Solr will cache the last transformation
for a period of time, configured in the queryResponseWriter via the
xsltCacheLifetimeSeconds parameter, it only caches a single XSLT transformation.
So if you use more than one XSLT stylesheet then you are likely to find Solr
constantly recompiling it. Additionally, because Solr has to have the entire XML
document in memory first to render the XSL stylesheet, you may run into memory
issues if you are returning large numbers of results.

Need a debugger for Solr queries?
Want to understand how Solr determined the score for the documents
you returned? You can use the example.xsl to quickly transform
your results to HTML and expose the query debugging information
in an easy to read format. Just make sure you specify the score field
to be returned so you get the toggle for the scoring info: http://
localhost:8983/solr/mbartists/select/?q=smashing&wt=x
slt&tr=example.xsl&fl=*,score&debugQuery=true

OpenSearch based Browse plugin
In this section we will show how to use XSLT to support OpenSearch. OpenSearch
is a collection of simple formats/standards for search engine interoperability. About
half of the standard governs an XML document that describes the web interface of
a search engine to invoke searches on it, including various metadata. The other half
defines a set of XML elements for formatting search results, typically Atom/RSS. This
standard enables you to build a single interface that works with multiple different
search engines. OpenSearch was originally developed by A9, a subsidiary of Amazon,
and has seen some adoption in the market, especially by the browsers to power their
toolbar search boxes. You can find more information at http://www.opensearch.
org/.

Installing the Search MBArtists plugin
This example builds on the Velocity based UI for the mbartists core described earlier,
and works best with Firefox. Open the browse interface for the mbartists core and
you will be able to add a custom Search MBArtists plugin to the search bar:

http://www.opensearch.org/

Chapter 9

[307]

This was prompted by providing a link to an OpenSearch descriptor file in the
cores/mbtypes/conf/velocity/head.vm file:

<link rel="search" href="#{url_for_solr}/admin/file?file=/velocity/
opensearch_description.xml&contentType=text/xml"
type="application/opensearchdescription+xml"
title="Search MBArtists">
</link>

Browsers that understand this link will allow the user to add the described search
engine. The opensearch_description.xml file is just a static XML file that describes
how to make both regular queries to Solr as well as autosuggest queries. OpenSearch
returns results in either RSS or Atom formats. If you look at ./xslt/opensearch_
atom.xsl you can see the transformation that is applied to a standard XML return
document. Opening the link http://localhost:8983/solr/mbartists/browse?q
=wailer&wt=xslt&tr=opensearch_atom.xsl in Firefox or Safari will return an RSS
feed of the various artists named Wailer. Open the results in Chrome and you can see
the results in the Atom standard XML syntax:

<id>tag:localhost:wailers</id>
<opensearch:totalResults>5</opensearch:totalResults>
<opensearch:startIndex>0</opensearch:startIndex>
<opensearch:itemsPerPage>20</opensearch:itemsPerPage>
<opensearch:Query role="request" searchTerms="wailers" startPage="1"/>
&wt=xslt&tr=opensearch_atom.xsl&start=4&rows=20"/>
<link rel="search" type="application/opensearchdescription+xml"
href="opensearch_description.xml"/>
<entry>

http://localhost:8983/solr/mbartists/browse?q=wailer&wt=xslt&tr=opensearch_atom.xsl
http://localhost:8983/solr/mbartists/browse?q=wailer&wt=xslt&tr=opensearch_atom.xsl
http://localhost:8983/solr/mbartists/browse?q=wailer&wt=xslt&tr=opensearch_atom.xsl

Integrating Solr

[308]

<title>Tubby Wailer</title>
<link href="select?q=id:"Artist:184526""/>
<id>tag:localhost:Artist:184526</id>
<summary/>
<updated>2011-04-13T17:58:31Z</updated>
</entry>

Type into Firefox's search bar, and not only will you be able to perform searches that
open up in the browse interface, but you can also get autocompletion of
your queries!

While OpenSearch is somewhat interesting for exposing your website
search functionality through browsers, it's even more exciting if you are
setting up federated search or trying to plug Solr into another system and
need a common lingua franca that won't change and isn't Solr specific.

Chapter 9

[309]

Accessing Solr from PHP applications
There are a number of ways to access Solr from PHP, and none of them seem to have
taken hold of the market as the single best approach. So keep an eye on the wiki page
at http://wiki.apache.org/solr/SolPHP for new developments.

Adding the URL parameter wt=php produces simple PHP output in a typical array
data structure:

array(
 'responseHeader'=>array(
 'status'=>0,
 'QTime'=>0,
 'params'=>array(
 'wt'=>'php',
 'indent'=>'on',
 'rows'=>'1',
 'start'=>'0',
 'q'=>'Pete Moutso')),
 'response'=>array('numFound'=>523,'start'=>0,'docs'=>array(
array(
 'a_name'=>'Pete Moutso',
 'a_type'=>'1',
 'id'=>'Artist:371203',
 'type'=>'Artist'))
))

The same response using the Serialized PHP output specified by wt=phps URL
parameter is a much less human-readable format that is more compact to transfer
over the wire:

a:2:{s:14:"responseHeader";a:3:{s:6:"status";i:0;s:5:"QTime";i:1;s:6:"
params";a:5:{s:2:"wt";s:4:"phps";s:6:"indent";s:2:"on";s:4:"rows";s:1:
"1";s:5:"start";s:1:"0";s:1:"q";s:11:"Pete Moutso";}}s:8:"response";a
:3:{s:8:"numFound";i:523;s:5:"start";i:0;s:4:"docs";a:1:{i:0;a:4:{s:6:
"a_name";s:11:"Pete Moutso";s:6:"a_type";s:1:"1";s:2:"id";s:13:"Artist
:371203";s:4:"type";s:6:"Artist";}}}}

Think twice before using the php writer types
Un-serializing potentially untrusted data can increase security
vulnerability. Additionally, the future of these writer types is in some
doubt as PHP client abstraction projects such solr-php-client and
Solarium both use JSON in preference to the php writer types.

Integrating Solr

[310]

solr-php-client
Showing a lot of progress towards becoming the dominant solution for PHP
integration is the solr-php-client, available from http://code.google.
com/p/solr-php-client/. Interestingly enough, this project leverages the JSON
writer type to communicate with Solr instead of the PHP writer type, showing the
prevalence of JSON for facilitating inter-application communication in a language
agnostic manner. The developers chose JSON over XML because they found that
JSON parsed much quicker than XML in most PHP environments. Moreover, using
the native PHP format requires using the eval() function, which has a performance
penalty and opens the door for code injection attacks.

solr-php-client can both create documents in Solr as well as perform queries for
data. In /examples/9/solr-php-client/demo.php, there is a demo of creating a
new artist document in Solr for the singer Susan Boyle, and then performing some
queries. Installing the demo in your specific local environment is left as an exercise
for the reader. On a Macintosh, you should place the solr-php-client directory in
/Library/WebServer/Documents/.

An array data structure of key value pairs that match your schema can be easily
created and then used to create an array of Apache_Solr_Document objects to be sent
to Solr. Notice that we are using the artist ID value -1. Solr doesn't care what the ID
field contains, just that it is present. Using -1 ensures that we can find Susan Boyle
by ID later!

 $artists = array(
 'susan_boyle' => array(
 'id' => 'Artist:-1',
 'type' => 'Artist',
 'a_name' => 'Susan Boyle',
 'a_type' => 'person',
 'a_member_name' => array('Susan Boyle')
)
);

The value for a_member_name is an array, because a_member_name is a
multi-valued field.

Sending the documents to Solr and triggering the commit and optimize operations is
as simple as:

 $solr->addDocuments($documents);
 $solr->commit();
 $solr->optimize();

Chapter 9

[311]

If you are not running Solr on the default port, then you will need to tweak the
Apache_Solr_Service configuration:

$solr = new Apache_Solr_Service('localhost', '8983',
 '/solr/mbartists');

Queries can be issued using one line of code. The variables $query, $offset, and
$limit contain what you would expect them to.

$response = $solr->search($query, $offset, $limit);

Displaying the results is very straightforward as well. Here we are looking for Susan
Boyle based on her ID of -1, highlighting the result using a blue font:

foreach ($response->response->docs as $doc) {

 $output = "$doc->a_name ($doc->id)
";

 // highlight Susan Boyle if we find her.
if ($doc->id == 'Artist:-1') {
 $output = "" . $output . "";
 }

echo $output;
}

Successfully running the demo creates Susan Boyle and issues a number of
queries, producing a page similar to the one below. Notice that if you know the
ID of the artist, it's almost like using Solr as a relational database to select a single
specific row of data. Instead of select * from artist where id=-1 we did
q=id:"Artist:-1", but the result is the same!

Solarium may be what you want!
Solarium (http://www.solarium-project.org/) attempts to
improve on other PHP client libraries by not just abstracting away the
HTTP communication layer but also more fully modeling the concepts
expressed by Solr. It has objects that allow you to easily build complex
filter queries and faceting logic.

Drupal options
Drupal is a very successful open source Content Management System (CMS) that
has been used for building everything from the WhiteHouse.gov site to political
campaigns and university websites. Drupal's built-in search has always been
considered adequate, but not great, so the option of using Solr to power search has
been very popular.

http://www.solarium-project.org/
http://www.solarium-project.org/

Integrating Solr

[312]

Apache Solr Search integration module
The Apache Solr Search integration module, hosted at http://drupal.org/
project/apachesolr, builds on top of the core search services provided by
Drupal, but provides extra features such as faceted search and better performance
by offloading servicing search requests to another server. The module has had
significant adoption and is the basis of some other Drupal search related modules.

In order to see the Apache Solr module in action, just visit the Drupal.org and
perform a search to see the faceted results.

Hosted Solr by Acquia
Acquia is a company providing commercially supported Drupal distributions, and
also offers hosted Solr search, for Drupal sites that want better search than the built-
in MySQL based search. Acquia's adoption of Solr as a better solution for Drupal
than Drupal's own search shows the rapid maturing of the Solr community
and platform.

Acquia maintains "in the cloud" (Amazon EC2), a large infrastructure of Solr servers
saving individual Drupal administrators from the overhead of maintaining their
own Solr server. A module provided by Acquia is installed into your Drupal and
monitors for content changes. Every five or ten minutes, the module sends content
that either hasn't been indexed, or needs to be re-indexed, up to the indexing servers
in the Acquia network. When a user performs a search on the site, the query is sent
up to the Acquia network, where the search is performed, and then Drupal is just
responsible for displaying the results. Acquia's hosted search option supports all
of the usual Solr goodies including faceting. Drupal has always been very database
intensive, with only moderately complex pages performing 300 individual SQL
queries to render! Moving the load of performing searches off one's Drupal server
into the cloud drastically reduces the load of indexing and performing searches
on Drupal.

Acquia has developed some slick integration beyond the standard Solr features
based on their tight integration into the Drupal framework, which include:

•	 The Content Construction Kit (CCK) allows you to define custom fields for
your nodes through a web browser. For example, you can add a select field
onto a blog node such as oranges/apples/peaches. Solr understands those
CCK data model mappings and actually provides a facet of oranges/apples/
peaches for it.

•	 Turn on a single module and instantly receive content recommendations
giving you more like this functionality based on results provided by Solr.
Any Drupal content can have recommendations links displayed with it.

Chapter 9

[313]

•	 Multi-site search is a strength of Drupal and provides the support of running
multiple sites on a single codebase, such as drupal.org, groups.drupal.
org, and api.drupal.org. Currently, part of the Apache Solr module is the
ability to track where a document came from when indexed, and as a result,
add the various sites as new filters in the search interface.

Acquia's hosted search product is a great example of Platform as a Service
(PaaS), and hosted Solr search is a very common integration approach for many
organizations that don't wish to manage their own Java infrastructure or need
to customize the behavior of Solr drastically. For a list of all the companies
offering hosted Solr search please visit http://wiki.apache.org/solr/
SolrHostingProviders.

Ruby on Rails integrations
There has been a lot of churn in the Ruby on Rails world for adding Solr support,
with a number of competing libraries attempting to support Solr in the most
Rails-native way. Rails brought to the forefront the idea of Convention over
Configuration, the principle that sane defaults and simple rules should suffice
in most situations versus complex configuration expressed in long XML files.
The various libraries for integrating Solr in Ruby on Rails applications establish
conventions in how they interact with Solr. However, often there are a lot of
conventions to learn, such as suffixing String object field names with _s to match up
with the dynamic field definition for String in Solr's schema.xml.

The Ruby query response writer
The Ruby hash structure looks very similar to the JSON data structure with some
tweaks to fit Ruby, such as translating nulls to nils, using single quotes for escaping
content, and the Ruby => operator to separate key-value pairs in maps. Adding a
wt=ruby parameter to a standard search request returns results that can be eval()
into a Ruby hash structure like this:

{
 'responseHeader'=>{
 'status'=>0,
 'QTime'=>1,
 'params'=>{
 'wt'=>'ruby',
 'indent'=>'on',
 'rows'=>'1',
 'start'=>'0',
 'q'=>'Pete Moutso'}},

Integrating Solr

[314]

 'response'=>{'numFound'=>523,'start'=>0,'docs'=>[
 {
 'a_name'=>'Pete Moutso',
 'a_type'=>'1',
 'id'=>'Artist:371203',
 'type'=>'Artist'}]
}}

Note: Evaluating these results has the same security implications that
using the JSON and PHP writers have!

sunspot_rails gem
The sunspot_rails gem hooks into the lifecycle of ActiveRecord model objects and
transparently indexes them in Solr as they are created, updated, and deleted. This
allows you to do queries that are backed by Solr searches, but still work with your
normal ActiveRecord objects. Let's go ahead and build a small Rails application that
we'll call MyFaves that both allows you to store your favorite MusicBrainz artists in
a relational model and allows you to search for them using Solr.

Sunspot comes bundled with a full install of Solr as part of the gem, which you can
easily start by running rake sunspot:solr:start, running Solr on port 8982. This
is great for quickly doing development since you don't need to download and set up
your own Solr. Typically, you are starting with a relational database already stuffed
with content that you want to make searchable. However, in our case we already
have a fully populated index of artist information, so we are actually going to take
the basic artist information out of the mbartists index of Solr and populate our local
myfaves database used by the Rails application. We'll then fire up the version of
Solr shipped with Sunspot, and see how sunspot_rails manages the lifecycle of
ActiveRecord objects to keep Solr's indexed content in sync with the content stored
in the relational database. Don't worry, we'll take it step by step! The completed
application is in /examples/9/myfaves for you to refer to.

Chapter 9

[315]

Setting up MyFaves project
This example assumes you have Rails 3.x already installed. We'll start with the
standard plumbing to get a Rails application set up with our basic data model:

>>rails new myfaves
>>cd myfaves
>>./script/generate scaffold artist name:string group_type:string
 release_date:datetime image_url:string
>>rake db:migrate

This generates a basic application backed by a SQLite database. Now we need to
specify that our application depends on Sunspot. Edit the file Gemfile and add:

gem 'sunspot_rails', '~> 1.2.1'

Next, update your dependencies and generate the config/sunspot.yml
configuration file:

>>bundle install
>>rails generate sunspot_rails:install

We'll also be working with roughly 399,000 artists, so obviously we'll need some
page pagination to manage that list, otherwise pulling up the artists /index listing
page will timeout. We'll use the popular will_paginate gem to manage pagination.
Add the will_paginate gem declaration to your Gemfile and re-run bundle
install:

gem "will_paginate", "~> 3.0.pre4"

Edit the ./app/controllers/artists_controller.rb file, and replace in the
index method the call to @artists = Artist.all with:

@artists = Artist.paginate :page => params[:page], :order =>
 'created_at DESC'

Also add to ./app/views/artists/index.html.erb a call to the view helper to
generate the page links:

<%= will_paginate @artists %>

Start the application using ./script/rails start, and visit the page http://
localhost:3000/artists/. You should see an empty listing page for all of the
artists. Now that we know the basics are working, let's go ahead and actually
leverage Solr.

Integrating Solr

[316]

Populating MyFaves relational database from Solr
Step one will be to import data into our relational database from the mbartists Solr
index. Add the following code to ./app/models/artist.rb:

class Artist < ActiveRecord::Base
 searchable do
 text :name, :default_boost => 2
 string :group_type
 time :release_date
 end
end

The searchable block maps the attributes of the Artist ActiveRecord object to the
artist fields in Solr's schema.xml. Since Sunspot is designed to store any kind of
data in Solr that is stored in your database, it needs a way of distinguishing among
various types of data model objects. For example, if we wanted to store information
about our User model object in Solr in addition to the Artist object then we need to
provide a field in the schema to distinguish the Solr document for the artist with
the primary key of 5 from the Solr document for the user with the primary key of
5. Fortunately, the mbartists schema has a field named type that stores the value
Artist, which maps directly to our ActiveRecord class name of Artist.

There is a simple script called populate.rb at the root of /examples/9/myfaves
that you can run that will copy the artist data from the existing Solr mbartists index
into the MyFaves database:

>>./populate.rb

populate.rb is a great example of the types of scripts you may need to develop
to transfer data into and out of Solr. Most scripts typically work with some sort of
batch size of records that are pulled from one system and then inserted into Solr. The
larger the batch size, the more efficient the pulling and processing of data typically
is at the cost of more memory being consumed, and the slower the commit and
optimize operations are. When you run the populate.rb script, play with the batch
size parameter to get a sense of resource consumption in your environment. Try a
batch size of 10 versus 10000 to see the changes. The parameters for populate.rb
are available at the top of the script:

MBARTISTS_SOLR_URL = 'http://localhost:8983/solr/mbartists'
BATCH_SIZE = 1500
MAX_RECORDS = 100000

Chapter 9

[317]

There are roughly 399,000 artists in the mbartists index, so if you are impatient,
then you can set MAX_RECORDS to a more reasonable number to complete running the
script faster.

The connection to Solr is handled by the RSolr library. A request to Solr is simply a
hash of parameters that is passed as part of the GET request. We use the *:*query to
find all of the artists in the index and then iterate through the results using the
start parameter:

rsolr = RSolr.connect :url => MBARTISTS_SOLR_URL
response = rsolr.select({
:q => '*:*',
:rows=> BATCH_SIZE,
:start => offset,
:fl => ['*','score']
})

In order to create our new Artist model objects, we just iterate through the results of
response['response']['docs'], parsing each document in order to preserve our
unique identifiers between Solr and the database and creating new ActiveRecord
objects. In our MusicBrainz Solr schema, the ID field functions as the primary key
and looks like Artist:11650 for The Smashing Pumpkins. In the database, in order
to sync the two, we need to insert the Artist with the ID of 11650. We wrap the
insert statement a.save! in a begin/rescue/end structure so that if we've already
inserted an artist with a primary key, then the script continues. This allows us to run
the populate script multiple times without erroring out:

response['response']['docs'].each do |doc|
 id = doc["id"]
 id = id[7..(id.length)]
 a = Artist.new(
 :id => id,
 :name => doc["a_name"],
 :group_type => doc["a_type"],
 :release_date => doc["a_release_date_latest"]

 begin
 a.save!
 rescue ActiveRecord::StatementInvalid => err
 raise err unless err.to_s.include?("PRIMARY KEY must be unique") #
sink duplicates
 end
end

Integrating Solr

[318]

We've successfully migrated the data we need for our MyFaves application out of
Solr and we're ready to use the version of Solr that's bundled with Sunspot.

Solr configuration information is listed in ./myfaves/config/sunspot.yml.
Sunspot establishes the convention that development is on port 8982, unit tests that
use Solr connect on port 8981, and then production connects on the traditional
8983 port:

development:
 solr:
 hostname: localhost
 port: 8982

Start the included Solr by running rake sunspot:solr:start. To shutdown Solr
run the corresponding Rake command: sunspot:solr:stop. On the initial startup
rake will create a new top level ./solr directory and populate the conf directory
with default configuration files for Solr (including schema.xml, stopwords.txt, and
so on) pulled from the Sunspot gem.

Build Solr indexes from a relational database
Now we are ready to trigger a full index of the data from the relational database
into Solr. sunspot provides a very convenient rake task for this with a variety of
parameters that you can learn about by running rake -D sunspot:reindex.

>>rake sunspot:solr:start
>>rake sunspot:reindex

Browse to http://localhost:8982/solr/admin/schema.jsp to see the list of
dynamic fields generated by following Convention over Configuration pattern of
Rails applied to Solr. Some of the conventions that are established by Sunspot and
expressed by Solr in ./solr/conf/schema.xml are:

•	 Primary key field for model object in Solr is always called id.
•	 Type field that stores the disambiguating class name of the model object is

called type.
•	 Heavy use of the dynamic field support in Solr. The data type of

ActiveRecord model objects is based on the database column type. Therefore,
when sunspot_rails indexes a model object, it sends a document to Solr
with the various suffixes to leverage the dynamic column creation. In ./
solr/conf/schema.xml, the only fields defined outside of the management
fields are dynamic fields:
<dynamicField name="*_text" type="text" indexed="true"
stored="false"/>

Chapter 9

[319]

•	 The default search field is called text. However, you need to define what
fields are copied into the text field. Sunspot's DSL is oriented towards
naming each model field you'd like to search from Ruby.

The document that gets sent to Solr for our Artist records creates the dynamic fields
such as name_text, group_type_s and release_date_d, for a text, string, and
date field respectively. You can see the list of dynamic fields generated through the
schema browser at http://localhost:8982/solr/admin/schema.jsp.

Now we are ready to perform some searches. Sunspot adds some new methods to
our ActiveRecord model objects such as search() that lets us load ActiveRecord
model objects by sending a query to Solr. Here we find the group Smash Mouth by
searching for matches to the word smashing:

% ./script/rails console
Loading development environment (Rails 3.0.9)
>>search= Artist.search{keywords "smashing"}
=><Sunspot::Search:{:fq=>["type:Artist"], :q=>"smashing",
:fl=>"* score", :qf=>"name_text^2", :defType=>"dismax", :start=>0,
:rows=>30}>
>>search.results.first
=>[#<Artist id: 93855, name: "Smashing Atoms", group_type: nil,
release_date: nil, image_url: nil, created_at: "2011-07-21 05:15:21",
updated_at: "2011-07-21 05:15:21">]

The raw results from Solr are stored in the variable search.hits. The variable
search.results returns the ActiveRecord objects from the database.

Let's also verify that Sunspot is managing the full lifecycle of our objects. Assuming
Susan Boyle isn't yet entered as an artist, let's go ahead and create her:

>>Artist.search{keywords 'Susan Boyle', :fields => [:name]}.hits
=>[]
>>susan = Artist.create(:name => "Susan Boyle", :group_type =>'1',
 :release_date => Date.new)
=> #<Artist id: 548200, name: "Susan Boyle", group_type: 1,
 release_date: "-4712-01-01 05:00:00", created_at: "2011-07-22
21:05:53"", updated_at: "2011-07-22 21:05:53"">

Check the log output from your Solr running on port 8982, and you should also have
seen an update query triggered by the insert of the new Susan Boyle record:

INFO: [] webapp=/solr path=/update params={} status=0 QTime=24

Integrating Solr

[320]

Now, if we delete Susan's record from our database:

>>susan.destroy
=> #<Artist id: 548200, name: "Susan Boyle", group_type: 1,
 release_date: "-4712-01-01 05:00:00", created_at: "2009-04-21
 13:11:09", updated_at: "2009-04-21 13:11:09">

Then there should be another corresponding update issued to Solr to remove the
document:

INFO: [] webapp=/solr path=/update params={} status=0 QTime=57

You can verify this by doing a search for Susan Boyle directly, which should return
no rows at http://localhost:8982/solr/select/?q=Susan+Boyle.

Complete MyFaves website
Now, let's go ahead and put in the rest of the logic for using our Solr-ized model
objects to simplify finding our favorite artists. We'll store the list of favorite artists
in the browser's session space for convenience. If you are following along with your
own generated version of MyFaves application, then the remaining files you'll want
to copy over from /examples/9/myfaves are as follows:

•	 ./app/controller/myfaves_controller.rb contains the controller logic
for picking your favorite artists.

•	 ./app/views/myfaves/ contains the display files for picking and showing
the artists.

•	 ./app/views/layouts/myfaves.html.erb is the layout for the MyFaves
views. We use the Autocomplete widget again, so this layout embeds the
appropriate JavaScript and CSS files.

•	 ./public/stylesheets/jquery.autocomplete.css and ./public/
stylesheets/indicator.gif are stored locally in order to fix pathing issues
with the indicator.gif showing up when the autocompletion search is
running.

The only other edits you should need to make are:

•	 Edit ./config/routes.rb by adding resources :myfaves and root :to
=> "myfaves#index".

•	 Delete ./public/index.html to use the new root route you just defined.
•	 Copy the index method out of ./app/controllers/artists_controllers.

rb because we want the index method to respond with both HTML and
JSON response types.

Chapter 9

[321]

•	 Run rake db:sessions:create to generate a sessions table, then rake
db:migrate to update the database with the new sessions table. Edit ./
config/initializers/session_store.rb and change to using the
:active_record_store for preserving session state.

You should now be able to run ./script/rails start and browse to http://
localhost:3000/. You will be prompted to enter search by entering the artist's
name. If you don't receive any results, then make sure you have started Solr using
rake sunspot:solr:start. Also, if you have only loaded a subset of the full
399,000 artists, then your choices may be limited. You can load all of the artists
through the populate.rb script and then run rake sunspot:reindex, although it
will take a long time to complete. Something good to do just before you head out for
lunch or home for the evening!

If you look at ./app/views/myfaves/index.rhtml, then you can see the jQuery
autocomplete call is a bit different:

$("#artist_name").autocomplete('/artists.json?callback=?', {

The URL we are hitting is /artists.json, with the .json suffix telling Rails that we
want JSON data back instead of normal HTML. If we ended the URL with .xml, then
we would have received XML formatted data about the artists. We provide a slightly
different parameter to Rails to specify the JSONP callback to use. Unlike the previous
example, where we used json.wrf, which is Solr's parameter name for the callback
method to call, we use the more standard parameter name callback. We changed
the ArtistController index method to handle the autocomplete widgets data
needs through JSONP. If there is a q parameter, then we know the request was from
the autocomplete widget, and we ask Solr for the @artists to respond with. Later
on, we render @artists into JSON objects, returning only the name and id attributes
to keep the payload small. We also specify that the JSONP callback method is what
was passed when using the callback parameter:

def index
if params[:q]
 @artists = Artist.search{ keywords params[:q]}.results
else
 @artists = Artist.paginate :page => params[:page], :order =>
 'created_at DESC'
end

respond_to do |format|
format.html # index.html.erb
format.xml { render :xml => @artists }

Integrating Solr

[322]

format.json { render :json => @artists.to_json(:only => [:name,
 :id]), :callback => params[:callback] }
end
end

At the end of all of this, you should have a nice autocomplete interface for quickly
picking artists.

When you are selecting Sunspot as your integration method, you are implicitly
agreeing to the various conventions established for indexing data into Solr. If you are
used to working with Solr directly you may find understanding the Sunspot DSL for
querying a bit of an obstacle. But if your background is in Rails, or you are building
very complex queries, then learning the DSL will pay off in productivity and ability
to maintain complex expressive queries.

Which Rails/Ruby library should I use?
The two most common high level libraries for interacting with Solr are acts_as_solr
and Sunspot. However, in the last couple of years, Sunspot has become the more
popular choice, and comes in a version designed to work explicitly with Rails called
sunspot_rails that allows Rails ActiveRecord database objects to be transparently
backed by a Solr index for full text search.

For lower-level client interface to Solr from Ruby environments, there are two
libraries duking it out to be the client of choice: solr-ruby, a client library developed
by the Apache Solr project and rsolr, which is a reimplementation of a Ruby centric
client library. Both of these solutions are solid and act as great low level API libraries.
However, rsolr has gained more attention, has better documentation, and some
nice features such as a direct embedded Solr connection through JRuby. rsolr also
has support for using curb (Ruby bindings to curl, a very fast HTTP library) instead
of the standard Net::HTTP library for the HTTP transport layer.

In order to perform a select using solr-ruby, you would issue:

response = solr.query('washington', {
:start=>0,
:rows=>10
 })

In order to perform a select using rsolr, you would issue:

response = solr.select({
:q=>'washington',
:start=>0,
:rows=>10
 })

Chapter 9

[323]

So you can see that doing a basic search is pretty much the same in either library.
Differences crop up more as you dig into the details on parsing and indexing
records. You can learn more about solr-ruby on the Solr Wiki at http://wiki.
apache.org/solr/solr-ruby and learn more about rsolr at http://github.com/
mwmitchell/rsolr/tree.

Think about if you really need another layer of abstraction between
you and Solr. Making a call to Solr using wt=ruby and evaluating the
results may be the simplest solution.

Nutch for crawling web pages
A very common source of data to to be searchable is content in web pages, either
from the Internet or inside the firewall. The long-time popular solution for crawling
and searching web pages is Nutch, a former Lucene sub-project. Nutch is focused on
performing Internet scale web crawling similar to Google with components such as
a web crawler, a link graphing database, and parsers for HTML and other common
formats found on the Internet. Nutch is designed to scale horizontally over multiple
machines during crawling using the bigdata platform Hadoop to manage the work.

Nutch has gone through varying levels of activity and community involvement and
recently reached version 1.3. Previously Nutch used its own custom search interface
based on Lucene, but it now leverages Solr for search. This allows Nutch to focus
on web crawling, while Solr works as a generic search tool with features such as
query spellcheck and faceting that Nutch previously couldn't match. Nutch natively
understands web relevancy concepts such as the value of links towards calculating a
page rank score, and how to factor in what an HTML <title/> tag is, when building
the scoring model to return results.

Nutch works off of a seed list of URLs that are used as the source of web pages to
crawl. The ./examples/9/nutch/ directory contains a configured copy of Nutch for
crawling through a list of Wikipedia pages for the 300 most popular artists according
to MusicBrainz's count of track lookups. Look at the script seed_urls.rb to see the
logic used for extracting the URL seed list. To crawl the Internet using a subset of
the seed list and index into Solr run from the ./examples/9/nutch/runtime/local
directory:

>> ./bin/nutch crawl urls -solr http://localhost:8983/solr/nutch/
-depth 1 -topN 5

http://github.com/mwmitchell/rsolr/tree
http://github.com/mwmitchell/rsolr/tree
http://localhost:8983/solr/nutch/select?q=*:*&wt=json&indent=true&fl=url,title

Integrating Solr

[324]

Browse to http://localhost:8983/solr/nutch/select?q=*:*&wt=json&inden
t=true&fl=url,title and you will see the five wiki pages indexed by Nutch into
Solr.

The depth parameter tells Nutch how deep to crawl, with a depth of 1 being just to
index each webpage listed in the ./urls/Wikipedia_seed_urls.txt file. The topN
parameter controls how many documents at each level to crawl, with 5 meaning
that only five artist pages in total are crawled. Once you are satisfied that Nutch is
working the way you want, trigger the crawl again with a larger topN parameter, at
least 300 to index each of the wiki pages listed in the wikipedia_seed_urls.txt file.

The schema file (at ./cores/nutch/conf/schema.xml) that Nutch uses is very self
explanatory. The biggest change you might make is to set stored="false" on the
content field to reduce the index size if you are doing really big crawls.

For more information about the plugins that extend Nutch, and how to configure
Nutch for more sophisticated crawling patterns, look at the documentation at
http://nutch.apache.org.

Maintaining document security with
ManifoldCF
A frequent requirement for search engines is to maintain document level security.
While a public search engine may expose all documents to all users, many intranet
oriented search engines maintain information that that is accessible to only a subset
of users. Historically, the solution to maintaining document level security has been a
roll-your-own with the most common approaches being:

1.	 Implement a post processing filter on the document result set that removes
documents that don't match a specific user access controls. This approach is
nice because you can just wrap your calls to Solr with your own proprietary
security model, and doesn't require any changes to your indexing logic.
However, this can lead to smaller then normal results since you may return
10 results, but only one or two may match the user access criteria! Working
around this by returning much larger result sets, say 50 or 100, or making
multiple calls to Solr to ensure you always return a minimum of 10 results
is awkward at best. Also, the filtering process can often be very expensive to
perform.

2.	 You may be able to perform deeper integration with Solr by writing your
own query parser that taps into Solr's filter queries and avoid the post
processing step.

http://localhost:8983/solr/nutch/select?q=*:*&wt=json&indent=true&fl=url,title
http://nutch.apache.org/

Chapter 9

[325]

3.	 The other approach is to enrich your indexed document with information
about who can access which documents. This access information is exposed
by using filter queries to control who can access which documents.
For example, to allow only documents marked as accessible to the
marketing department, or unclassified, you would append: fq=group_
label:marketing_department OR –group_label:[* TO *] to your query.

Apache ManifoldCF (CF meaning Connector Framework) provides a framework
for extracting content from multiple repositories, enriching it with document level
security information, and outputting the resulting document into Solr based on
the security model found in Microsoft's Active Directory platform. Working with
ManifoldCF requires understanding the interaction between extracting content from
repositories via a Repository Connector, outputting the documents and security
tokens via an Output Connector into Solr, listing a specific user's access tokens from
an Authority Connector, and finally performing a search that filters the document
results based on the list of tokens. ManifoldCF takes care of ensuring that as content
and security classifications for content are updated in the underlying repositories it is
synched to Solr, either on a scheduled basis or a constantly monitoring basis.

Connectors
ManifoldCF provides connectors that index into Solr content from a number of
enterprise content repositories including SharePoint, Documentum, Meridio,
LiveLink, and FileNet. Competing with DataImportHandler and Nutch, ManifoldCF
also crawls web pages, RSS feeds, JDBC databases, and remote Windows shares and
local file systems, while adding the document level security tokens where applicable.
The most compelling use case for ManifoldCF is leveraging ActiveDirectory to
provide access tokens for content indexed in Microsoft SharePoint repositories,
followed by just gaining access to content in the other enterprise content repositories.

Putting ManifoldCF to use
While the sweet spot for using ManifoldCF is with an Authority like ActiveDirectory,
we're going to reuse our MusicBrainz.org data and come up with a simple scenario
for playing with ManifoldCF and Solr. We will use our own MusicBrainzConnector
class to read in data from a simple CSV file that contains a MusicBrainz ID for an
artist, the artist's name, and a list of music genre tags for the artist:

4967c0a1-b9f3-465e-8440-4598fd9fc33c,Enya,folk,pop,irish

Integrating Solr

[326]

The data will be streamed through Manifold and out to our /manifoldcf Solr
core with the list of genres used as the access tokens. To simulate an Authority
service that translates a username to a list of access tokens, we will use our own
GenreAuthority. GenreAuthority will take the first character of the supplied
username, and return a list of genres that start with the same character. So a call to
ManifoldCF for the username paul@example.com would return the access tokens pop
and punk. A search for "Chris" would match on "Chris Isaak" since he is tagged with
pop, but "Chris Cagle" would be filtered out since he plays only American and country
music.

Browse the source for both MusicBrainzConnector and GenreAuthority in ./
examples/9/manifoldcf/connectors/ to get a better sense of how specific
connectors work with the greater ManifoldCF framework.

To get started we need to add some new dynamic fields to our schema in cores/
manifoldcf/conf/schema.xml:

<dynamicField name="allow_token_*" type="string" indexed="true"
stored="true" multiValued="true"/>
<dynamicField name="deny_token_*" type="string" indexed="true"
stored="true" multiValued="true"/>

These rules will allow the Solr output connector to store access tokens in the fields
such as allow_token_document and deny_token_document.

Now we can start up ManifoldCF. The version distributed with this book is a
stripped down version, with just the specific connectors required for this demo! In a
separate window from the ./examples/9/manifoldcf/example directory run:

>>java -jar start.jar

ManifoldCF ships with Jetty as a servlet container, hence the very similar start
command to the one Solr uses!

Browse to http://localhost:8345/mcf-crawler-ui/ to access the ManifoldCF
user interface which exposes the following main functions:

•	 List Output Connections: Provides a list of all the recipients of extracted
content. This is configured to store content in the manifoldcf Solr core.

•	 List Authority Connections: Authority Connectors translate user credentials
to a list of security tokens. You can test that our GenreAuthority is
functioning by calling the API at http://localhost:8345/mcf-authority-
service/UserACLs?username=paul@example.com and verifying you
receive a list of genre access tokens starting with the letter p.

mailto:paul@example.com
mailto:paul@example.com
http://localhost:8345/mcf-crawler-ui/
http://localhost:8345/mcf-crawler-ui/
http://localhost:8345/mcf-crawler-ui/
http://localhost:8345/mcf-authority-service/UserACLs?username=paul@example.com
http://localhost:8345/mcf-authority-service/UserACLs?username=paul@example.com
http://localhost:8345/mcf-authority-service/UserACLs?username=paul@example.com

Chapter 9

[327]

•	 List Repository Connections: The only repository of content we have is the
CSV file of author/genre information. Other repositories, like RSS feeds or
SharePoint sites would be listed here. When you create a repository you
associate a connector and the Authority you are going to use, in our case the
GenreAuthority.

•	 List All Jobs: This lists all the combinations of input repository and output
Solrs.

•	 Status and Job Management: This very useful screen allows you to stop,
start, abort, and pause the jobs you have scheduled, as well as provide a basic
summary of the number of documents that have been found in the repository
as well as those processed into Solr.

Go ahead and choose the Status and Job Management screen and trigger the
indexing job. Click Refresh a couple of times, and you will see the artist content
being indexed into Solr. To see the various genres being used as access
tokens browse:

http://localhost:8983/solr/manifoldcf/
select?q=*:*&facet=true&facet.field=allow_token_document&rows=0

Now that you have data in Solr, this is only half the challenge. At the time of
writing, neither ManifoldCF nor Solr have a component that hooked ManifoldCF
based permissions directly into Solr. However, based on code from the upcoming
ManifoldCF in Action book (http://code.google.com/p/manifoldcfinaction/),
you can easily add a Search Component to your request handler. Add to
solrconfig.xml:

<requestHandler name="standard" class="solr.SearchHandler"
 default="true">
 <arr name="components">
 <str>manifoldcf</str>
 </arr>
</requestHandler>

<searchComponent name="manifoldcf" class="org.apache.manifoldcf.
 examples.ManifoldCFSecurityFilter">
 <str name="AUTHENTICATED_USER_NAME">username</str>
</searchComponent>

http://localhost:8983/solr/manifoldcf/select?q=*:*&facet=true&facet.field=allow_token_document&rows=0
http://localhost:8983/solr/manifoldcf/select?q=*:*&facet=true&facet.field=allow_token_document&rows=0

Integrating Solr

[328]

You are now ready to perform your first query! Do a search for Chris, specifying your
username as paul@example.com and you should see only pop and punk music artists
being returned!

http://localhost:8983/solr/manifoldcf/
select?q=Chris&username=paul@example.com

Change the username parameter to courtney@example.com and Chris Cagle, country
singer should be returned! As documents are added/removed from the CSV file,
ManifoldCF will notice the changes and reindex the updated content.

Summary
As you've seen, Solr offers a plethora of integration options, from its ability to
customize its output using the various query response writers, to clients for specific
languages, to frameworks that enable powerful front ends for both indexing
content as well as providing a jump start in developing the search user interface.
The simplicity of using HTTP GET to request actions to be performed by Solr and
responding with simple documents makes it very straightforward to integrate Solr
based search into your applications regardless of what your preferred development
environment is.

If you are looking to explore more integration options with your favorite language,
framework, or other software, then visit: http://wiki.apache.org/solr/
IntegratingSolr and http://wiki.apache.org/solr/SolrEcosystem.

In the next chapter, we are going to look at how to scale Solr to meet growing
demand by covering approaches for scaling an individual Solr server as well as
scaling out by leveraging multiple Solr servers working cooperatively.

mailto:paul@example.com
http://localhost:8983/solr/manifoldcf/select?q=Chris&username=paul@example.com
http://localhost:8983/solr/manifoldcf/select?q=Chris&username=paul@example.com
mailto:courtney@example.com
http://wiki.apache.org/solr/IntegratingSolr
http://wiki.apache.org/solr/IntegratingSolr

Scaling Solr
You've deployed Solr, and the world is beating a path to your door, leading to a
sharp increase in the number of queries being issued, and meanwhile you've indexed
tenfold the amount of information you originally expected. You discover that Solr is
taking longer to respond to queries and index new content. When this happens, it's
time to start looking at what configuration changes you can make to Solr to support
more load. We'll look at a series of changes/optimizations that you can make,
starting with the simplest changes that give the most bang for your buck to more
complex changes that require thorough analysis of the impact of the system changes.

In this chapter, we will cover the following topics:

•	 Tuning complex systems
•	 Testing Solr Performance with SolrMeter
•	 Optimizing a single Solr server (Scale up)
•	 Moving to multiple Solr servers (Scale horizontally)
•	 Combining replication and sharding (Scale deep)

In a hurry?
If you flipped to this chapter because you need to scale Solr, look
at the section Solr caching as well as how to use replication to share
load over multiple Solr servers described in Moving to multiple Solr
servers (Scale horizontally).

Scaling Solr

[330]

Tuning complex systems
Tuning any complex system, whether it's a database, a message queuing system,
or the deep dark internals of an operating system, is something of a black art.
Researchers and vendors have spent decades figuring out how to measure the
performance of systems and coming up with approaches for maximizing the
performance of those systems. For some systems that have been around for decades,
such as databases, you can just search online for Tuning Tips for X Database and find
explicit rules that suggest what you need to do to gain performance. However, even
with those well-researched systems, it still can be a matter of trial and error.

In order to measure the impact of your changes, you should look at a couple of
metrics and optimize for these three parameters:

•	 Transactions Per Second (TPS): In the Solr world, how many search queries
and document updates are you able to perform per second? You can get a
sense of that by using the Statistics page at http://localhost:8983/solr/
mbtracks/admin/stats.jsp and looking at the avgTimePerRequest and
avgRequestsPerSecond parameters for your request handlers.

•	 CPU usage: To quickly gain a sense of CPU usage of Solr using JConsole.
You can also use OS specific tools such as PerfMon (Windows) and top
(Unix) to monitor your Java processes, which can be helpful if you have a
number of services running on the same box that are competing for resources
(not recommended for maximum scaling!)

•	 Memory usage: When tuning for memory management, you are looking to
ensure that the amount of memory allocated to Solr doesn't constantly grow.
While it's okay for the memory consumption to go up a bit, letting it grow
unconstrained eventually means you will receive out-of-memory errors!
Balance increases in memory consumption with significant increases in TPS.
You can use JConsole to keep an eye on memory usage.

In order to get a sense of what the Steady State is for your application, you can
gather the statistics by using the SolrMeter product to put your Solr under load.
We'll discuss in the next section how to build a load testing script with SolrMeter that
accurately mirrors your real world interactions with Solr. This effort will give you a
tool that can be run repeatedly and allows more of an apple-to-apple comparison of
the impact of changes to your configuration.

Chapter 10

[331]

Solr's architecture has benefited from its heritage as the search engine developed in-
house from 2004 to 2006 that powers CNET.com, a site that is ranked 86th for traffic
by Alexa.com today. Solr, out of the box, is already very performant, with extensive
effort spent by the community to ensure that there are minimal bottlenecks. But the
tuning of Solr hasn't matured to where there are hard and fast rules for optimization
that you should follow by rote step to increase scalability. Most tuning will trade off
increases in search performance at the expense of disk index size, indexing speed,
and/or memory requirements (and vice versa). The three system changes to perform
in increasing complexity are:

•	 Scale up: Optimize a single instance of Solr. Look at caching and memory
configuration. Run Solr on a dedicated server (no virtualization) with very
fast CPUs and SSD drives if you can afford it. In the scale up approach, you
are trying to maximize what you can get from a single server.

•	 Scale horizontally: Look at moving to multiple Solr servers. If your queries
run quickly with an acceptable avgTimePerRequest, but have too many
incoming requests, then replicate your complete index across multiple
Solr servers in a master/slave configuration. If your queries take too long
to complete due to complexity or size of the index, then use sharding to
share the load of processing a single query across multiple sharded Solr
servers. Note: most, but not every feature of Solr is available in a distributed
query, check http://wiki.apache.org/solr/DistributedSearch
for compatibility. Both these approaches can be considered scaling out
techniques.

•	 Scale deep: If you need both sharding for query performance and multiple
replicated indexes to support the query load, then move to each shard being
a master server with multiple slave servers. This is the scale deep approach
and is the most complex architecture to implement.

There is some great research being performed on measuring the limits of
scaling Solr by a consortium of libraries called the HathiTrust. You can
follow their research (and others working in this space) by following links
from http://wiki.apache.org/solr/SolrPerformanceData.

http://wiki.apache.org/solr/DistributedSearch
http://wiki.apache.org/solr/DistributedSearch

Scaling Solr

[332]

Testing Solr performance with SolrMeter
One of the biggest challenges when doing performance testing is to know when
you've accomplished your goals. SolrMeter, available from http://code.google.
com/p/solrmeter/, makes it very easy to test your Solr configuration. When
performance testing Solr, you typically are tweaking configuration values such as
cache sizes and query parameters in response to two ongoing activities: the pace
of documents being indexed into Solr, and the pace of queries being issued to Solr.
SolrMeter makes it very easy to control the pace of these two activities through a
simple GUI tool. SolrMeter brings together both basic load testing functionality with
some visualization and analytics of your Solr instance. A typical example is looking
at your cache rates. While you can use the Solr Admin statistics page to pull back
these results, you are only seeing a snapshot in time. In the following screenshot, you
can see a visualization of the queryResultCache over time. The middle four slopes
were created because I began the Update Console at second 75 indexing new data.
You can easily see the impact of commits on the caches. This type of visualization
can help you go beyond just using the default caching configurations.

http://code.google.com/p/solrmeter/#_blank

Chapter 10

[333]

Start SolrMeter with the embedded configuration for the mbartists core by running
from the ./examples/10/solrmeter directory:

>>java –Dsolrmeter.configurationFile=./mbartists.smc.xml-jar
solrmeter-0.2.0-jar-with-dependencies_3_1_4_0.jar

mbartists.smc.xml specifies to SolrMeter which data files to use to power the
queries to be made and the data to be indexed. SolrMeter takes in separate data
files to randomly build combinations of queries with filters, faceting, and updates
applied: queries.txt, filterQueries.txt, fields.txt, and updates.txt. If you
are already using Solr and logging the queries then you should instead provide an
externalQueries.txt file that has the full set of query parameters:

q="Maxtor Corp"+OR+Belkin&rows=5&fq=inStock:true&facet=true&facet.
field=price

Just extract the entire line after the ? character logged by the GET requests in the Solr
log. That is great for repeating the same set of queries so you are doing A/B testing
as you tweak the various settings. SolrMeter also supports exporting the query time
and a histogram of query time in CSV format to make your own graphs.

You can also use SolrMeter to place a "base" load on a Solr, and then use other testing
tools that offer more scripting or analytics options to ensure that what works just
fine when Solr isn't under load continues to meet expectations when Solr is under
load. For example, you might want to set up 60 updates per minute and 300 queries
per minute as a base load. Using SolrMeter you can quickly set this scenario up, and
then use another tool like JMeter that drives your front-end search user interface to
ensure your application meets your expected SLA when Solr is under load. Or you
can easily change settings such as cache configurations or faceting settings and see
the impact of these changes on performance.

I like to build my list of queries for load testing by extracting a day's
worth of queries from your existing search engine log or HTTP web
server log files. This gives me a realistic set of data so I am tuning to what
my users actually search for, not what I think they search for!

Scaling Solr

[334]

Optimizing a single Solr server (Scale up)
There are a large number of different options that Solr gives you for enhancing
performance of a specific Solr instance, and for most of these options, deciding to
modify them depends on the specific performance result you are trying to tune for.
This section is structured from most generally useful to more specific optimizations.

Configuring JVM settings to improve memory
usage
Solr runs inside a Java Virtual Machine (JVM), an environment that abstracts your
Java-based application from the underlying operating system. JVM performance
improves with every release, so use the latest version (except the recently released Java
7 that has issues that causes Solr to fail! Wait till a .1 release comes out!). There are many
different parameters that you can tune the JVM for. However, most of them are
"black magic", and changing them from the defaults can quickly cause problems if
you don't know what you're doing. Additionally, the folks who write JVMs spend a
lot of time coming up with sophisticated algorithms that mean the JVM will usually
tune itself better than you can. However, there is a fairly simple configuration
change that most Java server applications benefit from (not just Solr), which is to
set the initial and maximum heap memory allocated to the JVM to the same value
and specify that you are running a server application, so the JVM can tune its
optimization strategy for a long running process:

java–Xms1024M -Xmx1024M -server -jar start.jar

Of course, the question now is how much memory should be allocated to
the Java heap. If you specify too little then you run the risk of getting an
OutOfMemoryException. If you specify the largest practical value, which is the actual
memory you have, less some for the operating system and other processes, this is
a sub-optimal configuration too. Operating systems make use of available memory
as caches for disk access, and Solr searches benefit substantially from this, while
indexing does not. I recommend measuring how much heap you need by picking
some highish value, then run a full battery of queries against Solr so all its caches get
filled, then use JConsole to perform a full garbage collection. At that point you can
see how much memory it's using. With that figure, estimate some breathing room
of perhaps 20%. You can modify this process to incorporate concurrent indexing as
applicable. The ultimate figure is of course highly dependent on the size of your Solr
caches and other aspects of the Solr configuration; therefore, tuning the heap size
should be one of the later steps.

Chapter 10

[335]

Look back at the discussion about JMX in Chapter, Deployment for
more details on using JConsole.

MMapDirectoryFactory to leverage additional virtual
memory
If you have plenty of virtual memory relative to your index size, then using
memory-mapped IO via MMapDirectoryFactory should be faster than
StandardDirectoryFactory for interacting with the file system on 64-bit JVMs. This
is set via the <directoryFactory /> tag in solrconfig.xml, and is chosen by
default on 64-bit Solaris and Linux JVMs. The memory used is outside of the Java
heap so you do not need to modify any JVM startup options. Be sure to test your
system thoroughly to validate the performance improvement and make sure RAM
requirements are satisfied.

Enabling downstream HTTP caching
Solr has great support for using HTTP caching headers to enable downstream
HTTP software to cache results. Web browsers, intermediate proxy servers, and
web servers can decide if they need to re-query for updated results by using various
rules. For example, often applications allow a user to take a query and make it an
Alert that will e-mail them results if there is a match. This leads to the same search
running over and over, even if the results are almost always the same. Placing an
intermediate caching server, such as Squid, in front of Solr should reduce the load on
Solr and potentially reduce Solr's internal "query cache" requirements, thus freeing
up more RAM. When a request uses certain caching headers, Solr can then indicate
whether the content has changed by either sending back an HTTP 200 status code
if it has, or a 304 Not Modified code when the content hasn't changed since the last
time the request asked for it.

In order to specify that you want Solr to do HTTP caching, you need to configure
the <httpCaching/> stanza in solrconfig.xml. By default, Solr is configured to
never return 304 codes, instead always returning a 200 response (a normal non-
cached response) with the full body of the results. In ./examples/core/mbtype/
solrconfig.xml uncomment the "production" httpCaching stanza and restart Solr:

<httpCachinglastModifiedFrom="openTime"
 etagSeed="Solr" never304="false">
 <cacheControl>max-age=43200, must-revalidate</cacheControl>
</httpCaching>

Scaling Solr

[336]

We have specified that sending back 304 messages is okay and specified in the
cacheControl that the max time to store responses is 43,200 seconds, which is half
a day. We've also specified through must-revalidate that any shared cache, such as
a Squid proxy, needs to check back with Solr to see if anything has changed, even if
the max-age hasn't expired, which acts as an extra check.

During development you may want to set never304="true" to ensure
that you are always looking at the results of fresh queries and aren't
misled by looking at cached results, unless you are using eTags and the
browser properly honors them.

By running curl with the mbartists core, we can see additional cache related
information in the header, as well as the full XML response from Solr (not listed).
For your typing convenience, these curl commands are available in ./examples/10/
http_cache_commands.txt.

>>curl -v "http://localhost:8983/solr/mbartists/
 select/?q=Smashing+Pumpkins"
< HTTP/1.1 200 OK
< Cache-Control: max-age=43200, must-revalidate
< Expires: Sat, 07 May 2011 02:13:01 GMT
< Last-Modified: Fri, 06 May 2011 14:12:18 GMT
<ETag: "ZTMyMzQwMzhmNDgwMDAwMFNvbHJNdXNpY0JyYWlueg=="

So let's look at what we get back if we take advantage of the Last-Modified header
information by specifying that we have downloaded the content after the last
modified time:

>>curl -v -z "Fri, 06 May 2011 14:12:18 GMT"
 http://localhost:8983/solr/mbartists/select/?q=Smashing+Pumpkins
* About to connect() to localhost port 8983 (#0)
* Trying ::1... connected
* Connected to localhost (::1) port 8983 (#0)
> GET /solr/mbartists/select/?q=Smashing+Pumpkins HTTP/1.1
> User-Agent: curl/7.16.3 (powerpc-apple-darwin9.0) libcurl/7.16.3
OpenSSL/0.9.7l zlib/1.2.3
> Host: localhost:8983
> Accept: */*
>If-Modified-Since: Fri, 06 May 2011 14:12:18 GMT
>
< HTTP/1.1 304 Not Modified
< Cache-Control: max-age=43200
< Expires: Tue, 03 May 2011 09:38:47 GMT
< Last-Modified: Mon, 02 May 2011 21:36:22 GMT
<ETag: "ODMyMzQwMzhmNDgwMDAwMFNvbHI="
< Server: Jetty(6.1.3)

Chapter 10

[337]

Specifying an If-Modified-Since time just one second after the Last-Modified
time means that Solr gives us back a 304 Not Modified code and doesn't have to
return all of the XML data over the wire, which is much faster and reduces the load
on the server. When you ran the curl command you didn't receive any of the XML
result data back in your console!

Entity tags are a newer method for uniquely identifying responses that are more
robust and flexible than using the Last-Modified date. An ETag is a string that
identifies a specific version of a component. In the case of Solr, they are generated by
combining the current version of the index with the etagSeed value. Every time the
index is modified, the current ETag value will change. If we add the fake artist "The
Eric Band" to the mbartists index, and then run our previous query, we'll see that
the ETag has changed because the version of the Solr index has changed:

>>curl 'http://localhost:8983/solr/mbartists/update?commit=true' -H
 "Content-Type: text/xml" --data-binary '<add><doc><field name=
 "a_name">The Eric Band</field><field name="id">Fake:99999
 </field><field name="type">Artist</field></doc></add>'

>>curl -v -z "Tue, 03 May 2011 09:36:36 GMT GMT"
 http://localhost:8983/solr/mbartists/select/?q=Smashing+Pumpkins
>
< HTTP/1.1 304 Not Modified
< Cache-Control: max-age=43200
<Expires: Sat, 07 May 2011 02:17:02 GMT
<Last-Modified: Fri, 06 May 2011 14:16:55 GMTGMT
<ETag: "NTMyMzQwMzhmNDgwMDAwMFNvbHJNdXNpY0JyYWlueg=="
< Server: Jetty(6.1.3)

To take advantage of the HTTP protocol level caching supplied by Solr you need
to make sure your client respects the caching directives returned by Solr. Two very
popular caches that understand ETags are Varnish (http://www.varnish-cache.
org) and Squid (http://www.squid-cache.org).

Remember, the fastest query response possible from Solr's perspective
is the query that it doesn't have to make!

http://www.varnish-cache.org/#_blank
http://www.squid-cache.org

Scaling Solr

[338]

Solr caching
Caching is a key part of what makes Solr fast and scalable, and the proper
configuration of caches is a common topic on the solr-user mailing list! Solr uses
multiple Least Recently Used in-memory caches. The caches are associated with
individual Index Searchers, which represent a snapshot view of the data. Following
a commit, new index searchers are opened and then auto-warmed. Auto-warming
is when the cached queries of the former searcher are rerun to populate the new
searcher. Following auto-warming, predefined searches are run as configured
in solrconfig.xml. Put some representative queries in the newSearcher and
firstSearcher listeners, particularly for queries that need sorting on fields. Once
complete, the new searcher will begin servicing new incoming requests.

Each auto-warming query and predefined search increases the commit
time so make sure those searches are actually increasing the cache hit
ratio and don't over do it!

There are a number of different caches configured in solrconfig.xml:

•	 filterCache: Stores unordered lists of documents that match a query. This
is primarily used for storing filter queries (the fq parameter) for re-use, but
it's also used in faceting under certain circumstances. It is arguably the most
important cache. The filter cache can optionally be used for queries (the q
parameter) that are not score-sorted if useFilterForSortedQuery is enabled
in solrconfig.xml. However, unless testing reveals performance gains, it is
best left disabled—the default setting.

•	 queryResultCache: Stores ordered lists of documents. The order is defined
by any sorting parameters passed. This cache should be large enough to store
the results of the most common searches, which you can identify by looking
at your server logs. This cache doesn't use much memory, as only the ID of
the documents is stored in the cache. The queryResultWindowSize setting
allows you to preload document IDs into the cache if you expect users to
request documents that bound the ordered list. So, if a user asks for products
20 through 29, then there is a good chance they will next look for 30 through
39. If the queryResultWindowSize is 50, then the documents bounding the
initial request from 0 to 50 will be returned and cached. When the user asks
for 30 through 39, they will have their data cached and won't have to access
the Lucene indexes!

•	 documentCache: Caches field values that have been defined in schema.
xml as being stored, so that Solr doesn't have to go back to the filesystem to
retrieve the stored values. Fields are stored by default.

Chapter 10

[339]

The documented wisdom on sizing this cache is to be larger than the
max results * max concurrent queries being executed by Solr to prevent
documents from being re-fetched during a query. As this cache contains the
fields being stored, it can grow large very quickly.

These caches are all configured the same way:

•	 class: Defines whether to use LRUCache or FastLRUCache. The current
wisdom is that for caches that don't have a high hit ratio, therefore have
more churn. You should use LRUCache because the cache is evicting content
frequently. If you have a high hit ratio, then the benefits of FastLRUCache
kick in because it doesn't require a separate thread for managing the removal
of unused items. You want a high hit ratio to maximize the FastLRUCache
because storing data is slower as the calling thread is responsible for making
sure that the cache hasn't grown too large.

•	 size: Defines the maximum items that the cache can support and is mostly
dependent on how much RAM is available to the JVM.

•	 autowarmCount: Specifies how many items should be copied from an old
search to a new one during the auto-warming process. Set the number too
high and you slow down commits; set it too low and the new searches
following those commits won't gain the benefits of the previously cached
data. Look at the warmupTime statistic for your searches to balance
these needs. There are some other options too, such as initialSize,
acceptableSize, minSize, showItems, and cleanupThread specific to
FastLRUCache, but specifying these are uncommon. There is a wealth of
specific information available on the Wiki at http://wiki.apache.org/
solr/SolrCaching that covers this constantly evolving topic.

Tuning caches
Using the statistics admin page, you can get a sense of how large you need to make
your caches. If the hit ratio for your caches is low, then it may be that they aren't
caching enough to be useful. However, if you find that the caches have a significant
number of evictions, then that implies they are filling up too quickly and need to be
made larger. Caches can be increased in size as long as Solr has sufficient RAM to
operate in.

If your hit ratio for a cache is very low, then you should evaluate reducing
its size, perhaps turning it off altogether by commenting out the cache
configuration sections in solrconfig.xml. This will reduce memory
needs that aren't being used effectively and may also help improve
performance by removing the overhead of managing the caches.

Scaling Solr

[340]

Indexing performance
There are several aspects of Solr tuning that increase indexing performance. We'll
start with optimizing the schema, then look at sending data to Solr in bulk, and
then finish with Lucene's merge factor and optimization. But first, one of the easiest
things you can do is increase the buffer size Solr uses to accumulate data before
flushing it to disk. In solrconfig.xml in the <mainIndex> element there is a
<maxRamBufferSizeMB> element set to 32 by default -- a relatively low number. If
you will be loading a lot of data at once, then increase this value. It is hard-limited to
2048 which almost nobody should choose. Many experts seem to find that a number
in the vicinity of 128 to be good for many apps. In chose 64 in our MusicBrainz
configuration.

Designing the schema
Good schema design is probably one of the most important things you can do
to enhance the scalability of Solr. You should refer to Chapter 2, Schema and Text
Analysis, for a refresher on many of the design questions that are inextricably tied to
scalability. The biggest schema issue to look at for maximizing scalability is: Are you
storing the minimum information you need to meet the needs of your users? There
are a number of attributes in your schema field definitions, which inform us about
what is being indexed:

•	 omitTermFreqAndPositions: This feature allows you to skip indexing term
related data such as the frequency and payload for non-textual fields. If your
schema version is at least 1.2, then this will be set appropriately already. The
version is specified in schema.xml in the XML stanza:
 <schema name="example" version="1.4">

•	 indexed: You may find that you have indexed data that you don't ever
search against. By specifying that they are NOT indexed, you can reduce the
size of your index and the overall number of terms.

•	 stored: Storing field values in the index simplifies and speeds search results
because results need not be cross-referenced and retrieved from original
sources. It is also required for features such as highlighting. But storing field
values will obviously increase the index size and indexing time. A quick
way to see what fields are stored is to do a simple search with fl=* as a
parameter; the fields in the result are the stored fields. You should only store
fields that you actually display in your search results or need for debugging
purposes. It is likely that your index has some data repeated but indexed
differently for specialized indexing purposes like faceting or sorting—only
one of those, if any, needs to be stored.

Chapter 10

[341]

Another thing to look at is: If you need to store lots of data in a document, are you
appropriately loading it? If you don't always read all the fields, then enabling lazy
field loading in solrconfig.xml via <enableLazyFieldLoading>true
</enableLazyFieldLoading> can be very helpful.

If you need faster indexing, reduce the text analysis you perform in
schema.xml to only what you need. For example, if you are certain
the input is plain ASCII text then don't bother mapping accented
characters to ASCII equivalents.

Sending data to Solr in bulk
Indexing documents into Solr is often a major bottleneck due to the volume of data
that needs to be indexed initially compared to the pace of ongoing updates. The best
way to speed up indexing is to index documents in batches. Solr supports sending
multiple documents in a single add operation, and this will lead to a drastic speedup
in performance.

However, as the size of your individual documents increase, performance may start
to decrease. A reasonable rule of thumb is doing document add operations in batches
of 10 for large documents, and 100 for small documents.

To see the impact of batching I indexed some data using the scripts in examples/10/
batch/simple_test.rb and documented the time it took.

Scenario Script Time

Single process adding documents one at a time simple_test.rb 24m13.391s

Single process adding documents in batches of
100

simple_test.rb 5m43.492s

Single process adding documents in batches of
500

simple_test.rb 5m51.322s

One thread adding documents in batches of 500 threaded_test.rb 5m25.986s

Four threads adding documents in batches of
100

threaded_test.rb 5m29.357s

Four threads adding documents in batches of
500

threaded_test.rb 5m12.694s

Scaling Solr

[342]

SolrJ can load data the fastest
The fastest client approach to load data into Solr is SolrJ's
StreamingUpdateSolrServer Java class. It places documents to be
added onto queues that separate background threads stream to Solr on
independent connections. Solr receives the documents from different
connections in different threads and can load data faster. Due to the
asynchronous nature of its use, StreamingUpdateSolrServer must
be extended to implement a callback to respond to errors. Look back at
Chapter 9's crawler example to learn more.

The preceding table shows that sending the documents in batches certainly helps the
performance, but only up to a point. With a single process the cost of parsing and
shoveling 500 documents over the wire versus 100 documents started to show up.
The other interesting data point is that in this benchmark, running multiple threads
did not offer appreciable greater performance over a single process. This is because
the processing logic in threaded_test.rb for building the XML documents was so
slight on the client side that having multiple threads didn't help. However, if your
indexing script is doing more complex business logic, such as multiple SQL calls
(often an issue with the DIH), extracting text from rich documents, or calling external
services for operations like entity extraction, in order to build the correct document
to be submitted to Solr then using a multi threaded process, or multiple separate
processes, will increase index throughput.

Don't overlap commits
During indexing you may find that you are starting to see this error message:

<h2>HTTP ERROR: 503</h2><pre>Error opening new searcher. exceeded
limit of maxWarmingSearchers=2, try again later.</pre>

Every time a commit happens, a new searcher is created, which invokes the searcher
warm up process for populating the cache, which can take a while. While you can
bump up the maxWarmingSearchers parameter in solrconfig.xml, you are likely
to still hit the new limit if you have multiple process doing commits because each
additional warming searcher slows things down for the rest. In order to deal with
this, reduce how often commits are happening. You can also reduce the amount
of time auto-warming takes by reducing the autowarmCount and removing the
newSearch query. Of course, this will lead to slower initial queries as well. If you are
bulk loading data, then you don't need real-time display of the changes and can just
do a single commit at the end. Alternatively, to prevent overlapping commits from
happening by each thread, you should use the autoCommit feature to let Solr decide
when to commit.

Chapter 10

[343]

Disabling unique key checking
By default, if you specify a uniqueKey for your schema, when indexing content, Solr
checks the uniqueness of the document being indexed so that you don't end up with
multiple documents sharing the same primary key. If you know you have unique
keys and don't have those documents in the index when doing a bulk load of data,
then you can disable this check. For an update request in any format supported by
Solr, add overwrite=false as a request parameter in the URL.

Index optimization factors
There are some other factors that can impact how often you want commit and
optimize operations to occur. If you are using Solr's support for scaling horizontally
through replication of indexes, then each time a commit or optimize occurs you are
causing the transfer of updated indexes to all the slave servers. This is okay if your
commits are small and you are just generating small segment files that are quickly
transferred. But when you perform an optimization you cause the entire index to be
replicated. If you have a multi gigabyte index, you may decide that optimizing the
index is not something you want to do on a frequent basis because each time you
optimize you cause the entire index to be replicated.

Optimizing your index is no longer quite as important as it used to be. Optimizing
the index saves all the individual segment files into a single segment and removes
deleted documents, which reduces the size and number of binary files that Lucene
has to operate over. However, the automatic merging of segments by Lucene,
specified by the mergeFactor setting puts an upper limit on how many segment files
will be generated and keeps your index in a near optimal state.

If your index is so large that optimizations are taking longer than desired or using
more disk space during optimization than you can spare, but you still want to take
advantage of removing deleted documents from your indexes then consider adding
the maxSegments parameter to the optimize command. In the Update-XML format,
this would be the maxSegments attribute on the optimize element, and in the URL
it would be a correspondingly named parameter. By default this parameter is 1 since
an optimize results in a single Lucene "segment". By setting it larger than 1 but less
than the mergeFactor, you permit partial optimization to no more than the specified
number of segments. Of course, the index won't be fully optimized and therefore
searches will be slower.

curl 'http://localhost:8983/solr/mbtracks/update?optimize=

 true&maxSegments=16'

Scaling Solr

[344]

You may find it is better to frequently compress down to 32 or 16 segments during
periods of load, and then infrequently compress all the way down to 1 segment.

Since a "segment" may be made up of a varying number of files per
segment, an easy way to see the number of current segments is in the
admin statistic page: SolrIndexReader{this=64a7c45e,r=ReadOn
lyDirectoryReader@64a7c45e,refCnt=1,segments=10}

Think about if you can have two strategies for indexing your content.
One that is used during bulk loads that focuses on minimizing commits/
optimizes and indexes your data as quickly as possible, and then a second
strategy used during day-to-day routine operations that potentially
indexes documents more slowly, but commits and optimizes more
frequently to reduce the impact on any search activity being performed.

Another setting that causes a fair amount of debate is the mergeFactor setting,
which controls how many segments Lucene should build before merging them
together on disk.

The rule of thumb is that the more static your content is, the lower the
merge factor you want. If your content is changing frequently, or if you
have a lot of content to index, then a higher merge factor is better.

So, if you are doing sporadic index updates, then a merge factor of 2 is great, because
you will have fewer segments, which leads to faster searching. However, if you
expect to have large indexes (> 10 GB), then having a higher merge factor like 25 will
help with the indexing time.

Check out the great blog post by Lucene in Action author Mike
McCandless that has a visualization of what happens during segment
merging. This really helped me understand the behavior of Solr
during commits: http://blog.mikemccandless.com/2011/02/
visualizing-lucenes-segment-merges.html

Chapter 10

[345]

Enhancing faceting performance
There are a few items to look at when ensuring that faceting performs well. First of
all, faceting and filtering (the fq parameter) go hand-in-hand, thus monitor the filter
cache to ensure that it is adequately sized. The filter cache is used for faceting itself
as well. In particular, any facet.query or facet.date based facets will store an
entry for each facet count returned. You should ensure that the resulting facets are as
reusable as possible from query to query. For example, it's probably not a good idea
to have direct user input to be involved in either a facet.query or in fq because
of the variability. As for dates, try to use fixed intervals that don't change often or
round NOW relative dates to a chunkier interval (for example, NOW/DAY instead of just
NOW). For text faceting (example facet.field), the filterCache is not used unless
you explicitly set facet.method to enum. You should do this when the total number
of distinct values in the field is somewhat small, say less than 50. Finally, you should
add representative faceting queries to firstSearcher in solrconfig.xml so that
when Solr executes its first user query, the relevant caches are already warmed up.

Using term vectors
A term vector is a list of terms resulting from the text analysis of a field's value. It
optionally contains the term frequency, document frequency, and numerical offset
into the text. Without them, the same information can be derived at runtime but
that's slower. While disabled by default, enabling term vectors for a field in schema.
xml enhances:

•	 MoreLikeThis queries, assuming that the field is referenced in mlt.fl
and the input document is a reference to an existing document (that is not
externally passed in).

•	 Highlighting search results with the FastVectorHighlighter
•	 Enabling term vectors for a field increases the index size and indexing time,

and isn't required to perform MoreLikeThis queries or highlighting search
results; however typically, if you are using these features, then the enhanced
performance gained is worth the longer indexing time and greater index size.

Scaling Solr

[346]

Improving phrase search performance
For indexes reaching a million documents or more, phrase searches can be slow. If
you are using the automatic phrase boosting features of the dismax query parser
(excellent for relevancy) then more phrase queries are occurring than you may
be aware of. What slows down phrase searches are the presence of terms in the
phrase that show up in a lot of documents. In order to ameliorate this problem, the
particularly common and uninteresting words like "the" can be filtered out through
a stop filter. But this thwarts searches for a phrase like "to be or not to be" and
prevents disambiguation in other cases where these words, despite being common,
are significant. Besides, as the size of the index grows, this is just a band-aid for
performance as there are plenty of other words that shouldn't be considered for
filtering out yet are common.

Shingling (sometimes called word-grams) is a clever solution to this problem, which
combines pairs of consecutive terms into one so-called shingle. The original terms
still get indexed, but only the shingles are used in phrase queries. Shingles naturally
have a very low frequency relative to single words. Consider the text "The quick
brown fox jumped over the lazy dog". Use of shingling in a typical configuration
would yield the indexed terms (shingles) "the quick", "quick brown", "brown fox",
"fox jumped", "jumped over", "over the", "the lazy", and "lazy dog" in addition to all
of the original nine terms. Since so many more terms are indexed, naturally there is
a commensurate increase in indexing time and resulting size. Common-grams is a
more selective variation of shingling that only shingles when one of the consecutive
words is in a configured list. Given the sentence above using an English stop word
list, the indexed terms would be "the quick", "over the", "the lazy", and the
original nine terms.

As a side benefit, these techniques also improve search
relevancy since the TF and IDF factors are using coarser units
(the shingles) than individual terms.

In our MusicBrainz data set, there are nearly seven million tracks, and that is a lot!
These track names are ripe for either shingling or common-grams. Despite the high
document count, the documents are small and so the actual index is only a couple
gigabytes. Either approach is quite plausibly appropriate given different trade-offs.
Here is a variation of the MusicBrainz title field called title_commonGrams.

Notice that the filter's class name varies from index to
query time, which is very unusual.

Chapter 10

[347]

<fieldType name="title_commonGrams" class="solr.TextField"
 positionIncrementGap="100"">
 <analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.EnglishMinimalStemFilterFactory"/>
 <filter class="solr.CommonGramsFilterFactory"
 words="commongrams.txt" ignoreCase="true"/>"/>
 </analyzer>
 <analyzer type="query">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.EnglishMinimalStemFilterFactory"/>
 <filter class="solr.CommonGramsQueryFilterFactory"
 words="commongrams.txt" ignoreCase="true""/>
 </analyzer>
</fieldType>

To come up with a list of common words for common-grams, use stop
words and add some of the Top Terms list in Solr's schema browser
as a guide for the field in question. You could try a more sophisticated
methodology, but this is a start.

Shingle filters go in the same position, but they are configured a little differently:

<!-- index time …-->
<filter class="solr.ShingleFilterFactory"
 maxShingleSize="2" outputUnigrams="true"/>
<!-- query time -->
<filter class="solr.ShingleFilterFactory"
 maxShingleSize="2" outputUnigrams="false"
 outputUnigramsIfNoShingles="true"/>

You might choose to save additional index space and search performance by adding
a stop filter after shingling or common-grams for typical stop-words so long as they
don't need to be searchable by themselves. This wasn't done here since it's not a good
decision for short fields.

Evaluating the search performance improvement of shingling proved to be tricky
for the limited time I gave to it. Some rough (non-scientific) testing showed that a
search for Hand in my Pocket against the shingled field versus the non-shingled field
was two to three times faster. I've seen very compelling search performance numbers
using common-grams from others online but I didn't evaluate it.

Scaling Solr

[348]

Shingling and common-grams increase phrase search performance at the expense of
indexing speed and disk use. In the following table I present the relative cost of these
two techniques on the track name field in MusicBrainz compared to the cost of doing
typical text analysis. These percentages may look high and might scare you away
but remember that these are based purely on one aspect (the index portion) of one
field. The overall index time and disk use didn't change dramatically, not even with
shingling. You should try it on your data to see the effects.

Indexing time increase % Disk space increase %
Common-Grams 220% 25%
Shingling 450% 110%

Use of either is recommended for most applications
Given that shingling takes over five times as long and uses twice
as much disk space, it makes more sense on small to medium scale
indexes where phrase boosting is used to improve relevancy. Common-
grams is a relative bargain for all other applications.

Moving to multiple Solr servers
(Scale horizontally)
Once you've optimized Solr running on a single server, and reached the point of
diminishing returns for optimizing further, the next step is to split the querying load
over multiple slave instances of Solr. The ability to scale horizontally is a hallmark of
modern scalable Internet systems, and Solr shares this.

Replication

Indexes Replicated

Slave Instances

Inbound Queries

Master Solr

Chapter 10

[349]

Replication
Introduced in Solr 1.4 is an HTTP-based replication strategy that is tightly integrated
into Solr. Configuration is done through the already familiar solrconfig.xml, and
replication encompasses transferring both data as well as configuration files such
as solrconfig.xml and works across both Unix and Windows environments. The
admin interface provides monitoring and control of replication—for example, to
force the start of replication or aborting a stalled replication. Replication works by
taking advantage of the fact that changes to indexes are appended to the end of the
index data structure. This means that when you modify a single document as part of
a 3 GB index, you are not changing the 3 GB segment file, but instead recording that
change to a much smaller segment file, measured in megabytes or less! The master
Solr server exposes an overall index version that is incremented each time a change
is made, and exposes all the segment files to the slaves. The individual slave Solr
instances periodically poll the master to compare their list of segments with what the
master Solr offers, and then download via HTTP the segments that they are missing.
Once the files are downloaded the slaves internally perform a commit operation that
adds the new segments to their index and exposes the new data to users querying
them.

Prior to Solr 1.4, replication was performed using Unix shell scripts
that transferred data between servers through rsync, scheduled using
cron. This replication was based on the fact that by using rsync, you
could replicate only Lucene segments that had been updated from
the master to the slave servers. The script-based solution has worked
well for many deployments, but suffers from being relatively complex,
requiring external shell scripts, cron jobs, and rsync daemons in order to
be setup. You can get a sense of the complexity by looking at the Wiki
page http://wiki.apache.org/solr/CollectionDistribution
and looking at the various rsync and snapshot related scripts in ./
examples/cores/crawler/bin directory.

Starting multiple Solr servers
We'll test running multiple separate Solr servers by firing up multiple copies of our
example Solr using separate ports and data directories. A very typical replication
pattern is one master and two slaves. Go ahead and start our normal Solr using run.
sh. To start the slaves we have two startup scripts in ./examples/10/ directory:
run_8984.sh and run_8985.sh that startup copies of our normal Solr on ports
8984 and 8985 in separate terminal windows. You should now have three terminal
windows running three separate Solr instances on separate ports.

Scaling Solr

[350]

If you look at the scripts you'll see we are passing in a different port number for
Jetty, a different data directory (named with the port number to make it easier to
distinguish) to store the slave indexes in, and enabling the instance to function as
a slave:

-Dsolr.slave.enable=true -Dsolr.data.dir=../../cores_data/data8984
-Djetty.port=8984

•	 -Dsolr.master.enable=true specifies that a Solr server is running as a
master server. The master server is responsible for pushing out indexes to
all of the slave servers. You will store documents in the master server, and
perform queries against the pool of slave servers.

•	 -Dsolr.slave.enable=true specifies that a Solr server is running as a slave
server. Slave servers periodically poll the master server for updated indexes,
or you can manually trigger updates by calling a URL or using the Admin
interface. A pool of slave servers, managed by a load balancer of some type
service the search requests made by end users.

•	 -Djetty.port=8984 will start up Solr on port 8984 instead of the usual port
8983. You'll need to do this if you have multiple Servlet engines on the same
physical server.

•	 -Dsolr.data.dir=./solr/data8984 specifies a different data directory
from the default one, configured in solrconfig.xml. You typically wouldn't
want two Solr servers on the same physical server attempting to share the
same data directory. I like to put the port number in the directory name to
help distinguish between running Solr servers, assuming different servlet
engines are used.

You actually can have multiple Solr servers share an index, just make sure
only one Solr makes changes to the index. When changes are made, make
sure you tell the others to reopen their view of the index by performing a
commit operation, despite the fact that they have not made any changes!
This can be really useful when your indexes are huge and you don't want
to make copies of them, but have plenty of RAM and CPU available.

Chapter 10

[351]

Configuring replication
Configuring replication is very easy. We have already configured the replication
handler for the various cores through the following stanza in ./examples/cores/
mbtypes/solrconfig.xml:

<requestHandler name="/replication" class="solr.ReplicationHandler" >
<lst name="master">
 <str name="enable">${solr.master.enable:false}</str>
 <str name="replicateAfter">startup</str>
 <str name="replicateAfter">commit</str>
 <str name="confFiles">stopwords.txt</str>
</lst>
<lst name="slave">
 <str name="enable">${solr.slave.enable:false}</str>
 <str name="masterUrl">
 http://localhost:8983/solr/${solr.core.name}/replication
 </str>
 <str name="pollInterval">00:00:60</str>
</lst>
</requestHandler>

Notice the use of ${} values for doing configuration of solrconfig.xml at runtime?
This allows us to configure a single request handler for replication, and
pass –Dsolr.master.enable=true and –Dsolr.slave.enable=true to control
which list of parameters are used and dynamically build the URL to poll for changes.
The master server has been set to trigger replication on startup and when commits
are performed. Configuration files can also be replicated to the slave servers through
the list of confFiles. Replicating configuration files is useful when you modify
them during runtime and don't want to go through a full redeployment process of
Solr. Just update the configuration file on the master Solr, and they will be pushed
down to the slave servers the next time the index is changed as well. You can
force this by modifying a document and issuing a commit that changes the index
version, the actual replication ONLY happens when the index changes. The slave
server is smart enough to pick up the fact that a configuration file was updated
and reload the core. If you have a differing configuration file for master and slaves
then you can have a dedicated configuration file replicated to the slave via: <str
name="confFiles">solrconfig_slave.xml:solrconfig.xml</str>.

Scaling Solr

[352]

The pollInterval controls how often the slave checks the master for updated
segments. If the master index is constantly changing, but you don't need to have
those changes immediately reflected in the slaves, then a longer poll interval, such as
15 minutes, will reduce the overall amount of data that needs to be transferred over
the network. Also, this highlights that in a replicated environment, optimizations
are expensive not because of the time it takes to perform the operation, but because
of the network download time. When you optimize a 3 GB index down to 1 segment
then the entire 3 GB index will need to be downloaded by each of the slaves, which
can quickly bottleneck your average 100 BASE-TX Ethernet network.

For updated information on setting up replication view the wiki at http://wiki.
apache.org/solr/SolrReplication.

Load balancing searches across slaves
Go ahead and fire up three separate instances of Solr. Two of the servers will serve
up results for search queries, while one server will function as the master copy of the
index. Make sure to keep track of the various ports!

Indexing into the master server
In a new terminal session, we're going to take a CSV file of the MusicBrainz album
release data to use as our sample data. The CSV file is stored in a ZIP format in ./
examples/10/mb_releases.csv.zip. Unzip the file so you have the full dataset
with over 600K releases running:

>>unzip mb_releases.csv.zip

You can index the CSV data file using curl. Make sure you supply the correct path
for the stream.file parameter:

>>curl http://localhost:8983/solr/mbreleases/update/csv -F
 f.r_attributes.split=true -F f.r_event_country.split=true -F
 f.r_event_date.split=true -F f.r_attributes.separator=' ' -F
 f.r_event_country.separator=' ' -F f.r_event_date.separator=' ' -F
 commit=true -F stream.file=/Users/epugh/Downloads/solrbook/examples/10/
 mb_releases.csv

You can monitor the progress of streaming the release data by using the statistics
page at http://localhost:8983/solr/mbreleases/admin/stats.jsp#update
and looking at the docPending value. Refresh the page, and it will count up to the
total 603,090 documents.

Chapter 10

[353]

Configuring slaves
Once the indexing is done, check the number of documents indexed; it should be
603,090. Each slave has been configured via the pollInterval value to check the
master Solr for updated segments every 60 seconds. The master Solr is defined by the
masterUrl parameter.:

<lst name="slave">
 <str name="enable">${solr.slave.enable:false}</str>
 <str name="masterUrl">http://localhost:8983/solr/${solr.core.name}
 /replication</str>
 <str name="pollInterval">00:00:60</str>
</lst>

To start up another slave Solr run:

>> cd ~/examples

>>java -Xms512M -Xmx1024M -Dfile.encoding=UTF8 -Dsolr.solr.home=cores
-Dsolr.slave.enable=true -Dsolr.data.dir=../../cores_data/data8984
-Djetty.port=8984 -Djetty.home=solr -Djetty.logs=solr/logs -jar solr/
start.jar

You can keep starting more slave servers by passing in a separate port and data
directories that will each start polling the same master Solr.

You can trigger a replication by using the Replication admin page for each slave. The
page will reload showing you how much of the data has been replicated from your
master server to the slave server. In the following screenshot, you can see that 71 of
128 megabytes of data have been replicated:

Scaling Solr

[354]

Typically, you would want to use a proper DNS name for the masterUrl, such as
master.solrsearch.mycompany.com, so you don't have to edit each slave server.
Alternatively, you can specify the masterUrl as part of the URL and manually
trigger an update:

>>curl http://slave12.solrsearch.mycompany.com/solr/mbreleases/
 replication?
command=fetchindex&masterUrl=http://master.solrsearch.mycompany.com/
 solr/mbreleases/replication

Configuring load balancing
We now have three Solr's running, one master and two slaves in separate terminals.
We don't have a single URL that we can provide to clients, which leverages the pool
of slave Solr servers. For the purposes of this example, we are going to use a simple
Java load balancer called Distributor to provide a proxy in front of our two slaves
that sends traffic in a very simple round robin fashion.

HAProxy
For production use, I like HAProxy, a simple and powerful HTTP proxy
server to do a round robin load balancing between the pool of slaves.
This allows us to have a single IP address, and have requests redirected
to one of the pool of servers, without requiring configuration changes on
the client side. A sample haproxy.cfg is available in./examples/10/
amazon/ that listen to port 80, and then redirect requests to each of
the slave servers, equally weighted between them. Going into the full
configuration of HAProxy is out of the scope of this book; for more
information visit http://haproxy.1wt.eu/.

Assuming you have your pool of slaves running on ports 8984 and 8985 then you can
fire up the distributor from ./examples/10/distributor/:

>>java -jar distributor-0.7.jar distributor.conf

distributor.conf is configured to listen to traffic on port 8000 and send traffic to
the set of slaves:

<target_group>
 <target hostname="localhost" port="8985"/>
 <target hostname="localhost" port="8984"/>
</target_group>

http://haproxy.1wt.eu/#_blank
http://haproxy.1wt.eu/#_blank

Chapter 10

[355]

Distributor runs a test against each target server in the target_group to check if it is
available or not by checking a URL's response for various conditions. Solr includes
a request handler called PingRequestHandler at /admin/ping designed for this
purpose.

<test_parameters
 service_type="http"
 frequency="60000"
 timeout="5000">
 <get path="/solr/mbreleases/admin/ping">
 <response_code value="200"/>
 </get>
</test_parameters>

You can manually control the response of the ping request handler by enabling the
<healthcheck type="file">server-enabled</healthcheck> XML element in
solrconfig.xml. Adding the healthcheck adds an Enable/Disable link to the
admin web page, and a file named server-enabled is created/deleted in the data
directory. If you click on Disable, then /admin/ping will always return false.

You should now be able to hit port 8000, http://localhost:8000/solr, and
be transparently forwarded to one of the slave servers. Go ahead and issue some
queries and you will see them logged by whichever slave server you are directed to.
If you then stop Solr on one slave server and do another search request, you will be
transparently forwarded to the other slave server! The admin page for each slave will
reflect the actual address and port the slave is running on.

There is a SolrJ client side interface that does load balancing as well.
LBHttpSolrServer requires the client to know the addresses of all of
the slave servers and isn't as robust as a proxy, though it does simplify the
architecture. More information is on the Wiki at http://wiki.apache.
org/solr/LBHttpSolrServer.

Scaling Solr

[356]

Sharding indexes
Sharding is the process of breaking a single logical index in a horizontal fashion
across records versus breaking it up vertically by entities. It is a common database
scaling strategy when you have too much data for a single database server to handle.
In Solr terms, sharding is breaking up a single Solr core across multiple Solr servers,
each with identical schemas, as compared to breaking up a single Solr core over
multiple cores with differing schemas on a single server through a multi core setup.
Solr has the ability to take a single query and run it over multiple Solr shards, and
then aggregate the results together into a single result set that is returned to the
client. You should use sharding if your queries start to take too long to execute on
a single server that isn't otherwise heavily taxed. You typically only need sharding
when you have millions of documents to be searched and complex queries that
require significant amounts of CPU and memory to process.

Sharding
A collection of Shards

Aggregate Query
Results

Inbound Quaries

If running a single query is fast enough, and you need to handle more
users, then use the whole index replication approach instead!

Chapter 10

[357]

Sharding isn't a completely transparent operation the way replicating whole indexes
is from an external perspective. The key constraint is when indexing documents you
want to evenly balance the distribution of documents across the shards so each shard
is more or less evenly sized to maintain relevancy. Solr doesn't have any logic for
evenly distributing indexed data over shards. When querying for data, you supply a
shards parameter that lists which Solr shards to aggregate results from. This means
a lot of knowledge of the structure of the Solr architecture is required on the client
side. Lastly, every document needs a unique key (ID), because you are breaking up
the index based on documents, and these documents are distinguished from each
other by their document ID.

Assigning documents to shards
There are a number of approaches you can take for splitting your documents across
servers. Assuming your servers share the same performance characteristics, such as
if you are sharding across multiple EC2 servers, then you want to break your data up
more or less equally across the servers. We could distribute our mbreleases data based
on the release names. All release names that start between A and M would go to one
shard, the remaining N through Z would be sent to the other shard. However, the
chance of an even distribution of release names isn't very likely! A better approach to
evenly distribute documents is to perform a hash on the unique ID and take the mod
of that value to determine which shard it should be distributed to like in this chunk
of Ruby code:

SHARDS = ['http://ec2-174-129-178-110
 .compute-1.amazonaws.com:8983/solr/mbreleases',
 'http://ec2-75-101-213-59
 .compute-1.amazonaws.com:8983/solr/mbreleases']
unique_id = document[:id]
ifunique_id.hash % SHARDS.size == local_thread_id
 # index to shard
end

As long as the number of shards doesn't change, every time you index the same
document, it will end up on the same shard! With reasonably balanced document
distribution, the individual shards calculation of what documents are relevant
should be good enough. If you have many more documents on one server versus
another, then the one with fewer documents will seem as relevant as the one with
many documents, as relevancy is calculated on a per-server basis.

Scaling Solr

[358]

You can test out the script shard_indexer.rb in ./examples/10/amazon/ to index
the mb_releases.csv across as many shards as you want by using the hashing
strategy. Just add each shard URL to the SHARDS array defined at the top of
shard_indexer.rb:

>>rubyshard_indexer.rb ../mbreleases.csv

You might want to change this algorithm if you have a pool of servers
supporting your shards that are of varying capacities and if relevance
isn't a key issue for you. For your higher capacity servers, you might
want to direct more documents to be indexed on those shards. You can
do this by using the existing logic, and then by just listing your higher
capacity servers in the SHARDS array multiple times.

Searching across shards (distributed search)
The ability to search across shards as if they were a single logical data set is known
as distributed search, and it's built into the search request handler and most search
components. It is activated simply by issuing an otherwise normal search request
with the shards request parameter, which is a comma-delimited list of URL-like
references to Solr instances to search across. Here is an example searching
two shards:

http://[SHARD_1]:8983/solr/select?shards=ec2-174-129-178-110.compute-1.
amazonaws.com:8983/solr/mbreleases,ec2-75-101-213-59.compute-1.amazonaws.
com:8983/solr/mbreleases&indent=true&q=r_a_name:Joplin

You can issue the search request to one of the shards or to another Solr instance
that is configured like them. The data in the Solr instance receiving the request is
not searched unless it is referenced in the shards parameter. Under the hood, a
distributed search results in one or more requests to each shard depending on the
components used. These internal sharded requests will go to the default request
handler, which is not necessarily the original one. This can be overridden with the
shards.qt parameter if needed. The data from each shard is merged appropriately
and the final results are returned normally. Here are the results of the previous
example search with nothing unusual about it:

<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">697</int>
 <lst name="params">
 <str name="indent">true</str>

Chapter 10

[359]

 <str name="q">r_a_name:Joplin</str>
 <str name="shards">
 ec2-174-129-178-110.compute-1.amazonaws.com
 :8983/solr/mbreleases,ec2-75-101-213-59.compute-
 1.amazonaws.com:8983/solr/mbreleases
 </str>
 </lst>
</lst>
<result name="response" numFound="15" start="0"/>
</response>

The URLs listed in the shards parameter do not include the leading
transport protocol, just the host with the port and path to the Solr core.
You will get no results if you specify http:// in the shard URLs.
You can pass as many shards as you want up to the length a GET URI
is allowed, which is at least 4,000 characters. A common technique to
shorten the URL and simplify configuration is to use a separate request
handler with the shards parameter defined in the request handler. This
relieves the end users from needing to know which shards to query.
You can also POST the parameters in the body of the request to get
around the URI limit.

You can verify that the results are distributed and then combined by issuing the
same search for r_a_name:Joplin to each individual shard and then adding up the
numFound values.

There are a few key points to keep in mind when using shards to support
distributed search:

•	 Most components support a distributed search, but not all. Distributed
Range Faceting is only supported in the future Solr 4 release, although there
is a patch for 3.x -- SOLR-1709. Result Grouping / Field Collapsing will
support it in Solr 3.5. The More Like This feature doesn't support it either
but there is a patch -- SOLR-788. The Query Elevation component has no
support for it. Check the wiki page at http://wiki.apache.org/solr/
DistributedSearch for an up to date list.

•	 Each document must have a unique ID. This is how Solr figures out how to
merge the documents back together.

•	 Each shard should be roughly equal in size and distribution of documents for
ideal performance and relevancy scores.

Scaling Solr

[360]

•	 If one of the shards fails to respond, then a connection error is thrown. You
can pass a timeAllowed parameter that will return the results from the shard
after a set amount of time; however, if the shard is not accessible it will still
fail and make the whole query fail.

•	 If multiple shards return documents with the same ID, then the first
document is selected and the rest are discarded. This can happen if you have
issues in cleanly distributing your documents over your shards.

Combining replication and sharding
(Scale deep)
Once you've scaled horizontally by either replicating indexes across multiple servers
or sharding a single index, and then discover that you still have performance issues
it's time to combine both approaches to provide a deep structure of Solr servers to
meet your demands. This is conceptually quite simple, and getting it set up to test
is fairly straightforward. The challenge typically is keeping all of the moving pieces
up-to-date, and making sure that you are keeping your search indexes up-to-date.
These operational challenges require a mature set of processes and sophisticated
monitoring tools to ensure that all shards and slaves are up-to-date and
are operational.

In order to tie the two approaches together, you continue to use sharding to spread
out the load across multiple servers. Without sharding, it doesn't matter how large
your pool of slave servers is because you need more CPU power than what just one
slave server has to handle an individual query. Once you have sharded across the
spectrum of shard servers, you treat each one as a Master Shard server, configured
in the same way as we did in the previous replication section. This develops a tree of
a master shard server with a pool of slave servers. Then, to issue a query, you have
multiple small pools of one slave server per shard that you issue queries against,
managed at the application level. You can even have dedicated Solr for doing the
distributed search, one that doesn't have data.

Chapter 10

[361]

Inbound Queries send to pools of slave shards

Slave
Pool 1

Slave
Pool 2

Replicated Shards

Individual
Shards

Replicated

Master Shares

A B

C

C C

A B A B

Data updates are handled by updating the top Master Shard servers and then
replicated down to the individual slaves, grouped together into small groups of
distributed sharded servers.

Obviously, this is a fairly complex setup and requires a fairly sophisticated load
balancer to frontend this whole collection, but it does allow Solr to handle extremely
large data sets.

Scaling Solr

[362]

Near real time search
Real time search is defined as the ability to search for content immediately after
adding/updating it—perhaps within a second or so. This means that if an end-user
is performing some sort of add/update action on content, then the system is able to
process it fast enough so that if they then search for that content as fast as they can,
they will always be able to search for it. Near real time search (often abbreviated as
NRT) allows for a larger time window—most would say less than 30 seconds. This
time window is also known as the index latency. Many users want real time search,
but unless you have a trivially small amount of data, that simply isn't possible yet.
You'll have to settle for near real time search or worse. Reducing the index latency is
an ongoing effort with the biggest leap forward expected in Solr 4.0.

Here are a series of tips, in no particular order, to consider in your quest for the holy
grail of real time search with Solr. You won't get there but you'll get close, especially
if you have time to dedicate to this challenge.

•	 Follow any previous guidance on performance tuning, especially:
°° Carefully tailor the schema to the essentials.
°° Load data efficiently in bulk in multiple threads.

•	 Use SSDs if you can afford it. Definitely avoid virtualization.
•	 Manage the commit rate so that it's fast enough to satisfy the desired latency

but never so frequent that Solr's warming from the previous commit isn't yet
complete. Using autoCommit and/or commitWithin helps.

•	 Minimize warming. Reduce the autowarmCount of your caches and reduce
the amount of work your queries do in the newSearcher listener. Keep those
queries to their essentials—a query that uses sorting, faceting, and function
queries on applicable fields.

•	 Set maxWarmingSearchers to 1; experiment with setting useColdSearcher
to true.

•	 Spread the documents over more shards so that the shards are smaller, which
will query faster. In striving for NRT search, many configuration choices
slow down searches and so smaller shards help balance those effects.

•	 Consider reducing the ratio of Solr shards on a machine per number of CPU
cores so that more machine resources are available for the frequent commit
rate and warming activity.

•	 Do not use replication to split an indexing master and searching slave; you
want the indexing and searching to be on the same index. It's okay to use
replication for backup/availability purposes though.

Chapter 10

[363]

•	 If you only need NRT search for added documents instead of updated ones,
then you can index all new documents into a small shard that will perform
well due to having a small number of documents. Occasionally, you'll need
to coordinate a merge into another larger shard via the mergeIndexes core
command.

Where next for scaling Solr?
While Solr offers some impressive scaling techniques through replication and
sharding of data, it assumes that you know a priori what your scaling needs are. The
distributed search of Solr doesn't adapt to real time changes in indexing or query
load and doesn't provide any fail-over support. SolrCloud is an ongoing effort to
build a fault tolerant, centrally managed support for clusters of Solr instances and is
part of the trunk development path (Solr 4.0). SolrCloud introduces the idea that a
logical collection of documents (otherwise known as an index) is distributed across
a number of slices. Each slice is made up of shards, which are the physical pieces of
the collection. In order to support fault tolerance, there may be multiple replicas of a
shard distributed across different physical nodes. To keep all this data straight, Solr
embeds Apache ZooKeeper as the centralized service for managing all configuration
information for the cluster of Solr instances, including mapping which shards are
available on which set of nodes of the cluster. At the time of writing, you still need
to manage creating the various shards and replica copies yourself during index time.
However, compared to the current sharding approach where you have to supply via
the shards parameter the addresses of all the shards to search over, with SolrCloud
you can just add a distrib=true parameter to your query to let Solr figure out what
the relevant shards are to query:

http://localhost:8983/solr/mbreleases/select?q=*:*&distrib=true

Of course, you can still search a specific set of shards with failover replicas delimited
using the | character:

http://localhost:8983/solr/mbreleases/select?q=*:*&shards
=localhost:8983/solr|localhost:8900/solr,localhost:7574/
solr|localhost:7500/solr

In this case we queried for all the documents in the collection mbreleases, made up of
two shards, each shard consisting of two replicas, each in their own individual Solr
server.

http://localhost:8983/solr/mbreleases/select?q=*:*&shards=localhost:8983/solr|localhost:8900/solr,localhost:7574/solr|localhost#_blank
http://localhost:8983/solr/mbreleases/select?q=*:*&shards=localhost:8983/solr|localhost:8900/solr,localhost:7574/solr|localhost#_blank
http://localhost:8983/solr/mbreleases/select?q=*:*&shards=localhost:8983/solr|localhost:8900/solr,localhost:7574/solr|localhost#_blank
http://localhost:8983/solr/mbreleases/select?q=*:*&shards=localhost:8983/solr|localhost:8900/solr,localhost:7574/solr|localhost#_blank

Scaling Solr

[364]

The first release will be in Solr 4.0; however, it is already in a useable state for many
use cases and it is well worth investigation. SOLR-1873 is the JIRA issue for tracking
the progress of this development. See the wiki page here for more information:
http://wiki.apache.org/solr/SolrCloud.

Summary
Solr offers many knobs and levers for increasing performance; the biggest challenge
can be figuring out which knobs and levers to use! Make sure you budget time
to try a number of approaches, and take a stepwise approach to trying different
approaches out. From turning the simpler knobs for enhancing the performance of
a single server, to pulling the big levers of scaling horizontally through replication
and sharding, performance and scalability with appropriate hardware are issues
that can be solved fairly easily. Moreover, for those projects where truly massive
search infrastructure is required, the ability to shard over multiple servers and then
delegate to multiple slaves provides an almost linear scalability capacity.

Search Quick Reference
This appendix is a convenient reference for common search related request
parameters. It is assumed you already read the related material in the book and are
just looking for something to jog your memory.

The content is on the following two pages. You can find an electronic PDF version
of this appendix here: http://www.solrenterprisesearchserver.com. Having it
printed is especially convenient.

Search Quick Reference

[366]

Quick reference
A means the parameter can appear a variable number of times.

Core search (Chapter 4, Searching)

qt The query type. A named request handler.
q The query string. Usually, as entered by an end user.
defType=lucene The query parser for q. Recommended: dismax (or edismax).

fq A filter query. (p. 120)
start=0 The index into the search results to start returning documents.
rows=10 The number of search result documents to return.
fl=* The field list to retrieve, comma separated. To get scores: *,score
sort=score desc The sort order. A comma separated list with asc or desc. (p. 142)
wt=xml The writer type, that is response format. One of xml, json, python,

php, phps, ruby, javabin, csv, xslt (p. 121), velocity (p. 282).

Others: version=2.2, omitHeader=off, timeAllowed=-1

Diagnostic related (Chapter 4, Searching)

indent=off, debugQuery=off, explainOther (a query for one doc), debug.
explain.structured=off, echoParams=explicit (none|explicit|all),
echoHandler=off

Tip: Use wt=xslt&tr=example.xsl&debugQuery=true&fl=*,score

Lucene query parser (Chapter 4, Searching)

df The default field to search.
q.op=OR The default query operator. One of AND, OR.

Dismax query parser (Chapter 4, Searching and Chapter 5, Search Relevancy)

q.alt An alternate query to run when q is absent. Recommend: *:* (all docs)
qf The query fields, including optional boosts. Ex: id^5.0 name^2.0 body
mm=100% The min-should-match specification. To change to all-optional, use 0%
qs=0 The query slop for phrases explicitly in the query string.
pf The phrase fields for automatic phrase boosting. Same qf syntax.
ps=0 The phrase slop for pf.
tie=0 The score tie-breaker. Recommend: 0.1
bq A boost query. The boost is added.

Appendix

[367]

bf A boost function. The boost is added.

boost A boost function. The boost is multiplied. edismax only

Other edismax additions: pf2, pf3, stopwords=on, lowercaseOperators=on

Lucene Query Syntax (Chapter 4, Searching)

Boolean operators: AND, OR, NOT, &&, ||. Leading + or -.

Ex: {!lucene df=title q.op=$myop} "phrase query slop"~2 w?ldcard*
fuzzzy~0.7 -(updatedAt:[* TO NOW/DAY-2YEAR] +boostMe^5)

Faceting (Chapter 6, Faceting)

Example of a field specific parameter: f.myfieldname.facet.mincount=1

Field value faceting: facet=off, facet.field , facet.sort=count (count|lex),
facet.limit=100, facet.offset=0, facet.mincount=0, facet.missing=off,
facet.prefix, facet.method (enum|fc)

Range faceting: facet=off, facet.range (field name), facet.range.start,
facet.range.end, facet.range.gap (ex: +1DAY), facet.range.hardend=off,
facet.range.other=off, facet.range.include=lower (lower, upper, edge,
outer, all)

Facet queries: facet=off, facet.query

Exclude a filter: fq={!tag=r_type}r_type:Album&facet.field={!ex=r_type}
r_type

Highlighting (Chapter 7, Search Components, p. 202)

Common parameters: hl=off, hl.fl, hl.requireFieldMatch=off,
hl.usePhraseHighlighter=off (recommend on), hl.highlightMultiTerm=off,
hl.snippets=1, hl.fragsize=100, hl.mergeContiguous=off

Spell checking (Chapter 7, Search Components, p. 215)

Parameters: spellcheck=off, spellcheck.dictionary=default, spellcheck.q
(alternative to q), spellcheck.count=1, spellcheck.onlyMorePopular=off,
spellcheck.extendedResults=off, spellcheck.collate=off, spellcheck.
maxCollations=1, spellcheck.maxCollationTries=0, spellcheck.
maxCollationEvaluations=10000, spellcheck.collateExtendedResults=off

Miscellaneous non-search

Commit: /update?commit=true (optimize=true to optimize)

Delete: /update?stream.body=<delete><query>*:*</query></delete>
Reload config: /admin/cores?action=RELOAD&core=mycorename

Index
Symbols
&& operator 126
|| operator 126

A
<add> tag 20
abort command 99
Acquia 312
acts_as_solr 322
additive boosting 157
aggregate index 32
AJAX 272
AJAX Solr 278, 303-305
alphabetic range bucketing 181
analyzers 52
AND or && operator 126
Apache Solr 3.1 Cookbook 27
appends parameter 118, 297
ARC 283
arcreader command 285
arr element 22, 114
artist 31
artists.xml 78
asc 142
ASCIIFoldingFilterFactory token filter

56, 72
a_type 141
audio formats

MIDI 100
MP3 100
Wave audio 100

autoCommit 83, 342
autocomplete widgets 298, 321
autoGeneratePhraseQueries Boolean

attribute 53
automatic phrase boosting

about 153
configuring 153, 154
partial phrase boosting 154, 155
phrase slop configuration 154

Auto-warming 338
avgRequestsPerSecond parameter 330
avgTimePerRequest 330, 331

B
baseUrl 97
bbox query parsers 144, 145
BeanShell 267
bf param 157
Billy Corgan 129
BinContentStreamDataSource 90
BinFileDataSource 90
bonafide tokenizer 52
book supplement

about 12
code supplement 12

boolean operators
about 126
AND 126
NOT 126
OR 126

Boolean parameters 119
Boolean query 152
bool element 115
boost attribute 80
boost.[fieldname], Solr Cell parameters 104
boost functions 156
boosting 133, 148
boost parameter 156, 157

[370]

boost(q,boost) 163
boost query 155
boost query parser 158
bq query 155
browse interface

about 24
URL 24

bucketFirstLetter 181
buildOnCommit 214
buildOnOptimize 214
built-in field types, schema.xml file

about 42
geospatial 43
numbers and dates 42

C
<charFilter> element 55
<copyField> elements 26
cacheControl 336
CachedSqlEntityProcessor 92
CapitalizationFilterFactory token filter 72
captureAttr, Solr Cell parameters 102
capture, Solr Cell parameters 102
catenateAll 60
catenateNumbers 60
catenateWords 60
Caverphone 66
cbrt(x), mathematical primitives 161
CCK 312
ceil(x), mathematical primitives 161
CF 325
Chainsaw

URL 253
change() function 302
characterEncoding, FileBasedSpellChecker

options 213
character filters

about 52, 55
HTMLStripCharFilterFactory 56
MappingCharFilterFactory 56
PatternReplaceCharFilterFactory 56

ClassicFilterFactory token filter 72
ClassicTokenizerFactory tokenizer 57, 58
ClassNotFoundException error 88
client directory, Solr 12
ClientUtils.escapeQueryChars() method 135

ClobTransformer 93
clustering

about 238
document clustering 238
search-result clustering 238

CMS 311
CNET 7
CollationKeyFilterFactory 71
column attribute 92
combined index

about 32
advantages 33

combined schema 46
commands, DIH

importing 98
commands, Solr

CREATE 260
MERGE 261
RELOAD 261
RENAME 260
STATUS 260
SWAP 260
UNLOAD 261

commit, Solr
about 82
autoCommit 83
commitWithin 83
significance 82

commitWithin 83
common-grams 65, 154, 346
CommonGramsFilterFactory 65
comparatorClass 219
compilation 155
complex systems

CPU usage 330
memory usage 330
system changes 331
TPS 330
tuning 330, 331

compressed, field options 44
conf directory 63, 97
Configuration Management (CM) 245
configuration options, CSV

about 86
encapsulator 86
escape 86
fieldnames 86

[371]

header 86
keepEmpty 86
map 87
overwrite 86
separator 86
skip 86
skipLines 86
split 87
trim 86

configuration parameters, MLT
about 231
parameters, specific to MLT request handler

231
parameters, specific to MLT search

component 231
Connector Framework. See CF
connectors 325
ConsoleHandler 252
Content Construction Kit. See CCK
content field 324
Content Management System. See CMS
ContentStreamDataSource 91
content_updater 271
Continuous Integration (CI) server 164
contrib modules

about 10, 13
DataImportHandler (DIH) 10
JAR files 13
Solr Cell 10

Convention over Configuration 313
coordination factor 153
coord, scoring factors 148
copyField directive

about 48
uses 48

copyField, schema.xml file 48
core instance directory 14
correctlySpelled 219
crawler 278
crawling 97
CREATE command 260
cron 349
CSV

about 77
configuration options 86

CSV data
sending, to Solr 84, 85

cURL 77, 337
Cygwin

URL 77

D
<dataSource/> 90
<directoryFactory /> tag 335
<doc> tag 20
<document/> element 91
d parameter 145
database technology

comparing 10
data formats, for indexing data

about 76
CSV 77
Java-Bin 77
Rich documents 77
Solr's Update-JSON 77
Solr's Update-XML 76

DataImportHandler (DIH)
about 10, 13, 76, 77,87, 294
alternatives 88
capabilities 87
commands, importing 98
development console 89
DIH configuration file, writing 90
example DIH configurations 94
JAR files 88
reference documentation, URL 88
setup 88
sub-entities 96

DataImportHandler transformer 56
data part 248
data, schema design

denormalizing 37
data source types, DIH

BinContentStreamDataSource 90
BinFileDataSource 90
ContentStreamDataSource 90
FieldReaderDataSource 90
FieldStreamDataSource 90
FileDataSource 90
JdbcDataSource 90
URLDataSource 90

date element 115
date faceting 182

[372]

DateField 42
DateFormatTransformer 93
DateMath syntax 132, 133
DebugComponent 197, 199
debug queries. See queries, troubleshooting
debugQuery parameter 121, 124, 156, 197
decompounding 61
defaultField 49, 103
defaultOperator attribute 49, 124
defaults 118
defaultSearchField element 49, 124
defType=dismax 135
defType parameter 119, 151
delete tag 81
delta import 98, 99
deltaImportQuery attributes 99
denormalization

about 37
one-to-many associated data 38
one-to-one associated data 37

deployment process, Solr
questions 246, 247

desc 142
development console, DIH 89
diagnostic related parameters

about 121
debugQuery 122
echoHandler 122
echoParams 122
explainOther 122
indent 121

dictionary 207
building, from source 214

dictionary attribute 62
Did you mean. See spell checking
DIH configuration file

about 94
commands, importing 98
data sources 90
delta import 99
entity processors 91
fields 92
importing, from databases 94, 95
multiple rich document files, importing 97,

98
transformers 93
writing 90

XML, importing from file with XSLT 96
directory structure, Solr

about 12
client 12
contrib 13
dist 13
docs 13
example 14

DirectSolrSpellChecker 214
DisjunctionMaxQuery query type 135, 152
dismax parser 119, 122
dismax query parser

about 9, 48, 67, 129, 135, 136, 151
additive boosting 157
automatic phrase boosting 153
automatic phrase boosting, configuring 153
bf + 367
boost + 367
boost functions 156
boost queries 155
bq + 366
default search 140
DisjunctionMaxQuery 152
features 136
limited query syntax 137, 138
min-should-match 138
mm=100% 366
multiple fields, searching 137
multiplicative boosting 157
pf 366
ps=0 366
q.alt 366
qf 366
qs=0 366
queries, boosting 155
tie=0 366

dist, directory structure 13
distrib=true parameter 363
distributed search 34, 182, 358
Distributor 354
div(x,y), mathematical primitives 161
doc element 116
docs, directory structure 13
document access

controlling 273
document clustering 238
document frequency values 33

[373]

document, Lucene 8
document oriented data model 10
document security

maintaining, ManifoldCF used 324
documents indexing, with Solr cell

about 100
karaoke lyrics, extracting 104, 105
metadata, extracting from files 100, 101
richer documents, indexing 106, 107
Solr Cell parameters 102, 103
Solr, configuring 101, 102
text, extracting from files 100, 101

documents, Solr's Update-XML format
deleting 80

double element 114
DoubleMetaphone 66
DoubleMetaphoneFilterFactory analysis

filter
about 67
inject, options 67
maxCodeLength, options 67
options 67

Drupal options, PHP applications
about 311
Apache Solr Search integration module 312
Hosted Solr 312, 313

dynamicField 45

E
 HTML markup 206
<encoder/> element 204
<entity/> element 92
echoHandler parameter 122
echoParams 122, 187, 234
EdgeNGram analyzer 70
EdgeNGramFilterFactory 70
EdgeNGramTokenizerFactory 70, 220
edismax query parser

about 119, 128, 151
default search 135

edit distance 131
elevateArtists.xml 229
e(), mathematical primitives 161
Embedded Solr 76
embedded Solr, using

in-process indexing 294, 295

legacy Lucene, upcoming 295
standalone desktop applications 295
use cases 294

encoder attribute 67
encodeURIComponent() 117
endOffset 219
EnglishMinimalStemFilterFactory stemmer

62
EnglishPossessiveFilterFactory token filter

72
entities returned from search, schema

design
determining 36

entity processors, DIH
about 91
CachedSqlEntityProcessor 92
FileListEntityProcessor 92
LineEntityProcessor 92
MailEntityProcessor 92
PlainTextEntityProcessor 92
SqlEntityProcessor 91
TikaEntityProcessor 92
XPathEntityProcessor 92

Entity tags 337
enum method 181
ETag

about 337
Squid 337
Varnish 337

ETL (Extract Transform and Load) 95
eval() function 296-310
event 31
example, directory structure

about 14
child directories 14

examples, Solr
ajaxsolr 278
crawler 278
jquery_autocomplete 278
myfaves 278
nutch 278
php 278
Solritas 278
solr-php-client 278

existence (and non-existence) queries 134
explainOther parameter 122
explicit mapping 63

[374]

exp(x), mathematical primitives 161
eXtensible Stylesheet Language Transfor-

mations. See XSLT
ExternalFileField 170
extractFormat, Solr Cell parameters 104
ExtractingRequestHandler 75, 100
extractOnly, Solr Cell parameters 104

F
<fields/> element 26, 41, 44
<fragmentsBuilder/> element 206
facet 232
FacetComponent 197, 199
facet count 176
facet.date 345
faceted navigation 7, 173, 194
facet.field parameter 179
facet_fields 178
faceting 367

about 7, 173
example 174, 175
facet.missingparameter 176
field requirements 178
filters, excluding 190-194
hierarchical faceting 194, 195
multi-select faceting 190
MusicBrainz schema changes 176, 177
release types example 174, 175
types 178, 179

faceting, types
field values 178
queries 179
ranges 179

facet.limit parameter 180
facet.method paramter 180
facet.mincount parameter 180
facet.missing facet 189
facet.missing parameter 180
facet navigation. See also faceting
facet.offset parameter 180
facet.prefix 220
facet.prefix parameter 195
facet queries

about 179, 187
configuring 187
facet.query parameter 187

facet.query parameter 187, 345
facet.range.end parameter 186
facet range filter queries 189
facet.range.gap parameter 186
facet.range.hardend parameter 186
facet.range.include parameter 186
facet.range.other parameter 186
facet.range parameter 185
facet_ranges 179
facet.range.start parameter 185
facet.sort parameter 179
facet value 176
fallback 259
FastLRUCache 339
fast vector highlighter (FVH)

about 205
parameters 206
with, multi-colored highlighting 205

field attributes, schema.xml file
default 44
name 44
required 45
type 44

Field collapsing 239, 241
field element 92
field, IndexBasedSpellChecker options 212
fieldNorm, scoring factors 148
field options, schema.xml file

about 43
compressed 44
indexed 43
multiValued 44
omitNorms 43
positionIncrementGap 44
sortMissingFirst 43
sortMissingLast 43
stored 44
termVectors 44

field qualifier, query syntax 128
FieldReaderDataSource 90
field references, function query 159
field requirements, faceting 178
field , schema.xml file

attributes 44
dynamic field 45

fields, DIH 92
fields, Lucene 8

[375]

FieldStreamDataSource 90
field types, schema.xml file

about 41
class attribute 41

field value cache 221
field value filter queries 189
field values

about 178
alphabetic range bucketing 181
faceting 179

FileBasedSpellChecker options
characterEncoding 213
sourceLocation 213

FileDataSource 90
FileHandler logging 252
FileListEntityProcessor 92
filter

adding 141
filter cache 141, 187, 338
filtering 141
filter query

about 141
building, from facet 188
facet range filter queries 189
field value filter queries 189

filters
excluding, in faceting 190, 191

first-components 119
firstSearcher warming query 225
float element 114
floor(x), mathematical primitives 161
fl parameter 121
fmap.content=text parameter 104
fmap.[tikaFieldName], Solr Cell parameters

103
forceElevation 229
formulas, function query boosting

inverse reciprocals 165, 166
linear 168
logarithm 164, 165
reciprocal 167

fq parameter 120, 141, 338
Frange (function range) query parser 159
full import 98
FULL INTERFACE link 112
func query parser 146, 159
function query

about 158
document based on numeric fields,

boosting 168, 169
field references 159
function query boosting 164
function references 160
incorporating, in Solr 158, 159
recent releases, boosting 170

function query boosting
about 164
examples 164
formulas 164

function reference, function query
about 160
argument 160
geometric/trigonometric functions 161
mathematical functions 161
mathematical primitives 161
miscellaneous functions 162
ord and rord 162

fuzzy queries 131, 207
fuzzy searching 66

G
gazetteer 143
gems 268
generateNumberParts 59
generateWordParts 59
generic XML data structure

about 114
appends 118
components 119
defaults 118
first-components 119
invariants 118
last-components 119
XML elements 114

geodist() 145, 163
geofilt 144
Geohashes 144
GeoHashField 144
geometric/trigonometric functions, function

reference
acos(x) 161
asin(x) 161
atan2(y,x) 161

[376]

atan(x) 161
cosh(x) 161
cos(x) 161
deg(x) 161
hypot(x,y) 161
pi() 161
rad(x) 161
sinh(x) 161
sin(x) 161
tan(x) 161

Geonames
URL 143

geospatial, built-in field types 43
geospatial distance

calculating 163
geospatial search

about 143
locations, indexing 143, 144
search results, filtering by distance 144, 145
search results, sorting by distance 145, 146

geospatial support 143
getFieldValue() method 279
Grapher 164
Groovy 267
group.cache.percent, query parameter 242
group.field, query parameter 241
group.format, query parameter 242
grouping

Field collapsing 239, 241
Result Grouping 239, 241

group.limit, query parameter 242
group.main, query parameter 242
group.ngroups, query parameter 242
group.offset, query parameter 242
group, query parameter 241
group.query, query parameter 241
group.sort, query parameter 242
guided navigation. See also faceting 173

H
<highlighting/> element 202
Hadoop 323
HAProxy 354
HathiTrust 331
Haversine formula

using 145

Heritrix
about 283
using, for artist pages, downloading 283,

284
hierarchical faceting 194, 195
highlight component

about 200
configuration options 202
configuring 202
example 200, 202
fast vector highlighter 205
hl.fl 200
regex fragmenter 205

highlighter search component
parameters 202

highlighting 367
highlighting configuration 202
highlight matches 54
hl.alternateField, highlighter search

component
about 204
hl.maxAlternateFieldLength 204

hl.encoder, highlighter search component
204

hl.fl, highlighter search component 200-202
hl.formatter, highlighter search component

about 204
hl.simple.post 204
hl.simple.pre 204

hl.fragListBuilder 206
hl.fragmenter, highlighter search
component 204
hl.fragmentsBuilder

about 206
hl.multiValuedSeparatorChar 207
hl.tag.post 206
hl.tag.pre 206

hl.fragsize, highlighter search component
203

hl, highlighter search component 202
hl.maxAnalyzedChars, highlighter search

component 203
hl.mergeContiguous, highlighter search

component 203
hl.phraseLimit 207
hl.requireFieldMatch, highlighter search

component 203

[377]

hl.snippets, highlighter search component
203

hl.useFastVectorHighligher 206
hl.usePhraseHighlighter, highlighter search

component
about 203
hl.highlightMultiTerm 203

home directory, Solr 14
horizon 165
Hosted Solr 312
href attribute 259
HTML indexing

SolrJ based client, using 285
HTMLStripCharFilterFactory 56, 93
HTMLStripTransformer 93
HTMLStripWhitespaceTokenizerFactory 56
HTTP caching 335-337
HTTP POST

sending 77
HTTP POSTing options 77
HTTP server request style logs

about 250
tailing 250

HTTP Solr interaction 76

I
ICUTokenizer 59
IDF 33
idf, scoring factors 148
id tag 81
ignoreCase Boolean option 62
indent parameter 121
index and file based spellcheckers, options

accuracy 211
buildOnCommit 211
buildOnOptimize 211
classname 211
distanceMeasure 211
fieldType 212
name 211
spellcheckIndexDir 211

IndexBasedSpellChecker
about 212
field 212
sourceLocation 212
thresholdTokenFrequency 212

Index box 54
index data

securing 273
indexed 43, 340
indexes, sharding

about 356, 357
distributed search 358
documents, assigning 357, 358
shards, searching across 358

indexing
about 290-292
POJOs 292, 293

indexing performance, enhancing
factors, committing 343, 344
factors, optimizing 343, 344
strategies 341
unique document checking, disabling 343

indexing ways, Solr 78
Index Searchers 338
index-time boosting 81, 149
index version 349
Information Retrieval (IR) principles 8
int element 114
internal workings, MLT 230
InternetArchive 283
IntField 42
invariants 118
inverse reciprocals, function query boosting

example formulas
about 165-169
graph 166

inverted index, Lucene 8

J
JAR files, contrib modules

analysis-extras 13
clustering 13
dataimporthandler 13
extraction 13
uima 13

JAR files, DIH
about 88
adding, to Solr configurations 88

JARmageddon 253
Java

downloading 11

[378]

Java-Bin 77
Java Development Kit (JDK) 12
JavaFX 295
Java Management Extensions. See JMX
Java replication

versus script 349
JavaScript 272

Solr, using with 296, 297
JavaScript Object Notation. See JSON
JavaScript, using with Solr

about 296
AJAX Solr 303-305
security, checking 297
Solr powered artists autocomplete widget,

building 298-303
Java servlet engine 116
java.util.ConsoleHandler 252
java.util.UUID 49
Java Virtual Machine. See JVM
JConsole 12, 267
JdbcDataSource 294 90
JDK logging 251
Jetty servlet engine 15
Jetty startup integration 253
JIRA software 27
JMX

about 264
Solr, starting with 265-267

Jmx4r
about 269
URL 269

jmx4r gem
installing 268

JMX access
controlling 273

JMX information
extracting, JRuby used 267-269

JMX Mbeans
about 265
URL 265

JNDI (Java Naming and Directory Interface)
249

join capability 10
join support 37
jquery_autocomplete 278
jQueryUI 298
JRuby

about 268
URL 268
used, for extracting JMX information

267-269
JRuby Interactive Browser (JIRB) tool 268
JSON 7
JSONP 272, 300
JVM

about 334
configuration 334

JVM settings configuration, for memory us-
age improvement 334

Jython 267

K
karaoke lyrics

extracting 104, 105
KeepWordFilterFactory token filter 72
KeywordMarkerFilter 62
KeywordTokenizerFactory tokenizer 57,

132, 220
KStemFilterFactory stemmer 61

L
language detection 59
last-components 119, 228
last_modified 101, 106
Last-Modified header 336
LatLonType field 144, 163
LBHttpSolrServer 355
Least Recently Used 338
LengthFilterFactory token filter 72
LetterTokenizerFactory tokenizer 58
Levenshtein Distance algorithm 131
limited query syntax 137, 138
LimitTokenCountFilterFactory token filter

72
linear, function query boosting example

formulas 168
linear(x,m,c), mathematical functions 162
LineEntityProcessor 92
literal() function 160
ln(x), mathematical primitives 161
local-params 111, 122, 123, 160
Log4j

URL 253

[379]

used, for Solr application logging 253
Log4j appenders 253
Log4j compatible logging viewer

Chainsaw 253
Familiarity 253
using 253
Vigilog 253

Log4j JAR file 253
logarithm, function query boosting example

formulas
about 164, 165
graph 164, 165

Loggly
about 254
URL 254

logs
about 249
HTTP server request style logs 249
Solr application logging 249
types 249

LogTransformer 93
LogUpdateProcessorFactory 109
log(x), mathematical primitives 161
long element 114
LowerCaseFilterFactory token filter 72
LowerCaseTokenizerFactory tokenizer 58
lowernames parameters 103
LRUCache 339
Lucene

about 8
DisjunctionMaxQuery 152
document 8
features 8
fields 8
inverted index 8
overview 8
scoring 148
stemming 8
terms 8
text analysis 8
text analyzer 8

Lucene In Action book 27
lucene native syntax 119
lucene query parser. See also query syntax

about 124, 158
df 124, 366
q.op 124, 366

Lucene query syntax
about 367
URL 48

Lucid Imagination 11
LucidWorks 11

M
MailEntityProcessor 92
Managed Bean. See MBeans
ManifoldCF

connectors 325
document security, maintaining 324
using 325-328

map() function 301
MappingCharFilterFactory, character filters

about 56
mapping-FoldToASCII.txt 56
mapping-ISOLatin1Accent.txt 56

map(x,min,max,target,def?), mathematical
functions 161

master server 350
mathematical functions, function reference

linear(x,m,c) 162
map(x,min,max,target,def?) 161
max(x,c) 161
recip(x,m,a,c) 162
scale(x,minTarget,maxTarget) 161

mathematical primitives, function reference
cbrt(x) 161
ceil(x) 161
div(x,y) 161
e() 161
exp(x) 161
floor(x) 161
ln(x) 161
log(x) 161
pow(x,y) 161
product(x,y,z,...) 161
rint(x) 161
sqrt(x) 161
sub(x,y) 161
sum(x,y,z,...) 161

Maven project 286
maxBlockChars 56
maxBooleanClauses threshold 33
maxChars 48

[380]

maxCollationTries 218
maxScore 21, 115
maxSegments parameter 343
maxShingleSize 155
maxTokenCount attribute 72
maxWarmingSearchers parameter 342
max(x,c), mathematical functions 161
mbartists 116, 136, 256
mbartists index 337
mb_artists request handler 200, 228
mbartists Solr index 316
MBeans 264
MERGE command 261
mergeFactor setting 344
mergeIndexes core command 363
Microsoft Office 100
min-should-match

about 138
basic mm specification formats 138, 139
multiple rules 139
rules 138, 139
search terms, selecting 140

miscellaneous functions, function reference
about 162
boost(q,boost) 163
ms(date1?,date2?) 163
query(q,def?) 163
strdist(x,y,alg) 163

MLT
about 230, 231
configuration parameters 231
internal workings 230
results example 234
used, as dedicated request handler 230
used, as request handler with externally

supplied text 230
used, as search component 230
using ways 230

mlt.boost 233
mlt.count 231
mlt.fl 232
mlt.interestingTerms 232
mlt.match.include 231
mlt.match.offset 231
mlt.maxntp 233
mlt.maxqt 233
mlt.maxwl 233

mlt.mindf 233
mlt.mintf 233
mlt.minwl 233
MLT parameters

facet 232
mlt 231
mlt.boost 233
mlt.count 231
mlt.fl 232
mlt.interestingTerms 232
mlt.match.include 231
mlt.match.offset 231
mlt.maxntp 233
mlt.maxqt 233
mlt.maxwl 233
mlt.mindf 233
mlt.mintf 233
mlt.minwl 233
mlt.qf 232
q 231
rows 231
start 231

mlt.qf 232
MLT results example 234, 236
MMapDirectoryFactory 335
MongoDB 10
more like this functionality 312
ms(date1?,date2?), miscellaneous functions

163
ms() value 160
mul() function query 156
multicore

about 261
benefits 261, 262
configuration changes, testing 262
cores, renaming at runtime 262
index, rebuilding 261
separate indexes, merging 262

multicore configuration values
adminPath 257
defaultCoreName 257
persistent= 257
sharedLib= 257
shareSchema 257

multipartUploadLimitInKB setting 78
multiple rich document files

importing 97

[381]

multiple Solr servers
indexes, sharding 356
load balancing searches, across slaves 352
master server, indexing into 352
moving to 348-356
replication 349
replication, configuring 351
script versus Java replication 349
starting 350

multiplicative boosting 157
multi-select faceting 190-194, 242
multiValued field 38, 44, 48, 273
multi-word synonyms 64
MusicBrainzConnector class 325
MusicBrainz database schema 30
MusicBrainz field definitions 46, 47
MusicBrainz.org 30, 35
MusicBrainz schema changes, faceting 176
MusicBrainz terminology 40
MyFaves 278, 314

N
name attribute 92, 176
NamedList 297
name field 33
navigation menu, Solr

ANALYSIS 17
CONFIG 17
DISTRIBUTION 17
FULL INTERFACE 18
INFO 17
JAVA PROPERTIES 18
LOGGING 18
PING 18
REPLICATION 17
SCHEMA 17
SCHEMA BROWSER 17
STATISTICS 17
THREAD DUMP 18

near query 129
near real time search 83, 362
nested queries 127
Net::HTTP library 322
Netflix 7
newSearcher 143, 159
newSearch query 342

N-gram analysis
about 69
analyzer configuration 69
maxGramSize 69
minGramSize 69
N-gram costs 70

N-gram costs 70
NGramFilterFactory 69
nodes 363
NOT operator 126
NumberFormatTransformer 93
numbers and dates, built-in field types

BCDIntField 42
ExternalFileField 42
IntField 42
SortableIntField 42
TrieIntField 42

numeric and date ranges
faceting 182

numFound 115, 219
Nutch 278

about 323, 324
depth parameter 324
topN parameter 324

O
omitNorms 41, 43
omitTermFreqAndPositions 340
one-to-many associated data, schema design

denormalizing 38
issues, with denormalizing 38

OpenSearch
based Browse plugin 306
Solr exposing, XSLT used 305, 306

OpenSearch based Browse plugin
Search MBArtists plugin, installing 306,

307, 308
optimize command 83
optional clauses, query expression

about 125
Pumpkins 125

optional phrase 153
ord 162
ord() value 160
org.apache.solr.schema.BoolField class 41

[382]

org.apache.solr.search.SolrIndexSearcher
component 266

OR or || operator 126
OutOfMemoryException 334
Output Connector 325
output related parameters

about 121
fl 121
sort 121
version 121
wt 121

overwrite attribute 80

P
PaaS 313
parameters 116
parameters, FVH

hl.fragListBuilder 206
hl.fragmentsBuilder 206
hl.phraseLimit 207
hl.useFastVectorHighligher 206

parameters, highlighter search component
hl 202
hl.alternateField 204
hl.encoder 204
hl.fl 202
hl.formatter 204
hl.fragmenter 204
hl.fragsize 203
hl.maxAnalyzedChars 203
hl.mergeContiguous 203
hl.requireFieldMatch 203
hl.snippets 203
hl.usePhraseHighlighter 203

parameters, QueryElevation component
config-file 228
forceElevation 229
queryFieldType 228

parameters, spellcheck requests
q 215
spellcheck 215
spellcheck.collate 216
spellcheck.count 215
spellcheck.dictionary 215
spellcheck.extendedResults 216
spellcheck.onlyMorePopular 215

spellcheck.q 215
parametric search. See also faceting 173
parsedquery 124
partial phrase boosting 154, 155
PathHierarchyTokenizerFactory

 tokenizer 58
PatternReplaceCharFilterFactory 56
PatternReplaceFilterFactory token

filter 68, 71, 73
PatternTokenizerFactory tokenizer 58
PerfMon 330
pf parameter 153
phoneme 66
phonetic encoding algorithms

about 66
Caverphone 66
DoubleMetaphone 66
Metaphone 66
RefinedSoundex 66
Soundex 66

phonetic sounds-like analysis 66
about 66
configuration 66

php 278
PHP applications

Drupal, options 311
Solr, accessing from 309
solr-php-client 310

php writer types
using 309

phrase queries, query syntax 129
phrase search performance

shingling 346
phrase slop

about 154
configuring 154

PlainTextEntityProcessor 92
Platform as a Service. See PaaS
POJOs (Plain Old Java Objects) 292
PortableUniqueIdentifier. See PUID
PorterStemFilterFactory stemmer 61
positionIncrementGap, field options 44
PostgreSQL database 30
post group faceting 242
postImportDeleteQuery attribute 99
post.jar Java program

about 77

[383]

invoking 18
post.sh shell script 19
pow(x,y), mathematical primitives 161
precision 61
preImportDeleteQuery attribute 99
preserveOriginal 60
primary key. See unique key
product(x,y,z,...), mathematical primitives

161
properties, Solr cores

dataDir 258
name 257
properties= 258

property substitution 258
protected attribute 62
pt parameter 145
public searches

securing 272
PUID 31, 168

Q
qf parameter 137
q.op parameter 124
q parameter

about 119, 215, 231, 338
processing 213

qt=artistAutoComplete parameter 301
QTime 115
qt parameter 120, 136
queries 179
queries, troubleshooting 149
queryAnalyzerFieldType 213
query autocomplete

about 219
facet / field value completion 220
instant-search 219
query log completion 219
query term completion 220

Query box 54
query complete / suggest 219
QueryComponent 197-199
QueryElevation component

about 227
configuration parameters 228
configuring 228

query expression

about 125
clauses 125

queryFieldType 228
query() function 143
querying 112
queryNorm part 157
query parameters

about 119
Boolean parameters 119
diagnostic related parameters 121
output related parameters 121
result pagination related parameters 120
search criteria related parameters 119

query parameters, Result Grouping
group 241
group.cache.percent 242
group.field 241
group.format 242
group.limit 242
group.main 242
group.ngroups 242
group.offset 242
group.query 241
group.sort 242
group.truncate 242
rows 242
sort 242
start 242

query parser 122
query(q,def?) 163
query response writer 121
queryResultWindowSize setting 338
query spellchecking 66
query syntax

about 81, 123
boolean operators 126
boosting 133
clauses 125
documents, matching 125
existence (and non-existence) queries 134
field qualifier 128
nested queries 127
phrase queries 129
range queries 131, 132
special characters 134
sub-queries 127
term proximity 129

[384]

wildcard queries 129, 130
query tag 81
query term completion

via, facet.prefix 221-223
via, Suggester 223-225
via, Terms component 226

query-time boosting
about 81, 149

quick search
performing 112

R
<requestHandler/> element 21, 26, 198
<response/> element 20, 115
<result/> element 21
range faceting

about 182
example 184, 185

range facet parameters
about 185
facet.range 185
facet.range.end 186
facet.range.gap 186
facet.range.hardend 186
facet.range.include 186
facet.range.other 186
facet.range.start 185

range queries, query syntax
about 131, 132
date math 133
DateMath syntax 132

ranges 179
r_attributes field 176
RDBMS 10
README.txt files 27
realm.properties 272
recall 61
reciprocal 167, 170
recip(x,m,a,c), mathematical functions 162
RefinedSoundex 66
regex 57
regex fragmenter

about 205
options 205

regex fragmenter, options
hl.increment 205

hl.regex.maxAnalyzedChars 205
hl.regex.pattern 205
hl.regex.slop 205

RegexTransformer 93
regular expression 57, 124
release 31
RELOAD command 261
reload-config command 99
remote streaming

about 76-79, 274
local file, accessing 79

RemoveDuplicatesTokenFilterFactory token
filter 72

RENAME command 260
replace attribute 73
replicas 363
replication and sharding

 combining 360-363
Repository Connector 325
request handler

about 116, 117
configuring 117, 118

request handler configuration
creating 117

request handlers
defType=lucene 366
fl=* 366
fq + 366
q 366
qt 366
rows=10 366
sort=score desc 366
start=0 366
wt=xml 366

request parameters
facet.field 179
facet.limit 180
facet.method 180
facet.mincount 180
facet.missing 180
facet.offset 180
facet.sort 179

request processors
updating 109

resource.name, Solr Cell parameters 102
response() function 301
response writers 279

[385]

REST
URL 77

Result Grouping
about 38, 239, 241
configuring 241
query parameters 241

result pagination related parameters
about 120
rows 120
start 120

results element 116
ReversedWildcardFilterFactory 68, 129
Rich documents 77
richer documents

indexing 106, 107
rint(x), mathematical primitives 161
r_official field 155, 176
rollback 84
root entity 91
rord 162
rows parameter 120, 231, 242
rsolr 12, 322
RSolr library 317
rsync 349
r_type 73, 142, 155, 176, 191
Ruby on Rails integration

about 313
Rails/Ruby library, selecting 322
Ruby query response writer 313, 314
sunspot_rails gem 314

RunUpdateProcessorFactory 109

S
<script/> element 93
<solr_home>/lib directory 88
scale(x,minTarget,maxTarget), mathematical

functions 161
schema

<copyField> elements 26
<fields> element 26
<types> element 26
<requestHandler> elements 26
about 26
designing 340

schema configuration, SpellCheck compo-
nent 208, 209

schema design
about 35
data, denormalizing 37
entities returned from search, determining

36
inclusion of fields used in search results,

omitting 39, 40
indexed 340
omitTermFreqAndPositions 340
Solr powered search, determining 36

schema.xml file
<fields/> element 41
<types/> element 41
about 40, 41
built-in field types 42
copyField 48
defaultSearchField 49
field definitions 44
field options 43
field types 41
MusicBrainz field definitions 46
solrQueryParser 49
unique key 49

schema.xml snippet 32
score desc. score 121, 142
score, Lucene 8
score pseudo-field 71
scoring

about 148
factors 148
index-time boosting 149
query-time boosting 149
troubleshooting 149-151

scoring factors
co-ordination factor 148
Field length 148
inverse document frequency 148
term frequency 148

SCOWL (Spell Checker Oriented Word
Lists) 207

script
versus Java replication 349

ScriptTransformer 93, 94, 109
search() 319
Search Component

about 197, 199
Clustering component 197, 238

[386]

highlight component 200
highlighting 197
MLT component 230
More-like-this 197
QueryElevation component 197, 227
Result grouping 197
SpellCheck component 197, 207
Stats 197
Stats component 236
Suggester 197
Terms 197
TermVector component 187, 243

search components 119
search criteria related parameters

about 119
defType 119
fq 120
g 119
qt 120

SearchHandler 254
searching

about 112
working 116

Search MBArtists plugin 306
search-result clustering 238
security, Solr

about 270
document access, controlling 273
index data, securing 273
JMX access, controlling 273
public searches, securing 272
server access, limiting 270, 271

segments 83
select() function 301
separate indices

about 34
limitations 34

server access
limiting 270-272

Servlet 2.4 specifications
Apache Tomcat 247
GlassFish 247
JRun 247
Websphere 247

Servlet containers
differences 248
solr.home property, defining 248

Solr, installing in 247
sfield parameter 145, 163
sharding

about 356
and replication, combining 360-363
index latency 362
near real time search 362
real time search 362

shards parameter 363
shards.qt parameter 199, 358
shingling 154, 285, 346
SignatureUpdateProcessorFactory 109
Simple Logging Facade for Java (SLF4J)

package 251
SimplePostTool 18
simple query

running 20-22
single combined index

using, issues 33
single combined indexschema

schema.xml snippet, sample 32
single Solr server optimization

about 334
downstream HTTP caching, enabling 335
faceting performance, enhancing 345
indexing, speeding up 341, 342
JVM settings configuration, for memory

improvement 334
phrase search performance, improving 346,

347, 348
schema, designing 340
Solr caching 338
statistics admin page, using 339
term vectors, using 345

slaves
load balancing searches 352
master slaves, indexing 352
slaves, configuring 353

slave server 350
SLF4J distributions

URL 253
slices 363
slop. See phrase slop
slop factor 129
Smashing Pumpkins example 31

diagrammatic representation 31
SnowballPorterFilterFactory stemmer 61

[387]

Solarium 309, 311
Solr

about 7, 9, 277
accessing, from PHP applications 309
book supplement 12
browse interface 24
client API 287
commands 260
commit 82
communicating with 76
complex systems, tuning 330
configuration files 25
configuring 101, 102
contrib modules 10
CSV data, sending to 84, 85
database technology, comparing with 10
Data Import Handler framework 87
deployment process 245
diagrammatic representation 29
directory structure 12
downloading 11
examples 278
features 7, 9
filter cache 141
filtering 141
function query, incorporating 158, 159
generic search functionality, providing 255
generic XML data structure 114
home directory 14
indexing ways 78
installing, in Servlet container 247
JavaScript, using 296, 297
logging facility 249
logs 249
optimize 83
query parameters 119
request handler 117
result grouping feature 38
rollback 84
running 15
sample data, loading 18-20
scaling, future 363
schema 26
schema design 35
search components 119
searching 111
securing 270

simple query, running 20-22
solr.home property 248
sorting 142
starting, with JMX 265-267
statistics admin page 23
working with 29
XML response format 115

Solr 3.3
URL 100

Solr 4
about 37
join support 37

SOLR-1226 97
Solr admin

Assistance area 18
Solr admin site

example 17
navigation menu 17
URL 16

Solr application logging
about 251
Jetty startup integration 253
Log4j, used 253
logging output, configuring 252
log levels, managing at runtime 254

solr.body feature 78
Solr caching 338

autowarmCount 339
class 339
configuring 339
documentCache 338
FastLRUCache, using 339
filterCache 338
queryResultCache 338
size 339

Solr Cell
about 10, 100
documents, indexing with 100
URL 100

SolrCell 13
Solr Cell contrib module 77
Solr Cell parameters

about 102, 103
boost.[fieldname] 104
capture 102
captureAttr 102
defaultField 103

[388]

extractFormat 104
extractOnly 104
fmap.[tikaFieldName] 103
literal.[fieldname] 103
lowernames 103
resource.name 102
stream.type 102
uprefix 103
xpath 103

SolrCloud 363
solrconfig.xml

<requestHandler/> 198
about 49, 78, 98, 157, 349

Solr core directory
about 14
conf 14
conf/schema.xml 14
conf/solrconfig.xml 14
conf/velocity 15
conf/xslt 14
data 15
lib 15

Solr cores
about 14, 32
features, reference link 262
leveraging 256
managing 259, 260
mbartists 256, 257
mbreleases 257
mbtracks 257
multicore 261
multicore configuration 256
multicore configuration values 257
multicore, using 261
properties 257
property substitution 258
solr.xml, configuring 256, 257
XML fragments. including with XInclude

259
Solr Distributed-search 199
Solr Ecosystem 277
Solr filter query 144
Solr, filters

StandardFilterFactory 72
Solr function queries 156
solr.highlight.DefaultEncoder class 204
solr.home property 248, 249

Solr index 34
Solr integration API 76
Solr, interacting with

convenient client API 76
data formats 76, 77
Direct HTTP 76
HTTP POSTing options 77
remote streaming 76, 79

Solritas
about 9, 24, 279-280
cons 281
pros 281-283

SolrJ
about 76, 283
embedded Solr, using 294
Heritrix, using for artist pages download

283-285
QueryResponse 283
SolrDocument 283
SolrQuery 283

SolrJ API 76
SolrJ client API

about 77, 287
embedding 288
indexing 290
searching 289, 290

Solrmarc 295
SolrMeter

using, for Solr performance testing 332, 333
Solr performance

JMX 264
monitoring 262
Stats.jsp 263, 264
testing, SolrMeter used 332, 333

solr-php-client 278, 309, 310
Solr powered search, schema design

determining 36
Solr queries

debugger 306
solrQueryParser 49
Solr resources

Apache Solr 3.1 Cookbook 27
mailing lists 27
README.txt files 27
Solr's issue tracker 27
Solr's Wiki 27

solr-ruby 12, 322

[389]

Solr's issue tracker 27
Solr's Update-JSON 77
Solr's Update-XML format

about 76, 80
documents, deleting 81
using 80
XML-based commands, sending 80

solr.TextField 51
Solr tools

fuzzy searching 66
phonetic sounds-like 66
query spellchecking 66

solr.UUIDField class 49
Solr Wiki

solr-ruby 323
URL 27, 239

Solr Wiki page
URL 51

solr.xml 98
configuring 256

SortableIntField 42
sorting

about 71, 142, 159
limitations 71

sortMissingFirst 42, 43, 142
sortMissingLast 42, 43, 142
sort parameter 121, 143
sort, query parameter 242
Soundex 66
sourceLocation, FileBasedSpellChecker op-

tions 213
sourceLocation, IndexBasedSpellChecker

options 212
spatial search 143
special characters, query syntax 134, 135
spellcheck.build 214
spellcheck.collate, spellcheck requests

parameters
about 216
spellcheck.collateExtendedResults 216
spellcheck.maxCollationEvaluations 216
spellcheck.maxCollations 216
spellcheck.maxCollationTries 216

SpellCheck component
about 207
dictionary, building from source 214
example usage, for misspelled query 217,

218
indexed content 207
q parameter, processing 213
schema configuration 208, 209
solrconfig.xml, configuring in 209
spellcheck.q parameter, processing 213
spellcheck requests, issuing 215
text file of words 207

spellcheck.count, spellcheck requests pa-
rameters 215

spellcheck.dictionary, spellcheck requests
parameters 215

spellcheckers
accuracy 211
a_spell 209
buildOnCommit 211
buildOnOptimize 211
classname 211
configuring 211
distanceMeasure 211
fieldType 212
file 210
FileBasedSpellChecker options 213
IndexBasedSpellChecker options 212
jarowinkler 210, 211
name 211
spellcheckIndexDir 211

spellcheck.extendedResults, spellcheck
requests parameters 216

spellcheckIndexDir 214
spell checking 197, 367
spellcheck.onlyMorePopular, spellcheck

requests parameters 215
spellcheck.q parameter

about 212, 215
processing 213

spellcheck.reload command 211, 214
spellcheck requests

issuing 215
parameters 215

spellcheck, spellcheck requests parameters
215

spelled words 207
Splunk

URL 254
SQL AS mkeyword 92
SqlEntityProcessor 91, 99

[390]

SQL file 30
SQLite database 315
sqrt(x), mathematical primitives 161
Squid 337
standard component list 199
StandardDirectoryFactory 335
StandardTokenizerFactory tokenizer 57
startEmbeddedSolr() method 292
start parameter 115, 120, 231, 242
statistics admin page

URL 23
Statistics page

using 330
Stats component

about 236
configuring 237
statistics 236
statistics, on track durations 237
stats 237
stats.facet 237
stats.field 237

stats.jsp 263, 264
status command 115, 260
Steady State 330
StemmerOverrideFilter 62
stemmers 61
stemmers, for English language

EnglishMinimalStemFilterFactory 62
KStemFilterFactory 61
PorterStemFilterFactory 61
SnowballPorterFilterFactory 61

stemming
about 61, 62
augmenting 62
correcting 62

stemming algorithm 61
stemming, Lucene 8
StopFilterFactory 55, 65
stop words

filtering 65
store 144
strdist(x,y,alg) 163
stream.body parameter 78
stream.file parameter 78, 352
stream.type parameter 101, 102
stream.url parameter 78
str element 114

string distance
calculating 163

string field type 71, 132, 195
sub-entities, DIH 96
sub-queries

about 127
example 127
prohibited clauses, limitations 128

sub-query syntax 123
substring indexing 67
sub(x,y), mathematical primitives 161
Suggester 220, 223
sum(x,y,z,...), mathematical primitives 161
sunspot:solr:stop command 318
Sunspot 322
sunspot_rails gem 314

about 314
edits, making 320, 321
MyFaves project, setting up 315
MyFaves relational database, populating

316, 317, 318
MyFaves website, finishing 320
Solr indexes, building from relational data-

base 318, 319
SWAP command 260
SweetSpotSimilarity 151
Swing 295
synonym

about 63
index-time, versus query-time 64, 65
sample analyzer configuration line 63
with index-time 64

SynonymFilter 64
system changes, complex systems

scale deep 331
scale horizontally 331
scale up 331

T
<title/> tag 323
<tokenizer> element 57
<types/> element 26, 41
tailing

HTTP server request style logs 250
taxonomy 194
TemplateTransformer 93

[391]

term 50
term position 55
term proximity 129
term query parser 135, 189
terms, Lucene 8
TermVector component 243, 345
termVectors, field options 44, 233
text analysis 13

about 50
character filters 55
configuration 51, 52
experimenting with 54, 55
phonetic sounds-like analysis 66
stemming 61, 62
stop words 65
substring indexing 67
synonyms 63
text, sorting 71
token filters 72
tokenization 57
uses 50
wildcards 67
WordDelimiterFilter 59

text analysis, Lucene 8
text analyzer, Lucene 8
text and metadata

extracting, from files 100, 101
text_en_splitting field type 54, 60

configuration 51, 52
text indexing technology 67
Text Search

URL 11
text sorting 71
tf, scoring factors 148
threads attribute 91
thresholdTokenFrequency, IndexBased-

SpellChecker options 212
tie parameter 152
Tika 100
TikaEntityProcessor 13, 92, 98
Tika project

URL 101
tika-test sub-entity 97
timeAllowed parameter 360
title_commonGrams 346
toggle all fields option 282
token filters

about 52, 72
ASCIIFoldingFilterFactory 72
CapitalizationFilterFactory 72
ClassicFilterFactory 72
EnglishPossessiveFilterFactory 72
KeepWordFilterFactory 72
LengthFilterFactory 72
LimitTokenCountFilterFactory 72
LowerCaseFilterFactory 72
PatternReplaceFilterFactory 73
RemoveDuplicatesTokenFilterFactory 72
TrimFilterFactory 72
WordDelimeterFilterFactory 72

tokenization
about 57
language detection 59

tokenizer
about 51, 52, 57
ClassicTokenizerFactory 57
KeywordTokenizerFactory 57
LetterTokenizerFactory 58
LowerCaseTokenizerFactory 58
PathHierarchyTokenizerFactory 58
PatternTokenizerFactory 58
StandardTokenizerFactory 57
UAX29URLEmailTokenizer 57
WhitespaceTokenizerFactory 57
WikipediaTokenizerFactory 58

tokenizerFactory attribute 63
tokens 8, 57
topN parameter 324
top (Unix) 330
TPS

about 330
optimizing 330

track_PUID 33
tracks 31
Transactions Per Second. See TPS
transformers attribute 93
transformers, DIH

about 93
ClobTransformer 93
DateFormatTransformer 93
HTMLStripTransformer 93
LogTransformer 93
NumberFormatTransformer 93
RegexTransformer 93

[392]

ScriptTransformer 93
TemplateTransformer 93

TrieDateField 160
TrieIntField 42
TrimFilterFactory token filter 72
TRM 168
troubleshooting

queries 149-151
scoring 149-151

tr parameter 305
type attribute 52

U
<uniqueKey> 49
/update request handler 23
UAX29URLEmailTokenizer tokenizer 57
UIMAUpdateProcessorFactory 109
unique key 49, 106, 343
Unix mkfifo command 85
UNLOAD command 261
update.chain parameter 109
UpdateProcessorFactory 109
UpdateRequestProcessor 75, 94, 134
update request processor chain

updating 109
uprefix, Solr Cell parameters 103
URL

parsing 116, 117
URLDataSource 90
username parameter 328
useSolrAddSchema 97
UX Design Pattern Library 173

V
val_ pseudo-field hack 158
Varnish 337
v.base_dir parameter 279
Velocity

URL 24
version parameter 121
Vigilog

URL 253

W
warmupTime statistic 339

WAR (Web application archive) file 247
Web Hook

URL 91
web.xml

customizing, in Jetty 271
editing 270

weightBuckets 224
WhitespaceTokenizerFactory

tokenizer 57, 59
Wiki 27, 239, 339
WikipediaTokenizerFactory tokenizer 58
wildcard queries, query syntax

about 129, 130
fuzzy queries 131

wildcards
about 67
ReversedWildcardFilter 68

will_paginate gem 315
wolframapha

URL 164
WordDelimeterFilterFactory 52, 55, 57, 59
word-grams. See shingling
WordNet 63
writer type 121
wt parameter 121, 279, 305
wt=phps URL parameter 309
wt=ruby parameter 313

X
XInclude 34, 259
XML 7. See also Solr's Update-XML format

importing, from file with XSLT 96
XML-based commands

sending 80
XML elements

1st 114
arr 114
bool 115
date 115
double 114
float 114
int 114
long 114
str 114

XML files, posted to Solr monitor.xml 19
XML Inclusions. See XInclude

[393]

XML response format
<lst name= 115
about 115
maxScore 115
numFound 115
QTime 115
start 115
status 115
URL, parsing 116, 117

XPathEntityProcessor 92
xpath, Solr Cell parameters 103
XSLT

used, for Solr exposure via OpenSearch 305
xsltCacheLifetimeSeconds parameter 306
XSLT file 97

Z
Zappos 7

Thank you for buying
Apache Solr 3 Enterprise Search Server

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Apache Axis2 Web Services,
2nd Edition
ISBN: 978-1-84951-156-8 Paperback: 308 pages

Create secure, reliable, and easy-to-use web services
using Apache Axis2

1.	 Extensive and detailed coverage of the
enterprise ready Apache Axis2 Web Services /
SOAP / WSDL engine

2.	 Attain a more flexible and extensible
framework with the world class Axis2
architecture

3.	 Learn all about AXIOM - the complete XML
processing framework, which you also can use
outside Axis2

Apache Solr 3.1 Cookbook
ISBN: 978-1-84951-218-3 Paperback: 300 pages

Over 100 recipes to discover new ways to work with
Apache's Enterprise Search Server

1.	 Improve the way in which you work with
Apache Solr to make your search engine
quicker and more effective

2.	 Deal with performance, setup, and
configuration problems in no time

3.	 Discover little-known Solr functionalities and
create your own modules to customize Solr to
your company's needs

4.	 Part of Packt's Cookbook series; each chapter
covers a different aspect of working with Solr

Please check www.PacktPub.com for information on our titles

Apache Maven 3 Cookbook
ISBN: 978-1-84951-244-2 Paperback: 224 pages

Over 50 recipes towards optimal Java Software
Engineering with Maven 3

1.	 Grasp the fundamentals and extend Apache
Maven 3 to meet your needs

2.	 Implement engineering practices in your
application development process with Apache
Maven

3.	 Collaboration techniques for Agile teams with
Apache Maven

4.	 Use Apache Maven with Java, Enterprise
Frameworks, and various other cutting-edge
technologies

Apache Wicket Cookbook
ISBN: 978-1-84951-160-5 Paperback: 312 pages

Master Wicket by example by implementing real-life
solutions to every day tasks

1.	 The Apache Wicket Cookbook covers the full
spectrum of features offered by the Wicket web
framework

2.	 Implement advanced user interactions by
following the live examples given in this
Cookbook

3.	 Create reusable components and speed up your
web application development

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	PacktLib.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Quick Starting Solr
	An introduction to Solr
	Lucene, the underlying engine
	Solr, a Lucene-based search server
	Comparison to database technology

	Getting started
	Solr's installation directory structure
	Solr's home directory, and Solr cores
	Running Solr

	A quick tour of Solr
	Loading sample data
	A simple query
	Some statistics
	The sample browse interface

	Configuration files
	Resources outside this book
	Summary

	Chapter 2: Schema and Text Analysis
	MusicBrainz.org
	One combined index or separate indices
	One combined index
	Problems with using a single combined index

	Separate indices

	Schema design
	Step 1: Determine which searches are going to be powered by Solr
	Step 2: Determine the entities returned from each search
	Step 3: Denormalize related data
	Denormalizing—"one-to-one" associated data
	Denormalizing—"one-to-many" associated data

	Step 4: (Optional) Omit the inclusion of fields only used in search results

	The schema.xml file
	Defining field types
	Built-in field type classes
	Numbers and dates
	Geospatial

	Field options
	Field definitions
	Dynamic field definitions

	Our MusicBrainz field definitions
	Copying fields
	The unique key
	The default search field and query operator

	Text analysis
	Configuration
	Experimenting with text analysis
	Character filters
	Tokenization
	WordDelimiterFilter
	Stemming
	Correcting and augmenting stemming

	Synonyms
	Index-time versus query-time, and to expand or not

	Stop words
	Phonetic sounds-like analysis
	Substring indexing and wildcards
	ReversedWildcardFilter
	N-grams
	N-gram costs

	Sorting Text
	Miscellaneous token filters

	Summary

	Chapter 3: Indexing Data
	Communicating with Solr
	Direct HTTP or a convenient client API
	Push data to Solr or have Solr pull it
	Data formats
	HTTP POSTing options to Solr
	Remote streaming

	Solr's Update-XML format
	Deleting documents

	Commit, optimize, and rollback
	Sending CSV formatted data to Solr
	Configuration options

	The Data Import Handler Framework
	Setup
	The development console
	Writing a DIH configuration file
	Data Sources
	Entity processors
	Fields and transformers

	Example DIH configurations
	Importing from databases
	Importing XML from a file with XSLT
	Importing multiple rich document files (crawling)

	Importing commands
	Delta imports

	Indexing documents with Solr Cell
	Extracting text and metadata from files
	Configuring Solr
	Solr Cell parameters
	Extracting karaoke lyrics
	Indexing richer documents

	Update request processors
	Summary

	Chapter 4: Searching
	Your first search, a walk-through
	Solr's generic XML structured data representation
	Solr's XML response format
	Parsing the URL

	Request handlers
	Query parameters
	Search criteria related parameters
	Result pagination related parameters
	Output related parameters
	Diagnostic related parameters

	Query parsers and local-params
	Query syntax (the lucene query parser)
	Matching all the documents
	Mandatory, prohibited, and optional clauses
	Boolean operators

	Sub-queries
	Limitations of prohibited clauses in sub-queries

	Field qualifier
	Phrase queries and term proximity
	Wildcard queries
	Fuzzy queries

	Range queries
	Date math

	Score boosting
	Existence (and non-existence) queries
	Escaping special characters

	The Dismax query parser (part 1)
	Searching multiple fields
	Limited query syntax
	Min-should-match
	Basic rules
	Multiple rules
	What to choose

	A default search

	Filtering
	Sorting
	Geospatial search
	Indexing locations
	Filtering by distance
	Sorting by distance

	Summary

	Chapter 5: Search Relevancy
	Scoring
	Query-time and index-time boosting
	Troubleshooting queries and scoring

	Dismax query parser (part 2)
	Lucene's DisjunctionMaxQuery
	Boosting: Automatic phrase boosting
	Configuring automatic phrase boosting
	Phrase slop configuration
	Partial phrase boosting

	Boosting: Boost queries
	Boosting: Boost functions
	Add or multiply boosts?

	Function queries
	Field references
	Function reference
	Mathematical primitives
	Other math
	ord and rord
	Miscellaneous functions

	Function query boosting
	Formula: Logarithm
	Formula: Inverse reciprocal
	Formula: Reciprocal
	Formula: Linear

	How to boost based on an increasing
numeric field
	Step by step…
	External field values

	How to boost based on recent dates
	Step by step…

	Summary

	Chapter 6: Faceting
	A quick example: Faceting release types
	MusicBrainz schema changes

	Field requirements
	Types of faceting
	Faceting field values
	Alphabetic range bucketing

	Faceting numeric and date ranges
	Range facet parameters

	Facet queries
	Building a filter query from a facet
	Field value filter queries
	Facet range filter queries

	Excluding filters (multi-select faceting)
	Hierarchical faceting
	Summary

	Chapter 7: Search Components
	About components
	The Highlight component
	A highlighting example
	Highlighting configuration
	The regex fragmenter
	The fast vector highlighter with multi-colored highlighting

	The SpellCheck component
	Schema configuration
	Configuration in solrconfig.xml
	Configuring spellcheckers (dictionaries)
	Processing of the q parameter
	Processing of the spellcheck.q parameter

	Building the dictionary from its source
	Issuing spellcheck requests
	Example usage for a misspelled query

	Query complete / suggest
	Query term completion via facet.prefix
	Query term completion via the Suggester
	Query term completion via the Terms component

	The QueryElevation component
	Configuration

	The MoreLikeThis component
	Configuration parameters
	Parameters specific to the MLT search component
	Parameters specific to the MLT request handler
	Common MLT parameters

	MLT results example

	The Stats component
	Configuring the stats component
	Statistics on track durations

	The Clustering component
	Result grouping / Field collapsing
	Configuring result grouping

	The TermVector component
	Summary

	Chapter 8: Deployment
	Deployment methodology for Solr
	Questions to ask

	Installing Solr into a Servlet container
	Differences between Servlet containers
	Defining solr.home property

	Logging
	HTTP server request access logs
	Solr application logging
	Configuring logging output
	Logging using Log4j
	Jetty startup integration
	Managing log levels at runtime

	A SearchHandler per search interface?
	Leveraging Solr cores
	Configuring solr.xml
	Property substitution
	Include fragments of XML with XInclude

	Managing cores
	Why use multicore?

	Monitoring Solr performance
	Stats.jsp
	JMX
	Starting Solr with JMX

	Securing Solr from prying eyes
	Limiting server access
	Securing public searches
	Controlling JMX access

	Securing index data
	Controlling document access
	Other things to look at

	Summary

	Chapter 9: Integrating Solr
	Working with included examples
	Inventory of examples

	Solritas, the integrated search UI
	Pros and Cons of Solritas

	SolrJ: Simple Java interface
	Using Heritrix to download artist pages
	SolrJ based client for Indexing HTML
	SolrJ client API
	Embedding Solr
	Searching with SolrJ
	Indexing

	When should I use embedded Solr?
	In-process indexing
	Standalone desktop applications
	Upgrading from legacy Lucene

	Using JavaScript with Solr
	Wait, what about security?
	Building a Solr powered artists autocomplete widget with jQuery and JSONP
	AJAX Solr

	Using XSLT to expose Solr via OpenSearch
	OpenSearch based Browse plugin
	Installing the Search MBArtists plugin

	Accessing Solr from PHP applications
	solr-php-client
	Drupal options
	Apache Solr Search integration module
	Hosted Solr by Acquia

	Ruby on Rails integrations
	The Ruby query response writer
	sunspot_rails gem
	Setting up MyFaves project
	Populating MyFaves relational database from Solr
	Build Solr indexes from a relational database
	Complete MyFaves website

	Which Rails/Ruby library should I use?

	Nutch for crawling web pages
	Maintaining document security with ManifoldCF
	Connectors
	Putting ManifoldCF to use

	Summary

	Chapter 10: Scaling Solr
	Tuning complex systems
	Testing Solr performance with SolrMeter
	Optimizing a single Solr server (Scale up)
	Configuring JVM settings to improve memory usage
	MMapDirectoryFactory to leverage additional virtual memory

	Enabling downstream HTTP caching
	Solr caching
	Tuning caches

	Indexing performance
	Designing the schema
	Sending data to Solr in bulk
	Don't overlap commits
	Disabling unique key checking
	Index optimization factors

	Enhancing faceting performance
	Using term vectors
	Improving phrase search performance

	Moving to multiple Solr servers
(Scale horizontally)
	Replication
	Starting multiple Solr servers
	Configuring replication

	Load balancing searches across slaves
	Indexing into the master server
	Configuring slaves

	Configuring load balancing
	Sharding indexes
	Assigning documents to shards
	Searching across shards (distributed search)

	Combining replication and sharding (Scale deep)
	Near real time search

	Where next for scaling Solr?
	Summary

	Appendix: Search Quick Reference
	Quick reference

	Index

