
www.allitebooks.com

http://www.allitebooks.org

Apache JMeter

A practical beginner's guide to automated testing and
performance measurement for your websites

Emily H. Halili

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Apache JMeter

Copyright © 2008 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2008

Production Reference: 1200608

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847192-95-0

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Emily H. Halili

Reviewer

Charitha.Kankanamge

Acquisition Editor

Viraj Joshi

Development Editor

Ved Prakash Jha

Technical Editor

Darshana D.Shinde

Editorial Team Leader

Mithil Kulkarni

Project Manager

Abhijeet Deobhakta

Project Coordinator

Patricia Weir

Indexer

Rekha Nair

Proofreader

Chris Smith

Production Coordinators

Aparna Bhagat

Shantanu Zagade

Cover Work

Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author

Emily H. Halili Since graduating in 1998, from California State University in
Computer Science, Emily H. Halili has taken numerous roles in the IT/Software
industry—namely as Software Engineer, Network Engineer, Lecturer, and Trainer.
Currently a QA Engineer in CEO Consultancy-Malaysia with great passion for
testing, she has two years of experience in software testing and managing QA
activities. She is an experienced manual tester and has practical knowledge of
various open-source automation tools and frameworks, including JMeter, Selenium,
JProfiler, Badboy, Sahi, Watij, and many more.

My heartfelt thanks to my husband, Duraid Fatouhi, whom
without his faith in me, this book may never see the light. To John
VanZandt, president of CEO Consultancy, Malaysia – who inspires
creativity and comradeship at work. To my colleagues at CEO
Consultancy and ex-colleagues, for constantly challenging me with
testing tasks and much more. Lastly, but the least, my daughter,
Zahraa for inspiring.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Automated Testing 7

Why Automate Testing? 8
To Automate or Not to Automate—Some Hints 9
How Much Does it Cost? 12
Summary 13

Chapter 2: Introduction to JMeter 15
The Humble Beginning 16
The Features—What JMeter Can Do for You 16
The Look-How-Easy-to-Use GUI 18
The Requirements 21
Summary 22

Chapter 3: Getting Started 23
Installing JMeter 23

Setting the Environment 24
Running JMeter 24
Summary 25

Chapter 4: The Test Plan 27
What Is a Test Plan? 27
Elements of a Test Plan 29

Thread Group 29
Controllers 31

Samplers 32
Logic Controllers 34

Listeners 35
Timers 37
Assertions 38
Configuration Elements 40

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Pre-Processor Elements 41
Post-Processor Elements 42

Building a Test Plan That Tests Web Sites 42
Summary 49

Chapter 5: Load/Performance Testing of Websites 51
Preparing for Load Testing 52

What You Need to Know 52
Some Helpful Tips to Get Better Results 52

Using JMeter Components 53
Recording HTTP Requests 54
Creating the Test Plan 63
Adding Listeners 65
Adding Timers 65

Running the Test Plan 68
Interpreting the Results 68
Remote Testing with JMeter 71
Monitoring the Server's Performance 72
Summary 74

Chapter 6: Functional Testing 75
Preparing for Functional Testing 75
Using JMeter Components 76

Using HTTP Proxy Server to Record Page Requests 79
Configuring the Proxy Server 79
Adding HTTP Request Default 80
Adding HTTP Header Manager 81

Let the Recording Begin... 81
Adding User Defined Variables 82

Running the Test 84
Summary 85

Chapter 7: Advanced Features 87
Extending the Web Test Plan 88

Using the ForEach Controller 89
Using the While Controller and the StringFromFile Function 91
Using the Loop Controller and the StringFromFile Function 92
Using Regular Expressions 93

Testing a Database Server 97
Testing an FTP Server 99
Summary 100

Chapter 8: JMeter and Beyond 101
Summary 106

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Appendix A: Component Description 107
Appendix B: Resources 115

Useful References 115
Weblogs/Articles on Experience of Using JMeter 116

Appendix C: Glossary 117
Index 125

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Preface
JMeter is a powerful, easy-to-use, and FREE load-testing tool. Those are my first
impressions of JMeter, a testing tool I've recently fallen in love with—not blindly.
With this book, I share with you my experience with JMeter.

When I was first assigned to use JMeter to perform testing on a particular web
application, I went all out looking for anything on JMeter. Despite plenty of online
manuals, article and newsgroup posts, printed or e-books were nowhere to be found.
So, when one of the editors of Packtpub approached me with this idea of writing
a book on JMeter, I could hear myself saying: "Had there been a book on JMeter, I
would have bought one at any cost. Since no one has written any, why not I write
one?" After much contemplation and work, here is the result—what you are reading
right now.

What The Book Is About
This book is about using basic testing tools in JMeter that support software load and
regression test automation. JMeter can be used to test static and dynamic resources
over a wide range of client/server software (e.g. web applications). For simplicity,
this book will focus on a narrowed aspect of JMeter while demonstrating practical
tests on both static and dynamic resources of a web application. As this small book is
an introductory reference, it is ideally designed to pave the path for the reader to get
more detailed insight on JMeter, and what more it can do beyond this reference.

What This Book Covers
Chapter 1: Automated Testing

The reader who is already automating their tests may want to skip this chapter. It
takes a quick look at the need to automate testing and whether automation suits all
needs of testing. It provides a quick look at and evaluation of test automation.

www.allitebooks.com

http://www.allitebooks.org

Preface

[2]

Chapter 2: Introduction to JMeter

This chapter is an overview of JMeter, as it takes a glance at its young history, the
general look-and-feel of its GUI design, requirements, and its features.

Chapter 3: Getting Started

This chapter serves as a guide to the first-time user on installing and customizing
the system environment as they run JMeter for the first time. The installation process
will match the purpose of this book. Hence it will skip the more complex setup of the
environment. A more complex setup guide is available from the home site of JMeter.

Chapter 4: The Test Plan

This chapter sets out to prepare the reader with the basic knowledge of tools
required to successfully create and run tests. It prepares the reader for the next
two chapters.

Chapter 5: Load/Performance Testing of Website

This chapter demonstrates the use of the tools in JMeter that support Load or
Performance Testing. The walkthroughs are facilitated by illustrations, giving a more
descriptive guide to both new and seasoned testers.

Chapter 6: Functional Testing

This chapter demonstrates the use of the tools in JMeter that support Functional
or Regression Testing. Little is known of JMeter being used to support this testing
approach. As in Chapter 5, the walkthroughs are facilitated by illustrations, giving
a more descriptive guide to both new and seasoned testers.

Chapter 7: Advanced Features

This chapter briefly describes other resources that can be tested by using JMeter,
i.e. HTTP Server, Database Server, FTP Server, using Regular Expressions, and much
more. The reader may want to explore more of JMeter, once he/she has a good
understanding of the basics this book covers.

Chapter 8: JMeter and Beyond

This chapter discusses briefly on what more JMeter has and can do for its users. It
tells the reader where to go in order to find more information about other elements
of JMeter that this book does not have.

Preface

[3]

What You Need for This Book
JMeter is a 100% pure Java desktop application. Hence, you need to first download
and then install the latest production release from the Jakarta official download production release from the Jakarta official download
website: (http://jakarta.apache.org/site/downloads/index.html). Download
the binary code from the JMeter package available on this site.

Who This Book Is For
The ideal readers or users of this book would be the experienced or novice testers
who have been testing manually and now would like to automate their tests.
Those testers who are already automating their testing using other tools or testing
software may also want to use this book as they look for alternatives. This book
would also be a good point for test Managers/ Leaders to start doing research on
the test automation tool that may best suit their testing needs and of course, their
budget. One of the many beauties of JMeter, is that one does not need to have prior
programming skills to use it, making JMeter one of the most popular open-source
testing tools within the testing community.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "You
may also change the default file format to save to XML, by editing the jmeter.
properties file"

A code block is shown as follows. When we wish to draw your attention to a
particular part of a code block, the relevant lines or items will be made bold:

<td id="ID">${VOL_g1}</td>\s*<td id="Name">${VOL_g2}</td>\s*
<td id="Email">
 vol${VOL_g1}@acme-volsys.net</td>\s*
<td id="URL">
 www.acme-volsys.net/~vol${VOL_g1}</td>\s*
<td id="Phone">9999999, ext: ${VOL_g1}</td>

Any command-line input and output is written as follows:

jmeter -H 129.198.1.1 -P 8000 -u someusername -a someuserpassword -N
localhost

New terms and important words are introduced in a bold-type font. Words that
you see on the screen, in menus or dialog boxes for example, appear in our text
like this: "Clicking the Forever checkbox causes the test to run repeatedly until
stopped manually".

Important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/files/code/2950_Code.zip to directly downlad
the example code.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata will be added to the list of existing errata. The existing errata
can be viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Automated Testing
Really, what is test automation? Is it something like pressing some button to turn on
the testing on auto-pilot? To an extent, yes, you can have that, and more. According
to Wikipedia, (http://en.wikipedia.org/wiki/Test_automation):

Test automation is the use of software to control the execution of tests, the
comparison of actual outcomes to predicted outcomes, the setting up of test
preconditions, and other test control, and test reporting functions.

Simply put, it is the process of automating the manual testing process currently in
use, by the use of software. Hence, this definition goes further than simply using
some Word Processor software.

This chapter will give you a quick overview of what test automation is all about and
its significance in the testing process, and ultimately, the software process. It aims
to help you decide whether test automation is the way to go for testing applications.
It will also describe the cost-effectiveness of test automation in comparison with
manual testing or no testing at all.

As you begin to ponder if test automation is what you need, some questions may be
lingering in your mind:

Why do I need to automate software testing?
How do I decide whether to automate or not?
How much would test automation add to the total cost of testing?

This chapter will answer your questions.

•

•

•

Automated Testing

[8]

Why Automate Testing?
Some software project managers hold strongly to the myth that testing costs too
much, takes too much time, does not help them build the product, and can create
hostility between the tester(s) and the development team. You will find these are the
very people who would spend the least on testing.

On the other hand, there are smarter software managers who understand that
testing is an investment in quality. Hence, they tend to spend more on testing.
Efficient test project management produces a positive return, fits within the overall
project schedule, has quantifiable findings, and is seen as a definite contributor to
the project.

However, as developing software overruns, as it normally does, time is at a
premium. As you may know or have experienced, 'manual' testing, especially
regression testing can be exhausting. A time-consuming and tedious process, it is
inefficient and conflicts with today's shorter application development cycles. As a
result, it gets in the way to test an application thoroughly—enabling critical bugs to
slip through undetected. What's more, manual tests are prone to human error and
inconsistencies that can distort test results.

Can we do without automation? Yes, of course—if time is abundant and your client
(or boss) is NOT on your tail for the application's next release. However, for most of
the time, this is not the case. In software testing, time is a determining factor and the
effective use of automation CAN help improve the testing speed.

On the other hand, despite of the appeals of test automation, we need to bear in
mind that test automation may just be suitable for only parts of the software testing
process. Automated testing IS NOT a total replacement for manual testing. Certain
aspects of testing an application would rely more on the human tester than on
test automation. The ultimate testers still are the human testers themselves; where
applicable, test automation only complements manual testing. Test automation may
not test any better than the human tester, but if implemented wisely, can certainly
help the tester test faster. Since certain testing of the application can be automated,
the tester can spend more quality time on more important and critical aspects of the
testing. Ultimately, the tester can test better and more effectively.

Chapter 1

[9]

To Automate or Not to Automate—Some
Hints
The previous paragraph cautions against using automation to replace manual
testing, putting you, the reader (or the tester) in an awkward predicament. However,
let us think about an average-case scenario: You are pressed against a tight budget
and schedule, and you are sure that manually regression testing the application
completely would only leave you and your team physically and mentally exhausted.
Would automation help you test, if not any better, at least faster? Some hints may
just help you decide:

Pick a good time to start automating:
Automation is best used after the tester has grasped the fundamental testing
skills and concepts through manual testing experience. Another good time is
when the tests that are going to be repeated or simulated, as normally found
in regression testing and performance testing, respectively. As this goes, not
all testing approaches may justify the use of automation.
Rex Black in his article, Investing in Software Testing: Manual or Automated?
concludes that the decision to automate testing comes from the need to repeat
tests numerous times or reduce the cycle time for test execution while higher
per-test costs and needs for human skills, judgment, and interaction incline towards
decision to test manually.
Not all testing approaches are suitable to automate:
Suitable: Acceptance, Compatibility, Load, Volume or Capacity, Performance
and Reliability, Structural testing, Regression, Exception or Negative testing.

Type of Testing Description (adapted from source: http://www.istqb.org)
Acceptance
testing

Formal testing with respect to user needs, requirements, and
business processes conducted to determine whether a system satisfies
or does not satisfy the acceptance criteria and to enable the user,
customers, or other authorized entity to determine whether or not to
accept the system.

Compatibility
testing

The process of testing to determine the interoperability of a
software product.

Load testing A type of performance testing conducted to evaluate the behavior of
a component or system with increasing load, e.g. numbers of parallel
users and/or numbers of transactions, to determine what load can be
handled by the component or system.

Volume/Capacity
testing

Testing where the system is subjected to large volumes of data.

•

•

Automated Testing

[10]

Type of Testing Description (adapted from source: http://www.istqb.org)
Performance
testing

The process of testing to determine the performance of a software
product.

Reliability testing The process of testing to determine the reliability of a software
product.

Structural testing Testing based on an analysis of the internal structure of the
component or system (also known as white-box testing)

Regression testing Testing of a previously tested program following modification
to ensure that defects have not been introduced or uncovered in
unchanged areas of the software, as a result of the changes made.

Exception testing Testing behavior of a component or system in response to erroneous
input, from either a human user or from another component or
system, or due to an internal failure.

Negative testing Tests aimed at showing that a component or system does not work.

Not suitable: Installation and setup, Configuration and Compatibility,
Documentation and help, Error handling and Recovery, Localization,
Usability, and any other that relies heavily on human judgment.

Type of Testing Description (adapted from source: http://www.istqb.org)
Installation and
setup testing

Testing that focuses on what customers will need to do to install and
set up the new software successfully.

Configuration
testing

The process of testing the installability or configurability of a
software product.

Compatibility
testing

Testing to evaluate the application's compatibility with the
computing environment.

Documentation
testing

Testing the quality of the documentation, e.g. user guide or
installation guide.

Error handling
testing

Testing to determine the ability of applications system to properly
process the incorrect transactions.

Recovery testing Testing how well the software is able to recover from crashes,
hardware failures, and other similar problems.

Localization
testing

Testing that focuses on internationalization and localization aspects
of software in adapting a globalized application to a particular
culture/locale.

Usability testing Testing to determine the extent to which the software product is
understood, easy to learn, easy to operate, and attractive to the users
under specified conditions.

Chapter 1

[11]

A point worthy of note is that there are tests that may justify the use of both
manual and automated testing. These include: functionality testing, user
interface, date and time handling, and use cases (user scenarios).
Make automation only a supplement to a testing project:
In many cases, when a test requires the human mind making better
judgments, use of automation merely accommodates that, but is not its
replacement. For example, performing usability testing on application
with a user interface designed for visually impaired users, no automation
test can be any better than the human tester making judgments about the
appropriate page element sound, size, or colors that would benefit the
application's targeted users. While testing other aspects of the application,
load testing or performance testing, for example, can be automated.
Do some comparison of Automated vs. Manual Testing:

Manual Testing Automated Testing
Running (and re-running) tests manually
can be very time consuming.

Cost-effective, if you have to repeat tests
numerous times.

All required tests need to be rerun each
time there is a new build—which eventually
would become very mundane and tiresome.
Also, would wear out the tester.

Allows you to run automation against code
that frequently evolves in a timely manner.
Most suited to test codes within Agile
software development framework.

Manual tests would have to be run
sequentially.

Automated tests can be run simultaneously
on different machines.

Time-consuming and tedious if testing a
large test matrix. Highly error-prone.

Aids in testing a large test matrix.

If the test case only runs twice a coding
milestone, it should most likely be a manual
test. Less cost than automating it.

It costs more to set up and configure a test
automation framework and test cases.

Better suited if you are testing UIs. Cannot automate visual information. More
suited for non-UI tests

It allows the tester to perform more ad hoc
(random testing), which increases the odds
of finding real user bugs.

Automation test tools are software
themselves, and there is no 'perfect'
software. Bugs may also surface in
these tools.

Tester can do testing without automation. Only suitable for portions of the testing
process.

•

•

www.allitebooks.com

http://www.allitebooks.org

Automated Testing

[12]

How Much Does it Cost?
The total cost needs to consider the costs of numerous resources undertaking a
testing project. These resources generally include:

Person hours to test—time to set up and perform automation
Testing environment—testing infrastructure or environment
Testing software—testing technology/tools

As our main focus is on the cost of testing software, it can range from high as six
to seven figures per license to as little as $0 (free of charge, normally in the form of
freeware or open-source code). However, as testing software relies on the tester and
the environment in which the tests are executed, the total cost counts for more.

Rex Black's article provides us with a hypothetical scenario summarizing the cost of
testing—no testing, manual testing and automated testing. An undisputed fact that
any software project manager is aware of: bugs found by the customers are much
more expensive than if the same bugs are found during development. Depicting
a hypothetical example, the table below indicates that automation gives the client
higher return on investment (ROI) than manual testing, while no testing at all brings
no benefit in the long haul. I have taken the liberty to extend Rex's table to include
the ROI if using an open-source testing software such as JMeter, as you will find in
the last column.

Testing Investment Options: ROI Analysis

(Adapted from : http://www.compaid.com/caiinternet/ezine/cost_of_
quality_1.pdf)

No Formal
Testing

Manual
Testing

Automated
Testing (from
Vendor)

Automated
Testing (Open
Source – FOC)

Testing
Staff 0.00 60,000.00 60,000.00 60,000.00
Infrastructure 0.00 10,000.00 10,000.00 10,000.00
Tools 0.00 0.00 12,500.00 0.00
Total Investment 0.00 70,000.00 82,500.00 70,000.00
Development
Must-Fix Bugs Found 250.00 250.00 250.00 250.00
FixCost (Internal Failure) 2,500.00 2,500.00 2,500.00 2,500.00

•

•

•

Chapter 1

[13]

No Formal
Testing

Manual
Testing

Automated
Testing (from
Vendor)

Automated
Testing (Open
Source – FOC)

Testing
Must-Fix Bugs Found 0.00 350.00 500.00 500.00
FixCost (Internal Failure) 0.00 35,000.00 50,000.00 50,000.00
Customer Support
Must-Fix Bugs Found 750.00 400.00 250.00 250.00
FixCost (External Failure) 750,000.00 400,000.00 250,000.00 250,000.00
Cost of Quality
Conformance $0.00 $70,000.00 $82,500.00 $70,000.00
Nonconformance $752,500.00 $437,500.00 $302,500.00 $302,500.00
Total COQ $752,500.00 $507,500.00 $385,000.00 $372,500.00
Revenue $752,500.00 $752,500.00 $752,500.00 $752,500.00
Return on Investment #N/A 350% 445% 543%

Consequently, an effective combination of automated and manual testing, in the long
run, may result in potentially cost-effective and efficient testing as it helps to shorten
return on investment (ROI) of a software project.

Summary
How effective test automation is to a testing project depends heavily on whether
automation really is what the testing team needs. Given that a testing team is
comfortable with the idea of automating their tests (or ideally, part of their tests),
automation can work wonders. Used effectively at the right turns of a testing
project, it:

Saves time
Saves money
Saves pride (normally hurt when you simply could not honor the datelines)

The next chapter will begin your experience with a freely distributed,
application that is one of the most widely used open-source testing applications
on earth—JMeter. This application has been stable for many years and its design is
scalable so that an advanced user is free to use its source code to make his or her own
version for exclusive use. Since it is available as an open-source project, anyone can
contribute to the project development. You can too contribute.

•

•

•

Introduction to JMeter
At this point, we are aware of test automation and its related issues. If you decide
to have test automation as a part of your testing project, then it's time for you to
choose which test automation software to use. There are numerous test automation
tools or softwares available, and they may cost from zero to tens of thousands of
dollars. Your choice will depend on the needs, available resources, budget of the
testing project, and certainly, the project funding. If you are faced with testing
project challenges like tight budget and schedule and want a quick and reliable test
automation solution to your testing needs, you are reading the right book—JMeter
may just be what you are looking for. Why JMeter? For certain, JMeter, at the very
least, meets these test automation criteria:

1. Zero acquisition cost—simply download the binaries from the URL.
(http://jakarta.apache.org/site/downloads/downloads_jmeter.cgi).

2. Low learning curve—a basic knowledge of HTML and/or regular
expressions helps too.

3. Versatile—can be used to test more than just web applications.

4. Scalable—its modular design allows components to be merged to support
large-scale testing. Testing may also be run by more than one machine.

5. Extensible—API is available for customization.

6. Good support—online user manual, user forums, web notes, this book, etc.

This chapter will let you have your first encounter with JMeter. It will introduce
JMeter, its promising beginning, and will give you an overview of what it is capable
of. In addition, it will let you see the common user interface aspects of JMeter, and
other important components of JMeter to give you a closer 'look and feel' about this
test automation tool.

Introduction to JMeter

[16]

The Humble Beginning
JMeter is a desktop application, designed to test and measure the performance and
functional behavior of client/server applications, such as web applications or FTP
applications. It is by far, one of the most widely used open-source, freely distributed
testing application that the Net can offer. It is purely Java-based and is highly
extensible through a provided API (Application Programming Interface). JMeter
works by acting as the "client side" of a "client/server" application. It measures
response time and all other server resources such as CPU loads, memory usage,
and resource usage. In this respect, JMeter can be used effectively for functional test
automation. In addition, it has tools that support regression testing of similar types
of applications. Although it was originally designed for testing web applications,
it has been extended to support other test functions. It was first and still is being
developed as one of the Apache Jakarta Projects (http://jakarta.apache.org), as
this project offer a diverse set of open-source Java solutions.

JMeter was first developed by Stefano Mazzocchi of the Apache Software
Foundation. He wrote it primarily to test the performance of Apache JServ,which
was later replaced by the Apache Tomcat Project. JMeter has since been developed
and has expanded to load-test FTP servers, database servers, and Java Servlets and
objects. Today, it has been widely accepted as a performance testing tool for web
applications. Various companies, including AOL, have used JMeter to load-test their
websites and SharpMind of Germany has used JMeter for functional and regression
testing its applications and its clients.

The Features—What JMeter Can Do
for You
JMeter may be used to test performance on static and dynamic resources such as
static files, Servlets, FTP servers, Java Objects, Databases, Perl/CGI scripts, Queries,
and more. In order to test and measure the robustness of an HTTP or FTP server or,
network, testers need to provide simulation of multiple and different types of loads
on these system objects. JMeter can help them do exactly that, and on a greater scale,
too. Besides that, its graphical tools allow you to make better analysis of performance
under heavy loads.

If you need to further test the functional behavior of your applications, there are
tools in JMeter that can help you perform regression tests on your applications.
Simply, its assertion tools, in addition to the test scripts, help to ensure whether your
application is returning the expected results or not. Scalability and flexibility are also
inherent in this aspect, as you can extend the assertions using regular expressions.

Chapter 2

[17]

JMeter provides a user interface, making it more usable. It also exposes an API
(Application Programming Interface) that allows you to run JMeter-based tests from
a Java application.

The following excerpt is adapted from the Apache JMeter official website:
http://jakarta.apache.org/jmeter. In detail, Apache JMeter features include:

Performance testing of HTTP and FTP servers, and database queries
100% Java-based, hence has features that any Java application has:

Portability: can run on any JVMs
Concurrency: by many threads and of different functions by
separate thread groups
Extensible:

– Unlimited testing capabilities—various samplers can be used
– Pluggable timers allow simulation of various types of loads
– API and/or plug-ins allow great extendibility as well
 as customization
– Built-in functions can be used to provide dynamic input to a test
– Scriptable Samplers

Efficient GUI (Java Swing) design and lightweight component support allows
faster execution and more accurate timings
Caching of test results and data providing offline analysis/replaying of
test results

The most basic JMeter test script or test plan may involve creating a loop that
simulates sequential requests to the server with a pre-defined interval and a thread
group that simulates a concurrent load. The scripts can be customized and extended,
providing you with the necessary tools that allow you to test and measure the
performance and behavior of your application and/or server. Meanwhile, the basic
elements of a JMeter test plan may include at least these three elements: Thread
Group, Listeners, and Samplers. The Thread Group element simulates a group of
users, which contains at least one user. As a Sampler element makes requests to the
target server, a Listener element captures the response data or page following each
request. Chapter 4 will explain the functions of these elements in detail.

•

•

°

°

°

•

•

Introduction to JMeter

[18]

The Look-How-Easy-to-Use GUI
A typical test plan will consist of one or more Thread Groups, logic controllers,
listeners, timers, assertions, and configuration elements:

Thread Group—each thread simulates a single user. All elements of a test
plan must be under a thread group.
Listeners—Provide access to the information gathered by JMeter about the
test cases while JMeter runs.
Controllers—Samplers tell JMeter to send requests to a server, while Logical
Controllers let you customize its logic.
Timers—Allow JMeter to delay between each request that a thread makes.
Assertions—Allow you to "test" that your application is returning the results
you expect it to.
Configuration Elements—Working closely with a Sampler, these can add to
or modify requests.

The following screenshot lets you see the icons representing these elements:

The user interface has two panels. Once JMeter runs, you will see two elements, Test
Plan and WorkBench, as you see in the figure below. A Test Plan describes a series
of steps JMeter will execute once the Test Plan runs, while a WorkBench functions
as a temporary workspace to store test elements. Elements in the WorkBench are not
saved with the Test Plan, but can be saved independently.

•

•

•

•
•

•

Chapter 2

[19]

The left panel displays the elements/nodes used in our testing. Adding and
Removing the elements are as easy as right-clicking a node and selecting
Add/Remove respectively from the sub-menu. The right panel displays the details
of each element.

The next sample you will see is a Test Plan consisting of more than one Thread
Group and multiple elements in each Thread Group.

Introduction to JMeter

[20]

The following is a sample Test Plan having a single Thread Group incorporating
multiple elements.

While using JMeter as a performance test tool, an essential element is the Thread
Group. This element can be manipulated to simulate multiple data loads to test the
server's behavior under stress loads. You can even preset a schedule by which the
test can run. A sample Thread Group with details is shown below.

Chapter 2

[21]

On the other hand, the same Test Plan can be extended to include functional/
regression test properties by including Assertion elements as sub-elements as
indicated by the following figures. The Response Assertion element shown in the
following figure predefines the pattern matching conditions

The Assertion Results element shown in following figure will capture
these predefined patterns in the data or page response and display them for
further analysis.

The Requirements
To be able to run JMeter, you will need at least JVM (Java Virtual Machine) 1.3 as
part your computing environment. If the application you are testing requires HTTPS
protocol support, then you will need to download JSSE, since 1.3 does not provide
that support. Also, it does not perform as well as later Java versions. Version 1.4 or
higher is the ideal JVM to run JMeter at its best.

Since JMeter is Java-based, it can run on any system that has a Java
implementation—making it highly portable. As far as operating system is concerned,
JMeter has been able to run on UNIX, Linux, Open VMS Alpha 7.3+, and Windows
(98 or higher)—in fact on any platform that has a JVM running on it.

www.allitebooks.com

http://www.allitebooks.org

Introduction to JMeter

[22]

If you plan to recompile the JMeter source code, as you extend JMeter using the API
provided in the JMeter release, you may need to use the Java compiler via some IDE,
e.g. Eclipse or any other Java IDE. You may also opt to use Ant to build JMeter from
source. However, there is no need for you to install a separate Java compiler, as the
JMeter distribution package would have a precompiled Java binary archive included.
On the other hand, to build JMeter plug-ins or add-ons, there's no need to compile
these JMeter classes. Simply download the binary archive and add the JARs to the
JMeter classpath.

Also, you will need to download JMeter stable version 1.8 or higher from the JMeter
Apache website. You may choose either the Binary package (ready to use) or the
Source package (if you plan to extend JMeter's functionality and build your own
JMeter plug-ins).

There are other optional requirements if you want to use the more advanced features
of JMeter. You can find out more on these options from the User's Manual. As this
book will remain focused on JMeter on the Introductory level, I will leave you to
explore on your own the more advanced features and requirements.

Summary
JMeter being a highly robust, scalable, and portable application makes it a suitable
testing tool for today's non-proprietary, fast-changing, and market-driven application
development process. Anyone with software testing experience or knowledge at any
level will find JMeter easy to learn and use. One doesn't need programming expertise
to realize the potential use of JMeter, but having it surely helps.

Despite the cliché that often trumpets open-source application as receiving little or
no support, JMeter has abundant resources on the Web and newsgroups that may
become your guiding light towards using JMeter most effectively. However, these
third-party resources may give a fragmented approach to learn about JMeter, as I
found most of them reiterate only narrowed aspects of JMeter. On the other hand,
the JMeter distribution package provides a neat and detailed user manual, although
some of the non-techie testers may find it quite technically intimidating. The same
manual is available on JMeter's Apache official website. Once you are comfortable
with it, I recommend that you experiment on your own (or you can refer to others'
experiences) with the more advanced and technically-driven features of JMeter.
However, as this book serves as a Beginner's guide to JMeter, this chapter and the
rest of the chapters should become your first one-stop-reference or manual as you get
familiar with using JMeter.

Getting Started
Chapter 2 got you acquainted with JMeter; this chapter will quickly lead you to start
using it. While reading this chapter, you can simultaneously start using JMeter. All
that you need before you start is an Internet-ready PC or notebook with JVM already
installed and a live Internet connection. Further and more detailed requirements
have been mentioned in the last chapter.

This chapter will provide you with a step-by-step guide and information on how to
proceed with JMeter. At the end of this chapter, you will have already downloaded,
installed, set up, and run JMeter, and be ready to start writing your first Test Plan.

Installing JMeter
You need to first download and then later install the latest production release
from the Jakarta official download website: (http://jakarta.apache.org/site/
downloads/index.html). Once downloaded, simply unzip the file into your favorite
installation path. No further installation process is necessary.

However, if you plan to perform remote testing using JMeter, avoid
installing into a path whose name contains a space as this will not allow
remote testing to work. This is currently a shortcoming of JMeter's
remote testing.

You may also download the nightly build: (http://jakarta.apache.org/builds/
jakarta-jmeter/nightly), but I would recommend this only if you are comfortable
working with a beta-quality application. The installation of the nightly build version
is just as easy as installing the latest production release.

Getting Started

[24]

Setting the Environment
The entire environment required to run JMeter is to have JVM running in your
machine. You can download JSSE 1.3 or higher (1.4 or higher is the best) from
Sun's official website: (http://java.sun.com/javase/downloads). Follow the. Follow the
instructions on the website so you can download the JVM needed to run JMeter. The
site will also indicate to you how to set the JAVA_HOME environment variable.

Once the JVM is set and running and the JMeter release or nightly build is unzipped
into the path of your choice, you are ready to run JMeter.

Running JMeter
Simply look for the bin directory in your JMeter installation path. On Windows
systems, run jmeter.bat. If you are running JMeter under a UNIX environment,
you will need to run the file jmeter.

In this process, JMeter automatically finds classes from JARs in its lib and lib/ext
directories. Therefore, if in the future you have developed new JMeter components,
you will need to jar them, and copy them into JMeter's lib/ext directory. You can
also install utility JAR files in $JAVA_HOME/jre/lib/ext.

On a different note, if you are running JMeter from behind a firewall/proxy, you will
need to provide JMeter with the server hostname and port number. Simply run the
jmeter.bat/jmeter file from a command line along with these parameters:

-H [proxy server hostname or ip address] OR --proxyHost [proxy server
hostname or IP address

-P [proxy server port] OR --proxyPort [proxy server port]

-N [nonproxy hosts] (e.g. * .apache.org|localhost)

-u [username for proxy authentication—if required] OR --username [username
for proxy authentication—if required]

-a [password for proxy authentication—if required] OR --password [password
for proxy authentication—if required]

Example:

jmeter -H 129.198.1.1 -P 8000 -u someusername -a someuserpassword -N
localhost

Chapter 3

[25]

Alternatively, if you choose to run JMeter without the GUI, you may use the
following parameters as you run JMeter from command line:

-n This specifies JMeter is to run in non-GUI mode.

-t [name of JMX file that contains the Test Plan]

-l [name of JTL file to log sample results to]

-r Run all remote servers specified in jmeter.properties.

-H [proxy server hostname or IP address, if run via firewall/proxy]

-P [proxy server port, if run via firewall/proxy]

Example:

jmeter -n -t test1.jmx -l logtest1.jtl -H 198.162.1.1 -P 8000

You can refer to the following website: http://jakarta.apache.
org/jmeter/usermanual/get-started.html.

You may also run JMeter in server mode in supporting distributed testing, designed
to increase load on a server, but we will skip this part until you are ready to be an
advanced JMeter user, taking into consideration the purpose of this book. If you
are already curious, you can look at the online manual on Remote Testing:
(http://jakarta.apache.org/jmeter/usermanual/remote-test.html).

Summary
This chapter is relatively simple to understand and follow, provided that you already
have JVM (1.3 or higher) installed. Installing and running JMeter is a snap. Click on
jmeter.bat (or jmeter on UNIX) and you are ready to start writing your first Test
Plan. The following chapter will directly introduce you to the heartbeat of JMeter:
the Test Plan.

The Test Plan
Installing and running JMeter is incredibly easy, as you have seen in Chapter 3. This
chapter will be a reality check—meaning the Test Plan is what JMeter is all about.
If you have written or have used a test script/case before, you are ready to write
a JMeter Test Plan. In a simple analogy, JMeter Test Plan encapsulates a test script
that you would have written manually otherwise. This chapter will lead you further
into knowledge of JMeter's individual components that build up a Test Plan for the
purpose of our Test Plan walkthroughs later. This chapter aims to equip you with
knowledge of JMeter Test Plan and its related components, so you can be more
prepared to write a JMeter Web Test Plan for the purpose of this book.

What Is a Test Plan?
A Test Plan defines and provides a layout of how and what to test: the web
application as well as the client server application. It can be viewed as a container
for running tests. It provides a framework in which it will execute a sequence of
operations or tools to perform the testing. A test plan includes elements such as
thread groups, logic controllers, sample-generating controllers, listeners, timers,
assertions, and configuration elements. A test plan must have at least one
thread group.

The simplest Test Plan normally includes the following elements:

• Thread group—These elements are used to specify number of running
threads, a ramp-up period, and loop-count (no. of times to execute the test).
Each thread simulates a user and the ramp-up period specifies the time
to create all the threads. For example with 5 threads and 10 seconds of
ramp-up time, it will take 2 seconds between each thread creation. The loop
count defines the number of times the test will repeat for the thread group.
The scheduler also allows you to set the start and end of the run time.

The Test Plan

[28]

• Samplers—These configurable elements are used to send HTTP, FTP, SOAP/
XML, JDBC, or LDAP requests to a server.

• Listeners—These elements are used to post-process request data. For
example, you can save data to a file or illustrate the results with a chart. At
this moment the JMeter chart does not provide many configuration options;
however it is extensible and it is always possible to add an extra visualization
or data processing module.

As you run JMeter, Test Plan will appear as default component along with
Workbench on the left pane of the window.

The Test Plan Control Panel looks like this:

Each feature of this component is described as follows:

User Defined Variables: Here you can define static variables that allow you to
extract repeated values throughout your tests, such as server names, port number,
etc. For example, if you are testing an application on server www.example-jmeter.
net, then you can define a variable called "server" with the value of www.example-
jmeter.net. This value will replace variable "${server}" found anywhere in the
test plan.

Chapter 4

[29]

Option Functional Test Mode: This will cause JMeter to record the data returned
from the server for each sample and write this data to the file that you have selected
in your Listener. You may use the Configuration button on a listener to decide what
fields to save. This can be useful if you are doing a small run to ensure that your
server is returning the expected results. However, as this option allows JMeter to
save the maximum sample information, JMeter's performance will reduce.

If you are doing stress-testing, do not select this option, as it will affect
your results.

If checked, this feature will save all information, including the full response log data
and the default items, which are: time stamp, the data type, the label, the thread
name, the response time, message, code, and a success indicator.

Option Run each Thread Group separately: If you have two or more Thread Groups
in your Test Plan, selecting this will instruct JMeter to run each serially. Otherwise,
JMeter will run Thread Groups simultaneously or in parallel.

Add directory or jar to classpath: This additive feature allows you to add JAR files
or directories in case you have created your own extension to the JMeter package
you are using. However, you will need to restart JMeter if you remove any entry.

Alternatively, you can copy all the jar files to the jmeter | lib directory. Another
way to include additional libraries is to edit the JMeter properties file. In the jmeter.
properties file, look for the entry "#user.classpath=../classes;../jars/jar1.
jar. Edit this to include additional libraries. Avoid naming paths containing spaces
as this may cause problems for Java.

Elements of a Test Plan
Elements or components of a JMeter Test Plan would comprise at least one Thread
Group. Within each Thread Group we may place a combination of one or more
of other elements: Sampler, Logic Controller, Configuration Element, Listener,
and Timer. Each Sampler can be preceded by one or more Pre-processor element,
followed by Post-processor element, and/or Assertion element. Let us look into each
element in more detail.

Thread Group
A Thread Group is the starting point of a Test Plan, and it should contain all other
JMeter elements. A thread group controls the threads that will be created by JMeter
to simulate simultaneous users.

The Test Plan

[30]

A Thread Group represents a group of users that will execute a particular test case.
In its Control Panel, shown in the following figure, you will be able to simulate the
"number of users", how long it takes to start each "user" (or how often the users
should send requests), the number of times to perform the test (or how many
requests they should send), and a start and stop time for each test.

Elements must be placed under a Thread Group as they define a Test Plan. A Thread
Group controls the number of threads (or "users") JMeter will use to execute your
test. If there are two or more Thread Groups in the same Test Plan, each Thread
Group will execute completely independently from each other. Multiple Thread
Groups within the same Test Plan simply simulate groups of concurrent, individual
connections to your server application. The Control Panel allows us to configure each
Thread Group to have its own set of specific "behaviors".

The Thread Group Control Panel looks like this:

Each feature of this component is described as follows:

Action to be taken after a Sampler error: In case of any error recorded in any
Sample as the test runs, you may let the test either: Continue to the next element in
the test, or Stop Thread to stop the current Thread, or Stop Test completely, in case
you want to inspect the error before continue running.

Number of Threads: Simulates the number of user(s) or connection(s) to your
server application.

Chapter 4

[31]

Ramp-Up Period: Defines how long it will take JMeter to get all threads running.
For example, if there are 10 threads and a ramp-up period of 60 seconds, then each
successive thread will be delayed by 6 seconds. In 60 seconds, all threads would be
up and running. The best policy is to make your ramp-up period long enough to
avoid large workload as the test begins, but short enough to allow the last one to
start running before finishing the first one. You may set your ramp-up period to be
equal with the number of threads, and later adjust accordingly.

Loop Count: Defines the number of times to execute the test. By default, the test is
executed once but you can adjust as needed. Clicking the Forever checkbox causes
the test to run repeatedly until stopped manually.

Scheduler checkbox: Once selected, the Scheduler Configuration section will appear
at the bottom of the control panel.

Scheduler Configuration: Version 1.9 and later reveals this feature, where you can
set the start and end time of running the test. Once you start the test, it will not
execute any elements until the start time is reached. After each execution cycle,
unless the end-time is reached, in which case the run is stopped, the iteration will
continue until the loop count limit. The startup delay field allows JMeter some time
before a thread is started and the duration field lets you define the duration of the
whole test. The former overrides start-time, while the latter overrides end-time.

Controllers
JMeter has two types of Controllers:

1. Samplers:
These allow JMeter to send specific types of requests to a server. In our
sample tests later, we will be sending HTTP Requests the most, so we will
use HTTP Request Sampler to let JMeter send those requests. You may add
Configuration Elements to these Samplers to customize your server requests.

2. Logic Controllers:
These allow you to customize the logic that JMeter uses to decide when to
send requests. For example, you can use Random Controllers to send HTTP
requests to the server randomly.

The Test Plan

[32]

Samplers
JMeter Samplers allow you to define the requests that can be sent to a server. They
simulate a user's request for a page from the target server. Each Sampler generates
sample results that may have various attributes, such as performance, elapsed time,
throughput, etc. By default, JMeter sends the requests in the order that the Samplers
appear in the Test Plan tree. However, the order of processing the Samplers can be
further customized using Logic Controllers. This will be further explained in the
following section on "Logic Controllers".

You can customize each sampler by setting its properties, or you can add
Configuration Elements. For the purpose of this book, since we will be sending
numerous HTTP Requests to the same server, we may use the Default Configuration
Element, which predefines the server to which all HTTP requests will be made.

An HTTP Request Sampler Control Panel looks like the following figure:

Chapter 4

[33]

If you want JMeter to perform validation, you may add Assertion elements. More
information on Assertion elements is available in a later section of this chapter.

A Response Assertion in an HTTP Request Sampler Control Panel looks
like this:

The following is a list of all Samplers JMeter provides:

HTTP Request
FTP Request
JDBC Request
Java Request
SOAP/XML-RPC Request
WebService (SOAP) Request
LDAP Request
LDAP Extended Request
Access Log Sampler
BeanShell Sampler
BSF Sampler
TCP Sampler
JMS Publisher
JMS Subscriber
JMS Point-to-Point
JUnit Request
Mail Reader Sampler
Test Action

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

The Test Plan

[34]

Logic Controllers
Logic Controllers let you define the order of processing Samplers in a Thread, as you
customize the logic that JMeter uses to send requests. A Logic Controller changes
the order of requests that come from its sub-elements, or child elements. The child
elements of a Logic Controller may comprise Samplers, Configuration Elements,
and more Logic Controllers. For these requests, JMeter may randomly select (using
Random Controller), repeat (using Loop Controller), interchange (using Interleave
Controller) etc.

Several Logic Controllers can be combined to achieve various results.

A Loop Controller Control Panel looks like the following figure:

The following list consists of all the Logic Controllers JMeter provides:

Simple Controller
Loop Controller
Once Only Controller
Interleave Controller
Random Controller
Random Order Controller
Throughput Controller
Runtime Controller
If Controller
While Controller
Switch Controller
ForEach Controller
Module Controller
Include Controller
Transaction Controller
Recording Controller

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Chapter 4

[35]

Listeners
Listeners let you view the results of the Samplers in the form of tables, graphs, trees
or simple text in some log files. They provide visual access to the data gathered by
JMeter about the test cases as a Sampler component of JMeter is executed.

Listeners collect data ONLY from elements at or below their level.

Each Listener displays the response information in specific way. For example, in
order to view the graph form of the statistical data of the response time, you may
want to use a "Aggregate Graph" Listener. Likewise, to view the statistical report on
the same response data in a table form, you may want to add a "Summary Report"
or "Aggregate Report" Listener. You can choose the form in which you would like to
view the requests by selecting any of these Listeners, but they all write the same raw
data to the output file with a .jtl extension.

Listeners provide means to view, save, and read saved test results.
All Listeners that save data into the same file shows the same
data differently.

As an example, the Aggregate Graph Listener Control Panel looks like the
following figure:

The Test Plan

[36]

Some features common to all Listeners are:

Configure button: Use the "Configure" button to choose the information to write
to the file for later use, or whether to save (with .jtl extension) in XML or CSV
format—the latter being smaller and less detailed. This button is found in each
Listener added to the Test Plan tree.

Once selected, the Save Configuration Window will appear as shown:

Browser button: Select this if you want to read and display a previously saved result.

A Listener can use a lot of memory if there are a lot of Samples for which
it is recording data.

Jmeter will slow down if you have many listeners active. Therefore, use a
minimum set of the most appropriate listeners.

One way to use the least memory possible is to save in the default CSV format and to
use Simple Data Writer Listener.

You may also change the default file format to save to XML, by editing the
jmeter.properties file. Look for this entry: jmeter.save.saveservice.output_
format=csv and simply change csv to xml if you opt for more detailed information.

Chapter 4

[37]

The following list consists of all the Listeners JMeter provides:

Sample Result Save Configuration
Graph Full Results
Graph Results
Spline Visualizer
Assertion Results
View Results Tree
Aggregate Report
View Results in Table
Simple Data Writer
Monitor Results
Distribution Graph (alpha)
Aggregate Graph
Mailer Visualizer
BeanShell Listener
Summary Report

Timers
A Timer Component is an option in building a Test Plan. It causes JMeter to pause
for a certain amount of time between two successive requests that a Thread Group
makes. As JMeter, by default, sends one request immediately after the other, which
could overwhelm the server, adding a Timer will reduce the risk of breaking down
the server's performance. This is especially useful if you are testing the application
from its functional aspect.

However, you need to take care not to add too many Timers to a Thread Group,
as JMeter will pause between two requests for the sum of all timers found in a
Thread Group.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

The Test Plan

[38]

As an example, the Constant Timer Control Panel looks like this:

The following list consists of all the Timers JMeter provides:

Constant Timer
Gaussian Random Timer
Uniform Random Timer
Constant Throughput Timer
Synchronizing Timer
BeanShell Time

Assertions
Assertions allow you to include some validation test on the response of your
request made using a Sampler. They are inserted as a child component of a Sampler.
Assertions are particularly necessary in functional testing of your applications,
while, in performance testing, you may want to use assertion to ensure the responses
you receive. Do not contain content errors or missing sections, as this may affect the
validity of your test.

You can create these assertions using regular expressions.

With Assertion, you can assert whether the application is returning the expected
result or not. JMeter allows you to specify your assertions using Perl-style
regular expressions.

•

•

•

•

•

•

Chapter 4

[39]

Let's say, you want to ensure that, in an HTTP Request Sampler, the page you
request contains the text 'Login Successful' to indicate successful access to a page.
You may use Response Assertion to specify if the response does contain the text at
all. If JMeter cannot find the text, then it will indicate this as failed request.

As an example, the Response Assertion Control Panel looks like this:

Associated with Assertions are Listeners such as "Assertion", "View Result in Table",
"View Result Tree", "Aggregate Report" Listener, and "Summary Report" Listeners.
Assertion results will be shown in detail in the first three Listeners, while the rest
will show the failed assertions only as summary percentage of failure.

As an example, the Assertion Results Control Panel looks like the following figure:

The Test Plan

[40]

The following list consists of all the Assertions JMeter provides:

Response Assertion
Duration Assertion
Size Assertion
XML Assertion
BeanShell Assertion
MD5Hex Assertion
HTML Assertion
XPath Assertion
XML Schema Assertion

Configuration Elements
Configuration Elements allow you to create defaults and variables to be used by
Samplers. They are used to add or modify requests made by Samplers.

They are executed at the start of the scope of which they are part, before any
Samplers that are located in the same scope. Therefore, a Configuration Element is
accessed only from inside the branch where it is placed.

As an example, the HTTP Request Defaults Control Panel looks like this:

•

•

•

•

•

•

•

•

•

Chapter 4

[41]

Request Default 1 is accessible to Request1 and Request3 Sampler, since it is in the
'Parent' branch of the Group, while Request Default2 accessible only to Request1
and Request Default3 only to Request3, respectively.

The following list consists of all the Configuration Elements JMeter provides:

CSV Data Set Config
FTP Request Defaults
HTTP Authorization Manager
HTTP Cookie Manager
HTTP Proxy Server
HTTP Request Defaults
HTTP Header Manager
Java Request Defaults
JDBC Connection Configuration
Login Config Element
LDAP Request Defaults
LDAP Extended Request Defaults
TCP Sampler Config
User Defined Variables
Simple Config Element

Pre-Processor Elements
Pre-processors allow you to modify the Samplers in their scope. They are often used
to modify the settings of a Sample Request just before it runs, or to update variables
that are not extracted from response text.

The following list consists of all the Pre-Processor Elements JMeter provides:

HTML Link Parser
HTTP URL Re-writing Modifier
HTML Parameter Mask
HTTP User Parameter Modifier
User Parameters
Counter
BeanShell PreProcessor

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

www.allitebooks.com

http://www.allitebooks.org

The Test Plan

[42]

Post-Processor Elements
Post-processors execute after a request has been made from a Sampler. A good way
is to place them as a child of a Sampler, to ensure that it runs only after a particular
Sampler, not to Sampler afterwards. This element is most often used to process the
response data, for example, to retrieve particular value for later use.

The following list consists of all the Post-Processor Elements JMeter provides:

Regular Expression Extractor
XPath Extractor
Result Status Action Handler
Save Responses to a file
Generate Summary Results
BeanShell PostProcessor

Building a Test Plan That Tests Web Sites
This section will describe in brief how a basic Web Test Plan can be created. We
will later expand this basic Test Plan to allow us to perform Performance Testing
(Chapter 5) and Functional Testing (Chapter 6).

The elements that we will need for this basic Test Plan are as follows:

Thread Group
HTTP Request (Sampler)
HTTP Request Default (Configuration Element)
Summary Report (Listener)

Things to be done by us are as follows:

Add Users
Add and Configure Default HTTP Request
Add HTTP Requests
Add Listener to View/Store the Test Results
Save & Run Test Plan

First of all, run JMeter (double-click JMeter.bat from jmeter/bin). You will see the
default Elements, which are Test Plan and Workbench.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 4

[43]

Adding Users
1. Simply right-click on the Test Plan icon on the left panel and select

Add | Thread Group.

The right panel will display the Control Panel for the Thread Group you just
added. We will not use the scheduler for this purpose.

2. Rename the Thread Group using a more suitable name. Let's name this
Group My Users.

3. For now, we will simulate the default: one-time connection and having one
user (or connection/thread).

4. Change the Ramp-Up Period to 0, meaning the User will start running
immediately. If you have more than one user, having Ramp-Up Period 0 will
cause all users to start running immediately and simultaneously.

The Test Plan

[44]

The following figure displays how your JMeter should now look:

We are now ready to include more elements that define the tasks our "user"
will perform.

Add Default HTTP Request
1. Right-click the My Users element to get the Add menu, and select Add |

Config Element | HTTP Request Defaults.
2. Select this new element to view its Control Panel.
3. Rename the Element to My URL.
4. In the Server Name or IP field, enter a URL: www.mocksite.net (or any

other URL that you like to use). We will leave all other values as they
are. Setting the HTTP Request Default Element will cause all other
Request Sampler within this My Users to access to the same server.
However, it does not make requests—it simply sets the request default
for this Thread.

•

Chapter 4

[45]

The following figure displays how your JMeter should now look:

Add HTTP Requests
In this step, we will make two mock HTTP requests from the target server:
the default page and another page from the same URL. As JMeter executes
elements in the order that they appear in the Test Plan tree, we will add the
request for the default page first.
1.	 Right-click the My Users Thread element. Select Add | Sampler | HTTP

Request.
2. Select the HTTP Request element in the left panel and make the changes

as follows:
a.	 Name field: Home Page

b.	 Web Server section: This information has been specified in HTTP
Request Defaults. There is no need to edit this section, unless you
need to redirect to a different path than that specified in the HTTP
Request Default.

c.	 Path field: /

Since we have specified the Server name in the HTTP Request
Default element, we do not need to add anything more to
this field.

•

•

The Test Plan

[46]

The following figure displays how your JMeter should now look:

3.	 Add another HTTP Request element below the Home Page element and
make changes as follows:
a.	 Name field: Sample Page

b.	 Path field: /sample.html (or a known path to your own sample URL)

	 Since we have specified the Server name in the HTTP Request
Default element as www.mocksite.com, this path will be
appended to create the complete path to target the page.

The following figure displays how your JMeter should now look:

Add a Listener
Finally, we will add a simple Listener, Aggregate Report. This element will
store all result of your HTTP Requests and will display the statistical infor-
mation in a table form.
1. Select the My Users element and select Add | Listener | Aggregate

Report. This will be added as the last element.

•

Chapter 4

[47]

2. In the Write All Data to a File section: in the Filename field type the
name of the directory or select the directory in which the file will be
saved using the Browse button and type in filename of the output file.

The following figure displays how your JMeter should now look:

Save & Run the Test Plan
JMeter requires us to save a Test Plan before running it.
1.	 Select Save Test Plan from the File menu. JMeter lets you save portions

or branches of a Test Plan by simply selecting the element where a
branch begins.

2.	 At Save as, type in the filename. For this example, type My Users. The
extension will be set at .jmx.

3.	 From the Run menu, select Run.
The following figure is how your Aggregate Report Element and Con-
trol Panel should look as it runs. Notice that there is a small gray square
in the upper right-hand corner. The number beside it shows the number
of active threads vs. total threads.

•

The Test Plan

[48]

Following is what your Aggregate Report Element and Control Panel should look
like after completing running the Test Plan. It is only when the whole thread has
completed, that it returns to grey. You may also manually stop the run by selecting
Stop from the Run menu.

The column headings are explained briefly as follows:

Label—The label of the sample
Samples—The number of samples for the URL
Average—The mean time of a set of results
Median—The time in the middle of a set of results
90% Line—The maximum time taken for the fastest 90% of the samples
Min—The lowest time for the samples
Max—The longest time for the samples
Error %—Percent of requests with errors or failures
Throughput—Throughput measured in requests per unit of time
Kb/sec—The throughput measured in Kilobytes per second

For this example, we are running only one sample for each page. Therefore, the
average is equivalent to the median value, while min time is equivalent to max time.
These figures will differ if the Thread Group simulates two or more samples per
page following the Configuration set in the Thread Group.

•

•

•

•

•

•

•

•

•

•

Chapter 4

[49]

Summary
JMeter provides visible tools (or elements) that allow us to capture information about
the application we are testing and to save and view the results in various formats. I
find this very supportive of the heavy documentation that a testing requires for most
of the time. The visual information JMeter provides us makes it easier to evaluate the
success/failure of our testing. As it allows us to save portions (or branches) of a Test
Plan individually, we can certainly reuse them as we merge with other Test Plans.
This is an embodiment of Java, the object-oriented language used to develop JMeter.

At this point, you already have a better idea about the working of JMeter. We will
extend this Test Plan in the next chapters to include elements and properties that
allow us to do performance testing and functional testing of web applications. Once
you are familiar with the functions of these elements, next important question to ask
yourself is what do you want to test out of your application? The next step is to find
out which JMeter elements would best suit those testing needs. These questions and
more will be further explored in the next two chapters.

Load/Performance Testing
of Websites

So you are ready now to take on Web Load/Performance Testing on your target
web application.

Before we embark on this significant journey, I am obliged to highlight the fact
that load testing and performance testing do somewhat differ. IEEE 90 defines
Performance Testing as, Testing conducted to evaluate the compliance of a system or
component with specified performance requirements. Some of its goals include to identify
bottlenecks in a system, finding which can later support performance tuning efforts,
to aid in auditing the system's performance, and/or to collect other relevant data to
help stakeholders make informed decisions related to the quality of the application
under test.

Load Testing, being a part of performance testing, is simply the process of subjecting
a component or a whole system to a work level approaching its limits. Another point
of concern is that some quarters use load testing interchangeably with stress testing.
This may not be an entirely accurate practice, as there is a thin line between these
two terms. Load testing is performed within the capacity of the resource(s) being
subjected, while stress testing is normally performed to evaluate the performance of
resources and behavior at or beyond normal capacity. In summary, both load testing
and stress testing are part of what makes performance testing.

For sake of argument (and so as not to overwhelm you—the reader), this chapter
will focus on using JMeter to perform Web Application Load Testing as being a
part of Performance Testing. First, it will give you some general guides to help you
prepare and plan for a load test. The remaining part of the chapter will give you a
step-by-step walkthrough in bringing together JMeter components to build a
load-test plan. The final section of this chapter will capture the test results after
running the test.

Load/Performance Testing of Websites

[52]

Preparing for Load Testing
In preparing for load testing it is utterly important to address a number of concerns
with regards to the target server under test. As load testing helps to benchmark
performance behavior of a server, it is important to be able to identify the general
expectations and other matters that would normally be taken into account in order to
carry out a successful load testing.

What You Need to Know
As noted earlier, load testing in this matter subjects the application server to
work approaching its limits. Obviously, the limits will need to be clearly defined,
understood, and agreed upon by the stakeholders, namely your superior(s). In
addition, performance metrics need to be clear in order to keep the performance
goals in check.

Important expectations as for any load testing include:

A suitable time to load-test the application, for instance when no
development work is taking place on the server (load testing may cause
the server to crash) and/or no other users are accessing the server (else the
testing results would not yield the correct measures)
The performance metrics, accepted levels, or SLAs and goals
Objectives of the test
The Internet protocol(s) the application is(are) using (HTTPS, HTTP, FTP, etc.)
If your application has a state, the method used to manage it (URL rewriting,
cookies, etc.)
The workload at normal time and at peak time

It is often advisable that any form of performance testing, inclusive of load testing,
is performed on a functionally stable application, regardless of the environment
where the application is located. Load testing is best done when the functionality
of the Application Under Test (AUT) is stable enough to yield consistent and
correct results.

Some Helpful Tips to Get Better Results
Use meaningful test scenarios (use cases are helpful) to construct test plans
with 'real-life' test cases.
Run JMeter on a machine other than that running the application you
are testing.

•

•

•

•

•

•

•

•

Chapter 5

[53]

Make sure that the machine running JMeter has sufficient network
bandwidth, so the network connection has little to no impact on the results.
Also, the machine running JMeter should have enough computing power
(memory, CPU) to generate load.
Let JMeter Test Plan run for long time periods, hours or days, or for a large
number of iterations. This may yield a smaller standard deviation, giving
better average results. In addition, this practice may test system availability
rate and may highlight any decay in server performance.
Ensure that the application is stable and optimized for one user before testing
it for concurrent users.
Incorporate 'thinking time' or delays using Timers in your JMeter Test Plan.
Conduct tests under a monitored and controlled environment, to prevent
other users from affecting JMeter results.
Keep a close watch on the four main things: processor, memory, disk,
and network.
Only run JMeter against servers that you are assigned to test, else you may
be accused of causing DoS attacks.

Using JMeter Components
For practical and realistic reasons, we will use an existing remote server to test its
performance. First of all, we will create some useful scenarios as the baseline of
our test.

First, we will need to determine the test cases. Generally, we will test five
key scenarios:

1. Homepage
2. Keyword Search—New Visitor making a keyword search
3. Create Account—New Visitor creating an Account
4. Select A Title—Registered Visitor selecting a featured title
5. Add To Cart—Registered Visitor adding selection to cart

These scenarios will be included in a single JMeter Test Plan, for simplicity reasons.

•

•

•

•

•

•

•

Load/Performance Testing of Websites

[54]

Recording HTTP Requests
A fast way to capture the HTTP pages of this application is to record every request
made to the server. For this we will need to use a special-purpose Configuration
Element: HTTP Proxy Server. Note that the Proxy Server element is only available in
the Workbench element.

Since Proxy Server element records any page requests, besides user requests, it will
also record background requests made by the browser as modern browsers do.
As we would like the Proxy element to record only requests to the target server,
consider setting web filter to allow the current browser to make requests only to that
server. Otherwise, unnecessary requests will only clutter your recording. You may
find these web filters as an option in any Internet security tool or software currently
running on your machine.

Run JMeter (double-click JMeter.bat from jmeter/bin folder). You will see the
default Elements, which are Test Plan and Workbench. Right-click on Workbench
and select Add | Non Test Elements | HTTP Proxy Server.

Chapter 5

[55]

An HTTP Proxy Server configuration Element will appear as a child of WorkBench.
Bear in mind that child elements of WorkBench are not saved as part of Test Plan,
but you can save them separately. In the HTTP Proxy server configuration Target
Controller lets you determine where the recorded requests will be placed and the
Grouping option allows the recorded pages to be grouped or left as individual
requests. Notice that the port we are using is the default port, following the browser setting
in the next instructions.

Next, we will change the setting of your favorite browser to access a proxy (in our
case JMeter HTTP Proxy), listening to the same port. You may also use port 90 for
both the browser and JMeter Proxy setting.

Load/Performance Testing of Websites

[56]

The following figure shows the setting for Mozilla Firefox:

The following screenshot shows the setting for IE:

Chapter 5

[57]

We are expecting that a single page request will make several embedded requests for
images, JavaScript files, CSS files, etc. Therefore for a more managed recording, it is a
good practice to create controllers that can contain the sub-requests for each request.

Right-click on HTTP Proxy Server and select Add | Logic Controller | Simple
Controller. Repeat so we have five Controllers, or you can simply copy and paste.
Name each Controller: Homepage, Keyword Search, Create Account, Select Title,
and Add to Cart. Then configure the Target Controller to HTTP Proxy Server |
Homepage, while the other defaults remain.

Now we are ready to record our first page request. As we return to JMeter, simply
press the Start button at the Element Controller, and use your browser. Remember
that JMeter records all HTTP requests from the browser you are using; therefore,
with all the rich browsers and with all the add-ons we have today, you might want
to filter that only requests to the targeted server are allowed. You may configurethat only requests to the targeted server are allowed. You may configureonly requests to the targeted server are allowed. You may configure
your browser or firewall to do so.

Load/Performance Testing of Websites

[58]

Click the Start button, and type the URL of the server you want to test in the
Address bar. You will see that JMeter has begun to record the request to the
homepage and its sub-requests into Homepage Controller.

Chapter 5

[59]

Next, on the Target Controller, select HTTP Proxy Server | Keyword Search, return
to the browser and type in a keyword and click search. JMeter will record the
following search page and its sub-requests in the Keyword Search Controller
and nowhere else.

Load/Performance Testing of Websites

[60]

Repeat for the Create Account, Select Title, and Add to Cart Controllers, switching
to the respective Target Controllers.

The final recording screenshot is as shown in the following figure:

Once the recording is over, we will save these by right-clicking on the HTTP Proxy
Server Controller and saving it in a folder of your choice. As you will see, each
request may or may not generate sub-requests for files. The caching feature of today's
web browsers allows these files (*.png, *.jpg, *.css, *.js, etc.) to be stored in the
browser's cache the first time they are downloaded. Unless there were changes in the
main request, the browser will not make new requests for these cached files as it will
simply load them from the local cache. How is this feature helpful in benchmarking

Chapter 5

[61]

the performance of an application? To iterate, this has become a test goal decision to
make whether the application should be tested to evaluate performance for first-time
visitors or existing visitors. If we are testing for first-time visitors, we can use the first
recording to simulate first-time users. Subsequent recordings can be used to simulate
existing users.

Alternatively, we can configure the Proxy Server Configuration Element to exclude
recording of particular file type(s), as the following figure indicates.

Load/Performance Testing of Websites

[62]

Subsequent recording of similar actions using the new configuration of HTTP Proxy
Server will exclude the caching files. Let us perform another round of recording
and see how that turns out. The following screenshot highlights the first and second
round of recording.

For our purpose, we will simulate 10 existing visitors, while running the test plan for
a minimum of 10 iterations, with a think time between one and three seconds. We
will use the second recording too, as it is the closest to emulate existing visitors,

Chapter 5

[63]

as we would expect that the caching files would have already been stored locally.
To remove elements, highlight the Controllers in the Test Plan and press delete. To
move the new Controllers to the Test Plan, simply highlight and Copy Paste in the
Thread Group.

Creating the Test Plan
We will begin by creating a single Thread Group (Users Group) that we will
configure later as we expand the Test Plan.

Right-click on the Test Plan element and select Add | Thread Group. A Thread
Group Element will appear. Configure the Number of Threads to 10, Ramp-Up
Period to 1 second, and Loop Count to 50. If you wish, you can set the Scheduler so
your test plan can run automatically on the pre-determined time and date.

We want each request to target only one server, therefore, we set a request default to
serve this purpose. Add to the Test Plan Config Element | HTTP Request Defaults:

As this test should emulate real-life scenarios, this test requires that 500 unique
accounts be created at the Create Account Request. Since we will need to generate
multiple new users as JMeter creates 'new' accounts, one option is to parse unique
account pairs into the appropriate Sampler, in this case the \login request in the
Create An Account Controller. JMeter provides this capability by Pre-Processor
| User Parameter Element or Config Element | CSV Data Set Config. The User
Parameter Element allows the user to specify unique values for User Variables
specific to individual threads. The CSV Data Set Config element serves the same
purpose; however, these values are read from lines from a file, and split into
variables that later can be used throughout the life of the thread.

Load/Performance Testing of Websites

[64]

For providing a large number of users, CSV Data Set Config would be a better
choice. The following figure will compare both the elements.

Since we need to create 500 unique accounts, the natural choice would be using CSV
Data Set Config Element. It is advisable that the CSV file created for this test be
located in the same directory as the Test Plan. This element gives you the option to
define the delimiter of your data file. Since we want only these 500 unique accounts
created and nothing more, we do not choose recycle on EOF, which would reread
these pairs from the beginning of thr file once the whole file is parsed.

These data will need to be parsed into the appropriate parameter(s) using the
function syntax: ${VARIABLE-Name}. We will use these account pairs in Create
Account | /login Sampler where you see the corresponding variable names or
parameters (email, password, confirm password) are captured in the Sampler. In the
following figure you may notice the Value for these parameters corresponds with
Variable Names defined earlier in the CSV Data Set Config Element.

Chapter 5

[65]

Adding Listeners
We are now ready to add Listeners to our Test Plan. As we are evaluating
performance based on scenarios, each scenario Controller will have its own Listener.
One Listener is sufficient to capture the performance data, as the saved data can be
represented in various ways according to the Listener selected to view these data.
The following steps will give you a better walk through.

Right-click on the Homepage Controller and select Add | Listener | View Results
in Table. In the Filename text-field simply type the name of the XML or JTL file,
along with its extension, that will store the results for the requests in this Controller.
By default this will be located in the \bin folder of your JMeter installation path;
however, you may choose to specify a different location. Follow similar steps for all
other Controllers.

Adding Timers
As we are emulating real-life visitors/users, we will need to consider delays between
requests. Such delay is also known as think time, which a real user will take as he/
she will need to decide the next action, be it a click to some other link, or pressing
some button, etc. that causes a new request to the target server.

To add a Timer, right-click on the element for which we want to simulate the
think-time, select Add | Timer, and choose the type of timer. For this exercise, we will
configure the two timers we are using, Uniform Random timer and Constant timer,
to emulate real-user actions as closely as possible. 'Uniform Random' timer pauses

Load/Performance Testing of Websites

[66]

each sampler request for a random amount of time, with each time interval having the
same probability of occurring. The total delay is the sum of the random value and
the offset value. Meanwhile, 'Constant timer' allows the thread to pause for the same
amount of time between requests.

The following screenshots explain the above paragraph.

Chapter 5

[67]

We may need to organize the Test Plan tree, by placing sub-requests of a request
Sampler as children of the Sampler, so that we can measure the performance better
according to particular actions of a user. To view the Results for all Samplers,
we may add a Summary Listener of the scope of the Test Plan and configure the
Filename so the test summary data is saved separately. The final Test Plan may look
as in the following snapshot:

Load/Performance Testing of Websites

[68]

Running the Test Plan
We are now ready to run the Test plan we have built. We may rename the Thread
Group to "10 Users" for better documentation. Look at the tiny gray indicator box at
the top right of the Control Panel. The numbers beside the box indicate number of
active threads vs. total number of threads in the Thread Group.

JMeter requires saving the Test Plan before running; unless indicated otherwise, it
will save the Test Plan in the \bin folder of your JMeter installation path. To run
the Test Plan, go to the Run menu and select Start. As soon as it runs, the gray box
will turn green as JMeter ramps up the total number of active threads to 10. You
will see that JMeter takes approximately 5 seconds to activate the total number of
users with a delay of 100ms (1000ms per 10 users) between subsequent threads. This
demonstrates the 1 second ramp-up time we have set in Thread Group earlier.

When the test is complete, the indicator box will return to gray.

Interpreting the Results
Once the test is completed, we can now retrieve the results we have saved for each
Controller. With the exception of the Assertion Result Listener, the saved data can be
viewed in numerous forms. Let us use HomePage.xml as our specimen dataset. Add
more Listeners to this Controller: Summary Report, Aggregate Result, and Graph
Results. To retrieve the results for this Sampler, type in the name of the file to which
you saved data for this Sampler, and press Enter. The following snapshots show the
result views.

Chapter 5

[69]

For Graph Results, the Data legend shows us the widely dispersed data,
representing the large value of the Standard Deviation across all samples for
this Homepage Sampler. In the case where the results are highly skewed or not
symmetrical using 'mean' would result in inaccurate representation of response time.
The Median value, which is found in Aggregate Report and Graph Results would
closely approximate the response time.

The saved results can be viewed in various forms. The following snapshot is of the
saved test result viewed using the Summary Report Listener.

Load/Performance Testing of Websites

[70]

The following snapshot is of the saved test result viewed using the Aggregate Report
Listener. Note that Summary Report and Aggregate Report display the same set of
test results differently, following different computation over the same data.

In the case where data distribution is even, or follows the 'bell' distribution, median
and average will have the same or only slightly different values. We can see the data
distribution pattern by adding a Spline Visualizer Listener using the filename of the
file used to store the sampler results. The following shows us the distribution graph
for requests to this page.

In this test, we can approximate that for the 10 simultaneous users, the approximate
response time would be the median figure, since the data is widely spread.

Chapter 5

[71]

How do we measure the point at which the server's performance degrades, or
bottlenecks may appear? This important key question may be resolved if we run
several thread groups that represent increasing number of 'Users', for example 10,
50, 100 users or even 500 or more for a large-scale, mission-critical server. We can
then identify the points where performance degradation begins taking place. These
User groups can be placed in the same Test Plan, or in a separate Test Plan, while
maintaining the default configurations. This sort of practice allows us to benchmark
the server's performance to find the bottlenecks in the server, hence creating a
baseline for future tests.

Our test, however, does not seem to show any performance degradation, simply
because it is running only a handful of users almost simultaneously. We run the
test for 50 times so that we can get a better shot at the figures, in case failed requests
occur, which normally would happen in real-life. You may want to expand the Test
Plan further to include 50, 100, or even 500 users to find out if any performance
degradation could occur.

With an average of 4.3 and median of 4.5 seconds, its speed of response is generally
acceptable as it meets the threshold of acceptability for retail web page response
times. See http://www.akamai.com/html/about/press/releases/2006/press_
110606.html for more insight on this finding.

You may find that this analysis is limited as it yields results for only a minimum
number of scenarios and concurrent users. But fear not, there are plenty more
analyses you can make out of your future tests, if you create larger Thread groups,
and maybe opt for stress testing and/or monitoring the server for performance.

Remote Testing with JMeter
Although this chapter does not give further details about stress testing your target
server, this topic may capture your interest. This remote testing capability is very
useful when your machine alone may have performance issues as it tries to simulate
a very large number of concurrent users. This may well affect the speed and
frequency of requests made to the target server, therefore affecting testing goals and
subsequently, the results.

For more details on this attractive feature, you may refer to the online manual on
remote testing on http://jakarta.apache.org/jmeter/usermanual/remote-
test.html. JMeter Wiki also provides a simple and easy to follow guide (PDF)—
http://jakarta.apache.org/jmeter/usermanual/jmeter_distributed_
testing_step_by_step.pdf.

Load/Performance Testing of Websites

[72]

These guiding documents highlight following settings and configurations. You may
remotely assign 'slave' machines to make requests to the target server while your
machine becomes the 'master'. In other words, one machine controls the execution
of the specified JMeter tests, as the results are collected at the 'master' machine. This
approach lets us benchmark the target server's performance even more closely and
effectively than otherwise.

Monitoring the Server's Performance
There is a special Listener that allows you to monitor the target server's performance
as Samplers make requests. However, this Monitor Result Listener is designed to
work with Apache Tomcat, and only Apache Tomcat application server version 5
and above. You may refer to http://jakarta.apache.org/jmeter/usermanual/
build-monitor-test-plan.html to find out more. For any other application server,
you may use any other available open-source tools, or commercial tools.

The following are snapshots of the Monitor Result Listener, taken from JMeter's
official user manual. The Health tab shows the general status of one or more servers.

Chapter 5

[73]

This snapshot from the Performance tab of this Listener displays the specific
performance indicators for the selected server affected by a load test for the last 1000
samples. These graphs indicate the general health of the server (green), the load
capacity that the server was able to process (blue), ratio of server memory being
utilized—free vs. total memory (yellow), and thread ratio capacity (red).

Load/Performance Testing of Websites

[74]

Summary
This test helps us to find out if the performance goals and/or SLA are reached
given the total threads and scenarios. As we highlight the key pages of the website/
application, JMeter running our Test Plan allows us to use the mean or median
response time, depending on the type of data distribution, to approximate how
fast the target server responds to concurrent requests. If the target server is Tomcat
5.0 or above, then you can easily monitor the server's general health in terms of its
computing resources, such as memory use, workload, etc. As you explore JMeter's
capability for remote testing, you can conveniently extend your Test Plan to support
stress testing purposes as well. The following chapter will also make use of the Test
Plan that we have just built to support functional testing—a real time-saver.

Functional Testing
JMeter is found to be very useful and convenient in support of functional testing.
Although JMeter is known more as a performance testing tool, functional testing
elements can be integrated within the Test Plan, which was originally designed to
support load testing. Many other load-testing tools provide little or none of this
feature, restricting themselves to performance-testing purposes. Besides integrating
functional-testing elements along with load-testing elements in the Test Plan, you
can also create a Test Plan that runs these exclusively. In other words, aside from
creating a Load Test Plan, JMeter also allows you to create a Functional Test Plan.
This flexibility is certainly resource-efficient for the testing project.

This chapter will give a walkthrough on how to create a Test Plan as we incorporate
and/or configure JMeter elements to support functional testing. This chapter
assumes that you have successfully gone through Chapter 5, and created a Test Plan
for a specific target web server. We will begin the chapter with a quick overview to
prepare you with a few expectations about JMeter. Later, we will create a new Test
Plan similar to the Test Plan in Chapter 5, only smaller. The Test Plan we will create
and run at the end of this chapter will incorporate elements that support functional
testing, exclusively.

Preparing for Functional Testing
In this regard, I need to highlight that JMeter does not have a built-in browser,
unlike many functional-test tools. It tests on the protocol layer, not the client layer
(i.e. JavaScripts, applets, etc.) and it does not render the page for viewing. Although,
by default that embedded resources can be downloaded, rendering these in the
Listener | View Results Tree may not yield a 100% browser-like rendering. In fact,
it may not be able to render large HTML files at all. This makes it difficult to test the
GUI of an application under testing.

Functional Testing

[76]

However, to compensate for these shortcomings, JMeter allows the tester to create
assertions based on the tags and text of the page as the HTML file is received by the
client. With some knowledge of HTML tags, you can test and verify any elements as
you would expect them in the browser.

Unlike for a load-testing Test Plan, it is unnecessary to select a specific workload
time to perform a functional test. In fact, the application you want to test may even
reside locally, with your own machine acting as the "localhost" server for your web
application. For this chapter, we will limit ourselves to selected functional aspects of
the page that we seek to verify or assert.

Using JMeter Components
We will create a Test Plan in order to demonstrate how we can configure the Test
Plan to include functional testing capabilities. The modified Test Plan will include
these scenarios:

1. Create Account—New Visitor creating an Account
2. Log in User—User logging in to an Account

Following these scenarios, we will simulate various entries and form submission
as a request to a page is made, while checking the correct page response to these
user entries. We will add assertions to the samples following these scenarios to
verify the 'correctness' of a requested page. In this manner, we can see if the pages
responded correctly to invalid data. For example, we would like to check that the
page responded with the correct warning message when a user enters an invalid
password, or whether a request returns the correct page.

First of all, we will create a series of test cases following the various user actions in
each scenario. The test cases may be designed as follows:

CREATE ACCOUNT
Test Steps Data Expected
1 Go to Home page. www.packtpub.

com
Home page loads and
renders with no page error

2 Click Your Account link
(top right).

User action 1. Your Account page loads
and renders with no page
error.
2. Logout link is not found.

Chapter 6

[77]

Test Steps Data Expected

3 No Password:
- Enter email address in Email
text field.
- Click the Create Account and
 Continue button.

email=EMAIL 1. Your Account page resets
with Warning message—
Please enter password.
2. Logout link not found.

4 Short Password:
- Enter email address in Email
text field.
- Enter password in Password
text field.
- Enter password in
 Confirm Password text field.
- Click Create Account and
 Continue button.

email=EMAIL
password=
SHORT_PWD
confirm
password=
SHORT_PWD

1. Your Account page resets
with Warning message—
Your password must be 8
characters or longer.
2. Logout link is not found.

5 Unconfirmed Password:
- Enter email address in Email
text field.
- Enter password in Password
text field.
- Enter password in
 Confirm Password text field.
- Click Create Account and
 Continue button.

email=EMAIL
password=
VALID_PWD
confirm
password=
INVALID_PWD

1. Your Account page
resets with Warning
messagePassword does not
match.
2. Logout link is not found.

6 Register Valid User:
- Enter email address in Email
text field.
- Enter password in Password
text field.
- Enter password in
 Confirm Password text field.
- Click Create Account and
 Continue button.

email=EMAIL
password=
VALID_PWD
confirm
password=
VALID_PWD

1. Logout link is found.
2. Page redirects to User
Account page.
3. Message found: You are
registered as: e:<EMAIL>.

7 Click Logout link. User action 1. Logout link is NOT found.

LOGIN USER
Test Steps Data Expected
1 Click Home page. User action 1. WELCOME tab is active.
2 Log in Wrong Password:

- Enter email in Email text field
- Enter password at Password
text field.
- Click Login button.

email=EMAIL
password=
INVALID_PWD

1. Logout link is NOT found.
2. Page refreshes.
3. Warning message—Sorry
your password was incorrect
appears.

Functional Testing

[78]

Test Steps Data Expected
3 Log in Non-Exist Account:

- Enter email in Email text field.
- Enter password in Password
text field.
- Click Login button.

email=
INVALID_
EMAIL
password=
INVALID_PWD

1. Logout link is NOT found.
2. Page refreshes.
3. Warning message—Sorry,
this does not match any
existing accounts. Please
check your details and try
again or open a new account
below appears.

4 Log in Valid Account:
- Enter email in Email text field.
- Enter password in Password text
field.
- Click Login-button.

email=EMAIL
password=
VALID_PWD

1. Logout link is found.
2. Page reloads.
3. Login successful
message—You are logged in
as: appears.

5 Click Logout link. User action 1. Logout link is NOT found.

With the exception of the Configuration elements, Listeners, and Assertions,
which we will add later, our Test Plan will take the form that you see in the
following screenshot:

Chapter 6

[79]

Using HTTP Proxy Server to Record Page
Requests
As in recording requests in Chapter 5, you will need to include the HTTP Proxy
Server element in the WorkBench. Some configuration will be required, as shown in
the following snapshot:

Configuring the Proxy Server
Simulating Create Account and Login User scenarios will require JMeter to make
requests for the registration and login pages that are exposed via HTTPS. By default,
HTTP Proxy Server is unable to record HTTP requests. However, we can override
this by selecting (checking) the Attempt HTTPS Spoofing checkbox.

Selecting Add Assertion will be especially useful as we add specific patterns of the
page that we want to evaluate as a later part of this exercise. The Capture HTTP
Headers option is selected to capture the Header information as we begin recording.
However, to make the recording neater, we will keep this option unchecked.

In addition, since we do not require images in our testing, in the URL Pattern to
Exclude section, add these patterns: .*\.jpg, .*\.js, .*\.png, .*\.gif', .*\.ico,
.*\.css, otherwise these image files, which are not necessary for our testing, will be
recorded causing unnecessary clutter in our recording.

Functional Testing

[80]

Adding HTTP Request Default
A useful addition to this element is the HTTP Request Default element, a type of
Configuration element. Since this Test Plan will employ multiple HTTP request
elements targeting the same server and port, this element will be very useful. The
web server name will not be captured for each HTTP Request sampler record, since
the Request Default element will retain this information. With a little configuration
change in this element, it allows the Test Plan to run even when the application is
the deployed to a different server and/or port. The following snapshot is the HTTP
Request Default element that we will use for this exercise.

As we use this default element, our subsequent recording never needs to append
the Server name. The result of our recording of the first page is shown in the
following snapshot:

Chapter 6

[81]

Adding HTTP Header Manager
Another very useful default element is the HTTP Header Manager Configuration
element. This element can either be added to the Test Plan and configured manually
as an afterthought, or we can simply use the recorded Browser-derived headers
element as included in the recording. For convenience, we will choose the latter
option. Once the Proxy Server records the homepage request, stop the recording.
You will find a Header Manager for this page is being captured, as Browser-derived
header. Simply click and drag this element to the top of the current scope of the
HTTP Proxy Server. Notice that I have removed the Referer, since we want to create
a default for the remaining HTTP Requests. Following is a snapshot of this change.

Now you may de-select the Capture HTTP Headers option in the Proxy Server
element, since we have the default header.

Let the Recording Begin...
Let us proceed with the recording following the test cases in the previous table as
our guide. As you record each page, select the specific tags or page elements the
correctness of which you want to validate and add them to the Patterns to Test
section in the Response Assertion element of each sampler. This may take most of
your recording time, since as you record, you need to decide carefully which page
element(s) would be the most effective measure of correctness. There are plenty of
developer tools available to help you in this possibly tedious task. My favorite is
the Inspect Element feature in Firebug, a Firefox browser add-on by Mozilla. You
may choose patterns that you would expect to see or otherwise by selecting or de-
selecting the Not option at Pattern Matching Rules section.

www.allitebooks.com

http://www.allitebooks.org

Functional Testing

[82]

After recording is completed, you may rename and organize your samplers, as you
move them to the Test Plan (refer to the following figure). You may want to add a
few more Configuration elements in your Test Plan, as in my sample shown in the
following snapshot:

I have added User Defined Variables, two more Listeners, and a Constant
Timer with a constant delay of 2 seconds after the request for each page
was completed. The Assertion Results listener is used with the Response
Assertion elements, to summarize the success or failure of a page in meeting
the validation criteria defined in each Response Assertion.

Adding User Defined Variables
The User Defined Variables (UDV) element as shown in the following snapshot is
particularly interesting with regards to the test case design we drafted earlier in the
table. It allows you to plug values to variables being used in various locations in the
Test Plan. The JMeter Test Plan we have created will implement the exact values
assigned to different variables. Following is a snapshot of the UDV I have set up for
our Test Plan.

•

Chapter 6

[83]

How do we use these variables in the Test Plan? Simply use the format ${Variable-
name} anywhere in the Test Plan that we want to use the value of a Variable.

For example, in the HTTP Request Sampler following CREATE ACCOUNT | Test
Step#6: Register Valid User, as you can see below, the parameter password has
value ${VALID_PWD}, referring to the corresponding variable assigned in UDV.

We may also use the variables set in UDV in other elements, namely Response
Assertions. This feature is particularly useful when the assertion depends on varying
values, such as when we want to verify URLs, verifying user names, account no,
etc.—depending on the values we want to include throughout the entire testing.
The following snapshot may give us a clear idea of how a UDV can be used in an
Assertion element. The URL variable defined in UDV is used in the Patterns to Test
section of this Assertion, as part of a complete page element that we want to verify in
the page Sampler.

Functional Testing

[84]

Running the Test
Once the assertions are properly completed, we are expecting that running our Test
Plan would pass all the assertions. Passed assertions will not show any error in
Assertion Results | Listener installed within the same scope. As for all Listeners,
results as captured by the Listeners can be saved and reproduced at a later time.
Following is a sample explaining what passed Assertions would reveal as the Test
is executed.

On the other hand, a failed Assertion would show an error message in the same
Listener as the following snapshot illustrates.

Chapter 6

[85]

Since a page error or Page not found error is a real risk in web applications, a failure
may originate from such an error, and not just because of a failed Assertion. We
can view more information about the sampler that contains the failed Assertion to
investigate the origins of a failure. A View Results Tree Listener records the details
of requests and logs all errors (indicated by the red warning sign and red fonts).

The following figure shows that the page was available and page request was
successful, however, the assertion failed.

Summary
This chapter provided visual means for you to understand the capabilities of JMeter
tools that support functional testing, as we directly wrote and implemented a JMeter
script. We have demonstrated building a Test Plan to contain functional validations
(or assertions) by incorporating various essential JMeter components, particularly
the 'Response Assertion' element and 'Assertion Result' Listener. By using the 'User
Defined Variable' Configuration element, we have also parameterized several values
in order to give our Test Plan better flexibility. In addition, we have observed the
result of these assertions as we performed a 'live' run of the application under test.
An HTTP Request sampler may require to be modified, if there are any changes to
the parameter(s) that the sampler sends with each request. Once created, a JMeter
Test Plan that contains assertions can then be used and modified in subsequent
Regression tests for the application. The next chapter will let us see various ways
that a JMeter script can be further configured and tweaked so that it supports
better portability and testability. Chapter 7 will describe various methods and tools
available in JMeter that support more advanced and complex testing requirements.

Advanced Features
There are still more advanced features of JMeter than those we are familiar with.
Chapter 5 and Chapter 6 have provided essential tools to build Test Plans that
support Performance Testing and Functional Testing, respectively. This chapter
will take us further into how we can enhance a basic Test Plan by using Regular
Expressions and built-in Functions as supported by JMeter. This chapter will also
introduce the Regular Expression Extractor, which I personally find very useful as
it makes a Test Plan more practical than it is without the Extractor. Naturally, this
chapter will give you a 'live' walkthrough of these features. In addition, since JMeter
works on the protocol level, not only can we use it to test web applications, but alsocan we use it to test web applications, but alsowe use it to test web applications, but also
on many other Internet applications, such as FTP, LDAP, Databases, etc. Very little
has been said about these other features, as web applications testing has been the
dominant area of JMeter usage.

Although this chapter may not go into greater detail, it provides you with a more
'live' example on how these features can be used. We will use three Test Plans to
demonstrate these features of JMeter: Web Test Plan, Database Test Plan, and FTP
Test Plan. While 'Web Test Plan' tests a remote HTTP server, 'Database Test Plan'
allow us to perform tests on a remote database server. Of course, 'FTP Test Plan' is
used to perform tests on any remote File or FTP Server. The first section Extending the
Web Test Plan will be based on a simple web application I have created for this book,
while in the section Testing a Database Server will simply extract information from the
same database that the web application is using, though using a different database
schema. In Testing an FTP server, the FTP Test Plan will require a 'live' file server. For
this chapter, we will use the localhost as the target 'web server', 'Database Server',
and 'FTP Server'.

Advanced Features

[88]

Extending the Web Test Plan
This section will help to give us more insight into how we can build a more robust,
and flexible Web Test Plan. We will see how we can incorporate various features into
a Test Plan, including Regular Expressions and Functions. To effectively demonstrate
the use of these features, I have prepared beforehand a Functional Test Plan using a
simple web application on the localhost as the target server. You can download this
from the code bundle of Chapter 7 available on our website. The volsys.rar folder
needs to be unzipped into the apps folder of the target application folder.

This simple application, Volsys, keeps contact information about its network of
volunteers and maintains a schedule of work assignments for these volunteers. In
brief, it allows the user to:

1. Log in to the application (the administrator is the only user, for now).
2. Add Volunteers—each registered volunteer will be assigned a unique

volunteer ID.
3. Add Assignments—each registered assignment will be assigned a unique

assignment ID and will be assigned to a volunteer.
4. Manage Assignments—the user can delete whole assignments or edit the

details of an assignment.
5. Manage Volunteers—the user can delete volunteers from the repository or

edit the details of a volunteer.
This chapter will demonstrate to you how these various feature can be used in at least
one element of the Test Plan, and also the effects that they have on the test results.

Firstly, we will need to create five 'volunteers' in our list of volunteers. This
application requires two pages to complete each add-new-volunteer transaction. The
Add Volunteer page provides a GUI for the user to add and submit a new volunteer,
while the Most Recent Volunteer page sends a registration confirmation and a
Volunteer ID after every successful submission. This task will be quite daunting
especially when we think about having to add a much longer list of volunteers (say
1000?) into the system via the browser.

On a different note, it is very tempting to use a CSV Data Set Config Configuration
Element. However, there is a catch in using this element for this task. Once a csv
file is opened, lines are read as the threads need them. Therefore, if we use this
element to accomplish this task, we will need to simulate five user threads, which is
unnecessary. This task only requires that a single thread or user should perform a
similar set of tasks five times, using different variables each time. Using a ForEach
Controller we can complete this task much faster. While Controller and Loop
Controller are better alternatives to register a big number of volunteers.

Chapter 7

[89]

Using the ForEach Controller
The ForEach Controller is used in tandem with User Defined Variables (UDV). It is
a variant of a Loop Controller as every sampler or controller that we add is executed
one or more times according to the number of times to repeat. The difference is that
it loops through the values of a set of related variables, where during each loop the
variable has a new value. The set of input consists of multiple variables, each of
which ends with a number. Note that the underscore is optional. Each input variable
extension must have a specific value. The return (or output) variable will have the
respective values as defined in the input values.

A sample UDV-ForEach pair looks as shown in the following snapshot:

Advanced Features

[90]

In this example, when the input variable has the name NAME, the following
variables need to be defined as seen in the UDV element in the previous snapshot.
Once the Controller is executed, it will loop five times, with each loop consisting of:

LOOP# Input Variable Input Variable
Value

Output
Variable

Output Variable
Value

Loop 1 NAME_1 Dawud Ali VName Dawud Ali

Loop 2 NAME_2 Carl Jung VName Carl Jung

Loop 3 NAME_3 Bobby Brown VName Bobby Brown

Loop 4 NAME_4 Abigail Johnson VName Abigail Johnson

Loop 5 NAME_5 Eng Huat Lim VName Eng Huat Lim

The generated output variables can be used throughout the components contained
within the ForEach Controller. You may need to add a simple assertion (see the
following image) to ensure that the generated value is being used.

Chapter 7

[91]

Using the While Controller and the
StringFromFile Function
The ForEach Controller paired with the User Defined Variable element saves lot
of time to run and execute a handful number of input variables, as long as they are
entered in the UDV. However, there is an alternative to this method, where we can
simply read a list of strings from an external text file. This method uses the While
Controller and utilizes a predefined JMeter function, __StringFromFile. The While
Controller will trigger the __StringFromFile function to open an external text file
and read the file one string at a time, at each call of the function.

In this example, I have created volunteer-list.txt—a text-based file containing a
list of volunteers' names—in the same path as the JMeter installation. The installation
path is the default path for JMeter. You may place the file anywhere else in your
machine, but you will need to define the exact path in the 'File Name' parameter of
this function. In making use of the While Controller, volunteer-list.txt has the
string false as the last entry. Upon reading the string 'false' from the file, the loop
will exit. The second parameter of this function should be the name of a variable
that will contain the value currently being read from the text file. The samplers that
follow can use the value in this variable to proceed with the next tasks. The following
snapshot illustrates both elements for this example.

During iteration of this while loop, the function __StringFromFile reads each
line from the file volunteer-list.txt and assigns each read value to the
variable VName.

Advanced Features

[92]

The following snapshot demonstrates that, in each iteration, the read value assigned
to variable VName is later used as a value for the parameter volunteer_name in the
Submit New Volunteer sampler.

Using the Loop Controller and the
StringFromFile Function
Similar to the 'While Controller' is the Loop Controller, except that we will need
to determine how many times its child elements need to repeat. Notice also that
the Submit New Volunteer element reads each string from the file using the
__StringFromFile function. The file is opened once and remains opened as long as
the loop continues. This function will read the string one line at a time and reads a
new line at each loop. The following snapshot demonstrates the Controller-Sampler
pair for this task.

Chapter 7

[93]

Whichever method you may choose to use, it will certainly perform repeated tasks
within a fraction of time as compared to the time you will require to do it manually.
Save and Run the test to create at least five volunteers for the use of the next tasks.

Using Regular Expressions
Wikipedia, the online Encyclopedia describes regular expression as:

... provide a concise and flexible means for identifying strings of text of interest,
such as particular characters, words, or patterns of characters. Regular expressions
… are written in a formal language that can be interpreted by a regular expression
processor, a program that either serves as a parser generator or examines text and
identifies parts that match the provided specification.

Advanced Features

[94]

Regular expressions are used to search and manipulate text, based on patterns.
JMeter interprets forms of regular expressions or patterns being used throughout a
JMeter test plan, by including the pattern matching software Apache Jakarta ORO.
You may visit its URL: http://jakarta.apache.org/oro for more information on
regular expression patterns and rules. The API for package org.apache.oro.text.
regex gives you a summary of regular expressions patterns. With the use of regular
expressions, we can certainly save a lot of time and achieve greater flexibility as we
create or enhance a Test Plan.

You can place regular expressions in any component in a Test Plan. The next
step will demonstrate the use of Regular expressions in the Regular Expression
Extractor—a Post-Processor Element. This element will extract text from the current
page using a Regular Expression to identify the text pattern that a desired element
conforms with.

Note that as we added each volunteer, we did not record the IDs that are
automatically generated by the application. Instead, we will do this after all
volunteers have been added. Therefore, our next step is to view the volunteer list
and later edit one of these volunteers. We will select the volunteer in the second row
of the volunteer table seen in the Manage Volunteer page. The next step is to edit
and update information, using the volunteer's ID. Note that this table is sorted by the
volunteer name, not the volunteer ID.

To capture the ID of this volunteer, let us first determine the pattern where we will
find the volunteer in the second row. As can be seen in the following snapshot,
the ID of the second volunteer is surrounded by <td id="ID"> and </td >, and
it is the second row of data having this pattern. We can use this to match the exact
pattern that we want to extract information from. As we want to extract two pieces of
information from this page, the volunteer ID and the volunteer's name, the fields are
defined as follows:

Chapter 7

[95]

The Regular Expression field in the following snapshot encapsulates the highlighted
text in the previous image. All fields will be explained in the table that follows.

The Regular Expression Extractor control panel as shown in the previous snapshot
defines these fields as follows:

Field Explanation
Reference
Name

The name of the variable in which the extracted test will be stored
(refname).

Regular
Expression

The pattern against which the text to be extracted will be matched. The
text groups that will extracted are enclosed by the characters '(' and
')'. We use '.+?' to indicate a single instance of the text enclosed by the
<td..>..</td> tags.

Template Each group of text extracted will be placed as a member of the variable
VOL, following the order of each group of pattern enclosed by '(' and ')'.
Each group is stored as refname_g#, where refname is the string you
entered as the reference name, and # is the group number. 1 to refers
to group 1, 2 to refers to group 2, etc. 0 refers to whatever the entire
expression matches. In this example, the ID we extract will be maintained
in VOL_g1, while the Name value will be stored in VOL_g2.

Match No. Since we plan to extract only the second occurrence of this pattern,
matching the second volunteer, we use value 2. Value 0 would make
a random matching, while a negative value needs to be used with the
ForEach Controller.

Default If the item is not found, this will be the default value. This is an optional
field. You may leave it blank.

After extracting the ID of the record that we want to edit, we are ready to select, edit,
and update this record.

Advanced Features

[96]

The following HTTP Sampler selects the volunteer record having volunteer_id=3
for editing.

The following HTTP Sampler modifies the selected volunteer record (volunteer_
id=3). It modifies the record fields email, URL, and phone from values '-' (refer to the
Controller-Sampler snapshot shown earlier in the chapter) to the new values seen in
the following snapshot.

We may want to assert that these values were correctly updated by means of a
Response Assertion in the 'Manage Volunteer' page that follows. To ensure that the
data is updated correctly, the assertion may verify the following pattern:

<td id="ID">${VOL_g1}</td>\s*<td id="Name">${VOL_g2}</td>\s*
<td id="Email">
 vol${VOL_g1}@acme-volsys.net</td>\s*
<td id="URL">
 www.acme-volsys.net/~vol${VOL_g1}</td>\s*
<td id="Phone">9999999, ext: ${VOL_g1}</td>

Chapter 7

[97]

Note that Regular Expressions are used in the entire assertion above. Please refer
to the Jakarta ORO URL to know more about the regular expressions patterns that
JMeter is able to evaluate.

To complete this section of the chapter, add a few Listeners to capture the result of
this Test Plan. Save the Test Plan and Run. You are free to experiment with these
advanced features of JMeter in other pages of the application.

The next two sections of this chapter are different sort of testing using JMeter than
you have been familiar with.

Testing a Database Server
A few things you will need before proceeding to build a Database Test Plan are:

1. A working database driver. Following the database that you are using on
your database server, copy the .jar file contained in the database driver and
paste it in the lib folder of your JMeter installation path.

2. A valid database-schema.
3. Valid non-empty database table(s).
4. A valid user-level access to the database. It is important for the database to

have a user other than the root user for testing purpose, in order to prevent
any potential data misuse.

For this section I have set up a simple database, MySQL, being localhost as the
Database Server. I have also prepared a database schema—"world". This schema (free
for non-commercial use) can be downloaded from the MySQL home site: http://
dev.mysql.com/doc/. On this site go to section "Example Database", find world
database, download db and either gzip it or zip it. The username for this exercise will
be guest, while the password is also guest. This section will demonstrate multiple
requests to execute an SQL statement directed to a Database Server.

As usual we will start off by adding a thread group to the Test Plan. You may need
to configure in order to have 1000 threads, with minimal start-up time, e.g. 3 seconds,
with multiple repeats—just to demonstrate how far we can test a database in this
manner. Then, add a JDBC Connection Configuration as the thread's first child. You
may choose to use the default values or configure as you wish in tandem with the
database in use. For this Test Plan, configure as following:

Advanced Features

[98]

Add a JDBC Request sampler to the thread, and create an SQL statement that serves
your testing purpose. I used a simple SQL query for this example.

Chapter 7

[99]

You may want to add assertions to the sampler to verify that it returns the expected
results. Save and Run the Test Plan as needed.

While this example serves a simple 'live' Database Test Plan, you may want to visit
http://jakarta.apache.org/jmeter/usermanual/build-db-test-plan.html
and the JMeter user manual to learn more about setting up a Database Test Plan.

Testing an FTP Server
Finally for this Testing an FTP Server section, I have set up the localhost as the target
File Server, and the file paths to demonstrate the use of FTP Samplers.

What you will need before proceeding to build a FTP Test Plan includes:
1. A running FTP server on the target machine.
2. A valid path to the shared files in your FTP server.A valid path to the shared files in your FTP server.
3. Valid non-empty files in the FTP installation path.Valid non-empty files in the FTP installation path.
4. A valid user-level access to the files.A valid user-level access to the files.user-level access to the files.

For this section I have set up a simple FTP Server—Gold FTP Server, running on
localhost. I have also prepared a simple text file—test.txt in the Shared Folder of
this FTP Server. It simply contains the string "This is a test". The username for this
exercise will be anonymous, while the default password is mozilla@test.com. This
section will demonstrate multiple requests for files directed to a file server.

As usual we will start off by adding a Thread Group to the Test Plan. You may
need to configure in order to have multiple threads, with minimal start-up time,
with multiple repeats—just to demonstrate how far we can test a file server in this
manner. Then, add an FTP Request Defaults element as the thread's first child. You
may choose to use the default values or configure as you wish in tandem with the file
server in use. Add an FTP Request sampler to the thread, and configure as seen in
the following snapshot:

Advanced Features

[100]

Note that this sampler requests a file located in the FTP Share folder of the file
server, downloads it and saves it using a different file name in the download path.
The downloaded file names are created following the thread number generated by
each thread that makes the file request. This effect is achieved by appending the
__threadNum function—a JMETER built-in function—to the thread's own copy of
the downloaded file.

For example, if you have set the number of Threads to 3, following the configuration
above, at the end of the Test Plan, you will find filenames: FTP-THREAD1-test1.
txt, FTP-THREAD2-test1.txt, and FTP-THREAD3-test1.txt. The number after the
word 'THREAD' was appended as a result of calling the __threadNum function.

You may want to add assertions to the sampler to verify that it returns the expected
results. Save and Run the Test Plan as needed.

This example provides you with a simple 'live' FTP Test Plan; you may want to visit
(http://jakarta.apache.org/jmeter/usermanual/build-ftp-test-plan.html)
and the JMeter User Manual to learn more about setting up an FTP Test Plan.

Summary
JMeter provides a variety of tools, elements, and functionalities to let the tester create
a highly modifiable, robust, and extensible Test Plan. Assertions, regular expressions,
and built-in functions certainly add more functionality to your Test Plan. What
is more interesting is that, unlike many other testing tools, JMeter can test a wide
range of Internet applications, and is not limited to web applications only. While
this chapter has demonstrated testing on Web Server, Database Server and File/FTP
Server, there are more than a dozen Request samplers in JMeter that you can use to
test various applications, making your JMeter Test Plan very scalable. Moreover,
with over 15 Controllers and over 20 built-in functions, you can make your Test Plan
even more robust. There is much more that JMeter can do than what we have gone
through in Chapter 5 through Chapter 7. The JMeter user manual (http://jakarta.
apache.org/jmeter/usermanual) can tell all; however, it may take lots of practice
and time to effectively digest the manual. This is just an introductory book that
introduces us to a powerful testing tool—JMeter.

JMeter and Beyond
This book does not tell you everything about JMeter. So far we have simply set the
path for more discoveries about JMeter. This book gives the beginner a head start,
maybe even a clean start on JMeter and test automation in general. The JMeter online
manual and the project forum may give you more details in a more technical manner.
Subsequently, how then would this book be helpful? Upon completing this tiny book,
you will find that it tries to simplify the learning process for a beginner trying to set
his or her first heels in automation, or specifically, in JMeter. It should give you a quick
and clear idea about JMeter and similar tools that can help you in a testing project.

For a test engineer, looking for an alternative to manually perform regression testing
or looking for quick solutions to perform load testing, this book may provide an
almost complete overview of this tool.

For a test Manager, or test Lead doing research on the cost-effective testing tools that
the team or organization can afford to have, JMeter may just be one of those tools to
start with.

I hope that this book will be a boon to get your feet wet on this tool. Up to the date
this text is written, there is no other book like it so far. Other books may talk about
JMeter, but sadly enough, only very briefly; merely as a chapter or part of a chapter.
Other vendor-centric testing tools may have just as rich or richer sets of features
as JMeter, but they can cost up to five-figures of the organization's budget, and
of course with limited licenses. On the other hand, you can get JMeter on a free,
open-source license. However, like any other open-source tools, there isn't really a
vendor available for support. However, if the organization can lend some time for
the test engineer to learn this tool, that is probably all the investment you will need
to benefit from this tool. Besides that, on days when you need to generate tests more
than a single machine can handle, you may want to perform a distributed testing
(see http://jakarta.apache.org/jmeter/usermanual/remote-test.html), run
JMeter in non-GUI mode (http://jakarta.apache.org/jmeter/usermanual/
best-practices.html), or invest in some higher-end machine to run your tests.

JMeter and Beyond

[102]

Once you have covered the basics this book has presented, you may wish to discover
more of JMeter from its online manual—http://jakarta.apache.org/jmeter/
usermanual/index.html. Just to briefly describe a few items, the 'HTTP URL
Re-writing Modifier' and the 'Cookie Manager' are normally included in the Test
Plan if your web application maintains a certain state for each user, e.g. cookies, URL
re-writing. You may need to use the Authorization Manager element at times when
you need to have direct access to the server, if, for example, you want to monitor
web server, it lets you specify user logins for pages that are restricted using server
authentication. Another feature that you might be interested to know more about
is remote (or distributed) testing, a feature that JMeter provides in support of stress
testing. This remote testing has been mentioned only briefly in Chapter 5, in the
section Remote Testing with JMeter. JMeter even supports a remote server monitoring
tool to measure its performance by incorporating the Authorization Manager
element and Monitor Listener in your JMeter Remote Testing.

Additionally, if you can program in Java, you may extend JMeter by building
add-ons, which does not require that you build (or compile) JMeter. On the other
hand, if instead you want to add more components or modify an existing component
in the JMeter API, you may simply build JMeter using Ant. For more information
on building JMeter and add-ons, visit http://jakarta.apache.org/jmeter/
building.html.

If you need to simulate random behavior in a Test Plan, Random Controller and
Random Order Controllers may be of particular interest to you. These are normally
used when the Test Plan performs more than one pass through a group of child
elements. The effect of Random Controller is similar to that of Interleave Controller
except that instead of going in sequential order through its child elements, it picks
and executes one at random at each pass. Random Order Controller will execute
each child element at most once, but the order of execution of the nodes will be
random. Include Controller allows you to incorporate external .jmx files if you are
not comfortable in merging into the current Test Plan, which would only increase its
complexity and size.

There are dozens more JMeter components that this tiny book has not covered.
To have all these in a single book while keeping to the same simple approach for
the readers would turn out too overwhelming. We might end up with a few more
volumes. This book simply gives a practical, no-nonsense first look at JMeter, as it
paves way for the reader to learn more about this great tool from its online manual,
the project forums, and the Internet.

What this book has covered so far would help give the reader a first impression
of JMeter. Following is a quick list (adapted from the online-manual) of the
Components in JMeter that we have covered (checkmarked) and those that
we didn't:

Chapter 8

[103]

Samplers Listeners Assertions Timers

Samplers tell JMeter
to send a request to a
server and wait for a
response. Following
is the list of JMeter
Samplers:

Provide access to
the information
JMeter gathers
about the test cases
while JMeter runs.
Following is list of
JMeter Listners:

Allow you to
assert facts about
responses received
from the server
being tested.
Following is the
list of JMeter
Assertions:

Cause JMeter to
pause for a certain
amount of time
before each request
a thread group
makes. Following is
the list of Timers:

 FTP Request
 Sample Result
Save Configuration

 Response
Assertion Constant Timer

 HTTP Request
 Graph Full
Results

 Duration
Assertion

 Gaussian Random
Timer

 JDBC Request Graph Results Size Assertion
 Uniform Random
Timer

 Java Request Spline Visualizer XML Assertion
 Constant
Throughput Timer

 SOAP/XML-RPC
Request Assertion Results

 BeanShell
Assertion

 Synchronizing
Timer

 WebService
(SOAP) Request

 View Results
Tree

 MD5Hex
Assertion BeanShell Timer

 LDAP Request Aggregate Report HTML Assertion
 LDAP Extended
Request

 View Results in
Table XPath Assertion

 Access Log
Sampler

 Simple Data
Writer

 XML Schema
Assertion

 BeanShell Sampler Monitor Results

 BSF Sampler
 Distribution
Graph (alpha)

 TCP Sampler Aggregate Graph

 JMS Publisher Mailer Visualizer

 JMS Subscriber
 BeanShell
Listener

 JMS Point-to-Point Summary Report

 JUnit Request
 Mail Reader
Sampler

 Test Action

JMeter and Beyond

[104]

Logic Controllers Configuration
Elements

Pre-Processors

Let you customize the
logic that JMeter uses
to decide when to send
requests. Following is
the list of JMeter Logic
controllers:

These are used to add
or modify requests
made by Samplers.
Following is the list of
configuration elements:

Modify the settings of
a Sample Request just
before it runs, or to update
variables that are not
extracted from response
text. Following is the list of
Pre-Processors elements:

 Simple Controller CSV Data Set Config HTML Link Parser

 Loop Controller
 FTP Request
Defaults

 HTTP URL Re-writing
Modifier

 Once Only
Controller

HTTP Authorization
Manager HTML Parameter Mask

 Interleave Controller HTTP Cookie Manager
 HTTP User Parameter
Modifier

 Random Controller
 HTTP Request
Defaults User Parameters

 Random Order
Controller

 HTTP Header
Manager Counter

 Throughput
Controller Java Request Defaults BeanShell PreProcessor

 Runtime Controller
 JDBC Connection
Configuration

 If Controller Login Config Element

 While Controller
LDAP Request
Defaults

 Switch Controller
LDAP Extended
Request Defaults

 ForEach Controller TCP Sampler Config

 Module Controller
 User Defined
Variables

 Include Controller
 Simple Config
Element

 Transaction
Controller
 Recording
Controller

Chapter 8

[105]

Post-Processors Functions and Variables Miscellaneous
Features

Post-processors
execute after a
request has been
made from a
Sampler. They are
often used to process
the response data.
Following is the list
of Post-Processors
elements:

JMeter functions are special values that
can populate fields of any Sampler or other
element in a test tree. Variables are local to a
thread. Following is the list of Functions and
Variables:

Following is the list
of miscellaneous
features of JMeter:

 Regular
Expression Extractor regexFunction setProperty Test Plan
 XPath Extractor counter log Thread Group
 Result Status
Action Handler threadNum logn WorkBench
 Save Responses
to a file intSum BeanShell SSL Manager
 Generate
Summary Results StringFromFile split

 HTTP Proxy
Server

 BeanShell
PostProcessor machineName XPath

 HTTP Mirror
Server

 javaScript time Property Display
 Random jexl Debug Sampler

 CSVRead V
 Debug
PostProcessor

 property eval
 P evalVar

JMeter and Beyond

[106]

Summary
This chapter discusses briefly on what more JMeter has and can do for its users. It
tells the reader where to go in order to find more information about other elements
of JMeter that this book does not have.

At the beginning part of the book, we discussed a number of concerns regarding
test automation, and how automation suits your testing needs. In later chapters,
we gradually moved from briefly overviewing JMeter to creating functional and
performance Test Plans that work. Furthermore, in Chapter 7, we learned to use
a number of auxiliary features of JMeter that are useful to make Test Plans more
flexible and robust. A brief description of all components of JMeter is available in
Appendix A.

There is more work in the pipeline for the JMeter project about which you can
learn more in the project's WIKI pages, http://wiki.apache.org/jakarta-
jmeter. If you are skilled in Java, you may customize the JMeter API, build your
own add-ons, or may even consider being a code contributor to the JMeter project.
The project's mailing list would be another important resource both to JMeter users
(http://mail-archives.apache.org/mod_mbox/jakarta-jmeter-user) and
JMeter developers (http://mail-archives.apache.org/mod_mbox/jakarta-
jmeter-dev).

Component Description
Following is a table briefly explaining the components mentioned in this book. The
description is adapted from the JMeter online manual. For more detailed information
about these components, visit http://jakarta.apache.org/jmeter/usermanual.

Samplers
FTP Request Lets you send an FTP "retrieve file" or "upload file" request to an

FTP server. When downloading a file, it can be stored on disk
(Local File) or in the Response Data, or both.

HTTP Request Lets you send an HTTP/HTTPS request to a web server. It also lets
you control whether or not JMeter parses HTML files for images
and other embedded resources and sends HTTP/HTTPS requests
to retrieve them.

JDBC Request Lets you send an SQL query to a database.
Java Request Lets you control a Java class that implements the

JavaSamplerClient interface. By writing your own implementation
of this interface, you can use JMeter to harness multiple threads,
input parameter control, and data collection.

SOAP/XML-RPC
Request

Lets you send a SOAP request to a Web Service. It can also be used
to send XML-RPC over HTTP.

WebService (SOAP)
Request

Uses Apache SOAP driver to serialize the message and set the
header with the correct SOAP action.

LDAP Request Lets you send one of four LDAP requests (Add, Modify, Delete,
and Search) to an LDAP server.

LDAP Extended
Request

Can send all 8 different LDAP requests to an LDAP server. It is
an extended version of the LDAP sampler, therefore it is harder
to configure, but can be used to make a test much more closely
resembling a real LDAP session.

Component Description

[108]

Samplers
Access Log Sampler Designed to read access logs and generate HTTP requests.
BeanShell Sampler Allows the user to write a Sampler using the BeanShell scripting

language.
BSF Sampler Allows you to write a sampler using a BSF scripting language. See

the Apache Bean Scripting Framework website for details of the
languages supported.

TCP Sampler Opens a TCP/IP connection to the specified server. It then sends
the text, and waits for a response.

JMS Publisher Publishes messages to a given pub/sub topic. For those not
familiar with JMS, it is the J2EE specification for messaging.

JMS Subscriber Subscribes to messages in a given pub/sub topic. For those not
familiar with JMS, it is the J2EE specification for messaging.

JMS Point-to-Point This sampler sends and optionally receives JMS Messages through
point-to-point connections (queues). This is different from pub/sub
messages and is generally used for handling transactions.

JUnit Request The current implementation supports standard JUnit convention
and extensions. It also includes extensions like oneTimeSetUp and
oneTimeTearDown.

Mail Reader Sampler Not yet implemented. TBA.
Test Action This sampler is intended for use in a conditional controller. Rather

than generate a sample, the test element either pauses or stops the
selected target.

Logic Controllers
Simple Controller Lets you organize your Samplers and other Logic Controllers. This

controller provides no functionality beyond that of a storage device.
Loop Controller Lets JMeter to loop through its child controllers a certain number

of times, in addition to the loop value you specified for the
Thread Group.

Once Only
Controller

It tells JMeter to process the controller(s) inside it only once, and
pass over any requests under it during further iterations through
the Test Plan.

Interleave Controller Lets JMeter to alternate among the controllers for each loop iteration.
Random Controller Acts similarly to the Interleave Controller, except that instead of

going in order through its sub-controllers and samplers, it picks
one randomly at each pass.

Random Order
Controller

Much like a Simple Controller, it will execute each child element at
most once, but the order of execution of the nodes will be random.

Throughput
Controller

Allows the user to control how often it is executed.

Runtime Controller Controls the time for which its children are allowed to run.

Appendix A

[109]

Logic Controllers
If Controller Allows the user to control whether the test elements below it

(its children) are run or not.
While Controller Runs its children until the condition is "false".
Switch Controller Acts like the Interleave Controller in that it runs one of the

subordinate elements on each iteration but rather than run them
in sequence, the controller runs the element number defined by
the switch value. If the switch value is out of range, it will run the
zeroth element, which therefore acts as default.

ForEach Controller This controller loops through the values of a set of related
variables. When you add samplers (or controllers) to a ForEach
Controller, every sample Sampler (or controller) is executed one or
more times, where during every loop the variable has a new value.

Module Controller Provides a mechanism for substituting Test Plan fragments into the
current Test Plan at run time.

Include Controller Designed to use an external .jmx file. To use it, add samples to a
Simple Controller, then save the Simple Controller as a .jmx file.
The file can then be used in a Test Plan. However, this element
does not support variables/functions in the filename field, but can
be overridden if the property includecontroller.prefix is
defined where the contents are used to prefix the pathname.

Transaction
Controller

Used to group Samplers by generating an additional sample, which
totals the nested samplers.

Recording
Controller

Simply a place-holder indicating where the proxy server should
record samples to. It has no effect during a test run. But during
recording using the HTTP Proxy Server, all recorded samples will
by default be saved under the Recording Controller.

Listeners
Sample Result Save
Configuration

Listeners can be configured to save different items to the result log
files (JTL) by using the Config popup as shown below. The defaults
are defined as described in the Listener Default Configuration
documentation. Items with (CSV) only apply to the CSV format;
items with (XML) only apply to XML format. CSV format cannot be
used to save any items that include line-breaks.

Graph Full Results Not implemented yet. TBA.
Graph Results Generates a simple graph that plots all sample times. Along the

bottom of the graph, the current sample (black), the current average
of all samples (blue), the current standard deviation (red), and the
current throughput rate (green) are displayed in milliseconds.

Spline Visualizer Provides a view of all sample times from the start of the test till the
end, regardless of how many samples have been taken.

Assertion Results This visualizer shows the Label of each sample taken. It also
reports failures of any Assertions that are part of the Test Plan.

Component Description

[110]

Listeners
View Results Tree This shows a tree of all sample responses, allowing you to view

the response for any sample. In addition to showing the response,
you can see the time it took to get this response, and some response
codes. There are several ways to view the response, selectable by a
radio button.

Aggregate Report The aggregate report creates a table row for each differently
named request in your test. For each request, it totals the response
information and provides request count, Min, Max, Average, Error
%, Throughput (request/second), and KB/second throughput.

View Results
in Table

This visualizer creates a row for every sample result. Like the View
Results Tree, it uses a lot of memory.

Simple Data Writer This listener can record results to a file but not to the UI. It is meant
to provide an efficient means of recording data by eliminating GUI
overhead.

Monitor Results Visualizer for displaying server status. It is designed for Tomcat 5,
but any servlet container can port the status servlet and use
this monitor.

Distribution Graph This will display a bar for every unique response time.
Aggregate Graph Similar to the Aggregate Report, the difference is the aggregate

graph provides an easy way to generate bar graphs and save the
graph as a PNG file.

Mailer Visualizer The mailer visualizer can be set up to send email if a test run
receives too many failed responses from the server.

BeanShell Listener The BeanShell Listener allows the use of BeanShell for processing
samples for saving, etc. The BeanShell jar file is not included
with JMeter; it needs to be separately downloaded. Please see the
BeanShell website at http://www.beanshell.org.

Summary Report This report creates a table row for each differently named request
in your test. This is similar to the Aggregate Report, except that it
uses less memory.

Configuration Elements
CSV Data Set Config Used to read lines from a file, and split them into variables.

Easier to use than the __CSVRead() and _StringFromFile()
functions, the file is only opened once, and each thread will use a
different line from the file. Lines are read as the threads need them.

FTP Request
Defaults

 No documentation found.

HTTP Authorization
Manager

Lets you specify one or more user logins for web pages that are
restricted using server authentication.

Appendix A

[111]

Configuration Elements
HTTP Cookie
Manager

This stores and sends cookies just like a web browser. If you are
testing a website that uses a cookie for storing session information,
each JMeter thread will have its own session. You can manually
add a cookie to the Cookie Manager. However, if you do this, the
cookie will be shared by all JMeter threads.

HTTP Request
Defaults

Lets you set default values that your HTTP Request controllers use.

HTTP Header
Manager

Lets you add or override HTTP request headers.

Java Request
Defaults

Lets you set default values for Java testing. See the Java Request.

JDBC Connection
Configuration

Creates a database connection pool (used by JDBC Request
Sampler) with JDBC Connection settings.

Login Config
Element

Lets you add or override username and password settings in
samplers that use username and password as part of their setup.

LDAP Request
Defaults

Lets you set default values for LDAP testing. See the LDAP
Request.

LDAP Extended
Request Defaults

Lets you set default values for extended LDAP testing.

TCP Sampler Config Provides default data for the TCP Sampler.
User Defined
Variables

Lets you define variables for use in other test elements, just as in
the Test Plan. The variables in User Defined Variables components
will take precedence over those defined closer to the tree
root—including those defined in the Test Plan.

Simple Config
Element

Lets you add or override arbitrary values in Samplers. You can
choose the name of the value and the value itself.

Assertions
Response Assertion Lets you add pattern strings to be compared against various fields of

the response. The pattern strings are Perl5-style Regular Expressions.
Duration Assertion This tests that each response was received within a given amount

of time. Any response that takes longer than the given number is
marked as a failed response.

Size Assertion This tests that each response contains the right number of bytes in
it. You can specify that the size be equal to, greater than, less than,
or not equal to a given number of bytes.

XML Assertion This tests that the response data consists of a formally correct XML
document. It does not validate the XML based on a DTD or schema
or do any further validation.

BeanShell Assertion Allows the user to perform assertion checking using a
BeanShell script.

MD5Hex Assertion Allows the user to check the MD5 hash of the response data.

Component Description

[112]

Assertions
HTML Assertion Allows the user to check the HTML syntax of the response data

using JTidy.
XPath Assertion The XPath Assertion tests a document for well formedness and has

the option of validating against a DTD, or putting the document
through JTidy and testing for an XPath.

XML Schema
Assertion

The XML Schema Assertion allows the user to validate a response
against an XML Schema.

Timers
Constant Timer Allows each thread to pause for the same amount of time

between requests.
Gaussian Random
Timer

Pauses each thread request for a random amount of time, with
most of the time intervals occurring near a particular value. The
total delay is the sum of the Gaussian distributed value (with mean
0.0 and standard deviation 1.0) times the deviation value you
specify, and the offset value.

Uniform Random
Timer

Pauses each thread request for a random amount of time, with each
time interval having the same probability of occurring. The total
delay is the sum of the random value and the offset value.

Constant
Throughput Timer

Allows for variable pauses, calculated to keep the total throughput
(in terms of samples per minute) as close as possible to a give figure.

Synchronizing
Timer

Blocks threads until X number of threads have been blocked, and
then releases them all at once. It can thus create large instant loads
at various points of the Test Plan.

BeanShell Timer The BeanShell Timer can be used to generate a delay.

Pre-Processors
HTML Link Parser Parses HTML response from the server and extracts links and

forms.
HTTP URL Re-
writing Modifier

This modifier works similarly to the HTML Link Parser, but is
especially useful for web applications that use URL Re-writing to
store session IDs instead of cookies.

HTML Parameter
Mask

This element is deprecated. Use Counter instead of this parameter.
The HTML Parameter Mask is used to generate unique values for
HTML arguments.

HTTP User
Parameter Modifier

This element is deprecated. Use User Parameters instead of this
parameter. The User Parameter Modifier uses an XML file get values
for HTTP arguments. Any HTTP Request that this modifier modifies
will be checked for the existence of the specified arguments.

Appendix A

[113]

Pre-Processors
User Parameters Allows the user to specify values for User Variables specific to

individual threads, which can be accessed in any test component
in the same thread group, using the function syntax:
${variable}.

Counter Allows the user to create a counter that can be referenced anywhere
in the Thread Group. The counter now uses long to store the value,
so the range is from -2^63 to 2^63-1.

BeanShell
PreProcessor

Allows arbitrary code to be applied before taking a sample.

Post-Processors
Regular Expression
Extractor

Allows the user to extract values from a server response using a
Perl-type regular expression. This element will execute after each
Sample request in its scope, apply the regular expression extracting
the requested values, generate the template string, and store the
result into the given variable.

XPath Extractor Allows the user to extract values from a structured response—XML
or (X)HTML—using XPath query language.

Result Status Action
Handler

Allows the user to stop the thread or the whole test if the relevant
sampler failed.

Save Responses to
a file

For each sample in its scope, it will create a file of the response
Data. The primary use for this is in creating functional tests.

Generate Summary
Results

 Generates a summary of the test run so far to the log file and/or
standard output. Both running and differential totals are shown.

BeanShell
PostProcessor

Allows arbitrary code to be applied after taking a sample.

Miscellaneous Features
Test Plan The Test Plan is where the overall settings for a test are specified.
Thread Group A Thread Group defines a pool of users that will execute a

particular test case against your server. You can control the number
of users simulated (num of threads), the ramp up time (how long
it takes to start all the threads), the number of times to perform the
test, and optionally, a start and stop time for the test.

WorkBench The WorkBench simply provides a place to temporarily store test
elements while not in use, for copy/paste purposes, or any other
purpose you desire.

SSL Manager The SSL Manager is a way to select a client certificate so that you can
test applications that use Public Key Infrastructure (PKI). It is only
needed if you have not set up the appropriate System properties.

Component Description

[114]

Miscellaneous Features
HTTP Proxy Server The Proxy Server can only record HTTP traffic. It is not possible to

record HTTPS (SSL) sessions; however, there is an HTTPS spoofing
mode to override this.

HTTP Mirror Server This simply mirrors the data sent to it. This is useful for checking
the content of HTTP Requests.

Property Display Shows the values of System or JMeter properties. Values can be
changed by entering new text in the Value column. It is available
only on the WorkBench.

Debug Sampler Generates a sample containing the values of all JMeter variables
and/or properties. The values can be seen in the View Results Tree
Listener Response Data pane.

Debug PostProcessor Creates a subsample with the details of the previous sampler
properties. This is intended for developer use only.

Functions and Variables
regexFunction Parse previous response using a Regular Expression
counter Generate an incrementing number
threadNum Get thread number
intSum Add numbers
StringFromFile Read a line from a file
machineName Get the local machine name
javaScript Process JavaScript (Mozilla Rhino)
Random Generate a random number
CSVRead Read from a CSV delimited file
property Read a property
P Read a property (shorthand method)
setProperty Set a JMeter property
log Log (or display) a message (and return the value)
logn Log (or display) a message (empty return value)
BeanShell Run a BeanShell script
split Split a string into variables
XPath Use an XPath expression to read from a file
time Return current time in various formats
jexl Evaluate a Commons JEXL expression
V Evaluate a variable name
eval Evaluate a variable expression
evalVar Evaluate an expression stored in a variable

Resources
Useful References
http://jakarta.apache.org/jmeter

Official JMeter Jakarta project website. This site offers links for the latest JMeter
downloads, documentation, tutorials, and community:

http://jakarta.apache.org/jmeter/usermanual/index.html

The official online JMeter User manual. This site provides a detailed and more
technical description of JMeter components and how to use them:

http://wiki.apache.org/jakarta-jmeter

These JMeter Wiki pages may be accessed to read, contribute, or modify content.
They contain information and external links by contributors/users of JMeter,
including FAQs and links that are directly or indirectly related to JMeter and
Software Testing:

http://mail-archives.apache.org/mod_mbox/jakarta-jmeter-user
Archived mailing lists for JMeter users, dating from Mar 2001 until the most
recent entry.

http://mail-archives.apache.org/mod_mbox/jakarta-jmeter-dev
Archived mailing lists for JMeter developers, dating from Feb 2001 until the most
recent entry.

http://www.opensourcetesting.org
This site provides users with a wealth of information about open-source testing
tools that are available.

http://video.google.com
Search this site with keyword "jmeter". Features online videos that serve as a guide
for using JMeter.

Resources

[116]

http://www.stpmag.com/issues/stp-2007-11.pdf
Downloadable PDF version of "Software Test & Performance" magazine. Discusses
JMeter pairing with Selenium to optimize Web-based testing.

Weblogs/Articles on Experience of Using
JMeter
http://weblogs.java.net/blog/johnreynolds/archive/2003/12/adventures_
with.html
This site talks about a user's first experience using JMeter.

http://themindstorms.wordpress.com/2007/01/10/groovy-support-for-
jmeter
This site briefly talks about how Groovy 1.0 can integrate with JMeter for
monitoring script.

http://themindstorms.wordpress.com/2007/01/10/groovy-support-for-
jmeter
Another satisfied user's blog.

http://www.ibm.com/developerworks/opensource/library/os-jmeter/
IBM IT Architect Greg Herringer's (gherring@ca.ibm.com) experience using JMeter
for performance testing: "Test WebSphere performance with Apache JMeter: An
open source tool, ideal for testing IFX messaging middleware".

Glossary
The terms which appear in the following appendix are adapted from "Standard
glossary of terms used in Software Testing", Version 2.0 (dd. December, 2nd
2007), Produced by the 'Glossary Working Party'—International Software Testing
Qualifications Board. Only those terms related to test automation are included here.

actual result: The behavior produced/observed when a component or system
is tested.

ad hoc testing: Testing carried out informally; no formal test preparation takes place,
no recognized test design technique is used, there are no expectations for results and
arbitrariness guides the test execution activity.

automated testware: Testware used in automated testing, such as tool scripts.

availability: The degree to which a component or system is operational and
accessible when required for use. Often expressed as a percentage.

basis test set: A set of test cases derived from the internal structure of a component
or specification to ensure that 100% of a specified coverage criterion will be achieved.

behavior: The response of a component or system to a set of input values
and preconditions.

benchmark test: (1) A standard against which measurements or comparisons can be
made. (2) A test that is being used to compare components or systems to each other
or to a standard as in (1).

boundary value: An input value or output value that is on the edge of an
equivalence partition or at the smallest incremental distance on either side of an
edge, for example the minimum or maximum value of a range.

boundary value analysis: A black-box test design technique, in which test cases are
designed based on boundary values.

Glossary

[118]

boundary value coverage: The percentage of boundary values that have been
exercised by a test suite.

branch: A basic block that can be selected for execution, based on a program
construct in which one of two or more alternative program paths is available, e.g.
case, jump, go to, if-then-else.

business process-based testing: An approach to testing in which test cases are
designed based on descriptions and/or knowledge of business processes.

capture/playback/replay tool: A type of test execution tool where inputs are
recorded during manual testing in order to generate automated test scripts that can
be executed later (i.e. replayed). These tools are often used to support automated
regression testing.

CAST: Acronym for Computer Aided Software Testing.

cause-effect graph: A graphical representation of inputs and/or stimuli (causes)
with their associated outputs (effects), which can be used to design test cases.

cause-effect graphing: A black-box test design technique in which test cases are
designed from cause-effect graphs.

changeability: The capability of the software product to enable specified
modifications to be implemented.

component: A minimal software item that can be tested in isolation.

component integration testing: Testing performed to expose defects in the interfaces
and interaction between integrated components.

component specification: A description of a component's function in terms of its
output values for specified input values under specified conditions, and required
non-functional behavior (e.g. resource-utilization).

component testing: The testing of individual software components.

concurrency testing: Testing to determine how the occurrence of two or more
activities within the same interval of time, achieved either by interleaving the
activities or by simultaneous execution, is handled by the component or system.

condition: A logical expression that can be evaluated as True or False, e.g. A>B. See
also test condition.

condition coverage: The percentage of condition outcomes that have been exercised
by a test suite. 100% condition coverage requires each single condition in every
decision statement to be tested as True and False.

Appendix C

[119]

condition determination coverage: The percentage of all single condition outcomes
that independently affect a decision outcome that have been exercised by a test
case suite. 100% condition determination coverage implies 100% decision
condition coverage.

condition determination testing: A white-box test design technique in which test
cases are designed to execute single condition outcomes that independently affect a
decision outcome.

condition outcome: The evaluation of a condition to True or False.

condition testing: A white-box test design technique in which test cases are designed
to execute condition outcomes.

cost of quality: The total costs incurred on quality activities and issues, and often
split into prevention costs, appraisal costs, internal failure costs, and external
failure costs.

data-driven testing: A scripting technique that stores test input and expected results
in a table or spreadsheet, so that a single control script can execute all of the tests
in the table. Data driven testing is often used to support the application of test
execution tools such as capture/playback tools.

database integrity testing: Testing the methods and processes used to access
and manage the data(base), to ensure access methods, processes, and data rules
function as expected and that during access to the database, data is not corrupted or
unexpectedly deleted, updated, or created.

defect: A flaw in a component or system that can cause the component or system to
fail to perform its required function, e.g. an incorrect statement or data definition.
A defect, if encountered during execution, may cause a failure of the component
or system.

defect-based test design technique: A procedure to derive and/or select test cases
targeted at one or more defect categories, with tests being developed from what is
known about the specific defect category.

development testing: Formal or informal testing conducted during the
implementation of a component or system, usually in the development environment
by developers.

domain: The set from which valid input and/or output values can be selected.

dynamic comparison: Comparison of actual and expected results, performed while
the software is being executed, for example by a test execution tool.

Glossary

[120]

dynamic testing: Testing that involves the execution of the software of a component
or system.

efficiency: The capability of the software product to provide appropriate
performance, relative to the amount of resources used under stated conditions.

efficiency testing: The process of testing to determine the efficiency of a
software product.

equivalence partition/class: A portion of an input or output domain for which
the behavior of a component or system is assumed to be the same, based on
the specification.

equivalence-partition coverage: The percentage of equivalence partitions that have
been exercised by a test suite.

exhaustive testing: A test approach in which the test suite comprises all
combinations of input values and preconditions.

expected result: The behavior predicted by the specification, or another source, of the
component or system under specified conditions.

exploratory testing: An informal test design technique where the tester actively
controls the design of the tests as those tests are performed and uses information
gained while testing to design new and better tests.

fail: A test is deemed to fail if its actual result does not match its expected result.

failure: Deviation of the component or system from its expected delivery, service,
or result.

failure rate: The ratio of the number of failures of a given category to a given unit of
measure, e.g. failures per unit of time, failures per number of transactions, failures
per number of computer runs.

functional testing: Testing based on an analysis of the specification of the
functionality of a component or system.

functionality testing: The process of testing to determine the functionality of a
software product.

keyword-driven testing: A scripting technique that uses data files to contain not
only test data and expected results, but also keywords related to the application
being tested. The keywords are interpreted by special supporting scripts that are
called by the control script for the test.

Appendix C

[121]

latency (client): Client latency is the time that it takes for a request to reach a server
and for the response to travel back (from server to client). Includes network latency
and server latency.

latency (network): Network latency is the additional time that it takes for a request
(from a client) and a response (from a server) to cross a network until it reaches the
intended destination.

latency (server): Server latency is the time the server takes to complete the execution
of a request normally made by a client machine.

load profile: A specification of the activity that a component or system being tested
may experience in production. A load profile consists of a designated number of
virtual users who process a defined set of transactions in a specified time period and
according to a predefined operational profile.

load testing: A type of performance testing conducted to evaluate the behavior of
a component or system with increasing load, e.g. numbers of parallel users and/or
numbers of transactions, to determine what load can be handled by the component
or system.

master test plan: A test plan that typically addresses multiple test levels.

metrics: Metrics are the actual measurements obtained by running performance tests.
These performance tests include system-related metrics such as CPU, memory, disk
I/O, network I/O, and resource utilization levels. The performance tests also include
application-specific metrics such as performance counters and timing data.

monitoring tool: A software tool or hardware device that runs concurrently with
the component or system under test and supervises, records and/or analyzes the
behavior of the component or system.

pass: A test is deemed to pass if its actual result matches its expected result.

pass/fail criteria: Decision rules used to determine whether a test item (function) or
feature has passed or failed a test.

performance: The degree to which a system or component accomplishes its
designated functions within given constraints regarding processing time and
throughput rate.

performance indicator: A high-level metric of effectiveness and/or efficiency
used to guide and control progressive development, e.g. lead-time slip for
software development.

Glossary

[122]

performance profiling: Definition of user profiles in performance, load and/or stress
testing. Profiles should reflect anticipated or actual usage based on an operational
profile of a component or system, and hence the expected workload.

performance budgets: Performance budgets are your constraints. Performance
budgets specify the amount of resources that you can use for specific scenarios and
operations and still be successful.

performance testing: The process of testing to determine the performance of a
software product.

performance testing tool: A tool to support performance testing and that usually
has two main facilities: load generation and test transaction measurement. Load
generation can simulate either multiple users or high volumes of input data. During
execution, response time measurements are taken from selected transactions and
these are logged. Performance testing tools normally provide reports based on test
logs and graphs of load against response times.

record/playback tool: See capture/playback tool.

recorder/scribe: The person who records each defect that is mentioned and any
suggestions for process improvement during a review meeting, on a logging
form. The recorder/scribe has to ensure that the logging form is readable and
understandable.

regression testing: Testing of a previously tested program following modification to
ensure that defects have not been introduced or uncovered in unchanged areas of the
software, as a result of the changes made. It is performed when the software or its
environment is changed.

stress testing: A type of performance testing conducted to evaluate a system or
component at or beyond the limits of its anticipated or specified work loads, or with
reduced availability of resources such as access to memory or servers.

stress testing tool: A tool that supports stress testing.

test: A set of one or more test cases.

test approach: The implementation of the test strategy for a specific project. It
typically includes the decisions made that follow based on the (test) project's goal
and the risk assessment carried out, starting points regarding the test process, the
test design techniques to be applied, exit criteria, and test types to be performed.

test automation: The use of software to perform or support test activities, e.g. test
management, test design, test execution, and results checking.

Appendix C

[123]

test case: A set of input values, execution preconditions, expected results, and
execution post conditions, developed for a particular objective or test condition,
such as to exercise a particular program path or to verify compliance with a
specific requirement.

test case design technique: Procedure used to derive and/or select test cases.

test case specification: A document specifying a set of test cases (objective, inputs,
test actions, expected results, and execution preconditions) for a test item.

test condition: An item or event of a component or system that could be verified
by one or more test cases, e.g. a function, transaction, feature, quality attribute, or
structural element.

test cycle: Execution of the test process against a single identifiable release of the
test object.

test data: Data that exists (for example, in a database) before a test is executed, and
that affects or is affected by the component or system under test.

test data preparation tool: A type of test tool that enables data to be selected from
existing databases or created, generated, manipulated, and edited for use in testing.

test design: (1) See test design specification. (2) The process of transforming general
testing objectives into tangible test conditions and test cases.

test design specification: A document specifying the test conditions (coverage items)
for a test item, the detailed test approach, and identifying the associated high-level
test cases. [After IEEE 829]

test environment: An environment containing hardware, instrumentation,
simulators, software tools, and other support elements needed to conduct a test.

test execution: The process of running a test on the component or system under test,
producing actual result(s).

test execution automation: The use of software, e.g. capture/playback tools, to
control the execution of tests, the comparison of actual results to expected results, the
setting up of test preconditions, and other test control and reporting functions.

test execution tool: A type of test tool that is able to execute other software using an
automated test script, e.g. capture/playback.

test generator: See test data preparation tool.

test harness: A test environment comprising stubs and drivers needed to execute
a test.

Glossary

[124]

test plan: A document describing the scope, approach, resources, and schedule of
intended test activities. It identifies amongst others test items, the features to be
tested, the testing tasks, who will do each task, the degree of tester independence, the
test environment, the test design techniques, entry and exit criteria to be used, and
the rationale for their choice, and any risks requiring contingency planning. It is a
record of the test planning process.

test run: Execution of a test on a specific version of the test object.

test script: Commonly used to refer to a test procedure specification, especially an
automated one.

test set: See test suite

test suite: A set of several test cases for a component or system under test, where the
post condition of one test is often used as the precondition for the next one.

tester: A skilled professional who is involved in the testing of a component
or system.

testing: The process consisting of all life-cycle activities, both static and dynamic,
concerned with planning, preparation, and evaluation of software products and
related work products to determine that they satisfy specified requirements, to
demonstrate that they are fit for purpose, and to detect defects.

time behavior: See performance.

volume testing: Testing where the system is subjected to large volumes of data.

For more terms, visit: http: //www.istqb.org/downloads/glossary-1.0.pdf.

Index
A
API 16
Application Programming Interface. See

API
assertions

about 38
assertion results control panel 39
response assertion control panel 39

automate testing
about 7
actual result 117
ad hoc testing 117
automated testware 117
automation hints 9
availability 117
basis test set 117
behavior 117
benchmark test 117
boundary value 117
boundary value analysis 117
boundary value coverage 118
branch 118
buisness process-based testing 118
capture/playback/replay tool 118
CAST 118
cause-effect graph 118
cause-effect graphing 118
changeability 118
components 118
component integration testing 118
component specification 118
component testing 118
concurrency testing 118
condition 118
condition coverage 118

condition determination coverage 119
condition determination testing 119
condition outcome 119
condition testing 119
cost of quality 119
database integrity testing 119
data driven testing 119
defect 119
defect based test design technique 119
development testing 119
domain 119
dynamic comparison 119
dynamic testing 120
efficiency 120
efficiency testing 120
equivalence partition/class 120
equivalence partition coverage 120
exhaustive testing 120
expected result 120
exploratory testing 120
fail 120
failure 120
failure rate 120
functionality testing 120
functional testing 120
investment options, testing 12, 13
keyword driven testing 120
latency(client) 121
latency(network) 121
latency(server) 121
load profile 121
load testing 121
master test plan 121
metrics 121
monitoring tool 121
need for 8

[126]

not suitable types 10
pass 121
pass/fail criteria 121
performance 121
performance budgets 122
performance indicator 121
performance profiling 122
performance testing 122
performance testing tool 122
record/playback tool 122
recorder/scribe 122
regression testing 122
resources 12
ROI analysis 12, 13
software testing expenses 12
stress testing 122
stress testing tool 122
suitable types 9
terms 117
test 122
test approach 122
test automation 122
test case 123
test case design technique 123
test case specification 123
test condition 123
test cycle 123
test data 123
test data preparation tool 123
test design 123
test design specification 123
test environment 123
tester 124
test execution 123
test execution automation 123
test execution tool 123
test generator 123
test harness 123
testing 124
test plan 124
test run 124
test run log 124
test script 124
test suite 124
time behaviour 124
volume testing 124

automate testing vs manual testing 11

B
building, Database plan

requirements 97
building, test plan

default HTTP Request, adding 44
elements needed 42
HTTP Request, adding 45, 46
listener, adding 46, 47
to do list 42
users, adding 43, 44

C
CAST 118

Computer Aided Software Testing See
CAST

configuration elements
about 40
HTTP request defaults control panel 41

controllers
about 31
logic controllers 31, 34
samplers 31, 32
types 31

control panel, regular expression
HTTP Sampler 96

D
Database plan

building 97
configuring 98, 99
MySql database, setting up 97

E
elements, test plan

assertions 38
configuration elements 40
controllers 31
listeners 28, 35
post-processor elements 42
pre-processor elements 41
samplers 28
thread group 27, 29
timers 37

[127]

F
ForEach Controller, using

loop 90
sample UDV 89

FTP Server
testing 99

functional testing
preparing 75

functional test plan
functional testing 75
overview 75

G
Gold FTP server 99

H
HTTP proxy server

configuring 79

I
installing

JMeter 23

J
Java Virtual Machine. See JVM
JMeter

about 16, 101, 102
 Assertion Results element 21
assertions 38
assertions, listing 40
basic elements 17
basic test script 17
component description 107-114
components 103, 104
configuration elements 40
configuration elements, listing 41
environment, setting 24
examples, running 25
features 16, 17
history 16
installing 23
listeners, listing 37
load testing tool 101, 102

logic controllers 34
logic controllers, listing 34
need for 15
overview 15
panels 18
post-processor elements 42
post-processor elements, listing 42
pre-processor elements 41
pre-processor elements, listing 41
references 115
remote testing 71
requirements 21
resources 115
Response Assertion element 21
running 24
running, parameters used 24
samplers 32
samplers, listing 33
server’s performance, monitoring 72, 73
test automation criteria 15
test plan 18-27
Thread Group element used 20
timers 37
timers, listing 38
user interface 18

JMeter, basic elements
listener element 17
sampler element 17
thread group element 17

JMeter, test plan
thread group 18

JMeter, user interface
test plan 18
WorkBench 18

JMeter components
account, creating 76
user login 77
using 53, 76

JMeter components, using
final test plan 67
HTTP Header Manager, adding 81
HTTP Proxy server, using 79
HTTP Request Default, adding 80
HTTP requests, recording 54-60
IE setting 56
listener, adding 65
Mozilla Firefox setting 56

[128]

Proxy Server configuration element, config-
uring 61

test cases, recording 81, 82
test plan, creating 63-65
timers, adding 65
UDV, adding 82, 83

JMeter requirements
JVM 21

JVM
about 21

JVM, requirements
JMeter plug-ins, building 22
Java complier used 22
JMeter stable version 1.8, downloading 22
JSSE, downloading 21

L
listeners

about 35
Aggregate Graph listener control panel 35
features 36

load testing
about 51
preparing for 52
test cases, determining 53

load testing, preparing for
important expectations 52
tips 52, 53

logic controllers
about 34
loop controller control panel 34

M
manual testing vs automate testing 11

P
performance testing

about 51
load testing 51

post-processor elements 42
pre-processor elements 41

R
regular expression

about 93
control panel 95
pattern, verifying 96
using 94

return on investment. See ROI
ROI 12

S
samplers 32
samplers, controllers

HTTP Request sampler control panel 32

T
testing, FTP server

Gold FTP server 99
multiple requests, demonstrating 99
requirements 99
threadNum function, appending 100

test Plan
about 27
elements 27, 29

test plan
about 18
building 42
control panel 28, 29
enhancing 87
running 47, 84, 85
saving 47
web test plan, building 88

test plan, JMeter
results, interpreting 68-70
running 68

test plan, running
column headings 48

test plan, thread group
elements 18

thread group
about 29
control panel 30, 31

timers
about 37
constant timer control panel 38

[129]

U
UDV 82
User Defined Variables. See UDV

W
web test plan

Controller-Sample pair snapshot 93
ForEach Controller, using 89
Loop Controller, using 92
simple application 88
StringFromFile function, using 91, 92
volunteers, creating 88
While Controller, using 91

WorkBench 18
about 18

www.allitebooks.com

http://www.allitebooks.org

	Apache JMeter
	Table of Contents
	Preface
	Automated Testing
	Why Automate Testing?
	To Automate or Not to Automate—Some Hints
	How Much Does it Cost?
	Summary

	Introduction to JMeter
	The Humble Beginning
	The Features—What JMeter Can Do for You
	The Look-How-Easy-to-Use GUI
	The Requirements
	Summary

	Getting Started
	Installing JMeter
	Setting the Environment

	Running JMeter
	Summary

	The Test Plan
	What Is a Test Plan?
	Elements of a Test Plan
	Thread Group
	Controllers
	Samplers
	Logic Controllers

	Listeners
	Timers
	Assertions
	Configuration Elements
	Pre-Processor Elements
	Post-Processor Elements

	Building a Test Plan That Tests Web Sites
	Summary

	Load/Performance Testing of Websites
	Preparing for Load Testing
	What You Need to Know
	Some Helpful Tips to Get Better Results

	Using JMeter Components
	Recording HTTP Requests
	Creating the Test Plan
	Adding Listeners
	Adding Timers

	Running the Test Plan
	Interpreting the Results
	Remote Testing with JMeter
	Monitoring the Server's Performance
	Summary

	Functional Testing
	Preparing for Functional Testing
	Using JMeter Components
	Using HTTP Proxy Server to Record Page Requests
	Configuring the Proxy Server
	Adding HTTP Request Default
	Adding HTTP Header Manager

	Let the Recording Begin...
	Adding User Defined Variables

	Running the Test
	Summary

	Advanced Features
	Extending the Web Test Plan
	Using the ForEach Controller
	Using the While Controller and the StringFromFile Function
	Using the Loop Controller and the StringFromFile Function
	Using Regular Expressions

	Testing a Database Server
	Testing an FTP Server
	Summary

	JMeter and Beyond
	Summary

	Component Description
	Resources
	Useful References
	Weblogs/Articles on Experience of Using JMeter

	Glossary
	Index

