
www.allitebooks.com

http://www.allitebooks.org

Apache Flume: Distributed Log
Collection for Hadoop

Stream data to Hadoop using Apache Flume

Steve Hoffman

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Apache Flume: Distributed Log Collection for Hadoop

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2013

Production Reference: 1090713

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-791-4

www.packtpub.com

Cover Image by Abhishek Pandey (abhishek.pandey1210@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Steve Hoffman

Reviewers
Subash D'Souza

Stefan Will

Acquisition Editor
Kunal Parikh

Commissioning Editor
Sharvari Tawde

Technical Editors
Jalasha D'costa

Mausam Kothari

Project Coordinator
Sherin Padayatty

Proofreader
Aaron Nash

Indexer
Monica Ajmera Mehta

Graphics
Valentina D'silva

Abhinash Sahu

Production Coordinator
Kirtee Shingan

Cover Work
Kirtee Shingan

www.allitebooks.com

http://www.allitebooks.org

About the Author

Steve Hoffman has 30 years of software development experience and holds
a B.S. in computer engineering from the University of Illinois Urbana-Champaign
and a M.S. in computer science from the DePaul University. He is currently
a Principal Engineer at Orbitz Worldwide.

More information on Steve can be found at http://bit.ly/bacoboy or on
Twitter @bacoboy.

This is Steve's first book.

I'd like to dedicate this book to my loving wife Tracy. Her dedication
to perusing what you love is unmatched and it inspires me to follow
her excellent lead in all things.

I'd also like to thank Packt Publishing for the opportunity to write
this book and my reviewers and editors for their hard work in
making it a reality.

Finally, I want to wish a fond farewell to my brother Richard who
passed away recently. No book has enough pages to describe in
detail just how much we will all miss him. Good travels brother.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Subash D'Souza is a professional software developer with strong expertise in
crunching big data using Hadoop/HBase with Hive/Pig. He has worked with Perl/
PHP/Python, primarily for coding and MySQL/Oracle as the backend, for several
years prior to moving into Hadoop fulltime. He has worked on scaling for load, code
development, and optimization for speed. He also has experience optimizing SQL
queries for database interactions. His specialties include Hadoop, HBase, Hive, Pig,
Sqoop, Flume, Oozie, Scaling, Web Data Mining, PHP, Perl, Python, Oracle, SQL
Server, and MySQL Replication/Clustering.

I would like to thank my wife, Theresa for her kind words of support
and encouragement.

Stefan Will is a computer scientist with a degree in machine learning and pattern
recognition from the University of Bonn. For over a decade has worked for several
startup companies in Silicon Valley and Raleigh, North Carolina, in the area of
search and analytics. Presently, he leads the development of the search backend
and the Hadoop-based product analytics platform at Zendesk, the customer service
software provider.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.
At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Overview and Architecture 7

Flume 0.9 8
Flume 1.X (Flume-NG) 8
The problem with HDFS and streaming data/logs 9
Sources, channels, and sinks 10
Flume events 11

Interceptors, channel selectors, and sink processors 12
Tiered data collection (multiple flows and/or agents) 13

Chapter 2: Flume Quick Start 15
Downloading Flume 15

Flume in Hadoop distributions 16
Flume configuration file overview 17
Starting up with "Hello World" 18
Summary 23

Chapter 3: Channels 25
Memory channel 26
File channel 27
Summary 31

Chapter 4: Sinks and Sink Processors 33
HDFS sink 33

Path and filename 35
File rotation 37

Compression codecs 38

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Event serializers 39
Text output 39
Text with headers 39
Apache Avro 40
File type 41

Sequence file 41
Data stream 41
Compressed stream 42

Timeouts and workers 42
Sink groups 43

Load balancing 44
Failover 45

Summary 45
Chapter 5: Sources and Channel Selectors 47

The problem with using tail 47
The exec source 49
The spooling directory source 51
Syslog sources 53

The syslog UDP source 53
The syslog TCP source 55
The multiport syslog TCP source 56

Channel selectors 58
Replicating 58
Multiplexing 58

Summary 59
Chapter 6: Interceptors, ETL, and Routing 61

Interceptors 61
Timestamp 62
Host 63
Static 63
Regular expression filtering 64
Regular expression extractor 65
Custom interceptors 68

Tiering data flows 69
Avro Source/Sink 70
Command-line Avro 72
Log4J Appender 73
The Load Balancing Log4J Appender 74

Routing 75
Summary 76

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Chapter 7: Monitoring Flume 77
Monitoring the agent process 77

Monit 77
Nagios 78

Monitoring performance metrics 78
Ganglia 79
The internal HTTP server 80
Custom monitoring hooks 82

Summary 83
Chapter 8: There Is No Spoon – The Realities of
Real-time Distributed Data Collection 85

Transport time versus log time 85
Time zones are evil 86
Capacity planning 86
Considerations for multiple data centers 87
Compliance and data expiry 88
Summary 88

Index 89

www.allitebooks.com

http://www.allitebooks.org

Preface
Hadoop is a great open source tool for sifting tons of unstructured data into something
manageable, so that your business can gain better insight into your customers, needs.
It is cheap (can be mostly free), scales horizontally as long as you have space and
power in your data center, and can handle problems your traditional data warehouse
would be crushed under. That said, a little known secret is that your Hadoop cluster
requires you to feed it with data; otherwise, you just have a very expensive heat
generator. You will quickly find, once you get past the “playing around” phase
with Hadoop, that you will need a tool to automatically feed data into your cluster.
In the past, you had to come up with a solution for this problem, but no more! Flume
started as a project out of Cloudera when their integration engineers had to keep
writing tools over and over again for their customers to import data automatically.
Today the project lives with the Apache Foundation, is under active development,
and boasts users who have been using it in their production environments for years.

In this book I hope to get you up and running quickly with an architectural overview
of Flume and a quick start guide. After that we’ll deep-dive into the details on many
of the more useful Flume components, including the very important File Channel
for persistence of in-flight data records and the HDFS Sink for buffering and writing
data into HDFS, the Hadoop Distributed File System. Since Flume comes with
a wide variety of modules, chances are that the only tool you’ll need to get started
is a text editor for the configuration file.

By the end of the book, you should know enough to build out a highly available,
fault tolerant, streaming data pipeline feeding your Hadoop cluster.

Preface

[2]

What this book covers
Chapter 1, Overview and Architecture, introduces the reader to Flume and the problem
space that it is trying to address (specifically with regard to Hadoop). An architectural
overview is given of the various components to be covered in the later chapters.

Chapter 2, Flume Quick Start, serves to get you up and running quickly, including
downloading Flume, creating a “Hello World” configuration, and running it.

Chapter 3, Channels, covers the two major channels most people will use and
the configuration options available for each.

Chapter 4, Sinks and Sink Processors, goes into great detail on using the HDFS Flume
output, including compression options and options for formatting the data. Failover
options are also covered to create a more robust data pipeline.

Chapter 5, Sources and Channel Selectors, will introduce several of the Flume input
mechanisms and their configuration options. Switching between different channels
based on data content is covered, allowing for the creation of complex data flows.

Chapter 6, Interceptors, ETL, and Routing, explains how to transform data in flight
as well as extract information from the payload to use with channel selectors to
make routing decisions. Tiering Flume agents is covered using Avro serialization,
as well as using the Flume command line as a standalone Avro client for testing
and importing data manually.

Chapter 7, Monitoring Flume, discusses various options available to monitor Flume
both internally and externally including Monit, Nagios, Ganglia, and custom hooks.

Chapter 8, There Is No Spoon – The Realities of Real-time Distributed Data Collection,
is a collection of miscellaneous things to consider that are outside the scope of just
configuring and using Flume.

What you need for this book
You’ll need a computer with a Java Virtual Machine installed, since Flume is
written in Java. If you don’t have Java on your computer, you can download it
from http://java.com/.

You will also need an Internet connection so you can download Flume to run
the Quick Start example.

This book covers Apache Flume 1.3.0, including a few items back-ported into
Cloudera’s Flume CDH4 distribution.

Preface

[3]

Who this book is for
This book is for people responsible for implementing the automatic movement of
data from various systems into a Hadoop cluster. If it is your job to load data into
Hadoop on a regular basis, this book should help you code yourself out of manual
monkey-work or from writing a custom tool you’ll be supporting for as
long as you work at your company.

Only basic Hadoop knowledge of HDFS is required. Some custom implementations
are covered should your needs necessitate it. For this level of implementation, you
will need to know how to program in Java.

Finally, you’ll need your favorite text editor since most of this book covers how
to configure various Flume components via the agent’s text configuration file.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles,
and an explanation of their meaning.

Code words in text are shown as follows: “We can include other contexts through
the use of the include directive.”

A block of code is set as follows:

agent.sinks.k1.hdfs.path=/logs/apache/access
agent.sinks.k1.hdfs.filePrefix=access
agent.sinks.k1.hdfs.fileSuffix=.log

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

agent.sources.s1.command=uptime
agent.sources.s1.restart=true
agent.sources.s1.restartThrottle=60000

Any command-line input or output is written as follows:

$ tar -zxf apache-flume-1.3.1.tar.gz

$ cd apache-flume-1.3.1

Preface

[4]

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message. If there is a topic that
you have expertise in and you are interested in either writing or contributing
to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text
or the code—we would be grateful if you would report this to us. By doing so, you
can save other readers from frustration and help us improve subsequent versions
of this book. If you find any errata, please report them by visiting http://www.
packtpub.com/submit-errata, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata
are verified, your submission will be accepted and the errata will be uploaded on
our website, or added to any list of existing errata, under the Errata section of that title.
Any existing errata can be viewed by selecting your title from http://www.packtpub.
com/support.

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Overview and Architecture
If you are reading this book, chances are you are swimming in mountains of data.
Creating mountains of data has become very easy, thanks to Facebook, Twitter,
Amazon, digital cameras and camera phones, YouTube, Google, and just about
anything else you can think of connected to the Internet. As a provider of a website,
10 years ago, your application logs were only used to help you troubleshoot your
website. Today, that same data can provide valuable insight into your business and
customers if you know how to pan gold out of your river of data.

Furthermore, since you are reading this book, you are also aware that Hadoop was
created to solve (partially) the problem of sifting through mountains of data. Of
course, this only works if you can reliably load your Hadoop cluster with data for
your data scientists to pick apart.

Getting data in and out of Hadoop (in this case, the Hadoop File System (HDFS))
isn't hard—it is just a simple command as follows:

% hadoop fs --put data.csv .

This works great when you have all your data neatly packaged and ready to upload.

But your website is creating data all the time. How often should you batch load
data to HDFS? Daily? Hourly? Whatever processing period you choose, eventually
somebody always asks, "can you get me the data sooner?" What you really need is
a solution that can deal with streaming logs/data.

Turns out you aren't alone in this need. Cloudera, a provider of professional services
for Hadoop as well as their own distribution of Hadoop, saw this need over and over
while working with their customers. Flume was created to meet this need and create
a standard, simple, robust, flexible, and extensible tool for data ingestion into Hadoop.

Overview and Architecture

[8]

Flume 0.9
Flume was first introduced in Cloudera's CDH3 Distribution in 2011. It consisted
of a federation of worker daemons (agents) configured from a centralized master
(or masters) via Zookeeper (a federated configuration and coordination system).
From the master you could check agent status in a Web UI, as well as push out
configuration centrally from the UI or via a command line shell (both really
communicating via Zookeeper to the worker agents).
Data could be sent in one of the three modes, namely, best effort (BE), disk failover
(DFO), and end-to-end (E2E). The masters were used for the end-to-end (E2E) mode
acknowledgements and multi-master configuration never really matured so usually
you had only one master making it a central point of failure for E2E data flows.
Best effort is just what it sounds like—the agent would try and send the data, but if
it couldn't, the data would be discarded. This mode is good for things like metrics
where gaps can easily be tolerated, as new data is just a second away. Disk failover
mode stores undeliverable data to the local disk (or sometimes a local database)
and keeps retrying until the data can be delivered to the next recipient in your data
flow. This is handy for those planned (or unplanned) outages as long as you have
sufficient local disk space to buffer the load.
In June of 2011, Cloudera moved control of the Flume project to the Apache
foundation. It came out of incubator status a year later in 2012. During that
incubation year, work had already begun to refactor Flume under the Star Trek
Themed tag, Flume-NG (Flume the Next Generation).

Flume 1.X (Flume-NG)
There were many reasons to why Flume was refactored. If you are interested in
the details you can read about it at https://issues.apache.org/jira/browse/
FLUME-728. What started as a refactoring branch eventually became the main line
of development as Flume 1.X.
The most obvious change in Flume 1.X is that the centralized configuration master/
masters and Zookeeper are gone. The configuration in Flume 0.9 was overly verbose
and mistakes were easy to make. Furthermore, centralized configuration was really
outside the scope of Flume's goals. Centralized configuration was replaced with
a simple on-disk configuration file (although the configuration provider is pluggable
so that it can be replaced). These configuration files are easily distributed using tools
such as cf-engine, chef, and puppet. If you are using a Cloudera Distribution, take
a look at Cloudera Manager to manage your configurations—their licensing was
recently changed to lift the node limit so it may be an attractive option for you.
Be sure you don't manage these configurations manually or you'll be editing those
files manually forever.

Chapter 1

[9]

Another major difference in Flume 1.X is that the reading of input data and the
writing of output data are now handled by different worker threads (called Runners).
In Flume 0.9, the input thread also did the writing to the output (except for failover
retries). If the output writer was slow (rather than just failing outright), it would block
Flume's ability to ingest data. This new asynchronous design leaves the input thread
blissfully unaware of any downstream problem.

The version of Flume covered in this book is 1.3.1 (current at the time of this
book's writing).

The problem with HDFS and streaming
data/logs
HDFS isn't a real filesystem, at least not in the traditional sense, and many of the
things we take for granted with normal filesystems don't apply here, for example
being able to mount it. This makes getting your streaming data into Hadoop a little
more complicated.

In a regular Portable Operating System Interface (POSIX) style filesystem, if you
open a file and write data, it still exists on disk before the file is closed. That is, if
another program opens the same file and starts reading, it will get the data already
flushed by the writer to disk. Furthermore, if that writing process is interrupted,
any portion that made it to disk is usable (it may be incomplete, but it exists).

In HDFS the file exists only as a directory entry, it shows as having zero length until
the file is closed. This means if data is written to a file for an extended period without
closing it, a network disconnect with the client will leave you with nothing but an
empty file for all your efforts. This may lead you to the conclusion that it would be
wise to write small files so you can close them as soon as possible.

The problem is Hadoop doesn't like lots of tiny files. Since the HDFS metadata is
kept in memory on the NameNode, the more files you create, the more RAM you'll
need to use. From a MapReduce prospective, tiny files lead to poor efficiency.
Usually, each mapper is assigned a single block of a file as input (unless you have
used certain compression codecs). If you have lots of tiny files, the cost of starting
the worker processes can be disproportionally high compared to the data it is
processing. This kind of block fragmentation also results in more mapper tasks
increasing the overall job run times.

www.allitebooks.com

http://www.allitebooks.org

Overview and Architecture

[10]

These factors need to be weighed when determining the rotation period to use when
writing to HDFS. If the plan is to keep the data around for a short time, then you can
lean towards the smaller file size. However, if you plan on keeping the data for very
long time, you can either target larger files or do some periodic cleanup to compact
smaller files into fewer larger files to make them more MapReduce friendly. After
all, you only ingest the data once, but you might run a MapReduce job on that data
hundreds or thousands of times.

Sources, channels, and sinks
The Flume agent's architecture can be viewed in this simple diagram. An input is
called a source and an output is called a sink. A channel provides the glue between
a source and a sink. All of these run inside a daemon called an agent.

Event Event SinkChannel

Event Event

Flume agent

SourceData Data

Data

Data

One should keep in mind the following things:
A source writes events to one or more channels.
A channel is the holding area as events are passed from a source to a
sink.
A sink receives events from one channel only.
An agent can have many sources, channels, and sinks.

Chapter 1

[11]

Flume events
The basic payload of data transported by Flume is called an event. An event is
composed of zero or more headers and a body.

The headers are key/value pairs that can be used to make routing decisions
or carry other structured information (such as the timestamp of the event or
hostname of the server where the event originated). You can think of it as
serving the same function as HTTP headers—a way to pass additional
information that is distinct from the body.

The body is an array of bytes that contains the actual payload. If your input is
comprised of tailed logfiles, the array is most likely a UTF-8 encoded String
containing a line of text.

Event
headers: timestamp =1361849757

hostname=web1.apache.org

body: Data

Flume may add additional headers automatically (for example, when a source
adds the hostname where the data is sourced or creating an event's timestamp),
but the body is mostly untouched unless you edit it en-route using interceptors.

Overview and Architecture

[12]

Interceptors, channel selectors,
and sink processors
An interceptor is a point in your data flow where you can inspect and alter Flume
events. You can chain zero or more interceptors after a source creates an event
or before a sink sends the event wherever it is destined. If you are familiar with
the AOP Spring Framework, it is similar to a MethodInterceptor. In Java Servlets
it is similar to a ServletFilter. Here's an example of what using four chained
interceptors on a source might look like:

C
ha

nn
el

In
te

rc
ep

to
r

4

In
te

rc
ep

to
r

3

In
te

rc
ep

to
r

2

In
te

rc
ep

to
r

1

S
ou

rc
e

Events

Channel selectors are responsible for how data moves from a source to one or more
channels. Flume comes packaged with two channel selectors, which cover most use
cases you might have, although you can write your own if needed. A replicating
channel selector (the default) simply puts a copy of the event into each channel
assuming you have configured more than one. In contrast, a multiplexing channel
selector can write to different channels depending on certain header information.
Combined with Interceptor logic, this duo forms the foundation for routing input
to different channels.

Finally, a sink processor is the mechanism by which you can create failover paths
for your sinks or load balance events across multiple sinks from a channel.

Chapter 1

[13]

Tiered data collection (multiple flows
and/or agents)
You can chain your Flume agents depending on your particular use case. For
example, you may want to insert an agent in a tiered fashion to limit the number
of clients trying to connect directly to your Hadoop cluster. More likely your
source machines don't have sufficient disk space to deal with a prolonged outage
or maintenance window, so you create a tier with lots of disk space between your
sources and your Hadoop cluster.
In the following diagram you can see there are two places data is created (on the
left) and two final destinations for the data (the HDFS and ElasticSearch cloud
bubbles on the right). To make things more interesting, let's say one of the machines
generates two kinds of data (let's call them square and triangle data). You can see
in the lower-left agent we use a multiplexing channel selector to split the two kinds
of data into different channels. The rectangle channel is then routed to the agent in
the upper-right corner (along with the data coming from the upper-left agent). The
combined volume of events is written together in HDFS in datacenter 1. Meanwhile
the triangle data is sent to the agent that writes to ElasticSearch in datacenter 2.
Keep in mind that the data transformations can occur after any source or before any
sink. How all of these components can be used to build complicated data workflows
will become clear as the book proceeds.

Sink

Flume agent

Data

Data

SinkChannel

Flume agent

Data Sink

Data

Data

Flume agent

Data

Source

Source Channel

Data
Data

DataData

Data Flume Agent

Data

Data
Data

Data

Data

Data

Data

ChannelData

Data

Channel

Data

Data
Data

Data

Source Channel

Source

Sink

Data

Data

Data

Data

Data

Data
Data

Elastic Search
Datacenter 2

Data

HDFS
Datacenter 1

Data

Data Sink

Data

Data

Data

Data

Data
Data

Data

Overview and Architecture

[14]

Summary
In this chapter we discussed the problem that Flume is attempting to solve;
getting data into your Hadoop cluster for data processing in an easily configured
and reliable way. We also discussed the Flume agent and its logical components
including: events, sources, channel selectors, channels, sink processors, and sinks.

The next chapter will cover these in more detail, specifically the most commonly
used implementations of each. Like all good open source projects, almost all of these
components are extensible if the bundled ones don't do what you need them to do.

Flume Quick Start
As we covered some basics in the previous chapter, this chapter will help you
get started with Flume. So, let us start with the first step, downloading and
configuring Flume.

Downloading Flume
Let's download Flume from http://flume.apache.org/. Look for the download
link in the side navigation. You'll see two compressed tar archives, available along
with checksum and gpg signature files used to verify the archives. Instructions for
verifying the download are on the website so I won't cover them here. Checking
the checksum file contents against the actual checksum verifies that the download
was not corrupted. Checking the signature file validates that all the files you are
downloading (including the checksum and signature) came from Apache and not
someplace nefarious. Do you really need to verify your downloads? In general it
is a good idea and it is recommended by Apache that you do so. If you choose not
to, I won't tell.

The binary distribution archive has bin in the name and the source archive is
marked with src. The source archive contains just the Flume source code. The
binary distribution is much larger because it contains not just the Flume source
and the compiled Flume components (JARs, javadocs, and so on), but all the
dependent Java libraries as well. The binary package contains the same Maven
POM file as the source archive so you can always recompile the code even if
you start with the binary distribution.

Go ahead and download (and verify) the binary distribution to save us some time
in getting started.

Flume Quick Start

[16]

Flume in Hadoop distributions
Flume is available with some Hadoop distributions. The distributions supposedly
provide bundles of Hadoop's core components and satellite projects (such as Flume)
in a way that things such as version compatibility and additional bug fixes have
been taken into account. These distributions aren't better or worse, just different.

There are benefits to using a distribution. Someone else has already done the work
of pulling together all the version compatible components. Today this is less of
an issue since the Apache Bigtop project started (http://bigtop.apache.org/).
Nevertheless, having prebuilt standard OS packages such as RPMs and DEBs eases
installation as well as providing startup/shutdown scripts. Each distribution has
different levels of free to paid options including paid professional services if you
really get into a situation you just can't handle.

There are downsides, of course. The version of Flume bundled in a distribution will
often lag quite a bit behind the Apache releases. If there is a new or bleeding-edge
feature you are interested in using, you'll either be waiting for your distribution's
provider to backport it for you or you'll be stuck patching it yourself. Furthermore,
while the distribution providers do a fair amount of testing, like any general
purpose platform, you will most likely encounter something that their testing
didn't cover. In this case you are still on the hook to come up with a workaround
or to dive into the code, fix it, and hopefully submit that patch back to the open
source community (where at some future point it'll make it into an update of your
distribution or the next version).

So things move slower in a Hadoop distribution world. You may see that as good or
bad. Usually large companies don't like the instability of bleeding-edge technology
or making changes often, as change can be the most common cause of unplanned
outages. You'd be hard pressed to find such a company using the bleeding-edge Linux
kernel rather than something like Red Hat Enterprise Linux (RHEL), CentOS, Ubuntu
LTS, or any of the other distributions that aim for is stability and compatibility. If you
are a startup building the next Internet fad, you might need that bleeding-edge feature
to get a leg up on the established competition.

Chapter 2

[17]

If you are considering a distribution, do the research and see what you are getting
(or not getting) with each. Remember each of these offerings is hoping that you'll
eventually want and/or need their Enterprise offering, which usually doesn't come
cheap. Do your homework.

Here's a short and non-definitive list of some of the more established
players for more information:

• Cloudera: http://cloudera.com/
• Hortonworks: http://hortonworks.com/
• MapR: http://mapr.com/

Flume configuration file overview
Now that we've downloaded Flume, let's spend some time going over how to
configure an agent.

A Flume agent's default configuration provider uses a simple Java property file
of key/value pairs that you pass as an argument to the agent upon startup. Since you
can configure more than one agent in a single file, you will need to additionally pass
an agent identifier (called a name) so it knows which configurations to use. In my
examples where I'm only specifying one agent I'm going to use the name agent.

Each agent is configured starting with three parameters:

agent.sources=<list of sources>
agent.channels=<list of channels>
agent.sinks=<list of sinks>

Each source, channel, and sink also has a unique name within the context of that
agent. For example, if I'm going to transport my Apache access logs, I might define
a channel named access. The configurations for this channel would all start with
the prefix agent.channels.access. Each configuration item has a type property
that tells Flume what kind of source, channel, or sink it is. In this case, we are going
to use an in-memory channel whose type is memory. The complete configuration
for the channel named access in the agent named agent would be as follows:

agent.channels.access.type=memory

Flume Quick Start

[18]

Any arguments to a source, channel, or sink are added as additional properties
using the same prefix. The memory channel has a capacity parameter to indicate
the maximum number of Flume events it can hold. Let's say we didn't want to use
the default value of 100; our configuration would now look as follows:

agent.channels.access.type=memory
agent.channels.access.capacity=200

Finally, we need to add the access channel name to the agent.channels property
so the agent knows to load it:

agent.channels=access

Let's look at a complete example using the canonical "Hello World" example.

Starting up with "Hello World"
No technical book would be complete without a "Hello World" example. Here is
the configuration file we'll be using:

agent.sources=s1
agent.channels=c1
agent.sinks=k1
agent.sources.s1.type=netcat
agent.sources.s1.channels=c1
agent.sources.s1.bind=0.0.0.0
agent.sources.s1.port=12345
agent.channels.c1.type=memory
agent.sinks.k1.type=logger
agent.sinks.k1.channel=c1

Here I've defined one agent (called agent) that has a source named s1, a channel
named c1, and a sink named k1.

The s1 source's type is netcat, which simply opens a socket listening for events
(one line of text per event). It requires two parameters, a bind IP and a port number.
In this example we are using 0.0.0.0 for a bind address (the Java convention
to specify listen on any address) and port 12345. The source configuration also
has a parameter called channels (plural) that is the name of the channel/channels
the source will append events to, in this case c1. It is plural, because you can
configure a source to write to more than one channel; we just aren't doing that in
this simple example.

The channel named c1 is a memory channel with default configuration.

Chapter 2

[19]

The sink named k1 is of type logger. This is a sink that is mostly used for debugging
and testing. It will log all events at INFO level using log4j, which it receives from
the configured channel, in this case c1. Here the channel keyword is singular because
a sink can only be fed data from one channel.

Using this configuration, let's run the agent and connect to it using the Linux netcat
utility to send an event.

First, explode the tar archive of the binary distribution we downloaded earlier:

$ tar -zxf apache-flume-1.3.1.tar.gz

$ cd apache-flume-1.3.1

Next, let's briefly look at the help command. Run the flume-ng command with
the help command:

$./bin/flume-ng help

Usage: ./bin/flume-ng<command> [options]...

commands:

 help display this help text

agent run a Flume agent

avro-client run an avro Flume client

version show Flume version info

global options:

--conf,-c <conf> use configs in <conf> directory

 --classpath,-C <cp> append to the classpath

--dryrun,-d do not actually start Flume, just print the command

-Dproperty=value sets a JDK system property value

agent options:

--conf-file,-f <file> specify a config file (required)

--name,-n <name> the name of this agent (required)

--help,-h display help text

www.allitebooks.com

http://www.allitebooks.org

Flume Quick Start

[20]

avro-client options:

--dirname<dir> directory to stream to avro source

--host,-H <host> hostname to which events will be sent (required)

--port,-p <port> port of the avro source (required)

--filename,-F <file> text file to stream to avro source [default: std
input]

--headerFile,-R <file>headerFile containing headers as key/value pairs on
each

new line

 --help,-h display help text

Note that if the <conf> directory is specified, then it is always
included first in the classpath.

As you can see, there are two ways you can invoke the command (other than the
trivial help and version commands). We will be using the agent command. The use
of avro-client will be covered later.

The agent command has two required parameters, a configuration file to use and
the agent name (in case your configuration contains multiple agents). Let's take our
sample configuration and open an editor (vi in my case, but use whatever you like):

$ vi conf/hw.conf

Next, place the contents of the vi configuration into the editor, save, and exit back
to the shell.

Now you can start the agent:

$./bin/flume-ng agent -n agent -c conf -f conf/hw.conf
-Dflume.root.logger=INFO,console

The -Dflume.root.logger property overrides the root logger in conf/log4j.
properties to use the console appender. If we didn't override the root logger,
everything would still work, but the output would be going to a file log/flume.log
instead. Of course, you can also just edit the conf/log4j.properties file
and change the flume.root.logger property (or anything else you like).

Chapter 2

[21]

You might ask why you need to specify the -c parameter since the -f parameter
contains the complete relative path to the configuration. The reason for this is the log4j
configuration file would be included on the classpath. If you left the -c parameter
off that command you'd see the following error:

log4j:WARN No appenders could be found for logger
 (org.apache.flume.lifecycle.LifecycleSupervisor).
 log4j:WARN Please initialize the log4j system properly.
 log4j:WARN See
 http://logging.apache.org/log4j/1.2/faq.html#noconfig for more
 info.

But you didn't do that so you should see the following key log lines:

2013-03-03 12:26:47,437 (main) [INFO -
 org.apache.flume.node.FlumeNode.start(FlumeNode.java:54)] Flume
 node starting - agent

This line tells you that your agent is starting with the name agent. Usually you'd
only look for this line to be sure you started the right configuration when you have
multiples defined in your configuration file:

2013-03-03 12:26:47,448 (conf-file-poller-0) [INFO -
 org.apache.flume.conf.file.
 AbstractFileConfigurationProvider$FileWatcherRunnable.run
 (AbstractFileConfigurationProvider.java:195)] Reloading
 configuration file:conf/hw.conf

This is another sanity check to make sure you are loading the correct file, in this case
the hw.conf file:

2013-03-03 12:26:47,516 (conf-file-poller-0) [INFO -
 org.apache.flume.node.nodemanager.DefaultLogicalNodeManager.
 startAllComponents(DefaultLogicalNodeManager.java:106)] Starting
 new configuration:{ sourceRunners:{s1=EventDrivenSourceRunner: {
 source:org.apache.flume.source.NetcatSource{name:s1,state:IDLE}
 }} sinkRunners:{k1=SinkRunner: {
 policy:org.apache.flume.sink
 .DefaultSinkProcessor@42552ccounterGroup:{ name:null counters:{}
 } }} channels:{c1=org.apache.flume.channel.MemoryChannel{name:
 c1}} }

Flume Quick Start

[22]

Once all the configurations have been parsed you see this message, which shows
everything that was configured. You can see s1, c1, and k1 and which Java classes
are actually doing the work. As you probably guessed, netcat is a convenience for
org.apache.flume.source.NetcatSource. We could have used the classname if
we wanted. In fact, if I had my own custom source written, I would use its classname
for the source's type parameter. You cannot define your own short names without
patching the Flume distribution:

2013-03-03 12:26:48,045 (lifecycleSupervisor-1-1) [INFO -
 org.apache.flume.source.NetcatSource.start
 (NetcatSource.java:164)] Created
 serverSocket:sun.nio.ch.ServerSocketChannelImpl[/0.0.0.0:12345]

Here we see that our source is now listening on port 12345 for input. So let's send it
some data.

Finally, open a second terminal. We'll use the nc command (you can use telnet or
something similar) to send the String "Hello World" and click on <RETURN> to mark
the end of the event:

% nclocalhost 12345
 Hello World<RETURN>
 OK

"OK" came from the agent after pressing return signifying it accepted the line of text
as a single Flume event. If you look at the agent log you see the following:

2013-03-03 12:39:58,582 (SinkRunner-PollingRunner-
 DefaultSinkProcessor) [INFO -
 org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)]
 Event: { headers:{} body: 48 65 6C6C6F 20 57 6F 72 6C 64
 Hello World }

This log message shows that the Flume event contains no headers (netcat source
doesn't add any itself). The body is shown in hexadecimal along with a String
representation (for us humans to read, in this case the Hello World message).

If I send another line as follows:

The quick brown fox jumped over the lazy dog.<RETURN>
 OK

You'll see the following in the agent's log:

2013-03-03 12:45:08,466 (SinkRunner-PollingRunner-
 DefaultSinkProcessor) [INFO -
 org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)]
 Event: { headers:{} body: 54 68 65 20 71 75 69 63 6B 20 62 72 6F
 77 6E 20 The quick brown }

Chapter 2

[23]

The event appears to have been truncated. The logger sink, by design, limits the
body content to 16 bytes to avoid your screen from being filled with more than
what you'd need in a debugging context. If you need to see the full contents for
debugging, you should use a different sink, perhaps the file_roll sink, which will
write to the local filesystem.

Summary
In this chapter we covered downloading the Flume binary distribution. We created
a simple configuration file that included one source writing to one channel feeding
one sink. The source listened on a socket for network clients to connect and send
it event data. Those events were written to an in-memory channel and then fed
to a log4j sink to become output. We then connected to our listening agent using
the Linux netcat utility and sent some String events into our Flume agent's source.
Finally, we verified that our log4j based sink wrote the events out.

In the next chapter we'll take a detailed look at the two major channel types you'll
likely use in your data processing workflows:

• Memory channel
• File channel

For each type we'll discuss all the configuration knobs available to you, when and
why you might want to deviate from the defaults, and, most importantly, why to
use one over the other.

Channels
In Flume, a channel is the construct used between sources and sinks. It provides a
holding area for your in-flight events after they are read from sources until they can
be written to sinks in your data processing pipelines.

The two types we'll cover here are a memory-backed/non-durable channel and a local
filesystem backed/durable channel. The durable file channel flushes all changes to disk
before acknowledging receipt of the event to the sender. This is considerably slower
than using the non-durable memory channel, but provides recoverability in the event
of system or Flume agent restarts. Conversely, the memory channel is much faster, but
failure results in data loss and has much lower storage capacity when compared with
the multi-terabyte disks backing the file channel. Which channel you choose depends
on your specific use cases, failure scenarios, and risk tolerance.

That said, regardless of what channel you choose, if your rate of ingest from the
sources into the channel is greater than the rate the sink can write data, you will
exceed the capacity of the channel and you will throw a ChannelException. What
your source does or doesn't do with that ChannelException is source specific,
but in some cases data loss is possible so you'll want to avoid filling channels by
sizing things properly. In fact, you always want your sink to be able to write faster
than your source input. Otherwise, you may get into a situation where once your
sink falls behind you can never catch up. If your data volume tracks with site
usage, you may have higher volumes during the day and lower volumes at night,
giving your channels time to drain. In practice, you'll want to try and keep the
channel depth (the number of events currently in the channel) as low as possible
because time spent in the channel translates to a time delay before reaching the
final destination.

Channels

[26]

Memory channel
A memory channel, as expected, is a channel where in-flight events are stored in
memory. Since memory is (usually) orders of magnitude faster than disk, events can
be ingested much more quickly resulting in reduced hardware needs. The downside
of using this channel is that an agent failure (hardware problem, power outage, JVM
crash, Flume restart, and so on) results in loss of data. Depending on your use case,
this may be perfectly fine. System metrics usually fall into this category as
a few lost data points isn't the end of the world. However, if your events represent
purchases on your website, then a memory channel would be a poor choice.

To use the memory channel, set the type parameter on your named channel
to memory.

agent.channels.c1.type=memory

This defines a memory channel named c1 for the agent named agent.

Here is a table of configuration parameters you can adjust from the default values:

Key Required Type Default
type Yes String memory
capacity No int 100
transactionCapacity No int 100
byteCapacityBufferPercentage No int (percent) 20%
byteCapacity No long (bytes) 80% of JVM Heap
keep-alive No int 3 (seconds)

The default capacity of this channel is 100 Events. This can be adjusted by setting the
capacity property as follows:

agent.channels.c1.capacity=200

Remember if you increase this value you may also have to increase your Java heap
space using the -Xmx and optionally the -Xms parameters.

Another capacity related setting you can set is transactionCapacity. This is the
maximum number of events that can be written, also called a put, by a source's
ChannelProcessor, the component responsible for moving data from the source
to the channel in a single transaction. This is also the number of events that can be
read, also called a take, in a single transaction by SinkProcessor, the component
responsible for moving data from the channel to the sink. You may want to set this
higher to decrease the overhead of the transaction wrapper, which may speed things
up. The downside to increasing this, in the event of a failure, is that a source would
have to roll back more data.

Chapter 3

[27]

Flume only provides transactional guarantees for each channel in each
individual agent. In a multiagent, multi-channel configuration duplicates
and out of order delivery are likely but should not be considered the
norm. If you are getting duplicates in non-failure conditions, it means
you need to continue tuning your Flume configurations.

If you are using a sink that writes someplace that benefits from larger batches of
work (such as HDFS), you might want to set this higher. Like many things, the
only way to be sure is to run performance tests with different values. The blog post
http://bit.ly/flumePerfPt1 from Flume committer Mike Percy should give you
some good starting points.

The byteCapacityBufferPercentage and byteCapacity parameters were
introduced in https://issues.apache.org/jira/browse/FLUME-1535 as a means
of sizing memory channel capacity using bytes used rather than the number of
events, as well as trying to avoid OutOfMemoryErrors. If your Events have a large
variance in size, you may be tempted to use these settings to adjust capacity, but
be warned that calculations are estimated from the event's body only. If you have
any headers, which you will, your actual memory usage will be higher than the
configured values.

Finally, the keep-alive parameter is the time the thread writing data into the
channel will wait when the channel is full before giving up. Since data is being
drained from the channel at the same time, if space opens up before the timeout
expires, the data will be written to the channel rather than throwing an exception
back to the source. You may be tempted to set this value very high, but remember
that waiting for a write to a channel will block data flowing into your source, which
may cause data backing up in an upstream agent. Eventually, this may result in
events being dropped. You need to size for periodic spikes in traffic as well as
temporary planned (and unplanned) maintenance.

File channel
A file channel is a channel that stores events to the local filesystem of the agent.
While slower than the memory channel, it provides a durable storage path that can
survive most issues, and should be used in use cases where a gap in your data flow
is undesirable.

This durability is provided by a combination of a Write Ahead Log (WAL) and one
or more file storage directories. The WAL is used to track all input and output from the
channel in an atomically safe way. In this way, if the agent is restarted, the WAL can be
replayed to make sure all the events that came into the channel (puts) have been written
out (takes) before the storage of the data can be purged from the local filesystem.

Channels

[28]

Additionally, the file channel supports encrypting data written to the filesystem
should your data handling policy require that all data on disk (even temporarily)
be encrypted. I won't cover this here, but if you need it, there is an example in the
Flume User Guide (http://flume.apache.org/FlumeUserGuide.html). Keep in
mind that using encryption will reduce the throughput of your file channel.

To use the file channel, set the type parameter on your named channel to file:

agent.channels.c1.type=file

This defines a file channel named c1 for the agent named agent.

Here is a table of configuration parameters you can adjust from the default values:

Key Required Type Default
type Yes String file
checkpointDir No String ~/.flume/file-channel/

checkpoint

dataDirs No String
(comma-
separated
list)

~/.flume/file-channel/
data

capacity No int 1000000
keep-alive No int 3 (seconds)
transactionCapacity No int 1000
checkpointInterval No long 300000 (milliseconds - 5 min)
write-timeout No int 10 (seconds)
maxFileSize No long 2146435071 (bytes)
minimumRequiredSpace No long 524288000 (bytes)

To specify the location where the Flume agent should hold data, you set the
checkpointDir and dataDirs properties:

agent.channels.c1.checkpointDir=/flume/c1/checkpoint
agent.channels.c1.dataDirs=/flume/c1/data

Chapter 3

[29]

Technically, these properties are not required and have sensible defaults for
development. However, if you have more than one file channel configured in your
agent, only the first channel will start. For production deployments and development
work with multiple file channels, you should use distinct directory paths for each file
channel storage area, and consider placing different channels on different disks to
avoid IO contention. Additionally, if you are sizing a large machine consider using
some form of RAID that contains striping (RAID 10, 50, 60) to achieve higher disk
performance rather than buying more expensive 10k or 15k drives or SSDs. If you
don't have RAID striping but do have multiple disks, set dataDirs
to a comma separated list of each storage location. Using multiple disks will spread
the disk traffic almost as well as striped RAID, but without the computational
overhead associated with RAID 50/60 as well as the 50% space waste associated with
RAID 10. You'll want to test your system to see if the RAID overhead is worth the
speed difference. Since hard drive failures are a reality, you may prefer certain RAID
configurations to single disks in order to isolate yourself from the data loss associated
with single drive failures.

NFS storage should be avoided for the same reason. Using the JDBC channel is
a bad idea as it would introduce a bottleneck and single point of failure instead of
what should be designed as a highly distributed system.

Be sure you set the HADOOP_PREFIX and JAVA_HOME environment
variables when using the file channel. While we seemingly haven't
used anything Hadoop specific (such as writing to HDFS), the file
channel uses Hadoop Writeables as an on-disk serialization format.
If Flume can't find the Hadoop libraries you might see this in your
startup so check your environment variables:
java.lang.NoClassDefFoundError: org/apache/hadoop/
io/Writable

The default file channel capacity is one million events, regardless of size of the
event contents. If the channel capacity is reached, a source will no longer be able to
ingest data. This default should be fine for low volume cases. You'll want to size this
higher if your ingestion is heavy enough that you can't tolerate normal planned or
unplanned outages. For instance, there are many configuration changes you can make
in Hadoop that require a cluster restart. If you have Flume writing important data
into Hadoop, the file channel should be sized to tolerate the time it takes to restart
Hadoop (and maybe add a comfort buffer for the unexpected). If your cluster or
other systems are unreliable, you can set this higher to handle even larger amounts
of downtime. At some point you'll run into the fact that your disk space is a finite
resource, so you will have to pick some upper limit (or buy bigger disks).

Channels

[30]

The keep-alive parameter is similar to the memory channel's. It is the maximum
time the source will wait when trying to write into a full channel before giving up.
If space becomes available before the timeout, the write is successful; otherwise
a ChannelException is thrown back to the source.

The property transactionCapacity is the maximum number of events allowed
in a single transaction. This may become important with certain sources that batch
together events and pass them to the channel in a single call. Most likely you won't
need to change this from the default. Setting this higher allocates additional resources
internally so you shouldn't increase it unless you run into performance issues.

The checkpointInterval property is the number of milliseconds between performing
a checkpoint (which also rolls the log files written to logDirs). You cannot set this
lower than 1000 milliseconds.

Checkpoint files are also roll based on volume of data written to them using the
maxFileSize property. You can lower this value for low traffic channels if you want to
try and save some disk space. Let's say your maximum file size is 50,000 bytes but your
channel only writes 500 bytes a day, it would take 100 days to fill a single log. Let's say
that you were on day #100 and 2000 bytes came in all at once. Some data would be
written to the old file and a new file would get started with the overflow. After the roll,
Flume tries to remove any log files that aren't needed anymore. Since
the full log has unprocessed records, it cannot be removed yet. The next chance to
clean up that old log file may not come for another 100 days. It probably doesn't matter
if that old 50,000 byte file sticks around longer, but since the default is around 2 GB,
you could have twice that (4 GB) disk space used per channel. Depending on how
much available disk you have, and the number of channels configured in your agent,
this may or may not be a problem. If your machines have plenty of storage space,
the default should be fine.

Finally, the minimumRequiredSpace property is the amount of space you do not
want to use for writing of logs. The default configuration will throw an exception
if you attempt to use the last 500 MB of the disk associated with the dataDir path.
This limit applies across all channels, so if you have three file channels configured,
the upper limit is still 500 MB, not 1.5 GB. You can set this as value as low as 1 MB,
but, generally speaking, bad things tend to happen when you push disk utilization
towards 100%.

Chapter 3

[31]

Summary
In this chapter we covered the two channel types you are most likely to use in your
data processing pipelines.

The memory channel offers speed at the cost of data loss in the event of failure.

Alternatively, the file channel provides a more reliable transport, in that it can
tolerate agent failures and restarts, at a performance cost.

You will need to decide which channel is appropriate for your use cases. When
trying to decide if a memory channel is appropriate, ask yourself what is the
monetary cost if you lose some data. Weigh that against the additional costs of
more hardware to cover the difference in performance when deciding if you need
a durable channel after all. Another consideration is whether or not the data could
be resent. Not all data you may ingest into Hadoop will come from streaming
application logs. If you receive daily downloads of data, you can get away with
using a memory channel because if you encounter a problem, you can always rerun
the import.

Possible (or intentional) duplicate events are a fact of ingesting
streaming data. Some people will run periodic MapReduce jobs to clean
the data (and removing duplicates while they are at it). Others will just
account for duplicates when they run their MapReduce jobs, which
saves additional post processing. In practice you will probably do both.

In the next chapter, we'll look at sinks, specifically, the HDFS sink for writing
events to HDFS. We will also cover event serializers, which specify how Flume
Events are translated into output more suitable for the sink. Finally, we will cover
sink processors and how to set up load balancing and failure paths in a tiered
configuration for a more robust data transport.

Sinks and Sink Processors
By now you should have a pretty good idea where the sink fits into the Flume
architecture. In this chapter we will learn about the most used sink with Hadoop,
the HDFS sink. The general architecture of Flume supports many other sinks we
won't have space to cover all of them in this book. Some come bundled with Flume
that can write to HBase, IRC, ElasticSearch, and as we saw in Chapter 2, Flume Quick
Start, a log4j and file sink. Other sinks are available on the Internet that can be used
to write data to MongoDB, Cassandra, RabbitMQ, Redis, and just about any other
data store you can think of. If you can't find a sink that suits your needs, you could
write one easily by extending the org.apache.flume.sink.Abstractsink class.

HDFS sink
The job of the HDFS sink is to continuously open a file in HDFS, stream data into it,
and at some point close that file and start a new one. As we discussed in Chapter 1,
Overview and Architecture, how long between files rotations must be balanced with how
quickly files are closed in HDFS, thus making the data visible for processing. As we've
discussed, having lots of tiny files for input will make your MapReduce jobs inefficient.

To use the HDFS sink, set the type parameter on your named sink to hdfs:

agent.sinks.k1.type=hdfs

This defines a HDFS sink named k1 for the agent named agent. There are some
additional required parameters you need to specify, starting with path in HDFS
where you want to write the data:

agent.sinks.k1.hdfs.path=/path/in/hdfs

Sinks and Sink Processors

[34]

This HDFS path, like most file paths in Hadoop, can be specified in three different
ways, namely, absolute, absolute with server name, and relative. These are all
equivalent (assuming your Flume Agent is run as the flume user):

Type Path
absolute /Users/flume/mydata

absolute with server name hdfs://namenode/Users/flume/mydata

relative mydata

I prefer to configure any server I'm installing Flume on with a working hadoop
command line, by setting the fs.default.name property in Hadoop's core-site.
xml file. I don't keep persistent data in HDFS user directories, but prefer to use
absolute paths with some meaningful path name (that is /logs/apache/access).
The only time I would specify a name node specifically is if the target was a different
Hadoop cluster entirely. This allows you to move configurations you've already
tested in one environment into another without unintended consequences, such
as your production server writing data to your staging Hadoop cluster because
somebody forgot to edit the target in the configuration. Externalizing environment
specifics is a good best practice to avoid situations like this.

One final required parameter for the HDFS sink, actually any sink, is the channel
that it will be doing take operations from. For this, set the channel parameter with
the channel name to read from:

agent.sinks.k1.channel=c1

This tells the k1 sink to read events from the c1 channel.

The following is an almost complete list of configuration parameters you can adjust
from the default values:

Key Required Type Default
type Yes String hdfs
channel Yes String

hdfs.path Yes String

hdfs.filePrefix No String FlumeData
hdfs.fileSuffix No String

hdfs.maxOpenFiles No long 5000
hdfs.round No Boolean false
hdfs.roundValue No int 1

Chapter 4

[35]

Key Required Type Default
hdfs.roundUnit No String (second,

minute, or hour)
second

hdfs.timeZone No String Local Time
hdfs.inUsePrefix No String (CDH4.2.0 or Flume

1.4 only)
hdfs.inUseSuffix No String .tmp (CDH4.2.0 or

Flume 1.4 only)
hdfs.rollInterval No long (seconds) 30 Seconds

(0=disable)
hdfs.rollSize No long (bytes) 1024 bytes

(0=disable)
hdfs.rollCount No long 10 (0=disable)
hdfs.batchSize No long 100
hdfs.codeC No String

Remember to always check the Flume User Guide for the version you are using at
http://flume.apache.org/, as things may change between the release of this book
and the version you are actually using.

Path and filename
Each time Flume starts a new file at hdfs.path in HDFS to write data into, the
filename is composed of hdfs.filePrefix, a period character, the epoch timestamp
the file was started, and optionally, a file suffix specified by the hdfs.fileSuffix
property (if set). For example, see the following line of code:

agent.sinks.k1.hdfs.path=/logs/apache/access

This line would result in a file such as /logs/apache/access/
FlumeData.1362945258.

However, have a look at the following configuration:

agent.sinks.k1.hdfs.path=/logs/apache/access
agent.sinks.k1.hdfs.filePrefix=access
agent.sinks.k1.hdfs.fileSuffix=.log

In this configuration, your filenames would be more like /logs/apache/access/
access.1362945258.log.

Sinks and Sink Processors

[36]

Over time, the hdfs.path directory will get very full so you will want to add some
kind of time element into the path to partition the files into subdirectories. Flume
supports various time-based escape sequences, such as %Y to specify a four digit
year. I like using sequences in the form year/month/day/hour (so they sort oldest
to newest) so I often use this for a path:

agent.sinks.k1.hdfs.path=/logs/apache/access/%Y/%m/%D/%H

This says I want a path like /logs/apache/access/2013/03/10/18/.

For a complete list of time-based escape sequences, see the Flume User Guide.

Another handy escape sequence mechanism is the ability to use Flume header
values in your path. For instance, if there was a header with a key of logType,
I could split Apache access and error logs into different directories while using
the same channel by escaping the header's key as follows:

agent.sinks.k1.hdfs.path=/logs/apache/%{logType}/%Y/%m/%D/%H

This would result in access logs going to /logs/apache/access/2013/03/10/18/
and error logs going to /logs/apache/error/2013/03/10/18/. However,
if I preferred both log types in the same directory path, I could have instead
used logType in my hdfs.filePrefix as follows:

agent.sinks.k1.hdfs.path=/logs/apache/%Y/%m/%D/%H
agent.sinks.k1.hdfs.filePrefix=%{logType}

Obviously, it is possible for Flume to write to multiple files at once. The property
hdfs.maxOpenFiles sets the upper limit on how many can be open at once, with
a default of 5000. If you exceed this limit, the oldest file still open is closed.
Remember that every open file incurs overhead both at the OS level and in the
HDFS (NameNode and DataNode connections).

Another set of properties you may find useful allow for rounding down event times
at a hour, minute, or second granularity while still maintaining those elements in file
paths. Let's say you had a path specification as follows:

agent.sinks.k1.hdfs.path=/logs/apache/%Y/%m/%D/%H%M

But in this you wanted only four subdirectories per day (at 00, 15, 30, and 45 past
the hour, each containing 15 minutes of data). You could accomplish this by setting
the following values:

agent.sinks.k1.hdfs.round=true
agent.sinks.k1.hdfs.roundValue=15
agent.sinks.k1.hdfs.roundUnit=minute

Chapter 4

[37]

This would result in logs between 01:15:00 and 01:29:59 on 2013-03-10 to be written
to files contained in /logs/apache/2013/03/10/0115/. Logs from 01:30:00 to
01:44:59 would be written in files contained in /logs/apache/2013/03/10/0130/.
The hdfs.timeZone property is used to specify the time zone that you want time
interpreted for your escape sequences. The default is your computer's local time.
If your local time is affected by daylight savings time adjustments, you will have
twice as much data when %H == 02 (in the fall) and no data when %H == 02
(in the spring). I think it is a bad idea to introduce time zones into things that are
meant for computers to read. I believe time zones are a concern for humans alone
and computers should only converse in universal time. For this reason I set this
property on my Flume agents to make the time zone issue just go away:

-Duser.timezone=UTC

If you don't agree you are free to use the default (local time), or set hdfs.timeZone
to whatever you like. The value you passed is used in a call to java.util.
Timezone.getTimeZone(…) so check the Javadocs for acceptable values to use here.
Finally, while files are being written to the HDFS, a .tmp extension is added. When
the file is closed, the extension is removed. This allows you to easily exclude these
files as input when running a MapReduce job on a directory actively being written
to by Flume. It also allows you to see which files are being written to by looking
at a directory listing in HDFS. Since you typically specify a directory for input
in your MapReduce job (or because you are using Hive), the temporary files will
often be picked up by mistake as empty or garbled input. FLUME-1702 was created
to address this and will be released in Flume 1.4, but if you happen to be using
Cloudera's CDH4.2.0 release, the change was backported into Flume 1.3.
This introduces two new properties to change the "in use" prefix and suffix.
To avoid having your temporary files picked up before being closed, set the suffix
to blank (rather than the default of .tmp) and the prefix to either a dot or
an underscore character as follows:

agent.sinks.k1.hdfs.inUsePrefix=_
agent.sinks.k1.hdfs.inUseSuffix=

File rotation
By default, Flume will rotate actively written to files every 30 seconds, 10 events,
or 1024 bytes. This is done by setting the hdfs.rollInterval, hdfs.rollCount,
and hdfs.rollSize properties respectively. One or more of these can be set to
zero to disable that particular rolling mechanism. For instance, if you only wanted
a time based roll of 1 minute, you would set these parameters as follows:

agent.sinks.k1.hdfs.rollInterval=60
agent.sinks.k1.hdfs.rollCount=0
agent.sinks.k1.hdfs.rollSize=0

Sinks and Sink Processors

[38]

If your output contains any amount of header information, the HDFS size per file
may be larger than what you expect because the hdfs.rollSize rotation scheme
only counts the event body length. Clearly you may not want to disable all three
mechanisms for rotation at the same time or you will have one directory in the HDFS
overflowing with files.

Finally, a related parameter is hdfs.batchSize. This is the number of events that the
sink will read per transaction from the channel. If you have a large volume
of data in your channel, you may see a performance increase by setting this higher
than the default of 100, which decreases the transaction overhead per event.

Now that we've discussed the way files are managed and rolled in HDFS, let's look
into how the event content gets written.

Compression codecs
Codecs (coder/decoders) are used to compress and decompress data using various
compression algorithms. gzip, bzip2, lzo, and snappy are supported by Flume,
although you may have to install lzo yourself, especially if you are using
a distribution such as CDH due to licensing issues.

If you want to specify compression for your data, you set the hdfs.codeC property
if you want the HDFS sink to write compressed files. The property is also used
as the file suffix for the files written to HDFS. For example, if you specify the codec
as follows all files written will have a .gzip extension, so you don't need to specify
a hdfs.fileSuffix property in this case:

agent.sinks.k1.hdfs.codeC=gzip

Which codec you choose to use will require some research on your part. There
are arguments for using gzip or bzip2 for their higher compression ratios at the
cost of longer compression times, especially if your data is written once but will
be read hundreds or thousands of times. On the other hand, using snappy or lzo
results in faster compression performance, but results in a lower compression ratio.
Keep in mind that splittability of the file, especially if you are using plain text files,
will greatly affect the performance of your MapReduce jobs. Go pick up a copy of
Hadoop Beginner's Guide (http://amzn.to/14Dh6TA) or Hadoop: The Definitive Guide
(http://amzn.to/16OsfIf) if you aren't sure what I'm talking about.

Chapter 4

[39]

Event serializers
An event serializer is the mechanism by which a Flume event is converted into
another format for output. It is similar in function to the Layout class in log4j. By
default, the text serializer, which outputs just the Flume event body. There is
another, header_and_text, which outputs both the headers and the body. Finally,
there is an avro_event serializer that can be used to create an Avro representation
of the event. If you write your own, you'd use the implementation's fully qualified
class name as the serializer property value.

Text output
As mentioned previously, the default serializer is the text serializer. This will
output only the Flume event body, with the headers discarded. Each event has a new
line character appender unless you override this default behavior by setting
the serializer.appendNewLine property to false.

Key Required Type Default
serializer No String text
serializer.appendNewLine No boolean true

Text with headers
The text_with_headers serializer allows you to save the Flume event headers
rather than discarding them. The output format consists of the headers, followed by
a space, then the body payload, and finally terminated by an optionally disabled new
line character. Here is some example output produced by this serializer:

{key1=value1, key2=value2} body text here

Key Required Type Default
serializer No String text_with_headers
serializer.appendNewLine No boolean true

www.allitebooks.com

http://www.allitebooks.org

Sinks and Sink Processors

[40]

Apache Avro
The Apache Avro project (http://avro.apache.org/) provides a serialization
format similar in functionality to Google protocol buffers, but is more Hadoop
friendly as the container is based on HadoopSequenceFiles and has some
MapReduce integration. The format is also self-describing using JSON, making
for a good long-term data storage format, as your data format may evolve over time.
If your data has a lot of structure that you want to avoid turning into Strings, only
to then parse those Strings in your MapReduce job, you should go read more about
Avro to see if you want to use it as a storage format in HDFS.

The avro_event serializer creates Avro data based on the Flume event schema. It has
no formatting parameters, since Avro dictates the format of the data and
the structure of the Flume event dictates the schema used:

Key Required Type Default
serializer No String avro_event
serializer.compressionCodec No String (gzip,

bzip2, lzo, or
snappy)

serializer.syncIntervalBytes No int (bytes) 2048000 (bytes)

If you want to use Avro, but want to use a different schema from the Flume event
schema, you will have to write your own event serializer.

If you want your data compressed before being written to the Avro container, you
should set the serializer.compressionCodec property to the file extension of an
installed codec. The serializer.syncIntervalBytes property determines the size
of the data buffer used before flushing the data to HDFS, and therefore, this setting
can affect your compression ratio when using a codec. Here is an example using
snappy compression on Avro data using a 4 MB buffer:

agent.sinks.k1.serializer=avro_event
agent.sinks.k1.serializer.compressionCodec=snappy
agent.sinks.k1.serializer.syncIntervalBytes=4194304
agent.sinks.k1.hdfs.fileSuffix=.avro

For Avro files to work in an Avro MapReduce job, they must end in .avro or
they will be ignored as input. For this reason, you need to explicitly set the hdfs.
fileSuffix property. Furthermore, you would not set the hdfs.codeC property
on an Avro file.

Chapter 4

[41]

File type
By default the HDFS sink writes data to HDFS as Hadoop SequenceFiles. This
is a common Hadoop wrapper that consists of a key and value field separated
by binary field and record delimiters. Usually, text files on a computer make
assumptions like a newline character terminates each record. So what do you do
if your data contains a newline character, like some XML? Using a sequence file
can solve this problem because it uses non-printable characters for delimiters.
SequenceFiles are also splittable which makes for better locality and parallelism
when running MapReduce jobs on your data, especially on large files.

Sequence file
When using a SequenceFile file type, you need to specify how you want the key
and value to be written on the record in the SequenceFile. The key on each record
will always be a LongWritable containing the current timestamp or if the timestamp
event header is set, will be used instead. By default, the format of the value is a org.
apache.hadoop.io.BytesWritable that corresponds with the byte[] Flume body:

Key Required Type Default
hdfs.fileType No String SequenceFile
hdfs.writeType No String writable

However, if you want the payload interpreted as a String, you can override
the hdfs.writeType property so a org.apache.hadoop.io.Text will be used
as the value field:

Key Required Type Default
hdfs.fileType No String SequenceFile
hdfs.writeType No String text

Data stream
If you do not want to output a SequenceFile because your data doesn't have a natural
key, you can use a DataStream to output only the value, uncompressed. Simply
override the hdfs.fileType property:

agent.sinks.k1.hdfs.fileType=DataStream

Sinks and Sink Processors

[42]

This is the file type you would use with Avro serialization since any compression
should have been done in the event serializer. To serialize gzip compressed Avro
files you would set the following properties:

agent.sinks.k1.serializer=avro_event
agent.sinks.k1.serializer.compressionCodec=gzip
agent.sinks.k1.hdfs.fileType=DataStream
agent.sinks.k1.hdfs.fileSuffix=.avro

Compressed stream
The CompressedStream is similar to a DataStream except that the data is
compressed when written. You can think of this as running the gzip utility on
an uncompressed file, but all in one step. This differs from a compressed Avro
file whose contents are compressed and then written into an uncompressed Avro
wrapper.

agent.sinks.k1.hdfs.fileType=CompressedStream

Remember that only certain compressed formats are splittable in MapReduce, should
you decide to use a CompressedStream. The compression algorithm selection doesn't
have a Flume configuration but is instead dictated by the zlib.compress.strategy
and zlib.compress.level properties in core Hadoop.

Timeouts and workers
Finally, there are two miscellaneous properties related to timeouts and two for
worker pools that you can change:

Key Required Type Default
hdfs.callTimeout No long

(milliseconds)
10000

hdfs.idleTimeout No int (seconds) 0 (0 = disable)
hdfs.threadsPoolSize No int 10
hdfs.rollTimerPoolSize No int 1

The hdfs.callTimeout is the amount of time the HDFS sink will wait for HDFS
operations to return a success (or failure) before giving up. If your Hadoop cluster
is particularly slow (for instance a development or virtual cluster) you may need to
set this value higher to avoid errors. Keep in mind that your channel will overflow
if you cannot sustain higher write throughput than input rate to your channel.

Chapter 4

[43]

The hdfs.idleTimeout property if set to a non-zero value, is the time Flume
will wait to automatically close an idle file. I have never used this since hdfs.
fileRollInterval handles closing of files each roll period and if the channel is idle
it will not open a new file. This setting seems to have been created as an alternative
roll mechanism to the size, time, and event count mechanisms already discussed.
You may want as much data written to a file as possible and only close it when there
is really no more data. In this case you can use hdfs.idleTimeout to accomplish
this rotation scheme if you also set hdfs.rollInterval, hdfs.rollSize, and hdfs.
rollCount all to zero.

The first property you can set to adjust the number of workers is hdfs.
threadsPoolSize, which defaults to 10. This is the maximum number of files that
can be written to at the same time. If you are using event headers in determining file
paths and names, you may have more than 10 files open at once, but be careful when
increasing this value too much so as to not overwhelm the HDFS.

The last property related to worker pools is hdfs.rollTimerPoolSize. This is
the number of workers processing timeouts set by the hdfs.idleTimeout property.
The amount of work to close the files is pretty small so increasing this value from
the default of one worker is unlikely. If you do not use hdfs.idleTimeout based
rotation, you can ignore the hdfs.rollTimerPoolSize property as it is not used.

Sink groups
In order to remove single points of failure in your data processing pipeline, Flume
has the ability to send events to different sinks using either load balancing or
failover. In order to do this we need to introduce a new concept called a sink group.
A sink group is used to create a logical grouping of sinks. The behavior of this
grouping is dictated by something called the sink processor, which determines how
events are routed.

There is a default sink processor that contains a single sink that is used whenever
you have a sink that isn't part of any sink group. Our Hello World example in
Chapter 2, Flume Quick Start, used the default sink processor. No special configuration
is necessary for single sinks.

In order for Flume to know about the sink groups, there is a new top-level agent
property called sinkgroups. Similar to Sources, channels, and sinks, you prefix
the property with the agent name as follows:

agent.sinkgroups=sg1

Sinks and Sink Processors

[44]

Here we have defined that there is a sink group called sg1 for the agent
named agent.

For each named sink group, you need to specify the sinks it contains using
the sinks property consisting of a space-delimited list of sink names:

agent.sinkgroups.sg1.sinks=k1,k2

This defines that sinks k1 and k2 are part of sink group sg1 for the agent named
agent.

Often sink groups are used in conjunction with tiered movement of data to route
around failures. However, they can also be used to write to different Hadoop
clusters, since even a well maintained cluster has periodic maintenance.

Load balancing
Continuing the previous example, let's say you want to load balance traffic to k1
and k2 evenly. There are some additional properties you need to specify as listed
in the following table:

Key Type Default
processor.type String load_balance
processor.selector String (round_robin, random) round_robin
processor.backoff boolean false

When you set the processor.type to load_balance, round robin selection will be
used unless otherwise specified by the processor.selector property. This can be
set to either round_robin or random. You can also specify your own load balancing
selector mechanism, which we won't cover here. Consult the Flume documentation
if you need this custom control.

The processor.backoff property specifies if an exponential backup should be used
when retrying a sink that threw an Exception. The default is false which means
after a thrown Exception, the sink will be tried again next time its turn is up based on
round robin or random selection. If set to true, then for each failure the wait time is
doubled starting at one second up to a limit of around 18 hours (2^16 seconds).

At the time of writing, the default for processor.backoff in
the code is false, but the Flume documentation says true. Save
yourself a headache and specify what you want rather than
relying on the defaults.

Chapter 4

[45]

Failover
If you would rather try one sink and if that one fails then try another, then you want
to set the processor.type to failover. Next you'll need to set additional properties
to specify the order, by setting the processor.priority property followed by the
sink name:

Key Type Default
processor.type String failover
processor.priority.NAME int

processor.maxpenality int (milliseconds) 30000

Let's look at this example:

agent.sinkgroups.sg1.sinks=k1,k2,k3
agent.sinkgroups.sg1.processor.type=failover
agent.sinkgroups.sg1.processor.priority.k1=10
agent.sinkgroups.sg1.processor.priority.k2=20
agent.sinkgroups.sg1.processor.priority.k3=20

Lower priority numbers come first and in the case of a tie, order is arbitrary. You can
use any numbering system that makes sense to you (by ones, fives, tens, whatever).
In this example, sink k1 will be tried first and if an Exception is thrown either k2
or k3 will be tried next. If k3 was selected first to try and it failed, k2 will still try.
If all sinks in the sink group fail, the transaction with the channel is rolled back.

Finally, processor.maxPenality sets an upper limit to an exponential backoff for
failed sinks in the group. After the first failure, it will be one second before it can
be used again. Each subsequent failure doubles the wait time until processor.
maxPenality is reached.

Summary
In this chapter we covered in depth the HDFS sink, the Flume output that writes
streaming data into the HDFS. We covered how Flume can separate data into
different HDFS paths based on time or contents of Flume headers. Several file-rolling
techniques were also discussed including the following:

• Time rotation
• Event count rotation
• Size rotation
• Rotation on idle only

Sinks and Sink Processors

[46]

Compression was discussed as a means to reduce storage requirements in HDFS
and should be used when possible. Besides storage savings, it is often faster to read
a compressed file and decompress in memory than it is to read an uncompressed
file. This will result in performance improvements in MapReduce jobs run on this
data. Splitability of compressed data was also covered as a factor in deciding which
compression algorithm to use.

Event serializers were introduced as the mechanism by which Flume events are
converted into an external storage format including the following:

• Text (body only)
• Text and Headers (headers and body)
• Avro Serialization (with optional compression)

Next, various file formats including the following:

• Sequence Files (Hadoop key/value files)
• Data Streams (uncompressed data files, such as Avro containers)
• Compressed data streams

Finally, we covered sink groups as a means of routing events to different sources
using load balancing or failover paths that can be used to eliminate single points
of failure in routing data to its destination.

In the next chapter, we will discuss various input mechanisms (Sources) that will
feed your configured channels covered back in Chapter 3, Channels.

Sources and Channel
Selectors

Now that we have covered channels and sinks, we will cover some of the more
common ways to get data into your Flume agents. As discussed in Chapter 1, Overview
and Architecture, the source is the input point into the Flume agent. There are many
sources available with the Flume distribution as well as many open source options
available. Like most open source software, if you can't find what you need you can
always write your own software by extending the org.apache.flume.source.
AbstractSource class. Since the primary focus of this book is ingesting files of logs
into Hadoop, we'll cover a few of the more appropriate sources to accomplish this.

The problem with using tail
If you had used any of the Flume 0.9 releases, you'll notice that the TailSource
is no longer part of Flume. TailSource provided a mechanism to tail (http://
en.wikipedia.org/wiki/Tail_(Unix)) any file on the system and create Flume
events for each line of the file. Many have already used the filesystem as a handoff
point between the application creating the data (for instance, log4j) and the
mechanism responsible for moving those files someplace else (for instance, syslog).
So, TailSource was the perfect replacement for the syslog transport without needing
to make changes to the application creating the data.

As is the case with both channels and sinks, events are added and removed from
a channel as part of a transaction. When you are tailing a file, there is no way to
participate properly in a transaction. If a failure to write successfully to a channel
occurred or if the channel was simply full (a more likely event than failure), the
data couldn't be "put back" as the rollback semantics dictate.

Sources and Channel Selectors

[48]

Furthermore, if the rate of data written to a file exceeded the rate Flume could read
the data, it is possible to lose one or more logfiles of input outright. For example,
say you were tailing /var/log/app.log. When that file reaches a certain size, that
file is rotated/renamed to /var/log/app.log.1 and a new file is started /var/log/
app.log. Let's say you had a favorable review in the press and your application
logs are much higher than usual. Flume may still be reading from the rotated file
(/var/log/app.log.1) when another rotation occurs moving /var/log/app.log
to /var/log/app.log.1. The file Flume is reading is now renamed to /var/log/
app.log.2. When Flume finishes with this file, it will move to what it thinks is the
next file, /var/log/app.log, thus skipping the file that now resides at /var/log/
app.log.1. This kind of data loss would go completely unnoticed and is something
we want to avoid if possible.

app.log.2

app.log.1

app.log

FlameAgent

app.log.2

app.log.1

app.log

Application Application

FlameAgent

app.log

1

Application Application

FlameAgent

app.log.1

app.log
2 4

3

FlameAgent

Skipped

For these reasons, it was decided to remove the tail functionality from Flume when
it was refactored. There are some workarounds for TailSource having been removed,
but it should be noted that no workaround can eliminate the possibility of data loss
under load under these conditions.

Chapter 5

[49]

The exec source
The exec source provides a mechanism to run a command outside of Flume
and then turn the output into Flume events. To use the exec source, set the type
property to exec:

agent.sources.s1.type=exec

All sources in Flume are required to specify the list of channels to write events
to using the channels (plural) property. This is a space-separated list of one or
more channel names:

agent.sources.s1.channels=c1

The only other required parameter is the command property, which tells Flume
what command to pass to the operating system. For instance:

agent.sources=s1
agent.sources.s1.channels=c1
agent.sources.s1.type=exec
agent.sources.s1.command=tail -F /var/log/app.log

Here I have configured a single source s1 for an agent named agent. The source,
an exec source, will tail the /var/log/app.log file and follow any rotations outside
applications may perform on that logfile. All events are written to the c1 channel.
This is an example of one of the workarounds for the lack of TailSource in Flume 1.x.

Should you use the tail -F command in conjunction with the exec
source, it is probable that the forked process will not shut down 100
percent of the time when the Flume agent shuts down or restarts. This
will leave orphaned tail processes that will never exit. tail -F
by definition has no end. Even if you delete the file being tailed (at least
in Linux), the running tail process will keep the file handle open
indefinitely. This keeps the file's space from actually being reclaimed
until the tail process exits—which it won't. I think you are beginning
to see why the Flume developers don't like tailing files.

If you go down this route, be sure to periodically scan the process
tables for tail -F whose parent PID is 1. These are effectively dead
processes and need to be killed manually.

Sources and Channel Selectors

[50]

Here is a list of the other properties you can use with the exec source:

Key Required Type Default
type Yes String exec

channels Yes String Space-separated list
of channels

command Yes String

restart No boolean false

restartThrottle No long
(milliseconds)

10000 milliseconds

logStdErr No boolean false

batchSize No int 20

Not every command keeps running, either because it fails (like when the channel it
is writing to is full) or the command is designed to exit immediately. In this example,
we want to record the system load via the Linux uptime command, which prints out
some system information to stdout and exits:

agent.sources.s1.command=uptime

This command will immediately exit, so you can use the restart and
restartThrottle properties to run it periodically:

agent.sources.s1.command=uptime
agent.sources.s1.restart=true
agent.sources.s1.restartThrottle=60000

This will produce one event per minute. In the tail example, should the channel fill
causing the exec source to fail, you can use these properties to restart the exec source.
In this case, setting the restart property will start the tailing of the file from the
beginning of the current file, thus producing duplicates. Depending on how long
the restartThrottle value is set to, you may have missed some data due to a file
rotation outside of Flume. Furthermore, the channel may still be unable to accept
data, in which case the source will fail again. Setting this value too low means giving
less time to the channel to drain and unlike some of the sinks we saw, there is not an
option for exponential backoff.

Sometimes commands write the output you want to capture to StdErr. If you want
these lines included as well, set the logStdErr property to true. There isn't
a property to turn off the StdOut lines as input (but you can filter them out when we
get to discussing interceptors in Chapter 6, Interceptors, ETL, and Routing).

Chapter 5

[51]

Finally, you can specify the number of events to write per transaction by changing
the batchSize property. You may need to set this value higher than the default
of 20, if your input data is large and you find that you cannot write to your channel
fast enough. Using a higher batch size reduces the overall average transaction
overhead per event. Testing with different values and monitoring the channel's put
rate is the only way to know for sure.

The spooling directory source
In an effort to avoid all the assumptions inherent in tailing a file, a new source was
devised to keep track of which files have been converted into Flume events and
which still need to be processed. The spooling directory source is given a directory
to watch for new files to appear. It is assumed that files copied to this directory are
complete; otherwise, the source might try and send a partial file. It also assumes
that filenames never change; otherwise, the source would loose its place on restarts
as to which files have been sent and which have not. The filename condition
can be met in log4j by using the DailyRollingFileAppender rather than the
RollingFileAppender, however, the currently open file would need to be written
into one directory and copied to the spool directory after being closed. None of
the log4j appenders shipping have this capability.

That said, if you are using the Linux logrotate program in your environment,
this might be of interest. You can move completed files to a separate directory
using a postrotate script.

Remember, you will need a separate process to clean out any old files in the spool
directory after they have been marked sent by Flume or your disk will eventually
fill up.

To create a spooling directory source, set the type property to spooldir. You must
set the directory to watch the spoolDir property:

agent.sources=s1
agent.sources.channels=c1
agent.sources.s1.type=spooldir
agent.sources.s1.spoolDir=/path/to/files

Sources and Channel Selectors

[52]

Here is a summary of the properties for the spooling directory source:

Key Required Type Default
type Yes String spooldir

channels Yes String Space-separated
list of channels

spoolDir Yes String Path to directory
to spool

fileSuffix No String .COMPLETED

fileHeader No boolean false

fileHeaderKey No String file

batchSize No int 10

bufferMaxLines No int 100

maxBufferLineLength No int 5000

When a file has been transmitted completely it will be renamed with a .COMPLETED
extension unless overridden by setting the fileSuffix property. For example:

agent.source.s1.fileSuffix=.DONE

If you want the absolute file path attached to each event, set the fileHeader
property to true. This will create a header with the file key unless set to something
else using the fileHeaderKey property. For example:

agent.source.s1.fileHeader=true
agent.source.s1.fileHeaderKey=sourceFile

This would add the header {sourceFile=/path/to/files/foo.1234.log} if the
event was read from the /path/to/files/foo.1234.log file.
The batchSize property allows you to tune the number of events per transaction for
writes to the channel. Increasing this may provide better throughput at the cost of
larger transactions (and possibly larger rollbacks). The bufferMaxLines property is
used to set the size of the memory buffer used in reading files by multiplying it with
maxBufferLineLength. If your data is very short, you might consider increasing
bufferMaxLines while reducing maxBufferLineLength. In this case, it will result in
better throughput without increasing your memory overhead. That said, if you have
events longer than 5000 characters, you'll want to set maxBufferLineLength higher.

Finally, you'll want to make sure that whatever mechanism is writing new files
into your spooling directory creates unique filenames, such as adding a timestamp
(and possibly more). Reusing a filename will confuse the source and your data
may not be processed.

As always, remember that restarts and errors will create duplicate events on any files
in the spooling directory that are retransmitted due to not being marked as finished.

Chapter 5

[53]

Syslog sources
Syslog has been around for decades and is often used as an operating system
level mechanism for capturing and moving logs around systems. In many ways
there are overlaps with some of the functionality that Flume provides. There is
even a Hadoop module for rsyslog, one of the more modern variants of syslog
(http://www.rsyslog.com/doc/rsyslog_conf_modules.html/omhdfs.html).
Generally, I don't like solutions that couple technologies that may version
independently. If you use this rsyslog/Hadoop integration, you would be
required to update the version of Hadoop you compiled into rsyslog at the same
time you upgraded your Hadoop cluster to a new major version. This may be
logistically difficult if you have a large number of servers and/or environments.
Backward compatibility in Hadoop wire protocols is something that is being
actively worked on in the Hadoop community, but currently isn't the norm.
We'll talk more about this in Chapter 7, Monitoring Flume, when we discuss
tiering data flows.

Syslog has an older UDP transport as well as a newer TCP protocol that can handle
data larger than a single UDP packet can transmit (about 64k), as well as deal with
network-related congestion events that might require the data to be retransmitted.

Finally, there are some undocumented properties on the syslog sources that allow
for adding additional regular expression matching patterns for messages that do
not conform to the RFC standards. I won't be discussing these additional settings,
but you should be aware of them if you run into frequent parsing errors. In this
case, have a look at the source for org.apache.flume.source.SyslogUtils for
implementation details to find the cause.

More details on syslog terms (like what a facility is) and standard formats can
be found in RFC 3164 (http://tools.ietf.org/html/rfc3164) and RFC 5424
(http://tools.ietf.org/html/rfc5424).

The syslog UDP source
The UDP version of syslog is usually safe to use when you are receiving data from the
server's local syslog process, provided the data is small enough (less than around 64k).

The implementation for this source has chosen 2500 bytes as the
maximum payload size regardless of what your network can
actually handle. So, if your payload will be larger than this, use
one of the TCP sources instead.

Sources and Channel Selectors

[54]

To create a syslog UDP source, set the type property to syslogudp. You must set
the port to listen on using the port property. The optional host property specifies
the bind address. If no host is specified, all IPs for the server will be used—the
same as specifying 0.0.0.0. In this example, we will only listen for local UDP
connections on port 5140:

agent.sources=s1
agent.sources.channels=c1
agent.sources.s1.type=syslogudp
agent.sources.s1.host=localhost
agent.sources.s1.port=5140

If you want syslog to forward a tailed file, you could add a line such as the following
to your syslog configuration file:

.err;.alert;*.crit;*.emerg;kern.* @localhost:5140

This would send all error, alert, critical, emergency priority, and kernel messages
of any priority into your Flume source. The single @ symbol designates that the UDP
protocol should be used.

Here is a summary of properties for the syslog UDP source:

Key Required Type Default
type Yes String syslogudp

channels Yes String Space-separated list
of channels

port Yes int

host No String 0.0.0.0

The Flume headers created by the syslog UDP source are summarized as follows:

Header key Description
Facility The syslog facility. See the syslog documentation.
Priority The syslog priority. See the syslog documentation.
timestamp The time of the syslog event translated into an epoch

timestamp. Omitted if not parsed from one of the standard
RFC formats.

hostname The parsed hostname in the syslog message. Omitted if not
parsed.

flume.syslog.
status

There was a problem parsing the syslog message's headers.
Set to Invalid if the payload didn't conform to the RFCs.
Set to Incomplete if the message was longer than the
eventSize value (for UDP this is set internally to 2500
bytes). Omitted if everything is fine.

Chapter 5

[55]

The syslog TCP source
As previously mentioned, the syslog TCP source provides an endpoint for messages
over TCP, allowing for a larger payload size and TCP retry semantics that should
be used for any reliable inter-server communications.

To create a syslog TCP source, set the type property to syslogtcp. You must still
set the bind address and port to listen on:

agent.sources=s1
agent.sources.s1.type=syslogtcp
agent.sources.s1.host=0.0.0.0
agent.sources.s1.port=12345

If your syslog implementation supports syslog over TCP, the configuration is usually
the same except a double @ symbol is used to indicated TCP transport. Here is the
same example using TCP where I am forwarding to a Flume agent that is running
on a different server named flume-1:

.err;.alert;*.crit;*.emerg;kern.* @@flume-1:12345

There are some optional properties for the syslog TCP source:

Key Required Type Default
type Yes String syslogtcp

channels Yes String Space-separated list
of channels

port Yes int

host No String 0.0.0.0

eventSize No int (bytes) 2500 bytes

The Flume headers created by the syslog TCP source are summarized as follows:

Header key Description
Facility The syslog facility. See the syslog documentation.
Priority The syslog priority. See the syslog documentation.
timestamp The time of the syslog event translated into an epoch timestamp.

Omitted if not parsed from one of the standard RFC formats.
hostname The parsed hostname in the syslog message. Omitted if not

parsed.
flume.syslog.
status

There was a problem parsing the syslog message's headers.
Set to Invalid if the payload didn't conform to the RFCs.
Set to Incomplete if the message was longer than the
configured eventSize. Omitted if everything is fine.

Sources and Channel Selectors

[56]

The multiport syslog TCP source
The multiport syslog TCP source is nearly identical in functionality to the syslog
TCP source, except that it can listen on multiple ports for input. You may need to
use this capability should you be unable to change which port syslog will use in its
forwarding rules (it may not be your server at all). More likely you will use this to
read multiple formats using one source to write into different channels. We'll cover
that in a moment in the Channel selectors section.

To configure this source, set the type property to multiport_syslogtcp:

agent.sources.s1.type=multiport_syslogtcp

Like the other syslog sources, you need to specify the port, but in this case it is
a space-separated list of ports. You can use this only if you have one port specified.
The property for this is ports (plural):

agent.sources.s1.type=multiport_syslogtcp
agent.sources.s1.channels=c1
agent.sources.s1.ports=33333 44444
agent.sources.s1.host=0.0.0.0

This configures the multiport syslog TCP source named s1 to listen for any incoming
connections on ports 33333 and 44444 and send them to channel c1.

In order to tell which event came from which port, you can set the optional
portHeader property to the name of the key whose value will be the port number.
If I added this property to the configuration:

agent.sources.s1.portHeader=port

Then any events received from port 33333, would have a header key/value of
{"port"="33333"}. As you saw in Chapter 4, Sinks and Sink Processors, you can
now use this value (any header really) as part of your HDFS sink file path
convention like so:

agent.sinks.k1.hdfs.path=/logs/%{hostname}/%{port}/%Y/%m/%D/%H

Here is a complete table of the properties:

Key Required Type Default
type Yes String syslogtcp

channels Yes String Space-separated list of
channels

ports Yes int Space-separated list of port
numbers

Chapter 5

[57]

Key Required Type Default
host No String 0.0.0.0

eventSize No int (bytes) 2500 bytes
portHeader No String

batchSize No int 100

readBufferSize No int (bytes) 1024

numProcessors No int Automatically detected
charset.default No String UTF-8

charset.port.PORT# No String

This TCP source has some additional tunable options over the standard TCP syslog
source, which you may want to tune. The first is the batchSize property. This is
the number of events processed per transaction with the channel. There is also the
readBufferSize property that specifies the internal buffer size used by an internal
Mina library. Finally, the numProcessors property is used to size the worker thread
pool in Mina. Before you tune these parameters, you may want to familiarize
yourself with Mina (http://mina.apache.org/) and look at the source code before
deviating from the defaults.

Finally, you can specify a default and per-port character encoding to use when
converting between strings and byte[]s.

agent.sources.s1.charset.default=UTF-16
agent.sources.s1.charset.port.33333=UTF-8

This sample configuration shows that all ports would be interpreted using UTF-16
encoding except for port 33333 traffic, which would use UTF-8.

The Flume headers created by this source are summarized here:

Header key Description
Facility The syslog facility. See the syslog documentation.
Priority The syslog priority. See the syslog documentation.
timestamp The time of the syslog event translated into an epoch

timestamp. Omitted if not parsed from one of the standard
RFC formats.

hostname The parsed hostname in the syslog message. Omitted if not
parsed.

flume.syslog.status There was a problem parsing the syslog message's headers.
Set to Invalid if the payload didn't conform to the RFCs.
Set to Incomplete if the message was longer than the
configured eventSize. Omitted if everything is fine.

Sources and Channel Selectors

[58]

Channel selectors
As we previously discussed in Chapter 1, Overview and Architecture, a source can write
to one or more channels. This is why the property is plural (channels instead of
channel). There are two ways multiple channels can be handled. The event can be
written to all of the channels or to just one based on some Flume header value. The
internal mechanism for this in Flume is called a channel selector.

The selector for any channel can be specified using the selector.type property.
Any selector specific properties begin with the usual source prefix; agent name,
the keyword sources, and the source name:

agent.sources.s1.selector.type=replicating

Replicating
By default, if you do not specify a selector for a source, replicating is the default.
The replicating selector writes the same event to all channels in the source's
channels list:

agent.sources.s1.channels=c1 c2 c3
agent.sources.s1.selector.type=replicating

In this example, every event will be written to all three channels, c1, c2, and c3.

There is an optional property on this selector called optional. It is a space-separated
list of channels that are optional. That is, if I set the following:

agent.sources.s1.channels=c1 c2 c3
agent.sources.s1.selector.type=replicating
agent.sources.s1.selector.optional=c2 c3

Any failures to write to channels c2 or c3 would not fail the transaction and any
data written to c1 would be committed. In the previous example with no optional
channels, any single channel failure would roll back the transaction for them all.

Multiplexing
If you wanted to send different events to different channels, you would use a
multiplexing channel selector by setting selector.type to multiplexing. You
also need to tell the channel selector which header to use by setting the selector.
header property.

agent.sources.s1.selector.type=multiplexing
agent.sources.s1.selector.header=port

Chapter 5

[59]

Let's assume we used the multiport syslog TCP source to listen on four ports, 11111,
22222, 33333, and 44444 with a portHeader setting of port. Consider
this configuration:

agent.sources.s1.selector.default=c2
agent.sources.s1.selector.mapping.11111=c1 c2
agent.sources.s1.selector.mapping.44444=c2
agent.sources.s1.selector.optional.44444=c3

This would result in port 22222 and port 33333 traffic going to channel c2 only.
The traffic from port 11111 would go to channels c1 and c2. A failure on either
channel would result in nothing being added to either channel. The traffic from
port 44444 would go to channels c2 and c3; however, a failure to write to c3 would
still commit the transaction to channel c2 (and c3 would not be attempted again
with that event).

Summary
In this chapter we covered in depth the various sources which you can use to ingest
log data into Flume, including the following:

• The exec source
• Syslog sources (UDP, TCP, and multiport TCP)

We discussed replicating the old TailSource functionality in Flume 0.9 and the
problems using tail semantics in general.

We also covered channel selectors and how to send events to one of more
channels. Specifically:

• The replicating channel selector
• The multiplexing channel selector

Optional channels were also discussed as a way to only fail a Channel put
transaction for only some of the Channels when more than one is used.

In the next chapter, we'll introduce Interceptors that will allow in-flight inspection and
transformation of Events. Used in conjunction with Channel Selectors, Interceptors
provide the final piece to creating complex data flows with Flume.

Interceptors, ETL, and
Routing

The final piece of functionality necessary in your data processing pipeline is the
ability to inspect and transform events in flight. This can be accomplished using
interceptors. Interceptors, as we discussed in Chapter 1, Overview and Architecture,
can be inserted after a source or before a sink.

Interceptors
An interceptor's functionality can be summed up by this method:

public Event intercept(Event event);

It is passed as a Flume event and it returns as a Flume event. It may do nothing;
that is, the same unaltered event is returned. Often, it alters the event in some
useful way. If null is returned, the event is dropped.

To add interceptors to a source, simply add the interceptors property to the
named source. For example:

agent.sources.s1.interceptors=i1 i2 i3

This defines three interceptors, i1, i2, and i3, on the s1 source for the agent
named agent.

Interceptors are run in the order they are listed. In the preceding example,
i2 will receive the output from i1. i3 will receive the output from i2.
Finally, the channel selector receives the output from i3.

Interceptors, ETL, and Routing

[62]

Now that we have defined the interceptor by name, we need to specify its type
as follows:

agent.sources.s1.interceptors.i1.type=TYPE1
agent.sources.s1.interceptors.i1.additionalProperty1=VALUE
agent.sources.s1.interceptors.i2.type=TYPE2
agent.sources.s1.interceptors.i3.type=TYPE3

Let's look at some of the interceptors that, come bundled with Flume, to get
a better idea of how to configure them.

Timestamp
The Timestamp interceptor, as its name suggests, adds a header with the timestamp
key to the Flume event if one doesn't already exist. To use it, set the type property
to timestamp.

If the event already contains a timestamp header, it will be overwritten with
the current time unless configured to preserve the original value by setting the
preserveExisting property to true.

Here is a table summarizing the properties for the timestamp interceptor:

Key Required Type Default
type Yes String timestamp

preserveExisting No Boolean false

Here is what a total configuration might look like for a source if we only want it
to add a timestamp header if none exists:

agent.sources.s1.interceptors=i1
agent.sources.s1.interceptors.i1.type=timestamp
agent.sources.s1.interceptors.i1.preserveExisting=true

Recall this HDFSSink path from Chapter 4, Sinks and Sink Processors, utilizing the
event date:

agent.sinks.k1.hdfs.path=/logs/apache/%Y/%m/%D/%H

The timestamp header is what determines this path. If it is missing, you can be sure
Flume will not know where to create the files and you will not get the result you are
looking for.

Chapter 6

[63]

Host
Similar in simplicity to the Timestamp interceptor, the Host interceptor will add
a header to the event containing the IP address of the current Flume agent. To use
it, set the type property to host.

agent.sources.s1.interceptors=i1
agent.sources.s1.interceptors.type=host

The key for this header will be host unless you specify something else using the
hostHeader property. Like before, an existing header will be overwritten, unless
you set the preserveExisting property to true. Finally, if you want a reverse DNS
lookup of the hostname to be used instead of IP as a value, set the useIP property
to false. Remember that reverse lookups will add processing time to your data flow.

Here is a table summarizing the properties for the Host interceptor:

Key Required Type Default
type Yes String host

hostHeader No String host

preserveExisting No Boolean false

useIP No Boolean true

Here is what a total configuration might look like for a source if we only want it to
add a relayHost header containing the DNS hostname of this agent to every event:

agent.sources.s1.interceptors=i1
agent.sources.s1.interceptors.i1.type=host
agent.sources.s1.interceptors.i1.hostHeader=relayHost
agent.sources.s1.interceptors.i1.useIP=false

This interceptor might be useful if you wanted to record the path your events took
though your data flow, for instance. Chances are you are more interested in the
origin of the event rather than the path it took, which is why I have yet to use this.

Static
The Static interceptor is used to insert any single key/value header into each
Flume event processed. If more than one key/value is desired, you simply add
additional Static interceptors. Unlike the interceptors we've looked at so far, the
default behavior is to preserve existing headers with the same key. As always, my
recommendation is to always specify what you want and not rely on the defaults.

I do not know why the key and value properties are not required since the defaults
are not terribly useful.

Interceptors, ETL, and Routing

[64]

Here is a table summarizing the properties for the Static interceptor:

Key Required Type Default
type Yes String static

key No String key

value No String value

preserveExisting No Boolean true

Finally, let's look at an example configuration that inserts two new headers provided
they don't already exist in the event:

agent.sources.s1.interceptors=pos env
agent.sources.s1.interceptors.pos.type=static
agent.sources.s1.interceptors.pos.key=pointOfSale
agent.sources.s1.interceptors.pos.value=US
agent.sources.s1.interceptors.env.type=static
agent.sources.s1.interceptors.env.key=environment
agent.sources.s1.interceptors.env.value=staging

Regular expression filtering
If you want to filter events based on the contents of the body, the regular expression
filtering interceptor is your friend. Based on a regular expression you provide,
it will either filter out the matched events or keep only the matching events. Start
by setting the interceptor's type property to regex_filter. The pattern you want
to match is specified using Java-style regular expression syntax. See these javadocs
for usage details:

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html.

The pattern string is set in the regex property. Finally, you need to tell the
interceptor if you want to exclude matching records by setting the excludeEvents
property to true. The default (false) indicates you want to only keep events
matching the pattern.

Here is a table summarizing the properties for the regular expression
filtering interceptor:

Key Required Type Default
type Yes String regex_filter

regex No String .*

excludeEvents No Boolean false

Chapter 6

[65]

In this example, any events containing the string NullPointerException
will be dropped:

agent.sources.s1.interceptors=npe
agent.sources.s1.interceptors.npe.type=regex_filter
agent.sources.s1.interceptors.npe.regex=NullPointerException
agent.sources.s1.interceptors.npe.excludeEvents=true

Regular expression extractor
Sometimes you'll want to extract bits of your event body into Flume headers so
you can perform routing via channel selectors. You can use the regular expression
extractor interceptor to perform this function. Start by setting the interceptor type to
regex_extractor.

agent.sources.s1.interceptors=e1
agent.sources.s1.interceptors.e1.type=regex_extractor

Like the regular expression filtering interceptor, the regular expression extractor
uses the Java-style regular expression syntax. In order to extract one or more fields,
you start by specifying the regex property with group matching parentheses.
Let's assume we are looking for error numbers in our events in the form "Error: N",
where N is some number:

agent.sources.s1.interceptors=e1
agent.sources.s1.interceptors.e1.type=regex_extractor
agent.sources.s1.interceptors.e1.regex=Error:\\s(\\d+)

As you can see I put capture parentheses around the number, which may comprise
one or more digits. Now that I've matched my desired pattern, I need to tell Flume
what to do with my match. Here we need to introduce serializers, which provide
a pluggable mechanism for how to interpret each match. In this example I've only
got one match so my space-separated list of serializer names has only one entry:

agent.sources.s1.interceptors=e1
agent.sources.s1.interceptors.e1.type=regex_extractor
agent.sources.s1.interceptors.e1.regex=Error:\\s(\\d+)
agent.sources.s1.interceptors.e1.serializers=ser1
agent.sources.s1.interceptors.e1.serializers.ser1.type=default
agent.sources.s1.interceptors.e1.serializers.ser1.name=error_no

The name property specifies the event key to use where the value is the matching text
from the regular expression. The type of default (also the default if not specified)
is a simple pass-through serializer. For the following event body:

NullPointerException: A problem occurred. Error: 123. TxnID: 5X2T9E.

Interceptors, ETL, and Routing

[66]

The following header would be added to the event:

{ "error_no":"123" }

If I wanted to add the TxnID value as a header, I simply add another matching
pattern group and serializer:

agent.sources.s1.interceptors=e1
agent.sources.s1.interceptors.e1.type=regex_extractor
agent.sources.s1.interceptors.e1.regex=Error:\\s(\\d+).*TxnID:\\s(\\w+)
agent.sources.s1.interceptors.e1.serializers=ser1 ser2
agent.sources.s1.interceptors.e1.serializers.ser1.type=default
agent.sources.s1.interceptors.e1.serializers.ser1.name=error_no
agent.sources.s1.interceptors.e1.serializers.ser2.type=default
agent.sources.s1.interceptors.e1.serializers.ser2.name=txnid

This would create the following headers for the aforementioned input:

{ "error_no":"123", "txnid":"5x2T9E" }

However, if the fields were reversed, like so:

NullPointerException: A problem occurred. TxnID: 5X2T9E. Error: 123.

I would wind up with only a header for TxnID. A better way to handle this kind
of ordering would be to use multiple interceptors so the order didn't matter:

agent.sources.s1.interceptors=e1 e2
agent.sources.s1.interceptors.e1.type=regex_extractor
agent.sources.s1.interceptors.e1.regex=Error:\\s(\\d+)
agent.sources.s1.interceptors.e1.serializers=ser1
agent.sources.s1.interceptors.e1.serializers.ser1.type=default
agent.sources.s1.interceptors.e1.serializers.ser1.name=error_no
agent.sources.s1.interceptors.e2.type=regex_extractor
agent.sources.s1.interceptors.e2.regex=TxnID:\\s(\\w+)
agent.sources.s1.interceptors.e2.serializers=ser1
agent.sources.s1.interceptors.e2.serializers.ser1.type=default
agent.sources.s1.interceptors.e2.serializers.ser1.name=txnid

The only other type of serializer implementation that ships with Flume, other than
the pass-through, is to specify the fully qualified class name of org.apache.flume.
interceptor.RegexExtractorInterceptorMillisSerializer. This serializer is
used to convert times back into milliseconds. You need to specify a pattern property
based on the org.joda.time.format.DateTimeFormat patterns.

Chapter 6

[67]

For instance, let's say you were ingesting Apache Web Server access logs.
For example:

192.168.1.42 - - [29/Mar/2013:15:27:09 -0600] "GET /index.html
HTTP/1.1" 200 1037

The complete regular expression for this might look like this (in the form of a Java
String, with backslash and quotes escaped with an extra backslash):

^([\\d.]+) \\S+ \\S+ \\[([\\w:/]+\\s[+\\-]\\d{4})\\] \"(.+?)\"
(\\d{3}) (\\d+)

The time pattern matched corresponds to the org.joda.time.format.
DateTimeFormat pattern:

yyyy/MMM/dd:HH:mm:ss Z

This makes our configuration something like the following code:

agent.sources.s1.interceptors=e1
agent.sources.s1.interceptors.e1.type=regex_extractor
agent.sources.s1.interceptors.e1.regex=^([\\d.]+) \\S+ \\S+ \\
[([\\w:/]+\\s[+\\-]\\d{4})\\] \"(.+?)\" (\\d{3}) (\\d+)
agent.sources.s1.interceptors.e1.serializers=ip dt url sc bc
agent.sources.s1.interceptors.e1.serializers.ip.name=ip_address
agent.sources.s1.interceptors.e1.serializers.dt.type=org.apache.flume.
interceptor.RegexExtractorInterceptorMillisSerializer
agent.sources.s1.interceptors.e1.serializers.dt.pattern=yyyy/MMM/
dd:HH:mm:ss Z
agent.sources.s1.interceptors.e1.serializers.dt.name=timestamp
agent.sources.s1.interceptors.e1.serializers.url.name=http_request
agent.sources.s1.interceptors.e1.serializers.sc.name=status_code
agent.sources.s1.interceptors.e1.serializers.bc.name=bytes_xfered

This would create the following headers for the aforementioned sample:

{ "ip_address":"192.168.1.42", "timestamp":"1364588829",
"http_request":"GET /index.html HTTP/1.1", "status_code":"200",
"bytes_xfered":"1037" }

The body content is unaffected. You'll also notice I didn't specify default for
the type of the other serializers as that is the default.

There is no overwrite checking in this interceptor type. For instance,
using the timestamp key will overwrite the event's previous time
value, if there was one.

Interceptors, ETL, and Routing

[68]

You can implement your own serializers for this interceptor by implementing
the org.apache.flume.interceptor.RegexExtractorInterceptorSerializer
interface. However, if your goal is to move data from the body of an event to
the header, you'll probably want to implement a custom interceptor so that you
can alter the body contents in addition to setting the header value, otherwise the
data will be effectively duplicated.

To summarize let's review the properties for this interceptor:

Key Required Type Default
type Yes String regex_extractor
regex Yes String

serializers Yes Space-separated list
of serializer names

serializers.NAME.name Yes String

serializers.NAME.type No Default or FQDN of
implementation

default

serializers.NAME.PROP No Serializer-specific
properties

Custom interceptors
If there is one piece of custom code you will add to your Flume implementation,
it will most likely be a custom interceptor. As mentioned earlier, you implement
the org.apache.flume.interceptor.Interceptor interface and the associated
org.apache.flume.interceptor.Interceptor.Builder interface.

Let's say I needed to URL-decode my event body. The code would look something
as follows:

public class URLDecode implements Interceptor {

 public void initialize() {}

 public Event intercept(Event event) {
 try {
 byte[] decoded = URLDecoder.decode(new String(event.getBody()),
"UTF-8").getBytes("UTF-8");
 event.setBody(decoded);
 } catch UnsupportedEncodingException e) {
 // This shouldn't happen. Fall through to unaltered event.
 }

Chapter 6

[69]

 return event;
 }

 public List<Event> intercept(List<Event> events) {
 for (Event event:events) {
 intercept(event);
 }
 return events;
 }

 public void close() {}

 public static class Builder implements Interceptor.Builder {
 public Interceptor build() {
 return new URLDecode();
 }
 public void configure(Context context) {}
 }
}

Then to configure my new interceptor, use the FQDN for the Builder class
as the type:

agent.sources.s1.interceptors=i1
agent.sources.s1.interceptors.i1.type=com.example.URLDecoder$Builder

For more examples of how to pass and validate properties, look at the Flume source
code at existing interceptor implementations for inspiration.

Keep in mind that any heavy processing in your custom interceptor can affect
overall throughput, so be mindful of object churn or computationally intensive
processing in your implementations.

Tiering data flows
In Chapter 1, Overview and Architecture, we talked about tiering your data flows.
There are several reasons for wanting to do this. You may want to limit the number
of Flume agents that directly connect to your Hadoop cluster to limit the number
of parallel requests. You may also lack sufficient disk space on your application
servers to store a significant amount of data while you are performing maintenance
on your Hadoop cluster. Whatever your reason or use case, the most common
mechanism for chaining Flume agents is using the Avro Source/Sink pair.

Interceptors, ETL, and Routing

[70]

Avro Source/Sink
We covered Avro a bit in Chapter 4, Sink and Sink Processors, when we discussed
using it as an on-disk serialization format for files stored in HDFS. Here we'll put it
to use in communication between Flume agents. A typical configuration might look
something as follows:

HDFSSinkChannel

Flume agent

AvroSource

Data Data
Data

Data

Data

Source Data AvroSinkChannel

Data

Flume agent

Data

DataData

Data

Source Data AvroSinkChannel

Data

Flume agent

Data

DataData

Data

Data

Data

Data

Data

Data

HDFS

To use the Avro Source, you specify the type property with a value of avro.
You need to provide a bind address and port number to listen on:

collector.sources=av1
collector.sources.av1.type=avro
collector.sources.av1.bind=0.0.0.0
collector.sources.av1.port=42424
collector.sources.av1.channels=ch1
collector.channels=ch1

Chapter 6

[71]

collector.channels.ch1.type=memory
collector.sinks=k1
collector.sinks.k1.type=hdfs
collector.sinks.k1.channel=ch1
collector.sinks.k1.hdfs.path=/path/in/hdfs

Here we have configured the agent on the right that listens on port 42424, uses
a memory channel, and writes to HDFS. Here I've used the memory channel for
brevity of this example configuration. Also, note that I've given this agent a different
name, collector, just to avoid confusion.

The agents on the left—feeding the collector tier—might have a configuration similar
to this. I have left the sources off this configuration for brevity:

client.channels=ch1
client.channels.ch1.type=memory
client.sinks=k1
client.sinks.k1.type=avro
client.sinks.k1.channel=ch1
client.sinks.k1.hostname=collector.example.com
client.sinks.k1.port=42424

The hostname value, collector.example.com, has nothing to do with the agent
name on that machine, it is the host name (or you can use an IP) of the target machine
with the receiving Avro Source. This configuration, named client, would be applied
to both agents on the left assuming both had similar source configurations.

Since I don't like single points of failure, I would configure two collector agents with
the preceding configuration and instead set each client agent to round robin between
the two using a sink group. Again, I've left off the sources for brevity:

client.channels=ch1
client.channels.ch1.type=memory
client.sinks=k1 k2
client.sinks.k1.type=avro
client.sinks.k1.channel=ch1
client.sinks.k1.hostname=collectorA.example.com
client.sinks.k1.port=42424
client.sinks.k2.type=avro
client.sinks.k2.channel=ch1
client.sinks.k2.hostname=collectorB.example.com
client.sinks.k2.port=42424
client.sinkgroups=g1
client.sinkgroups.g1=k1 k2
client.sinkgroups.g1.processor.type=load_balance
client.sinkgroups.g1.processor.selector=round_robin
client.sinkgroups.g1.processor.backoff=true

Interceptors, ETL, and Routing

[72]

Command-line Avro
The Avro Source can also be used in conjunction with one of the command-line
options you may have noticed back in Chapter 2, Flume Quick Start. Rather than
running flume-ng with the agent parameter, you can pass the avro-client
parameter to send one or more files to an Avro Source. These are the avro-client
specific options from the help text:

avro-client options:
 --dirname <dir> directory to stream to avro source
 --host,-H <host> hostname to which events will be sent
(required)
 --port,-p <port> port of the avro source (required)
 --filename,-F <file> text file to stream to avro source [default:
std input]
 --headerFile,-R <file> headerFile containing headers as key/value
pairs on each new line
 --help,-h display help text

This variation is very useful for testing, resending data manually due to errors,
or importing older data stored elsewhere.

Just like an Avro Sink, you have to specify the host name and port you will be
sending data to. You can send a single file with the --filename option or all the files
in a directory with the --dirname option. If you specify neither of these, stdin will
be used. Here is how you might send a file named foo.log into the Flume agent
we previously configured:

$./flume-ng avro-client --filename foo.log --host collector.example.
com --port 42424

Each line of the input will be converted into a single Flume event.

Optionally, you can specify a file containing key/value pairs to set Flume
header values. The file uses the Java property file syntax. If I had a file named
headers.properties:

pointOfSale=US
environment=staging

Then including the --headerFile option would set these two headers on every
event created:

$./flume-ng avro-client --filename foo.log --headerFile headers.
properties --host collector.example.com --port 42424

Chapter 6

[73]

Log4J Appender
As we discussed in Chapter 5, Sources and Channel Selectors, there are issues that may
arise from using a filesystem file as a source. One way to avoid this problem is to
use the Flume Log4J Appender in your Java application(s). Under the hood, it uses
the same Avro communication that the Avro Sink uses, so you need only configure
it to send data to an Avro Source.

The Appender has two properties ,shown as follows in XML:

<appender name="FLUME" class="org.apache.flume.clients.log4jappender.
Log4jAppender">
 <param name="Hostname" value="collector.example.com"/>
 <param name="Port" value="42424"/>
</appender>

The format of the body will be dictated by the Appender's configured layout
(not shown). The log4j fields that get mapped to Flume headers are summarized
in the following table:

Flume header key Log4J LoggingEvent field
flume.client.log4j.logger.name event.getLoggerName()

flume.client.log4j.log.level event.getLevel() as a number.
See org.apache.log4j.Level for
mappings.

flume.client.log4j.timestamp event.getTimeStamp()

flume.client.log4j.message.
encoding

N/A. Always UTF8.

flume.client.log4j.logger.other Will only see this if there was a problem
mapping one of the previous fields—so
normally this won't be present.

See http://logging.apache.org/log4j/1.2/ for more details on using Log4J.

You will need to include the flume-ng-sdk JAR in the classpath of your Java
application at runtime to use Flume's Log4J Appender.

Keep in mind that if there is a problem sending data to the Avro Source, the
Appender will throw an exception and the log message will be dropped since there
is no place to put it. Keeping it in memory could quickly overload your JVM heap,
which is usually considered worse than dropping the data record.

Interceptors, ETL, and Routing

[74]

The Load Balancing Log4J Appender
I'm sure you noticed that the previous Log4j Appender only has a single host
name/port in its configuration. If you wanted to spread the load across multiple
collector agents, either for additional capacity or for fault-tolerance, you can use
the LoadBalancingLog4jAppender. This Appender has a single required property
named Hosts, which is a space-separated list of host names and port numbers
separated by a colon like so:

<appender name="FLUME" class="org.apache.flume.clients.log4jappender.
LoadBalancingLog4jAppender">
 <param name="Hosts" value="server1:42424 server2:42424"/>
</appender>

There is an optional property, Selector, which specifies the method that you want
to load balance. Valid values are RANDOM and ROUND_ROBIN. If not specified, the
default is RANDOM. You can implement your own selector, but that is outside the
scope of this book. If you are interested, go have a look at the well-documented
source code for the LoadBalancingLog4jAppender class.

The default selector mechanism for the Load Balancing Log4J Appender
if not specified is random. You'll notice this differs from the similar
functionality of the sink group covered in Chapter 4, Sink and Sink
Processors, where the default selector value is round robin.

This is yet another example of why you should always specify what you
intend and not rely on the defaults.

Finally, there is another optional property to override the maximum time for
exponential back off when a server cannot be contacted. Initially, if a server cannot
be contacted, one second will need to pass before that server is tried again. Each time
the server is unavailable, the retry time doubles, up to a default 30-second maximum.
If we wanted to increase this maximum to 2 minutes, we could specify a MaxBackoff
property in milliseconds like so:

<appender name="FLUME" class="org.apache.flume.clients.log4jappender.
LoadBalancingLog4jAppender">
 <param name="Hosts" value="server1:42424 server2:42424"/>
 <param name="Selector" value="ROUND_ROBIN"/>
 <param name="MaxBackoff" value="120000"/>
</appender>

In this example, we have also overridden the default random selector to use the
round robin selection.

Chapter 6

[75]

Routing
Routing of data to different destinations based on content should be fairly
straightforward now that you've been introduced to all the various mechanisms
in Flume.

The first step is to get the data you want to switch on into a Flume header by means
of a source-side interceptor, if the header isn't already available. The second step
is to use a multiplexing channel selector on that header value to switch the data
to an alternate channel.

For instance, let's say you wanted to capture all the exceptions to HDFS. In this
configuration you can see events coming in on the source s1 via Avro on port
42424. The event is tested to see if the body contains the text "Exception". If it
does, it creates a header key exception (with the value of Exception). This
header is used to switch these events to channel c1, and ultimately HDFS.
If the event didn't match the pattern, it would not have the exception header
and would get passed to channel c2 via the default selector, where it would be
forwarded via Avro serialization to port 12345 on the server foo.example.com.

agent.sources=s1
agent.sources.s1.type=avro
agent.sources.s1.bind=0.0.0.0
agent.sources.s1.port=42424
agent.sources.s1.interceptors=i1
agent.sources.s1.interceptors.i1.type=regex_extractor
agent.sources.s1.interceptors.i1.regex=(Exception)
agent.sources.s1.interceptors.i1.serializers=ex
agent.sources.s1.intercetpros.i1.serializers.ex.name=exception
agent.sources.s1.selector.type=multiplexing
agent.sources.s1.selector.header=exception
agent.sources.s1.selector.mapping.Exception=c1
agent.sources.s1.selector.default=c2
agent.channels=c1 c2
agent.channels.c1.type=memory
agent.channels.c2.type=memory
agent.sinks=k1 k2
agent.sinks.k1.type=hdfs
agent.sinks.k1.channel=c1
agent.sinks.k1.hdfs.path=/logs/exceptions/%y/%M/%d/%H

agent.sinks.k2.type=avro
agent.sinks.k2.channel=c2
agent.sinks.k2.hostname=foo.example.com
agent.sinks.k2.port=12345

Interceptors, ETL, and Routing

[76]

Summary
In this chapter we covered the following various interceptors shipped with Flume:

• Timestamp: This is used to add a timestamp header, possibly overwriting
an existing one.

• Host: This is used to add the Flume agent host name or IP as a header
in the event.

• Static: This is used to add static String headers.
• Regular expression filtering: This is used to include or exclude events based

on a matched regular expression.
• Regular expression extractor: This is used to create headers from

matched regular expression headers. It is also useful for routing with
channel selectors.

• Custom: This is used to create any custom transformations you need that
you can't find elsewhere.

We also covered tiering data flows using the Avro Source and Sink.

Next we introduced two Log4J Appenders, a single path and a load-balancing
version, for direct integration with Java applications.

Finally, we gave an example of using interceptors in conjunction with a channel
selector to provide routing decision logic.

In the next chapter we will cover monitoring of Flume data flows using Ganglia.

Monitoring Flume
The User Guide for Flume states:

Monitoring in Flume is still a work in progress. Changes can happen very often.
Several Flume components report metrics to the JMX platform MBean server.
These metrics can be queried using JConsole.

While JMX is fine for causal browsing of metric values, the number of eyeballs looking
at JConsole doesn't scale when you have hundreds or even thousands of servers
sending data all over the place. What you need is a way to watch everything all at
once. But what are the important things to look for? That is a very difficult question,
but I'll try and cover several of the items I feel are important as we cover monitoring
options in this chapter.

Monitoring the agent process
The most obvious type of monitoring you'll want to perform is the Flume agent
process monitoring, that is, making sure the agent is still running. There are many
products that do this kind of process monitoring, so there is no way we can cover
them all. If you work at a company of any reasonable size, chances are there is
already a system in place for this. If this is the case, do not go off and build your
own. The last thing operations wants is yet another screen to watch 24/7.

Monit
If you do not already have something in place, one freemium option is Monit
(http://mmonit.com/monit/). The developers of Monit have a paid version that
provides more bells and whistles you may want to consider. Even in the free form,
it can provide you a way to check that the Flume agent is running, restart it if it
isn't, and send you an e-mail when this happens so you can look into why it died.

Monitoring Flume

[78]

Monit does much more, but this functionality is what we will cover here. If you are
smart, and I know you are, you will add checks on the disk, CPU, and memory usage
at a minimum, in addition to what we cover in this chapter.

Nagios
Another option for Flume agent process monitoring is Nagios (http://www.
nagios.org/). Like Monit, you can configure Nagios to watch your Flume agents
and alert you via WebUI, e-mail, or an SNMP trap. That said, it doesn't have restart
capabilities. The community is quite strong and there are many plugins for other
applications available. My company uses this to check the availability of Hadoop
Web UIs. While not a complete picture of health, it does provide more information
to the overall monitoring of our Hadoop ecosystem.

Again, if you already have tools in place at your company, see if you can re-use
them before bringing in another tool.

Monitoring performance metrics
Now that we have covered a few options for process monitoring, how do you know
if your application is actually doing the work you think it is? On many occasions
I've seen a stuck syslog-ng process that appeared to be running, but it just wasn't
sending any data. I'm not picking on syslog-ng specifically; all software does this
when conditions occur that it isn't designed to deal with.

When talking about Flume data flows, you need to monitor the following:

• Data entering sources is within expected rates
• Data isn't overflowing your channels
• Data is exiting sinks at an expected rates

Flume has a pluggable monitoring framework, but as mentioned at the beginning
of the chapter, it is still very much a work in progress. That doesn't mean you
shouldn't use it since that would be foolish. It means you'll want to prepare extra
testing and integration time whenever you upgrade.

While not covered in the Flume documentation, it is common to enable JMX
in your Flume JVM (http://bit.ly/javajmx) and use the Nagios JMX plugin
(http://bit.ly/nagiosjmx) to alert on performance abnormalities in your
Flume agents.

Chapter 7

[79]

Ganglia
One of the available monitoring options for watching Flume internal metrics is
Ganglia integration. Ganglia (http://ganglia.sourceforge.net/) is an open
source monitoring tool used to collect metrics, display graphs, and can be tiered
to handle very large installations. To send your Flume metrics to your Ganglia
cluster, you need to pass some properties at startup time to your agent:

Java property Value Description

flume.monitoring.type gangla Set to gangla.
flume.monitoring.hosts host1:port1,host2:port2 A comma-

separated list of
host:port pairs
for your gmond
process(es).

flume.monitoring.
pollInterval

60 The number of
seconds between
sending of data
(default: 60
seconds).

flume.monitoring.
isGanglia3

false Set to true
if using older
ganglia 3
protocol. Default
is to send using
v3.1 protocol.

Look at each instance of gmond within the same network broadcast domain (since
reachability is based on multicast packets), and find the udp_recv_channel block
in gmond.conf. Let's say I had two nearby servers with these two corresponding
configuration blocks:

udp_recv_channel {
 mcast_join = 239.2.14.22
 port = 8649
 bind = 239.2.14.22
 retry_bind = true
}

udp_recv_channel {
 mcast_join = 239.2.11.71
 port = 8649
 bind = 239.2.11.71
 retry_bind = true
}

www.allitebooks.com

http://www.allitebooks.org

Monitoring Flume

[80]

In this case the IP and port are 239.2.14.22/8649 for the first server and
239.2.11.71/8649 for the second leading to these startup properties:

-Dflume.monitoring.type=gangla
-Dflume.monitoring.hosts=239.2.14.22:8649,239.2.11.71:8649

Here, I'm using defaults for poll interval and using the newer ganglia wire protocol.

While receiving data via TCP is supported in Ganglia, the current
Flume/Ganglia integration only supports sending data using a multicast
UDP. If you have a large/complicated network setup, you'll want to get
educated by your network engineers if things don't work as you expect.

The internal HTTP server
You can configure the Flume agent to start an HTTP server that will output
JSON that can be used by queries using outside mechanisms. Unlike the Ganglia
integration, some external entity has to call into the Flume agent to poll the data.
In theory, you could use Nagios to poll this JSON data and alert on certain conditions,
but I have personally never tried it. Of course this setup is very useful in development
and testing, especially if you are writing custom Flume components to be sure they
are generating useful metrics. Here is a summary of the Java properties you'll need
to set at startup of the Flume agent:

Java property Value Description
flume.monitoring.type http Set to http
flume.monitoring.port The port number The port number to bind the

HTTP server

The URL for metrics will be as follows:

http://SERVER_OR_IP_OF_AGENT:PORT/metrics

This is used for the following Flume configuration:
agent.sources = s1
agent.channels = c1
gent.sinks = k1
agent.sources.s1.type=avro
agent.sources.s1.bind=0.0.0.0
agent.sources.s1.port=12345
agent.sources.s1.channels=c1
agent.channels.c1.type=memory
agent.sinks.k1.type=avro
agent.sinks.k1.hostname=192.168.33.33
agent.sinks.k1.port=9999
agent.sinks.k1.channel=c1

Chapter 7

[81]

Also, the following startup parameters:

-Dflume.monitoring.type=http
-Dflume.monitoring.port=44444

Going to http://SERVER_OR_IP:44444/metrics, you might see something like the
following:

{
 "SOURCE.s1":{
 "OpenConnectionCount":"0",
 "AppendBatchAcceptedCount":"0",
 "AppendBatchReceivedCount":"0",
 "Type":"SOURCE",
 "EventAcceptedCount":"0",
 "AppendReceivedCount":"0",
 "StopTime":"0",
 "EventReceivedCount":"0",
 "StartTime":"1365128622891",
 "AppendAcceptedCount":"0"},
 "CHANNEL.c1":{
 "EventPutSuccessCount":"0",
 "ChannelFillPercentage":"0.0",
 "Type":"CHANNEL",
 "StopTime":"0",
 "EventPutAttemptCount":"0",
 "ChannelSize":"0",
 "StartTime":"1365128621890",
 "EventTakeSuccessCount":"0",
 "ChannelCapacity":"100",
 "EventTakeAttemptCount":"0"},
 "SINK.k1":{
 "BatchCompleteCount":"0",
 "ConnectionFailedCount":"4",
 "EventDrainAttemptCount":"0",
 "ConnectionCreatedCount":"0",
 "BatchEmptyCount":"0",
 "Type":"SINK",
 "ConnectionClosedCount":"0",
 "EventDrainSuccessCount":"0",
 "StopTime":"0",
 "StartTime":"1365128622325",
 "BatchUnderflowCount":"0"}
}

Monitoring Flume

[82]

As you can see, each source, sink, and channel is broken out separately with its
corresponding metrics. Each type of source, channel, and sink provides its own
set of metric keys, although there is some commonality, so be sure to check what
looks interesting. For instance, this Avro Source has OpenConnectionCount, which
that is the number of clients connected (and most likely sending data in). This may
help you decide if you have the expected number of clients relying on data, or
perhaps too many clients and you need to start tiering your agents.

Generally speaking, the channel's ChannelSize or ChannelFillPercentage will give
you a good idea of whether data is coming in faster than it is going out. It will also tell
you if you have it set large enough for the maintenance/outages for your data volume.

Looking at the sink, EventDrainSuccessCount versus EventDrainAttemptCount
will tell you how often output is successful when compared with the times tried. In
this example, I configured an Avro Sink to a nonexistent target. As you can see the
ConnectionFailedCount value is growing, which is a good indicator of persistent
connection problems. Even a growing ConnectionCreatedCount can indicate that
connections are dropping and reopening too often.

Really, there are no hard and fast rules besides watching ChannelSize/
ChannelFillPercentage. Each use case will have its own performance profile
so start small, set up your monitoring, and learn as you go.

Custom monitoring hooks
If you already have a monitoring system, you may want to make the extra effort
of developing a custom monitoring reporting mechanism. You may think of it
to be as simple as implementing the org.apache.flume.instrumentation.
MonitorService interface. You do need to do this, but looking at the interface,
you will only see a start() method and a stop() method. Unlike the more obvious
Interceptor paradigm, the agent expects that your MonitorService implementation
will start/stop a thread to send data on the expected or configured interval if it is
the type to send data to a receiving service. If you are going to operate a service,
such as the HTTP service, then start/stop would be used to start and stop your
listening service. The metrics themselves are published internally to JMX by the
various source, sinks, channels, and Interceptors using object names that start
with org.apache.flume. Your implementation will need to read these from
MBeanServer. The best advice I can give you, should you decide to implement your
own, is to look at the source of two existing implementations and do what they do.
To use your monitoring hook, set the flume.monitoring.type property to the
FQDN of your implementation class. Expect to have to rework any custom hooks
with new Flume versions until the framework matures and stabilized.

Chapter 7

[83]

Summary
In this chapter we covered monitoring Flume agents both from the process level
and the monitoring of internal metrics (is it doing work?).

Monit and Nagios were introduced as open source options for process watching.

Next we covered the Flume agent internal monitoring metrics with Ganglia
and JSON over HTTP implementations that ship with Apache Flume.

Finally, we covered how to integrate a custom monitoring implementation in case
you need to directly integrate directly to some other tool not supported by Flume
by default.

In our last chapter we will discuss some general considerations for your
Flume deployment.

There Is No Spoon – The
Realities of Real-time

Distributed Data Collection
In this last chapter, I thought we'd cover some of the less concrete, more random
thoughts I have around data collection into Hadoop. There's no hard science behind
some of this and you should feel perfectly at ease to disagree with me.
While Hadoop is a great tool for consuming vast quantities of data, I often think
of a picture of the logjam that occurred in 1886 on the St. Croix River in Minnesota
(http://www.nps.gov/sacn/historyculture/stories.htm). When dealing with
too much data you want to make sure you don't jam your river. Be sure you take
the previous chapter on monitoring seriously and not just as a nice to have.

Transport time versus log time
I had a situation where data was being placed using date patterns in the filename
and/or paths in HDFS didn't match the contents of the directories. The expectation
was that data in 2013/03/29 contained all the data for March 29, 2013. But the reality
was that the date was being pulled from the transport. It turns out that the version
of syslog we were using was rewriting the header, including the date portion, causing
the data to take on the transport time and not reflect the original time of the record.
Usually the offsets were tiny—just a second or two—so nobody really took notice.
But then one day one of the relay servers died and when the data, which had got
stuck on upstream servers, was finally sent it had the current time. In this case it
was shifted by a couple of days. What a mess.
Be sure this isn't happening to you if you are placing data by date. Check the date
edge cases to see that they are what you expect, and make sure you test your outage
scenarios before they happen for real in production.

There Is No Spoon – The Realities of Real-time Distributed Data Collection

[86]

As I mentioned before, these retransmits due to planned or unplanned maintenance
(or even a tiny network hiccup) will most likely cause duplicate and out-of-order
events to arrive, so be sure to account for this when processing raw data.
There are no single delivery/ordering guarantees in Flume. If you need that,
use a transactional database instead.

Time zones are evil
In case you missed my bias against using local time in Chapter 4, Sinks and
Sink Processors, I'll repeat it here a little stronger—time zones are evil. Evil
like Dr. Evil (http://en.wikipedia.org/wiki/Dr._Evil)—and let's not
forget about its "Mini Me" (http://en.wikipedia.org/wiki/Mini-Me)
counterpart—daylight savings time.

We live in a global world now. You are pulling data from all over the place
into your Hadoop cluster. You may even have multiple data centers in
different parts of the country (or the world). The last thing you want to be
doing while trying to analyze your data is to deal with askew data. Daylight
savings time changes at least somewhere on Earth a dozen times in a year. Just
look at the history (ftp://ftp.iana.org/tz/releases/). Save yourself
a headache and just normalize it to UTC. If you want to convert it to "local time"
on its way to human eyeballs, feel free. But while it lives in your cluster, keep
it normalized to UTC. Consider adopting UTC everywhere via this Java startup
parameter (if you can't set it system-wide):

-Duser.timezone=UTC

I live in Chicago and our computers at work use Central Time, which adjust for
daylight savings. In our Hadoop cluster we like to keep data in a YYYY/MM/DD/HH
layout. Twice a year some things break slightly. In the fall, we have twice as much
data in our 2 a.m. directory. In the spring there is no 2 a.m. directory. Madness!

Capacity planning
Regardless how much data you think you have, things will change over time. New
projects will pop up and data creation rates for your existing projects will change
(up or down). Data volume will usually ebb and flow with the traffic of the day.
Finally, the number of servers feeding your Hadoop cluster will change over time.

There are many schools of thought on how much extra storage capacity to keep in
your Hadoop cluster (we use the totally unscientific value of 20 percent—meaning
we usually plan for 80 percent full when ordering additional hardware but don't
start to panic until we hit the 85 percent to 90 percent utilization number).

Chapter 8

[87]

You may also need to set up multiple flows inside a single agent. The source and
sink processors are currently single threaded so there is a limit to what tuning batch
sizes can accomplish when under heavy data volumes.
The number of Flume agents feeding Hadoop, should be adjusted based
on real numbers. Watch the channel size to see how well the writes are keeping
up under normal loads. Adjust the maximum channel capacity to handle whatever
amount of overhead makes you feel good. You can always spend way more then
you need, but even a prolonged outage may overflow the most conservative
estimates. This is when you have to pick and choose which data is more important
to you and adjust your channel capacities to reflect that. That way, if you exceed
your limits, the less important data will be the first to be dropped.
Chances are that your company doesn't have an infinite amount of money and at
some point the value of the data versus the cost of continuing to expand your cluster
will start to be questioned. This is why setting limits on the volume of data collected
is very important. Any project sending data into Hadoop should be able to say what
the value of that data is and what the loss is if we delete the older stuff. This is the
only way the people writing the checks can make an informed decision.

Considerations for multiple data centers
If you run your business out of multiple data centers and have a large volume of
data collected, you may want to consider setting up a Hadoop cluster in each data
center rather than sending all your collected data back to a single data center. This
will make analyzing the data more difficult as you can't just run one MapReduce job
against all the data. Instead you would have to run parallel jobs and then combine
the results in a second pass. You can do this with searching and counting problems,
but not things such as averages—an average of averages isn't the same as an average.

Pulling all your data into a single cluster may also be more than your networking
can handle. Depending on how your data centers are connected to each other, you
simply may not be able to transmit your desired volume of data. Finally, consider
that a complete cluster failure or corruption may wipe out everything since most
clusters are usually too big to back up everything except high value data. Having
some of the old data in this case is sometimes better than having nothing. With
multiple Hadoop clusters, you have the ability to use a failover sink processor to
forward data to a different cluster if you don't want to wait to send to the local one.

If you do choose to send all your data to a single destination, consider adding a
large disk capacity machine as a relay server for the data center. This way if there
is a communication issue or extended cluster maintenance, you can let data pile up
on a machine different than the ones trying to service your customers. This is sound
advice even in a single data center situation.

There Is No Spoon – The Realities of Real-time Distributed Data Collection

[88]

Compliance and data expiry
Remember that the data your company is collecting on your customers may
contain sensitive information. You may be bound by other regulatory limitations
on access to data such as Payment Card Industry (PCI—http://en.wikipedia.
org/wiki/PCI_DSS) or Sarbanes Oxley (SOX—http://en.wikipedia.org/wiki/
Sarbanes%E2%80%93Oxley_Act). If you aren't properly handling access to this
data in your cluster, the government will lean on you or worse, you won't have
customers anymore if they feel you aren't protecting their rights and identities.
Consider scrambling, trimming, or obfuscating your data of personal information.
Chances are the business insight you are looking for falls more into the category
of "how many people who search for hammer actually buy one?" rather than
"how many customers are named Bob?" As you saw in Chapter 6, Interceptors,
it would be very easy to write an Interceptor to obfuscate Personally Identifiable
Information (PII—http://en.wikipedia.org/wiki/Personally_identifiable_
information) as you move it around.

Your company probably has a document retention policy that most likely includes
the data you are putting into Hadoop. Make sure you remove data that your policy
says you aren't supposed to be keeping around anymore. The last thing you want
is a visit from the lawyers.

Summary
In this chapter we covered several real-world considerations you need to think about
when planning your Flume implementation, including the following:

• Transport time not always matching event time
• The mayhem introduced with daylight savings time to your time-based logic
• Capacity planning considerations
• Items to consider when you have more than one data center
• Data compliance
• Data expiration

I hope you enjoyed this book. Hopefully you will be able to apply much of this
information directly in your application/Hadoop integration efforts.

Thanks. This was fun.

Index
Symbols
-c parameter 21
-Dflume.root.logger property 20
--dirname option 72
--headerFile option 72

A
agent 10
agent.channels.access 17
agent.channels property 18
agent command 20
agent process

monitoring 77
Apache Avro serializer 40
Apache Bigtop project

URL 16
avro-client parameter 72
avro_event serializer 39
Avro Sink. See Avro Source
Avro Source

about 70
command-line 72
using 70, 71

B
batchSize property 50, 52, 57
best effort (BE) 8
bufferMaxLines property 52
byteCapacityBufferPercentage, configura-

tion parameter 26
byteCapacity, configuration parameter 26

C
capacity, configuration parameter 26, 28
channel 10
ChannelException 25
channel parameter 34
channel selector

about 58
multiplexing channel selector 58
replicating channel selector 58

channels parameter 55
channels property 50, 52, 54, 56
charset.default property 57
charset.port.PORT# property 57
checkpointDir, configuration parameter 28
checkpointInterval, configuration parameter

28
Cloudera

about 7
URL 17

codecs 38
command property 50
CompressedStream file type 42

D
data flows

tiering 69
data

routing 75
dataDir path 30
dataDirs, configuration parameter 28
disk failover (DFO) 8

[90]

E
Elastic Search 13
end-to-end (E2E) 8
event 11, 61
Event serializer

about 39
Apache Avro 40
File type 41
Text output 39
Text with headers 39
timeouts and workers 42, 43

eventSize parameter 55
eventSize property 57
excludeEvents property 64
exec source

about 49, 50
batchSize property 50, 51
channels property 50
command property 50
logStdErr property 50
restart property 50
restartThrottle property 50
type property 50

F
Facility, header key 54, 55, 57
failover 45
File Channel

about 27
capacity, configuration parameter 28
checkpointDir, configuration parameter 28
checkpointInterval, configuration param-

eter 28
configuration parameters 28
dataDirs, configuration parameter 28
keep-alive, configuration parameter 28
maxFileSize, configuration parameter 28
minimumRequiredSpace, configuration

parameter 28
transactionCapacity, configuration param-

eter 28
using 28
write-timeout, configuration parameter 28

fileHeaderKey property 52
fileHeader property 52
fileSuffix property 52

File Type
about 41
Compressed stream file type 42
Data stream file type 41
SequenceFile file type 41

Flume
configuration file, overview 17
downloading 15
event 11, 61
in Hadoop distributions 16
monitoring 77
URL 15

Flume 0.9 8
Flume 1.X 8, 9
flume.client.log4j.logger.name 73
flume.client.log4j.logger.other 73
flume.client.log4j.log.level 73
flume.client.log4j.message.encoding 73
flume.client.log4j.timestamp 73
Flume JVM

URL 78
flume.monitoring.hosts property 79
flume.monitoring.isGanglia3 property 79
flume.monitoring.pollInterval property 79
flume.monitoring.port type property 80
flume.monitoring.type property 79-82
Flume-NG 8
flume.syslog.status, header key 54-57

G
Ganglia

about 79
URL 79

H
Hadoop distributions

Flume 16
Hadoop File System. See HDFS
HDFS

about 7, 13
issues 9, 10

hdfs.batchSize parameter 35
hdfs.callTimeout property 42
hdfs.codeC parameter 35
hdfs.filePrefix parameter 34
hdfs.fileSuffix parameter 34

[91]

hdfs.fileSuffix property 35, 38
hdfs.fileType property 41
hdfs.idleTimeout property 42, 43
hdfs.inUsePrefix parameter 35
hdfs.inUseSuffix parameter 35
hdfs.maxOpenFiles parameter 34
hdfs.path parameter 34
hdfs.rollCount parameter 35
hdfs.rollInterval parameter 35
hdfs.rollSize parameter 35
hdfs.rollSize rotation 38
hdfs.rollTimerPoolSize property 42, 43
hdfs.round parameter 34
hdfs.roundUnit parameter 35
hdfs.roundValue parameter 34
HDFS Sink

about 33, 34
absolute 34
absolute with server name 34
channel parameter 34
file rotation 37, 38
hdfs.batchSize parameter 35
hdfs.codeC parameter 35
hdfs.filePrefix parameter 34
hdfs.fileSuffix parameter 34
hdfs.inUsePrefix parameter 35
hdfs.inUseSuffix parameter 35
hdfs.maxOpenFiles parameter 34
hdfs.path parameter 34
hdfs.rollCount parameter 35
hdfs.rollInterval parameter 35
hdfs.rollSize parameter 35
hdfs.round parameter 34
hdfs.roundUnit parameter 35
hdfs.roundValue parameter 34
hdfs.timeZone parameter 35
path and filename 35-37
relative 34
type parameter 34
using 33

hdfs.threadsPoolSize property 42
hdfs.timeZone parameter 35
hdfs.timeZone property 37
hdfs.writeType property 41
Hello World example 18-22
help command 20

Hortonworks
URL 17

hostHeader property 63
Host interceptor

about 63
hostHeader property 63
preserveExisting property 63
type property 63
useIP property 63

hostname, header key 54-57
host parameter 55
host property 54, 57
HTTP server

about 80-82
flume.monitoring.port type property 80
flume.monitoring.type property 80

I
interceptors

about 12, 61, 62
custom interceptors 68, 69
Host interceptor 63
regular expression extractor interceptor

65-67
regular expression filtering interceptor 64
Static interceptor 63, 64
Timestamp interceptor 62

interceptors property 61

J
JMX 77

K
keep-alive, configuration parameter 26, 28
keep-alive parameter 27
key property 64

L
load balancing 44
LoadBalancingLog4jAppender class 74
local filesystem backed channel 25
Log4J Appender

about 73
flume.client.log4j.logger.name 73

[92]

flume.client.log4j.logger.other 73
flume.client.log4j.log.level 73
flume.client.log4j.message.encoding 73
flume.client.log4j.timestamp 73
Flume headers 73
load balancing 74
properties 73

logStdErr property 50
log time

versus transport time 85, 86

M
MapR

URL 17
MaxBackoff property 74
maxBufferLineLength property 52
maxFileSize, configuration parameter 28
memory-backed channel 25
Memory Channel

about 18, 26
byteCapacityBufferPercentage, configura-

tion parameter 26
byteCapacity, configuration parameter 26
capacity, configuration parameter 26
configuration parameters 26
keep-alive, configuration parameter 26
transactionCapacity, configuration param-

eter 26
type, configuration parameter 26

minimumRequiredSpace, configuration
parameter 28

Monit
about 77, 78
URL 77

multiple data centers
considerations 87

multiplexing channel selector 58
multiport syslog TCP source

about 56
batchSize property 57
channels property 56
charset.default property 57
charset.port.PORT# property 57
eventSize property 57
Facility, header key 57

flume.syslog.status, header key 57
hostname, header key 57
numProcessors property 57
portHeader property 57
ports property 56
priority, header key 57
readBufferSize property 57
timestamp, header key 57
type property 56

N
Nagios

about 78
URL 78

Nagios JMX
flume.monitoring.hosts property 79
flume.monitoring.isGanglia3 property 79
flume.monitoring.pollInterval property 79
flume.monitoring.type property 79
URL 78

name 17
netcat 22
non-durable channel 25
numProcessors property 57

O
org.apache.flume.interceptor.Interceptor

interface 68
org.apache.flume.sink.AbstractSink class 33
org.apache.flume.source.AbstractSource

class 47

P
Payment Card Industry. See PCI
PCI 88
Personally Identifiable Information. See PII
PII 88
Portable Operating System Interface. See

POSIX
portHeader property 57
port parameter 55
port property 54
ports property 56
POSIX 9

[93]

preserveExisting property 62-64
priority, header key 54-57
processor.backoff property 44
processor.maxpenality property 45
processor.priority.NAME property 45
processor.priority property 45
processor.selector property 44
processor.type property 44, 45

R
readBufferSize property 57
Red Hat Enterprise Linux (RHEL) 16
regex property 64, 65, 68
regular expression

filtering 65
regular expression extractor interceptor

about 65-67
properties 68
regex property 68
serializers.NAME.name property 68
serializers.NAME.PROP property 68
serializers.NAME.type property 68
serializers property 68
type property 68

regular expression filtering interceptor
about 64
cludeEvents property 64
properties 64
regex property 64
type property 64

relayHost header 63
replicating channel selector 58
restart property 50
restartThrottle property 50
RFC 3164

URL 53
RFC 5424

URL 53
routing 75
rsyslog

URL 53

S
Sarbanes Oxley. See SOX
selector.header property 58

selector.type property 58
serializer.appendNewLine property 39
serializer.compressionCodec property 40
serializer property 39
serializers 65
serializers.NAME.name property 68
serializers.NAME.PROP property 68
serializers.NAME.type property 68
serializers property 68
serializer.syncIntervalBytes property 40
Sink 10
Sink groups

about 43, 44
failover 45
load balancing 44

source 10
SOX 88
spoolDir property 51, 52
spooling directory source

about 51, 52
batchSize property 52
bufferMaxLines property 52
channels property 52
fileHeaderKey property 52
fileHeader property 52
fileSuffix property 52
maxBufferLineLength property 52
spoolDir property 52
type property 52

start() method 82
Static interceptor

about 63
key property 64
preserveExisting property 64
properties 64
type property 64
value property 64

stop() method 82
syslog sources

about 53
multiport syslog TCP source 56, 57
syslog TCP source 55
syslog UDP source 53, 54

syslog TCP source
about 55
channels parameter 55
eventSize parameter 55

[94]

Facility, header key 55
flume.syslog.status, header key 55
hostname, header key 55
host parameter 55
port parameter 55
priority, header key 55
timestamp, header key 55
type parameter 55

syslog UDP source
about 53
channels property 54
Facility, header key 54
flume.syslog.status, header key 54
hostname, header key 54
host property 54
port property 54
priority, header key 54
timestamp, header key 54
type property 54

T
tail 47
tail -F command 49
TailSource 47, 48
Text output serializer 39
text_with_headers serializer 39

timestamp, header key 54-57
Timestamp interceptor

preserveExisting property 62
properties 62
type property 62

time zones 86
transactionCapacity, configuration param-

eter 26, 28
transport time

versus log time 85, 86
type, configuration parameter 26
type parameter 34, 55
type property 50, 52, 54, 56, 63, 64, 68

U
useIP property 63

V
value property 64
version command 20

W
Write Ahead Log (WAL) 27
write-timeout, configuration parameter 28

Thank you for buying
Apache Flume: Distributed Log Collection

for Hadoop

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Hadoop Beginner's Guide
ISBN: 978-1-84951-730-0 Paperback: 398 pages

Learn how to crunch big data to extract meaning
from the data avalanche

1. Learn tools and techniques that let you
approach big data with relish and not fear

2. Shows how to build a complete infrastructure
to handle your needs as your data grows

3. Hands-on examples in each chapter give the big
picture while also giving direct experience

Hadoop Real-World Solutions
Cookbook
ISBN: 978-1-84951-912-0 Paperback: 316 pages

Realistic, simple code examples to solve problems at
scale with Hadoop and related technologies

1. Solutions to common problems when working
in the Hadoop environment

2. Recipes for (un)loading data, analytics, and
troubleshooting

3. In depth code examples demonstrating various
analytic models, analytic solutions, and
common best practices

Please check www.PacktPub.com for information on our titles

Hadoop Operations and Cluster
Management Cookbook
ISBN: 978-1-78216-516-3 Paperback: 350 pages

Over 70 recipes showing you how to design, configure,
manage, monitor, and tune a Hadoop cluster

1. Hands-on recipes to configure a Hadoop cluster
from bare metal hardware nodes

2. Practical and in depth explanation of cluster
management commands

3. Easy-to-understand recipes for securing and
monitoring a Hadoop cluster, and design
considerations

HBase Administration Cookbook
ISBN: 978-1-84951-714-0 Paperback: 332 pages

Master HBase configuration and administration for
optimum database performance

1. Move large amounts of data into HBase and
learn how to manage it efficiently

2. Set up HBase on the cloud, get it ready for
production, and run it smoothly with high
performance

3. Maximize the ability of HBase with the Hadoop
eco-system including HDFS, MapReduce,
Zookeeper, and Hive

Please check www.PacktPub.com for information on our titles

www.allitebooks.com

http://www.allitebooks.org

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Overview and Architecture
	Flume 0.9
	Flume 1.X (Flume-NG)
	The problem with HDFS and streaming data/logs
	Sources, channels, and sinks
	Flume events
	Interceptors, channel selectors,
and sink processors
	Tiered data collection (multiple flows
and/or agents)

	Chapter 2: Flume Quick Start
	Downloading Flume
	Flume in Hadoop distributions

	Flume configuration file overview
	Starting up with "Hello World"
	Summary

	Chapter 3: Channels
	Memory channel
	File channel
	Summary

	Chapter 4: Sinks and Sink Processors
	HDFS sink
	Path and filename
	File rotation

	Compression codecs
	Event serializers
	Text output
	Text with headers
	Apache Avro
	File type
	Sequence file
	Data stream
	Compressed stream

	Timeouts and workers

	Sink groups
	Load balancing
	Failover

	Summary

	Chapter 5: Sources and Channel Selectors
	The problem with using tail
	The exec source
	The spooling directory source
	Syslog sources
	The syslog UDP source
	The syslog TCP source
	The multiport syslog TCP source

	Channel selectors
	Replicating
	Multiplexing

	Summary

	Chapter 6: Interceptors, ETL, and Routing
	Interceptors
	Timestamp
	Host
	Static
	Regular expression filtering
	Regular expression extractor
	Custom interceptors

	Tiering data flows
	Avro Source/Sink
	Command-line Avro
	Log4J Appender
	The Load Balancing Log4J Appender

	Routing
	Summary

	Chapter 7: Monitoring Flume
	Monitoring the agent process
	Monit
	Nagios

	Monitoring performance metrics
	Ganglia
	The internal HTTP server
	Custom monitoring hooks

	Summary

	Chapter 8: There Is No Spoon – The Realities of Real-time Distributed Data Collection
	Transport time versus log time
	Time zones are evil
	Capacity planning
	Considerations for multiple data centers
	Compliance and data expiry
	Summary

	Index

