
www.apress.com

US $24.99

Shelve in:
Mobile Computing

User level:
Intermediate

SOURCE CODE ONLINE9 781484 217832

52499
ISBN 978-1-4842-1783-2

This concise one-of-a-kind book walks you through creating fantastic entertainment
apps for one of the newest Android platforms. Android TV Apps Development:
Building for Media and Games will demystify some of the newest APIs and present
the tools necessary for building applications that run on Android TV.

Walking through example applications, you will learn the vocabulary necessary
to solve real-world problems and how to present your content on the television
through Android. In addition to practical code examples, you will learn about various
design considerations that will make using your apps an enjoyable experience for
users.

You will learn:

• How to design a custom experience that works well for television users
• How to create a media app for Android TV using the Android Leanback

Support library
• The additional features of Android TV for users to discover your content,

such as global search and recommendations
• Some of the game design and development considerations for Android TV
• How to distribute your Android TV app to users

Android TV Apps Development

B O O K S F O R P R O F E S S I O N A L S B Y P R O F E S S I O N A L S®

Android TV Apps
Development

Building for Media and Games
—
Paul Trebilcox-Ruiz

Trebilcox-Ruiz
Android TV Apps Developm

ent

www.allitebooks.com

http://www.allitebooks.org

Android TV
Apps Development

Building for Media and Games

Paul Trebilcox-Ruiz

www.allitebooks.com

http://www.allitebooks.org

Android TV Apps Development: Building for Media and Games

Copyright © 2016 by Paul Trebilcox-Ruiz

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of
the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1783-2

ISBN-13 (electronic): 978-1-4842-1784-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Development Editor: Chris Nelson
Technical Reviewer: Wallace Jackson
Editorial Board: Steve Anglin, Pramila Balan, Louise Corrigan, Jonathan Gennick,

Robert Hutchinson, Celestin Suresh John, Michelle Lowman, James Markham,
Susan McDermott, Matthew Moodie, Jeffrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com/9781484217832. For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/. Readers can also access source code at
SpringerLink in the Supplementary Material section for each chapter.

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484217832
www.apress.com/source-code/
http://www.allitebooks.org

iii

Contents at a
Glance

About the Author �� ix

About the Technical Reviewer �� xi

 ■Chapter 1: Getting Started �� 1

 ■Chapter 2: Planning Your App ��� 9

 ■Chapter 3: Building a Media App �� 21

 ■Chapter 4: Enriching Your Media Apps ��� 51

 ■Chapter 5: The Android TV Platform for Game Development �������� 89

 ■Chapter 6: Android TV App Publishing ��������������������������������������� 111

Index �� 117

www.allitebooks.com

http://www.allitebooks.org

v

Contents

About the Author �� ix

About the Technical Reviewer �� xi

 ■ Chapter 1: Getting Started ��� 1

What Exactly Is Android TV? �� 1

What to Expect from this Book �� 2

Getting Set Up ��� 2

Creating a New Android TV Project �� 3

Running Your Android TV App �� 5

Summary ��� 8

 ■Chapter 2: Planning Your App ��� 9

Android TV Home Screen ��� 9

Launcher Icon ��� 11

The Recommendations Row ��� 12

Global Search ��� 14

User Experience Guidelines ��� 15

Casual Consumption ��� 15

Cinematic Experience ��� 16

Keep It Simple �� 16

www.allitebooks.com

http://www.allitebooks.org

Contentsvi

Designing Your Layout ��� 16

Coloration ��� 17

Using Text ��� 17

Other Considerations ��� 18

Summary ��� 19

 ■Chapter 3: Building a Media App �� 21

Project Setup ��� 21

Creating the Android Studio Project ��� 21

Updating Dependencies �� 22

Building the Project Skeleton ��� 23

Building the BrowseFragment Class ��� 24

Creating the Data �� 25

Creating the Data Model ��� 25

Loading the Data �� 27

Customizing the BrowseFragment UI ��� 29

Creating a Presenter ��� 32

Creating a Video Details Screen �� 34

Setting Up Video Details ��� 34

Wiring Up Video Details �� 36

Displaying Content Details �� 37

Playing and Controlling Content �� 43

Creating the Media Player �� 43

Building the Playback Control Fragment �� 44

Creating Actions ��� 47

Summary ��� 50

 ■Chapter 4: Enriching Your Media Apps ��� 51

In-App Searching ��� 51

Adding a SearchOrbView �� 52

Creating the Local Search Activity and Fragment ��� 54

www.allitebooks.com

http://www.allitebooks.org

Contents

vii

Implementing Local Search from a Keyboard��� 56

Using Voice Input for Local Search ��� 61

Implementing a Preference Screen ��� 62

Displaying a Preference Item Entry Point ��� 63

Creating the Preference Screen ��� 66

Using Recommendations��� 71

Building Recommendation Cards ��� 71

Starting the Recommendation Service ��� 74

Android TV Global Search �� 77

Building the Search Database �� 77

Creating a Global Search Content Provider��� 82

Exposing the Content Provider ��� 83

Reacting to the Search Action �� 84

More Media App Features ��� 86

Now Playing Card ��� 86

GuidedStepFragment �� 86

Live Channels ��� 86

Summary ��� 87

 ■Chapter 5: The Android TV Platform for Game Development �������� 89

Android TV Games vs� Mobile �� 89

Manifest Setup �� 90

Gamepad Controller Input ��� 90

Setting Up the Controller Demo Project �� 91

Storing Controller Inputs ��� 93

Controller Best Practices �� 98

Using the Local Area Network ��� 99

Setting Up a Second Screen Project ��� 99

Advertising over the LAN �� 102

Discovering Over the LAN ��� 105

www.allitebooks.com

http://www.allitebooks.org

Contentsviii

Google Play Game Services ��� 109

Achievements ��� 109

Leaderboards �� 109

Saved Games �� 109

Multiplayer �� 110

Quests and Events �� 110

Summary ��� 110

 ■Chapter 6: Android TV App Publishing ��������������������������������������� 111

Android TV App Checklist �� 111

Support the Android TV OS ��� 111

UI Design �� 112

Searching and Discovery �� 113

Games ��� 113

Distributing Your Application ��� 113

Google Play Store Distribution �� 113

Amazon Fire TV Distribution ��� 114

Summary ��� 114

Index �� 117

www.allitebooks.com

http://www.allitebooks.org

ix

About the Author
Paul Trebilcox-Ruiz is a software engineer on
the emerging technologies team at Sphero,
a Boulder, Colorado, based company best
known for its work on a toy version of the
Star Wars BB-8 Droid. Paul has a degree
in computer science from California State
University, Fresno. His main interests are in the
Android platform, Android TV, and wearable
computing. He also actively participates in
hackathons in the Denver/Boulder area and
writes Android technical tutorials.

www.allitebooks.com

http://www.allitebooks.org

xi

About the Technical
Reviewer

Wallace Jackson has been writing for leading
multimedia publications about his work in new
media content development since the advent
of Multimedia Producer Magazine nearly two
decades ago. He has authored a half-dozen
Android book titles for Apress, including four
titles in the popular Pro Android series. Wallace
received his undergraduate degree in business
economics from the University of California
at Los Angeles and a graduate degree in MIS
design and implementation from the University
of Southern California. He is currently the CEO
of Mind Taffy Design, a new media content
production and digital campaign design and
development agency.

www.allitebooks.com

http://www.allitebooks.org

1

Chapter 1
Getting Started
As we all know, technology is constantly progressing in every aspect of our
lives. With the explosion of smart phones and tablets, it was only a matter
of time before televisions joined the fray as one of the next connected
“smart” devices. While interactive televisions have been around for a few
years, major contenders have only recently entered the market, with Android
TV having been introduced in June of 2014 (albeit after the failed attempt
of Google TV and the huge success of Chromecast), and Apple TV finally
opening their platform to app developers in September of 2015. Given this,
now is the perfect time to prepare for the next trend in app development by
expanding your skillset with Android TV.

What Exactly Is Android TV?
Android TV is an interactive television platform developed by Google and
released at its I/O conference in 2014. Taking what Google had learned
from one of their previous attempts at entering the living room, known as
Google TV, they created this operating system to be easily embedded in
television sets or to allow traditional “dumb” TVs to become interactive TVs
through the use of standalone set-top boxes. The new platform is a version
of Android that has been optimized for television, and has access to all of
the features developers are already familiar with, as well as some additional
components provided through the Leanback Support library.

In addition to being able to create native applications for Android TV, the
operating system also provides support for Google Cast. Google Cast
is familiar to most people as the technology behind the Chromecast.
This means that if your existing application supports casting, then users
will still be able to use it with the Android TV, though without the full

CHAPTER 1: Getting Started2

immersive experience provided by having a native Android TV app. While
understanding how to develop cast enabled apps is useful, this book will
focus on developing native apps for Android TV.

What to Expect from this Book
This book is intended to get you started with the Android TV platform so
that you can extend existing apps or create your own to improve the living
room experience of your users. You should have a basic understanding of
Android development, as you will be working with adapters, fragments,
activities, views, and other standard Android components. Anything covered
that has been specifically introduced for Android TV will be discussed in this
book, so no previous knowledge of those components is required. As you
work through this book, you will create a relatively simple Android TV media
application by writing each of the components in order to fully understand
how the application operates. You will also build a couple of small example
programs that emphasize additional APIs, such as LAN communication
and reading input from the game controller, so you can start to build other
applications such as games and utility programs. Along the way you will
learn design concepts related to what makes the user experience different
on a television compared to smart phones and tablets.

By the time you finish reading this book, you should have a firm grasp on the
vocabulary associated with Android TV. Not only will you be able to create
apps for the platform, but you should also be able to confidently seek out
answers to your more complicated questions by understanding what you are
looking for when searching through forums and the extensive, well-written
Android documentation from Google.

Getting Set Up
One of the nice things about developing for Android is that the development
tools can be used on most modern computer platforms, and Android TV
development is no different. For coding the examples in this book, you will
need a computer running Windows, Mac OS X, or Linux. This book will
focus on using Android Studio as the development environment, which
itself currently requires the Java Runtime Environment (JRE) and Java
Development Kit (JDK). If you do not already have Android Studio, you can
get it and find the official system requirements, including minimum operating
system versions, for Android development by visiting https://developer.
android.com/sdk/index.html, downloading Android Studio, and following
the installation instructions for your operating system. At the time of this
writing, the latest version of Android Studio is 1.4. During the installation
process you will need to install the platform tools and APIs for at least
Android 5.0 (Lollipop).

https://developer.android.com/sdk/index.html
https://developer.android.com/sdk/index.html

CHAPTER 1: Getting Started

3

Creating a New Android TV Project
Once you have installed and set up Android Studio, you can create a sample
project using the base Android TV template provided by Google. Do this by
opening Android Studio and clicking on Start a New Android Studio Project
under the Quick Start header.

When you arrive on the Configure Your New Project screen, set the Application
Name to Hello World, the Company Domain to apress.com, and your Project
Location to wherever you want to save your source code (see Figure 1-1).
Once you have filled in all of the required information, click Next and you will
be taken to a screen to select which form factors your app will support.

Figure 1-1. Configure your new project screen

For your Hello World application, unselect the check box next to Phone
and Tablet and activate the check box next to TV. While you may have a
module in your project for supporting phones and tablets, we will ignore that
case for the sake of simplicity in this book. The minimum API version you
will need for Android TV is at the oldest 21 (Lollipop), as Android TV was
introduced with Lollipop. Figure 1-2 shows what your target Android devices
screen should look like before continuing on.

CHAPTER 1: Getting Started4

When you click Next, you’ll be taken to a screen that asks whether you
want to create an empty project or a default Android TV activity, as shown in
Figure 1-3. For this sample, choose the Android TV Activity option.

Figure 1-2. Screen for selecting form factors supported by your app

Figure 1-3. Selecting an Android TV template

CHAPTER 1: Getting Started

5

The next screen you encounter will give you the option of renaming the
activities, fragments, and layout files in the sample Android TV application
(Figure 1-4). For this example, you can accept the default values and click
Finish.

Figure 1-4. Naming your files

Android Studio will then take a moment to create the general template for
your Hello World application. If you look through the source code for this
application, you will notice over a dozen files just in Java. You may also
notice that some of the files, such as VideoDetailsFragment.java, contain
code that is deprecated, or no longer recommended for use by Google.
For now, go ahead and ignore them as you will learn about the different
recommended components for a media application later in this book.

Running Your Android TV App
The next step you will want to take is to run your Android TV app. As
with mobile development, you can either use an emulator or install it on a
physical device. In order to create an Android TV emulator, click on the AVD
Manager button in the Android Studio toolbar (it will look like a phone screen
with an Android head in the lower-right corner of the icon, and is the eighth
button from the left in Figure 1-5).

CHAPTER 1: Getting Started6

Select Create Virtual Device… in the bottom-left corner of the AVD Manager
dialog that appears and select the TV category from the left column. There
should be multiple device profiles available to choose from, as shown in
Figure 1-6, so pick any and click on Next.

Figure 1-5. Android Studio toolbar with AVD Manager button

Figure 1-6. Virtual device options

The next screen should provide you with a list of system images to use
for creating your base emulator. If you do not have the necessary system
images on the next screen, check the Show Downloadable System Images
check box. You should see something similar to Figure 1-7. Download a
system image based on the Recommendation box on the right side of the
screen in order to build a virtual device that will perform well on your system.

CHAPTER 1: Getting Started

7

The last screen (shown in Figure 1-8) will give you the option to customize
the virtual device settings. For these purposes, you can keep the defaults
and click Finish to create your emulator.

Figure 1-7. Selection of system images for the Android TV emulator

Figure 1-8. Configuring your new Android virtual device

CHAPTER 1: Getting Started8

While the emulator can be convenient, it is still best to test on a physical
device. During I/O 2014, Google released a set of development devices that
could be requested by developers, called the ADT-1. Once Lollipop was
officially released, Google announced the Nexus Player, which is available
for purchase. Other devices, such as the NVIDIA SHIELD, are also available
from third-party manufacturers. As more OEMs integrate Android TV with
their television sets or create set-top boxes, the selection of devices to test
against will continue to grow. If you have a physical device to test with, you
can simply plug the device into your computer while it is running to directly
install your apps.

Now that you have a sample Hello World application created and an
environment to run your application, click on the green Run arrow in the
Android Studio toolbar to install your application to ensure that everything
works. You should see a screen similar to Figure 1-9 when your application
has launched in your emulator or on a physical Android TV device.

Figure 1-9. Initial screen for the Android TV template application

Summary
In this chapter you’ve taken your first steps in learning about the Android
TV platform. You learned how to set up the sample Android TV project, and
you created an emulator for viewing Android TV apps. In the next chapter
you will learn a bit about designing your app to be useful for your users
when viewed from across a room, and you will be introduced to some of the
components of a media application.

9

Chapter 2
Planning Your App
Just like any movie or television show has to have a script, you should have
a plan before you start programming an application. While you may be
familiar with Android development for phones and tablets, there are many
things you need to consider when creating content for the TV, depending on
whether you are making a game, utility, or media application. In this chapter
we will look at some of the design considerations that come into play when
your users are experiencing your app from across a room rather than in their
hands, and what you should think about when building your user interface to
support the basic Android TV controller.

Android TV Home Screen
The first thing your users will see when they turn on their Android TVs is the
home screen, which acts as the gateway to their televisions by providing
various ways to discover content and interact with their apps. When
applicable, you will want to take advantage of as many of these features as
you can in order to make your app more visible to your users. At the very
least, you will want to use an app icon specifically made for Android TV that
easily identifies your app for your users.

The home screen is displayed to users in a row format that should look
somewhat familiar from the Hello World application in the previous chapter
(see Figure 2-1). The section above the top row contains the time and a
Search button that can be selected or activated through the microphone
button on a physical Android TV remote or in the official Android TV mobile

CHAPTER 2: Planning Your App10

remote control application from the Play Store (see Figure 2-2). The second
row displays a list of recommended content generated from installed
applications. Below the recommendations section are two rows—the top
displays all installed applications that are not configured to be playable
games and the bottom displays all games. Below the list of installed
applications is the settings and system information row.

Figure 2-1. The Android TV home screen

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2: Planning Your App

11

Launcher Icon
The most common way users will access your application is by selecting it
from the list of installed apps on their TVs. This means that using a correctly
sized and styled launcher icon is incredibly important for helping users find
your application once it is installed on their devices. Since Android TV does
not display the name of apps below their icons, you must include the name
of your app in the launcher icon. Your launcher icon should be sized at
320px x 180px in order to be displayed correctly by the home screen. Once
you have an asset created for your launcher icon, you will need to apply it to
your launch activity in your AndroidManifest.xml file similarly to a standard
Android application. It should be noted that the category option will use a
LEANBACK_LAUNCHER instead of a standard LAUNCHER in order to display the
TV launcher icon. If you are building a game, you will also need to add the
isGame="true" property to the application node so that the home screen
places your launcher icon in the games row.

Figure 2-2. The Android TV remote control Android app

CHAPTER 2: Planning Your App12

<application
 android:label="@string/app_name"
 android:icon="@mipmap/ic_launcher"
 android:theme="@style/AppTheme">
 <activity
 android:name="MainActivity"
 android:label=“@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LEANBACK_

LAUNCHER" />
 </intent-filter>
 </activity>
</application>

The Recommendations Row
The recommendations row is the first row on the Android TV home screen,
as seen back in Figure 2-1, and is the easiest way to gain user interest
for your app. There are three categories of content that a developer
can recommend: continuation, related, and new. When you create the list
of recommendations from your app to be displayed on the home screen
recommendations row, you should determine what to display based on
relevancy to past consumption behavior. If your users previously watched a
show in your app, you can present a continuation recommendation that
displays an episode that they did not finish, or recommend the next episode
in that show. You can also display a related recommendation that introduces
new content that your user may enjoy based on previously viewed
media. The last type of content that can be recommended falls under the
new category. This is an excellent spot to highlight featured media and
introduce content that your users may enjoy. When displaying new content
recommendations, you should be careful not to accidentally give away any
spoilers that may ruin interest. You should also be mindful with related and
continuation recommendations, as the related row is visible to all users on
the Android TV, and therefore should be appropriate for all ages.

Android TV uses a simple and easy-to-digest card format across the
platform for displaying information to users, as seen in Figure 2-3.

CHAPTER 2: Planning Your App

13

While this format is already set for you, you still have the ability to customize
the cards to fit the feel of your own application. Each card contains of
a single display image that should describe the recommendation at a
glance. This display image should be 176dp or higher height, and the width
should be in a ratio of 2/3 to 4/3 the height. When the users scroll over the
recommended content, the highlighted item will expand to display the rest
of the card. You can change the card background color, though it should
complement white text well. You will also want to add a small icon to the
card that represents your application. This small icon should be a
16dp x 16dp PNG with a transparent background and foreground in #EEEEEE.

There are two pieces of textual information that you can display with a
recommendation card: a title and a content text. The title should be the
primary descriptor for the content, such as a song or movie title. The
optional content text is where you can tell your users some information
about the content, such as why it is being displayed to them. One example
where the content text may be useful is when displaying a video feed from
a sporting event. If the event is currently in progress, or if the event has
already finished and you can play back a recording, are excellent pieces of
information that users may want to know about and interest them enough to
open your app.

In addition to the display card, you can also change the background on
the home screen based on the highlighted recommendation. This not only
allows you to give your app recommendation a stylish piece of flair, but also
provides another way to intrigue your users by giving them more information
about the content. Using large background images to paint a picture for

Figure 2-3. Recommendation card. The number 1 designates the large icon, 2 is the title, 3 is the
content text, and 4 is the small icon

CHAPTER 2: Planning Your App14

your users can go much further in gaining their interest than a paragraph
describing the content. This image should be 2016px x 1134px (1920 x 1080
with a 5% margin), and different than your standard display image. It should
be noted that if the image is not sized correctly, the system will attempt to
scale it to fit, which may have undesirable consequences, such as lower
image quality.

Once your users have started viewing media from your app, you can provide
a Now Playing card that looks identical to a standard recommendation
card, but also includes a progress bar. Not only does this card provide
useful information to your users, but it also appears as the first card in the
recommendation row, helping maintain user engagement. When used well,
the recommendations row provides a powerful way to get users to open
your app as they see what content is available to enjoy. Later in this book
you will learn how to implement a simple recommendation service in a
working media application.

Global Search
When the users have some idea of what they’re looking for, such as a
specific movie, it can be cumbersome to find an app that has that content
available. Luckily, Android TV provides a search option that can search
across multiple apps at the same time so users can quickly find what they
are looking for. By pressing the microphone button on the remote control
app, or by navigating to the search globe at the top of the home screen,
users can enter into a search UI where they can say or type in what they’re
looking for (see Figure 2-4). When the user performs the search, all apps
that are searchable on the Android TV will run the query and return related
content, if any. Once the results are shown to the users, they may be
selected to link directly to the desired media. By making your application
searchable, you can add visibility to your app in order to drive user
engagement.

CHAPTER 2: Planning Your App

15

User Experience Guidelines
Now that you are aware of how you can use the home screen to draw users
to your app, you will need to have a well-designed app that is easy to use
and visually appealing in order to keep them engaged. It is important to
realize that televisions have been around for a lot longer than smart phones
and tablets, so users come with a predefined expectation on how their
experience with the television should go. Google recommends that your
apps follow three main ideas: allow for casual consumption, provide a
cinematic experience, and keep things simple.

Casual Consumption
The key difference between a smart phone or tablet and the television is that
the television is designed to be used specifically as an entertainment device.
In order to fit into the ideal use-case for the TV, you should understand
the overall goal of your application and help your users reach that goal as
quickly as possible. If your application is meant to display media, then you
should design your app to only take a few clicks to get to content that your
users would want to see and start playing it. If you are building a game, then
you should give your users an immersive experience that lets them play
your game without distracting them with a lot of content not directly related
to gameplay. Applications that are geared toward interacting with multiple
people in a single room, such as a party game or karaoke app, should
provide the users with information they need while letting them focus on the
more important thing, the other people in the room.

Figure 2-4. Android TV home screen search box

CHAPTER 2: Planning Your App16

Cinematic Experience
You want your users to be immersed in your applications. When possible, use
audio and visual cues to inform your users what’s going on in your app rather
than telling them through text. For example, if your user reaches the end of a
list, Android tends to provide a glowing effect with a bounce on the last item.
You can also provide an audible ding to add more flair to the experience.
Because Android TV devices all run a minimum of Lollipop (SDK 21), there’s a
wide range of animations and transitions that you can use to delight your users
as they go through your app. While the animations may be enjoyable, you
should attempt to provide as much content as possible on each screen and
limit the number of screens your users have to view in order to reach their goal.

Keep It Simple
This is the most important of the design guidelines, and the overarching
theme when it comes to designing for Android TV. When your users sit down
in front of their televisions, they want to be able to quickly find something
to watch or start playing a game. In order to help out your users, keep the
number of screens between entering your app and enjoying content to a
minimum. Try to avoid requiring any kind of text entry, and always provide a
voice input option in those situations where you must enter data. Remember
that most users will interact with their TVs using a simple D-pad controller
with a selection button from either a remote included with their Android TV
or from the remote control app. UI patterns should be easy to navigate with
only a few available buttons. Make sure you do not just copy the UI from a
touch screen device, but instead try to use the list of rows pattern as seen
on the home screen. What works on phones and tablets may not translate
well to the television. The simpler your application, the happier your users.

Designing Your Layout
One of the most defining factors between what feels like a well or poorly
designed app for the television is how cluttered the screen looks. How you
space out your content, how many items are on the screen, and the size
of those items all contribute to the cleanliness of your UI. While televisions
continue to get larger and support higher resolutions, it is always better to
stick to fewer visible items that are of higher quality than many items that are
not as appealing. All of your layouts should always be designed to work in
landscape mode, as most home televisions do not support portrait viewing.
Along these same lines, any navigation UI components should occupy the
left or right of the screen so that vertical spacing can be saved for displaying
content. Finally, you should always ensure that you have enough margin
space so that items are not against or outside the edges of the screen.

CHAPTER 2: Planning Your App

17

The general rule is to add 10% margins to the edge of your layout to
account for overscan, which is an area of the television that may be outside
of the visual borders of the screen. While this may seem like a lot to account
for, if you’re building a media playback app the Android Leanback Support
library already takes the layout design guidelines into consideration and
handles them for you.

Coloration
While computer monitors and mobile devices tend to be fairly consistent
when displaying colors across different devices, televisions do not offer
that luxury and special precautions should be taken when choosing colors
for your apps. Different types of TVs, such as plasma or LCD, may vary
in how they display colors due to inherent properties of the technology or
applied sharpening and smoothing filters. On top of that, subtle differences
in brightness or hue can be either indistinguishable or over-emphasized
on some devices. Avoid using the color white (#FFFFFF) on large areas of
the screen, as it can be harsh on eyes when displayed on a bright screen.
You should also check very dark or highly saturated colors against various
televisions and settings to ensure they meet your expectations. Google
recommends using a color that is two to three levels darker than those used
on a mobile device. It also suggests choosing colors from the 700-900 range
from the Google color palette found at www.google.com/design/spec/style/
color.html#color-color-palette.

Using Text
While text should generally be avoided to maintain an immersive experience,
there will be a few places where it is a necessity. Given that users on
average sit roughly ten feet (three meters) away from their television sets,
styling text so that it is readable is important. You will want to break text into
small chunks so that it is easy to read. Text should be preferably a light color
on a darker background and you should avoid thinner fonts like Roboto
Light, for example, since television settings may make them unreadable.
While the smallest size you should use is 12sp, the recommended
default size for Android TV is 18sp. Google has also put together a set of
recommended sizes for different sections of a media app:

	Titles on cards should use Roboto Condensed at 16sp

	Subtitles on cards should use Roboto Condensed
at 12sp

	Titles on a browse screen should use Roboto Regular
at 44sp

http://www.google.com/design/spec/style/color.html#color-color-palette
http://www.google.com/design/spec/style/color.html#color-color-palette

CHAPTER 2: Planning Your App18

	Category titles on a browse screen should use Roboto
Condensed at 20sp

	Content titles on a media detail screen should use
Roboto Regular at 34sp

	Description text on a detail screen should use 14sp

You should notice that all font sizes are listed in sp, which is a density-
independent sizing quantifier specifically for text. This allows the operating
system to determine what size is appropriate on a given device. While this
may seem like a lot to remember, the Leanback Support library classes
contain their own styles that will handle that logic for you.

Other Considerations
While understanding design guidelines is important, there are other things
that you need to consider before building your application.

	If you are building a game for Android TV, you may want
to investigate Google Play Game Services, as Google
has put together an impressive set of utilities to make
game development faster and easier: developers.
google.com/games/services/.

	If you are building a media application, you should
think about where your media is coming from. Are
you hosting all content on your own server, or are you
aggregating multiple services? How do you handle
contingencies like no Internet connection, or a server
not returning content? You will also need to think about
how your content is formatted to ensure that it can be
played back on an Android TV device. You can find a
list of supported media formats for Android on Google’s
official documentation page: developer.android.com/
guide/appendix/media-formats.html.

	If your content is through a proprietary third party that
requires the use of its own media player software,
you will need to ensure that it supports the use of the
Android TV D-pad controller.

	If you need to support Digital Rights Management
(DRM), then you may find the Android DRM
documentation useful: source.android.com/devices/
drm.html.

https://developers.google.com/games/services/
https://developers.google.com/games/services/
https://developer.android.com/guide/appendix/media-formats.html
https://developer.android.com/guide/appendix/media-formats.html
https://source.android.com/devices/drm.html
https://source.android.com/devices/drm.html

CHAPTER 2: Planning Your App

19

Once you are aware of all of your requirements, you can choose how
you will display your content. While your requirements may exclude the
possibility, Google does offer an excellent open source media player called
ExoPlayer that supports features not currently available in the MediaPlayer
class: developer.android.com/guide/topics/media/exoplayer.html.

While these topics are beyond the scope of this book, they are important
to review to make sure your time is well spent when developing your final
product.

Summary
In this chapter you learned about the various sections of the Android TV
home screen and how to catch the interest of users for your app. You
also learned about design principles in relation to Android TV and the
recommendations from Google for making your apps visually appealing.
In the next chapter you will begin building a very basic media playback
application to learn about some of the key parts of the Leanback Support
library, and how you can use them to build an Android TV app.

https://developer.android.com/guide/topics/media/exoplayer.html

21

Chapter 3
Building a Media App
Without a doubt, the most common type of application that developers
create for televisions simply display and play media. Knowing this, Google
has created the Leanback Support library, which provides common
components for creating apps that fit perfectly within the design guidelines
for Android TV. In this chapter you will start creating a basic media app from
the ground up in order to learn about a few of the components available for
creating a simple and enjoyable experience for your users.

Project Setup
When you created the Hello World application in Chapter 1, you probably
noticed that the sample application is fairly large, and you more than likely
saw some warnings about the use of deprecated classes in areas like the
content details fragment. In order to have a better understanding of what
goes into creating a media app without sifting through the clutter, you will
create one piece by piece from a blank slate. While there is a lot more
that can be done to really make the app shine, this book focuses on the
essentials in order to teach the topic without getting bogged down in details
that are best left as a fun exercise.

Creating the Android Studio Project
Start by opening Android Studio and getting to the Welcome to Android
Studio screen. Generally this will be the first screen you see when you open
the program, but if you previously had a project open (such as Hello World),
then you will need to close it to return to the Welcome screen. Click on Start
a New Android Studio Project in the right panel to be taken to the Configure

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-1784-9_1
http://www.allitebooks.org

CHAPTER 3: Building a Media App22

Your New Project screen. In the Application Name field, enter Media Player
and enter apress.com for the Company Domain. Pick a path for Project
Location and then click on Next.

On the next screen, you will need to pick the form factors that your app will
support. For Media Player, select TV and set the Minimum SDK to API 21:
Android 5.0 (Lollipop). On the same screen, deselect the Phone and Tablet
item and then click Next.

In Chapter 1, you had Android Studio create an Android TV activity, which
in turn created an entire Android TV demo application. For the Media Player
application, click on Add No Activity and then click Finish. When Android
Studio creates the project, you will have the base structure for your app, but
it will be mostly devoid of source files.

Updating Dependencies
The first thing you will want to do is open the build.gradle file. While
a detailed look at the Gradle build system is out of scope for this book,
you will only need to use it for adding dependencies in this project. In the
Dependencies node, you should already see lines that import the Leanback
Support library and the RecyclerView library. You will also need to import the
GSON library, which you will use for creating objects from JSON data,
and the Picasso library from Square, which is used to easily display images
in the app from the Internet. Each item shown in the following code listing is
the latest version of the libraries at the time of this writing.

dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
 compile 'com.google.code.gson:gson:2.3'
 compile 'com.squareup.picasso:picasso:2.5.2'

 compile 'com.android.support:leanback-v17:23.0.1'
 compile 'com.android.support:recyclerview-v7:23.0.1'
}

Tip Square offers a wide variety of open sourced libraries that can be useful
when creating apps. You can find a list of their released libraries at http://
square.github.io/.

https://apress.com
http://dx.doi.org/10.1007/978-1-4842-1784-9_1
http://square.github.io/
http://square.github.io/

CHAPTER 3: Building a Media App

23

Building the Project Skeleton
Once you’re done updating build.gradle, navigate to app/src/main/java in
the left navigation panel if you are in the Project navigation layout (app/java
if you’re in the Android navigation layout). In Android Studio, right-click on
the package name, go to New and Java Class. Name your new Java class
MainActivity and click OK. You will want MainActivity to extend Activity
and then you will override onCreate to associate the activity with a layout file.

public class MainActivity extends Activity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }
}

MainActivity will be the first activity that your users will see when they enter
your app. As such, you will need to declare it in AndroidManifest.xml and
denote it as the main and launching activity.

Finally, you will need to add three lines to the top of AndroidManifest.xml
within the manifest tag. The first declares that the application needs to have
the INTERNET permission. The next two state which features are required by
the device for using the app. In this example, you will set the app so that a
touchscreen is not required, but the Leanback feature is. This will make it so
your app will be installable on Android TV systems.

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.apress.mediaplayer">
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-feature
 android:name="android.hardware.touchscreen"
 android:required="false" />
 <uses-feature
 android:name="android.software.leanback"
 android:required="true" />
 <application android:allowBackup="true" android:label="@string/app_name"
 android:icon="@mipmap/ic_launcher" android:theme="@style/AppTheme">
 <activity
 android:name="MainActivity"
 android:label="@string/app_name"
 android:logo="@mipmap/ic_launcher">
 <intent-filter>

http://schemas.android.com/apk/res/android

CHAPTER 3: Building a Media App24

 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LEANBACK_

LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Now that your manifest is set up, you will need to create a layout file for
MainActivity. Right-click on app/src/main/res in the left navigation pane
of Android Studio (again, assuming you are in the Project navigation layout)
and create a new Android Resource Directory called layout. Next, you will
need to right-click on layout and create a new Layout resource file called
activity_main. This layout file will consist of a single item.

<?xml version="1.0" encoding="utf-8"?>
<fragment xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/main_browse_fragment"
 android:name="com.apress.mediaplayer.MainFragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

You will notice that this fragment uses the name property to point to
com.apress.mediaplayer.MainFragment. MainFragment will be an extension of
the BrowseFragment class, which is provided by the Leanback Support library.
BrowseFragment will allow you to display rows of items representing the
content of your app, preferences, and a search option. Create MainFragment
now by right-clicking on your app package name under app/src/main/java
and creating a new Java class called MainFragment. Once the file is created,
make it extend BrowseFragment.

public class MainFragment extends BrowseFragment { }

At this point you should be able to run your application without any
problems, though it will only display a black screen with a teal panel
(called the fast lane) on the left side. Next you will begin building out the
BrowseFragment class, which will use a local data file and model to display
cards using a presenter.

Building the BrowseFragment Class
Provided by the Leanback Support library, the BrowseFragment class
makes up one of the core parts of an Android TV media app. While it acts
as a single fragment in use, it is actually composed of two fragments: a
RowsFragment and a HeadersFragment. The RowsFragment displays rows of
customized cards representing your content, and each row has a header

http://schemas.android.com/apk/res/android

CHAPTER 3: Building a Media App

25

above it that is typically used for displaying a category name. Those headers
are also used to populate the HeadersFragment, which makes up the teal fast
lane panel that you see when you run the application up to this point.

Creating the Data
Before you start working in your BrowseFragment, you will need to plan out the
data for the content that you want to display to your users. In a production
app, you would more than likely want to store this data somewhere online or
have an API that delivers the data to your app so that you can easily deliver
new content or adjust what your users see based on their use habits. In order
to reduce complexity and focus on the Android TV platform, the Media Player
app that you are building will simply store the content data in a JSON file
within the app and read that into the BrowseFragment. A sample data file can
be found with the code samples of this book in the Data folder. Each item in
the JSON array represents a different movie in the public domain. The fields
used for this tutorial are “title,” “description,” “videoUrl,” “category,” and
“poster”. If you would like to use your own content or add your own to the
data, you just need to follow this item format:

{

 "title": "Content title",
 "description": "Some long text description",
 "videoUrl": "Video URL",
 "category": "Category",
 "poster": "Image file URL"
}

Once you have your data file, name it videos.json and place it in a new
directory named raw under /app/src/main/res.

Creating the Data Model
Next you need to create a model object class that represents the data for
use in the app. This model will need to implement Serializable in order
to turn the data into a string representation that can be passed between

Note The movies used in the sample data are all in the public domain, and the
video files used for playback are hosted by archive.org, a non-profit Internet
archive of public domain content.

CHAPTER 3: Building a Media App26

components in the app. You will also use the GSON library from Google in
order to take the JSON file and easily parse it into a list of objects, so you
will need setters and getters for each of the properties in the model.

Create a new Java file under your app package folders in the app/src/
main/java directory and name it Video. Once Video.java is created, add the
strings for each of the data properties, the toString method, and the getters
and setters, as shown here.

public class Video implements Serializable {

 private String title;
 private String description;
 private String videoUrl;
 private String category;
 private String poster;

 @Override
 public String toString() {
 return "Video {" +
 "title=\'" + title + "\'" +
 ", description=\'" + description + "\'" +
 ", videoUrl=\'" + videoUrl + "\'" +
 ", category=\'" + category + "\'" +
 ", poster=\'" + poster + "\'" +
 "}";
 }

 public String getTitle() {
 return title;
 }

 public void setTitle(String title) {
 this.title = title;
 }

 public String getDescription() {
 return description;
 }

 public void setDescription(String description) {
 this.description = description;
 }

 public String getVideoUrl() {
 return videoUrl;
 }

CHAPTER 3: Building a Media App

27

 public void setVideoUrl(String videoUrl) {
 this.videoUrl = videoUrl;
 }

 public String getCategory() {
 return category;
 }
 public void setCategory(String category) {
 this.category = category;
 }

 public String getPoster() {
 return poster;
 }

 public void setPoster(String poster) {
 this.poster = poster;
 }
}

Loading the Data
Now that you have a model representing the data, you can use it in your
BrowseFragment. The first thing you need to do is create a list of Video
objects at the top of the MainFragment class in order to store your data.

private List<Video> mVideos = new ArrayList<Video>();

Next you should override the onActivityCreated method, as this will drive
most of the logic in the fragment. Within onActivityCreated you should call
loadData, which is a helper method that you will create in order to load data
into mVideos.

@Override
public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);
 loadData();
}

Before you can define loadData, you should create a new Java class in your
application package folder called Utils. Utils will contain a static method
named loadJSONFromResource that accepts a context and a resource ID for

CHAPTER 3: Building a Media App28

a local JSON file, in this case videos.json, so that it can be converted into
a string and returned. Enter the following code into the Utils package and
then return to MainFragment.

public class Utils {

 private Utils() {}

 public static String loadJSONFromResource(Context context, int resource) {
 if(resource <= 0 || context == null)
 return null;
 String json = null;
 InputStream is = context.getResources().openRawResource(resource);
 try {
 if(is != null) {
 int size = is.available();
 byte[] buffer = new byte[size];
 is.read(buffer);
 json = new String(buffer, "UTF-8");
 }
 } catch(IOException e) {
 return null;
 } finally {
 try {
 if(is != null)
 is.close();
 } catch(IOException e) {}
 }
 return json;
 }
}

Now that you have a method for reading in the JSON file that you
created earlier, it’s time to use it. Create a new method called loadData in
MainFragment and have it generate a string from Utils.loadJSONFromResou
rce. Next you will need to use reflection and the GSON library to populate
your list of video objects so that they can be used for populating your
BrowseFragment UI.

private void loadData() {
 String json = Utils.loadJSONFromResource(getActivity(), R.raw.videos);
 Type collection = new TypeToken<ArrayList<Video>>(){}.getType();

 Gson gson = new Gson();
 mVideos = gson.fromJson(json, collection);
}

CHAPTER 3: Building a Media App

29

When you have finished loading the data into your fragment, you can start
diving into creating the UI for your Android TV media app. In the next section
you will set some UI properties for the BrowseFragment and then use the list
of videos that you just generated to create rows of customized cards that
you can click on to get to the video detail activity.

Customizing the BrowseFragment UI
If you read over the BrowseFragment documentation page from Google
(developer.android.com/reference/android/support/v17/leanback/app/
BrowseFragment.html), you’ll notice that there are several methods available
for customizing some of the UI aspects of the fragment. For the sake of
simplicity, we’ll only cover a few of them here. In onActivityCreated, below
your call to loadData, add the following three lines

setTitle("Apress Media Player");
setHeadersState(HEADERS_ENABLED);
setHeadersTransitionOnBackEnabled(true);

Each of these methods controls a different customizable part of the
BrowseFragment UI:

The setTitle method will take the string passed to it and
display it in the upper-right corner of the BrowseFragment.

Using setHeadersState accepts one of three predefined
values in BrowseFragment that will allow you to control how
the HeaderFragment fastlane works. HEADERS_ENABLED leaves
the fastlane usable and expanded, HEADERS_DISABLED will
hide and disable it (see Figure 3-1), and HEADERS_HIDDEN will
enable the HeaderFragment while mostly hiding it except for
a sliver on the side of the screen.

Finally, while the headers transition on back operation
is enabled by default, I have included it here because
it is important to point out. When the user opens the
HeadersFragment, an entry will be added to the back stack.
This means that when the user presses the back button on
their controller, the headers section will transition. If you
want to override the back button operation, you will need
to call setHeadersTransitionOnBackEnabled with a value
of false, and then override BrowseTransitionListener for
implementing your own back stack handling.

https://developer.android.com/reference/android/support/v17/leanback/app/BrowseFragment.html
https://developer.android.com/reference/android/support/v17/leanback/app/BrowseFragment.html

CHAPTER 3: Building a Media App30

Now that you have set some of the BrowseFragment UI properties, it’s time to
add rows of cards for your data. The way BrowseFragment displays rows of
content is by taking an ObjectAdapter and displaying lists of content (rows)
in a vertical list. Each item in a row is associated with a Presenter object
that defines how each item will look in the UI, which in this case will be a
card with an image and film title. Above each row will be a title representing
the categories for the videos in your data set.

In the onActivityCreated method of MainFragment, add a method call
to a new helper method named loadRows with no parameters. Next you
will define loadRows. The first line in the new method will initialize an
ArrayObjectAdapter with a ListRowPresenter that will contain each of the
rows. ListRowPresenter is used to define how a row of items will work in the
BrowseFragment. After initializing ArrayObjectAdapter, you will want to create
a new object called CardPresenter. CardPresenter is a class that you will
create later in this section, so for now you can ignore the error that Android
Studio gives you.

private void loadRows() {
 ArrayObjectAdapter adapter =
 new ArrayObjectAdapter(new ListRowPresenter());
 CardPresenter presenter = new CardPresenter();

Next you will need to create a list of string objects representing the
categories of your videos. Each of these categories will be used above a
row to help organize your content for your users. Here you will use another
helper method named getCategories that will loop through each video item

Figure 3-1. BrowseFragment with hidden fast lane

CHAPTER 3: Building a Media App

31

in the data and add its category to a list. While this may not be the most
efficient way to create the categories list, it’s suitable for the purposes here.

List<String> categories = getCategories();
if(categories == null || categories.isEmpty())
 return;

where getCategories is defined as

private List<String> getCategories() {
 if(mVideos == null)
 return null;
 List<String> categories = new ArrayList<String>();
 for(Video movie : mVideos) {
 if(!categories.contains(movie.getCategory())) {
 categories.add(movie.getCategory());
 }
 }
 return categories;
}

Now that you have a list of categories, you can create cards using the
CardPresenter class and add them to rows in the BrowseFragment based
on the category of each data item. For simplicity, you will loop through the
list of categories and check each data item to see if the category matches.
If it does, you will add it to a new ArrayObjectAdapter. Once all of the
movies for a category are added to the new adapter, you will create a new
HeaderItem and use that with the ArrayObjectAdapter to create a new row of
items. Finally you will call setAdapter, a method built into BrowseFragment, to
add the parent ArrayObjectAdapter that you created first in loadRows as the
main adapter for the fragment.

for(String category : categories) {
 ArrayObjectAdapter listRowAdapter = new ArrayObjectAdapter(presenter);
 for(Video movie : mVideos) {
 if(category.equalsIgnoreCase(movie.getCategory()))
 listRowAdapter.add(movie);
 }
 if(listRowAdapter.size() > 0) {
 HeaderItem header = new HeaderItem(adapter.size() - 1, category);
 adapter.add(new ListRow(header, listRowAdapter));
 }
}
setAdapter(adapter);

CHAPTER 3: Building a Media App32

Creating a Presenter
Even though all of the logic for creating your rows of items for the
BrowseFragment is complete, you still need to create the CardPresenter
object to compile your app and display the data. CardPresenter will be
an extension of the Presenter, which exists within the Leanback Support
library. The purpose of the Presenter is to take data and bind it to views,
similar to the concept of the adapter in a RecyclerView, but without relying
on position. If you have worked with RecyclerViews before, this class should
look somewhat familiar.

public class CardPresenter extends Presenter {
 static class ViewHolder extends Presenter.ViewHolder {
 private ImageCardView mCardView;

 public ViewHolder(View view) {
 super(view);
 mCardView = (ImageCardView) view;
 }

 public ImageCardView getCardView() {
 return mCardView;
 }

 public void updateCardViewImage(Context context, String link) {
 Picasso.with(context).load(link)
 .resize(210, 210).centerCrop()
 .into(mCardView.getMainImageView());
 }
 }

 @Override
 public ViewHolder onCreateViewHolder(ViewGroup parent) {
 ImageCardView cardView = new ImageCardView(parent.getContext());
 cardView.setFocusable(true);
 return new ViewHolder(cardView);
 }

 @Override
 public void onBindViewHolder(Presenter.ViewHolder viewHolder,

Object item) {
 Video video = (Video) item;
 if (!TextUtils.isEmpty(video.getPoster())) {
 ((ViewHolder) viewHolder).mCardView
 .setTitleText(video.getTitle());
 ((ViewHolder) viewHolder).mCardView
 .setMainImageDimensions(210, 210);
 ((ViewHolder) viewHolder)

CHAPTER 3: Building a Media App

33

 .updateCardViewImage(((ViewHolder) viewHolder)
 .getCardView().getContext(), video.getPoster());
 }
 }

 @Override
 public void onUnbindViewHolder(Presenter.ViewHolder viewHolder) {
 }

 @Override
 public void onViewAttachedToWindow(Presenter.ViewHolder viewHolder) {
 }
}

While Presenter does most of its work behind the scenes, you can see
there’s still a bit more customizing that needs to be done. The Presenter
class requires the use of the ViewHolder pattern in order to reuse views
when cycling through rows with more than a few items. The ViewHolder
used previously contains a single ImageCardView, which is a view designed
specifically for Android TV containing a large image and a pre-styled card
of information below that image. In order to load the poster image from the
data, which happens to be stored as a URL, you will use the Picasso library
by Square to load, resize, and center-crop the image.

With your ViewHolder defined, you need to create it in onCreateViewHolder
and set it to be focusable, which allows it to be highlighted by users. When
the ViewHolder is created, you can return it for use by the Presenter.
The final method that you will need to override in the Presenter is
onBindViewHolder. As the name implies, this is where you will bind data to
the views in the ViewHolder so that the CardPresenter is displayed correctly.

At this point you should be able to compile and run your application on an
Android TV device or emulator. You should see rows representing the data
items from videos.json, as well as the category headers for each group of
videos, as shown in Figure 3-2. While there’s some more customization that
can be done to the BrowseFragment, we’ll save that for the next chapter in
this book.

Note RecyclerViews are still a relatively new addition to Android development.
If you haven’t worked with them before, I highly recommend the book Android
Recipes, 4th edition, by Dave Smith. Also published by Apress, it contains a lot
of amazing examples for Android development, including a strong section on the
RecyclerView.

CHAPTER 3: Building a Media App34

Figure 3-2. BrowseFragment with cards for each piece of media

Creating a Video Details Screen
While the BrowseFragment is designed to give your users a quick glimpse of
what they have available to enjoy, the DetailsFragment is meant to focus
on one item. This detail screen not only gives the user more information
about the content, but also allows them to perform various actions and view
related content.

Setting Up Video Details
You can start building out your details screen by creating a new Java file
in your media player package and naming it VideoDetailsActivity. Like
MainActivity, VideoDetailsActivity will simply set a layout for the content
view that contains a fragment.

public class VideoDetailsActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_video_details);
 }
}

CHAPTER 3: Building a Media App

35

You will also need to create the layout file that is being used. Go into
the res/layout directory and create a new XML file named activity_
video_details. This layout will only contain a fragment named
VideoDetailsFragment.

<?xml version="1.0" encoding="utf-8"?>
<fragment xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/video_detail_fragment"
 android:name="com.apress.mediaplayer.VideoDetailsFragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:deviceIds="tv"
 tools:ignore="MergeRootFrame" />

Now that you have an activity with a layout, you will need to create the
VideoDetailsFragment in your Java application package directory. When
the file is created, have it extend DetailsFragment and implement the
OnItemViewClickedListener and OnActionClickedListener interfaces.
OnItemViewClickedListener is similar to a standard OnItemClickedListener,
except that it is a part of the Leanback Support library and designed
specifically as a callback for when an item in a row view holder is clicked.
OnActionClickedListener, as the name implies, is called when an
action item is clicked. You will need to override the OnItemClicked and
onActionClicked methods for the interfaces.

public class VideoDetailsFragment extends DetailsFragment
 implements OnItemViewClickedListener, OnActionClickedListener {

 @Override
 public void onItemClicked(Presenter.ViewHolder itemViewHolder,
 Object item,
 RowPresenter.ViewHolder rowViewHolder,
 Row row) {
 }

 @Override
 public void onActionClicked(Action action) {
 }
}

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

CHAPTER 3: Building a Media App36

Wiring Up Video Details
Now that you have the base DetailsFragment built, you will need to add a
static string to the top of the class that will be used for passing a serialized
Video object to the fragment.

public static final String EXTRA_VIDEO = "extra_video";

Next you’ll need to tie in the BrowseFragment to the DetailsFragment.
Go back into MainFragment.java and update the class definition line so
that MainFragment also implements OnItemViewClickedListener. When a
CardPresenter item is clicked, OnItemClicked will be called. You will need
to check the data item type associated with the view to see if it is a Video
object, and if it is, pass it to the VideoDetailsActivity as an extra when
starting the new activity.

@Override
public void onItemClicked(Presenter.ViewHolder itemViewHolder,
 Object item,
 RowPresenter.ViewHolder rowViewHolder,
 Row row) {
 if(item instanceof Video) {
 Video video = (Video) item;
 Intent intent = new Intent(getActivity(),

VideoDetailActivity.class);
 intent.putExtra(VideoDetailsFragment.EXTRA_VIDEO, video);
 startActivity(intent);
 }
}

When your onItemClick method is defined, you will need to associate it with
MainFragment so that the app knows to call onItemClicked when an item
is clicked. You can do this by adding the following line as the last item in
onActivityCreated.

setOnItemViewClickedListener(this);

Finally, you need to register VideoDetailsActivity in AndroidManifest.xml
so that it can be launched.

<activity android:name=".VideoDetailsActivity" />

At this point you should be able to run your application. If everything went
as expected, you will be able to click on one of the items in BrowseFragment
to open up the VideoDetailsActivity, though VideoDetailsFragment should
only display a blank screen.

CHAPTER 3: Building a Media App

37

Displaying Content Details
The main component of the DetailsFragment is the DetailsOverviewRow.
DetailsOverviewRow consists of a main image, a text view for displaying a
description, and an optional series of action buttons. Before you populate
your DetailsOverviewRow with information, you should declare four member
variables at the top of the VideoDetailsFragment class.

public static final long ACTION_WATCH = 1;
private Video mVideo;
private DetailsOverviewRow mRow;
private Target target = new Target() {
 @Override
 public void onBitmapLoaded(Bitmap bitmap, Picasso.LoadedFrom from) {
 mRow.setImageBitmap(getActivity(), bitmap);
 }

 @Override
 public void onBitmapFailed(Drawable errorDrawable) {
 }

 @Override
 public void onPrepareLoad(Drawable placeHolderDrawable) {
 }
};

ACTION_WATCH is an identifier that will be used when the user selects to
view the content. mVideo is the data object that you will use for displaying
content. mRow is simply a reference to the DetailsOverviewRow so that it can
be accessed easily. Finally, Target is a part of the Picasso library and allows
you to load remote images into it so that your program can use them without
being loaded directly into an ImageView. In the case of the DetailsFragment,
images will be loaded into the Target and sent to onBitmapLoaded, which will
then call setImageBitmap on the DetailsOverviewRow.

The onCreate method is where you handle the logic behind
VideoDetailsFragment. The first thing you will do is retrieve the content data
from the intent used to start the details activity, then you can initialize mRow
as a new DetailsOverviewRow.

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 mVideo = (Video) getActivity().getIntent().getSerializableExtra(EXTRA_

VIDEO);
 mRow = new DetailsOverviewRow(mVideo);
}

CHAPTER 3: Building a Media App38

Next you can create the actions that will be available for the user to select.
If you looked over the Hello World example in Chapter 1, you’ll notice
that the addAction method is used by the sample, but struck through by
Android Studio because it is deprecated. The currently accepted way to add
actions to the DetailsOverviewRow is to pass a SparseArrayObjectAdapter
through the setActionsAdapter method. SparseArrayObjectAdapter has
two methods that you will need to override: size and get. size returns the
number of action buttons that you want to display, and get handles returning
a new action to display. For this example, we will use a size of 3, though
only the first item will perform a real action. Create a new method called
initAction as defined here and invoke it from onCreate.

private void initActions() {
 mRow.setActionsAdapter(new SparseArrayObjectAdapter() {
 @Override
 public int size() {
 return 3;
 }

 @Override
 public Object get(int position) {
 if(position == 0) {
 return new Action(ACTION_WATCH, "Watch", "");
 } else if(position == 1) {
 return new Action(42, "Rent", "Line 2");
 } else if(position == 2) {
 return new Action(42, "Preview", "");
 }

 else return null;
 }
 });
}

With your actions defined, it’s time to start creating the presenter that will be
used for the details fragment. Below the call to initActions in onCreate, you
will create a ClassPresenterSelector and an ArrayObjectAdapter then add
the DetailsOverviewRow to the ArrayObjectAdapter.

ClassPresenterSelector presenterSelector = createDetailsPresenter();
ArrayObjectAdapter adapter = new ArrayObjectAdapter(presenterSelector);
adapter.add(mRow);

http://dx.doi.org/10.1007/978-1-4842-1784-9_1

CHAPTER 3: Building a Media App

39

Here createDetailsPresenter is a helper method that returns a
ClassPresenterSelector. You will create this helper method now. In the Hello
World sample application, DetailsOverviewRowPresenter is used, but also
deprecated. Instead you will use a FullWidthDetailsOverviewRowPresenter,
which consists of a logo on the left, a row of actions on the top, and a
customizable detail description view on the right. This presenter lets you
customize the background color of the fragment and action buttons, set
animations, associate an action listener, and add other customizations
to delight your users. When your presenter is built, bind it to the
DetailsOverviewRow and add it to the ClassPresenterSelector. You will also
want to add an empty ListRowPresenter to the ClassPresenterSelector that
will be used to display related media before returning it.

private ClassPresenterSelector createDetailsPresenter() {
 ClassPresenterSelector presenterSelector = new ClassPresenterSelector();
 FullWidthDetailsOverviewRowPresenter presenter =
 new FullWidthDetailsOverviewRowPresenter(
 new DetailsDescriptionPresenter());
 presenter.setOnActionClickedListener(this);
 presenterSelector.addClassPresenter(DetailsOverviewRow.class,
 presenter);
 presenterSelector.addClassPresenter(ListRow.class,
 new ListRowPresenter());
 return presenterSelector;
}

By now you should notice that the DetailsDescriptionPresenter used
by FullWidthDetailsOverviewRowPresenter is not a class provided by the
Leanback Support library. This is a class that you will need to create, so go
ahead and do that now under your app package in the java directory. The
class should be an extension of AbstractDetailsDescriptionPresenter and
will override the onBindDescription method in order to set all of the text for
the detail section of your fragment.

public class DetailsDescriptionPresenter extends
 AbstractDetailsDescriptionPresenter {
@Override
protected void onBindDescription(
 AbstractDetailsDescriptionPresenter.ViewHolder viewHolder, Object item) {
 Video video = (Video) item;
 if (video != null) {
 viewHolder.getTitle().setText(video.getTitle());
 viewHolder.getSubtitle().setText(video.getCategory());
 viewHolder.getBody().setText(video.getDescription());
 }
 }
}

CHAPTER 3: Building a Media App40

When your presenters are built, go to the end of onCreate and add the
following two lines

loadRelatedMedia(adapter);
setAdapter(adapter);

At this point you should be able to run your application and get to the video
details screen, as seen in Figure 3-3.

Figure 3-3. FullWidthDetailsOverviewRowPresenter with actions and data

loadRelatedMedia is another helper method that you will create, and it
will be used for finding and displaying content related to the currently
displayed detail screen. setAdapter will bind everything together with the
DetailsFragment so that it can be displayed for your users.

The loadRelatedMedia method is where you access a backend or perform
any other logic for your app in order to show related content. For this
example you will simply load in all of the data from videos.json and display
items that are in the same category as the selected video. You will access
videos.json in the same fashion as BrowseFragment, using reflection and
GSON to create a list of video objects. Once you have your data, you will
create an ArrayObjectAdapter and add related video objects to it. Finally
you will add the adapter with a header as a ListRow to the DetailsFragment.

CHAPTER 3: Building a Media App

41

private void loadRelatedMedia(ArrayObjectAdapter adapter) {
 String json = Utils.loadJSONFromResource(getActivity(), R.raw.videos);
 Gson gson = new Gson();
 Type collection = new TypeToken<ArrayList<Video>>(){}.getType();
 List<Video> videos = gson.fromJson(json, collection);
 if(videos == null)
 return;

 ArrayObjectAdapter listRowAdapter =
 new ArrayObjectAdapter(new CardPresenter());

 for(Video video : videos) {
 if(video.getCategory().equals(mVideo.getCategory())
 && !video.getTitle().equals(mVideo.getTitle())) {
 listRowAdapter.add(video);
 }
 }

 HeaderItem header = new HeaderItem(0, "Related");
 adapter.add(new ListRow(header, listRowAdapter));
}

Back in onCreate, add two more lines to the end of the method. The first is
a call to Picasso to load the poster for the currently selected video content
into the Target object defined at the top of the class with a set size. The
second line associates the OnItemViewClickedListener interface with the
DetailsFragment, which will allow your row of related content to be clickable
by the users.

Picasso.with(getActivity()).load(mVideo.getPoster())
 .resize(274, 274).into(target);
setOnItemViewClickedListener(this);

At this point you should be able to run your application and select a video
on the BrowseFragment to be taken to a functioning DetailsFragment screen.
You should see a movie poster, the action buttons, and a text description
for the content. If you scroll down there should also be at least one related
item that is selectable (see Figure 3-4). You can fix that now by updating the
onItemClicked method so that it opens a new VideoDetailsFragment with
the information from the related video.

@Override
public void onItemClicked(Presenter.ViewHolder itemViewHolder, Object item,

 RowPresenter.ViewHolder mRowViewHolder, Row mRow) {
 if(item instanceof Video) {
 Video video = (Video) item;
 Intent intent = new Intent(getActivity(),

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3: Building a Media App42

 VideoDetailActivity.class);
 intent.putExtra(VideoDetailsFragment.EXTRA_VIDEO, video);
 startActivity(intent);
 }
}

Figure 3-4. Related media on the detail screen

Finally, you need to handle the action buttons at the top of the fragment.
If one of the buttons is clicked, onActionClicked will be called. When the
Watch button is clicked, you will want to start playing content for your users.
The other two actions are used in this sample for emphasis, so you can
simply display a Toast message when one is clicked.

@Override
public void onActionClicked(Action action) {
 if(action.getId() == ACTION_WATCH) {
 Intent intent = new Intent(getActivity(),
 PlayerActivity.class);
 intent.putExtra(VideoDetailsFragment.EXTRA_VIDEO,
 mVideo);
 startActivity(intent);
 } else {
 Toast.makeText(getActivity(), "Action",
 Toast.LENGTH_SHORT).show();
 }
}

At this point PlayerActivity does not exist, so the project will not compile.
In the next section you will create PlayerActivity to play a video and use
the Leanback Support library to add controls to the screen.

CHAPTER 3: Building a Media App

43

Playing and Controlling Content
Without a doubt, playing content is the most important part of a media
application. How you play back your content will depend on the type of
media you are using for your user, whether you’re using a proprietary
content player, if the media is local or remote, and if you have other
requirements such as DRM or advertisements. In order to keep this example
simple, you will create an activity with a VideoView for playing back the
video. You will also use a new PlaybackOverlayFragment from the Leanback
Support library to display media controls for your users.

Creating the Media Player
You should start by creating a new Activity called PlayerActivity in
the same location as your other Java source files. You will also want
to add PlayerActivity to AndroidManifest.xml, just like you did with
VideoDetailsActivity. Once you have PlayerActivity created and
registered in the manifest, you can start fleshing it out.

There will be two member variables at the top of the class, one representing
the VideoView that will play the content, and a Video object storing the
media data. You will also need to override onCreate and associate a layout
with PlayerActivity.

public class PlayerActivity extends Activity {
 private VideoView mVideoView;
 private Video mVideo;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_player);
 }
}

Next, you will need to create the activity_player.xml layout file. Under
xml/layouts, create a new Android layout file and name it activity_player.
The layout will consist of two main parts: the VideoView and a new fragment
called PlayerControlsFragment that you will write soon.

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height=“match_parent"
 android:background="@android:color/black">

http://schemas.android.com/apk/res/android

CHAPTER 3: Building a Media App44

 <VideoView
 android:id="@+id/video_view"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_centerInParent="true" />

 <fragment
 android:id="@+id/player_controls"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:name="com.apress.mediaplayer.PlayerControlsFragment" />
</RelativeLayout>

Back in PlayerActivity, at the end of onCreate, you will need to retrieve the
VideoView and data. Once you have both member variables initialized, you
can call setVideoPath on the VideoView to set the Video object’s URL as the
media source.

mVideoView = (VideoView) findViewById(R.id.video_view);
mVideo = (Video) getIntent().getSerializableExtra(VideoDetailsFragment.
EXTRA_VIDEO);
mVideoView.setVideoPath(mVideo.getVideoUrl());

Building the Playback Control Fragment
In order to compile your app, you will need to make
PlayerControlsFragment. Create a new Java class under your
package directory named PlayerControlsFragment and have it extend
PlaybackOverlayFragment. PlaybackOverlayFragment contains an
ObjectAdapter that vertically stacks rows of action buttons, making it
a convenient way to display controls over your content for your user to
interact with. You will also need to implement OnActionClickedListener,
which will receive a call when a control action is clicked.

public class PlayerControlsFragment extends PlaybackOverlayFragment
implements OnActionClickedListener {
 public void onActionClicked(Action action) {
 }
}

You will also need to create a new interface inside of
PlayerControlsFragment to link the fragment with PlayerActivity. This is
how you manipulate the video content from the controls. To keep things
simple, you will only add a start and stop method to the interface.

CHAPTER 3: Building a Media App

45

public interface PlayerControlsListener {
 void play();
 void pause();
}

Now you will need to implement this interface in PlayerActivity.
Go back to PlayerActivity and update the class definition to use
PlayerControlsListener.

public class PlayerActivity extends Activity implements
 PlayerControlsFragment.PlayerControlsListener

You will then need to override the two methods in the interface for starting
and pausing the VideoView.

@Override
public void play() {
 mVideoView.start();
}

@Override
public void pause() {
 mVideoView.pause();
}

With the interface set up on PlayerActivity, you can close it and focus on
PlayerControlsFragment. Start by adding two member variables to the top,
one for the Video object and another for the interface.

private PlayerControlsListener mControlsCallback;
private Video mVideo;

Then override onCreate and initialize both member variables. This is also where
you can set some basic properties for the PlaybackOverlayFragment. For this
project you will set a light translucent background for the controls and disable
fading so that the controls stay on the screen until you re-enable fading.

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setBackgroundType(PlaybackOverlayFragment.BG_LIGHT);
 setFadingEnabled(false);

 mControlsCallback = (PlayerControlsListener) getActivity();
 mVideo = (Video) getActivity().getIntent()
 .getSerializableExtra(VideoDetailsFragment.EXTRA_VIDEO);
}

CHAPTER 3: Building a Media App46

The remaining portions of the playback controls can be broken into smaller
methods. Include the following member variables at the top of the class.

private ArrayObjectAdapter mRowsAdapter;
private ArrayObjectAdapter mPrimaryActionsAdapter;
private ArrayObjectAdapter mSecondaryActionsAdapter;
private PlaybackControlsRow mPlaybackControlsRow;

private PlaybackControlsRow.PlayPauseAction mPlayPauseAction;
private PlaybackControlsRow.RepeatAction mRepeatAction;
private PlaybackControlsRow.ShuffleAction mShuffleAction;
private PlaybackControlsRow.FastForwardAction mFastForwardAction;
private PlaybackControlsRow.RewindAction mRewindAction;
private PlaybackControlsRow.SkipNextAction mSkipNextAction;
private PlaybackControlsRow.SkipPreviousAction mSkipPreviousAction;
private PlaybackControlsRow.HighQualityAction mHighQualityAction;
private PlaybackControlsRow.ClosedCaptioningAction mClosedCaptionAction;

mRowsAdapter will be used to vertically display horizontal rows of action
buttons and other details for the controls. mPlaybackControlsRow,
mPrimaryActionsAdapter, and mSecondaryActionsAdapter contain additional
details for the controls and actions that can be taken by the users. The
remaining items each represent a different predefined action that can be
displayed on the PlaybackOverlayFragment.

Next you will add a new method call to the end of onCreate named
setupPlaybackControlsRow. This method will initialize the three instances
of ArrayObjectAdapter and assign a ControlButtonPresenterSelector that
determines what buttons should be displayed at any given time.

private void setupPlaybackControlsRow() {
 mPlaybackControlsRow = new PlaybackControlsRow(mVideo);
 ControlButtonPresenterSelector presenterSelector =
 new ControlButtonPresenterSelector();
 mPrimaryActionsAdapter = new ArrayObjectAdapter(presenterSelector);
 mSecondaryActionsAdapter = new ArrayObjectAdapter(presenterSelector);
 mPlaybackControlsRow.setPrimaryActionsAdapter(mPrimaryActionsAdapter);
 mPlaybackControlsRow.setSecondaryActionsAdapter(
 mSecondaryActionsAdapter);
}

After setupPlaybackControlsRow is written, add a call to setupPresenter to
onCreate. setupPresenter will associate the OnActionClickedListener with
the fragment, create the class presenter, and add the PlaybackControlsRow
to main adapter for PlayerControlsFragment.

CHAPTER 3: Building a Media App

47

private void setupPresenter() {
 ClassPresenterSelector ps = new ClassPresenterSelector();
 PlaybackControlsRowPresenter playbackControlsRowPresenter =
 new PlaybackControlsRowPresenter(new DescriptionPresenter());
 playbackControlsRowPresenter.setOnActionClickedListener(this);
 playbackControlsRowPresenter.setSecondaryActionsHidden(false);
 ps.addClassPresenter(PlaybackControlsRow.class,
 playbackControlsRowPresenter);
 ps.addClassPresenter(ListRow.class, new ListRowPresenter());
 mRowsAdapter = new ArrayObjectAdapter(ps);
 mRowsAdapter.add(mPlaybackControlsRow);
}

You’ll notice that DescriptionPresenter is passed into the constructor
for PlaybackControlsRowPresenter. DescriptionPresenter extends
AbstractDetailsDescriptionPresenter and is an inner class for
PlayerControlsFragment. It is used for adding details above the controls. In
this case it will add the name of the media above the controls. If you instead
pass null into the constructor for PlaybackControlsRowPresenter, you will
only see the controls on the overlay.

static class DescriptionPresenter extends
AbstractDetailsDescriptionPresenter {
 @Override
 protected void onBindDescription(ViewHolder viewHolder, Object item) {
 viewHolder.getTitle().setText(((Video) item).getTitle());
 }
}

Creating Actions
Now that your rows are initialized, it’s time to add action buttons to them.
Place the following four method calls to the end of onCreate.

initActions();
setupPrimaryActionsRow();
setupSecondaryActionsRow();
setAdapter(mRowsAdapter);

initActions will initialize each of the member variable actions as new
objects. Each action will appear as a button on the controls overlay.

private void initActions() {
 mPlayPauseAction =
 new PlaybackControlsRow.PlayPauseAction(getActivity());
 mRepeatAction =
 new PlaybackControlsRow.RepeatAction(getActivity());

CHAPTER 3: Building a Media App48

 mShuffleAction =
 new PlaybackControlsRow.ShuffleAction(getActivity());
 mSkipNextAction =
 new PlaybackControlsRow.SkipNextAction(getActivity());
 mSkipPreviousAction =
 new PlaybackControlsRow.SkipPreviousAction(getActivity());
 mFastForwardAction =
 new PlaybackControlsRow.FastForwardAction(getActivity());
 mRewindAction =
 new PlaybackControlsRow.RewindAction(getActivity());
 mHighQualityAction =
 new PlaybackControlsRow.HighQualityAction(getActivity());
 mClosedCaptionAction =
 new PlaybackControlsRow.ClosedCaptioningAction(getActivity());
}

You can specify which row each action goes into by assigning them
to the proper adapter. setupPrimaryActionsRow will add the skip back,
rewind, play/pause, fast forward, and skip forward to the top control row.
setupSecondaryActionsRow will add the repeat, shuffle, high quality toggle,
and closed caption options to the bottom row. It should be noted that the
order in which you assign actions to an adapter is directly related to the
order that they are displayed from left to right.

private void setupPrimaryActionsRow() {
 mPrimaryActionsAdapter.add(mSkipPreviousAction);
 mPrimaryActionsAdapter.add(mRewindAction);
 mPrimaryActionsAdapter.add(mPlayPauseAction);
 mPrimaryActionsAdapter.add(mFastForwardAction);
 mPrimaryActionsAdapter.add(mSkipNextAction);
}

private void setupSecondaryActionsRow() {
 mSecondaryActionsAdapter.add(mRepeatAction);
 mSecondaryActionsAdapter.add(mShuffleAction);
 mSecondaryActionsAdapter.add(mHighQualityAction);
 mSecondaryActionsAdapter.add(mClosedCaptionAction);
}

At this point you can run the application and launch the video player activity
to see the playback controls as shown in Figure 3-5.

CHAPTER 3: Building a Media App

49

You’ll notice that the video does not automatically start, and the buttons
don’t do anything. While the onActionClicked method has been associated
with the controls, the method itself doesn’t do anything yet. You can take
care of that now.

@Override
public void onActionClicked(Action action) {
 if(action.getId() == mPlayPauseAction.getId()) {
 if(mPlayPauseAction.getIndex()
 == PlaybackControlsRow.PlayPauseAction.PLAY) {
 setFadingEnabled(true);
 mControlsCallback.play();
 mRowsAdapter.notifyArrayItemRangeChanged(0, 1);
 } else {
 setFadingEnabled(false);
 mControlsCallback.pause();
 }
 ((PlaybackControlsRow.MultiAction) action).nextIndex();
 mPrimaryActionsAdapter.notifyArrayItemRangeChanged(
 mPrimaryActionsAdapter.indexOf(action), 1);
 } else {
 Toast.makeText(getActivity(), "Other action”,
 Toast.LENGTH_SHORT).show();
 }
}

If the clicked action is the Play/Pause button, you will check the state of
the button. If the button is in the Play state, you will enable control fading
so that the controls disappear from the screen and notify PlayerActivity
that it should start playing the video. If the clicked button is Pause, control
fading will be disabled so that the controls stay visible, and PlayerActivity
will be notified that the media should be paused. The final thing you have to
handle when the Play/Pause button is pressed is changing the button state.

Figure 3-5. Video playback controls

CHAPTER 3: Building a Media App50

Since the PlayPauseAction is an extension of the MultiAction class, you can
call notifyArrayItemRangeChanged on the primary row of actions and it will
handle changing the button type. If any other button is pressed, this sample
will display a Toast message. If you want to change this, you can control
what happens in your app for any button by checking the ID against the
predefined actions.

Summary
Congratulations! You’ve made the basis for a full working media application.
Now you should be able to run the application and view all of the media
in the BrowseFragment, enter into the DetailsFragment to see more
information about each piece of content, and control the video using
the controls provided by the Leanback Support library. While this is a
great first step, there’s still plenty more that can be done to customize
your app. In the next chapter you will learn how to enhance your app
by implementing a local search component, preferences, and adding
searching and recommendations to the Android TV home screen. You will
also be introduced to additional components that are useful for Android
TV development, but don’t necessarily fit into the scope of this demo
application.

51

Chapter 4
Enriching Your Media
Apps
While the application that you built in the last chapter is a nice demonstration
of how to create a bare-bones media app, you will undoubtedly want to add
more features for your users. Luckily, the Android TV platform and Leanback
Support library offer multiple tools that you can use to improve your app
and engage with your users. In this chapter you will learn how to implement
simple versions of global and local search, adding a preferences screen to
your app and supplying recommendations to the Android TV home screen
recommendations row by updating the demo app you created in the last
chapter. You will also learn about additional features that are available for
Android TV, such as live channels and the Now Playing card.

In-App Searching
When you have an application with a lot of content, it becomes important
that your users can find specific media items that they are looking for.
Luckily, the BrowseFragment class supports a new built-in view called the
SearchOrbView. When the users click on the SearchOrbView, they should
be shown a new fragment that facilitates searching within your app. In this
section you learn how to add SearchOrbView to MainFragment and use
local search within the demonstration application that you started in the last
chapter.

CHAPTER 4: Enriching Your Media Apps52

Adding a SearchOrbView
Since BrowseFragment contains a built-in SearchOrbView, you can easily
make it accessible with a few lines of code. In MainFragment, add a new
method call at the end of onActivityCreated named initSearchOrb, so that
onActivityCreated looks like the following

@Override
public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);
 loadData();

 setTitle("Apress Media Player");
 setHeadersState(HEADERS_HIDDEN);
 setHeadersTransitionOnBackEnabled(true);
 loadRows();
 setOnItemViewClickedListener(this);
 initSearchOrb();
}

Before you initialize the search, go into app/src/res/values and create
a new values resource file named colors.xml. This file will contain a few
colors that you will use throughout your app in one easy to access location.
When the file is created, add a new color named search_button_color
and give it any color hex value that fits the theme of your application. This
example uses an orange, as defined by #FFA500. Your colors.xml file
should look like this:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <color name="search_button_color">#FFA500</color>
</resources>

Next you will need to define the initSearchOrb method in your MainFragment
class. This method will be where you can set the SearchOrbView color and
determine what it does when clicked. In order to make the SearchOrbView
visible, the only thing you need to do is set an OnClickListener through
the setOnSearchClickedListener method. You will also set the color of the
SearchOrbView to the color defined by search_button_color in colors.xml
by calling setSearchAffordanceColor.

private void initSearchOrb() {

 setSearchAffordanceColor(ContextCompat.getColor(getActivity(),
 R.color.search_button_color));
 setOnSearchClickedListener(new View.OnClickListener() {
 @Override

CHAPTER 4: Enriching Your Media Apps

53

 public void onClick(View view) {
 }
 });
}

When you run your application, you should now see the search orb in the
top-left corner of your BrowseFragment, as shown in Figure 4-1. You will
notice that the SearchOrbView has some animations already built into it
that cause the orb to grow in size when highlighted, and also pulsate with a
ripple effect in order to let the users know that it is selectable.

Note You may notice that the color here is being retrieved by calling
ContextCompat.getColor. Using getResources().getColor(int
colorResource) has been deprecated as of SDK 23, and this is the
recommended way of retrieving a color from a resource.

Figure 4-1. BrowseFragment with a SearchOrbView visible

When you select the SearchOrbView, you’ll notice that nothing
happens. That’s because the OnClickListener that is associated with
the SearchOrbView is empty. Before you can make SearchOrbView do
something when it’s selected, you need to define a new activity and
fragment to handle searching.

CHAPTER 4: Enriching Your Media Apps54

Creating the Local Search Activity and Fragment
Within your application package folder, you will need to create two new
Java files. Name the first one MediaSearchActivity.java and have it extend
Activity. The only thing this activity will do for now is set a content view for
a layout file that you will define later in this section.

public class MediaSearchActivity extends Activity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_search);
 }
}

The second Java file should be named MediaSearchFragment.java, and it will
extend the Leanback Support library class SearchFragment. SearchFragment
will allow you to implement your own SearchResultProvider and return an
ObjectAdapter containing the results, which will then be used to render a
RowsFragment in the same way as BrowseFragment.

You will also need to implement the SpeechRecognitionCallback interface.
SpeechRecognitionCallback was added with the release of Android
Marshmallow as a replacement for SpeechRecognizer. This callback is used
so that the users do not need to explicitly grant the RECORD_AUDIO permission
to use voice actions while performing a search.

Lastly, you will need to implement OnItemViewClickedListener so that you
can determine which action to take when a user selects an item that is
returned as a search result. Once you have created MediaSearchFragment
and added the interfaces with their method stubs, your class should look
like this:

public class MediaSearchFragment extends SearchFragment implements
 SpeechRecognitionCallback,
 SearchFragment.SearchResultProvider,
 OnItemViewClickedListener {

 @Override
 public void onItemClicked(Presenter.ViewHolder itemViewHolder,
 Object item, RowPresenter.ViewHolder rowViewHolder, Row row) {
 }

 @Override
 public ObjectAdapter getResultsAdapter() {
 return null;
 }

CHAPTER 4: Enriching Your Media Apps

55

 @Override
 public boolean onQueryTextChange(String newQuery) {
 return false;
 }

 @Override
 public boolean onQueryTextSubmit(String query) {
 return false;
 }

 @Override
 public void recognizeSpeech() {
 }
}

Now that your two Java files are implemented, you will need to create
the layout file that MediaSearchActivity uses in order to display
MediaSearchFragment. Under app/src/main/res/layout, create a new
layout XML file named activity_search.xml. This file will look similar
to activity_main.xml, except that it will contain a reference to the
MediaSearchFragment class.

<?xml version="1.0" encoding="utf-8"?>
<fragment xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/main_browse_fragment"
 android:name="com.apress.mediaplayer.MediaSearchFragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity"
 tools:deviceIds="tv"
 tools:ignore="MergeRootFrame" />

Next, you will need to declare MediaSearchActivity inside of the manifest
file so that you will be able to use it without your application crashing.
You can place the following line of code below the definitions for
VideoDetailsActivity and PlayerActivity in AndroidManifest.xml.

<activity android:name=".MediaSearchActivity" />

The last thing you need to do before digging into the code that
makes searching possible is connect the SearchOrbView to your new
MediaSearchActivity. Returning to MainFragment, create an intent that
launches your new search screen when the orb is clicked by updating the
onClick method inside of the SearchOrbView onClickListener.

http://schemas.android.com/apk/res/android
http://schemas.android.com/tools

CHAPTER 4: Enriching Your Media Apps56

setOnSearchClickedListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 Intent intent = new Intent(getActivity(),
 MediaSearchActivity.class);
 startActivity(intent);
 }
});

Implementing Local Search from a Keyboard
At this point you should be able to run your application and select the
SearchOrbView, but when you do you’ll notice that the application
crashes. If you look at the app logs in Android Studio, you’ll see that
you received an IllegalStateException that says the RECORD_AUDIO
permission is required for search. In the last section I mentioned that you
will use SpeechRecognitionCallback to make that permission unnecessary.
However, you still have some work to do in order to tell the SearchFragment
that you want to use your own callback. Start by overriding the onCreate
method in MediaSearchFragment and pointing the SearchResultProvider,
SpeechRecognitionCallback, and OnItemClickListener interfaces to the
MediaSearchFragment since the fragment implements those interfaces itself.

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setSearchResultProvider(this);
 setSpeechRecognitionCallback(this);
 setOnItemViewClickedListener(this);
}

Now you should be able to build your application and select the search orb
to see the beginnings of the application search screen. At this point the
screen will consist of a voice search activation button in the top-left corner
and an EditText at the top center for accepting typed input, as seen in
Figure 4-2.

CHAPTER 4: Enriching Your Media Apps

57

When you try to type into the search field, you should get another application
crash. This is because the majority of MediaSearchFragment has yet to be
implemented to handle searching. While efficient searching is beyond the
scope of this book, you will create a rudimentary version of search that
checks against the data in the local JSON file in order to return results. Start
by declaring three new member variables at the top of this class:

	An integer that will be used as a request code for
speech input in the next session

	An ArrayObjectAdapter for storing and displaying
results

	A list of video objects for keeping track of all the data
that can be searched

public static final int SPEECH_REQUEST_CODE = 42;
private ArrayObjectAdapter mRowsAdapter;
private List<Video> mVideos;

At the end of onCreate you will call loadData() and initialize mRowsAdapter
with a new ListRowPresenter.

loadData();
mRowsAdapter = new ArrayObjectAdapter(new ListRowPresenter());

Figure 4-2. Initial App SearchFragment

CHAPTER 4: Enriching Your Media Apps58

loadData will take the content JSON data and create a list of video objects,
and should look familiar to you since you have implemented this method
before in other classes for this project.

private void loadData() {
 String json = Utils.loadJSONFromResource(getActivity(), R.raw.videos);
 Type collection = new TypeToken<ArrayList<Video>>(){}.getType();
 Gson gson = new Gson();
 mVideos = gson.fromJson(json, collection);
}

Now that you have the data prepared, it’s time to start searching. For this
example you will use a method named loadQuery that will accept a string
from your users and find content from the data that matches the query. This
method will first clear the results of previous searches and validate that the
query exists and is not empty. Next you will loop through the data and see if
the media titles contain the query provided by the users. While this is not the
most efficient way to retrieve results from the data, it is a simple and easy-
to-understand approach while learning how Android TV displays search
results. Each item that matches the search query will be placed into a new
ArrayObjectAdapter to be displayed as cards. Once the ArrayObjectAdapter
is populated with the results, a new Header and ListRow will be added to the
top-level ArrayObjectAdapter to display the results.

private void loadQuery(String query) {
 if(mRowsAdapter != null)
 mRowsAdapter.clear();
 if(query == null || query.length() == 0)
 return;

 ArrayObjectAdapter listRowAdapter = new
 ArrayObjectAdapter(new CardPresenter());
 for(Video video : mVideos) {
 if(video.getTitle() != null &&
 video.getTitle().toLowerCase().contains(query.toLowerCase())) {
 listRowAdapter.add(video);
 }
 }

 if(listRowAdapter.size() == 0)
 return;
 HeaderItem header = new HeaderItem("Results");
 mRowsAdapter.add(new ListRow(header, listRowAdapter));
}

CHAPTER 4: Enriching Your Media Apps

59

When loadQuery is complete, you will need to wire it up to
MediaSearchFragment so that the application knows to call that method.
You have three stub methods from the SearchResultProvider interface that
you will need to use. getResultsAdapter will simply return mRowsAdapter so
that the fragment will know what will be displayed. onQueryTextChange and
onQueryTextSubmit will each take the query string argument and then call
loadQuery. You will notice that both of these methods also return a Boolean.
If you return true, it means that the results have changed due to the query.
For this simple demonstration we will always return true, even though the
results may not be different from the last time one of these methods was
called, in order to keep things simple.

@Override
public ObjectAdapter getResultsAdapter() {
 return mRowsAdapter;
}

@Override
public boolean onQueryTextChange(String newQuery) {
 loadQuery(newQuery);
 return true;
}

@Override
public boolean onQueryTextSubmit(String query) {
 loadQuery(query);
 return true;
}

At this point you will be able to run your application and type in your search
query to return results, as seen in Figure 4-3.

CHAPTER 4: Enriching Your Media Apps60

The last thing you will want to do to complete searching through text is
perform an action when one of the returned search results is selected.
You can do this by overriding the onItemClicked method from the
OnItemViewClickedListener interface. When an item is selected, ensure that
it is an instance of a video object, and then pass it to VideoDetailActivity
through an intent.

@Override
public void onItemClicked(Presenter.ViewHolder itemViewHolder, Object item,
RowPresenter.ViewHolder rowViewHolder, Row row) {
 if(item instanceof Video) {
 Video video = (Video) item;
 Intent intent = new Intent(getActivity(),
 VideoDetailsActivity.class);
 intent.putExtra(VideoDetailsFragment.EXTRA_VIDEO, video);
 startActivity(intent);
 }
}

Now when you click on a returned result, the detail screen for that video
will be displayed (Figure 4-4) and your users will be able to view the media
content.

Figure 4-3. In-app search screen implementation

CHAPTER 4: Enriching Your Media Apps

61

While being able to type in search queries will be beneficial for your users,
many users will still want the ability to just say what they’re looking for
and have it appear on the screen. In the next section you will learn how to
accommodate this by accepting voice input from your users so your app
can display search results.

Using Voice Input for Local Search
With the scaffolding put together for searching, adding voice support is fairly
straightforward. When you implemented the SpeechRecognitionCallback
interface in MediaSearchFragment, you added a stub for the method
recognizeSpeech. In this method you will call startActivityForResult with
the intent received from getRecognizerIntent and the request code that you
defined in the last section at the top of MediaSearchFragment.

@Override
public void recognizeSpeech() {

 startActivityForResult(getRecognizerIntent(),
 SPEECH_REQUEST_CODE);
}

This will trigger onActivityResult to be called in MediaSearchFragment. Here
you will check the value of requestCode to make sure it matches SPEECH_
REQUEST_CODE and that resultCode matches Activity.RESULT_OK. If both
of those are true, then you will call setSearchQuery. The setSearchQuery

Figure 4-4. Detail screen shown when selecting an item from search

CHAPTER 4: Enriching Your Media Apps62

method will set the text in the search bar and accept two parameters: an
intent containing the search query and a Boolean. Setting the Boolean value
to true will automatically call onQueryTextSubmit once the voice input has
been received.

@Override
public void onActivityResult(int requestCode, int resultCode, Intent data) {
 if(requestCode == SPEECH_REQUEST_CODE
 && resultCode == Activity.RESULT_OK) {
 setSearchQuery(data, true);
 }
}

At this point everything in MediaSearchFragment should work as expected
if the users select the voice button on the search screen. However, if your
users select the voice input button on their remote it will bring up the
Android TV global search screen. You can change this behavior so that
MediaSearchActivity launches by overriding the onSearchRequested method
in your MediaSearchActivity and MainActivity files. This method must also
return a Boolean value. If true is returned, then it means a search activity has
been started. If false is returned if the action has been blocked.

@Override
public boolean onSearchRequested() {
 startActivity(new Intent(this, MediaSearchActivity.class));
 return true;
}

With those last few changes, the users will now be taken to your custom
search screen whenever they press the search button on their remote
control while in your app. You should now be able to take what you have
learned about local search and implement it into your own Android TV apps
to enrich the experience of your users.

Implementing a Preference Screen
When you want to give your users the ability to customize their experience
in an Android app, you generally use the PreferenceFragment class.
PreferenceFragment allows you to display a list of items that can be
manipulated by the users and automatically saves changes to the
application’s SharedPreferences. Given how useful this component can
be, Google has provided the Leanback Preference library, which contains
a customized PreferenceFragment called the LeanbackPreferenceFragment.
This new class provides the same functionality as the PreferenceFragment
while also conforming to television design patterns. In this section you will
learn how to implement it into your demo app.

CHAPTER 4: Enriching Your Media Apps

63

Since this component uses a library that has not already been added to your
project, you will need to include it as a dependency in your build.gradle
file. At the time of this writing, version 23.1.1 of this library is the latest.
Under the dependencies node of build.gradle, add the following line and
then sync your project.

compile 'com.android.support:preference-leanback-v17:23.1.1'

Displaying a Preference Item Entry Point
If you have looked over the Android TV home screen, you’ll notice that the
last row consists of two settings items (as seen in Figure 4-5). You will follow
this pattern in the demo app by providing a new settings item at the bottom
of MainFragment that will open to your LeanbackPreferenceFragment.

Figure 4-5. Android home screen and location of settings

To implement this, you will add a new row and header to the
ArrayObjectAdapter containing the rows of media cards in MainFragment.
You will also create a new presenter so that the settings item will stand out
compared to the media cards that you have used before. Go ahead and get
started by creating a new Java class named PreferenceCardPresenter and
have it extend the Presenter class. You will need to declare three methods in
this class: onCreateViewHolder, onBindViewHolder, and onUnbindViewHolder.

public class PreferenceCardPresenter extends Presenter {
 @Override
 public ViewHolder onCreateViewHolder(ViewGroup parent) {
 }

 @Override
 public void onBindViewHolder(ViewHolder viewHolder, Object item) {
 }

CHAPTER 4: Enriching Your Media Apps64

 @Override
 public void onUnbindViewHolder(ViewHolder viewHolder) {
 }
}

In onCreateViewHolder, you will create a TextView, set the size of that
TextView to match the media cards in MainFragment and apply some other
styles to make the card gray with centered white text.

@Override
public ViewHolder onCreateViewHolder(ViewGroup parent) {
 TextView view = new TextView(parent.getContext());
 view.setLayoutParams(new ViewGroup.LayoutParams(210, 210));
 view.setFocusable(true);
 view.setBackgroundColor(ContextCompat.getColor(parent.getContext(),
 R.color.preference_card_background));
 view.setTextColor(Color.WHITE);
 view.setGravity(Gravity.CENTER);
 return new ViewHolder(view);
}

Next you will need to take the object that was passed to the class, cast it to
a string, and use that string to set the text that will be displayed for this item.

@Override
public void onBindViewHolder(ViewHolder viewHolder, Object item) {
 ((TextView) viewHolder.view).setText((String) item);
}

In the onCreateViewHolder method you set the background color for the
settings card using a color resource value. For that to work, you will need to
add a color resource named preference_card_background to your colors.xml
file. Open the colors.xml file under the app/src/main/res/values directory
and add the following line within the resources tags

<color name="preference_card_background">#AAAAAA</color>

When you’re done with PreferenceCardPresenter, you can close that file
and open MainFragment. Once you have opened MainFragment, add the
following code to the end of loadRows.

setupPreferences(adapter);

setupPreferences will accept the ArrayObjectAdapter used for displaying
the rows of media content so that you can append a row containing your
preference item to the bottom of your BrowseFragment. In this method you
will create a new HeaderItem and PreferenceCardPresenter, then you will

CHAPTER 4: Enriching Your Media Apps

65

initialize a new ArrayObjectAdapter to contain your settings item. Finally, this
method will add a new string to the row with the title of your settings item
and add the preference row to your main BrowseFragment set of rows.

private void setupPreferences(ArrayObjectAdapter adapter) {
 HeaderItem gridHeader = new HeaderItem(adapter.size(), "Preferences");
 PreferenceCardPresenter presenter = new PreferenceCardPresenter();
 ArrayObjectAdapter gridRowAdapter = new ArrayObjectAdapter(presenter);
 gridRowAdapter.add("Settings");
 adapter.add(new ListRow(gridHeader, gridRowAdapter));
}

If you run your application now, you will see a gray card with white text in it
at the bottom of MainFragment, as seen in Figure 4-6.

Figure 4-6. LeanbackPreferenceFragment entry point in MainFragment

In order to open your preference screen, modify the OnItemClicked method
to check if the selected item is equal to “Settings”. If it is, create a new
Intent for SettingsActivity.class and call startActivity with that intent.

@Override
public void onItemClicked(Presenter.ViewHolder itemViewHolder, Object item,
RowPresenter.ViewHolder rowViewHolder, Row row) {
 if(item instanceof Video) {
 Video movie = (Video) item;
 Intent intent = new Intent(getActivity(),
 VideoDetailActivity.class);

CHAPTER 4: Enriching Your Media Apps66

 intent.putExtra(VideoDetailsFragment.EXTRA_VIDEO, movie);
 startActivity(intent);
 } else if("Settings".equals(item)) {
 Intent intent = new Intent(getActivity(), SettingsActivity.class);
 startActivity(intent);
 }
}

Creating the Preference Screen
To compile your app, you will need to create a few new files. Under your
application package, make a new Java class and name it SettingsActivity.
java. This class will extend Activity, and you will override onCreate so that
you can set a layout file as the content view.

public class SettingsActivity extends Activity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_settings);
 }
}

Next you will need to create the layout file. Create a new layout file named
activity_settings.xml in the layouts resource folder of your project.
This should look familiar to you from the last few activity layout files,
though this one will contain a reference to a new class you will write called
SettingsFragment.

<?xml version="1.0" encoding="utf-8"?>
<fragment xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/settings_fragment"
 android:name="com.apress.mediaplayer.SettingsFragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

With the layout created, you can now make the SettingsFragment
Java file inside of your application package directory. This new
class will extend LeanbackPreferenceFragment and implement the
OnSharedPreferenceChangeListener interface.

public class SettingsFragment extends LeanbackPreferenceFragment
 implements OnSharedPreferenceChangeListener {
 @Override
 public void onSharedPreferenceChanged(SharedPreferences
 sharedPreferences, String key) {
 }

http://schemas.android.com/apk/res/android

CHAPTER 4: Enriching Your Media Apps

67

 @Override
 public void onCreatePreferences(Bundle bundle, String s) {
 }
}

Next you need to override onPause and onResume so that
onSharedPreferenceChangedListener can be registered and unregistered.

@Override
public void onResume() {
 super.onResume();
 getPreferenceManager().getSharedPreferences()
 .registerOnSharedPreferenceChangeListener(this);
}

@Override
public void onPause() {
 getPreferenceManager().getSharedPreferences()
 .unregisterOnSharedPreferenceChangeListener(this);
 super.onPause();
}

The onSharedPreferenceChanged method will be called whenever the user
modifies an item on the preference screen, allowing you to change how your
application interacts with your users.

The last thing you will need to do in SettingsFragment is override onCreate
so that you can associate an XML file defining your preferences with your
fragment.

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 addPreferencesFromResource(R.xml.preferences);
}

Now that you’ve completed SettingsFragment, you will need to make the
preferences.xml file. Create a new resource folder under the res directory
called xml. Next, create a new XML resource file and name it preferences.
xml. Your preferences file will contain various examples of preferences that
can be supported on the Android TV, including checked items, a list of
selectable items, an EditText dialog, and an item that cannot be selected
unless its parent item is checked. It should be noted that some preferences
features, such as including an intent that goes to a web page, are not
supported in Android TV.

CHAPTER 4: Enriching Your Media Apps68

<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:title="Preferences">
 <PreferenceCategory
 android:title="Inline Preference">
 <CheckBoxPreference
 android:key="checkbox_preference"
 android:title="CheckboxPreference"
 android:summary="Checkbox Preference Summary" />
 </PreferenceCategory>
 <PreferenceCategory
 android:title="Dialog Preference">
 <EditTextPreference
 android:key="edittext_preference"
 android:title="Edit Text Preference"
 android:summary="Edit Text Preference Summary"
 android:dialogTitle="Dialog Title Edit Text Preference" />
 <ListPreference
 android:key="list_preference"
 android:title="List Preference"
 android:summary="List Preference Summary"
 android:entries="@array/entries_list_preference"
 android:entryValues="@array/entries_list_preference"
 android:dialogTitle="List Preference Dialog Title" />
 </PreferenceCategory>
 <PreferenceCategory
 android:title="Attributes Title">
 <CheckBoxPreference
 android:key="parent_checkbox_preference"
 android:title="Parent Preference Title"
 android:summary="Parent Preference Summary" />
 <CheckBoxPreference
 android:key="child_checkbox_preference"
 android:dependency="parent_checkbox_preference"
 android:title="Child Preference Title"
 android:summary="Child Preference Summary" />
 </PreferenceCategory>
</PreferenceScreen>

In this file, a string array named entries_list_preference is used. Within
your values resource directory under the res folder, create a new file named
string-array.xml and populate it with a list of items. For this demonstration
you will just list the first four planets in the solar system; however, you can
use any data that you like.

http://schemas.android.com/apk/res/android

CHAPTER 4: Enriching Your Media Apps

69

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string-array name="entries_list_preference">
 <item>Mercury</item>
 <item>Venus</item>
 <item>Earth</item>
 <item>Mars</item>
 </string-array>
</resources>

In order to run your application and get to the new preferences screen,
you will need to configure the preferenceTheme style item to the
PreferenceThemeOverlay style in your application theme. You can do this
by opening styles.xml from your res/values directory and adding the new
item under the AppTheme style.

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="AppTheme" parent="@style/Theme.Leanback">
 <item name="preferenceTheme">@style/PreferenceThemeOverlay</item>
 </style>
</resources>

Finally, open AndroidManifest.xml and define a new activity item for
SettingsActivity so that the system knows that the activity is available for
use within your app.

<activity android:name=".SettingsActivity" />

At this point you should be able to run your application and select
the Settings item from MainFragment, leading you into the preference
screen. This page will contain a header and a list of items as defined by
preferences.xml, as seen in Figure 4-7.

CHAPTER 4: Enriching Your Media Apps70

When your users select any item in this fragment, a SharedPreferences
entry will be changed to reflect the selection, allowing you to determine how
your app should act for your users. Values for check boxes are stored as
booleans, the EditText preference saves the content of the EditText field
as a string, and the list preference item will present the users with a dialog
containing a list of the available options for selecting that will also be stored
as a string, as seen in Figure 4-8.

Figure 4-8. LeanbackPreferenceFragment list preference example

Figure 4-7. LeanbackPreferenceFragment screen

CHAPTER 4: Enriching Your Media Apps

71

In this section you learned about the supported preferences items for
Android TV and how to implement them into your application. In the next
section you will expand on your demonstration program in order to engage
with your users while they are not actively using your app through the use of
recommendations that will show up on the Android TV home screen.

Using Recommendations
No matter how nice your app is or how much functionality you build, you
have to get users into your app for them to be able to enjoy it. When users
are sitting in front of their televisions, they want to be able to find content
quickly and start watching. Back in Chapter 2 you were introduced to the
recommendations row of the Android TV home screen, and in this section you
will learn how to take advantage of this feature to engage with your users.

Building Recommendation Cards
Recommendations are simply notification cards created from a background
service that are periodically pushed to the Android TV home screen in order
to offer content to your users. You can start pushing out recommendations
now by creating a new Java class named RecommendationService under
your application’s package directory and having it extend IntentService.

public class RecommendationService extends IntentService {
 public RecommendationService() {
 super("RecommendationService");
 }

 @Override
 protected void onHandleIntent(Intent intent) {
 }
}

There are two member variables that you will need to place at the top of
your service for this demonstration: an integer representing the max number
of recommendations your app will display for your user, and a list of video
objects that you will use to build the recommendations.

private int MAX_RECOMMENDATIONS = 3;
private List<Video> mVideos;

The onHandleIntent method is where all of the work for creating your
recommendations will happen. You can start setting up that method
by calling loadData, which will work exactly like it has in other classes,
to populate the mVideos structure. Next you will need to create a new

http://dx.doi.org/10.1007/978-1-4842-1784-9_2

CHAPTER 4: Enriching Your Media Apps72

NotificationManager object that will be used for pushing out your set
of notification objects once they have been built. When you have your
NotificationManager created, you can do some simple contingency
planning by checking to see if mVideos is empty or null, and returning if it
is. If it is not null or empty, but the number of items in the data is less than
the number of recommendations you would normally push out (three in this
case), then you can change the number of recommendations so that all of
the data you do have will be displayed.

@Override
protected void onHandleIntent(Intent intent) {
 loadData();
 NotificationManager notificationManager = (NotificationManager)
 getApplicationContext().getSystemService(Context.NOTIFICATION_SERVICE);

 int numOfRecommendations = MAX_RECOMMENDATIONS;

 if(mVideos == null) {
 return;
 } else if(mVideos.size() < MAX_RECOMMENDATIONS){
 numOfRecommendations = mVideos.size();
 }
}

Because all of the notifications to be built will share some common
attributes, you can create a base NotificationCompat.Builder object with
the common attributes to be shared across each recommendation.

NotificationCompat.Builder builder = new
 NotificationCompat.Builder(getApplicationContext())
 .setSmallIcon(R.mipmap.ic_launcher)
 .setLocalOnly(true)
 .setOngoing(true)

 .setColor(ContextCompat.getColor(getApplicationContext(),
 android.R.color.black))
 .setCategory(Notification.CATEGORY_RECOMMENDATION);

This builder will create a notification that:

	Uses the app icon in the lower-right corner of the card

	Will only be relevant to the local device

	Is flagged as ongoing, meaning it has higher priority
than notifications that are not ongoing

CHAPTER 4: Enriching Your Media Apps

73

	Will have a black selected color (though you can use
any color that fits the theme of your application)

	Will be categorized as a recommendation by the
Android TV home screen

You can finish up the onHandleIntent method by creating a loop to cycle
through your data and create the three notifications that you will display,
followed by posting them to the NotificationManager. For this example you
will simply grab the first three videos from the data set to display, though
your own applications will use logic that makes sense for your purposes.

for(int i = 0; i < numOfRecommendations; i++) {
 Video video = mVideos.get(i);
 Bitmap bitmap;
 try {
 bitmap = Picasso.with(this)
 .load(video.getPoster()).
 resize(313, 176)
 .get();
 } catch(IOException e) {
 continue;
 }
 builder.setPriority(numOfRecommendations - i)
 .setContentTitle(video.getTitle())
 .setContentText(video.getCategory())
 .setLargeIcon(bitmap)
 .setContentIntent(buildPendingIntent(video, i + 1));

 notificationManager.notify(i + 1, builder.build());
}

While you used Picasso in the last chapter to display images on media
cards inside of the app, it should be reiterated that Picasso is a third-
party open source library from Square, and not a part of the Android
framework or official libraries. The call to the Picasso image loader class will
synchronously download the image at the URL stored in video.getPoster
and resize it to 313 pixels in width by 176 pixels in height. While this width
and height may seem arbitrary, they are the dimensions used by Google’s
own applications, such as the YouTube app, in order to conform to a
16:9 display ratio. This bitmap will then be used as the main image for the
recommendation card.

Once your card image has been downloaded, you can set additional
properties on the NotificationCompat.Builder object, such as the order in
which the recommendations will appear in the recommendations row, the
title and description on the card, and the intent that will be fired when the
recommendation is selected.

CHAPTER 4: Enriching Your Media Apps74

At this point you may notice that your application does not compile.
This is because the buildPendingIntent has not yet been defined.
This can be remedied by adding the following method within your
RecommendationService class.

private PendingIntent buildPendingIntent(Video video, long id) {
 Intent detailsIntent = new Intent(this, VideoDetailActivity.class);
 detailsIntent.putExtra(VideoDetailsFragment.EXTRA_VIDEO, video);

 TaskStackBuilder stackBuilder = TaskStackBuilder.create(this);
 stackBuilder.addParentStack(VideoDetailActivity.class);
 stackBuilder.addNextIntent(detailsIntent);

 detailsIntent.setAction(Long.toString(id));

 PendingIntent intent = stackBuilder.getPendingIntent(0,
 PendingIntent.FLAG_UPDATE_CURRENT);
 return intent;
}

This method will create an intent that launches VideoDetailsActivity and
associates it with a TaskStackBuilder so that using the back button on the
Android TV remote will properly return the users to the Android TV home
screen rather than attempting to place them within your app. You will notice
that the intent also has a call to setAction. This allows you to ensure that
each PendingIntent used for recommendations is unique to the data that
created it. Otherwise, each of your recommendations may end up opening
to a screen based on the same data, rather than what the users wanted to
see. At this point your service will be able to create notifications based on
your data and display them as recommendations on the Android TV home
screen. In the next section you will learn how to start up this service so that
it will automatically start pushing content for your users to enjoy.

Starting the Recommendation Service
The easiest way to start your recommendation service is when your
application has been opened by your users. You can do this simply enough
by going into MainActivity and adding the following line to the end of
onCreate.

startService(new Intent(this, RecommendationService.class));

Where this strategy runs into trouble is when your users restart their Android
TV devices, but have not opened your application. In order to handle this
case, your best bet is to create a BroadcastReceiver that listens for when
the Android TV device has finished booting up. When the Android TV

CHAPTER 4: Enriching Your Media Apps

75

has started, this BroadcastReceiver will start RecommendationService. To
demonstrate this, create a new Java class named BootupReceiver and have
it extend BroadcastReceiver.

public class BootupReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 }
}

When onReceive is triggered, you will want to check the intent that has been
passed to it to see if it is an Intent.ACTION_BOOT_COMPLETED action. If it is,
then you can start RecommendationService. You will also want to create a new
method named scheduleRecommendationUpdate that creates an AlarmManager
in order to restart or update RecommendationService every 30 minutes. This
will provide the users with new or updated content from your app in order to
hopefully catch their attention and get them into your application.

private static final long INITIAL_DELAY = 5000;

@Override
public void onReceive(Context context, Intent intent) {
 if(intent.getAction().endsWith(Intent.ACTION_BOOT_COMPLETED)) {
 context.startService(new Intent(context,
 RecommendationService.class));
 scheduleRecommendationUpdate(context);
 }
}

private void scheduleRecommendationUpdate(Context context) {
 AlarmManager alarmManager = (AlarmManager)
 context.getSystemService(Context.ALARM_SERVICE);
 Intent recommendationIntent = new Intent(context,
 RecommendationService.class);
 PendingIntent alarmIntent = PendingIntent.getService(context, 0,
 recommendationIntent, 0);

 alarmManager.setInexactRepeating(AlarmManager.ELAPSED_REALTIME_WAKEUP,
 INITIAL_DELAY,
 AlarmManager.INTERVAL_HALF_HOUR,
 alarmIntent);
}

After your BroadcastReceiver is complete, you will need to declare both it
and RecommendationService in AndroidManifest.xml in the application tag.
BootupReceiver will require an intent-filter so that it can listen for the BOOT_
COMPLETED intent from the operating system.

CHAPTER 4: Enriching Your Media Apps76

<service android:name=".RecommendationService"
 android:enabled="true" />

<receiver android:name=".BootupReceiver"
 android:enabled="true"
 android:exported="false">
 <intent-filter>
 <action android:name="android.intent.action.BOOT_COMPLETED"/>
 </intent-filter>
</receiver>

You will also need to include the RECEIVE_BOOT_COMPLETE permission
declaration at the top of AndroidManifest.xml.

<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />

With MainActivity, RecommendationService, BootupReceiver, and
AndroidManifest.xml complete, you should now be able to run your
application and see recommendations in the recommendation row. If you
are testing your application on an emulator, then your Android TV home
screen should look similar to Figure 4-9. If you are testing on a physical
device, then your recommendation notifications will be mixed in with the
recommendations from other installed applications.

Figure 4-9. Populated recommendations on the Android TV home screen

CHAPTER 4: Enriching Your Media Apps

77

In this section you have learned about the recommendations row of the
Android TV home screen and how to place your own content into it.
While you are now able to accomplish this, there are additional features
available that you may find helpful in making your application stand out.
One of these is the ability to change the background of the Android TV
home screen to match your content. This is done by storing a bitmap file
with a ContentProvider and accessing it by a URI when your notification is
selected. While that is beyond the scope of this book, it does add a nice
touch to your app that your users will enjoy. In the next section you will
continue to learn about engaging with your users when they are outside of
your application by making your data and content searchable through the
Android TV global search function.

Android TV Global Search
Another way your users can access your content without going directly
to your app is through Android TV’s global search functionality. When the
users press the microphone button on their controllers or select the search
icon in the top left of the Android TV home screen, the system will open a
search screen and check to see what installed applications have made data
available for searching. In this section you will learn how to use some basic
SQLite functionality and how to make your content searchable by using a
ContentProvider.

Building the Search Database
In order to make your content available for Android TV global search, you
need to create a SQLite table that stores your content information and can be
accessed from outside of your application. You will start by writing a handler
class for a SQLite database. The purpose of this class is to make accessing
the database that you will create easier by using a ContentProvider.
Create this class now under your application package directory and name
it VideoDatabaseHandler.java. This file will need to declare and initialize
multiple properties to the top of the class, as shown here.

public class VideoDatabaseHandler {
 private static final String DATABASE_NAME = "video_database_leanback";
 private static final int DATABASE_VERSION = 1;
 private static final String FTS_VIRTUAL_TABLE = "Leanback_table";

 public static final String KEY_NAME =
 SearchManager.SUGGEST_COLUMN_TEXT_1;
 public static final String KEY_DATA_TYPE =
 SearchManager.SUGGEST_COLUMN_CONTENT_TYPE;

CHAPTER 4: Enriching Your Media Apps78

 public static final String KEY_PRODUCTION_YEAR =
 SearchManager.SUGGEST_COLUMN_PRODUCTION_YEAR;
 public static final String KEY_COLUMN_DURATION =
 SearchManager.SUGGEST_COLUMN_DURATION;
 public static final String KEY_ACTION =
 SearchManager.SUGGEST_COLUMN_INTENT_ACTION;
}

Here, DATABASE_NAME and DATABASE_VERSION are used for creating your
SQLite database, FTS_VIRTUAL_TABLE contains the name of the table that will
store all of your data, and the rest of the items are keys that will be used to
identify data in the database. Next you will need to make a map of all of the
columns that will be used in your table. You can do this in a new method
named buildColumnMap.

private static HashMap<String, String> buildColumnMap() {
 HashMap<String, String> map = new HashMap<String, String>();
 map.put(KEY_NAME, KEY_NAME);
 map.put(KEY_DATA_TYPE, KEY_DATA_TYPE);
 map.put(KEY_PRODUCTION_YEAR, KEY_PRODUCTION_YEAR);
 map.put(KEY_COLUMN_DURATION, KEY_COLUMN_DURATION);
 map.put(KEY_ACTION, KEY_ACTION);
 map.put(BaseColumns._ID, "rowid AS " + BaseColumns._ID);
 map.put(SearchManager.SUGGEST_COLUMN_INTENT_DATA_ID, "rowid AS " +
 SearchManager.SUGGEST_COLUMN_INTENT_DATA_ID);
 map.put(SearchManager.SUGGEST_COLUMN_SHORTCUT_ID, "rowid AS " +
 SearchManager.SUGGEST_COLUMN_SHORTCUT_ID);

 return map;
}

Back at the top of VideoDatabaseHandler, you will need to create a new data
item that is initialized using buildColumnMap. This item will be used to create
the projection map for your SQLite query.

private static final HashMap<String, String> COLUMN_MAP =
 buildColumnMap();

Before you can begin handling queries, you need to create a new inner
class named VideoDatabaseOpenHelper that extends SQLiteOpenHelper
to wrap your database. This inner class will load data into the database
and create the table that will be queried against. When you create
VideoDatabaseOpenHelper, you will also need to include a string that
represents the SQL command for creating your table, a SQLite database,
and a WeakReference containing a Context.

CHAPTER 4: Enriching Your Media Apps

79

private static class VideoDatabaseOpenHelper extends SQLiteOpenHelper {
 private final WeakReference<Context> mHelperContext;
 private SQLiteDatabase mDatabase;

 private static final String FTS_TABLE_CREATE =
 "CREATE VIRTUAL TABLE " + FTS_VIRTUAL_TABLE +
 " USING fts3 (" +
 KEY_NAME + ", " +
 KEY_DATA_TYPE + "," +
 KEY_ACTION + "," +
 KEY_PRODUCTION_YEAR + "," +
 KEY_COLUMN_DURATION + ");";

 public VideoDatabaseOpenHelper(Context context){
 super(context, DATABASE_NAME, null, DATABASE_VERSION);
 mHelperContext = new WeakReference<Context>(context);
 }

 @Override
 public void onCreate(SQLiteDatabase db){
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion){
 }
}

Next you will need to complete the onCreate method. This method will store
a reference to the database, create the contents table, and load all of the
searchable items into the database.

@Override
public void onCreate(SQLiteDatabase db) {
 mDatabase = db;
 mDatabase.execSQL(FTS_TABLE_CREATE);
 loadDatabase();
}

Note You’ll notice that the Context for this inner class is stored in a
WeakReference. Using a static inner class with a WeakReference to the
Context is a way to avoid memory leaks, as noted in this 2009 Android
Developers blog post: android-developers.blogspot.com/2009/01/
avoiding-memory-leaks.html.

https://android-developers.blogspot.com/2009/01/avoiding-memory-leaks.html
https://android-developers.blogspot.com/2009/01/avoiding-memory-leaks.html

CHAPTER 4: Enriching Your Media Apps80

The loadDatabase method will load all of the videos from the data JSON file
in your app into your table on a new thread.

private void loadDatabase() {
 new Thread(new Runnable() {
 public void run() {
 try {
 loadVideos();
 } catch (IOException e) {
 throw new RuntimeException(e);
 }
 }
 }).start();
}

private void loadVideos() throws IOException {
 List<Video> videos;

 String json = Utils.loadJSONFromResource(mHelperContext.get(),
 R.raw.videos);
 Type collection = new TypeToken<ArrayList<Video>>(){}.getType();

 Gson gson = new Gson();
 videos = gson.fromJson(json, collection);

 for(Video video : videos) {
 addVideoForDeepLink(video);
 }
}

public void addVideoForDeepLink(Video video) {
 ContentValues initialValues = new ContentValues();

 initialValues.put(KEY_NAME, video.getTitle());
 initialValues.put(KEY_DATA_TYPE, "video/mp4");
 initialValues.put(KEY_PRODUCTION_YEAR, "2015");
 initialValues.put(KEY_COLUMN_DURATION, 6400000);

 mDatabase.insert(FTS_VIRTUAL_TABLE, null, initialValues);
}

In the addVideoForDeepLink method, you added four values into a
ContentValues object. These are the only required items for the information
in your table to be searchable. You can add data by adding more columns
to your table and including keys from the SearchManager class. Since the
sample data for this project does not contain production year or duration of
the media, you can use dummy information for this demo application. Once
your ContentValues object is populated, you can use it to insert the data for
the given video into your table.

CHAPTER 4: Enriching Your Media Apps

81

At this point your VideoDatabaseOpenHelper inner class is complete. You
will need to create a reference to it at the top of VideoDatabaseHandler and
initialize it in the class constructor.

private final VideoDatabaseOpenHelper mDatabaseOpenHelper;

public VideoDatabaseHandler(Context context) {
 mDatabaseOpenHelper = new VideoDatabaseOpenHelper(context);
}

The last thing you need to do in VideoDatabaseHandler is handle queries.
There are two more methods that you will add to this class. The first is
query, which will take a query passed to it and return a Cursor object
containing the search results. The second is getWordMatch, which will accept
a string and see if it matches any of the titles in your media data by creating
a SQL command to pass to the query method.

public Cursor getWordMatch(String query, String[] columns) {
 String selection = KEY_NAME + " MATCH ?";
 String[] selectionArgs = new String[]{query + "*"};

 return query(selection, selectionArgs, columns);
}

private Cursor query(String selection, String[] selectionArgs, String[]
columns) {
 SQLiteQueryBuilder builder = new SQLiteQueryBuilder();
 builder.setTables(FTS_VIRTUAL_TABLE);
 builder.setProjectionMap(COLUMN_MAP);

 Cursor cursor = builder.query(mDatabaseOpenHelper.getReadableDatabase(),
 columns, selection, selectionArgs, null, null, null);

 if (cursor == null) {
 return null;
 } else if (!cursor.moveToFirst()) {
 cursor.close();
 return null;
 }
 return cursor;
}

If you have not worked with SQLite before, then this class can seem fairly
daunting, but that’s okay. While SQLite is out of the scope of this book, I
strongly recommend reading through Google’s documentation on it. As you
become more familiar with databases, it becomes easier to handle data
and do some interesting things in the Android platform. If you are already

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4: Enriching Your Media Apps82

comfortable with SQLite, then you’re off to a good start! In the next section,
you will create a new ContentProvider to access the database that you have
just created and make it available for Android TV global search.

Creating a Global Search Content Provider
Content providers are Android’s way of making data from one process
available in another. They encapsulate data and provide the tools necessary
for securely defining what data can be used by other processes. Create a
new Java class and name it VideoContentProvider.java. It will extend the
ContentProvider class.

public class VideoContentProvider extends ContentProvider {
 @Override
 public boolean onCreate() {
 return false;
 }

 @Override
 public Cursor query(Uri uri, String[] projection, String selection,
 String[] selectionArgs, String sortOrder) {
 return null;
 }

 @Override
 public String getType(Uri uri) {
 return null;
 }

 @Override
 public Uri insert(Uri uri, ContentValues values) {
 return null;
 }

 @Override
 public int delete(Uri uri, String selection, String[] selectionArgs) {
 return 0;
 }

 @Override
 public int update(Uri uri, ContentValues values, String selection,

String[] selectionArgs) {
 return 0;
 }
}

CHAPTER 4: Enriching Your Media Apps

83

Next, create a new VideoDatabaseHandler object at the top of the class and
initialize it in onCreate.

private VideoDatabaseHandler mVideoDatabase;

@Override
public boolean onCreate() {
 mVideoDatabase = new VideoDatabaseHandler(getContext());
 return true;
}

The last thing you need to do in VideoContentProvider is flesh out the query
method. Luckily, all of the hard work is handled by VideoDatabaseHandler.
The only thing you need to do is take the query passed to the content
provider from the arguments array, create an array of presenting the data
you want back, and then return the Cursor from the getWordMatch method
inside of VideoDatabaseHandler.

@Override
public Cursor query(Uri uri, String[] projection, String selection, String[]
selectionArgs, String sortOrder) {
 String query = selectionArgs[0];

 query = query.toLowerCase();
 String[] columns = new String[]{
 BaseColumns._ID,
 VideoDatabaseHandler.KEY_NAME,
 VideoDatabaseHandler.KEY_DATA_TYPE,
 VideoDatabaseHandler.KEY_PRODUCTION_YEAR,
 VideoDatabaseHandler.KEY_COLUMN_DURATION,
 SearchManager.SUGGEST_COLUMN_INTENT_DATA_ID
 };
 return mVideoDatabase.getWordMatch(query, columns);
}

In the next section you learn how to expose your content provider to
external processes.

Exposing the Content Provider
With your Java files complete, you will need to set up your application so
that other processes can find your content provider. Inside of your res
folder, create a new file under the xml directory named searchable.xml. This
configuration file will describe your content provider and contain other vital
information for Android TV.

CHAPTER 4: Enriching Your Media Apps84

<searchable xmlns:android="http://schemas.android.com/apk/res/android"
 android:label="@string/app_name"
 android:hint="Search for videos"
 android:searchSettingsDescription="Description"
 android:searchSuggestAuthority="com.apress.mediaplayer"
 android:searchSuggestIntentAction="android.intent.action.VIEW"
 android:searchSuggestIntentData="content://com.apress.mediaplayer/video_

database_leanback"
 android:searchSuggestSelection=" ?"
 android:searchSuggestThreshold="1"
 android:includeInGlobalSearch="true"
/>

When your searchable.xml file is complete, open AndroidManifest.xml
and add the following line in the application node to declare your content
provider in your app.

<provider android:name=".VideoContentProvider"
 android:authorities="com.apress.mediaplayer"
 android:exported="true" />

Now that your content provider is exposed, you will need to configure your
app so that any items returned from a search will properly open.

Reacting to the Search Action
To finish handling the global search action, you must let the Android TV
system know what to do when one of your items matches a search query.
In AndroidManifest.xml, change the declaration for VideoDetailsActivity
so that it contains an intent-filter for the SEARCH action and points to your
searchable.xml file as metadata.

<activity android:name=".VideoDetailsActivity">
 <intent-filter>
 <action android:name="android.intent.action.SEARCH" />
 </intent-filter>

 <meta-data android:name="android.app.searchable"
 android:resource="@xml/searchable" />
</activity>

If you run your application now, you will be able to use Android TV’s global
search functionality to search for one of your media items by title, as seen in
Figure 4-10.

http://schemas.android.com/apk/res/android

CHAPTER 4: Enriching Your Media Apps

85

There is one more problem. If you select that item, your application will
crash. This is because VideoDetailsFragment does not know how to
handle the situation where no video was passed to it. To remedy this, open
VideoDetailsFragment and go into the onCreate method. Immediately after
the line that attempts to initialize mVideo from a serialized extra in the intent,
add the following block of code:

if(mVideo == null) {
 Intent intent = getActivity().getIntent();
 Uri data = intent.getData();
 String json = Utils.loadJSONFromResource(getActivity(), R.raw.videos);
 Type collection = new TypeToken<ArrayList<Video>>(){}.getType();
 Gson gson = new Gson();
 List<Video> videos = gson.fromJson(json, collection);
 mVideo = videos.get(Integer.parseInt(data.getLastPathSegment())- 1);
}

This will load the data for your app and attempt to find the proper item
based on an identifier related to the media item’s position in the data. Now
if you run your application and use the global search option, you should be
able to click on any results from your app and be taken to the proper detail
screen for that item.

While there’s more you can do to improve this feature, such as add an
image for the returned result or include more metadata, you have just
completed integrating the demo app with Android TV’s global search
functionality. You now have a fleshed out Android TV media app, learned
how to display content for your users through various components of the
Leanback Support library, added a preference screen that can allow users
to customize their experience, implemented local and global search, and
integrated your features with the Android TV recommendation system.

Figure 4-10. Content found from a global search by title

CHAPTER 4: Enriching Your Media Apps86

More Media App Features
While you have learned about many features that can go into an Android TV
media application, there’s still a lot more that’s possible. In this section you
will be introduced to some of the additional tools included in the Leanback
Support library that can be useful for giving your users a truly enjoyable
experience. This section will not go into the full detail for implementing these
features, though you should learn enough to be able to find and understand
the documentation from Google.

Now Playing Card
If your app plays any sort of media that can continue playing after your users
return to the home screen, such as audio, then you must provide a way for
the users to return to your app in order to pause or change what’s playing.
Luckily, Android TV supports this by including a Now Playing card that can
appear in the recommendations row of the home screen. You can enable the
Now Playing card by creating a MediaSession object from the background
service controlling your audio and associating metadata with the session
for displaying artwork and information about the playing content. You can
also associate a PendingIntent with the Now Playing card so that your
application will be launched when the card is selected.

GuidedStepFragment
There will be times when you will want to help your users navigate
through a series of decisions. To help with this, Google has provided the
GuidedStepFragment in the Leanback Support library that consists of two
parts, the guidance view on the right and a list of selectable items on the
left. The guidance view will let you prompt your users so that they can figure
out what they want to select from the list of options. An example of the
GuidedStepFragment is the systems settings on the Android TV home screen,
which can allow users to dive through multiple levels of options per category.

Live Channels
Since users are familiar with the experience of browsing through channels
to find something to watch, you can present your own data in this fashion
by using the TV Input Framework. This will allow you to create channels
for streaming your content to your users alongside content from hardware
sources and other apps by utilizing another ContentProvider and services.
Users will be able to browse all channels by using the Android TV Live
Channels application installed on their devices.

CHAPTER 4: Enriching Your Media Apps

87

Summary
In this chapter you learned about additional features that you can implement
in your own media applications to enrich experiences and provide a
valuable tool for your users. You added searching both locally in the app
and through the global search functionality of Android TV. You also learned
about the Leanback styled preference fragment for your app, and how to
engage with users when they are not in your app through the Android TV
recommendations system. Outside of the topics you made work with your
own demo, you were introduced to three features that provide you with more
possibilities for creating an amazing user experience. In the next chapter
you will learn about a few tools that will help you create better gaming
experiences for the Android-powered television.

89

Chapter 5
The Android TV Platform
for Game Development
While media apps make up a significant portion of the Android TV app
ecosystem, games account for roughly 90% of the revenue developers
receive from the Play Store. Understanding how to get your games working
and ready for Android TV is vital if you are a game developer or hobbyist
who would like to have an extra avenue for making a profit off of your work.
Thankfully, since Android TV is a fully functioning Android OS, it doesn’t
take much to migrate your games over to the new platform. This chapter
will focus on Android TV and some tools for building your games with
the platform, as developing complete games is an extensive topic and
outside the scope of this book. This chapter will also only discuss Android
development, though other popular game engines are known to work with
the Android TV.

Android TV Games vs. Mobile
Although developing games for Android TV is very similar to developing for
mobile phones and tablets, there are a couple of things that you will need
to be aware of so that your games work as expected and are enjoyable
by your users. First and foremost, your app should work in landscape
mode. While phones and tablets tend to be used in portrait mode with the
possibility of being used in landscape, televisions are almost always going
to be in landscape orientation. As such, you need to make sure your games
will work as expected and use screen space wisely. The second thing that
you should consider is that the television is a central screen that is shared

CHAPTER 5: The Android TV Platform for Game Development90

among players in a room. If you have a card or strategy game, it’s imperative
that your players be able to hide their actions from each other. One of the
best ways to solve this problem is by creating a second screen experience
through the use of phones and tablets, allowing players to perform their
actions in private, and then updating the game screen on the television.

Manifest Setup
As discussed in Chapter 2, there are separate rows for displaying media
applications and games on the Android TV. In order to have your game
displayed in the games row, you must declare your app as a game in the
application node of AndroidManifest.xml.

<application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:isGame="true"
 android:theme="@style/AppTheme">

If your game will support the use of the Android TV gamepad controller, then
you will also need to declare that feature inside of your application. You can
do this by adding a new uses-feature node at the top of your manifest.

<uses-feature android:name="android.hardware.gamepad"
 android:required="false" />

You’ll notice that the required field in this node is set to false. If this field
is set to true, then your app will not be installable on Android TV devices.
Other than these very small changes, the rest of your manifest will work
exactly like it would for a standard mobile application.

Gamepad Controller Input
While your media application used simplified navigation to support a
D-pad, your games can support the gamepad controller to allow for far
more elaborate interactions. There are two main types of input that can
come from a gamepad controller: digital and analog. Digital inputs include
buttons, which have either a pressed or unpressed state. The analog inputs
consist of the joysticks or triggers on the controller and can provide values
within a set range. In this section you will learn how to read input from a
gamepad controller so that you can provide your users with a better gaming
experience on Android TV.

http://dx.doi.org/10.1007/978-1-4842-1784-9_2

CHAPTER 5: The Android TV Platform for Game Development

91

Setting Up the Controller Demo Project
You will learn about the gamepad controller through the use of a new
sample application that accepts input from the game controller and
displays the state the controls on the screen. The source code for this
application can be found on the Apress web page for this book (www.
apress.com/9781484217832). You can also create this project yourself by
creating a new empty Android TV application in Android Studio and setting
up AndroidManifest.xml, as discussed in the last section. The layout file,
activity_main.xml in this case, will consists of multiple TextView objects
that will either provide a label or be changed to show the value of their
associated input. While the following sample code only represents one item,
the rest should be fairly straightforward to figure out when you see the Java
code, and so are excluded here to conserve space.

...
<RelativeLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content">

 <TextView
 android:id="@+id/label_a"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Button A: "/>

 <TextView
 android:id="@+id/button_a"
 android:layout_toRightOf="@+id/label_a"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/state_not_pressed"/>

</RelativeLayout>
...

This sample will also use two additional values in strings.xml to represent
the pressed and unpressed states for buttons:

<string name="state_pressed">is pressed.</string>
<string name="state_not_pressed">is not pressed.</string>

Next you will need to modify MainActivity.java so that it contains
references to all of the views that will be changeable from your layout file
and associates them with the correct views.

http://www.apress.com/9781484217832
http://www.apress.com/9781484217832

CHAPTER 5: The Android TV Platform for Game Development92

private TextView mButtonStateA;
private TextView mButtonStateB;
private TextView mButtonStateX;
private TextView mButtonStateY;
private TextView mButtonStateR1;
private TextView mButtonStateL1;

private TextView mJoystickState1AxisX;
private TextView mJoystickState1AxisY;
private TextView mJoystickState2AxisX;
private TextView mJoystickState2AxisY;

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 mButtonStateA = (TextView) findViewById(R.id.button_a);
 mButtonStateB = (TextView) findViewById(R.id.button_b);
 mButtonStateX = (TextView) findViewById(R.id.button_x);
 mButtonStateY = (TextView) findViewById(R.id.button_y);
 mButtonStateR1 = (TextView) findViewById(R.id.button_r1);
 mButtonStateL1 = (TextView) findViewById(R.id.button_l1);

 mJoystickState1AxisX = (TextView)findViewById(R.id.joystick_1_axis_x);
 mJoystickState1AxisY = (TextView)findViewById(R.id.joystick_1_axis_y);
 mJoystickState2AxisX = (TextView)findViewById(R.id.joystick_2_axis_x);
 mJoystickState2AxisY = (TextView)findViewById(R.id.joystick_2_axis_y);
}

Once you have completed your layout and stored a reference to the key
views, you should be able to run your application and see a screen similar
to Figure 5-1. It should be noted that while you can run this program on the
emulator, you will need an actual gamepad controller and an Android TV
device to test the code in rest of this section.

CHAPTER 5: The Android TV Platform for Game Development

93

Storing Controller Inputs
To simplify the process of maintaining the controller state, you will create a
new utility class for this sample project called GameController.java. This
class will store data whenever an analog or digital control input event is
received and will provide helper methods for your application to determine
what controls are currently being used.

Once you have GameController.java created, you will need to make new
data items representing the buttons and joysticks on the controller, as well
as values that will help those data items map to the controller correctly.
When the GameController object is instantiated, you will initialize the button
and joystick state objects, then provide them with default values.

public static final int BUTTON_A = 0;
public static final int BUTTON_B = 1;
public static final int BUTTON_X = 2;
public static final int BUTTON_Y = 3;
public static final int BUTTON_R1 = 4;
public static final int BUTTON_R2 = 5;
public static final int BUTTON_L1 = 6;

Figure 5-1. Gamepad controller demo layout

CHAPTER 5: The Android TV Platform for Game Development94

public static final int BUTTON_L2 = 7;
public static final int BUTTON_COUNT = 8;

public static final int AXIS_X = 0;
public static final int AXIS_Y = 1;
public static final int AXIS_COUNT = 2;

public static final int JOYSTICK_1 = 0;
public static final int JOYSTICK_2 = 1;
public static final int JOYSTICK_COUNT = 2;

private final float mJoystickPositions[][];
private final boolean mButtonState[];

public GameController() {
 mButtonState = new boolean[BUTTON_COUNT];
 mJoystickPositions = new float[JOYSTICK_COUNT][AXIS_COUNT];
 resetState();
}

private void resetState() {
 for (int button = 0; button < BUTTON_COUNT; button++) {
 mButtonState[button] = false;
 }

 for (int joystick = 0; joystick < JOYSTICK_COUNT; joystick++) {
 for (int axis = 0; axis < AXIS_COUNT; axis++) {
 mJoystickPositions[joystick][axis] = 0.0f;
 }
 }
}

With your data items created and initialized, you will need a way to change
their values. When a KeyEvent (for button presses) or MotionEvent (for analog
inputs) is received by the application, it will be forwarded to this utility class.
You can then determine what control was used in order to save its state. For
a button, you will determine if the button is currently being held down, then
you will save that information in the array of button states.

public void handleKeyEvent(KeyEvent keyEvent) {
 boolean keyIsDown = keyEvent.getAction() == KeyEvent.ACTION_DOWN;

 if (keyEvent.getKeyCode() == KeyEvent.KEYCODE_BUTTON_A) {
 mButtonState[BUTTON_A] = keyIsDown;
 } else if (keyEvent.getKeyCode() == KeyEvent.KEYCODE_BUTTON_B) {
 mButtonState[BUTTON_B] = keyIsDown;

CHAPTER 5: The Android TV Platform for Game Development

95

 } else if (keyEvent.getKeyCode() == KeyEvent.KEYCODE_BUTTON_X) {
 mButtonState[BUTTON_X] = keyIsDown;
 } else if (keyEvent.getKeyCode() == KeyEvent.KEYCODE_BUTTON_Y) {
 mButtonState[BUTTON_Y] = keyIsDown;
 } else if (keyEvent.getKeyCode() == KeyEvent.KEYCODE_BUTTON_R1) {
 mButtonState[BUTTON_R1] = keyIsDown;
 } else if (keyEvent.getKeyCode() == KeyEvent.KEYCODE_BUTTON_R2) {
 mButtonState[BUTTON_R2] = keyIsDown;
 } else if (keyEvent.getKeyCode() == KeyEvent.KEYCODE_BUTTON_L1) {
 mButtonState[BUTTON_L1] = keyIsDown;
 } else if (keyEvent.getKeyCode() == KeyEvent.KEYCODE_BUTTON_L2) {
 mButtonState[BUTTON_L2] = keyIsDown;
 }
}

Similarly, when a joystick is moved, you will save its X and Y axes positions.

public void handleMotionEvent(MotionEvent motionEvent) {
 mJoystickPositions[JOYSTICK_1][AXIS_X] =
 motionEvent.getAxisValue(MotionEvent.AXIS_X);
 mJoystickPositions[JOYSTICK_1][AXIS_Y] =
 motionEvent.getAxisValue(MotionEvent.AXIS_Y);

 mJoystickPositions[JOYSTICK_2][AXIS_X] =
 motionEvent.getAxisValue(MotionEvent.AXIS_Z);
 mJoystickPositions[JOYSTICK_2][AXIS_Y] =
 motionEvent.getAxisValue(MotionEvent.AXIS_RZ);
}

Now that your utility class can store state information for the gamepad
controller, you will need to provide a way to access that information across
your application. You can do this by creating two getter methods that return
the state for any button or joystick that you keep track of on the controller.

public float getJoystickPosition(int joystickIndex, int axis) {
 return mJoystickPositions[joystickIndex][axis];
}

public boolean isButtonDown(int buttonId) {
 return mButtonState[buttonId];
}

CHAPTER 5: The Android TV Platform for Game Development96

When your GameController utility class is complete, you will need to be able
to feed data to it from the physical gamepad controller. How you retrieve this
input will vary depending on your application. If you use a view to listen for
the controller events, then you will need to override the following methods:

onGenericMotionEvent(MotionEvent event)
onKeyDown(int keyCode, KeyEvent event)
onKeyUp(int keyCode, KeyEvent event)

If you use an activity for receiving the input events, then you will only need
to override two methods:

dispatchGenericMotionEvent(MotionEvent event)
dispatchKeyEvent(KeyEvent event)

For this sample, you will use MainActivity to retrieve events from the
gamepad controller, so will only need to override the two methods
mentioned above. Before you start receiving input from the controller, you
will need to create a new instance of the GameController utility object at the
top of your class.

private final GameController mController = new GameController();

To retrieve analog inputs from the joysticks or triggers on a controller, you
will use dispatchGenericMotionEvent. In this method, you will pass the
MotionEvent to mController, then you will update the views representing the
values of your joysticks by checking the joystick positions.

@Override
public boolean dispatchGenericMotionEvent(MotionEvent ev) {
 mController.handleMotionEvent(ev);

 //R2 and L2 (triggers) are also analog and use this callback
 mJoystickState1AxisX.setText(String.valueOf(
 mController.getJoystickPosition(GameController.JOYSTICK_1,
 GameController.AXIS_X)));
 mJoystickState1AxisY.setText(String.valueOf(
 mController.getJoystickPosition(GameController.JOYSTICK_1,
 GameController.AXIS_Y)));
 mJoystickState2AxisX.setText(String.valueOf(
 mController.getJoystickPosition(GameController.JOYSTICK_2,
 GameController.AXIS_X)));
 mJoystickState2AxisY.setText(String.valueOf(
 mController.getJoystickPosition(GameController.JOYSTICK_2,
 GameController.AXIS_Y)));
 return true;
}

CHAPTER 5: The Android TV Platform for Game Development

97

dispatchKeyEvent is called whenever a key is pressed or released. In this
method you will pass the KeyEvent to mController and then update the
appropriate TextView to reflect the event. You will notice this example has a
special case for the back key. When that button is pressed, the users have
an expectation for how it should act, so you should allow the system to
handle it rather than creating your own response.

@Override
public boolean dispatchKeyEvent(KeyEvent event) {
 if(event.getKeyCode() == KeyEvent.KEYCODE_BACK) {
 return super.dispatchKeyEvent(event);
 }

 mController.handleKeyEvent(event);

 updateTextViewForButton(mButtonStateA,
 mController.isButtonDown(GameController.BUTTON_A));
 updateTextViewForButton(mButtonStateB,
 mController.isButtonDown(GameController.BUTTON_B));
 updateTextViewForButton(mButtonStateX,
 mController.isButtonDown(GameController.BUTTON_X));
 updateTextViewForButton(mButtonStateY,
 mController.isButtonDown(GameController.BUTTON_Y));
 updateTextViewForButton(mButtonStateR1,
 mController.isButtonDown(GameController.BUTTON_R1));
 updateTextViewForButton(mButtonStateL1,
 mController.isButtonDown(GameController.BUTTON_L1));

 return true;
}

private void updateTextViewForButton(TextView textView, boolean pressed) {
 if(pressed) {
 textView.setText(getString(R.string.state_pressed));
 } else {
 textView.setText(getString(R.string.state_not_pressed));
 }
}

Now you should be able to run this sample application on a physical
Android TV device and see how your app responds to input from a gamepad
controller, as shown in Figure 5-2.

CHAPTER 5: The Android TV Platform for Game Development98

Figure 5-2. Gamepad control input demonstration

Controller Best Practices
In the sample app for this section you have learned how to work with some
of the features for the Android TV gamepad controller. While understanding
how to use the controller is important, you should also follow these best
practices to ensure that your users have an excellent experience when using
your application. Google has provided a few key points to help you make
the most out of your app:

	Let your users know as soon as possible if a controller
is necessary. This is best done in the Google Play Store
description. If users are not aware that they need a
controller and run into difficulty using your app because
of it, they may give your app a poor rating.

	Users expect certain buttons to perform certain actions,
such as the A button triggering an Accept action, and
the B button canceling an action. The closer you stick to
these expectations, the happier your users will be.

	Verify controller hardware requirements. If your app
uses a controller gyroscope or triggers to perform
actions, but the users have a controller that is lacking
the required hardware, then your app will not work as
expected. Be sure to have a backup plan to support
these users.

CHAPTER 5: The Android TV Platform for Game Development

99

	As obvious as this may seem, you will need to make
sure that your app handles multiple controllers for
multiplayer games. While the sample app for this
section did not cover this, you should be able to detect
the device ID for each input event received by your app
and respond accordingly.

	When a game controller disconnects in the middle of
gameplay for any reason, including Bluetooth dropping
or the controller running out of power, you should
respond by pausing the game and informing the users
that they have been disconnected. You could also
provide a dialog to help them troubleshoot the problem.

	If possible, display visual instructions for using the
controller. Google provides an Android TV gamepad
template on its documentation page that can be used
for this purpose.

Using the Local Area Network
As mentioned earlier in this chapter, some games require a certain level
of secrecy between players. One of the best ways to facilitate this is by
using mobile phones or tablets as a second screen, allowing each player to
secretly plan his or her actions. To help create this experience, Google has
created the Nearby Connections API, which allows devices on the same
local area network (LAN) to easily communicate. In the context of an Android
TV game, the television would act as a central host, and each second screen
device would act as a client.

Setting Up a Second Screen Project
For the second screen experience to work, you will need two applications:
one for the television and one for mobile devices. When you create the
project for this sample, you will create a module for both device types, as
shown in Figure 5-3.

Note A download link for the Android TV gamepad template is available under
“Show Controller Instructions” in the “Building TV Games” article at http://
developer.android.com/training/tv/games/index.html.

http://developer.android.com/training/tv/games/index.html
http://developer.android.com/training/tv/games/index.html

CHAPTER 5: The Android TV Platform for Game Development100

The mobile module can use the Empty Activity option with the default
settings, and when you build the TV module you can select the Add No
Activity option. Once both modules are created, you will need to create a
new MainActivity.java file for the TV module and add it to the module’s
AndroidManifest.xml, similar to what you did in Chapter 3.

When your initial projects are created and you can install the mobile module
on a mobile device and the TV module on an Android TV, you can move
on to the next step. Because the Nearby Connections API is a part of Play
Services, you will need to include the Play Services library in the build.
gradle file for each module under the dependencies node.

compile 'com.google.android.gms:play-services:8.3.0'

Within the AndroidManifest.xml files for both modules, you need to request
the ACCESS_NETWORK_STATE and WAKE_LOCK permissions.

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
<uses-permission android:name="android.permission.WAKE_LOCK" />

Next you need to declare a piece of metadata in the application node
that will define the service ID that the Nearby Connections API will use for
connecting devices over the LAN.

<meta-data android:name="com.google.android.gms.nearby.connection.
SERVICE_ID"
 android:value="@string/service_id" />

Here, service_id is a string for both modules so that each app can identify
the other on the network. You can add that string to strings.xml now.

<string name="service_id">Apress Service Id</string>

Figure 5-3. Android Studio module creation screen

http://dx.doi.org/10.1007/978-1-4842-1784-9_3

CHAPTER 5: The Android TV Platform for Game Development

101

Once you are done in the AndroidManifest.xml and strings.xml
files, you can close both for each module. Inside of MainActivity.
java for both modules you will need to create a new GoogleApiClient
and connect to it. Start by implementing the ConnectionCallbacks and
OnConnectionFailedListener interfaces in your activity.

public class MainActivity extends Activity implements
 GoogleApiClient.ConnectionCallbacks,
 GoogleApiClient.OnConnectionFailedListener {

 @Override
 public void onConnected(Bundle bundle) {
 }

 @Override
 public void onConnectionSuspended(int i) {
 }

 @Override
 public void onConnectionFailed(ConnectionResult connectionResult) {
 }
}

Next, define your GoogleApiClient at the top of the class and initialize it
in onCreate. Once your GoogleApiClient is set up, you can connect to it
in onStart. You will also want to disconnect from the GoogleApiClient in
onStop.

private GoogleApiClient mGoogleApiClient;
@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 mGoogleApiClient = new GoogleApiClient.Builder(this)
 .addConnectionCallbacks(this)
 .addOnConnectionFailedListener(this)
 .addApi(Nearby.CONNECTIONS_API)
 .build();
}
@Override
protected void onStart() {
 super.onStart();
 mGoogleApiClient.connect();
}

@Override
protected void onStop() {
 super.onStop();

CHAPTER 5: The Android TV Platform for Game Development102

 if(mGoogleApiClient != null && mGoogleApiClient.isConnected()) {
 disconnect();
 mGoogleApiClient.disconnect();
 }
}

Inside of onStop you’ll notice that there’s an additional call to a method
named disconnect. For now, create a stub for that method in both
MainActivity files.

The last piece of code that is used by both apps is a helper method for
determining if the application is connected to a LAN through wireless or an
Ethernet cable. First you need to define an array of integers representing the
two network types.

private static int[] NETWORK_TYPES = {
 ConnectivityManager.TYPE_WIFI,
 ConnectivityManager.TYPE_ETHERNET
};

After you have created NETWORK_TYPES, you can add a new method called
isConnectedToNetwork that checks to see if the device is connected to either
network type.

private boolean isConnectedToNetwork() {
 ConnectivityManager connectivityManager = (ConnectivityManager)
 getSystemService(Context.CONNECTIVITY_SERVICE);
 for(int networkType : NETWORK_TYPES) {
 NetworkInfo info = connectivityManager.getNetworkInfo(networkType);
 if(info != null && info.isConnectedOrConnecting()) {
 return true;
 }
 }
 return false;
}

At this point your TV and mobile module should look almost identical. In the
next section you learn how to modify the TV module so that it advertises
over the LAN and properly responds to connection requests.

Advertising over the LAN
When you create a second screen experience for your users, you will
use the television app as a host for incoming connections. In order
for those incoming connections (known as clients or peers) to find the
host, it will need to advertise its availability over the network. The host
will also need to be able to respond to connection requests and send

CHAPTER 5: The Android TV Platform for Game Development

103

messages over the LAN. In the TV module’s MainActivity.java, implement
ConnectionRequestListener and MessageListener with stubs for their
required methods.

public class MainActivity extends Activity implements
 GoogleApiClient.ConnectionCallbacks,
 GoogleApiClient.OnConnectionFailedListener,
 Connections.ConnectionRequestListener,
 Connections.MessageListener

Next you will need to add two new values to the top of the class: a constant
long value that will be used for defining the length of time the app should
advertise, and a list of string objects that will store the ID for each peer
connected to the host.

private static final long CONNECTION_TIME_OUT = 60000L;
private List<String> mRemotePeerEndpoints = new ArrayList<String>();

Next you will need to start advertising on the network. For this sample
you will start advertising as soon as the GoogleApiClient has finished
connecting, though in a real app you would not start advertising until you
were ready to connect clients to the host.

@Override
public void onConnected(Bundle bundle) {
 advertise();
}

The advertise method will ensure that the device is connected to a network,
and then start advertising using the Nearby Connections API. This API
provides a callback that will let you check the result of the advertisement so
that your app can react appropriately if it is successful or not.

private void advertise() {
 if(!isConnectedToNetwork())
 return;

 String name = "Nearby Advertising";

 Nearby.Connections.startAdvertising(mGoogleApiClient, name, null,

CONNECTION_TIME_OUT, this).setResultCallback(
 new ResultCallback<Connections.StartAdvertisingResult>() {
 @Override

CHAPTER 5: The Android TV Platform for Game Development104

 public void onResult(Connections.StartAdvertisingResult result) {
 if (result.getStatus().isSuccess()) {
 Log.v("Apress", "Successfully advertising");
 }
 }
 });
}

Now that your TV application is able to advertise, it will need to respond
to connection requests from mobile devices. In the onConnectionRequest
method, you can determine if you want to connect to a device based on the
information passed as arguments. For this sample you will simply connect to
anything that has responded to your service ID advertisements. When you
have connected, you will save the remote device ID in a list so that you can
communicate with that device through the life of the connection.

@Override
public void onConnectionRequest(final String remoteEndpointId,
 final String remoteDeviceId,
 final String remoteEndpointName,
 byte[] payload) {
 Nearby.Connections.acceptConnectionRequest(mGoogleApiClient,
 remoteEndpointId, payload, this).setResultCallback(
 new ResultCallback<Status>() {
 @Override
 public void onResult(Status status) {
 if(status.isSuccess()) {
 getWindow().addFlags(
 WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON);
 if(!mRemotePeerEndpoints.contains(remoteEndpointId)) {
 mRemotePeerEndpoints.add(remoteEndpointId);
 }
 } else {
 Log.e("Apress", "onConnectionRequest failed: " +
 status.getStatusMessage());
 }
 }
 });
}

You’ll notice that when a client has been successfully connected, the device
requests to keep the screen awake. This is because receiving messages
from a client will not count as an input event, so this method will prevent
the TV from going to sleep while your users are playing your game. When
you have connected clients to the host, you will be able to receive and send
messages back and forth between the devices. The onMessageReceived

CHAPTER 5: The Android TV Platform for Game Development

105

method will be called whenever the client sends a message payload to
the host. For this sample you will simply place the payload into a Toast
message, and then echo it out to all client.

@Override
public void onMessageReceived(String s, byte[] bytes, boolean b) {
 Toast.makeText(this, new String(bytes), Toast.LENGTH_SHORT).show();
 Nearby.Connections.sendReliableMessage(mGoogleApiClient,
 mRemotePeerEndpoints, bytes);
}

The final thing you need to do with the host application is properly
disconnect when the activity calls onStop. To do this you will need to expand
on the disconnect stub method that you created earlier so that it stops the
application from advertising and severs all peer connections.

private void disconnect() {
 Nearby.Connections.stopAdvertising(mGoogleApiClient);
 Nearby.Connections.stopAllEndpoints(mGoogleApiClient);
 mRemotePeerEndpoints.clear();
}

If you were to run your application now, you would only see a blank screen,
as this app only advertises on its own, but requires clients in order to
respond to their connection requests or messages.

Discovering Over the LAN
While having a host application set up is great, you still need to create a
client app to be able to communicate between a second screen and the
television. You can get started by opening the MainActivity.java file within
the mobile module and adding the two additional interfaces that will be
necessary for a client—MessageListener and EndpointDiscoveryListener.
Once you have created the required methods for those two interfaces, you
will need a few new member objects. The first is a string that will store the
ID for a host endpoint that you have connected to. The other objects are a
handler and runnable that will periodically send messages over the Nearby
Connections API to the host device.

private String mRemoteHostEndpoint;
private Handler mHandler = new Handler();
private Runnable mRunnable = new Runnable() {
 @Override
 public void run() {
 if (!TextUtils.isEmpty(mRemoteHostEndpoint)) {
 Nearby.Connections.sendReliableMessage(mGoogleApiClient,

CHAPTER 5: The Android TV Platform for Game Development106

 mRemoteHostEndpoint, "Hello World".getBytes());
 mHandler.postDelayed(this, 5000);
 }
 }
};

While this code snippet uses the sendReliableMessage method, you can
also send messages that aren’t guaranteed to be delivered. As with anything
in software development, there is always a trade-off. Sending unreliable
messages will have a lower overhead, whereas reliable messages will always
be delivered if the recipient can be found.

Next you can add a call to a new method named discoverHost as soon as
the app’s Google API client has finished connecting.

@Override
public void onConnected(Bundle bundle) {
 discoverHost();
}

The first thing discoverHost will do is ensure that the mobile device is
connected to the local network. After the network connection has been
verified, this method will use the Nearby Connections API to attempt to
discover advertising hosts on the LAN. The third argument passed into
the startDiscovery method will tell the API to only attempt discovery for
60 seconds. Once the app has either started discovery or failed, you will
receive a Status object in the resultant callback.

private void discoverHost() {
 if(!isConnectedToNetwork()) {
 return;
 }

 String serviceId = getString(R.string.service_id);
 Nearby.Connections.startDiscovery(mGoogleApiClient, serviceId,
 60000L, this)
 .setResultCallback(new ResultCallback<Status>() {
 @Override
 public void onResult(Status status) {
 if (status.isSuccess()) {
 Log.v("Apress", "Started discovering");
 }
 }
 });
}

CHAPTER 5: The Android TV Platform for Game Development

107

When a host is discovered, the onEndpointFound method will be called by
the Nearby Connections API. In this method you will send a connection
request to the host with a new callback. If the host accepts your connection
request, you will be notified so that you can stop discovery. At this point
you can start sending messages to the host when appropriate for your
application. For simplicity, this sample application will use the Handler and
Runnable that you defined earlier in this section to send the text “Hello
World” to the host every five seconds.

@Override
public void onEndpointFound(String endpointId, String deviceId,
 final String serviceId, String endpointName) {

 byte[] payload = null;

 Nearby.Connections.sendConnectionRequest(mGoogleApiClient, deviceId,
 endpointId, payload,
 new Connections.ConnectionResponseCallback() {
 @Override
 public void onConnectionResponse(String s, Status status,
 byte[] bytes) {
 if(status.isSuccess()) {
 getWindow().addFlags(
 WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON);
 Nearby.Connections.stopDiscovery(mGoogleApiClient,
 serviceId);
 mRemoteHostEndpoint = s;
 mHandler.post(mRunnable);
 } else {
 Log.e("Apress", "Connection to endpoint failed");
 }
 }
 }, this);

}

As with the host application, you have implemented MessageListener
in the client app. When a message is received from another device,
onMessageReceived will be called. In this sample application you will take
the byte array payload and convert it into a string, then display it as a Toast
message.

@Override
public void onMessageReceived(String s, byte[] bytes, boolean b) {
 Toast.makeText(this, new String(bytes), Toast.LENGTH_SHORT).show();
}

CHAPTER 5: The Android TV Platform for Game Development108

The last thing you need to do in your client app is handle disconnecting
from the host. Inside of your onStop method, you should have a call to
disconnect. This method will verify that your device is connected to the
LAN, and then either stop attempting to discover host devices or disconnect
from any host device that is connected.

private void disconnect() {
 if(!isConnectedToNetwork())
 return;

 if(TextUtils.isEmpty(mRemoteHostEndpoint)) {
 Nearby.Connections.stopDiscovery(mGoogleApiClient,
 getString(R.string.service_id));
 } else {
 Nearby.Connections.disconnectFromEndpoint(mGoogleApiClient,
 mRemoteHostEndpoint);
 mRemoteHostEndpoint = null;
 }
}

Now that you have a host and client application created, you should install
the TV module onto your Android TV device and your mobile module onto a
tablet or phone. If both devices are connected to the same LAN, they should
automatically find and connect to each other. Once the connection has been
established, data will begin periodically sending between the two devices
and being displayed in a Toast message, as seen in Figure 5-4.

Figure 5-4. Toast message on the Android TV from a received message payload

In this section you have learned about the Nearby Connections API and how
to create a host and client application. This will let you easily set up second
screen experiences for your application so that users can use mobile
devices to plan their actions and send that information to the television.
In the next section you will be introduced to a few new APIs available in
Google Play Game Services.

CHAPTER 5: The Android TV Platform for Game Development

109

Google Play Game Services
As you more than likely know, Google has provided an excellent suite of
APIs and tools for Android development in the Google Play Services library.
With that exists Google Play Game Services, which is a set of classes
focused on helping game developers easily create apps that their users will
enjoy. While going in depth into Google Play Game Services and how to use
it is far beyond the scope of this book, and worthy of a book in and of itself,
you should at least be aware of some of the capabilities it offers so that you
can enhance your Android TV games.

Achievements
Achievements are a core part of Android games and are an easy way
to reward players for enjoying your game. They can also be used to
spur friendly competition between players as they attempt to get more
achievements than their friends. You have a few different options when
adding achievements to your game, as they can either be instantly awarded
for performing an action, or iteratively so that players must complete
a specific task multiple times. Achievements may also be hidden so
that the users do not know they exist before being earned. At least five
achievements are required in a game before it can be published.

Leaderboards
Leaderboards provide a great way to show players how well they are
performing in your game compared to other players. For your hardcore
player base it provides them with an opportunity to fight for the top position,
whereas your more casual players can compare how they’re doing with their
friends. If you have variations within your game (such as different maps in a
strategy game), you can use multiple leaderboards so that players can see
how they compare across each variant.

Saved Games
One of the biggest hassles for gamers who own multiple devices is being
locked to a specific device in order to finish their game. If you have a game
that can work on the television as well as a handheld device, you should
implement the Saved Games API. This will allow you to take a snapshot of
data and save it online so that players can maintain their progress as they
switch between various platforms or upgrade to new devices.

CHAPTER 5: The Android TV Platform for Game Development110

Multiplayer
While you have learned about the Nearby Connections API earlier in this
chapter, it only supports local multiplayer games. Using Google Play Game
Services, you can support online multiplayers for real-time and turn-based
games. Google automatically manages connections, provides a player
selection user interface, and stores state information for players and rooms
during the game session.

Quests and Events
Events can be triggered by in-game player actions and sent to Google’s
game servers for you to analyze. This can be useful for determining which
areas of your game may be too easy or too difficult so that you can adjust
them for your users. The quests service uses the events feature so that you
can engage players through time-bound challenges. When players complete
these challenges, you can reward them. One of the largest advantages
of the quest system is that as long as you are collecting events from the
game, you can publish new quests for your users without having to push an
updated version of your app to the Play Store.

Summary
In this chapter you learned about some of the tools that you can use to
create or port your games to the Android TV platform. You learned about
the controller and how to read input from it, how to provide a second screen
experience through local networking, and some of the features of Google
Play Game Services that can enrich the game experience for your players.
While game development is beyond the scope of this book, you should have
a strong understanding of how to make your games work with Android TV.

111

Chapter 6
Android TV App
Publishing
After you have built an application, you always want to do a final run-through
to ensure that your app works as expected. With Android TV this is
especially important, as each Android TV app is subject to approval before
being available on the Google Play Store. In this chapter you will learn about
the items that Google will look for when evaluating your app and some
general tips for distributing your app to users.

Android TV App Checklist
It is important to note that the approval process isn’t for censorship, but
rather to make sure your app layouts and controls work correctly for Android
TV users. Before you attempt to upload your APK to the Play Store, you
should validate that your app meets Google’s guidelines.

Support the Android TV OS
In order for users to access your application from the Android TV home
screen, you will need to make sure that you provide an Android TV entry
point into your app by declaring a CATEGORY_LEANBACK_LAUNCHER filter in an
activity node of your manifest. If this is not available, then your application
will not appear in either of the application rows on the home screen.

CHAPTER 6: Android TV App Publishing112

When you have declared an activity for Android TV, you will need to
associate a banner icon with it that will be displayed in the application row.
The launcher banner will need to be 320px by 180px and any text on the
image will need to be localized for every language that your application
supports.

If you are porting an application from strictly mobile to Android TV, then
you will need to ensure that your manifest does not declare any required
hardware that is not supported by the Android TV platform. This includes the
camera, touchscreen, and various hardware sensors. If any of these items
are declared as required, your app will not be discoverable by Android TV
devices.

UI Design
In an episode of the Android Backstage podcast, former Android TV team
engineer Tim Kilbourn mentioned an app that had been released for the
Google TV platform without verifying that it worked as expected. Rather
than displaying in a presentable fashion, the app was locked into portrait
mode and stretched across the television. Experiences like this are why
UI verification are an important part of the Android TV approval process.
Needless to say, you should ensure that your app provides layout resources
that work in landscape orientation.

Because most users will experience their television from an average of ten
feet away, you will need to ensure that all text and controls are large enough
to be visible, and all bitmaps and icons are high resolution. Due to some
unique conditions of TV, you will also need to make sure your layouts handle
overscan and your application’s color scheme works well. These topics were
discussed in Chapter 2 in greater detail.

If your application uses advertisements, it is recommended that you use
video ads that are full-screen and dismissible within 30 seconds. It is
important to note that advertisements that rely on sending an intent to a
web page should not be used, as Android TV does not come with a built-in
web browser. If you do launch an intent for a web page, your application will
crash if the users have not installed their own web browsers.

You must also make sure your app responds correctly to the D-pad or game
controller so that your users can navigate through your application. This is
handled by the classes in the Leanback Support library, but you will need to
make sure your own custom classes also respond accordingly.

http://dx.doi.org/10.1007/978-1-4842-1784-9_2

CHAPTER 6: Android TV App Publishing

113

Searching and Discovery
While having an application that plays content is one thing, you can take it
to an entirely new level by helping users discover content or by providing
recommendations. These items were covered in depth in Chapter 4. In short,
you should make sure global search and recommendations are working for
your applications, and users should be taken directly to the content when
they find something that they are interested in.

Games
In the last chapter you were introduced to some key points for Android TV
game development. When you create a game for Android TV, you will need
to declare it as a game in the manifest for it to show up in the games row on
the home screen.

Your manifest should also be updated if you support the use of the game
controller in your application. If you do support the use of a game controller,
you will need to make sure that your app has buttons contingencies for the
use of the Start, Select, and Menu buttons, as not all controls include these.
You will want to provide a generic gamepad controller graphic to inform your
users how the controls will affect your game. You will need to ensure that
your application provides controls for easily exiting your application so that
the users can return to the home screen.

While networking is not a new concept for Android, the Android TV is one of
the first devices that can support an Ethernet connection. As such, you will
want to ensure that any networking code you have verifies that the device is
connected to a network through either WiFi or an Ethernet cable.

Distributing Your Application
Once you have your app completed and you have looked over your project
to make sure everything looks great, you will need to make it available for
users to download. You have two major outlets here, the Google Play Store
and the Amazon App Store. It is important to note that both stores have a
similar approval process before your app will be accessible for users.

Google Play Store Distribution
As with most things involving the Android TV, the app publishing process
with Google is fairly similar to working with a standard phone or tablet app.
You will need to create an APK and sign it with a release certification, and
then upload it to the Google Play Developer Console. However, when you

http://dx.doi.org/10.1007/978-1-4842-1784-9_4

CHAPTER 6: Android TV App Publishing114

start filling out the store listing information, you will need to go into the
Android TV section and provide assets that can be used by the Play Store,
as seen in Figure 6-1.

Figure 6-1. Android TV Google Play Store listing assets

Aside from having to provide assets, the Play Store will automatically know if
you are publishing an Android TV application because of the declaration of a
Leanback Launcher in your manifest file.

Amazon Fire TV Distribution
As of Fire OS 5, you are able to distribute Android apps made with the
Leanback Support library and Lollipop features over the Amazon App Store
for Fire TVs. While making your application compatible with the Amazon Fire
OS is beyond the scope of this book, you can find detailed documentation
on developer.amazon.com that goes over installing and setting up the
Amazon SDK Platform tools, and how to use Amazon’s specific SDK and
tools in your application. This will allow you to distribute your app to an even
larger group of users without much modification.

Summary
In this chapter you reviewed design and experience guidelines that have
been discussed throughout this book. You have also learned about some of
the ways you can distribute your application for television users. This book
covered creating an application from the ground up for displaying content
and helping your users enjoy media, as well as some tools that should
help you with game development for Android TV. As you continue to learn

https://developer.amazon.com

CHAPTER 6: Android TV App Publishing

115

about Android TV development, you should go through Google’s developer
documentation, watch the Google Developer videos online, and experiment
with your app to find out what works best for you and your users. Good
luck, and have fun!

117

 ■A
addAction method, 38
addVideoForDeepLink method, 80
Amazon Fire TV Distribution, 114
Android Backstage podcast, 112
AndroidManifest.xml, 23, 69, 84, 90
Android Studio module

creation screen, 100
Android Studio project, 21–22
Android TV

Activity option, 4
Android devices screen, 3
Android Studio toolbar, 6
application, 8, 18
game development (see Game

development)
gamepad controller, 98
games vs. mobile, 89
global search, 14
global search

functionality, 77, 84–85
home screen, 10
interactive television platform, 1
JDK, 2
JRE, 2
launcher icon, 11
layout design

coloration, 17
media playback app, 17
text, 17

live channels application, 86
naming files, 5
native applications, 1

project screen, 3
recommendations row, 12
remote control

application, 10–11
systems, 23
system images, 6
user experience guidelines

casual consumption, 15
cinematic experience, 16
simple D-pad controller, 16

virtual device options, 6
virtual device settings, 7

Android TV App Publishing
Checklist, 111–112
searching and discovery, 113
UI design, 112

ArrayObject
Adapter, 30, 46, 58–59, 63

 ■B
BroadcastReceiver, 75
BrowseFragment, 24–25, 27, 65
BrowseFragment

documentation, 29–31
buildColumnMap, 78
buildPendingIntent, 74

 ■C
CardPresenter, 32–34
ClassPresenterSelector, 39
ConnectionRequestListener, 103
ContentProvider, 77, 82–84
ControlButtonPresenterSelector, 46

Index

Index118

 ■D
Data model, 25
DescriptionPresenter, 47
DetailsDescriptionPresenter, 39
DetailsFragment, 37–38
dispatchGenericMotionEvent, 96
dispatchKeyEvent, 97–98

 ■E
entries_list_preference, 68

 ■F
FullWidthDetailsOverview

RowPresenter, 40

 ■G
Game development

achievements, 109
controller hardware

requirements, 98
game controller, 113
LAN, 99, 101–106, 108
leaderboards, 109
network types, 102
quests and events, 110

Gamepad controller
input, 90–93, 95

Generic gamepad
controller graphics, 113

getWordMatch, 81–82
GoogleApiClient, 101, 103
Google Cast, 1
Google Play Game Services, 109
Google Play Store

description, 98
Google Play Store

distribution, 113–114
Gradle build system, 22
GuidedStepFragment, 86

 ■H
HeadersFragment, 29
Hello World application, 21

 ■I
In-App searching, 51
In-app search screen

implementation, 60
initAction method, 38
initActions, 47
IntentService, 71

 ■J, K
Java Development Kit (JDK), 2
Java Runtime Environment (JRE), 2

 ■L
Layout resource file,

activity_main, 24
Leanback feature, 23
LeanbackPreference

Fragment, 63, 65
LeanbackPreferenceFragment

list preference, 70
Leanback Support library, 1, 21
ListRowPresenter, 57–58
loadDatabase method, 80
loadJSONFromResource, 27–29
loadQuery method, 58
loadRelatedMedia method, 40–41
Local area network (LAN), 99
Local Search Activity

and Fragment, 54

 ■M
MainActivity, 23–24
MainFragment, 27
Media Player, 43–44

Index

119

MediaSearchActivity.java, 54–55
MediaSearchFragment, 56–57, 61
MessageListener, 107
mRowsAdapter, 46

 ■N
NotificationCompat.

Builder object, 72–73
notifyArrayItemRangeChanged, 50

 ■O
onActionClicked method, 49–50
OnActionClickedListener, 44
onActionClicked method, 42
onActivityCreated method, 27, 30
onBindDescription method, 39
onBindViewHolder, 63
onCreate method, 37, 47–48, 56, 79
onCreateViewHolder method, 64
onCreateViewHolder, 63
onEndpointFound method, 107
onHandleIntent method, 71
onItemClicked method, 60, 65
OnItemViewClicked

Listener interface, 41
OnItemViewClickedListener, 54
Online multiplayers for real-time and

turn-based games, 110
onMessageReceived method, 104
onSearchRequested method, 62
onSharedPreference

Changed method, 67
OnSharedPreferenceChange

Listener interface, 66
onUnbindViewHolder, 63

 ■P, Q
PendingIntent, 86
Picasso library from Square, 22
Playback Control Fragment, 44
PlaybackControlsRowPresenter, 47

PlaybackOverlayFragment, 46
PlayerActivity, 42–43
PlayerControlsFragment, 43
PlayerControlsListener, 45
Playing content, 43
PreferenceCardPresenter, 64
PreferenceFragment class, 62
preferences.xml, 67

 ■R
RecommendationService, 71–76
RECORD_AUDIO permission, 56
RecyclerView library, 22
RecyclerViews, 32

 ■S
Saved Games API, 109
SearchOrbView, 51, 53
SearchOrbView

onClickListener, 55–56
sendReliableMessage method, 106
Serializable, 25
setAdapter, 40
setHeadersState, 29
SettingsActivity.class, 65–66
SettingsActivity.java, 66
SettingsFragment, 66–67
setupPlaybackControlsRow, 46
SharedPreferences entry, 70
SpeechRecognition

Callback interface, 61
SQLite database, 77–79
SQLiteOpenHelper, 78

 ■T
TaskStackBuilder, 74
toString method, 26–27

 ■U
Utils package, 28

Index120

 ■V
VideoContentProvider, 83
VideoContentProvider.java, 82
VideoDatabaseHandler object, 83
VideoDatabaseHandler, 78, 81
VideoDatabaseHandler.java, 77
VideoDatabaseOpenHelper, 81

VideoDetailsActivity, 34–36, 60, 84
VideoDetailsFragment, 41–42
Video.java, 26
Video playback controls, 49

 ■W, X, Y, Z
Wiring Up Video Details, 36

www.allitebooks.com

http://www.allitebooks.org

	Android TV Apps Development
	Contents at aGlance
	Contents
	About the Author
	About the TechnicalReviewer
	Chapter 1: Getting Started
	 What Exactly Is Android TV?
	 What to Expect from this Book
	 Getting Set Up
	 Creating a New Android TV Project
	 Running Your Android TV App
	 Summary

	Chapter 2: Planning Your App
	 Android TV Home Screen
	 Launcher Icon
	 The Recommendations Row
	 Global Search

	 User Experience Guidelines
	 Casual Consumption
	 Cinematic Experience
	 Keep It Simple

	 Designing Your Layout
	 Coloration
	 Using Text

	 Other Considerations
	 Summary

	Chapter 3: Building a Media App
	 Project Setup
	 Creating the Android Studio Project
	 Updating Dependencies
	 Building the Project Skeleton

	 Building the BrowseFragment Class
	 Creating the Data
	 Creating the Data Model
	 Loading the Data
	 Customizing the BrowseFragment UI
	 Creating a Presenter

	 Creating a Video Details Screen
	 Setting Up Video Details
	 Wiring Up Video Details
	 Displaying Content Details

	 Playing and Controlling Content
	 Creating the Media Player
	 Building the Playback Control Fragment
	 Creating Actions

	 Summary

	Chapter 4: Enriching Your Media Apps
	 In-App Searching
	 Adding a SearchOrbView
	 Creating the Local Search Activity and Fragment
	 Implementing Local Search from a Keyboard
	 Using Voice Input for Local Search

	 Implementing a Preference Screen
	 Displaying a Preference Item Entry Point
	 Creating the Preference Screen

	 Using Recommendations
	 Building Recommendation Cards
	 Starting the Recommendation Service

	 Android TV Global Search
	 Building the Search Database
	 Creating a Global Search Content Provider
	 Exposing the Content Provider
	 Reacting to the Search Action

	 More Media App Features
	 Now Playing Card
	 GuidedStepFragment
	 Live Channels

	 Summary

	Chapter 5: The Android TV Platform for Game Development
	 Android TV Games vs. Mobile
	 Manifest Setup
	 Gamepad Controller Input
	 Setting Up the Controller Demo Project
	 Storing Controller Inputs
	 Controller Best Practices

	 Using the Local Area Network
	 Setting Up a Second Screen Project
	 Advertising over the LAN
	 Discovering Over the LAN

	 Google Play Game Services
	 Achievements
	 Leaderboards
	 Saved Games
	 Multiplayer
	 Quests and Events

	 Summary

	Chapter 6: Android TV App Publishing
	 Android TV App Checklist
	 Support the Android TV OS
	 UI Design
	 Searching and Discovery
	 Games

	 Distributing Your Application
	 Google Play Store Distribution
	 Amazon Fire TV Distribution

	 Summary

	Index

