
www.allitebooks.com

http://www.allitebooks.org

Android NDK Game
Development
Cookbook

Over 70 exciting recipes to help you develop mobile
games for Android in C++

Sergey Kosarevsky

Viktor Latypov

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Android NDK Game Development Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: November 2013

Production Reference: 1191113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-778-5

www.packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Sergey Kosarevsky

Viktor Latypov

Reviewers
Mootez Billeh Chaabani

Guy Cole

Maya Posch

Acquisition Editor
Rebecca Youe

Lead Technical Editor
Azharuddin Sheikh

Technical Editors
Adrian Raposo

Gaurav Thingalaya

Project Coordinator
Apeksha Chitnis

Proofreaders
Simran Bhogal

Ameesha Green

Paul Hindle

Indexer
Priya Subramani

Graphics
Abhinash Sahu

Sheetal Aute

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Sergey Kosarevsky is a software engineer with experience in C++ and 3D graphics.
He has worked for mobile industry companies and was involved in mobile projects at SPB
Software and Yandex. He has more than 10 years of software development experience, and
more than four years of Android NDK experience. Sergey got his PhD in the field of Mechanical
Engineering from the St. Petersburg Institute of Machine Building in Saint Petersburg, Russia.
In his spare time Sergey maintains and develops an open source multiplatform 3D gaming
engine, Linderdaum Engine (http://www.linderdaum.com). He is online at http://
blog.linderdaum.com and can be contacted by email at sk@linderdaum.com.

I would like to thank Alexander Pavlov, a Google engineer, for the time
and effort he put into carefully reviewing our initial drafts and helping us
to improve this book. Also I would like to thank Igor Demura (Google) for
valuable criticism on our chapter 6, as well as Dmitry Ovcharov (Yandex),
and other friends and colleagues who helped this book happen.

Viktor Latypov is a software engineer and a mathematician with experience in compiler
development, device drivers, robotics, high-performance computing, and a personal interest
in 3D graphics and mobile technology. Surrounded by computers for almost 20 years,
he enjoys every bit of developing and designing software for anything with a CPU inside.
Viktor holds a PhD in Applied Mathematics from Saint Petersburg State University.

I would like to thank my mother, Galina Fedyushina, for all of the support
and the innate thirst for knowledge.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Mootez Chaabani works as a software engineer R&D at a French company. He has recently
graduated from studies in Graphical Programming, and Virtual and Augmented Reality. He has
published two apps: Quiz game in the Windows Market Place, and an Android app in the local
app shop. He is currently working on Android/C++ projects based on 3D in SpacEyes.

He is currently working with SpacEyes as a Software Engineer R&D. He has also worked as an
Android developer at Orange, Tunisia in 2012. In 2011, he was an intern at Microsoft, Tunisia.

He has also reviewed Unity Android Game Development, Beginner’s Guide, Packt Publishing,
by Thomas James Moffitt-Finnegan.

I would like to thank my family, my soul mate, and all my of friends including
the Bardo Boys (my neighborhood friends).

Guy Cole is a freelance silicon valley contractor working on mobile devices (Android and
iOS), Java/J2EE, relational databases, TCP/IP networks, and UNIX/LINUX hosted enterprise
solutions. Guy has designed and fielded applications for B2B, banking, health care,
e-commerce, shipping, mass transit, national defense, enterprise/network management, and
cable/broadcast industries. His customers include Northrop Grumman, Wells Fargo, Barclay
Global Investments, Hewlett Packard, DHL Worldwide Express, Motorola, Cisco Systems, Cray
Research, Tandem Computers, NCR, and many smaller (but equally interesting) companies.

Maya Posch has been involved with programming and technology in general from a young
age. She has endeavored to expand her programming skills mostly on low-level, embedded,
and game-related programming. She currently runs her own company—Nyanko—which is
involved in these aforementioned fields, in addition to doing general development work for
other companies.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your
book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital book
library. Here, you can access, read and search across Packt’s entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Dedicated to my grandfather Leonid Michailowitsch Sirotkin who passed away during
the editing of this book.

- Dedication by Sergey Kosarevsky

Dedicated to my wife Mary who supports my every new initiative.

- Dedication by Viktor Latypov

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Establishing a Build Environment	 9

Introduction	 10
Installing Android development tools on Windows	 10
Installing Android development tools on Linux	 14
Creating an application template manually	 15
Adding native C++ code to your application	 19
Switching NDK toolchains	 22
Supporting multiple CPU architectures	 23
Basic rendering with OpenGL ES	 24
Going cross platform	 27
Unifying the cross-platform code	 33
Linking and source code organization	 35
Signing release Android applications	 35

Chapter 2: Porting Common Libraries	 39
Introduction	 40
Compiling the native static libraries for Windows	 40
Compiling the native static libraries for Android	 42
Compiling the libcurl networking library	 44
Compiling the OpenAL library	 45
Compiling libvorbis, libmodplug, and libtheora	 46
Using the FreeImage graphics library	 47
Using the FreeType library for text rendering	 50
Implementing timing in physics	 56
Rendering graphics in 2D	 59
Setting up Box2D simulations	 61
Building the ODE physical library	 63

ii

Table of Contents

Chapter 3: Networking	 65
Introduction	 65
Fetching list of photos from Flickr and Picasa	 66
Downloading images from Flickr and Picasa	 70
Performing cross-platform multithreading 	 74
Synchronizing native cross-platform threads	 76
Managing memory using reference counting	 78
Implementing asynchronous task queues	 83
Handling asynchronous callbacks invocation	 85
Working with the network asynchronously	 88
Detecting a network address	 91
Writing the HTTP server	 93

Chapter 4: Organizing a Virtual Filesystem	 97
Introduction	 98
Abstracting file streams	 98
Implementing portable memory-mapped files	 102
Implementing file writers	 104
Working with in-memory files	 109
Implementing mount points	 110
Enumerating files in the .zip archives	 114
Decompressing files from the .zip archives	 119
Loading resources asynchronously	 121
Storing application data	 125

Chapter 5: Cross-platform Audio Streaming	 129
Introduction 	 129
Initializing OpenAL and playing the .wav files	 130
Abstracting basic audio components	 134
Streaming sounds	 142
Decoding Ogg Vorbis files	 149
Decoding tracker music using ModPlug	 155

Chapter 6: Unifying OpenGL ES 3 and OpenGL 3	 157
Introduction	 157
Unifying the OpenGL 3 core profile and OpenGL ES 2	 158
Initializing the OpenGL 3 core profile on Windows	 162
Initializing OpenGL ES 2 on Android	 167
Unifying the GLSL 3 and GLSL ES 2 shaders	 172
Manipulating geometry	 178
Unifying vertex arrays	 181
Creating a wrapper for textures	 185
Creating a canvas for immediate rendering	 188

iii

Table of Contents

Chapter 7: Cross-platform UI and Input Systems	 193
Introduction	 193
Processing multi-touch events on Android	 194
Setting up multi-touch emulation on Windows	 197
Handling multi-touch events on Windows	 198
Recognizing gestures	 204
Implementing an on-screen joypad	 212
Using FreeType for text rendering	 218
Localization of in-game strings	 229

Chapter 8: Writing a Match-3 Game	 233
Introduction	 233
Handling asynchronous multi-touch input	 234
Improving the audio playback mechanism	 236
Shutting down the application	 239
Implementing the main loop	 241
Creating a multiplatform gaming engine	 243
Writing the match-3 game	 246
Managing shapes	 256
Managing the game field logic	 259
Implementing user interaction within a game loop	 261

Chapter 9: Writing a Picture Puzzle Game	 267
Introduction	 267
Implementing picture puzzle game logic	 268
Implementing the animated 3D image selector	 274
Page-based user interface	 283
Image gallery with Picasa downloader	 288
Implementing the complete picture-puzzle game	 292

Index	 297

Preface
Mobility and the demand for high-performance computations are often very tightly coupled.
Current mobile applications do many computationally-intense operations such as 3D and
stereoscopic rendering, images and audio recognition, and video decoding and encoding,
especially the birth of new technologies such as the augmented reality. This include
mobile games, 3D user interface software, and social software, which involves media
stream processing.

In some sense, mobile game development forces us to travel back in time several years due
to the limited hardware capabilities, low memory bandwidth, and precious battery resources,
but also makes us reconsider the basic forms of interaction with the user.

A smooth and responsive user interface based on gesture input, Internet access, ambient sound
effects, high-quality text, and graphics are the ingredients of a successful mobile application.

All major mobile operating systems give software developers different possibilities to develop
close-to-the-hardware. Google provides an Android Native Development Kit (NDK) to ease
the porting of existing applications and libraries from other platforms to Android, and exploit
the performance of the underlying hardware offered by the modern mobile devices. C, and
especially C++, both have a reputation of being a hard language to learn, and a hard language
to write user interface code in. This is indeed true, but only when someone attempts to write
everything from scratch. In this book we use C and C++ programming languages, and link
them to well-established third-party libraries to allow the creation of content-rich applications
with a modern touch-based interface and access to the Representational State Transfer
(REST) APIs of popular sites such as Facebook, Twitter, Flickr, Picasa, Instagram, and a
myriad of others.

Preface

2

Despite the availability of the information on how to use Internet resources in the applications
written in Java or .NET languages, not much has been said about doing this in C++
programming language. Modern OpenGL versions require a sufficient amount of effort to
create and use the latest extensions. The programming using the OpenGL API is usually
described in literature in a platform-specific way. Things get even more complicated with
the mobile version, the OpenGL ES, as developers have to adapt existing shader programs
to allow them to run on the mobile graphics processing units (GPUs). Sound playback using
standard Android facilities in C++ is also not straightforward, for example, things should be
done to re-use the existing PC code for the OpenAL library. This book tries to shed some light
on these topics and combine a number of useful recipes to simplify the multiplatform-friendly
development with Android NDK.

Android is a mobile operating system based on the Linux kernel and designed for
smartphones, tablet computers, netbooks, and other portable devices. Initial development
of Android was started by Android Inc, which was bought by Google in 2005. In November
2007, the first version was unveiled, however, the first commercially available Android-based
smartphone, HTC Dream, was released almost one year later in 2008.

Android versions, besides a numerical denomination, have official code names—each major
release is named after a sweet dessert. The following are some significant milestones in
Android platform technologies and features related to NDK:

ff Version 1.5 (Cupcake): This Android version featured the first release of Android
Native Development Kit supporting ARMv5TE instructions.

ff Version 1.6 (Donut): First introduction of OpenGL ES 1.1 native library support.

ff Version 2.0 (Eclair): OpenGL ES 2.0 native library support.

ff Version 2.3 (Gingerbread):

�� Concurrent garbage collector in Dalvik VM. This has faster gaming
performance and improved efficiency of OpenGL ES operations.

�� Capabilities of Native Development Kit are greatly extended, including
sensors access, native audio OpenSL ES, the EGL library, activity life cycle
management, and native access to assets.

ff Version 3.0 (Honeycomb):

�� Support for tablet computers with large touch screens

�� Support of multicore processors

ff Version 4.0 (Ice Cream Sandwich):

�� Unified UI for smartphones and tablet

�� Hardware-accelerated 2D rendering. VPN client API

Preface

3

ff Versions 4.1 and 4.2 (Jelly Bean):

�� This has improved rendering performance and triple buffering

�� External display support, including external displays over Wi-Fi

�� They have high-dynamic range camera support

�� New built-in developer options for debugging and profiling. Dalvik
VM runtime optimizations

ff Version 4.3 (Jelly Bean): OpenGL ES 3.0 native library support.

ff Version 4.4 (KitKat): Introduced access to RenderScript from NDK. This feature
is backwards compatible with any device running Android 2.2 or higher.

Android Native Development Kit (NDK) is used for multimedia applications that require
performance that Dalvik is unable to provide, and direct access to the native system libraries.
NDK is also the key for portability, which in turn allows a reasonably comfortable development
and debugging process using familiar tools such as GCC and Clang toolchains or alike. The
typical usage of NDK determines the scope of this book—integration of some of the most
commonly used C/C++ libraries for graphics, sound, networking, and resource storage.

Initially, NDK was based on the Bionic library. It is a derivation of the BSD standard C library
(libc) developed by Google for Android. The main goals of Bionic were as follows:

ff License: Original GNU C Library (glibc) is GPL-licensed and Bionic has a BSD license.

ff Size: Bionic is much smaller in size compared to GNU C Library.

ff Speed: Bionic is designed for mobile CPUs with relatively low clock frequencies.
For example, it has a custom implementation of pthreads.

Bionic lacks many important features found in full libc implementations, such as RTTI and
C++ exceptions handling support. However, NDK provides several libraries with different C++
helper runtimes which implement these features. These are GAbi++ runtime, STLport runtime,
and GNU Standard C++ Library. Besides the basic POSIX features, Bionic has support for
Android-specific mechanisms such as logging.

The NDK is a very effective way to reuse a great body of existing C and C++ code.

What this book covers
Chapter 1, Establishing a Build Environment, explains how to install and configure Android
SDK and NDK on Microsoft Windows and Ubuntu/Debian Linux flavors, and how to build
and run your first application on an Android-based device. You will learn how to use different
compilers and toolchains that come with the Android NDK. Debugging and deploying the
application using the adb tool is also covered.

Preface

4

Chapter 2, Porting Common Libraries, contains a set of recipes to port well-established C++
projects and APIs to Android NDK, such as FreeType fonts rendering library, FreeImage images
loading library, libcurl and OpenSSL (including compilation of libssl and libcrypto), OpenAL
API, libmodplug audio library, Box2D physics library, Open Dynamics Engine (ODE), libogg, and
libvorbis. Some of them require changes to the source code, which will be explained. Most of
these libraries are used later in subsequent chapters.

Chapter 3, Networking, shows you how to use the well-known libcurl library to download files
using the HTTP protocol and how to form requests and parse responses from popular Picasa
and Flickr online services directly using C++ code. Most applications nowadays use network
data transfer in one way or another. HTTP protocol is the foundation of the APIs for all of the
popular websites such as Facebook, Twitter, Picasa, Flickr, SoundCloud, and YouTube. The
remaining part of the chapter is dedicated to the web server development. Having a mini web
server in the application allows a developer to control the software remotely and monitor its
runtime without using the OS-specific code. The beginning of the chapter also introduces a
task queue for background download processing and simple smartpointers to allow efficient
cross-thread data interchange. These threading primitives are used later on in Chapter 4,
Organizing a Virtual Filesystem and Chapter 5, Cross-platform Audio Streaming.

Chapter 4, Organizing a Virtual Filesystem, is devoted entirely to the asynchronous file
handling, resource proxies, and resource compression. Many programs store their data as
a set of files. Loading these files without blocking the whole program is an important issue.
Human interface guidelines for all modern operating systems prescript the application
developer to avoid any delay, or "freezing", in the program's workflow (known as the
Application Not Responding (ANR) error in Android). Android program packages are simply
archive files with an .apk extension, compressed with a familiar ZIP algorithm. To allow reading
the application's resource files directly from .apk, we have to decompress the .zip format using
the zlib library. Another important topic covered is the virtual filesystem concept, which allows
us to abstract the underlying OS files and folders structure, and share resources between
Android and PC versions of our application.

Chapter 5, Cross-platform Audio Streaming, starts with organizing an audio stream using the
OpenAL library. After this, we proceed to the RIFF WAVE file format reading, and OGG Vorbis
streams decoding. Finally, we learn how to play some tracker music using libmodplug. Recent
Android NDK includes an OpenSL ES API implementation. However, we are looking for a
fully portable implementation between the desktop PC and other mobile platforms to allow
seamless game debugging capabilities. To do this, we precompile an OpenAL implementation
into a static library, and then organize a small multithreaded sound streaming library on top
of libogg and libvorbis.

Chapter 6, Unifying OpenGL ES 3 and OpenGL 3, presents the basic rendering loop for the
desktop OpenGL 3 and mobile OpenGL ES 3.0. Redeploying the application to a mobile device
is a lengthy operation that prevents the developer from quick feature testing and debugging.
In order to allow the development and debugging of game logic on the PC, we provide a
technique to use desktop GLSL shaders in mobile OpenGL ES.

Preface

5

Chapter 7, Cross-platform UI and Input System, will teach you how to implement multi-touch
event handling and gesture recognition in a portable way. A mobile is now almost synonymous
with gesture-based touch input. No modern user-oriented application can exist without a
graphical user interface (GUI). There are two basic issues to organize the interaction: input
and text rendering. To ease the testing and debugging, we also show you how to simulate the
multi-touch input on a Windows 7 PC equipped with multiple mouse devices. Since we are
aiming at the development of interactive gaming applications, we have to implement user
input in a familiar way. We will show you systematically how to create an on-screen gamepad
UI. In a global multicultural environment, it is very desirable to have a multi-language text
renderer for any application. We will show you how to use the FreeType library to render Latin,
Cyrillic, and left-to-right texts. The organization of a multi-language UTF-8 localized interface
will be presented as a dictionary-based approach.

Chapter 8, Writing a Match-3 Game, will put all the techniques we have introduced together,
and write a simple Match-3 game, including rendering using OpenGL ES, input handling,
resources packing, and PC-side debugging. The game is also runnable and debuggable
on a Windows desktop PC and can be easily ported to other mobile platforms.

Chapter 9, Writing a Picture Puzzle Game, will provide a more complicated example, integrating
all of the things mentioned above. All of the above elements regarding graphics and input will
use native network libraries and APIs to download images from the Picasa online service.

What you need for this book
This book is centered on a Windows-based PC. An Android smartphone or tablet is advisable
due to the limitations of the emulator in 3D graphics and native audio.

The source code in this book is based on open-source Linderdaum Engine
and is a hard squeezing of some approaches and techniques used in the
engine. You can get at http://www.linderdaum.com.

Basic knowledge of C or C++, including pointer manipulation, multithreading, and basic
object-oriented programming concepts is assumed. The reader should be familiar with
advanced programming concepts such as threading and synchronization primitives, and have
some basic understanding of GCC toolchains. We also hope the reader is not afraid to develop
without an IDE (yes, developing without an autocomplete-capable IDE definitely IS a skill) from
a terminal/FarManager/Notepad/SublimeText, for example.

Android Java development is not covered in this book. You will have to read something else
to get familiar with it.

Some working knowledge of linear algebra and affine transformations in 3D space is useful
for the understanding of OpenGL programming and gesture recognition.

www.allitebooks.com

http://www.allitebooks.org

Preface

6

Who is this book for
Do you want to port your existing C/C++ application to Android? Are you an experienced
C++ developer who wants to jump into a modern mobile development? Do you want to
increase the performance of your Java-based Android application? Do you want to use
great libraries written in C++ in your Android application? Do you want to boost your
productivity by debugging your mobile games on a PC?

If you say yes to any of these questions, then this book is for you.

Building the source code
The examples from the code bundle of this book can be compiled using the following
commands:

ff For Windows: make all

ff For Android: ndk-buildant copy-common-media debug

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are show as follows: "JAVA_HOME variable should point to the Java
Development Kit folder."

A block of code is typeset as follows:

package com.packtpub.ndkcookbook.app1;
import android.app.Activity;
public class App1Activity extends Activity
{
};

When we wish to draw your attention to a particular line of code, the relevant lines are
emphasized like so:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">App1</string>
</resources>

All command-line input or output is written as follows:

>adb.exe logcat -v time > 1.txt

Preface

7

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "install this device
software or not, you should click on the Install button".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code for this book
You can download the example source code files for all Packt books you have purchased from
your account at http://www.PacktPub.com. If you purchased this book elsewhere, you
can visit http://www.PacktPub.com/support and register to have the files e-mailed
directly to you. We worked hard to write and debug the source code for this book. The truth is,
in real life there are always bugs lurking in the code, which need to be fixed after the release.

We established a GitHub repository, so everyone can download the most recent source
code bundle, and open pull requests to submit bugfixes and improvements. The repository
can be cloned from: https://github.com/corporateshark/Android-NDK-Game-
Development-Cookbook. The latest snapshot of our source code bundle is available at:
http://www.linderdaum.com/Android-NDK-Game-Development-Cookbook-
SourceCodeBungle.zip.

Preface

8

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/support, selecting your book,
clicking on the errata submission form link, and entering the details of your errata. Once
your errata are verified, your submission will be accepted and the errata will be uploaded on
our website, or added to any list of existing errata, under the Errata section of that title. Any
existing errata can be viewed by selecting your title from http://www.packtpub.com/
support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works, in any form, on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

1
Establishing a Build

Environment

Some LinkedIn profiles say developing with a particular IDE is a skill.

No! Development without any IDE is the skill!

— Sergey Kosarevsky

In this chapter, we will cover the following recipes:

ff Installing Android development tools on Windows

ff Installing Android development tools on Linux

ff Creating an application template manually

ff Adding native C++ code to your application

ff Switching NDK toolchains

ff Supporting multiple CPU architectures

ff Basic rendering with OpenGL ES

ff Going cross platform

ff Unifying the cross-platform code

ff Linking and source code organization

ff Signing release Android applications

Establishing a Build Environment

10

Introduction
This chapter explains how to install and configure Android NDK on Microsoft Windows or
Ubuntu/Debian Linux, and how to build and run your first application on an Android-based
device. We will learn how to set-up different compilers and toolchains that come with Android
NDK. In addition, we show how to setup the GCC toolchain for Windows to build your projects.
The rest of the chapter is devoted to cross-platform development using C++.

Installing Android development tools on
Windows

To start developing games for Android you will need some essential tools to be installed on
your system.

Getting ready
Here is the list of all the prerequisites you will need to start developing games for Android:

ff Android SDK at http://developer.android.com/sdk/index.html.

This book is based on the Android SDK rev. 22.3 and tested with Android
API Level 19.

ff Android NDK at http://developer.android.com/tools/sdk/ndk/index.
html (we used Android NDK r9b).

ff Apache Ant at http://ant.apache.org. This is a Java command-line tool which
may be unfamiliar to C++ developers. It's purpose is to build Java applications, and
since every Android application has a Java wrapper, this tool will help us to pack them
into archives ready for deployment (these are called .apk packages, which stands for
Android Package).

ff Java SE Development Kit at http://www.oracle.com/technetwork/java/
javase/downloads/index.html.

Former versions of SDK/NDK for Windows required a Cygwin environment, a Linux-like
environment for Windows, to be installed. Up-to-date versions of these tools can run natively
on Windows without any intermediate layer. We will focus on the Cygwin-less environment and
will do all of the development without IDE. You heard it right, we will just use the command
line. All the examples in this book were written and debugged on a Windows PC.

To compile native Windows applications presented in this book, you will need a decent
C++ compiler, such as the MinGW package with a GCC toolchain. Using Microsoft Visual
Studio is also possible.

Chapter 1

11

Minimalist GNU for Windows (MinGW) is a minimalist development
environment for Windows applications using a port of GNU Compiler
Collection (GCC).

How to do it...
1.	 Android SDK and NDK should be installed into folders that do not contain any

whitespaces in their names.

This requirement comes from the limitations of scripts in Android SDK.
There is a nice discussion on StackOverflow which explains some
reasons behind these limitations at http://stackoverflow.
com/q/6603194/1065190.

2.	 Other tools can be installed to their default locations. We used the following paths in
our Windows 7 system:

Tools Path
Android SDK D:\android-sdk-windows

Android NDK D:\ndk

Apache Ant D:\ant

Java Development Kit C:\Program Files\Java\jdk1.6.0_33

Establishing a Build Environment

12

All tools have pretty decent GUI installers (see the following image, that shows the Android
SDK Manager from SDK R21) so you don't have to use the command line.

For the Windows environment, you need the MinGW GCC toolchain. The easy to install all-
in-one package can be found at http://www.equation.com, in the Programming Tools
section, Fortran, C, C++ subsection. Alternatively, you can download the official installer from
http://www.mingw.org. We will use the one from www.equation.com

There's more...
You need to set some environment variables to let the tools know where the files are
located. The JAVA_HOME variable should point to the Java Development Kit folder. The NDK_
HOME variable should point to the Android NDK installation folder, and ANDROID_HOME should
point to the Android SDK folder (note the double backslash). We used the following
environment variable values:

JAVA_HOME=D:\Java\jdk1.6.0_23

Chapter 1

13

NDK_HOME=D:\ndk

ANDROID_HOME=D:\\android-sdk-windows

The final configuration looks similar to the one shown in the following screenshot, which
shows the Windows Environment Variables dialog box:

After MinGW has been successfully installed, you should also add the bin folder from its
installation folder to the PATH environment variable. For example, if MinGW is installed to C:\
MinGW, then PATH should contain the C:\MinGW\bin folder.

Establishing a Build Environment

14

Installing Android development tools on
Linux

Installation of the basic tools on Linux is as easy as it was with their Windows counterpart. In
this recipe, we will see how to install the basic Android development tools on *nix systems.

Getting ready
We assume you already have an Ubuntu/Debian system with the apt package manager. Refer
to http://wiki.debian.org/Apt for details.

How to do it...
Carry out the following steps to install the required basic tools:

1.	 Make sure you are using the latest version of the packages for your OS by running the
following command:
>sudo apt-get update

2.	 Install OpenJDK 6+:
>sudo apt-get install openjdk-6-jdk

3.	 Install the Apache Ant build automation tool:
>sudo apt-get install ant

4.	 Download the official Android SDK from http://developer.android.com. There
is a bigger package next to it, with the ADT plugin for the Eclipse IDE. However, since
we do all of our development from the command line, we won't need it. Run the
following command:
>wget http://dl.google.com/android/android-sdk_r22.2.1-linux.tgz

5.	 Unpack the downloaded .tgz file (the actual version might vary, 22.2.1 is the latest
version as of October 2013):
>tar -xvf android-sdk_r22.2.1-linux.tgz

6.	 Use ~/<sdk>/tools/android to install the latest Platform Tools and all of the
SDKs—just like in the Windows case.

Failure to do so will result in an error while trying to use the Ant tool when building
any application for the Android.

7.	 Get the official Android NDK from http://developer.android.com:
>wget http://dl.google.com/android/ndk/android-ndk-r9b-
linux-x86_64.tar.bz2

Chapter 1

15

8.	 Unpack the downloaded NDK .tgz file:
>tar -xvf android-ndk-r9b-linux-x86_64.tar.bz2

9.	 Set the NDK_ROOT environment variable to your Android NDK directory (for example,
~/android-ndk-r9b in our case):
>NDK_ROOT=/path/to/ndk

It is useful to put this line and the JAVA_HOME definition to /etc/profile or /etc/
environment, if these settings are applicable to all the users of the system.

10.	 In case you are running a 64-bit system, you must ensure that you have the 32-bit
Java runtime installed also.

11.	 Run the following command to install the libraries. Failure to do so may lead to errors
with adb and aapt tools:

>sudo apt-get install ia32-libs

There's more...
There is a nice one-liner script that helps you automatically detect the OpenJDK home
directory. It essentially resolves the link /usr/bin/javac to the full path and returns the
directory part of the path.

 JAVA_HOME=$(readlink -f /usr/bin/javac | sed "s:bin/javac::")

Creating an application template manually
First of all, we are going to create a basic template for our applications. Every Android
application that is to be built via Android SDK, should contain a predefined directory structure
and the configuration .xml files. This can be done using Android SDK tools and IDEs. In this
recipe, we will learn how to do it manually. We will use these files later on as the very starting
point for all our examples.

www.allitebooks.com

http://www.allitebooks.org

Establishing a Build Environment

16

Getting ready
Let us set up the directory structure of our project (see the following screenshot):

This is a typical structure for any Android project. We will create all the required files manually
rather than using Android tools.

How to do it...
Place the Java Activity code into the App1\src\com\packtpub\ndkcookbook\app1\
App1Activity.java file, which should look as follows:

package com.packtpub.ndkcookbook.app1;
import android.app.Activity;
public class App1Activity extends Activity
{
};

The localizable application name should go to App1\res\values\strings.xml. The string
parameter app_name is used in the AndroidManifest.xml file to specify the user-readable
name of our application, as seen in the following code:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">App1</string>
</resources>

Chapter 1

17

Now we need to write more scripts for Apache Ant and the Android SDK build system. They are
necessary to build the .apk package of your application.

1.	 The following is the App1/project.properties file:
target=android-15
sdk.dir=d:/android-sdk-windows

2.	 We need two more files for Ant. The following is App1/AndroidManifest.xml:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/
android"
 package="com.packtpub.ndkcookbook.app1"
 android:versionCode="1"
 android:versionName="1.0.0">
 <supports-screens
 android:smallScreens="false"
 android:normalScreens="true"
 android:largeScreens="true"
 android:xlargeScreens="true"
 android:anyDensity="true" />
 <uses-sdk android:minSdkVersion="8" />
 <uses-sdk android:targetSdkVersion="18" />

Our examples require at least OpenGL ES 2. Let Android know about it:

 <uses-feature android:glEsVersion="0x00020000"/>
 <application android:label="@string/app_name"
 android:icon="@drawable/icon"
 android:installLocation="preferExternal"
 android:largeHeap="true"
 android:debuggable="false">
 <activity android:name="com.packtpub.ndkcookbook.app1.
App1Activity"
android:launchMode="singleTask"

Create a full-screen application in a landscape screen orientation:

 android:theme="@android:style/Theme.NoTitleBar.
 Fullscreen"
 android:screenOrientation="landscape"
 android:configChanges="orientation|keyboardHidd
 en"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

Establishing a Build Environment

18

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

The second file is App1/build.xml:

<?xml version="1.0" encoding="UTF-8"?>
<project name="App1" default="help">
 <property file="ant.properties" />
 <loadproperties srcFile="project.properties" />
 <import file="${sdk.dir}/tools/ant/build.xml" />
</project>

How it works...
With all the listed files in place, we can now build the project and install it on an Android
device by carrying out the following steps:

1.	 From the App1 folder run:
>ant debug

2.	 The tail of the output from the previous command should look like:
BUILD SUCCESSFUL

Total time: 12 seconds

3.	 And the built debug .apk package is in bin/App1-debug.apk.

4.	 To install the app, run:
>adb install App1-debug.apk

Don't forget to connect your device through a USB and turn USB
Debugging on in Android settings before running this command.

5.	 You should see the output from adb, similar to the following commands:

* daemon not running. starting it now on port 5037 *

* daemon started successfully *

1256 KB/s (8795 bytes in 0.006s)

 pkg: /data/local/tmp/App1-debug.apk

Success

Chapter 1

19

The application can now be started from your Android launcher (named App1). You will see
just a black screen. You can exit the application using the BACK button.

There's more...
Don't forget to put the application icon into App1\res\drawable\icon.png. Refer
to the book's code bundle if you want to build the app quickly, or put your own icon there.
72 x 72 32-bit will do just fine. You can find the official Android icons guidelines at
http://developer.android.com/design/style/iconography.html.

The official documentation on the AndroidManifest.xml file can be found at http://
developer.android.com/guide/topics/manifest/manifest-intro.html.

Furthermore, you can update your applications without uninstalling the previous version using
the adb -r command-line switch in the following way:

>adb install -r App1-debug.apk

Otherwise, before installing a new version of your application you will have to uninstall the
existing one using the following command:

>adb uninstall <package-name>

See also…
ff Signing release Android applications

Adding native C++ code to your application
Let us expand our minimalistic Java template, which was discussed in the previous recipe, so
we can create a placeholder for our native C++ code.

Getting ready
We need to copy all the files from our App1 project to save time while creating the initial
project files. This recipe will focus on the changes to be made to the App1 project in order to
add the C++ code to it.

Establishing a Build Environment

20

How to do it...
Carry out the following steps to create a placeholder for our C++ code:

1.	 Add the jni/Wrappers.cpp file with the following code:
#include <stdlib.h>
#include <jni.h>
#include <android/log.h>
#define LOGI(...) ((void)__android_log_print(ANDROID_LOG_INFO,
 "App2", __VA_ARGS__))

extern "C"
{
 JNIEXPORT void JNICALL
Java_com_packtpub_ndkcookbook_app2_App2Activity_onCreateNative(
 JNIEnv* env, jobject obj)
 {
 LOGI("Hello World!");
 }
}

2.	 We need to change our Activity class from the previous recipe to make use of the
native code we just added in the preceding section, through the following code:
package com.packtpub.ndkcookbook.app2;

import android.app.Activity;
import android.os.Bundle;

public class App2Activity extends Activity
{
 static
 {

Here we load the native library named libApp2.so. Note the omitted lib prefix and
.so extension:

 System.loadLibrary("App2");
 }
 @Override protected void onCreate(Bundle icicle)
 {
 super.onCreate(icicle);
 onCreateNative();
 }
 public static native void onCreateNative();
};

Chapter 1

21

3.	 Tell the NDK build system how to treat the .cpp file. Create the jni/Android.mk
file. The Android.mk file is used by the Android NDK build system to find out how to
treat the source code of your project:
TARGET_PLATFORM := android-7
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_ARM_MODE := arm
LOCAL_MODULE := App2
LOCAL_SRC_FILES += Wrappers.cpp
LOCAL_ARM_MODE := arm
COMMON_CFLAGS := -Werror -DANDROID -DDISABLE_IMPORTGL \
-isystem $(SYSROOT)/usr/include/
ifeq ($(TARGET_ARCH),x86)
	 LOCAL_CFLAGS := $(COMMON_CFLAGS)
 else
	 LOCAL_CFLAGS := -mfpu=vfp -mfloat-abi=softfp \
 -fno-short-enums $(COMMON_CFLAGS)
endif
LOCAL_LDLIBS := -llog -lGLESv2 -Wl,-s
LOCAL_CPPFLAGS += -std=gnu++0x
include $(BUILD_SHARED_LIBRARY)

Note the ifeq ($(TARGET_ARCH),x86) section. Here we specify architecture-
specific compiler flags for floating point support on ARMv7. This will give you
hardware floating-point support on the ARM architecture and a warnings-free
log on the x86 Android target architecture..

4.	 Paste the following code into the jni/Application.mk file:
APP_OPTIM := release
APP_PLATFORM := android-7
APP_STL := gnustl_static
APP_CPPFLAGS += -frtti
APP_CPPFLAGS += -fexceptions
APP_CPPFLAGS += -DANDROID
APP_ABI := armeabi-v7a
APP_MODULES := App2
NDK_TOOLCHAIN_VERSION := clang

Establishing a Build Environment

22

How it works...
1.	 First of all, we need to compile the native code. From the root of your App2 project,

run the following command:
>ndk-build

2.	 You should see the following output:
Compile++ arm: App2 <= Wrappers.cpp

SharedLibrary: libApp2.so

Install : libApp2.so => libs/armeabi-v7a/libApp2.so

3.	 Now proceed to the .apk creation as in the previous recipe by running the following
command:
>ant debug

4.	 Your libApp2.so native shared library will be packed into the App2-debug.apk
package. Install and run it. It will output a Hello World! string into the device log.

There's more...
You can use the adb command to view the device log. A nice clean formatted log with
timestamps can be created using the following command:

>adb logcat -v time > 1.txt

The actual output from your device will look similar to the following command:

05-22 13:00:13.861 I/App2 (2310): Hello World!

Switching NDK toolchains
A toolchain is a set of tools that are used to build your project. A toolchain usually consists of a
compiler, an assembler, and a linker. Android NDK comes with different toolchains—GCC and
Clang—of different versions. It has a convenient and simple way to switch between them.

Getting ready
Look through the list of the available toolchains before proceeding. You can find all the
available toolchains in the $(NDK_ROOT)/toolchains/ folder.

Chapter 1

23

How to do it...
The parameter NDK_TOOLCHAIN_VERSION in Application.mk corresponds to one of the
available toolchains. In NDK r9b, you can switch between three GCC versions—4.6, and 4.7,
which are marked as deprecated and will be removed from the next NDK releases, and 4.8.
And two Clang versions—Clang3.2, which is also marked as deprecated, and Clang3.3. The
default toolchain in the NDK r9b is still GCC 4.6.

Starting from the NDK r8e, you can just specify clang as the value of NDK_TOOLCHAIN_
VERSION. This option will select the most recent version of the available Clang toolchain.

There's more...
The toolchains are discovered by the $(NDK_ROOT)/build/core/init.mk script, so you
can define your own toolchain in a folder named <ABI>-<ToolchainName> and use it in
Application.mk.

Supporting multiple CPU architectures
Android NDK supports different CPU architectures such as ARMv5TE and ARMv7-based
devices, x86, and MIPS (big-endian architecture). We can create fat binaries that can run on
any of the supported platforms.

Getting ready
Find out the architecture of your Android-based device. You can do it using the adb command
as follows:

>adb shell cat /proc/cpuinfo

How to do it...
The following are the two approaches to pick an appropriate set of CPU architectures:

1.	 By default, the NDK will generate the code for ARMv5TE-based CPUs. Use the
parameter APP_ABI in Application.mk to select a different architecture, for
example (use only one line from the following list):
APP_ABI := armeabi-v7a
APP_ABI := x86
APP_ABI := mips

Establishing a Build Environment

24

2.	 We can specify multiple architectures to create a fat binary that will run on any of
them through the following command:

APP_ABI := armeabi armeabi-v7a x86 mips

There's more...
The main pitfall of the fat binaries is the resulting .apk size, as separate native code versions
are compiled for each of the specified architectures. If your application heavily uses third-party
libraries, the package size can become an issue. Plan your deliverables wisely.

Basic rendering with OpenGL ES
Let us add some graphics to our sample Android application App2. Here, we show how to
create an off-screen bitmap, and then copy it to the screen using the OpenGL ES Version 2 or
3 available on your Android device.

Refer to the App3 sample in the book's downloadable code bundle for
the full source code.

Getting ready
We assume that the reader is somewhat familiar with OpenGL and the GL Shading Language
(GLSL). Refer to http://www.opengl.org/documentation for the desktop OpenGL, and
http://www.khronos.org/opengles for the mobile OpenGL ES documentation.

How to do it…
1.	 We need to write a simple vertex and fragment GLSL shader that will render our

framebuffer on the screen using OpenGL ES. Let's put them directly into jni/
Wrappers.cpp as strings. The following code shows the vertex shader:
static const char g_vShaderStr[] =
 "#version 100\n"
 "precision highp float;\n"
 "attribute vec3 vPosition;\n"
 "attribute vec3 vCoords;\n"
 "varying vec2 Coords;\n"
 "void main()\n"
 "{\n"
 " Coords = vCoords.xy;\n"
 " gl_Position = vec4(vPosition, 1.0);\n"
 "}\n";

Chapter 1

25

2.	 The fragment shader is as follows:
static const char g_fShaderStr[] =
 "#version 100\n"
 "precision highp float;\n"
 "varying vec2 Coords;\n"
 "uniform sampler2D Texture0;\n"
 "void main()\n"
 "{\n"
 " gl_FragColor = texture2D(Texture0, Coords);\n"
 "}\n";

3.	 We will also need the following helper function to load our shaders into OpenGL ES:

static GLuint LoadShader(GLenum type, const char* shaderSrc)
{
 GLuint shader = glCreateShader(type);
 glShaderSource (shader, 1, &shaderSrc, NULL);
 glCompileShader (shader);
 GLint compiled;
 glGetShaderiv (shader, GL_COMPILE_STATUS, &compiled);
 GLsizei MaxLength = 0;
 glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &MaxLength);
 char* InfoLog = new char[MaxLength];
 glGetShaderInfoLog(shader, MaxLength, &MaxLength, InfoLog);
 LOGI("Shader info log: %s\n", InfoLog);
 return shader;
}

How it works…
We will not go into all the details about the OpenGL ES programming here, and will instead
focus on a minimal application (App3) that should initialize the GLView in Java; create
fragment and vertex programs, create and fill the vertex array consisting of two triangles
that form a single quadrilateral, and then render them with a texture, which is updated from
g_FrameBuffer contents. This is it—just draw the offscreen framebuffer. The following is the
code to draw the full-screen quad textured with the offscreen buffer content:

 const GLfloat vVertices[] = { -1.0f, -1.0f, 0.0f,
 -1.0f, 1.0f, 0.0f,
 1.0f, -1.0f, 0.0f,
 -1.0f, 1.0f, 0.0f,

Establishing a Build Environment

26

 1.0f, -1.0f, 0.0f,
 1.0f, 1.0f, 0.0f
 };

 const GLfloat vCoords[] = { 0.0f, 0.0f, 0.0f,
 0.0f, 1.0f, 0.0f,
 1.0f, 0.0f, 0.0f,
 0.0f, 1.0f, 0.0f,
 1.0f, 0.0f, 0.0f,
 1.0f, 1.0f, 0.0f
 };
 glUseProgram (g_ProgramObject);

These attribute variables are declared in a vertex shader. See the value of g_vShaderStr[]
in the preceding code.

 GLint Loc1 = glGetAttribLocation(g_ProgramObject,"vPosition");
 GLint Loc2 = glGetAttribLocation(g_ProgramObject,"vCoords");

 glBindBuffer(GL_ARRAY_BUFFER, 0);
 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
 glVertexAttribPointer(
 Loc1, 3, GL_FLOAT, GL_FALSE, 0, vVertices);
 glVertexAttribPointer(
 Loc2, 3, GL_FLOAT, GL_FALSE, 0, vCoords);
 glEnableVertexAttribArray(Loc1);
 glEnableVertexAttribArray(Loc2);

 glDisable(GL_DEPTH_TEST);
 glDrawArrays(GL_TRIANGLES, 0, 6);
 glUseProgram(0);
 glDisableVertexAttribArray(Loc1);
 glDisableVertexAttribArray(Loc2);

We also need a few JNI callbacks. The first one handles the surface size changes, as seen in
the following code:

 JNIEXPORT void JNICALL
 Java_com_packtpub_ndkcookbook_app3_App3Activity_SetSurfaceSize(
 JNIEnv* env, jclass clazz, int Width, int Height)
 {
 LOGI("SurfaceSize: %i x %i", Width, Height);
 g_Width = Width;
 g_Height = Height;
 GLDebug_LoadStaticProgramObject();

Chapter 1

27

 glGenTextures(1, &g_Texture);
 glBindTexture(GL_TEXTURE_2D, g_Texture);

Disable mip-mapping through the following code:

 glTexParameteri(GL_TEXTURE_2D,
 GL_TEXTURE_MIN_FILTER, GL_NEAREST);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA,
 ImageWidth, ImageHeight, 0, GL_RGBA,
 GL_UNSIGNED_BYTE, g_FrameBuffer);
 }

The second callback does the actual frame rendering:

 JNIEXPORT void JNICALL Java_com_packtpub_ndkcookbook_app3_
App3Activity_DrawFrame(JNIEnv* env, jobject obj)
 {

Invoke our frame rendering callback through the following code:

 OnDrawFrame();

 glActiveTexture(GL_TEXTURE0);
 glBindTexture(GL_TEXTURE_2D, g_Texture);
 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0,
 ImageWidth, ImageHeight, GL_RGBA,
 GL_UNSIGNED_BYTE, g_FrameBuffer);
 GLDebug_RenderTriangle();
 }

Going cross platform
The main idea is the possibility of cross-platform development in What You See (on a PC) is What
You Get (on a device), when most of the application logic can be developed in a familiar desktop
environment like Windows, and it can be built for Android using the NDK whenever necessary.

Getting ready
To perform what we just discussed, we have to implement some sort of abstraction on top of
the NDK, POSIX, and Windows API. Such an abstraction should feature at least the following:

ff Ability to render buffer contents on the screen: Our framework should provide the
functions to build the contents of an off-screen framebuffer (a 2D array of pixels) to
the screen (for Windows we refer to the window as "the screen").

Establishing a Build Environment

28

ff Event handling: The framework must be able to process the multi-touch input and
virtual/physical key presses (some Android devices, such as the Toshiba AC 100, or
the Ouya console, and other gaming devices, have physical buttons), timing events,
and asynchronous operation completions.

ff Filesystem, networking, and audio playback: The abstraction layers for these
entities need a ton of work to be done by you, so the implementations are presented
in Chapter 3, Networking, Chapter 4, Organizing a Virtual Filesystem, and Chapter 5,
Cross-platform Audio Streaming.

How to do it...
1.	 Let us proceed to write a minimal application for the Windows environment, since we

already have the application for Android (for example, App1). A minimalistic Windows
GUI application is the one that creates a single window and starts the event loop (see
the following example in Win_Min1/main.c):
#include <windows.h>

LRESULT CALLBACK MyFunc(HWND h, UINT msg, WPARAM w, LPARAM p)
{
 if(msg == WM_DESTROY) { PostQuitMessage(0); }
 return DefWindowProc(h, msg, w, p);
}

char WinName[] = "MyWin";

2.	 The entry point is different from Android. However, its purpose remains the same— to
initialize surface rendering and invoke callbacks:
int main()
{
 OnStart();

 const char WinName[] = "MyWin";

 WNDCLASS wcl;
 memset(&wcl, 0, sizeof(WNDCLASS));
 wcl.lpszClassName = WinName;
 wcl.lpfnWndProc = MyFunc;
 wcl.hCursor = LoadCursor(NULL, IDC_ARROW);

 if (!RegisterClass(&wcl)) { return 0; }

Chapter 1

29

 RECT Rect;

 Rect.left = 0;
 Rect.top = 0;

3.	 The size of the window client area is predefined as ImageWidth and ImageHeight
constants. However, the WinAPI function CreateWindowA() accepts not the size of
the client area, but the size of the window, which includes caption, borders, and other
decorations. We need to adjust the window rectangle to set the client area to the
desired size through the following code:
 Rect.right = ImageWidth;
 Rect.bottom = ImageHeight;

 DWORD dwStyle = WS_OVERLAPPEDWINDOW;

 AdjustWindowRect(&Rect, dwStyle, false);

 int WinWidth = Rect.right - Rect.left;
 int WinHeight = Rect.bottom - Rect.top;

 HWND hWnd = CreateWindowA(WinName, "App3", dwStyle,
 100, 100, WinWidth, WinHeight,
 0, NULL, NULL, NULL);
 ShowWindow(hWnd, SW_SHOW);

 HDC dc = GetDC(hWnd);

4.	 Create the offscreen device context and the bitmap, which holds our offscreen
framebuffer through the following code:
 hMemDC = CreateCompatibleDC(dc);
 hTmpBmp = CreateCompatibleBitmap(dc,
 ImageWidth, ImageHeight);
 memset(&BitmapInfo.bmiHeader, 0,
 sizeof(BITMAPINFOHEADER));
 BitmapInfo.bmiHeader.biSize = sizeof(BITMAPINFOHEADER);
 BitmapInfo.bmiHeader.biWidth = ImageWidth;
 BitmapInfo.bmiHeader.biHeight = ImageHeight;
 BitmapInfo.bmiHeader.biPlanes = 1;
 BitmapInfo.bmiHeader.biBitCount = 32;
 BitmapInfo.bmiHeader.biSizeImage = ImageWidth*ImageHeight*4;
 UpdateWindow(hWnd);

Establishing a Build Environment

30

5.	 After the application's window is created, we have to run a typical message loop:
 MSG msg;
 while (GetMessage(&msg, NULL, 0, 0))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 …
}

6.	 This program only handles the window destruction event and does not render
anything. Compilation of this program is done with a single command as follows:

>gcc -o main.exe main.c -lgdi32

How it works…
To render a framebuffer on the screen, we need to create a so-called device context with an
associated bitmap, and add the WM_PAINT event handler to the window function.

To handle the keyboard and mouse events, we add the WM_KEYUP and WM_MOUSEMOVE cases
to the switch statement in the previous program. Actual event handling is performed in the
externally provided routines OnKeyUp() and OnMouseMove(), which contain our game logic.

The following is the complete source code of the program (some omitted parts, similar to
the previous example, are omitted). The functions OnMouseMove(), OnMouseDown(), and
OnMouseUp() accept two integer arguments that store the current coordinates of the mouse
pointer. The functions OnKeyUp() and OnKeyDown() accept a single argument—the pressed
(or released) key code:

#include <windows.h>

HDC hMemDC;
HBITMAP hTmpBmp;
BITMAPINFO BmpInfo;

In the following code, we store our global RGBA framebuffer:

unsigned char* g_FrameBuffer;

We do all OS-independent frame rendering in this callback. We draw a simple XOR pattern
(http://lodev.org/cgtutor/xortexture.html) into the framebuffer as follows:

void DrawFrame()
{
 int x, y;

Chapter 1

31

 for (y = 0 ; y < ImageHeight ; y++)
 {
 for (x = 0 ; x < ImageWidth ; x++)
 {
 int Ofs = y * ImageWidth + x;
 int c = (x ^ y) & 0xFF;
 int RGB = (c<<16) | (c<<8) | (c<<0) | 0xFF000000;
 ((unsigned int*)g_FrameBuffer)[Ofs] =	RGB;
 }
 }
}

The following code shows the WinAPI window function:

LRESULT CALLBACK MyFunc(HWND h, UINT msg, WPARAM w, LPARAM p)
{
 PAINTSTRUCT ps;
 switch(msg)
 {
 case WM_DESTROY:
 PostQuitMessage(0);
break;
 case WM_KEYUP:
 OnKeyUp(w);
break;
 case WM_KEYDOWN:
 OnKeyDown(w);
break;
 case WM_LBUTTONDOWN:
 SetCapture(h);
 OnMouseDown(x, y);
break;
 case WM_MOUSEMOVE:
 OnMouseMove(x, y);
break;
 case WM_LBUTTONUP:
 OnMouseUp(x, y);
 ReleaseCapture();
break;
 case WM_PAINT:
 dc = BeginPaint(h, &ps);
 DrawFrame();

Establishing a Build Environment

32

Transfer the g_FrameBuffer to the bitmap through the following code:

 SetDIBits(hMemDC, hTmpBmp, 0, Height,
 g_FrameBuffer, &BmpInfo, DIB_RGB_COLORS);
 SelectObject(hMemDC, hTmpBmp);

And copy it to the window surface through the following code:

 BitBlt(dc, 0, 0, Width, Height, hMemDC, 0, 0, SRCCOPY);
 EndPaint(h, &ps);
break;
 }
 return DefWindowProc(h, msg, w, p);
}

Since our project contains a make file the compilation can be done via a single command:

>make all

Running this program should produce the result as shown in the following screenshot, which
shows the Win_Min2 example running on Windows:

There's more…
The main difference between the Android and Windows implementation of a main loop can be
summarized in the following way. In Windows, we are in control of the main loop. We literally
declare a loop, which pulls messages from the system, handles input, updates the game
state, and render s the frame (marked green in the following figure). Each stage invokes an
appropriate callback from our portable game (denoted with blue color in the following figure).
On the contrary, the Android part works entirely differently. The main loop is moved away
from the native code and lives inside the Java Activity and GLSurfaceView classes. It invokes
the JNI callbacks that we implement in our wrapper native library (shown in red). The native
wrapper invokes our portable game callbacks. Let's summarize it in the following way:

Chapter 1

33

Windows Native Application Our Portable Game

Initialization

Main loop

Pull system
messages

WinAPI
Window
Function

OnStart()

OnMouseMove()

OnMouseDown()

OnMouseUp()

OnTimer()

OnDrawFrame()

OnStop()Shutdown

Render frame

Update game
state

ExitNative() JNI callback

Render frame

Update game
state

DrawFrame() JNI callback

SendMotion() JNI callback

JNI calls

Native Android Library

Java Activity

The rest of the book is centered on this kind of architecture and the game functionality will be
implemented inside these portable On...() callbacks.

There is yet another important note. Responding to timer events to create animation can be
done on Windows with the SetTimer() call and the WM_TIMER message handler. We get
to that in Chapter 2, Porting Common Libraries, when we speak about rigid body physics
simulations. However, it is much better to organize a fixed time-step main loop, which is
explained later in the book.

See also
ff Chapter 6, Unifying OpenGL ES 3 and OpenGL 3

ff The recipe Implementing the main loop in Chapter 8, Writing a Match-3 Game

Unifying the cross-platform code
Right now, we have two different versions of a simple program (Win_Min2 and App3). Let us
see how to unify the common parts of the code.

Establishing a Build Environment

34

Getting ready
In Android, the application initialization phase is different, and since we use a mixed Java
plus C++ approach, the entry points will be different. In C++, we are tied to, int main() or
DWORD WinMain() functions; whereas in Android it is up to us to choose which JNI function
we may call from our Java starter code. Event handling and rendering the initialization code
are also quite different, too. To do so, we mark sections of the code with pre-processor
definitions and put the different OS code into different files—Wrappers_Android.h and
Wrappers_Windows.h.

How to do it...
We use the standard macros to detect the OS for which the program is being compiled:
Windows-targeted compilers provide the _WIN32 symbol definition, and the __linux__
macro is defined on any Linux-based OS, including Android. However, the __linux__
defination is not enough, since some of the APIs are missing in Android. The macro ANDROID
is a non-standard macro and we pass the -DANDROID switch to our compiler to identify the
Android target in our C++ code. To make this for every source file, we modify the CFLAGS
variable in the Android.mk file.

Finally, when we write the low-level code, the detection looks like the following code:

#if defined(_WIN32)
// windows-specific code
#elif defined(ANDROID)
// android-specific code
#endif

For example, to make an entry point look the same for both the Android and Windows
versions, we write the following code:

#if defined(_WIN32)
define APP_ENTRY_POINT() int main()
#elif defined(ANDROID)
define APP_ENTRY_POINT() int App_Init()
#endif

Later we will replace the int main() definition with the APP_ENTRY_POINT() macro.

There's more...
To detect more operating systems, compilers, and CPU architectures, it is useful to check out
a list of predefined macros at http://predef.sourceforge.net.

Chapter 1

35

Linking and source code organization
In the previous recipes, we learned how to create basic wrappers that allow us to run our
application on Android and Windows. However, we used an ad-hoc approach since the amount
of source code was low and fit into a single file. We have to organize our project source files in
a way suitable for building the code for larger projects in Windows and Android.

Getting ready
Recall the folder structure of the App3 project. We have the src and jni folders inside our
App2 folder. The jni/Android.mk, jni/Application.mk, and build.xml files specify
the Android build process. To enable the Windows executable creation, we add a file named
Makefile, which references the main.cpp file.

How to do it...
The following is the content of Makefile:

CC = gcc
all:
 $(CC) -o main.exe main.cpp -lgdi32 -lstdc++

The idea is that when we add more and more OS-independent logic, the code resides in .cpp
files, which do not reference any OS-specific headers or libraries. For the first few chapters,
this simple framework that delegates frame rendering and event handling to portable OS-
independent functions (OnDrawFrame(), OnKeyUp() and so on) is enough.

How it works...
All of our examples from the subsequent chapters are buildable for Windows from the
command line using a single make all command. Android native code is buildable with a
single ndk-build command. We will use this convention throughout the rest of the book.

Signing release Android applications
Now we can create a cross-platform application, debug it on a PC, and deploy it to Android
devices. We cannot, however, upload it on Google Play because it is not (yet) signed properly
with the release key.

www.allitebooks.com

http://www.allitebooks.org

Establishing a Build Environment

36

Getting ready
A detailed explanation of the signing procedure on Android is given in the developer manual at
http://developer.android.com/tools/publishing/app-signing.html. We will
focus on the signing from the command line and automating the entire process via batch files.

How to do it...
First of all, we need to rebuild the project and create a release version of the .apk package.
Let's do it with our App2 project:

>ndk-build -B

>ant release

You should see a lot of text output from Ant, which ends with something like the following
command:

-release-nosign:

[echo] No key.store and key.alias properties found in build.properties.

[echo] Please sign App2\bin\App2-release-unsigned.apk manually

[echo] and run zipalign from the Android SDK tools.

Let us generate a self-signed release key using keytool from the JDK through the following
command:

>keytool -genkey -v -keystore my-release-key.keystore -alias alias_name
-keyalg RSA -keysize 2048 -validity 10000

Fill out all the fields necessary for the key, as in the following command:

Enter keystore password:

Re-enter new password:

What is your first and last name?

 [Unknown]: Sergey Kosarevsky

What is the name of your organizational unit?

 [Unknown]: SD

What is the name of your organization?

 [Unknown]: Linderdaum

What is the name of your City or Locality?

 [Unknown]: St.Petersburg

What is the name of your State or Province?

 [Unknown]: Kolpino

Chapter 1

37

What is the two-letter country code for this unit?

 [Unknown]: RU

Is CN=Sergey Kosarevsky, OU=SD, O=Linderdaum, L=St.Petersburg,
ST=Kolpino, C=RU correct?

 [no]: yes

Generating 2048 bit RSA key pair and self-signed certificate
(SHA1withRSA) with a validity of 10000 days

 for: CN=Sergey Kosarevsky, OU=SD, O=Linderdaum, L=St.Petersburg,
ST=Kolpino, C=RU

Enter key password for <alias_name>

 (RETURN if same as keystore password):

[Storing my-release-key.keystore]

Now we are ready to proceed with the actual application signing. Use the jarsigner tool
from the JDK through the following code:

>jarsigner -verbose -sigalg MD5withRSA -digestalg SHA1 -keystore my-
release-key.keystore bin\App2-release-unsigned.apk alias_name

This command is interactive, and it will require the user to enter the keystore password and
the key password. However, we can provide passwords in a batch file in the following way:

>jarsigner -verbose -sigalg MD5withRSA -digestalg SHA1 -keystore my-
release-key.keystore -storepass 123456 –keypass 123456 bin\App2-release-
unsigned.apk alias_name

Passwords should match what you entered while creating your release key and keystore.

There is one more step left before we can safely publish our .apk package on Google Play.
Android applications can access uncompressed content within .apk using mmap() calls. Yet,
mmap() may imply some alignment restrictions on the underlying data. We need to align all
uncompressed data within .apk on 4-byte boundaries. Android SDK has the zipalign tool
to do it, as seen in the following command:

>zipalign -v 4 bin\App2-release-unsigned.apk App2-release.apk

Now our .apk is ready to be published.

See also
ff Chapter 2, Porting Common Libraries

2
Porting Common

Libraries

In this chapter, we will cover:

ff Compiling the native static libraries for Windows

ff Compiling the native static libraries for Android

ff Compiling the libcurl networking library

ff Compiling the OpenAL library

ff Compiling libvorbis, libmodplug, and libtheora

ff Using the FreeImage graphics library

ff Using FreeType library for text rendering

ff Implementing timing in physics

ff Rendering graphics in 2D

ff Setting up Box2D simulations

ff Building the ODE physical library

Porting Common Libraries

40

Introduction
This chapter explains how to port existing popular C/C++ libraries to Android using Android
NDK. These libraries are widely used to implement feature-rich applications with graphics,
sounds, and physical simulations entirely in C++. There is not much fun in simply compiling
libraries. So, the parts related to FreeImage, FreeType, and Box2D provide minimal samples to
demonstrate the functionality of each library. Audio and networking libraries are discussed in
greater detail in the subsequent chapters. We will show you how to compile libraries and,
of course, give some short samples and hints on how to start using them.

Typical caveats for porting libraries across different processors and operating systems are
memory access (structure alignment/padding), byte-order (endianness), calling conventions,
and floating-point issues. All the libraries described below address these issues quite well,
and even if some of them do not officially support Android NDK, fixing this is just a matter of
a few compiler switches.

To build any of the mentioned libraries, we need to create makefile for the Windows version
and a pair of the Android.mk and the Application.mk files for Android NDK. The source
files of the library are compiled to object files. A collection of object files is combined into
an archive, which is also called a static library. Later, this static library can be passed as
an input to the linker. We start with the Windows version because the Android.mk and
Application.mk files are built on top of standard makefiles.

Compiling the native static libraries for
Windows

To build the Windows version of libraries, we need a C++ compiler. We use MinGW with the
GCC toolchain described in Chapter 1, Establishing a Build Environment. For each library,
we have a collection of source-code files, and we need to get the static library, a file with the
.a extension.

Getting ready
Let us assume the src directory contains the source code of a library we need to build
for Android.

How to do it...
1.	 Let us start with writing a makefile:

CFLAGS = -I src

Chapter 2

41

This line defines a variable with a list of compiler command-line parameters. In our
case, we instruct the compiler to search the src directory for header files. If the
library source code spans across many directories, we need to add the –I switch
for each of the directories.

2.	 Next, we add the following lines for each source file:
<SourceFile>.o:
 gcc $(CFLAGS) –c <SourceFile>.cpp –o <SourceFile>.o

<SourceFile> should be replaced by the actual name of the .cpp source file,
and these lines should be written for each of the source files.

3.	 Now, we add the list of object files:
ObjectFiles = <SourceFile1>.o <SourceFile2>.o ...

4.	 Finally, we write the target for our library:
<LibraryName>:
 ar –rvs <LibraryName>.a $(ObjectList)

Every line in the makefile, except the empty lines and the names of the
targets, should start with a tabulation character.

5.	 To build the library, invoke the following command:

>make <LibraryName>.a

When using the library in our programs, we pass the LibraryName.a file as
a parameter to gcc.

How it works...
Makefiles consist of targets similar to subroutines in programming languages, and usually
each target results in an object file being generated. For example, we have seen that each
source file of the library gets compiled into the corresponding object file.

Target names may include the file name pattern to avoid copying and pasting, but in the
simplest case, we just list all the source files and duplicate those lines replacing SourceFile
with the appropriate file names. The –c switch after the gcc command is the option to
compile the source file and –o specifies the name of the output object file. The $(CFLAGS)
symbol denotes the substitution of the value of the CFLAGS variable to the command line.

The GCC toolchain for Windows includes the AR tool, which is an abbreviation for the archiver.
Makefiles for our libraries invoke this tool to create a static version of the library. This is done
in the last lines of the makefile.

Porting Common Libraries

42

There’s more...
Here are some tips for writing makefiles:

1.	 When a line, with a list of object files becomes too long, it can be split using the
backslash symbol like the following:
ObjectFileList = File1.o \
 ... \
 FileN.o

There should be no space after the backslash. It is a limitation of the
make tool.

2.	 Sometimes, comments are required. This can be done by writing a line, which starts
with a sharp character:

This line is a comment

If the header files for the library do not reside in the same directory as the source files, we
have to add those directories to the CFLAGS list.

Compiling the native static libraries for
Android

Android NDK includes a number of GCC and Clang toolchains for each kind of the
supported processors.

Getting ready
When building a static library from the source code, we follow the steps similar to the
Windows version.

How to do it...
1.	 Create a folder named jni and create the Application.mk file with the

appropriate compiler switches, and set the name of the library accordingly.
For example, one for the FreeImage library should look like the following:
APP_OPTIM := release
APP_PLATFORM := android-8
APP_STL := gnustl_static
APP_CPPFLAGS += -frtti
APP_CPPFLAGS += -fexceptions
APP_CPPFLAGS += -DANDROID

Chapter 2

43

APP_ABI := armeabi-v7a x86
APP_MODULES := FreeImage

2.	 The Android.mk file is similar to the ones we have written for the sample
applications in the previous chapter, yet with a few exceptions. At the top of the file,
some required variables must be defined. Let us see what the Android.mk file for
the FreeImage library may look like:
Android API level
TARGET_PLATFORM := android-8
local directory
LOCAL_PATH := $(call my-dir)
the command to reset the compiler flags to the empty state
include $(CLEAR_VARS)
use the complete ARM instruction set
LOCAL_ARM_MODE := arm
define the library name and the name of the .a file
LOCAL_MODULE := FreeImage
add the include directories
LOCAL_C_INCLUDES += src \
add the list of source files
LOCAL_SRC_FILES += <ListOfSourceFiles>

3.	 Define some common compiler options: treat all warnings as errors (-Werror), the
ANDROID pre-processing symbol is defined, and the system include directory is set:
COMMON_CFLAGS := -Werror -DANDROID -isystem
 $(SYSROOT)/usr/include/

4.	 The compilation flags are fixed, according to the selected CPU architecture:
ifeq ($(TARGET_ARCH),x86)
 LOCAL_CFLAGS := $(COMMON_CFLAGS)
else
 LOCAL_CFLAGS := -mfpu=vfp -mfloat-abi=softfp -fno-short-enums
$(COMMON_CFLAGS)
endif

5.	 Since we are building a static library, we need the following line at the end of the
makefile:

include $(BUILD_STATIC_LIBRARY)

How it works...
The Android NDK developers provide their own set of rules to build applications and libraries.
In the previous chapter we saw how to build a shared object file with the .so extension.
Here we just replace the BUILD_SHARED_LIBRARY symbol to the BUILD_STATIC_LIBRARY
and explicitly list the source files required to build each object file.

Porting Common Libraries

44

Of course, you can build a shared library and link your application dynamically
against it. However, this usually is a good choice when the library is located in
the system and is shared between several applications. In our case, since our
application is the sole user of the library, the static linking will make it easier
to link and debug the project.

Compiling the libcurl networking library
The libcurl library is a de facto standard for native applications, which deal with numerous
networking protocols. The libcurl compilation for Android on a Windows host requires some
additional steps to be done. We explain them in this recipe.

Getting ready
Download the libcurl source code from the library homepage: http://curl.haxx.se/
libcurl/.

How to do it...
1.	 Since the libcurl library build process is based on Autoconf, we will need to

generate a curl_config.h file before actually building the library. Run the
configure script from the folder containing the unpacked libcurl distribution
package. Cross-compilation command-line flags should be set to:
--host=arm-linux CC=arm-eabi-gcc

2.	 The -I parameter of the CPPFLAGS variable should point to the /system/core/
include subfolder of your NDK folder, in our case:
CPPFLAGS=”-I D:/NDK/system/core/include”

3.	 The libcurl library can be customized in many ways. We use this set of parameters
(disable all protocols except HTTP):
>configure CC=arm-eabi-gcc --host=arm-linux --disable-tftp
--disable-sspi --disable-ipv6 --disable-ldaps --disable-ldap
--disable-telnet --disable-pop3 --disable-ftp --without-ssl
--disable-imap --disable-smtp --disable-pop3 --disable-rtsp
--disable-ares --without-ca-bundle --disable-warnings --disable-
manual --without-nss --enable-shared --without-zlib --without-
random --enable-threaded-resolver

4.	 The configure script will generate a valid curl_config.h header file. You may
find it in the accompanying materials.

Chapter 2

45

5.	 Further compilation requires a usual set of Android.mk/Application.mk files,
which is also available in the accompanying materials.

How it works…
A simplistic usage example looks like the following:

CURL* Curl = curl_easy_init();
curl_easy_setopt(Curl, CURLOPT_URL, “http://www.google.com”);
curl_easy_setopt(Curl, CURLOPT_FOLLOWLOCATION, 1);
curl_easy_setopt(Curl, CURLOPT_FAILONERROR, true);
curl_easy_setopt(Curl, CURLOPT_WRITEFUNCTION, &MemoryCallback);
curl_easy_setopt(Curl, CURLOPT_WRITEDATA, 0);
curl_easy_perform(Curl);
curl_easy_cleanup(Curl);

Here MemoryCallback() is a function that handles the received data. A minimalistic unsafe
implementation to dump a network response to the terminal can be as follows:

size_t MemoryCallback(void* P, size_t Size, size_t Num, void*)
{
 printf((unsigned char*)P));
}

The retrieved data will be printed on the screen in the Windows application. The same code
will work like a dummy in Android, without producing any visible side effects.

There’s more…
In order to work with SSL-encrypted connections, we need to tell libcurl where our system
certificates are located. This can be done with CURL_CA_BUNDLE defined in the beginning of
the curl_config.h file:

#define CURL_CA_BUNDLE “/etc/ssl/certs/ca-certificates.crt”

See also
ff Chapter 3, Networking

Compiling the OpenAL library
OpenAL is a cross-platform audio library used in many gaming engines. Here are some notes
on how to build it for Android.

Porting Common Libraries

46

Getting ready
Download the source code of the Martins Mozeiko port from his page: http://pielot.
org/2010/12/14/openal-on-android/.

The home page of the library is as follows: http://github.com/AerialX/openal-soft-
android.

How to do it...
1.	 To render the generated, or saved, audio stream we use the OpenAL library, which is

compiled using the standard Android.mk and Application.mk configuration files
included in the accompanying materials.

2.	 The Android port of the library is actually a wrapper made by Martins Mozeiko for
the Android Java class android.media.AudioTrack using the JNI. The code is
licensed under the GNU Library General Public License and is included in the book’s
supplementary materials.

How it works…
The minimalistic source code to initialize and deinitialize OpenAL looks as follows:

ALCdevice* Device = alcOpenDevice(NULL);
ALCcontext* Context = alcCreateContext(Device, NULL);
alcMakeContextCurrent(Context);
…
alcDestroyContext(Context);
alcCloseDevice(Device);

See also
ff Chapter 5, Cross-platform Audio Streaming

Compiling libvorbis, libmodplug, and
libtheora

For the loading of audio streams, we use libogg, libvorbis, and libmodplug. Video streams
are handled in a similar way with the libtheora library. Here, we only give general hints on how
to build the libraries from their sources, since the actual build process is straightforward once
you have our typical Android.mk and Application.mk files in place.

Chapter 2

47

Getting ready
Download the sources of libvorbis and libtheora codecs from http://www.xiph.org/
downloads and the libmodplug library from http://modplug-xmms.sourceforge.net.

How to do it...
1.	 libvorbis and libtheora both depend on libogg. The compilation of these libraries is

straightforward with the provided makefiles and a standard Android.mk file with
the list of source files.

Makefiles for libvorbis and libtheora libraries must refer to the include
directories of libogg.

2.	 libmodplug is an open source tracker music decoder by Olivier Lapicque. We provide
a shortened version of his library, with loaders for the most popular tracker file
formats. It consists of only three files, and there is an excellent support for Android
and Linux. The library does not have any problems with big-endian CPUs.

Using the FreeImage graphics library
FreeImage is a portable graphics library that unifies loading and saving of popular image
formats, such as JPEG, TIFF, PNG, TGA, high dynamic range EXR images, and many others.

Getting ready
Download the most recent FreeImage source code from the library home page: http://
freeimage.sourceforge.net. We used the Version 3.15.4, released in October 2012.

How to do it...
1.	 Both the Android.mk and Application.mk files are pretty standard. The former

should contain this definition of the GLOBAL_CFLAGS:
GLOBAL_CFLAGS := -O3 -DHAVE_CONFIG_H=1 -DFREEIMAGE_LIB
 -isystem $(SYSROOT)/usr/include/

2.	 Unfortunately, the Android NDK runtime library is missing the lfind() function
used inside FreeImage (in the LibTIFF4 library, which is used in FreeImage).
Here is its implementation:

Porting Common Libraries

48

void* lfind(const void * key, const void * base, size_t num,
size_t width, int (*fncomparison)(const void *, const void *))
{
 char* Ptr = (char*)base;
 for (size_t i = 0; i != num; i++, Ptr+=width)
 {
 if (fncomparison(key, Ptr) == 0) return Ptr;
 }
 return NULL;
}

3.	 Now, a single command will do the job:

>ndk-build

How it works...
An image is a 2D array represented as a collection of raw pixel data, but there are too many
ways to store this array: there might be some compression applied, there might be some
non-RGB color spaces involved, or non-trivial pixel layouts. To avoid dealing with all these
complexities, we suggest using the FreeImage library by Herve Drolon.

We need to be able to deal with image file data as a memory block and FreeImage supports
this kind of input. Suppose, we have a file named 1.jpg and we read it with an fread() or
ifstream::read() calls into an array char Buffer[]. The size of the array is stored in
the Size variable. Then, we can create the FIBITMAP structure and use the FreeImage_
OpenMemory() API call to load the buffer into this FIBITMAP structure. The FIBITMAP
structure is almost the 2D array we are looking for, with some extra information on the
pixels' layout and image size. To convert it to the 2D array, FreeImage provides the function
FreeImage_GetRowPtr() that returns a pointer to the raw RGB data of the ith pixels row.
And vice versa, our frame buffer or any other 2D RGB image can be encoded into a memory
block with FreeImage_SaveMemory() and saved to a file using a single fwrite() or
ofstream::write() call.

Here is the code that loads any picture format supported by FreeImage, for example, JPEG,
TIFF, or PNG, and converts it into a 24-bit RGB image. Any other supported pixel formats, such
as RGBA or floating point EXR, will be automatically converted to a 24-bit color format. For the
sake of brevity, we do not handle errors in this code.

Let us declare a structure that will hold the image dimensions and pixel data:

struct sBitmap
{
 int Width;
 int Height;
 void* RGBPixels;
};

Chapter 2

49

Decoding the image from the memory block to the sBitmap structure is done this way:

void FreeImage_LoadImageFromMemory(unsigned char* Data, unsigned
 int Size, sBitmap* OutBitmap)
{
 FIMEMORY* Mem = FreeImage_OpenMemory(Data, Size);

 FREE_IMAGE_FORMAT FIF=FreeImage_GetFileTypeFromMemory(Mem, 0);

 FIBITMAP* Bitmap = FreeImage_LoadFromMemory(FIF, Mem, 0);
 FIBITMAP* ConvBitmap;

 FreeImage_CloseMemory(Mem);

 ConvBitmap = FreeImage_ConvertTo24Bits(Bitmap);

 FreeImage_Unload(Bitmap);

 Bitmap = ConvBitmap;

 OutBitmap->Width = FreeImage_GetWidth(Bitmap);
 OutBitmap->Height = FreeImage_GetHeight(Bitmap);

 OutBitmap->RGBPixels = malloc(OutBitmap->Width *
 OutBitmap->Height * 3);

	 FreeImage_ConvertToRawBits(OutBitmap->RGBPixels, Bitmap,
 OutBitmap->Width * 3, 24, 0, 1, 2, false);

 FreeImage_Unload(Bitmap);
}

Saving the image is even simpler. Save the array img representing the image with width W,
height H, and containing BitsPP bits per pixel:

void FreeImage_Save(const char* fname, unsigned char* img, int W,
 int H, int BitsPP)
{
 // Create the FIBITMAP structure
 // using the source image data
 FIBITMAP* Bitmap = FI_ConvertFromRawBits(img,
 W, H, W * BitsPP / 8,
 BitsPP, 0, 1, 2, false);
 // save PNG file using the default parameters

 FI_Save(FIF_PNG, Bitmap, fname, PNG_DEFAULT);
 FI_Unload(Bitmap);
}

Porting Common Libraries

50

Changing FIF_PNG to any of the FIF_BMP, FIF_TIFF, or FIF_JPEG forms will change the
output file format to BMP, TIFF, or JPEG respectively.

There’s more…
To understand the importance of reading an image from memory blocks, we should keep
two things in mind. Web services, such as Picasa and Flickr, provide URLs of images,
which are then downloaded into memory using the techniques from the Chapter 3,
Networking. To avoid wasting time, we do not save this memory block to disk, and instead
just decode it from memory using the FreeImage library. The same applies to reading an
image file from a compressed archive.

See also
ff Chapter 4, Organizing a Virtual Filesystem

Using the FreeType library for text rendering
FreeType has become a de facto standard for high-quality text rendering. The library itself is
quite easy to use, and the compilation of a static version relies on the makefile similar to other
libraries from this chapter.

Getting ready
Download the most recent source code from the library home page:
http://www.freetype.org.

The main FreeType concepts are: a font face, a glyph, and a bitmap. Font faces are collections
of all the characters in a font for a given encoding. This is exactly what is stored in the .ttf
files (besides copyrights and similar meta information). Each character is called a glyph and
is represented using geometrical primitives, such as spline curves. These glyphs are not
something that we can copy pixel-wise to the screen or a frame buffer. We have to rasterize a
bitmap of the glyph using FreeType rasterization functions.

Let’s look at a single glyph:

Chapter 2

51

FreeType glyph metrics

The xMin, xMax, yMin, and yMax values define the dimensions of the glyph in logical
coordinates, and the advance value shows where the next glyph starts if we assume no
kerning. Once we want to render on the screen, we need to transform logical coordinates
used by FreeType into screen coordinates. FreeType avoids using floating point calculations
and stores everything in a 26.6 fixed-point format (http://www.freetype.org/
freetype2/docs/glyphs/glyphs-6.html). To convert these fancy values acquired from
FreeType, we right-shift these values by six bits (equivalent to the integer division by 64) and
get the value we can use with ease.

Rendering the individual images of each character is not enough. Sometimes characters look
better when they are rendered closer to each other and some letter combinations may even
produce new glyphs. The variation of the distance between the characters on the screen is
called kerning, and FreeType provides functions to calculate offsets between glyphs. Joining
several glyphs as a single glyph is called a ligature, and is outside of the scope of this book
(see http://en.wikipedia.org/wiki/Typographic_ligature for details and
references). In Chapter 7, Cross-platform UI and Input System, we use only simple kerning,
which is good enough for our interactive applications.

To show the basic usage of FreeType, we are going to write the code in this recipe
implementing:

ff An ASCII string renderer using a monospaced font.

ff FreeType-based textures generator for monospaced fonts.

Later, we shall return to the advanced FreeType usage involving proportional fonts, UTF-8
encoding, and kerning.

Porting Common Libraries

52

How to do it...
1.	 For a monospaced font and an 8-bit ASCII character set, we can use a single pre-

rendered bitmap with all the 256 characters to simplify the rendering code. To make
this bitmap, we write a small tool, which reads a TrueType font, and outputs a square
bitmap 512 x 512 pixels, which contains a 16 × 16 characters grid:
#include <stdio.h>
#include <string.h>

2.	 Include FreeType headers:
#include <ft2build.h>
#include FT_FREETYPE_H

3.	 Declare the number of characters on each side, and the size of each character:
#define CHAR_SIZE 16
#define SLOT_SIZE 32

4.	 Declare an array to store the output bitmap in RGBA format:
#define WIDTH CHAR_SIZE*SLOT_SIZE
#define HEIGHT CHAR_SIZE*SLOT_SIZE
unsigned char image[HEIGHT][WIDTH][4];

5.	 Declaring an externally defined routine to save a .bmp file can be done using the
FreeImage library:
void write_bmp(const char *fname, int w, int h, int
 bits_pp, unsigned char *img);

6.	 Declaring a renderer of the FT_Bitmap at position (x, y) is as follows:
void draw_bitmap(FT_Bitmap* bitmap, FT_Int x, FT_Int y)
{
 FT_Int i, j, p, q;
 FT_Int x_max = x + bitmap->width, y_max = y + bitmap->rows;

7.	 Iterate pixels of the source bitmap:
for (i = x, p = 0; i < x_max; i++, p++)
for (j = y, q = 0; j < y_max; j++, q++)
{
 if (i < 0 || j < 0 ||
 i >= WIDTH || j >= HEIGHT) continue;

Chapter 2

53

8.	 Read the value v from the bitmap and copy each of the four RGBA components into
the output:
 unsigned char v = bitmap->buffer[q * bitmap->width + p];
 for(int k = 0 ; k < 4 ; k++) image[j][i][k] = v;
 }
 }

9.	 The main() function of the application goes as follows:
int main()
{

10.	 Clear the bitmap to black color:
 memset(&image[0][0][0], 0, sizeof(image));

11.	 Initialize the FreeType library:
 FT_Library library;
 FT_Init_FreeType(&library);

12.	 Create the face object:
 FT_Face face;
 FT_New_Face(library, “font.ttf”, 0, &face);

13.	 Set the character size. We declared CHAR_SIZE to denote the number of pixels for a
single char in our bitmap. The multiplier 64 is used, because FreeType units are equal
to 1/64th of a point. The value 100 corresponds to the horizontal resolution of 100
dots per inch:
 FT_Set_Char_Size(face, CHAR_SIZE * 64, 0, 100, 0);
 FT_GlyphSlot slot = face->glyph;

14.	 Render each character of the ASCII table:
 for (int n = 0; n < 256; n++)
 {

15.	 Load the next glyph image into the slot, overwriting the previous one, and ignore
errors:
 if(FT_Load_Char(face, n, FT_LOAD_RENDER))
 { continue; }

16.	 Calculate the non-transformed origin of the glyph in the resulting bitmap:
 FT_Vector pen;
 pen.x = (n % 16) * SLOT_SIZE * 64;
 pen.y = (HEIGHT - (n / 16) * SLOT_SIZE) * 64;

Porting Common Libraries

54

17.	 Now, draw to our target bitmap, converting the position:
 draw_bitmap(&slot->bitmap,
 (pen.x/64)+slot->bitmap_left,
 EIGHT-(pen.y / 64) - slot->bitmap_top);
 }

18.	 Save the generated font texture as a rectangular .bmp image file:
 write_bmp(“font.bmp”, WIDTH, HEIGHT, 32,
 (unsigned char*)image);

19.	 Clear the font face and release resources allocated by the library:
 FT_Done_Face(face);
 FT_Done_FreeType(library);

 return 0;
}

20.	 Now, we have an ASCII string written in a left-to-right language, and we want to build
a graphical representation of this string. We iterate string characters to render them
one by one. At the end of each iteration, we copy the bitmap of the current character
to the frame buffer, and then increment the current position using the fixed font width
(the SLOT_SIZE value).

21.	 Here is the complete code to render a text string using the pre-rendered bitmap font.
We use font array to store the RGB bitmap of our font:
unsigned char* font;

22.	 The width and height of the output frame buffer is defined as follows:
int w = 1000;
int h = 1000;
int fw, fh;
int char_w, char_h;

23.	 Render a single character into the bitmap buffer:
void render_char(unsigned char* buf, char ch,
 int x, int y, int col)
{
 int u = (ch % 16) * char_w;
 int v = char_h / 2 + ((((int)ch) >> 4) - 1) * char_h;

24.	 Iterate through the pixels of the current character:
 for (int y1 = v ; y1 < v + char_h ; y1++)
 for (int x1 = u ; x1 <= u + char_w ; x1++)
 {
 int m_col = get_pixel(font, fw, fh, x1, y1);

Chapter 2

55

25.	 Paint only non-zero pixels. This will preserve the existing content of the frame buffer:
 if(m_col != 0)
 put_pixel(buf, w, h, x+x1-u, y+y1-v, col);
 }
}

26.	 Render a complete line of ASCII text into the buffer:
void render_text(unsigned char* buf, const char* str,
 int x, int y, int col)
{
 const char* c = str;
 while (*c)
 {
 render_char(buf, *c, x, y, col);
 c++;

27.	 Advance by a fixed number of pixels:

 x += char_w;
 }
}

How it works…
Let’s read the output of the FreeType font generator. We use the following code to test it:

font = read_bmp(“font.bmp”, &fw, &fh);
char_w = fw / CHAR_SIZE;
char_h = fh / CHAR_SIZE;

Allocate and clear the output 3-channel RGB bitmap:

unsigned char* bmp = (unsigned char*)malloc(w * h * 3);
memset(bmp, 0, w * h * 3);

Render the white text line at position (10,10):

render_text(bmp, “Test string”, 10, 10, 0xFFFFFF);

Save the resulting bitmap to a file:

write_bmp(“test.bmp”, w, h, bmp);
free(bmp);

Porting Common Libraries

56

There’s more...
We encourage the reader to find some free fonts at http://www.1001freefonts.com,
use the described FreeType font generator to create .bmp files for those fonts and render the
string using the pre-rendered characters.

Implementing timing in physics
The rest of this chapter is dedicated to two physical simulation libraries, the Box2D (2D
simulation) and Open Dynamics Engine (3D simulations). Building these is not hard, so
we’ll focus on making real use of them. The APIs of Box2D and ODE only provide functions
to calculate current positions of the rigid bodies in simulations. First of all, we have to call
the calculation routines. Then, we have to transform the bodies’ physical coordinates into a
screen-related coordinate system. Connecting physical simulation with rendering and timing
is the main problem treated in this recipe.

Getting ready
Virtually, every rigid body physics library provides abstractions of the world, object (or body),
constraint (or joint), and shape. The world here is just a collection of bodies and joints
attached to bodies. Shapes define how bodies collide.

To create a dynamic application based on the physical simulation, we have to be able to
render the physical scene at any moment in time. We also need to convert discrete timer
events into a seemingly continuous process of calculation of the bodies’ positions.

Here, we give explanations about the timing and rendering, and then we provide a complete
sample using the Box2D library, the App4.

How to do it...
1.	 In order to animate everything on the screen, we need to set up a timer. In Android,

we perform time stepping as fast as possible, and on each iteration of our rendering
loop, we just call the GetSeconds() function and calculate the difference between
the previous and the current time. The code for GetSeconds() in the Wrappers_
Android.h file uses the standard POSIX gettimeofday() function:
double GetSeconds()
{

2.	 The coefficient to convert time from microseconds into seconds:
 const unsigned usec_per_sec = 1000000;

Chapter 2

57

3.	 Get the current time:
 struct timeval Time;
 gettimeofday(&Time, NULL);

4.	 Calculate the number of microseconds:
int64_t T1 = Time.tv_usec + Time.tv_sec * usec_per_sec;

5.	 Return the current time in seconds. The double precision is necessary here, since
the timer counts time since the moment the system starts and the 32-bit float
precision is not enough:
 return (double)(T1) / (double)usec_per_sec;
}

6.	 We use three variables with current, previous, and total time. First, we initialize the
g_OldTime and g_NewTime time counters:
g_OldTime = GetSeconds();
g_NewTime = g_OldTime;

7.	 Before we start, the total time counter should be set to zero:
g_ExecutionTime = 0;

8.	 Each frame we call the GenerateTicks() method to set up the animation:
void GenerateTicks()
{
 g_NewTime = GetSeconds();

9.	 Calculate how much time has passed since the previous update:
 float DeltaSeconds = static_cast<float>(g_NewTime-
 g_OldTime);
 g_OldTime = g_NewTime;

10.	 Call the OnTimer() routine with the non-zero number of seconds:
 if (DeltaSeconds > 0) { OnTimer(DeltaSeconds); }
}

11.	 For the Windows version, time stepping is done using the SetTimer() function,
which enables a system timer event every 10 milliseconds:
SetTimer(hWnd, 1, 10, NULL);

12.	 Each time these milliseconds pass, the WM_TIMER event is sent to our window
function. We add another case in the switch construction, where we just call the
OnTimer() method:
LRESULT CALLBACK MyFunc(HWND h, UINT msg, WPARAM w, LPARAM
 p)
 ...
 case WM_TIMER:

Porting Common Libraries

58

13.	 Repaint everything since we’re about to change the state:
 InvalidateRect(h, NULL, 1);

14.	 Recalculate everything using the time slice of 0.01 seconds:

 OnTimer(0.01);
 break;

As in Chapter 2, Porting Common Libraries, the new OnTimer() callback function is
independent of the Windows or Android specifics.

How it works...
Now, when we have timer events generated for us, we may proceed to the calculation of rigid
bodies’ positions. This is a somewhat complicated process of solving the equations of motion.
In simple terms, given current positions and orientations, we want to calculate new positions
and orientations of all the bodies in the scene:

positions_new = SomeFunction(positions_old, time_step);

In this pseudo code, the positions_new and positions_old are the arrays with new and
old rigid body positions and orientations, and time_step is the value in seconds, by which
we should advance our time counter. Typically, we need to update everything using the time
step of 0.05 of a second or lower, to ensure we calculate positions and orientations with
high enough accuracy. For each logical timer event, we may need to perform one or more
calculation steps. To that end, we introduce the TimeCounter variable and implement the
so-called time slicing:

const float TIME_STEP = 1.0f / 60.0f;
float TimeCounter = 0;

void OnTimer (float Delta)
{
 g_ExecutionTime += Delta;

 while (g_ExecutionTime > TIME_STEP)
 {

Call the Box2D’s method Step() to recalculate positions of rigid bodies and decrement the
time counter for one step:

 g_World->Step(Delta);
 g_ExecutionTime -= TIME_STEP;
 }
}

Chapter 2

59

The presented code guarantees that the Step() method will be called t / TIME_STEP
times for the time value t and that the difference between the physical time and logical time
will be no more than TIME_STEP seconds.

See also…
ff Chapter 8, Writing a Match-3 Game

Rendering graphics in 2D
To render a 2D scene, we use the wireframe mode. This requires only the Line2D()
procedure to be implemented with the following prototype:

Line2D(int x1, int y1, int x2, int y2, int color);

Getting ready
This can be a simple implementation of the Bresenham’s algorithm (http://
en.wikipedia.org/wiki/Bresenham’s_line_algorithm) and we do not present code
here in the book to save space. See the accompanying Rendering.h and Rendering.cpp
files for App4. The book’s supplementary materials can be downloaded from
www.packtpub.com/support.

How to do it…
1.	 To transform the objects from the simulated physical world to the screen in a 2D

environment of the Box2D library, we have to set up a coordinate transform:
[x, y] [X_screen, Y_screen]

2.	 To do so, we introduce a few coefficients, XScale, YScale, XOfs, YOfs, and two
formulas:
X_screen = x * XScale + XOfs
Y_screen = y * YScale + YOfs

3.	 They work as follows:
int XToScreen(float x)
{
 return Width / 2 + x * XScale + XOfs;
}
int YToScreen(float y)
{
 return Height / 2 - y * YScale + YOfs;
}

Porting Common Libraries

60

float ScreenToX(int x)
{
 return ((float)(x - Width / 2) - XOfs) / XScale;
}
float ScreenToY(int y)
{
 return -((float)(y - Height / 2) - YOfs) / YScale;
}

4.	 We also introduce a shortcut for the Line2D() routine with vector-valued arguments
to use the Vec2 type of the Box2D library directly:

void LineW(float x1, float y1, float x2, float y2, int col)
{
 Line(XToScreen(x1),YToScreen(y1),
 XToScreen(x2),YToScreen(y2),col);
}
void Line2DLogical(const Vec2& p1, const Vec2& p2)
{
 LineW(p1.x, p1.y, p2.x, p2.y);
}

How it works…
To render a single box, we only need to draw four lines, connecting the corner points. If an
angle of a body is Alpha, the center of mass coordinates are x and y, and the dimensions
are specified by the width w and height h, then the corner points’ coordinates are calculated
as:

Vec2 pt[4];
pt[0] = x + w * cos(Alpha) + h * sin(Alpha)
pt[1] = x - w * cos(Alpha) + h * sin(Alpha)
pt[2] = x - w * cos(Alpha) - h * sin(Alpha)
pt[3] = x + w * cos(Alpha) - h * sin(Alpha)

Finally, the box is rendered as four lines:

for(int i = 0 ; i < 4 ; i++)
{
 Line2DLogical(pt[i], pt[(i+1)%4]);
}

See also …
ff Chapter 6, Unifying OpenGL ES 3 and OpenGL 3

Chapter 2

61

Setting up Box2D simulations
Box2D is a pure C++ library with no dependencies on the CPU architecture, so a simple
makefile and Android.mk script, similar to those found in the previous sections, would
suffice to build the library. Using the techniques described in the previous section, we set up a
simulation. We also have the frame buffer from the previous chapter, and we only render the
boxes using 2D lines.

Getting ready
As a bonus, Erin Catto—the library author—provides a simplified version of Box2D. Once you
are happy with just the boxes available, you can restrict yourself to using the BoxLite version.

Download the most recent source code from the library home page: http://box2d.org.

How to do it...
1.	 To start with Box2D, we adapt the standard sample for a slightly modified BoxLite

version, which is included in this book’s materials. First, we declare the global
World object:
World* g_World = NULL;

2.	 Initialize it at the end of the OnStartup() routine:
g_World = new World(Vec2(0,0), 10);
Setup(g_World);

3.	 The OnTimer() callback (those used in the previous recipes) updates the g_World
object using the TIME_STEP constant by calling the Step() method.

4.	 The OnDrawFrame() callback passes the parameters of each body to the
DrawBody() function, which renders the body bounding box:
void OnDrawFrame()
{
 Clear(0xFFFFFF);
 for (auto b = g_World->bodies.begin();
 b !=g_World->bodies.end(); b++)
 {
 DrawBody(*b);
 }

5.	 Render each joint:
for (auto j = g_World->joints.begin() ;
 j != g_World->joints.end() ; j++)
{
 DrawJoint(*j);
}

Porting Common Libraries

62

6.	 Update the state as fast as possible:

 GenerateTicks();
 }

The call to the GenerateTicks() function makes the actual update timing for the Android
version. It is implemented using the ideas from the Implementing timing in physics recipe
from this chapter.

How it works...
The Setup() function is a modification of the original sample code from Box2D to set up a
physics scene. The modification consists of defining a number of shortcuts to simplify the
scene assembly.

The functions CreateBody() and CreateBodyPos() create rigid bodies with specified
positions, orientations, dimensions, and masses. The function AddGround() adds a static
immovable object to g_World, and the function CreateJoint() makes a new physical
attachment of one body to another.

In this sample scene there are also some joints connecting the bodies.

The application App4 produces the same results on Android and Windows, as in the following
image, which is one of the simulation steps:

There’s more...
As an exercise, we suggest that you experiment with the settings, and add more of your own
2D scenes to the App4 sample.

See also
ff Implementing timing in physics

Chapter 2

63

Building the ODE physical library
This recipe is dedicated to the building of the open source ODE (Open Dynamics Engine)
physical simulation library, which is one of the oldest rigid body simulators for
interactive applications.

Getting ready
Download the most recent source code from the library home page: http://www.ode.org/
download.html.

How to do it...
1.	 Compiling ODE is no different from other libraries. One subtle point, is the selection

between single and double floating-point precision. Standard compilation
involves the autoconf and automake tools, but here we just prepare Android.
mk, makefile as usual, and odeconfig.h. We need to define either the dDOUBLE
or dSINGLE symbol there to enable the single or double precision calculations.
There is this line in the beginning of the odeconfig.h file:
#define dSINGLE

2.	 It enables the single-precision, 32-bit floating point calculations which are sufficient
for simple interactive applications. Changing the value to dDOUBLE enables the
double-precision, 64-bit floating point calculations:
#define dDOUBLE

3.	 ODE is rather complex software and it includes the Ice collision detection library,
which unfortunately, has compilation problems when the strictest possible settings
of the Clang compiler are used. However, it is easily fixed by commenting out the
contents of the _prefetch function in the OPCODE/Ice/IceUtils.h file.

How it works...
Since ODE calculates positions and orientations of the rigid bodies in 3D space, we have to
set up a tiny 3D rendering pipeline on top of the simple 2D rendering we have done in this
chapter. To demonstrate the ODE library we cannot avoid some 3D math. All objects in the
scene (world) have their coordinates and orientations specified as a pair of values consisting
of a 3D vector and a quaternion. We convert them to a 4 x 4 affine transformation matrix.
Then, we follow the chain of coordinate transforms: we convert the object space to world
space, world space to camera space and the camera space to post-perspective space with
a multiplication by the projection matrix.

Porting Common Libraries

64

Finally, the first post-perspective coordinates, x and y, are transformed into normalized device
coordinates to fit our 2D frame buffer, like in the sample with Box2D. The camera is fixed at
a stationary point and its viewing direction cannot be changed in our simple application. The
projection matrix is also fixed, but there are no other restrictions.

There’s more...
The 3D physical simulation is a very complex topic, which requires many books to be read. We
would like to encourage the reader to check out the ODE Community Wiki pages at http://
ode-wiki.org/wiki to find the official documentation and open source examples. A good
start in game physics can be made with the book Learning Game Physics with Bullet Physics
and OpenGL from Packt Publishing: http://www.packtpub.com/learning-game-
physics-with-bullet-physics-and-opengl/book.

See also
ff Setting up Box2D simulations

3
Networking

In this chapter, we will cover:

ff Fetching list of photos from Flickr and Picasa

ff Downloading images from Flickr and Picasa

ff Performing cross-platform multithreading

ff Synchronizing native cross-platform threads

ff Managing memory using reference counting

ff Implementing asynchronous task queues

ff Handling asynchronous callbacks invocation

ff Working with the network asynchronously

ff Detecting a network address

ff Writing the HTTP server

Introduction
Networking is an inherently asynchronous and unpredictable area in terms of timing. One may
not be sure about the reliability of the connection. Even when we use the TCP protocol,
there is no guarantee on the delivery time, and nothing prevents the applications from
freezing while waiting for the data in the socket. To develop a responsive and safe application,
a number of problems must be solved: we need to be in full control of the download process,
we have to limit the downloaded data size, and gracefully handle the errors that occur.
Without delving into the details of the HTTP protocol implementation, we use the libcurl library
and concentrate on higher-level tasks related to game development.

Networking

66

At first, we look at the Picasa and Flickr REST APIs to download image lists and form direct
URLs to photos. Then, we get to the thread-safe asynchronous programming and finally
we implement a simple HTTP server for debugging purposes using the pure Berkeley
sockets interface.

The examples of this chapter related to multithreaded programming are Windows-only, but at
the end of the chapter, we shall combine everything to create the Android App5 example with
a built-in web server.

Fetching list of photos from Flickr and
Picasa

In the previous chapter, we built the libcurl library. As a refresher on how to download a web
page, refer to the 1_CurlDownloader example in the accompanying materials for
this chapter.

The information about using Picasa and Flickr in C++ is somewhat limited, but calling the
REST (Representational State Transfer) APIs of these sites is no different from downloading
web pages. All we have to do is form a correct URL for the images list, download an XML file
from this URL, and then parse this file to build a list of individual image URLs. Usually, REST
APIs require some form of authentication using oAuth, but for the read-only access, it is
sufficient to use only the application key, which is available through the simple
online registration.

The example code in this recipe only forms the URLs and it is up to the
reader to download the actual image list. We also do not provide an
application key here, and we encourage the reader to obtain a key and
test the code.

Getting ready
Every application must sign its requests to the Flickr server with a unique key, obtained
through a simple registration process. An application key and a secret key are long
hexadecimal numbers similar to: 14fc6b12345678901234567890d69c8d. Create your own
Yahoo ID account and obtain application keys at the following site: http://www.flickr.
com/services/api/misc.api_keys.html. If you already have a Yahoo ID account,
proceed directly to http://www.flickr.com/services/apps/create.

The Picasa photo hosting provides free access to the RSS feeds and does not require client
applications to use any authentication keys.

Chapter 3

67

How to do it…
1.	 We would like to keep up with the latest photo trends, so we want to fetch a list of the

most upvoted images, or a list of the most recently added images. To access such lists,
Flickr provides the flickr.interestingness.getList and flickr.photos.
getRecent methods, and Picasa provides two RSS feeds: featured and all. The
example screenshot of the recent photos in the Flickr RSS feed is as follows:

2.	 To form the required URLs for Flickr and Picasa, we implement two functions.
One for Flickr:
std::string Flickr_GetListURL(const std::string& BaseURL,
int MaxResults,
int PageIndex,
const std::string& SearchQuery)
{
 std::string Result = BaseURL + std::string("&api_key=");
 Result += AppKey;
 if (!SearchQuery.empty())
 {
 Result += std::string("&q=\"") +
 SearchQuery + std::string("\"");
 }
 Result += std::string("&per_page=");
 Result += IntToStr(MaxResults);

Networking

68

3.	 A list may be large and contain many pages. We can choose a page by an index:
 if (PageIndex > -1)
 {
 Result += std::string("&page=") +
 IntToStr(PageIndex + 1);
 }
 return Result;
}

4.	 And the other function is for Picasa:
std::string Picasa_GetListURL(const std::string& BaseURL,
int MaxResults,
int PageIndex,
const std::string& SearchQuery)
{
 std::string Result = BaseURL;

 Result += std::string("kind=photo&imgmax=1600");

 if (!SearchQuery.empty())
 {
 Result += std::string("&q=\"") +
 SearchQuery + std::string("\"");
 }

 Result += std::string("&max-results=");
 Result += IntToStr(MaxResults);

 if (PageIndex > 0)
 {
 Result += std::string("&start-index=") +
 IntToStr((int)(1 + PageIndex * MaxResults));
 }

 return Result;
}

5.	 Depending on the list we want, we pass either the FlickrFavoritesURL
or FlickrRecentURL constants as the BaseURL parameter of the
Flickr_GetListURL() function and either the PicasaFavoritesURL or
PicasaRecentURL constants as the BaseURL parameter of the Picasa_
GetListURL() function.

Chapter 3

69

6.	 Here is the complete list of the required string constants:
const std::string AppKey = "YourAppKeyHere";
const std::string FlickrAPIBase = "http://api.flickr.com/services/
rest/?method=";

const std::string FlickrFavoritesURL = FlickrAPIBase +
 "flickr.interestingness.getList";
const std::string FlickrRecentURL = FlickrAPIBase +
 "flickr.photos.getRecent";

const std::string PicasaAPIBase = "http://picasaweb.google.com/
data/feed/api/";

const std::string PicasaFavoritesURL = PicasaAPIBase +
 "featured/?";
const std::string PicasaRecentURL = PicasaAPIBase + "all/?";

7.	 The MaxResults parameter limits the number of images in the list. The PageIndex
parameter specifies how many result pages to skip, and the SearchQuery string can
be used to fetch only the images with a given text in their description.

8.	 The Flickr version uses the AppKey global string constant which should contain the
obtained application key.

How it works…
We form the URL; in this case, it is the first page of the user upvoted images from Flickr:

string URL = Flickr_GetListURL(FlickrFavoritesURL, 15, 0, "");

Then, we may pass this URL to our HTTP downloader and receive an XML file with the list of
images. The same can be done with Picasa; note the one-based page indexing:

string URL = Picasa_GetListURL(PicasaFavoritesURL, 15, 1, "");

The complete sources code of these functions is found in the PhotoAPI.cpp file from the
2_FlickrAndPicasa folder.

There's more…
The provided examples do not contain a valid application key for Flickr. Also remember, that
according to Flickr's license agreement, your application may not show more than fifteen
images on one screen.

There is an extensive documentation of the Flickr API residing at http://www.flickr.
com/services/api/.

Networking

70

See also
ff Downloading images from Flickr and Picasa

Downloading images from Flickr and Picasa
We have a list of images in the XML format, which we downloaded in the Fetching lists
of photos from Flickr and Picasa recipe. Let's download the actual photos from the
photo hosting.

Getting ready
Here, we need the image list from Flickr or Picasa to get started. Use the previous recipe to
download that list.

How to do it…
1.	 Once we have retrieved the list, we extract individual image IDs from it. Having these

IDs allows us to form the URLs for individual images. Flickr uses a complicated
image URL formation process and Picasa stores the URLs directly. Both services can
generate responses in XML and JSON formats. We will show you how to parse XML
responses using our tiny ad hoc parser. However, if you already use some kind of XML
or JSON parsing library in your project, you are encouraged to use it for this task too.

2.	 To parse the Flickr XML list, we use the following function:
void Flickr_ParseXMLResponse(const std::string& Response,
 std::vector<std::string>& URLs)
{
 using std::string::npos;
 size_t begin = Response.find("<photos");
 if (begin == npos) { return; }
 begin = Response.find_first_of('>', begin);
 if (begin == npos) { return; }
 size_t end = Response.find("/photos>");
 if (end == npos) { return; }
 size_t cur = begin;
 size_t ResLen = Response.length();

3.	 Parse the string in an ad-hoc way. You can use your favorite XML library instead of
this loop:
 while (cur < ResLen)
 {
 using std::string::npos;

Chapter 3

71

 size_t s_begin = Response.find("<photo", cur);
 if (s_begin == npos) { break; }
 size_t s_end = Response.find("/>", s_begin);
 if (s_end == npos) { break; }
 std::string Part = Response.substr(s_begin,
 s_end - s_begin + 2);
 URLs.push_back(Part);
 cur = s_end + 2;
 }
}

4.	 The function for the Picasa RSS feed, in the XML format, looks as follows:
void Picasa_ParseXMLResponse(const std::string& Response,
std::vector<std::string>& URLs)
{
 using std::string::npos;
 size_t cur = 0;
 size_t ResLen = Response.length();

5.	 We parse the supplied string using a similar ad-hoc code:
 while (cur < ResLen)
 {
 size_t s_begin = Response.find("<media:content ",
 cur);
 if (s_begin == npos) { break; }
 size_t s_end = Response.find("/>", s_begin);
 if (s_end == npos) { break; }
 std::string new_s = Response.substr(s_begin,
 s_end - s_begin + 2);
 URLs.push_back(ExtractURLAttribute(new_s,
 "url=\'", '\''));
 cur = s_end + 2;
 }
}

6.	 The auxiliary function ExtractURLAttribute() is used to extract values of
individual attributes from XML tags:
std::string ExtractURLAttribute(const std::string& InStr,
 const std::string& AttrName,
 char Delim)
{
 size_t AttrLen = AttrName.length();
 size_t pos = InStr.find(AttrName);

Networking

72

7.	 Scan the string until the end:
 if (pos != std::string::npos)
 {
 for (size_t j = pos+AttrLen ; j < InStr.size() ; j++)
 {
 if (InStr[j] == Delim) { break; }
 }
 return InStr.substr(pos + AttrLen,
 j - pos - AttrLen);
 }
 return "";
}

8.	 Finally, to form a Flickr URL for the image in the selected resolution we use this
function:
std::string Flickr_GetDirectImageURL(const std::string& InURL,
 int ImgSizeType)
{

9.	 First, we need to prepare parameters using the address from InURL:
string id = ExtractURLAttribute(InURL, "id=\"", '"');
string secret = ExtractURLAttribute(InURL, "secret=\"",
 '"');
string server = ExtractURLAttribute(InURL, "server=\"",
 '"');
string farm = ExtractURLAttribute(InURL, "farm=\"", '"');

10.	 Combine everything into the resulting string:
std::string Res = std::string("http://farm") + farm +
std::string(".staticflickr.com/") + server +
std::string("/") + id + std::string("_") + secret;
std::string Fmt = "";

11.	 Add the suffix to the resulting string, which determines the size of a requested photo,
and a .jpg extension:
if (ImgSizeType == PHOTO_SIZE_128) { Fmt = "t"; }
else if (ImgSizeType == PHOTO_SIZE_256) { Fmt = "m"; }
else if (ImgSizeType == PHOTO_SIZE_512) { Fmt = "-"; }
else if (ImgSizeType == PHOTO_SIZE_1024) { Fmt = "b"; }
else if (ImgSizeType == PHOTO_SIZE_ORIGINAL) { Fmt = "b"; };
return Res + std::string("_") + Fmt + std::string(".jpg");
}

12.	 For Picasa, we modify the image URL from the list by inserting a different code path:
std::string Picasa_GetDirectImageURL(const std::string& InURL,
 int ImgSizeType)

Chapter 3

73

{
 std::string Fmt = "";

 if (ImgSizeType == PHOTO_SIZE_128)
 { Fmt = "/s128/"; }
 else if (ImgSizeType == PHOTO_SIZE_256)
 { Fmt = "/s256/"; }
 else if (ImgSizeType == PHOTO_SIZE_512)
 { Fmt = "/s512/"; }
 else if (ImgSizeType == PHOTO_SIZE_1024)
 { Fmt = "/s1024/"; }
 else if (ImgSizeType == PHOTO_SIZE_ORIGINAL)
 { Fmt = "/s1600/"; };

 size_t spos = InURL.find("/s1600/");

 if (spos == std::string::npos) { return ""; }
 const size_t Len = strlen("/s1600/");
 return InURL.substr(0, spos) + Fmt +
 InURL.substr(spos+Len, InURL.length()-spos-Len);
}

13.	 When we need the same image in different resolutions, we provide the
ImgSizeType parameter of the type PhotoSize, which can take the following
values:
enum PhotoSize
{
 PHOTO_SIZE_128 = 0,
 PHOTO_SIZE_256 = 1,
 PHOTO_SIZE_512 = 2,
 PHOTO_SIZE_1024 = 3,
 PHOTO_SIZE_ORIGINAL = 4
};

14.	 These values are not related to Flickr or Picasa naming conventions and are used
internally for our convenience (and API independence).

How it works…
We have the list of images from the previous recipe:

std::vector<std::string> Images;

void Picasa_ParseXMLResponse(Response, Images);

Networking

74

Then, for the URL for the first image:

ImageURL = Picasa_GetDirectImageURL(Images[0],
PHOTO_SIZE_128);

Finally, use the downloader to get the image located at ImageURL.

There's more…
There are sets of rules on both Flickr and Picasa sites, which discourage massive automated
downloads of full-size images (not more than one per second), and any application we develop
should strictly follow these rules.

One nice thing about the code for this recipe, is that it can be modified to support the well-
known Yandex.Fotki photo site or other similar photo hosting services, which provide RSS
feeds. We leave it as a do-it-yourself exercise for the reader.

Performing cross-platform multithreading
To continue improving the user experience, we should make long-running tasks asynchronous,
with fine-grained control over their execution. To do so, we implement an abstraction layer on
top of the operating systems' threads.

Getting ready
Android NDK threads are based on POSIX threads. Take a look at the header file platforms\
android-14\arch-arm\usr\include\pthread.h in your NDK folder.

How to do it...
1.	 Let's start with declarations of thread handle types:

#ifndef _WIN32
#include <pthread.h>
typedef pthread_t thread_handle_t;
typedef pthread_t native_thread_handle_t;
#else
#include <windows.h>
typedef uintptr_t thread_handle_t;
typedef uintptr_t native_thread_handle_t;
#endif

Chapter 3

75

2.	 Then, we declare the thread interface:
class iThread
{
public:
 iThread::iThread():FThreadHandle(0),
 FPendingExit(false) {}
 virtual ~iThread() {}
 void Start();
 void Exit(bool Wait);
 bool IsPendingExit() const { return FPendingExit; };
protected:
 virtual void Run() = 0;

3.	 The entry point prototype differs for Windows and Android, but only in the return type:
#ifdef _WIN32
 static unsigned int __stdcall EntryPoint(void* Ptr);
#else
 static void* EntryPoint(void* Ptr);
#endif
 native_thread_handle_t GetCurrentThread();
private:
 volatile bool FPendingExit;
 thread_handle_t FThreadHandle;
};

4.	 A portable implementation of the iThread::Start() method is done the following
way:
void iThread::Start()
{
 void* ThreadParam = reinterpret_cast<void*>(this);

#ifdef _WIN32
 unsigned int ThreadID = 0;
 FThreadHandle = (uintptr_t)_beginthreadex(NULL, 0,
 &ThreadStaticEntryPoint, ThreadParam, 0, &ThreadID);

#else
 pthread_create(&FThreadHandle, NULL, ThreadStaticEntryPoint,
ThreadParam);
 pthread_detach(FThreadHandle);
#endif
}

www.allitebooks.com

http://www.allitebooks.org

Networking

76

How it works...
To demonstrate the usage of the implemented thread class, we define a new thread, which
prints out a message every second:

class TestThread: public iThread
{
public:
 virtual void Run()
 {
 printf("Test\n");
 Sleep(1000);
 }
};

void Test()
{
 TestThread* Thread = new TestThread();
 Thread->Start();
 while (true) {}
}

Now, the implementation of a simple multithreaded application in C++ is not much harder
than in Java.

Synchronizing native cross-platform threads
Synchronization is required to prevent different threads from accessing shared resources
simultaneously. A piece of code that accesses a shared resource—that must not be
concurrently accessed by more than one thread—is called a critical section (http://
en.wikipedia.org/wiki/Critical_section). To avoid race conditions, a mechanism
is required at the entry and exit of the critical section. In Windows applications, critical
sections are part of the WinAPI and in Android, we use mutexes from the pthread library,
which serve the same purpose.

Getting ready
Android native synchronization primitives are POSIX-based. They include thread's
management functions, mutexes, conditional variables, and barriers. Take a look at the
header file platforms\android-14\arch-arm\usr\include\pthread.h in your
NDK folder.

Chapter 3

77

How to do it...
1.	 Let's create an API-independent abstraction to synchronize threads:

class Mutex
{
public:
 Mutex()
 {
#if defined(_WIN32)
 InitializeCriticalSection(&TheCS);
#else
 pthread_mutex_init(&TheMutex, NULL);
#endif
 }
 ~Mutex()
 {
#if defined(_WIN32)
 DeleteCriticalSection(&TheCS);
#else
 pthread_mutex_destroy(&TheMutex);
#endif
 }

2.	 Locking and unlocking a mutex is also different in Windows and Android:
 void Lock() const
 {
#if defined(_WIN32)
 EnterCriticalSection((CRITICAL_SECTION*)&TheCS);
#else
 pthread_mutex_lock(&TheMutex);
#endif
 }

 void Unlock() const
 {
#if defined(_WIN32)
 LeaveCriticalSection((CRITICAL_SECTION*)&TheCS);
#else
 pthread_mutex_unlock(&TheMutex);
#endif
 }

#if defined(_WIN32)

Networking

78

 CRITICAL_SECTION TheCS;
#else
 mutable pthread_mutex_t TheMutex;
#endif
};

How it works...
Using the Resource Acquisition Is Initialization (RAII) C++ idiom, we can define the
Lock class:

class Lock
{
public:
 explicit Lock(const clMutex* Mutex) : FMutex(Mutex)
{ FMutex->Lock(); };
 ~Lock() { FMutex->Unlock(); };
private:
 const Mutex* FMutex;
};

Then, using mutexes is straightforward:

Lock(&SomeMutex);

We use mutexes extensively almost everywhere in the subsequent chapters of this book.

See also
ff Implementing asynchronous task queues

Managing memory using reference counting
When working in the native code environment, every memory allocation event is handled
by the developer. Tracking all the allocations in a multithreaded environment becomes
notoriously difficult. The C++ language provides a way to avoid manual object deallocation
using smart pointers. Since we are developing mobile applications, we cannot afford to use
the whole Boost library just to include smart pointers.

Chapter 3

79

You can use the Boost library with Android NDK. The main two reasons
we avoid it in our small examples are as follows: a drastically increased
compilation time and the desire for showing how basic things can be
implemented yourself. If your project already includes Boost, you are
advised to use smart pointers from that library. The compilation is
straightforward and does not require special steps for porting.

Getting ready
We need a simple intrusive counter to be embedded into all of our reference-countered
classes. Here, we provide a lightweight implementation of such a counter:

class iObject
{
public:
 iObject(): FRefCounter(0) {}
 virtual ~iObject() {}
 void IncRefCount()
 {
#ifdef _WIN32
 return InterlockedIncrement(&FRefCounter);
#else
 return __sync_fetch_and_add(&FRefCounter, 1);
#endif
 }
 void DecRefCount()
 {
#ifdef _WIN32
 if (InterlockedDecrement(&FRefCounter) == 0)
#else
 if (__sync_sub_and_fetch(Value, 1) == 0)
#endif
 { delete this; }
 }
private:
 volatile long FRefCounter;
};

This code is portable between Windows, Android, and other systems with the gcc or
clang toolchains.

Networking

80

How to do it...
1.	 The implementation of our intrusive smart pointer class is as follows:

template <class T> class clPtr
{
public:
 clPtr(): FObject(0) {}
 clPtr(const clPtr& Ptr): FObject(Ptr.FObject)
 {

2.	 Here, we call a helper to do the atomic increment of an intrusive counter. This allows
us to use this smart pointer with incomplete types:
 LPtr::IncRef(FObject);
 }
 template <typename U>
 clPtr(const clPtr<U>& Ptr): FObject(Ptr.GetInternalPtr())
 {
 LPtr::IncRef(FObject);
 }
 ~clPtr()
 {

3.	 The same trick is applied to the atomic decrement operation:
 LPtr::DecRef(FObject);
 }

4.	 We need a constructor for an implicit type conversion from T*:
 clPtr(T* const Object): FObject(Object)
 {
 LPtr::IncRef(FObject);
 }

5.	 We also need an assignment operator:
 clPtr& operator = (const clPtr& Ptr)
 {
 T* Temp = FObject;
 FObject = Ptr.FObject;

 LPtr::IncRef(Ptr.FObject);
 LPtr::DecRef(Temp);

 return *this;
 }

Chapter 3

81

6.	 The dereference operator (->) is one of the crucial features of any smart pointer:
 inline T* operator -> () const
 {
 return FObject;
 }

7.	 Mimic a dynamic_cast behavior:
 template <typename U>
 inline clPtr<U> DynamicCast() const
 {
 return clPtr<U>(dynamic_cast<U*>(FObject));
 }

8.	 The comparison operator is also implemented:
 template <typename U>
 inline bool operator == (const clPtr<U>& Ptr1) const
 {
 return FObject == Ptr1.GetInternalPtr();
 }

9.	 Sometimes, we need to pass a value of a smart pointer to a third-party C API.
We need to retrieve an internal pointer to do it:
 inline T* GetInternalPtr() const
 {
 return FObject;
 }
private:
 T* FObject;
};

Refer to the example 4_ReferenceCounting_ptr from the book's supplementary materials
for the full source code.

How it works...
The minimalistic example that demonstrates the usage of our smart pointer is as follows:

class SomeClass: public iObject {};
void Test()
{
 clPtr<SomeClass> Ptr = new SomeClass();
}

Networking

82

An allocated object of SomeClass is assigned to the smart pointer Ptr. At the end of
Test(), the smart pointer is automatically destroyed, and the number of references to the
allocated object becomes zero. As such, the allocated object is destroyed implicitly with the
delete() call, thereby avoiding memory leaks.

There's more...
We extensively check our smart pointers to be non-null and we want to use the traditional
syntax like the following:

if (SomeSmartPointer) ...

This can be achieved without adding a conversion operator to another usable type. The
following is how it is done using a private inner class:

private:
 class clProtector
 {
 private:
 void operator delete(void*);
 };
public:
 inline operator clProtector* () const
 {
 if (!FObject) return NULL;
 static clProtector Protector;
 return &Protector;
 }

Basically, the condition if (SomeSmartPointer) will cast a smart pointer to a pointer
to the clProtector class. However, the C++ compiler will prevent you from misusing it.
The operator delete(void*) operator of clProtector should be declared but not
defined, preventing the user from creating the instances of clProtector.

One common problem with smart pointers is the cyclic reference problem. When an object A
holds a reference to an object B, and at the same time the object B holds a reference to the
object A, the reference counter of both objects cannot be zero. This situation is quite common
for the container classes and can be avoided by using a raw pointer to the containing object,
not a smart pointer. See the following code as an example:

class SomeContainer;
class SomeElement: public iObject
{

A raw pointer to the parent object:

 SomeContainer* Parent;

Chapter 3

83

};

class SomeContainer: public iObject
{

A list of garbage-collected elements:

 std::vector< clPtr<SomeElement> > Elements;
};

See also
ff Implementing asynchronous task queues

Implementing asynchronous task queues
We want to execute a list of tasks asynchronously from the main thread but retain their order
relative to each other. Let's implement a queue for such tasks.

Getting ready
We need mutexes and smart pointers from the previous recipes to do this, since the queue
needs synchronization primitives to keep its internal data structures consistent, and it needs
smart pointers to prevent tasks from leaking.

How to do it...
1.	 The interface for tasks we want to put into the worker thread is as follows:

class iTask: public iObject
{
public:
 iTask()
 : FIsPendingExit(false)
 , FTaskID(0)
 , FPriority(0) {};

2.	 The Run() method contains a payload of our task. It is where all the useful work
is done:
 virtual void Run() = 0;

Networking

84

3.	 A task cannot be safely terminated from outside, since the foreign code does not
know the current state of the task and what kind of work it is doing now. So, the
Exit() method just sets an appropriate flag, which means we want to exit:
 virtual void Exit() { FIsPendingExit = true; }

4.	 We can check this flag inside the Run() method by calling IsPendingExit():
 virtual bool IsPendingExit() const volatile
 {
 return FIsPendingExit; }

5.	 Tasks should be distinguishable from each other. That is what IDs are for:
 virtual void SetTaskID(size_t ID) { FTaskID = ID; };
 virtual size_t GetTaskID() const { return FTaskID; };
private:
 volatile bool FIsPendingExit;
 size_t FTaskID;
};

6.	 And here, is the interface of the worker thread (the complete implementation
can be found in the book's download pack):
class WorkerThread: public iThread
{
public:

7.	 We can enqueue and cancel tasks at will:
 virtual void AddTask(const clPtr<iTask>& Task);
 virtual bool CancelTask(size_t ID);
 virtual void CancelAll();
 …

8.	 The ExtractTask() private method is used to access the list of tasks atomically:
private:
 clPtr<iTask> ExtractTask();
 clPtr<iTask> FCurrentTask;
private:
 std::list< clPtr<iTask> > FPendingTasks;
 tthread::mutex FTasksMutex;
 tthread::condition_variable FCondition;
};

Chapter 3

85

How it works...
We start a single worker thread and run a simple task. The key difference from running three
separate threads is that all the tasks are executed sequentially and a common resource,
which is the output window in our case, is also used sequentially without the need for
handling concurrent access:

class TestTask: public iTask
{
public:
 virtual void Run()
 {
 printf("Test\n");
 }
};

int main()
{
 WorkerThread* wt = new WorkerThread();
 wt->Start(iThread::Priority_Normal);

Add three tasks one by one:

 wt->AddTask(new TestTask());
 wt->AddTask(new TestTask());
 wt->AddTask(new TestTask());

Tasks are never executed in parallel, only sequentially. Use a simple spinlock to wait for
completion of all tasks:

 while (wt->GetQueueSize() > 0) {}

 return 0;
}

Handling asynchronous callbacks invocation
One simple situation we may encounter in multithreaded programming is when we need
to run a method on another thread. For example, when a download task completes on a
worker thread, the main thread may want to be notified of the task completion, to parse the
downloaded data. In this recipe we will implement a mechanism for such notifications.

Networking

86

Getting ready
Understanding of the asynchronous event concept is important before we proceed to
the implementation details. When we say asynchronous, we mean that something occurs
unpredictably and has no determined timing. For example, we cannot predict how long it will
take our task to download a URL—that is it; the task completes asynchronously and should
invoke a callback asynchronously.

How to do it…
1.	 The message for us should be a method call. We will hide a method call behind

this interface:
class iAsyncCapsule: public iObject
{
public:
 virtual void Invoke() = 0;
};

2.	 A pointer to an instance of such type represents a prepared method call. We define
a queue of iAsyncCapsule with the following implementation:
class AsyncQueue
{
public:
 AsyncQueue()
 : FDemultiplexerMutex()
 , FCurrentQueue(0)
 , FAsyncQueues(2)
 , FAsyncQueue(&FAsyncQueues[0])
 { }

3.	 Enqueue an event:
 void EnqueueCapsule(const clPtr<iAsyncCapsule>& Capsule)
 {
 LMutex Mutex(&FDemultiplexerMutex);
 FAsyncQueue->push_back(Capsule);
 }

4.	 The events demultiplexer, as described in the Reactor pattern (http://
en.wikipedia.org/wiki/Reactor_pattern):
 void DemultiplexEvents()
 {
 CallQueue* LocalQueue = &FAsyncQueues[FCurrentQueue];

 {
 LMutex Lock(&FDemultiplexerMutex);

Chapter 3

87

5.	 This is an even-odd trick to prevent copying the entire queue. We keep two queues
and switch between them:
 FCurrentQueue = (FCurrentQueue + 1) % 2;
 FAsyncQueue = &FAsyncQueues[FCurrentQueue];
 }

6.	 Note the mutex's scope above. We should not invoke callbacks while the mutex is
locked:
 for (CallQueue::iterator i = LocalQueue->begin();
 i != LocalQueue->end(); ++i)
 (*i)->Invoke();
 LocalQueue->clear();
 }
private:
 size_t FCurrentQueue;

 typedef std::vector< clPtr<iAsyncCapsule> > CallQueue;
 std::vector<CallQueue> FAsyncQueues;

 CallQueue* FAsyncQueue;
 Mutex FDemultiplexerMutex;
};

How it works…
We start two threads. One handles incoming events by making a call to the
DemultiplexEvents() function in an endless loop:

class ResponseThread: public iThread, public AsyncQueue
{
public:
 virtual void Run() { while (true) { DemultiplexEvents(); } }
};
ResponseThread* Responder;

And the other thread produces asynchronous events:

class RequestThread: public iThread
{
public:
 virtual void Run()
 {
 while (true)
 {
 Responder->EnqueueCapsule(new TestCall());

Networking

88

 Sleep(1000);
 }
 }
};

Our response to an event is implemented in the TestCall class:

class TestCall: public iAsyncCapsule
{
public:
 virtual void Invoke() { printf("Test\n"); }
};

The main() function starts both threads and waits infinitely (you can press Ctrl + Break to
stop it):

int main()
{
 (Responder = new ResponseThread())->Start();
 (new RequestThread())->Start();
 while (true) {}
 return 0;
}

You should see this output:

Test
Test
Test
…

The printf() function might not be thread-safe, but our queue ensures the calls to it do not
interfere with each other.

Working with the network asynchronously
Networking is essentially a set of unpredictable and asynchronous operations. Let's do it
asynchronously in a separate thread to prevent stalls on the UI thread, which may result in
ANR behavior on Android.

Getting ready
Here, we need all that we have implemented in the previous recipes of this chapter: smart
pointers, worker threads, libcurl downloader, and asynchronous events queue.

Chapter 3

89

How to do it…
1.	 We derive the DownloadTask class, which performs an HTTP request using the

libcurl library, from iTask. Here, we implement its method Run(), which sets up
the libcurl library and performs a network operation:
void DownloadTask::Run()
{
 clPtr<DownloadTask> Guard(this);
 CURL* C = curl_easy_init();

2.	 Setup parameters for libcurl:
 curl_easy_setopt(C, CURLOPT_URL, FURL.c_str());
 curl_easy_setopt(C, CURLOPT_FOLLOWLOCATION, 1);
 curl_easy_setopt(C, CURLOPT_NOPROGRESS, false);
 curl_easy_setopt(C, CURLOPT_FAILONERROR, true);
 curl_easy_setopt(C, CURLOPT_MAXCONNECTS, 10);
 curl_easy_setopt(C, CURLOPT_MAXFILESIZE,
 DownloadSizeLimit);
 curl_easy_setopt(C, CURLOPT_WRITEFUNCTION,
 &MemoryCallback);
 curl_easy_setopt(C, CURLOPT_WRITEDATA, this);
 curl_easy_setopt(C, CURLOPT_PROGRESSFUNCTION,
 &ProgressCallback);
 curl_easy_setopt(C, CURLOPT_PROGRESSDATA, this);
 curl_easy_setopt(C, CURLOPT_CONNECTTIMEOUT, 30);
 curl_easy_setopt(C, CURLOPT_TIMEOUT, 60);

3.	 Disable SSL keys verification:
 curl_easy_setopt(C, CURLOPT_SSL_VERIFYPEER, 0);
 curl_easy_setopt(C, CURLOPT_SSL_VERIFYHOST, 0);

4.	 Perform a network operation synchronously. The call curl_easy_perform() blocks
the current thread until the result is obtained from the network, or an error occurs:
 FCurlCode = curl_easy_perform(Curl);

5.	 Read the result and clean up for the library:
 curl_easy_getinfo(Curl, CURLINFO_RESPONSE_CODE,
 &FRespCode);
 curl_easy_cleanup(Curl);

6.	 Tell the downloader to invoke completion callback for this task:

 if (FDownloader) { FDownloader->CompleteTask(this); }
}

Networking

90

How it works…
We provide a snippet that downloads a response from the Flickr echo service and handles the
task completion on the main thread:

volatile bool g_ShouldExit = false;

class TestCallback: public DownloadCompleteCallback
{
public:

 TestCallback() {}

Print the result to the console window:

 virtual void Invoke()
 {
 printf("Download complete\n");
 printf("%s\n", (unsigned char*)FResult->GetData());
 g_ShouldExit = true;
 }
};

int main()
{
 Curl_Load();
 iAsyncQueue* Events = new iAsyncQueue();
 Downloader* d = new Downloader();
 d->FEventQueue = Events;
 …
 d->DownloadURL(
 "http://api.flickr.com/services/rest/?method=flickr.test.echo&name
 =value", 1, new TestCallback()
);

Wait for incoming events:

 while (!g_ShouldExit)
 {
 Events->DemultiplexEvents();
 }
 …
}

Chapter 3

91

See also
ff Downloading images from Flickr and Picasa

Detecting a network address
To communicate with a web server, we need to specify its IP address. In a limited mobile
environment, it is not convenient to ask the user for the IP address and we have to detect
the address ourselves (and not involving any non-portable code). In the forthcoming
App5 example, we use the GetAdaptersAddresses() function from the Windows API
and the getifaddrs() function from POSIX. The Android runtime library provides its
own implementation of getifaddrs(), which is included in the App5 sources in the
DetectAdapters.cpp file.

Getting ready
Let's declare a structure to hold the information describing a network adapter:

struct sAdapterInfo
{

This is the internal system name of the network adapter:

 char FName[256];

The IP address of the adapter is as follows:

 char FIP[128];

The unique identification number of the adapter:

 char FID[256];

};

How to do it...
1.	 We provide detailed code for the Android version of the Net_

EnumerateAdapters() function in the following code. It enumerates all of the
network adapters available in the system:
bool Net_EnumerateAdapters(std::vector<sAdapterInfo>&
 Adapters)
{
 struct ifaddrs* MyAddrs, *ifa;
 void* in_addr;
 char buf[64];

Networking

92

2.	 The getifaddrs() function creates a linked list of structures that describe network
interfaces of the local system:
 if (getifaddrs(&MyAddrs) != 0) { return false; }
 …

3.	 Iterate through the linked list:
 for (ifa = MyAddrs; ifa != NULL; ifa = ifa->ifa_next)
 {
 if ((ifa->ifa_addr == NULL) ||
 !(ifa->ifa_flags & IFF_UP)) { continue; }

4.	 Treat IPv4 and IPv6 addressed differently:
 switch (ifa->ifa_addr->sa_family)
 {
 case AF_INET:
 { in_addr = &((struct sockaddr_in*)
 ifa->ifa_addr)->sin_addr; break; }

 case AF_INET6:
 { in_addr = &((struct sockaddr_in6*)
 ifa->ifa_addr)->sin6_addr; break; }

 default:
 continue;
 }

5.	 Convert the network address structure into a C-string and save it in the Adapters
vector:
 if (inet_ntop(ifa->ifa_addr->sa_family,
 in_addr, buf, sizeof(buf)))
 {
 sAdapterInfo Info;
 strcpy(Info.FName, ifa->ifa_name);
 strcpy(Info.FIP, buf);
 sprintf(Info.FID, "%d", Idx);
 Adapters.push_back(Info);
 Idx++;
 }
 }

6.	 Release the linked list:
 freeifaddrs(MyAddrs);

Chapter 3

93

How it works...
To enumerate all the adapters in a console window we use a simple loop:

 int main()
 {
 std::vector<sAdapterInfo> a;
 Net_EnumerateAdapters(a);

 for(size_t i = 0 ; i < a.size() ; i++)
 {
 printf("[%d] %s\n", i + 1, a[i].FIP);
 }
 return 0;
 }

The Android implementation of this code is in the App5 project.

There's more...
Fortunately, the code above works for any POSIX system and the App5 example also provides
a Windows version of Net_EnumerateAdapters(). On Android, we have to enable the
ACCESS_NETWORK_STATE and INTERNET permissions for our application; otherwise, the
system will not allow us to access the Internet. This is done in the AndroidManifest.xml
file of the App5 example, using the following lines:

<uses-permission
android:name="android.permission.INTERNET"/>
<uses-permission
android:name="android.permission.ACCESS_NETWORK_STATE"/>

Don't forget to put these lines into the manifest of your application, which intends to work with
the network.

Writing the HTTP server
When dealing with mobile development, we will eventually run our games on a real device.
Until then, we have to use some debugging tools. Of course, we might set up remote
debugging with gdb, but as soon as most critical bugs related to access violations are
eliminated, here come the logical errors or those related to race conditions, which are difficult
to hunt down and require multiple redeployment of the application with somewhat trivial
changes to it. To be able to quickly change the runtime behavior of your application directly on
an Android device, we can implement an embedded web server with an interface to fine-tune
some internal parameters of your application. This recipe contains an outline of App5, which
implements such a web server.

Networking

94

Getting ready
Writing an HTTP server from scratch is not easy, so we use a freely available simple server by
René Nyffenegger from the following web page: http://www.adp-gmbh.ch/win/misc/
webserver.html.

We use most of these sources directly, and our more or less refined version which supports
Android is included in the App5 example. The most important difference from the original is
the usage of an abstract socket API built on top of WinSock and Android BSD sockets.
We recommend that you take a closer look at the Sockets.h and Sockets.cpp files in
the App5 sources.

How to do it…
1.	 The HTTP server is started on a separate thread, which is a descendant of the

iThread class. The main loop of the server is simple:
 while (!IsPendingExit())
 {
 LTCPSocket* NewSocket = in->Accept();
 if (NewSocket != 0)
 {
 // Add new thread
 HTTPRequestThread* T = new HTTPRequestThread();
 T->FServer = this;
 T->FSocket = NewSocket;
 T->Start();
 }
 }

2.	 We await an incoming connection, and when the Accept() method succeeds,
a new HTTPRequestThread is started. This thread reads data from the newly
created socket and fills in the sHTTPServerRequest structure.
Finally, this request is handled in the HandleRequest() method by filling the
sHTTPServerRequest::FData field with the content of an HTML page. In the end,
this data is sent to the client. The code is linear, but a little lengthy to present it here.
We refer the reader to the HTTP.cpp file for the details.

How it works…
To utilize the server, we have created the HTTPServerThread instance and provided an
implementation of the SetVariableValue() and GetVariableValue() functions in
the HTTP.cpp file, which are empty by default. The server startup code is located in the
OnStart() function.

Chapter 3

95

We create the server instance:

g_Server = new HTTPServerThread();

Then, we use the detected adapter address:

if (!Adapters.empty())
{
 g_Server->FBindAddress = Adapters[0].FIP;
}

Finally, we start the web server thread:

g_Server->Start();

By default, the server starts at the IP address 127.0.0.1 and the port is 8080.

After we start App5 on an Android device, we can connect to it from a desktop computer with
any web browser: just type its IP address and the port. The IP address is detected by the web
server at startup and is displayed at the top of the device screen.

The following is a browser screenshot with the output from our tiny web server:

Accessing our Android web server from a desktop web browser.

There's more…
App5 works on both Windows and Android, but there are subtleties related to the network
configuration.

Networking

96

If we are using a 3G or similar cellular network, most likely we do not have an external
IP address, so to allow our web server to be visible in the browser we should stick to
a Wi-Fi connection.

See also
ff Downloading images from Flickr and Picasa

4
Organizing a Virtual

Filesystem

File: An object that can be written to, or read from, or both. A file has certain
attributes, including type. Common types of files include regular files and
directories. Other types of files, such as symbolic links, may be supported by the
implementation.

Filesystem: A collection of files and certain of their attributes.

(Boost documentation, http://www.boost.org)

In this chapter we will cover:

ff Abstracting file streams

ff Implementing portable memory-mapped files

ff Implementing file writers

ff Working with in-memory files

ff Implementing mount points

ff Enumerating files in the .zip archives

ff Decompressing files from the .zip archives

ff Loading resources asynchronously

ff Storing application data

Organizing a Virtual Filesystem

98

Introduction
Files are the building blocks of any computer system. This chapter deals with portable
handling of read-only application resources, and provides recipes to store the application
data. We also use the code from Chapter 3, Networking, to organize asynchronous loading
of resources from the .zip archives.

Let us briefly consider the problems covered in this chapter. The first one is the access to
application data files. Often, application data for desktop operating systems resides in the
same folder as the executable file. With Android, things get a little more complicated. The
application files are packaged in the .apk file, and we simply cannot use the standard
fopen()-like functions, or the std::ifstream and std::ofstream classes.

The second problem results from the different rules for the filenames and paths. Windows and
Linux-based systems use different path separator characters, and provide different low-level
file access APIs.

The third problem comes from the fact that file I/O operations can easily become the slowest
part in the whole application. User experience can become problematic if interaction lags
are involved. To avoid delays, we should perform the I/O on a separate thread and handle
the results of the Read() operation on yet another thread. To implement this, we have all
the tools required, as discussed in Chapter 3, Networking — worker threads, tasks, mutexes,
and asynchronous event queues.

We start with abstract I/O interfaces, implement a portable .zip archives handling approach,
and proceed to asynchronous resources loading.

Abstracting file streams
File I/O APIs differ slightly between Windows and Android (POSIX) operating systems, and we
have to hide these differences behind a consistent set of C++ interfaces. All libraries we have
compiled in Chapter 2, Porting Common Libraries use their own callbacks and interfaces. In
order to unify them, we shall write adapters in this and subsequent chapters.

Getting ready
Please make sure you are familiar with the UNIX concept of the file and memory mapping.
Wikipedia may be a good start (http://en.wikipedia.org/wiki/Memory-mapped_
file).

Chapter 4

99

How to do it...
1.	 From now on, our programs will read input data using the following simple interface.

The base class iObject is used to add an intrusive reference counter to instances
of this class:
class iIStream: public iObject
{
public:
 virtual void Seek(const uint64 Position) = 0;
 virtual uint64 Read(void* Buf, const uint64 Size) = 0;
 virtual bool Eof() const = 0;
 virtual uint64 GetSize() const = 0;
 virtual uint64 GetPos() const = 0;

The following are a few methods that take advantage of memory-mapped files:

 virtual const ubyte* MapStream() const = 0;
 virtual const ubyte* MapStreamFromCurrentPos() const = 0;
};

This interface supports both memory-mapped access using the MapStream() and
MapStreamFromCurrentPos() member functions, and sequential access with the
BlockRead() and Seek() methods.

2.	 To write some data to the storage, we use an output stream interface, as follows
(again, the base class iObject is used to add a reference counter):
class iOStream: public iObject
{
public:
 virtual void Seek(const uint64 Position) = 0;
 virtual uint64 GetFilePos() const = 0;
 virtual uint64 Write(const void* B, const uint64 Size) = 0;
};

3.	 The Seek(), GetFileSize(), GetFilePos(), and filename-related methods of
the iIStream interface can be implemented in a single class called FileMapper:
class FileMapper: public iIStream
{
public:
 explicit FileMapper(clPtr<iRawFile> File);
 virtual ~FileMapper();
 virtual std::string GetVirtualFileName() const
 { return FFile->GetVirtualFileName(); }
 virtual std::string GetFileName() const
 { return FFile->GetFileName(); }

Organizing a Virtual Filesystem

100

4.	 Read a continuous block of data from this stream and return the number of bytes
actually read:
 virtual uint64 BlockRead(void* Buf, const uint64 Size)
 {
 uint64 RealSize =
 (Size > GetBytesLeft()) ? GetBytesLeft() : Size;

5.	 Return zero if we have already read everything:
 if (RealSize < 0) { return 0; }
 memcpy(Buf, (FFile->GetFileData() + FPosition),
 static_cast<size_t>(RealSize));

6.	 Advance the current position and return the number of copied bytes:
 FPosition += RealSize;
 return RealSize;
 }

 virtual void Seek(const uint64 Position)
 { FPosition = Position; }
 virtual uint64 GetFileSize() const
 { return FFile->GetFileSize(); }
 virtual uint64 GetFilePos() const
 { return FPosition; }
 virtual bool Eof() const
 { return (FPosition >= GetFileSize()); }

 virtual const ubyte* MapStream() const
 { return FFile->GetFileData(); }
 virtual const ubyte* MapStreamFromCurrentPos() const
 { return (FFile->GetFileData() + FPosition); }
private:
 clPtr<iRawFile> FFile;
 uint64 FPosition;
};

7.	 The FileMapper uses the following iRawFile interface to abstract the data
access:

class iRawFile: public iObject
{
public:
 iRawFile() {};
 virtual ~iRawFile() {};
 void SetVirtualFileName(const std::string& VFName);
 void SetFileName(const std::string& FName);
std::string GetVirtualFileName() const;
 std::string GetFileName();

Chapter 4

101

 virtual const ubyte* GetFileData() const = 0;
 virtual uint64 GetFileSize() const = 0;
protected:
 std::string FFileName;
 std::string FVirtualFileName;
};

Along with the trivial GetFileName() and SetFileName() methods implemented here, in
the following recipes we implement the GetFileData() and GetFileSize() methods.

How it works...
The iIStream::BlockRead() method is useful when handling non-seekable streams.
For the fastest access possible, we use memory-mapped files implemented in the following
recipe. The MapStream() and MapStreamFromCurrentPos() methods are there to
provide access to memory-mapped files in a convenient way. These methods return a pointer
to the memory where your file, or a part of it, is mapped to. The iOStream::Write()
method works similar to the standard ofstream::write() function. Refer to the project
1_AbstractStreams for the full source code of this and the following recipe.

There's more...
The important problem while programming for multiple platforms, in our case for Windows and
Linux-based Android, is the conversion of filenames.

We define the following PATH_SEPARATOR constant, using OS-specific macros, to determine
the path separator character in the following way:

#if defined(_WIN32)
const char PATH_SEPARATOR = '\\';
#else
const char PATH_SEPARATOR = '/';
#endif

The following simple function helps us to make sure we use valid filenames for our
operating system:

inline std::string Arch_FixFileName(const std::string& VName)
{
 std::string s(VName);
 std::replace(s.begin(), s.end(), '\\', PATH_SEPARATOR);
 std::replace(s.begin(), s.end(), '/', PATH_SEPARATOR);
 return s;
}

Organizing a Virtual Filesystem

102

See also
ff Implementing portable memory-mapped files

ff Working with in-memory files

Implementing portable memory-mapped files
Modern operating systems provide a powerful mechanism called the memory-mapped files.
In short, it allows us to map the contents of the file into the application address space. In
practice, this means we can treat files as usual arrays and access them using C pointers.

Getting ready
To understand the implementation of the interfaces from the previous recipe we recommend
to read about memory mapping. The overview of this mechanism implementation in Windows
can be found on the MSDN page at http://msdn.microsoft.com/en-us/library/
ms810613.aspx.

To find out more about memory mapping, the reader may refer to the mmap() function
documentation.

How to do it...
1.	 In Windows, memory-mapped files are created using the CreateFileMapping()

and MapViewOfFile() API calls. Android uses the mmap() function, which works
pretty much the same way. Here we declare the RawFile class implementing the
iRawFile interface.

RawFile holds a pointer to a memory-mapped file and its size:

 ubyte* FFileData;
 uint64 FSize;

2.	 For the Windows version, we use two handles for the file and memory-mapping
object, and for the Android, we use only the file handle:
#ifdef _WIN32
 HANDLE FMapFile;
 HANDLE FMapHandle;
#else
 int FFileHandle;
#endif

Chapter 4

103

3.	 We use the following function to open the file and create the memory mapping:
bool RawFile::Open(const string& FileName,
 const string& VirtualFileName)
{

4.	 At first, we need to obtain a valid file descriptor associated with the file:
#ifdef OS_WINDOWS
 FMapFile = (void*)CreateFileA(FFileName.c_str(),
 GENERIC_READ, FILE_SHARE_READ,
 NULL, OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL | FILE_FLAG_RANDOM_ACCESS,
 NULL);
#else
 FFileHandle = open(FileName.c_str(), O_RDONLY);
 if (FFileHandle == -1)
 {
 FFileData = NULL;
 FSize = 0;
 }
#endif

5.	 Using the file descriptor, we can create a file mapping. Here we omit error checks for
the sake of clarity. However, the example in the supplementary materials contains
more error checks:
#ifdef OS_WINDOWS
 FMapHandle = (void*)CreateFileMapping((HANDLE)FMapFile,
 NULL, PAGE_READONLY, 0, 0, NULL);
 FFileData = (Lubyte*)MapViewOfFile((HANDLE)FMapHandle,
 FILE_MAP_READ, 0, 0, 0);
 DWORD dwSizeLow = 0, dwSizeHigh = 0;
 dwSizeLow = ::GetFileSize(FMapFile, &dwSizeHigh);
 FSize = ((uint64)dwSizeHigh << 32) | (uint64)dwSizeLow;
#else
 struct stat FileInfo;
 fstat(FFileHandle, &FileInfo);
 FSize = static_cast<uint64>(FileInfo.st_size);
 FFileData = (Lubyte*) mmap(NULL, FSize, PROT_READ,
 MAP_PRIVATE, FFileHandle, 0);
 close(FFileHandle);
#endif
 return true;
}

Organizing a Virtual Filesystem

104

6.	 The correct deinitialization function closes all the handles:
bool RawFile::Close()
{
#ifdef OS_WINDOWS
 if (FFileData) UnmapViewOfFile(FFileData);
 if (FMapHandle) CloseHandle((HANDLE)FMapHandle);
 CloseHandle((HANDLE)FMapFile);
#else
 if (FFileData) munmap((void*)FFileData, FSize);
#endif
 return true;
}

7.	 The main functions of the iRawFile interface, GetFileData and GetFileSize,
have trivial implementation here:

 virtual const ubyte* GetFileData() { return FFileData; }
 virtual uint64 GetFileSize() { return FSize; }

How it works...
To use the RawFile class we create an instance and wrap it into a FileMapper
class instance:

 clPtr<RawFile> F = new RawFile();
 F->Open("SomeFileName");
 clPtr<FileMapper> FM = new FileMapper(F);

The FM object can be used with any function supporting the iIStream interface. The hierarchy
of all our iRawFile implementations looks like what is shown in the following figure:

Implementing file writers
Quite frequently, our application might want to store some of its data on the disk. Another
typical use case we have already encountered is the downloading of some file from the
network into a memory buffer. Here, we implement two variations of the iOStream interface
for the ordinary and in-memory files.

Chapter 4

105

How to do it...
1.	 Let us derive the FileWriter class from the iOStream interface. We add the

Open() and Close() member functions on top of the iOStream interface and
carefully implement the Write() operation. Our output stream implementation does
not use memory-mapped files and uses ordinary file descriptors, as shown in the
following code:
class FileWriter: public iOStream
{
public:
 FileWriter(): FPosition(0) {}
 virtual ~FileWriter() { Close(); }

 bool Open(const std::string& FileName)
 {
 FFileName = FileName;

2.	 We split Android and Windows-specific code paths using defines:
#ifdef _WIN32
 FMapFile = CreateFile(FFileName.c_str(),
 GENERIC_WRITE, FILE_SHARE_READ, NULL, CREATE_ALWAYS,
 FILE_ATTRIBUTE_NORMAL, NULL);
 return !(FMapFile == (void*)INVALID_HANDLE_VALUE);
#else
 FMapFile = open(FFileName.c_str(), O_WRONLY|O_CREAT);
 FPosition = 0;
 return !(FMapFile == -1);
#endif
 }

3.	 The same technique is used in the other methods. The difference between both
OS systems is is trivial, so we decided to keep everything inside a single class and
separate the code using defines:

 void Close()
 {
#ifdef _WIN32
 CloseHandle(FMapFile);
#else
 if (FMapFile != -1) { close(FMapFile); }
#endif
 }

Organizing a Virtual Filesystem

106

 virtual std::string GetFileName() const { return FFileName; }
 virtual uint64 GetFilePos() const { return FPosition; }
 virtual void Seek(const uint64 Position)
 {
#ifdef _WIN32
 SetFilePointerEx(FMapFile,
 reinterpret_cast<const LARGE_INTEGER>(&Position),
 NULL, FILE_BEGIN);
#else
 if (FMapFile != -1)
 { lseek(FMapFile, Position, SEEK_SET); }
#endif
 FPosition = Position;
 }

However, things may get more complex if you decide to support
more operating systems. It can be a good refactoring exercise.

 virtual uint64 Write(const void* Buf, const uint64 Size)
 {
#ifdef _WIN32
 DWORD written;
 WriteFile(FMapFile, Buf, DWORD(Size),
 &written, NULL);
#else
 if (FMapFile != -1) { write(FMapFile, Buf, Size); }
#endif
 FPosition += Size;
 return Size;
 }
private:
 std::string FFileName;
#ifdef _WIN32
 HANDLE FMapFile;
#else
 int FMapFile;
#endif
 uint64 FPosition;
};

How it works…
Now we can also present an implementation of the iOStream that stores everything in a
memory block. To store arbitrary data in a memory block, we declare the Blob class, as
shown in the following code:

Chapter 4

107

class Blob: public iObject
{
public:
 Blob();
 virtual ~Blob();

Set the blob data pointer to some external memory block:

 void SetExternalData(void* Ptr, size_t Sz);

Direct access to data inside this blob:

 void* GetData();
 …

Get the current size of the blob:

 size_t GetSize() const;

Check if this blob is responsible for managing the dynamic memory it uses:

 bool OwnsData() const;
 …

Increase the size of the blob and add more data to it. This method is very useful in a network
downloader:

 bool AppendBytes(void* Data, size_t Size);
…
};

There are lots of other methods in this class. You can find the full source code in the Blob.h
file. We use this Blob class, and declare the MemFileWriter class, which implements our
iOStream interface, in the following way:

class MemFileWriter: public iOStream
{
public:
 MemFileWriter(clPtr<Blob> Container);

Change the absolute position inside a file, where new data will be written to:

 virtual void Seek(const uint64 Position)
 {
 if (Position > FContainer->GetSize())
 {

Check if we are allowed to resize the blob:

 if (Position > FMaxSize - 1) { return; }

Organizing a Virtual Filesystem

108

And try to resize it:

 if (!FContainer->SafeResize(
 static_cast<size_t>(Position) + 1))
 { return; }
 }
 FPosition = Position;
 }

Write data to the current position of this file:

 virtual uint64 Write(const void* Buf, const uint64 Size)
 {
 uint64 ThisPos = FPosition;

Ensure there is enough space:

 Seek(ThisPos + Size);
 if (FPosition + Size > FMaxSize) { return 0; }
 void* DestPtr = (void*)(&(((ubyte*)(
 FContainer->GetData()))[ThisPos]));

Write the actual data:

 memcpy(DestPtr, Buf, static_cast<size_t>(Size));
 return Size;
 }
}
private:
 …
};

We omit the trivial implementations of GetFileName(), GetFilePos(), GetMaxSize(),
SetContainer(), GetContainer(), GetMaxSize(), and SetMaxSize() member
functions, along with fields declarations. You will find the full source code of them in the code
bundle of the book.

See also
ff Working with in-memory files

Chapter 4

109

Working with in-memory files
Sometimes it is very convenient to be able to treat some arbitrary in-memory runtime
generated data as if it were in a file. As an example, let's consider using a JPEG image
downloaded from a photo hosting, as an OpenGL texture. We do not need to save it into
the internal storage, as it is a waste of CPU time. We also do not want to write separate
code for loading images from memory. Since we have our abstract iIStream and iRawFile
interfaces, we just implement the latter to support memory blocks as the data source.

Getting ready
In the previous recipes, we already used the Blob class, which is a simple wrapper around
a void* buffer.

How to do it...
1.	 Our iRawFile interface consists of two methods: GetFileData() and

GetFileSize(). We just delegate these calls to an instance of Blob:
class ManagedMemRawFile: public iRawFile
{
public:
 ManagedMemRawFile(): FBlob(NULL) {}
 virtual const ubyte* GetFileData() const
 { return (const ubyte*)FBlob->GetData(); }
 virtual uint64 GetFileSize() const
 { return FBlob->GetSize(); }
 void SetBlob(const clPtr<Blob>& Ptr)
 { FBlob = Ptr; }
private:
 clPtr<Blob> FBlob;
};

2.	 Sometimes it is useful to avoid the overhead of using a Blob object, and for such
cases we provide another class, MemRawFile, that holds a raw pointer to a memory
block and optionally takes care of the memory allocation:

class MemRawFile: public iRawFile
{
public:
 virtual const ubyte* GetFileData() const

Organizing a Virtual Filesystem

110

 { return (const ubyte*) FBuffer; }
 virtual uint64 GetFileSize() const
 { return FBufferSize; }

 void CreateFromString(const std::string& InString);
 void CreateFromBuffer(const void* Buf, uint64 Size);
 void CreateFromManagedBuffer(const void* Buf, uint64 Size);
private:
 bool FOwnsBuffer;
 const void* FBuffer;
 uint64 FBufferSize;
};

How it works...
We use the MemRawFile as an adapter for the memory block extracted from a .zip file and
ManagedMemRawFile as the container for data downloaded from photo sites.

See also
ff Chapter 3, Networking

ff Chapter 6, Unifying OpenGL ES 3 and OpenGL3

Implementing mount points
It is convenient to access all of the application's resources as if they all were in the same
folder tree, no matter where they actually come from—from an actual file, a .zip archive on
disk, or an in-memory archive downloaded over a network. Let us implement an abstraction
layer for this kind of access.

Getting ready
We assume that the reader is familiar with the concepts of NTFS reparse points (http://
en.wikipedia.org/wiki/NTFS_reparse_point), UNIX symbolic links (http://
en.wikipedia.org/wiki/Symbolic_link), and directory mounting procedures
(http://en.wikipedia.org/wiki/Mount_(Unix)).

How to do it...
1.	 Our folders tree will consist of abstract mount points. A single mount point can

correspond to a path to an existing OS folder, a .zip archive on disk, a path inside
a .zip archive, or it can even represent a removed network path.

Chapter 4

111

Try to extend the proposed framework with network paths mount points.

class iMountPoint: public iObject
{
public:

2.	 Check if the file exists at this mount point:
 virtual bool FileExists(const string& VName) const = 0;

3.	 Convert a virtual filename, which is the name of this file in our folders tree, to a full
filename behind this mount point:
 virtual string MapName(const string& VName) const = 0;

4.	 We will need to create a file reader that can be used with the FileMapper class,
for the specified virtual file inside this mount point:
 virtual clPtr<iRawFile> CreateReader(
 const string& Name) const = 0;
};

5.	 For physical folders we provide a simple implementation that creates instances
of the FileMapper class with the reference to iRawFile:
class PhysicalMountPoint: public iMountPoint
{
public:
 explicit PhysicalMountPoint(const std::string& PhysicalName);
 virtual bool FileExists(
 const std::string& VirtualName) const
 { return FS_FileExistsPhys(MapName(VirtualName)); }
 virtual std::string MapName(
 const std::string& VirtualName) const
 {
 return (FS_IsFullPath(VirtualName)) ?
 VirtualName : (FPhysicalName + VirtualName);
 }

6.	 Create the reader to access the data inside this mount point:
 virtual clPtr<iRawFile> CreateReader(
 const std::string& VirtualName) const
 {
 std::string PhysName = FS_IsFullPath(VirtualName) ?
 VirtualName : MapName(VirtualName);
 clPtr<RawFile> File = new RawFile();
 return !File->Open(FS_ValidatePath(PhysName),

Organizing a Virtual Filesystem

112

 VirtualName) ? NULL : File;
 }
private:
 std::string FPhysicalName;
};

7.	 The collection of mount points will be called FileSystem, as shown in the
following code:

class FileSystem: public iObject
{
public:
 void Mount(const std::string& PhysicalPath);
 void AddAlias(const std::string& Src,
 const std::string& Prefix);
 std::string VirtualNameToPhysical(
 const std::string& Path) const;
 bool FileExists(const std::string& Name) const;
private:
 std::vector< clPtr<iMountPoint> > FMountPoints;
};

How it works...
The MapName() member function transforms a given virtual filename into a form that can be
passed to the CreateReader() method.

The FS_IsFullPath() function checks if the path starts with the / character on Android, or
contains the :\ substring on Windows. The Str_AddTrailingChar() function ensures we
have a path separator at the end of the given path.

The FileSystem object acts as a container of the mount points, and redirects the file
reader creation to the appropriate points. The Mount method determines the type of the
mount point. If the PhysicalPath ends with either .zip or .apk substrings, an instance
of the ArchiveMountPoint class is created, otherwise the PhysicalMountPoint class
is instantiated. The FileExists() method iterates the active mount points and calls the
iMountPoint::FileExists() method. The VirtualNameToPhysical() function
finds the appropriate mount point and calls the iMountPoint::MapName() method for
the filename to make it usable with the underlying OS I/O functions. Here we omit the trivial
details of the FMountPoints vector management.

There's more...
Using our FileSystem::AddAlias method, we can create a special mount point that
decorates a filename:

Chapter 4

113

class AliasMountPoint: public iMountPoint
{
public:
 AliasMountPoint(const clPtr<iMountPoint>& Src);
 virtual ~AliasMountPoint();

Set the alias path:

 void SetAlias(const std::string& Alias)
 {
 FAlias = Alias;
 Str_AddTrailingChar(&FAlias, PATH_SEPARATOR);
 }
…
 virtual clPtr<iRawFile> CreateReader(
 const std::string& VirtualName) const
{ return FMP->CreateReader(FAlias + VirtualName); }
private:

Set a prefix to be appended to each file in this mount point:

 std::string FAlias;

Set a pointer to another mount point, which is hidden behind the alias:

 clPtr<iMountPoint> FMP;
};

This decorator class will add the FAlias string before any filename passed into it. This simple
mount point is useful when developing for both Android and Windows, because in Android
.apk, the files reside lower in the folder hierarchy than they do in a Windows development
folder. Later we determine the folder, where our Android application resides, and mount it
using the AliasMountPoint class.

As a reminder, the following is the class diagram of our iMountPoint interface and its
implementations:

Organizing a Virtual Filesystem

114

See also
ff Decompressing files from the .zip archives

Enumerating files in the .zip archives
To incorporate the contents of a .zip file seamlessly into our filesystem, we need to read
the archive contents and be able to access each file individually. Since we are developing our
own file I/O library, we use the iIStream interface to access .zip files. The NDK provides
a way to read the .apk assets from your C++ application (see usr/include/android/
asset_manager.h in your NDK folder). However, it is only available on Android 2.3, and will
make debugging of file access in your game more complex on a desktop computer without
an emulator. To make our native code portable to previous Android versions and other mobile
operating systems, we will craft our own assets reader.

Android applications are distributed as .apk packages, which are basically
just renamed .zip archives, containing a special folder structure and
metadata inside them.

Getting ready
We use the zlib library and the MiniZIP project to access the content of a .zip archive.
The most recent versions can be downloaded from http://www.winimage.com/
zLibDll/minizip.html.

How to do it...
1.	 The zlib library is designed to be extensible. It does not assume every developer

uses only the fopen() calls or the std::ifstream interface. To read the data from
our own containers with the iIStream interface, we cast the iIStream instances
to the void* pointers and write a set of routines that are passed to zlib. These
routines resemble the standard fopen()-like interface and essentially only redirect
the zlib to our iIStream classes:
static voidpf ZCALLBACK zip_fopen(voidpf opaque,
 const void* filename, int mode)
{
 ((iIStream*)opaque)->Seek(0);
 return opaque;
}

Chapter 4

115

2.	 Read compressed data from a .zip file. This indirection actually allows to access
archives inside the other archives:
static uLong ZCALLBACK zip_fread(voidpf opaque, voidpf stream,
 void* buf, uLong size)
{
 iIStream* S = (iIStream*)stream;
 int64_t CanRead = (int64)size;
 int64_t Sz = S->GetFileSize();
 int64_t Ps = S->GetFilePos();
 if (CanRead + Ps >= Sz) { CanRead = Sz - Ps; }
 if (CanRead > 0)
 { S->BlockRead(buf, (uint64_t)CanRead); }
 else
 { CanRead = 0; }
 return (uLong)CanRead;
}

3.	 Return the current position inside a .zip file:
static ZPOS64_T ZCALLBACK zip_ftell(voidpf opaque,
 voidpf stream)
{
 return (ZPOS64_T)((iIStream*)stream)->GetFilePos();
}

4.	 Advance to the specified position. The offset value is relative to the current position
(SEEK_CUR), file start (SEEK_SET), or file end (SEEK_END):
static long ZCALLBACK zip_fseek (voidpf opaque, voidpf stream,
 ZPOS64_T offset, int origin)
{
 iIStream* S = (iIStream*)stream;
 int64 NewPos = (int64)offset;
 int64 Sz = (int64)S->GetFileSize();
 switch (origin)
 {
 case ZLIB_FILEFUNC_SEEK_CUR:
 NewPos += (int64)S->GetFilePos();
 break;
 case ZLIB_FILEFUNC_SEEK_END:
 NewPos = Sz - 1 - NewPos;
 break;
 case ZLIB_FILEFUNC_SEEK_SET:
 break;
 default:
 return -1;

Organizing a Virtual Filesystem

116

 }
 if (NewPos >= 0 && (NewPos < Sz))
 { S->Seek((uint64)NewPos); }
 else
 { return -1; }
 return 0;
}

5.	 We do not close or handle errors, so the fclose() and ferror() callbacks are
empty:
static int ZCALLBACK zip_fclose(voidpf op, voidpf s)
 { return 0; }
static int ZCALLBACK zip_ferror(voidpf op, voidpf s)
 { return 0; }

6.	 Finally, the pointers to all functions are stored in the zlib_filefunc64_def
structure that is passed instead of the usual FILE* to all functions of MiniZIP.
We write a simple routine to fill this structure, as shown in the following code:
void fill_functions(iIStream* Stream, zlib_filefunc64_def* f)
{
 f->zopen64_file = zip_fopen;
 f->zread_file = zip_fread;
 f->zwrite_file = NULL;
 f->ztell64_file = zip_ftell;
 f->zseek64_file = zip_fseek;
 f->zclose_file = zip_fclose;
 f->zerror_file = zip_ferror;
 f->opaque = Stream;
}

7.	 Once we have implemented the fopen() interface, we can provide the code snippet
to enumerate the files in the archive represented by the iIStream object. This is one
of the two essential functions in the ArchiveReader class:
bool ArchiveReader::Enumerate_ZIP()
{
 iIStream* TheSource = FSourceFile;

 zlib_filefunc64_def ffunc;
 fill_functions(TheSource, &ffunc);
 unzFile uf = unzOpen2_64("", &ffunc);
 unz_global_info64 gi;
 int err = unzGetGlobalInfo64(uf, &gi);

Chapter 4

117

8.	 Iterate through all the files in this archive:
 for (uLong i = 0; i < gi.number_entry; i++)
 {
 char filename_inzip[256];
 unz_file_info64 file_info;
 err = unzGetCurrentFileInfo64(uf, &file_info,
 filename_inzip, sizeof(filename_inzip),
 NULL, 0, NULL, 0);
 if (err != UNZ_OK) { break; }
 if ((i + 1) < gi.number_entry)
 {
 err = unzGoToNextFile(uf);
 }

9.	 Store the encountered filenames in a vector of our own structures:
 sFileInfo Info;
 std::string TheName = Arch_FixFileName(filename_inzip);
 Info.FCompressedSize = file_info.compressed_size;
 Info.FSize = file_info.uncompressed_size;
 FFileInfos.push_back(Info);
 FFileNames.push_back(TheName);
 }
 unzClose(uf);
 return true;
}

10.	 The array of sFileInfo structures is stored in the ArchiveReader instances:
class ArchiveReader: public iObject
{
public:
 ArchiveReader();
 virtual ~ArchiveReader();

11.	 Assign the source stream and enumerate the files:
 bool OpenArchive(const clPtr<iIStream>& Source);

12.	 Extract a single file from the archive into the FOut stream. This means we can extract
compressed files directly into the memory:
 bool ExtractSingleFile(const std::string& FName,
 const std::string& Password,
 const clPtr<iOStream>& FOut);

13.	 Free everything and optionally close the source stream:
 bool CloseArchive();

Organizing a Virtual Filesystem

118

14.	 Check if such a file exists in the archive:
 bool FileExists(const std::string& FileName) const
 { return (GetFileIdx(FileName) > -1); }
…

15.	 The following code is the sFileInfo structure mentioned in the preceding point,
that defines where a file is located inside a .zip archive:
 struct sFileInfo
 {

16.	 First, we need an offset to the file data inside the archive:
 uint64 FOffset;

17.	 Then we need a size of the uncompressed file:
 uint64 FSize;

18.	 And a size of the compressed file, to let the zlib library know when to stop decoding:
 uint64 FCompressedSize;

19.	 Don't forget a pointer to the compressed data itself:

 void* FSourceData;
 };
 …
};

We do not provide the complete source for the ArchiveReader class, however, do
encourage you to look into the accompanying source code. The second essential function,
the ExtractSingleFile(), is presented in the following recipe.

How it works...
We use the ArchiveReader class to write the ArchiveMountPoint that provides
seamless access to the contents of a .zip file:

class ArchiveMountPoint: public iMountPoint
{
public:
 ArchiveMountPoint(const clPtr<ArchiveReader>& R);

Create a reader interface to access the content of the archive:

 virtual clPtr<iRawFile> CreateReader(
 const std::string& VirtualName) const
 {

Chapter 4

119

 std::string FName = Arch_FixFileName(VirtualName);
 MemRawFile* File = new MemRawFile();
 File->SetFileName(VirtualName);
 File->SetVirtualFileName(VirtualName);
 const void* DataPtr = FReader->GetFileData(FName);
 uint64 FileSize = FReader->GetFileSize(FName);
 File->CreateFromManagedBuffer(DataPtr, FileSize);
 return File;
 }

Check if a specified file exists inside this archive mount point:

 virtual bool FileExists(
 const std::string& VirtualName) const
 {
 return
 FReader->FileExists(Arch_FixFileName(VirtualName));
 }
 virtual std::string MapName(
 const std::string& VirtualName) const
 { return VirtualName; }
private:
 clPtr<ArchiveReader> FReader;
};

The ArchiveReader class takes care of the memory management and returns a ready-to-
use instance of MemRawFile.

See also
ff Decompressing files from the .zip archives

ff Chapter 5, Cross-platform Audio Streaming

Decompressing files from the .zip archives
We have the Enumerate_ZIP() function to iterate through individual files inside a .zip
archive, and now it is time to extract its contents.

Getting ready
This code uses the same set of fopen()-like functions from the previous recipe.

Organizing a Virtual Filesystem

120

How to do it...
1.	 The following helper function does the job of file extraction and is used in the Archiv

eReader::ExtractSingleFile() method:
int ExtractCurrentFile_ZIP(unzFile uf,
 const char* password, const clPtr<iOStream>& fout)
{
 char filename_inzip[256];
 int err = UNZ_OK;
 void* buf;
 uInt size_buf;
 unz_file_info64 file_info;
 err = unzGetCurrentFileInfo64(uf, &file_info,
 filename_inzip, sizeof(filename_inzip),
 NULL, 0, NULL, 0);
 if (err != UNZ_OK) { return err; }
 uint64_t file_size = (uint64_t)file_info.uncompressed_size;
 uint64_t total_bytes = 0;
 unsigned char _buf[WRITEBUFFERSIZE];
 size_buf = WRITEBUFFERSIZE;
 buf = (void*)_buf;
 if (buf == NULL) { return UNZ_INTERNALERROR; }

2.	 Pass the supplied password to the zlib library:
 err = unzOpenCurrentFilePassword(uf, password);

3.	 The following is the actual decompression loop:
 do
 {
 err = unzReadCurrentFile(uf, buf, size_buf);
 if (err < 0)
 { break; }
 if (err > 0)
 { total_bytes += err; fout->Write(buf, err); }
 }
 while (err > 0);
 int close_err = unzCloseCurrentFile (uf);
 …
}

4.	 And the ExtractSingleFile() function performs the extraction of a single file
from an archive into an output stream:
bool ArchiveReader::ExtractSingleFile(const string& FName,
const string& Password, const clPtr<iOStream>& FOut)

Chapter 4

121

{
 int err = UNZ_OK;
 LString ZipName = FName;
 std::replace (ZipName.begin(), ZipName.end(), '\\', '/');
 clPtr<iIStream> TheSource = FSourceFile;
 TheSource->Seek(0);

5.	 Decompress the data through the following code:

 zlib_filefunc64_def ffunc;
 fill_functions(FSourceFile.GetInternalPtr(), &ffunc);
 unzFile uf = unzOpen2_64("", &ffunc);
 if (unzLocateFile(uf, ZipName.c_str(), 0) != UNZ_OK)
 {
 return false;
 }
 err = ExtractCurrentFile_ZIP(uf,
 Password.empty() ? NULL : Password.c_str(), FOut);
 unzClose(uf);
 return (err == UNZ_OK);
}

How it works...
The ExtractSingleFile() method uses the zlib and MiniZIP libraries. In the
accompanying material, we have included the libcompress.c and libcompress.h
files that contain the amalgamated zlib, MiniZIP, and libbzip2 sources.

The 2_MountPoints example contains the test.cpp file with the code to iterate an
archive file:

 clPtr<RawFile> File = new RawFile();
 File->Open("test.zip", "");
 clPtr<ArchiveReader> a = new ArchiveReader();
 a->OpenArchive(new FileMapper(File));

The ArchiveReader instance contains all the information about the contents of the test.
zip file.

Loading resources asynchronously
The preface of this book tells us we are going to develop an asynchronous resources loading
system in this chapter. We have completed all of the preparations for this. We are now
equipped with secure memory management, task queues, and finally, the FileSystem
abstraction with archive file support.

Organizing a Virtual Filesystem

122

What we want to do now is to combine all of this code to implement a seemingly simple thing:
create an application that renders a textured quad and updates its texture on-the-fly. An
application starts, a white quad appears on the screen, and then, as soon as the texture file
has loaded from disk, the quad's texture changes. This is relatively easy to do—we just run
the LoadImage task that we implement here, and as soon as this task completes, we get the
completion event on the main thread, which also owns an event queue. We cannot get away
with a single mutex to update the texture data, because when we use the OpenGL texture
objects in Chapter 6, Unifying OpenGL ES 3 and OpenGL 3, all of the rendering state must be
changed only in the same thread that created the texture—in our main thread.

Getting ready
We strongly encourage you to review all of the multithreading techniques from Chapter 3,
Networking. The simple rendering techniques we use here are covered in the in the App3
example in Chapter 1, Establishing a Build Environment, and in the App4 example in
Chapter 2, Porting Common Libraries.

How to do it...
1.	 Here we build the foundation for the resources management. We need the concept of

a bitmap stored in a memory. It is implemented in the Bitmap class, as shown in the
following code:
class Bitmap: public iObject
{
public:
 Bitmap(const int W, const int H)
 {
 size_t Size = W * H * 3;
 if (!Size) { return; }

 FWidth = W;
 FHeight = H;

 FBitmapData = (ubyte*)malloc(Size);
 memset(FBitmapData, 0xFF, Size);
 }
 virtual ~Bitmap() { free(FBitmapData); }
 void Load2DImage(clPtr<iIStream> Stream)
 {
 free(FBitmapData);
 FBitmapData = read_bmp_mem(
 Stream->MapStream(), &FWidth, &FHeight);
 }
…

Chapter 4

123

2.	 Image dimensions and raw pixel data are set as follows:
 int FWidth;
 int FHeight;

3.	 Here we use a C-style array:
 ubyte* FBitmapData;
};

The read_bmp_mem() function from Chapter 2, Porting Common Libraries, is used
once again, but this time the memory buffer comes from an iIStream object.
In Chapter 6, Unifying OpenGL ES 3 and OpenGL 3 we add the Texture class to
handle all of the OpenGL complexities, but right now we simply render the instance
of a Bitmap class.

4.	 Next, we implement the asynchronous loading operation:
class LoadOp_Image: public iTask
{
public:
 LoadOp_Image(clPtr<Bitmap> Bmp, clPtr<iIStream> IStream):
 FBmp(Bmp), FStream(IStream) {}

 virtual void Run()
 {
 FBmp->Load2DImage(FStream);
 g_Events->EnqueueCapsule(
 new LoadCompleteCapsule(FBmp));
 }
private:
 clPtr<Bitmap> FBmp;
 clPtr<iIStream> FStream;
};

5.	 The LoadCompleteCapsule class is a iAsyncCapsule-derived class that has the
overriden Run() method:
class LoadCompleteCapsule: public iAsyncCapsule
{
public:
 LoadCompleteCapsule(clPtr<Bitmap> Bmp): FBmp(Bmp) {}
 virtual void Invoke()
 {
 // … copy FBmp to g_FrameBuffer …
 }

Organizing a Virtual Filesystem

124

private:
 clPtr<Bitmap> FBmp;
};

6.	 To load a Bitmap object, we implement the following function:
clPtr<Bitmap> LoadImg(const std::string& FileName)
{
 clPtr<iIStream> IStream = g_FS->CreateReader(FileName);
 clPtr<Bitmap> Bmp = new Bitmap(1, 1);
 g_Loader->AddTask(new LoadOp_Image(Bmp, IStream));
 return Bmp;
}

7.	 We use three global objects: the filesystem g_FS, the event queue g_Events, and
the loader thread g_Loader. We initialize them at the beginning of our program. At
first, we start FileSystem:
 g_FS = new FileSystem();
 g_FS->Mount(".");

8.	 The iAsyncQueue and WorkerThread objects are created, just as in Chapter 3,
Networking:
 g_Events = new iAsyncQueue();
 g_Loader = new WorkerThread();
 g_Loader->Start(iThread::Priority_Normal);

9.	 Finally, we can load the bitmap:

 clPtr<Bitmap> Bmp = LoadImg("test.bmp");

At this point Bmp is a ready-to-use object that will be automatically updated on another thread.
Of course, it is not thread-safe to use the Bmp->FBitmapData, since it might be destroyed
while we read it, or only partially updated. To overcome these difficulties, we have to introduce
so-called proxy objects that we use in Chapter 6, Unifying OpenGL ES 3 and OpenGL 3.

There's more
The complete example can be found in 3_AsyncTextures. It implements the asynchronous
images loading technique described in this recipe.

See also
ff Chapter 5, Cross-platform Audio Streaming

ff Chapter 3, Networking

Chapter 4

125

Storing application data
An application should be able to save its temporary and persistent data. Sometimes data
should be written into a folder on external storage accessible by other applications. Let's find
out how to get the path to this folder on Android and Windows, and do this in a portable way.

Getting ready
If your Android smartphone unmounts its external storage while connected to a desktop
computer, make sure you disconnect it and wait for the storage to be remounted.

How to do it...
1.	 We need to write some Java code to accomplish this task. First, we will ask the

Environment for the external storage directory and its suffix, so we can distinguish
our data from other applications:
protected String GetDefaultExternalStoragePrefix()
{
 String Suffix = "/external_sd/Android/data/";
 return Environment.getExternalStorageDirectory().getPath() +
 Suffix + getApplication().getPackageName();
}

The Suffix value can be chosen at will. You can use whatever
value you desire.

2.	 This is quite simple; however, we have to perform some additional checks to make
sure this path is really there. On some devices, for example, without external storage,
it will be unavailable.
String ExternalStoragePrefix = GetDefaultExternalStoragePrefix();
String state = Environment.getExternalStorageState();

3.	 Check, if the storage is mounted and can be written to:
if (!Environment.MEDIA_MOUNTED.equals(state) ||
 Environment.MEDIA_MOUNTED_READ_ONLY.equals(state))
{
ExternalStoragePrefix = this.getDir(
 getApplication().getPackageName(), MODE_PRIVATE
).getPath();
}

Organizing a Virtual Filesystem

126

4.	 Check if the storage is writable:
try
{
 new File(ExternalStoragePrefix).mkdirs();
 File F = new File(
 ExternalStoragePrefix + "/engine.log");
 F.createNewFile();
 F.delete();
}
catch (IOException e)
{
 Log.e("App6", "Falling back to internal storage");
 ExternalStoragePrefix = this.getDir(
 getApplication().getPackageName(), MODE_PRIVATE
).getPath();
}

5.	 Pass the path to our C++ code:

OnCreateNative(ExternalStoragePrefix);
public static native void OnCreateNative(String
 ExternalStorage);

How it works...
Native code implements the JNI call OnCreateNative() this way:

extern std::string g_ExternalStorage;
extern "C"
{
 JNIEXPORT void JNICALL
 Java_com_packtpub_ndkcookbook_app6_App6Activity_OnCreateNative(
 JNIEnv* env, jobject obj, jstring Path)
 {
 g_ExternalStorage = ConvertJString(env, Path);
 OnStart();
 }
}

There is also a small helper function to convert Java strings to std::string, which we will
use frequently:

std::string ConvertJString(JNIEnv* env, jstring str)
{

Chapter 4

127

 if (!str) std::string();
 const jsize len = env->GetStringUTFLength(str);
 const char* strChars = env->GetStringUTFChars(str,
 (jboolean *)0);
 std::string Result(strChars, len);
 env->ReleaseStringUTFChars(str, strChars);
 return Result;
}

Check the application 6_StoringApplicationData from the code bundle of the book. On
Android, it will output a line similar to the following into the system log:

I/App6 (27043): External storage path:
 /storage/emulated/0/external_sd/Android/data/com.packtpub.ndkcookb
 ook.app6

On Windows, it will print the following into the application console:

External storage path: C:\Users\Author\Documents\ndkcookbook\App6

There's more...
Don't forget to add the WRITE_EXTERNAL_STORAGE permission to your AndroidManifest.
xml for your application to be able to write to the external storage:

<uses-permission
 android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

Otherwise, the previous code will always fall back to the internal storage.

See also
ff Chapter 8, Writing a Match-3 Game

5
Cross-platform Audio

Streaming

Try turning off the sound in your favorite game.

— Viktor Latypov

In this chapter we will cover the following recipes:

ff Initializing OpenAL and playing the .wav files

ff Abstracting basic audio components

ff Streaming sounds

ff Decoding Ogg Vorbis files

ff Decoding tracker music using ModPlug

Introduction
We are looking for a truly portable implementation of the sound playback for desktop PCs and
mobile devices. We propose using the OpenAL library, since it is a well-established library on a
desktop, and using it will make easier porting of existing games to Android. In this chapter we
organize a small multithreaded sound streaming library.

Audio playback is inherently an asynchronous process, so the decoding and control of sound
hardware should be done on a separate thread and controlled from other dedicated threads.
For example, when a player presses a fire button, or a character in an arcade game hits the
ground, we might just ask the system to start playback of an audio file. The latency of this
operation in games usually does not matter so much.

Cross-platform Audio Streaming

130

From the digital perspective, a monaural or monophonic sound (mono for short), is nothing
more than a long one-dimensional array of values representing a continuous signal.
Stereophonic or multichannel sounds are represented by a few channels and stored as
interleaved arrays, where the sample from one channel is followed by the sample from the
other channel and so on. OpenAL expects us to submit this data as a sequence of buffers.
The main concepts of OpenAL library are devices, contexts, listeners, audio sources, and
sound buffers:

Physical sound
source

Sound wave
(air pressure)

Microphone Analog-to-Digital
converter

Storage (files)

Listeners Speaker

Central Processing Unit

Digital-to-Analog
converter

Random
Access

Memory

Sound wave
(air pressure)

The sound produced in a virtual environment is played back through the speakers after
processing by a sequence of filters. The material covered in this chapter will allow you to
create a portable audio subsystem for your game.

Initializing OpenAL and playing the .wav files
In this recipe, we present the simplest possible example to play uncompressed audio files in
PCM format (pulse-code modulation, http://en.wikipedia.org/wiki/Pulse-code_
modulation). This example just plays a single file in an infinite loop. We will create a single
device, a single device context, and an audio source. All of this is done in a single dedicated
thread, but we should not worry about multithreading issues because OpenAL functions are
guaranteed to be thread-safe.

Getting ready
The source code and build scripts for the OpenAL library can be found in the 0_OpenAL folder,
and precompiled static libraries are included with each of the examples for this chapter. For
Windows, we use dynamic linking with OpenAL. Explanations on how to load files from the
Android .apk package can be found in the Chapter 4, Organizing a Virtual Filesystem. The
complete source of the example for this recipe can be found in the 0_AL_On_Android folder.

Chapter 5

131

How to do it…
1.	 The class SoundThread, where we implement the actual playback, is as follows:

class SoundThread: public iThread
{

2.	 First we declare handles to the OpenAL audio device and device context:

 ALCdevice* FDevice;
 ALCcontext* FContext;

3.	 Then, we declare handles to the OpenAL audio source and buffer:
 ALuint FSourceID;
 ALuint FBufferID;

4.	 The Run() member function does all the work that includes initialization, de-
initialization, and submission of audio data into OpenAL:
 virtual void Run()
 {

5.	 We initialize the pointers to OpenAL functions:
 LoadAL();

6.	 Then we create the device and device context:
 FDevice = alcOpenDevice(NULL);
 FContext = alcCreateContext(FDevice, NULL);

7.	 Finally, we select our newly created device context as the current one:
 alcMakeContextCurrent(FContext);

8.	 Now, we begin the creation of the audio source:
 alGenSources(1, &FSourceID);

9.	 We set a constant maximum playback volume of 1.0, which is called gain in OpenAL:
 alSourcef(FSourceID, AL_GAIN, 1.0f);

10.	 To hear something, we must load the file containing the sound data:
 clPtr<iIStream> Sound = g_FS->CreateReader("test.wav");

11.	 We use our memory-mapped files and ask our iStream object about the file size:
 int DataSize = (int)Sound->GetSize();
 const ubyte* Data = Sound->MapStream();

Cross-platform Audio Streaming

130

12.	 To avoid handling the complete RIFF WAVE file format, we prepare a specific file
containing a single block of uncompressed audio data; the format of this data is a 22
kHz monophonic 16-bit sound. We pass Data+sizeof(sWAVHeader) as the audio
data, and the size of the audio data is obviously DataSize-sizeof(sWAVHeader):
 PlayBuffer(Data + sizeof(sWAVHeader),
 DataSize - sizeof(sWAVHeader));

13.	 Then we call the IsPlaying() function in a spin loop to detect when OpenAL stops
playing the sound:
 while (IsPlaying()) {}

14.	 Once the sound playback is complete, we delete all the objects we have created:
 alSourceStop(FSourceID);
 alDeleteSources(1, &FSourceID);
 alDeleteBuffers(1, &FBufferID);
 alcDestroyContext(FContext);
 alcCloseDevice(FDevice);

15.	 Finally, we unload the OpenAL library on Windows:
 UnloadAL();

16.	 On Android, it is very important to free the allocated resource and release the audio
device. Otherwise, audio will keep playing in the background. To avoid writing Java
code in this small example, we just terminate our native activity with the exit() call:
 exit(0);
 }

17.	 The code above uses the function IsPlaying() to check if the audio source is busy:
 bool IsPlaying()
 {
 int State;
 alGetSourcei(FSourceID, AL_SOURCE_STATE, &State);
 return State == AL_PLAYING;
 }

18.	 The function PlayBuffer() feeds the audio data to the audio source:
 void PlayBuffer(const unsigned char* Data, int DataSize)
 {
 alGenBuffers(1, &FBufferID);
 alBufferData(FBufferID, AL_FORMAT_MONO16,
 Data, DataSize, 22050);
 alSourcei(FSourceID, AL_BUFFER, FBufferID);
 alSourcePlay(FSourceID);
 }
};

Chapter 5

131

19.	 The code above uses the size of the sWAVHeader structure to determine the offset
of the audio data:

The alignment of structure fields should be set to 1 for sWAVHeader. Our
declaration is compatible with Clang and GCC compilers from Android NDK
and MinGW. Use #pragma pack for VisualStudio.

struct __attribute__((packed,aligned(1))) sWAVHeader
{
 unsigned char RIFF[4];
 unsigned int Size;
 unsigned char WAVE[4];
 unsigned char FMT[4];
 unsigned int SizeFmt;
 unsigned short FormatTag;
 unsigned short Channels;
 unsigned int SampleRate;
 unsigned int AvgBytesPerSec;
 unsigned short nBlockAlign;
 unsigned short nBitsperSample;
 unsigned char Reserved[4];
 unsigned int DataSize;
};

Later we reuse this structure for the loading of the.wav files.

How it works...
First, we declare the global variables holding our virtual filesystem and the SoundThread
object:

clPtr<FileSystem> g_FS;
SoundThread g_Sound;

We create our usual application template and in the OnStart() callback function, we start
a thread that initializes the OpenAL library:

void OnStart(const std::string& RootPath)
{
 …
 g_FS = new FileSystem();
 g_FS->Mount(".");
#if defined(ANDROID)
 g_FS->Mount(RootPath);
 g_FS->AddAliasMountPoint(RootPath, "assets");
#endif
 g_Sound.Start(iThread::Priority_Normal);
}

Cross-platform Audio Streaming

130

See also
ff Chapter 2, Porting Common Libraries

ff The Implementing portable memory-mapped files recipe in Chapter 4, Organizing a
Virtual Filesystem

Abstracting basic audio components
In the previous recipe, we learned how to initialize OpenAL and how to play the uncompressed
.wav files. Here, we present the AudioSource and AudioThread classes which help us to
manage the initialization process.

Getting ready
Check out the example 0_AL_On_Android in the supplementary materials to understand
the basic concepts of OpenAL.

How to do it…
1.	 Let's carefully move the initialization of OpenAL to another thread called

AudioThread:
class AudioThread: public iThread
{
public:
 AudioThread():
 FDevice(NULL),
 FContext(NULL),
 FInitialized(false) {}
 virtual ~AudioThread() {}

 virtual void Run()
 {

2.	 The code at the beginning of the Run() method performs the initialization of a
default OpenAL device and creates an audio context:
 if (!LoadAL()) { return; }

 FDevice = alcOpenDevice(NULL);
 FContext = alcCreateContext(FDevice, NULL);
 alcMakeContextCurrent(FContext);

3.	 We set the flag that tells other threads if they can use our audio subsystem:
 FInitialized = true;

Chapter 5

131

4.	 Then we enter an infinite loop where we call the Env_Sleep() function, whose
source code is explained as follows, to avoid using 100 percent utilization of CPU:
 FPendingExit = false;
 while (!IsPendingExit()) { Env_Sleep(100); }

In this example, we used a fixed value of 100 milliseconds to put the
thread into the sleep mode. When processing audio, it is useful to
calculate sleep delays based on the buffer size and sampling rate. For
example, a buffer of 65535 bytes that contains 16-bit mono samples at a
sampling rate of 44100 Hz gives us approximately 65535 / (44100 × 16 /
8) ≈ 0.7 seconds of audio playback. Stereo playback cuts this time in half.

5.	 Finally, we release the OpenAL objects:
 alcDestroyContext(FContext);
 alcCloseDevice(FDevice);
 UnloadAL();
 }

6.	 The rest of the declaration simply contains all the required fields and the initialization
flag:
 bool FInitialized;
private:
 ALCdevice* FDevice;
 ALCcontext* FContext;
};

7.	 The Env_Sleep() function used in the code just makes the thread inactive for
a given amount of milliseconds. It is implemented using the Sleep() system call
in Windows and the usleep() function in Android:
void Env_Sleep(int Milliseconds)
{
#if defined _WIN32
 Sleep(Milliseconds);
#else
 usleep(static_cast<useconds_t>(Milliseconds) * 1000);
#endif
}

8.	 Playing the.wav files is not enough for us, since we want to support different
audio formats. So, we have to split the audio playback and the actual decoding
of file formats into two separate entities. We are ready to introduce the
iWaveDataProvider class whose subclasses serve as data sources
for our audio playback classes:

www.allitebooks.com

http://www.allitebooks.org

Cross-platform Audio Streaming

130

class iWaveDataProvider: public iObject
{
public:
 iWaveDataProvider(): FChannels(0),
 FSamplesPerSec(0),
 FBitsPerSample(0) {}

9.	 The main routines of this class enable access to the decoded audio data:
 virtual ubyte* GetWaveData() = 0;
 virtual size_t GetWaveDataSize() const = 0;

10.	 Here is how we can get the internal OpenAL audio format identifier for the data from
this provider:
 ALuint GetALFormat() const
 {
 if (FBitsPerSample == 8)
 {
 return (FChannels == 2) ?
 AL_FORMAT_STEREO8 : AL_FORMAT_MONO8;
 }
 else if (FBitsPerSample == 16)
 {
 return (FChannels == 2) ?
 AL_FORMAT_STEREO16 : AL_FORMAT_MONO16;
 }
 return AL_FORMAT_MONO8;
 }

11.	 Also, we store the information about the audio format here:
 int FChannels;
 int FSamplesPerSec;
 int FBitsPerSample;
};

12.	 As we already know, an audio source must be created to produce sounds. This
functionality is implemented in the AudioSource class, which wraps the OpenAL
function calls from the previous recipe. This class uses the iWaveDataProvider
instance as the audio data source:
class AudioSource: public iObject
{
public:

Chapter 5

131

13.	 The constructor just creates an OpenAL source handle and sets the default
parameters:
 AudioSource(): FWaveDataProvider(NULL)
 {
 alGenSources(1, &FSourceID);
 alSourcef(FSourceID, AL_GAIN, 1.0);
 alSourcei(FSourceID, AL_LOOPING, 0);
 }

14.	 The destructor stops the playback and performs the cleanup:
 virtual ~AudioSource()
 {
 Stop();
 FWaveDataProvider = NULL;
 alDeleteSources(1, &FSourceID);
 alDeleteBuffers(1, &FBufferID);
 }

15.	 The Play() method switches the OpenAL source into the playing state:
 void Play()
 {
 if (IsPlaying()) { return; }
 alSourcePlay(FSourceID);
 }

16.	 The Stop() method switches the OpenAL source into the stopped state. The
playback can be resumed after stop ping only from the beginning of the sound buffer:
 void Stop()
 {
 alSourceStop(FSourceID);
 }

17.	 The IsPlaying() method checks if the source is playing audio. The implementation
comes from the previous recipe:
 bool IsPlaying() const
 {
 int State;
 alGetSourcei(FSourceID, AL_SOURCE_STATE, &State);
 return State == AL_PLAYING;
 }

Cross-platform Audio Streaming

130

18.	 A small SetVolume() method changes the playback volume of the source. Accepted
float values are in the range of 0.0…1.0:
 void SetVolume(float Volume)
 {
 alSourcef(FSourceID, AL_GAIN, Volume);
 }

19.	 The main routine, which feeds the data to the audio source, is BindWaveform().
This function stores a smart pointer to the data provider and generates an OpenAL
buffer object:
 void BindWaveform(clPtr<iWaveDataProvider> Wave)
 {
 FWaveDataProvider = Wave;
 if (!Wave) return;

 alGenBuffers(1, &FBufferID);
 alBufferData(FBufferID,
 Wave->GetALFormat(),
 Wave->GetWaveData(),
 (int)Wave->GetWaveDataSize(),
 Wave->FSamplesPerSec);
 alSourcei(FSourceID, AL_BUFFER, FBufferID);
 }

20.	 The private section of the AudioSource class contains a reference to an audio
data provider and an internal OpenAL source and buffer handle:
private:
 clPtr<iWaveDataProvider> FWaveDataProvider;
 ALuint FSourceID;
 ALuint FBufferID;
};

21.	 To be able to read the sound from the file, we implement the iWaveDataProvider
interface in the WavProvider class:
class WavProvider: public iWaveDataProvider

22.	 The only field this class contains is a smart pointer to a Blob object, containing the
file data:
 clPtr<Blob> FRawData;

23.	 A simple pulse-code modulated .wav file consists of the sWAVHeader structure at
the beginning and the audio data, which can be directly fed into the OpenAL audio
source. The constructor of the WavProvider class extracts the information about
the audio data:

Chapter 5

131

 WavProvider(const clPtr<clBlob>& blob)
 {
 FRawData = blob;
 sWAVHeader H = *(sWAVHeader*)FRawData->GetData();
 	
 const unsigned short FORMAT_PCM = 1;
 FChannels = H.Channels;
 FSamplesPerSec = H.SampleRate;
 FBitsPerSample = H.nBitsperSample;
 }

24.	 The destructor is empty, since our Blob object is wrapped into a smart pointer:
 virtual ~WavProvider() {}

25.	 The iWaveDataProvider interface is simple, and here we just implement two
member functions. GetWaveData() returns a pointer to the audio data:
 virtual ubyte* GetWaveData()
 {
 return (ubyte*)FRawData->GetDataConst() +
 sizeof(sWAVHeader);
 }

26.	 The GetWaveDataSize() method subtracts the file header size from the total file
size:

 virtual size_t GetWaveDataSize() const
 {
 return FRawData->GetSize() - sizeof(sWAVHeader);
 };

And we are done with the audio playback and decoding for now.

How it works…
Now we can demonstrate how to use all the audio classes together. As usual, we create an
empty application template, which can be found in the 1_AL_Abstraction folder.

In order to be able to use OpenAL, we must declare a global AudioThread instance:

AudioThread g_Audio;

We start this thread in the OnStart() callback function:

g_Audio.Start(iThread::Priority_Normal);

In this example, we implement the SoundThread class whose Run() method does all the
playback. On this thread, we must wait for g_Audio to get initialized:

while (!g_Audio.FInitialized) {}

Cross-platform Audio Streaming

130

Now we can create the audio source:

clPtr<AudioSource> Src = new AudioSource();

Finally, we need to create a WavProvider object, which decodes audio files, attach it to the
Src source, start playback and wait for its completion:

clPtr<Blob> Data = LoadFileAsBlob("test.wav");
Src->BindWaveform(new WavProvider(Data));
Src->Play();
while (Src->IsPlaying()) {}

After the sound playback is finished, we reset the Src pointer to NULL and send the
termination signal to the g_Audio thread:

Src = NULL;
g_Audio.Exit(true);

To obtain the Data object, we have to implement the following function, which reads the file
contents into a memory block:

clPtr<Blob> LoadFileAsBlob(const std::string& FName)
{
 clPtr<iIStream> input = g_FS->CreateReader(FName);
 clPtr<Blob> Res = new Blob();
 Res->CopyMemoryBlock(input->MapStream(), input->GetSize());
 return Res;
}

We use the global initialized instance of FileSystem, the g_FS object. Please note that
on the Android OS, we cannot use the standard paths and therefore resort to our virtual file
system implementation.

There's more…
We can implement a number of helper routines to ease the use of the AudioSource class.
The first useful routine is source pausing. OpenAL provides the alSourcePause() function,
which is not enough, since we have to be in control of all the unqueued buffers being played.
This unqueuing is not important at this point as we have only one buffer, but when we get to
streaming the sound, we have to take care of the buffers queue. The following code should be
added to the AudioSource class to implement pausing:

void Pause()
{
 alSourcePause(FSourceID);
 UnqueueAll();
}

Chapter 5

131

void UnqueueAll()
{
 int Queued;
 alGetSourcei(FSourceID, AL_BUFFERS_QUEUED, &Queued);

 if (Queued > 0)
 alSourceUnqueueBuffers(FSourceID, Queued, &FBufferID);
}

For infinite sound looping, we can implement the LoopSound() method in the
AudioSource class:

void LoopSound(bool Loop)
{
 alSourcei(FSourceID, AL_LOOPING, Loop ? 1 : 0);
}

The Android OS runs on multiple hardware architectures, and this can cause some additional
difficulties when reading the .wav files. If the CPU we are running on has a big-endian
architecture, we have to swap the bytes in the fields of the sWAVHeader structure. The
modified constructor of the WavProvider class looks like the following:

WavProvider(clPtr<Blob> source)
{
 FRawData = source;
 sWAVHeader H = *(sWAVHeader*)(FRawData->GetData());
#if __BIG_ENDIAN__
 Header.FormatTag = SwapBytes16(Header.FormatTag);
 Header.Channels = SwapBytes16(Header.Channels);
 Header.SampleRate = SwapBytes32(Header.SampleRate);
 Header.DataSize = SwapBytes32(Header.DataSize);
 Header.nBlockAlign = SwapBytes16(Header.nBlockAlign);
 Header.nBitsperSample = SwapBytes16(Header.nBitsperSample);

Big-endian memory byte order requires lower and higher bytes of 16-bit values to be swapped:

 if ((Header.nBitsperSample == 16))
 {
 clPtr<Blob> NewBlob = new clBlob();
 NewBlob->CopyBlob(FRawData.GetInternalPtr());
 FRawData = NewBlob;
 unsigned short* Ptr =
 (unsigned short*)FRawData->GetData();
 for (size_t i = 0 ; i != Header.DataSize / 2; i++)
 {
 *Ptr = SwapBytes16(*Ptr);
 Ptr++;
 }
 }

Cross-platform Audio Streaming

130

#endif
 FChannels = H.Channels;
 FSamplesPerSec = H.SampleRate;
 FBitsPerSample = H.nBitsperSample;
}

Here we use the __BIG_ENDIAN__ preprocessor symbol provided by the GCC compiler to
detect the big-endian CPU. The two SwapBytes() functions change the order of the bytes in
the unsigned word and double word:

unsigned short SwapBytes16(unsigned short Val)
{
 return (Val >> 8) | ((Val & 0xFF) << 8);
}
unsigned int SwapBytes32(unsigned int Val)
{
 return	 ((Val & 0xFF) << 24) |
 ((Val & 0xFF00) << 8) |
 ((Val & 0xFF0000) >> 8) |
 (Val >> 24);
}

See also
ff Decoding Ogg Vorbis files

Streaming sounds
We have learned how to play short audio samples, and now we are ready to organize sound
streaming. This recipe explains how to organize a buffer queue to allow on-the-fly sound
generation and streaming.

Getting ready
We suppose that the reader is already familiar with our AudioSource and
iWaveDataProvider classes described in the previous recipe.

Chapter 5

131

How to do it…
1.	 First, we enrich iWaveDataProvider with the additional methods

IsStreaming(), which indicates that the data from this provider should be read in
small chunks, and StreamWaveData(), which actually reads a single chunk:
class iWaveDataProvider: public iObject
 …
 virtual bool IsStreaming() const { return false; }
 virtual int StreamWaveData(int Size) { return 0; }
 …
};

2.	 Next we write a derived class, which contains an intermediate buffer for decoded or
generated sound data. It does not implement StreamWaveData(), but implements
the GetWaveData() and GetWaveDataSize() methods:
class StreamingWaveDataProvider: public iWaveDataProvider
{
public:
 virtual bool IsStreaming() const { return true; }

 virtual ubyte* GetWaveData() { return (ubyte*)&FBuffer[0]; }
 virtual size_t GetWaveDataSize() const { return FBufferUsed; }

 std::vector<char> FBuffer;
 int FBufferUsed;
};

3.	 The FBufferUsed field holds the number of bytes used in the FBuffer vector. Now
we modify the AudioSource class to support our new streaming data providers. We
do not want cracks or interruptions in the playback process, so we use a queue of
buffers instead of the single buffer that we used in a single-block sound playback.
To do this, we first declare a buffer counter and an array of buffer IDs:
class AudioSource: public iObject
{
private:
 unsigned int FSourceID;
 int FBuffersCount;
 unsigned int FBufferID[2];

Cross-platform Audio Streaming

130

4.	 We leave the implementations of the LoopSound(), Stop(), Pause(),
IsPlaying(), and SetVolume() member functions, constructor, and destructor
unchanged. The BindWaveform() method now generates buffers if the associated
wave data provider supports streaming:
 void BindWaveform(clPtr<iWaveDataProvider> Wave)
 {
 FWaveDataProvider = Wave;
 if (!Wave) return;

 if (Wave->IsStreaming())
 {
 FBuffersCount = 2;
 alGenBuffers(FBuffersCount, &FBufferID[0]);
 }
 else
 {
 FBuffersCount = 1;
 alGenBuffers(FBuffersCount, &FBufferID[0]);
 alBufferData(FBufferID[0],
 Wave->GetALFormat(),
 Wave->GetWaveData(),
 (int)Wave->GetWaveDataSize(),
 Wave->FSamplesPerSec);
 alSourcei(FSourceID, AL_BUFFER, FBufferID[0]);
 }
 }

5.	 The Play() method invokes the alSourcePlay() function and adds buffers to the
queue in the streaming mode:
 void Play()
 {
 if (IsPlaying()) { return; }
 if (!FWaveDataProvider) { return; }

 int State;
 alGetSourcei(FSourceID, AL_SOURCE_STATE, &State);

 if (State != AL_PAUSED &&
 FWaveDataProvider->IsStreaming())
 {
 UnqueueAll();

Chapter 5

131

6.	 Fill both audio buffers and submit them into the OpenAL API:
 StreamBuffer(FBufferID[0], BUFFER_SIZE);
 StreamBuffer(FBufferID[1], BUFFER_SIZE);
 alSourceQueueBuffers(FSourceID, 2, &FBufferID[0]);
 }
 alSourcePlay(FSourceID);
 }

7.	 Now that we are using more than one buffer, we change FBufferID to
FBufferID[0] in the UnqueueAll() method:
 void UnqueueAll()
 {
 int Queued;
 alGetSourcei(FSourceID, AL_BUFFERS_QUEUED, &Queued);
 if (Queued > 0)
 alSourceUnqueueBuffers(FSourceID,
 Queued, &FBufferID[0]);
 }

8.	 Finally, as streaming is a continuous process and not a fire-and-forget operation,
we provide the Update() method, which pulls an appropriate amount of data
from iWaveDataProvider:
 void Update(float DeltaSeconds)
 {
 if (!FWaveDataProvider) { return; }
 if (!IsPlaying()) { return; }

 if (FWaveDataProvider->IsStreaming())
 {
 int Processed;
 alGetSourcei(FSourceID,
 AL_BUFFERS_PROCESSED, &Processed);

 while (Processed--)
 {
 unsigned int BufID;
 alSourceUnqueueBuffers(FSourceID,1,&BufID);
 StreamBuffer(BufID, BUFFER_SIZE);
 alSourceQueueBuffers(FSourceID, 1, &BufID);
 }
 }
 }

Cross-platform Audio Streaming

130

9.	 In the Update() method, we use the StreamBuffer() member function, which
does the job of filling the buffer with decoded or generated data from the provider:
 int StreamBuffer(unsigned int BufferID, int Size)
 {
 int ActualSize =
 FWaveDataProvider->StreamWaveData(Size);

 ubyte* Data = FWaveDataProvider->GetWaveData();
 int Sz = (int)FWaveDataProvider->GetWaveDataSize();

 alBufferData(BufferID,
 FWaveDataProvider->GetALFormat(),
 Data, Sz,
 FWaveDataProvider->FSamplesPerSec);

 return ActualSize;
 }

10.	 The BUFFER_SIZE constant is set to be big enough to hold the data for a couple of
seconds of streamed data:

const int BUFFER_SIZE = 352800;

The value 352800 is derived as follows:
2 channels × 44,100 samples per second × 2 bytes per sample × 2
seconds = 352,800 bytes.

How it works…
The code in this recipe does not implement the StreamWaveData() method. To hear
something from the speakers, we write the ToneGenerator class, which generates a pure
sine wave as the output data. This class is derived from StreamingWaveDataProvider:

class ToneGenerator : public StreamingWaveDataProvider
{

The parameters of the signal and an internal sample counter are declared first:

 int FSignalFreq;
 float FFrequency;
 float FAmplitude;
private:
 int LastOffset;

Chapter 5

131

The constructor sets the sound data parameters and pre-allocates the buffer space:

public:
 ToneGenerator()
 {
 FBufferUsed = 100000;
 FBuffer.resize(100000);

 FChannels = 2;
 FSamplesPerSec = 4100;
 FBitsPerSample = 16;

 FAmplitude = 350.0f;
 FFrequency = 440.0f;
 }
 virtual ~ToneGenerator() {}

The main routine of this class calculates the sine function, keeping track of the current
sample index to make the queue of sound buffers contain all the values:

 virtual int StreamWaveData(int Size)
 {
 if (Size > static_cast<int>(FBuffer.size()))
 {
 FBuffer.resize(Size);
 LastOffset = 0;
 }

 for (int i = 0 ; i < Size / 4 ; i++)
 {

The argument t for the sine function is calculated from the local index i and the phase value
named LastOffset:

 float t = (2.0f * 3.141592654f *
 FFrequency * (i + LastOffset)) /
 (float) FSamplesPerSec;
 float val = FAmplitude * std::sin(t);

The following lines convert a single floating-point value to a signed word. Such conversion is
necessary because the digital audio hardware only works with integer data:

 short V = static_cast<short>(val);
 FBuffer[i * 4 + 0] = V & 0xFF;
 FBuffer[i * 4 + 1] = V >> 8;
 FBuffer[i * 4 + 2] = V & 0xFF;
 FBuffer[i * 4 + 3] = V >> 8;
 }

Cross-platform Audio Streaming

130

Next we increment the generated sample counter while keeping it inside the 0…
FSignalFreq-1 range:

 LastOffset += Size / 2;
 LastOffset %= FSamplesPerSec;

At the end, the number of generated bytes is returned:

 FBufferUsed = Size;
 return FBufferUsed;
 }
};

We can now use the AudioSource class to stream the sound. Once the audio source is
created, we attach a new streaming provider that generates a 440 Hz sine waveform:

class SoundThread: public iThread
{
 virtual void Run()
 {
 while (!g_Audio.Finitialized) {}

 clPtr<AudioSource> Src = new AudioSource();
 Src->BindWaveform(new ToneGenerator());
 Src->Play();

 FPendingExit = false;
 double Seconds = Env_GetSeconds();

In the infinite loop, we constantly update the source, forcing it to generate sound data:

 While (!IsPendingExit())
 {
 float DeltaSeconds =
 (float)(Env_GetSeconds() - Seconds);
 Src->Update(DeltaSeconds);
 Seconds = Env_GetSeconds();
 }

 }
}

There's more…
It is easy to notice that in the ToneGenerator::StreamWaveData() member function,
we can use any formula, not just the sine function. We encourage the reader to experiment
and create some sort of software synthesizer.

Chapter 5

131

Decoding Ogg Vorbis files
Ogg Vorbis is a widely used, free, open, and patent-free audio compression format. It is
comparable to other formats used to store and play digital music, such as MP3, VQF, and AAC.

Getting ready
The reader should be familiar with the sound streaming technique from the previous recipe.
The details on the .ogg container file format and the Vorbis audio compression algorithm
can be found at http://xiph.org.

How to do it...
1.	 We add the IsEOF() method to the iWaveDataProvider interface. This is used

to inform AudioSource when the sound is finished:
 virtual bool IsEOF() const { return true; }

2.	 Another method we add is Seek(), which rewinds the audio stream:
 virtual void Seek(float Time) {}

3.	 In the DecodingProvider class, we implement the StreamWaveData()
member function, which reads the decoded sound data from a source memory
block using the ReadFromFile() method:
class DecodingProvider: public StreamingWaveDataProvider
{
 clPtr<Blob> FRawData;
public:
 bool FEof;
 virtual bool IsEOF() const { return FEof; }

4.	 The FLoop flag tells the decoder to rewind if an end of stream is encountered
and start playback again from the beginning:
 bool FLoop;
public:
 DecodingProvider(const clPtr<Blob>& blob)
 {
 FRawData = blob;
 FEof = false;
 }

5.	 The main streaming routine attempts to read more data from the source
memory block:
 virtual int StreamWaveData(int Size)
 {

Cross-platform Audio Streaming

130

6.	 We fill an unused part of the buffer with zeros to avoid the noise:
 int OldSize = (int)FBuffer.size();
 if (Size > OldSize)
 {
 FBuffer.resize(Size);
 for (int i = 0 ; i < OldSize - Size ; i++)
 FBuffer[OldSize + i] = 0;
 }

7.	 At the end of file, we return zero as the decoded data size:
 if (FEof) { return 0; }

8.	 Next, we try to read from the source until we collect the Size bytes:
 int BytesRead = 0;
 while (BytesRead < Size)
 {
 int Ret = ReadFromFile(Size);

9.	 If we have the data, increment the counter:
 if (Ret > 0)
 {
 BytesRead += Ret;
 }

10.	 If the number of bytes is zero, we have reached the end of the file:
 else if (Ret == 0)
 {
 FEof = true;

11.	 The FLoop flag tells us to rewind the stream to the beginning:
 if (FLoop)
 {
 Seek(0);
 FEof = false;
 continue;
 }
 break;
 } else

12.	 Otherwise, we have an error in the stream:
 {
 Seek(0);
 FEof = true;
 break;
 }
 }

Chapter 5

131

13.	 The number of bytes buffered is now the number of bytes read from the file:
 return (FBufferUsed = BytesRead);
 }

14.	 The ReadFromFile() function is purely virtual here, and the implementations are
in the derived classes:
protected:
 virtual int ReadFromFile(int Size) = 0;
};

15.	 In Chapter 2, Porting Common Libraries, we compiled Ogg and Vorbis static libraries.
We use them now in the OggProvider class, which implements the actual sound
data decoding:
class OggProvider: public DecodingProvider
{

16.	 The state of the decoder resides in three variables:
 OggVorbis_File FVorbisFile;
 ogg_int64_t FOGGRawPosition;
 int FOGGCurrentSection;

17.	 The constructor initializes Ogg and Vorbis libraries. The Callbacks structure
contains pointers to the functions, which allows the Ogg library to read the data
from our memory block using our virtual filesystem streams:
public:
 OggProvider(const clPtr<Blob>& Blob):
 DecodingProvider(Blob)
 {
 FOGGRawPosition = 0;

18.	 Fill in the Callbacks structure and initialize the file reader:
 ov_callbacks Callbacks;
 Callbacks.read_func = OGG_ReadFunc;
 Callbacks.seek_func = OGG_SeekFunc;
 Callbacks.close_func = OGG_CloseFunc;
 Callbacks.tell_func = OGG_TellFunc;
 OGG_ov_open_callbacks(this, &FVorbisFile,
 NULL, -1, Callbacks);

19.	 Declare the vorbis_info structure to read the duration of an audio stream. Store
the information about the stream:
 vorbis_info* VorbisInfo;
 VorbisInfo = OGG_ov_info (&FVorbisFile, -1);
 FChannels = VorbisInfo->channels;
 FSamplesPerSec = VorbisInfo->rate;

Cross-platform Audio Streaming

130

20.	 The FBitsPerSample structure is set to 16 bits, and later we tell the decoder to
output the sound data as a 16 bit signal:
 FBitsPerSample = 16;
 }

21.	 In the destructor, FVorbisFile is cleared:
 virtual ~OggProvider() { OGG_ov_clear(&FVorbisFile); }

22.	 The ReadFromFile() function uses the OGG library for stream decoding:
 virtual int ReadFromFile(int Size, int BytesRead)
 {
 return (int)OGG_ov_read(&FVorbisFile,
 &FBuffer[0] + BytesRead,
 Size - BytesRead,

23.	 Here, we assume that we are running on a little-endian CPU, such as Intel Atom, Intel
Core, or some other ARM processor usually encountered in mobile Android devices
(http://en.wikipedia.org/wiki/Endianness). If this is not the case, for
example, the processor is a PowerPC or MIPS in a big-endian mode, you should
provide 1 as an argument to the OGG_ov_read() function:
 0, // 0 for LITTLE_ENDIAN, 1 for BIG_ENDIAN
 FBitsPerSample >> 3,
 1,
 &FOGGCurrentSection);
 }

24.	 The Seek() member function rewinds the stream to the specified time:
 virtual void Seek(float Time)
 {
 FEof = false;
 OGG_ov_time_seek(&FVorbisFile, Time);
 }

25.	 At the end of the class definition, the OGG_Callbacks.h file is included where
static callback functions are implemented:
private:
 #include "OGG_Callbacks.h"
};

26.	 The functions in the OGG_Callbacks.h file implement a FILE*-like interface,
which the OGG library uses to read our memory block. We pass an instance of
OggProvider as the void* DataSource argument in all of these functions.

27.	 The OGG_ReadFunc() function reads the specified number of bytes and checks
for the end of the data:

Chapter 5

131

size_t OGG_ReadFunc(void* Ptr, size_t Size, size_t NMemB,
 void* DataSource)
 {
 OggProvider* OGG = (OggProvider*)DataSource;

 size_t DataSize = OGG->FRawData->GetSize();

 ogg_int64_t BytesRead = DataSize -
 OGG- >FOGGRawPosition;
 ogg_int64_t BytesSize = Size * NMemB;

 if (BytesSize < BytesRead) { BytesRead = BytesSize; }

 memcpy(Ptr,
 (ubyte*)OGG->FRawData->GetDataConst() +
 OGG->FOGGRawPosition, (size_t)BytesRead);

 OGG->FOGGRawPosition += BytesRead;
 return (size_t)BytesRead;
 }

28.	 The OGG_SeekFunc() function sets the current read position equal to the value of
Offset:
 int OGG_SeekFunc(void* DataSource, ogg_int64_t Offset,
 int Whence)
 {
 OggProvider* OGG = (OggProvider*)DataSource;
 size_t DataSize = OGG->FRawData->GetSize();
 if (Whence == SEEK_SET)
 {
 OGG->FOGGRawPosition = Offset;
 }
 else if (Whence == SEEK_CUR)
 {
 OGG->FOGGRawPosition += Offset;
 }
 else if (Whence == SEEK_END)
 {
 OGG->FOGGRawPosition = DataSize + Offset;
 }

Cross-platform Audio Streaming

130

29.	 Prevent the position from outrunning the end of stream:
 if (OGG->FOGGRawPosition > (ogg_int64_t)DataSize)
 {
 OGG->FOGGRawPosition = (ogg_int64_t)DataSize;
 }
 return static_cast<int>(OGG->FOGGRawPosition);
 }

30.	 Since we use the memory block as a data source, the OGG_CloseFunc()
function returns zero immediately because we don't need to close any handles:
 int OGG_CloseFunc(void* DataSource) { return 0; }

31.	 The OGG_TellFunc() function returns the current read position:
 long OGG_TellFunc(void* DataSource)
 {
 return (int)
 (((OggProvider*)DataSource)->FOGGRawPosition);
 }

How it works…
We initialize the OpenAL as in the previous recipes and bind OggProvider as a data source
for the AudioSource instance:

 clPtr<AudioSource> Src = new AudioSource();
 clPtr<Data> = LoadFileAsBlob("test.ogg");
 Src->BindWaveform(new OggProvider(Data));
 Src->Play();
 FPendingExit = false;
 double Seconds = Env_GetSeconds();

Update the audio source in a loop, just as we do with ToneGenerator:

 While (!IsPendingExit())
 {
 float DeltaSeconds =
 (float)(Env_GetSeconds() - Seconds);
 Src->Update(DeltaSeconds);
 Seconds = Env_GetSeconds();
 }

The LoadFileAsBlob() function is the same as the one we used to load.wav files.

Chapter 5

131

Decoding tracker music using ModPlug
Mobile devices are always limited on resources compared to the desktops. These limitations
are both in terms of computing power and the amount of available storage. High-quality
MPEG-1 Layer 3 or the Ogg Vorbis audio files occupy a lot of space even at modest bitrates.
For example, in a 20 Mb game, two tracks of size 5 Mb each would be unacceptable. However,
there is a good trade-off between quality and compression. A technology originated in the
eighties known as the tracker music — sometimes called chiptune or 8-bit music (http://
en.wikipedia.org/wiki/Music_tracker). Tracker music formats don't use pulse-
code modulation to store the entire soundtrack. Instead, they use notes and effects, which
are applied to samples and played in several channels. Samples are small PCM encoded
sounds of musical instruments. Notes correspond to the playback speed of a sample. We use
the libmodplug library to decode the most popular tracker music file formats, such as .it,
.xm, and .mod.

Getting ready
Check out the most recent version of libmodplug at http://modplug-xmms.
sourceforge.net.

How to do it...
1.	 The ModPlug library allows us to implement another class derived from

DecodingProvider, called ModPlugProvider. The library supports direct
decoding of the memory blocks, so we don't have to implement any kind of I/O
callbacks:
class ModPlugProvider: public DecodingProvider
{

2.	 As a state, this class contains the ModPlugFile structure:
private:
 ModPlugFile* FModFile;

3.	 The sole constructor initializes the ModPlugFile field:
public:
 explicit ModPlugProvider(const clPtr<Blob>& Blob)
 : DecodingProvider(Blob)
 {
 FChannels = 2;
 FSamplesPerSec = 44100;
 FBitsPerSample = 16;

Cross-platform Audio Streaming

130

 FModFile = ModPlug_Load_P(
 (const void*)FRawData->GetDataConst(),
 (int)FRawData->GetSize());
 }

4.	 The destructor unloads the file:
 virtual ~ModPlugProvider() { ModPlug_Unload_P(FModFile); }

5.	 The ReadFromFile() method calls the ModPlug's reading function:
 virtual int ReadFromFile(int Size, int BytesRead)
 {
 return ModPlug_Read_P(FModFile,
 &FBuffer[0] + BytesRead,
 Size - BytesRead);
 }

6.	 To rewind the source stream, we use the ModPlug_Seek() member function:
 virtual void Seek(float Time)
 {
 FEof = false;
 ModPlug_Seek_P(FModFile, (int)(Time * 1000.0f));
 }
};

How it works...
There is no dedicated sample for module file decoding. For better understanding, we suggest
modifying the 3_AL_PlayingOGG source code. The only required modification is the
replacement of OggProvider by ModPlugProvider. For testing, you have the test.it
file in the 3_AL_PlayingOGG folder.

See also
ff Decoding Ogg Vorbis files

Unifying OpenGL ES 3
and OpenGL 3

In this chapter, we will cover:

ff Unifying the OpenGL 3 core profile and OpenGL ES 2

ff Initializing the OpenGL 3 core profile on Windows

ff Initializing OpenGL ES 2 on Android

ff Unifying GLSL 3 and GLSL ES 2 shaders

ff Manipulating geometry

ff Unifying vertex arrays

ff Creating a wrapper for textures

ff Creating a canvas for immediate rendering

Introduction
No doubt, any game needs to render some graphics. In this chapter, we will learn how to
create a portable graphics rendering subsystem for your game. The chapter is titled Unifying
OpenGL ES 3 and OpenGL 3; however, in this book we deal with portable development, so
we start our recipes with the OpenGL 3 desktop API. This serves two purposes. First, OpenGL
3 is almost a superset of OpenGL ES 3. This will allow us to port applications between two
versions of OpenGL API easily. Second, we can create a simple but very effective wrapper
to abstract both APIs from the game code, so that we are able to develop our games on a
desktop PC.

6

Unifying OpenGL ES 3 and OpenGL 3

158

OpenGL ES 3 support was introduced in Android 4.3 and Android NDK r9.
However, all of the examples in this book are backwards-compatible with
the previous version of this mobile API, OpenGL ES 2.

OpenGL itself is a huge topic which merits a dedicated book. We recommend starting with The
OpenGL Programming Guide, Pearson Publications (the red book).

Unifying the OpenGL 3 core profile and
OpenGL ES 2

Let's implement a thin abstraction layer on top of OpenGL 3 and OpenGL ES 2, to make our
high-level code unaware of the particular GL version that our application runs on. This means
that our game code can be completely unaware whether it runs on a mobile or a desktop
version of OpenGL. Take a look at the following diagram:

Graphics hardware

Graphics drivers (OS-dependant)

GL 3 GL ES 2 GL ES 3

OpenGL
(glClear, gIDraw...)

High-level API
in our application

The part that we are going to implement in this chapter is within the High-level API rectangle.

Getting ready
In Chapter 4, Organizing a Virtual Filesystem, we created an example 3_AsyncTexture,
where we learned how to initialize OpenGL ES 2 on Android using Java. Now we use GLView.
java from that example to initialize a rendering context on Android. No EGL from Android NDK
is involved, so our examples will run on Android 2.1 and higher.

Chapter 6

159

How to do it…
1.	 In the previous recipe, we mentioned the sLGLAPI struct. It contains pointers

to OpenGL functions that we load at startup dynamically. The declaration can
be found in LGLAPI.h, and it starts like in the following code:
struct sLGLAPI
{
 sLGLAPI() { memset(this, 0, sizeof(*this)); };
…Win32 defines skipped here…
 PFNGLACTIVETEXTUREPROC glActiveTexture;
 PFNGLATTACHSHADERPROC glAttachShader;
 PFNGLBINDATTRIBLOCATIONPROC glBindAttribLocation;
…

2.	 A variable is defined to hold a pointer to this structure:
sLGLAPI* LGL3;

3.	 This means we have to call all OpenGL functions through pointers contained in LGL3.
For example, following is the code for OnDrawFrame() from the 2_OpenGLES2
example:
void OnDrawFrame()
{
 LGL3->glClearColor(1.0, 0.0, 0.0, 0.0);
 LGL3->glClear(GL_COLOR_BUFFER_BIT);
}

A bit more complicated than a simple glClear(GL_COLOR_BUFFER_BIT) call,
so why would we need it? Depending on how your application links to OpenGL on
different platforms, glClear-like entities can be represented in two ways. If your
application is linked dynamically to OpenGL, global symbols such as glClear
are represented by global variables that hold pointers to functions retrieved from
a .DLL/.so library. Your application might also be statically linked against some
OpenGL wrapper library, exactly how it is done on Android with the -lGLESv2 and
-lGLESv3 switches in LOCAL_LDLIBS. In this case, glClear() will be a function,
not a variable, and you will not be able to change the code it contains. Furthermore,
things get more complicated if we look at certain OpenGL 3 functions, for example,
glClearDepth(double Depth), only to find out that OpenGL ES 2 has no direct
equivalent for them. That is why we need a collection of pointers to OpenGL functions
we can change at will.

Unifying OpenGL ES 3 and OpenGL 3

158

4.	 On Android, we define a thunk function:
void Emulate_glClearDepth(double Depth)
{
 glClearDepthf(static_cast<float>(Depth));
}

5.	 This function emulates the glClearDepth() call of OpenGL 3 using the
glClearDepthf() call of OpenGL ES 3. Now things are simple again. There
are some GL3 functions that cannot be trivially emulated on GLES3. We can
now easily implement empty stubs for them, for example:

void Emulate_glPolygonMode(GLenum, GLenum)
{
 // not supported
}

Unimplemented features in this case will disable some rendering capabilities; but the
application will run fine, while gracefully degrading on GLES2. Some more complicated
aspects, such as multiple render targets using glBindFragDataLocation(), will still
require us to select different shader programs and code paths for OpenGL 3 and OpenGL
ES 2. However, this is now doable.

How it works…
The sLGLAPI binding code is implemented in the GetAPI() function. The Windows version
that was described in previous recipes was simple .DLL loading code. The Android version
is even simpler. Since our application is linked statically with the OpenGL ES 2 library, we just
assign function pointers to the fields of sLGLAPI, except the calls that are not present in
OpenGL ES 2:

void GetAPI(sLGLAPI* API) const
{
 API->glActiveTexture = &glActiveTexture;
 API->glAttachShader = &glAttachShader;
 API->glBindAttribLocation = &glBindAttribLocation;
…

Instead, we use stubs for them, as described previously:

 API->glClearDepth = &Emulate_glClearDepth;
 API->glBindFragDataLocation = &Emulate_glBindFragDataLocation;
…

Chapter 6

159

Now the usage of OpenGL is entirely transparent, and our application is completely unaware
of what flavor of OpenGL is actually in use. Look at the OpenGL3.cpp file:

#include <stdlib.h>
#include "LGL.h"
sLGLAPI* LGL3 = NULL;
void OnDrawFrame()
{
 LGL3->glClearColor(1.0, 0.0, 0.0, 0.0);
 LGL3->glClear(GL_COLOR_BUFFER_BIT);
}

This code runs identically on Windows and Android.

There's more…
The Android version of the 2_OpenGLES2 example can be built with the following commands:

>ndk-build

>ant copy-common-media debug

Running the app will paint the entire screen in red, and output the surface size into the
system log:

W/GLView (3581): creating OpenGL ES 2.0 context
I/App13 (3581): SurfaceSize: 1196 x 720

There are other differences in OpenGL 3 Core Profile, OpenGL ES 2, and OpenGL ES 3 that
cannot be abstracted by mimicking all of the API function calls. This includes different syntax
of GLSL shaders, and the mandatory usage of vertex array objects (VAO) in OpenGL 3.2 Core
Profile, which are absent from OpenGL ES 2.

See also
ff Unifying the GLSL 3 and GLSL ES 2 shaders

ff Manipulating geometry

ff Unifying vertex arrays

ff Creating a wrapper for textures

Unifying OpenGL ES 3 and OpenGL 3

158

Initializing the OpenGL 3 core profile on
Windows

OpenGL 3.0 introduced the idea of features deprecation. Some features could be marked
as deprecated and could be removed from the specification in later versions. For example,
immediate mode rendering via glBegin ()/glEnd () was marked as deprecated in OpenGL
standard Version 3.0 and removed in Version 3.1. However, many OpenGL implementations
retain the deprecated functionality. For example, they want to be able to provide a way for
users of modern OpenGL versions to access the features from old APIs.

Starting from the OpenGL Version 3.2, a new mechanism was introduced to allow the user to
create a rendering context of particular version. Each version allows backwards-compatible,
or core profile contexts. A backwards-compatible context allows the use of all features
marked as deprecated. The core profile context removes the deprecated functionality, making
the API cleaner. Furthermore, the OpenGL 3 core profile is much closer to the mobile OpenGL
ES 2 than previous OpenGL versions. Since the goal of this book is to provide a way to develop
mobile applications on a desktop, this similarity in feature sets will come in handy. Let's find
out how we can create a core profile context manually on Windows.

For readers with Unix or Mac desktop computers, we recommend
using the GLFW library for OpenGL context creation, available at
http://www.glfw.org.

Getting ready
More information on core and compatibility context can be found on the official OpenGL page
at http://www.opengl.org/wiki/Core_And_Compatibility_in_Contexts.

How to do it…
There is an OpenGL extension named WGL_ARB_create_context that can create an
OpenGL context of a specific version on Windows, which is available at http://www.
opengl.org/registry/specs/ARB/wgl_create_context.txt.

The trick is that we can get a pointer to the wglCreateContextAttribsARB()
function, which can create a core profile context, only from an existing valid OpenGL
context. This means we have to initialize OpenGL twice. Firstly, we create a temporary
compatibility context using glCreateContext() and retrieve a pointer to the
wglCreateContextAttribsARB() extension function. Then, we go ahead and use
the extension function to create an OpenGL context of the specified version and with
the desired flags. The following is the code we use to create an OpenGL rendering context:

Chapter 6

159

The sLGLAPI structure contains pointers to all the OpenGL functions
we use. Read the previous recipe Unifying the OpenGL 3 core profile and
OpenGL ES 2 for implementation details.

HGLRC CreateContext(sLGLAPI* LGL3, HDC DeviceContext,
 int VersionMajor, int VersionMinor)
{
 HGLRC RenderContext = 0;

The first time this function is called, it reaches the else block and creates an
OpenGL backwards-compatible context. When you retrieve a valid pointer to the
wglCreateContextAttribsARB() function, save it in the sLGLAPI structure,
and call CreateContext() again. This time the first if block takes control:

 if (LGL3->wglCreateContextAttribsARB)
 {
 const int Attribs[] =
 {
 WGL_CONTEXT_MAJOR_VERSION_ARB, VersionMajor,
 WGL_CONTEXT_MINOR_VERSION_ARB, VersionMinor,
 WGL_CONTEXT_LAYER_PLANE_ARB, 0,
 WGL_CONTEXT_FLAGS_ARB,
 WGL_CONTEXT_FORWARD_COMPATIBLE_BIT_ARB,
 WGL_CONTEXT_PROFILE_MASK_ARB,
 WGL_CONTEXT_CORE_PROFILE_BIT_ARB,
 0 // zero marks the end of values
 };
 RenderContext = LGL3->wglCreateContextAttribsARB(
 DeviceContext, 0, Attribs);
 }
 else
 {

1.	 The lglCreateContext() call is just a wrapper for an OS-specific API call,
wglCreateContext() in this case:
 RenderContext = LGL3->lglCreateContext(
 DeviceContext);
 }
 return RenderContext;
}

Unifying OpenGL ES 3 and OpenGL 3

158

2.	 This function is wrapped into the CreateContextFull() function, which selects an
appropriate pixel format and makes the context current:
HGLRC CreateContextFull(sLGLAPI* LGL3, HDC DeviceContext,
 int BitsPerPixel, int ZBufferBits, int StencilBits,
 int Multisample, int VersionMajor, int VersionMinor)
{
 bool FormatSet = ChooseAndSetPixelFormat(LGL3,
 DeviceContext,
 BitsPerPixel, ZBufferBits, StencilBits, Multisample);
 if (!FormatSet) return 0;
 HGLRC RenderContext = CreateContext(LGL3,
 DeviceContext, VersionMajor, VersionMinor);
 if (!RenderContext) return 0;
 if (!MakeCurrent(LGL3, DeviceContext, RenderContext))
 { return 0; }
 Reload(LGL3);
 return RenderContext;

}

It returns the created OpenGL rendering context, HGLRC on Windows, and updates
pointers in LGL3 structure to correspond to the created context.

The previously described function has many side effects, and some
functional programmers claim it is inconsistent. Another approach is to
return a new HGLRC together with the new LGL3 (or as a part of new LGL3),
so you can make it current later at your own will, and still has an access to
the old context. We will leave this idea as an exercise for the reader.

The function Reload(), previously mentioned, reloads pointers to OpenGL functions
in the sLGLAPI structure. This indirection is important since we need to emulate the
behavior of some OpenGL 3 functions on OpenGL ES 2.

Pixel format selection also uses another OpenGL extension: WGL_ARB_pixel_
format available at http://www.opengl.org/registry/specs/ARB/wgl_
pixel_format.txt.

3.	 That means we have to choose and set the pixel format twice. The code is as follows:
bool ChooseAndSetPixelFormat(sLGLAPI* LGL3, HDC
 DeviceContext,
 int BitsPerPixel, int ZBufferBits, int StencilBits,
 int Multisample)
{
 PIXELFORMATDESCRIPTOR PFD;
 memset(&PFD, 0, sizeof(PFD));

Chapter 6

159

 PFD.nSize = sizeof(PIXELFORMATDESCRIPTOR);
 PFD.nVersion = 1;
 PFD.dwFlags = PFD_DRAW_TO_WINDOW |
 PFD_SUPPORT_OPENGL | PFD_DOUBLEBUFFER;
 PFD.iPixelType = PFD_TYPE_RGBA;
 PFD.cColorBits = static_cast<BYTE>(BitsPerPixel & 0xFF);
 PFD.cDepthBits = static_cast<BYTE>(ZBufferBits & 0xFF);
 PFD.cStencilBits = static_cast<BYTE>(StencilBits & 0xFF);
 PFD.iLayerType = PFD_MAIN_PLANE;
 GLint PixelFormat = 0;

4.	 Try to use the extension if the valid pointer is available:
 if (LGL3->wglChoosePixelFormatARB)
 {
 const int Attribs[] =
 {
 WGL_DRAW_TO_WINDOW_ARB, GL_TRUE,
 WGL_SUPPORT_OPENGL_ARB, GL_TRUE,
 WGL_ACCELERATION_ARB, WGL_FULL_ACCELERATION_ARB,
 WGL_DOUBLE_BUFFER_ARB , GL_TRUE,
 WGL_PIXEL_TYPE_ARB , WGL_TYPE_RGBA_ARB,
 WGL_COLOR_BITS_ARB , BitsPerPixel,
 WGL_DEPTH_BITS_ARB , ZBufferBits,
 WGL_STENCIL_BITS_ARB , StencilBits,
 WGL_SAMPLE_BUFFERS_ARB, GL_TRUE,
 WGL_SAMPLES_ARB , Multisample,
 0 // zero marks the end of values
 };
 GLuint Count = 0;
 LGL3->wglChoosePixelFormatARB(DeviceContext,
 Attribs, NULL, 1, &PixelFormat, &Count);
 if (!PixelFormat)
 {
 PixelFormat = ::ChoosePixelFormat(
 DeviceContext, &PFD);
 }
 return ::SetPixelFormat(DeviceContext,
 PixelFormat, NULL);
 }

Unifying OpenGL ES 3 and OpenGL 3

158

5.	 Alternatively, fall back to the pixel format selection function provided by WinAPI:

 if (!PixelFormat)
 {
 PixelFormat = ::ChoosePixelFormat(DeviceContext, &PFD);
 }
 return ::SetPixelFormat(DeviceContext,
 PixelFormat, &PFD);
}

How it works…
The Reload() function loads opengl32.dll and gets pointers to certain WGL
(http://en.wikipedia.org/wiki/WGL_(API)) functions:

void LGL::clGLExtRetriever::Reload(sLGLAPI* LGL3)
{
 if (!FLibHandle) FLibHandle =
 (void*)::LoadLibrary("opengl32.dll");
 LGL3->lglGetProcAddress = (PFNwglGetProcAddress)
 ::GetProcAddress((HMODULE)FLibHandle, "wglGetProcAddress");
 LGL3->lglCreateContext = (PFNwglCreateContext)
 ::GetProcAddress((HMODULE)FLibHandle, "wglCreateContext");
 LGL3->lglGetCurrentContext = (PFNwglGetCurrentContext)
 ::GetProcAddress((HMODULE)FLibHandle,"wglGetCurrentContext");
 LGL3->lglMakeCurrent = (PFNwglMakeCurrent)
 ::GetProcAddress((HMODULE)FLibHandle, "wglMakeCurrent");
 LGL3->lglDeleteContext = (PFNwglDeleteContext)
 ::GetProcAddress((HMODULE)FLibHandle, "wglDeleteContext");
 GetAPI(LGL3);
}

The GetAPI() function is much bigger but still trivial. The following are just a few lines to give
you the idea:

void LGL::clGLExtRetriever::GetAPI(sLGLAPI* API) const
{
 API->glActiveTexture = (PFNGLACTIVETEXTUREPROC)
 GetGLProc(API, "glActiveTexture");
 API->glAttachShader = (PFNGLATTACHSHADERPROC)
 GetGLProc(API, "glAttachShader");

…

The complete source code is in the 1_OpenGL3 folder. You can build it with make:

>make all

Chapter 6

159

This example opens a window with a red background and prints lines similar to:

Using glCreateContext()
Using wglCreateContextAttribsARB()
OpenGL version: 3.2.0
OpenGL renderer: GeForce GTX 560/PCIe/SSE2
OpenGL vendor: NVIDIA Corporation

The OpenGL context version matches the version specified in the call to
glCreateContextAttribsARB().

There's more…
Setting a pixel format of a window more than once is not allowed in WinAPI. Hence, we
use a temporary invisible window to create the first rendering context and retrieve the
extensions. Check out the file OpenGL3.cpp from the 1_OpenGL3 example for further
implementation details.

See also
ff Unifying the OpenGL 3 core profile and OpenGL ES 3

Initializing OpenGL ES 2 on Android
Initialization of OpenGL on Android is straightforward when compared to Windows. There
are two possibilities to create an OpenGL rendering context in the Android NDK: use EGL API
(http://en.wikipedia.org/wiki/EGL_(API)) from NDK directly, or create a wrapper
Java class based on android.opengl.GLSurfaceView. We will choose the second option.

Getting ready
Make yourself familiar with the interface of the GLSurfaceView class at http://
developer.android.com/reference/android/opengl/GLSurfaceView.html.

How to do it…
1.	 We extend the GLSurfaceView class in the following way:

public class GLView extends GLSurfaceView
{
 …

Unifying OpenGL ES 3 and OpenGL 3

158

2.	 The init() method selects the RGB_888 pixel format for a frame buffer:
 private void init(int depth, int stencil)
 {
 this.getHolder().setFormat(PixelFormat.RGB_888);
 setEGLContextFactory(new ContextFactory());
 setEGLConfigChooser(
 new ConfigChooser(8, 8, 8, 0, depth, stencil));
 setRenderer(new Renderer());
 }

3.	 This inner class performs EGL calls to create an OpenGL rendering context:
 private static class ContextFactory implements
 GLSurfaceView.EGLContextFactory
 {
 private static int EGL_CONTEXT_CLIENT_VERSION = 0x3098;
 public EGLContext createContext(EGL10 egl,
 EGLDisplay display, EGLConfig eglConfig)
 {
 int[] attrib_list = { EGL_CONTEXT_CLIENT_VERSION 2,
 EGL10.EGL_NONE };
 EGLContext context = egl.eglCreateContext(
 display, eglConfig, EGL10.EGL_NO_CONTEXT,
 attrib_list);
 return context;
 }
 public void destroyContext(EGL10 egl,
 EGLDisplay display, EGLContext context)
 {
 egl.eglDestroyContext(display, context);
 }
 }

4.	 The ConfigChooser class deals with pixel formats. We omit all error checks here in
the book; however, a more robust implementation can be found in the GLView.java
file of the 2_OpenGLES2 example:
 private static class ConfigChooser implements
 GLSurfaceView.EGLConfigChooser
 {
 public ConfigChooser(int r, int g, int b, int a,
 int depth, int stencil)
…
 private static int EGL_OPENGL_ES2_BIT = 4;

Chapter 6

159

5.	 Default values for our pixel format chooser are:
 private static int[] s_configAttribs2 =
 {
 EGL10.EGL_RED_SIZE, 5,
 EGL10.EGL_GREEN_SIZE, 6,
 EGL10.EGL_BLUE_SIZE, 5,
 EGL10.EGL_ALPHA_SIZE, 0,
 EGL10.EGL_DEPTH_SIZE, 16,
 EGL10.EGL_STENCIL_SIZE, 0,
 EGL10.EGL_SAMPLE_BUFFERS, 0,
 EGL10.EGL_SAMPLES, 0,
 EGL10.EGL_RENDERABLE_TYPE, EGL_OPENGL_ES2_BIT,
 EGL10.EGL_NONE, EGL10.EGL_NONE
 };
 public EGLConfig chooseConfig(EGL10 egl,
 EGLDisplay display)
 {
 int[] num_config = new int[1];
 egl.eglChooseConfig(display, s_configAttribs2,
 null, 0, num_config);
 int numConfigs = num_config[0];
 …

6.	 Allocate and read the array of minimally matching EGL configurations:
 EGLConfig[] configs = new EGLConfig[numConfigs];
 egl.eglChooseConfig(display, s_configAttribs2,
 configs, numConfigs, num_config);

7.	 Choose the best matching one:
 return chooseConfig(egl, display, configs);
 }

 public EGLConfig chooseConfig(EGL10 egl,
 EGLDisplay display, EGLConfig[] configs)
 {
 for (EGLConfig config : configs)
 {

8.	 Select configurations with the specified values for depth buffer and stencil buffer bits:
 int d = findConfigAttrib(egl, display,
 config, EGL10.EGL_DEPTH_SIZE, 0);
 int s = findConfigAttrib(egl, display,
 config, EGL10.EGL_STENCIL_SIZE, 0);

9.	 We need at least mDepthSize and mStencilSize bits for depth and stencil:
 if (d < mDepthSize || s < mStencilSize)
 {
 continue;
 }

Unifying OpenGL ES 3 and OpenGL 3

158

10.	 We want an exact match for red/green/blue/alpha bits:
 int r = findConfigAttrib(egl, display,
 config, EGL10.EGL_RED_SIZE, 0);
 int g = findConfigAttrib(egl, display,
 config, EGL10.EGL_GREEN_SIZE, 0);
 int b = findConfigAttrib(egl, display,
 config, EGL10.EGL_BLUE_SIZE, 0);
 int a = findConfigAttrib(egl, display,
 config, EGL10.EGL_ALPHA_SIZE, 0);
 if (r == mRedSize && g == mGreenSize &&
 b == mBlueSize && a == mAlphaSize)
 {
 return config;
 }
 }
 return null;
 }

11.	 Use the helper method to look for matching configurations:
 private int findConfigAttrib(EGL10 egl,
 EGLDisplay display, EGLConfig config,
 int attribute, int defaultValue)
 {
 if (egl.eglGetConfigAttrib(display,
 config, attribute, mValue))
 {
 return mValue[0];
 }
 return defaultValue;
 }
…
 }

12.	 The Renderer class delegates frame rendering callbacks to our NDK code:

 private static class Renderer
 implements GLSurfaceView.Renderer
 {
 public void onDrawFrame(GL10 gl)
 {
 App13Activity.DrawFrame();
 }
 public void onSurfaceChanged(GL10 gl,
 int width, int height)
 {
 App13Activity.SetSurfaceSize(width, height);
 }

Chapter 6

159

 public void onSurfaceCreated(GL10 gl,
 EGLConfig config)
 {
 App13Activity.SetSurface(
 App13Activity.m_View.getHolder().getSurface());
 }
 }
}

How it works…
Frame rendering callbacks are declared in App13Activity.java:

public static native void SetSurface(Surface surface);
public static native void SetSurfaceSize(
 int width, int height);
public static native void DrawFrame();

They are JNI calls that are implemented in the Wrappers.cpp file:

JNIEXPORT void JNICALL
Java_com_packtpub_ndkcookbook_app13_App13Activity_SetSurface(
JNIEnv* env, jclass clazz, jobject javaSurface)
{
 if (LGL3) { delete(LGL3); }

Allocate a new sLGLAPI structure and reload the pointers to OpenGL functions:

 LGL3 = new sLGLAPI;
 LGL::clGLExtRetriever* OpenGL;
 OpenGL = new LGL::clGLExtRetriever;
 OpenGL->Reload(LGL3);
 delete(OpenGL);
}
JNIEXPORT void JNICALL
 Java_com_packtpub_ndkcookbook_app13_App13Activity_SetSurfaceSize(
 JNIEnv* env, jclass clazz, int Width, int Height)
{

Update the surface size. We don't need to do anything else here, since SetSurface() will be
called right after it:

 g_Width = Width;
 g_Height = Height;
}

Unifying OpenGL ES 3 and OpenGL 3

158

JNIEXPORT void JNICALL
 Java_com_packtpub_ndkcookbook_app13_App13Activity_DrawFrame(
 JNIEnv* env, jobject obj)
{

Invoke our platform-independent frame rendering callback:

 OnDrawFrame();
}

Now we can put out rendering code in the OnDrawFrame() callback and use it on Android.

There's more…
To use the previously discussed code, you have to add this line into the AndroidManifest.
xml file:

<uses-feature android:glEsVersion="0x00020000"/>

Furthermore, you have to link your native application with either OpenGL ES 2 or the OpenGL
ES 3 library. Put the -lGLESv2 or -lGLESv3 switch into your Android.mk file, like this:

LOCAL_LDLIBS += -lGLESv2

There is a third possibility to do it. You can omit static linking, open the
libGLESv2.so shared library via the dlopen() call, and retrieve
pointers to OpenGL functions using the dlsym() function. This is useful if
you are developing a versatile renderer for OpenGL ES 2 and OpenGL ES 3,
and want to tune everything at runtime.

See also
ff Unifying the OpenGL 3 core profile and OpenGL ES 2

Unifying the GLSL 3 and GLSL ES 2 shaders
OpenGL 3 provides support for OpenGL Shading Language. In particular, OpenGL 3.2 Core
Profile supports the GLSL 1.50 Core Profile. On the other hand, OpenGL ES 2 provides
support for GLSL ES Version 1.0, and OpenGL ES 3 supports GLSL ES 3.0. There are minor
syntax differences between these three GLSL versions, which we have to abstract in order to
write portable shaders. In this recipe, we will create a facility to downgrade desktop OpenGL
shaders, to become shaders compatible with OpenGL ES Shading Language 1.0.

Chapter 6

159

OpenGL ES 3 has backwards-compatible support for OpenGL ES
Shading Language 1.0. For this purpose, we put #version 100 at
the beginning of our shaders. However, if your application targets only
the most recent OpenGL ES 3, you can use the marker #version
300 es and avoid some conversions. Refer to the specification of
OpenGL ES Shading Language 3.0 for more details at http://
www.khronos.org/registry/gles/specs/3.0/GLSL_ES_
Specification_3.00.4.pdf.

Getting ready
Specifications of different GLSL language versions can be downloaded from the official
OpenGL website at http://www.opengl.org. The GLSL 1.50 specification is found
at http://www.opengl.org/registry/doc/GLSLangSpec.1.50.09.pdf.

Specifications for GLSL ES can be downloaded from the Khronos website at
http://www.khronos.org. The GLSL ES 1.0 specification is available at
http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_
Specification_1.0.17.pdf.

How to do it…
1.	 Let's take a look at two sets of simple vertex and fragment shaders. The one

for GLSL 1.50 is:
// vertex shader
#version 150 core
uniform mat4 in_ModelViewProjectionMatrix;
in vec4 in_Vertex;
in vec2 in_TexCoord;
out vec2 Coords;
void main()
{
 Coords = in_TexCoord;
 gl_Position = in_ModelViewProjectionMatrix * in_Vertex;
}

// fragment shader
#version 150 core
in vec2 Coords;
uniform sampler2D Texture0;
out vec4 out_FragColor;
void main()
{
 out_FragColor = texture(Sampler0, Coords);
}

Unifying OpenGL ES 3 and OpenGL 3

158

2.	 And the other pair of shaders is for GLSL ES 1.0:
// vertex shader
#version 100
precision highp float;
uniform mat4 in_ModelViewProjectionMatrix;
attribute vec4 in_Vertex;
attribute vec2 in_TexCoord;
varying vec2 Coords;
void main()
{
 Coords = in_TexCoord;
 gl_Position = in_ModelViewProjectionMatrix * in_Vertex;
}

// fragment shader
#version 100
precision highp float;
uniform sampler2D Texture0;
varying vec2 Coords;
void main()
{
 gl_FragColor = texture2D(Texture0, Coords);
}

The following table is the summary of some differences between three versions of
OpenGL API, which need abstracting:

OpenGL 3 OpenGL ES 2 OpenGL ES 3
Version definition #version 150 core #version 100 #version 300 es
Explicit floats
precision

not required required not required

Keywords for varyings
and attributes

in and out varying and attribute in and out

Fixed-function
fragment data
location

no, customizable gl_FragColor no, customizable

2D texture fetching texture(), overloaded texture2D() texture(), overloaded

3.	 Let's implement conversion rules in the following code to downgrade GLSL 1.50
shaders to GLSL 1.0:

#if defined(USE_OPENGL_3)

Chapter 6

159

std::string ShaderStr = "#version 150 core\n";
#else
std::string ShaderStr = "#version 100\n";
ShaderStr += "precision highp float;\n";
ShaderStr += "#define USE_OPENGL_ES_2\n";
ShaderCodeUsed = Str_ReplaceAllSubStr(ShaderCodeUsed,
 "texture(", "texture2D(");
if (Target == GL_VERTEX_SHADER)
{
 ShaderCodeUsed = Str_ReplaceAllSubStr(ShaderCodeUsed,
 "in ", "attribute ");
 ShaderCodeUsed = Str_ReplaceAllSubStr(ShaderCodeUsed,
 "out ", "varying ");
}
if (Target == GL_FRAGMENT_SHADER)
{
 ShaderCodeUsed = Str_ReplaceAllSubStr(ShaderCodeUsed,
 "out vec4 out_FragColor;", "");
 ShaderCodeUsed = Str_ReplaceAllSubStr(ShaderCodeUsed,
 "out_FragColor", "gl_FragColor");
 ShaderCodeUsed = Str_ReplaceAllSubStr(ShaderCodeUsed,
 "in ", "varying ");
}
#endif

This kind of search and replace implies some restrictions on the shaders
source code. For example, it will invalidate shaders containing identifiers
such as grayin and sprout. However, the code above is very simple
and was used successfully in a couple of released commercial projects.

We store our shaders in GLSL 1.5 source code and just do a simple search and replace to use
them on Android. It is very easy and transparent.

How it works…
The complete implementation is presented in the clGLSLShaderProgram class from the
3_ShadersAndVertexArrays example. After the code is downgraded, in case of need, it is
uploaded into OpenGL:

GLuint Shader = LGL3->glCreateShader(Target);
const char* Code = ShaderStr.c_str();
LGL3->glShaderSource(Shader, 1, &Code, NULL);
LOGI("Compiling shader for stage: %X\n", Target);
LGL3->glCompileShader(Shader);

Unifying OpenGL ES 3 and OpenGL 3

158

The CheckStatus() function performs error checks and logs a specified error message
on failure:

if (!CheckStatus(Shader, GL_COMPILE_STATUS,
 "Failed to compile shader:"))
{
 LGL3->glDeleteShader(Shader);
 return OldShaderID;
}
if (OldShaderID) LGL3->glDeleteShader(OldShaderID);
return Shader;

OldShaderID retains the previous compiled shader. It is used to allow the editing of shaders
on-the-fly on a PC and prevents loading of invalid shaders. After the vertex and fragment
shaders have compiled, a shader program should be linked:

bool clGLSLShaderProgram::RelinkShaderProgram()
{
 GLuint ProgramID = LGL3->glCreateProgram();
 FVertexShaderID = AttachShaderID(GL_VERTEX_SHADER,
 FVertexShader, FVertexShaderID);
 if (FVertexShaderID) LGL3->glAttachShader(ProgramID,
 FVertexShaderID);
 FFragmentShaderID = AttachShaderID(GL_FRAGMENT_SHADER,
 FFragmentShader, FFragmentShaderID);
 if (FFragmentShaderID) LGL3->glAttachShader(ProgramID,
 FFragmentShaderID);
 BindDefaultLocations(ProgramID);
 LGL3->glLinkProgram(ProgramID);

The same should also be done to the shader program. Replace the old program only if the
program was linked successfully:

 if (!CheckStatus(ProgramID, GL_LINK_STATUS,
 "Failed to link program\n"))
 {
 LOGI("Error during shader program relinking\n");
 return false;
 }
 LGL3->glDeleteProgram(FProgramID);
 FProgramID = ProgramID;
 RebindAllUniforms();
 return true;
}

We have to bind the default locations of different attributes that we will use throughout
our renderer:

Chapter 6

159

void clGLSLShaderProgram::BindDefaultLocations(GLuint ID)
{

The meaning of the L_VS_ identifiers is explained in the recipe Manipulating geometry:

LGL3->glBindAttribLocation(ID, L_VS_VERTEX, "in_Vertex");
LGL3->glBindAttribLocation(ID, L_VS_TEXCOORD,"in_TexCoord");
LGL3->glBindAttribLocation(ID, L_VS_NORMAL, "in_Normal");
LGL3->glBindAttribLocation(ID, L_VS_COLORS, "in_Color");
LGL3->glBindFragDataLocation(ID, 0, "out_FragColor");
LGL3->glUniform1i(
LGL3->glGetUniformLocation(ID, "Texture0"), 0);
}

The shader program can now be used for rendering.

There's more…
During rendering, we can specify the location of additional uniforms by name and ask the
underlying OpenGL API to bind uniforms by name. However, it is more convenient to do it
in our own code, since we can omit the redundant OpenGL state change calls. The following
is the listing of the RebindAllUniforms() method that will get locations of all the active
uniforms of a shader program and save them for the further use:

void clGLSLShaderProgram::RebindAllUniforms()
{
 Bind();
 FUniforms.clear();
 GLint ActiveUniforms;
 char Buff[256];
 LGL3->glGetProgramiv(FProgramID,
 GL_ACTIVE_UNIFORMS, &ActiveUniforms);
 for (int i = 0; i != ActiveUniforms; ++i)
 {
 GLsizei Length;
 GLint Size;
 GLenum Type;
 LGL3->glGetActiveUniform(FProgramID, i,
 sizeof(Buff), &Length, &Size, &Type, Buff);
 std::string Name(Buff, Length);
 sUniform Uniform(Name);
 Uniform.FLocation = LGL3->glGetUniformLocation(
 FProgramID, Name.c_str());
 FUniforms.push_back(Uniform);
 }
}

Unifying OpenGL ES 3 and OpenGL 3

158

sUniform is a struct holding a single active uniform:

struct sUniform
{
public:
 explicit sUniform(const std::string& Name)
 : FName(Name), FLocation(-1) {}
 sUniform(int Location, const std::string& Name)
 : FName(Name), FLocation(Location) {}
 std::string FName;
 int FLocation;
};

It is used in numerous SetUniformName()functions to set the values of uniforms by name
at runtime without touching OpenGL API to resolve the names.

See also
ff Manipulating geometry

ff Unifying vertex arrays

ff Creating a canvas for immediate rendering

Manipulating geometry
In Chapter 4, Organizing a Virtual Filesystem, we created the Bitmap class to load and store
bitmaps in an API-independent way. Now we will create a similar abstraction for geometry data
representation that we will later use to submit vertices and their attributes to OpenGL.

Getting ready
Before we proceed with the abstraction, let's take a look at how the vertex specification in
OpenGL works. Submitting vertex data to OpenGL requires you to create different vertex
streams, and specify ways of their interpretation. Refer to the tutorial if you are unfamiliar
with this concept at http://www.opengl.org/wiki/Vertex_Specification.

How to do it…
We have to decide which vertex attributes, or vertex streams, we will store in our mesh. Let's
assume that for a given vertex we need a position, texture coordinates, a normal, and a color.

Chapter 6

159

The following are the names and indices of these streams:

const int L_VS_VERTEX = 0;
const int L_VS_TEXCOORD = 1;
const int L_VS_NORMAL = 2;
const int L_VS_COLORS = 3;
const int L_VS_TOTAL_ATTRIBS = L_VS_COLORS + 1;

One may require additional texture coordinates, for example, for multi
texturing algorithms, or additional attributes, such as tangents, binormals,
or bones and weights for hardware-accelerated GPU skinning. They can
be easily introduced using these semantics. We leave it as an exercise
for the reader.

1.	 Let's define the number of float components for each attribute:
const int VEC_COMPONENTS[L_VS_TOTAL_ATTRIBS] = { 3, 2, 3, 4 };

This means positions and normals are represented as vec3, texture coordinates
as vec2, and colors as vec4. We need this information to correctly define types in
OpenGL shader programs and submit the vertex data. The following is the source
code of a rendering API-independent container we use for vertex attributes:

class clVertexAttribs: public iObject
{
public:
 clVertexAttribs();
 clVertexAttribs(size_t Vertices);
 void SetActiveVertexCount(size_t Count)
 { FActiveVertexCount = Count; }
 size_t GetActiveVertexCount() const
 { return FActiveVertexCount; }

2.	 We need a method to map our vertex attributes to enumerated streams:
 const std::vector<const void*>& EnumerateVertexStreams();

3.	 We also need some helper methods to construct the geometry:
 void Restart(size_t ReserveVertices);
 void EmitVertexV(const LVector3& Vec);
 void EmitVertex(float X, float Y, float Z)
 { EmitVertexV(LVector3(X,Y,Z)); };
 void SetTexCoord(float U, float V, float W)
 { SetTexCoordV(LVector2(U,V)); };
 void SetTexCoordV(const LVector2& V);
 void SetNormalV(const LVector3& Vec);
 void SetColorV(const LVector4& Vec);

Unifying OpenGL ES 3 and OpenGL 3

158

4.	 Actual data holders are made public for convenience:

public:
 // position X, Y, Z
 std::vector<LVector3> FVertices;
 // texture coordinate U, V
 std::vector<LVector2> FTexCoords;
 // normal in object space
 std::vector<LVector3> FNormals;
 // RGBA color
 std::vector<LVector4> FColors;
…
};

How it works…
To use clVertexAttribs and populate it with useful data, we declare a few helper
functions:

clPtr<clVertexAttribs> CreateTriangle2D(float vX, float vY,
 float dX, float dY, float Z);
clPtr<clVertexAttribs> CreateRect2D(float X1, float Y1, float X2,
 float Y2, float Z, bool FlipTexCoordsVertical,
 int Subdivide);
clPtr<clVertexAttribs> CreateAxisAlignedBox(const LVector3& Min,
 const LVector3& Max);
clPtr<clVertexAttribs> CreatePlane(float SizeX, float SizeY,
 int SegmentsX, int SegmentsY, float Z);

The following is an example definition of one of these:

clPtr<clVertexAttribs> clGeomServ::CreateTriangle2D(float vX,
 float vY, float dX, float dY, float Z)
{
 clPtr<clVertexAttribs> VA = new clVertexAttribs();

Restart the regeneration and allocate space for 3 vertices:

 VA->Restart(3);
 VA->SetNormalV(LVector3(0, 0, 1));
 VA->SetTexCoord(1, 1, 0);
 VA->EmitVertexV(LVector3(vX , vY , Z));
 VA->SetTexCoord(1, 0, 0);
 VA->EmitVertexV(LVector3(vX , vY - dY, Z));
 VA->SetTexCoord(0, 1, 0);
 VA->EmitVertexV(LVector3(vX + dX, vY , Z));
 return VA;
}

Chapter 6

159

The complete source code for these functions is found in the GeomServ.cpp file in the 3_
ShadersAndVertexArrays project. Now we have a set of handy functions to create simple
2D and 3D geometry primitives, such as single triangles, rectangles, and boxes.

There's more…
If you want to learn how to create more complex 3D primitives, download the source code for
Linderdaum Engine (http://www.linderdaum.com). In Geometry/GeomServ.h, you will
find out how to generate spheres, tubes, polyhedra, gears, and other 3D objects.

See also
ff Unifying vertex arrays

Unifying vertex arrays
Geometry data is submitted into OpenGL using Vertex Buffer Objects (VBO) and Vertex Array
Objects (VAO). VBOs are part of both OpenGL versions; however, VAOs are not part of OpenGL
ES 2 but are mandatory in the OpenGL 3.2 Core Profile. This means we have to make yet
another abstraction to hide the difference between the two APIs behind it.

A Vertex Buffer Object (VBO) is an OpenGL feature that provides methods for
uploading vertex data (position, normal vector, color, and so on) to the video device
for non-immediate-mode rendering. VBOs offer substantial performance gains over
immediate mode rendering, primarily because the data resides in the video device
memory rather than the system memory and so it can be rendered directly by the
video device.

Courtesy: http://en.wikipedia.org/wiki/Vertex_Buffer_Object

A Vertex Array Object (VAO) is an OpenGL Object that encapsulates the state
needed to specify vertex data. They define the format of the vertex data as well as
the sources for the vertex arrays. VAOs do not contain the arrays themselves; the
arrays are stored in Buffer Objects. The VAOs simply reference already existing
buffer objects.

Courtesy: http://www.opengl.org/wiki/Vertex_Specification

Getting ready
Before proceeding with vertex arrays, make sure you are familiar with the platform-
independent storage of geometry from the previous recipe. The source code for this recipe
can be found in the 4_Canvas example. Take a look at the GLVertexArray.cpp and
GLVertexArray.h files.

Unifying OpenGL ES 3 and OpenGL 3

158

How to do it…
1.	 Our vertex arrays are hidden behind the interface of the clGLVertexArray class:

class clGLVertexArray: public iObject
{
public:
 clGLVertexArray();
 virtual ~clGLVertexArray();
 void Draw(bool Wireframe) const;
 void SetVertexAttribs(const clPtr<clVertexAttribs>&
 Attribs);
private:
 void Bind() const;
 GLuint FVBOID;
 GLuint FVAOID;

2.	 Offsets for VBO are stored through the following code:
 std::vector<const void*> FAttribVBOOffset;

3.	 The following are the pointers to the actual data of the attached clVertexAttribs:
 std::vector<const void*> FEnumeratedStreams;
 clPtr<clVertexAttribs> FAttribs;
};

4.	 The clVertexAttribs should be attached to our vertex array using the
SetVertexAttribs() method:
void clGLVertexArray::SetVertexAttribs(const
 clPtr<clVertexAttribs>& Attribs)
{
 FAttribs = Attribs;
 FEnumeratedStreams = FAttribs->EnumerateVertexStreams();

5.	 We have to remove any old vertex buffer objects before using the FVBOID again in
order to allow the reuse of clGLVertexArray:
 LGL3->glDeleteBuffers(1, &FVBOID);
 size_t VertexCount = FAttribs->FVertices.size();
 size_t DataSize = 0;
 for (int i = 0; i != L_VS_TOTAL_ATTRIBS; i++)
 {
 FAttribVBOOffset[i] = (void*)DataSize;

6.	 Calculate the size of a vertex buffer object and allocate it:
 DataSize += FEnumeratedStreams[i] ?
 sizeof(float) * L_VS_VEC_COMPONENTS[i] *

Chapter 6

159

 VertexCount : 0;
 }
 LGL3->glGenBuffers(1, &FVBOID);
 LGL3->glBindBuffer(GL_ARRAY_BUFFER, FVBOID);
 LGL3->glBufferData(GL_ARRAY_BUFFER, DataSize,
 NULL, GL_STREAM_DRAW);

7.	 Submit data for every vertex attribute:
 for (int i = 0; i != L_VS_TOTAL_ATTRIBS; i++)
 {
 LGL3->glBufferSubData(GL_ARRAY_BUFFER,
 (GLintptrARB)FAttribVBOOffset[i],
 FAttribs->GetActiveVertexCount() *
 sizeof(float) * L_VS_VEC_COMPONENTS[i],
 FEnumeratedStreams[i]);
 }

8.	 Here we create VAO if we are not on Android:

#if !defined(ANDROID)
 LGL3->glBindVertexArray(FVAOID);
 Bind();
 LGL3->glBindVertexArray(0);
#endif
}

VAOs can be used with OpenGL ES 3. We leave their implementation as
a simple exercise to the reader. This can be done by using the OpenGL 3
code path for OpenGL ES 3.

How it works…
The Bind() method does the actual job of binding the vertex buffer object and preparing the
attribute pointers:

void clGLVertexArray::Bind() const
{
 LGL3->glBindBuffer(GL_ARRAY_BUFFER, FVBOID);
 LGL3->glVertexAttribPointer(L_VS_VERTEX,
 L_VS_VEC_COMPONENTS[0], GL_FLOAT, GL_FALSE, 0,
 FAttribVBOOffset[0]);
 LGL3->glEnableVertexAttribArray(L_VS_VERTEX);

 for (int i = 1; i < L_VS_TOTAL_ATTRIBS; i++)
 {

Unifying OpenGL ES 3 and OpenGL 3

158

 LGL3->glVertexAttribPointer(i,
 L_VS_VEC_COMPONENTS[i],
 GL_FLOAT, GL_FALSE, 0,
 FAttribVBOOffset[i]);

 FAttribVBOOffset[i] ?
 LGL3->glEnableVertexAttribArray(i) :
 LGL3->glDisableVertexAttribArray(i);
 }
}

Now we can render the geometry via the Draw() method:

void clGLVertexArray::Draw(bool Wireframe) const
{
#if !defined(ANDROID)
 LGL3->glBindVertexArray(FVAOID);
#else
 Bind();
#endif
 LGL3->glDrawArrays(Wireframe ? GL_LINE_LOOP : GL_TRIANGLES,
 0, static_cast<GLsizei>(
 FAttribs->GetActiveVertexCount()));
}

Again, there is #define to disable VAO on Android. The following is a screenshot of the 3_
ShadersAndVertexArrays example, which renders an animated rotating cube using the
techniques from all of the previous recipes in this chapter:

There's more…
We always assume that every vertex attribute (position, texture coordinate, normal, and
color) exists in the geometry data in all of our examples. Indeed, this is always true for our
implementation of clVertexAttribs. However, in more complicated cases, where you
might need many more vertex attributes, for example, binormals, tangents, bone weights, and
so on, it is wise not to allocate memory for unused attributes. This can be done by modifying
the clVertexAttribs::EnumerateVertexStreams() member function and adding
NULL-checks to Bind() and SetVertexAttribs().

Chapter 6

159

See also
ff Manipulating geometry

Creating a wrapper for textures
In previous chapters, we already used OpenGL textures to render an offscreen framebuffer on
the screen. However, that code path works on Android only and cannot be used on a desktop.
In this recipe, we will create a wrapper for textures to make them portable.

Getting ready
Take a look at the GLTexture.cpp and GLTexture.h files from 4_Canvas.

How to do it…
1.	 Let's declare a class to hold an OpenGL texture. We need only two public operations:

loading the pixel data from a bitmap, and binding the texture to a specified OpenGL
texture unit:
class clGLTexture
{
public:
 clGLTexture();
 virtual ~clGLTexture();
 void Bind(int TextureUnit) const;
 void LoadFromBitmap(const clPtr<clBitmap>& B);
private:
 GLuint FTexID;
 GLenum FInternalFormat;
 GLenum FFormat;
}

2.	 The interface of the class is very simple, since textures management is almost
identical in OpenGL ES 2 and OpenGL 3. All the differences lie in the implementation.
The following code shows how we bind a texture:
void clGLTexture::Bind(int TextureUnit) const
{	
 LGL3->glActiveTexture(GL_TEXTURE0 + TextureUnit);
 LGL3->glBindTexture(GL_TEXTURE_2D, FTexID);
}

Unifying OpenGL ES 3 and OpenGL 3

158

3.	 We load a texture from a bitmap through the following code:
void clGLTexture::LoadFromBitmap(const clPtr<clBitmap>& B)
{
 if (!FTexID) LGL3->glGenTextures(1, &FTexID);
 ChooseInternalFormat(B->FBitmapParams, &FFormat,
 &FInternalFormat);
 Bind(0);
 LGL3->glTexParameteri(GL_TEXTURE_2D,
 GL_TEXTURE_MIN_FILTER, GL_LINEAR);
 LGL3->glTexParameteri(GL_TEXTURE_2D,
 GL_TEXTURE_MAG_FILTER, GL_LINEAR);

4.	 Not all texture wrapping modes are supported in OpenGL ES 2. Particularly, GL_
CLAMP_TO_BORDER is unsupported:
#if defined(ANDROID)
LGL3->glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,
 GL_CLAMP_TO_EDGE);
 LGL3->glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,
 GL_CLAMP_TO_EDGE);
#else
LGL3->glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,
 GL_CLAMP_TO_BORDER);
LGL3->glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,
 GL_CLAMP_TO_BORDER);
#endif
 LGL3->glTexImage2D(GL_TEXTURE_2D, 0, FInternalFormat,
 B->GetWidth(), B->GetHeight(), 0, FFormat,
 GL_UNSIGNED_BYTE, B->FBitmapData);
}

5.	 There is a helper function ChooseInternalFormat(), that we use to select
the appropriate OpenGL image formats for our bitmap, either RGB or RGBA. The
implementation looks like the following code:
bool ChooseInternalFormat(const sBitmapParams& BMPRec,
GLenum* Format, GLenum* InternalFormat)
{
 if (BMPRec.FBitmapFormat == L_BITMAP_BGR8)
 {
#if defined(ANDROID)
 *InternalFormat = GL_RGB;
 *Format = GL_RGB;
#else
 *InternalFormat = GL_RGB8;
 *Format = GL_BGR;
#endif
 }

Chapter 6

159

6.	 This also happens with RGBA bitmaps that contain an alpha channel:

 if (BMPRec.FBitmapFormat == L_BITMAP_BGRA8)
 {
#if defined(ANDROID)
 *InternalFormat = GL_RGBA;
 *Format = GL_RGBA;
#else
 *InternalFormat = GL_RGBA8;
 *Format = GL_BGRA;
#endif
 }
 return false;
}

This function can be easily extended to work with grayscale, float, and compressed formats.

How it works…
Using our texture wrapper is straightforward:

 clPtr<clBitmap> Bmp = clBitmap::LoadImg(
 g_FS->CreateReader("test.bmp"));
 Texture = new clGLTexture();
 Texture->LoadFromBitmap(Bmp);

Here, g_FS is a FileSystem object that we created in Chapter 5, Cross-platform Audio
Streaming.

There's more…
The texture loading we have dealt with so far is synchronous and is performed on the main
rendering thread. This is acceptable if we only have a few bitmaps to load. The real-world
approach is to load and decode images asynchronously, on another thread and then call
glTexImage2D() and other related OpenGL commands only on the rendering thread.
We will learn how to do this in Chapter 9, Writing a Picture Puzzle Game.

See also
ff Chapter 4, Organizing a Virtual Filesystem

ff Chapter 9, Writing a Picture Puzzle Game

Unifying OpenGL ES 3 and OpenGL 3

158

Creating a canvas for immediate rendering
In the previous recipes, we learned how to make abstractions for main OpenGL entities: vertex
buffers, shader programs, and textures. This basis is enough to render many sophisticated
effects using OpenGL. However, there are a lot of tiny rendering tasks where you need to
render only one triangle or a rectangle with a single texture, or render a fullscreen quad with a
specific shader to apply some image-space effect. In this case, the code for managing buffers,
shaders, and textures may become a serious burden. Let's organize a place for such a helper
code, that is, a canvas that will help us to render simple things in a single line of code.

Getting ready
This recipe uses the clGLSLShaderProgram, clGLTexture, and clGLVertexArray
classes described in the previous recipes to hide the differences between OpenGL ES 2 and
OpenGL 3. Read them carefully before proceeding.

How to do it…
1.	 We first define a clCanvas class as follows:

class clCanvas
{
public:
 clCanvas();
 virtual ~clCanvas() {};
 void Rect2D(float X1, float Y1,
 float X2, float Y2, const LVector4& Color);
 void TexturedRect2D(float X1, float Y1,
 float X2, float Y2,
 const LVector4& Color,
 const clPtr<clGLTexture>& Texture);
 clPtr<clGLVertexArray> GetFullscreenRect() const
 { return FRectVA; }

2.	 We store some OpenGL-related entities right here:
private:
 clPtr<clVertexAttribs> FRect;
 clPtr<clGLVertexArray> FRectVA;
 clPtr<clGLSLShaderProgram> FRectSP;
 clPtr<clGLSLShaderProgram> FTexRectSP;
};

Chapter 6

159

3.	 Before we can use the canvas, we have to construct it. Note FRect is created as a
fullscreen quad:
clCanvas::clCanvas()
{
 FRect = clGeomServ::CreateRect2D(0.0f, 0.0f,
 1.0f, 1.0f, 0.0f, false, 1);
 FRectVA = new clGLVertexArray();
 FRectVA->SetVertexAttribs(FRect);
 FRectSP = new clGLSLShaderProgram(RectvShaderStr,
 RectfShaderStr);
 FTexRectSP = new clGLSLShaderProgram(RectvShaderStr,
 TexRectfShaderStr);
}

4.	 We remap the coordinates of FRect in the following vertex shader, so that they
match the user-specified dimensions:
 uniform vec4 u_RectSize;
 in vec4 in_Vertex;
 in vec2 in_TexCoord;
 out vec2 Coords;
 void main()
 {
 Coords = in_TexCoord;
 float X1 = u_RectSize.x;
 float Y1 = u_RectSize.y;
 float X2 = u_RectSize.z;
 float Y2 = u_RectSize.w;
 float Width = X2 - X1;
 float Height = Y2 - Y1;
 vec4 VertexPos = vec4(X1 + in_Vertex.x * Width,
 Y1 + in_Vertex.y * Height,
 in_Vertex.z, in_Vertex.w) *
 vec4(2.0, -2.0, 1.0, 1.0) +
 vec4(-1.0, 1.0, 0.0, 0.0);
 gl_Position = VertexPos;
 }

5.	 The actual dimensions, specified as the top-left and bottom-right corners of the
rectangle, are passed as xyzw components of the u_RectSize uniform. A simple
arithmetic does the rest. The fragment shader is very simple. Indeed, we need to
apply just a solid color from the uniform:
uniform vec4 u_Color;
out vec4 out_FragColor;
in vec2 Coords;
void main()
{
 out_FragColor = u_Color;
}

Unifying OpenGL ES 3 and OpenGL 3

158

6.	 Alternatively, apply an additional color from a texture:

uniform vec4 u_Color;
out vec4 out_FragColor;
in vec2 Coords;
uniform sampler2D Texture0;
void main()
{
 out_FragColor = u_Color * texture(Texture0, Coords);
}

We use the clGLSLShaderProgram class from the previous recipes to set up shader
programs. It hides the syntax differences between OpenGL ES 2 and OpenGL 3, so we
can store only one version of each shader.

You may want to implement a similar wrapper for OpenGL ES
3 as an exercise.

How it works…
1.	 The actual rendering code inside the canvas is very simple. Bind textures and the

shader program, set the values of uniforms, and draw the vertex array:

void clCanvas::TexturedRect2D(
 float X1, float Y1,
 float X2, float Y2,
 const LVector4& Color,
 const clPtr<clGLTexture>& Texture)
{
 LGL3->glDisable(GL_DEPTH_TEST);
 Texture->Bind(0);
 FTexRectSP->Bind();
 FTexRectSP->SetUniformNameVec4Array(
 "u_Color", 1, Color);
 FTexRectSP->SetUniformNameVec4Array(
 "u_RectSize", 1, LVector4(X1, Y1, X2, Y2));
 LGL3->glBlendFunc(
 GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
 LGL3->glEnable(GL_BLEND);
 FRectVA->Draw(false);
 LGL3->glDisable(GL_BLEND);
}

Chapter 6

159

Here we always enable and disable blending. This causes a redundant
state changes. A better approach is to save the value of the previously
set blending mode and toggle it only when necessary.

The complete source code is in the Canvas.cpp and Canvas.h files from the 4_Canvas
project. Usage of the canvas is trivial. For example, use this one-liner call to render
a semi-transparent magenta rectangle:

Canvas->Rect2D(0.1f, 0.1f, 0.5f, 0.5f, vec4(1, 0, 1, 0.5f));

The example 4_Canvas shows you how to use the canvas, and produces an image similar to
the following diagram, which shows overlays rendering using Canvas:

There's more…
The canvas is a placeholder for different immediate rendering functions. In the next two
chapters, we will augment it with other methods to render the user interface of our games.

See also
ff Unifying the OpenGL 3 core profile and OpenGL ES 2

ff Unifying the GLSL 3 and GLSL ES 2 shaders

ff Unifying vertex arrays

ff Creating a wrapper for textures

7
Cross-platform UI

and Input Systems

In this chapter, we will cover:

ff Processing multi-touch events on Android

ff Setting up multi-touch emulation on Windows

ff Handling multi-touch events on Windows

ff Recognizing gestures

ff Implementing an on-screen joypad

ff Using FreeType for text rendering

ff Localization of in-game strings

Introduction
A mobile user interface is based (besides graphics rendering) on multi-touch input. This
chapter shows you how to handle the touch events on the Android OS, and how to debug them
on Windows. A dedicated recipe about the emulation of multi-touch capabilities on Windows
using multiple mice is also included. The rest of the chapter is devoted to high-quality text
rendering and supporting multiple languages.

Cross-platform UI and Input Systems

194

Processing multi-touch events on Android
Until now, we have not handled any user interaction except the BACK button on Android.
In this recipe, we show how to process multi-touch events on Android.

Getting ready
You should be familiar with the concepts of multi-touch input handling. In Java, Android multi-
touch events are delivered inside the MotionEvent class, an instance of which is passed as
a parameter to the onTouchEvent() method of your Activity class. The MotionEvent
class contains all the information of the currently active and released touches. In order to
pass this information to our native code, we convert a single event carrying multiple touches
into a series of events holding data for a single touch. This keeps the JNI interoperation
simple and enables easy porting of our code.

How to do it...
Each Android activity supports multi-touch event handling. All we have to do is override
the onTouchEvent() method of the Activity class:

1.	 First, we declare some internal constants to events related to individual touch points:
private static final int MOTION_MOVE = 0;
private static final int MOTION_UP = 1;
private static final int MOTION_DOWN = 2;
private static final int MOTION_START = -1;
private static final int MOTION_END = -2;

2.	 The event handler uses the MotionEvent structure and extracts information about
individual touches. The SendMotion() function is declared in the native code and
contains the gesture decoding we call the via JNI from onTouchEvent():
@Override public boolean onTouchEvent(MotionEvent event)
{

3.	 Tell our native code we are going to send a series of events:
 SendMotion(MOTION_START, 0, 0, false, MOTION_MOVE);

4.	 Determine the event code and the ID of the first touch:
 int E = event.getAction() & MotionEvent.ACTION_MASK;
 int nPointerID = event.getPointerId(
 (event.getAction() &
 MotionEvent.ACTION_POINTER_INDEX_MASK) >>
 MotionEvent.ACTION_POINTER_INDEX_SHIFT);
 try
 {

Chapter 7

195

5.	 Get the coordinates of the primary touch point:
 int x = (int)event.getX(), y = (int)event.getY();
 int cnt = event.getPointerCount();

6.	 Process the touch start:
 if (E == MotionEvent.ACTION_DOWN)
 {
 for (int i = 0; i != cnt; i++)
 SendMotion(event.getPointerId(i),
 (int)event.getX(i),
 (int)event.getY(i),
 true, MOTION_DOWN);
 }

7.	 Process the end of the whole gesture when all the touches are released:
 if (E == MotionEvent.ACTION_UP ||
 E == MotionEvent.ACTION_CANCEL)
 {
 SendMotion(MOTION_END, 0, 0, false, MOTION_UP);
 return E <= MotionEvent.ACTION_MOVE;
 }

8.	 Process secondary touch points:
 int maskedEvent = event.getActionMasked();
 if (maskedEvent== MotionEvent.ACTION_POINTER_DOWN)
 {
 for (int i = 0; i != cnt; i++)
 SendMotion(event.getPointerId(i),
 (int)event.getX(i),
 (int)event.getY(i),
 true, MOTION_DOWN);
 }
 if (maskedEvent == MotionEvent.ACTION_POINTER_UP)
 {
 for (int i = 0; i != cnt ; i++)
 SendMotion(event.getPointerId(i),
 (int)event.getX(i),
 (int)event.getY(i),
 i != nPointerID, MOTION_UP);
 SendMotion(nPointerID,
 (int)event.getX(nPointerID),
 (int)event.getY(nPointerID),
 false, MOTION_MOVE);
 }

Cross-platform UI and Input Systems

196

9.	 At the end, we update the coordinates of each touch point:
 if (E == MotionEvent.ACTION_MOVE)
 {
 for (int i = 0; i != cnt; i++)
 SendMotion(
 event.getPointerId(i),
 (int)event.getX(i),
 (int)event.getY(i),
 true, MOTION_MOVE);
 }
 }

10.	 When everything is done, we inform our native gesture decoder about the end of the
events sequence:
 SendMotion(MOTION_END, 0, 0, false, MOTION_MOVE);
 return E <= MotionEvent.ACTION_MOVE;
}

11.	 The native SendMotion() function accepts the touch point ID, the coordinates in
screen pixels, a motion flag, and a boolean parameter indicating whether the touch
point is active:

public native static void SendMotion(int PointerID, int x, int y,
 boolean Pressed, int Flag);

How it works...
The Android OS sends the notifications about touch points to our application, and the
onTouchEvent() function transforms the collection of touch events which resides
within a MotionEvent object into a sequence of JNI SendMotion() calls.

See also
ff Handling multi-touch events on Windows

ff Recognizing gestures

Chapter 7

197

Setting up multi-touch emulation on
Windows

Testing a touch-based interface is hard without the hardware, but even with the Android
hardware available, we do not have the luxury of a step-by-step debugger. Fortunately,
Windows supports touch screen hardware and can provide WM_TOUCH events for our
application. This recipe shows a trick, utilizing multiple mice to emulate touch events.

Getting ready
This recipe relies on a third-party Windows driver, the MultiTouchVista, a user input
management layer that handles input from various devices. It can be downloaded from
http://multitouchvista.codeplex.com/.

How to do it...
1.	 First, we need to install the system driver. We extract the MultiTouchVista_-_

second_release_-_refresh_2.zip file, the latest release at the time of writing,
and then open the command line with administrator rights. If the console is run
without administrator privileges, the installation of the driver fails. The extracted
folder contains the Driver subfolder, where you should choose either the x64
or x32 folder, depending on the type of your operating system. In that folder,
we execute the following command:
>Install driver.cmd

2.	 A dialog appears, asking whether you want to install this device software or not; you
should click on the Install button. Once the installation is complete, you will see a
message on the command line.

3.	 The next thing we do, is activate the driver in Device Manager. We open the Control
Panel, then the Device Manager window. There, we find the Human Interface
Devices item in the list. We right-click on the Universal Software HID device, the one
we have just installed the drivers for. We choose Disable from the context menu to
disable the device. In the confirmation before disabling the device, we just respond
with Yes. After that, we re-enable this device again by right-clicking on this node and
choosing Enable.

4.	 Now, since we emulate the multi-touch with mice, we should somehow display
the touch points on the screen, because otherwise it is impossible to know where
the mice pointers are. In Control Panel | Hardware and Sound, we open the Pen
and Touch window. The Touch tab contains the Show the touch pointer when I'm
interacting with items on the screen checkbox, which should be enabled.

Cross-platform UI and Input Systems

198

5.	 When all the mice are connected, we can start the driver. We open two command
lines and in the first one, we run Multitouch.Service.Console.exe from
the MultiTouchVista package. In the second console window, we run
Multitouch.Driver.Console.exe without closing the MultiTouch.Server.
Console window. Quit both of these applications to return to the normal non-multi-
touch Windows environment.

How it works...
To check whether the driver and the service work as expected, we can try the standard
Microsoft Paint application and use two or more mice simultaneously to draw something.

See also
ff Handling multi-touch events on Windows

Handling multi-touch events on Windows
Once we have installed the MultiTouchVista driver, or if we happen to have a
multi-touch-capable screen, we can initialize an event loop in the application
and handle the WM_TOUCH messages.

Getting ready
The first recipe contains all the relevant information about multi-touch handling. In this recipe,
we only extend our code for Microsoft Windows.

This book doesn’t discuss about multi-touch input emulation for Mac.

Chapter 7

199

How to do it...
1.	 The MinGW toolchain does not include the latest Windows SDK headers, so

a number of constants should be defined to use the WM_TOUCH messages:
#if !defined(_MSC_VER)
#define SM_DIGITIZER 94
#define SM_MAXIMUMTOUCHES 95
#define TOUCHEVENTF_DOWN 0x0001
#define TOUCHEVENTF_MOVE 0x0002
#define TOUCHEVENTF_UP 0x0004
#define TOUCHEVENTF_PRIMARY 0x0010
#define WM_TOUCH 0x0240

2.	 The TOUCHINPUT structure encapsulates a single touch using the WinAPI data
types and should also be declared manually for MinGW:
typedef struct _TOUCHINPUT {
 LONG x, y;
 HANDLE hSource;
 DWORD dwID, dwFlags, wMask, dwTime;
 ULONG_PTR dwExtraInfo;
 DWORD cxContact, cyContact;
} TOUCHINPUT,*PTOUCHINPUT;
#endif

3.	 The next four functions provide the touch interface handling for our application.
We declare the function prototypes and static function pointers to load them from
user32.dll:
typedef BOOL (WINAPI *CloseTouchInputHandle_func)(HANDLE);
typedef BOOL (WINAPI *Get_func)(HANDLE, UINT, PTOUCHINPUT, int);
typedef BOOL (WINAPI *RegisterTouch_func)(HWND, ULONG);
typedef BOOL (WINAPI *UnregisterTouch_func)(HWND);
static CloseTouch_func CloseTouchInputHandle_Ptr = NULL;
static Get_func GetTouchInputInfo_Ptr = NULL;
static RegisterTouch_func RegisterTouchWindow_Ptr = NULL;
static UnregisterTouch_func UnregisterTouchWindow_Ptr =
 NULL;

Cross-platform UI and Input Systems

200

4.	 Since MinGW does not support the automatic export of WM_TOUCH-related routines,
we have to load them manually from user32.dll using GetProcAddress(). This
is done in the LoadTouchFuncs() function, which is defined in the file Wrapper_
Windows.cpp from 1_MultitouchInput:
static bool LoadTouchFuncs()
{
 if (!CloseTouchInputHandle_Ptr)
 {
 HMODULE hUser = LoadLibraryA("user32.dll");
 CloseTouchInputHandle_Ptr =
 (CloseTouchInputHandle_func)
 GetProcAddress(hUser, "CloseTouchInputHandle");
 GetTouchInputInfo_Ptr = (GetTouchInputInfo_func)
 GetProcAddress(hUser, "GetTouchInputInfo");
 RegisterTouchWindow_Ptr = (RegisterTouchWindow_func)
 GetProcAddress(hUser, "RegisterTouchWindow");
 UnregisterTouchWindow_Ptr =
 (UnregisterTouchWindow_func)
 GetProcAddress(hUser, "UnregisterTouchWindow");
 }
 return (RegisterTouchWindow_Ptr != NULL);
}

5.	 Last, we need to declare the GetTouchPoint() routine, which converts the
TOUCHPOINT coordinates to screen pixels, for simplicity a hardcoded window
size of 100 x 100 pixels is used:
static POINT GetTouchPoint(HWND hWnd, const TOUCHINPUT& ti)
{
 POINT pt;
 pt.x = ti.x / 100;
 pt.y = ti.y / 100;
 ScreenToClient(hWnd, &pt);
 return pt;
}

6.	 Now we are ready to implement the multi-touch message handling on Windows. In
our window function, we add a new message handler for the WM_TOUCH message,
which contains data for several different touch points packed together. We unpack
the parameters into an array, where each item represents a message for a single
touch:
case WM_TOUCH:
{
 unsigned int NumInputs = (unsigned int)wParam;
 if (NumInputs < 1) { break; }

Chapter 7

201

 TOUCHINPUT* ti = new TOUCHINPUT[NumInputs];
 DWORD Res = GetTouchInputInfo_Ptr(
 (HANDLE)lParam, NumInputs, ti, sizeof(TOUCHINPUT));
 double EventTime = Env_GetSeconds();
 if (!Res) { break; }

7.	 For each touch point, we update its status in the global array g_TouchPoints.
This is the main difference from the Android code, since there we decode the
MotionEvent structure in Java code and pass a list of points to the native code:
 for (unsigned int i = 0; i < NumInputs ; ++i)
 {
 POINT touch_pt = GetTouchPoint(Window, ti[i]);
 vec2 Coord(touch_pt.x / ImageWidth,
 touch_pt.y / ImageHeight);
 sTouchPoint pt(ti[i].dwID, Coord,
 MOTION_MOVE, EventTime);
 if (ti[i].dwFlags & TOUCHEVENTF_DOWN)
 pt.FFlag = MOTION_DOWN;
 if (ti[i].dwFlags & TOUCHEVENTF_UP)
 pt.FFlag = MOTION_UP;
 Viewport_UpdateTouchPoint(pt);
 }

8.	 Then, we clean up the temporary array:
 CloseTouchInputHandle_Ptr((HANDLE)lParam);
 delete[] ti;

9.	 We remove all the released points:
 Viewport_ClearReleasedPoints();

10.	 Finally, we handle all the active touch points:
 Viewport_UpdateCurrentGesture();
 break;
}

11.	 The event handler uses a global list of touch points:
std::list<sTouchPoint> g_TouchPoints;

12.	 The sTouchPoint structure point encapsulates the coordinates, the touch point ID,
a motion flag, and the associated event time stamp for a single touch point:
struct sTouchPoint
{
 int FID;
 vec2 FPoint;

Cross-platform UI and Input Systems

202

 int FFlag;
 double FTimeStamp;
 sTouchPoint(int ID, const vec2& C, int flag, double
 tstamp):
 FID(ID), FPoint(c), FFlag(flag), FTimeStamp(tstamp) {}

13.	 Check if this touch point is active:
 inline bool IsPressed() const
 {
 return (FFlag == MOTION_MOVE) || (FFlag ==
 MOTION_DOWN);
 }
};

14.	 The Viewport_UpdateTouchPoint() function either adds the point to the list,
or just updates the state depending on the motion flag:
void Viewport_UpdateTouchPoint(const sTouchPoint& pt)
{
 std::list<sTouchPoint>::iterator foundIt =
 FTouchPoints.end();
 for (auto it = FTouchPoints.begin(); it != foundIt;
 ++it)
 {
 if (it->FID == pt.FID)
 {
 foundIt = it;
 break;
 }
 }
 switch (pt.FFlag)
 {
 case MOTION_DOWN:
 if (foundIt == FTouchPoints.end())
 FTouchPoints.push_back(pt);
 case MOTION_UP:
 case MOTION_MOVE:
 if (foundIt != FTouchPoints.end())
 *foundIt = pt;
 break;
 }
}

Chapter 7

203

15.	 The Viewport_ClearReleasedPoints() function removes all the points with the
motion flag set to MOTION_UP:
void Viewport_ClearReleasedPoints()
{
 auto first = FTouchPoints.begin();
 auto result = first;
 for (; first != FTouchPoints.end() ; ++first)
 if (first->FFlag != MOTION_UP) *result++ = *first;
 FTouchPoints.erase(result, FTouchPoints.end());
}

16.	 The last function, Viewport_UpdateCurrentGesture(), sends the point list to
the gesture processor:

void Viewport_UpdateCurrentGesture()
{
 Viewport_ProcessMotion(MOTION_START,
 vec2(), false, MOTION_MOVE);
 auto j = FTouchPoints.begin();
 for (; j != FTouchPoints.end(); ++j)
 Viewport_ProcessMotion(j->FID, j->FPoint,
 j->IsPressed(), j->FFlag);
 Viewport_ProcessMotion(MOTION_END, vec2(), false,
 MOTION_MOVE);
}

How it works...
In the WM_CREATE event handler, we register our window as the touch event responder:

case WM_CREATE:
...
g_TouchEnabled = false;
BYTE DigitizerStatus = (BYTE)GetSystemMetrics(SM_DIGITIZER);
if ((DigitizerStatus & (0x80 + 0x40)) != 0)
{
 BYTE nInputs = (BYTE)GetSystemMetrics(SM_MAXIMUMTOUCHES);
 if (LoadTouchFuncs())
 {
 if (!RegisterTouchWindow_Ptr(h, 0))
 {
 LOGI("Enabled, num points: %d\n", (int)nInputs);
 g_TouchEnabled = true;
 break;
 }
 }
}

Then we get a sequence of touch events in the Viewport_ProcessMotion() function.

Cross-platform UI and Input Systems

204

There's more...
Windows 8 has introduced the WM_POINTER message, which ensures much cleaner code,
similar to the Android and other touch-based environments. Interested readers may read
the respective MSDN articles (http://msdn.microsoft.com/en-us/library/
hh454928(v=vs.85).aspx) and write a similar handler in the window function.

See also
The code for the WM_TOUCH message handling is included in the 1_MultitouchInput
example. The next recipe shows how to decode a sequence of multi-touch events and
recognize some basic gestures.

Recognizing gestures
In this recipe, we implement a function which detects pinch-zoom-rotate and fling/swipe
gestures. It can serve as a starting point for recognition of your own custom gestures.

Getting ready
This recipe relies on the recipe Processing multi-touch events on Android from this chapter
to handle multi-touch input.

How to do it...
1.	 We split the task of motion decoding into individual layers. The low-level code

handles the OS-generated touch events. Collected touch point data is processed
using a set of routines in the mid-level code, which we present in this recipe. Finally,
all the decoded gestures are reported to the user's high-level code using the simple
iGestureResponder interface:
class iGestureResponder
{
public:

2.	 The Event_UpdateGesture() method is provided for direct access to the current
state of contact points. The sMotionData structure is presented right after the
iGestureResponder discussion. The 1_MultitouchInput example overrides
this method to render the touch points:
 virtual void Event_UpdateGesture(
 const sMotionData& Data) {}

Chapter 7

205

3.	 The Event_PointerChanged()and Event_PointerMoved() methods are called
to indicate the changes in individual touches:
 virtual void Event_PointerChanged(int PtrID,
 const vec2& Pnt, bool Pressed) {}
 virtual void Event_PointerMoved(int PtrID, const vec2&
 const vec2& Pnt){}

4.	 The information about decoded gestures is sent to the iGestureResponder
instance. When the fling/swipe event finishes, the Event_Fling() method is called:
 virtual void Event_Fling(const sTouchPoint& Down,
 const sTouchPoint& Up) {}

5.	 Using the timestamps in the Up and Down points, the responder may estimate the
speed of the finger movement and decide if the gesture succeeds. The Event_
Drag() method is called when the finger is dragged across the screen:
 virtual void Event_Drag(const sTouchPoint& Down,
 const sTouchPoint& Current) {}

6.	 The pinch-zoom event is handled using three methods. The Event_PinchStart()
method is called when the gesture starts, Event_PinchStop() is called at the end
of the gesture, and the Event_Pinch() method is called on each update of two
touch points:
 virtual void Event_PinchStart(const sTouchPoint& Initial1,
 const sTouchPoint& Initial2) {}
 virtual void Event_Pinch(const sTouchPoint& Initial1,
 const sTouchPoint& Initial2,
 const sTouchPoint& Current1,
 const sTouchPoint& Current2) {}
 virtual void Event_PinchStop(const sTouchPoint& Initial1,
 const sTouchPoint& Initial2,
 const sTouchPoint& Current1,
 const sTouchPoint& Current2) {};
};

7.	 Let's get to the mid-level routines to decode gestures. First, declare an instance
of iGestureResponder which is used later:
 iGestureResponder* g_Responder;

8.	 We introduce the sMotionData structure, which describes the current gesture
state. Individual touch point features are accessed with the Get* functions. The
AddTouchPoint() function ensures no points with duplicate IDs are added:
struct sMotionData
{
 sMotionData(): FTouchPoints() {};
 void Clear() { FTouchPoints.clear(); };

Cross-platform UI and Input Systems

206

 size_t GetNumTouchPoints() const { return
 FTouchPoints.size(); }
 const sTouchPoint& GetTouchPoint(size_t Idx) const {
 return FTouchPoints[Idx]; }
 vec2 GetTouchPointPos(size_t i) const { return
 FTouchPoints[i].FPoint; }
 int GetTouchPointID(size_t i) const { return
 FTouchPoints[i].FID; }
 void AddTouchPoint(const sTouchPoint& TouchPoint)
 {
 for (size_t i = 0; i != FTouchPoints.size(); i++)
 if (FTouchPoints[i].FID == TouchPoint.FID)
 {
 FTouchPoints[i] = TouchPoint;
 return;
 }
 FTouchPoints.push_back(TouchPoint);
 }
private:
 std::vector<sTouchPoint> FTouchPoints;
};

9.	 A gesture is described by the current state of its touch points and a ring buffer of
previous touch point states. To detect a gesture, we create an ad-hoc state machine.
Two Boolean variables indicate if we really have the gesture and if the gesture is
progressing. Validity flags are also stored for each kind of gesture:
sMotionData FMotionData;
RingBuffer<sMotionData> FPrevMotionData(5);
bool FMotionDataValid = false;
bool FMoving = false;
bool FFlingWasValid = false;
bool FPinchZoomValid = false;
bool FPinchZoomWasValid = false;

10.	 Single-finger gestures, like fling, drag, or tap, are described by the current and initial
touch points. The pinch-zoom is a two-finger gesture whose state is determined by
two initial points and two current points. Centers are calculated as the average of the
initial and current point coordinates:
sTouchPoint FInitialPoint(0, LVector2(), MOTION_MOVE, 0.0);
sTouchPoint FCurrentPoint(0, LVector2(), MOTION_MOVE, 0.0);

Chapter 7

207

sTouchPoint FInitialPoint1, FInitialPoint2;
sTouchPoint FCurrentPoint1, FCurrentPoint2;
float FZoomFactor = 1.0f;
float FInitialDistance = 1.0f;
LVector2 FInitialCenter, FCurrentCenter;

11.	 To ignore accidental screen touches, we introduce a sensitivity threshold, which is the
smallest percent of the screen space a finger must travel for the fling gesture to be
detected:
 float FlingStartSensitivity = 0.2f;

12.	 The fling gesture is completely ignored if the finger's final position moves from the
initial position by less than the following value:
 float FlingThresholdSensitivity = 0.1f;

13.	 The RingBuffer data structure is implemented using a simple dynamic array. The
full source code is in the RingBuffer.h file:
template <typename T> class RingBuffer
{
public:
 explicit RingBuffer(size_t Num): FBuffer(Num) { clear(); }
 inline void clear() { FCount = FHead = 0; }
 inline void push_back(const T& Value)
 {
 if (FCount < FBuffer.size()) FCount++;
 FBuffer[FHead++] = Value;
 if (FHead == FBuffer.size()) FHead = 0;
 }

14.	 The only special method is the accessor to previous states, relative to FHead:
 inline T* prev(size_t i)
 { return (i >= FCount) ? NULL: &FBuffer[AdjustIndex(i)]; }
private:
 std::vector<T> FBuffer;

15.	 The current element and the total number of items:
 size_t FHead;
 size_t FCount;

16.	 Division remainder with the wrapping around for negative values:
 inline int ModInt(int a, int b)
 { int r = a % b; return (r < 0) ? r+b : r; }

Cross-platform UI and Input Systems

208

17.	 The last routine calculates the previous element index:
 inline size_t AdjustIndex(size_t i) const
 {
 return (size_t)ModInt((int)FHead - (int)i - 1,
 (int)FBuffer.size());
 }
};

18.	 To decode a gesture, we carefully handle each of the touch events. At the beginning
we reset the touch point collection, and at the end of the touch we check for gesture
completion:
void GestureHandler_SendMotion(int ContactID, eMotionFlag
 Flag,LVector2 Pos, bool Pressed)
{
 if (ContactID == MOTION_START)
 {
 FMotionDataValid = false;
 FMotionData.Clear();
 return;
 }
 if (ContactID == MOTION_END)
 {
 FMotionDataValid = true;
 UpdateGesture();
 g_Responder->Event_UpdateGesture(FMotionData);
 if (sMotionData* P = FPrevMotionData.prev(0))
 {
 if (P->GetNumTouchPoints() !=
 FMotionData.GetNumTouchPoints())
 FPrevMotionData.push_back(FMotionData);
 }
 else
 {
 FPrevMotionData.push_back(FMotionData);
 }
 return;

 }

19.	 If we are still moving, then modify the information about the current point:
 if (Pressed)
 FMotionData.AddTouchPoint(sTouchPoint(ContactID, Pos,
 MOTION_DOWN, Env_GetSeconds()));

Chapter 7

209

20.	 Depending on the motion flag, we inform the responder about individual touches:
 switch (Flag)
 {
 case MOTION_MOVE:
 g_Responder->Event_PointerMoved(ContactID, Pos);
 break;
 case MOTION_UP:
 case MOTION_DOWN:
 g_Responder->Event_PointerChanged(ContactID, Pos,
 Flag == MOTION_DOWN);
 break;
 }
}

21.	 The UpdateGesture() function does all the job of detection. It checks the current
state of the gesture and calls the methods of the g_Responder object if any of the
gestures are in progress:
void UpdateGesture()
{
 const sTouchPoint& Pt1 = FInitialPoint;
 const sTouchPoint& Pt2 = FCurrentPoint;
 g_Responder->Event_UpdateGesture(FMotionData);

22.	 The drag-and-pinch gestures are checked in the IsDraggingValid() and
IsPinchZoomValid() methods, which are described a bit later. We respond to a
single point drag, if the finger has travelled more than a specified distance:
 if (IsDraggingValid())
 {
 if (GetPositionDelta().Length() >
 FlingThresholdSensitivity)
 {
 g_Responder->Event_Drag(Pt1, Pt2);
 FFlingWasValid = true;
 }
 }
else if (FFlingWasValid)
 {
 if (GetPositionDelta().Length() >
 FlingStartSensitivity)
 g_Responder->Event_Fling(Pt1, Pt2);
 else
 g_Responder->Event_Drag(Pt1, Pt2);
 FFlingWasValid = false;
 }

Cross-platform UI and Input Systems

210

 if (IsPinchZoomValid())
 {
 if (FPinchZoomWasValid)
 g_Responder->Event_Pinch(FInitialPoint1,
 FInitialPoint2, FCurrentPoint1,
 FCurrentPoint2);
 else
 g_Responder->Event_PinchStart(FInitialPoint1,
 FInitialPoint2);
 FPinchZoomWasValid = true;
 }
 else if (FPinchZoomWasValid)
 {
 FPinchZoomWasValid = false;
 g_Responder->Event_PinchStop(FInitialPoint1,
 FInitialPoint2, FCurrentPoint1, FCurrentPoint2);
 }
}

23.	 The UpdateGesture() function previously described uses the following helper
function:
static vec2 GetPositionDelta()
{ return FCurrentPoint.FPoint - FInitialPoint.FPoint; }

24.	 The drag or fling motion should be performed with a single finger. To distinguish
a drag from a fling, we use the IsDraggingValid() function:
static bool IsDraggingValid()
{
 if (FMotionDataValid && FMotionData.GetNumTouchPoints() == 1
 && FMotionData.GetTouchPointID(0) == 0)
 {
 if (!FMoving)
 {
 FMoving = true;
 FInitialPoint = FMotionData.GetTouchPoint(0);
 return false;
 }
 FCurrentPoint = FMotionData.GetTouchPoint(0);
 }
 else
 {
 FMoving = false;
 }
 return FMoving;
}

Chapter 7

211

25.	 To check whether the user is performing the pinch-zoom gesture, we call the
IsPinchZoomValid() function. We get the touch points and calculate the distance
between them. If we are already performing the pinch-zoom gesture, we update the
current points. Otherwise, we store the initial points and calculate the center:

static bool IsPinchZoomValid()
{
 if (FMotionDataValid &&
 FMotionData.GetNumTouchPoints() == 2)
 {
 const sTouchPoint& Pt1 = FMotionData.GetTouchPoint(0);
 const sTouchPoint& Pt2 = FMotionData.GetTouchPoint(1);
 const LVector2& Pos1(FMotionData.GetTouchPointPos(0));
 const LVector2& Pos2(FMotionData.GetTouchPointPos(1));
 float NewDistance = (Pos1 - Pos2).Length();
 if (FPinchZoomValid)
 {
 FZoomFactor = NewDistance / FInitialDistance;
 FCurrentPoint1 = Pt1;
 FCurrentPoint2 = Pt2;
 FCurrentCenter = (Pos1 + Pos2) * 0.5f;
 }
 else
 {
 FInitialDistance = NewDistance;
 FPinchZoomValid = true;
 FZoomFactor = 1.0f;
 FInitialPoint1 = Pt1;
 FInitialPoint2 = Pt2;
 FInitialCenter = (Pos1 + Pos2) * 0.5f;
 return false;
 }
 }
 else
 {
 FPinchZoomValid = false;
 FZoomFactor = 1.0f;
 }
 return FPinchZoomValid;
}

Cross-platform UI and Input Systems

212

How it works...
The g_Responder instance receives all the data about decoded gestures.

Implementing an on-screen joypad
It is time to make use of the multi-touch facilities and emulate a gaming console-like interface
on an Android device touch screen.

Getting ready
Learn how to handle multi-touch input from recipes Processing multi-touch events on Android
and Processing multi-touch events on Windows before proceeding with this recipe.

How to do it...
We implement a custom multi-touch event handler, which keeps track of all the touch points.
The joystick is rendered as a full-screen bitmap shown on the left-hand side. When the user
touches the screen, we use the touch coordinates to fetch the pixel color from the mask on
the right-hand side of the figure. Then, we find the internal button corresponding to the color
and change its Pressed state. The following figure shows the joypad visual representation
and the color mask:

1.	 Single button of our virtual joystick is determined by its color in the mask and the
index in the buttons table:
struct sBitmapButton
{
 vec4 FColour;
 int FIndex;
};

Chapter 7

213

2.	 A virtual analogue stick supports two directions and is determined by its radius,
mask color, and position:
struct sBitmapAxis
{
 float FRadius;
 vec2 FPosition;
 int FAxis1, FAxis2;
 vec4 Fcolour;
};

3.	 The ScreenJoystick class contains descriptions for all of the buttons and axes:
class ScreenJoystick
{
 std::vector<sBitmapButton> FButtonDesc;
 std::vector<sBitmapAxis> FAxisDesc;

4.	 The values for each axis and the Pressed flags for each button are stored in two
arrays:
 std::vector<float> FAxisValue;
 std::vector<bool> FKeyValue;

5.	 The mask bitmap data pointer is also necessary for this class:
 unsigned char* FMaskBitmap;

6.	 The FPushed* arrays tell us which buttons and axes are currently activated:
 sBitmapButton* FPushedButtons[MAX_TOUCH_CONTACTS];
 sBitmapAxis* FPushedAxis[MAX_TOUCH_CONTACTS];

7.	 The constructor and destructor are essentially empty:
 ScreenJoystick(): FMaskBitmap(NULL) {}
 virtual ~ScreenJoystick() {}

8.	 The InitKeys() method allocates the state arrays when the joystick construction
is finished:
 void InitKeys()
 {
 FKeyValue.resize(FButtonDesc.size());
 if (FKeyValue.size() > 0)
 {
 for (size_t j = 0 ; j < FKeyValue.size() ; j++)
 FKeyValue[j] = false;
}
 FAxisValue.resize(FAxisDesc.size() * 2);
 if (FAxisValue.size() > 0)

Cross-platform UI and Input Systems

214

 {
 memset(&FAxisValue[0], 0, FAxisValue.size() *
 sizeof(float));
 }
 Restart();
 }

9.	 The Restart() method clears the state of pushed buttons:
 void Restart()
 {
 memset(&FPushedAxis[0], 0, sizeof(sBitmapAxis*) *
 MAX_TOUCH_CONTACTS);
 memset(&FPushedButtons[0], 0, sizeof(sBitmapButton*) *
 MAX_TOUCH_CONTACTS);
 }

10.	 The internal state is changed by the private SetAxisValue() and SetKeyState()
methods:
 void SetKeyState(int KeyIdx, bool Pressed)
 {
 if (KeyIdx < 0 || KeyIdx >= (int)FKeyValue.size())
 { return; }
 FKeyValue[KeyIdx] = Pressed;
 }
 void SetAxisValue(int AxisIdx, float Val)
 {
 if ((AxisIdx < 0) ||
 AxisIdx >= (int)FAxisValue.size())
 { return; }
 FAxisValue[AxisIdx] = Val;
 }

11.	 The IsPressed() and GetAxisValue() methods can read the state of a key
or an axis:
 bool IsPressed(int KeyIdx) const
 {
 return (KeyIdx < 0 ||
 KeyIdx >= (int)FKeyValue.size()) ?
 false : FKeyValue[KeyIdx];
 }
 float GetAxisValue(int AxisIdx) const
 {
 return ((AxisIdx < 0) ||
 AxisIdx >= (int)FAxisValue.size()) ?
 0.0f : FAxisValue[AxisIdx];
 }

Chapter 7

215

12.	 The following internal methods look up for the button and axis with a given color:
 sBitmapButton* GetButtonForColour(const vec4& Colour)
 const
 {
 for (size_t k = 0 ; k < FButtonDesc.size(); k++)
 {
 float Distance = (FButtonDesc[k]->FColour –
 Colour).Length();
 if (Distance < 0.1f) return FButtonDesc[k];
 }
 return NULL;
 }

 sBitmapAxis* GetAxisForColour(const vec4& Colour) const
 {
 for (size_t k = 0 ; k < FAxisDesc.size(); k++)
 {
 float Distance = (FButtonDesc[k]->FColour –
 Colour).Length();
 if (Distance < 0.1f) return FAxisDesc[k];
 }
 return NULL;
 }

13.	 Two values for each axis are read as the displacement from the center:
 void ReadAxis(sBitmapAxis* Axis, const vec2& Pos)
 {
 if (!Axis) { return; }

14.	 Read axis value based on a center point and a touch point:
 float v1 = ((Axis->FPosition - Pos).x/Axis->FRadius);
 float v2 = (-(Axis->FPosition - Pos).y/Axis->FRadius);
 this->SetAxisValue(Axis->FAxis1, v1);
 this->SetAxisValue(Axis->FAxis2, v2);
 }
 vec4 GetColourAtPoint(const vec2& Pt) const
 {
 if (!FMaskBitmap) { return vec4(-1); }
 int x = (int)(Pt.x * 512.0f);
 int y = (int)(Pt.y * 512.0f);
 int Ofs = (y * 512 + x) * 3;
 float r = (float)FMaskBitmap[Ofs + 0] / 255.0f;
 float g = (float)FMaskBitmap[Ofs + 1] / 255.0f;
 float b = (float)FMaskBitmap[Ofs + 2] / 255.0f;
 return vec4(b, g, r, 0.0f);
 }

Cross-platform UI and Input Systems

216

15.	 The main routine is the HandleTouch() method:
void HandleTouch(int ContactID, const vec2& Pos, bool Pressed,
 eMotionFlag Flag)
{

16.	 If the touch has just started, we reset the values for each button and axis:
 if (ContactID == MOTION_START)
 {
 for (size_t i = 0; i != MAX_TOUCH_CONTACTS; i++)
 {
 if (FPushedButtons[i])
 {
 this->SetKeyState(
 FPushedButtons[i]->FIndex, false);
 FPushedButtons[i] = NULL;
 }
 if (FPushedAxis[i])
 {
 this->SetAxisValue(
 FPushedAxis[i]->FAxis1, 0.0f);
 this->SetAxisValue(
 FPushedAxis[i]->FAxis2, 0.0f);
 FPushedAxis[i] = NULL;
 }
 }
 return;
 }
 if (ContactID == MOTION_END) { return; }
 if (ContactID < 0 || ContactID >= MAX_TOUCH_CONTACTS)
 { return; }

17.	 If the pointer is moving, we look up the respective button or axis:
 if (Flag == MOTION_DOWN || Flag == MOTION_MOVE)
 {
 vec4 Colour = GetColourAtPoint(Pos);
 sBitmapButton* Button = GetButtonForColour(Colour);
 sBitmapAxis* Axis = GetAxisForColour(Colour);

18.	 For each button we find, set the pressed state to true:
 if (Button && Pressed)
 {
 int Idx = Button->FIndex;
 this->SetKeyState(Idx, true);
 FPushedButtons[ContactID] = Button;
 }

Chapter 7

217

19.	 For each found axis, we read the value:

 if (Axis && Pressed)
 {
 this->ReadAxis(Axis, Pos);
 FPushedAxis[ContactID] = Axis;
 }
 }
}

How it works...
We declare a global variable, which holds the state of our joystick:

ScreenJoystick g_Joystick;

In the OnStart() method, we add two axes and a single button:

 float A_Y = 414.0f / 512.0f;

 sBitmapAxis B_Left;
 B_Left.FAxis1 = 0;
 B_Left.FAxis2 = 1;
 B_Left.FPosition = vec2(55.0f / 512.f, A_Y);
 B_Left.FRadius = 40.0f / 512.0f;
 B_Left.FColor = vec4(0.75f, 0.75f, 0.75f, 0.0f);

 sBitmapButton B_Fire;
 B_Fire.FIndex = ID_BUTTON_THRUST;
 B_Fire.FColor = vec4(0);
 g_Joystick.FAxisDesc.push_back(B_Left);
 g_Joystick.FButtonDesc.push_back(B_Fire);

Then, we initialize the joystick and reset its state:

 g_Joystick.InitKeys();
 g_Joystick.Restart();

Later in the code we can use the results of g_Joystick.GetAxisValue to find out the
current axis value, and g_Joystick.IsPressed to see if the key is pressed.

Cross-platform UI and Input Systems

218

Using FreeType for text rendering
It is possible that the interface avoids rendering the textual information. However, most
applications have to display some text on the screen. It is time to consider the FreeType text
rendering in all its detail with kerning and glyph caching. This is the longest recipe of this
book, but we really wish not to miss the details and subtleties of the FreeType usage.

Getting ready
It is time to make the real use of the recipe on the FreeType compilation from Chapter 2,
Porting Common Libraries. We start with an empty application template described in Chapter
1, Establishing a Build Environment. The following code supports multiple fonts, automatic
kerning, and glyph caching.

In typography, kerning (less commonly mortising) is the process of adjusting the
spacing between characters in a proportional font, usually to achieve a visually
pleasing result.

Courtesy: http://en.wikipedia.org/wiki/Kerning

Glyph caching is a feature of the FreeType library, which reduces memory usage using glyph
images and character maps. You can read about it at http://www.freetype.org/
freetype2/docs/reference/ft2-cache_subsystem.html.

How to do it...
Here we develop the TextRenderer class, which holds all the states of the FreeType library.
We wrap the text rendering in a class to support multiple instances of this class and ensure
the thread safety.

1.	 The required FreeType library initialization includes the library instance, glyph cache,
character map cache, and image cache. We declare the internal FreeType objects
first:
class TextRenderer
{
 // Local instance of the library (for thread-safe
 execution)
 FT_Library FLibrary;
 // Cache manager
 FTC_Manager FManager;
 // Glyph cache
 FTC_ImageCache FImageCache;
 // Character map cache
 FTC_CMapCache FCMapCache;

Chapter 7

219

2.	 Then the list of loaded fonts is declared:
 // List of available font faces
 std::vector<std::string> FFontFaces;
 // Handle for the current font face
 FT_Face FFace;
 // List of loaded font files to prevent multiple file
 reads
 std::map<std::string, void*> FAllocatedFonts;
 // List of initialized font face handles
 std::map<std::string, FT_Face> FFontFaceHandles;

3.	 The FMaskMode switch is used to choose between opaque rendering and
alpha-mask creation. It is mentioned later in the glyph rendering code:
 bool FMaskMode;

4.	 The initialization routine creates the FreeType library instance and initializes
the glyph and image caches:
void InitFreeType()
{
 LoadFT();
 FT_Init_FreeTypePTR(&FLibrary);
 FTC_Manager_NewPTR(FLibrary,0,0,0,
 FreeType_Face_Requester, this, &FManager);
 FTC_ImageCache_NewPTR(FManager, &FImageCache);
 FTC_CMapCache_NewPTR(FManager, &FCMapCache);
}

As usual, we provide the shortest code possible. The complete code should check for
non-zero return codes from the FTC_* functions. The LoadFT() function initializes
the function pointers for the FreeType library. We use the PTR suffix for all of the
FreeType functions in the code for this recipe to allow dynamic library loading on
Windows. If you are only concerned about Android development, the PTR suffix
can be omitted.

5.	 The deinitialization routine clears all the internal data and destroys the FreeType
objects:
void StopFreeType()
{
 FreeString();
 auto p = FAllocatedFonts.begin();
 for (; p!= FAllocatedFonts.end() ; p++)
 delete[] (char*)(p->second);
 FFontFaces.clear();
 FTC_Manager_DonePTR(FManager);
 FT_Done_FreeTypePTR(FLibrary);
}

Cross-platform UI and Input Systems

220

6.	 The FreeString() routine clears the internal FreeType glyphs cache:
void FreeString()
{
 for (size_t i = 0 ; i < FString.size() ; i++)
 if (FString[i].FCacheNode != NULL)
 FTC_Node_UnrefPTR(FString[i].FCacheNode,FManager);
 FString.clear();
}

7.	 FString contains all the characters from the string being rendered. The
initialization and deinitialization functions are called in the constructor and
destructor, respectively:
TextRenderer(): FLibrary(NULL), FManager(NULL),
 FImageCache(NULL), FCMapCache(NULL)
{
 InitFreeType();
 FMaskMode = false;
}
virtual ~clTextRenderer() { StopFreeType(); }

8.	 To utilize the TrueType fonts and render the glyphs, we need to create a simple set
of management routines to load the font files. The first one is the LoadFontFile()
function, which loads the font file, stores its contents in the list, and returns the
error code:
FT_ErrorLoadFontFile(const std::string& File)
{
 if (FAllocatedFonts.count(File) > 0) { return 0; }
 char* Data = NULL;
 int DataSize;
 ReadFileData(File.c_str(), &Data, DataSize);
 FT_Face TheFace;

9.	 We always use the 0-th face, which is the first one in the loaded file:
 FT_Error Result = FT_New_Memory_FacePTR(FLibrary,
 (FT_Byte*)Data, (FT_Long)DataSize, 0, &TheFace);

10.	 Check for success and store the font in the array of loaded font faces:
 if (Result == 0)
 {
 FFontFaceHandles[File] = TheFace;
 FAllocatedFonts[File] = (void*)Data;
 FFontFaces.push_back(File);
 }
 return Result;
}

Chapter 7

221

The ReadFileData() function loads the content of File. You are encouraged
to implement this function or to see the accompanying source, where it is done by
means of our Virtual Filesystem.

11.	 The static function FreeType_Face_Requester() caches the access to the font
face and allows us to reuse loaded fonts. It is defined in the FreeType library headers:
FT_Error FreeType_Face_Requester(FTC_FaceID FaceID,
 FT_Library Library, FT_Pointer RequestData,
 FT_Face* Face)
{
#ifdef _WIN64
 long long int Idx = (long long int)FaceID;
 int FaceIdx = (int)(Idx & 0xFF);
#else
 int FaceIdx = reinterpret_cast< int >(FaceID);
#endif
 if (FaceIdx < 0) { return 1; }
 TextRenderer* Renderer = (TextRenderer*)RequestData;
 std::string File = Renderer ->FFontFaces[FaceIdx];
 FT_Error Result = Renderer ->LoadFontFile(File);
 *Face = (Result == 0) ?
 Renderer->FFontFaceHandles[File] : NULL;
 return Result;
}

The FreeType library allows the RequestData parameter, where we pass an instance
of TextRenderer by pointer. The #ifdef in the code of FreeType_Face_
Requester() is necessary to run on 64-bit versions of Windows. The Android OS is
32-bit only, and the casting of void* to int is implicitly allowed.

12.	 The GetSizedFace function sets the font size for the loaded face:
FT_Face GetSizedFace(int FontID, int Height)
{
 FTC_ScalerRec Scaler;
 Scaler.face_id = IntToID(FontID);
 Scaler.height = Height;
 Scaler.width = 0;
 Scaler.pixel = 1;
 FT_Size SizedFont;
 if (!FTC_Manager_LookupSizePTR(FManager, &Scaler,
 &SizedFont)) return NULL;
 if (FT_Activate_SizePTR(SizedFont) != 0) { return
 NULL; }
 return SizedFont->face;
}

Cross-platform UI and Input Systems

222

13.	 Then, we define the internal sFTChar structure which holds the information
about a single character:
struct sFTChar
{
 // UCS2 character, suitable for FreeType
 FT_UInt FChar;
 // Internal character index
 FT_UInt FIndex;
 // Handle for the rendered glyph
 FT_Glyph FGlyph;
 // Fixed-point character advance and character size
 FT_F26Dot6 FAdvance, FWidth;
 // Cache node for this glyph
 FTC_Node FCacheNode;
 // Default parameters
 sFTChar(): FChar(0), FIndex((FT_UInt)(-1)), FGlyph(NULL),
 FAdvance(0), FWidth(0), FCacheNode(NULL) { }
};

14.	 The text we render is in the UTF-8 encoding, which must be converted to the
UCS-2 multi-byte representation. The simplest UTF-8 decoder reads an input
string and outputs its characters into the FString vector:
bool DecodeUTF8(const char* InStr)
{
 FIndex = 0;
 FBuffer = InStr;
 FLength = (int)strlen(InStr);
 FString.clear();
 int R = DecodeNextUTF8Char();
 while ((R != UTF8_LINE_END) &&
 (R != UTF8_DECODE_ERROR))
 {
 sFTChar Ch;
 Ch.FChar = R;
 FString.push_back(Ch);
 R = DecodeNextUTF8Char();
 }
 return (R != UTF8_DECODE_ERROR);
}

Chapter 7

223

15.	 The decoder uses the following function to read individual character codes:
int DecodeNextUTF8Char()
{
 // the first byte of the character and the result
 int c, r;
 if (FIndex >= FLength)
 return FIndex == FLength ?
 UTF8_LINE_END : UTF8_DECODE_ERROR;
 c = NextUTF8();
 if ((c & 0x80) == 0) { return c; }
 if ((c & 0xE0) == 0xC0)
 {
 int c1 = ContUTF8();
 if (c1 < 0) { return UTF8_DECODE_ERROR; }
 r = ((c & 0x1F) << 6) | c1;
 return r >= 128 ? r : UTF8_DECODE_ERROR;
 }
 if ((c & 0xF0) == 0xE0)
 {
 int c1 = ContUTF8(), c2 = ContUTF8();
 if (c1 < 0 || c2 < 0) { return UTF8_DECODE_ERROR; }
 r = ((c & 0x0F) << 12) | (c1 << 6) | c2;
 return r>=2048&&(r<55296||r>57343)?
 r:UTF8_DECODE_ERROR;
 }
 if ((c & 0xF8) == 0xF0)
 {
 int c1 = ContUTF8(), c2 = ContUTF8(), c3 = ContUTF8();
 if (c1 < 0||c2 < 0||c3< 0) { return UTF8_DECODE_ERROR; }
 r = ((c & 0x0F) << 18) | (c1 << 12) | (c2 << 6) | c3;
 return r>=65536 && r<=1114111 ? r: UTF8_DECODE_ERROR;
 }
 return UTF8_DECODE_ERROR;
}

The source code of DecodeNextUTF8Char() was taken from the
Linderdaum Engine at http://www.linderdaum.com.

Cross-platform UI and Input Systems

224

16.	 The NextUTF8() and ContUTF8() inline functions are declared next to the
decoding buffers:
 static const int UTF8_LINE_END = 0;
 static const int UTF8_DECODE_ERROR = -1;

17.	 A buffer with the current string:
 std::vector<sFTChar> FString;

18.	 The current character index and the source buffer length:
 int FIndex, FLength;

19.	 Raw pointer to the source buffer and the current byte:
 const char* FBuffer;
 int FByte;

20.	 Get the next byte or UTF8_LINE_END if there are no bytes left:
 inline int NextUTF8()
 {
 return (FIndex >= FLength) ?
 UTF8_LINE_END : (FBuffer[FIndex++] & 0xFF);
 }

21.	 Get the low six bits of the next continuation byte and return UTF8_DECODE_ERROR
if it is not a continuation byte:
 inline int ContUTF8()
 {
 int c = NextUTF8();
 return ((c & 0xC0) == 0x80) ?
 (c & 0x3F) : UTF8_DECODE_ERROR;
 }

22.	 By now, we have the font loading functions and a UTF-8 decoder. Now it is time to
deal with the actual rendering. The first thing we want to do is calculate the string size
in screen pixels, which is performed in the CalculateLineParameters function:
void CalculateLineParameters(
 int* Width, int* MinY, int* MaxY, int* BaseLine) const
{

23.	 We use two variables to look for the minimum and maximum vertical positions:
 int StrMinY = -1000, StrMaxY = -1000;
 if (FString.empty())
 StrMinY = StrMaxY = 0;

Chapter 7

225

24.	 Another variable stores the horizontal size of the string:
 int SizeX = 0;

25.	 We iterate over the FString array and use the sFTChar::FGlyph field to
retrieve the vertical character size. We also add the FAdvance field to SizeX,
to account for the kerning and horizontal character size:
 for (size_t i = 0 ; i != FString.size(); i++)
 {
 if (FString[i].FGlyph == NULL) { continue; }
 auto Glyph = (FT_BitmapGlyph)FString[i].FGlyph;
 SizeX += FString[i].FAdvance;
 int Y = Glyph->top;
 int H = Glyph->bitmap.rows;
 if (Y > StrMinY) { StrMinY = Y; }
 if (H - Y > StrMaxY) { StrMaxY = H - Y; }
 }
 if (Width) { *Width = (SizeX >> 6); }
 if (BaseLine) { *BaseLine = StrMaxY; }
 if (MinY) { *MinY = StrMinY; }
 if (MaxY) { *MaxY = StrMaxY; }
}

26.	 We use the preceding code to render a UTF-8 string into a newly allocated bitmap:
clPtr<Bitmap> RenderTextWithFont(const std::string& Str,
	 int FontID, int FontHeight,
	 unsigned int Color, bool LeftToRight)
{

27.	 Decode the UTF-8 input string and calculate individual character positions:
 if (!LoadTextStringWithFont(Str, FontID, FontHeight))
 { return NULL; }

28.	 Calculate the horizontal and vertical string dimensions and allocate the
output bitmap:
 int W, Y, MinY, MaxY;
 CalculateLineParameters(&W, &MinY, &MaxY, &Y);
 clPtr<Bitmap> Result = new Bitmap(W, MaxY + MinY);

29.	 Render all the glyphs to the bitmap. Start on the other side of the bitmap, if
the text is right-to-left:
 RenderLineOnBitmap(TextString, FontID, FontHeight,
 LeftToRight ? 0 : W - 1, 	 MinY, Color, LeftToRight,
 Result);
 return Result;
}

Cross-platform UI and Input Systems

226

30.	 The routine LoadStringWithFont() does the job of horizontal position
calculation for each character of the string S:
bool LoadStringWithFont(const std::string& S, int ID, int
 Height)
{
 if (ID < 0) { return false; }

31.	 Get the required font face:
 FFace = GetSizedFace(ID, Height);
 if (FFace == NULL) { return false; }
 bool UseKerning = FT_HAS_KERNING(Face);

32.	 Decode the input UTF-8 string and calculate character sizes, checking each
element in FString:
 DecodeUTF8(S.c_str());
 for (size_t i = 0, count = FString.size(); i != count;
 i++)
 {
 sFTChar& Char = FString[i];
 FT_UInt ch = Char.FChar;
 Char.FIndex = (ch != '\r' && ch != '\n') ?
 GetCharIndex(ID, ch) : -1;

33.	 Load a glyph corresponding to the character:
 Char.FGlyph = (Char.FIndex != -1) ?
 GetGlyph(ID, Height, ch,
 FT_LOAD_RENDER, &Char.FCacheNode) : NULL;
 if (!Char.FGlyph || Char.FIndex == -1) continue;

34.	 Calculate the horizontal offset of this glyph:
 SetAdvance(Char);

35.	 Calculate the kerning for each character, except the first one:
 if (i > 0 && UseKerning) Kern(FString[i - 1], Char);
 }
 return true;
}

36.	 The LoadStringWithFont() function uses auxiliary routines Kern() and
SetAdvance() to calculate the offset between two sequential characters:
void SetAdvance(sFTChar& Char)
{
 Char.FAdvance = Char.FWidth = 0;
 if (!Char.FGlyph) { return; }

Chapter 7

227

37.	 Convert the value from the 26.6 fixed-point format:
 Char.FAdvance = Char.FGlyph->advance.x >> 10;
 FT_BBox bbox;
 FT_Glyph_Get_CBoxPTR(Char.FGlyph,
 FT_GLYPH_BBOX_GRIDFIT, &bbox);
 Char.FWidth = bbox.xMax;
 if (Char.FWidth == 0 && Char.FAdvance != 0)
 { Char.FWidth = Char.FAdvance; }
 }
void Kern(sFTChar& Left, const sFTChar& Right)
{
 if (Left.FIndex == -1 || Right.FIndex == -1)
 { return; }
 FT_Vector Delta;
 FT_Get_KerningPTR(FFace, Left.FIndex, Right.FIndex,
 FT_KERNING_DEFAULT, &Delta);
 Left.FAdvance += Delta.x;
}

38.	 Finally, once we have the positions of each character, we render the
individual glyphs to the bitmap:
void RenderLineOnBitmap(const std::string& S,
 int FontID, int FontHeight, int StartX, int Y,
 unsigned int C, bool LeftToRight, const clPtr<Bitmap>&
 Out)
{
 LoadStringWithFont(S, FontID, FontHeight);
 int x = StartX << 6;
 for (size_t j = 0 ; j != FString.size(); j++)
 {
 if (FString[j].FGlyph != 0)
 {
 auto Glyph = (FT_BitmapGlyph) FString[j].FGlyph;
 int in_x = (x>>6);
 in_x += (LeftToRight ? 1 : -1) * BmpGlyph->left;
 if (!LeftToRight)
 {
 in_x += BmpGlyph->bitmap.width;
 in_x = StartX + (StartX - in_x);
 }
 DrawGlyph(Out, &BmpGlyph->bitmap, in_x, Y -
 BmpGlyph->top, Color);
 }
 x += FString[j].FAdvance;
 }
}

Cross-platform UI and Input Systems

228

The code in RenderLineOnBitmap() is fairly straightforward. The only subtle point
is the bitwise shift operation, which converts the internal FreeType 26.6 bit fixed-
point format to a standard integer. First, we shift StartX left to get the FreeType's
coordinate, and for each pixel, we shift x right to get the screen position.

The 26.6 fixed-point format is used internally in FreeType to
define fractional pixel coordinates.

39.	 The DrawGlyph() routine copies raw pixels from the glyph, or multiplies the source
by the glyph's pixel, depending on the rendering mode:
void DrawGlyph (const clPtr<Bitmap>& Out, FT_Bitmap* Bmp,
 int X0, int Y0, unsigned int Color)
{
 unsigned char* Data = Out->FBitmapData;
 int W = Out->FWidth;
 int Width = W - X0;
 if (Width > Bmp->width) { Width = Bmp->width; }
 for (int Y = Y0 ; Y < Y0 + Bmp->rows ; ++Y)
 {
 unsigned char* Src = Bmp->buffer + (Y-Y0)*Bmp->pitch;
 if (FMaskMode)
 {
 for (int X = X0 + 0 ; X < X0 + Width ; X++)
 {
 int Int = *Src++;
 unsigned char Col = (Int & 0xFF);
 for(int j = 0 ; j < 4 ; j++)
 Data[(Y * W + X) * 4 + j]= Col;
 }
 }
 else
 {
 for (int X = X0 + 0 ; X < X0 + Width ; X++)
 {
 unsigned int Col = MultColor(Color, *Src++);
 if (Int > 0)
 { ((unsigned int*)Data)[Y * W + X] = Col; }
 }
 }
 }
}

Chapter 7

229

40.	 The auxiliary MultColor() function multiplies each component of the integer-
encoded color by the Mult factor:

unsigned int MultColor(unsigned int C, unsigned int Mult)
{ return (Mult << 24) | C; }

How it works...
The minimal code to render a UTF-8 string covers the creation of a TextRenderer instance,
font loading, and actual text rendering using the loaded font:

TextRenderer txt;
int fnt = txt.GetFontHandle("some_font.ttf");

Render the Portuguese word direção, which means direction, as an example:

char text[] = { 'D','i','r','e',0xC3,0xA7,0xC3,0xA3,'o',0 };
auto bmp =
 txt.RenderTextWithFont(text, fnt, 24, 0xFFFFFFFF, true);

The result is the bmp variable, which contains the rendered text, as shown in the
following screenshot:

There's more…
This is the longest recipe ever, and still some important details have been left out. If the
amount of text you render for each frame is large enough, it makes sense to pre-render
some of the strings and avoid recreation of images.

Localization of in-game strings
Mobile applications are used on a variety of devices and, quite often, these devices are
configured to use a language other than English. This recipe shows how to internationalize
textual messages displayed in the application UI.

Getting ready
Review Chapter 4, Organizing a Virtual Filesystem, for the read-only file access using
our implementation of the virtual filesystem abstraction.

Cross-platform UI and Input Systems

230

How to do it...
1.	 For each language we want to support, we need to prepare a set of translated strings.

We store these strings in a file. An example for the English-Russian language pair
would be the Localizer-ru.txt file:
Hello~Привет
Good Bye~Пока

2.	 The ~ character is used as a delimiter between the original phrase and its
translations. The original phrase can be used as a key, and it is stored with
its translation in a global std::map container:
std::map<std::string, std::string> g_Translations;
…
g_Translations["Original phrase"] = "Translation"

3.	 Let us suppose we have a locale name in a global variable:
std::string g_LocaleName;

4.	 We only need to implement the LocalizeString() function, which uses the
g_Translations map:
std::string LocalizeString(const std::string& Str) const
{
 auto i = g_Translations.find(Str);
 return (i != g_Translations.end()) ? i->second : Str;
}

5.	 The LoadLocale() routine uses the global g_LocaleName variable and
loads the required translation table skipping the lines without the ~ character:
void LoadLocale()
{
 g_Translations.clear();
 const std::string FileName(g_LocalePath + "/Localizer-"
 + g_LocaleName + ".txt");
 if (!g_FS->FileExists(FileName)) { return; }
 auto Stream = g_FS->CreateReader(FileName);
 while (!Stream->Eof())
 {
 std::string L = Stream->ReadLine();
 size_t Pos = L.find("~");
 if (Pos == std::string::npos) { continue; }
 g_Translations[L.substr(0, Pos)]
 = L.substr(Pos + 1);
 }
}

Chapter 7

231

6.	 The directory where we store the localized string files is defined for the of simplicity,
in another global variable:
const std::string g_LocalePath = "Localizer";

How it works...
The LocalizeString() function accepts a string in the base language and returns its
translation. Whenever we want to render some text, we do not use string literals directly, as
this will seriously reduce our ability to localize our game. Instead, we wrap these literals into
the LocalizeString() calls:

 PrintString(LocalizeString("Some text"));

There's more...
To render a text in an appropriate language we can use the OS functions to detect its current
locale settings. On Android, we use the following Java code in our Activity. SetLocale()
is called from the Activity constructor:

import java.util.Locale;
…
private static void SetLocale()
{

Detect the locale name and pass it to our native code:

 String Lang = Locale.getDefault().getLanguage();
 SetLocaleName(Lang);
}

In the native code, we just capture the locale name:

JNIEXPORT void JNICALL
Java_ com_packtpub_ndkcookbook_app14_App14Activity_SetLocaleName(
 JNIEnv* env, jobject obj, jstring LocaleName)
{
g_LocaleName = ConvertJString(env, LocaleName);
}

On Windows, things are even simpler. We call the GetLocaleInfo() WinAPI function and
extract the current language name in the ISO639 format (http://en.wikipedia.org/
wiki/ISO_639):

 char Buf[9];
 GetLocaleInfo(LOCALE_USER_DEFAULT, LOCALE_SISO639LANGNAME,
 Buf, sizeof(Buf));
 g_LocaleName = std::string(Buf);

8
Writing a Match-3

Game

In this chapter we will cover:

ff Handling asynchronous multi-touch input

ff Improving the audio playback mechanism

ff Shutting down the application

ff Implementing the main loop

ff Creating a multiplatform gaming engine

ff Writing the match-3 game

ff Managing shapes

ff Managing the game field logic

ff Implementing user interaction within a game loop

Introduction
In this chapter we start putting together the recipes from the previous chapters. Most of
the following recipes are aimed at improving and integrating the material scattered over the
preceding chapters.

The example project of this chapter is actually a simplified version of
the MultiBricks game published by the books' authors on Google Play:
http://play.google.com/store/apps/details?id=com.
linderdaum.engine.multibricks.

Writing a Match-3 Game

234

Handling asynchronous multi-touch input
In the previous chapter we learned how to handle multi-touch events on Android.
However, our simple example has one serious issue. Android touch events are sent
asynchronously and can interfere with the game logic. As such, we need to create a queue
to process events in a controllable way.

Getting ready
Check out the Processing multi-touch events on Android recipe from Chapter 7,
Cross-platform UI and Input System, before proceeding.

How to do it…
1.	 In the previous chapter we invoked the touch handler directly from an asynchronous

JNI callback:
Java_com_packtpub_ndkcookbook_game1_Game1Activity_SendMotion(
 JNIEnv * env, jobject obj, int PointerID, int x, int y,
 bool Pressed, int Flag)
 {
 LVector2 Pos = LVector2((float)x / (float)g_Width,
 (float)y / (float)g_Height);
 GestureHandler_SendMotion(PointerID, (eMotionFlag)Flag,
 Pos,Pressed);
}

2.	 This time, we have to store all the events in a queue rather then processing
them immediately. The queue will hold the parameters to GestureHandler_
SendMotion() in a struct:
struct sSendMotionData
{
 int ContactID;
 eMotionFlag Flag;
 LVector2 Pos;
 bool Pressed;
};

3.	 The queue implementation relies on std::vector, holding touch events and
Mutex, providing queue access synchronization:
Mutex g_MotionEventsQueueMutex;
std::vector<sSendMotionData> g_MotionEventsQueue;

Chapter 8

235

4.	 All the work our new SendMotion() JNI callback has to do is pack the touch event
parameters into the queue:

Java_com_packtpub_ndkcookbook_game1_Game1Activity_SendMotion(
 JNIEnv * env, jobject obj, int PointerID, int x, int y,
 bool Pressed, int Flag)
{
 sSendMotionData M;
 M.ContactID = PointerID;
 M.Flag = (eMotionFlag)Flag;
 M.Pos = LVector2((float)x / (float)g_Width,
 (float)y / (float)g_Height);
 M.Pressed = Pressed;
 LMutex Lock(&g_MotionEventsQueueMutex);
 g_MotionEventsQueue.push_back(M);
}

We can now process the touch events whenever we like.

How it works…
To handle the touch events in the queue, we extend the implementation of the DrawFrame()
JNI callback:

Java_com_packtpub_ndkcookbook_game1_Game1Activity_DrawFrame(
 JNIEnv* env, jobject obj)
{

Note the scope of the Lock variable inside the additional{}. We need it because the mutex
variable must be unlocked to prevent deadlocks, before proceeding with the game logic:

 {
 LMutex Lock(&g_MotionEventsQueueMutex);
 for(auto m : g_MotionEventsQueue)
 {
 GestureHandler_SendMotion(m.ContactID, m.Flag,
 m.Pos, m.Pressed);
 }
 g_MotionEventsQueue.clear();
 }
 GenerateTicks();
}

See the jni/Wrappers.cpp file from the example 1_Game for
the complete implementation, which can be retrieved from www.
packtpub.com/support.

Writing a Match-3 Game

236

There's more…
Our new approach is much more robust. However, the touch event timestamps generated inside
GestureHandler_SendMotion()are slightly robust and do not correspond to the actual time
of touches any more. This introduces a delay approximately equal to a single frame rendering
time and can become an issue in multiplayer games. We leave the exercise of adding genuine
timestamps to the reader. This can be done by extending the sSendMotionData struct with
a timestamp field, which is assigned inside the JNI callback SendMotion().

See also
ff The Processing multi-touch events on Android recipe in Chapter 7, Cross-platform UI

and Input Systems

Improving the audio playback mechanism
In the previous chapters we learned how to play audio using OpenAL on Android. Our basic
audio subsystem implementation in Chapter 5, Cross-platform Audio Streaming, lacked
automatic management of audio sources; we had to control them manually on a separate
thread. Now, we will put all of that code into a new audio subsystem usable in a real game.

Getting ready
The complete source code for this recipe is integrated in the example 1_Game and can be
found in the files sound/Audio.h and sound/Audio.cpp. Other files in the sound folder
provide decoding capabilities for different audio formats—check them out.

How to do it…
1.	 We need our clAudioThread class to take care of active audio sources. Let's

extend it with methods responsible for their registration:
class clAudioThread: public iThread
{
public:
…
 void RegisterSource(clAudioSource* Src);
 void UnRegisterSource(clAudioSource* Src);

2.	 We also need a container for active sources as well as mutex to control the access to
it:
private:
…

Chapter 8

237

 std::vector< clAudioSource* > FActiveSources;
 Mutex FMutex;
};

3.	 The method clAudioThread::Run() gets more complicated. Besides the
initialization of OpenAL, it has to update active audio sources so they can pull the
audio data from their providers:
void clAudioThread::Run()
{
 if (!LoadAL()) { return; }
 FDevice = alcOpenDevice(NULL);
 FContext = alcCreateContext(FDevice, NULL);
 alcMakeContextCurrent(FContext);
 FInitialized = true;
 FPendingExit = false;
 double Seconds = GetSeconds();

4.	 The inner loop updates active audio sources based on the elapsed time:
 while (!IsPendingExit())
 {
 float DeltaSeconds = static_cast<float>(
 GetSeconds() - Seconds);

5.	 Note the following scope for the mutex:
 {
 LMutex Lock(&FMutex);
 for(auto i = FActiveSources.begin();
 i != FActiveSources.end(); i++)
 {
 (*i)->Update(DeltaSeconds);
 }
 }
 Seconds = GetSeconds();

6.	 Audio sources are updated every 100 milliseconds. This value is purely empirical
and is suitable for non-realtime audio playback as a tradeoff between the audio
subsystem lag and power consumption of your Android device:
 Env_Sleep(100);
 }
 alcDestroyContext(FContext);
 alcCloseDevice(FDevice);
 UnloadAL();
}

Writing a Match-3 Game

238

7.	 Registration methods are needed to maintain the FActiveSources container.
Their implementations can be found in the following code:
void clAudioThread::RegisterSource(clAudioSource* Src)
{
 LMutex Lock(&FMutex);

8.	 Don't add the same audio source multiple times:
 auto i = std::find(FActiveSources.begin(),
 FActiveSources.end(), Src);
 if (i != FActiveSources.end()) return;
 FActiveSources.push_back(Src);
}
void clAudioThread::UnRegisterSource(clAudioSource* Src)
{
 LMutex Lock(&FMutex);

9.	 Just find the source and erase it:

 auto i = std::find(FActiveSources.begin(),
FActiveSources.end(), Src);
 if (i != FActiveSources.end()) FActiveSources.erase(i);
}

The full implementation of this new clAudioThread class can be found in the sound/
Audio.cpp and sound/Audio.h files in the example 1_Game.

How it works…
To take advantage of the new AudioThread class, audio sources must register themselves.
We extend the constructor and the destructor of the clAudioSource class to perform
RAII registration (http://en.wikipedia.org/wiki/Resource_Acquisition_Is_
Initialization):

clAudioSource::clAudioSource()
{
…
 g_Audio.RegisterSource(this);
}

clAudioSource::~clAudioSource()
{
…
 g_Audio.UnRegisterSource(this);
}

Chapter 8

239

Now audio playback is very simple. Declare a global audio thread:

clAudioThread g_Audio;

Start it from the main thread and wait until initialization completes:

g_Audio.Start(iThread::Priority_Normal);
g_Audio.Wait();

We can invoke other useful initialization routines between the g_
Audio.Start() and g_Audio.Wait() calls, to take advantage of
asynchronous initialization.

Create and configure a new audio source and play it:

Music = new clAudioSource();
Music->BindWaveform(new
clModPlugProvider(LoadFileAsBlob("test.xm")));
Music->LoopSound(true);
Music->Play();

All audio management is now done on another thread.

There's more…
Our audio thread is capable of playing different types of audio files such as .ogg, .xm, .it,
and .s3m files. You can hide the creation of an appropriate wavedata provider by adding
another method to AudioSource. Just switch the selection based on the file extension to
create ModPlugProvider or OggProvider instances. We leave this as an exercise for you.

See also
ff The Initializing OpenAL and playing the .wav files, Decoding Ogg Vorbis files,

Decoding tracker music using ModPlug, and Streaming sounds recipes in Chapter 5,
Cross-platform Audio Streaming

Shutting down the application
Smartphones' batteries are very limited making mobile devices very sensitive to any
background activities they run. Our previous application samples stayed alive after the
user switched to another activity. This means that instead of respecting the Android
activity lifecycle (http://developer.android.com/training/basics/activity-
lifecycle) and pausing our application, we continued to waste precious system resources
in the background. It's time we learnt how to handle the onPause() Android callback in our
native code.

Writing a Match-3 Game

240

Getting ready
If you are not familiar with Android Activity lifecycle, refer to the developer manual: http://
developer.android.com/training/basics/activity-lifecycle/index.html.

How to do it…
1.	 An Android application does not have to implement all of the lifecycle methods. Our

strategy for lifecycle management will be very simple; save game state and terminate
an application once the onPause() method is called. We need to write some
Java code to make it work. Add this code to your Activity class, in our case it is
Game1Activity in the Game1Activity.java file:
 @Override protected void onPause()
 {
 super.onPause();
 ExitNative();
 }
 public static native void ExitNative();

2.	 Implement the ExitNative() JNI method in the following way:
JNIEXPORT void JNICALL Java_com_packtpub_ndkcookbook_game1_
 Game1Activity_ExitNative(
 JNIEnv* env, jobject obj)
{
OnStop();
 exit(0);
}

3.	 Now we can implement the native OnStop()callback in our game.

How it works…
A typical implementation of the OnStop() callback will save the game state, so it can be
restored when the game resumes later. Since our first game does not require any saving, we
will provide only an empty implementation:

void OnStop()
{
}

You may want to implement game saving later as an exercise.

Chapter 8

241

There's more…
To make the OnStop() method work on Windows, just call it after the exit from the main loop
in Wrapper_Windows.cpp:

while (!PendingExit)
{
 …
}
OnStop();

The solution is now portable, and all of the logic can be debugged on Windows.

See also
ff Implementing the main loop

Implementing the main loop
In the previous chapters our code examples used the OnTimer() callback with a rough fixed
timestep to update the state and the OnDrawFrame() callback to render graphics. This is
not suitable for a real-time game where we should update the state based on the real time
elapsed since the last frame. However, it is still desirable to use a small fixed timestep in
the call to OnTimer(). We can solve this problem by interleaving calls to OnTimer() and
OnDrawFrame() in a tricky fashion and put this logic into a game main loop.

Getting ready
There is a very interesting article called Fix Your Timestep! available at http://
gafferongames.com/game-physics/fix-your-timestep, which explains in great
detail different approaches to the implementation of a game main loop and why fixed
timesteps are important.

How to do it…
1.	 The logic of the game main loop is platform-independent and can be put into a

method:
void GenerateTicks()
{

Writing a Match-3 Game

242

2.	 GetSeconds() returns monotonous time in seconds since the system start.
However, only frame deltas matter:
 NewTime = GetSeconds();
 float DeltaSeconds = static_cast<float>(NewTime -
 OldTime);
 OldTime = NewTime;

3.	 We will update the game logic with a fixed timestep that corresponds to a game
running at 60 frames per second:
 const float TIME_QUANTUM = 1.0f / 60.0f;

4.	 Also, we need a failsafe mechanism to prevent excessive slowdowns of the game due
to slow rendering speed:
 const float MAX_EXECUTION_TIME = 10.0f * TIME_QUANTUM;

5.	 Now we accumulate the elapsed time:
 ExecutionTime += DeltaSeconds;
 if (ExecutionTime > MAX_EXECUTION_TIME)
 { ExecutionTime = MAX_EXECUTION_TIME; }

6.	 And invoke a sequence of the OnTimer() callbacks accordingly. All of OnTimer()
callbacks receive the same fixed timestep value:
 while (ExecutionTime > TIME_QUANTUM)
 {
 ExecutionTime -= TIME_QUANTUM;
 OnTimer(TIME_QUANTUM);
 }

7.	 After the game has been updated, render the next frame:

 OnDrawFrame();
}

How it works…
The OnDrawFrame() callback should be called after the update. If the device is fast enough,
OnDrawFrame() will be invoked after every single OnTimer() call. Otherwise, some frames
will be skipped to preserve the real-time speed of the game logic. And in the case when the
device is too slow to run even the game logic, our safeguard code will spring into action:

if (ExecutionTime > MAX_EXECUTION_TIME)
 { ExecutionTime = MAX_EXECUTION_TIME; }

Chapter 8

243

The whole thing will work in slow motion, but the game can still be playable.

You can try to scale the value that you pass to OnTimer(), for example,
OnTimer(k * TIME_QUANTUM). If k is less than 1.0, the game
logic will become slow-motion. It can be used to produce effects similar to
bullet time (http://en.wikipedia.org/wiki/Bullet_time).

There's more…
If the application is suspended but you want it to continue running in the background, it is
wise to omit the rendering phase altogether or change the duration of the update quantum.
You can do it by adding the Paused state to your game and check it in the main loop,
for example:

if (!IsPaused()) OnDrawFrame();

This will help to save precious CPU cycles while still running the game logic simulation in
the background.

See also
ff The Implementing timing in physics recipe in Chapter 2, Porting Common Libraries

Creating a multiplatform gaming engine
In previous chapters and recipes, we handcrafted many ad hoc solutions to some multiplatform
game development tasks. Now, we are going to combine all the relevant code into a nascent
portable gaming engine and learn how to prepare makefiles for Windows and Android to
build it.

Getting ready
To understand what is going on in this recipe, you are advised to read through the chapters
1 to 7 from the beginning of this book.

Writing a Match-3 Game

244

How to do it…
1.	 We split all our code into several logical subsystems and put them into the

following folders:

�� core: This has low level facilities, such as the intrusive smartpointer and
math library

�� fs: This contains filesystem related classes

�� GL: This contains the official OpenGL headers

�� include: This contains the include files of some third-party libraries

�� graphics: This contains high-level graphics-related code, such as fonts,
canvas, and images

�� LGL: This contains our OpenGL wrapper and functions-loading code together
with the abstraction layer implemented in Chapter 7, Cross-platform UI and
Input System

�� Sound: This contains audio-related classe and decoding libraries

�� threading: This contains multithreading-related classes, including
mutexes, events, queues, and our multiplatform threads wrapper

How it works…
Most of the code in each folder is split into classes. In our minimalistic gaming engine, we
keep the number of classes to a reasonable minimum.

The graphics folder contains the implementations of the following structs and classes:

ff Struct sBitmapParams holds the parameters of the bitmaps, such as width, height,
and pixel format.

ff Class clBitmap is an API-independent representation of a bitmap that holds actual
pixel data together with sBitmapParams. It can be loaded into a clGLTexture.

ff Class clCanvas provides a mechanism for immediate rendering.

ff Class clVertexAttribs is an API-independent representation of 3D geometry. It
can be loaded into a clGLVertexArray.

ff Class clGeomServ provides 3D geometry creation methods that return
clVertexAttribs.

ff Class iGestureResponder is an interface to be implemented if you want to
respond to touches or gestures.

ff Structure sMotionData holds the current set of active touch points.

ff Class clTextRenderer provides FreeType-based text rendering facilities. It can
render a text string with a specified font into a clBitmap.

Chapter 8

245

ff Structure sTouchPoint represents a single touch point with an identifier,
2D normalized float coordinates, flags, and a timestamp.

The LGL folder holds the classes specific to OpenGL:

ff Structure sUniform represents a single uniform inside a shader program. It is just
a name and a location index.

ff Class clGLSLShaderProgram represents a shader program written in GLSL and
provides autoconversion capabilities between the desktop GLSL and mobile GLSL ES.

ff Class clGLTexture provides access to OpenGL textures and can read clBitmap
pixel data.

ff Class clGLVertexArray provides abstractions to OpenGL vertex array objects and
vertex buffer objects. It uses data from clVertexAttribs.

Low-level classes, such as smarpointers, intrusive counters, and math-related code are put
into the core folder:

ff Class clPtr is an implementation of a reference-counted intrusive smartpointer.

ff Class iObject holds an intrusive reference counter.

ff Class LRingBuffer is an implementation of a wrap-around ring buffer.

ff Basic math library consists of vector classes, including LVector2, LVector3,
LVector4, LVector2i, and matrix classes, including LMatrix3 and LMatrix4.
The math library also contains minimal code for projections setup.

The filesystem-related code is located in the fs folder:

ff Class clArchiveReader implements a .zip archive unpacking algorithm using the
libcompress library. It is used to access resources in Android .apk files.

ff Class clBlob represents an array of bytes in memory that can be read or written to
a file.

ff Class iRawFile is a base class of all classes that represent a file.

ff Class clRawFile represents a file on a physical filesystem.

ff Class clMemRawFile represents a memory chunk as a file, suitable for accessing
downloaded data (images, for example).

ff Class clManagedMemRawFile is similar to MemRawFile, but the memory is
managed by a Blob object inside it.

ff Class clFileMapper is an abstraction of read-only memory-mapped files.

ff Class clFileWriter is an abstraction to write into files.

ff Class clFileSystem is a factory of streams and blobs. It provides facilities to
manage virtual paths in our applications.

Writing a Match-3 Game

246

ff Classes iMountPoint, clPhysicalMountPoint, clAliasMountPoint,
and clArchiveMountPoint are used to route the access to the OS native
filesystem and Android .apk archives in a portable multiplatform way.

The sound folder contains abstractions for our audio subsystem:

ff Class clAudioSource represents an audio source in a virtual environment. It can
be played, paused, or stopped.

ff Class clAudioThread updates the active sources and submits the data to the
underlying OpenAL API.

ff Class iWaveDataProvider abstracts the decoding of audio files.

ff Class clStreamingWaveDataProvider streams the data from audio files too
large to be decoded into memory at once.

ff Class clDecodingProvider provides common rewinding logic for streaming audio
providers. It is the base class for actual decoders.

ff Classes clOggProvider and clModPlugProvider handle the decoding of the
.ogg files with libogg/libvorbis and tracker music with libmodplug.

The threading folder contains portable implementations of different multithreading primitives:

ff Classes clMutex, LMutex, and iThread implement basic low-level multithreading
primitives in a portable way

ff Classes clWorkerThread and iTask are higher level abstractions based on
iThread

ff Classes iAsyncQueue and iAsyncCapsule are used to implement
asynchronous callbacks

The source code of out mini engine is located in the Engine folder within
the examples for the last chapter.

See also
ff Writing the match-3 game

ff Chapter 9, Writing a Picture Puzzle Game

Writing the match-3 game
Now it is time to start the development of a finished match-3 game. A match-3 is a type of
puzzle where a player needs to align tiles in order to make adjacent tiles disappear. Here, 3
stands for the number of same-color tiles that will disappear when put into adjacent positions.
The following screenshot is of the final version of the game:

Chapter 8

247

We use a set of 22 monomino, domino, tromino, tetromino, and pentomino shapes in
our game:

Since most of the impressions come from the results visualized on-screen, let us proceed with
the essentials of how the game screen is rendered.

Writing a Match-3 Game

248

Getting ready
The complete ready-to-build source code is located in the 1_Game folder of the
supplementary materials.

This game was released in 2011 by the book's authors on Google Play in a somewhat
extended form. You can find this game on the following websites, if you want to try it
on your Android device immediately: http://play.google.com/store/apps/
details?id=com.linderdaum.engine.multibricks and http://play.google.
com/store/apps/details?id=com.linderdaum.engine.multibricks_free.

Authors don't mind if you use the graphical artwork from this game in your own projects. It is
a learning tool and not a commodity.

Those interested in the general match-3 game mechanics can refer to the following Wikipedia
article: http://en.wikipedia.org/wiki/Match_3.

How to do it…
The entire game screen is re-rendered every frame in several steps in the OnDrawFrame()
callback. Let's walk over its source code to see how to do it:

1.	 The fullscreen background image is rendered clearing the graphics from the previous
frame. The image is stored as a square 512 x 512 .png file and is rescaled to the full
screen restoring its proportions, as shown in the following screenshot:

Power-of-two image was used to make the game compatible with old
Android hardware. If you target OpenGL ES 3 as your minimal requirement,
you can use textures of arbitrary sizes.

Chapter 8

249

2.	 The following is the C++ code to render the background:
LGL3->glDisable(GL_DEPTH_TEST);

3.	 First, bind 3 textures and the shader:
BackTexture_Bottom->Bind(2);
BackTexture_Top->Bind(1);
BackTexture->Bind(0);
BackShader->Bind();

4.	 Update the pressed flags of control buttons:
BackShader->SetUniformNameFloatArray("b_MoveLeft", 1,
 b_Flags[b_MoveLeft]);
BackShader->SetUniformNameFloatArray("b_Down", 1,
 b_Flags[b_Down]);
BackShader->SetUniformNameFloatArray("b_MoveRight", 1,
 b_Flags[b_MoveRight]);
BackShader->SetUniformNameFloatArray("b_TurnLeft", 1,
 b_Flags[b_TurnLeft]);
BackShader->SetUniformNameFloatArray("b_TurnRight", 1,
 b_Flags[b_TurnRight]);
BackShader->SetUniformNameFloatArray("b_Reset", 1,
 b_Flags[b_Reset]);
BackShader->SetUniformNameFloatArray("b_Paused", 1,
 b_Flags[b_Paused]);

5.	 Finally, render a full-screen rectangle:
Canvas->GetFullscreenRect()->Draw(false);

6.	 The float b_Flags[] array corresponds to the state of control buttons; the value
of 1.0f means the button is pressed and 0.0f means it is released. These values
are passed to the shader to highlight buttons accordingly.

Writing a Match-3 Game

250

7.	 Cells of the game field are rendered on top of the background followed by the current
shape above them:

for (int i = 0; i < g_Field.FWidth; i++)
{
 for (int j = FIELD_INVISIBLE_RAWS;j < g_Field.FHeight;
 j++)
 {
 int c = g_Field.FField[i][j];
 if (c >= 0 && c < NUM_COLORS)
 {
 int Img = c % NUM_BRICK_IMAGES;
 int P = (j - FIELD_INVISIBLE_RAWS);

8.	 Every cell of the field is just a tiny rectangle with a texture:
 DrawTexQuad(i * 20.0f + 2.0f,
 P * 20.0f + 2.0f,16.0f, 16.0f,
 Field_X1, Field_Y1,
 g_Colors[c], Img);
 }
 }
}

9.	 The current shape is rendered in one line:
DrawFigure(&g_CurrentFigure, g_GS.FCurX,
 g_GS.FCurY - FIELD_INVISIBLE_RAWS,Field_X1, Field_Y1,
 BLOCK_SIZE);

Chapter 8

251

10.	 The next figure is rendered near the control buttons, as shown in the
following screenshot:

11.	 The code is more complicated, since we need to evaluate the bounding box of the
shape to render it properly:
 int Cx1, Cy1, Cx2, Cy2;
 g_NextFigure.GetTopLeftCorner(&Cx1, &Cy1);
 g_NextFigure.GetBottomRightCorner(&Cx2, &Cy2);
 LRect FigureSize = g_NextFigure.GetSize();
 float dX = (float)Cx1 * BLOCK_SIZE_SMALL / 800.0f;
 float dY = (float)Cy1 * BLOCK_SIZE_SMALL / 600.0f;
 float dX2 = 0.5f * (float)Cx2 * BLOCK_SIZE_SMALL/800.0f;
 float dY2 = 0.5f * (float)Cy2 * BLOCK_SIZE_SMALL/600.0f;
 DrawFigure(&g_NextFigure, 0, 0, 0.415f - dX - dX2,
 0.77f - dY - dY2, BLOCK_SIZE_SMALL);

12.	 Render the current score text, as shown in the following screenshot:

13.	 Once the text changes, it is rendered into a bitmap, and the texture is updated:
std::string ScoreString(Str_GetFormatted("%02i:%06i",
g_GS.FLevel, g_GS.FScore));
if (g_ScoreText != ScoreString)
{
 g_ScoreText = ScoreString;
 g_ScoreBitmap = g_TextRenderer->RenderTextWithFont(
 ScoreString.c_str(), g_Font,32, 0xFFFFFFFF, true);
 g_ScoreTexture->LoadFromBitmap(g_ScoreBitmap);
}

Writing a Match-3 Game

252

14.	 We just need to render a textured rectangle in every frame:
 LVector4 Color(0.741f, 0.616f, 0.384f, 1.0f);
 Canvas->TexturedRect2D(0.19f, 0.012f, 0.82f, 0.07f,Color,
 g_ScoreTexture);

15.	 Render the game-over message if needed, as shown in the following screenshot:

16.	 This is similar to text rendering, however, we can avoid caching here since this
message box is shown infrequently:
 if (g_GS.FGameOver)
 {
 DrawBorder(0.05f, 0.25f, 0.95f, 0.51f, 0.19f);
 std::string ScoreStr = Str_GetPadLeft(
 Str_ToStr(g_GS.FScore), 6, '0');
 Canvas->TextStr(0.20f, 0.33f, 0.84f, 0.37f,
 LocalizeString("Your score:"), 32,
 LVector4(0.796f, 0.086f,0.086f, 1.0f),
 g_TextRenderer, g_Font);
 Canvas->TextStr(0.20f, 0.38f, 0.84f, 0.44f,ScoreStr,
 32, LVector4(0.8f, 0.0f, 0.0f,1.0f),
 g_TextRenderer, g_Font);
 }

17.	 Canvas does everything required to render the text and update the texture. However,
it is a bit slow for anything more frequent. Check out the full implementation in the
graphics/Canvas.cpp file.

Chapter 8

253

How it works…
In the preceding code, we used some helper functions that might need some explanation.
The DrawQuad() and DrawTexQuad() functions draw a single cell of the game field.
They consist of some hardcoded values to position the cells relative to the background
image. The following is the source code of one function:

void DrawTexQuad(float x, float y, float w, float h,
float OfsX, float OfsY,
const LVector4& Color, int ImageID)
{

Magic constants of 800.0f and 600.0f appear here to convert from the coordinate system
of the UI, which was designed for a 600×800 screen in portrait orientation, to the floating-
point normalized coordinates:

 float X1 = x / 800.0f;
 float Y1 = y / 600.0f;
 float X2 = (x + w) / 800.0f;
 float Y2 = (y + h) / 600.0f;

Other magic constants are also part of the design and were chosen empirically.
Try adjusting them:

 X1 *= Field_Width / 0.35f;
 X2 *= Field_Width / 0.35f;
 Y1 *= Field_Height / 0.75f;
 Y2 *= Field_Height / 0.75f;
 Canvas->TexturedRect2D(X1 + OfsX, Y1 + OfsY,
 X2 + OfsX, Y2 + OfsY,
 Color, BricksImage[ImageID]);
 }

The DrawFigure() method is used to draw a single shape anywhere in the game field:

void DrawFigure(clBricksShape* Figure, int X, int Y,
float OfsX, float OfsY, float BlockSize)
{
 for (int i = 0 ; i < Figure->FWidth ; i++)
 {
 for (int j = 0 ; j < Figure->FHeight ; j++)
 {

Writing a Match-3 Game

254

Skip invisible rows at the top of the game field:

 if (Y + j < 0) { continue; }
 intc = Figure->GetMask(i, j);
 if (c >= 0 && c < NUM_COLORS)
 {
 DrawTexQuad(
 (X + i) *(BlockSize + 4.0f) + 2.0f,
 (Y + j) * (BlockSize + 4.0f) + 2.0f,
 BlockSize, BlockSize, OfsX, OfsY,
 g_Colors[c], c % NUM_BRICK_IMAGES);
 }
 }
 }
}

DrawBorder() function is just a shortcut to Canvas:

void DrawBorder(float X1, float Y1, float X2, float Y2,
 float Border)
{
 Canvas->TexturedRect2D(X1, Y1, X1+Border, Y2,
 LVector4(1.0f), MsgFrameLeft);
 Canvas->TexturedRect2D(X2-Border, Y1, X2, Y2,
 LVector4(1.0f), MsgFrameRight);
 Canvas->TexturedRect2DTiled(X1+Border, Y1, X2-Border, Y2,
 3, 1, LVector4(1.0f), MsgFrameCenter);
}

There's more…
We mentioned that control buttons are highlighted in the fragment shader. Here is how it
is done.

Pass the states of the buttons as uniforms:

uniform float b_MoveLeft;
uniform float b_Down;
uniform float b_MoveRight;
uniform float b_TurnLeft;
uniform float b_TurnRight;
uniform float b_Reset;
uniform float b_Paused;

The function to check whether a rectangle contains a specified point, as follows:

Chapter 8

255

bool ContainsPoint(vec2 Point, vec4 Rect)
{
 return Point.x >= Rect.x && Point.y >= Rect.y &&
 Point.x <= Rect.z && Point.y <= Rect.w;
}

Store some hardcoded values corresponding to the rectangles where our control buttons
are located:

void main()
{
 const vec4 MoveLeft = vec4(0.0, 0.863, 0.32, 1.0);
 const vec4 Down = vec4(0.32, 0.863, 0.67, 1.0);
 const vec4 MoveRight = vec4(0.67, 0.863, 1.0, 1.0);
 const vec4 TurnLeft = vec4(0.0, 0.7, 0.4, 0.863);
 const vec4 TurnRight = vec4(0.6, 0.7, 1.0, 0.863);
 const vec4 Reset = vec4(0.0, 0.0, 0.2, 0.1);
 const vec4 Paused = vec4(0.8, 0.0, 1.0, 0.1);

Read the background texture and the highlighted parts. Check the files back.png, back_
high_bottom.png, and back_high_top.png from the accompanying project:

 vec4 Color = texture(Texture0,TexCoord);
 vec4 ColorHighT = texture(Texture1,TexCoord*vec2(4.0,8.0));
 vec4 ColorHighB = texture(Texture2,TexCoord*vec2(1.0,2.0));

Check if buttons are pressed and choose the right texture accordingly:

 if (b_MoveLeft>0.5 &&ContainsPoint(TexCoord.xy, MoveLeft))
 Color = ColorHighB;
 if (b_Down> 0.5 && ContainsPoint(TexCoord.xy, Down))
 Color = ColorHighB;
 if (b_MoveRight>0.5 && ContainsPoint(TexCoord.xy,MoveRight))
 Color = ColorHighB;
 if (b_TurnLeft>0.5 && ContainsPoint(TexCoord.xy, TurnLeft))
 Color = ColorHighB;
 if (b_TurnRight>0.5 && ContainsPoint(TexCoord.xy,TurnRight))
 Color = ColorHighB;
 if (b_Reset> 0.5 && ContainsPoint(TexCoord.xy, Reset))
 Color = ColorHighT;
 if (b_Paused> 0.5 && ContainsPoint(TexCoord.xy, Paused))
 Color = ColorHighT;

Voilà! We have textured the background with all the buttons in one pass:

 out_FragColor = Color;
}

Writing a Match-3 Game

256

See also
ff Creating a multiplatform gaming engine

Managing shapes
In the previous recipe, we learned how to render the game screen. Some classes remained
unimplemented. In this recipe, we will implement the clBricksShape class responsible for
the storage and manipulation of each of the shapes that appear in the game.

Getting ready
Take a look at how many different pentomino shapes can exist. Wikipedia provides
a comprehensive overview: http://en.wikipedia.org/wiki/Pentomino.

How to do it…
1.	 The interface of our clBricksShape class looks as follows:

class clBricksShape
{
public:

2.	 The size of shapes used in our game. We use 5x5 shapes.
 static const int FWidth = SHAPES_X;
 static const int FHeight = SHAPES_Y;

3.	 Store the colors of the cells this shape consists of. The colors are stored as indices:
private:
 int FColor[NUM_COLORS];

4.	 The figure index defines the shape type:
 int FFigureIndex;

5.	 The rotation index corresponds to the rotation angle of the figure: 0, 1, 2, and 3
stand for 0, 90, 180, and 270 degrees:
 int FRotationIndex;

6.	 The methods are very short and straightforward as follows:
public:
 int GetMask(int i, int j) const
 {
 if (i < 0 || j < 0) return -1;

Chapter 8

257

 if (i >= FWidth || j >= FHeight) return -1;
 int ColorIdx =
 Shapes[FFigureIndex][FRotationIndex][i][j];
 return ColorIdx ? FColor[ColorIdx] : -1;
 }

7.	 The method Rotate() does not rotate the individual cells. It does nothing but adjust
the rotation angle:
 void Rotate(bool CW)
 {
 FRotationIndex = CW ?
 (FRotationIndex ? FRotationIndex - 1 : ROTATIONS
 - 1) :
 (FRotationIndex + 1) % ROTATIONS;
 }

8.	 Figure generation is also very simple. It is just a selection from the table of predefined
figures:
 void GenFigure(int FigIdx, int Col)
 {
 for (int i = 0; i != NUM_COLORS; i++)
 FColor[i] = Random(NUM_COLORS);
 FFigureIndex = FigIdx;
 FRotationIndex = 0;
 }

9.	 These methods are used to calculate the bounding box of the shape. Refer to the
game/Shape.h file for their source code:

void GetTopLeftCorner(int* x, int* y) const;
 void GetBottomRightCorner(int* x, int* y) const;
 LRect GetSize() const;
};

How it works…
The main trick behind the code in the preceding section is the table of predefined shapes.
Its declaration is located in the Pentomino.h file:

static const int NUM_SHAPES = 22;
static const int SHAPES_X = 5;
static const int SHAPES_Y = 5;
static const int ROTATIONS = 4;
extern char
 Shapes[NUM_SHAPES][ROTATIONS][SHAPES_X][SHAPES_Y];

Writing a Match-3 Game

258

That's it. We store each and every shape in this 4D array. The content of the array is defined
in the Pentomino.cpp file. The following code is the extract that defines all 4 rotations of a
single shape:

char Shapes [NUM_SHAPES][ROTATIONS][SHAPES_X][SHAPES_Y] =
{
 {
 {
 {0, 0, 0, 0, 0},
 {0, 0, 0, 1, 0},
 {0, 0, 3, 2, 0},
 {0, 5, 4, 0, 0},
 {0, 0, 0, 0, 0}
 },
 {
 {0, 0, 0, 0, 0},
 {0, 5, 0, 0, 0},
 {0, 4, 3, 0, 0},
 {0, 0, 2, 1, 0},
 {0, 0, 0, 0, 0}
 },
 {
 {0, 0, 0, 0, 0},
 {0, 0, 4, 5, 0},
 {0, 2, 3, 0, 0},
 {0, 1, 0, 0, 0},
 {0, 0, 0, 0, 0}
 },
 {
 {0, 0, 0, 0, 0},
 {0, 1, 2, 0, 0},
 {0, 0, 3, 4, 0},
 {0, 0, 0, 5, 0},
 {0, 0, 0, 0, 0}
 }
 },

The non-zero values in the array define which cells belong to the shape. The magnitude of the
value defines the color of the cell.

See also
ff Writing the match-3 game

Chapter 8

259

Managing the game field logic
Now we know how to store different shapes and render them. Let's implement some game
logic to make these shapes interact with each other on a game field.

Getting ready
Refer to the Writing the match-3 game recipe to see how the game field is rendered.

How to do it…
1.	 The interface of clBricksField looks as follows:

class clBricksField
{
public:

2.	 The size of our game field is 11×22:
 static const int FWidth = 11;
 static const int FHeight = 22;
public:
 void clearField()

3.	 The methods to check if the figure fits freely into a position are as follows:
 bool figureFits(int x, int y, const clBricksShape& fig)
 bool figureWillHitNextTurn(int x, int y,
 const clBricksShape& fig)

4.	 This method stamps the shape into the specified position of the game field:
 void addFigure(int x, int y, const clBricksShape& fig)

5.	 The following code is the main game logic. Methods to calculate and delete
same-colored cell regions:
 int deleteLines();
 int CalcNeighbours(int i, int j, int Col);
 void FillNeighbours(int i, int j, int Col);

6.	 Since we are making a match-3 game, we pass the value of 3 to this method.
However, the logic is general; you can play with your own values to tweak
the gameplay:
 int deleteRegions(int NumRegionsToDelete);
 void collapseField();

Writing a Match-3 Game

260

7.	 Cells of the game field are stored here. The values correspond to colors of the cells:

public:
 int FField[FWidth][FHeight];
};

How it works…
Shape fitting uses simple mask checking and is trivial. We will give more attention to
the neighbor cells calculation. It is based on the recursive flood-fill algorithm (http://
en.wikipedia.org/wiki/Flood_fill):

int clBricksField::deleteRegions(int NumRegionsToDelete)
{
 int NumRegions = 0;
 for (int j = 0; j != FHeight; j++)
 {
 for (int i = 0 ; i != FWidth ; i++)
 {
 if (FField[i][j] != -1)
 {

Recursively, calculate the number of neighbors to each cell:

 int Neighbors = CalcNeighbours(i, j,
 FField[i][j]);

Mark the cells if the number of neighbors is high enough:

 if (Neighbors >= NumRegionsToDelete)
 {
 FillNeighbours(i, j, FField[i][j]);
 NumRegions += Neighbours;
 }
 }
 }
 }

Remove the marked cells from the field:

 CollapseField();

Return the number of deleted regions. This is used to evaluate the current score:

 return NumRegions;
}

Chapter 8

261

The recursive flood-fill is straightforward. The following code calculates the number of
adjacent cells:

intclBricksField::CalcNeighbours(int i, int j, int Col)
{
 if (i < 0 || j < 0 || i >= FWidth ||
 j >= FHeight || FField[i][j] != Col) return 0;
 FField[i][j] = -1;
 int Result = 1 + CalcNeighbours(i + 1, j + 0, Col) +
 CalcNeighbours(i - 1, j + 0, Col) +
 CalcNeighbours(i + 0, j + 1, Col) +
 CalcNeighbours(i + 0, j - 1, Col);
 FField[i][j] = Col;
 return Result;
}

The following code marks the adjacent cells:

void clBricksField::FillNeighbours(int i, int j, int Col)
{
 if (i < 0 || j < 0 || i >= FWidth ||
 j >= FHeight || FField[i][j] != Col) { return; }
 FField[i][j] = -1;
 FillNeighbours(i + 1, j + 0, Col);
 FillNeighbours(i - 1, j + 0, Col);
 FillNeighbours(i + 0, j + 1, Col);
 FillNeighbours(i + 0, j - 1, Col);
}

There's more…
There is also another variant of game logic implemented in this project. Check out the method
deleteLines()in the file game/Field.h to learn how to implement it.

Implementing user interaction within a
game loop

In the previous recipes we learned how to render the game environment and implement
the game logic. One more important aspect of the development needs our attention:
the user interaction.

Getting ready
Check out the file main.cpp in the project 1_Game for the full implementation.

Writing a Match-3 Game

262

How to do it…
We need to implement some functions to move the currently falling shape:

1.	 Enforce the game field constraints while moving a figure left or right:
bool MoveFigureLeft()
{
 if (g_Field.FigureFits(g_GS.FCurX - 1, g_GS.FCurY,
 g_CurrentFigure))
 {
 g_GS.FCurX--;
 return true;
 }
 return false;
}

2.	 The source code of MoveFigureRight() is similar to MoveFigureLeft().
The code of MoveFigureDown() needs to update the score once the shape has
hit the ground:
bool MoveFigureDown()
{
 if (g_Field.FigureFits(g_GS.FCurX, g_GS.FCurY + 1,
 g_CurrentFigure))
 {
 g_GS.FScore += 1 + g_GS.FLevel / 2;
 g_GS.FCurY++;
 return true;
 }
 return false;
}

3.	 The rotation code needs to check if the rotation is actually possible:
bool RotateFigure(bool CW)
{
 clBricksShape TempFigure(g_CurrentFigure);
 TempFigure.Rotate(CW);
 if (g_Field.FigureFits(g_GS.FCurX, g_GS.FCurY, TempFigure))
 {
 g_CurrentFigure = TempFigure;
 return false;
 }
 return true;
}

4.	 We need to call these methods in response to key presses or touches.

Chapter 8

263

How it works…
The ProcessClick() function handles a single click. We store the position of the click in
the g_Pos global variable for code simplicity:

void ProcessClick(bool Pressed)
{

Reset the states of the buttons:

 b_Flags[b_MoveLeft] = 0.0f;
 b_Flags[b_MoveRight] = 0.0f;
 b_Flags[b_Down] = 0.0f;
 b_Flags[b_TurnLeft] = 0.0f;
 b_Flags[b_TurnRight] = 0.0f;
 b_Flags[b_Paused] = 0.0f;
 b_Flags[b_Reset] = 0.0f;
 bool MousePressed = Pressed;
 if (Reset.ContainsPoint(g_Pos))
 {
 if (MousePressed) { ResetGame(); }
 b_Flags[b_Reset] = MousePressed ? 1.0f : 0.0f;
 }

Don't allow to press any buttons once the game is over:

 if (g_GS.FGameOver) { if (!Pressed) ResetGame(); return; }

Run actions and update the buttons' highlight states:

 if (Pressed)
 {
 if (MoveLeft.ContainsPoint(g_Pos))
 { MoveFigureLeft(); b_Flags[b_MoveLeft] = 1.0f; }
 if (MoveRight.ContainsPoint(g_Pos))
 { MoveFigureRight(); b_Flags[b_MoveRight] = 1.0f; }

 if (Down.ContainsPoint(g_Pos))
{
if (!MoveFigureDown()) { NextFigure(); } b_Flags[b_Down] = 1.0f;
}
 if (TurnLeft.ContainsPoint(g_Pos))
 { rotateFigure(false); b_Flags[b_TurnLeft] = 1.0f; }
 if (TurnRight.ContainsPoint(g_Pos))
 { rotateFigure(true); b_Flags[b_TurnRight] = 1.0f; }
 if (Paused.ContainsPoint(g_Pos))
 {
 b_Flags[b_Paused] = 1.0f;

Writing a Match-3 Game

264

This is used to implement autorepeat on a touchscreen:

 g_KeyPressTime = 0.0f;
 }
 }
}

There's more…
The main loop of our game is implemented in the OnTimer() callback:

void OnTimer(float DeltaTime)
{
 if (g_GS.FGameOver) { return; }
 g_GS.FGameTimeCount += DeltaTime;
 g_GS.FGameTime += DeltaTime;
 g_KeyPressTime += DeltaTime;

Here, we check the values of the flags to implement a convenient auto-repeat on a
touchscreen:

 if ((b_Flags[b_MoveLeft] > 0 ||
 b_Flags[b_MoveRight] > 0 ||
 b_Flags[b_Down] > 0 ||
 b_Flags[b_TurnLeft] > 0 ||
 b_Flags[b_TurnRight] > 0) &&
 g_KeyPressTime > g_KeyTypematicDelay)
 {
 g_KeyPressTime -= g_KeyTypematicRate;
 ProcessClick(true);
 }
 while (g_GS.FGameTimeCount > g_GS.FUpdateSpeed)
 {
 if (!MoveFigureDown())
 {
 NextFigure();
 }

Check for lines deletion:

 int Count = g_Field.deleteRegions(BlocksToDisappear);

 …Update the game score here…
 }
}

Chapter 8

265

The auto-repeat values are picked to follow those typically used by developers in modern
operating systems:

const float g_KeyTypematicDelay = 0.2f; // 200 ms delay
const float g_KeyTypematicRate = 0.03f; // 33 Hz repeat rate

Our original MultiBricks game contains a Pause button. You can implement it as an
exercise using the page-based user interface described in the Chapter 9, Writing a
Picture Puzzle Game.

See also…
ff Writing the match-3 game

ff The Page-based user interface recipe in Chapter 9, Writing a Picture Puzzle Game

9
Writing a Picture

Puzzle Game

In this chapter, we will cover:

ff Implementing picture puzzle game logic

ff Implementing the animated 3D image selector

ff Page-based user interface

ff Image gallery with Picasa downloader

ff Implementing the complete picture-puzzle game

Introduction
In this chapter, we continue putting together recipes from the previous chapters. We will
implement a picture-puzzle game, where a player needs to put the puzzle pieces together in
order to recreate the original image. Images are streamed from the featured gallery of the
Picasa photo hosting, and can be picked via a 3D animated image selector. Our game has a
simple page-based user interface that can serve as a starting point to a more complex game
UI framework.

The example project of this chapter is actually a much simplified
version of the Linderdaum Puzzle HD game published by the authors
on Google Play: http://play.google.com/store/apps/
details?id=com.linderdaum.engine.puzzLHD.

Writing a Picture Puzzle Game

268

Implementing picture puzzle game logic
This recipe you shows how to implement the game logic for a picture puzzle game. The game
consists of a set of rectangular tiles shuffled and rendered on the screen. Users can tap on
individual tiles, and move them around, swapping them with the other tiles. Let us draft the
backbone data structures to implement this logic.

Getting ready
To feel the game logic better, you can build and run the 2_PuzzleProto project, which can
be downloaded from www.packtpub.com/support. If you want to enjoy the full-featured
game, just go ahead and download our Linderdaum Puzzle HD from Google Play. You can do it
at http://play.google.com/store/apps/details?id=com.linderdaum.engine.
puzzLHD.

How to do it...
1.	 First, we need the clTile class to store the state of an individual puzzle piece. It

contains the current coordinates of the tile's upper-left corner, the original indices of
the tile in the grid, and the target coordinates where this tile will move to:
class clTile
{
public:
 int FOriginX, FOriginY;
 vec2 FCur, FTarget;
 LRect FRect;
 clTile(): FOriginX(0), FOriginY(0) {};

2.	 The second constructor calculates and sets the FRect field, which contains the
texture coordinates used later for the rendering:
 clTile(int OriginX, int OriginY, int Columns, int Rows)
 : FOriginX(OriginX)
 , FOriginY(OriginY)
 {

Chapter 9

269

3.	 Calculate the texture coordinates of the tile and store them in FRect:
 float TileWf = 1.0f / Columns, TileHf = 1.0f / Rows;
 float X1f = TileWf * (OriginX + 0);
 float X2f = TileWf * (OriginX + 1);
 float Y1f = TileHf * (OriginY + 0);
 float Y2f = TileHf * (OriginY + 1);
 FRect = LRect(X1f, Y1f, X2f, Y2f);
 FTarget = FCur = vec2(OriginX, OriginY);
 }

4.	 The next two methods set the target and current coordinates:
 void SetTarget(int X, int Y)
 { FTarget = vec2(X, Y); }
 void MoveTo(float X, float Y)
 { FCur.x = X; FCur.y = Y; };

5.	 The tile moves to the target coordinates smoothly. We update the tile position using
the time counter, and for each time step, the coordinates are recalculated:
 void Update(float dT)
 {
 vec2 dS = FTarget - FCur;
 const float c_Epsilon = 0.001f;
 if (fabs(dS.x) < c_Epsilon)
 {
 dS.x = 0;
 FCur.x = FTarget.x;
 }
 if (fabs(dS.y) < c_Epsilon)
 {
 dS.y = 0;
 FCur.y = FTarget.y;
 }
 const float Speed = 10.0f;
 FCur += Speed * dT * dS;
 }
};

Writing a Picture Puzzle Game

268

6.	 The state of the game is presented by an array of tiles, which is stored in the
clPuzzle class:
class clPuzzle
{
public:
 mutable std::vector<clTile> FTiles;
 int FColumns, FRows;
 bool FMovingImage;
 int FClickedI, FClickedJ;
 float FOfsX, FOfsY;

 clPuzzle()
 : FMovingImage(false)
 , FClickedI(-1), FClickedJ(-1)
 , FOfsX(0.0f), FOfsY(0.0f)
 {
 Retoss(4, 4);
 }
...

7.	 Swap the two tiles specified by their (i,j) 2D coordinates:
 void SwapTiles(int i1, int j1, int i2, int j2)
 {
 std::swap(FTiles[j1 * FColumns + i1],
 FTiles[j2 * FColumns + i2]);
 }
};

8.	 The game is complete if all the tiles are in their places. To check if the tile is in place,
we need to compare its FOriginX and FOriginY coordinates to its current i and j
coordinates:
bool clPuzzle::IsComplete() const
{
 for (int i = 0; i != FColumns; i++)
 {
 for (int j = 0; j != FRows; j++)
 {
 clTile* T = GetTile(i, j);
 if (T->FOriginX != i || T->FOriginY != j)
 return false;
 }
 }
 return true;
}

Chapter 9

269

9.	 clPuzzle::Timer() calls the Update() method, which calculates new
coordinates for each of the tiles. This is required to allow the tiles to return
to their position once the player releases touches:
void clPuzzle::Timer(float DeltaSeconds)
{
 for (int i = 0; i != FColumns; i++)
 {
 for (int j = 0; j != FRows; j++)
 GetTile(i, j)->Update(DeltaSeconds);
 }
}

10.	 The initial state of the game is generated in the Retoss() method:
void Puzzle::Retoss(int W, int H)
{
 FColumns = W;
 FRows = H;
 FTiles.resize(FColumns * FRows);

11.	 First, we create all the tiles at their initial positions:
 for (int i = 0; i != FColumns; i++)
 for (int j = 0; j != FRows; j++)
 FTiles[j * FColumns + i] =
 clTile(i, FRows - j - 1, FColumns, FRows);

12.	 Then, we use Knuth shuffle, also known as Fisher–Yates shuffle
(http://en.wikipedia.org/wiki/Fisher–Yates_shuffle)
to generate a random permutation of the tiles:
 for (int i = 0; i != FColumns; i++)
 {
 for (int j = 0; j != FRows; j++)
 {
 int NewI = Math::RandomInRange(i, FColumns - 1);
 int NewJ = Math::RandomInRange(j, FRows - 1);
 SwapTiles(i, j, NewI, NewJ);
 }
 }
 …
}

Writing a Picture Puzzle Game

268

13.	 The handling of user input is performed in the OnKey() method. When the user
presses the mouse button or taps on the screen, this method is called with the
KeyState argument equal to true. On the mouse release or at the end of the
tap, the OnKey() method is called with KeyState set to false. The mx and my
parameters contain the 2D coordinates of the touch. Once the touch is active, we
store the indices of the tile and the initial offset of the touch point respective to the
upper-left corner of the tile:
void Puzzle::OnKey(float mx, float my, bool KeyState)
{
 int i = (int)floor(mx * FColumns);
 int j = (int)floor(my * FRows);
 int MouseI = (i >= 0 && i < FColumns) ? i : -1;
 int MouseJ = (j >= 0 && j < FRows) ? j : -1;
 FMovingImage = KeyState;
 if (FMovingImage)
 {
 FClickedI = MouseI;
 FClickedJ = MouseJ;

 if (FClickedI >= 0
 && FClickedJ >= 0
 && FClickedI < FColumns
 && FClickedJ < FRows)
 {
 FOfsX = ((float)FClickedI / FColumns - mx);
 FOfsY = ((float)FClickedJ / FRows - my);
 }
 else
 {
 FClickedI = FClickedJ = -1;
 }
 }
 else

14.	 When the touch ends, we check the validity of the new tile position and exchange the
selected tile with the tile in the new position:

 {
 bool NewPosition = (MouseI != FClickedI ||
 MouseJ != FClickedJ);
 bool ValidPosition1 = (FClickedI >= 0 && FClickedJ >=
 0 && FClickedI < FColumns && FClickedJ < FRows);
 bool ValidPosition2 = (MouseI >= 0 && MouseJ >= 0 &&
 MouseI < FColumns && MouseJ < FRows);

Chapter 9

269

 if (NewPosition && ValidPosition1 && ValidPosition2)
 {
 int dX = MouseI - FClickedI;
 int dY = MouseJ - FClickedJ;
 SwapTiles(FClickedI, FClickedJ, MouseI, MouseJ);
 }
 if (IsComplete())
 {
 // TODO: We've got a winner!
 }
 FClickedI = FClickedJ = -1;
 }
}

How it works...
The 2_PuzzleProto example uses the clPuzzle class to show the gameplay without any
textures or any fancy graphics.

To render the state of the puzzle, the following routine is used:

void RenderGame(clPuzzle* g, const vec4& Color)
{

If we have selected the tile, we move it to the new mouse or touch position:

 if (g->FMovingImage && g->FClickedI >= 0 &&
 g->FClickedI >= 0 &&
 g->FClickedI < g->FColumns &&
 g->FClickedJ < g->FRows)
 {
 vec2 MCI = Env_GetMouse();
 int NewI = g->FClickedI;
 int NewJ = g->FClickedJ;
 float PosX, PosY;
 PosX = Math::Clamp(MCI.x + g->FOfsX, 0.0f, 1.0f);
 PosX *= g->FColumns;
 PosY = Math::Clamp(MCI.y + g->FOfsY, 0.0f, 1.0f);
 PosY *= g->FRows;
 g->GetTile(NewI, NewJ)->MoveTo(PosX, PosY);
 }

Writing a Picture Puzzle Game

268

Finally, each tile is rendered with the DrawTile() method call:

 for (int i = 0; i != g->FColumns; i++)
 for (int j = 0; j != g->FRows; j++)
 DrawTile(g, i, j, Color);
}

The DrawTile() method calculates the coordinates of the tile in normalized screen
coordinates (0...1) and uses a rectangular vertex array and the g_Canvas object to render
the Tile instance:

void DrawTile(clPuzzle* g, int i, int j, const vec4& Color)
{
 if (i < 0 || j < 0 || i >= g->FColumns || j >= g->FRows)
 { return; }
 clTile* Tile = g->GetTile(i, j);
 Tile->SetTarget(i, j);
 float X = Tile->FCur.x;
 float Y = Tile->FCur.y;
 float TW = 1.0f / g->FColumns;
 float TH = 1.0f / g->FRows;
 vec4 TilePosition(
 TW * (X + 0), TH * (Y + 0),
 TW * (X + 1), TH * (Y + 1));
 g_Canvas->TexturedRectTiled(
 TilePosition, 1.0f, 1.0f, g_Texture,
 Effect, Color, VA, Tile->GetRect());
}

In the next recipes, we combine this simple gameplay with an animated image selector and
the Picasa images downloader to create a more feature-rich puzzle game.

Implementing the animated 3D image
selector

The main UI element of our puzzle game is the animated 3D image selector. In this recipe,
we show you how to render the animated carousel-like selector and interact with the user.

Getting ready
Before proceeding with this recipe, you may need to go back to Chapter 7, Cross-platform
UI and Input System, and read how the Canvas class works. A bit of mathematics will be
required to understand better how the code in this recipe works.

Chapter 9

269

How to do it...
The idea behind the rendering is quite simple. We let the individual quads move in a way that
their corners slide along four guiding curves. The following figure shows the same quad in a
series of positions:

The four curves show the paths of the quad's corners.

1.	 We start with the helper Curve class, which implements the linear interpolation on
the set of control points. A curve is represented in a parametric form.

A parametric equation of a curve is a representation of this curve
through equations expressing the coordinates of the points of the
curve as functions of a variable called a parameter.

Courtesy: http://en.wikipedia.org/wiki/Parametric_equation

class Curve
{
public:
 Curve() {}

2.	 The AddControlPoint() method adds a new control point to the curve. The curve
is lazy-evaluated, and now we just store the specified values:
 void AddControlPoint(float t, const vec3& Pos)
 {
 T.push_back(t);
 P.push_back(Pos);
 }

Writing a Picture Puzzle Game

268

3.	 The GetPosition() method finds a segment for the given parameter t and
calculates a linearly interpolated coordinate of a point on the curve:
 vec3 GetPosition(float t) const
 {
 if (t <= T[0]) { return P[0]; }
 int N = (int)T.size();
 int i = N - 1;
 for (int s = 0 ; s < N - 1 ; s++)
 {
 if (t > T[s] && t <= T[s + 1])
 {
 i = s;
 break;
 }
 }
 if (i >= N - 1) { return P[N - 1]; }
 vec3 k = (P[i + 1] - P[i]) / (T[i + 1] - T[i]);
 return k * (t - T[i]) + P[i];
 }

4.	 The control points and corresponding arguments are stored in two vectors:
 std::vector<float> T;
 std::vector<vec3> P;
};

5.	 A 3D image selector control logic is implemented in the clFlowUI class:
class clFlowUI: public iObject
{
public:
 clFlowUI(clPtr<clFlowFlinger> Flinger, int NumQuads)
 {
 FFlinger = Flinger;

6.	 Create a 3D camera for our UI:
 mtx4 RotationMatrix;
 RotationMatrix.FromPitchPanRoll(0.0f, -90.0f, 0.0f);
 FView = mtx4::GetTranslateMatrix(
 -vec3(0.0f, -13.2f, 1.2f)) * RotationMatrix;

7.	 A standard perspective camera is used:
 FProjection = Math::Perspective(
 45.0f, 1.33333f, 0.4f, 2000.0f);
 float Y[] = { c_Height, c_Height, 0, 0 };
 float Offs[] = { -c_PeakOffset, c_PeakOffset,

Chapter 9

269

 c_PeakOffset, - c_PeakOffset };
 float Coeff[] =
 { c_Slope, - c_Slope, - c_Slope, c_Slope };
 for (int i = 0 ; i < 4 ; i++)
 {
 const int c_NumPoints = 100;
 for (int j = - c_NumPoints / 2 ;
 j < c_NumPoints / 2 + 1 ; j++)
 {
 float t = (float)j * c_PointStep;
 float P = Coef[i] * (Ofs[i] - t);

8.	 Arctangent is multiplied by exp(-x^2):
 float Mult = c_FlowMult *
 exp(- c_FlowExp * P * P);
 vec3 Pt(-t, Mult * c_Elevation *
 atan(P) / M_PI, Y[i]);
 FBaseCurve[i].AddControlPoint(t *
 exp(c_ControlExp * t * t), Pt);
 }
 }
 …

9.	 Update the UI scrolling limits using the current number of elements:
 FFlinger->FMinValue = 0.0f;
 FFlinger->FMaxValue = c_OneImageSize *
 ((float)FNumImg - 1.0f);
 }

10.	 Calculate the index of the currently selected index image:
 int GetCurrentImage() const
 {
 return
 (int)ceilf(FFlinger->GetValue() / OneImageSize);
 }

11.	 Coordinates for individual quad are calculated in the QuadCoords() method, which
invokes Curve::GetPosition() for each of the four guiding curves:
 virtual void QuadCoords(vec3* Pts, float t_center)
 const
 {
 float Offs[] =
 { c_QuadSize, - c_QuadSize, - c_QuadSize, c_QuadSize };
 for (int i = 0 ; i < 4 ; i++)
 Pts[i] = FBaseCurve[i].GetPosition(
 t_center - Offs[i] / 2);
 }

Writing a Picture Puzzle Game

268

12.	 Add the trajectory control points for each base curve:
 Curve FBaseCurve[4];
};

13.	 The following are the parameters for the guiding curves. The number of screen units
(in normalized coordinates) between the sequential control points:
const float c_PointStep = 0.2f;

14.	 The empirical tweaking parameter for the quad points, speed:
const float c_ControlExp = 0.001f;

15.	 The height of the image, which means the distance between the lower and upper
curves, thickness, and slope of the curve:
const float c_Height = 4.0f
const float c_Elevation = 2.0f;
const float c_Slope = 0.3f;

16.	 The symmetric displacement of curve peaks, exponential falloff, and main coefficient:
const float c_PeakOffset = 3.0f;
const float c_FlowExp = 0.01f;
const float c_FlowMult = 4.0f;

17.	 The clFlowFlinger class holds the dynamic state of the selector:
class clFlowFlinger: public iObject
{
public:
 clFlowFlinger()
 : FPressed(false), FValue(0.0f), FVelocity(0.0f) {}
 virtual ~clFlowFlinger() {}

18.	 Decide what to do on the selection—return true if the selection is complete, or
false otherwise:
 virtual bool HandleSelection(float mx, float my)
 { return false; }

19.	 Update the animation and handle touches:
 void Update(float DeltaTime);
 void OnTouch(bool KeyState);
…
};

Chapter 9

269

20.	 Touch handling is performed in the OnTouch() method:
void clFlowFlinger::OnTouch(bool KeyState)
{
 int CurImg = (int)ceilf(FValue / OneImageSize);
 vec2 MousePt = Env_GetMouse();
 double MouseTime = Env_GetMouseTime();
 FPressed = KeyState;
 if (KeyState)
 {
 FClickPoint = FLastPoint = MousePt;
 FClickedTime = FLastTime = MouseTime;
 FInitVal = FValue;
 FVelocity = 0;
 }
 else
 {

21.	 If the touch point has moved less than 1 percent of the screen, or the gesture has
taken less than 10 milliseconds we consider it being a tap:
 double Time = MouseTime - FClickedTime;
 double c_TimeThreshold = 0.15;
 float c_LenThreshold = 0.01f;
 if ((FClickPoint - MousePt).Length() <
 c_LenThreshold
 && (Time < c_TimeThreshold))
 {
 HandleSelection(MousePt.x, MousePt.y);
 FVelocity = 0;
 return;
 }

22.	 Otherwise, if the gesture spans less than 300 milliseconds, we stop the motion:
 float c_SpanThreshold = 0.3f;
 float dT = (float)(MouseTime - FLastTime);
 float dSx = MousePt.x - FLastPoint.x;
 FVelocity = (dT < c_SpanThreshold) ?
 -AccelCoeff * dSx / dT : 0;
 }
}

Writing a Picture Puzzle Game

268

23.	 The coefficients for positions and timings were chosen empirically based on the
perception of the motion. The dynamics are implemented in the Update() method:
void clFlowFlinger::Update(float DeltaTime)
{
 float NewVal = 0.0f;
 if (FPressed)
 {
 vec2 CurPoint = Env_GetMouse();
 NewVal = FInitVal;
 NewVal -= AccelCoef * (CurPoint.x - FLastPoint.x);
 }
 else
 {
 NewVal = FValue + FVelocity * DeltaTime;
 FVelocity -= FVelocity * c_Damping * DeltaTime;

24.	 When we reach the last image, we just clamp the position on the guiding curves. For
a smooth experience, we also add a rubber band effect, by interpolating the position
using the linear formulas. The Damper coefficient is purely empiric:
 const float Damper = 4.5f * DeltaTime;
 if (NewVal > FMaxValue)
 {
 FVelocity = 0;
 NewVal = FMaxValue * Damper +
 NewVal * (1.0f - Damper);
 }
 else if (NewVal < FMinValue)
 {
 FVelocity = 0;
 NewVal = FMinValue * Damper +
 NewVal * (1.0f - Damper);
 }
 }
 FValue = NewVal;
}

25.	 A nice set of parameters for comfortable scrolling is defined in the FlowFlinger.h
file:

const float c_AccelCoeff = 15.0f;
const float c_ValueGain = 0.1f;
const float c_IntGain = 0.1f;
const float c_DiffGain = 0.1f;
const float c_Damping = 0.7f;

You are encouraged to try your own values.

Chapter 9

269

How it works...
The carousel rendering is based on Canvas and implemented in the RenderDirect()
function:

void RenderDirect(clPtr<clFlowFlinger> Control)
{
 int Num = Control->FNumImg;
 if (Num < 1) { return; }
 int CurImg = Control->GetCurrentImage();
 float Dist = (float)(Num * c_OneImageSize);

We manually specify the quad rendering order. First we render the left-hand side images, then
the images on the right-hand side, and finally the central image:

 int ImgOrder[] = {
 CurImg - 3, CurImg - 2, CurImg - 1,
 CurImg + 3, CurImg + 2, CurImg + 1,
 CurImg };

Actual rendering of checks for array boundaries, and application of the Projection and
View matrices to each corner of the quad:

 for (int in_i = 0 ; in_i < 7 ; in_i++)
 {
 int i = ImgOrder[in_i];
 if (i < 0)
 { i += (1 - ((int)(i / Num))) * Num; }
 if (i >= Num)
 { i -= ((int)(i / Num)) * Num; }
 if (i < Num && i > -1)
 {
 vec3 Pt[4];
 Control->QuadCoords(Pt,
 Control->FFlinger->FValue - (float)(i) *
 c_OneImageSize);
 vec3 Q[4];
 for(int j = 0 ; j < 4 ; j++)
 Q[j] = Control->FProjection *
 Control->FView * Pt[j];
 BoxR(Q, 0xFFFFFF);
 }
 }
}

Writing a Picture Puzzle Game

268

The final rendering is done using the BoxR() function, which is implemented in the main.
cpp file.

A modification to the carousel code is needed to support selection. We add the GeomUtil.h
file with a few methods of intersection testing. Similar, to the RenderFlow() procedure, we
iterate over visible images, and for each of those, we intersect the ray from the tap location
through the image plane:

int clFlowUI::GetImageUnderCursor(float mx, float my) const
{
 if (FNumImg < 1) { return -1; }

Map the 2D screen touch point to a 3D point and a ray:

 vec3 Pt, Dir;
 MouseCoordsToWorldPointAndRay(FProjection, FView,
 mx, my, Pt, Dir);
 int CurImg = GetCurrentImage();
 int ImgOrder[] = { CurImg, CurImg - 1, CurImg + 1, CurImg - 2,
 CurImg + 2, CurImg - 3, CurImg + 3 };

Iterate over the current image quads:

 for (int cnt = 0 ; cnt < countof(ImgOrder) ; cnt++)
 {
 int i = ImgOrder[cnt];
 if (i < 0 || i >= (int)FNumImg) { continue; }

Transform the quad coordinates into the world space:

 vec3 Coords[4];
 QuadCoords(Coords, FFlinger->GetValue() –
 (float)(i) * OneImageSize);

Intersect the ray with two triangles:

 vec3 ISect;
 if (IntersectRayToTriangle(Pt, Dir,
 Coords[0], Coords[1], Coords[2], ISect) ||
 (IntersectRayToTriangle(Pt, Dir,
 Coords[0], Coords[2], Coords[3], ISect)))
 return i;
 }
 return -1;
}

Chapter 9

269

The Unproject() and MouseCoordsToWorldPointAndRay() functions convert 2D
screen point coordinates into a ray in the 3D world space, where our carousel quads fly. Their
implementations can be found in the GeomUtil.h file.

To rewind the selector to some specific image we set a target position:

void SetCurrentImageTarget(int i)
{ FFlinger->SetTargetValue((float)i * (OneImageSize)); }

There's more...
In this recipe we used 3D lines to render the carousel. It is really simple to use the Canvas
class to render each quad with a texture. We also encourage the reader to add a reflection
effect, which is easily done by rendering the same set of quads with an additional transform
representing the reflection from a horizontal plane.

See also
ff Implementing the complete picture-puzzle game

Page-based user interface
In the previous chapter, we developed a game that contained a single page. Most of the
modern mobile games, however, contain sophisticated user interfaces backed by complex
business logic. A typical user interface consists of several full-screen pages with multiple
UI elements, such as buttons, images and, input boxes. These are rendered using the in-
game rendering system, and do not depend on the user interface of the underlying operating
system. In this recipe, we show you how to approach this problem.

Getting ready
You might want to find out what open source C++ multiplatform UI libraries exist out there.
The following link will help you: http://en.wikipedia.org/wiki/List_of_platform-
independent_GUI_libraries.

We would also like to recommend looking at libRocket if you want to go for a full-scale
HTML/CSS user interface for your game (http://librocket.com). Its integration is
straightforward, but lies outside of the scope of this book.

Writing a Picture Puzzle Game

268

How to do it...
1.	 A single page handles all the key, touch, timer, and rendering events:

class clGUIPage: public iObject
{
public:
 clGUIPage(): FFallbackPage(NULL) {}
 virtual ~clGUIPage() {}

 virtual void Update(float DeltaTime) {}
 virtual void Render() {}
 virtual void SetActive();

2.	 Handle basic UI interaction events:
 virtual bool OnKey(int Key, bool KeyState);
 virtual void OnTouch(const LVector2& Pos, bool
 TouchState);

3.	 The page we return to when the BACK or ESC button is tapped on:
 clPtr<clGUIPage> FFallbackPage;
 …
};

4.	 All the UI pages are managed by the clGUI class, which mostly delegates all events
to the currently selected page:
class clGUI: public iObject
{
public:
 clGUI(): FActivePage(NULL), FPages() {}
 virtual ~clGUI() {}
 void AddPage(const clPtr<clGUIPage>& P)
 {
 P->FGUI = this;
 FPages.push_back(P);
 }
 void SetActivePage(const clPtr<clGUIPage>& Page)
 {
 if (Page == FActivePage) { return; }
 FActivePage = Page;
 }
 void Update(float DeltaTime)
 {
 if (FActivePage) FActivePage->Update(DeltaTime);
 }
 void Render()

Chapter 9

269

 {
 if (FActivePage) FActivePage->Render();
 }
 void OnKey(vec2 MousePos, int Key, bool KeyState)
 {
 FMousePosition = MousePos;
 if (FActivePage) FActivePage->OnKey(Key, KeyState);
 }
 void OnTouch(const LVector2& Pos, bool TouchState)
 {
 if (FActivePage)
 FActivePage->OnTouch(Pos, TouchState);
 }
private:
 vec2 FMousePosition;
 clPtr<clGUIPage> FActivePage;
 std::vector< clPtr<clGUIPage> > FPages;
};

5.	 The page itself serves as a container for the clGUIButton objects:
class clGUIButton: public iObject
{
public:
 clGUIButton(const LRect& R, const std::string Title,
 clPtr<clGUIPage> Page)
 : FRect(R)
 , FTitle(Title)
 , FPressed(false)
 , FFallbackPage(Page) {}

 virtual void Render();
 virtual void OnTouch(const LVector2& Pos, bool
 TouchState);

6.	 The most important thing here is that clGUIButton can detect whether a touch
point is contained inside the button:

 virtual bool Contains(const LVector2& Pos)
 {
 return FRect.ContainsPoint(Pos);
 }
public:
 LRect FRect;
 std::string FTitle;
 bool FPressed;
 clPtr<clGUIPage> FFallbackPage;
};

Writing a Picture Puzzle Game

268

These two classes are enough to build a minimalistic interactive user interface for
our game.

How it works…
While setting up the user interface, we construct pages and add them to the global
g_GUI object:

 g_GUI = new clGUI();
 clPtr<clGUIPage> Page_MainMenu = new clPage_MainMenu;
 clPtr<clGUIPage> Page_Game = new clPage_Game;
 clPtr<clGUIPage> Page_About = new clPage_About;

When the BACK button is tapped upon, the pages backflow looks as follows:

Page_About → Page_MainMenu
Page_Game → Page_MainMenu
Page_MainMenu → exit the application

We set up references to the back-navigation target pages accordingly:

 Page_Game->FFallbackPage = Page_MainMenu;
 Page_About->FFallbackPage = Page_MainMenu;
 g_GUI->AddPage(Page_MainMenu);
 g_GUI->AddPage(Page_Game);
 g_GUI->AddPage(Page_About);

The main menu page also contains some useful buttons, which will help the player to navigate
between different pages:

 Page_MainMenu->AddButton(new clGUIButton(LRect(
 0.3f, 0.1f, 0.7f, 0.3f), "New Game", Page_Game));
 Page_MainMenu->AddButton(new clGUIButton(LRect(
 0.3f, 0.4f, 0.7f, 0.6f), "About", Page_About));
 Page_MainMenu->AddButton(new clGUIButton(LRect(
 0.3f, 0.7f, 0.7f, 0.9f), "Exit", NULL));

The application starts at the main menu page:

 g_GUI->SetActivePage(Page_MainMenu);

The implementations of individual pages are quite straightforward. clPage_About contains
some information, and we only override the Render() method:

class clPage_About: public clGUIPage
{
public:

Chapter 9

269

 virtual void Render()
 {
 …
 }
};

The main menu page contains three buttons—one to exit the application, another to start
the game, and a button to enter the about page:

class clPage_MainMenu: public clGUIPage
{
public:

The OnKey() method also handles the BACK and ESC buttons. We use a single check,
since our abstraction layer converts both the keys into a single LK_ESCAPE code:

 virtual bool OnKey(int Key, bool KeyState)
 {
 if (Key == LK_ESCAPE) ExitApp();
 return true;
 }
 …
};

The game page redirects rendering, touch handling, and timing events to the global
g_Game object:

class clPage_Game: public clGUIPage
{
public:
 virtual void OnTouch(const LVector2& Pos, bool TouchState)
 {
 g_Game.OnKey(Pos.x, Pos.y, TouchState);
 clGUIPage::OnTouch(Pos, TouchState);
 }
 virtual void Update(float DT)
 {
 g_Game.Timer(DT);
 }
 virtual void Render()
 {
 RenderGame(&g_Game);
 clGUIPage::Render();
 }
};

Writing a Picture Puzzle Game

268

There's more...
As an exercise, more UI controls can be added to this minimalistic framework. It is easy
to add static text labels and images. More complex UI controls, such as input boxes, can
be implemented too, but will require much more effort. If you want to build a complex UI
for your game, we recommend using one of the open source C++ UI libraries at http://
en.wikipedia.org/wiki/List_of_platform-independent_GUI_libraries.

See also
ff Implementing the animated 3D image selector

Image gallery with Picasa downloader
In this recipe, we will integrate our Picasa images downloader with a carousel-based 3D
gallery, and use it as a picture selection page in our game.

How to do it…
1.	 To download the images and track the state of the downloader, we use the

sImageDescriptor structure describing the state of any game image:
class sImageDescriptor: public iObject
{
public:
 size_t FID;

 std::string FURL;

Now comes the image size code. We support a single image type only: small 256
pixel-wide previews. Multi-stage previews can be implemented when the game first
loads very small images over the network, let's say not larger than 128 pixels.
Then larger 256 pixel previews replace them to give crisp previews on Full HD
screens. And after the player has picked an image from the gallery, a full-sized
preview is fetched from the server.

2.	 The previously described method is exactly how we do it in our Linderdaum Puzzle
HD game:
 LPhotoSize FSize;

3.	 We set the current state of this image to L_NOTSTARTED initially:
 LImageState FState;

 clPtr<clGLTexture> FTexture;
 clPtr<clBitmap> FNewBitmap;

Chapter 9

269

 sImageDescriptor():
 FState(L_NOTSTARTED),
 FSize(L_PHOTO_SIZE_256)
 {
 FTexture = new clGLTexture();
 }
 void StartDownload(bool AsFullSize);
 void ImageDownloaded(clPtr<Blob> Blob);
 void UpdateTexture();
};

4.	 The image state can be one of the following:
enum LImageState
{
 L_NOTSTARTED, // not started downloading
 L_LOADING, // download is in progress
 L_LOADED, // loading is finished
 L_ERROR // error occured
};

5.	 After the download has completed, we asynchronously load the image from the data
blob using the FreeImage library:
void sImageDescriptor::ImageDownloaded(clPtr<clBlob> B)
{
 if (!B)
 {
 FState = L_ERROR;
 return;
 }
 clPtr<clImageLoadingCompleteCallback> CB =
 new clImageLoadingComplete(this);
 clPtr<clImageLoadTask> LoadTask =
 new clImageLoadTask(B, 0, CB,
 g_Events.GetInternalPtr());
 g_Loader->AddTask(LoadTask);
}

6.	 Asynchronous loading is important, since the image decoding can be quite slow,
and can interfere with the user experience of the game. After an image has been
loaded and converted into a clBitmap, we should update the texture. Texture
updates are done synchronously on the OpenGL rendering thread:
void sImageDescriptor::UpdateTexture()
{
 this->FState = L_LOADED;
 FTexture->LoadFromBitmap(FNewBitmap);
}

Writing a Picture Puzzle Game

268

7.	 Let's go a level above and see how images are fetched from the server. The image
collection is retrieved from a website and stored in the clGallery object:
class clGallery: public iObject
{
public:
 clGallery(): FNoImagesList(true) {}

8.	 Return the full-size image URL:
 std::string GetFullSizeURL(int Idx) const
 {
 return (Idx < (int)FURLs.size()) ?
 Picasa_GetDirectImageURL(
 FURLs[Idx], L_PHOTO_SIZE_ORIGINAL)
 : std::string();
 }
 size_t GetTotalImages() const
 {
 return FImages.size();
 }
 clPtr<sImageDescriptor> GetImage(size_t Idx) const
 {
 return (Idx < FImages.size()) ?
 FImages[Idx] : NULL;
 }
 …

9.	 Restart the downloading of all images that are not loaded:
 void ResetAllDownloads();
 bool StartListDownload();
 …

10.	 We store the base URLs of all images, and the images themselves:
 std::vector<std::string> FURLs;
 std::vector< clPtr<sImageDescriptor> > FImages;
};

11.	 To decode an image list, we use the Picasa downloader code from Chapter 3,
Networking:
class clListDownloadedCallback: public clDownloadCompleteCallback
{
public:
 clListDownloadedCallback(const clPtr<clGallery>& G)
 : FGallery(G) {}

Chapter 9

269

 virtual void Invoke()
 {
 FGallery->ListDownloaded(FResult);
 }

 clPtr<clGallery> FGallery;
};

void clGallery::ListDownloaded(clPtr<clBlob> B)
{
 if (!B)
 {
 FNoImagesList = true;
 return;
 }

12.	 Parse the data blob corresponding to the XML image list that has been loaded
from Picasa:
 FURLs.clear();
 void* Data = B->GetData();
 size_t DataSize = B->GetSize();
 Picasa_ParseXMLResponse(
 std::string((char*)Data, DataSize), FURLs);

13.	 Update the descriptors and start downloading the images:
 FImages.clear();
 for (size_t j = 0 ; j != FURLs.size() ; j++)
 {
 LPhotoSize Size = L_PHOTO_SIZE_256;
 std::string ImgUrl = Picasa_GetDirectImageURL(
 FURLs[j], Size);
 clPtr<sImageDescriptor> Desc = new sImageDescriptor();
 Desc->FSize = Size;
 Desc->FURL = ImgUrl;
 Desc->FID = j;
 FImages.push_back(Desc);
 Desc->StartDownload(true);
 }
 FNoImagesList = false;
}

Writing a Picture Puzzle Game

268

14.	 Once the image loading is complete, the task dispatches a
clBitmap::Load2DImage() call to the main thread, so that the OpenGL texture
can be updated:
class clImageLoadTask: public iTask
{
public:
…
 virtual void Run()
 {
 clPtr<ImageLoadTask> Guard(this);
 clPtr<iIStream> In = (FSourceStream == NULL) ?
 g_FS->ReaderFromBlob(FSource) : FSourceStream;
 FResult = new clBitmap();
 FResult->Load2DImage(In, true);
 if (FCallback)
 {
 FCallback->FTaskID = GetTaskID();
 FCallback->FResult = FResult;
 FCallback->FTask = this;
 FCallbackQueue->EnqueueCapsule(FCallback);
 FCallback = NULL;
 }
 }
 …
};

The complete source code can be found in the 5_Puzzle project.

How it works…
The downloading is performed in the global g_Downloader object, and the actual decoding
of the downloaded data is done using the FreeImage library.

See also
ff Chapter 3, Networking

Implementing the complete picture-puzzle
game

Finally, we have all the parts at hand, and can combine them together into a puzzle
game application.

Chapter 9

269

Getting ready
Build and run the example 5_Puzzle from the supplementary materials. This example,
like others in this book, runs on Android as well as on Windows.

How to do it…
1.	 We start by augmenting our 3_UIPrototype project with a new page, clPage_

Gallery. This page delegates rendering and updating to the global g_Flow object:
class clPage_Gallery: public clGUIPage
{
public:
 …
 virtual void Render()
 {
 RenderDirect(g_Flow);
 }
 virtual void Update(float DT)
 {
 g_Flow->FFlinger->Update(DT);
 }
private:
 void RenderDirect(clPtr<clFlowUI> Control);
};

2.	 The RenderDirect() method is essentially a slightly modified version of
RenderDirect() from the Implementing the animated 3D image selector recipe
in this chapter. There are only two differences—we replace wireframe quad rendering
with the clCanvas::Rect3D() call (to render a textured 3D rectangle) and use
textures from the g_Gallery object, described recently in this chapter in the Image
gallery with Picasa downloader recipe:
 void RenderDirect(clPtr<clFlowUI> Control);
 {
…

3.	 The rendering order is left to right, to prevent incorrect overlapping of images:
 int ImgOrder[] = { CurImg - 3, CurImg - 2, CurImg - 1,
 CurImg + 3, CurImg + 2, CurImg + 1, CurImg };

Writing a Picture Puzzle Game

268

4.	 Render seven textured 3D rectangles according to the predefined order. We use a
placeholder texture g_Texture if no image is available:
 for (int in_i = 0 ; in_i < 7 ; in_i++)
 {
…
 if (i < Num && i > -1)
 {
 …
 clPtr<sImageDescriptor> Img =
 g_Gallery->GetImage(i);
 clPtr<clGLTexture> Txt =
 Img ? Img->FTexture : g_Texture;
 g_Canvas->Rect3D(Control->FProjection,
 Control->FView, Pt[1], Pt[0], Pt[3], Pt[2], Txt,
 NULL);
 }
 }
 }

5.	 Once we have a user interface separated into pages, we can delegate all
the rendering, updates, and input to our g_GUI object. Engine callbacks are
implemented trivially:
void OnDrawFrame()
{
 g_GUI->Render();
}
void OnKey(int code, bool pressed)
{
 g_GUI->OnKey(g_Pos, code, pressed);
}

6.	 On timer update, we should process events posted by other threads:
void OnTimer(float Delta)
{
 g_Events->DemultiplexEvents();
 g_GUI->Update(Delta);
}

7.	 Tap handling is a bit more complicated, since we have to additionally store the in-
gallery flag. For the sake of simplicity, we have implemented it as the global variable
g_InGallery:
void OnMouseDown(int btn, const LVector2& Pos)
{
 g_Pos = Pos;
 g_GUI->OnTouch(Pos, true);

Chapter 9

269

 if (g_InGallery)
 {
 g_MousePos = Pos;
 g_MouseTime = Env_GetSeconds();
 g_Flow->FFlinger->OnTouch(true);
 }
}

Callbacks OnMouseMove() and OnMouseUp() are similar, and can be found in the 5_
Puzzle/main.cpp file.

How it works…
Let's have a brief glimpse of the game. The main menu looks as the following screenshot:

Tapping on New Game shows the 3D carousel with images fetched from Picasa, as shown in
the following screenshot:

Writing a Picture Puzzle Game

268

Scroll to the left or right to pick a desired image. Tap on it. The game field opens with shuffled
tiles of the photo, as shown in the following screenshot:

Move the tiles around to restore the original image.

There's more...
The following are some nice features left behind, which add much to the puzzle's usability,
and which you can implement as an exercise:

ff Implement different tile grids. 4 x 4 is easy to play. 8 x 14 is quite challenging.
Even larger grids look good on 10 inch tablets.

ff Stitch the correctly assembled tiles together, and move them as a single block.

ff You can use a flood-fill algorithm to find the adjacent tiles.

ff Save the game state, so the player can continue the game where they left off.
It is also a good idea to save the game when an incoming phone call occurs.
You can do it in the OnStop() callback.

ff Multi-stage previews—load small low-resolution previews in the 3D carousel. Once
the coarse previews are loaded, fetch higher-resolution preview images. And once
the player taps on the image he wants to play with, download the high resolution
image. This will make the game look crisp on a Full HD tablet device.

ff Implement different galleries. You can start with Flickr, as described in the recipe
Fetching list of photos from Flickr and Picasa in Chapter 3, Networking.

See also
ff Chapter 3, Networking

ff Chapter 4, Organizing a Virtual Filesystem

ff Chapter 5, Cross-platform Audio Streaming

ff Chapter 6, Unifying OpenGL ES 3 and OpenGL 3

Index
Symbols
2D

graphics, rendering 59, 60
_prefetch function 63
.wav files

playing 130-133
.zip archives

files, decompressing 119-121
files, enumerating 114-119

A
Accept() method 94
adb command 22, 23
AddControlPoint() method 275
AddGround() function 62
AddTouchPoint() function 205
alSourcePause() function 140
alSourcePlay() function 144
Android

multi-touch events, processing 194-196
native static libraries, compiling for 42-44
OpenGL ES 2, initializing on 167-172

Android activity lifecycle
URL 239

Android development tools
installing, on Linux 14, 15
installing, on Windows 10-13

Android NDK
URL 10, 14

Android SDK
URL 10, 14

animated 3D image selector
implementing 274-283

Apache Ant
URL 10

application
native C++ code, adding to 19-22
shutting down 239, 240

application data
storing 125-127

application template
creating 15-18

ArchiveReader::ExtractSingleFile
method 120

asynchronous callbacks invocation
handling 85-88

asynchronous multi-touch input
handling 234-236

asynchronous network
working with 88-90

asynchronous resources
loading 121-124

asynchronous task queues
implementing 83, 85

audio playback mechanism
improving 236-239

B
BACK button 286
BaseURL parameter 68
basic audio components

abstracting 134-142
Bind() method 183
BlockRead() method 99
boolean parameter 196
Box2D

URL 61

298

Box2D simulations
setting up 61, 62

BoxR() function 282
bullet time

URL 243

C
CalculateLineParameters function 224
canvas

creating, for immediate rendering 188-191
CFLAGS variable 34
CheckStatus() function 176
clAudioThread::Run() method 237
clGUIButton object 285
ConfigChooser class 168
core folder 245
CPPFLAGS variable 44
CreateContextFull() function 164
CreateJoint() function 62
CreateReader() method 112
CreateWindowA() 29
critical section

URL 76
cross-platform

about 27-32
code, unifying 33, 34

cross-platform multithreading
performing 74-76

D
DemultiplexEvents() function 87
dlsym() function 172
DrawBody() function 61
DrawFigure() method 253
Draw() method 184
DrawQuad() function 253
DrawTexQuad() function 253
DrawTile() method 274

E
Env_Sleep() function 135
Event_Drag() method 205
Event_Fling() method 205

Event_Pinch() method 205
Event_PinchStart() method 205
Event_PointerChanged() method 205
Event_PointerMoved() method 205
Event_UpdateGesture() method 204
Exit() method 84
ExtractSingleFile() function 120
ExtractSingleFile() method 121
ExtractURLAttribute() function 71

F
FBufferUsed field 143
FileExists() method 112
FileMapper 99
files

decompressing, from .zip archives 119-121
enumerating, in .zip archives 114-119

file streams
abstracting 98-101

FileSystem::AddAlias method 112
file writers

implementing 104-108
Fix Your Timestep!

URL 241
Flickr

images, downloading from 70-74
photo list, fetching from 66-69

Flickr API
URL 69

Flickr_GetListURL() function 68
flood-fill algorithm

URL 260
FreeImage_GetRowPtr() 48
FreeImage graphics library

using 47-50
FreeImage_SaveMemory() 48
FreeImage source code

URL 47
FreeType

using, for text rendering 218-229
FreeType library

URL 50
used, for text rendering 50-56

fs folder 245, 246
FS_IsFullPath() function 112

299

G
game field logic

managing 259-261
game loop

user interaction, implementing
within 261-264

gcc command 41
GenerateTicks() function 62
GenerateTicks() method 57
geometry

manipulating 178-180
gestures

recognizing 204-212
GetAdaptersAddresses() function 91
GetAPI() function 160, 166
getifaddrs() function 91, 92
GetLocaleInfo() WinAPI function 231
GetPosition() method 276
GetSeconds() function 56
GetSizedFace function 221
gettimeofday() function 56
GetVariableValue() function 94
GetWaveDataSize() method 139
GLFW library

URL 162
GLSL 1.50

URL 173
GLSL 3 shaders

unifying 172-178
GLSL ES 2 shaders

unifying 172-178
GLSurfaceView class

URL 167
Glyph caching 218
GNU Compiler Collection (GCC) 11
graphics

rendering, in 2D 59, 60
graphics folder 244, 245

H
HandleTouch() method 216
HTTP server

writing 93-95

I
iIStream::BlockRead() method 101
Image gallery

with Picasa downloader 288-292
images

downloading, from Flickr 70-74
downloading, from Picasa 70-74

ImgSizeType parameter 73
iMountPoint::FileExists() method 112
iMountPoint::MapName() method 112
in-game strings

localizing 229-231
InitKeys() method 213
init() method 168
in-memory files

working with 109, 110
int main() function 34
iOStream::Write() method 101
IsDraggingValid() function 210
IsEOF() method 149
IsPinchZoomValid() function 211
IsPlaying() function 132
IsPlaying() method 137
iThread::Start() method 75
iWaveDataProvider class 135

J
jarsigner tool 37
Java SE Development Kit

URL 10

K
kerning 51
Khronos

URL 173

L
lfind() function 47
LGL folder 245
libcurl networking library

compiling 44, 45
libCurl source code

URL 44

300

libmodplug
compiling 46, 47
URL 155

libmodplug library
URL 47

libRocket
URL 283

libtheora
compiling 46, 47

libvorbis
compiling 46, 47

libvorbis and libtheora codecs
URL 47

ligature 51
Linderdaum Engine

URL 223
Linderdaum Puzzle HD

URL 268
Linux

Android development tools, installing
on 14, 15

LoadFileAsBlob() function 154
LoadFontFile() function 220
LoadFT() function 219
LoadStringWithFont() function 226
LocalizeString() function 230, 231
Lock variable 235
LoopSound() method 141

M
main() function 53, 88
main loop

implementing 241-243
make all command 35
MapName() 112
match-3 game

writing 246-255
MaxResults parameter 69
memory

managing, reference counting used 78-82
MemoryCallback() function 45
MinGW GCC toolchain

URL 12
Minimalist GNU for Windows (MinGW) 11
MiniZIP project

URL 114

mmap() function 102
mount points

implementing 110-112
MultColor() function 229
multiplatform gaming engine

creating 243-246
multiple CPU architectures

supporting 23
multi-touch emulation

setting up, on Windows 197, 198
multi-touch events

handling, on Windows 198-203
processing, on Android 194-196

MultiTouchVista
URL 197

music tracker
URL 155

N
native C++ code

adding, to application 19-22
native cross-platform threads

synchronizing 76-78
native static libraries

compiling, for Android 42-44
compiling, for Windows 40-42

ndk-build command 35
NDK toolchains

switching 22
Net_EnumerateAdapters() function 91
network address

detecting 91, 93

O
ODE

URL 63
ODE physical library

building 63
ofstream::write() function 101
OGG_ReadFunc() function 152
OGG_SeekFunc() function 153
OGG_TellFunc() function 154
Ogg Vorbis files

decoding 149-154
OnDrawFrame() callback 242

299

OnKeyDown() function 30
OnKey() method 272, 287
OnKeyUp() function 30
OnMouseDown() function 30
OnMouseMove() function 30
OnMouseUp() function 30
onPause() method 240
on-screen joypad

implementing 212-217
OnStart() function 94
OnStart() method 217
OnStop() method 241
OnTimer() callback 264
OnTimer() method 57
onTouchEvent() function 196
onTouchEvent() method 194
OpenAL

initializing 130-133
OpenAL library

compiling 45, 46
Open Dynamics Engine. See ODE
OpenGL

URL 24, 173
OpenGL 3 core profile

initializing, on Windows 162-167
unifying 158-161

OpenGL ES
used, for rendering with 24-27

OpenGL ES 2
initializing, on Android 167-172
unifying 158-161

OpenGL ES documentation
URL 24

P
page-based user interface 283-288
PageIndex parameter 69
parametric equation

URL 275
pentomino

URL 256
photo list

fetching, from Flickr 66-69
fetching, from Picasa 66-69

physics
timing, implementing 56-58

Picasa
images, downloading from 70-74
photo list, fetching from 66-69

Picasa downloader
image gallery, using with 288-292

Picasa_GetListURL() function 68
picture-puzzle game

implementing 292-296
picture puzzle game logic

implementing 268-274
Play() method 137, 144
portable memory-mapped files

implementing 102-104
printf() function 88
ProcessClick() function 263
pulse-code modulation

URL 130

Q
QuadCoords() method 277

R
RAII registration

URL 238
read_bmp_mem() function 123
ReadFileData() function 221
ReadFromFile() function 151, 152
ReadFromFile() method 156
RebindAllUniforms() method 177
reference counting

used, for managing memory 78-82
release Android applications

signing 35, 37
Reload() function 166
RenderDirect() function 281
RenderDirect() method 293
Renderer class 170
rendering

canvas, creating for 188-191
with OpenGL ES 24-27

Render() method 286
Restart() method 214
REST (Representational State Transfer) 66
Retoss() method 271
Run() method 83, 123, 134, 139

302

S
Seek() method 99
SendMotion() function 194, 196
SetTimer() function 57
Setup() function 62
SetVariableValue() function 94
SetVertexAttribs() method 182
SetVolume() method 138
shapes

managing 256-258
sound folder 246
sounds

streaming 142-148
source code

linking 35
organizing 35

StackOverflow
URL 11

Step() method 59
Stop() method 137
Str_AddTrailingChar() function 112
StreamWaveData() method 146
SwapBytes() function 142
switch statement 30

T
text rendering

FreeType library, using for 50-56
FreeType, using for 218-229

textures
wrapper, creating for 185-187

threading folder 246
time slicing 58
timing

implementing, in physics 56-58
toolchain 22
tracker music

decoding, ModPlug used 155, 156

U
UnqueueAll() method 145
UpdateGesture() function 210

Update() method 145, 146, 271, 280
user interaction

implementing, within game loop 261-264
usleep() function 135

V
VAO 181
VBO 181
Vertex Array Object. See VAO
vertex arrays

unifying 181-184
Vertex Buffer Object. See VBO
Viewport_ProcessMotion() function 203
Viewport_UpdateTouchPoint() function 202

W
WGL_ARB_pixel_format

URL 164
wglCreateContextAttribsARB() function 162,

163
Windows

Android development tools, installing
on 10-13

multi-touch emulation, setting up 197, 198
multi-touch events, handling 198-203
native static libraries, compiling for 40-42
OpenGL 3 core profile, initializing on 162-167

wrapper
creating, for textures 185-187

X
XOR pattern

URL 30

Thank you for buying

Android NDK Game Development
Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Android NDK Beginner’s
Guide
ISBN: 978-1-849691-52-9 Paperback: 436 pages

Discover the native side of Android and inject the power
of C/C++ in your applications

1.	 Create high performance applications with C/C++
and integrate with Java

2.	 Exploit advanced Android features such as
graphics, sound, input and sensing

3.	 Port and reuse your own or third-party libraries
from the prolific C/C++ ecosystem

Android Native Development
Kit Cookbook
ISBN: 978-1-849691-50-5 Paperback: 346 pages

A step-by-step tutorial with more than 60 concise recipes
on Android NDK development skills

1.	 Build, debug, and profile Android NDK apps

2.	 Implement part of Android apps in native C/C++
code

3.	 Optimize code performance in assembly with
Android NDK

Please check www.PacktPub.com for information on our titles

AndEngine for Android Game
Development Cookbook
ISBN: 978-1-849518-98-7 Paperback: 380 pages

Over 70 highly effective recipes with real-world
examples to get to grips with the powerful capabilities
of AndEngine and GLES 2

1.	 Step by step detailed instructions and information
on a number of AndEngine functions, including
illustrations and diagrams for added support
and results

2.	 Learn all about the various aspects of AndEngine
with prime and practical examples, useful for
bringing your ideas to life

3.	 Improve the performance of past and future game
projects with a collection of useful optimization tips

Creating Dynamic UI with
Android FragmentsJim Wilson
ISBN: 978-1-783283-09-5 Paperback: 122 pages

Leverage the power of Android fragments to develop
dynamic user interfaces for your apps

1.	 Learn everything you need to know to provide
dynamic multi-screen UIs within a single activity

2.	 Integrate the rich UI features demanded by today’s
mobile users

3.	 Understand the basics of using fragments and
how to use them to create more adaptive and
dynamic user experiences

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Establishing a Build Environment
	Introduction
	Installing Android development tools on Windows
	Installing Android development tools on Linux
	Creating an application template manually
	Adding native C++ code to your application
	Switching NDK toolchains
	Supporting multiple CPU architectures
	Basic rendering with OpenGL ES
	Going cross-platform
	Unifying the cross-platform code
	Linking and source code organization
	Signing release Android applications

	Chapter 2: Porting Common Libraries
	Introduction
	Compiling the native static libraries for Windows
	Compiling the native static libraries for Android
	Compiling the libcurl networking library
	Compiling the OpenAL library
	Compiling libvorbis, libmodplug, and libtheora
	Using the FreeImage graphics library
	Using the FreeType library for text rendering
	Implementing timing in physics
	Rendering graphics in 2D
	Setting up Box2D simulations
	Building the ODE physical library

	Chapter 3: Networking
	Introduction
	Fetching lists of photos from Flickr and Picasa
	Downloading images from Flickr and Picasa
	Performing cross-platform multithreading
	Synchronizing native cross-platform threads
	Managing memory using reference counting
	Implementing asynchronous task queues
	Handling asynchronous callbacks invocation
	Working with the network asynchronously
	Detecting a network address
	Writing the HTTP server

	Chapter 4: Organizing a Virtual
Filesystem
	Introduction
	Abstracting file streams
	Implementing portable memory-mapped files
	Implementing file writers
	Working with in-memory files
	Implementing mount points
	Enumerating files in the .zip archives
	Decompressing files from the .zip archives
	Loading resources asynchronously
	Storing application data

	Chapter 5: Cross-platform Audio Streaming
	Initializing OpenAL and playing .wav files
	Abstracting basic audio components
	Streaming sounds
	Decoding Ogg Vorbis files
	Decoding tracker music using ModPlug

	Chapter 6: Unifying OpenGL ES 3 and OpenGL 3
	Introduction
	Unifying the OpenGL 3 core profile and OpenGL ES 2
	Initializing the OpenGL 3 core profile on Windows
	Initializing OpenGL ES 2 on Android
	Unifying the GLSL 3 and GLSL ES 2 shaders
	Manipulating geometry
	Unifying vertex arrays
	Creating a wrapper for textures
	Creating a canvas for immediate rendering

	Chapter 7: Cross-platform UI
and Input Systems
	Introduction
	Processing multi-touch events on Android
	Setting up multi-touch emulation on Windows
	Handling multi-touch events on Windows
	Recognizing gestures
	Implementing an on-screen joypad
	Using FreeType for text rendering
	Localization of in-game strings

	Chapter 8: Writing a Match-3
Game
	Introduction
	Handling asynchronous multi-touch input
	Improving the audio playback mechanism
	Shutting down the application
	Implementing the main loop
	Creating a multiplatform gaming engine
	Writing the match-3 game
	Managing shapes
	Managing the game field logic
	Implementing user interaction within a game loop

	Chapter 9: Writing a Picture
Puzzle Game
	Introduction
	Implementing picture puzzle game logic
	Implementing the animated 3D image selector
	Page-based user interface
	Image gallery with Picasa downloader
	Implementing the complete picture-puzzle game

	Index

