
www.allitebooks.com

http://www.allitebooks.org

ASP.NET MVC 1.0 Quickly

Design, develop, and test powerful and robust web
applications the agile way, with MVC framework

Maarten Balliauw

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

ASP.NET MVC 1.0 Quickly

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, its dealers and distributors will be held liable for any damages caused or
alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2009

Production Reference: 1100309

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847197-54-2

www.packtpub.com

Cover Image by Maarten Balliauw (maarten@maartenballiauw.be)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Maarten Balliauw

Reviewers

Jerry Spohn

Joydip Kanjilal

Senior Acquisition Editor

Douglas Paterson

Development Editor

Shilpa Dube

Technical Editor

Aanchal Kumar

Copy Editor

Sumathi Sridhar

Indexer

Monica Ajmera

Production Editorial Manager

Abhijeet Deobhakta

Editorial Team Leader

Akshara Aware

Project Team Leader

Lata Basantani

Project Coordinator

Joel Goveya

Proofreader

Dirk Manuel

Production Coordinator

Shantanu Zagde

Cover Work

Shantanu Zagde

www.allitebooks.com

http://www.allitebooks.org

Joydip Kanjilal is a Microsoft Most Valuable Professional in ASP.NET. He has
over 12 years of industry experience in IT, including more than six years with
Microsoft .NET and its related technologies. He was selected as the MSDN Featured
Developer of the Fortnight (MSDN) and was also selected as the Community Credit
Winner at www.community-credit.com several times. Joydip has authored the
following books:

Entity Framework Tutorial (Packt Publishing)
Pro Sync Framework (APRESS)
Sams Teach Yourself ASP.NET Ajax in 24 Hours (Sams Publishing)
ASP.NET Data Presentation Controls Essentials (Packt Publishing)

Joydip has authored more than 150 articles for some of the most technology
reputable sites such as, www.asptoday.com, www.devx.com, www.aspalliance.
com, www.aspnetpro.com, www.sql-server-performance.com, www.sswug.com,
and so on. A lot of these articles have been selected for inclusion on www.asp.net—
Microsoft's official site for ASP.NET. Joydip was also a community credit winner at
www.community-credit.com a number of times.

Joydip is currently working as a Lead Architect in a reputed company in Hyderabad,
India. He has several years of experience in designing and architecting solutions
for various domains. His technical strengths include C, C++, VC++, Java, C#,
Microsoft .NET, Ajax, Design Patterns, SQL Server, Operating Systems, and
Computer Architecture.

Joydip blogs at: http://aspadvice.com/blogs/joydip and spends most of his time
writing books and articles. When not at work, Joydip spends time with his family,
playing chess, and watching cricket and soccer.

•

•

•

•

www.allitebooks.com

http://www.allitebooks.org

About the reviewers

Jerry Spohn is a Manager of Development for a medium-sized software
development firm in Exton, Pennsylvania. His responsibilities include managing a
team of developers and assisting in architecting a large multi-lingual, multi-currency
loan account system, written in COBOL and JAVA. He is also responsible for
maintaining and tracking a system-wide program and database documentation web
site that uses DotNetNuke as the portal for this information.

Jerry is the owner of Spohn Software LLC—a small consulting firm that helps small
businesses in the area with all aspects of maintaining and improving their business
processes. This includes helping them with the creation and maintenance of web
sites, general office productivity issues, and computer purchasing and networking.
Spohn Software, as a firm, prefers to teach their clients how to solve their problems
internally, rather than require a long-term contract, thereby making the business
more productive and profitable in the future.

Jerry currently works and resides in Pennsylvania, with his wife, Jacqueline, and his
two sons, Nicholas and Nolan.

www.allitebooks.com

http://www.allitebooks.org

About the author

Maarten Balliauw has a Bachelor's Degree in Software Engineering and has
about eight years of experience in software development. He started his career
during his studies where he founded a company that did web development in PHP
and ASP.NET. After graduation, he sold his shares and joined one of the largest
ICT companies in Belgium, RealDolmen, where he continued web application
development in ASP.NET and application life cycle management in Visual Studio
Team System. He is a Microsoft Certified Technology Specialist in ASP.NET and
works with the latest Microsoft technologies such as LINQ and ASP.NET 3.5. He has
published many articles in both .NET and PHP literature, such as MSDN magazine
Belgium, and PHP Architect. Ever since the first announcement of the ASP.NET MVC
framework, he has been following all its developments and features.

Blog: http://blog.maartenballiauw.be

E-mail: maarten@maartenballiauw.be

First of all, I would like to thank the people at Packt Publishing for
their guidance on writing this book. This has really been helpful and
much appreciated! I also wish to thank all of the reviewers for their
efforts in getting all of the ASP.NET MVC community tech preview
quirks out in the end.

Saving the best for last, I want to thank my family and my wife for
their patience, even when it meant sacrificing valuable holiday and
weekend time due to publication deadlines.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: ASP.NET MVC	 7

Model-view-controller	 7
View	 8
Controller	 8

The ASP.NET MVC framework	 9
Driving goals of the ASP.NET MVC framework	 10
Comparing ASP.NET MVC and ASP.NET Webforms	 11
Choosing between ASP.NET MVC and ASP.NET Webforms	 13

Summary	 14
Chapter 2: Your First ASP.NET MVC Application	 15

Creating a new ASP.NET MVC web application project	 16
What's inside the box?	 18
Strong-typed ViewData	 24
Creating a new view	 26
Unit testing the controller	 27
Summary	 29

Chapter 3: Handling Interactions	 31
Creating a form	 33

Creating a form using HTML	 33
Creating a form using HtmlHelper	 34

Handling posts	 37
Request variables	 37
Updating objects from request variables	 37
Action method parameters	 38

Handling file uploads	 39
Creating an upload form	 39
Creating an upload controller action	 39

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Using the ModelBinder attribute	 40
Using the default ModelBinder	 41
Creating a custom ModelBinder	 43

Validating data	 45
Summary	 49

Chapter 4: Components in the ASP.NET MVC framework	 51
The ASP.NET MVC request life cycle	 51

The RouteTable is created	 52
The UrlRoutingModule intercepts the request	 53
The routing engine determines the route	 53
The route handler creates the associated IHttpHandler	 53
The IHttpHandler determines the controller	 53
The controller executes	 54
A ViewEngine is created	 54
The view is rendered	 54

Extensibility	 54
Route objects	 54
MvcRouteHandler	 55
ControllerFactory	 55
Controller	 55
ViewEngine	 55
View	 56

The model in depth	 56
Creating a model	 56
Enabling validation on the model	 58

The controller in depth	 60
Creating a controller	 60
Rendering data on the response	 61
Reading data from the request	 62
Action method selection	 63
Handling unknown controller actions	 64
Action method attributes	 66

The view in depth	 68
Location of views	 69
Creating a view	 70
Master pages	 71
View markup	 72
Partial views	 74

Action filters	 75
IAuthorizationFilter	 75

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

IActionFilter	 76
IResultFilter	 76
IExceptionFilter	 76

Summary	 77
Chapter 5: Routing	 79

What is ASP.NET routing?	 79
ASP.NET routing versus URL rewriting	 80
UrlRoutingModule	 80
Route patterns	 81
Defining routes	 82

Parameter constraints	 84
Catch-all routes	 85
Routing namespaces	 86
Combining ASP.NET MVC and ASP.NET in one web application	 88

Creating URLs from routes	 89
Summary	 90

Chapter 6: Customizing and Extending the
ASP.NET MVC Framework	 91

Creating a control	 92
Creating a filter attribute	 96
Creating a custom ActionResult	 101
Creating a ViewEngine	 105
Summary	 113

Chapter 7: Using Existing ASP.NET Features	 115
Session State	 116

Reading and writing session data	 116
Configuring session state	 117
TempData	 119

Membership, authentication, and authorization	 120
Configuring web site security	 121
Implementing user and role based security in a controller	 122
Configurable authentication options	 125

Caching	 127
Globalization	 129

Resources	 129
Using local resources	 130
Using global resources	 132

Setting language and culture preferences	 132
Mixing ASP.NET Webforms and ASP.NET MVC	 135

Plugging ASP.NET MVC into an existing ASP.NET application	 135

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Plugging ASP.NET into an existing ASP.NET MVC application	 139
Sharing data between ASP.NET and ASP.NET MVC	 140

Building views at compile time	 142
Summary	 143

Chapter 8: AJAX and ASP.NET MVC	 145
Different AJAX frameworks	 145

XMLHttpRequest	 146
JavaScript Object Notation (JSON)	 146

ASP.NET AJAX	 147
ASP.NET MVC AJAX helper	 147
Working with JsonResult	 150

jQuery	 152
jQuery syntax	 153
Using jQuery with ASP.NET MVC	 154
Working with JsonResult	 157
Using jQuery UI	 159

Summary	 164
Chapter 9: Testing an Application	 165

Unit testing	 166
Unit testing frameworks	 166
Hello, unit testing!	 166
Generating unit tests	 168
Testing the action method	 170
Mocking frameworks	 172
Testing the Login action method	 174

Mocking ASP.NET components	 176
Testing routes	 178
Testing UpdateModel scenarios	 179
Summary	 182

Chapter 10: Hosting and Deployment	 183
Platforms that can be used	 183
Differences between IIS 7.0 integrated and classic mode	 184
Hosting an ASP.NET MVC web application	 186

Creating a wildcard script map in IIS 7.0	 187
Creating a wildcard script map in IIS 6.0	 188
Modifying the route table to use file extensions	 189

Summary	 191
Appendix A: Reference Application— CarTrackr	 193

CarTrackr functionality	 193
Home page	 194

Table of Contents

[vi]

NVelocity view engine	 230
Example ASP.NET MVC applications	 230

MVC storefront	 230
FlickrExplorer	 230
Yonkly	 231
Kigg	 231
CarTrackr	 231

Index	 233

Table of Contents

[�]

Login screen	 195
List of cars	 196
Car details	 197
Refuellings list	 198

Data layer	 199
Linq to SQL model	 200
Repository pattern	 201

Dependency injection	 202
How CarTrackr controllers are built	 203
Using Unity for dependency injection	 204

ASP.NET MVC Membership Starter Kit	 207
Form validation	 208
ASP.NET provider model	 210
Unit testing CarTrackr	 212

Unit tests in CarTrackr	 213
Mock repository	 214

Summary	 215
Appendix B: ASP.NET MVC Mock Helpers	 217

RhinoMocks	 217
Moq	 220
TypeMock	 222

Appendix C: Useful Links and Open Source Projects
Providing Additional Features	 225

Information portals	 225
ASP.NET/MVC	 225
Aspdotnetmvc.com	 226
DotNetKicks.com: Articles tagged with ASP.NET MVC	 227

Blogs	 227
Open source projects providing additional features
for the ASP.NET MVC framework	 228

ASP.NET MVC Design Gallery	 228
MVC Contrib	 228
xVal validation framework	 228
ASP.NET MVC Membership Starter Kit	 229
XForms	 229
jQuery for ASP.NET MVC	 229
Simple ASP.NET MVC controls	 229

Alternative view engines	 229
Spark view engine	 229
NHaml view engine	 230

Preface
Over the years, people have been asking the ASP.NET support team for the ability
to develop web applications using a model-view-controller (MVC) architecture.
In October 2007, Scott Guthrie presented the first preview of the ASP.NET MVC
framework. Ever since, interest in this product has been growing, and many example
applications and components have been released on the Internet by enthusiastic
bloggers and Microsoft employees.

ASP.NET MVC 1.0 Quickly was written to help people who have a basic knowledge
of ASP.NET Webforms to quickly get up-to-speed with developing ASP.NET MVC
applications. The book starts by explaining the MVC design pattern, and follows
this with a bird's eye-view of what the ASP.NET MVC framework has to offer. After
that, each chapter focuses on one aspect of the framework, providing in-depth details
of the components that comprise the ASP.NET MVC framework. For each of the
concepts explained, a to-the-point example application is provided, demonstrating
the theory behind the concept.

By the time you finish this book, you'll be well be on your way to mastering the
ASP.NET MVC framework, and will have the confidence to build your own
ASP.NET MVC applications.

What this book covers
Chapter 1 describes the MVC software design pattern, and how it can be used in
application architecture. We also look at the reason why Microsoft started the
ASP.NET framework project, and how it compares with ASP.NET Webforms.

Chapter 2 describes the ASP.NET MVC project template that is installed in Visual
Studio. A simple application is built, briefly touching on all of the aspects of the
ASP.NET MVC framework.

Preface

[�]

Chapter 3 describes how interactions with the model are handled through a request/
response scenario. A simple application where data is displayed and posted to the
web server is built, to demonstrate the concepts described.

Chapter 4 takes us through the components that comprise the ASP.NET MVC
framework, covering the request lifecycle and all of the components, including
model, view and controller, in depth. You will also take a look at some useful
concepts such as action filters and the validation of data.

Chapter 5 describes what ASP.NET routing is, and how it works. We will also take a
look at how a URL is transformed into a call to an ASP.NET MVC controller. Next,
this chapter shows you how an ASP.NET MVC application can be combined with
an ASP.NET Webforms application.

Chapter 6 describes how you can customize and extend the ASP.NET MVC
framework. You will learn how to build a control, or so-called partial view, how
to create an action filter, and how to create a custom ActionResult. You will even
build your own view engine that supports simple HTML markup, completely
replacing ASP.NET MVC's default view engine.

Chapter 7 describes how you can use existing ASP.NET features, including master
pages, sessions, membership, and internationalization, in the ASP.NET MVC
framework. This chapter also shows you how to share data between the ASP.NET
MVC and ASP.NET Webforms.

Chapter 8 describes how you can use AJAX in combination with ASP.NET MVC
by using two of the most popular AJAX frameworks: ASP.NET AJAX and jQuery.
jQuery UI plugins are used to enrich ASP.NET MVC views.

Chapter 9 describes how you can create unit tests for your ASP.NET MVC
applications, and explains what mocking is, and how this can help you when
creating tests for an ASP.NET MVC application.

Chapter 10 describes how you can deploy and host an ASP.NET MVC application on
the Internet Information Server (II6 and IIS7). You'll also see the differences between
IIS' integrated mode and classic mode.

Appendix A builds a sample application, CarTrackr—an online software application
designed to help you understand and track your fuel usage and kilometers driven.
We will zoom in on certain aspects of this application, which will make your
development of ASP.NET MVC applications easier and faster.

Appendix B contains source code that assists in testing an ASP.NET MVC application
using a mocking framework, as described in Chapter 9 of this book. Source code is
provided for use with three different mocking frameworks: RhinoMocks, Moq,
and TypeMock.

Preface

[�]

Appendix C contains links to web sites that provide information and resources related
to the ASP.NET MVC framework. It also examines several open source projects that
provide additional features.

What you need for this book
No previous experience of the ASP.NET MVC framework is required. Because the
ASP.NET MVC framework builds on top of ASP.NET, some previous experience
with ASP.NET Webforms is useful in order to quickly catch up with the concepts
that exist in ASP.NET Webforms and ASP.NET MVC. An understanding of
JavaScript, HTML, and CSS is assumed, as well as an understanding of .NET 3.5
LINQ (Language Integrated Query).

Who this book is for
This book is for web developers with a basic knowledge of ASP.NET and C#, who
wish to start using the new ASP.NET MVC framework.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "All the examples in this topic again make
use of the Contact class defined earlier."

A block of code is set as follows:

public ActionResult UpdateContact(int id, string name, string email)
{
 Contact contact = Contacts.Single(c => c.Id == id);
 contact.Name = name;
 contact.Email = email;

 return RedirectToAction("Index");
}

Preface

[�]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are shown in bold, as in the example below:

container.RegisterType<ICostsRepository, CostsRepository>(
 new ContextLifetimeManager<ICostsRepository>());

 // Set controller factory
 ControllerBuilder.Current.SetControllerFactory(

 new UnityControllerFactory(container)

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in our text like this: " By
default, views are located inside the Views | ControllerName project folder ".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an email to feedback@packtpub.com, and
mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or send an
email to suggest@packtpub.com.

If there is a topic that you have expertise in, and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[�]

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/7542_Code.zip to directly
download the example code used in this book.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration, and help us to improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to any list of existing errata. Any existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If
you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

ASP.NET MVC
Over the years, people have been asking the ASP.NET support team for the ability
to develop web applications using a model-view-controller (MVC) architecture.
In October 2007, Scott Guthrie presented the first preview of the ASP.NET MVC
framework. Ever since, the interest in this product has been growing, and a vast
amount of example applications, components, and so on have been released on the
Internet by enthusiast bloggers and Microsoft employees.

This chapter describes the MVC pattern and explains the reason why Microsoft
started the ASP.NET MVC framework project. It also compares ASP.NET MVC
with ASP.NET Webforms and provides guidance on choosing between the two
approaches for professional web development.

You will learn the following in this chapter:

What the �� model-view-controller pattern is, why it exists, and what
its advantages are
How the model-view-controller pattern is implemented in the ASP.NET
MVC framework
What the driving goals behind the ASP.NET MVC framework are
How the ASP.NET MVC framework compares with ASP.NET Webforms
How to choose between the two alternatives for ASP.NET web development

Model-view-controller
Model-view-controller, or MVC in short, is a design pattern used in software
engineering. The main purpose of this design pattern is to isolate business logic
from the user interface, in order to focus on better maintainability, testability, and a
cleaner structure to the application. The MVC pattern consists of three key parts: the
model, the controller, and the view.

•

•

•

•

•

www.allitebooks.com

http://www.allitebooks.org

ASP.NET MVC

[�]

Model
The model consists of some encapsulated data along with its processing logic, and
is isolated from the manipulation logic, which is encapsulated in the controller. The
presentation logic is located in the view component.

The model object knows all of the data that needs to be displayed. It can also define
some operations that manipulate this encapsulated data. It knows absolutely
nothing about the graphical user interface—it has no clue about how to display
data or respond to actions that occur in the GUI. An example of a model would be a
calculator. A calculator contains data (a numeric value), some methods to manipulate
this data (add, subtract, multiply, and divide), and a method to retrieve the current
value from this model.

View
The view object refers to the model. It uses read-only methods of the model to query
and retrieve data. It can look like an HTML page, a Windows GUI, or even the LED
display of a physical calculator. In our example of the calculator, the view is the
display of the calculator, which receives model data (the current calculation result)
from the controller.

Controller
The controller object is the interaction glue of the model and the view. It knows
that the model expects actions such as add, subtract, multiply, and divide, and also
knows that the GUI will send some events that may require these operations to be
called. In the calculator example, clicking on the "+" button on the view will trigger
the controller to call the add method on the model and re-render the view with the
data updated if necessary.

Chapter 1

[�]

Applications are commonly split into three separate layers: presentation, business
logic, and data access. These layers typically share a set of domain objects, which
represent all of the entities that the application can work with. The MVC design
pattern fits into the presentation layer, where it handles a user's interaction
(controller) with a specific model through a view. Any application can be built
using the MVC design pattern, be it a Winforms application, web, PDA, or other
such things. The ASP.NET MVC framework, however, focuses on web applications,
where the view is rendered as HTML—the controller sits on the web server and
communicates with the business layer using the domain model. The business layer
communicates with the data abstraction layer, also using the domain model as a
shared set of entities that are passed around in the application logic. The schematic
overview of an application layer structure based on the MVC pattern can be seen in
the following figure:

View HTML

Domain layerBusiness layer

Controller (ASP.NET MVC)

Data abstraction layer

The ASP.NET MVC framework
Being a web developer, you will definitely relate to some, if not all, of the
following pains. The first web applications that developers created were executable
programs running on a server, which were called Common Gateway Interface (CGI)
applications. These CGI programs accepted an HTTP request issued by a user's web
browser, and returned HTML responses based on the requested action. One of the
difficulties with these kinds of programs is that they are very hard to maintain
and scale.

ASP.NET MVC

[10]

Along with other software companies, Microsoft started creating their own
implementation for delivering interactive web applications, Active Server Pages,
or ASP, at that time. One disadvantage of ASP was that code and markup were
sitting in the same file, making the code very hard to read and maintain, especially
for larger projects. Luckily, ASP.NET was introduced a few years later. ASP.NET
offered the separation of code and templates, and allowed for easier debugging and
rapid application development by using an event-driven model that most desktop
developers are familiar with. For example, ASP.NET provides an OnClick event
handler, which is fired after a user clicks on a button, in the same way that
Winforms development is done.

At the end of 2007, Microsoft released a first preview of the ASP.NET MVC
framework that would break with dependencies on this event-driven model and
allow for cleaner separation of model, code, and markup.

Driving goals of the ASP.NET MVC framework
Microsoft started building the ASP.NET MVC framework with the following ideas
in mind:

Clean separation of concerns, testability, and support for test-driven
development (TDD) by default. The framework provides interface-based
and thus easily mockable core contracts. Unit tests are not required to be
run inside an ASP.NET process, making unit testing fast and independent
of a specific unit test framework (NUnit, MS Test, xUnit, and so on). In
ASP.NET Webforms, testing could be done only after deploying an application
and database on a server and firing automated macros on the user interface.
In ASP.NET MVC, every action that a user can perform can be unit tested
automatically, without requiring the deployment of the application.
A highly extensible and pluggable architecture—every component can be
easily replaced or customized. This pluggable architecture also allows easier
use of the dependency injection design pattern by using frameworks such as
Unity, Castle Windsor, Spring.net, and so on.
It includes a powerful URL routing component that enables you to build
applications with clean, search engine friendly URLs. For example, the URL
/employees/show/123 could be easily mapped to the Show action method of
the EmployeesController class for employee number 123.
Existing ASP.NET features are still available: master pages, content pages,
user controls, sessions, membership, and so on. The only difference is that
there's no ViewState or page life cycle involved.

•

•

•

•

Chapter 1

[11]

Full control of your HTML markup. The ASP.NET MVC framework does
not inject extraneous HTML code into your rendered page, unlike ASP.NET
Webforms, which injects ViewState, resources, and so on.

The MVC pattern helps you to create applications that have a clean separation
of concerns. Separation of concerns specifies where each type of logic should be
located in the application. This helps you to manage complexity and scalability
when building an application. As the application is divided into different modules
(data, interaction, user interface, and so on), it becomes easier to maintain and test.
The separation of all of the components also allows for parallel development: one
developer can work on the model, another one on the controller, and a web designer
can focus on creating the view. Using the ASP.NET framework enables you to make
extensive use of the advantages that the MVC pattern offers.

Aside from using the model-view-controller pattern provided in the
ASP.NET MVC framework, the Microsoft Patterns & Practices Team
provides the Web Client Software Factory (WCSF) to help implement
the model-view-presenter (MVP) design pattern in your applications.
The MVC and MVP patterns are comparable, but differ in certain aspects.
The view in MVC knows about the model, whereas the view in MVP does
not. In MVC, the view is responsible for how model data is represented,
whereas in the MVP pattern, the presenter sets data in the view.
Another difference between both patterns is that in the MVC pattern,
there are multiple controllers, whereas presenters in the MVP pattern are
usually responsible for all of the page flows regarding a certain subject.
For example, the MVC pattern might have a PricingController and
a CustomerController, whereas in the MVP pattern, these can be
grouped in a SalesPresenter.
Refer to the following URL for more information on the differences
between ASP.NET MVC and WCSF: http://blogs.msdn.
com/simonince/archive/2007/11/22/the-asp-net-mvc-
framework-using-the-wcsf-as-a-yardstick.aspx

Comparing ASP.NET MVC and ASP.NET
Webforms
You should know that the ASP.NET MVC framework is not a replacement for
ASP.NET Webforms—it's an alternative that you can choose if it is well-suited for
a specific situation. Make sure that you weigh and compare the advantages of each
solution prior to picking a specific direction.

•

ASP.NET MVC

[12]

The ASP.NET MVC framework offers the following advantages:

Complexity of application logic is made easier to manage because of the
separation of an application into model, view, and controller.
It allows for easier parallel development; each developer can work on a
separate component of the MVC pattern.
It provides good support for TDD, mocking, and unit testing frameworks.
TDD enables you to write tests for an application first, after which the
application logic is developed. TDD, mocking, and unit testing are explained
in Chapter 9, Testing an Application.
It does not use ViewState or server-based forms, which allows you to have
full control over the application's behavior and HTML markup.
It uses RESTful interfaces for URLs, which is better for SEO (Search Engine
Optimization). REST is short for REpresentational State Transfer—the
concept of using URLs as the link to a resource, which can be a controller
action method, rather than to physical files on the web server.
A typical page size is small, because no unnecessary data is transferred in the
form of hidden ViewState data.
It integrates easily with client-side JavaScript frameworks such as jQuery
or ExtJS.

ASP.NET Webforms offers the following advantages:

It offers an event model over HTTP that is familiar to any developer. This
event model also benefits the creation of business web applications.
It provides a lot of controls that are familiar to any developer—data
components such as data grids and lists, validation controls, and so on.
These components are highly integrated in the development environment.
There are numerous third-party control vendors that can deliver almost any
possible control.
Being familiar to developers allows ASP.NET Webforms to facilitate rapid
application development.
Functionality is concentrated per page. It uses ViewState and server-based
forms, which makes state management easier.

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 1

[13]

Choosing between ASP.NET MVC and ASP.
NET Webforms
In general, choosing between ASP.NET MVC and ASP.NET can be based on the
following five criteria:

1.	 Are you considering test-driven development (TDD)?
TDD enables you to write tests for an application first, after which the
application logic is developed. An ASP.NET Webforms application uses only
one class to display output and handle user input. Automated testing of this
class is complex as you are required to load the full ASP.NET stack into a
separate process (for example, in IIS). The MVC framework allows the testing
of each component separately, without requiring the full ASP.NET stack. For
example, you can test your model separately from your controller without
requiring a view. If you are considering TDD, the ASP.NET MVC framework
will be the better choice.

2.	 Is there a need for fine control over HTML markup?
ASP.NET Webforms automatically inserts hidden HTML markup, IDs,
JavaScript, and so on, into your page's HTML output because of its
event‑driven architecture and its use of ViewState. The ASP.NET MVC
framework allows for 100% control over the HTML output. If you require full
control over your HTML markup, the ASP.NET MVC framework will be the
better choice.

3.	 Is the application heavily data-driven?
If you are developing an application that is heavily data-driven and is using
grids or a lot of master-detail editing of data, ASP.NET Webforms may
be the better choice as it provides a lot of controls that will aid you in the
development of these kind of applications. Of course, you can use the
ASP.NET MVC framework for these tasks too, but you will be required to
write more code to achieve the same goal.

4.	 Is there a need for a Winforms-like development approach?
Does your development team write Winforms code? Is there a need for an
event-driven programming approach? In these cases, consider ASP.NET
Webforms in favor of ASP.NET MVC.

5.	 Is there a need for a rapid application development (RAD)
development approach?
Does your client expect a quick prototype of an application? Is the use of
drag-and-drop development using pre-created web controls required? If so,
consider ASP.NET Webforms in favor of ASP.NET MVC.

ASP.NET MVC

[14]

Summary
In this chapter, we have learned what the model-view-controller pattern is, why it
is there, and what its advantages are. We also have seen how this pattern is the base
for the ASP.NET MVC framework and what the driving goals behind the ASP.NET
MVC framework are.

Another thing that we have seen is how the ASP.NET MVC framework compares
with ASP.NET Webforms, and also how to choose between the two alternatives in
ASP.NET web development.

Your First ASP.NET
MVC Application

When downloading and installing the ASP.NET MVC framework SDK, a new
project template is installed in Visual Studio—the ASP.NET MVC project template.
This chapter describes how to use this template. We will briefly touch all aspects
of ASP.NET MVC by creating a new ASP.NET MVC web application based on this
Visual Studio template. Besides view, controller, and model, new concepts including
ViewData—a means of transferring data between controller and view, routing—the
link between a web browser URL and a specific action method inside a controller,
and unit testing of a controller are also illustrated in this chapter.

In this chapter, you will:

Receive an overview of all of the aspects of an ASP.NET MVC
web application
Explore the ASP.NET MVC web application project template that is installed
in Visual Studio 2008
Create a first action method and a corresponding view
Create a strong-typed view
Learn how a controller action method can pass strong-typed ViewData to
the view
Learn what unit testing is all about, and why it should be performed
Learn how to create a unit test for an action method by using Visual Studio's
unit test generation wizard and modifying the unit test code by hand

•

•

•

•

•

•

•

Your First ASP.NET MVC Application

[16]

Creating a new ASP.NET MVC web
application project
Before we start creating an ASP.NET MVC web application, make sure that you
have installed the ASP.NET MVC framework SDK from www.asp.net/mvc. After
installation, open Visual Studio 2008 and select menu option File | New | Project.
The following screenshot will be displayed. Make sure that you select the .NET
framework 3.5 as the target framework. You will notice a new project template
called ASP.NET MVC Web Application. This project template creates the default
project structure for an ASP.NET MVC application.

Chapter 2

[17]

After clicking on OK, Visual Studio will ask you if you want to create a test project.
This dialog offers the choice between several unit testing frameworks that can be
used for testing your ASP.NET MVC application.

You can decide for yourself if you want to create a unit testing project right
now—you can also add a testing project later on. Letting the ASP.NET MVC project
template create a test project now is convenient because it creates all of the project
references, and contains an example unit test, although this is not required. For this
example, continue by adding the default unit test project.

www.allitebooks.com

http://www.allitebooks.org

Your First ASP.NET MVC Application

[18]

What's inside the box?
After the ASP.NET MVC project has been created, you will notice a default folder
structure. There's a Controllers folder, a Models folder, a Views folder, as well as
a Content folder and a Scripts folder. ASP.NET MVC comes with the convention
that these folders (and namespaces) are used for locating the different blocks used
for building the ASP.NET MVC framework. The Controllers folder obviously
contains all of the controller classes; the Models folder contains the model classes;
while the Views folder contains the view pages. Content will typically contain web
site content such as images and stylesheet files, and Scripts will contain all of the
JavaScript files used by the web application. By default, the Scripts folder contains
some JavaScript files required for the use of Microsoft AJAX or jQuery.

Chapter 2

[19]

Locating the different building blocks is done in the request life cycle, which is
described in Chapter 4, Components in the ASP.NET MVC Framework. One of the first
steps in the ASP.NET MVC request life cycle is mapping the requested URL to the
correct controller action method. This process is referred to as routing. A default
route is initialized in the Global.asax file and describes to the ASP.NET MVC
framework how to handle a request. Double-clicking on the Global.asax file in
the MvcApplication1 project will display the following code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Routing;

namespace MvcApplication1
{
 public class GlobalApplication : System.Web.HttpApplication
 {
 public static void RegisterRoutes(RouteCollection routes)
 {
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapRoute(
 "Default",
// Route name
 "{controller}/{action}/{id}",
// URL with parameters
 new { controller = "Home", action = "Index",
 id = "" } // Parameter defaults
);

 }

 protected void Application_Start()
 {
 RegisterRoutes(RouteTable.Routes);
 }
 }
}

In the Application_Start() event handler, which is fired whenever
the application is compiled or the web server is restarted, a route table is
registered. The default route is named Default, and responds to a URL in the
form of http://www.example.com/{controller}/{action}/{id}. The variables
between { and } are populated with actual values from the request URL or with the
default values if no override is present in the URL. This default route will map to
the Home controller and to the Index action method, according to the default routing
parameters. We won't have any other action with this routing map.

Your First ASP.NET MVC Application

[20]

By default, all possible URLs can be mapped through this default route.
It is also possible to create our own routes. For example, let's map the URL
http://www.example.com/Employee/Maarten to the Employee controller,
the Show action, and the firstname parameter. The following code snippet can
be inserted in the Global.asax file we've just opened. Because the ASP.NET
MVC framework uses the first matching route, this code snippet should be
inserted above the default route; otherwise the route will never be used.

routes.MapRoute(
 "EmployeeShow", // Route name
 "Employee/{firstname}", // URL with parameters
 new { // Parameter defaults
 controller = "Employee",
 action = "Show",
 firstname = ""
 }
);

Now, let's add the necessary components for this route. First of all, create a class
named EmployeeController in the /Controllers folder. You can do this by adding
a new item to the project and selecting the MVC Controller Class template located
under the Web | MVC category. Remove the Index action method, and replace it
with a method or action named Show. This method accepts a firstname parameter
and passes the data into the ViewData dictionary. This dictionary will be used by
the view to display data.

The EmployeeController class will pass an Employee object to the view. This
Employee class should be added in the Models folder (right-click on this folder
and then select Add | Class from the context menu). Here's the code for the
Employee class:

namespace MvcApplication1.Models
{
 public class Employee
 {
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Email { get; set; }
 }
}

Chapter 2

[21]

After adding the EmployeeController and Employee classes, the ASP.NET MVC
project now appears as shown in the following screenshot:

The EmployeeController class now looks like this:

using System.Web.Mvc;
using MvcApplication1.Models;

namespace MvcApplication1.Controllers
{
 public class EmployeeController : Controller
 {
 public ActionResult Show(string firstname)
 {
 if (string.IsNullOrEmpty(firstname))
 {

Your First ASP.NET MVC Application

[22]

 ViewData["ErrorMessage"] = "No firstname provided!";
 }
 else
 {
 Employee employee = new Employee
 {
 FirstName = firstname,
 LastName = "Example",
 Email = firstname + "@example.com"
 };

 ViewData["FirstName"] = employee.FirstName;
 ViewData["LastName"] = employee.LastName;
 ViewData["Email"] = employee.Email;
 }

 return View();
 }
 }
}

The action method we've just created can be requested by a user via a URL—in this
case, something similar to http://www.example.com/Employee/Maarten. This URL
is mapped to the action method by the route we've created before.

By default, any public action method (that is, a method in a controller class) can be
requested using the default routing scheme. If you want to avoid a method from
being requested, simply make it private or protected, or if it has to be public, add a
[NonAction] attribute to the method.

Note that we are returning an ActionResult (created by the View() method),
which can be a view-rendering command, a page redirect, a JSON result (discussed
in detail in Chapter 8, AJAX and ASP.NET MVC), a string, or any other custom class
implementation inheriting the ActionResult that you want to return. Returning
an ActionResult is not necessary. The controller can write content directly to the
response stream if required, but this would be breaking the MVC pattern—the
controller should never be responsible for the actual content of the response that
is being returned.

Next, create a Show.aspx page in the Views | Employee folder. You can create a
view by adding a new item to the project and selecting the MVC View Content Page
template, located under the Web | MVC category, as we want this view to render
in a master page (located in Views | Shared). There is an alternative way to create
a view related to an action method, which will be covered later in this chapter.

In the view, you can display employee information or display an error message if an
employee is not found.

Chapter 2

[23]

Add the following code to the Show.aspx page:

<%@ Page Title="" Language="C#"
 MasterPageFile="~/Views/Shared/Site.Master"
 AutoEventWireup="true" Inherits="System.Web.Mvc.ViewPage" %>
<asp:Content ID="Content1"
 ContentPlaceHolderID="MainContent"
 runat="server">
 <% if (ViewData["ErrorMessage"] != null) { %>

 <h1><%=ViewData["ErrorMessage"]%></h1>

 <% } else { %>

 <h1><%=ViewData["FirstName"]%> <%=ViewData["LastName"]%></h1>
 <p>
 E-mail: <%=ViewData["Email"]%>
 </p>

 <% } %>
</asp:Content>

If the ViewData, set by the controller, is given an ErrorMessage, then the
ErrorMessage is displayed on the resulting web page. Otherwise, the employee
details are displayed.

Press the F5 button on your keyboard to start the development web server. Alter the
URL in your browser to something ending in /Employee/Your_Name_Here, and see
the action method and the view we've just created in action.

Your First ASP.NET MVC Application

[24]

Strong-typed ViewData
In the previous example, we used the ViewData dictionary to pass data from the
controller to the view. When developing the view, each dictionary item we want to
display should be cast to the correct class, resulting in a less maintainable situation.
It might also lead to code spaghetti in the view. It would be useful if the ViewData
dictionary already knew which class type each of its items represented. This is where
the model comes in handy! We are serving employee information to the view, so
why not use the Employee class that we'd previously created as a "the" model for
our view? Note that we'd already placed the Employee class inside the Model folder,
which is the appropriate location for model classes.

Views can be made strong-typed by updating the view and replacing the base class
of the page (System.Web.Mvc.ViewPage) with a generic version: System.Web.Mvc.
ViewPage<Employee>. Make sure you compile your project after updating the first
few lines of code in the Show.aspx file:

<%@ Page Title=""
 Language="C#"
 MasterPageFile="~/Views/Shared/Site.Master"
 AutoEventWireup="true"
 Inherits="System.Web.Mvc.ViewPage<MvcApplication1.Models.
 Employee>" %>

By applying the above code, the page's ViewData object will be made generic.
This means that the ViewData object will not only be a dictionary, but will also
contain a property named Model, which is of the type that has just been passed in:
MvcApplication1.Models.Employee.

This ViewData.Model property is also available as a Model property in the view.
We will have to update the view to be able to use this new property. Simply change
from ViewData[key] to a property Model (which contains the Employee instance).
For example, Model.FirstName is in fact the FirstName property of the Employee
instance that you want to render. Note that you can still use dictionary entries
combined with this strong-typed model.

<%@ Page Title=""
 Language="C#"
 MasterPageFile="~/Views/Shared/Site.Master"
 AutoEventWireup="true"
 Inherits="System.Web.Mvc.ViewPage<MvcApplication1.Models.
 Employee>" %>
<asp:Content ID="Content1"
 ContentPlaceHolderID="MainContent"
 runat="server">

Chapter 2

[25]

 <% if (ViewData["ErrorMessage"] != null) { %>

 <h1><%=ViewData["ErrorMessage"]%></h1>

 <% } else { %>

 <h1><%=Model.FirstName%> <%=ViewData.Model.LastName%></h1>
 <p>
 E-mail: <%=Model.Email%>
 </p>

 <% } %>
</asp:Content>

Before being able to run the application, the controller needs some updates as
well. The main difference is that employee properties are no longer copied into the
ViewData dictionary. Instead, the Employee instance is passed directly to the view.

using System.Web.Mvc;
using MvcApplication1.Models;

namespace MvcApplication1.Controllers
{
 public class EmployeeController : Controller
 {
 public ActionResult Show(string firstname)
 {
 Employee employee = null;

 if (string.IsNullOrEmpty(firstname))
 {
 ViewData["ErrorMessage"] = "No firstname provided!";
 }
 else
 {
 employee = new Employee
 {
 FirstName = firstname,
 LastName = "Example",
 Email = firstname + "@example.com"
 };
 }

 return View(employee);
 }
 }
}

Your First ASP.NET MVC Application

[26]

Note that we are passing the model data to the View() method. Alternatively, this
can be done by stating Model = employee prior to returning the view. If you run the
application, the result should be exactly the same as before.

Creating a new view
During the development of the controller action method, creating a corresponding
view is very straightforward. To create a new view for the current controller action,
right-click somewhere on the method body, and select Add view… from the context
menu. The following dialog box will be displayed:

In the Add view dialog box, some options can be specified. First of all, the view
name can be modified if required. By default, this name will be the same as the
action method name. It's also possible to select a view template, which we will set
to Empty. This template can be used to easily create a view—for example, one which
shows the details of an employee. You will see a little more about this in Chapter 4,
Components in the ASP.NET MVC Framework.

From this dialog, it's also possible to make the view strongly-typed by simply
selecting the corresponding checkbox and choosing the class to base the view
on. The last option in this dialog box allows you to specify the master page.

Chapter 2

[27]

Unit testing the controller
Unit testing is a software development process in which the smallest testable parts
of an application, called units, are individually and independently tested for correct
operation. Typically, these units are individual methods being tested. Most often,
unit tests are run automatically, and provide immediate feedback (successful/
unsuccessful/unknown result) to a developer on the changes he or she has just
made to the code. If a test is unsuccessful, the changes to the code should be
reviewed because the expected behavior of a portion of source code has changed
and may affect other units or the application as a whole.

When we created the ASP.NET MVC web application, a test project was also created.
This already contains an example test class for HomeController, testing both the
Index and About actions.

In the MvcApplication1Tests project, right-click on the Controllers folder, and then
select Add | Unit Test from the context menu. From the wizard that is displayed,
select the Show method of EmployeeController and click on OK. Visual Studio
will generate a test class.

Your First ASP.NET MVC Application

[28]

Modify the generated test class to look like the following code:

using System.Web.Mvc;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using MvcApplication1.Controllers;

namespace MvcApplication1Tests.Controllers
{
 /// <summary>
 /// Summary description for EmployeeControllerTest
 /// </summary>
 [TestClass]
 public class EmployeeControllerTest
 {
 [TestMethod]
 public void show_action_creates_employee_and_passes_to
 _view_when_firstname_is_specified()
 {
 // Setup
 EmployeeController controller = new EmployeeController();

 // Execute
 ViewResult result = controller.Show("Maarten") as
 ViewResult;

 // Verify
 Assert.IsNotNull(result);
 ViewDataDictionary viewData = result.ViewData;
 Assert.IsNotNull(viewData.Model);
 Assert.AreEqual("Maarten", (viewData.Model as
 MvcApplication1.Models.Employee).FirstName);
 Assert.IsNull(viewData["ErrorMessage"]);
 }

 [TestMethod]
 public void show_action_passes_error_model_to
 _view_when_no_firstname_specified()
 {
 // Setup
 EmployeeController controller = new EmployeeController();

 // Execute
 ViewResult result = controller.Show(null) as ViewResult;

 // Verify
 Assert.IsNotNull(result);
 ViewDataDictionary viewData = result.ViewData;
 Assert.IsNull(viewData.Model);
 Assert.IsNotNull(viewData["ErrorMessage"]);
 }
 }
}

Chapter 2

[29]

Each test method is first initializing a new EmployeeController, after which the
action method that needs to be tested is called. When the action method returns an
ActionResult, it is cast to ViewResult on which some assertions are made. For
example, if the Show action method of EmployeeController is called with parameter
Maarten, an assertion is made that the controller passes the correct employee data to
the view.

This test suite does not require the application to be deployed on a web server.
Instead, the EmployeeController is tested directly in the code. The test asserts that
some properties of the ViewData are present. For example, if the Show() action is
called with the parameter, Maarten, the Model should not be null and should contain
an Employee with the first name, Maarten.

More advanced testing scenarios are explained in Chapter 9,
Testing an Application.

Summary
In this chapter, we have seen an overview of all aspects of an ASP.NET MVC web
application. We started by exploring the ASP.NET MVC web application project
template that is installed in Visual Studio 2008, after which we created our own
action method and corresponding view.

Another thing that we have seen is how to create a strong-typed view and how a
controller action method can pass strong-typed ViewData to the view.

We ended this chapter by looking at the various aspects of unit testing—what it is,
why it is used, how to create a unit test for an action method by using Visual Studio's
unit test generation wizard, and modifying the unit test code by hand.

Handling Interactions
When using a modern web application, there may be times when a user may have
to fill out a form and post it to your server. ASP.NET Webforms offer a layer of
abstraction around HTML forms that maintains a ViewState and provides an easy
interface to form elements. With the ASP.NET MVC framework, this is slightly
different as it has to be done in pure HTML, although an HtmlHelper class is
available to assist you. This chapter will guide you through the process of creating
a frontend form and responding to posts in the controller.

You will learn the following in this chapter:

The different methods that exist to create an HTML form
Posting data to an action method by making use of HTML and the
HtmlHelper class
Reading values from a form post in an action method by using request
variables and action method parameters
Handling file uploads in an action method
An overview of the model binder infrastructure provided by the ASP.NET
MVC framework
Implementing a custom IModelBinder
Validation of data

Providing feedback to the user of our web application.

•
•

•

•
•

•
•

•

Handling Interactions

[32]

This chapter builds a small application that lets you edit contact details (name and
email address). These contact details will be provided in a class named Contact,
which will be used throughout this chapter:

public class Contact
{
 public int Id { get; set; }
 public string Name { get; set; }

 public string Email { get; set; }
}

Chapter 3

[33]

Creating a form
Creating a form in which the user of your web application can enter some data is
something that you are likely to do. Nowadays, almost every web application you
see contains several forms that collect user data that is processed by the web server.

This topic explains two different approaches to creating a form. The first approach
requires you to build a form by using pure HTML markup. The second approach
uses the HtmlHelper class that is provided by the ASP.NET MVC framework.
HtmlHelper offers a standard set of helper methods that provide a programmatic
method for creating HTML controls.

The examples in this topic are based on an ASP.NET MVC web application that can
be found in the sample code for this book (UpdatingDataExample). This sample
project contains one controller on which two different views depend. In this topic,
only the view portion of this example will be covered, as the controller part will be
covered later in this chapter.

Creating a form using HTML
The most basic method of creating a view containing a form is creating it in pure
HTML. One can simply add a <form> tag and include the necessary form fields
that can be updated by a user running the application.

<h2>Edit Contact</h2>

<form method="post" action="/Home/ UpdatingObjects">
 <input type="hidden" name="Id"
 value="<%=Html.Encode(Model..Id.ToString())%>" />
 <table border="0" cellspacing="0" cellpadding="2">
 <tr>
 <td>Name:</td>
 <td><input type="text" name="Name"
 value="<%=Html.Encode(Model..Name)%>" /></td>
 </tr>
 <tr>
 <td>E-mail:</td>
 <td><input type="text" name="Email"
 value="<%=Html.Encode(Model..Email)%>" /></td>
 </tr>
 <tr>
 <td> </td>
 <td><input type="submit"
 value="Save"

Handling Interactions

[34]

 name="saveButton"/>
 </td>
 </tr>
 </table>
</form>

This code will render as a form containing a table in which properties such as a name
and email address can be edited.

One thing to notice is that HTML and ASP control tags are mixed and may result
in code spaghetti when building large forms. This can be addressed by using the
HtmlHelper methods. We will see more of the HtmlHelper class in the next topic.

You may have noticed that this code sample is referring to Model.
Contact.Name and Model.Contact.Email in the view. Why would
Contact be a property of the model object? Isn't Contact the model
object itself?
I always tend to make my model a custom class model containing
data that is being passed to the view. In this case, I have an
EditContactViewData class containing a Contact property that refers
to the contact being edited. This approach may seem a little strange, but
when more ViewData of different kinds needs to be passed to the view, I
can simply add a new property to the EditContactViewData class, so
that it provides a Contact property as well (for example) as an Invoice
property. If we use Contact as the model, the chances are that we will
have to do some refactoring when we have to pass more data to the view.

Creating a form using HtmlHelper
When building large, pure HTML forms, readability and maintainability of these
forms can be tedious and hard. The ASP.NET MVC framework features a class called
HtmlHelper, which provides each view with a standard set of helper methods that
provide a programmatic method of creating HTML controls. When executing the
application, HtmlHelper methods are rendered into plain HTML. Every view page
provides an Html property, which is an instance of the HtmlHelper class.

<h2>Edit Contact</h2>

<% using (Html.BeginForm("UpdatingObjects ", "Home",
 FormMethod.Post)) { %>
 <%=Html.Hidden("Id"
 <table border="0" cellspacing="0" cellpadding="2">
 <tr>
 <td>Name:</td>
 <td><%=Html.TextBox("Name")%></td>

Chapter 3

[35]

 </tr>
 <tr>
 <td>E-mail:</td>
 <td><%=Html.TextBox("Email)%></td>
 </tr>
 <tr>
 <td> </td>
 <td><input type="submit" value="Send e-mail" /></td>
 </tr>
 </table>
<% } %>

The following helper and extension methods are defined on the HtmlHelper class:

Method Description
ActionLink Generates a link to a specific controller action
AntiForgeryToken Generates a hidden form field that can be used in conjunction

with the ValidateAntiForgeryToken attribute to ensure
that a request has not been modified

AttributeEncode Encodes attribute data
DropDownList Generates a drop-down list based on a list of key-value pairs
Encode Encodes a string to prevent XSS
EvalBoolean Searches for a specified key in the ViewData dictionary and

returns the value as a Boolean
EvalString Searches for a specified key in the ViewData dictionary and

returns the value as a String
Hidden Generates a hidden field
ListBox Generates a list box based on a list of key-value pairs
Password Generates a password field
RouteLink Generates a link to a specific route
TextBox Generates a text box
Button Generates a button
CheckBox Generates a checkbox
BeginForm Generates an HTML form
Image Generates an image tag
Mailto Generates a mail-to hyperlink
NavigateButton Generates a button that navigates to a specific URL
RadioButton Generates an option button
RenderAction Renders a controller action method

Handling Interactions

[36]

Method Description
RenderPartial Renders a partial view that can optionally be rendered by

another view engine
RenderUserControl Renders a user control
RouteLink Generates a link to a specific route
SubmitButton Renders a submit button
SubmitImage Renders a submit image
TextArea Renders a text area
ValidationMessage Renders a validation message for a specific ViewData.

ModelState key
ValidationSummary Renders a validation summary for ViewData.ModelState

When working with strong-typed views, it is also possible to use the strong-typed
HtmlHelper instance. For example, creating a text box that can be used for editing
an Email property can be achieved using something like Html.TextBoxFor(x =>
x.Email).

Here's the example we created previously using strong-typed HtmlHelper:

<h2>Edit Contact</h2>

<% using (Html.BeginForm("UpdatingObjects ", "Home",
 FormMethod.Post)) { %>
 <%=Html.Hidden("Id"
 <table border="0" cellspacing="0" cellpadding="2">
 <tr>
 <td>Name:</td>
 <td><%=Html.TextBoxFor(x => x.Name)%></td>
 </tr>
 <tr>
 <td>E-mail:</td>
 <td><%=Html.TextBox(x => x.Email)%></td>
 </tr>
 <tr>
 <td> </td>
 <td><input type="submit" value="Send e-mail" /></td>
 </tr>
 </table>
<% } %>

Chapter 3

[37]

Handling posts
When a form on a view is posted to a web server running an ASP.NET MVC web
application, there are several ways to read and use this post data. One can use
request variables, which were also available in ASP.NET Webforms, and even map
this request data to a custom object's properties for easy and automatic assignments.
Another option is to use action method parameters, which makes handling posts
much more transparent and testable.

All of the examples in this topic again make use of the Contact class defined earlier.
Each example can be created in the HomeController class, which can be found in
the Controllers folder of the example code. Note that the HomeController class also
features a List<Contact> Contacts, in which data can temporarily be stored.

Request variables
ASP.NET Webforms already offered a method to retrieve posted data from a form by
using the HttpRequest object and its Form collection. Because ASP.NET MVC is built
on top of ASP.NET Webforms, this behavior is also available for us in the ASP.NET
MVC framework.

public ActionResult UpdateContact()
{
 int id = 0;
 if (int.TryParse(Request.Form["Id"], out id))
 {
 Contact contact = Contacts.Single(c => c.Id == id);
 contact.Name = Request.Form["Name"];
 contact.Email = Request.Form["Email"];
 }

 return RedirectToAction("Index");
}

This code checks the HTTP request's form parameters for a parameter named Id. If it
can be parsed into an integer, a Contact with that ID is retrieved from the database
and updated with form values such as name and email address.

Updating objects from request variables
One of the disadvantages of the request variables approach is that a developer using
it has to do a lot of type casting (everything is a string), and that the affected object
has to be assigned with the data manually.

www.allitebooks.com

http://www.allitebooks.org

Handling Interactions

[38]

Each controller class that inherits System.Web.Mvc.Controller contains a method
named UpdateModel, which accepts two parameters: the object that should be
updated, and a list of keys that should be mapped from the posted HTML form. For
this to work, it is important that your HTML form fields are given the same name as
the property of your model: the Name property of our Contact class should be in an
HTML form field named Name for it to work.

public ActionResult UpdateContact()
{
 int id = 0;
 if (int.TryParse(Request.Form["Id"], out id))
 {
 Contact contact = Contacts.Single(c => c.Id == id);
 UpdateModel(contact, new string[] { "Name", "Email" });
 }

 return RedirectToAction("Index");
}

The above code checks the HTTP request's form parameters for a parameter named
Id. If it can be parsed into an integer, a contact with that ID is retrieved from
database and updated by the controller's UpdateModel method. This method takes a
model, in this case, the Contact that has just been retrieved, and a list of form fields
corresponding to the model's properties. Only the form fields specified here will be
reflected in the model.

Action method parameters
Some developers prefer to simply write an action method on a controller taking
some .NET parameters as inputs. The ASP.NET MVC framework will try to map
each corresponding HTML field to a method parameter. For example, <input
type="text" id="name" name="name" /> will map to the parameter, name.

public ActionResult UpdateContact(int id, string name, string email)
{
 Contact contact = Contacts.Single(c => c.Id == id);
 contact.Name = name;
 contact.Email = email;

 return RedirectToAction("Index");
}

The ASP.NET MVC framework passes in all form variables as method parameters
such as ID, name, and email. These parameters can be used directly to retrieve a
contact from the database and update its properties.

Chapter 3

[39]

One advantage of using this approach is that you do not have to do a lot of type
casting as the ASP.NET MVC framework will take care of that for you. This results in
much cleaner code, as you can see in the example.

Note that you can easily mix this approach with reading request variables.
However, using pure action method parameters allows for easier unit testing and
maintainability of your controller actions.

Handling file uploads
Modern web applications often have a file upload form. In classic ASP.NET,
these forms were built using the ASP.NET file upload control. In the ASP.NET
MVC framework, there is no such thing. When working with file uploads in the
ASP.NET MVC framework, one should create an old skool HTML form that accepts
file uploads, and then read the uploaded data in a controller action.

Creating an upload form
When creating an upload form, one should always include a special HTML attribute
in the form tag, specifying the encoding type as multipart/form-data. This
directive tells a browser to post the HTML form back to the server in multiple
parts: one part for regular form fields, and another for each file.

<% using(Html.BeginForm("Upload", "Home", FormMethod.Post, new{
enctype="multipart/form-data" }))
{ %>
 File 1: <input type="file" name="file1" id="file1" />

 File 2: <input type="file" name="file2" id="file2" />

 <input type="submit" id="upload" value="Upload" />
<% } %>

Creating an upload controller action
Handling an upload form is quite easy. The HttpRequest object provides property
Files that contain a set of HttpPostedFileBase instances. These contain all sorts
of information for a specific file that is being uploaded: content length, content type,
and the filename on the user's computer. The SaveAs() method allows you to save
the uploaded file somewhere on the web server or to a connected network directory.

public ActionResult Upload()
{
 StringBuilder info = new StringBuilder();

 foreach (string file in Request.Files)

Handling Interactions

[40]

 {
 HttpPostedFileBase postedFile = Request.Files[file];

 if (postedFile.ContentLength == 0)
 continue;

 /* The following would save the file on the server:
 * string newFileNameOnServer = Path.Combine(
 * AppDomain.CurrentDomain.BaseDirectory,
 * Path.GetFileName(postedFile.FileName));
 * postedFile.SaveAs(newFileNameOnServer);
 */

 info.AppendFormat("Uploaded file: {0}\r\n",
 postedFile.FileName);
 }

 if (info.Length > 0)
 {
 ViewData["Info"] = info.ToString();
 }

 return View("UploadForm");
}

As you can see, the file upload is being passed just like a regular ASP.NET file
upload—the files property of the HttpRequest contains a list of all uploaded files.
Each file is checked for size and can be saved permanently on the web server or to
some network location.

Using the ModelBinder attribute
Action methods can be developed using regular method parameters. In the earlier
examples, these parameters were all simple types such as integers, strings, booleans,
and so on. Using the ASP.NET MVC ModelBinder infrastructure, binding form
values to a model becomes quite easy.

All of the examples in this section again make use of the Contact class, defined
earlier. The examples in this section are based on an ASP.NET MVC web application
that can be found in the sample code for this book (ModelBinderExample). This
sample project contains one controller, HomeController, and three views of which
we will be using one, NewContact.aspx.

Chapter 3

[41]

Using the default ModelBinder
By default, the ASP.NET MVC framework provides a model binder that allows you
to bind form data to complex types.

Consider our Contact class:

public class Contact
{
 public int Id { get; set; }
 public string Name { get; set; }
 public string Email { get; set; }
}

This class will be bound to the following form, which enables a user to add a new
Contact to the application:

<h2>New contact</h2>

<h3><%=Html.Encode(ViewData["title"] ?? "")%></h3>

<% using (Html.BeginForm("NewContact", "Home", FormMethod.Post)) { %>
 <table border="0" cellpadding="2" cellspacing="0">
 <tr>
 <td>Name:</td>
 <td>
 <%=Html.TextBox("Name",Model.Name ?? "")%>
 </td>
 </tr>
 <tr>
 <td>Email:</td>
 <td>
 <%=Html.TextBox("Email",Model.Email ?? "")%>
 </td>
 </tr>
 <tr>
 <td> </td>
 <td>
 <input type="submit" id="send" value="Add contact" />
 </td>
 </tr>
 </table>
<% } %>

Handling Interactions

[42]

When the NewContact action method is called, form values are inserted in the form
parameter of the action method. This parameter is of the type FormCollection,
which implements the IValueProvider interface. The IValueProvider interface can
be passed to the UpdateModel (or TryUpdateModel) method of the controller. This
method will use the IValueProvider instance to populate the model properties.

[AcceptVerbs("POST")]
public ActionResult NewContact(FormCollection form)
{
 // Create Contact
 Contact contact = new Contact();
 UpdateModel(contact, new string[] { "Name", "Email" },
 form.ToValueProvider());

 // We should be saving the contact here...

 ViewData["title"] = "Success!";

 // Done!
 return View(contact);
}

The above action method accepts a FormCollection parameter and uses it
to populate a new Contact instance (only the properties Name and Email
are populated).

The action method can also be rewritten to simply accept a Contact instance:

[AcceptVerbs("POST")]
public ActionResult NewContact(Contact contact)
{
 // We should be saving the contact here...

 ViewData["title"] = "Success!";

 // Done!
 return View(contact);
}

One can also implement this action method using the [Bind] attribute, which allows
more control over the model binding behavior:

[AcceptVerbs("POST")]
public ActionResult NewContact([Bind(Prefix = "", Include =
"Name,Email")] Contact contact)
{
 // We should be saving the contact here...

 ViewData["title"] = "Success!";

 // Done!
 return View(contact);
}

Chapter 3

[43]

By specifying the [Bind] attribute's Prefix property, form elements can be mapped
using a prefix. For example, if you prefer form fields with the name cont.Name, the
prefix can be set to cont. The Include property specifies which properties of the
model should be mapped. Optionally, properties can also be excluded by using the
Exclude property.

Always be careful when using the model binder infrastructure; make sure that you
do not allow properties to be mapped if they should not be mapped (for example,
IDs, references to other objects, and so on).

Creating a custom ModelBinder
When required, a method parameter can be a complex type such as a Contact with
Id, Name and Email properties. In almost any situation, the default model binder
that is registered in the ASP.NET MVC framework should be able to map a form
post to a complex type. There might be situations when you would want to perform
model binding yourself, or when the ASP.NET MVC default model binder is not
sufficient. In this case, you are required to add a ModelBinder attribute or register
the ModelBinder using the ModelBinders.Binders.Add() method.

Take the previously-created NewContact action method:

[AcceptVerbs("POST")]
public ActionResult NewContact(Contact contact)
{
 // We should be saving the contact here...

 ViewData["title"] = "Succes!";
 // Done!
 return View(contact);
}

We are going to create a custom model binder that can determine the contact's name
when only the email address is specified. For example, if the name is not filled out
in the HTML form and the email address is maarten@maartenballiauw.be, we are
going to populate the Name property with maarten.

The Contact class should be decorated with a ModelBinder attribute so that a form
post can be converted to a complex type:

[ModelBinder(typeof(ContactBinder))]
public class Contact
{
 public int Id { get; set; }
 public string Name { get; set; }
 public string Email { get; set; }
}

Handling Interactions

[44]

Alternatively, this ModelBinder can be registered globally when the web application
is started. It is also possible to register a default model binder that will be used when
a specific binder type is not found. For example, the DefaultModelBinder class
can be explicitly registered as a default model binder that will try to map form
key-value pairs to object properties. Note that this code example is just for reference:
DefaultModelBinder is always the default model binder and does not have to be
explicitly registered.

void Application_Start()
{
 ModelBinders.Binders[typeof(Contact)] = new ContactBinder();
 ModelBinders.DefaultBinder = new DefaultModelBinder();

 RegisterRoutes(RouteTable.Routes);
}

In the web application's Application_Start event handler, a model binder
can be registered for any complex type in the application. An example of this is
the ContactBinder type, which implements IModelBinder, and provides the
functionality that we want to have implemented:

public class ContactBinder : IModelBinder
{
 #region IModelBinder Members

 public object BindModel(ControllerContext controllerContext,
 ModelBindingContext bindingContext)
 {
 if (bindingContext.ModelType == typeof(Contact))
 {
 // Get values from form
 string nameFromForm = bindingContext.ValueProvider["Name"]
 .AttemptedValue;
 string emailFromForm = bindingContext.ValueProvider
 ["Email"].AttemptedValue;
 if (string.IsNullOrEmpty(nameFromForm) &&
 !string.IsNullOrEmpty(emailFromForm))
 {
 nameFromForm = emailFromForm.Substring(0,
 emailFromForm.IndexOf("@"));
 }

 // Create the Contact
 Contact contact = new Contact();

 // Assign properties
 contact.Name = nameFromForm;

Chapter 3

[45]

 contact.Email = emailFromForm;

 // Create and return result
 return contact;
 }

 return null;
 }

 #endregion
}

The above code implements the IModelBinder interface and accepts a
ModelBindingContext parameter. This method returns an object that
should be populated with the data from the ModelBindingContext.

The ASP.NET MVC framework offers some default IModelBinder implementations:

Class name Description
DefaultModelBinder Default model binder, used for all simple types

and arrays. It is possible to use this as the base
class for custom model binders and override the
ConvertType() method.

It also allows the binding of a parameter to a
complex type, for example, a Contact class with
a property of type Address. The HTML form field
names can be Name, and Email for the Contact
properties and Address.Street, Address.City,
and such, for the Contact.Address properties.

FormCollectionModelBinder Allows binding to a HTML form collection.

Validating data
One of the common requirements when creating an application is to validate data
and inform the user if something goes wrong. ASP.NET Webforms offered validation
controls and an optional validation summary. When invalid values were entered in
a specific control, an error message was displayed. The validation summary would
show all of the generated error messages.

The ASP.NET MVC framework offers the same possibilities but in a different
manner. The HtmlHelper class provides two methods: ValidationMessage and
ValidationSummary. The first one will display a message for a specific control,
while the latter will render a complete summary of all generated validation errors.

Handling Interactions

[46]

The examples in this topic are based on an ASP.NET MVC web application, which
can be found in the sample code for this book (ValidationExample). This sample
project contains one controller, HomeController, and three views, of which we will
be using one, Contact.aspx.

Of course, for validation to work, the ASP.NET MVC validation framework has to be
informed of possible errors. You can easily do this in your controller action method.
The following action method accepts a name, email, and message from an HTML
form post.

Chapter 3

[47]

public ActionResult Contact(string name, string email,
 string message)
{
 // Add data to view
 ViewData["name"] = name;
 ViewData["email"] = email;
 ViewData["message"] = message;

 // Validation
 if (string.IsNullOrEmpty(name))
 ViewData.ModelState.AddModelError("name",
 "Please enter your name!");
 if (string.IsNullOrEmpty(email))
 ViewData.ModelState.AddModelError("email",
 "Please enter your e-mail!");
 if (!string.IsNullOrEmpty(email) && !email.Contains("@"))
 VewData.ModelState.AddModelError("email",
 "Please enter a valid e-mail!");
 if (string.IsNullOrEmpty(message))
 ViewData.ModelState.AddModelError("message",
 "Please enter a message!");

 // Send e-mail?
 if (ViewData.ModelState.IsValid)
 {
 // send email...
 return RedirectToAction("Index");
 }
 else
 {
 return View();
 }
}

In this code snippet, validation is performed on incoming parameters. Whenever
a parameter is missing, the ModelState collection of ViewData is updated with
a model error. The ViewData.ModelState collection holds a list of all possible
error messages. Errors can easily be added using the ViewData.ModelState.
AddModelError method, which takes a key (that can be used in the view) for the
error, a model property name, and an error message.

An alternative to the above approach would be to delegate validation to the
model. Whenever the model is updated with invalid data, it should throw an
exception. These exceptions should be caught and reflected in the ViewData.
ModelState collection.

Handling Interactions

[48]

After adding the error messages, the state of the model can be retrieved from the
ViewData.ModelState.IsValid property. If no errors were added, this property
will return true, otherwise it will return false.

In the view, the HtmlHelper.ValidationSummary and HtmlHelper.
ValidationMessage methods can be used to interact with this ViewData.
ModelState collection.

<%@ Page Title="" Language="C#" MasterPageFile="~/Views/Shared/Site.
Master" AutoEventWireup="true" CodeBehind="Contact.aspx.cs" Inherits="
ValidationExample.Views.Home.Contact" %>

<asp:Content ID="Content1"
 ContentPlaceHolderID="MainContent"
 runat="server">
 <h2>Contact Us</h2>

 <p><%=Html.ValidationSummary()%></p>

 <% using (Html.BeginForm(Model.PostAction, "Home", new { id
 =Model.Contact.Id }, FormMethod.Post)) { %>
 <table border="0" cellpadding="2" cellspacing="0">
 <tr>
 <td>Name:</td>
 <td>
 <%=Html.TextBox("name", ViewData["name"] ?? "")%>
 <%=Html.ValidationMessage("name")%>
 </td>
 </tr>
 <!-- ... more fields ... -->
 </table>
 <% } %>
</asp:Content>

The HtmlHelper.ValidationSummary method will render a summary of all of
the validation errors in the ViewData.ModelState collection. The HtmlHelper.
ValidationMessage renders a single validation error specific to a given
property name.

Chapter 3

[49]

In most cases, the validation message that is displayed is based
on the validation message that is found in the ViewData.
ModelState collection. Although this is clear information to show
in a ValidationSummary, it might be too much information for
a ValidationMessage. On most web sites, a single error is often
displayed as an asterisk (*), next to the invalid field. By setting the
second parameter of ValidationMessage to an asterisk (*), there
will only be a short notification of the error next to the field, while the
ValidationSummary will still displays the full error message.
The following line of code will show an error as a red asterisk (*) next to
the name field:
<%=Html.ValidationMessage("name", "*")%>

Summary
In this chapter, we have learned the different methods of creating an HTML form,
which can be used to post data to an action method by making use of HTML and
the HtmlHelper class. We have also seen how to read values from a form post in an
action method by using request variables and action method parameters. We have
also seen how to handle file uploads via an action method.

Another thing that we have seen is the model binder infrastructure provided by the
ASP.NET MVC framework. We have also implemented a custom IModelBinder.

In this chapter, we have also learned how form data can be validated, and if
necessary, feedback can be provided to the user of our web application.

Components in the ASP.NET
MVC Framework

This chapter describes the components that build the ASP.NET MVC framework,
from the request life cycle to the components in detail. Each step in the ASP.NET
MVC request flow is described and related to the full extent. A set of extension
points required to customize the ASP.NET MVC request life cycle is also discussed.

In addition to the ASP.NET MVC request life cycle, other concepts including the
model, the view, and the controller are also explained in depth in this chapter. The
advanced aspects of designing an ASP.NET MVC application are also covered.

You will learn the following in this chapter:

What the components that build the ASP.NET MVC framework are
The ASP.NET MVC request life cycle, in depth
Possible extension points to the ASP.NET MVC request life cycle; where
custom steps can be inserted
The model, in depth, and how easy validation capabilities can be provided
The controller, in depth, and what action method attributes are
The view, in depth, and what master pages and partial views are
What action filters are, and how they can be used when designing an
ASP.NET MVC application

The ASP.NET MVC request life cycle
When an ASP.NET MVC web application request is made, some steps are executed
in order to render a response. These steps are also known as the ASP.NET MVC
request flow.

•

•

•

•

•

•

•

Components in the ASP.NET MVC Framework

[52]

Between the HTTP request and the HTTP response, there are eight main steps
that occur:

1.	 The RouteTable is created.
2.	 The UrlRoutingModule intercepts the request.
3.	 The routing engine determines the route.
4.	 The route handler creates the associated IHttpHandler.
5.	 The IHttpHandler determines the controller.
6.	 The controller executes.
7.	 A ViewEngine is created.
8.	 The view is rendered.

These steps are illustrated in the following diagram:

Request

HTTP
Routing

HTTP
Handler

Route

Controller

Route
Handler

Response

View
Engine View

The RouteTable is created
This step occurs only when an ASP.NET MVC application starts, or after the web
server's application pool is restarted.

In normal situations, each request to an ASP.NET page corresponds to a page on
the disk. For example, requesting http://www.example.com/Products.aspx
corresponds to the Products.aspx page on the web server's disk. This Products.
aspx page is actually a class that is instantiated and processed by an ASP.NET
IHttpHandler. An IHttpHandler contains a ProcessRequest method, which is
responsible for rendering the page's output back to the browser.

Chapter 4

[53]

An ASP.NET MVC web application acts differently. Each incoming request is
mapped to a route that determines the correct controller instance that will process
the actual request. These routes are defined in a route table that is created every
time the web application is started. The Global.asax file, which contains code
for handling application-level and session-level events, contains an event handler
Application_Start,which is called on application startup.

Routing is explained in detail in Chapter 5, Routing.

The UrlRoutingModule intercepts the request
Each incoming HTTP request is intercepted by the UrlRoutingModule, which
provides the current HttpContext to the routing engine.

All data related to the current request is available in an HttpContext instance. The
UrlRoutingModule delegates control to the routing engine and provides the current
HttpContext data to the routing engine.

The UrlRoutingModule implements IHttpModule, and is registered in your
ASP.NET MVC web application's web.config file.

The routing engine determines the route
The routing engine, UrlRoutingModule, determines the route handler based on the
current HttpContext. It locates a matching route in the route table and makes sure
that a route handler is created in the form of an IRouteHandler instance.

The route handler creates the associated
IHttpHandler
In the route table, each route is associated with an IHttpHandler. This
IHttpHandler is ultimately responsible for creating the correct controller based on
data in the HttpContext. The IHttpHandler is instantiated by the currently-active
IRouteHandler.

The IHttpHandler determines the controller
For most ASP.NET MVC requests, the IHttpHandler will be System.Web.Mvc.
MvcHandler. This class creates an instance of the controller that is associated with
the route based on incoming HttpContext and URL parameters.

Components in the ASP.NET MVC Framework

[54]

The controller is created from the CreateController method of ControllerFactory.
A ControllerContext is populated from all known contextual data at this point, and
passed into the controller's Execute method, which triggers the controller's logic.

The controller executes
All controller logic is called, and requested actions are executed. This is the point
when interaction with the model occurs. When the controller's logic has been
executed, an ActionResult is returned. An ActionResult instance can, for example,
trigger the rendering of a view. When this occurs, a ViewEngine is created and
instructed to handle further processing.

A ViewEngine is created
The ViewEngine instance will create an instance of IView, which is returned in a
ViewEngineResult instance. This IView instance will be responsible for the actual
rendering of the view.

The view is rendered
The ViewEngineResult instance that was returned by the ViewEngine contains an
IView instance. This IView instance compiles the requested view and populates its
data when its Render method is called.

Extensibility
When working with the ASP.NET MVC framework, you must be aware that there
are several extensibility points. Of course, you can implement your own controller
logic and view logic, but whenever it's required, some custom extensions can be
used. Almost all of the steps in the ASP.NET MVC request flow can be extended
or customized.

Route objects
When building the route table, you can call the Add method of RouteCollection to
add new Route objects. Each Route object is based on the RouteBase abstract class,
which is required by the RouteCollection. You can implement your own Route
objects that inherit from the RouteBase class, if needed. An example of this would
be a custom RouteBase implementation that ignores requests for a particular
file extension.

Chapter 4

[55]

MvcRouteHandler
The route table maps certain URL patterns to an MvcRouteHandler. A route
can be mapped to any class that implements the IRouteHandler interface. The
GetHttpHandler of this class should return a valid IHttpHandler.

An alternative to this is to override the GetHttpHandler method of
MvcRouteHandler.

ControllerFactory
By default, controllers are instantiated by the DefaultControllerFactory
class. You can create your own controller factory by implementing the
IControllerFactory interface. The IControllerFactory instantiates a controller
for a given controller name and RequestContext. Note that your custom
IControllerFactory implementation should be registered by calling the System.
Web.MVC.ControllerBuilder.Current.SetControllerFactory() method when
your application starts. This can be done in the Application_Start method of
Global.asax.

Controller
Each controller that you create using the Visual Studio templates will inherit
the Controller class. You can create your own controller or base class by
implementing the IController interface. You are only required to implement a
single method: Execute. This method will execute the controller logic based on a
given ControllerContext.

ViewEngine
It is possible to create a custom ViewEngine. The default ViewEngine is
determined from the static class ViewEngines.DefaultViewEngine. The
static collection ViewEngines.Engines can be extended with your own
implementation of the IViewEngine interface or the ViewEngineBase abstract
class. You should implement the RenderView and RenderPartial method,
given a ViewContext instance.

Components in the ASP.NET MVC Framework

[56]

A ViewEngine also maps view names to actual files on the web server. By default,
views are located inside the Views | ControllerName project folder or the Views |
Shared folder. You can always customize this by creating your own ViewEngine and
registering it in the Application_Start method of Global.asax:

protected void Application_Start()
{
 // other code...

 // Add ViewEngine
 ViewEngines.Engines.Add(new MyCustomViewEngine());
}

View
By default, the ViewEngine will instantiate an IView of the type, WebFormView.
The WebFormView class handles ASP.NET MVC's default view based on HTML and
ASP.NET markup. On the Internet, there are some other ViewEngine and IView
combinations that feature different kinds of markup in which a view can be created.
If you want to, you can also create your own implementation. Chapter 6, Customizing
& Extending the ASP.NET MVC Framework of this book features an example of this.

The model in depth
In a model-view-controller application, the model is the portion of the application
that is responsible for handling business logic. Typically, model objects access data
from a persistent store such as a database or an XML file, and perform business
logic on that data. Most models are application-specific, as they actually define how
interaction with data occurs in a specific situation. The ASP.NET MVC framework
offers access to any kind of model that is built in a .NET language: ADO.NET
DataSets, DataReader objects, domain objects, object-relational mappers, LINQ
to SQL classes, and so on.

When talking about the model, it seems like there's only one class responsible
for handling business logic. In reality, you will have several classes in a separate
namespace or assembly that are performing business logic. This set of classes is
typically not aware of browsers or the presentation layer, for example, the HTML
output. Instead, it only knows about data and processes.

Creating a model
A common practice, when developing the model or business logic, is to use a set of
domain classes. For example, a task scheduler application would define a Task class
inside the domain layer:

Chapter 4

[57]

public class Task {
 public int Id { get; set; }
 public DateTime DueDate { get; set; }
 public string Title { get; set; }
 public string Description { get; set; }
}

This class is then used in the business layer:

public class TaskScheduler
{
 public bool ScheduleTask(DateTime when, string title, string
 description) { }
 public bool UpdateTask(Task task) { }
 public IList<Task> RetrieveAllTasks() { }
 public IList<Task> RetrieveDueTasks() { }
}

This business class defines how interaction between your application and the
underlying data occurs. There's no room for direct database access. Instead, a
set of methods is provided that access data and return domain class instances.

Model classes can be placed inside the Models folder of your ASP.NET MVC
application. Another option is to create a separate assembly. This last option allows
you to re-use the model in other applications—for example, a Windows application
that provides the same features as your ASP.NET MVC application.

Components in the ASP.NET MVC Framework

[58]

Using the model inside a controller typically consists of instantiating the model class
in the controller actions, calling one or more methods on the model, extracting the
appropriate data, and displaying it inside a view. This allows for a clean separation
of concerns, as the controller is not occupied with business logic. A good practice for
passing this information into the view is to embed it into a custom ViewData class.

Here's an example that will show all of the tasks that are due by a given date:

public class TaskController : Controller
{
 public class DueTasksViewData
 {
 public string Title { get; set; }
 public IList<Task> Tasks { get; set; }
 }
 public ActionResult Index()
 {
 TaskScheduler scheduler = new TaskScheduler();

 DueTasksViewData viewData = new DueTasksViewData
 {
 Title = "Overview of due tasks",
 Tasks = scheduler.RetrieveDueTasks()
 };

 return View("Index", viewData);
 }
}

In this example code, a class instance named DueTasksViewData is created and
populated with a page title and a list of tasks that are due. This DueTasksViewData
instance is passed to the view, which can use the Title and Tasks property to
display the required data.

Enabling validation on the model
When working with the UpdateModel method in a controller, as seen in Chapter 3,
Handling Interactions of this book, a model object can be updated from the form data
that a user posts to the controller. By wrapping this UpdateModel call in a try-catch
block, one can easily enable validation of the model and provide support for the
ValidationSummary and ValidationMessage methods of HtmlHelper.

The following action method accepts a form post and tries to update a contact
by using the UpdateModel method. If this fails, the exception is caught and the
Contact is passed to the view. This view then re-renders the edit form, showing the
validation errors by using HtmlHelper.ValidationMessage():

Chapter 4

[59]

public ActionResult Edit(int id, FormCollection form)
{
 Contact contact = new Contact();

 try
 {
 UpdateModel(contact, form.ToValueProvider());

 return RedirectToAction("Index");
 }
 catch {
 return View(contact);
 }

There is one more thing left to do—the validation itself. UpdateModel will look
for the IDataErrorInfo interface for our model, and if that is found, validation
will occur automatically. IDataErrorInfo is an interface definition that is
found in System.ComponentModel. It provides the functionality to offer custom
error information that a user interface can bind to. Here's a Contact model that
implements IDataErrorInfo:

public class Contact : IDataErrorInfo
{
 public int Id { get; set; }
 public string Name { get; set; }
 public string Email { get; set; }

 #region IDataErrorInfo Members

 public string Error
 {
 get { return ""; }
 }

 public string this[string columnName]
 {
 get
 {
 switch (columnName.ToUpperInvariant())
 {
 case "NAME":
 if (string.IsNullOrEmpty(Name))
 return "Please provide a valid name.";
 break;
 case "EMAIL":
 if (string.IsNullOrEmpty(Email))
 return "Please provide a valid email.";
 break;
 }

Components in the ASP.NET MVC Framework

[60]

 return "";
 }
 }

 #endregion
}

The Error property that is defined on IDataErrorInfo returns a string containing
any error that is "global" for the Contact object. The this[string columnName]
indexer that is defined on IDataErrorInfo is used to retrieve error messages for a
specific property. For example, if the Name is empty, the this["Name"] method will
return an error stating that the name is not specified. The ASP.NET MVC model
binder will then reflect this in an Exception, and pass it to a view, where it can be
used by, for example, ValidationSummary of HtmlHelper.

The controller in depth
In an MVC application, the controller is the portion of the application that is
responsible for communicating the data from the model to a view. Typically,
the controller does not contain any business logic, but instead contains the logic
required to communicate with the business layer and the view.

Creating a controller
Creating a controller in Visual Studio 2008 can be done by adding a new item to the
project, selecting the MVC Controller Class template, which is located under the
Web | MVC category. Another option is to select the Add controller… option when
right‑clicking on the solution. This menu item shows a form that can be used to
specify some details for the controller class to be created:

In this window, you can specify the name of the controller class that should be
created. You can also specify if some default action methods (Create, Update, and
Details) should be created in order to speed up development�.

Chapter 4

[61]

Rendering data on the response
In an ASP.NET MVC web application, the controller is a class that derives from
System.Web.Mvc.Controller or implements System.Web.Mvc.IController. A
controller contains one or more action methods, which are basically methods that sit
in between the application user's browser and the model. A controller action will,
for example, retrieve a list of due tasks from the model and return an ActionResult
instance. This in turn will (again, for example) render an associated view based on
the retrieved data. Here's a list of possible ActionResult types:

Type Description
ViewResult Renders a specified view to the response stream
PartialViewResult Renders a specified partial view to the response stream
EmptyResult Basically does nothing; an empty response is given
RedirectResult Performs an HTTP redirection to a specified URL
RedirectToRouteResult Performs an HTTP redirection to a URL that is determined

by the routing engine, based on given route data
JsonResult Serializes a given ViewData object to JSON format
JavaScriptResult Returns a piece of JavaScript code that can be executed on

the client
ContentResult Writes content to the response stream without requiring

a view
FileContentResult Returns a file to the client
FileStreamResult Returns a file to the client, which is provided by a Stream
FilePathResult Returns a file to the client

These ActionResult types can be generated by using some helper methods in a class
that derives from System.Web.Mvc.Controller:

Method Description
View Returns a ViewResult instance
PartialView Returns a PartialViewResult instance
Redirect Returns a RedirectResult instance
RedirectToAction Returns a RedirectToRouteResult, based on a given action
RedirectToRoute Returns a RedirectToRouteResult, based on given route data
Json Returns a JsonResult instance
JavaScript Returns a JavaScriptResult instance
Content Returns a ContentResult instance
File Returns a FileContentResult, FileStreamResult or

FilePathResult based on the input

Components in the ASP.NET MVC Framework

[62]

Here's an example of a controller that has an Index action, which redirects a user to
the Show action of the same controller:

using System.Web.Mvc;

namespace MvcApplication1.Controllers
{
 public class TaskController : Controller
 {
 public ActionResult Index()
 {
 return RedirectToAction("Show");
 }

 public ActionResult Show()
 {
 return View("Show");
 }
 }
}

Reading data from the request
There are situations where an action method relies on the data being passed—for
example, when a form is posted. If your controller defines a Show action that requires
a specific product ID, you can retrieve this ID in several ways.

One way of retrieving data for a controller action is by using the HttpRequest
parameters. The following code will read the ID parameter from a URL, that is,
from a URL in the form http://www.example.com/Products/Show?id=5:

public ActionResult Show()
{
 int id = Convert.ToInt32(Request["id"]);

 var viewData = RetrieveData(id);
 return View("Show", viewData);
}

A second way of retrieving data for a controller action is to use a method parameter.
This method is much more flexible, as it will read the ID parameter from URLs such
as http://www.example.com/Products/Show?id=5, http://www.example.com/
Products/Show/5, and eventually from a form post:

public ActionResult Show(int id)
{
 var viewData = RetrieveData(id);
 return View("Show", viewData);
}

Chapter 4

[63]

In this last method, the routing engine will take care of the parameter mapping. If
the parameter type is not correct for the data being passed in, an exception will be
thrown by the routing engine. Also, if you defined constraints on the route, you can
deny specific requests if the ID does not match a specific regular expression pattern.

We have already seen more on reading data from the request in
Chapter 3, Handling Interactions.

Action method selection
The ASP.NET MVC framework uses route data to map the request to the correct
action method. By default, the ControllerActionInvoker class will use reflection
to find a public method on the controller that has the same name as the action in the
route data dictionary.

When a method is marked with the ActionNameAttribute, the
ControllerActionInvoker will use the action name specified in this attribute,
instead of the method name. The following example will not map the URL /Home/
SomeMethodName to this action method. It will be mapped to a URL in the form of
/Home/Display.

[ActionName("Display")]
public ActionResult SomeMethodName(int id)
{
 return View();
}

Note that return View() will look for a view named Display.aspx, and not for
SomeMethodName.aspx!

When a method is marked with the ActionSelectionAttribute, the
ControllerActionInvoker will first verify if an action method can really be used
to serve a specific request. One can implement this abstract base class and use it to
specify in detail which method should handle which request, based on the current
ControllerContext.

public abstract class ActionSelectionAttribute : Attribute
{
 public abstract bool IsValidForRequest(ControllerContext
 controllerContext, MethodInfo methodInfo);
}

Components in the ASP.NET MVC Framework

[64]

Another attribute that can be used is the AcceptVerbsAttribute. When a method
is marked with the AcceptVerbsAttribute, which is an implementation of the
ActionSelectionAttribute, the method will only be used as the action method for
a request if the HTTP verb is valid. For example, one can specify one action method
to handle only GET requests, while another would handle POST requests. The
following code snippet features two action methods named Edit, of which
the first one will handle all HTTP GET requests, while the second one will
handle form posts:

public class HomeController : Controller
{
 [AcceptVerbs(HttpVerbs.Get)]
 public ActionResult Edit()
 {
 return View();
 }

 [AcceptVerbs(HttpVerbs.Post)]
 public ActionResult Edit(FormCollection form)
 {
 // some code to handle edit...

 return View();
 }
}

Handling unknown controller actions
The situation might occur where a hyperlink is not correct, or a user requests an
action method that does not exist. By default, the ASP.NET MVC framework will
render an error page, notifying the user of a 404 error: page not found.

If the user requests, say, http://www.mysite.com/Home/Products, it is quite clear
that the user wants to view a list of products or something similar. In this case, a
classic error page might not be the best thing to display to the user. Instead, notifying
the user that he probably meant to navigate to http://www.mysite.com/Products
might be a better alternative. For this behavior, the HandleUnknownAction method
of the controller base class can be overridden.

The examples in this topic are based on an ASP.NET MVC web application that can
be found in the sample code of this book (HandlingUnknownActionsExample).

public class HomeController : Controller
{
 public ActionResult Index()
 {

Chapter 4

[65]

 // ...
 }

 public ActionResult About()
 {
 // ...
 }

 protected override void HandleUnknownAction(string actionName)
 {
 ViewData["Title"] = "Error 404 - Page not found";
 ViewData["Message"] = "Page not found";

 ViewData["RequestedAction"] = actionName;
 ViewData["Controller"] = "Home";
 ViewData["AlternativeActions"] = new string[] { "Index",
 "About" };

 Response.StatusCode = 404;
 View("404").ExecuteResult(ControllerContext);
 }
}

The above HandleUnknownAction will be triggered whenever an unknown action
is called. The HandleUnknownAction method is passed the requested action name,
which can be used to determine alternative options. In this method, a 404 status
code is set, and a 404 view is rendered. Note that this should be done manually by
calling the ExecuteResult method of ViewResult. Otherwise, the ASP.NET MVC
framework will create its own error message.

<h2><%= Html.Encode(ViewData["Message"]) %></h2>
<p>
 The action you requested (<%=Html.Encode(ViewData[
 "RequestedAction"])%>) is not available.
</p>
<p>
 Please try any of the following alternatives:

 <%
 string[] alternatives = ViewData["AlternativeActions"] as
 string[];
 foreach (string alternative in alternatives)
 {
 %><%=Html.ActionLink(alternative, alternative,
 ViewData["Controller"].ToString())%><%
 }
 %>

</p>

Components in the ASP.NET MVC Framework

[66]

The 404 view will simply render all ViewData elements that were passed in,
along with a list of action links to the alternative actions that were set in the
HandleUnknwonAction method on the controller.

Here's how a request to http://www.mysite.com/Home/SomethingUnknown would
look like:

Action method attributes
A number of action method attributes can be applied to the controller or to the action
method itself.

Chapter 4

[67]

Some examples of action method attributes can be found in the sample code
(ActionMethodAttributesExample). In the HomeController, each action method
attribute is demonstrated with comments.

Attribute Description
NonActionAttribute Hides the method for the

ControllerActionInvoker and will prohibit the
method from being called as an action method. Use
this attribute on helper methods that are located in a
controller class.
The following action method will never be available
as an action method, that is, http://example.
com/Home/NonAction will never be mapped by the
routing engine:

[NonAction]
public ActionResult NonAction()
{
 return View("Home");
}

HandleErrorAttribute Handles exceptions and optionally renders a different
view when an exception occurs. Note that this attribute
is ignored when debugging.
The following action method will render About.aspx
when an InsufficientMemoryException occurs:

[HandleError(
 ExceptionType=typeof(InsufficientMe
moryException),
 View="About")]
public ActionResult HandleError()
{
 throw new
InsufficientMemoryException();
 return View("Home");
}

AuthorizeAttribute Secures an action method; verifies if the current user is
authenticated and optionally verifies the user name or
role of the user.
(More on this attribute in Chapter 7.)

OutputCacheAttribute Caches the output of an action method using the
ASP.NET output cache.
(More on this attribute in Chapter 7)

Components in the ASP.NET MVC Framework

[68]

Attribute Description
AcceptVerbsAttribute Marks the action method as callable only when the

HTTP verb is specified in the attribute. For example,
an action method can be marked to handle only
POST requests.
The following action method will only render a view
when an HTTP POST is being made:

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult PostOnly()
{
 return View("Home");
}

ActionNameAttribute Marks the action method with another name for the
ControllerActionInvoker.

The following action method will not be known as
xyz123, but will instead be known as ActionName:

[ActionName("ActionName")]
public ActionResult xyz123()
{
 return View("Home");
}

ValidateAntiForgeryToken Checks to see if the current request contains a
valid anti-forgery token that was generated by the
HtmlHelper.AntiForgeryToken() helper method.

The view in depth
In an MVC application, the view is the portion of the application that is responsible
for displaying model data that has been received from the controller, in a presentation
layer. When developing a web application using the ASP.NET MVC framework, most
of your views will render HTML output to a client's browser, based on model data.

Chapter 4

[69]

Location of views
In an ASP.NET MVC web application, views are typically stored in the Views |
[Controller] folder. For example, a controller named ProductController will have
its associated view, Show, located in Views | Product | Show.aspx.

If a specific view is associated with multiple controllers, you can also store it in the
Views | Shared | Show.aspx folder. This folder will typically contain a master page,
but might also contain a specific view as well.

Components in the ASP.NET MVC Framework

[70]

Creating a view
Creating a view in Visual Studio 2008 can be done by adding a new item to the
project, selecting the MVC View Content Page template, located in the Web | MVC
category. Another option is to select the Add view… option when right-clicking an
action method. This menu item shows a form that can be used to specify some details
for the view that is to be created:

In this window, you can specify the name of the view that should be created. You
can also specify whether it is a partial view, and whether it should be strong-typed
or not. The master page that should be used can also be specified in this window.

When creating a strong-typed view, a view content template can be selected. For
example, this dialog can generate a view that renders a list, a detail or an edit form.

These templates are T4 templates, and are located in C:\Program Files\
Microsoft Visual Studio 9.0\Common7\IDE\ItemTemplates\CSharp\Web\MVC\
CodeTemplates and can be customised if needed.

Chapter 4

[71]

T4 (or Text Template Transformation Toolkit) templates are instructions
for Visual Studio's built-in code generator, and can be used for generating
code in an application. The view templates are generated using T4,
making it possible to create a view that contains all of the information
from a model that can be customized later.
A tutorial on creating T4 templates can be found on
http://www.hanselman.com/blog/T4TextTemplate
TransformationToolkitCodeGenerationBestKept
VisualStudioSecret.aspx.

Master pages
In ASP.NET Webforms, you can use a master page to define a global page structure
and style for a web application. Afterwards, a content page can be added that will
contain only specific contents.

The ASP.NET MVC framework provides support for master pages and content
pages. Master pages are stored in the Views | Shared folder.

Components in the ASP.NET MVC Framework

[72]

The following screenshot displays the content page. It populates the
ContentPlaceHolder of MainContent that is defined in the master page:

View markup
The ASP.NET MVC framework provides built-in support for using "regular" .aspx
pages as a view. There's only one big difference to note: there's no ViewState or
postbacks involved. As a result of this difference, you cannot use all of the controls
that you could previously use in ASP.NET Webforms. For example, the ASP.NET
grid view relies heavily on ViewState and postbacks and, therefore, cannot be used.
In addition, note that the ASP.NET Webforms controls will not always render "clean"
HTML code.

As an alternative to ASP.NET Webforms controls, the ASP.NET MVC framework
offers inline coding as a valuable alternative if you want full control over the HTML
markup that is rendered. Inline code is always placed between <% and %>. A shortcut
for writing out a value to the response stream is <%=myString%>, but you can also
use the full-blown version: <% Response.Write(myString); %> if you prefer to
do so.

This topic will use the following Task class as the model:

public class Task {
 public int Id { get; set; }
 public DateTime DueDate { get; set; }
 public string Title { get; set; }
 public string Description { get; set; }
}

Chapter 4

[73]

Rendering a list of Task objects can be done by using a simple in-line foreach loop:

<%@ Page Language="C#" MasterPageFile="~/Views/Shared/Site.Master"
AutoEventWireup="true" CodeBehind="Index.aspx.cs" Inherits="MvcApplica
tion1.Views.Home.Index" %>
<%@ Import Namespace="MvcApplication1.Controllers" %>
<%@ Import Namespace="MvcApplication1.Controllers.TaskController" %>
<%@ Import Namespace="MvcApplication1.Models" %>

<asp:Content ID="indexContent" ContentPlaceHolderID="MainContent"
 runat="server">
 <h2><%= Html.Encode(Model.Title) %></h2>

 <% foreach (Task task inModel.Tasks) { %>

 <%= Html.ActionLink<TaskController>(c =>
 c.Show(task.Id), "Details")%>
 <%= Html.Encode(task.Title) %>

 <% } %>

</asp:Content>

The ASP.NET MVC framework features a class called HtmlHelper that provides
each view with a standard set of helper methods that provide a programmatic
method of creating HTML controls. When executing the application, HtmlHelper
methods are rendered as plain HTML. Every view page provides an Html property,
which is an instance of the HtmlHelper class. This code snippet also uses the
HtmlHelper class to encode data and to create a hyperlink to a specific controller
action. The HtmlHelper.ActionLink method is a helper method that accepts a
controller type and utilizes the routing engine to generate a hyperlink to a specific
action on that controller. For example, the code in the above snippet will generate
the following hyperlink:

Details

Note that the HtmlHelper class is built around extension methods. The HtmlHelper
class is defined in the System.Web.Mvc namespace, and defines some methods that
are useful for encoding data and many such things. By default, an ASP.NET MVC
application's Web.config file contains the following entry:

<pages>
 <!-- ... -->
 <namespaces>
 <add namespace="System.Web.Mvc"/>
 <add namespace="System.Web.Mvc.Html"/>

Components in the ASP.NET MVC Framework

[74]

 <add namespace="System.Web.Mvc.Ajax"/>
 </namespaces>
 <!-- ... -->
</pages>

ASP.NET will use this entry to load some namespaces by default when working in
a view. The System.Web.Mvc.Html namespace contains a lot of extension methods
that are available in each view. This approach enables you to remove the System.
Web.Mvc.Html entry in Web.config, and create your own extension methods on
HtmlHelper, if you want to.

The helper and extension methods defined on the HtmlHelper class are described
in Chapter 3, Handling Interactions.

Partial views
In every ASP.NET MVC application, there are situations where a view contains one
or more small, re-usable pieces of views. The ASP.NET MVC framework supports
a smaller subset of classic views, namely partial views. Partial views are able to get
the model data to display from the parent view's ViewData, or through the use of a
model that was passed specifically into them.

The key difference with a regular view is that a partial view has no master page
support as it is intended for partial rendering. Another difference is that a partial
view can be rendered by a view engine other than the parent view. This provides a
flexible architecture that, for example, allows some parts of a web site to be rendered
by a different view engine, which is easier for web site designers to understand.
Partial views are searched for in the same locations as regular views and can be
used on a parent view by using the method RenderPartial of HtmlHelper. Note
that there's no equals sign (=), as the partial view will render directly to the output
stream instead of returning a string.

Note that partial views can be rendered by providing their names and, optionally,
the view data that they should render:

<% Html.RenderPartial("viewName"); %>

<% Html.RenderPartial("viewName", customer); %>

An example of partial views can be found in the sample code for this book
(the PartialViewExample). In the Index.aspx view, a partial view named
CurrentTime.aspx is rendered:

 <p>
 <% Html.RenderPartial("CurrentTime"); %>
 </p>

Chapter 4

[75]

The CurrentTime.aspx view is located in Views | Shared | CurrentTime.aspx, and
renders the current time to the HTTP response.

<%=Html.Encode(DateTime.Now.ToString())%>

Action filters
An action filter is an attribute that can be applied to a controller class or an action
method. Whenever the controller or action method is called, the action filter is
triggered, both before and after execution. Typically, action filters are used for
solving problems that can occur in more than one class—the so called cross-cutting
concerns. A typical cross-cutting concern is output caching or authentication; both
can be required for more than one action method.

The ASP.NET MVC framework offers four types of action filters:

1.	 IAuthorizationFilter

2.	 IActionFilter

3.	 IResultFilter

4.	 IExceptionFilter

Each of the above action filters is assigned a different priority:
IAuthorizationFilter is guaranteed to run before IActionFilter;
IActionFilter runs before IResultFilter, which runs before IExceptionFilter.
This approach avoids accidental errors such as caching view output before
authentication occurs.

When writing your own action filter, implement the interface that best suits your
needs. Each attribute can be prioritized in its category by assigning the Priority
property on creation. An example of a custom ActionFilter can be found later in
this chapter.

IAuthorizationFilter
Authorization filters are always the first type of action filters executed, allowing the
action method to be cancelled. Instead of the requested action method, you can easily
set a different ActionResult to be rendered to the response stream.

Beware of security when implementing IAuthorizationFilter—in almost all
cases, the default authorization filter provides sufficient features for working with
authentication and authorization.

Components in the ASP.NET MVC Framework

[76]

IActionFilter
An action filter allows you to run code before and after an action method is called,
but before the result of the action method is executed.

The IActionFilter interface defines two methods:

OnActionExecuting: Runs before the action method is executed. You can
cancel the action method and even replace the ActionResult with another
one. When the action method is cancelled, no other action filters will be
executed. Action filters for which the OnActionExecuting was called will
also receive a call for OnActionExecuted.
OnActionExecuted: Runs after the action method is executed but before the
ActionResult is executed. This allows you to replace the ActionResult
with another one.

Exceptions that have been thrown by other action filters or the action method that
is being executed can be examined within the filter. It is possible to handle the
exception in the action filter, after which the action result will be executed. If the
exception is not handled, the action result will not be executed. Optionally, this can
also be handled by an IExceptionFilter which is described later in this chapter.

IResultFilter
A result filter is very similar to an action filter (see IActionFilter). The only
difference is that it is executed both before and after the result returned from the
action has been executed.

The IResultFilter interface defines two methods:

OnResultExecuting: Runs before the action method's action result
is executed
OnResultExecuted: Runs after the action method's action result is executed

IExceptionFilter
An exception filter allows you to handle specific exceptions in code. For example,
exception filters can be used for logging specific exceptions or for redirecting a
user to an error action method that informs them in a friendly way that an error
has occurred.

Exception filters are guaranteed to run after all other action filters and result filters
have been executed. This approach allows you to replace the action method's action
result with a custom ActionResult.

•

•

•

•

Chapter 4

[77]

Summary
In this chapter, we have learned about the different components that build the
ASP.NET MVC framework. We've seen the request life-cycle that processes a request
in an ASP.NET MVC web application and its components, in-depth. We have
learned each step in the ASP.NET MVC request, and have seen how each of these
is related to the full picture. A set of extension points that is used to customize the
ASP.NET MVC request lifecycle has also been described.

We have also learned more about the model, view, and controller. We have
seen what action methods, master pages, and partial views are. Advanced
aspects in designing an ASP.NET MVC application, such as action filters,
have also been covered.

www.allitebooks.com

http://www.allitebooks.org

Routing
Whenever a user requests a URL in an ASP.NET MVC application, the ASP.NET
MVC framework uses ASP.NET routing to map this request URL to a controller class
and an action method. ASP.NET routing extracts variables in the URL according to a
pattern that you define in a routing table, and automatically passes these variables to
a controller action method.

You will learn the following in this chapter:

What ASP.NET routing is
The difference between ASP.NET routing and URL rewriting
How the UrlRoutingModule fits into the request life cycle
How routes are mapped to route patterns and controller action methods
How routes are defined
What a catch-all parameter is, and what parameter constraints are
How an ASP.NET MVC application can be combined with an ASP.NET
Webforms application

What is ASP.NET routing?
In a regular ASP.NET web application, each URL is mapped to a file on a disk. For
example, a request for http://www.example.com/Products/Show.aspx?id=5
really maps to a file called Show.aspx on the web server's disk.

Using ASP.NET routing, you define specific patterns for a URL that map to a certain
handler class that will take care of the request. For example, a URL in the form of
http://www.example.com/Products/Show/5 could be matched with a pattern
http://www.example.com/{controller}/{action}/{id}. The variables between
{ and } are populated with the actual values from the request URL, and will map to
the HomeController and to the Index action if no other value can be deduced from
the URL.

•
•
•
•
•
•
•

Routing

[80]

These URL patterns can also be used to programmatically create URLs that
correspond to them. All hyperlinks in your ASP.NET MVC application can be
generated this way and can thus easily be managed by maintaining the route table.

ASP.NET routing versus URL rewriting
You may have already heard of URL rewriting. URL rewriting consists of certain
regular expression patterns that match an incoming request URL and forward the
request to a mapped URL instead. For example, one might create a URL rewriting
rule that forwards an incoming request for http://www.example.com/Products/
Beverages to another URL of http://www.example.com/Products/Show.
aspx?id=5. URL rewriting alters the request URL and forwards it to another URL.

ASP.NET routing is different. It does not alter the incoming URL. Instead, it extracts
specific values from the URL, based on a pattern. These extracted values can be used
to determine the handler that will handle the request. You can also use these patterns
to generate a URL that will map to a specific handler.

UrlRoutingModule
ASP.NET routing is initiated by an IHttpModule named UrlRoutingModule. This
module is registered inside the ASP.NET MVC application web.config file:

<?xml version="1.0"?>
<configuration>
 <!-- ... -->

 <system.web>

 <!-- ... -->

 <httpModules>
 <add name="UrlRoutingModule"
 type="System.Web.Routing.UrlRoutingModule,
 System.Web.Routing, Version=0.0.0.0,
 Culture=neutral, PublicKeyToken=31BF3856AD364E35"
 />
 </httpModules>
 </system.web>

 <!-- The system.webServer section is required for running ASP.NET
 AJAX under Internet Information Services 7.0. It is not
 necessary for previous version of IIS. -->
 <system.webServer>

 <!-- ... -->

Chapter 5

[81]

 <modules runAllManagedModulesForAllRequests="true">
 <remove name="UrlRoutingModule"/>
 <add name="UrlRoutingModule"
 type="System.Web.Routing.UrlRoutingModule,
 System.Web.Routing, Version=0.0.0.0,
 Culture=neutral, PublicKeyToken=31BF3856AD364E35"
 />
 </modules>

 <!-- ... -->

 </system.webServer>
</configuration>

The UrlRoutingModule passes the URL to the RouteCollection class, which
inherits RouteBase. A method named GetRouteData will parse the request URL and
determine the route that is requested. Then, the IRouteHandler associated with the
current route is called.

The main objective of this IRouteHandler is to return an IHttpHandler that will
process the request. The GetHttpHandler method of IRouteHandler will receive
an instance to the current RequestContext and will usually return a MvcHandler
instance of the System.Web.Mvc namespace. This MvcHandler instance will then
process the current HTTP request by instantiating the controller that is defined in
the active route.

Route patterns
A route is built on placeholders that are mapped to values that are parsed from the
URL. These values can eventually be filled in with default values that you specify
when you create the route. These placeholders, or URL parameters, are defined by
enclosing them in braces: { and }. For example, {name} will define a URL parameter
called name. URLs can be delimited by the / character. Everything else in the route
pattern is treated as a constant value when parsing the request URL.

You can also combine multiple URL parameters by separating them with a constant
value. For example, {id}-{name}.aspx is a valid route pattern that contains two
URL parameters with names id and name. Note that {id}{name}.aspx would not
be a valid routing pattern, as ASP.NET routing cannot determine where to separate
the value for the id variable from the value for the name variable. Some examples of
valid route patterns and possible matching URLs are given here:

Routing

[82]

Routing pattern Possible matching URL
{controller}/{action}/{id} /Products/Show/All

{controller}/{action}/{id}.aspx /Products/Show/All.aspx

archive/{year}-{month}/{title}.aspx /archive/2008-07/BlogPost.aspx

{language}-{country}/{controller}/
{action}/{id}

/en-us/Products/Show/All

{department}/{title}.aspx /Sales/Overview.aspx

Defining routes
Routes are defined on application startup, which is typically triggered by the
Application_Start event in the Global.asax file. This event is called when the
web application is first started. Make sure that you register all of the routes in a
separate, static method. This will enable you to write unit tests more easily. Note that
the first matching route pattern will always be used. Here's an example of a Global.
asax file:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Routing;

namespace MvcApplication1
{
 public class GlobalApplication : System.Web.HttpApplication
 {
 public static void RegisterRoutes(RouteCollection routes)
 {
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapRoute(
 "ProductShow", // Route name
 "Product/{id}-{title}.asp // URL with parameters
 new { // Parameter defaults
 controller = "Product",
 action = "Show",
 id = "",
 title = ""
 },
 new { id = @"[\d.*]" } // Parameter constraints
);

 routes.MapRoute(

Chapter 5

[83]

 "Default", // Route name
 "{controller}/{action}/{id}", // URL with parameters
 new { // Parameter defaults
 controller = "Home",
 action = "Index",
 id = ""
 }
);

 }

 protected void Application_Start()
 {
 RegisterRoutes(RouteTable.Routes);
 }
 }
}

Routes are registered in the application's Application_Start event handler. Routes
are added to the RouteCollection by calling the MapRoute method. The MapRoute
method accepts two, three, or four arguments. The first argument is the route name,
for example, ProductShow. The second argument is the route pattern, for example,
Product/{id}-{title}.aspx. As an optional third argument, you can pass some
default URL parameters. For example, if no action URL parameter is found, this
route will default to the Show action. The fourth, and the optional, argument is
used to force constraints on the URL parameters. For example, new { id = @"[\
d.*]" } will force the id parameter to be numeric. If the parameter does not match
the regular expression, the route will not be used; instead, the next route in the
RouteCollection will be evaluated.

Note that we also used the IgnoreRoute method of RouteCollection. This method
disables ASP.NET routing for a specific route pattern. In this case, any HTTP handler
with the extension .axd is ignored by ASP.NET routing.

Let's see how ASP.NET routing would handle the following example route definition:

routes.MapRoute(
 "ProductShow", // Route name
 "Product/{id}-{title}.aspx", // URL with parameters
 new { // Parameter defaults
 controller = "Product",
 action = "Show",
 id = "",
 title = ""
 },
 new { id = @"[\d.*]" } // Parameter constraints
);

Routing

[84]

Request URL Parameter values
/Product/12-RubberDuck.aspx controller = Product

action = Show
id = 12
title = RubberDuck

/ Product/aa-RubberDuck.aspx No match because of parameter constraint: the
string aa does not match [\d.*]

/ Product/RubberDuck.aspx No match

Parameter constraints
In the previous example, a URL parameter constraint was set on the id parameter
as a regular expression string. This constraint is evaluated by the routing engine.
Another option in passing URL constraints is implementing the class interface,
IRouteConstraint. The IRouteConstraint interface contains a method named
Match, which returns a boolean value that indicates whether the value is valid
or not.

The following class will allow a route to be matched only if the user is authenticated:

public class AuthenticatedRouteConstraint : IRouteConstraint
{
 #region IRouteConstraint Members

 public bool Match(HttpContextBase httpContext, Route route,
 string parameterName, RouteValueDictionary values,
 RouteDirection routeDirection)
 {
 // Match only when user is authenticated
 return httpContext.Request.IsAuthenticated;
 }

 #endregion
}

We can now add a Secret route to the route table by using the
AuthenticatedRouteConstraint class as a constraint:

routes.MapRoute(
 "Secret",
 "Secret/{action}",
 new { controller = "Secret", action = "Index" },
 new { authenticated = new AuthenticatedRouteConstraint() }
);

routes.MapRoute(

Chapter 5

[85]

 "Default",
 "{controller}/{action}/{id}",
 new { controller = "Home", action = "Index", id = "" },
 new { controller = "^.*(?<!Secret)$" }
);

Note that the default route has been modified with a constraint too:

new { controller = "^.*(?<!Secret)$" }

The AuthenticatedRouteConstraint class will not match the first route for an
anonymous user, but a later route might map an anonymous user to the same
controller and action method. The default route will actually do this, as it does not
know anything about authentication. To make the default route ignore the Secret
controller, a regular expression constraint has been added. You can find more
information on regular expressions at www.regular-expressions.info

Catch-all routes
A situation may occur where there's a variable number of URL segments, separated
by the / character. You can mark the last URL parameter in a routing pattern as a
catch-all parameter. For example, the routing pattern /Blog/Show/{*posttitle}
will make the URL parameter named posttitle the catch-all parameter. If a URL
is requested, for example /Blog/Show/More-about-catch-all-routes, the
catch-all parameter value will be populated with More-about-catch-all-routes.
In a regular route, ASP.NET routing would try to split this string at each character,
whereas, in a catch-all route, this string is passed as a whole to the controller's action
method. The above route can be defined as follows:

routes.MapRoute(
 "BlogPost",
 "Blog/Show/{*posttitle}",
 new { controller = "Home", action = "Index", id = "" }
);

An example of a catch-all route can be found in the sample code for this book
(CatchAllExample). This sample project contains a catch-all route that is handled
by the Index action method of HomeController.

Routing

[86]

Routing namespaces
In large ASP.NET MVC web applications, using multiple namespaces for controllers
can be useful. For example, the general site contents can be served by controllers in
the MySite.Controllers namespace, while products can be served by controllers in
the MySite.Controllers.Products namespace.

Luckily, the ASP.NET MVC routing engine is flexible enough to provide routing
features across namespaces. By using the DefaultNamespaces property of the
ControllerBuilder, the default namespaces can be specified. This allows you to
have controller classes in multiple namespaces.

void Application_Start(object sender, EventArgs e) {
 ControllerBuilder.Current.DefaultNamespaces.Add("MySite.
Controllers");
 ControllerBuilder.Current.DefaultNamespaces.Add("MySite.
Controllers.
 Products");
 ControllerBuilder.Current.DefaultNamespaces.Add("ThirdParty.
Controllers
 .CreditcardProcessing");

 // ...

}

In this example, the default route is applied over multiple namespaces. Alternatively,
these namespaces can also be reflected in the URLs—a URL for the first namespace
might look like www.mysite.com/Home/About, while a URL for the latter may look
like www.mysite.com/Products/Catalog/List/Books.

By using routing constraints, different URLs can be mapped to different
controller namespaces. The following example code will add a constraint for
the ns routing parameter:

routes.MapRoute(
 "BlogDefault",
 "{ns}/{controller}/{action}/{id}",
 new { controller = "Home", action = "Index", id = "" },
 new { @ns = "blog" },
 new string[] { "RoutingNamespacesExample.Controllers.Blog" }
);

routes.MapRoute(
 "ProductsDefault",
 "{ns}/{controller}/{action}/{id}",
 new { controller = "Home", action = "Index", id = "" },
 new { @ns = "products" },

Chapter 5

[87]

 new string[] { "RoutingNamespacesExample.Controllers.Products" }
);

routes.MapRoute(
 "Default",
 "{controller}/{action}/{id}",
 new { controller = "Home", action = "Index", id = "" },
 new string[] { "RoutingNamespacesExample.Controllers" }
);

The above example contains three routes. The first route accepts any URL
starting with Blog, specified as a regular expression constraint on the route.
This is mapped to the RoutingNamespacesExample.Controllers.Blog
namespace. The second route matches all URLs starting with Products, and
is mapped to the RoutingNamespacesExample.Controllers.Products
namespace. The last route matches any other URL mapping, and is mapped
to the RoutingNamespacesExample.Controllers namespace.

Note that this approach expects all views to be in /Views/<controllername>/
<action>.aspx. If you want to have views per namespace and per controller,
organize the views in /Views/<namespace>/<controllername>/<action>.aspx
and make sure that every ViewResult is created with the full path to the view:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;

namespace MySite.Controllers.Products {
 public class CatalogController : Controller
 {
 public ActionResult List(string category)
 {

 // ...

 return View(@"~/Views/Products/Catalog/List.aspx");
 }
 }
}

An example of routing with namespaces can be found in the sample code for this
book (RoutingNamespacesExample). This sample project contains three different
routes that map to different namespaces.

Routing

[88]

Combining ASP.NET MVC and ASP.NET in
one web application
By default, routes are used to determine which handler will handle a specific request.
Each route that is defined will map to a certain MVC controller. Even if you have an
ASP.NET Webforms page named ShowProducts.aspx, the routing engine will try to
map this request to the ASP.NET MVC framework.

You can prevent the routing engine from handling certain requests by defining
a special route that defines the StopRouteHandler class as the handler. The
StopRouteHandler object will stop all additional processing of the request as a
route, and will force ASP.NET to handle the request either as an ASP.NET web
page or as an ASP.NET web service. For example, the following routes will force the
routing handler to process all of the.aspx requests for the directory /Classic in the
regular ASP.NET way:

routes.Add(
 new Route("Classic/{resource}.aspx?{*requestUrl}",
 new StopRouteHandler())
);

routes.Add(
 new Route("Classic/{resource}.aspx",
 new StopRouteHandler())
);

Note that HttpHandlers can also be excluded from URL routing. A blank ASP.
NET MVC application actually contains a default route that makes sure that
HttpHandlers with the .axd file extension are handled by ASP.NET, and not
by ASP.NET routing:

routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

The IgnoreRoute method here is short for using the StopRouteHandler. Actually,
the route above can be rewritten as follows:

routes.Add(
 new Route("{resource}.axd/{*pathInfo}",
 new StopRouteHandler())
);

Chapter 5

[89]

Creating URLs from routes
Routes can be used to generate URLs. Using this approach, constructing URLs is
centralized in the routing engine, and changing a route will automatically change
all of the hyperlinks in the web application. The RouteCollection object defines
a GetVirtualPath method which looks for the first route in the route table that
matches the parameters that the method was given.

Here's an example route definition:

routes.MapRoute(
 "ProductShow", // Route name
 "Product/{id}-{title}.aspx", // URL with parameters
 new { // Parameter defaults
 controller = "Product",
 action = "Show",
 id = "",
 title = ""
 },
 new { id = @"[\d.*]" } // Parameter constraints
);

A URL for this route can be created by using the following code:

string url = RouteData.Route.GetVirtualPath(ControllerContext,
 new RouteValueDictionary(new
 {
 controller = "Product",
 action = "Show",
 id = 12,
 title = "RubberDuck"
 }
)
).VirtualPath;

The GetVirtualPath method returns a VirtualPathData instance, which contains
some information on the current virtual path, such as the URL and route data.
The generated URL, which can be found in the VirtualPath property, will be
Product/12-RubberDuck.aspx.

Routing

[90]

Summary
In this chapter, we have seen what ASP.NET routing is. We've also seen
the difference between ASP.NET routing and URL rewriting, and how the
UrlRoutingModule fits in the request life cycle.

Another thing we've learned is how routes are mapped to route patterns, and
controller action methods. We've also learned how routes are defined, what a
catch-all parameter is, and what parameter constraints are. We've used parameter
constraints in an example that routes requests into different namespaces.

Finally, we've seen how an ASP.NET MVC application can be combined with
ASP.NET Webforms application by setting up the StopRouteHandler.

Customizing and Extending
the ASP.NET MVC

Framework
One of the driving goals for the ASP.NET MVC framework has been to create a
flexible framework in which every component can be extended or replaced by a
custom solution, whether developed by you or obtained from a third-party vendor.
This chapter describes how you can customize and extend the ASP.NET MVC
framework: from creating a control and creating a custom ActionResult to creating
your own view engine.

You will learn the following in this chapter:

How to extend the ASP.NET MVC framework
How to create a control, or a so-called partial view
More about filter attributes and how to create one
How to create a custom ActionResult that displays an image containing text
based on a controller's action method
How to create your own ViewEngine and IView, supporting simple HTML
markup that contains entries from the ViewData dictionary

•

•

•

•

•

Customizing & Extending the ASP.NET MVC Framework

[92]

Creating a control
When building applications, you probably also build controls. Controls are re-usable
components that contain functionality that can be re-used in different locations. In
ASP.NET Webforms, a control is much like an ASP.NET web page. You can add
existing web server controls and markup to a custom control and define properties
and methods for it. When, for example, a button on the control is clicked, the page is
posted back to the server that performs the actions required by the control.

The ASP.NET MVC framework does not support ViewState and postbacks, and
therefore, cannot handle events that occur in the control. In ASP.NET MVC, controls
are mainly re-usable portions of a view, called partial views, which can be used to
display static HTML and generated content, based on ViewData received from a
controller. In this topic, we will create a control to display employee details. We will
start by creating a new ASP.NET MVC application using File | New | Project… in
Visual Studio, and selecting ASP.NET MVC Application under Visual C# - Web.
First of all, we will create a new Employee class inside the Models folder. The code
for this Employee class is:

public class Employee
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Email { get; set; }
 public string Department { get; set; }
}

On the home page of our web application, we will list all of our employees. In order
to do this, modify the Index action method of the HomeController to pass a list of
employees to the view in the ViewData dictionary. Here's an example that creates a
list of two employees and passes it to the view:

public ActionResult Index()
{
 ViewData["Title"] = "Home Page";
 ViewData["Message"] = "Our employees welcome you to our site!";

 List<Employee> employees = new List<Employee>
 {
 new Employee{
 FirstName = "Maarten",
 LastName = "Balliauw",
 Email = "maarten@maartenballiauw.be",
 Department = "Development"
 },
 new Employee{
 FirstName = "John",
 LastName = "Kimble",

Chapter 6

[93]

 Email = "john@example.com",
 Department = "Development"
 }
 };

 return View(employees);
}

The corresponding view, Index.aspx in the Views | Home folder of our ASP.NET
MVC application, should be modified to accept a List<Employee> as a model. To do
this, edit the code behind the Index.aspx.cs file and modify its contents as follows:

using System.Collections.Generic;
using System.Web.Mvc;
using ControlExample.Models;

namespace ControlExample.Views.Home
{
 public partial class Index : ViewPage<List<Employee>>
 {
 }
}

In the Index.aspx view, we can now use this list of employees. Because we will
display details of more than one employee somewhere else in our ASP.NET MVC
web application, let's make this a partial view.

Right-click the Views | Shared folder, click on Add | New Item… and select the
MVC View User Control item template under Visual C# | Web | MVC. Name the
partial view, DisplayEmployee.ascx.

Customizing & Extending the ASP.NET MVC Framework

[94]

The ASP.NET MVC framework provides the flexibility to use a strong-typed version
of the ViewUserControl class, just as the ViewPage class does. The key difference
between ViewUserControl and ViewUserControl<T> is that with the latter, the type
of view data is explicitly passed in, wherease the non-generic version will contain
only a dictionary of objects. Because the DisplayEmployee.aspx partial view will be
used to render items of the type Employee, we can modify the DisplayEmployee.
ascx code behind the file DisplayEmployee.ascx.cs and make it strong-typed:

using ControlExample.Models;

namespace ControlExample.Views.Shared
{
 public partial class DisplayEmployee :
 System.Web.Mvc.ViewUserControl<Employee>
 {
 }
}

In the view markup of our partial view, the model can now be easily referenced. Just
as with a regular ViewPage, the ViewUserControl will have a ViewData property
containing a Model property of the type Employee. Add the following code to
DisplayEmployee.ascx:

<%@ Control Language="C#" AutoEventWireup="true"
 CodeBehind="DisplayEmployee.ascx.cs"
 Inheits="ControlExample.Views.Shared.DisplayEmployee" %>

<%=Html.Encode(Model.LastName)%>, <%=Html.Encode(Model.FirstName)%>

<%=Html.Encode(Model.Department)%>

The control can now be used on any view or control in the application. In the Views
| Home | Index.aspx view, use the Model property (which is a List<Employee>)
and render the control that we have just created for each employee:

<%@ Page Language="C#" MasterPageFile="~/Views/Shared/Site.
Master" AutoEventWireup="true" CodeBehind="Index.aspx.cs"
Inherits="ControlExample.Views.Home.Index" %>

<asp:Content ID="indexContent" ContentPlaceHolderID="MainContent"
runat="server">
 <h2><%= Html.Encode(ViewData["Message"]) %></h2>
 <p>Here are our employees:</p>

 <% foreach (var employee inModel) { %>

 <% Html.RenderPartial("DisplayEmployee", employee); %>

 <% } %>

</asp:Content>

Chapter 6

[95]

In case the control's ViewData type is equal to the view page's ViewData type, another
method of rendering can also be used. This method is similar to ASP.NET Webforms
controls, and allows you to specify a control as a tag. Optionally, a ViewDataKey can
be specified. The control will then fetch its data from the ViewData dictionary entry
having this key.

 <uc1:EmployeeDetails ID="EmployeeDetails1"
 runat="server"
 ViewDataKey="...." />

For example, if the ViewData contains a key emp that is filled with an Employee
instance, the user control could be rendered using the following markup:

 <uc1:EmployeeDetails ID="EmployeeDetails1"
 runat="server"
 ViewDataKey="emp" />

After running the ASP.NET MVC web application, the result will appear as shown in
the following screenshot:

Customizing & Extending the ASP.NET MVC Framework

[96]

Creating a filter attribute
An action filter is an attribute that can be applied to a controller class or an action
method. Whenever the controller or action method is called, the action filter will be
triggered both before and after the execution. Typically, action filters are used for
solving problems that can occur in more than one class—the so called cross-cutting
concerns. A typical cross-cutting concern is output caching or authentication—both
can be required for more than one action method. More information about action
filters can be found in Chapter 4, Components in the ASP.NET MVC Framework.

One cross-cutting concern of an action method might be logging. For example, one
wants to log when an action was called, and whether its result was executed, in a log
file as shown here:

[2008-09-02 - 03:03:13] Controller: Home; Action: Index; Action
executing...
[2008-09-02 - 03:03:13] Controller: Home; Action: Index; Action
executed.
[2008-09-02 - 03:03:13] Controller: Home; Action: Index; Result
executing...
[2008-09-02 - 03:03:15] Controller: Home; Action: Index; Result
executed.
[2008-09-02 - 03:04:42] Controller: Account; Action: Login; Action
executing...
[2008-09-02 - 03:04:42] Controller: Account; Action: Login; Action
executed.
[2008-09-02 - 03:04:42] Controller: Account; Action: Login; Result
executing...
[2008-09-02 - 03:04:43] Controller: Account; Action: Login; Result
executed.
[2008-09-02 - 03:04:44] Controller: Home; Action: About; Action
executing...
[2008-09-02 - 03:04:44] Controller: Home; Action: About; Action
executed.
[2008-09-02 - 03:04:44] Controller: Home; Action: About; Result
executing...
[2008-09-02 - 03:04:44] Controller: Home; Action: About; Result
executed.

To achieve this, a filter attribute can be created by implementing the IActionFilter
and IResultFilter interfaces, and optionally overloading the FilterAttribute
class. An action filter allows you to run code before and after an action method is
called, but before the result of the action method is executed. A result filter is very
similar to an action filter except that it is executed before and after the result is
returned from the action that has been executed.

Chapter 6

[97]

The IActionFilter interface defines two methods:

OnActionExecuting
Runs before the action method is executed.
OnActionExecuted
Runs after the action method is executed, but before the ActionResult
is executed.

The IResultFilter interface defines two methods:

OnResultExecuting
Runs before the action method's action result is executed
OnResultExecuted
Runs after the action method's action result is executed.

Let's create a class called LoggingAttribute which implements these two interfaces,
and will run whenever an action is executing or an action result is executing. The
example in this topic is based on an ASP.NET MVC web application, which can be
found in the sample code for this book (ActionFilterExample).

First of all, let's define the class and apply the AttributeUsage attribute to it.
This attribute tells the compiler that the LoggingAttribute we are creating can
only be applied to classes and methods. The LoggingAttribute class implements
IActionFilter and IResultFilter. We also add a property named LogName,
which will hold the path to our log file.

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method,
Inherited = true, AllowMultiple = true)]
public class LoggingAttribute : FilterAttribute, IActionFilter,
IResultFilter
{
 #region Properties

 public string LogName { get; set; }

 #endregion
}

Because we will be logging some things, let's also add a method that writes a log
message to the file referenced by the LogName property. This method will simply
open the file, append a new line to it, and close it again.

private void LogMessage(string controller, string action, string
 message)
{
 if (!string.IsNullOrEmpty(LogName))
 {

•

•

•

•

Customizing & Extending the ASP.NET MVC Framework

[98]

 TextWriter writer = new StreamWriter(LogName, true);
 writer.WriteLine("[{0}] Controller: {1}; Action: {2}; {3}",
 DateTime.Now.ToString("yyyy-MM-dd - hh:mm:ss"),
 controller, action, message);
 writer.Close();
 }
}

Now, it is time to implement the IActionFilter and IResultFilter
interfaces. For the IActionFilter, we'll add the OnActionExecuting and
OnActionExecuted methods. For IResultFilter, we'll add the OnResultExecuting
and OnResultExecuted methods. All of these methods will use the LogMessage
method that we've just created and pass in some information for logging to the file.

public void OnActionExecuting(ActionExecutingContext filterContext)
{
 LogMessage(
 filterContext.RouteData.Values["controller"].ToString(),
 filterContext.RouteData.Values["action"].ToString(),
 "Action executing..."
);
}

public void OnActionExecuted(ActionExecutedContext filterContext)
{
 LogMessage(
 filterContext.RouteData.Values["controller"].ToString(),
 filterContext.RouteData.Values["action"].ToString(),
 "Action executed."
);
}

public void OnResultExecuting(ResultExecutingContext filterContext)
{
 LogMessage(
 filterContext.RouteData.Values["controller"].ToString(),
 filterContext.RouteData.Values["action"].ToString(),
 "Result executing..."
);
}

public void OnResultExecuted(ResultExecutedContext filterContext)
{
 LogMessage(
 filterContext.RouteData.Values["controller"].ToString(),
 filterContext.RouteData.Values["action"].ToString(),
 "Result executed.".
);
}

Chapter 6

[99]

The source of information that is being logged originates in the parameter passed to
the On… methods. This is always an object containing information about the current
execution context, such as the controller that is executing, the view that is being
rendered, and HTTP request data.

Here's the full LoggingAttribute class that we have been creating:

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method,
Inherited = true, AllowMultiple = true)]
public class LoggingAttribute : FilterAttribute, IActionFilter,
IResultFilter
{
 #region Properties

 public string LogName { get; set; }

 #endregion

 #region Helper methods

 private void LogMessage(string controller, string action, string
 message)
 {
 if (!string.IsNullOrEmpty(LogName))
 {
 TextWriter writer = new StreamWriter(LogName, true);
 writer.WriteLine("[{0}] Controller: {1}; Action: {2}; {3}",
 DateTime.Now.ToString("yyyy-MM-dd - hh:mm:ss"),
 controller, action, message);
 writer.Close();
 }
 }

 #endregion

 #region IActionFilter Members

 public void OnActionExecuting(ActionExecutingContext
 filterContext)
 {
 LogMessage(
 filterContext.RouteData.Values["controller"].ToString(),
 filterContext.RouteData.Values["action"].ToString(),
 "Action executing..."
);
 }

 public void OnActionExecuted(ActionExecutedContext filterContext)
 {
 LogMessage(

Customizing & Extending the ASP.NET MVC Framework

[100]

 filterContext.RouteData.Values["controller"].ToString(),
 filterContext.RouteData.Values["action"].ToString(),
 "Action executed."
);
 }

 #endregion

 #region IResultFilter Members

 public void OnResultExecuting(ResultExecutingContext
 filterContext)
 {
 LogMessage(
 filterContext.RouteData.Values["controller"].ToString(),
 filterContext.RouteData.Values["action"].ToString(),
 "Result executing..."
);
 }

 public void OnResultExecuted(ResultExecutedContext filterContext)
 {
 LogMessage(
 filterContext.RouteData.Values["controller"].ToString(),
 filterContext.RouteData.Values["action"].ToString(),
 "Result executed."
);
 }

 #endregion}

The filter can now be applied to any controller, which in turn will apply the filter to
all of the action methods, or to individual action methods:

[Logging(LogName = "C:\\temp\\ApplicationLog.log")]
public class HomeController : Controller
{

 // ...

 [Logging(LogName = "C:\\temp\\ActionLog.log")]
 public ActionResult SomeAction() {

 // ...

 }
}

Now, when the SomeAction action method of the HomeController is called, a log
entry will be created when the view is being rendered.

Chapter 6

[101]

Creating a custom ActionResult
The ASP.NET MVC framework's action method implements the concept of returning
an ActionResult instance, which will typically render a specific view, or redirect the
user to a different location on the web site. An ActionResult that renders a view is
returned as a RenderViewResult . The ExecuteResult() method is called in order
to render specific contents to the HTTP response stream.

An ActionResult can take any form, as we have seen in Chapter 4, as long as it
has something to do with the HTTP response stream. For example, you can create
a FileDownloadResult that streams a file on the HTTP response stream, or a
PermanentRedirectResult that renders HTTP status code 302.

One of the problems that many web designers face is the fact that a user's web
browser may or may not have the specific fonts needed to display the contents. This
may be a problem, say, if the web designer wants to style a title element in some
exotic font face. Because the ASP.NET MVC framework has a modular architecture,
a custom ActionResult class can easily be created to achieve this goal. This custom
ActionResult will render a JPEG image based on input text, which can be used to
display a page title. This ActionResult class will be named ImageResult.

Customizing & Extending the ASP.NET MVC Framework

[102]

The example in this topic is based on an ASP.NET MVC web application that can be
found in the sample code for this book (CustomActionResultExample). The Code
folder contains the ImageResult that we will build. The new ImageResult class will
inherit the abstract class ActionResult and implement its ExecuteResult method.
This method basically performs communication over the HTTP response stream. It
accepts an Image object as a property as well as an ImageFormat. This means that a
custom image can easily be rendered to the HTTP response stream, whether as JPEG,
BMP, PNG, or GIF.

using System;
using System.Drawing;
using System.Drawing.Imaging;
using System.Web.Mvc;

namespace CustomActionResultExample.Code
{
 public class ImageResult : ActionResult
 {
 public ImageResult() { }

 public Image Image { get; set; }
 public ImageFormat ImageFormat { get; set; }

 public override void ExecuteResult(ControllerContext context)
 {
 // verify properties
 if (Image == null)
 {
 throw new ArgumentNullException("Image");
 }
 if (ImageFormat == null)
 {
 throw new ArgumentNullException("ImageFormat");
 }

 // output
 context.HttpContext.Response.Clear();

 if (ImageFormat.Equals(ImageFormat.Bmp)) context.
HttpContext.Response.ContentType = "image/bmp";
 if (ImageFormat.Equals(ImageFormat.Gif)) context.
HttpContext.Response.ContentType = "image/gif";
 if (ImageFormat.Equals(ImageFormat.Icon)) context.
HttpContext.Response.ContentType = "image/vnd.microsoft.icon";
 if (ImageFormat.Equals(ImageFormat.Jpeg)) context.
HttpContext.Response.ContentType = "image/jpeg";
 if (ImageFormat.Equals(ImageFormat.Png)) context.
HttpContext.Response.ContentType = "image/png";

Chapter 6

[103]

 if (ImageFormat.Equals(ImageFormat.Tiff)) context.
HttpContext.Response.ContentType = "image/tiff";
 if (ImageFormat.Equals(ImageFormat.Wmf)) context.
HttpContext.Response.ContentType = "image/wmf";

 Image.Save(context.HttpContext.Response.OutputStream,
 ImageFormat);
 }
 }
}

The ImageResult class defines two properties: Image and ImageFormat. These
properties can be set in the ImageResult constructor. When the ImageResult is
executed in the ExecuteResult method, the in-memory image is rendered to the
HTTP response stream in the specified image format.

Rendering the page title image will be done by a PageTitleController which
has one action method, ShowTitle, that builds a bitmap image and returns it as
an ImageResult.

using System.Drawing;
using System.Drawing.Imaging;
using System.Web.Mvc;
using CustomActionResultExample.Code;

namespace CustomActionResultExample.Controllers
{
 public class PageTitleController : Controller
 {
 public ActionResult ShowTitle(string pageTitle, int width,
 int height)
 {
 // Create bitmap
 Bitmap bmp = new Bitmap(width, height);
 Graphics g = Graphics.FromImage(bmp);

 g.FillRectangle(Brushes.White, 0, 0, width, height);

 // Render light gray background
 g.DrawString(pageTitle, new Font("Lucida Handwriting",
 height / 2),
 Brushes.LightGray, new PointF(2, 2));

 // Render black text on top
 g.DrawString(pageTitle, new Font("Lucida Handwriting",
 height / 2),
 Brushes.Black, new PointF(0, 0));

 // Return ImageResult
 return new ImageResult { Image = bmp, ImageFormat =
 ImageFormat.Jpeg };
 }
 }
}

Customizing & Extending the ASP.NET MVC Framework

[104]

The ShowTitle action method creates a new in-memory bitmap and renders a text
and text shadow on a white background. This bitmap is then passed into a new
ImageResult instance, which will render the image to the HTTP response stream.

As an extra feature, this image-rendered page title can be added to the web page in
an easy manner.

<%=Html.PageTitle("Welcome to ASP.NET MVC!", 400, 40)%>

This HtmlHelper extension method will render an HTML image tag such as <img
src="/PageTitle/ShowTitle?pageTitle=Welcome%20to%20ASP.NET%20MVC!&w
idth=400&height=40" width="400" height="40" alt="Welcome to ASP.NET
MVC!" />. It is implemented as follows:

using System.Web.Mvc;
using CustomActionResultExample.Controllers;
using Microsoft.Web.Mvc;

namespace CustomActionResultExample.Code
{
 public static class PageTitleHelper
 {
 public static string PageTitle(this HtmlHelper helper, string
 pageTitle, int width, int height)
 {
 string url = LinkBuilder.BuildUrlFromExpression
 <PageTitleController>(helper.ViewContext.
 RequestContext, helper.RouteCollection,
 c => c.ShowTitle(pageTitle, width, height));

 return string.Format("<img src=\"{0}\" width=\"{1}\"
 height=\"{2}\" alt=\"{3}\" />", url, width,
 height, pageTitle);
 }
 }
}

We have used a new namespace here (Microsoft.Web.Mvc) to make
use of the LinkBuilder class. This namespace contains several classes
that may be included in the ASP.NET MVC framework in future, but are
currently not considered to be stable by the ASP.NET MVC development
team. The MVC features can be downloaded from the official CodePlex
site at http://www.codeplex.com/aspnet.

Chapter 6

[105]

If all of the classes are in place, we can now add an image-based title in our view in
an easy, intuitive manner. The following code will replace the default home page by
an enhanced version using our newly-created ImageResult. The HtmlHelper class
now has a new method, PageTitle, which we can use to create a title image of a
specified width and height.

<asp:Content ID="indexContent"
 ContentPlaceHolderID="MainContent"
 runat="server">
 <%=Html.PageTitle(ViewData["Message"].ToString(), 400, 40)%>
 <p>
 To learn more about ASP.NET MVC visit <a
 href="http://asp.net/mvc" title="ASP.NET MVC
 Website">http://asp.net/mvc.
 </p>
</asp:Content>

After running the application, the index page will look like the screenshot presented
earlier in this topic.

Creating a ViewEngine
A ViewEngine maps view names to actual files on the web server and instantiates a
View if one is found. By default, views are located in the Views | ControllerName
project folder, or in the Views | Shared folder. There are some custom ViewEngine
implementations available on the Internet (NHaml, Spark, and so on; you will find
links to these in Appendix C of this book); we will be building a custom ViewEngine
and View implementation.

All ViewEngine implementations for the ASP.NET MVC framework implement the
IViewEngine interface:

public interface IViewEngine
{
 ViewEngineResult FindPartialView(ControllerContext
 controllerContext, string partialViewName);
 ViewEngineResult FindView(ControllerContext controllerContext,
 string viewName, string masterName);
}

The only responsibility an IViewEngine implementation has is to find a view or a
partial view in the application. If a view has not been found, the implementation
should return a list of searched locations. If a view has been found,
a ViewEngineResult is returned.

Customizing & Extending the ASP.NET MVC Framework

[106]

When a view is required to be rendered, each registered IViewEngine is consulted
(in the order in which they were registered) until the ASP.NET MVC framework
finds one that returns a view that can be rendered.

The WebFormsViewEngine (ASP.NET MVC's default) searches the following virtual
paths for views or partial views:

~/Views/<controllerName>/<viewName>.aspx

~/Views/<controllerName>/<viewName>.ascx

~/Views/Shared/<viewName>.aspx

~/Views/Shared/<viewName>.ascx

Master pages are searched for in the following virtual paths:

~/Views/<controllerName>/<masterName>.master

~/Views/Shared/<masterName>.master

In order to create a custom IViewEngine, the tone can overload the base class,
VirtualPathProviderViewEngine, instead of implementing the IViewEngine
interface. The VirtualPathProviderViewEngine class provides the base
functionality for searching a view on a file system.

The example in this topic is based on an ASP.NET MVC web application which can
be found in the sample code for this book (CustomViewEngine).

Let's start creating a SimpleViewEngine by overloading the
VirtualPathProviderViewEngine. In the constructor, set the paths where the
master and view pages can be found. The SimpleViewEngine will search for views
and partial views in the same locations that the WebFormsViewEngine does, except
that it searches for .htm or .html files. Master page support is not available; hence
the empty path is passed in the constructor.

Next, override the two methods: CreatePartialView() and CreateView().
These methods are used to instantiate a view based on the path defined in
this SimpleViewEngine. CreatePartialView() and CreateView() return a
SimpleView, which is our own view implementation, on which we'll focus
right away.

using System.Web.Mvc;

namespace CustomViewEngine.Core
{
 public class SimpleViewEngine : VirtualPathProviderViewEngine
 {
 #region Constructor

•

•

•

•

•

•

Chapter 6

[107]

 public SimpleViewEngine() : base()
 {
 base.MasterLocationFormats = new string[] { "" };

 base.ViewLocationFormats = new string[] {
 "~/Views/{1}/{0}.htm",

 "~/Views/{1}/{0}.html",

 "~/Views/Shared/{0}.htm",

 "~/Views/Shared/{0}.html"
 };

 base.PartialViewLocationFormats = ViewLocationFormats;
 }

 #endregion

 #region VirtualPathProviderViewEngine Members

 protected override IView CreatePartialView(ControllerContext
 controllerContext, string partialPath)
 {
 return new SimpleView(partialPath);
 }

 protected override IView CreateView(ControllerContext
 controllerContext, string viewPath, string masterPath)
 {
 return new SimpleView(viewPath);
 }

 #endregion
 }
}

IView is the interface that is used for defining a view. A view is responsible for
rendering itself to a TextWriter instance, which will probably be the HTTP response
stream. Let's create our SimpleView class. First of all, implement the IView interface.
This interface defines the Render() method on which we'll focus later. Also, add a
constructor that can be used by the SimpleViewEngine that we created earlier, and
a ViewPath property, for the sake of convenience when debugging.

using System;
using System.Collections;
using System.IO;
using System.Reflection;
using System.Text.RegularExpressions;
using System.Web.Mvc;

Customizing & Extending the ASP.NET MVC Framework

[108]

namespace CustomViewEngine.Core
{
 public class SimpleView : IView
 {
 #region Private fields

 private string viewPath;

 #endregion

 #region Constructor

 public SimpleView(string viewPath)
 {
 this.viewPath = viewPath;
 }

 #endregion

 #region Public properties

 public string ViewPath {
 get { return this.viewPath; }
 }

 #endregion

 #region IView Members

 public virtual void Render(ViewContext viewContext,
 TextWriter writer)
 {
 // ...
 }

 #endregion
 }
}

Next, let's implement the Render() method. This is passed the ViewContext and
TextWriter instances. The first instance contains the ViewData that we are receiving
from the controller, along with some other properties. The latter will probably be
the HTTP response stream. In our implementation of Render(), the view source
code is evaluated using a regular expression, which will look for things such as
{$ViewData.Message}, and which we will map to ViewData["Message"] later on.

public virtual void Render(ViewContext viewContext, TextWriter
 writer)
{
 string viewTemplate = File.ReadAllText(
 viewContext.HttpContext.Request.MapPath(this.viewPath)
);

Chapter 6

[109]

 Regex templatePattern = new Regex(@"({\$\w+((\.|\[)\w+\]?)*})",
 RegexOptions.Multiline);
 MatchEvaluator replaceCallback = new MatchEvaluator(m =>
 SimpleView.Resolve(m.Value,
 viewContext.ViewData).
 ToString());
 viewTemplate = templatePattern.Replace(viewTemplate,
 replaceCallback);

 writer.Write(viewTemplate);
}

Note that the MatchEvaluator will call a method named Resolve() for each match
that is found in the view markup. We will not go deeper into the Resolve() method,
but it basically replaces things such as {$ViewData.Message} with more meaningful
data found in ViewData["Message"]. The Resolve() method can be found in the
following complete code for SimpleView:

using System;
using System.Collections;
using System.IO;
using System.Reflection;
using System.Text.RegularExpressions;
using System.Web.Mvc;

namespace CustomViewEngine.Core
{
 public class SimpleView : IView
 {
 #region Private fields

 private string viewPath;

 #endregion

 #region Constructor

 public SimpleView(string viewPath)
 {
 this.viewPath = viewPath;
 }

 #endregion

 #region Public properties

 public string ViewPath {
 get { return this.viewPath; }
 }

 #endregion

 #region IView Members

Customizing & Extending the ASP.NET MVC Framework

[110]

 public virtual void Render(ViewContext viewContext,
 TextWriter writer)
 {
 string viewTemplate = File.ReadAllText(viewContext.
 HttpContext.Request.MapPath
 (this.viewPath));

 Regex templatePattern = new Regex(@"({\$\w+((\.|\[)\w+\]?)*})"
 , RegexOptions.Multiline);
 MatchEvaluator replaceCallback = new MatchEvaluator(m =>
 SimpleView.Resolve(m.Value,
 viewContext.ViewData).
 ToString());
 viewTemplate = templatePattern.Replace
 (viewTemplate, replaceCallback);

 writer.Write(viewTemplate);
 }

 #endregion

 #region Helper methods

 public static object Resolve(string sourceString,
 object sourceObject)
 {
 // Setup regular expressions engine
 Regex templatePattern = new Regex(@"(\$\w+((\.|\[)\w+\]?)*)",
 RegexOptions.Multiline);

 object resolvedObject = null;
 MatchEvaluator replaceCallback = new MatchEvaluator(
 delegate(Match m)
 {
 // Split expression
 string[] expressions = m.Value.Replace("{", "")
 .Replace("$", "")
 .Replace("}", "")
 .Replace("[", ".")
 .Replace("]", "")
 .Split('.');

 // Loop expressions
 object lastObject = sourceObject;
 string expression = "";
 for (int i = 1; i < expressions.Length; i++)
 {
 expression = expressions[i];

 if (lastObject != null)
 {

Chapter 6

[111]

 if (lastObject is IDictionary<string,
 object>)
 {
 lastObject = ((IDictionary<string,
 object>)lastObject)[expression];
 }
 else if (lastObject is IDictionary)
 {
 lastObject = ((IDictionary)lastObject)
 [expression];
 }
 else if (lastObject is Array)
 {
 lastObject = ((Array)lastObject).GetValue
 (int.Parse(expression));
 }
 else
 {
 try
 {
 lastObject = lastObject.GetType().
 InvokeMember(expression,
 BindingFlags.Instance |
 BindingFlags.Public |
 BindingFlags.GetField |
 BindingFlags.GetProperty,
 null, lastObject, null);
 }
 catch (MissingMethodException)
 {
 lastObject = string.Format("Undefined:
 {0}", m.Value);
 }
 }
 }
 }

 if (lastObject != null)
 {
 resolvedObject = lastObject;
 }
 else
 {
 resolvedObject = string.Format("Undefined: {0}",
 sourceString);
 }

Customizing & Extending the ASP.NET MVC Framework

[112]

 return resolvedObject.ToString();
 }
);

 // Fire up replacement engine!
 templatePattern.Replace(sourceString, replaceCallback);
 return resolvedObject;
 }

 #endregion
 }
}

The Render() method is responsible for rendering the view. It loads the template
from the file system, replaces some variables with data from the ViewData dictionary
using a regular expression and regular expression callback, and renders the result to
the provided TextWriter.

The view markup for this SimpleViewEngine can be found in /Views/
<controller>/<action>.htm. The following code snippet is the view markup
for Views | Home | Index.htm, used by the Index action method of the
HomeController class.

<html>
 <head>
 <title>{$ViewData.Title}</title>
 </head>

 <body>
 <h1>{$ViewData.Message}</h1>
 </body>
</html>

For the SimpleViewEngine to be consulted by the ASP.NET framework, it has to be
registered. This has to be done once, preferably in the Application_Start event
handler, which can be found in the Global.asax.cs file, and is called only the first
time the application is started:

protected void Application_Start()
{
 ViewEngines.Engines.Add(new SimpleViewEngine());

 RegisterRoutes(RouteTable.Routes);
}

Once we remove the Index.aspx view created by the ASP.NET MVC Visual Studio
Project Template, the Index.htm view we created earlier will be used by the Index
action method of the HomeController class. On running the application, you will see
the following screen:

Chapter 6

[113]

Summary
In this chapter, we learned how to extend the ASP.NET MVC framework. We created
a control, which is also called a partial view. We also learned more about filter
attributes, and also created one of our own.

We looked at how to create a custom ActionResult, which displays an image
containing text based on a controller's action method.

Finally, we created our own ViewEngine and IView, which provided support for
simple HTML markup containing entries from the ViewData dictionary.

Using Existing
ASP.NET Features

Ever since Microsoft started working on the ASP.NET MVC framework, one of the
primary concerns was the framework's ability to re-use as many features as possible
from ASP.NET Webforms. Because ASP.NET MVC is built on top of ASP.NET, you
can easily use features such as .ASPX, .ASCX, and master pages, server controls,
templates, data binding, and so on. Actually, any feature except for those features
requiring ViewState of postbacks from ASP.NET Webforms, can be used.

You will learn the following in this chapter:

Using session state in the ASP.NET MVC framework
What TempData is, and what its use is in an ASP.NET MVC web application
What membership, authentication, and authorization are
How to configure web site security
How to use existing ASP.NET membership, authentication, and
authorization providers
Protecting access to specific controller action methods
How you can make use of output caching in an ASP.NET MVC
web application
What internationalization is, and how to use it
Mixing ASP.NET Webforms and ASP.NET MVC in one application and
sharing data between both technologies

How to add a post-build action to a project file to make sure that all views
can be compiled

•

•

•

•

•

•

•

•

•

•

Using Existing ASP.NET Features

[116]

Session State
When working with ASP.NET, you may have used session state to store user‑specific
information, which is maintained between server round trips. Session state is
actually a set of key-value pairs that is persisted on the server and scoped to a
browser session. If different users are using your application, each user will have
their own set of key-value pairs. Whenever a session times out, a user is assigned
an empty session state.

Each client is identified by a unique key, which is stored in a cookie or in a request
variable. On the server, this identifier is mapped to a session, which is stored in the
web server's process, a session server, SQL server, or any custom session store that
inherits from System.Web.SessionState.SessionStateStoreProviderBase.

Reading and writing session data
Session state is stored in the context information of an ASP.NET MVC
application. When writing code for a controller action, you can easily access the
HttpSessionStateBase object in the controller's Session property. This is accessed
in the same way as which you would access any dictionary. Keys are always of type
string; values are of type object. This means that you can add any type of object to
the session state, as long as it is marked [Serializable].

Serialization is the process of converting an object into a sequence of bits
that can be stored in a file, a memory buffer, a database, or that can be
transmitted across a network. The [Serializable] attribute marks a
specific object as being serializable.
In this example, serialization is needed by the session state provider, as
it may temporarily store the session data in various locations—in the
memory, in a database, on a session state server, and so on. Making
the class serializable allows the session state provider to store the
object anywhere.

Chapter 7

[117]

The following code uses the Session dictionary's key Message to read and write a
message to session state:

using System.Web.Mvc;

namespace SessionStateExample.Controllers
{
 public class HomeController : Controller
 {
 public ActionResult Index()
 {
 Session["Message"] = "Hello world!";

 return View();
 }

 public ActionResult ReadData()
 {
 string message = "";

 if (Session["Message"] != null) {
 message = (string)Session["Message"];
 }

 return View();
 }
}

Configuring session state
Every aspect of session state can be configured in your web application's web.config.
For example, one can completely disable the session state:

<?xml version="1.0"?>
<configuration>
 <system.web>
 <sessionState mode="off"/>
 </system.web>
</configuration>

Using Existing ASP.NET Features

[118]

This sessionstate element can contain numerous attributes; some of them have
been enumerated here:

Attribute Default Possible Values
timeout mode="InProc" InProc: Enables session state

storage in the Web server's
memory; this is the default option
and offers the best performance
of all possible options. Web
applications running on one web
server and not requiring session
state to be persisted between
application restarts should use
this option.

StateServer: Stores session state
in a Windows service called
"ASP.NET State Service". This
service should be enabled in the
server's control panel. Using
this state server, session state is
hosted in an external process and
is available for other web servers.
This is not a redundant session
store as session data can be lost
when the state server is restarted.

SQLServer: Session state is stored
in an SQL server database and
preserved between application
restarts and database restarts.
This is not the most performant
session store, but it offers
good redundancy.

Custom: Enables you to use
a custom storage provider. A
custom session state provider
inherits from the System.
Web.SessionState.
SessionStateStore
ProviderBase class.

Off: Completely disables
session state.

timeout timeout="20" Will expire the session state after
the configured amount of minutes.

cookieName cookieName=
"ASP.NET_SessionId"

Holds the name of the cookie
that will be used to store the
session identifier.

Chapter 7

[119]

Attribute Default Possible Values
cookieless cookieless="UseCookies" Specifies how cookies are used for

storing the session identifier.

AutoDetect: ASP.NET will try
to detect if the client's browser
supports cookies and falls back to
using the URI if the browser does
not support cookies.

UseCookies: Requires
using cookies.

UseDeviceProfile: Uses a
pre-configured profile to enable
or disable cookies

UseUri: Stores the session
identifier in the request URI

regenerateExpiredSessionId regenerateExpiredSessio
nId="True"

Enables or disables automatic
generation of a new session
identifier whenever a session
expires. Possible values are True
or False

Refer to the MSDN page at http://msdn.microsoft.com/en-us/library/
h6bb9cz9.aspx for more information on configuring session state.

TempData
The ASP.NET MVC framework has built one extra feature on top of regular sessions:
TempData. TempData is a special storage mechanism that can be used to store data
across two requests. Note that the data is stored only for a single web request! This
means that, unlike a standard session, the TempData entry will be removed once a
second web request has been made.

TempData is very useful for keeping values that might be needed in a second request.
An example use for TempData could be pagination. Imagine that you have a search
page displaying some results, and you only want to show 'x' number of items at a
time. TempData can be used to save the search command while the user browses all
pages. Another use could be passing data between controllers. If you are redirecting
from one controller to another, and you need to pass data between them, TempData
can be used to pass this data.

Using Existing ASP.NET Features

[120]

Using TempData in the ASP.NET MVC framework is pretty straightforward:

// Write:
TempData["mydata"] = "This is my data.";

// Read:
var myData = TempData["mydata"];

The following image illustrates the life cycle of a TempData entry:

TempData[”mydata”]

=”Test”;
Request 1 Response 1

TempData[”mydata”]

is still present
Request 2 Response 2

TempData[”mydata”]

is not longer present!
Request 3 Response 3

Membership, authentication, and
authorization
In the early days of the Internet, most web sites were public spaces, having
information available for all users. Nowadays, most web sites offer an
authentication mechanism that allows users to store private information
and use members-only site features.

Authentication is the mechanism whereby a user is securely identified by a system. It
provides the answer to a simple question: who is this user? Authorization is another
mechanism, which is tightly coupled to authentication. Authorization is about
determining the level of access for a particular user—can this user access this page?
Can this user add a new client?

The ASP.NET framework provides several features for handling authentication and
authorization. In addition, it provides some tools that make user management easier
in a web application. These include wizards for configuring user management and
membership, and role classes, which you can use to identify a user and grant or deny
access to specific resources.

Chapter 7

[121]

When creating a new ASP.NET MVC application, you will notice a default
AccountController and associated views that expose classic ASP.NET membership
in the ASP.NET MVC framework.

The example in this topic is based on an ASP.NET MVC web application, which can
be found in the sample code for this book (AuthenticationExample).

Configuring web site security
After compiling a newly-created ASP.NET MVC web application for the first time,
it is possible to make use of the Web Site Administration Tool in order to configure
your web application's security. This tool provides a web-based frontend to the web
application's web.config file. The Web Site Administration Tool can be found in
Visual Studio's Project menu under ASP.NET Configuration. Note that it takes a
while to load this tool the first time. This is because a default membership database
is created in your web application's App_Data directory.

Using Existing ASP.NET Features

[122]

To configure users and roles, use the Security configuration wizard:

1.	 On the Web Site Administration Tool home page, click on the Security link.
2.	 Click on the Use the security Setup Wizard to configure security step by

step link.
3.	 Click on Next to continue.
4.	 Pick one of the following options:

From the internet—use a SQL server based user and
role configuration
From a local area network—use Windows authentication based on
local computer users and Active Directory

5.	 Complete the wizard and add some roles and users.

After completion, the Web Site Administration Tool can be closed, and the
web application's web.config will automatically be updated to reflect the
new configuration.

Implementing user and role based security in
a controller
After the security for an ASP.NET MVC application has been configured,
a controller or an action method can be protected by specifying users
and/or roles that can access the controller or action method. To do this, an
IAuthorizationAttribute can be used. An out-of-the-box implementation
of this IAuthorizationAttribute is the AuthorizeAttribute.

The AuthorizeAttribute provides two parameters, which can both be applied at
the same time:

Parameter Description
No specified
parameters

User is required to authenticate, but is allowed access regardless of his
username and role

Users A comma-separated list of usernames that are granted access; this can also
be an Active Directory username in the form of DOMAIN\Username

Roles A comma-separated list of roles that are granted access; this can also be an
Active Directory group in the form of DOMAIN\Group

•

•

Chapter 7

[123]

The following example requires a user to be authenticated before he or she can call
any action method on the HomeController. This is done by adding the [Authorize]
attribute to the Index action method. Additionally, the About action method can
be called only if the authenticated user has the role Administrator. This is done by
specifying the [Authorize(Roles="Administrator")] attribute.

using System.Web.Mvc;

namespace AuthenticationExample.Controllers
{
 [HandleError]
 [Authorize]
 public class HomeController : Controller
 {
 public ActionResult Index()
 {
 ViewData["Title"] = "Home Page";
 ViewData["Message"] = "Welcome to ASP.NET MVC!";

 return View();
 }

 [Authorize(Roles="Administrator")]
 public ActionResult About()
 {
 ViewData["Title"] = "About Page";

 return View();
 }
 }
}

When the above example is run, the user will immediately be redirected to the Login
action method of the AccountController class. The web application's web.config
has been preconfigured for this. The <forms> element's loginUrl attribute has been
configured to redirect unauthenticated users to the /Account/Login URL when
authentication is required. ASP.NET will automatically add a returnUrl parameter
to this URL to redirect a user back to the page that he or she originally requested.
The AccountController class makes use of ASP.NET's FormsAuthentication and
MembershipProvider classes to handle authentication and authorization.

Here's a (stripped-down) example of the web.config file configured to redirect an
unauthenticated user to /Account/Login:

<?xml version="1.0"?>
<configuration>
 <system.web>
 <!-- ... -->

Using Existing ASP.NET Features

[124]

 <authentication mode="Forms">
 <forms loginUrl="~/Account/Login" />
 </authentication>

 <!-- ... -->
 </system.web>
</configuration>

The default login view contained in the ASP.NET MVC Web Application Visual
Studio template looks like this:

Chapter 7

[125]

Configurable authentication options
The following table lists common optional configuration directives for the
<authentication> element. These can be modified in the application's web.config:

Attribute Default Possible values
mode mode="Forms" Specifies the authentication mode to be used

Windows—Specifies Windows authentication as
the default authentication mode; authentication
responsibility is delegated to the web server (IIS)
which uses Basic, Digest, Integrated Windows
authentication (NTLM/Kerberos), or
certificates authentication
Forms—Specifies ASP.NET forms authentication
as the default authentication mode
Passport—Specifies Microsoft Passport as the
default authentication mode
None—Specifies that no authentication
is required, or the application uses its own
authentication mechanisms

When using forms authentication, a <forms> element can be nested:

Attribute Default Possible values
cookieless cookieless=

"UseDeviceProfile"
Specifies whether cookies
should be used to identify an
authenticated user
UseCookies—Specifies that
cookies will always be used
UseUri—Specifies that cookies
will never be used
AutoDetect—Specifies that
cookies are to be used when
they are supported by the user's
browser; this is detected by a
probing mechanism
UseDeviceProfile—Specifies
that cookies are to be used when
specified in the ASP.NET device
profile for the user's browser

defaultUrl defaultUrl="~/
Default.aspx"

The URL to redirect to after the
user has been authenticated

Using Existing ASP.NET Features

[126]

Attribute Default Possible values
domain domain="" The domain in which the

authentication cookie is valid
loginUrl loginUrl="~/Account/

Login"
The URL to redirect to if the user
is required to authenticate; this is
typically a login page

name name=" .ASPXAUTH" The name of the authentication
cookie

path path="/" The path in which the
authentication cookie is valid

protection protection="All" The encryption to be used
for encrypting authentication
cookie contents
All—Specifies that the cookie is
protected using data validation
and encryption; this is a
combination of the following
two elements:
Encryption—Specifies that the
cookie is encrypted using DES
or 3DES
Validation—Specifies that
the cookie is verified, to prevent
possible tampered data
None—No protection is applied to
the authentication cookie; this is
very unsecured!

requireSSL requireSSL="false" Specifies whether an SSL
connection (HTTPS) is used to
transmit the authentication cookie

timeout timeout="30" The timeout (in minutes) for the
authentication cookie to expire

slidingExpiration slidingExpiration=
"true"

Specifies whether the timeout
should be reset to zero on
every request

Refer to the MSDN pages at http://msdn.microsoft.com/en-us/
library/9wff0kyh.aspx and http://msdn.microsoft.com/
en-us/library/907hb5w9.aspx for more information on configuring
authentication in ASP.NET.

Chapter 7

[127]

Caching
When a web browser retrieves a web page, it is often cached on the local computer
in the browser cache. The next time that the user requests the page, the chances are
that the browser simply retrieves the local copy instead of making a new request
to the web server—if the local copy is still valid. This approach increases the
responsiveness of the site by requesting only the required items from the server. It
also reduces the load on the web server because it is not necessary to render every
page that is used by a client.

Another alternative to client-side caching is server-side caching. Imagine that a user
has client-side caching enabled—the server will probably render the page only once
for each user. If multiple users request a specific page, the page will be rendered for
each of these users, even when each user is served with the same response.

ASP.NET offers output caching, which can be leveraged in the ASP.NET MVC
framework. The ASP.NET output cache keeps a copy of a rendered page that can be
returned instantly if a user requests the same page in the memory. In the ASP.NET
MVC framework, output caching is enabled by decorating a controller or an action
method with the [OutputCache] attribute.

The example in this topic is based on an ASP.NET MVC web application, which can
be found in the sample code for this book (OutputCacheExample).

In the following example, output caching is enabled for the index action method.
Caching is not subject to specific settings, except that the cache should become
invalid after 60 seconds.

[OutputCache(Duration = 60, VaryByParam="none")]
public ActionResult Index()
{
 ViewData["Title"] = "Home Page";
 ViewData["Message"] = "Welcome to ASP.NET MVC!";
 ViewData["CurrentTime"] = "The current time is " +
 DateTime.Now.ToLongTimeString();

 return View();
}

When using output caching, different versions of a cached result can be stored in
memory, depending on things such as action method parameters, HTTP headers,
and content encoding (VaryByContentEncoding, VaryByCustom, VaryByHeader,
and VaryByParam).

Using Existing ASP.NET Features

[128]

The next example caches the rendered view for 60 seconds, after which it becomes
stale (invalid). If a different parameter value for name is passed in, caching will be
different. For example, if a user calls the action method with a parameter value
"Maarten" for name, the cached result will be different from the cached result for
the parameter value "John" for name.

[OutputCache(Duration = 60, VaryByParam = "name")]
public ActionResult CacheMyName(string name)
{
 ViewData["Title"] = "My cached name";
 ViewData["Message"] = "My name is " + name;
 ViewData["CurrentTime"] = "The current time is " +
 DateTime.Now.ToLongTimeString();

 return View("Index");
}

The following list contains all of the possible parameters for
the OutputCacheAttribute:

Attribute Description
Duration The number of seconds to cache the page; after the specified

amount of seconds, the output cache will become stale
(invalid)

CacheProfile The profile name of the cache settings to associate with
the page

NoStore Determines whether to prevent secondary storage of
sensitive information

VaryByContentEncoding A list of content encoding strings that are used to vary the
output cache

VaryByCustom A string that represents custom output caching
requirements; if this attribute is given a value of
browser, the cache is varied by browser name and major
version information; if a custom string is entered, the
GetVaryByCustomString method in the application's
Global.asax file should be implemented

VaryByHeader A list of HTTP headers to vary the output cache
VaryByParam A list of strings used to vary the output cache; these strings

correspond to the parameter names of the action method for
which a different cache version should be stored; possible
values include none, an asterisk (*) and any action method
parameter name

SqlDependency A string representing an SQL dependency
Location The location where the cache is stored; possible values

are Any, Client, Downstream, Server, None, and
ServerAndClient

Chapter 7

[129]

Note that in the default project created by the ASP.NET MVC Web Application
Visual Studio Template, the AccountController has a default attribute
[OutputCache] attribute enabled:

[OutputCache(Location = OutputCacheLocation.None)]

There might be situations where a user is able to see another user's cached
content. By using the OutputCacheLocation.None, caching is disabled. On the
AccountController, this is a safety measure to prevent protected content from
being cached.

Also, check my blog at http://blog.maartenballiauw.be/post/2008/07/
01/Extending-ASPNET-MVC-OutputCache-ActionFilterAttribute-
Adding-substitution.aspx for an OutputCache attribute that also supports
page substitution.

Globalization
Whenever you are creating an ASP.NET MVC web application, the chances are that
you are creating it for a multilingual audience. This will be the case when building
an intranet web application for a multinational company and also when developing
a larger, public web site. Globalization allows your application to be used by people
in different parts of the world, speaking different languages.

Globalization is a combination of localization and internationalization. Localization
is the process of adapting the text and content of an application to a specific
language. Internationalization is the process of displaying the application in the
correct manner. For example, some languages are read left-to-right, while others
are read right-to-left. ASP.NET Webforms offers globalization features that will
automatically adjust formatting and languages depending on user preferences or a
browser's accepted languages.

Resources
When working with globalization in ASP.NET, you will be working with resources.
Resources are a collection of key-value pairs containing translations for a certain
language. For example, one can have a resource file for English, which contains all of
the English text used on a form. Another resource file would contain the same text,
but in Dutch.

Using Existing ASP.NET Features

[130]

Within ASP.NET, resource files are compiled into so-called satellite assemblies.
After the compilation of the MyApplication, there will be a MyApplication.dll file
containing not only the application logic, but also files called MyApplication.en-
us.dll, MyApplication.fr-fr.dll, MyApplication.nl-be.dll, and so on. These
extra DLL files contain all of the translations for a specific culture, and are used by
the .NET framework when the MyApplication.dll file is started in one of the
specified languages.

The example in this topic is based on an ASP.NET MVC web application, which can
be found in the sample code for this book (InternationalizationExample).

Using local resources
Local resources are resources specific to a single view or a partial view, and should
be used for providing various versions in different languages. These local resources
are stored in the App_LocalResources subfolder of the folder containing the view.

As an example, take the Views | Home | Index.aspx view. By default, the folder
structure of this will be:

When localizing this view using local resources, folder structure will look like this:

Notice that each local resource in the App_LocalResources folder contains
language and/or culture-specific copies named as the view, and the language
and/or culture, for example, Index.aspx.language-culture.resx. A default
local resource that will be used if no matching language/culture is found is
available in Index.aspx.resx.

Chapter 7

[131]

Local resources can be printed in a view by using the following syntax:

<%$ Resources:SomeResourceName %>

For example, the local resource named PageTitle can be retrieved from the local
recourse as follows:

<%$ Resources:PageTitle %>

The following screenshot illustrates the resource editor displaying the Dutch
resource file for a master page:

We can use the resources from a resource file in a view. The main text is retrieved
from a local resource file, and will display text depending on the user's language
and/or culture.

<%@ Page Language="C#"
 MasterPageFile="~/Views/Shared/Site.Master"
 AutoEventWireup="true"
 CodeBehind="Index.aspx.cs"
 Inherits="InternationalizationExample.Views.Home.Index" %>

<asp:Content ID="indexContent"
 ContentPlaceHolderID="MainContent"
 runat="server">
 <h2>
 <asp:Literal runat="server" Text="<%$ Resources:Message %>" />
 </h2>
 <p>
 <asp:Literal runat="server" Text="<%$ Resources:MainText %>" />
 </p>
</asp:Content>

Using Existing ASP.NET Features

[132]

The example code contains additional HtmlHelper extension methods to
use ASP.NET MVC style code:
<%=Html.Resource("Message")%>

Using global resources
Global resources are resources that are valid for the entire web application. For
example, contact email addresses, site title, and so on, can be stored as a global
resource in the web application root subfolder App_GlobalResources.

Global resources can be printed on a view using the following syntax:

<%$ Resources:GlobalResourceName, SomeResourceName %>

For example, for retrieving the site title from a global resource named
SiteConstants.resx, the following code can be used:

<%$ Resources:SiteConstants, SiteTitle %>

The example code contains additional HtmlHelper extension methods to
use ASP.NET MVC style code:
<%=Html.Resource("SiteConstants", "SiteTitle")%>

Setting language and culture preferences
Each user requesting an action method in the ASP.NET MVC framework is assigned
a worker thread on the web server. A worker thread is a thread that is started at
a client's request. There is no guarantee that a worker thread is assigned to the
same user every time—one user can be served a response by worker thread A and
afterwards by worker thread D. Because language and culture are thread-specific,
the culture and language settings on a thread should be repeated for each request.

Language and culture preferences can be set by passing them as request variables,
storing them in a session, or using a cookie. As users often bookmark a specific page,
it is recommended to provide support for passing these settings as request variables.
This can be done by adding a new route to the route table, allowing both URLs in the
form /en-US/Home/Index and URLs in the form/Home/Index (defaulting to en-US).

public static void RegisterRoutes(RouteCollection routes)
{
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapRoute(
 "DefaultLocalized",

Chapter 7

[133]

 "{language}-{culture}/{controller}/{action}/{id}",
 new { controller = "Home", action = "Index", id = "",
 language = "en", culture = "US" }
);

 routes.MapRoute(
 "Default",
 "{controller}/{action}/{id}",
 new { controller = "Home", action = "Index", id = "" }
);

}

The above code registers a new route named DefaultLocalized, which accepts a
language and culture parameter that is used to determine the current worker thread
language and culture.

Setting the current worker thread language and culture is the responsibility of a
custom action filter attribute: InternationalizationAttribute.

using System.Globalization;
using System.Threading;
using System.Web.Mvc;

namespace InternationalizationExample.Filters
{
 public class InternationalizationAttribute :
 ActionFilterAttribute
 {
 public override void OnActionExecuting(ActionExecutingContext
 filterContext)
 {
 string language = (string)filterContext.RouteData.
 Values["language"] ?? "en";
 string culture = (string)filterContext.RouteData.
 Values["culture"] ?? "US";

 Thread.CurrentThread.CurrentCulture = CultureInfo.
 GetCultureInfo(string.Format
 ("{0}-{1}", language, culture));
 Thread.CurrentThread.CurrentUICulture = CultureInfo.
 GetCultureInfo(string.Format
 ("{0}-{1}", language, culture));
 }
 }
}

Using Existing ASP.NET Features

[134]

Whenever a controller action method is starting to execute, the
InternationalizationAttribute will look for language and culture information in
the route data values, which are available when a user requests a page such as/en-
UK/Home/Index. The default language and culture used is en (English) US (United
States). The current thread's CurrentCulture and CurrentUICulture are set by
retrieving a CultureInfo instance based on the language and culture variables.

The CurrentCulture property represents the CultureInfo instance that is used
to format numbers, dates, and so on, whereas, the CurrentUICulture property
represents the CultureInfo instance that is used to retrieve the correct local or
global resource information.

Internationalizing a controller or action method can now easily be done by adding
the InternationalizationAttribute, for example:

[Internationalization]
public class HomeController : Controller {
 // ...
}

Now, when we run the example application with different URLs, the following
content is rendered:

Chapter 7

[135]

Mixing ASP.NET Webforms and
ASP.NET MVC
Not every ASP.NET MVC web application will be built from scratch. Several
projects will probably end up migrating from classic ASP.NET to ASP.NET MVC.
The question of how to combine both technologies in one application arises—is
it possible to combine both ASP.NET Webforms and ASP.NET MVC in one web
application? Luckily, the answer is yes.

Combining ASP.NET Webforms and ASP.NET MVC in one application is possible—in
fact, it is quite easy. The reason for this is that the ASP.NET MVC framework has been
built on top of ASP.NET. There's actually only one crucial difference: ASP.NET lives
in System.Web, whereas ASP.NET MVC lives in System.Web, System.Web.Routing,
System.Web.Abstractions, and System.Web.Mvc. This means that adding these
assemblies as a reference in an existing ASP.NET application should give you a good
start on combining the two technologies.

Another advantage of the fact that ASP.NET MVC is built on top of ASP.NET is
that data can be easily shared between both of these technologies. For example, the
Session state object is available in both the technologies, effectively enabling data to
be shared via the Session state.

The example in this topic is based on an ASP.NET MVC web application, which can
be found in the sample code for this book (MixingBothWorldsExample).

Plugging ASP.NET MVC into an existing
ASP.NET application
An ASP.NET Webforms application can become ASP.NET MVC enabled by
following some simple steps. First of all, add a reference to the following three
assemblies to your existing ASP.NET application:

System.Web.Routing

System.Web.Abstractions

System.Web.Mvc

After adding these assembly references, the ASP.NET MVC folder structure should
be created. Because the ASP.NET MVC framework is based on some conventions
(for example, controllers are located in Controllers), these conventions should be
respected. Add the folder Controllers, Views, and Views | Shared to your existing
ASP.NET application.

•

•

•

Using Existing ASP.NET Features

[136]

The next step in enabling ASP.NET MVC in an ASP.NET Webforms application is to
update the Web.config file, with the following code:

<?xml version="1.0"?>
<configuration>
 <system.web>
 <compilation debug="false">
 <assemblies>
 <add assembly="System.Core, Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=B77A5C561934E089"/>
 <add assembly="System.Web.Extensions,
 Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=31BF3856AD364E35"/>
 <add assembly="System.Web.Abstractions,
 Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=31BF3856AD364E35"/>
 <add assembly="System.Web.Routing,
 Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=31BF3856AD364E35"/>
 </assemblies>
 </compilation>

 <pages>
 <namespaces>
 <add namespace="System.Web.Mvc"/>
 <add namespace="System.Web.Mvc.Ajax"/>
 <add namespace="System.Web.Mvc.Html" />
 <add namespace="System.Web.Routing"/>
 <add namespace="System.Linq"/>
 <add namespace="System.Collections.Generic"/>
 </namespaces>
 </pages>

 <httpModules>
 <add name="UrlRoutingModule"
 type="System.Web.Routing.UrlRoutingModule,
 System.Web.Routing, Version=3.5.0.0,
 Culture=neutral, PublicKeyToken=31BF3856AD364E35" />
 </httpModules>
 </system.web>
</configuration>

The above web configuration file contains all of the required modifications to
your existing web.config in order to enable ASP.NET MVC support. First, the
necessary assemblies are registered. Next, some default namespaces are added for
the compilation of any web page. Finally, the routing engine is registered as an
HttpModule. This will enable your application to accept ASP.NET MVC URLs and
map them to a specific controller.

Chapter 7

[137]

Note that your existing ASP.NET Webforms web.config should not be replaced by
the above web.config! The configured sections should be inserted into an existing
web.config file in order to enable ASP.NET MVC.

There's one thing left to do: configure routing. This can easily be done by adding the
default ASP.NET MVC's global application class contents into an existing (or new)
global application class, Global.asax.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Routing;

namespace MixingBothWorldsExample
{
 public class Global : System.Web.HttpApplication
 {
 public static void RegisterRoutes(RouteCollection routes)
 {
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");
 routes.IgnoreRoute("{resource}.aspx/{*pathInfo}");

 routes.MapRoute(
 "Default",
// Route name
 "{controller}/{action}/{id}",
// URL with parameters
 new { controller = "Home", action = "Index", id = "" }
// Parameter defaults
);

 }

 protected void Application_Start()
 {
 RegisterRoutes(RouteTable.Routes);
 }
 }
}

This code registers a default ASP.NET MVC route, which will map any URL of the
form /Controller/Action/Id into a controller instance and action method. There's
one difference with an ASP.NET MVC application that needs to be noted—a catch-all
route is defined in order to prevent a request for ASP.NET Webforms to be routed
into ASP.NET MVC. This catch‑all route looks like this:

routes.IgnoreRoute("{resource}.aspx/{*pathInfo}");

This is basically triggered on every request ending in .aspx. It tells the routing
engine to ignore this request and leave it to ASP.NET Webforms to handle things.

www.allitebooks.com

http://www.allitebooks.org

Using Existing ASP.NET Features

[138]

With the ASP.NET MVC assemblies referenced, the folder structure created, and the
necessary configurations in place, we can now start adding controllers and views.
Add a new controller in the Controllers folder, for example, the following simple
HomeController:

using System.Web.Mvc;

namespace MixingBothWorldsExample.Controllers
{
 public class HomeController : Controller
 {
 public ActionResult Index()
 {
 ViewData["Message"] = "This is ASP.NET MVC!";

 return View();
 }
 }
}

The above controller will simply render a view, and pass it a message through the
ViewData dictionary. This view, located in Views | Home | Index.aspx, would look
like this:

<%@ Page Language="C#"
 AutoEventWireup="true"
 CodeBehind="Index.aspx.cs"
 Inherits="MixingBothWorldsExample.Views.Home.Index" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head id="Head1" runat="server">
 <title></title>
</head>
<body>
 <div>
 <h1><%=Html.Encode(ViewData["Message"]) %></h1>
 </div>
</body>
</html>

The above view renders a simple HTML page and renders the ViewData dictionary's
message as the page title.

Chapter 7

[139]

Plugging ASP.NET into an existing ASP.NET
MVC application
The road to enabling an existing ASP.NET MVC web application to serve ASP.NET
Webforms contents is actually quite easy. Because the ASP.NET MVC framework
is built on top of ASP.NET Webforms, any classic web form will automatically
be available from an ASP.NET MVC web application. This means that any ASPX
file will be rendered using ASP.NET Webforms, unless the route table contains a
matching route for handling an ASP.NET MVC request.

To avoid strange results in a mixed application, consider adding a catch-all route
to the route table for ASPX pages, which will ignore any requests to ASP.NET
Webforms, and will route only ASP.NET MVC requests. This can be done in the
global application class, Global.asax.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Routing;

namespace MixingBothWorldsExample
{
 public class Global : System.Web.HttpApplication
 {

Using Existing ASP.NET Features

[140]

 public static void RegisterRoutes(RouteCollection routes)
 {
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");
 routes.IgnoreRoute("{resource}.aspx/{*pathInfo}");

 routes.MapRoute(
 "Default",
// Route name
 "{controller}/{action}/{id}",
// URL with parameters
 new { controller = "Home", action = "Index", id = "" }
// Parameter defaults
);

 }

 protected void Application_Start()
 {
 RegisterRoutes(RouteTable.Routes);
 }
 }
}

The above code registers a default ASP.NET MVC route, which will map any URL in
the form /Controller/Action/Id into a controller instance and action method. The
catch-all route for ASP.NET Webforms looks like this:

routes.IgnoreRoute("{resource}.aspx/{*pathInfo}");

Sharing data between ASP.NET and
ASP.NET MVC
Whether you are creating a new mixed ASP.NET Webforms-ASP.NET MVC
application—or doing a migration, the chances are that you will need to share data
between the two technologies. For example, a form can be posted by an ASP.NET
Webforms page to an ASP.NET MVC action method.

Because the ASP.NET MVC framework is built on top of ASP.NET Webforms, the
following objects are always available in both technologies:

HttpContext
Session
Server
Request
Response
Cookies

•

•

•

•

•

•

Chapter 7

[141]

This way, it is easy to set a Session state item in classic ASP.NET Webforms and
read it in ASP.NET MVC.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace MixingBothWorldsExample
{
 public partial class _Default : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 Session["SharedData"] = "This message is set by classic
 ASP.NET.";
 }
 }
}

The above code is a "codebehind" for a classic ASP.NET page. As you can see, it sets
the SharedData dictionary item of Session to a string value. This data can easily be
read easily in an ASP.NET MVC controller, for example:

using System.Web.Mvc;

namespace MixingBothWorldsExample.Controllers
{
 public class HomeController : Controller
 {
 public ActionResult Index()
 {
 ViewData["Message"] = "This is ASP.NET MVC!";
 ViewData["SharedData"] = Session["SharedData"] ?? "";

 return View();
 }
 }
}

The Index action method tries to read data from the SharedData dictionary item of
Session. If it has been set by ASP.NET Webforms or ASP.NET MVC, it is assigned
to the ViewData dictionary. In other cases, an empty string is passed in.

Using Existing ASP.NET Features

[142]

Building views at compile time
By default, the views in ASP.NET MVC applications are built the first time that a
request comes in. This means that if there is a compilation error in a view, it will
only be visible the first time that a user requests for that view to be rendered. To
overcome this issue, views can be compiled whenever the ASP.NET MVC
application is compiled.

To build views at compile time, the following steps should be executed:

1.	 Open the project file in a text editor. For example, start Notepad and open the
project file for your ASP.NET MVC application (that is, MyMvcApplication.
csproj).

2.	 Find the top-most <PropertyGroup> element and add a new element named
<MvcBuildViews>:
<PropertyGroup>

 ...
 <MvcBuildViews>true</MvcBuildViews>

</PropertyGroup>

3.	 Scroll down to the end of the file and uncomment the <Target
Name="AfterBuild"> element. Update its contents to match the following:
<Target Name="AfterBuild" Condition="'$(MvcBuildViews)'=='true
'">

 <AspNetCompiler VirtualPath="temp"
 PhysicalPath="$(ProjectDir)\..\$(ProjectName)"
/>

</Target>

4.	 Save the file and reload the project in Visual Studio.

Enabling view compilation may add some extra time to the build process.
It is recommended that this is not enabled during development as a lot of
compilation is typically involved during the development process.

Chapter 7

[143]

Summary
In this chapter, we have learned how to use session state in the ASP.NET MVC
framework. We've also seen that TempData is built using session state, and have
looked at how to use it in an ASP.NET MVC web application.

We've also learned what membership, authentication, and authorization are, and
how to configure these things in a web application. We know that we can use all
existing ASP.NET membership, authentication, and authorization providers, and
use them to protect access to specific controller action methods.

Another thing we have seen is output caching, and how you can make use of it in
an ASP.NET MVC web application. We've also seen what internationalization is
and how to use it.

We also mixed ASP.NET Webforms and ASP.NET MVC in one application and
shared data between both these two technologies.

Finally, we added a post-build action to a project file to make sure that all views can
be compiled.

AJAX and ASP.NET MVC
This chapter describes how you can use AJAX in combination with ASP.NET
MVC by using ASP.NET AJAX and jQuery—the two AJAX frameworks that
are widely used.

As you might know, AJAX is an acronym for Asynchronous JavaScript And XML. It
is a group of web development techniques that are used for creating more responsive
and rich web applications. With AJAX, data is transferred asynchronously in the
background without the current page being reloaded. This asynchronous request can
be created by using the XMLHttpRequest object, which is present in most browsers
nowadays. We will see more about XMLHttpRequest in the following topics.

You will learn the following in this chapter:

Which AJAX frameworks are available
How most AJAX frameworks are built
What JSON (JavaScript Object Notation) is
How ASP.NET AJAX can be used in ASP.NET MVC web applications
How jQuery can be used in ASP.NET MVC web applications
How jQuery UI plugins can be used to enrich ASP.NET MVC views

Different AJAX frameworks
There are many AJAX frameworks available on the Internet. Most of them are free
and they can help you to develop a dynamic web page on the client side more
easily, by exposing asynchronous connections between the client and the server,
and the different JavaScript classes that help you work with the Document Object
Model (DOM).

•

•

•

•

•

•

AJAX and ASP.NET MVC

[146]

Many AJAX frameworks are available—ASP.NET AJAX, jQuery, Prototype, YUI,
Mootools, ExtJS, and so on. In this chapter, we will be using two commonly-used
AJAX frameworks—ASP.NET AJAX and jQuery.

Communication between client and server is mostly accomplished using the
XMLHttpRequest object, which is present in most browsers. The data that is
communicated can consist of HTTP, XML, or JSON. Most modern AJAX frameworks
use JSON as the primary means of communicating data. This topic will cover the
XMLHttpRequest and JSON in more detail.

XMLHttpRequest
The XMLHttpRequest concept was originally developed by Microsoft. When
developing Outlook Web Access 2000, they needed a technology that would provide
HTTP connectivity between client and server, without having to refresh a whole
page in the browser.

Of course, XMLHttpRequest was something that only Microsoft Internet Explorer
provided in those days. Luckily for we AJAX developers, the Mozilla project
incorporated the first compatible native implementation of XMLHttpRequest in
Mozilla 1.0, in 2002. Afterwards, other browsers followed this example—nowadays,
Internet Explorer, Firefox, Safari, Konqueror, Opera, and so on all support a working
implementation of the XMLHttpRequest object.

XMLHttpRequest can now be used by JavaScript and other web browser scripting
languages to transfer XML and other text data between the client and the server.
Nowadays, this is most often done using JSON, as described in the following section.

JavaScript Object Notation (JSON)
JSON is a text-based format that can be used for transmitting structured data over a
network connection. Its main use is in AJAX web development, where it serves as the
communication format between the browser and the web server.

A JSON string might look like this:

{ "Name": "Maarten", "Email": maarten@maartenballiauw.be" }

This translates to an object that can be used in JavaScript, and provides two
properties (Name and Email) filled with data.

Chapter 8

[147]

ASP.NET AJAX
The ASP.NET MVC framework provides out-of-the-box AJAX features that can be
used in any new web application. An interesting feature is partial page updates,
which is the process of refreshing only one <div /> element's contents instead of
refreshing the whole page. In order to use these features, the view (or its master
page) must include two script files, MicrosoftAjax.js and MicrosoftMvcAjax.js.
These files can be included by adding the following code to the <head> section of the
master page:

<script type="text/javascript" src="<%=Url.Content("~/Scripts/
MicrosoftAjax.js")%>"></script>
<script type="text/javascript" src="<%=Url.Content("~/Scripts/
MicrosoftMvcAjax.js")%>"></script>

After adding these two script references, a set of helper methods can be used in
any view.

ASP.NET MVC AJAX helper
The ASP.NET MVC AJAX helper provides three methods that enable you to
create an AJAX request that behaves in a way similar to that of the ASP.NET
UpdatePanel—data that is retrieved in the background can be displayed in an
HTML <DIV /> element. The following methods are available for the AjaxHelper
object, exposed in every view:

ActionLink—Generates a hyperlink to a controller action method. The
response of the action method is rendered in a specified HTML element.
RouteLink—Generates a hyperlink to a route. The response of this route is
rendered in a specified HTML element.
BeginForm—Generates a form, which is posted to a controller action method.
The response of the action method is rendered in a specified HTML element.

•

•

•

AJAX and ASP.NET MVC

[148]

All AJAX helper methods accept a parameter of the type, AjaxOptions. This
class contains various properties that will configure how the AJAX request
is performed:

AjaxOptions property Description
Url URL to which the asynchronous request should be made
Confirm When a string is specified, the user is presented with a confirm

dialog containing this string as the message
HttpMethod The HTTP method for the AJAX request; this can be GET, POST

or any other HTTP method that is supported by the browser's
XMLHttpRequest object

UpdateTargetId The target HTML element ID in which the AJAX response
will be rendered; this can be used in conjunction with the
InsertionMode property

InsertionMode This enumeration defines the behavior of the
UpdateTargetId property
Replace – Replaces the current contents of the
UpdateTargetId HTML element with the AJAX response
InsertBefore – Inserts the AJAX response before the current
contents of the UpdateTargetId HTML element
InsertAfter - Inserts the AJAX response after the current
contents of the UpdateTargetId HTML element

LoadingElementId The HTML element ID that is displayed when performing an
asynchronous request to the server

OnBegin JavaScript function name that is called when an AJAX request is
being made

OnComplete JavaScript function name that is called when an AJAX request
has been completed

OnFailure JavaScript function name that is called when an AJAX
request fails

OnSuccess JavaScript function name that is called when an AJAX request
is successful

The example in this topic is based on an ASP.NET MVC web application, which can
be found in the sample code for this book (AjaxHelpersExample).

Here is an example view:

<asp:Content ID="indexContent"
 ContentPlaceHolderID="MainContent"
 runat="server">
 <h2><%= Html.Encode(ViewData["Message"]) %></h2>
 <p>

Chapter 8

[149]

 To learn more about ASP.NET MVC visit <a
 href="http://asp.net/mvc" title="ASP.NET MVC
 Website">http://asp.net/mvc.
 </p>
 <% using(AJAX.BeginForm("Echo", new AJAXOptions() {
 UpdateTargetId = "EchoTarget" })) {%>
 Echo the following text: <%=Html.TextBox("echo") %><input
 type="submit" value="Echo" />
 <% } %>
 <div id="EchoTarget"></div>
</asp:Content>

The above view contains an AJAX-enabled form, which is created by calling the
Ajax.BeginForm method to post the contents of an echo text box to the Echo
action method. The response of this action method will be rendered in the
EchoTarget <div/> element.

public ActionResult Echo(string echo)
{
 ViewData["echo"] = echo;

 return View("EchoText");
}

The controller action method that renders the EchoText view looks just like a regular
action method: ViewData is set and passed into a view. On clicking the Echo button,
the text is rendered in a partial view. This partial view is rendered in the <div/>
element named EchoTarget.

AJAX and ASP.NET MVC

[150]

Working with JsonResult
Most action methods will return a ViewResult instance after processing and
providing the ASP.NET MVC framework with a view name and the ViewData to
render. When working with AJAX, a JsonResult instance can be returned instead
of a ViewResult instance.

The JsonResult class will render an object passed in as JSON. For example, a string
array containing names would look like the following JSON string:

["Maarten","John","Troy"]

JSON strings can be parsed by JavaScript's eval() function, creating a client-side
object or array based on the JSON string that was generated by ASP.NET MVC's
JsonResult.

ASP.NET AJAX is able to work with JSON in a very natural way. Take the following
action method:

public ActionResult JsonSampleColors()
{
 string[] colors = new string[] { "Red", "Green", "Yellow",
 "Blue", "Orange" };

 return Json(colors);
}

This action method will render the following JSON string:

["Red","Green","Yellow","Blue","Orange"]

The above JSON string can be retrieved by using ASP.NET AJAX's Sys.Net.
WebRequest class in the view. This class is a wrapper around the XMLHttpRequest
object that we discussed earlier, and provides a set of helper methods that can be
used to create a web request from JavaScript in the browser to the server.

<asp:Content ID="jsonSampleContent" ContentPlaceHolderID="MainContent"
runat="server">
 <h2>JsonResult Sample</h2>
 <script type="text/javascript">
 function RetrieveJsonSampleColors() {
 var request = new Sys.Net.WebRequest();
 request.set_url("/Home/JsonSampleColors");
 request.set_httpVerb("GET");
 request.add_completed(OnJsonSampleColorsCompleted);
 request.invoke();
 }

Chapter 8

[151]

 function OnJsonSampleColorsCompleted(executor, eventArgs) {
 if (executor.get_responseAvailable()) {
 // Should retrieve a list of colors
 var result = executor.get_object();

 // Add colors to availableColors list
 for (var i = 0; i < result.length; i++) {
 availableColors.options[availableColors.length] =
 new Option(result[i], result[i]);
 }
 } else {
 if (executor.get_timedOut())
 alert("Request timeout");
 else
 if (executor.get_aborted())
 alert("Request aborted");
 }
 }

 function pageLoad() {
 RetrieveJsonSampleColors();
 }
 </script>
 <p>
 Available colors: <select id="availableColors" size="1">
 </select>
 </p>
</asp:Content>

When the above view has been rendered on the client, the
RetrieveJsonSampleColors JavaScript method is called. This method uses the
Sys.Net.WebRequest class provided by ASP.NET AJAX to create an asynchronous
request to the /Home/JsonSampleColors action method. It is instructed to call the
OnJsonSampleColorsCompleted JavaScript method when a result has been received.
This method distinguishes between a successful result and a timed out result, which
can occur if the server is unreachable at that moment.

The OnJsonSampleColorsCompleted JavaScript method receives the JSON string
returned by the /Home/JsonSampleColors action method. This result has already
been parsed by the WebRequestExecutor class (in the executor parameter) and
provides a get_object() method to access the evaluated JSON string. In this script,
the evaluated JSON string is copied into the result variable, which is a JavaScript
array containing some color strings. Each value of this array is then added to the
options of the availableColors list-box on the HTML page.

AJAX and ASP.NET MVC

[152]

Here's how the result looks after running the web application:

When working with large amounts of data, using AJAX in conjunction with
JsonResult can decrease bandwidth usage—only data is transferred across
the wire; HTML markup can be generated on the client side.

jQuery
The ASP.NET MVC framework project template contains the jQuery library, by
default. jQuery is a fast JavaScript library that simplifies HTML document traversing,
event handling, animating, and AJAX interactions for rapid web development. It is
an alternative to Microsoft's ASP.NET AJAX, which changes the way that you write
JavaScript. A task that would take 10 lines of code with traditional JavaScript can be
accomplished with jQuery in just one line of code.

Chapter 8

[153]

jQuery syntax
When first working with jQuery, the syntax may look unclear and overwhelming.
This may be true the first minute you look at it. However, after playing with it for a
little while, the syntax becomes clear and really useful.

In an HTML page, most elements are decorated with IDs and CSS classes that provide
styling. For example, the following snippet of HTML code contains a <div/> element
with the ID, MainMenu.

<html>
 <head>
 <title>Example of jQuery</title>
 <script type="text/javascript" src="jquery-1.2.6.js"></script>
 </head>
 <body>
 <div id="MainMenu">...</div>
 </body>
</html>

We can now add some jQuery to spice things up. Wouldn't it be great to have the
main menu fade in when the page loads? Here's an example on how to do that, by
providing jQuery with the same ids and classes that CSS uses:

<html>
 <head>
 <title>Example of jQuery</title>
 <script type="text/javascript" src="jquery-1.2.6.js"></script>
 <script type="text/javascript">
 $(function() {
 $("MainMenu").fadeIn();
 });
 </script>
 </head>
 <body>
 <div id="MainMenu">...</div>
 </body>
</html>

The above page now contains some extra JavaScript code that uses jQuery to perform
some actions. The $ is a shortcut to the jQuery object and allows access to every
method that jQuery has to offer. In this case, a document ready function is registered
by using the syntax $(function() { // ... }. This function is executed after the
page has been completely loaded.

AJAX and ASP.NET MVC

[154]

In the document ready function, the element with the ID, MainMenu, is searched for
by using the jQuery selector API. Later, it is assigned a fadeIn() effect.

The jQuery selector API provides rich query features on the client side DOM
document. Searching an element with a specific ID can be done using $("#someId").
Searching for all elements of a specific CSS class? Try $(".someClass"). Only need
paragraphs styled with a source code CSS class? $("p.sourceCode") will provide
the matching elements. See how this can aid you in rapid JavaScript development.

Using jQuery with ASP.NET MVC
The latest version of jQuery can be downloaded from www.jquery.com. There is also
a Visual Studio documentation file available that adds full IntelliSense to the Visual
Studio editor.

To make use of jQuery, add the following line of code to any view page or
master page:

<script type="text/javascript" src="<%=Url.Content("~/Scripts/jquery-
1.2.6.js")%>"></script>

The example in this topic is based on an ASP.NET MVC web application, which can
be found in the sample code for this book (jQueryExample).

Here is an example view:

<asp:Content ID="indexContent" ContentPlaceHolderID="MainContent"
runat="server">
 <h2><%= Html.Encode(ViewData["Message"]) %></h2>
 <p>
 To learn more about ASP.NET MVC visit <a
 href="http://asp.net/mvc" title="ASP.NET MVC
 Website">http://asp.net/mvc.
 </p>

 <script type="text/javascript">
 $(function() {
 $("#EchoForm").submit(function(e) {
 var parameters = {};
 $(this)
 .find("input[@checked], input[@type='text'],
 input[@type='hidden'], input[@type='password'],
 input[@type='submit'], option[@selected], textarea")
 .filter(":enabled")
 .each(function() {
 parameters[this.name || this.id ||
 this.parentNode.name || this.parentNode.id] = this.value;

Chapter 8

[155]

 });

 $("#EchoTarget").load($(this).attr("action"),
 parameters);

 e.preventDefault();
 });
 });
 </script>
 <% using (Html.BeginForm("Echo", "Home", FormMethod.Get, new { id
 = "EchoForm" })) {%>
 Echo the following text: <%=Html.TextBox("echo")%><input
 type="submit" value="Echo" />
 <% } %>
 <div id="EchoTarget"></div>
</asp:Content>

The above view contains a portion of JavaScript code that uses jQuery to perform
some actions. The $ is a shortcut to the jQuery object and allows access to every
method that jQuery has to offer. In this case, a document ready function is registered
by using the syntax, $(function() { // ... }. This function is executed after the
page has been completely loaded.

In the document ready function, the HTML form with the ID, EchoForm, is
searched for, and the submit event handler is specified as a function by calling
$("#EchoForm").submit(function(e) { // ... }).

When this form is submitted, all form fields are traversed and added to the
parameters map:

var parameters = {};
$(this)
.find("input[@checked], input[@type='text'], input[@type='hidden'],
input[@type='password'], input[@type='submit'], option[@selected],
textarea")
.filter(":enabled")
.each(function() {
 parameters[this.name || this.id || this.parentNode.name ||
this.parentNode.id] = this.value;
});

The jQuery object is instructed to find all input HTML elements that are enabled. For
each of these elements, the names and values are added to the parameters map. Can
you see the power of jQuery already? Had regular JavaScript been used, the above
code snippet would consume many more lines of code than in the current case.

AJAX and ASP.NET MVC

[156]

Finally, an AJAX request is created:

$("#EchoTarget").load($(this).attr("action"), parameters);

e.preventDefault();

The HTML element with the ID EchoTarget, is instructed to load the form's action
URL and pass the previously-created parameters map as parameters to the ASP.NET
MVC action method. Calling e.preventDefault() prevents the default form submit
event from being executed.

Chapter 8

[157]

Working with JsonResult
Similar to ASP.NET AJAX, jQuery offers the possibility to parse a JSON string into a
client-side JavaScript object. This JSON string can be provided by an action method,
returning a JsonResult instead of a ViewResult.

For example, a string array containing names would look like the following
JSON string:

["Maarten","John","Troy"]

jQuery is able to work with JSON in a very natural way. Take the following
action method:

public ActionResult JsonSampleColors()
{
 string[] colors = new string[] { "Red", "Green", "Yellow",
 "Blue", "Orange" };

 return Json(colors);
}

This action method will render the following JSON string:

["Red","Green","Yellow","Blue","Orange"]

The above JSON string can be retrieved using jQuery's getJSON() method:

<asp:Content ID="jsonSampleContent" ContentPlaceHolderID="MainContent"
runat="server">
 <h2>JsonResult Sample</h2>

 <script type="text/javascript">
 function RetrieveJsonSampleColors() {
 $.getJSON("/Home/JsonSampleColors", function(result) {
 // Add colors to availableColors list
 for (var i = 0; i < result.length; i++) {
 availableColors.options[availableColors.length] =
 new Option(result[i], result[i]);
 }
 });
 }

 $(function() {
 RetrieveJsonSampleColors();
 });
 </script>
 <p>
 Available colors: <select id="availableColors"
 size="1"></select>
 </p>
</asp:Content>

AJAX and ASP.NET MVC

[158]

Once the above view has been rendered on the client, the RetrieveJsonSampleColors
JavaScript method is called from within the document ready function that jQuery
provides. This method instructs jQuery to create a new asynchronous request to the
/Home/JsonSampleColors action method, and to execute a callback function when a
request has been received.

The callback function for the jQuery getJSON() method accepts a parameter
that contains the evaluated JSON string received from the ASP.NET MVC action
method. In this case, an array of colors is received and added to the options of the
availableColors listbox on the HTML page.

Chapter 8

[159]

Using jQuery UI
The jQuery library offers a large set of plugins that extend the standard jQuery
functionality with a lot of helpers for common actions. Plugins can be found on
http://plugins.jquery.com.

In addition to to the jQuery plugin library, a UI library is also offered, which contains
popular controls such as accordion, autocomplete, color picker, date picker, dialog,
magnifier, progress bar, slider, spinner, tabs, and so on. The jQuery UI library
can be downloaded from http://ui.jquery.com.

After adding the required JavaScript, CSS, and image files to your project, the jQuery
UI library can be used quite easily as an extension of the standard jQuery. The UI
library is loaded whenever an action method in the web application is requested.

The example in this topic is based on an ASP.NET MVC web application, which can
be found in the sample code for this book (ContactManagerExample). We'll extend
the following screen, and show contact details with some jQuery UI elements:

AJAX and ASP.NET MVC

[160]

The following code can be used to show a contact's details in a jQuery UI dialog:

<script type="text/javascript">
 $(function() {
 // Find details links
 var detailsLinks = $("#ContactList >
 ").find("a:contains(Details)");

 // Set click events
 $.each(detailsLinks, function(i, val) {
 $(val).click(function(e) {
 $("<div>").load(val.href).dialog({
 title: "Contact details",
 width: 600,
 height: 400,
 open: function() {
 $(this).parents(".ui-dialog:first > ")
 .find(".ui-dialog-content").css('width',
 '550px');
 },
 buttons: { "Close": function() {
 $(this).dialog("close"); } }
 }).show();

 e.preventDefault();
 });
 });
 });
</script>

The above code snippet is executed when the page has been completely loaded. It
searches for all hyperlinks that contain the text Details. This query can easily be
executed by doing a find() of all a elements that match this criteria. Each of these
Details hyperlinks is registered for a click() event handler. This event handler
creates a new <div/> element by simply calling this in jQuery by using $("<div>").
The div element is instructed to load the hyperlink's href value and, after that
is done, to display itself as a dialog. Some options are passed into this dialog, for
example, a title for the title bar of the dialog, the default width and height, and so
on. This dialog also executes some code on opening—the table element inside is
rendered with a fixed width to make sure that the dialog fits on the screen.

Chapter 8

[161]

After the dialog is shown using the show() method, the e.preventDefault() is
called to make sure that the regular behavior of the hyperlink is cancelled—that is,
the hyperlink is not allowed to navigate to a new page when it's already open in a
jQuery dialog.

AJAX and ASP.NET MVC

[162]

Using a similar technique, a nice looking confirmation dialog can be displayed
whenever a user tries to delete a contact. This dialog asks the user if he or she
is sure that he or she wants to delete the current contact and then executes the
deletion when the user confirms.

Whenever the page finishes loading, the following JavaScript code is executed:

<script type="text/javascript">
 $(function() {
 // Find delete links
 var deleteLinks = $("#ContactList >").
 find("a:contains(Delete)");

 // Set click events
 $.each(deleteLinks, function(i, val) {
 $(val).click(function(e) {

Chapter 8

[163]

 $("<div>Are you sure you want to delete this
 record?</div>").dialog({
 width: 500,
 height: 150,
 buttons: {
 "Yes": function() {
 $(this).dialog("close");
 $.getJSON(val.href, function(data) {
 if (data == true) {

 $(val).parent().parent().find("td").
 fadeOut('slow', function() {
 $(this).remove();
 });
 }
 });
 },
 "No": function() { $(this).dialog("close"); }
 }
 }).show();

 e.preventDefault();
 });
 });
 });
</script>

This code snippet searches for all hyperlinks, containing the text, Delete, by
doing a find() of all a elements that match this criteria. Each of these hyperlinks
is registered for a click() event handler. When a user clicks on the Delete link,
a dialog is displayed asking the user for a delete confirmation. Also, Yes and No
buttons are registered to make the dialog accept one of these two choices. The No
button simply closes the current dialog, while the Yes button performs the actual
delete action.

When clicking on the Yes button, the current dialog is closed. In the background, an
asynchronous call is made to the hyperlink's href, expecting a JSON result. If this
JSON result is true—that is, when the ASP.NET web application has successfully
deleted the record—the hyperlink's table cells are animated using a fade out,
after which, the record is removed from the UI. This behavior creates a rich user
experience, as the user actually watches the record fade out.

AJAX and ASP.NET MVC

[164]

Summary
In this chapter, we have learned which AJAX frameworks are available, and how
most AJAX frameworks are built. We've also learned what JSON is.

We've also seen how to use ASP.NET AJAX in an ASP.NET MVC web application,
and how we can leverage the AjaxHelper class to aid AJAX development.

Finally, we have seen how jQuery can be used in ASP.NET MVC web applications,
and how the jQuery UI plugins can be used to enrich ASP.NET MVC views.

Testing an Application
One of the differences between ASP.NET MVC and ASP.NET Webforms is that the
ASP.NET MVC framework is easier to test than the ASP.NET Webforms framework.
This is because of the fact that ASP.NET MVC has been designed with testability in
mind. But even with every feature of ASP.NET MVC designed with testability in
mind, there are certain aspects of classic ASP.NET that are difficult to use in tests.
For example, each object in the HttpContext is populated by the ASP.NET runtime:
Request, Response, User, Cookies, Session, and so on. Because unit testing
an ASP.NET MVC application is possible, it should also be possible to unit test
controller actions without requiring the ASP.NET runtime to be active. Fortunately,
the ASP.NET MVC framework provides some interfaces and base classes that can
easily be mocked. We will see more on mocking later in this chapter.

You will learn the following in this chapter:

Some aspects of unit testing, and how to use them in an ASP.NET MVC
web application
What unit testing is, and what its advantages are
The different unit testing frameworks available
How to generate unit tests
How to test an action method
What a mocking framework is, and how it can facilitate unit testing
How to carry out a unit test using a mocking framework
Test routes and model updates using a mocking framework

•

•

•

•

•

•

•

•

Testing an Application

[166]

Unit testing
In a lot of software development teams, testing is something that often takes a back
seat . Even if done, a lot of teams think they are testing when one or two users click
through the application and make sure that most visible errors are removed.

This cannot be considered testing. Testing should aim at covering all of the
application logic, that is, every single method should be executed at least once to
ensure that all code works correctly. This goal can be achieved through unit testing,
which can also be pronounced as "you-need testing".

When unit-testing, you always test the smallest piece of testable software in the
application—that is, every method in the application. These code portions should
be tested in isolation from the rest of the code and from other tests, as other code or
tests may influence the result of the test that is being executed. Also, unit tests must
be repeatable—it should be possible to execute them at any given time.

The benefits of unit testing are that unit testing facilitates change. If a test is failing
after some code is added to the application, it means that the application will not
work as expected. One can also write a test for a new feature first, and create the
code in the application later. This is called Test-Driven Development (TDD).

Another benefit of unit testing is that all tests are some sort of documentation of the
methods in an application, because each unit test covers exactly one method, reading
the unit test can help us understand what a specific method does.

Unit testing frameworks
Writing unit tests is done mostly by leveraging a unit testing framework, which
helps us to write unit tests and assists us in gathering test results. On the Internet, a
lot of unit testing frameworks are available: MS Test (included in most Visual Studio
versions), NUnit, xUnit, MbUnit, TestDriven.NET, and so on. A list of all testing
frameworks can be found on Wikipedia: http://en.wikipedia.org/wiki/
List_of_unit_testing_frameworks.

In this chapter, we will be using MS Test as the unit testing framework because it is
readily available in most Visual Studio versions. Note that testing ASP.NET MVC
web application can be done perfectly well using another testing framework.

Hello, unit testing!
Let's start with a sample ASP.NET MVC application. The example in this topic is
based on an ASP.NET MVC web application, which can be found in the sample code
for this book (MvcTestingHelloWorld).

Chapter 9

[167]

When creating a new ASP.NET MVC application using the Visual Studio ASP.NET
MVC project template, Visual Studio will ask you if you want to create a test project.
This dialog box offers the choice between several unit testing frameworks that can be
used for testing your ASP.NET MVC application.

In the Create Unit Test Project dialog box, make sure that you create a unit test
project. Confirm the dialog by clicking on the OK button.

After the project has been created, locate the test project's HomeControllerTest
class. You'll notice that the project template has already created two sample unit tests
for the HomeController action methods. Notice the [TestMethod] attribute, which
is used by Visual Studio to determine which methods should be executing when
running tests.

[TestMethod]
public void Index()
{
 // Setup
 HomeController controller = new HomeController();

 // Execute
 ViewResult result = controller.Index() as ViewResult;

 // Verify

Testing an Application

[168]

 ViewDataDictionary viewData = result.ViewData;
 Assert.AreEqual("Home Page", viewData["Title"]);
 Assert.AreEqual("Welcome to ASP.NET MVC!", viewData["Message"]);
}

The above code is the test method that tests the Index action method of the
HomeController class. As you can see, each test should consist of three parts: setup,
execution, and verification. In the setup stage, all necessary classes are instantiated.
In the execution stage, the required settings are made, and the method that is being
tested is called. In the verification part, some assertions are made on the resulting
data. In this case, there's an assertion that requires the Index action method of the
HomeController class to return a ViewData instance containing a title, Home Page,
and a description, Welcome to ASP.NET MVC.

Generating unit tests
When browsing the current ASP.NET MVC, note that there are no unit tests defined
for the AccountController. The following code is the Login action method in the
AccountController:

public ActionResult Login(string username, string password, bool?
 rememberMe)
{

 ViewData["Title"] = "Login";

 // Non-POST requests should just display the Login form
 if (Request.HttpMethod != "POST")
 {
 return View();
 }

 // Basic parameter validation
 List<string> errors = new List<string>();

 if (String.IsNullOrEmpty(username))
 {
 errors.Add("You must specify a username.");
 }

 if (errors.Count == 0)
 {

 // Attempt to login
 bool loginSuccessful = Provider.ValidateUser(username,
 password);

 if (loginSuccessful)
 {

 FormsAuth.SetAuthCookie(username, rememberMe ?? false);
 return RedirectToAction("Index", "Home");

Chapter 9

[169]

 }
 else
 {
 errors.Add("The username or password provided is
 incorrect.");
 }
 }

 // If we got this far, something failed, redisplay form
 ViewData["errors"] = errors;
 ViewData["username"] = username;
 return View();
}

To create a unit test for this method, locate the AccountController and find the
Login action method. Right-click on this method and pick the menu item Create
Unit Tests…. A dialog box will be displayed, which can be confirmed by click on
the OK button.

Testing an Application

[170]

After the Create Unit Tests wizard has been completed, a unit test class is generated,
based on the actual code in your ASP.NET MVC application. You can remove the
following attributes from the test code:

[HostType("ASP.NET")]
[AspNetDevelopmentServerHost("...\\MvcTestingHelloWorld", "/")]
[UrlToTest("http://localhost:50954/")]

The above attributes would instruct the unit testing engine to fire up the ASP.NET
development server and test a specific URL. Because the ASP.NET MVC team stated
that this is not required, and that the tests can be executed without the need for a
web server, these attributes can be safely removed. In fact, not removing them would
slow down unit testing because the ASP.NET development server would be started
for each run.

Testing the action method
Let's test the following scenario. When a user provides username and password, the
AccountController is expected to verify the credentials and authenticate the user.

Open the AccountController and have a look at the constructor.

public AccountController()
 : this(null, null)
{
}

public AccountController(IFormsAuthentication formsAuth,
MembershipProvider provider)
{
 FormsAuth = formsAuth ?? new FormsAuthenticationWrapper();
 Provider = provider ?? Membership.Provider;
}

Note that the AccountController constructor has two overloads: one is a
parameterless constructor that defaults to the standard ASP.NET membership
provider, and the other is an overload that accepts an IFormsAuthentication
instance and a MembershipProvider instance. Unfortunately, both default to using
cookies and a real database server. Because we do not want to use the ASP.NET
development server, the chances are that we may not want to use a real database
server, either.

Chapter 9

[171]

In order to do this, we'll have to provide an IFormsAuthentication implementation
and a MembershipProvider instance to the constructor. The default implementations
are not an option because they rely on a real database to be available. Instead, we
can create our own implementations based on the IFormsAuthentication interface,
which defines how a cookie can be set, and a user can be logged out. ASP.NET's
MembershipProvider, a base class that provides all of the methods, is required to
work with users.

public interface IFormsAuthentication
{
 void SetAuthCookie(string userName, bool createPersistentCookie);
 void SignOut();
}

public abstract class MembershipProvider : ProviderBase
{
 protected MembershipProvider();
 public abstract string ApplicationName { get; set; }
 public abstract bool EnablePasswordReset { get; }
 public abstract bool EnablePasswordRetrieval { get; }
 public abstract int MaxInvalidPasswordAttempts { get; }
 public abstract int MinRequiredNonAlphanumericCharacters { get; }
 public abstract int MinRequiredPasswordLength { get; }
 public abstract int PasswordAttemptWindow { get; }
 public abstract MembershipPasswordFormat PasswordFormat { get; }
 public abstract string PasswordStrengthRegularExpression { get; }
 public abstract bool RequiresQuestionAndAnswer { get; }
 public abstract bool RequiresUniqueEmail { get; }
 public event MembershipValidatePasswordEventHandler
 ValidatingPassword;
 public abstract bool ChangePassword(string username, string
 oldPassword, string newPassword);
 public abstract bool ChangePasswordQuestionAndAnswer(string
 username, string password, string newPasswordQuestion, string
 newPasswordAnswer);
 public abstract MembershipUser CreateUser(string username, string
 password, string email, string passwordQuestion, string
 passwordAnswer, bool isApproved, object providerUserKey, out
 MembershipCreateStatus status);
 protected virtual byte[] DecryptPassword(byte[] encodedPassword);
 public abstract bool DeleteUser(string username, bool
 deleteAllRelatedData);
 protected virtual byte[] EncryptPassword(byte[] password);
 public abstract MembershipUserCollection FindUsersByEmail(string
 emailToMatch, int pageIndex, int pageSize, out int

Testing an Application

[172]

 totalRecords);
 public abstract MembershipUserCollection FindUsersByName(string
 usernameToMatch, int pageIndex, int pageSize, out int
 totalRecords);
 public abstract MembershipUserCollection GetAllUsers(int
 pageIndex, int pageSize, out int totalRecords);
 public abstract int GetNumberOfUsersOnline();
 public abstract string GetPassword(string username, string
 answer);
 public abstract MembershipUser GetUser(object providerUserKey,
 bool userIsOnline);
 public abstract MembershipUser GetUser(string username, bool
 userIsOnline);
 public abstract string GetUserNameByEmail(string email);
 protected virtual void OnValidatingPassword
 (ValidatePasswordEventArgs e);
 public abstract string ResetPassword(string username, string
 answer);
 public abstract bool UnlockUser(string userName);
 public abstract void UpdateUser(MembershipUser user);
 public abstract bool ValidateUser(string username, string
 password);
}

Implementing the IFormsAuthentication would not be difficult. However,
implementing a MembershipProvider seems like a tedious job. This is where
mocking frameworks come into play. A mocking framework will generate a fake
implementation, on which you can define only those methods that are required to
run your tests.

Mocking frameworks
Mocking frameworks allow you to easily create "fake" instances of classes in an
application. These "fakes" or mocks can be used in unit testing. When searching
the Internet, many mocking frameworks are available: Moq, Rhino Mocks,
TypeMock, EasyMock, and so on. Each mocking framework does the same thing,
but in its own manner—creating fake class implementations on which you have to
write only the code that is actually required for your unit tests to run.

In this book, we will use Moq (http://code.google.com/p/moq/). Moq is an open
source mocking framework that provides the easiest interface for creating mock
objects. Other frameworks, such as TypeMock, have other advantages, but Moq will
be sufficient for most cases.

Chapter 9

[173]

The example in this topic is based on an ASP.NET MVC web application that can be
found in the sample code for this book (MockingExample).

Consider the following source code:

public interface ICalculator
{
 int Add(int a, int b);
 int Substract(int a, int b);
}

public class CalculationEngine
{
 public ICalculator Calculator { get; set; }

 public CalculationEngine(ICalculator calculator) {
 this.Calculator = calculator;
 }

 public int AddMultiple(int[] numbers)
 {
 int result = 0;

 foreach (int number in numbers)
 {
 result = Calculator.Add(result, number);
 }

 return result;
 }
}

The above source code is a simple example of an application. There's an ICalculator
interface, which is used by a CalculationEngine that adds multiple numbers
and returns the result. This AddMultiple method internally uses the ICalculator
implementation that was passed in through the CalculationEngine constructor.

Let's create a test for the AddMultiple method, which adds multiple integers:
2 and 3. The expected result would be 5. For this, we only want to test
CalculationEngine, and not ICalculator. Instead, we will expect that
ICalculator returns some predefined values.

/// <summary>
///A test for AddMultiple
///</summary>
[TestMethod()]
public void AddMultipleTest()
{

Testing an Application

[174]

 var calculatorMock = new Mock<ICalculator>();
 calculatorMock.Expect(c => c.Add(0, 2)).Returns(2);
 calculatorMock.Expect(c => c.Add(2, 3)).Returns(5);

 CalculationEngine target = new CalculationEngine
 (calculatorMock.Object);
 int[] numbers = new int[] { 2, 3 };
 int expected = 5;
 int actual = target.AddMultiple(numbers);
 Assert.AreEqual(expected, actual);
}

In the above test method, a mock for ICalculator is first created. It is expected
to return 2 when the Add method is passed 0 and 2. When it's passed 2 and 3,
it's expected to return 5. No implementation of the ICalculator interface is
required—the mocking framework creates the implementation in-memory, and
applies the expected behavior.

The calculatorMock.Object can be passed into the CalculationEngine
constructor, which will now execute a test with the numbers, 2 and 3. As expected,
the test will pass because the mocking object has been instructed to accept the
requested additions.

Testing the Login action method
Back in the Login action method of AccountController, when a user provides
the username and password, the AccountController is expected to verify the
credentials and authenticate the user.

Chapter 9

[175]

Let's start with setting up the mock objects:

var formsAuthenticationMock = new Mock<IFormsAuthentication>();
formsAuthenticationMock.Expect(f => f.SetAuthCookie(
 "testlogin", false)).AtMostOnce();

var membershipMock = new Mock<MembershipProvider>();
membershipMock.Expect(m => m.ValidateUser(
 "testlogin", "testpassword")).Returns(true);

Both the IFormsAuthentication interface and the MembershipProvider abstract
class are mocked. The IFormsAuthentication mock is instructed to expect a call
to SetAuthCookie with parameters testlogin and false, once at the most. The
MembershipProvider mock is instructed to return true if a user with the username
testlogin and the password testpassword tries to log in. Isn't this much faster
than creating a full implementation of the IFormsAuthentication interface and the
MembershipProvider class?

The next thing to do is to set up the AccountController.

AccountController target = new AccountController(
 formsAuthenticationMock.Object, membershipMock.Object);
target.SetFakeControllerContext();
target.Request.SetHttpMethodResult("POST");

The AccountController is instantiated with both of the mock objects being passed
in via the constructor. Also, a fake HttpContext is created (see the section on
Mocking ASP.NET components).

The crucial part of each unit test is the actual execution of the action method. If
everything goes correctly, it should return a RedirectToRouteResult. Successful
logins are redirected to the Index action method of the HomeController class.

RedirectToRouteResult actual = target.Login(
 "testlogin", "testpassword", false) as RedirectToRouteResult;

Now, there's only one thing left to do—perform the necessary assertions. Make sure
to assert the resulting controller (should be Home) and action (should be Index). Also,
as we instructed the mocking framework to expect a call, verify that the calls into the
formsAuthenticationMock have been made.

Assert.AreEqual("Home", actual.RouteValues["controller"]);
Assert.AreEqual("Index", actual.RouteValues["action"]);
formsAuthenticationMock.Verify();

Testing an Application

[176]

The full test code for the Login action method of the AccountController class
scenario is as follows:

/// <summary>
///A test for Login
///</summary>
[TestMethod()]
public void LoginTest()
{
 // Setup mocks
 var formsAuthenticationMock = new Mock<IFormsAuthentication>();
 formsAuthenticationMock.Expect(f => f.SetAuthCookie(
 "testlogin", false)).AtMostOnce();

 var membershipMock = new Mock<MembershipProvider>();
 membershipMock.Expect(m => m.ValidateUser(
 "testlogin", "testpassword")).Returns(true);

 // Setup controller
 AccountController target = new AccountController(
 formsAuthenticationMock.Object, membershipMock.Object);
 target.SetFakeControllerContext();
 target.Request.SetHttpMethodResult("POST");

 // Execute
 RedirectToRouteResult actual = target.Login(
 "testlogin", "testpassword", false) as RedirectToRouteResult;

 // Verify
 Assert.AreEqual("Home", actual.RouteValues["controller"]);
 Assert.AreEqual("Index", actual.RouteValues["action"]);
 formsAuthenticationMock.Verify();
}

Mocking ASP.NET components
When unit-testing ASP.NET MVC applications, ASP.NET components such as
Request and Response are often mocked. These components are normally filled by
the ASP.NET runtime, which is unavailable when performing unit tests. To make
use of HttpContext, Request, Response, SessionState and server variables, use
the MvcMockHelpers extension methods, which are listed in Appendix B, instead of
firing up a web server to perform the tests.

Chapter 9

[177]

Whatever mocking framework you are using (Moq, Rhino Mocks, or TypeMock),
these MvcMockHelpers will provide you with some extension methods and utility
functions which mock the ASP.NET internals, which any ASP.NET MVC application
relies upon.

The following table lists the (extension) methods that are available in the
MvcMockHelpers class:

Class (Extension) method Description
MvcMockHelpers FakeHttpContext Creates a mock

HttpContextBase
containing HTTP
context, session, request
and response.

// Fake HttpContext as if it was http://www.mysite.com/Home/Index being
requested
HttpContextBase httpContext = MvcMockHelpers.FakeHttpContext
 ("http://www.mysite.com/Home/Index");

Controller SetFakeControllerContext Assigns a mock
HttpContextBase
and empty route data
to the controller.

// Instantiate HomeController and assign it a fake HttpContext
HomeController controller = new HomeController();
controller.SetFakeControllerContext();

HttpRequestBase SetHttpMethodResult Specifies the HTTP
method of the request.

// Instantiate HomeController and assign it a fake HttpContext. The
request is a POST
HomeController controller = new HomeController();
controller.SetFakeControllerContext();
controller.SetHttpMethodResult("POST");

HttpRequestBase SetupRequestUrl Specifies the URL of the
request.

// Instantiate HomeController and assign it a fake HttpContext. The
request is a POST for http://www.mysite.com/Home/Index
HomeController controller = new HomeController();
controller.SetFakeControllerContext();
controller.SetHttpMethodResult("POST");
controller.Request.SetupRequestUrl
("http://www.mysite.com/Home/Index");

Testing an Application

[178]

In the following code samples, the MvcMockHelpers extension methods will be used
to facilitate unit testing of ASP.NET MVC web applications.

Testing routes
When developing and using an ASP.NET MVC web application, ASP.NET routing
plays an important role. The incoming URLs are mapped to a controller and an
action method by the routing engine. Also, given a controller and action method
name, the routing engine can map this into a real URL.

It may be useful to write unit tests for routes to ensure that URLs are mapped to the
routes that you intended to map to. This may also prove to be useful when creating
new route maps—if one existing route is broken, you'll notice that the corresponding
unit tests fail.

The example in this topic is based on an ASP.NET MVC web application, which can
be found in the sample code for this book (MvcTestingRoutesExample). Let's test the
following routes:

routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

routes.MapRoute(
 "ArchiveRoute",
 "Archive/{year}/{month}/{day}/{title}.htm",
 new { controller = "Home", action = "About" },
 new { year = @"\d{4}", month = @"\d{2}", day = @"\d{2}" }
);

routes.MapRoute(
 "Default", // Route name
 "{controller}/{action}/{id}", // URL with parameters
 new { controller = "Home", action = "Index", id = "" } //
 Parameter defaults
);

In the above code snippet, three routes are registered. The first route ignores requests
for any HTTP handler (named *.axd). The second route allows an archive to be
retrieved, by using URLs such as http://localhost:51741/Archive/2008/10/10/
some-title.htm. The last route is the default route, which catches any request that
can be mapped into a controller and action.

Chapter 9

[179]

The above route ArchiveRoute can be tested using the MvcMockHelpers
extension methods:

[TestMethod]
public void ArchiveRouteTest()
{
 // Register routes
 RouteCollection routes = new RouteCollection();
 MvcApplication.RegisterRoutes(routes);

 // Create a fake request
 HttpContextBase httpContext = MvcMockHelpers.FakeHttpContext(
 "~/Archive/2008/10/02/some-title.htm");

 // Retrieve route
 RouteData target = routes.GetRouteData(httpContext);

 // Verify
 Assert.AreEqual("2008", target.Values["year"]);
 Assert.AreEqual("10", target.Values["month"]);
 Assert.AreEqual("02", target.Values["day"]);
 Assert.AreEqual("some-title", target.Values["title"]);
 Assert.AreEqual("Home", target.Values["controller"]);
 Assert.AreEqual("About", target.Values["action"]);
}

In the above code sample, an empty route table is created and populated using
your ASP.NET MVC application's RegisterRoutes method. After this, a mocked
HttpContext is created for the URL ~/Archive/2008/10/02/some-title.htm.

The current route can be determined by querying the GetRouteData method of
RouteCollection, passing in the mocked HttpContext as a parameter. The routing
engine is expected to return each component separately: year, month, day, title,
controller, and action. All of these route values should be present and correct in
order for the test to succeed.

Testing UpdateModel scenarios
Instead of mocking form post variables, the ASP.NET MVC framework provides
the possibility to pass in form variables as an action method parameter when
the UpdateModel or TryUpdateModel method is used. The UpdateModel
(or TryUpdateModel) can update an existing object with variables posted
in the HTTP request using ModelBinders (see elsewhere in this book).

Testing an Application

[180]

The example in this topic is based on an ASP.NET MVC web application, which can
be found in the sample code for this book (MvcUpdateModelExample).

Have a look at the following action method:

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult New(FormCollection form)
{
 Employee employee = new Employee();

 try
 {
 UpdateModel(employee, new string[] { "Name", "Email" },
 form.ToValueProvider());

 if (string.IsNullOrEmpty(employee.Name)) throw new
 ArgumentNullException("Name");
 if (string.IsNullOrEmpty(employee.Email)) throw new
 ArgumentNullException("Email");

 return RedirectToAction("Index");
 }
 catch {
 return View("New", employee);
 }
}

The above action method is used to create a new Employee. It updates a new instance
of an Employee with posted variables Name and Email. Whenever one of these is
empty, an Exception is thrown and the view is re-rendered using the data that was
previously entered. If everything is filled in, a redirect to the Index action method
is performed.

Note that the UpdateModel method accepts a third parameter of type
IValueProvider. The ASP.NET MVC ModelBinder infrastructure uses the
IValueProvider interface to retrieve values for binding the model against. The
FormCollection dictionary implements the interface IValueProvider and can,
therefore, be used in conjunction with the UpdateModel and TryUpdateModel
methods.

The following test creates a FormCollection that contains all of the required
form values for binding to the Employee instance. This test asserts that a
RedirectToRouteResult is returned, which indicates that the model has
been updated successfully.

[TestMethod]
public void NewPostSucceeding()
{

Chapter 9

[181]

 // Arrange
 FormCollection form = new FormCollection();
 form.Add("Name", "Test");
 form.Add("Email", "test@example.com");

 HomeController controller = new HomeController();
 controller.SetFakeControllerContext();
 controller.Request.SetHttpMethodResult("POST");

 // Act
 RedirectToRouteResult result = controller.New(form) as
 RedirectToRouteResult;

 // Assert
 Assert.IsNotNull(result);
}

A failing test can also be created. The following test creates a FormCollection that
does not contain all of the required form values for binding to the Employee instance.
This test asserts that a ViewResult is returned, and that its ViewData.Model contains
an Employee instance.

[TestMethod]
public void NewPostFailing()
{
 // Arrange
 FormCollection form = new FormCollection();
 form.Add("Name", "Test");

 HomeController controller = new HomeController();
 controller.SetFakeControllerContext();
 controller.Request.SetHttpMethodResult("POST");

 // Act
 ViewResult result = controller.New(form) as ViewResult;

 // Assert
 ViewDataDictionary viewData = result.ViewData;
 Assert.IsInstanceOfType(viewData.Model, typeof(Employee));

}

Testing an Application

[182]

Summary
In this chapter, we have learned some aspects of unit testing, and how to use them
in an ASP.NET MVC web application. We've seen what unit testing is, and what its
advantages are. We've also seen the different unit testing frameworks available, and
have created our first unit test.

We've learned how we can generate unit tests, and how to use them in relation to
testing action methods. We've later seen that a mocking framework can facilitate
unit testing. Using a mocking framework, we've completed a unit test for the Login
action method of the default AccountController.

Finally, we've used a mocking framework to mock ASP.NET components to test
routes and model updates.

Hosting and Deployment
When building any application, the chances are that the application will have to be
deployed. This chapter describes how you can deploy and host an ASP.NET MVC
application in an Internet Information Server (II6 and IIS7) platform.

You will learn the following in this chapter:

Which hosting platforms can be used to host an ASP.NET MVC
web application
The differences between IIS 7.0 integrated mode and classic mode
How to create a wildcard script map in IIS 7.0 and IIS 6.0
How to modify the route table to support ASP.NET routing in some
hosting environments

Platforms that can be used
Theoretically, any web server capable of running ASP.NET web applications should
be capable of running an ASP.NET MVC web application. Supported platforms
are Windows running any version of Internet Information Services (IIS), from
version 5.1 on.

Some people managed to get ASP.NET MVC web applications running
on Mono, an open source implementation of the .NET framework, but this
is not officially supported. More on this can be found on: http://www.
tobinharris.com/2008/4/3/asp-net-mvc-on-mono-osx.

•

•

•

•

Hosting and Deployment

[184]

Building an ASP.NET MVC web application also means building URL routes. URL
routing is a key part of the ASP.NET MVC framework and is, therefore, required
to run on the IIS server. Depending on the version of IIS being used, additional
configuration may be required in order to be able to take advantage of URL routing.

Any ASP.NET MVC web application will be able to run on the following versions
of IIS:

IIS version Windows version Remarks
IIS 7.0
(integrated mode)

Windows Server 2008
Windows Vista
(except Home Basic)

No special configuration required

IIS 7.0
(classic mode)

Windows Server 2008
Windows Vista
(except Home Basic)

Special configuration required to use
URL routing

IIS 6.0 Windows Server 2003 Special configuration required to use
URL routing

IIS 5.1 Windows XP Professional Special configuration required to use
URL routing

IIS 5.0 Windows 2000 Special configuration required to use
URL routing

Differences between IIS 7.0 integrated
and classic mode
IIS 7.0 has been developed to be a flexible and scalable platform for hosting dynamic
web applications including Microsoft ASP and ASP.NET.

When looking at ASP.NET, IIS 6.0 was built using ISAPI modules, requiring
low-level C++ API calls and a lot of processing overhead when transferring an HTTP
request to ASP.NET. For example, authentication was performed twice: once in IIS
and once in ASP.NET. IIS 7.0. This introduced a whole new integrated model, which
allowed ASP.NET applications to plug into the web server directly and actually
become a part of the web server executable.

Chapter 10

[185]

With classic mode, an HTTP request would be executed as follows:

Authentication

Authentication

HTTP Request

Execute
handler

Execute
handler

Log

Basic

NTLM

ISAPI

Static file

Forms

ASPX

ASMX

...

HTTP Response

As you can see, things such as authentication are performed twice, only for ASP.NET
requests. Protecting an image from being displayed using ASP.NET authentication
would be impossible in the classic mode! Using integrated mode, any HTTP request
can be processed using ASP.NET modules and handlers such as authentication,
making ASP.NET a full member of the IIS request processing pipeline.

HTTP Request

Execute
handler

Log

HTTP Response

Authentication
Basic

NTLM

ISAPI

Static file

ASPX

Hosting and Deployment

[186]

IIS 7.0 provides support both for this new integrated mode and for the classic IIS 6.0
mode. The first option allows you to configure IIS 7.0 from within your web.config
(which is preconfigured for the ASP.NET MVC framework); the latter requires some
server-side configuration. To check whether an application is running in integrated
or classic mode, follow these steps:

1.	 Launch the Internet Information Services Manager.
2.	 In the Connections tree view, select an application.
3.	 In the Actions window, click on the Basic Settings link to open the Edit

Application dialog box.
4.	 Verify the selected Application pool. If DefaultAppPool is selected, your

application runs in an integrated mode and natively supports the ASP.NET
MVC framework. If Classic .NET AppPool is selected, your application runs
in the classic mode, and more configuration is required.

Hosting an ASP.NET MVC web
application
If you or your web hosting provider have access to your web server's settings, a
wildcard script map can be created in order to have full routing support. A wildcard
script map enables you to map each incoming request into the ASP.NET framework.
Be aware that this option passes every request into the ASP.NET framework (even
images and CSS files!) and may have performance implications.

Chapter 10

[187]

If you do not have access to the web server's settings, you can modify the route table
to use file extensions. Instead of looking look like this:

/Products/All

URLs would look like this:

/Products.aspx/All

This way, no configuration of the web server is required. It is, however, necessary to
make some modifications to the application's route table.

You do not have to configure anything if your IIS 7.0 server is operating
in integrated mode.

Creating a wildcard script map in IIS 7.0
Here is how you can enable a wildcard script map in Internet Information
Services 7.0:

1.	 Launch the Internet Information Services Manager.
2.	 In the Connections tree-view, select an application.
3.	 In the bottom toolbar, make sure that the Features view is selected.
4.	 Double-click on the Handler Mappings shortcut.
5.	 In the Actions window, click on the Add Wildcard Script Map button.
6.	 Enter the path to the aspnet_isapi.dll file, which is usually located in:

%windir%\Microsoft.NET\Framework\v2.0.50727\aspnet_isapi.dll.
7.	 Enter the name ASP.NET MVC.
8.	 Click on the OK button.

Hosting and Deployment

[188]

After doing this, any request for this specific web site will be executed by the
ASP.NET engine.

Creating a wildcard script map in IIS 6.0
Here is how you can enable a wildcard script map in Internet Information
Services 6.0:

1.	 Launch the Internet Information Services IIS Manager.
2.	 Right-click on a web site and select Properties.
3.	 Select the Home Directory tab.
4.	 Near Application settings, click on the Configuration button.
5.	 Select the Mappings tab.
6.	 Near Wildcard application maps, click on the Insert button.
7.	 Enter the path to the aspnet_isapi.dll file, which is usually located in

%windir%\Microsoft.NET\Framework\v2.0.50727\aspnet_isapi.dll

8.	 Uncheck the Verify that file exists checkbox.
9.	 Click on the OK button.

Chapter 10

[189]

After following these steps, any request for this specific web site will be executed by
the ASP.NET engine.

Modifying the route table to use file extensions
If you do not have access to your web server's settings and, therefore, cannot
configure a wildcard script map, it is possible to modify the route table to use
file extensions. Instead of looking like this:

/Products/All

URLs would look like this:

/Products.aspx/All

Hosting and Deployment

[190]

In the older versions of IIS, only certain requests are mapped to the ASP.NET
framework. For example, only .aspx, .asmx, .ascx, and so on, are mapped to the
ASP.NET framework. Extensions such as .htm, .jpg, .gif, and so on, are served
directly by IIS without any ASP.NET processing being necessary. Because the .aspx
extension is always mapped to the ASP.NET framework, it is an ideal candidate to
trigger the routing engine.

In the Global.asax file of the web application, modify the default route to look
like this:

using System.Web.Mvc;
using System.Web.Routing;

namespace ModifiedRouteExample
{

Chapter 10

[191]

 public class MvcApplication : System.Web.HttpApplication
 {
 public static void RegisterRoutes(RouteCollection routes)
 {
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapRoute(
 "Default",
// Route name
 "{controller}.aspx/{action}/{id}",
// URL with parameters
 new { controller = "Home", action = "Index", id = "" }
// Parameter defaults
);

 }

 protected void Application_Start()
 {
 RegisterRoutes(RouteTable.Routes);
 }
 }
}

The key difference between the standard route table and this modified route table is
the .aspx extension:

routes.MapRoute(
 "Default",
 "{controller}.aspx/{action}/{id}",
 new { controller = "Home", action = "Index", id = "" }
);

All of the URLs in your application should now work with a pattern such as
{controller}.aspx/{action}. If you are using hard-coded hyperlinks, make sure
that you modify these links. Hyperlinks that are generated using the ActionLink()
method of the HtmlHelper class should be updated automatically.

Summary
In this chapter, we have learned which hosting platforms can be used to host an
ASP.NET MVC web application. We've also seen the differences between IIS 7.0
integrated mode and classic mode. We've learned how to create a wildcard script
map in both IIS 7.0 and IIS 6.0. As an alternative to configuring the web server, we
have learned how to modify the route table to support ASP.NET routing on some
hosting environments.

Reference Application—
CarTrackr

The sample application included with this book is an application I have written for
various demos of the ASP.NET MVC framework. You can read its short description
and download the latest version from www.codeplex.com/CarTrackr.

CarTrackr is an online software application designed to help you understand and
track your fuel usage and kilometers driven.

You will have a record on when you filled up on fuel, how many kilometers you
got in a given tank, how much you have spent, and how many liters of fuel you are
using per 100 kilometers.

CarTrackr will enable you to improve your fuel economy and save money, as well
as conserve fuel. Fuel economy and conservation is becoming an important way to
control your finances in the current time of high prices.

Please note that this appendix will not cover the CarTrackr sample application in its
entirety, but will zoom in on certain aspects that make developing ASP.NET MVC
applications easier and faster.

CarTrackr functionality
Before diving into the implementation details, the functionality of CarTrackr is
explained by using the most important screens within the application.

Reference Application—CarTrackr

[194]

Home page
The CarTrackr home page looks quite simple. It gives a description of the application's
purpose and features, and allows a user to sign in or register an account.

When a user has logged in, the home page will display a link that redirects the user
to his or her list of tracked cars.

Appendix A

[195]

Login screen
In order to use the CarTrackr features, a user must be logged in. Logging in can
be done by using the login screen and providing either a username or password
combination, or an OpenID login URL.

Reference Application—CarTrackr

[196]

List of cars
The main screen, from which any action in the CarTrackr application can be
performed, is the list of cars. It displays a list of all tracked cars linked to the user's
account, and allows the user to show more details for a car, show refuellings, and so
on. There's one special link on this page: Show statistics...

Appendix A

[197]

When a user clicks the Show statistics... link, a partial page update is performed by
using an asynchronous web request (AJAX).

Car details
Whenever a user requests a car's details, the details page is displayed. This page
displays the properties for the car, for example, its Make and Model, along with
some statistical data, for example, the Average costs per kilometer that the car
consumes, the Total kilometers, and so on.

Reference Application—CarTrackr

[198]

On the car details screen, the user can scroll down to see some graphs, which
immediately show the car's statistics in a more visual manner. For example, the
Fuel usage over time is plotted on a Silverlight graph:

Refuellings list
If required, the user can display a list of all refuellings for a car's lifetime. These
refuellings are listed in a table. The user can remove a specific refuelling, or add a
new refuelling. For each refuelling, key data is presented along with a small logo of
the refuelling station brand.

Appendix A

[199]

Data layer
CarTrackr stores all of its data in a Microsoft SQL Server database, which located in
the App_Data folder of the CarTrackr Visual Studio project. This topic will describe
how data is retrieved from the database in a model-driven, maintainable manner.

Reference Application—CarTrackr

[200]

Linq to SQL model
As the underlying data source, CarTrackr uses a SQL server database. This database
consists of the standard ASP.NET tables (aspnet_*) and two CarTrackr-specific
tables: Car and Refuelling.

The database behind CarTrackr is exposed in the application using a LINQ to SQL
model, which maps three domain classes to the database:

1.	 User: Mapping to ASP.NET's user table.
2.	 Car: Mapping to CarTrackr's car table.
3.	 Refuelling: Mapping to the refuelling table.

Appendix A

[201]

In the previous image, you can see which domain classes are used in the CarTrackr
application. All functionality is mapped to these classes, which are in turn mapped to
the SQL database using LINQ to SQL.

Repository pattern
According to Martin Fowler, the repository pattern provides a layer of abstraction
over the mapping layer, with query construction code being concentrated to
minimize duplicate query logic. In practice, the repository pattern is usually a
collection of data access services, grouped in a way similar to the domain model
classes. For example, CarRepository will provide all data access logic for a Car.

By accessing repositories via interfaces, the repository pattern helps to break the
dependency between the domain model and data access code.

To facilitate application development, CarTrackr is built using the repository pattern.
In short, every source of data is described using an interface. This interface is then
used to communicate with the data layer. As an example, the ICarRepository
interface exposes Add, List, RetrieveById, and other such methods. The
CarController makes use of this ICarRepository interface's implementation,
CarRepository. The CarRepository implementation itself uses the LINQ to SQL
model to communicate with the database.

Reference Application—CarTrackr

[202]

By using the repository pattern, CarTrackr does not have to know that the
underlying data communications are done using LINQ to SQL. Instead, it only
knows the methods used to retrieve and store data. One of the advantages of this
approach is that unit tests can be written in a dummy (or mocked) repository
without altering the CarTrackr application. This means that unit tests can be
run on CarTrackr without requiring an actual database!

Dependency injection
Dependency injection is the process of making software components more loosely
coupled by injecting dependencies into objects rather than having the object create
its own dependencies.

As an example, take the following code:

public class Car
{
 private Engine engine;

 public Car()
 {
 engine = new Engine();
 }
}

In this example, the Car creates its own dependencies, in this case, a new Engine. It
would be a difficult task to unit-test this Car class with a mocked Engine, because
there is actually no way to control the dependency of the Car on the Engine. Also,
when maintaining this application in the future, inserting other Engine types might
be a lot of work and require the refactoring of code.

To solve this issue, the Car class can be rewritten as follows:

public class Car
{
 private Engine engine;

 public Car(Engine engineToUse)
 {
 engine = engineToUse;
 }
}

Appendix A

[203]

The application using Car can now create new Car instances and pass in any Engine
instance—even future engines:

Car someCar = new Car(new Engine());
Car fastCar = new Car(new LightSpeedEngine());

Using dependency injection in applications allows you to prepare for future changes
without requiring a lot of re-work. It also facilitates unit testing using mock objects.

How CarTrackr controllers are built
CarTrackr controllers are built using dependency injection. All repository
implementations are passed into the controllers using parameters in the constructor.

public class RefuellingController : Controller
{
 private IUserRepository UserRepository;
 private ICarRepository CarRepository;
 private IRefuellingRepository RefuellingRepository;

 public RefuellingController(IUserRepository userRepository,
 ICarRepository carRepository, IRefuellingRepository
 refuellingRepository)
 {
 UserRepository = userRepository;
 CarRepository = carRepository;
 RefuellingRepository = refuellingRepository;
 }

 // ... action methods ...

 public ActionResult List(string licensePlate)
 {
 Car car = CarRepository.RetrieveByLicensePlate(licensePlate);
 List<Refuelling> refuellings = RefuellingRepository.List(car);

 var viewData = new RefuellingListViewData
 {
 Car = car,
 Refuellings = refuellings
 };

 return View("List", viewData);
 }
}

In the above code sample for the RefuellingController, three repository contracts
are used: IUserRepository, ICarRepository, and IRefuellingRepository.

Reference Application—CarTrackr

[204]

Concrete implementations of these dependencies can be passed into the
RefuellingController by passing them as parameters in the constructor.
Note that there is no parameter-less constructor, which forces developers
to actually specify dependencies for this controller using its constructor.

The List action method, for example, uses the CarRepository and the
RefuellingRepository dependencies to retrieve concrete data, which
is passed into the view.

Using Unity for dependency injection
Unfortunately, there is one downside to using dependency injection in
ASP.NET MVC controllers. How does the ASP.NET MVC framework know
which dependencies should be passed into the constructor?

This can be achieved by using a dependency injection container, combined with
some plumbing code. Dependency injection is the process of avoiding hard-coded
dependencies in classes by passing dependencies in the constructor, as demonstrated
in the previous topic. There are quite a few dependency injection containers for
the .NET platform: Windsor, NInject, Unity, and so on. These containers will
automatically map specific dependencies within the classes in your code, thereby
assisting in creating loosely coupled applications.

CarTrackr uses the Unity application block as a dependency injection container.
Unity is written by Microsoft's patterns & practices team and can be found on
http://www.codeplex.com/unity.The following code can be found in CarTrackr's
Global.asax.cs:

public class MvcApplication : System.Web.HttpApplication
{
 public static void RegisterRoutes(RouteCollection routes)
 {
 // ...
 }

 protected void Application_Start()
 {
 RegisterRoutes(RouteTable.Routes);
 RegisterDependencies();
 }

 protected static void RegisterDependencies() {
 IUnityContainer container = new UnityContainer();

 // Registrations
 container.RegisterType<IFormsAuthentication,
 FormsAuthenticationWrapper>();

Appendix A

[205]

 container.RegisterInstance<MembershipProvider>(Membership.
Provider);

 container.RegisterType<CarTrackrData, CarTrackrData>(
 new ContextLifetimeManager<CarTrackrData>());
 container.RegisterType<ICarRepository, CarRepository>(
 new ContextLifetimeManager<ICarRepository>());
 container.RegisterType<IUserRepository, UserRepository>(
 new ContextLifetimeManager<IUserRepository>());
 container.RegisterType<IRefuellingRepository,
 RefuellingRepository>(
 new ContextLifetimeManager<IRefuellingRepository>());
 container.RegisterType<ICostsRepository, CostsRepository>(
 new ContextLifetimeManager<ICostsRepository>());

 // Set controller factory

 ControllerBuilder.Current.SetControllerFactory(

 new UnityControllerFactory(container)

);

 }
}

Whenever the CarTrackr application is started, some actions are executed. First of
all, as with any normal ASP.NET MVC application, the route table is registered.
Next, an IUnityContainer is instantiated. This IUnityContainer instance will be
responsible for injecting class instances into constructors. After that, a lot of types are
registered on this IUnityContainer, for example:

 container.RegisterType<ICarRepository, CarRepository>(
 new ContextLifetimeManager<ICarRepository>());

The above method call instructs the IUnityContainer to create a new
CarRepository instance whenever a constructor requires an ICarRepository. Also,
the lifetime of this CarRepository instance will be one request/response cycle to
ensure that each request has its own CarRepository instance.

Basically, all repository implementations are registered with the Unity container in
the same manner. After all registrations have been done, the following code snippet
is executed:

 // Set controller factory
 ControllerBuilder.Current.SetControllerFactory(
 new UnityControllerFactory(container)
);

Reference Application—CarTrackr

[206]

Remember the fact that the ASP.NET MVC framework allows you to plug in
customized components at any point in its request life cycle. This has been explained
in Chapter 4, Components in the ASP.NET MVC Framework. In this case, instantiating
a controller is delegated to a custom class, UnityControllerFactory, instead
of ASP.NET's default controller builder. The custom UnityControllerFactory
overrides ASP.NET MVC's DefaultControllerFactory:

public class UnityControllerFactory : DefaultControllerFactory
{
 IUnityContainer container;

 public UnityControllerFactory(IUnityContainer container)
 {
 this.container = container;
 }

 protected override IController GetControllerInstance(Type
 controllerType)
 {
 IController controller = null;

 if (controllerType != null)
 {
 if (!typeof(IController).IsAssignableFrom(controllerType))
 throw new ArgumentException(string.Format(
 "Type requested is not a controller: {0}",
 controllerType.Name),
 "controllerType");

 controller = container.Resolve(controllerType) as
 IController;
 }

 return controller;
 }
}

The UnityControllerFactory requires an IUnityContainer instance in its
constructor, and will use this to instantiate a controller when required. The
GetControllerInstance override instructs the IUnityContainer to check
whether registrations for the controller type have been made. In the CarTrackr
case, this method will inject all required repositories into each controller.

Appendix A

[207]

ASP.NET MVC Membership Starter Kit
The ASP.NET MVC Membership Starter Kit project provides a base web site
and class library, which extends the default ASP.NET MVC framework project
template with user and role administration, OpenID authentication, Windows
Live authentication, and so on. It can be found at http://www.codeplex.com/
MvcMembership.

CarTrackr uses the ASP.NET MVC Membership Starter Kit to provide OpenID
authentication on the login page.

Using the OpenID features from the ASP.NET MVC Membership Starter Kit
means adding three methods to the AccountController: XRDS, OpenIdLogin, and
AssociateOpenIdIdentityToUserName.

The XRDS action method simply returns a view that tells any OpenID provider where
all of the OpenID-protected pages are located in the CarTrackr. The OpenIdLogin
action method determines the login status of an OpenID provider and manages all
login functionality.

Reference Application—CarTrackr

[208]

Finally, the AssociateOpenIdIdentityToUsername is a method that is a custom
CarTrackr implementation that associates an OpenID user with an ASP.NET user.

protected string AssociateOpenIdIdentityToUserName(string
 openIdIdentity)
{
 // Try to get user
 MembershipUser user = Provider.GetUser(openIdIdentity, true);
 // If we didn't find user, create a new one
 if (user == null)
 {
 string password = Guid.NewGuid().ToString();

 MembershipCreateStatus status;
 user = Membership.CreateUser(openIdIdentity, password,
 password + "@example.com", password, password, true,
 out status);

 if (status != MembershipCreateStatus.Success)
 throw new MembershipCreateUserException(status.ToString());
 }

 return (user == null ? null : user.UserName);
}

The AssociateOpenIdIdentityToUsername method checks to see if an OpenID
identity can be linked to an existing user in the ASP.NET membership database.
If not, a new user is created based on the OpenID identity. By doing this, cars and
refuellings can be linked to an ASP.NET user, which represents an OpenID identity.

Form validation
CarTrackr contains various scenarios where form validation is performed. Let's
have a look at one of these scenarios—creating a new Car. The action method New
is defined in the CarController:

[AcceptVerbs("POST")]
[ValidateAntiForgeryToken]
public ActionResult New(FormCollection form)
{
 Car car = new Car();

 try
 {
 this.UpdateModel(car, new[] { "Make", "Model",
 "PurchasePrice", "LicensePlate", "FuelType",
 "Description" });
 CarRepository.Add(car);

Appendix A

[209]

 return RedirectToAction("Details", new { licensePlate =
 car.LicensePlate });
 }
 catch (RuleViolationException)
 {
 this.UpdateModelStateWithViolations(car, ViewData.ModelState);

 return View("New", car);
 }
}

When creating a new Car, the New action method of the CarController class creates
a new Car instance and tries to update this object with the data received from
the posted form, by using the UpdateModel method. Immediately after that, the
CarRepository is instructed to add the car instance and save it to the database.
Note that this method will call the EnsureValid method that is defined on the Car
class. The EnsureValid method checks whether there are any violations in the car
instance, and throws a RuleViolationException if any errors are present.

public void EnsureValid()
{
 List<RuleViolation> issues = GetRuleViolations();

 if (issues.Count != 0)
 throw new RuleViolationException("Business Rule Violations",
 issues);
}

The GetRuleViolations method performs various checks on the car instance.
Whenever a check fails, a new RuleViolation is added to a list of violations.
The RuleViolation object holds the property name, the provided value and
an error message.

public List<RuleViolation> GetRuleViolations()
{
 List<RuleViolation> validationIssues = new List<RuleViolation>();

 if (string.IsNullOrEmpty(Make))
 validationIssues.Add(new RuleViolation("Make", Make, "Make
 should be specified!"));

 if (string.IsNullOrEmpty(Model))
 validationIssues.Add(new RuleViolation("Model", Model, "Model
 should be specified!"));

 if (PurchasePrice <= 0)
 validationIssues.Add(new RuleViolation("PurchasePrice",
 PurchasePrice, "Purchase price should be specified!"));

 if (string.IsNullOrEmpty(LicensePlate))

Reference Application—CarTrackr

[210]

 validationIssues.Add(new RuleViolation("LicensePlate",
 LicensePlate, "License plate should be specified!"));

 return validationIssues;
}

When the New action method of CarController catches a
RuleViolationException, it calls the UpdateModelStateWithViolations
method (and provides the car being added) and the ViewData ModelState
dictionary. The UpdateModelStateWithViolations method copies all of the rule
violations from the RuleViolationException into the ViewData ModelState
dictionary. Afterwards, the CarController renders the view again, which will
now display any validation issues:

Error messages in the view are displayed using ASP.NET MVC's HtmlHelper.
ValidationMessage form helper, which we explained in Chapter 4, Components in
the ASP.NET MVC Framework.

ASP.NET provider model
The ASP.NET MVC framework uses the ASP.NET provider model. This enables
developers to re-use ASP.NET code in ASP.NET MVC applications.

Currently, the ASP.NET MVC framework does not support having a sitemap base
on controller names and action method names. In August 2008, I created a huge blog
post on implementing a custom sitemap provider for the ASP.NET MVC framework.
You can read the blog post on http://tinyurl.com/4pr557.

Appendix A

[211]

Using the sitemap provider from my blog post allows you to create a sitemap file
based on controller names and action method names:

<?xml version="1.0" encoding="utf-8" ?>
<siteMap>
 <siteMapNode id="Root" url="~/Home/Index">
 <mvcSiteMapNode id="About" title="About Us" controller="Home"
action="About" />

 <mvcSiteMapNode id="Cars" title="Cars" controller="Car"
action="Index">
 <mvcSiteMapNode id="DetailsCar" title="Details" controller="Car"
action="Details" />
 <mvcSiteMapNode id="EditCar" title="Edit" controller="Car"
action="Edit" />
 <mvcSiteMapNode id="NewCar" title="New" controller="Car"
action="New" />
 <mvcSiteMapNode id="Refuelling" title="Refuelling"
controller="Refuelling" action="List" licensePlate="">
 <mvcSiteMapNode id="NewRefuelling" title="New"
controller="Refuelling" action="New" />
 </mvcSiteMapNode>
 </mvcSiteMapNode>

 <mvcSiteMapNode id="Account" title="Account" controller="Account"
action="Index">
 <mvcSiteMapNode id="Login" title="Login" controller="Account"
action="Login" />
 <mvcSiteMapNode id="Register" title="Account Creation"
controller="Account" action="Register" />
 <mvcSiteMapNode id="ChangePassword" title="Change Password"
controller="Account" action="ChangePassword" />
 <mvcSiteMapNode id="Logout" title="Logout" controller="Account"
action="Logout" />
 </mvcSiteMapNode>
 </siteMapNode>
</siteMap>

Each sitemap node lets you specify an ID for the node (required), a title that will be
used in the ASP.NET sitemap controls, a controller name, an action name, and other
optional parameters. For example, a sitemap node for the change password action on
the AccontController would look like this:

<mvcSiteMapNode id="ChangePassword" title="Change Password"
 controller="Account" action="ChangePassword" />

Reference Application—CarTrackr

[212]

In order to let ASP.NET standard controls pick up a reference to this sitemap, the
following code has been added to the system.web section of the application's
Web.config file:

<siteMap defaultProvider="MvcSitemapProvider">
 <providers>
 <add name="MvcSitemapProvider"
 type="CarTrackr.Core.MvcSitemapProvider"
 siteMapFile="~/Web.sitemap"
 securityTrimmingEnabled="true"
 cacheDuration="1"/>
 </providers>
</siteMap>

The above code registers the custom sitemap provider implementation as the default
sitemap provider for the CarTrackr application. It also enables securityTrimming,
which instructs the sitemap provider to show or hide certain sitemap nodes based
on security aspects.

After configuring the sitemap provider, the standard ASP.NET sitemap controls
can be used. For example, the SiteMapPath control is used in the CarTrackr's
master page:

<asp:SiteMapPath ID="breadCrumbTrail" runat="server">
 <NodeStyle ForeColor="#0063DC" Font-Bold="true" Font-Size="1.4em" />
 <CurrentNodeStyle ForeColor="#FF0084" />
 <PathSeparatorStyle ForeColor="#000000" Font-Bold="true" />
 <PathSeparatorTemplate> / </PathSeparatorTemplate>
 <RootNodeTemplate><a href="~/"
 runat="server">Home</RootNodeTemplate>
</asp:SiteMapPath>

Unit testing CarTrackr
The CarTrackr application has been designed with testability in mind. Each
component can be mocked by using a mocking framework, for example Moq.
More on mocking frameworks can be found in Chapter 9, Testing an Application.

Appendix A

[213]

A real database server is not needed for running tests—it would slow down the
process of running tests and could possibly fail the tests if the connection is suddenly
dropped. Instead, the repository design pattern is used to abstract data access
implementation, allowing a custom, dummy data layer to be used in unit testing.

Unit tests in CarTrackr
All unit tests in CarTrackr are written using the MvcMockHelpers extension methods,
which can be found in Appendix B. This allows unit tests to create a fake web server
environment without the need for a real IIS instance to run the tests on. In each test,
the Moq mocking framework is used to create a mocked implementation of classes
that are used by the controller.

/// <summary>
///A test for Logout
///</summary>
[TestMethod()]
public void LogoutTest()
{
 // Setup
 var formsAuthenticationMock = new Mock<IFormsAuthentication>();
 var membershipProviderMock = new Mock<MembershipProvider>();

 formsAuthenticationMock.Expect(f => f.SignOut()).AtMostOnce();

 AccountController target = new AccountController
 (formsAuthenticationMock.Object, membershipProviderMock.Object);
 target.SetFakeControllerContext();

 // Execute
 RedirectToRouteResult result = target.Logout() as
 RedirectToRouteResult;
}

In the above test for the Logout action method of AccountController, a
mocked IFormsAuthentication class is used by the AccountController.
This mock is instructed to expect a call to its SignOut method at least once.
If this expectation fails, the unit test will also fail. In addition to this, the
SetFakeControllerContext extension method of MvcMockHelpers is used
to set up a fake web server environment.

Reference Application—CarTrackr

[214]

Mock repository
Earlier in this appendix, the repository design pattern was explained. CarTrackr
unit tests are using a custom repository implementation, based on the repository
contracts that are defined in CarTrackr.

Each repository contract is implemented in the unit testing project, based on data
from a List, rather than data from a database. This allows the set-up of different
testing scenarios more easily, without the requirement to deploy a custom database
to a real database server for each unit test. Another advantage of this approach is that
unit testing becomes more flexible and unit testing speed is dramatically increased.

When unit testing a controller, for example, the RefuellingController's Remove
action method can be achieved by instantiating the controller with these custom
repository implementations (setup part of the following unit test):

/// <summary>
///A test for Remove
///</summary>
[TestMethod()]
public void RemoveTest()
{
 // Setup
 DataStore dataStore = new DataStore();
 IUserRepository userRepository = new
 CarTrackr.Tests.Repository.UserRepository(dataStore);
 ICarRepository carRepository = new
 CarTrackr.Tests.Repository.CarRepository(dataStore);

Appendix A

[215]

 IRefuellingRepository refuellingRepository = new
 CarTrackr.Tests.Repository.RefuellingRepository(dataStore);

 RefuellingController target = new
 RefuellingController(userRepository, carRepository,
 refuellingRepository);

 // Execute
 Guid id = dataStore.Refuellings[0].Id;

 RedirectToRouteResult result = target.Remove(id) as
 RedirectToRouteResult;

 // Verify
 Assert.IsNull(refuellingRepository.RetrieveById(id));
}

After the test has been run, the repository is queried for the deleted refuelling. The
test expects the repository to return a null value rather than a Refuelling instance.

Summary
In this appendix, some tips and tricks for building a real-life ASP.NET MVC
application were covered, using the CarTrackr sample application, by zooming in
on certain aspects that make developing ASP.NET MVC applications easier and
faster. Using LINQ to SQL in a flexible manner, combined with the repository design
pattern and dependency injection, provides the application with a flexible manner
for coping with future requirements, and facilitates easier unit testing using mock
data sources.

The ASP.NET MVC framework uses the ASP.NET provider model: authentication,
authorization, membership, and session data. Developers can re-use ASP.NET
code based on the provider model in ASP.NET MVC applications. In the CarTrackr
application, a custom sitemap provider is developed and used as the default sitemap
provider for standard ASP.NET controls.

CarTrackr uses the ASP.NET MVC Membership Starter Kit project to provide
OpenID authentication on the login page.

Server-side form validation scenarios were explained by using an EnsureValid
method on the domain objects. This method provides a list of possible error
messages, which can be mapped to the ModelState dictionary of ViewData and
used in the view for displaying error messages.

ASP.NET MVC Mock Helpers
This appendix contains the source code that assists in testing an ASP.NET
MVC application using a mocking framework, as described in Chapter 9,
Testing an Application.

When unit testing ASP.NET MVC applications, ASP.NET components such as
Request and Response are often mocked. These components are normally filled by
the ASP.NET runtime, which is unavailable when performing unit tests. To make
use of HttpContext, Request, Response, SessionState, and server variables, the
MvcMockHelpers extension methods from this appendix can be used instead of
firing up a web server to perform the tests.

A version of MvcMockHelpers is provided for three mocking frameworks:
RhinoMocks, Moq, and TypeMock. An explanation of all of the methods can be
found in Chapter 9.

The original source code can be found on Scott Hanselman's blog at http://www.
hanselman.com/blog/ASPNETMVCSessionAtMix08TDDAndMvcMockHelpers.aspx.

RhinoMocks
Mocking framework URL: http://ayende.com/projects/rhino-mocks.aspx

using System;
using System.Web;
using Rhino.Mocks;
using System.Text.RegularExpressions;
using System.IO;
using System.Collections.Specialized;
using System.Web.Mvc;
using System.Web.Routing;

namespace UnitTests
{

ASP.NET MVC Mock Helpers

[218]

 public static class MvcMockHelpers
 {
 public static HttpContextBase FakeHttpContext(this
 MockRepository mocks)
 {
 HttpContextBase context =
 mocks.PartialMock<HttpContextBase>();
 HttpRequestBase request =
 mocks.PartialMock<HttpRequestBase>();
 HttpResponseBase response =
 mocks.PartialMock<HttpResponseBase>();
 HttpSessionStateBase session =
 mocks.PartialMock<HttpSessionStateBase>();
 HttpServerUtilityBase server =
 mocks.PartialMock<HttpServerUtilityBase>();

 SetupResult.For(context.Request).Return(request);
 SetupResult.For(context.Response).Return(response);
 SetupResult.For(context.Session).Return(session);
 SetupResult.For(context.Server).Return(server);

 mocks.Replay(context);
 return context;
 }

 public static HttpContextBase FakeHttpContext(this
 MockRepository mocks, string url)
 {
 HttpContextBase context = FakeHttpContext(mocks);
 context.Request.SetupRequestUrl(url);
 return context;
 }

 public static void SetFakeControllerContext(this
 MockRepository mocks, Controller controller)
 {
 var httpContext = mocks.FakeHttpContext();
 ControllerContext context = new ControllerContext(new
 RequestContext(httpContext,
 new RouteData()), controller);
 controller.ControllerContext = context;
 }

 static string GetUrlFileName(string url)
 {
 if (url.Contains("?"))
 return url.Substring(0, url.IndexOf("?"));
 else
 return url;
 }

Appendix B

[219]

 static NameValueCollection GetQueryStringParameters(string
 url)
 {
 if (url.Contains("?"))
 {
 NameValueCollection parameters = new
 NameValueCollection();

 string[] parts = url.Split("?".ToCharArray());
 string[] keys = parts[1].Split("&".ToCharArray());

 foreach (string key in keys)
 {
 string[] part = key.Split("=".ToCharArray());
 parameters.Add(part[0], part[1]);
 }

 return parameters;
 }
 else
 {
 return null;
 }
 }

 public static void SetHttpMethodResult(this HttpRequestBase
 request, string httpMethod)
 {
 SetupResult.For(request.HttpMethod).Return(httpMethod);
 }

 public static void SetupRequestUrl(this HttpRequestBase
 request, string url)
 {
 if (url == null)
 throw new ArgumentNullException("url");

 if (!url.StartsWith("~/"))
 throw new ArgumentException("Sorry, we expect a
 virtual url starting with \"~/\".");

 SetupResult.For(request.QueryString).Return
 (GetQueryStringParameters(url));
 SetupResult.For(request.
 AppRelativeCurrentExecutionFilePath)
 .Return(GetUrlFileName(url));
 SetupResult.For(request.PathInfo).Return(string.Empty);
 }

 }
}

ASP.NET MVC Mock Helpers

[220]

Moq
Mocking framework URL: http://code.google.com/p/moq/

Helpers ported by Kzu: http://www.clariusconsulting.net/blogs/kzu/

using System;
using System.Web;
using System.Text.RegularExpressions;
using System.IO;
using System.Collections.Specialized;
using System.Web.Mvc;
using System.Web.Routing;
using Moq;

namespace UnitTests
{
 public static class MvcMockHelpers
 {
 public static HttpContextBase FakeHttpContext()
 {
 var context = new Mock<HttpContextBase>();
 var request = new Mock<HttpRequestBase>();
 var response = new Mock<HttpResponseBase>();
 var session = new Mock<HttpSessionStateBase>();
 var server = new Mock<HttpServerUtilityBase>();

 context.Expect(ctx =>
 ctx.Request).Returns(request.Object);
 context.Expect(ctx =>
 ctx.Response).Returns(response.Object);
 context.Expect(ctx =>
 ctx.Session).Returns(session.Object);
 context.Expect(ctx =>
 ctx.Server).Returns(server.Object);

 return context.Object;
 }

 public static HttpContextBase FakeHttpContext(string url)
 {
 HttpContextBase context = FakeHttpContext();
 context.Request.SetupRequestUrl(url);
 return context;
 }

 public static void SetFakeControllerContext(this Controller
 controller)
 {

Appendix B

[221]

 var httpContext = FakeHttpContext();
 ControllerContext context = new ControllerContext(new
 RequestContext(httpContext,
 new RouteData()), controller);
 controller.ControllerContext = context;
 }

 static string GetUrlFileName(string url)
 {
 if (url.Contains("?"))
 return url.Substring(0, url.IndexOf("?"));
 else
 return url;
 }

 static NameValueCollection GetQueryStringParameters(string
 url)
 {
 if (url.Contains("?"))
 {
 NameValueCollection parameters = new
 NameValueCollection();

 string[] parts = url.Split("?".ToCharArray());
 string[] keys = parts[1].Split("&".ToCharArray());

 foreach (string key in keys)
 {
 string[] part = key.Split("=".ToCharArray());
 parameters.Add(part[0], part[1]);
 }

 return parameters;
 }
 else
 {
 	return null;
 }
 }

 public static void SetHttpMethodResult(this HttpRequestBase
 request, string httpMethod)
 {
 Mock.Get(request)
 .Expect(req => req.HttpMethod)
 .Returns(httpMethod);
 }

 public static void SetupRequestUrl(this HttpRequestBase
 request, string url)

ASP.NET MVC Mock Helpers

[222]

 {
 if (url == null)
 throw new ArgumentNullException("url");

 if (!url.StartsWith("~/"))
 throw new ArgumentException("Sorry, we expect a
 virtual url starting with \"~/\".");

 var mock = Mock.Get(request);

 mock.Expect(req => req.QueryString)
 .Returns(GetQueryStringParameters(url));
 mock.Expect(req =>
 req.AppRelativeCurrentExecutionFilePath)
 .Returns(GetUrlFileName(url));
 mock.Expect(req => req.PathInfo)
 .Returns(string.Empty);
 }
 }
}

TypeMock
Mocking framework URL: http://www.typemock.com

Helpers ported by Roy Osherove: http://www.iserializable.com

using System;
using System.Collections.Specialized;
using System.Web;
using System.Web.Mvc;
using System.Web.Routing;
using TypeMock;

namespace Typemock.Mvc
{
 static class MvcMockHelpers
 {
 public static void SetFakeContextOn(Controller controller)
 {
 HttpContextBase context =
 MvcMockHelpers.FakeHttpContext();
 controller.ControllerContext = new ControllerContext(new
 RequestContext(context, new RouteData()), controller);
 }

 public static void SetHttpMethodResult(this HttpRequestBase
 request, string httpMethod)

Appendix B

[223]

 {

 using (var r = new RecordExpectations())
 {
 r.ExpectAndReturn(request.HttpMethod, httpMethod);
 }
 }

 public static void SetupRequestUrl(this HttpRequestBase
 request, string url)
 {
 if (url == null)
 throw new ArgumentNullException("url");

 if (!url.StartsWith("~/"))
 throw new ArgumentException("Sorry, we expect a
 virtual url starting with \"~/\".");
 var parameters = GetQueryStringParameters(url);
 var fileName = GetUrlFileName(url);
 using (var r = new RecordExpectations())
 {
 r.ExpectAndReturn(request.QueryString, parameters);
 r.ExpectAndReturn(request.
 AppRelativeCurrentExecutionFilePath, fileName);
 r.ExpectAndReturn(request.PathInfo, string.Empty);
 }
 }

 static string GetUrlFileName(string url)
 {
 if (url.Contains("?"))
 return url.Substring(0, url.IndexOf("?"));
 else
 return url;
 }
 static NameValueCollection GetQueryStringParameters(string
 url)
 {
 if (url.Contains("?"))
 {
 NameValueCollection parameters = new
 NameValueCollection();

 string[] parts = url.Split("?".ToCharArray());
 string[] keys = parts[1].Split("&".ToCharArray());

 foreach (string key in keys)
 {

ASP.NET MVC Mock Helpers

[224]

 string[] part = key.Split("=".ToCharArray());
 parameters.Add(part[0], part[1]);
 }

 return parameters;
 }
 else
 {
 return null;
 }
 }
 public static HttpContextBase FakeHttpContext(string url)
 {
 HttpContextBase context = FakeHttpContext();
 context.Request.SetupRequestUrl(url);
 return context;
 }
 public static HttpContextBase FakeHttpContext()
 {
 HttpContextBase context =
 MockManager.MockObject<HttpContextBase>().Object;
 HttpRequestBase request =
 MockManager.MockObject<HttpRequestBase>().Object;
 HttpResponseBase response =
 MockManager.MockObject<HttpResponseBase>().Object;
 HttpSessionStateBase sessionState =
 MockManager.MockObject<HttpSessionStateBase>().Object;
 HttpServerUtilityBase serverUtility =
 MockManager.MockObject<HttpServerUtilityBase>().Object;
 using (var r = new RecordExpectations())
 {
 r.DefaultBehavior.RepeatAlways();
 r.ExpectAndReturn(context.Response, response);
 r.ExpectAndReturn(context.Request, request);
 r.ExpectAndReturn(context.Session, sessionState);
 r.ExpectAndReturn(context.Server, serverUtility);
 }
 return context;
 }

 }
}

Useful Links and Open
Source Projects Providing

Additional Features
This appendix contains URLs to web sites that provide information about the ASP.
NET MVC framework, and open source projects that provide additional features.

Information portals
This section lists all sorts of useful portals related to the ASP.NET framework. These
portals offer tutorials, videos, and learning resources, as well as news related to
ASP.NET MVC.

ASP.NET/MVC
The ASP.NET MVC web site is the official web site related to the ASP.NET MVC
framework. It offers a direct download link for the ASP.NET MVC framework
installer, as well as lots of documentation, samples, and screencasts.

URL: http://www.asp.net/mvc

Useful Links and Open Source Projects Providing Additional Features

[226]

Aspdotnetmvc.com
The ASP.NET MVC Information Portal offers an overview of all of the news,
announcements, blog posts, tutorials, tips, and other resources regarding the ASP.
NET MVC framework.

URL: http://aspdotnetmvc.com

Appendix C

[227]

DotNetKicks.com: Articles tagged with
ASP.NET MVC
The DotNetKicks.com web site offers a collection of various links to interesting and
actual ASP.NET MVC blog articles, tutorials, and so on.

URL: http://www.dotnetkicks.com/tags/ASPNETMVC

Blogs
The following list includes URLs of blogs that contain a lot of interesting articles on
the ASP.NET MVC framework:

Scott Guthrie: http://weblogs.asp.net/Scottgu/
Phil Haack: http://www.haacked.com/
Scott Hanselman: http://www.hanselman.com/blog/
Stephen Walther: http://weblogs.asp.net/StephenWalther/
Brad Wilson: http://bradwilson.typepad.com/blog/
Maarten Balliauw: http://blog.maartenballiauw.be
Chris van de Steeg: http://www.chrisvandesteeg.nl/
Troy Goode: http://www.squaredroot.com

•

•

•

•

•

•

•

•

Useful Links and Open Source Projects Providing Additional Features

[228]

Open source projects providing
additional features for the ASP.NET
MVC framework
This topic lists some open source projects that provide additional features for the
ASP.NET MVC framework. These projects can be used when developing your own
ASP.NET MVC web application. They can also facilitate development as well as
provide additional features.

ASP.NET MVC Design Gallery
URL: http://www.asp.net/mvc/gallery

The ASP.NET MVC Design Gallery hosts free HTML design templates that you
can download and easily use with your ASP.NET MVC applications. Each design
template includes a Site.master file, a CSS stylesheet, and optionally, a set of
images, partial views, and helper methods that support them.

MVC Contrib
URL: http://www.codeplex.com/MVCContrib

This project provides a series of assemblies that add functionality to the ASP.NET
MVC framework. A number of useful base classes and extensions are provided.

Some of the included items are:

Extra view helpers
Extra ActionResult implementations
IoC container controller factories for the popular containers: StructureMap,
Windsor, Spring.Net, Unity, and so on
Code snippets

xVal validation framework
URL: http://xval.codeplex.com/

xVal is a validation framework for ASP.NET MVC applications. xVal makes it easy
to link up your choice of server-side validation mechanism with your choice
of client-side validation library, neatly fitting both into the ASP.NET MVC
architecture and conventions.

•

•

•

•

Appendix C

[229]

ASP.NET MVC Membership Starter Kit
URL: http://www.codeplex.com/MvcMembership

This project provides a base web site and class library that extends the default
ASP.NET MVC framework project template with user and role administration,
OpenID authentication, Windows Live authentication, and so on.

XForms
URL: http://www.codeplex.com/mvcxforms

ASP.NET MVC XForms is a simple, strongly-typed, extensible UI framework based
on the W3C XForms spec. It provides a base set of form controls that allow the
update of any complex model object, including complex nested lists. It uses clean,
semantic HTML, and a fluent, lamba-based API.

jQuery for ASP.NET MVC
URL: http://www.codeplex.com/jquery4mvc

This project offers a set of helper methods that allow easier development of web
applications combining the ASP.NET MVC framework and jQuery.

Simple ASP.NET MVC controls
URL: http://www.codeplex.com/simplemvccontrols

The simple ASP.NET MVC controls library helps to create an MVC web page
more easily and without changing the context of the view. It currently features a
code-driven fluent interface for creating an HTML form containing different sorts
of controls and validation.

Alternative view engines
This topic lists some alternatives to the default view engine that is a part of the
ASP.NET MVC framework.

Spark view engine
URL: http://dev.dejardin.org/documentation

Spark is a view engine for the ASP.NET MVC framework. It allows the use of pure
HTML markup to create a view, rather than a combination of HTML and code.

Useful Links and Open Source Projects Providing Additional Features

[230]

NHaml view engine
URL: http://weblogs.asp.net/stephenwalther/archive/2008/08/20/
asp-net-mvc-tip-35-use-the-nhaml-view-engine.aspx

The NHaml view engine is an alternative view engine for the ASP.NET MVC
framework, providing a verbose language to render a view. It allows you to create
a view without having to write a lot of code.

NVelocity view engine
URL: http://weblogs.asp.net/stephenwalther/archive/2008/07/14/
asp-net-mvc-tip-19-use-the-nvelocity-view-engine.aspx

NVelocity is an alternative view engine to the ASP.NET MVC framework that
provides an easy-to-use template language focused on building HTML pages,
using a clean templating syntax.

Example ASP.NET MVC applications
This topic lists some example applications that have been built using the ASP.NET
MVC framework. These applications can be used as a reference for creating your
own applications.

MVC storefront
URL: http://blog.wekeroad.com/mvc-storefront/ and http://www.
codeplex.com/mvcsamples

This includes Rob Conery’s set of screencasts and an example application featuring
an online store written using ASP.NET MVC, Windsor, Linq to SQL, and so on.

FlickrExplorer
URL: http://www.codeplex.com/FlickrXplorer

flickrExplorer is an open source initiative to present users with a fast photo
explorer and search tool that they can use to browse millions of photos in flickr. The
application also demonstrates the use of jQuery in an ASP.NET MVC application.

Appendix C

[231]

Yonkly
URL: http://www.codeplex.com/yonkly

Yonkly is an open source Twitter clone, written in the ASP.NET MVC framework.

Kigg
URL: http://www.codeplex.com/Kigg

Kigg is an open source Digg clone developed using the ASP.NET MVC framework,
LINQ to SQL, and ASP.NET AJAX.

CarTrackr
URL: http://www.codeplex.com/CarTrackr

CarTrackr is a sample application for the ASP.NET MVC framework that uses the
repository pattern, and dependency injection using the Unity application block. It
is an online software application that is designed to help you understand and track
your fuel use and kilometers driven.

Index
Symbols
$ 153
$(function() { // ... } 153
[Bind] attribute 42
[OutputCache] attribute 129
[TestMethod] attribute 167

A
AcceptVerbsAttribute 68
AccountController 168, 169
AccountController constructor 170
action filters, ASP.NET MVC framework

about 75
cross-cutting concern 75
IActionFilter interface 76
IAuthorizationFilter interface 75
IExceptionFilter interface 76
IResultFilter interface 76

ActionLink method 35
action method 150
action method attributes, controller

AcceptVerbsAttribute 68
ActionNameAttribute 68
AuthorizeAttribute 67
HandleErrorAttribute 67
NonActionAttribute 67
OutputCacheAttribute 67
ValidateAntiForgeryToken 68

ActionNameAttribute 68
ActionResult 22
ActionResult, creating

ExecuteResult method 101, 102
HtmlHelper extension method 104
ImageResult method 102, 103
ShowTitle action method 104

ActionResult, types
Content 61
ContentResult 61
EmptyResult 61
File 61
FilePathResult 61
FileStreamResult 61
JavaScript 61
JavaScriptResult 61
Json 61
JsonResult 61
PartialView 61
PartialViewResult 61
Redirect 61
RedirectResult 61
RedirectToAction 61
RedirectToRoute 61
RedirectToRouteResult 61
View 61
ViewResult 61

ActionSelectionAttribute 63
Active Server Pages. See ASP
AddMultiple method 173
Ajax.BeginForm method 149
AJAX frameworks

about 145, 146
ASP.NET AJAX framework 147
JavaScript Object Notation (JSON) 146
XMLHttpRequest 146

AjaxHelper object, methods
ActionLink 147
BeginForm 147
RouteLink 147

AjaxOptions, property
confirm 148
HttpMethod 148

[234]

InsertionMode 148
LoadingElementId 148
OnBegin 148
OnComplete 148
OnFailure 148
OnSuccess 148
UpdateTargetId 148
Url 148

AntiForgeryToken method 35
Application_Start() event handler 19
ASP

disadvantages 10
ASP.NET AJAX framework

about 147
ASP.NET MVC AJAX helper 147

ASP.NET framework
ASP.NET provider model 210-212

ASP.NET framework, portals
ASP.NET MVC 225
Aspdotnetmvc.com 227
Dotnetkicks.com 228

ASP.NET MVC
and ASP.NET Webforms, combining 135
and ASP.NET Webforms, differences 165

ASP.NET MVC AJAX helper
ActionLink method 147
AjaxHelper object, methods 147
AjaxOptions, property 148
BeginForm method 147
JsonResult, working with 150
methods 147
RouteLink method 147

ASP.NET MVC application
views, building at compile time 142

ASP.NET MVC applications, example
CarTrackr 232
FlickrExplorer 232
Kigg 232
MVC storefront 231

ASP.NET MVC Design Gallery, open source
project 229

ASP.NET MVC framework
advantages 12
and ASP.NET Webforms 12, 13
and ASP.NET Webforms, selecting criteria

13, 14
and WCSF differences, URL 11

blog, URLs 228, 229
control, creating 92-95
culture preferences, setting 132-134
custom ActionResult, creating 101
filter attribute, creating 96-100
goals 10, 11
language preferences, setting 132-134
open source projects 229
output caching 127
SimpleViewEngine 112
TempData 119
ViewEngine, creating 105
view engines 231

ASP.NET MVC framework, extending
control, creating 92-95
custom ActionResult, creating 101
filter attribute, creating 96-100

ASP.NET MVC Membership Starter Kit
207, 208

ASP.NET MVC Membership Starter Kit,
open source project 230

ASP.NET MVC mock helpers 217
ASP.NET MVC request flow. See ASP.NET

MVC request life cycle
ASP.NET MVC request life cycle

controller execution 54
diagram 52
extensibility 54
IHttpHandler, created by route handler 53
IHttpHandler, determined by controller 53
RouteTable, creating 52
routing engine, route determined by 53
steps 52
UrlRoutingModule, request intercepted by

53
view, rendering 54
ViewEngine, creating 54

ASP.NET MVC request life cycle,
extensibility

controller 55
ControllerFactory 55
IView 56
MvcRouteHandler 55
route objects 54
ViewEngine 55, 56

ASP.NET MVC web application
controller 60

[235]

data, validating 45
file uploads, handling 39
form, creating 33
hosting 186
IIS versions 184
model 56
ModelBinder attribute, using 40
platforms, for running 184
posts, handling 37
running, IIS versions 184
running, platforms 183
view 68

ASP.NET MVC web application, hosting
route table, modifying 189-191
wildcard script map, creating in Internet

Information Services (IIS) 6.0 188, 189
wildcard script map, creating in Internet

Information Services (IIS) 7.0 187
ASP.NET MVC web application project

ActionResult 22
content folder 18
controllers folder 18
creating 16, 18
Employee controller 20
EmployeeController class 20
EmployeeController class, coding 21, 22
firstname parameter 20
folders 18
models folder 18
MvcApplication1 project, code 19
routing 19
scripts folder 18
Show.aspx page, creating 22, 23
Show action 20
ViewData used 23
views folder 18

ASP.NET provider model 210-212
ASP.NET routing

about 79
versus URL rewriting 80

ASP.NET web application
<authentication> element 125
authentication 120
authentication options 125
authorization 120
caching 127
globalization 129

membership 120
role based security, implementing in

controller 122
routes, testing 178, 179
user based security, implementing in

controller 122
web site administration tool 121
web site security, configuring 122
web site security configuring, web site

administration tool used 121
ASP.NET Webforms

advantages 12
and ASP.NET MVC, combining 135
and ASP.NET MVC framework 12, 13
and ASP.NET MVC framework, selecting

criteria 13, 14
ASP.NET Webforms and ASP.NET MVC,

combining
about 135
ASP.NET, plugging in existing ASP.NET

MVC application 139, 140
ASP.NET MVC, plugging in existing ASP.

NET application 135-138
data, sharing 140, 141
web.config file, enabling 136

ASP.NET web site administration tool
web site security, configuring 121, 122

ASP NET MVC web application, hosting
wildcard script map, creating in Internet

Information Services (IIS) 6.0 188, 189
AttributeEncode method 35
AuthenticatedRouteConstraint class 85
authentication 120
authentication options

cookieless 125
defaultUrl 125
domain 126
loginUrl 126
mode 125
name 126
path 126
protection 126
requireSSL 126
slidingExpiration 126
timeout 126

authorization 120

[236]

AuthorizeAttribute 67
AuthorizeAttribute parameters 122

B
BeginForm method 35
blog URLs, ASP.NET MVC framework

228, 229
Button method 35

C
caching

[OutputCache] attribute 129
about 127
client-side caching 127
OutputCacheLocation.None 129
output caching 127
server-side caching 127

CalculationEngine constructor 173
CarController class 208, 209
CarRepository implementation 201
CarRepository instance 205
CarTrackr

car class 202
car details 197, 198
controllers, building 203
data layer 199
form validation 208-210
home page 194
ICarRepository interface 201
IUserRepository 203
list of cars 196, 197
login screen 195
mock repository 214, 215
RefuellingController 203
refuellings list 198
unit testing 213, 214

CGI 9
CheckBox method 35
click() event handler 160
Common Gateway Interface. See CGI
Content 61
ContentResult 61
control creating, ASP.NET MVC framework

about 92
DisplayEmployee.ascx.cs 94
Employee class, creating 92

ViewData type 95
ViewUserControl class 94

controller
about 8, 9, 60
action method attributes 67
action method selection 63
creating 60, 61
data, reading from request 62
data, rendering 61
HandleUnknownAction method 64-66
unknown controller actions, handling 64

controller, unit testing 27-29
ControllerActionInvoker 63
ControllerBuilder 86
ControllerContext 63
CreatePartialView() method, overriding 106
CreateView() method, overriding 106
cross-cutting concerns

about 96
example 96

CultureInfo instance 134
culture preferences, setting 132-134
CurrentCulture property 134
custom ActionResult, creating 101

D
data, validating 45, 46
data layer, CarTrackr

LINQ to SQL model 200, 201
repository pattern 201, 202

DefaultNamespaces property 86
dependency injection

about 202
car class 202
CarTrackr controllers, building 203, 204
unity, using 204-206

div element 160
DropDownList method 35

E
e.preventDefault() 156
Echo action method 149
EchoTarget div element 149
EmptyResult 61
Encode method 35
EnsureValid method 209

[237]

EvalBoolean method 35
EvalString method 35
ExecuteResult() method 101

F
File 61
FileContentResult 61
FilePathResult 61
FileStreamResult 61
file uploads, handling

upload controller action, creating 39
FilterAttribute class 96
filter attribute creating, ASP.NET MVC

framework 96, 97
AttributeUsage attribute 97
LoggingAttribute class 97
LogName property 97

find() 163
foreach loop 73
form, creating

approaches 33
HtmlHelper used 34
HTML used 33, 34

FormCollection 180, 181
formsAuthenticationMock 175

G
get_object() method 151
GetRouteData method 81, 179
GetRuleViolations method 209
globalization

global resources, using 132
local resources, using 130-132
resources 129

global resources 132

H
HandleErrorAttribute 67
HandleUnknownAction method, controller

64, 66
Hidden method 35
Home controller 19
HomeController class 112
HomeControllerTest class 167, 168
HtmlHelper.ActionLink method 73

HtmlHelper.ValidationMessage() 59
HtmlHelper.ValidationSummary method

48
about 34, 35
ActionLink method 35
AntiForgeryToken method 35
AttributeEncode method 35
BeginForm method 35
Button method 35
CheckBox method 35
DropDownList method 35
Encode method 35
EvalBoolean method 35
EvalString method 35
Hidden method 35
Image method 35
ListBox method 35
Mailto method 35
NavigateButton method 35
Password method 35
RenderAction method 35, 36
RenderPartial method 36
RouteLink method 35, 36
SubmitButton method 36
SubmitImage method 36
TextArea method 36
TextBox method 35
ValidationMessage method 36
ValidationSummary method 36

HtmlHelper extension method 104
HttpRequest object 39, 40

I
IActionFilter interface, action filters

OnActionExecuted method 76
OnActionExecuting method 76

IAuthorizationFilter interface, action filters
75

ICalculator interface 173
ICarRepository interface 201
IControllerFactory interface 55
IController interface 55
IDataErrorInfo 59
IExceptionFilter interface, action filters 76
IFormsAuthentication implementation

170, 172

[238]

IHttpHandler 53
IIS 6.0 188
IIS 7.0 187
IIS versions 184
Image method 35
ImageResult class

ImageFormat property 103
Image property 103
ImageResult constructor 103
properties 103

ImageResult constructor 103
IModelBinder implementations

about 45
DefaultModelBinder class 45
FormCollectionModelBinder class 45

Index action 62
internationalization 129
InternationalizationAttribute 133, 134
Internet Information Services (IIS) 7.0

wildcard script map, creating 187
Internet Information Services (IIS) 7.0

integrated mode and classic mode,
differences 184-186

IRefuellingRepository 204
IResultFilter interface, action filters

methods 76
OnResultExecuted method 76
OnResultExecuting method 76

IRouteConstraint interface 84
IRouteHandler

GetHttpHandler method 81
IUnityContainer instance 205
IUserRepository 203
IValueProvider 180
IValueProvider instance 42
IValueProvider interface 42
IView 56
IViewEngine interface, implementing 105
IView interface 107

J
JavaScript 61
JavaScript Object Notation. See JSON
JavaScriptResult 61
jQuery, AJAX frameork

about 152

jQuery UI, using 159-163
JsonResult, working with 157
syntax 153, 154
using, with ASP.NET MVC 154, 155

jQuery for ASP.NET MVC, open source
project 230

JSON 146
Json 61
JsonResult 61

L
language preferences, setting 132-134
LINQ to SQL model 200
ListBox method 35
localization 129
local resources 130, 131
LoggingAttribute class 97, 99
login action method, testing 174-176
LogName property 97, 98
Logout action method 213

M
Mailto method 35
MapRoute method

arguments 83
membership 120
MembershipProvider instance 171, 172
Microsoft.Web.Mvc 104
mocking frameworks

EasyMock 172
Moq 172
Rhino Mocks 172
TypeMock 172

model
about 8, 56
creating 56
Task class 57
validation, enabling 58, 60
ViewData class 58, 60

model-view-controller. See MVC pattern
model-view-presenter. See MVP pattern
ModelBinder 180
ModelBinder attribute

Contact class 43
custom ModelBinder, creating 43-45

[239]

default ModelBinder, using 41-43
DefaultModelBinder class 44
IValueProvider interface 42
using 40

ModelBinders.Binders.Add() method 43
ModelBindingContext parameter 45
ModelState dictionary 210
Moq, mocking framework 172, 220-222
MVC Contrib, open source project 229
MvcMockHelpers class, extension methods

177, 178
MVC pattern

about 7-9
vs MVP pattern 11

MVP pattern
vs MVC pattern 11

N
NavigateButton method 35
NHaml view engine 231
NonActionAttribute 67
NVelocity view engine 231

O
OnActionExecuted method, IActionFilter

interface 98
OnActionExecuting method, IActionFilter

interface 98
OnJsonSampleColorsCompleted JavaScript

method 151
open source projects, ASP.NET MVC

framework
ASP.NET MVC Design Gallery 229
ASP.NET MVC Membership Starter Kit 230
jQuery for 230
MVC Contrib 229
simple ASP.NET MVC controls 230
XForms 230
xVal validation framework 230

OutputCacheAttribute 67
OutputCacheAttribute, parameters

CacheProfile attribute 128
Duration attribute 128
Location attribute 128
NoStore attribute 128
SqlDependency attribute 128

VaryByContentEncoding attribute 128
VaryByCustom attribute 128
VaryByHeader attribute 128
VaryByParam attribute 128

OutputCacheLocation.None 129
output caching 127

P
PartialView 61
PartialViewResult 61
Password method 35
posts, handling

about 37
action method parameters 38
request variables 37
request variables, objects updating from

37, 38

R
Redirect 61
RedirectResult 61
RedirectToAction 61
RedirectToRoute 61
RedirectToRouteResult 61
RefuellingController 203
RegisterRoutes method 179
Remove action method 214, 215
Render() method 108
RenderAction method 35, 36
RenderPartial method 36, 74
Resolve() method 109
resources, globalization

about 129
global resources 132
local resources 130, 131

RetrieveJsonSampleColors JavaScript
method 151

RhinoMocks, mocking framework 217-219
RouteCollection 179
RouteCollection class, UrlRoutingModule

81
RouteLink method 35, 36
routes

ASP.NET MVC and ASP.NET, combining
88

catch-all routes 85

[240]

ControllerBuilder 86
DefaultNamespaces property 86
defining 82
example, Global.asax file 82
MapRoute method 83
parameter constraints 84
routing namespaces 86, 87
StopRouteHandler() 88
URLs, creating 89

routes, testing
about 178
ArchiveRoute testing, MvcMockHelpers

extension methods used 179
GetRouteData method 179
RouteCollection 179

routing 19
routing patterns

{controller}/{action}/{id} 82
{controller}/{action}/{id}.aspx 82
{department}/{title}.aspx 82
{language}-{country}/{controller}/{action}/

{id} 82
archive/{year}-{month}/{title}.aspx 82

RuleViolation 209

S
SaveAs() method 39
session state, ASP.NET MVC framework

about 116
configuring 117
Message key 117
session data, reading 117
session data, writing 117
sessionstate element, attributes 118

sessionstate element, attributes
cookieless attribute 119
cookieName attribute 118
regenerateExpiredSessionId attribute 119
timeout attribute 118

SetFakeControllerContext extension method
213

show() method 161
ShowTitle action method 104
simple ASP.NET MVC controls, open

source project 230

SimpleView
code 109-112

SimpleViewEngine 112
SiteMapPath control 212
spark view engine 231
StopRouteHandler() 88
strong-typed view data

about 24
ViewData.Model property 24, 25
ViewData object 24

SubmitButton method 36
SubmitImage method 36
Sys.Net.WebRequest class 151

T
T4 71
Task class 57
TDD 13, 166
TempData, ASP.NET MVC framework 119
Test-Driven Development. See TDD
TextArea method 36
TextBox method 35
Text Template Transformation Toolkit.

See T4
TryUpdateModel method 179, 180
TypeMock, mocking framework 222-224

U
units 27
unit testing

about 27, 166
AccountController constructor 170
action method, testing 170
AddMultiple method 173
benefits 166
example 166-168
for controller 27-29
formsAuthenticationMock 175
frameworks 166
generating 168-170
login action method, testing 174-176
mocking frameworks 172

unit testing, CarTrackr 213, 214
about 213, 214
mock repository 214

[241]

UpdateModel 38
UpdateModel method 179, 180
UpdateModel scenarios, testing

UpdateModel (or TryUpdateModel) 179
UpdateModel method (or TryUpdateModel

method) 180, 181
UpdateModelStateWithViolations method

210
URL rewriting

versus ASP.NET routing 80
UrlRoutingModule, ASP.NET routing

about 80, 81
IHttpHandler 81
IRouteHandler 81
RouteCollection class 81

URLs, creating from routes 89

V
ValidateAntiForgeryToken 68
ValidationMessage method 36
ValidationSummary method 36
VaryByContentEncoding 127
VaryByCustom 127
VaryByHeader 127
VaryByParam 127
View 61
view

about 8, 68
creating 70, 71
location 69, 70
master pages 71
partial views 74
RenderPartial method 74
view markup 72

view, adding 26
ViewData.Model property 24, 25
ViewData.ModelState.AddModelError

method 47
ViewData.ModelState collection 49
ViewData class 58

ViewData dictionary 138
ViewData object 24
ViewData property 94
ViewData type 95
ViewEngine 56

CreatePartialView() method, overriding
106

CreateView() method, overriding 106
IViewEngine interface, implementing 105
IView interface 107, 108
Render() method, implementing 108
Resolve() method 109
SimpleViewEngine, creating 106, 107

view engines, ASP.NET MVC framework
NHaml view engine 231
NVelocity view engine 231
spark view engine 231

ViewResult 61
views, building at compile time 142
ViewUserControl class 94

W
WCSF

and ASP.NET MVC differences, URL 11
Web Client Software Factory. See WCSF
web security, configuring 121, 122
wildcard script map

creating in Internet Information Services
(IIS) 6.0 188, 189

creating in Internet Information Services
(IIS)7.0 187

X
XForms, open source project 230
XMLHttpRequest 146
XRDS action method 207
xVal validation framework, open source

project 230

Thank you for buying
ASP.NET MVC 1.0 Quickly

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

ASP.NET 3.5 Application
Architecture and Design
ISBN: 978-1-847195-50-0 Paperback: 239 pages

Build robust, scalable ASP.NET applications quickly
and easily

1.	 Master the architectural options in ASP.NET to
enhance your applications

2.	 Develop and implement n-tier architecture
to allow you to modify a component without
disturbing the next one

3.	 Design scalable and maintainable web
applications rapidly

4.	 Implement ASP.NET MVC framework to
manage various components independently

ASP.NET 3.5 Social Networking
ISBN: 978-1-847194-78-7 Paperback: 556 pages

An expert guide to building enterprise-ready social
networking and community applications with
ASP.NET 3.5

1.	 Create a full-featured, enterprise-grade social
network using ASP.NET 3.5

2.	 Learn key new ASP.NET topics in a practical,
hands-on way: LINQ, AJAX, C# 3.0, n-tier
architectures, and MVC

3.	 Build friends lists, messaging systems, user
profiles, blogs, message boards, groups,
and more

4.	 Rich with example code, clear explanations,
interesting examples, and practical advice—a
truly hands-on book for ASP.NET developers

Please check www.PacktPub.com for information on our titles

