

Unity	5.x	Shaders	and	Effects	Cookbook

Table	of	Contents

Unity	5.x	Shaders	and	Effects	Cookbook

Credits

About	the	Authors

www.PacktPub.com

eBooks,	discount	offers,	and	more

Why	subscribe?

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Sections

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	Creating	Your	First	Shader

Introduction

Creating	a	basic	Standard	Shader

Getting	ready

How	to	do	it…

How	it	works…

See	also

Migrating	Legacy	Shaders	from	Unity	4	to	Unity	5

Getting	ready

How	to	do	it…

Upgrading	automatically

Using	Standard	Shaders

Migrating	custom	shaders

How	it	works…

See	also

Adding	properties	to	a	shader

Getting	ready

How	to	do	it…

How	it	works…

See	also

Using	properties	in	a	Surface	Shader

How	to	do	it…

How	it	works…

There’s	more…

See	also

2.	Surface	Shaders	and	Texture	Mapping

Introduction

Diffuse	shading

Getting	ready

How	to	do	it…

How	it	works…

Using	packed	arrays

How	to	do	it…

Packed	matrices

See	also

Adding	a	texture	to	a	shader

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Scrolling	textures	by	modifying	UV	values

Getting	ready

How	to	do	it…

How	it	works…

Normal	mapping

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Creating	a	transparent	material

Getting	ready

How	to	do	it…

How	it	works…

Creating	a	Holographic	Shader

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

Packing	and	blending	textures

Getting	ready

How	to	do	it…

How	it	works…

Creating	a	circle	around	your	terrain

Getting	ready

How	to	do	it…

Moving	the	circle

How	it	works…

3.	Understanding	Lighting	Models

Introduction

Creating	a	custom	diffuse	lighting	model

Getting	ready

How	to	do	it…

How	it	works…

Creating	a	Toon	Shader

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Creating	a	Phong	Specular	type

Getting	ready

How	to	do	it…

How	it	works…

Creating	a	BlinnPhong	Specular	type

Getting	ready

How	to	do	it…

How	it	works…

See	also

Creating	an	Anisotropic	Specular	type

Getting	ready

How	to	do	it…

How	it	works…

4.	Physically	Based	Rendering	in	Unity	5

Introduction

Understanding	the	metallic	setup

Getting	ready

How	to	do	it…

How	it	works…

See	also

Adding	transparency	to	PBR

Getting	ready

How	to	do	it…

Semi-transparent	materials

Fading	objects

Solid	geometries	with	holes

See	also

Creating	mirrors	and	reflective	surfaces

Getting	ready

How	to	do	it…

How	it	works…

See	also

Baking	lights	in	your	scene

Getting	ready

How	to	do	it…

Configuring	the	static	geometry

Configuring	the	light	probes

Baking	the	lights

How	it	works…

See	also

5.	Vertex	Functions

Introduction

Accessing	a	vertex	color	in	a	Surface	Shader

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Animating	vertices	in	a	Surface	Shader

Getting	ready

How	to	do	it…

How	it	works…

Extruding	your	models

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Adding	extrusion	maps

Implementing	a	snow	shader

Getting	ready

How	to	do	it…

How	it	works…

Coloring	the	surface

Altering	the	geometry

See	also

Implementing	a	volumetric	explosion

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

See	also

6.	Fragment	Shaders	and	Grab	Passes

Introduction

Understanding	Vertex	and	Fragment	Shaders

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Input	semantics

Output	semantics

See	also

Using	grab	pass

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Implementing	a	Glass	Shader

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Implementing	a	Water	Shader	for	2D	games

Getting	ready

How	to	do	it…

How	it	works…

7.	Mobile	Shader	Adjustment

Introduction

What	is	a	cheap	shader?

Getting	ready

How	to	do	it…

How	it	works…

Profiling	your	shaders

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Modifying	our	shaders	for	mobile

Getting	ready

How	to	do	it…

How	it	works…

8.	Screen	Effects	with	Unity	Render	Textures

Introduction

Setting	up	the	screen	effects	script	system

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Using	brightness,	saturation,	and	contrast	with	screen	effects

Getting	ready

How	to	do	it…

How	it	works…

Using	basic	Photoshop-like	Blend	modes	with	screen	effects

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Using	the	Overlay	Blend	mode	with	screen	effects

Getting	ready

How	to	do	it…

How	it	works…

9.	Gameplay	and	Screen	Effects

Introduction

Creating	an	old	movie	screen	effect

Getting	ready

How	to	do	it…

How	it	works…

See	also

Creating	a	night	vision	screen	effect

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

10.	Advanced	Shading	Techniques

Introduction

Using	CgInclude	files	that	are	built	into	Unity

Getting	ready

How	to	do	it…

How	it	works…

Making	your	shader	world	modular	with	CgInclude

Getting	ready

How	to	do	it…

How	it	works…

Implementing	a	Fur	Shader

Getting	ready

How	to	do	it…

How	it	works…

There’s	more…

Implementing	heatmaps	with	arrays

Getting	ready

How	to	do	it…

How	it	works…

Index

Unity	5.x	Shaders	and	Effects	Cookbook

Unity	5.x	Shaders	and	Effects	Cookbook
Copyright	©	2016	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	authors,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	Published:	February	2016

Production	reference:	1220216

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78528-524-0

www.packtpub.com

http://www.packtpub.com

Credits
Authors

Alan	Zucconi

Kenneth	Lammers

Reviewer

Kenneth	Lammers

Commissioning	Editor

Priya	Singh

Acquisition	Editors

Rahul	Nair

Erol	Staveley

Content	Development	Editor

Mehvash	Fatima

Technical	Editors

Pranil	Pathare

Danish	Shaikh

Copy	Editor

Tasneem	Fatehi

Project	Coordinator

Kinjal	Bari

Proofreader

Safis	Editing

Indexer

Monica	Ajmera	Mehta

Graphics

Kirk	D’Penha

Disha	Haria

Production	Coordinator

Nilesh	Mohite

Cover	Work

Nilesh	Mohite

About	the	Authors
Alan	Zucconi	is	a	passionate	developer,	author,	and	motivational	speaker,	recognized	as
one	of	Develop’s	“30	under	30.”	His	expertise	has	been	built	over	the	past	10	years,	while
he	dedicated	his	time	to	academia	and	the	gaming	industry.	He	started	his	independent
career	to	fully	explore	his	creativity,	tearing	down	the	wall	between	art	and	gaming.	Prior
to	that,	he	worked	at	Imperial	College	London,	where	he	discovered	his	passion	for
teaching	and	writing.	His	titles	include	the	gravity	puzzle,	0RBITALIS,	and	the	upcoming
time	travel	platformer,	Still	Time.

Kenneth	Lammers	has	over	15	years	of	experience	in	the	gaming	industry,	working	as	a
character	artist,	technical	artist,	technical	art	director,	and	programmer.	Throughout	his
career,	he	has	worked	on	titles	such	as	Call	of	Duty	3,	Crackdown	2,	Alan	Wake,	and
Kinect	Star	Wars.	He	currently	owns	and	operates	Ozone	Interactive	along	with	his
business	partner,	Noah	Kaarbo.	Together,	they	have	worked	with	clients	such	as	Amazon,
Eline	Media,	IGT,	and	Microsoft.

Kenny	has	worked	for	Microsoft	Games	Studios,	Activision,	and	Surreal,	and	has	recently
gone	out	on	his	own,	operating	CreativeTD	and	Ozone	Interactive.

Kenny	authored	the	first	version	of	Unity	Shaders	and	Effects	Cookbook	by	Packt
Publishing,	and	was	very	happy	to	be	a	part	of	the	writing,	updating	and	reviewing	of	this
book.

www.PacktPub.com

eBooks,	discount	offers,	and	more
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<customercare@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Preface
Unity	5.x	Shaders	and	Effects	Cookbook	is	your	guide	to	becoming	familiar	with	the
creation	of	shaders	and	post	effects	in	Unity	5.	You	will	start	your	journey	at	the
beginning,	creating	the	most	basic	shaders	and	learning	how	the	shader	code	is	structured.
This	foundational	knowledge	will	arm	you	with	the	means	to	progress	further	through
each	chapter,	learning	advanced	techniques	such	as	volumetric	explosions	and	fur	shading.
This	edition	of	the	book	is	written	specifically	for	Unity	5	and	will	help	you	to	master
physically-based	rendering	and	global	illumination	to	get	as	close	to	photorealism	as
possible.

By	the	end	of	each	chapter,	you	will	have	gained	new	skill	sets	that	will	increase	the
quality	of	your	shaders	and	even	make	your	shader	writing	process	more	efficient.	These
chapters	have	been	tailored	so	that	you	can	jump	into	each	section	and	learn	a	specific
skill	from	beginner	to	expert.	For	those	who	are	new	to	shader	writing	in	Unity,	you	can
progress	through	each	chapter,	one	at	a	time,	to	build	on	your	knowledge.	Either	way,	you
will	learn	the	techniques	that	make	modern	games	look	the	way	they	do.

Once	you	have	completed	this	book,	you	will	have	a	set	of	shaders	that	you	can	use	in
your	Unity	3D	games	as	well	as	the	understanding	to	add	to	them,	accomplish	new	effects,
and	address	performance	needs.	So	let’s	get	started!

What	this	book	covers
Chapter	1,	Creating	Your	First	Shader,	introduces	you	to	the	world	of	shader	coding	in
Unity	4	and	5.

Chapter	2,	Surface	Shaders	and	Texture	Mapping,	covers	the	most	common	and	useful
techniques	that	you	can	implement	with	Surface	Shaders,	including	how	to	use	textures
and	normal	maps	for	your	models.

Chapter	3,	Understanding	Lighting	Models,	gives	you	an	in-depth	explanation	of	how
shaders	model	the	behavior	of	light.	The	chapter	teaches	you	how	to	create	custom
lighting	models	used	to	simulate	special	effects	such	as	toon	shading.

Chapter	4,	Physically	Based	Rendering	in	Unity	5,	shows	you	that	physically-based
rendering	is	the	standard	technology	used	by	Unity	5	to	bring	realism	to	your	games.	This
chapter	explains	how	to	make	the	most	out	of	it,	mastering	transparencies,	reflective
surfaces,	and	global	illumination.

Chapter	5,	Vertex	Functions,	teaches	you	how	shaders	can	be	used	to	alter	the	geometry	of
an	object;	this	chapter	introduces	vertex	modifiers	and	uses	them	to	bring	volumetric
explosions,	snow	shaders,	and	other	effects	to	life.

Chapter	6,	Fragment	Shaders	and	Grab	Passes,	explains	how	to	use	grab	passes	to	make
materials	that	emulate	the	deformations	generated	by	these	semi-transparent	materials.

Chapter	7,	Mobile	Shader	Adjustment,	helps	you	optimize	your	shaders	to	get	the	most	out
of	any	devices.

Chapter	8,	Screen	Effects	with	Unity	Render	Textures,	shows	you	how	to	create	special
effects	and	visuals	that	would	otherwise	be	impossible	to	achieve.

Chapter	9,	Gameplay	and	Screen	Effects,	tells	you	how	post-processing	effects	can	be
used	to	complement	your	gameplay,	simulating,	for	instance,	a	night	vision	effect.

Chapter	10,	Advanced	Shading	Techniques,	introduces	the	most	advanced	techniques	in
this	book,	such	as	fur	shading	and	heatmap	rendering.

What	you	need	for	this	book
The	following	is	a	list	of	the	required	and	optional	software	to	complete	the	recipes	in	this
book:

Unity	5
A	3D	application	such	as	Maya,	Max,	or	Blender	(optional)
A	2D	image	editing	application	such	as	Photoshop	or	Gimp	(optional)

Who	this	book	is	for
This	book	is	written	for	developers	who	want	to	create	their	first	shaders	in	Unity	5	or
wish	to	take	their	game	to	a	whole	new	level	by	adding	professional	post-processing
effects.	A	solid	understanding	of	Unity	is	required.

Sections
In	this	book,	you	will	find	several	headings	that	appear	frequently	(Getting	ready,	How	to
do	it,	How	it	works,	There’s	more,	and	See	also).

To	give	clear	instructions	on	how	to	complete	a	recipe,	we	use	these	sections	as	follows:

Getting	ready
This	section	tells	you	what	to	expect	in	the	recipe,	and	describes	how	to	set	up	any
software	or	any	preliminary	settings	required	for	the	recipe.

How	to	do	it…
This	section	contains	the	steps	required	to	follow	the	recipe.

How	it	works…
This	section	usually	consists	of	a	detailed	explanation	of	what	happened	in	the	previous
section.

There’s	more…
This	section	consists	of	additional	information	about	the	recipe	in	order	to	make	the	reader
more	knowledgeable	about	the	recipe.

See	also
This	section	provides	helpful	links	to	other	useful	information	for	the	recipe.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“Enter
the	following	code	into	the	Properties	block	of	your	shader.”

A	block	of	code	is	set	as	follows:

void	surf	(Input	IN,	inout	SurfaceOutput	o)

{

		float4	c;

		c	=	pow((_EmissiveColor	+	_AmbientColor),	_MySliderValue);

		o.Albedo	=	c.rgb;

		o.Alpha	=	c.a;

}

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

void	surf	(Input	IN,	inout	SurfaceOutputStandard	o)	{

		fixed4	c	=	pow((_Color	+	_AmbientColor),	_MySliderValue);

		o.Albedo	=	c.rgb;

		o.Metallic	=	_Metallic;

		o.Smoothness	=	_Glossiness;

		o.Alpha	=	c.a;

}

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“In	the	Project	tab	in
your	Unity	editor,	right-click	on	the	Assets	folder	and	select	Create	|	Folder.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account	at
http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you’re	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using
the	latest	version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

http://www.packtpub.com
http://www.packtpub.com/support

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from
https://www.packtpub.com/sites/default/files/downloads/Unity5xShadersAndEffectsCookbook_SecondEdition_Graphics.pdf

https://www.packtpub.com/sites/default/files/downloads/Unity5xShadersAndEffectsCookbook_SecondEdition_Graphics.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Creating	Your	First	Shader
This	chapter	will	cover	some	of	the	more	common	diffuse	techniques	found	in	today’s
Game	Development	Shading	Pipelines.	In	this	chapter,	you	will	learn	about	the	following
recipes:

Creating	a	basic	Standard	Shader
Migrating	Legacy	Shaders	from	Unity	4	to	Unity	5
Adding	properties	to	a	shader
Using	properties	in	a	Surface	Shader

Introduction
Let’s	imagine	a	cube	that	has	been	painted	white	uniformly.	Even	if	the	color	used	is	the
same	on	each	face,	they	will	all	have	different	shades	of	white	depending	on	the	direction
that	the	light	is	coming	from	and	the	angle	that	we	are	looking	at	it.	This	extra	level	of
realism	is	achieved	in	3D	graphics	by	shaders,	special	programs	that	are	mostly	used	to
simulate	how	light	works.	A	wooden	cube	and	a	metal	one	may	share	the	same	3D	model,
but	what	makes	them	look	different	is	the	shader	that	they	use.	Recipe	after	recipe,	this
first	chapter	will	introduce	you	to	shader	coding	in	Unity.	If	you	have	little	to	no	previous
experience	with	shaders,	this	chapter	is	what	you	need	to	understand	what	shaders	are,
how	they	work,	and	how	to	customize	them.

By	the	end	of	this	chapter,	you	will	have	learned	how	to	build	basic	shaders	that	perform
basic	operations.	Armed	with	this	knowledge,	you	will	be	able	to	create	just	about	any
Surface	Shader.

Creating	a	basic	Standard	Shader
Every	Unity	game	developer	should	be	familiar	with	the	concept	of	components.	All	the
objects	that	are	part	of	a	game	contain	a	number	of	components	that	affect	their	look	and
behavior.	While	scripts	determine	how	objects	should	behave,	renderers	decide	how	they
should	appear	on	the	screen.	Unity	comes	with	several	renderers,	depending	on	the	type	of
object	that	we	are	trying	to	visualise;	every	3D	model	typically	has	MeshRenderer.	An
object	should	have	only	one	renderer,	but	the	renderer	itself	can	contain	several	materials.
Each	material	is	a	wrapper	for	a	single	shader,	the	final	ring	in	the	food	chain	of	3D
graphics.	The	relationships	between	these	components	can	be	seen	in	the	following
diagram:

Understanding	the	difference	between	these	components	is	essential	to	understand	how
shaders	work.

Getting	ready
To	get	started	with	this	recipe,	you	will	need	to	have	Unity	5	running	and	must	have
created	a	new	project.	There	will	also	be	a	Unity	project	included	with	this	cookbook,	so
you	can	use	that	one	as	well	and	simply	add	your	own	custom	shaders	to	it	as	you	step
through	each	recipe.	With	this	completed,	you	are	now	ready	to	step	into	the	wonderful
world	of	real-time	shading!

How	to	do	it…
Before	getting	into	our	first	shader,	let’s	create	a	small	scene	for	us	to	work	with.	This	can
be	done	by	navigating	to	GameObject	|	Create	Empty	in	the	Unity	editor.	From	here,
you	can	create	a	plane	to	act	as	a	ground,	a	couple	of	spheres	to	which	we	will	apply	our
shader,	and	a	directional	light	to	give	the	scene	some	light.	With	our	scene	generated,	we
can	move	on	to	the	shader	writing	steps:

1.	 In	the	Project	tab	in	your	Unity	editor,	right-click	on	the	Assets	folder	and	select
Create	|	Folder.

Note
If	you	are	using	the	Unity	project	that	came	with	the	cookbook,	you	can	skip	to	step
4.

2.	 Rename	the	folder	that	you	created	to	Shaders	by	right-clicking	on	it	and	selecting
Rename	from	the	drop-down	list	or	selecting	the	folder	and	hitting	F2	on	the
keyboard.

3.	 Create	another	folder	and	rename	it	to	Materials.
4.	 Right-click	on	the	Shaders	folder	and	select	Create	|	Shader.	Then	right-click	on	the

Materials	folder	and	select	Create	|	Material.
5.	 Rename	both	the	shader	and	material	to	StandardDiffuse.
6.	 Launch	the	StandardDiffuse	shader	in	MonoDevelop	(the	default	script	editor	for

Unity)	by	double-clicking	on	it.	This	will	automatically	launch	the	editor	for	you	and
display	the	shader	code.

Note
You	will	see	that	Unity	has	already	populated	our	shader	with	some	basic	code.	This,
by	default,	will	get	you	a	basic	Diffuse	shader	that	accepts	one	texture.	We	will	be
modifying	this	base	code	so	that	you	can	learn	how	to	quickly	start	developing	your
own	custom	shaders.

7.	 Now	let’s	give	our	shader	a	custom	folder	from	which	it’s	selected.	The	very	first	line
of	code	in	the	shader	is	the	custom	description	that	we	have	to	give	the	shader	so	that
Unity	can	make	it	available	in	the	shader	drop-down	list	when	assigning	to	materials.
We	have	renamed	our	path	to	Shader	"CookbookShaders/StandardDiffuse",	but
you	can	name	it	to	whatever	you	want	and	rename	it	at	any	time.	So	don’t	worry
about	any	dependencies	at	this	point.	Save	the	shader	in	MonoDevelop	and	return	to
the	Unity	editor.	Unity	will	automatically	compile	the	shader	when	it	recognizes	that
the	file	has	been	updated.	This	is	what	your	shader	should	look	like	at	this	point:

Shader	"CookbookShaders/StandardDiffuse"	{

		Properties	{

				_Color	("Color",	Color)	=	(1,1,1,1)

				_MainTex	("Albedo	(RGB)",	2D)	=	"white"	{}

				_Glossiness	("Smoothness",	Range(0,1))	=	0.5

				_Metallic	("Metallic",	Range(0,1))	=	0.0

		}

		SubShader	{

				Tags	{	"RenderType"="Opaque"	}

				LOD	200

				

				CGPROGRAM

				//	Physically	based	Standard	lighting	model,	and	enable	shadows	on	

all	light	types

				#pragma	surface	surf	Standard	fullforwardshadows

				//	Use	shader	model	3.0	target,	to	get	nicer	looking	lighting

				#pragma	target	3.0

				sampler2D	_MainTex;

				struct	Input	{

						float2	uv_MainTex;

				};

				half	_Glossiness;

				half	_Metallic;

				fixed4	_Color;

				void	surf	(Input	IN,	inout	SurfaceOutputStandard	o)	{

						//	Albedo	comes	from	a	texture	tinted	by	color

						fixed4	c	=	tex2D	(_MainTex,	IN.uv_MainTex)	*	_Color;

						o.Albedo	=	c.rgb;

						//	Metallic	and	smoothness	come	from	slider	variables

						o.Metallic	=	_Metallic;

						o.Smoothness	=	_Glossiness;

						o.Alpha	=	c.a;

				}

				ENDCG

		}	

		FallBack	"Diffuse"

}

8.	 Technically	speaking,	this	is	a	Surface	Shader	based	on	physically-based
rendering,	which	Unity	5	has	adopted	as	its	new	standard.	As	the	name	suggests,	this
type	of	shader	achieves	realism	by	simulating	how	light	physically	behaves	when
hitting	objects.	If	you	are	using	a	previous	version	of	Unity	(such	as	Unity	4),	your
code	will	look	very	different.	Prior	to	the	introduction	of	physically-based	shaders,
Unity	4	used	less	sophisticated	techniques.	All	these	different	types	of	shader	will	be
further	explored	in	the	next	chapters	of	this	book.

9.	 After	your	shader	is	created,	we	need	to	connect	it	to	a	material.	Select	the	material
called	StandardDiffuse	that	we	created	in	step	4	and	look	at	the	Inspector	tab.
From	the	Shader	drop-down	list,	select	CookbookShaders	|	StandardDiffuse.
(Your	shader	path	might	be	different	if	you	chose	to	use	a	different	path	name.)	This
will	assign	your	shader	to	your	material	and	make	it	ready	for	you	to	assign	to	an
object.

Note
To	assign	a	material	to	an	object,	you	can	simply	click	and	drag	your	material	from

the	Project	tab	to	the	object	in	your	scene.	You	can	also	drag	a	material	on	to	the
Inspector	tab	of	an	object	in	the	Unity	editor	to	assign	a	material.

The	screenshot	of	an	example	is	as	follows:

Not	much	to	look	at	at	this	point,	but	our	shader	development	environment	is	set	up	and
we	can	now	start	to	modify	the	shader	to	suit	our	needs.

How	it	works…
Unity	has	made	the	task	of	getting	your	shader	environment	up	and	running,	which	is	very
easy	for	you.	It	is	simply	a	matter	of	a	few	clicks	and	you	are	good	to	go.	There	are	a	lot
of	elements	working	in	the	background	with	regard	to	the	Surface	Shader	itself.	Unity	has
taken	the	Cg	shader	language	and	made	it	more	efficient	to	write	by	doing	a	lot	of	the
heavy	Cg	code	lifting	for	you.	The	Surface	Shader	language	is	a	more	component-based
way	of	writing	shaders.	Tasks	such	as	processing	your	own	texture	coordinates	and
transformation	matrices	have	already	been	done	for	you,	so	you	don’t	have	to	start	from
scratch	any	more.	In	the	past,	we	would	have	to	start	a	new	shader	and	rewrite	a	lot	of
code	over	and	over	again.	As	you	gain	more	experience	with	Surface	Shaders,	you	will
naturally	want	to	explore	more	of	the	underlying	functions	of	the	Cg	language	and	how
Unity	is	processing	all	of	the	low-level	graphics	processing	unit	(GPU)	tasks	for	you.

Note
All	the	files	in	a	Unity	project	are	referenced	independently	from	the	folder	that	they	are
in.	We	can	move	shaders	and	materials	from	within	the	editor	without	the	risk	of	breaking
any	connection.	Files,	however,	should	never	be	moved	from	outside	the	editor	as	Unity
will	not	be	able	to	update	their	references.

So,	by	simply	changing	the	shader’s	path	name	to	a	name	of	our	choice,	we	have	got	our
basic	Diffuse	shader	working	in	the	Unity	environment,	with	lights	and	shadows	and	all
that	by	just	changing	one	line	of	code!

See	also
The	source	code	of	the	built-in	shaders	is	typically	hidden	in	Unity	5.	You	cannot	open
this	from	the	editor	like	you	do	with	your	own	shaders.

For	more	information	on	where	to	find	a	large	portion	of	the	built-in	Cg	functions	for
Unity,	go	to	your	Unity	install	directory	and	navigate	to
Unity45\Editor\Data\CGIncludes.	In	this	folder,	you	can	find	the	source	code	of	the
shaders	shipped	with	Unity.	Over	time,	they	have	changed	a	lot;	UNITY	DOWNLOAD
ARCHIVE	(https://unity3d.com/get-unity/download/archive)	is	the	place	to	go	if	you
need	to	access	the	source	codes	of	a	shader	used	in	a	different	version	of	Unity.	After
choosing	the	right	version,	select	Built	in	shaders	from	the	drop-down	list,	as	shown	in
the	following	image.	There	are	three	files	that	are	of	note	at	this	point—UnityCG.cginc,
Lighting.cginc,	and	UnityShaderVariables.cginc.	Our	current	shader	is	making	use	of
all	these	files	at	the	moment:

Chapter	10,	Advanced	Shading	Techniques,	will	explore	in-depth	how	to	use	GcInclude
for	a	modular	approach	to	shader	coding.

https://unity3d.com/get-unity/download/archive

Migrating	Legacy	Shaders	from	Unity	4	to
Unity	5
It	is	undeniable	that	graphics	in	videogames	have	changed	massively	over	the	last	10
years.	Every	new	game	comes	with	cutting-edge	techniques	that	are	getting	us	closer	to
achieving	real-time	photorealism.	We	should	not	be	surprised	by	the	fact	that	shaders
themselves	have	changed	massively	throughout	the	lifetime	of	Unity.	This	is	one	of	the
major	sources	of	confusion	when	approaching	shaders	for	the	first	time.	Prior	to	Unity	5,
mainly	two	different	shaders	were	adopted:	Diffuse	and	Specular.	As	the	names	suggest,
they	were	used	for	matte	and	shiny	materials,	respectively.	If	you	are	already	using	Unity
5,	you	can	skip	this	recipe.	This	recipe	will	explain	how	to	replicate	these	effects	using
Unity	5.

Getting	ready
The	starting	point	of	this	recipe	is	having	a	workspace	made	in	Unity	4,	which	uses	some
of	the	built-in	shaders	that	were	originally	provided.	If	you	are	to	start	a	new	game,	there
is	no	doubt	that	you	should	use	the	latest	version	of	Unity.	However,	if	your	project	is
already	in	the	later	stages	of	development	with	an	older	version,	you	should	be	very
careful	before	migrating.	Many	things	have	changed	behind	the	curtains	of	the	engine,	and
even	if	your	built-in	shaders	will	most	likely	work	without	any	problem,	your	scripts
might	not.	If	you	are	to	migrate	your	entire	workspace,	the	first	thing	that	you	should	do	is
take	backup.	It	is	important	to	remember	that	saving	assets	and	scenes	is	not	enough	as
most	of	the	configuration	in	Unity	is	stored	in	its	metadata	files.	The	safest	option	to
survive	a	migration	is	to	duplicate	the	entire	folder	that	contains	your	project.	The	best
way	of	doing	this	is	by	physically	copying	the	folder	from	File	Explorer	(Windows)	or
Finder	(Mac).

How	to	do	it…
There	are	two	main	options	if	you	want	to	migrate	your	built-in	shaders:	upgrading	your
project	automatically	or	switching	to	Standard	Shaders	instead.

Upgrading	automatically
This	option	is	the	easiest	one.	Unity	5	can	import	a	project	made	with	an	earlier	version
and	upgrade	it.	You	should	notice	that	once	the	conversion	is	done,	you	will	not	be	able	to
use	Unity	4;	even	if	none	of	your	assets	may	have	changed	directly,	Unity	metadata	has
been	converted.	To	proceed	with	this,	open	Unity	5	and	click	on	OPEN	OTHER	to	select
the	folder	of	your	old	project.	You	will	be	asked	if	you	want	to	convert	it;	click	on
Upgrade	to	proceed.	Unity	will	reimport	all	of	your	assets	and	recompile	all	of	your
scripts.	The	process	might	last	for	several	hours	if	your	project	is	big.	Once	the	conversion
is	done,	your	built-in	shaders	from	Unity	4	should	have	been	replaced	with	their	legacy
equivalent.	You	can	check	this	from	the	inspector	of	your	materials	that	should	have
changed	(for	instance)	from	Bumped	Diffuse	to	Legacy	Shader/Bumped	Diffuse.

Note
Even	if	Diffuse,	Specular,	and	the	other	built-in	shaders	from	Unity	4	are	now	deprecated,
Unity	5	keeps	them	for	backward	compatibility.	They	can	be	found	in	the	drop-down
menu	of	a	material	under	the	Legacy	Shaders	folder.

Using	Standard	Shaders
Instead	of	using	the	Legacy	Shaders,	you	might	decide	to	replace	them	with	the	new
Standard	Shaders	from	Unity	5.	Before	doing	this,	you	should	keep	in	mind	that	as	they
are	based	on	a	different	lighting	model,	your	materials	will	most	likely	look	different.
Unity	4	came	with	more	than	eighty	different	built-in	shaders	divided	in	six	different
families	(Normal,	Transparent,	Transparent	Cutout,	Self-Illuminated,	and	Reflective).	In
Unity	5,	they	are	all	replaced	by	the	Standard	Shader	introduced	in	the	previous	recipe.
Unfortunately,	there	is	no	magic	recipe	to	convert	your	shaders	directly.	However,	you	can
use	the	following	table	as	a	starting	point	to	understand	how	the	Standard	Shader	can	be
configured	to	simulate	Unity	4	Legacy	Shaders:

Shader Unity	4 Unity	4	(Legacy) Unity	5

Diffuse
Diffuse

Lambert

Legacy	Shader/Diffuse

Lambert

Standard

Physically-based	rendering:	Metallic
Workflow

Specular
Specular

Blinn-Phong

Legacy	Shader/Specular

Blinn-Phong

Standard	(Specular	setup)

Physically-based	rendering:	Specular
Workflow

Transparent

Transparent	Vertex-Lit Legacy	Shader/Transparent	Vertex-Lit
Standard

Rendering	Mode:	Transparent

Transparent	Cutout
Vertex-Lit

Legacy	Shader/Transparent	Cutout
Vertex-Lit

Standard

Rendering	Mode:	Cutout

You	can	change	the	shader	used	by	your	old	material	using	the	Shader	drop-down	menu
in	Inspector.	All	you	need	to	do	is	simply	select	the	appropriate	Standard	Shader.	If	your
old	shader	used	textures,	colours,	and	normal	maps,	they	will	be	automatically	used	in	the
new	Standard	Shader.	You	might	still	have	to	configure	the	parameters	of	the	Standard
Shader	to	get	as	close	to	your	original	lighting	model	as	possible.	The	following	picture
shows	the	ubiquitous	Stanford	bunny	rendered	with	a	Legacy	Diffuse	Shader	(right),
converted	Standard	Shader	(left),	and	Standard	Shader	with	Smoothness	set	to	zero
(middle):

Migrating	custom	shaders
If	you	have	written	custom	shaders	in	Unity	4,	chances	are	that	this	will	work
straightaway	in	Unity	5.	Despite	this,	Unity	has	made	some	minor	changes	in	the	way
shaders	work,	which	can	cause	both	errors	and	inconsistencies.	The	most	relevant	and
important	one	is	the	intensity	of	the	light.	Lights	in	Unity	5	are	twice	as	bright.	All	the
Legacy	Shaders	have	been	rewritten	to	take	this	into	account;	if	you	have	upgraded	your
shaders	or	switched	to	Standard	Shaders,	you	will	not	notice	any	difference.	If	you	have
written	your	own	lighting	model,	you	will	have	to	be	sure	that	the	intensity	of	the	light	is
not	multiplied	by	two	any	more.	The	following	code	is	used	to	ensure	this:

//	Unity	4

c.rgb	=	s.Albedo	*	_LightColor0.rgb	*	(diff	*	atten	*	2);

//	Unity	5

c.rgb	=	s.Albedo	*	_LightColor0.rgb	*	(diff	*	atten);

If	you	haven’t	written	a	shader	yet,	don’t	panic:	lighting	models	will	be	extensively
explained	in	Chapter	3,	Understanding	Lighting	Models.

Note
There	are	several	other	changes	in	the	way	Unity	5	handles	shaders	compared	to	Unity	4.
You	can	see	all	of	them	in	Shaders	in	Unity	5.0	at

http://docs.unity3d.com/Manual/UpgradeGuide5-Shaders.html.

http://docs.unity3d.com/Manual/UpgradeGuide5-Shaders.html

How	it	works…
Writing	shaders	is	always	a	trade-off	between	realism	and	efficiency;	realistic	shaders
require	intensive	computation,	potentially	introducing	a	significant	lag.	It’s	important	to
use	only	those	effects	that	are	strictly	required:	if	a	material	does	not	need	specular
reflections,	then	there	is	no	need	to	use	a	shader	that	calculates	them.	This	has	been	the
main	reason	why	Unity	4	has	been	shipped	with	so	many	different	shaders.	The	new
Standard	Shader	of	Unity	5	can	potentially	replace	all	of	the	previous	shaders	as	it
incorporates	normal	mapping,	transparency,	and	reflection.	However,	it	has	been	cleverly
optimized	so	that	only	the	effects	that	are	really	necessary	are	calculated.	If	your	standard
material	does	not	have	reflections,	they	will	not	be	calculated.

Despite	this,	the	Standard	Shader	is	mainly	designed	for	realistic	materials.	The	Legacy
Diffuse	and	Specular	shaders,	in	comparison,	were	not	really	designed	for	realistic
materials.	This	is	the	reason	switching	from	Legacy	to	Standard	Shaders	will	mostly
introduce	slight	changes	in	the	way	your	objects	are	rendered.

See	also
Chapter	3,	Understanding	Lighting	Models,	explores	in-depth	how	the	Diffuse	and
Specular	shaders	work.	Even	if	deprecated	in	Unity	5,	understanding	them	is
essential	if	you	want	to	design	new	lighting	models.
Chapter	4,	Physically	Based	Rendering	in	Unity	5,	will	show	you	how	to	unlock	the
potential	of	the	Standard	Shader	in	Unity	5.

Adding	properties	to	a	shader
Properties	of	a	shader	are	very	important	for	the	shader	pipeline	as	they	are	the	method
that	you	use	to	let	the	artist	or	user	of	the	shader	assign	textures	and	tweak	your	shader
values.	Properties	allow	you	to	expose	GUI	elements	in	a	material’s	Inspector	tab	without
you	having	to	use	a	separate	editor,	which	provides	visual	ways	to	tweak	a	shader.

With	your	shader	opened	in	MonoDevelop,	look	at	the	block	of	lines	2	through	7.	This	is
called	the	Properties	block.	Currently,	it	will	have	one	property	in	it	called	_MainTex.	If
you	look	at	your	material	that	has	this	shader	applied	to	it,	you	will	notice	that	there	is	one
texture	GUI	element	in	the	Inspector	tab.	These	lines	of	code	in	our	shader	are	creating
this	GUI	element	for	us.

Again,	Unity	has	made	this	process	very	efficient	in	terms	of	coding	and	the	amount	of
time	it	takes	to	iterate	through	changing	your	properties.

Getting	ready
Let’s	see	how	this	works	in	our	current	shader	called	StandardDiffuse,	by	creating	our
own	properties	and	learning	more	about	the	syntax	involved.	For	this	example,	we	will
refit	the	shader	previously	created.	Instead	of	using	a	texture,	it	will	only	use	its	color	and
some	other	properties	that	we	will	be	able	to	change	directly	from	the	Inspector	tab.	Start
by	duplicating	the	StandardDiffuse	shader.	You	can	do	this	by	selecting	it	in	the
Inspector	tab	and	pressing	Ctrl	+	D.	This	will	create	a	copy	called	StandardDiffuse2.

Note
You	can	give	a	friendlier	name	to	your	shader	in	its	first	line.	For	instance,	Shader
"CookbookShaders/StandardDiffuse"	tells	Unity	to	call	this	StandardDiffuse	shader
and	move	it	to	a	group	called	CookbookShaders.	If	you	duplicate	a	shader	using	Ctrl	+	D,
your	new	file	will	share	the	same	name.	To	avoid	confusion,	make	sure	to	change	the	first
line	of	each	new	shader	so	that	it	uses	a	unique	alias.

How	to	do	it…
Once	the	StandardDiffuse2	shader	is	ready,	we	can	start	changing	its	properties:

1.	 In	our	Properties	block	of	our	shader,	remove	the	current	property	by	deleting	the
following	code	from	our	current	shader:

_MainTex	("Albedo	(RGB)",	2D)	=	"white"	{}

2.	 As	we	have	removed	an	essential	property,	this	shader	will	not	compile	until	the	other
references	to	_MainTex	are	removed.	Let’s	remove	this	other	line:

sampler2D	_MainTex;

3.	 The	original	shader	used	_MainTex	to	color	the	model.	Let’s	change	this	by	replacing
the	first	line	of	code	of	the	surf()	function	with	this:

fixed4	c	=	_Color;

4.	 When	you	save	and	return	to	Unity,	the	shader	will	compile,	and	you	will	see	that
now	our	material’s	Inspector	tab	doesn’t	have	a	texture	swatch	anymore.	To
complete	the	refit	of	this	shader,	let’s	add	one	more	property	and	see	what	happens.
Enter	the	following	code:

_AmbientColor	("Ambient	Color",	Color)	=	(1,1,1,1)

5.	 We	have	added	another	color	swatch	to	the	material’s	Inspector	tab.	Now	let’s	add
one	more	to	get	a	feel	for	other	kinds	of	properties	that	we	can	create.	Add	the
following	code	to	the	Properties	block:

_MySliderValue	("This	is	a	Slider",	Range(0,10))	=	2.5

6.	 We	have	now	created	another	GUI	element	that	allows	us	to	visually	interact	with	our
shader.	This	time,	we	created	a	slider	with	the	name	This	is	a	Slider,	as	shown	in	the
following	screenshot:

Properties	allow	you	to	create	a	visual	way	to	tweak	shaders	without	having	to	change
values	in	the	shader	code	itself.	The	next	recipe	will	show	you	how	these	properties	can
actually	be	used	to	create	a	more	interesting	shader.

Note

While	properties	belong	to	shaders,	the	values	associated	with	them	are	stored	in
materials.	The	same	shader	can	be	safely	shared	between	many	different	materials.	On	the
other	hand,	changing	the	property	of	a	material	will	affect	the	look	of	all	the	objects	that
are	currently	using	it.

How	it	works…
Every	Unity	shader	has	a	built-in	structure	that	it	is	looking	for	in	its	code.	The
Properties	block	is	one	of	those	functions	that	are	expected	by	Unity.	The	reason	behind
this	is	to	give	you,	the	shader	programmer,	a	means	of	quickly	creating	GUI	elements	that
tie	directly	into	your	shader	code.	These	properties	that	you	declare	in	the	Properties
block	can	then	be	used	in	your	shader	code	to	change	values,	colors,	and	textures.	The
syntax	to	define	a	property	is	as	follows:

Let’s	take	a	look	at	what	is	going	on	under	the	hood	here.	When	you	first	start	writing	a
new	property,	you	will	need	to	give	it	a	Variable	Name.	The	variable	name	is	going	to	be
the	name	that	your	shader	code	is	going	to	use	in	order	to	get	the	value	from	the	GUI
element.	This	saves	us	a	lot	of	time	because	we	don’t	have	to	set	up	this	system	ourselves.

The	next	elements	of	a	property	are	the	Inspector	GUI	Name	and	Type	of	the	property,
which	is	contained	within	parentheses.	The	Inspector	GUI	Name	is	the	name	that	is
going	to	appear	in	the	material’s	Inspector	tab	when	the	user	is	interacting	with	and
tweaking	the	shader.	The	Type	is	the	type	of	data	that	this	property	is	going	to	control.
There	are	many	types	that	we	can	define	for	properties	inside	of	Unity	shaders.	The
following	table	describes	the	types	of	variables	that	we	can	have	in	our	shaders:

Surface	Shader	property	types

Range	(min,

max)
This	creates	a	float	property	as	a	slider	from	the	minimum	value	to	the	maximum	value

Color
This	creates	a	color	swatch	in	the	Inspector	tab	that	opens	up	a	color	picker	=
(float,float,float,float)

2D This	creates	a	texture	swatch	that	allows	a	user	to	drag	a	texture	in	the	shader

Rect This	creates	a	non-power-of-2	texture	swatch	and	functions	the	same	as	the	2D	GUI	element

Cube
This	creates	a	cube	map	swatch	in	the	Inspector	tab	and	allows	a	user	to	drag	and	drop	a	cube	map
in	the	shader

Float This	creates	a	float	value	in	the	Inspector	tab	but	without	a	slider

Vector This	creates	a	four-float	property	that	allows	you	to	create	directions	or	colors

Finally,	there	is	the	Default	Value.	This	simply	sets	the	value	of	this	property	to	the	value
that	you	place	in	the	code.	So,	in	the	previous	example	image,	the	default	value	for	the

property	named	_AmbientColor,	which	is	of	the	Color	type,	is	set	to	a	value	of	1,1,1,1.
As	this	is	a	color	property	expecting	a	color	that	is	RGBA	or	float4	or	r,	g,	b,	a	=	x,
y,	z,	w,	this	color	property,	when	first	created,	is	set	to	white.

See	also
The	properties	are	documented	in	the	Unity	manual	at
http://docs.unity3d.com/Documentation/Components/SL-Properties.html.

http://docs.unity3d.com/Documentation/Components/SL-Properties.html

Using	properties	in	a	Surface	Shader
Now	that	we	have	created	some	properties,	let’s	actually	hook	them	up	to	the	shader	so
that	we	can	use	them	as	tweaks	to	our	shader	and	make	the	material	process	much	more
interactive.

We	can	use	the	properties’	values	from	the	material’s	Inspector	tab	because	we	have
attached	a	variable	name	to	the	property	itself,	but	in	the	shader	code,	you	have	to	set	up	a
couple	of	things	before	you	can	start	calling	the	value	by	its	variable	name.

How	to	do	it…
The	following	steps	show	you	how	to	use	the	properties	in	a	Surface	Shader:

1.	 To	begin,	let’s	remove	the	following	lines	of	code,	as	we	deleted	the	property	called
_MainTex	in	the	Creating	a	basic	Standard	Shader	recipe	of	this	chapter:

_MainTex	("Albedo	(RGB)",	2D)	=	"white"	{}

sampler2D	_MainTex;

fixed4	c	=	tex2D	(_MainTex,	IN.uv_MainTex)	*	_Color;

2.	 Next,	add	the	following	lines	of	code	to	the	shader,	below	the	CGPROGRAM	line:

float4	_AmbientColor;

float	_MySliderValue;

3.	 With	step	2	complete,	we	can	now	use	the	values	from	the	properties	in	our	shader.
Let’s	do	this	by	adding	the	value	from	the	_Color	property	to	the	_AmbientColor
property	and	giving	the	result	of	this	to	the	o.Albedo	line	of	code.	So,	let’s	add	the
following	code	to	the	shader	in	the	surf()	function:

void	surf	(Input	IN,	inout	SurfaceOutputStandard	o)	{

		fixed4	c	=	pow((_Color	+	_AmbientColor),	_MySliderValue);

		o.Albedo	=	c.rgb;

		o.Metallic	=	_Metallic;

		o.Smoothness	=	_Glossiness;

		o.Alpha	=	c.a;

}

4.	 Finally,	your	shader	should	look	like	the	following	shader	code.	If	you	save	your
shader	in	MonoDevelop	and	re-enter	Unity,	your	shader	will	compile.	If	there	were
no	errors,	you	will	now	have	the	ability	to	change	the	ambient	and	emissive	colors	of
the	material	as	well	as	increase	the	saturation	of	the	final	color	using	the	slider	value.
Pretty	neat,	huh!

Shader	"CookbookShaders/StandardDiffuse3"	{

		//	We	define	Properties	in	the	properties	block

		Properties	{

				_Color	("Color",	Color)	=	(1,1,1,1)

				_AmbientColor("Ambient	Color",	Color)	=	(1,1,1,1)

				_MySliderValue("This	is	a	Slider",	Range(0,10))	=	2.5

		}

		SubShader	{

				Tags	{	"RenderType"="Opaque"	}

				LOD	200

				

				//	We	need	to	declare	the	properties	variable	type	inside	of	the

				//	CGPROGRAM	so	we	can	access	its	value	from	the	properties	block.

				CGPROGRAM

				#pragma	surface	surf	Standard	fullforwardshadows

				#pragma	target	3.0

				struct	Input	{

						float2	uv_MainTex;

				};

				fixed4	_Color;

				float4	_AmbientColor;

				float	_MySliderValue;

				void	surf	(Input	IN,	inout	SurfaceOutputStandard	o)	{

						//	We	can	then	use	the	properties	values	in	our	shader	

						fixed4	c	=	pow((_Color	+	_AmbientColor),	_MySliderValue);

						o.Albedo	=	c.rgb;

						o.Alpha	=	c.a;

				}

				ENDCG

		}	

		FallBack	"Diffuse"

}

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

Note
The	pow(arg1,	arg2)	function	is	a	built-in	function	that	will	perform	the	equivalent	math
function	of	power.	So,	argument	1	is	the	value	that	we	want	to	raise	to	a	power	and
argument	2	is	the	power	that	we	want	to	raise	it	to.

To	find	out	more	about	the	pow()	function,	look	at	the	Cg	tutorial.	It	is	a	great	free
resource	that	you	can	use	to	learn	more	about	shading	and	get	a	glossary	of	all	the
functions	available	to	you	in	the	Cg	shading	language:

http://http.developer.nvidia.com/CgTutorial/cg_tutorial_appendix_e.html

The	following	screenshot	demonstrates	the	result	obtained	using	our	properties	to	control
our	material’s	colors	and	saturation	from	within	the	material’s	Inspector	tab:

http://www.packtpub.com
http://www.packtpub.com/support
http://http.developer.nvidia.com/CgTutorial/cg_tutorial_appendix_e.html

How	it	works…
When	you	declare	a	new	property	in	the	Properties	block,	you	are	providing	a	way	for
the	shader	to	retrieve	the	tweaked	value	from	the	material’s	Inspector	tab.	This	value	is
stored	in	the	variable	name	portion	of	the	property.	In	this	case,	_AmbientColor,	_Color,
and	_MySliderValue	are	the	variables	in	which	we	are	storing	the	tweaked	values.	In
order	for	you	to	be	able	to	use	the	value	in	the	SubShader{}	block,	you	need	to	create
three	new	variables	with	the	same	names	as	the	property’s	variable	name.	This
automatically	sets	up	a	link	between	these	two	so	that	they	know	they	have	to	work	with
the	same	data.	Additionally,	it	declares	the	type	of	data	that	we	want	to	store	in	our
subshader	variables,	which	will	come	in	handy	when	we	look	at	optimizing	shaders	in	a
later	chapter.

Once	you	have	created	the	subshader	variables,	you	can	then	use	the	values	in	the	surf()
function.	In	this	case,	we	want	to	add	the	_Color	and	_AmbientColor	variables	together
and	take	it	to	a	power	of	whatever	the	_MySliderValue	variable	is	equal	to	in	the
material’s	Inspector	tab.

The	vast	majority	of	shaders	start	out	as	Standard	Shaders	and	get	modified	until	they
match	the	desired	look.	We	have	now	created	the	foundation	for	any	Surface	Shader	you
will	create	that	requires	a	diffuse	component.

Note
Materials	are	assets.	This	means	that	any	change	made	to	them	while	your	game	is
running	in	the	editor	are	permanent.	If	you	have	changed	the	value	of	a	property	by
mistake,	you	can	undo	it	using	Ctrl	+	Z.

There’s	more…
Like	any	other	programming	language,	Cg	does	not	allow	mistakes.	As	such,	your	shader
will	not	work	if	you	have	a	typo	in	your	code.	When	this	happens,	your	materials	are
rendered	in	unshaded	magenta:

When	a	script	does	not	compile,	Unity	prevents	your	game	from	being	exported	or	even
executed.	Conversely,	errors	in	shaders	do	not	stop	your	game	from	being	executed.

If	one	of	your	shaders	appears	as	magenta,	it	is	time	to	investigate	where	the	problem	is.	If
you	select	the	incriminated	shader,	you	will	see	a	list	of	errors	displayed	in	its	Inspector
tab:

Despite	showing	the	line	that	raised	the	error,	it	rarely	means	that	this	is	the	line	that	has	to
be	fixed.	The	error	message	shown	in	the	previous	image	is	generated	by	deleting	the
sampler2D	_MainTex	variable	from	the	SubShader{}	block.	However,	the	error	is	raised
by	the	first	line	that	tries	to	access	such	a	variable.

Finding	and	fixing	what’s	wrong	with	code	is	a	process	called	debugging.	The	most
common	mistakes	that	you	should	check	for	are	as	follows:

A	missing	bracket.	If	you	forgot	to	add	a	curly	bracket	to	close	a	section,	the	compiler
is	likely	to	raise	errors	at	the	end	of	the	document,	at	the	beginning,	or	a	new	section.
A	missing	semicolon.	One	of	the	most	common	mistakes	but	luckily	one	of	the
easiest	to	spot	and	fix.	Errors	are	often	raised	by	the	following	line.
A	property	that	has	been	defined	in	the	Properties	section	but	has	not	been	coupled
with	a	variable	in	the	SubShader{}	block.
Conversely	to	what	you	might	be	used	to	in	C#	scripts,	floating	point	values	in	Cg	do
not	need	to	the	followed	by	an	f:	it’s	1.0,	not	1.0f.

The	error	messages	raised	by	shaders	can	be	very	misleading,	especially	due	to	their	strict
syntactic	constraints.	If	you	are	in	doubt	about	their	meaning,	it’s	best	to	search	the
Internet.	Unity	forums	are	filled	with	other	developers	who	are	likely	to	have	encountered
(and	fixed)	your	problem	before.

See	also
More	information	on	how	to	master	Surface	Shaders	and	their	properties	can	be	found	in
Chapter	2,	Surface	Shaders	and	Texture	Mapping.	If	you	are	curious	to	see	what	shaders
can	actually	do	when	used	at	their	full	potential,	have	a	look	at	Chapter	10,	Advanced
Shading	Techniques,	for	some	of	the	most	advanced	techniques	covered	in	this	book.

Chapter	2.	Surface	Shaders	and	Texture
Mapping
In	this	chapter,	we	will	explore	Surface	Shaders.	We	will	start	from	a	very	simple	matte
material	and	end	with	holographic	projections	and	advanced	terrains	blending.	We	can
also	use	textures	to	animate,	blend,	and	drive	any	other	property	that	we	want.	In	this
chapter,	you	will	learn	about	the	following	methods:

Diffuse	shading
Using	packed	arrays
Adding	a	texture	to	a	shader
Scrolling	textures	by	modifying	UV	values
Normal	mapping
Creating	a	transparent	material
Creating	a	Holographic	Shader
Packing	and	blending	textures
Creating	a	circle	around	your	terrain

Introduction
Surface	Shaders	have	been	introduced	in	Chapter	1,	Creating	Your	First	Shader,	as	the
main	type	of	shader	used	in	Unity.	This	chapter	will	show	in	detail	what	these	actually	are
and	how	they	work.	Generally	speaking,	there	are	two	essential	steps	in	every	Surface
Shader.	First,	you	have	to	specify	certain	physical	properties	of	the	material	that	you	want
to	describe,	such	as	its	diffuse	color,	smoothness,	and	transparency.	These	properties	are
initialized	in	a	function	called	surface	function	and	stored	in	a	structure	called	surface
output.	Secondly,	the	surface	output	is	passed	to	a	lighting	model.	This	is	a	special
function	that	will	also	take	information	about	the	nearby	lights	in	the	scene.	Both	these
parameters	are	then	used	to	calculate	the	final	color	for	each	pixel	of	your	model.	The
lighting	function	is	where	the	real	calculations	of	a	shader	take	place	as	it’s	the	piece	of
code	that	determines	how	light	should	behave	when	it	touches	a	material.

The	following	diagram	loosely	summarizes	how	a	Surface	Shader	works.	Custom	lighting
models	will	be	explored	in	Chapter	3,	Understanding	Lighting	Models,	while	Chapter	5,
Vertex	Functions,	will	focus	on	vertex	modifiers:

Diffuse	shading
Before	starting	our	journey	into	texture	mapping,	it	is	important	to	understand	how	diffuse
materials	work.	Certain	objects	might	have	a	uniform	color	and	smooth	surface,	but	not
smooth	enough	to	shine	on	reflected	light.	These	matte	materials	are	best	represented	with
a	Diffuse	shader.	While	in	the	real	world,	pure	diffuse	materials	do	not	exist;	Diffuse
shaders	are	relatively	cheap	to	implement	and	find	a	large	application	in	games	with	low-
poly	aesthetics.

Getting	ready
There	are	several	ways	in	which	you	can	create	your	own	Diffuse	shader.	A	quick	way	is
to	start	with	the	Standard	Shader	in	Unity	5	and	edit	it	to	remove	any	texture,	similarly	to
what	was	previously	done	in	Chapter	1,	Creating	Your	First	Shader.

How	to	do	it…
Let’s	start	with	our	Standard	Shader,	and	apply	the	following	changes:

1.	 Remove	all	the	properties	except	_Color:

_Color	("Color",	Color)	=	(1,1,1,1)

2.	 From	the	SubShader{}	section,	remove	the	_MainTex,	_Glossiness,	and	_Metallic
variables.	You	should	not	remove	the	reference	to	uv_MainTex	as	Cg	does	not	allow
the	Input	struct	to	be	empty.	The	value	will	be	simply	ignored.

3.	 Remove	the	content	of	the	surf()	function	and	replace	it	with	the	following:

o.Albedo	=	_Color.rgb;

4.	 Your	shader	should	look	as	follows:

Shader	"CookbookShaders/Diffuse"	{

		Properties	{

				_Color	("Color",	Color)	=	(1,1,1,1)

		}

		SubShader	{

				Tags	{	"RenderType"="Opaque"	}

				LOD	200

				

				CGPROGRAM

				#pragma	surface	surf	Standard	fullforwardshadows

				#pragma	target	3.0

				struct	Input	{

						float2	uv_MainTex;

				};

				fixed4	_Color;

				void	surf	(Input	IN,	inout	SurfaceOutputStandard	o)	{

						o.Albedo	=	_Color.rgb;

				}

				ENDCG

		}	

		FallBack	"Diffuse"

}

As	this	shader	has	been	refitted	from	a	Standard	Shader,	it	will	use	physically-based
rendering	to	simulate	how	light	behaves	on	your	models.	If	you	are	trying	to	achieve	a
non-photorealistic	look,	you	can	change	the	first	#pragma	directive	so	that	it	uses	Lambert
rather	than	Standard.	If	you	do	so,	you	should	also	replace	SurfaceOutputStandard	with
SurfaceOutput.

How	it	works…
The	way	shaders	allow	you	to	communicate	the	rendering	properties	of	your	material	to
their	lighting	model	is	via	a	surface	output.	It	is	basically	a	wrapper	around	all	the
parameters	that	the	current	lighting	model	needs.	It	should	not	surprise	you	that	different
lighting	models	have	different	surface	output	structs.	The	following	table	shows	the	three
main	output	structs	used	in	Unity	5	and	how	they	can	be	used:

Type	of	shaders Unity	4 Unity	5

Diffuse
Any	Surface	Shader
SurfaceOutput

Standard
SurfaceOutputStandard

Specular
Any	Surface	Shader
SurfaceOutput

Standard	(Specular	setup)
SurfaceOutputStandardSpecular

The	SurfaceOutput	struct	has	the	following	properties:

fixed3	Albedo;:	This	is	the	diffuse	color	of	the	material
fixed3	Normal;:	This	is	the	tangent	space	normal,	if	written
fixed3	Emission;:	This	is	the	color	of	the	light	emitted	by	the	material	(this
property	is	declared	as	half3	in	the	Standard	Shaders)
fixed	Alpha;:	This	is	the	transparency	of	the	material
half	Specular;:	This	is	the	specular	power	from	0	to	1
fixed	Gloss;:	This	is	the	specular	intensity

The	SurfaceOutputStandard	struct	has	the	following	properties:

fixed3	Albedo;:	This	is	the	base	color	of	the	material	(whether	it’s	diffuse	or
specular)
fixed3	Normal;

half3	Emission;:	This	property	is	declared	as	half3,	while	it	was	defined	as	fixed3
in	SurfaceOutput
fixed	Alpha;

half	Occlusion;:	This	is	the	occlusion	(default	1)
half	Smoothness;:	This	is	the	smoothness	(0	=	rough,	1	=	smooth)
half	Metallic;:	0	=	non-metal,	1=	metal

The	SurfaceOutputStandardSpecular	struct	has	the	following	properties:

fixed3	Albedo;.
fixed3	Normal;.
half3	Emission;.
fixed	Alpha;.
half	Occlusion;.
half	Smoothness;.
fixed3	Specular;:	This	is	the	specular	color.	This	is	very	different	from	the
Specular	property	in	SurfaceOutput	as	it	allows	specifying	a	color	rather	than	a

single	value.

Using	a	Surface	Shader	correctly	is	a	matter	of	initializing	the	surface	output	with	the
correct	values.

Using	packed	arrays
Loosely	speaking,	the	code	inside	a	shader	has	to	be	executed	for	at	least	every	pixel	in
your	screen.	This	is	the	reason	why	GPUs	are	highly	optimized	for	parallel	computing.
This	philosophy	is	also	evident	in	the	standard	type	of	variables	and	operators	available	in
Cg.	Understanding	them	is	essential	not	just	to	use	shaders	correctly,	but	also	to	write
highly	optimized	ones.

How	to	do	it…
There	are	two	types	of	variables	in	Cg:	single	values	and	packed	arrays.	The	latter	can	be
identified	because	their	type	ends	with	a	number	such	as	float3	or	int4.	As	their	names
suggest,	these	types	of	variables	are	similar	to	structs,	which	means	that	they	each	contain
several	single	values.	Cg	calls	them	packed	arrays,	though	they	are	not	exactly	arrays	in
the	traditional	sense.

The	elements	of	a	packed	array	can	be	accessed	as	a	normal	struct.	They	are	typically
called	x,	y,	z,	and	w.	However,	Cg	also	provides	you	with	another	alias	for	them,	that	is,	r,
g,	b,	and	a.	Despite	there	being	no	difference	between	using	x	or	r,	it	can	make	a	huge
difference	for	the	readers.	Shader	coding,	in	fact,	often	involves	calculation	with	positions
and	colors.	You	might	have	seen	this	in	the	Standard	Shaders:

o.Alpha	=	_Color.a;

Here,	o	was	a	struct	and	_Color	was	a	packed	array.	This	is	also	why	Cg	prohibits	the
mixed	usage	of	these	two	syntaxes:	you	cannot	use	_Color.xgz.

There	is	also	another	important	feature	of	packed	arrays	that	has	no	equivalent	in	C#:
swizzling.	Cg	allows	addressing	and	reordering	elements	within	packed	arrays	in	just	a
single	line.	Once	again,	this	appears	in	the	Standard	Shader:

o.Albedo	=	_Color.rgb;

Albedo	is	fixed3,	which	means	that	it	contains	three	values	of	the	fixed	type.	However,
_Color	is	defined	as	fixed4.	A	direct	assignment	would	result	in	a	compiler	error	as
_Color	is	bigger	than	Albedo.	The	C#	way	of	doing	this	would	be	as	follows:

o.Albedo.r	=	_Color.r;

o.Albedo.g	=	_Color.g;

o.Albedo.b	=	_Color.b;

However,	it	can	be	compressed	in	Cg:

o.Albedo	=	_Color.rgb;

Cg	also	allows	reordering	elements,	for	instance,	using	_Color.bgr	to	swap	the	red	and
blue	channels.

Lastly,	when	a	single	value	is	assigned	to	a	packed	array,	it	is	copied	to	all	of	its	fields:

o.Albedo	=	0;	//	Black	=(0,0,0)

o.Albedo	=	1;	//	White	=(1,1,1)

This	is	referred	to	as	smearing.

Swizzling	can	also	be	used	on	the	left-hand	side	of	an	expression,	allowing	only	certain
components	of	a	packed	array	to	be	overwritten:

o.Albedo.rg	=	_Color.rg;

In	which	case,	it	is	called	masking.

Packed	matrices
Where	swizzling	really	shows	its	full	potential	is	when	applied	to	packed	matrices.	Cg
allows	types	such	as	float4x4,	which	represents	a	matrix	of	floats	with	four	rows	and	four
columns.	You	can	access	a	single	element	of	the	matrix	using	the	_mRC	notation,	where	R
is	the	row	and	C	is	the	column:

float4x4	matrix;

//	...

float	first	=	matrix._m00;

float	last	=	matrix._m33;

The	_mRC	notation	can	also	be	chained:

float4	diagonal	=	matrix._m00_m11_m22_m33;

An	entire	row	can	be	selected	using	squared	brackets:

float4	firstRow	=	matrix[0];

//	Equivalent	to

float4	firstRow	=	matrix._m00_m01_m02_m03;

See	also
Packed	arrays	are	one	of	the	nicest	features	of	Cg.	You	can	discover	more	about	them
here:

http://http.developer.nvidia.com/CgTutorial/cg_tutorial_chapter02.html

http://http.developer.nvidia.com/CgTutorial/cg_tutorial_chapter02.html

Adding	a	texture	to	a	shader
Textures	can	bring	our	shaders	to	life	very	quickly	in	terms	of	achieving	very	realistic
effects.	In	order	to	effectively	use	textures,	we	need	to	understand	how	a	2D	image	is
mapped	to	a	3D	model.	This	process	is	called	texture	mapping,	and	it	requires	some
work	to	be	done	on	the	shader	and	3D	model	that	we	want	to	use.	Models,	in	fact,	are
made	out	of	triangles;	each	vertex	can	store	data	that	shaders	can	access.	One	of	the	most
important	information	stored	in	vertices	is	the	UV	data.	It	consists	of	two	coordinates,	U
and	V,	ranging	from	0	to	1.	They	represent	the	XY	position	of	the	pixel	in	the	2D	image
that	will	be	mapped	to	the	vertices.	UV	data	is	present	only	for	vertices;	when	the	inner
points	of	a	triangle	have	to	be	texture-mapped,	the	GPU	interpolates	the	closest	UV	values
to	find	the	right	pixel	in	the	texture	to	be	used.	The	following	image	shows	you	how	a	2D
texture	is	mapped	to	a	triangle	from	a	3D	model:

The	UV	data	is	stored	in	the	3D	model	and	requires	a	modeling	software	to	be	edited.
Some	models	lack	the	UV	component,	hence	they	cannot	support	texture	mapping.	The
Stanford	bunny,	for	example,	was	not	originally	provided	with	one.

Getting	ready
For	this	recipe,	you’ll	need	a	3D	model	with	UV	data	and	its	texture.	They	both	need	to	be
imported	to	Unity	before	starting.	You	can	do	this	simply	by	dragging	them	to	the	editor.
As	the	Standard	Shader	supports	texture	mapping	by	default,	we’ll	use	this	and	then
explain	in	detail	how	it	works.

How	to	do	it…
Adding	a	texture	to	your	model	using	the	Standard	Shader	is	incredibly	simple,	as	follows:

1.	 Create	a	new	Standard	Shader	called	TexturedShader.
2.	 Create	a	new	material	called	TexturedMaterial.
3.	 Assign	the	shader	to	the	material	by	dragging	over	it.
4.	 After	selecting	the	material,	drag	your	texture	to	the	empty	rectangle	called	Albedo

(RGB).	If	you	have	followed	all	these	steps	correctly,	your	material	Inspector	tab
should	look	like	this:

The	Standard	Shader	knows	how	to	map	a	2D	image	to	a	3D	model	using	its	UV	data.

How	it	works…
When	the	Standard	Shader	is	used	from	the	inspector	of	a	material,	the	process	behind
texture	mapping	is	completely	transparent	to	developers.	If	we	want	to	understand	how	it
works,	it’s	necessary	to	take	a	closer	look	at	TexturedShader.	From	the	Properties
section,	we	can	see	that	the	Albedo	(RGB)	texture	is	actually	referred	to	in	the	code	as
_MainTex:

_MainTex	("Albedo	(RGB)",	2D)	=	"white"	{}

In	the	CGPROGRAM	section,	this	texture	is	defined	as	sampler2D,	the	standard	type	for	2D
textures:

sampler2D	_MainTex;

The	next	line	shows	a	struct	called	Input.	This	is	the	input	parameter	for	the	surface
function	and	contains	a	packed	array	called	uv_MainTex:

struct	Input	{

		float2	uv_MainTex;

};

Every	time	the	surf()surface	function	is	called,	the	Input	structure	will	contain	the	UV
of	_MainTex	for	the	specific	point	of	the	3D	model	that	needs	to	be	rendered.	The	Standard
Shader	recognizes	that	the	name	uv_MainTex	refers	to	_MainTex	and	initializes	it
automatically.	If	you	are	interested	in	understanding	how	the	UV	is	actually	mapped	from
a	3D	space	to	a	2D	texture,	you	can	check	Chapter	3,	Understanding	Lighting	Models.

Finally,	the	UV	data	is	used	to	sample	the	texture	in	the	first	line	of	the	surface	function:

fixed4	c	=	tex2D	(_MainTex,	IN.uv_MainTex)	*	_Color;

This	is	done	using	the	tex2D()	function	of	Cg;	it	takes	a	texture	and	UV	and	returns	the
color	of	the	pixel	at	that	position.

Note
The	U	and	V	coordinates	go	from	0	to	1,	where	(0,0)	and	(1,1)	correspond	to	two	opposite
corners.	Different	implementations	associate	UV	with	different	corners;	if	your	texture
happens	to	appear	reversed,	try	inverting	the	V	component.

There’s	more…
When	you	import	a	texture	to	Unity,	you	are	setting	up	some	of	the	properties	that
sampler2D	will	use.	The	most	important	is	the	Filter	mode,	which	determines	how	colors
are	interpolated	when	the	texture	is	sampled.	It	is	very	unlikely	that	the	UV	data	will	point
exactly	to	the	center	of	a	pixel;	in	all	the	other	cases,	you	might	want	to	interpolate
between	the	closest	pixels	to	get	a	more	uniform	color.	The	following	is	the	screenshot	of
the	Inspector	tab	of	an	example	texture:

For	most	applications,	Bilinear	provides	an	inexpensive	yet	effective	way	to	smooth	the
texture.	If	you	are	creating	a	2D	game,	however,	Bilinear	might	produce	blurred	tiles.	In
this	case,	you	can	use	Point	to	remove	any	interpolation	from	the	texture	sampling.

When	a	texture	is	seen	from	a	steep	angle,	texture	sampling	is	likely	to	produce	visually
unpleasant	artifacts.	You	can	reduce	them	by	setting	Aniso	Level	to	a	higher	value.	This	is
particular	useful	for	floor	and	ceiling	textures,	where	glitches	can	break	the	illusion	of
continuity.

See	also
If	you	would	like	to	know	more	about	the	inner	working	of	how	textures	are	mapped	to	a
3D	surface,	you	can	read	the	information	available	at
http://http.developer.nvidia.com/CgTutorial/cg_tutorial_chapter03.html.

For	a	complete	list	of	the	options	available	when	importing	a	2D	texture,	you	can	refer	to
the	following	website:

http://docs.unity3d.com/Manual/class-TextureImporter.html

http://http.developer.nvidia.com/CgTutorial/cg_tutorial_chapter03.html
http://docs.unity3d.com/Manual/class-TextureImporter.html

Scrolling	textures	by	modifying	UV	values
One	of	the	most	common	texture	techniques	used	in	today’s	game	industry	is	the	process
of	allowing	you	to	scroll	the	textures	over	the	surface	of	an	object.	This	allows	you	to
create	effects	such	as	waterfalls,	rivers,	lava	flows,	and	so	on.	It’s	also	a	technique	that	is
the	basis	to	create	animated	sprite	effects,	but	we	will	cover	this	in	a	subsequent	recipe	of
this	chapter.	Let’s	first	see	how	we	will	create	a	simple	scrolling	effect	in	a	Surface
Shader.

Getting	ready
To	begin	this	recipe,	you	will	need	to	create	a	new	shader	file	and	material.	This	will	set	us
up	with	a	nice	clean	shader	that	we	can	use	to	study	the	scrolling	effect	by	itself.

How	to	do	it…
To	begin	with,	we	will	launch	our	new	shader	file	that	we	just	created	and	enter	the	code
mentioned	in	the	following	steps:

1.	 The	shader	will	need	two	new	properties	that	will	allow	us	to	control	the	speed	of	the
texture	scrolling.	So,	let’s	add	a	speed	property	for	the	X	direction	and	a	speed
property	for	the	Y	direction,	as	shown	in	the	following	code:

Properties	{

		_MainTint	("Diffuse	Tint",	Color)	=	(1,1,1,1)

		_MainTex	("Base	(RGB)",	2D)	=	"white"	{}

		_ScrollXSpeed	("X	Scroll	Speed",	"Range(0,10))	=	2

		_ScrollYSpeed	("Y	Scroll	Speed",	"Range(0,10))	=	2

}

2.	 Modify	the	Cg	properties	in	the	CGPROGRAM	section	and	create	new	variables	so	that
we	can	access	the	values	from	our	properties:

fixed4	_MainTint;

fixed	_ScrollXSpeed;

fixed	_ScrollYSpeed;

sampler2D	_MainTex;

3.	 Modify	the	surface	function	to	change	the	UVs	given	to	the	tex2D()	function.	Then,
use	the	built-in	_Time	variable	to	animate	the	UVs	over	time	when	the	play	button	is
pressed	in	the	editor:

void	surf	(Input	IN,	inout	SurfaceOutput	o)	

{

		//	Create	a	separate	variable	to	store	our	UVs	

		//	before	we	pass	them	to	the	tex2D()	function

		fixed2	scrolledUV	=	IN.uv_MainTex;

						

		//	Create	variables	that	store	the	individual	x	and	y	

		//	components	for	the	UV's	scaled	by	time

		fixed	xScrollValue	=	_ScrollXSpeed	*	_Time;

		fixed	yScrollValue	=	_ScrollYSpeed	*	_Time;

						

		//	Apply	the	final	UV	offset

		scrolledUV	+=	fixed2(xScrollValue,	yScrollValue);

						

		//	Apply	textures	and	tint

		half4	c	=	tex2D	(_MainTex,	scrolledUV);

		o.Albedo	=	c.rgb	*	_MainTint;

		o.Alpha	=	c.a;

}

The	following	image	demonstrates	the	result	of	utilizing	the	scrolling	UV	system	to	create
a	simple	river	motion	for	your	environments.	You	can	notice	this	effect	in	the	scene	called
ScrollingUVs	from	the	code	files	provided	with	this	book:

How	it	works…
The	scrolling	system	starts	with	the	declaration	of	a	couple	of	properties,	which	will	allow
the	user	of	this	shader	to	increase	or	decrease	the	speed	of	the	scrolling	effect	itself.	At
their	core,	they	are	float	values	being	passed	from	the	material’s	Inspector	tab	to	the
surface	function	of	the	shader.	For	more	information	on	shader	properties,	see	Chapter	1,
Creating	Your	First	Shader.

Once	we	have	these	float	values	from	the	material’s	Inspector	tab,	we	can	use	them	to
offset	our	UV	values	in	the	shader.

To	begin	this	process,	we	first	store	the	UVs	in	a	separate	variable	called	scrolledUV.
This	variable	has	to	be	float2/fixed2	because	the	UV	values	are	being	passed	to	us	from
the	Input	structure:

struct	Input

{

		float2	uv_MainTex;

}

Once	we	have	access	to	the	mesh’s	UVs,	we	can	offset	them	using	our	scroll	speed
variables	and	built-in	_Time	variable.	This	built-in	variable	returns	a	variable	of	the
float4	type,	meaning	that	each	component	of	this	variable	contains	different	values	of
time	as	it	pertains	to	game	time.

A	complete	description	of	these	individual	time	values	are	described	at	the	following	link:
http://docs.unity3d.com/Manual/SL-UnityShaderVariables.html

This	_Time	variable	will	give	us	an	incremented	float	value	based	on	Unity’s	game	time
clock.	So,	we	can	use	this	value	to	move	our	UVs	in	a	UV	direction	and	scale	that	time
with	our	scroll	speed	variables:

//	Create	variables	that	store	the	individual	x	and	y	

//	components	for	the	uv's	scaled	by	time

fixed	xScrollValue	=	_ScrollXSpeed	*	_Time;

fixed	yScrollValue	=	_ScrollYSpeed	*	_Time;

With	the	correct	offset	being	calculated	by	time,	we	can	add	the	new	offset	value	back	to
the	original	UV	position.	This	is	why	we	are	using	the	+=	operator	in	the	next	line.	We
want	to	take	the	original	UV	position,	add	the	new	offset	value,	and	then	pass	this	to	the
tex2D()	function	as	the	texture’s	new	UVs.	This	creates	the	effect	of	the	texture	moving
on	the	surface.	We	are	really	manipulating	the	UVs,	so	we	are	faking	the	effect	of	the
texture	moving:

scrolledUV	+=	fixed2(xScrollValue,	yScrollValue);

half4	c	=	tex2D	(_MainTex,	scrolledUV);

http://docs.unity3d.com/Manual/SL-UnityShaderVariables.html

Normal	mapping
Every	triangle	of	a	3D	model	has	a	facing	direction,	which	is	the	direction	that	it	is
pointing	toward.	It	is	often	represented	with	an	arrow	placed	in	the	center	of	the	triangle
and	orthogonal	to	the	surface.	The	facing	direction	plays	an	important	role	in	the	way	light
reflects	on	a	surface.	If	two	adjacent	triangles	face	different	directions,	they	will	reflect
lights	at	different	angles,	hence	they’ll	be	shaded	differently.	For	curved	objects,	this	is	a
problem:	it	is	obvious	that	the	geometry	is	made	out	of	flat	triangles.

To	avoid	this	problem,	the	way	the	light	reflects	on	a	triangle	doesn’t	take	into	account	its
facing	direction,	but	its	normal	direction	instead.	As	stated	in	Adding	a	texture	to	a	shader
recipe,	vertices	can	store	data;	the	normal	direction	is	the	most	used	information	after	the
UV	data.	This	is	a	vector	of	unit	length	that	indicates	the	direction	faced	by	the	vertex.
Regardless	of	the	facing	direction,	every	point	within	a	triangle	has	its	own	normal
direction	that	is	a	linear	interpolation	of	the	ones	stored	in	its	vertices.	This	gives	us	the
ability	to	fake	the	effect	of	high-resolution	geometry	on	a	low-resolution	model.	The
following	image	shows	the	same	geometric	shape	rendered	with	different	per-vertex
normals.	In	the	image	on	the	left,	normals	are	orthogonal	to	the	face	represented	by	its
vertices;	this	indicates	that	there	is	a	clear	separation	between	each	face.	On	the	right,
normals	are	interpolated	along	the	surface,	indicating	that	even	if	the	surface	is	rough,
light	should	reflect	as	if	it’s	smooth.	It’s	easy	to	see	that	even	if	the	three	objects	in	the
following	image	share	the	same	geometry,	they	reflect	light	differently.	Despite	being
made	out	of	flat	triangles,	the	object	on	the	right	reflects	light	as	if	its	surface	was	actually
curved:

Smooth	objects	with	rough	edges	are	a	clear	indication	that	per-vertex	normals	have	been
interpolated.	This	can	be	seen	if	we	draw	the	direction	of	the	normal	stored	in	every
vertex,	as	shown	in	the	following	image.	You	should	note	that	every	triangle	has	only
three	normals,	but	as	multiple	triangles	can	share	the	same	vertex,	more	than	one	line	can
come	out	of	it:

Calculating	the	normals	from	the	3D	model	is	a	technique	that	has	rapidly	declined	in
favor	of	a	more	advanced	one—normal	mapping.	Similar	to	what	happens	with	texture
mapping,	the	normal	directions	can	be	provided	using	an	additional	texture,	usually	called
normal	map	or	bump	map.	Normal	maps	are	usually	RGB	images,	where	the	RGB
components	are	used	to	indicate	the	X,	Y,	and	Z	components	of	the	normal	direction.
There	are	many	ways	to	create	normal	maps	these	days.	Some	applications	such	as
CrazyBump	(http://www.crazybump.com/)	and	NDO	Painter	(http://quixel.se/ndo/)	will
take	in	2D	data	and	convert	it	to	normal	data	for	you.	Other	applications	such	as	Zbrush
4R7	(http://www.pixologic.com/)	and	AUTODESK	(http://usa.autodesk.com)	will	take
3D	sculpted	data	and	create	normal	maps	for	you.	The	actual	process	of	creating	normal
maps	is	definitely	out	of	the	scope	of	this	book,	but	the	links	in	the	previous	text	should
help	you	get	started.

Unity	makes	the	process	of	adding	normals	to	your	shaders	quite	an	easy	process	in	the
Surface	Shader	realm	using	the	UnpackNormals()	function.	Let’s	see	how	this	is	done.

http://www.crazybump.com/
http://quixel.se/ndo/
http://www.pixologic.com/
http://usa.autodesk.com

Getting	ready
Create	a	new	material	and	shader	and	set	them	up	on	a	new	object	in	the	Scene	view.	This
will	give	us	a	clean	workspace	in	which	we	can	look	at	just	the	normal	mapping
technique.

You	will	need	a	normal	map	for	this	recipe,	but	there	is	also	one	in	the	Unity	project
included	with	this	book.

An	example	normal	map	included	with	this	book’s	contents	is	shown	here:

How	to	do	it…
The	following	are	the	steps	to	create	a	normal	map	shader:

1.	 Let’s	get	the	Properties	block	set	up	in	order	to	have	a	color	tint	and	texture:

Properties

{

		_MainTint	("Diffuse	Tint",	Color)	=	(1,1,1,1)

		_NormalTex	("Normal	Map",	2D)	=	"bump"	{}

}

Note
By	initializing	the	texture	as	bump,	we	are	telling	Unity	that	_NormalTex	will	contain
a	normal	map.	If	the	texture	is	not	set,	it	will	be	replaced	by	a	grey	texture.	The	color
used	(0.5,0.5,0.5,1)	indicates	no	bump	at	all.

2.	 Link	the	properties	to	the	Cg	program	by	declaring	them	in	SubShader{}	below	the
CGPROGRAM	statement:

CPROGRAM

#pragma	surface	surf	Lambert

//	Link	the	property	to	the	CG	program

sampler2D	_NormalTex;

float4	_MainTint;

3.	 We	need	to	make	sure	that	we	update	the	Input	struct	with	the	proper	variable	name
so	that	we	can	use	the	model’s	UVs	for	the	normal	map	texture:

//	Make	sure	you	get	the	UVs	for	the	texture	in	the	struct

struct	Input

{

		float2	uv_NormalTex;

}

4.	 Finally,	we	extract	the	normal	information	from	the	normal	map	texture	using	the
built-in	UnpackNormal()	function.	Then,	you	only	have	to	apply	these	new	normals
to	the	output	of	the	Surface	Shader:

//	Get	the	normal	data	out	of	the	normal	map	texture

//	using	the	UnpackNormal	function

float3	normalMap	=	UnpackNormal(tex2D(_NormalTex,	IN.uv_NormalTex));

//	Apply	the	new	normal	to	the	lighting	model

o.Normal	=	normalMap.rgb;

The	following	image	demonstrates	the	result	of	our	normal	map	shader:

Note
Shaders	can	have	both	a	texture	map	and	normal	map.	It	is	not	uncommon	to	use	the	same
UV	data	to	address	both.	However,	it	is	possible	to	provide	a	secondary	set	of	UVs	in	the
vertex	data	(UV2)	specifically	used	for	the	normal	map.

How	it	works…
The	actual	math	to	perform	the	normal	mapping	effect	is	definitely	beyond	the	scope	of
this	chapter,	but	Unity	has	done	it	all	for	us	already.	It	has	created	the	functions	for	us	so
that	we	don’t	have	to	keep	doing	it	over	and	over	again.	This	is	another	reason	why
Surface	Shaders	are	a	really	efficient	way	to	write	shaders.

If	you	look	in	the	UnityCG.cginc	file	found	in	the	Data	folder	in	your	Unity	installation
directory,	you	will	find	the	definitions	for	the	UnpackNormal()	function.	When	you
declare	this	function	in	your	Surface	Shader,	Unity	takes	the	provided	normal	map	and
processes	it	for	you	and	gives	you	the	correct	type	of	data	so	that	you	can	use	it	in	your
per-pixel	lighting	function.	It’s	a	huge	time-saver!	When	sampling	a	texture,	you	get	RGB
values	from	0	to	1;	however,	the	directions	of	a	normal	vector	range	from	-1	to	+1.
UnpackNormal()	brings	these	components	in	the	right	range.

Once	you	have	processed	the	normal	map	with	the	UnpackNormal()	function,	you	send	it
back	to	your	SurfaceOutput	struct	so	that	it	can	be	used	in	the	lighting	function.	This	is
done	by	o.Normal	=	normalMap.rgb;.	We	will	see	how	the	normal	is	actually	used	to
calculate	the	final	color	of	each	pixel	in	Chapter	3,	Understanding	Lighting	Models.

There’s	more…
You	can	also	add	some	controls	to	your	normal	map	shader	that	lets	a	user	adjust	the
intensity	of	the	normal	map.	This	is	easily	done	by	modifying	the	x	and	y	components	of
the	normal	map	variable	and	then	adding	it	all	back	together.	Add	another	property	to	the
Properties	block	and	name	it	_NormalMapIntensity:

_NormalMapIntensity("Normal	intensity",	Range(0,1))	=	1

Multiply	the	x	and	y	components	of	the	unpacked	normal	map	and	reapply	this	value	to
the	normal	map	variable:

fixed3	n	=	UnpackNormal(tex2D(_BumpTex,	IN.uv_	uv_MainTex)).rgb;

n.x	*=	_NormalMapIntensity;

n.y	*=	_NormalMapIntensity;

o.Normal	=	normalize(n);

Note
Normal	vectors	are	supposed	to	have	lengths	equal	to	one.	Multiplying	them	for
_NormalMapIntensity	changes	their	length,	making	normalization	necessary.

Now,	you	can	let	a	user	adjust	the	intensity	of	the	normal	map	in	the	material’s	Inspector
tab.	The	following	image	shows	the	result	of	modifying	the	normal	map	with	our	scalar
values:

Creating	a	transparent	material
All	the	shaders	seen	so	far	have	something	in	common—they	are	used	for	solid	materials.
If	you	want	to	improve	the	look	of	your	game,	transparent	materials	are	often	a	good	way
to	start.	They	can	be	used	for	anything	from	a	fire	effect	to	a	window	glass.	Working	with
them,	unfortunately,	is	slightly	more	complicated.	Before	rendering	solid	models,	Unity
orders	them	according	to	the	distance	from	the	camera	(Z	ordering)	and	skips	all	the
triangles	that	are	facing	away	from	the	camera	(culling).	When	rendering	transparent
geometries,	there	are	instances	in	which	these	two	aspects	can	cause	problems.	This	recipe
will	show	you	how	to	solve	some	of	these	issues	when	it	comes	to	creating	a	transparent
Surface	Shader.	This	topic	will	be	heavily	revisited	in	Chapter	6,	Fragment	Shaders	and
Grab	Passes,	where	realistic	glass	and	water	shaders	will	be	provided.

Getting	ready
This	recipe	requires	a	new	shader,	which	we’ll	be	calling	Transparent,	and	a	new
material	so	that	it	can	be	attached	to	an	object.	As	this	is	going	to	be	a	transparent	glass
window,	a	quad	or	plane	is	perfect.	We	will	also	need	several	other	non-transparent	objects
to	test	the	effect.	In	this	example,	we	will	use	a	PNG	for	the	glass	texture.	The	alpha
channel	of	the	image	will	be	used	to	determine	the	transparency	of	the	glass.	The	process
of	creating	such	an	image	depends	on	the	software	that	you	are	using.	However,	these	are
the	main	steps	that	you	will	need	to	follow:

1.	 Find	the	image	of	the	glass	you	want	for	your	windows.
2.	 Open	it	with	a	photoediting	software,	such	as	GIMP	or	Photoshop.
3.	 Select	the	parts	of	the	image	that	you	want	to	be	semi-transparent.
4.	 Create	a	white	(full	opacity)	layer	mask	on	your	image.
5.	 Use	the	selection	previously	made	to	fill	the	layer	mask	with	a	darker	color.
6.	 Save	the	image	and	import	it	to	Unity.

The	toy	image	used	in	this	recipe	is	a	picture	of	a	stained	glass	from	the	Meaux	Cathedral
in	France	(https://en.wikipedia.org/wiki/Stained_glass).	If	you	have	followed	all	the	steps,
your	image	should	look	like	this	(RGB	channels	on	the	left,	and	A	channel	on	the	right):

https://en.wikipedia.org/wiki/Stained_glass

How	to	do	it…
As	mentioned	previously,	there	are	a	few	aspects	that	we	need	to	take	care	of	while	using
a	Transparent	Shader:

1.	 In	the	SubShader{}	section	of	the	shader,	add	the	following	tags	that	signal	the
shader	is	transparent:

Tags

{

		"Queue"	=	"Transparent"

		"IgnoreProjector"	=	"True"

		"RenderType"	=	"Transparent"

}

2.	 As	this	shader	is	designed	for	2D	materials,	make	sure	that	the	back	geometry	of	your
model	is	not	drawn	by	adding	the	following:

Cull	Back

3.	 Tell	the	shader	that	this	material	is	transparent	and	needs	to	be	blended	with	what	was
drawn	on	the	screen	before:

#pragma	surface	surf	Standard	alpha:fade

4.	 Use	this	Surface	Shader	to	determine	the	final	color	and	transparency	of	the	glass:

void	surf(Input	IN,	inout	SurfaceOutputStandard	o)

{

		float4	c	=	tex2D(_MainTex,	IN.uv_MainTex)	*	_Color;

		o.Albedo	=	c.rgb;

		o.Alpha	=	c.a;

}

How	it	works…
This	shader	introduces	several	new	concepts.	First	of	all,	Tags	are	used	to	add	information
about	how	the	object	is	going	to	be	rendered.	The	really	interesting	one	here	is	Queue.
Unity,	by	default,	will	sort	your	objects	for	you	based	on	the	distance	from	the	camera.	So,
as	an	object	gets	nearer	to	the	camera,	it	is	going	to	be	drawn	over	all	the	objects	that	are
further	away	from	the	camera.	For	most	cases,	this	works	out	just	fine	for	games,	but	you
will	find	certain	situations	where	you	will	want	to	have	more	control	over	the	sorting	of
your	objects	in	your	scene.	Unity	has	provided	us	with	some	default	render	queues,	each
with	a	unique	value	that	directs	Unity	when	to	draw	the	object	to	the	screen.	These	built-in
render	queues	are	called	Background,	Geometry,	AlphaTest,	Transparent,	and	Overlay.
These	queues	weren’t	just	created	arbitrarily;	they	actually	serve	a	purpose	to	make	our
lives	easier	when	writing	shaders	and	interacting	with	the	real-time	renderer.	Refer	to	the
following	table	for	descriptions	on	the	usage	of	each	of	these	individual	render	queues:

Render
queue Render	queue	description

Render
queue
value

Background This	render	queue	is	rendered	first.	It	is	used	for	skyboxes	and	so	on. 1000

Geometry
This	is	the	default	render	queue.	This	is	used	for	most	objects.	Opaque	geometry	uses	this
queue.

2000

AlphaTest
Alpha-tested	geometry	uses	this	queue.	It’s	different	from	the	Geometry	queue	as	it’s	more
efficient	to	render	alpha-tested	objects	after	all	the	solid	objects	are	drawn.

2450

Transparent

This	render	queue	is	rendered	after	Geometry	and	AlphaTest	queues	in	back-to-front	order.
Anything	alpha-blended	(that	is,	shaders	that	don’t	write	to	the	depth	buffer)	should	go	here,
for	example,	glass	and	particle	effects.

3000

Overlay
This	render	queue	is	meant	for	overlay	effects.	Anything	rendered	last	should	go	here,	for
example,	lens	flares.

4000

So,	once	you	know	which	render	queue	your	object	belongs	to,	you	can	assign	its	built-in
render	queue	tag.	Our	shader	used	the	Transparent	queue,	so	we	wrote
Tags{"Queue"="Trasparent"}.

Note
The	fact	that	the	Transparent	queue	is	rendered	after	Geometry	does	not	mean	that	our
glass	will	appear	on	top	of	all	the	other	solid	objects.	Unity	will	draw	the	glass	last,	but	it
will	not	render	pixels	that	belong	to	pieces	of	geometry	hidden	behind	something	else.
This	control	is	done	using	a	technique	called	ZBuffering.	More	information	on	how
models	are	rendered	can	be	found	at	http://docs.unity3d.com/Manual/SL-
CullAndDepth.html.

The	IgnoreProjector	tag	makes	this	object	unaffected	by	Unity’s	projectors.	Lastly,
RenderType	plays	a	role	in	shader	replacement,	a	topic	that	will	be	covered	briefly	in
Chapter	9,	Gameplay	and	Screen	Effects.

http://docs.unity3d.com/Manual/SL-CullAndDepth.html

The	last	concept	introduced	is	alpha:fade.	This	indicates	that	all	the	pixels	from	this
material	have	to	be	blended	with	what	was	on	the	screen	before	according	to	their	alpha
values.	Without	this	directive,	the	pixels	will	be	drawn	in	the	correct	order,	but	they	won’t
have	any	transparency.

Creating	a	Holographic	Shader
More	and	more	space-themed	games	are	being	released	every	year.	An	important	part	of	a
good	sci-fi	game	is	the	way	futuristic	technology	is	presented	and	integrated	in	the
gameplay.	There’s	nothing	that	screams	futuristic	more	than	holograms.	Despite	being
present	in	many	flavors,	holograms	are	often	represented	as	semi-transparent,	thin
projections	of	an	object.	This	recipe	shows	you	how	to	create	a	shader	that	simulates	such
effects.	Take	this	as	a	starting	point:	you	can	add	noise,	animated	scanlines,	and	vibrations
to	create	a	truly	outstanding	holographic	effect.	The	following	image	shows	an	example	of
a	holographic	effect:

Getting	ready
As	the	holographic	effects	shows	only	the	outlines	of	an	object,	we’ll	call	this	shader
Silhouette.	Attach	it	to	a	material	and	assign	it	to	your	3D	model.

How	to	do	it…
The	following	changes	will	modify	our	existing	shader	into	a	holographic	one:

1.	 Add	the	following	property	to	the	shader:

_DotProduct("Rim	effect",	Range(-1,1))	=	0.25

2.	 Add	its	respective	variable	to	the	CGPROGRAM	section:

float	_DotProduct;

3.	 As	this	material	is	transparent,	add	the	following	tags:

Tags

{

		"Queue"	=	"Transparent"

		"IgnoreProjector"	=	"True"

		"RenderType"	=	"Transparent"

}

Note
According	to	the	type	of	object	that	you	will	use,	you	might	want	its	backside	to
appear.	If	this	is	the	case,	add	Cull	Off	so	that	the	back	of	the	model	won’t	be
removed	(culled).

4.	 This	shader	is	not	trying	to	simulate	a	realistic	material,	so	there	is	no	need	to	use	the
PBR	lighting	model.	The	Lambertian	reflectance,	which	is	very	cheap,	is	used
instead.	Additionally,	we	should	disable	any	lighting	with	nolighting	and	signal	to
Cg	that	this	is	a	Transparent	Shader	using	alpha:fade:

#pragma	surface	surf	Lambert	alpha:fade	nolighting

5.	 Change	the	Input	structure	so	that	Unity	will	fill	it	with	the	current	view	direction
and	world	normal	direction:

struct	Input

{

		float2	uv_MainTex;

		float3	worldNormal;

		float3	viewDir;

};

6.	 Use	the	following	surface	function.	Remember	that	as	this	shader	is	using	the
Lambertian	reflectance	as	its	lighting	function,	the	name	of	the	surface	output
structure	should	be	changed	accordingly	to	SurfaeOutput	instead	of
SurfaceOutputStandard:

void	surf(Input	IN,	inout	SurfaceOutput	o)

{

		float4	c	=	tex2D(_MainTex,	IN.uv_MainTex)	*	_Color;

		o.Albedo	=	c.rgb;

		float	border	=	1	-	(abs(dot(IN.viewDir,	IN.worldNormal)));

		float	alpha	=	(border	*	(1	-	_DotProduct)	+	_DotProduct);

		o.Alpha	=	c.a	*	alpha;

}

You	can	now	use	the	Rim	effect	slider	to	choose	the	strength	of	the	holographic	effect.

How	it	works…
As	mentioned	before,	this	shader	works	by	showing	only	the	silhouette	of	an	object.	If	we
look	at	the	object	from	another	angle,	its	outline	will	change.	Geometrically	speaking,	the
edges	of	a	model	are	all	those	triangles	whose	normal	direction	is	orthogonal	(90	degrees)
to	the	current	view	direction.	The	Input	structure	declares	these	parameters,	worldNormal
and	viewDir,	respectively.

The	problem	of	understanding	when	two	vectors	are	orthogonal	can	be	solved	using	the
dot	product.	It’s	an	operator	that	takes	two	vectors	and	returns	zero	if	they	are	orthogonal.
We	use	_DotProduct	to	determine	how	close	to	zero	the	dot	product	has	to	be	for	the
triangle	to	fade	completely.

The	second	aspect	that	is	used	in	this	shader	is	the	gentle	fading	between	the	edge	of	the
model	(fully	visible)	and	the	angle	determined	by	_DotProduct	(invisible).	This	linear
interpolation	is	done	as	follows:

float	alpha	=	(border	*	(1	-	_DotProduct)	+	_DotProduct);

Finally,	the	original	alpha	from	the	texture	is	multiplied	with	the	newly	calculated
coefficient	to	achieve	the	final	look.

There’s	more…
This	technique	is	very	simple	and	relatively	inexpensive.	Yet,	it	can	be	used	for	a	large
variety	of	effects,	such	as	the	following:

The	slightly	colored	atmosphere	of	a	planet	in	sci-fi	games
The	edge	of	an	object	that	has	been	selected	or	is	currently	under	the	mouse
A	ghost	or	specter
Smoke	coming	out	of	an	engine
The	shockwave	of	an	explosion
The	bubble	shield	of	a	spaceship	under	attack

See	also
The	dot	product	plays	an	important	role	in	the	way	reflections	are	calculated.	Chapter	3,
Understanding	Lighting	Models,	will	explain	in	detail	how	it	works	and	why	it	is	widely
used	in	so	many	shaders.

Packing	and	blending	textures
Textures	are	useful	to	store	not	only	loads	of	data,	not	just	pixel	colors	as	we	generally
tend	to	think	of	them,	but	also	for	multiple	sets	of	pixels	in	both	the	x	and	y	directions	and
RGBA	channels.	We	can	actually	pack	multiple	images	into	one	single	RGBA	texture	and
use	each	of	the	R,	G,	B,	and	A	components	as	individual	textures	themselves	by	extracting
each	of	these	components	in	the	shader	code.

The	result	of	packing	individual	grayscale	images	into	a	single	RGBA	texture	can	be	seen
in	the	following	image:

Why	is	this	helpful?	Well,	in	terms	of	the	amount	of	actual	memory	that	your	application
takes	up,	textures	are	a	large	portion	of	your	application’s	size.	So,	to	begin	reducing	the
size	of	your	application,	we	can	look	at	all	of	the	images	that	we	are	using	in	our	shader
and	see	if	we	can	merge	these	textures	into	a	single	texture.

Any	texture	that	is	grayscale	can	be	packed	into	one	of	the	RGBA	channels	of	another
texture.	This	might	sound	a	bit	odd	at	first,	but	this	recipe	is	going	to	demonstrate	one	of
the	uses	of	packing	a	texture	and	using	these	packed	textures	in	a	shader.

One	example	of	using	these	packed	textures	is	when	you	want	to	blend	a	set	of	textures
together	onto	a	single	surface.	You	see	this	most	often	in	terrain	type	shaders,	where	you
need	to	blend	into	another	texture	nicely	using	some	sort	of	control	texture	or	the	packed
texture,	in	this	case.	This	recipe	covers	this	technique	and	shows	you	how	you	can
construct	the	beginnings	of	a	nice	four-texture	blended	terrain	shader.

Getting	ready
Let’s	create	a	new	shader	file	in	your	Shaders	folder	and	then	create	a	new	material	for
this	shader.	The	naming	convention	is	entirely	up	to	you	for	your	shader	and	material	files,
so	try	your	best	to	keep	them	organized	and	easy	to	reference	later	on.

Once	you	have	your	shader	and	material	ready,	create	a	new	scene	in	which	we	can	test
our	shader.

You	will	also	need	to	gather	up	four	textures	that	you	would	want	to	blend	together.	These
can	be	anything,	but	for	a	nice	terrain	shader,	you	will	want	grass,	dirt,	rocky	dirt,	and
rock	textures.

These	are	the	color	textures	that	we	will	be	using	for	this	recipe,	which	are	included	with
this	book.

Finally,	we	will	also	need	a	blending	texture	that	is	packed	with	grayscale	images.	This
will	give	us	the	four	blending	textures	that	we	can	use	to	direct	how	the	color	textures	will
be	placed	on	the	object	surface.

We	can	use	very	intricate	blending	textures	to	create	a	very	realistic	distribution	of	terrain
textures	over	a	terrain	mesh,	as	seen	in	the	following	image:

How	to	do	it…
Let’s	learn	how	to	use	packed	textures	by	entering	the	code	shown	in	the	following	steps:

1.	 We	need	to	add	a	few	properties	to	our	Properties	block.	We	will	need	five
sampler2D	objects,	or	textures,	and	two	color	properties:

Properties

{

_MainTint	("Diffuse	Tint",	Color)	=	(1,1,1,1)

				

//Add	the	properties	below	so	we	can	input	all	of	our	textures

		_ColorA	("Terrain	Color	A",	Color)	=	(1,1,1,1)

		_ColorB	("Terrain	Color	B",	Color)	=	(1,1,1,1)

		_RTexture	("Red	Channel	Texture",	2D)	=	""{}

		_GTexture	("Green	Channel	Texture",	2D)	=	""{}

		_BTexture	("Blue	Channel	Texture",	2D)	=	""{}

		_ATexture	("Alpha	Channel	Texture",	2D)	=	""{}

		_BlendTex	("Blend	Texture",	2D)	=	""{}

}

2.	 We	then	need	to	create	the	SubShader{}	section	variables	that	will	be	our	link	to	the
data	in	the	Properties	block:

CGPROGRAM

#pragma	surface	surf	Lambert

float4	_MainTint;

float4	_ColorA;

float4	_ColorB;

sampler2D	_RTexture;

sampler2D	_GTexture;

sampler2D	_BTexture;

sampler2D	_BlendTex;

sampler2D	_ATexture;

3.	 So,	now	we	have	our	texture	properties	and	we	are	passing	them	to	our	SubShader{}
function.	In	order	to	allow	the	user	to	change	the	tiling	rates	on	a	per-texture	basis,
we	will	need	to	modify	our	Input	struct.	This	will	allow	us	to	use	the	tiling	and	offset
parameters	on	each	texture:

struct	Input	

{

		float2	uv_RTexture;

		float2	uv_GTexture;

		float2	uv_BTexture;

		float2	uv_ATexture;

		float2	uv_BlendTex;

};

4.	 In	the	surf()	function,	get	the	texture	information	and	store	them	in	their	own
variables	so	that	we	can	work	with	the	data	in	a	clean,	easy-to-understand	way:

//Get	the	pixel	data	from	the	blend	texture

//we	need	a	float	4	here	because	the	texture	

//will	return	R,G,B,and	A	or	X,Y,Z,	and	W

float4	blendData	=	tex2D(_BlendTex,	IN.uv_BlendTex);

						

//Get	the	data	from	the	textures	we	want	to	blend

float4	rTexData	=	tex2D(_RTexture,	IN.uv_RTexture);

float4	gTexData	=	tex2D(_GTexture,	IN.uv_GTexture);

float4	bTexData	=	tex2D(_BTexture,	IN.uv_BTexture);

float4	aTexData	=	tex2D(_ATexture,	IN.uv_ATexture);

5.	 Let’s	blend	each	of	our	textures	together	using	the	lerp()	function.	It	takes	three
arguments,	lerp(value	:	a,	value	:	b,	blend:	c).	The	lerp()	function	takes	in
two	textures	and	blends	them	with	the	float	value	given	in	the	last	argument:

//No	we	need	to	contruct	a	new	RGBA	value	and	add	all	

//the	different	blended	texture	back	together

float4	finalColor;

finalColor	=	lerp(rTexData,	gTexData,	blendData.g);

finalColor	=	lerp(finalColor,	bTexData,	blendData.b);

finalColor	=	lerp(finalColor,	aTexData,	blendData.a);finalColor.a	=	

1.0;

6.	 Finally,	we	multiply	our	blended	textures	with	the	color	tint	values	and	use	the	red
channel	to	determine	where	the	two	different	terrain	tint	colors	go:

//Add	on	our	terrain	tinting	colors

float4	terrainLayers	=	lerp(_ColorA,	_ColorB,	blendData.r);

finalColor	*=	terrainLayers;

finalColor	=	saturate(finalColor);

								

o.Albedo	=	finalColor.rgb	*	_MainTint.rgb;

o.Alpha	=	finalColor.a;

The	result	of	blending	together	four	terrain	textures	and	creating	a	terrain	tinting	technique
can	be	seen	in	the	following	image:

How	it	works…
This	might	seem	like	quite	a	few	lines	of	code,	but	the	concept	behind	blending	is	actually
quite	simple.	For	the	technique	to	work,	we	have	to	employ	the	built-in	lerp()	function
from	the	CgFX	standard	library.	This	function	allows	us	to	pick	a	value	between	argument
one	and	argument	two	using	argument	three	as	the	blend	amount:

Function Description

lerp(a	,	b,

f)

This	involves	linear	interpolation:
(1	–	f)*	a	+	b	*	f

Here,	a	and	b	are	matching	vector	or	scalar	types.	The	f	parameter	can	be	either	a	scalar	or	vector	of
the	same	type	as	a	and	b.

So,	for	example,	if	we	wanted	to	find	the	mid-value	between	1	and	2,	we	could	feed	the
value	0.5	as	the	third	argument	to	the	lerp()	function	and	it	would	return	the	value	1.5.
This	works	perfectly	for	our	blending	needs	as	the	values	of	an	individual	channel	in	an
RGBA	texture	are	single	float	values,	usually	in	the	range	of	0	to	1.

In	the	shader,	we	simply	take	one	of	the	channels	from	our	blend	texture	and	use	it	to
drive	the	color	that	is	picked	in	a	lerp()	function	for	each	pixel.	For	instance,	we	take	our
grass	texture	and	dirt	texture,	use	the	red	channel	from	our	blending	texture,	and	feed	this
to	a	lerp()	function.	This	will	give	us	the	correct	blended	color	result	for	each	pixel	on
the	surface.

A	more	visual	representation	of	what	is	happening	when	using	the	lerp()	function	is
shown	in	the	following	image:

The	shader	code	simply	uses	the	four	channels	of	the	blend	texture	and	all	the	color
textures	to	create	a	final	blended	texture.	This	final	texture	then	becomes	our	color	that	we
can	multiply	with	our	diffuse	lighting.

Creating	a	circle	around	your	terrain
Many	RTS	games	display	distances	(range	attack,	moving	distance,	sight,	and	so	on)	by
drawing	a	circle	around	the	selected	unit.	If	the	terrain	is	flat,	this	can	be	done	simply	by
stretching	a	quad	with	the	texture	of	a	circle.	If	that’s	not	the	case,	the	quad	will	most
likely	be	clipped	behind	a	hill	or	another	piece	of	geometry.	This	recipe	will	show	you
how	to	create	a	shader	that	allows	you	to	draw	circles	around	an	object	of	arbitrary
complexity.	If	you	want	to	be	able	to	move	or	animate	your	circle,	we	will	need	both	a
shader	and	C#	script.	The	following	image	shows	an	example	of	drawing	a	circle	in	a	hilly
region	using	a	shader:

Getting	ready
Despite	working	with	every	piece	of	geometry,	this	technique	is	oriented	to	terrains.
Hence,	the	first	step	is	setting	up	a	terrain	in	Unity.

1.	 Let’s	start	by	creating	a	new	shader	called	RadiusShader	and	the	respective	material,
Radius.

2.	 Have	the	character	for	your	object	ready;	we	will	draw	a	circle	around	it.
3.	 From	the	menu,	navigate	to	GameObject	|	3D	Object	|	Terrain	to	create	a	new

terrain.
4.	 Create	the	geometry	for	your	terrain.	You	can	either	import	an	existing	one	or	draw

your	own	using	the	tools	available	(Raise/Lower	Terrain,	Paint	Height,	Smooth
Height).

5.	 Terrains	are	special	objects	in	Unity,	and	the	way	texture	mapping	works	on	them	is
different	from	traditional	3D	models.	You	cannot	provide	_MainTex	from	a	shader	as
it	needs	to	be	provided	directly	from	the	terrain	itself.	To	do	this,	select	Paint
Texture	and	then	click	on	Add	Texture…:

6.	 Now	that	the	texture	is	set,	you	have	to	change	the	material	of	the	terrain	so	that	a
custom	shader	can	be	provided.	From	Terrain	Settings,	change	the	Material
property	to	Custom,	and	then	drag	the	Radius	material	to	the	Custom	Material	box.

You	are	now	ready	to	create	your	shader.

How	to	do	it…
Let’s	start	by	editing	the	RadiusShader	file:

1.	 In	the	new	shader,	add	these	four	properties:

_Center("Center",	Vector)	=	(0,0,0,0)

_Radius("Radius",	Float)	=	0.5

_RadiusColor("Radius	Color",	Color)	=	(1,0,0,1)

_RadiusWidth("Radius	Width",	Float)	=	2

2.	 Add	their	respective	variables	to	the	CGPROGRAM	section:

float3	_Center;

float	_Radius;

fixed4	_RadiusColor;

float	_RadiusWidth;

3.	 Input	to	our	surface	function	requires	not	only	the	UV	of	the	texture,	but	also	the
position	(in	world	coordinates)	of	every	point	of	the	terrain.	We	can	retrieve	this
parameter	by	changing	the	Input	struct	as	follows:

struct	Input

{

		float2	uv_MainTex;	//	The	UV	of	the	terrain	texture

		float3	worldPos;			//	The	in-world	position

};

4.	 Lastly,	we	use	this	surface	function:

void	surf(Input	IN,	inout	SurfaceOutputStandard	o)

{

		float	d	=	distance(_Center,	IN.worldPos);

		if	(d	>	_Radius	&&	d	<	_Radius	+	_RadiusWidth)

				o.Albedo	=	_RadiusColor;

		else

				o.Albedo	=	tex2D(_MainTex,	IN.uv_MainTex).rgb;

}

These	steps	are	all	it	takes	to	draw	a	circle	on	your	terrain.	You	can	use	the	material’s
Inspector	tab	to	change	the	position,	radius,	and	color	of	the	circle.

Moving	the	circle
If	you	want	the	circle	to	follow	your	character,	other	steps	are	necessary:

1.	 Create	a	new	C#	script	called	Radius.
2.	 Add	these	properties	to	the	script:

public	Material	radiusMaterial;

public	float	radius	=	1;

public	Color	color	=	Color.white;

3.	 In	the	Update()	method,	add	these	lines	of	code:

radiusMaterial.SetVector("_Center",	transform.position);

radiusMaterial.SetFloat("_Radius",	radius);

radiusMaterial.SetColor("_RadiusColor",	color);

4.	 Attach	the	script	to	your	character.
5.	 Finally,	drag	the	Radius	material	to	the	Radius	Material	slot	of	the	script.

You	can	now	move	your	character	around	and	this	will	create	a	nice	circle	around	it.
Changing	the	properties	of	the	Radius	script	will	change	the	radius	as	well.

How	it	works…
The	relevant	parameters	to	draw	a	circle	are	its	center,	radius,	and	color.	They	are	all
available	in	the	shader	with	the	names	_Center,	_Radius,	and	_RadiusColor.	By	adding
the	worldPos	variable	to	the	Input	structure,	we	are	asking	Unity	to	provide	us	with	the
position	of	the	pixel	that	we	are	drawing	expressed	in	world	coordinates.	This	is	the	actual
position	of	an	object	in	the	editor.

The	surf()	function	is	where	the	circle	is	actually	drawn.	It	calculates	the	distance	from
the	point	being	drawn	and	center	of	the	radius,	then	it	checks	whether	it	is	between
_Radius	and	_Radius	+	_RadiusWidth;	if	this	is	the	case,	it	uses	the	chosen	color.	In	the
other	case,	it	just	samples	the	texture	map	like	all	the	other	shaders	seen	so	far.

Chapter	3.	Understanding	Lighting
Models
In	the	previous	chapters,	we	introduced	Surface	Shaders	and	explained	how	we	can
change	physical	properties	(such	as	Albedo	and	Specular)	to	simulate	different	materials.
How	does	this	really	work?	At	the	heart	of	every	Surface	Shader,	there	is	its	lighting
model.	It’s	the	function	that	takes	these	properties	and	calculates	the	final	shade	of	each
pixel.	Unity	usually	hides	this	from	the	developers	because	in	order	to	write	a	lighting
model,	you	have	to	understand	how	light	reflects	and	refracts	onto	surfaces.	This	chapter
will	finally	show	you	how	lighting	models	work	and	give	you	the	basics	to	create	your
own.

In	this	chapter,	you	will	learn	the	following	recipes:

Creating	a	custom	diffuse	lighting	model
Creating	a	Toon	Shader
Creating	a	Phong	Specular	type
Creating	a	BlinnPhong	Specular	type
Creating	an	Anisotropic	Specular	type

Introduction
Simulating	the	way	light	works	is	a	very	challenging	and	resource-consuming	task.	For
many	years,	video	games	have	used	very	simple	lighting	models	that,	despite	lacking
realism,	were	very	believable.	Even	if	most	3D	engines	are	now	using	physically-based
renderers,	it	is	worth	exploring	some	simpler	techniques.	The	ones	presented	in	this
chapter	are	reasonably	realistic	and	widely	adopted	on	devices	with	low	resources	such	as
mobile	phones.	Understanding	these	simple	lighting	models	is	also	essential	if	you	want	to
create	your	own	one.

Creating	a	custom	diffuse	lighting	model
If	you	are	familiar	with	Unity	4,	you	may	know	that	the	default	shader	it	provided	was
based	on	a	lighting	model	called	Lambertian	reflectance.	This	recipe	will	show	you	how	it
is	possible	to	create	a	shader	with	a	custom	lighting	model	and	explain	the	mathematics
and	implementation	behind	it.	The	following	image	shows	the	same	geometry	rendered
with	a	Standard	Shader	(right)	and	diffuse	Lambert	one	(left):

Shaders	based	on	the	Lambertian	reflectance	are	classified	as	non-photorealistic;	no	object
in	the	real	world	really	looks	like	this.	However,	Lambert	Shaders	are	still	often	used	in
low	poly	games	as	they	produce	a	neat	contrast	between	the	faces	of	complex	geometries.
The	lighting	model	used	to	calculate	the	Lambertian	reflectance	is	also	very	efficient,
making	it	perfect	for	mobile	games.

Unity	has	already	provided	us	with	a	lighting	function	that	we	can	use	for	our	shaders.	It	is
called	the	Lambertian	lighting	model.	It	is	one	of	the	more	basic	and	efficient	forms	of
reflectance,	which	you	can	find	in	a	lot	of	games	even	today.	As	it	is	already	built	in	the
Unity	Surface	Shader	language,	we	thought	it	is	best	to	start	with	this	first	and	build	on	it.
You	can	also	find	an	example	in	the	Unity	reference	manual,	but	we	will	go	into	more
depth	with	it	and	explain	where	the	data	is	coming	from	and	why	it	is	working	the	way	it
is.	This	will	help	you	get	a	nice	grounding	in	setting	up	custom	lighting	models	so	that	we
can	build	on	this	knowledge	in	the	future	recipes	in	this	chapter.

Getting	ready
Let’s	start	by	carrying	out	the	following	steps:

1.	 Create	a	new	shader	and	give	it	a	name.
2.	 Create	a	new	material,	give	it	a	name,	and	assign	the	new	shader	to	its	shader

property.
3.	 Then,	create	a	sphere	object	and	place	it	roughly	in	the	center	of	the	scene.
4.	 Finally,	let’s	create	a	directional	light	to	cast	some	light	on	our	object.

When	your	assets	have	been	set	up	in	Unity,	you	should	have	a	scene	that	resembles	the
following	screenshot:

How	to	do	it…
The	Lambertian	reflectance	can	be	achieved	with	the	following	changes	to	the	shader:

1.	 Begin	by	adding	the	following	properties	to	the	shader’s	Properties	block:

_MainTex("Texture",	2D)	=	"white"

2.	 Change	the	#pragma	directive	of	the	shader	so	that,	instead	of	Standard,	it	uses	our
custom	lighting	model:

#pragma	surface	surf	SimpleLambert

3.	 Use	a	very	simple	surface	function,	which	just	samples	the	texture	according	to	its
UV	data:

void	surf(Input	IN,	inout	SurfaceOutput	o)	{

		o.Albedo	=	tex2D(_MainTex,	IN.uv_MainTex).rgb;

}

4.	 Add	a	function	called	LightingSimpleLambert()	that	will	contain	the	following
code	for	the	Lambertian	reflectance:

half4	LightingSimpleLambert	(SurfaceOutput	s,	half3	lightDir,	half	

atten)	{

		half	NdotL	=	dot	(s.Normal,	lightDir);

		half4	c;

		c.rgb	=	s.Albedo	*	_LightColor0.rgb	*	(NdotL	*	atten	*	1);

		c.a	=	s.Alpha;

		return	c;

}

How	it	works…
As	previously	seen	in	Chapter	1,	Creating	Your	First	Shader,	the	#pragma	directive	is	used
to	specify	which	surface	function	to	use.	Choosing	a	different	lighting	model	works	in	a
similar	fashion:	SimpleLambert	forces	Cg	to	look	for	a	function	called
LightingSimpleLambert().	Note	Lighting	at	the	beginning,	which	is	omitted	in	the
directive.

The	lighting	function	takes	three	parameters:	the	surface	output	(which	contains	the
physical	properties	such	as	the	albedo	and	transparency),	the	direction	the	light	is	coming
from,	and	its	attenuation.

According	to	the	Lambertian	reflectance,	the	amount	of	light	a	surface	reflects	depends	on
the	angle	between	the	incident	light	and	surface	normal.	If	you	have	played	pool	billiards,
you	are	surely	familiar	with	this	concept;	the	direction	of	a	ball	depends	on	its	incident
angle	against	the	wall.	If	you	hit	a	wall	at	a	90	degree	angle,	the	ball	will	come	back	at
you;	if	you	hit	it	with	a	very	low	angle,	its	direction	will	be	mostly	unchanged.	The
Lambertian	model	makes	the	same	assumption;	if	the	light	hits	a	triangle	with	a	90	degree
angle,	all	the	light	gets	reflected	back.	The	lower	the	angle,	the	less	light	is	reflected	back
to	you.	This	concept	is	shown	in	the	following	image:

This	simple	concept	has	to	be	translated	into	a	mathematical	form.	In	vector	algebra,	the
angle	between	two	unit	vectors	can	be	calculated	via	an	operator	called	dot	product.
When	the	dot	product	is	equal	to	zero,	two	vectors	are	orthogonal,	which	means	that	they
make	a	90	degree	angle.	When	it	is	equal	to	one	(or	minus	one),	they	are	parallel	to	each
other.	Cg	has	a	function	called	dot(),	which	implements	the	dot	product	extremely
efficiently.

The	following	picture	shows	a	light	source	(sun)	shining	on	a	complex	surface.	L	indicates
the	light	direction	(called	lightDir	in	the	shader)	and	N	is	the	normal	to	the	surface.	The
light	is	reflected	with	the	same	angle	that	it	hits	the	surface:

The	Lambertian	reflectance	simply	uses	the	NdotL	dot	product	as	a	multiplicative
coefficient	for	the	intensity	of	light:

When	N	and	L	are	parallel,	all	the	light	is	reflected	back	to	the	source,	causing	the
geometry	to	appear	brighter.	The	_LightColor0	variable	contains	the	color	of	the	light	that
is	calculated.

Note
Prior	to	Unity	5,	the	intensity	of	the	lights	were	different.	If	you	are	using	an	old	Diffuse
shader	based	on	the	Lambertian	model,	you	may	notice	that	NdotL	was	multiplied	by	two:
(NdotL	*	atten	*	2)	rather	than	(NdotL	*	atten).	If	you	are	importing	a	custom
shader	from	Unity	4,	you	will	need	to	correct	this	manually.	Legacy	Shaders,	however,
have	already	been	designed	taking	this	aspect	into	account.

When	the	dot	product	is	negative,	the	light	is	coming	from	the	opposite	side	of	the
triangle.	This	is	not	a	problem	for	opaque	geometries	as	triangles	that	are	not	facing	the
camera	frontally	are	culled	(discarded)	and	not	rendered.

This	basic	Lambert	is	a	great	starting	point	when	you	are	prototyping	your	shaders	as	you
can	get	a	lot	accomplished	in	terms	of	writing	the	core	functionality	of	the	shader	while
not	having	to	worry	about	the	basic	lighting	functions.

Unity	has	provided	us	with	a	lighting	model	that	has	already	taken	the	task	of	creating	a
Lambert	lighting	for	you.	If	you	look	at	the	UnityCG.cginc	file	found	in	your	Unity’s
installation	directory	under	the	Data	folder,	you	will	notice	that	you	have	Lambert	and
BlinnPhong	lighting	models	available	for	you	to	use.	The	moment	you	compile	your
shader	with	#pragma	surface	surf	Lambert,	you	are	telling	the	shader	to	utilize	Unity’s
implementation	of	the	Lambert	lighting	function	in	the	UnityCG.cginc	file	so	that	we
don’t	have	to	write	that	code	over	and	over	again.	We	will	explore	how	the	BlinnPhong
model	works	later	in	this	chapter.

Creating	a	Toon	Shader
One	of	the	most	used	effects	in	games	is	the	toon	shading,	which	is	also	known	as	cel
shading	(short	for	celluloid).	It	is	a	non-photorealistic	rendering	technique	that	makes	3D
models	appear	flat.	Many	games	use	it	to	give	the	illusion	that	the	graphics	are	being
hand-drawn	rather	than	being	3D-modeled.	You	can	see,	in	the	following	picture,	a	sphere
rendered	with	a	Standard	Shader	(right)	and	Toon	Shader	(left):

Achieving	this	effect	using	just	surface	functions	is	not	impossible,	but	it	would	be
extremely	expensive	and	time-consuming.	The	surface	function,	in	fact,	only	works	on	the
properties	of	the	material,	not	its	actual	lighting	condition.	As	toon	shading	requires	to
change	the	way	light	reflects,	we	need	to	create	our	custom	lighting	model	instead.

Getting	ready
Let’s	start	this	recipe	by	creating	a	shader	and	its	material	and	importing	a	special	texture,
as	follows:

1.	 Start	by	creating	a	new	shader;	in	this	example,	we	will	extend	the	one	made	in	the
previous	recipe.

2.	 Create	a	new	material	for	the	shader	and	attach	it	to	a	3D	model.	The	toon	shading
works	best	on	curved	surfaces.

3.	 This	recipe	requires	an	additional	texture	called	ramp	map.	It	is	important	that	you
change	its	Wrap	Mode	to	Clamp.	If	you	want	the	edges	between	the	colors	to	be
sharp,	the	Filter	Mode	should	also	be	set	to	Point:

How	to	do	it…
The	toon	aesthetic	can	be	achieved	with	the	following	changes	to	the	shader:

1.	 Add	a	new	property	for	a	texture	called	_RampTex:

_RampTex	("Ramp",	2D)	=	"white"	{}

2.	 Add	its	relative	variable	in	the	CGPROGRAM	section:

sampler2D	_RampTex;

3.	 Change	the	#pragma	directive	so	that	it	points	to	a	function	called	LightingToon():

#pragma	surface	surf	Toon

4.	 Use	this	lighting	model:

fixed4	LightingToon	(SurfaceOutput	s,	fixed3	lightDir,	fixed	atten)

{

		half	NdotL	=	dot(s.Normal,	lightDir);	

		NdotL	=	tex2D(_RampTex,	fixed2(NdotL,	0.5));

		fixed4	c;

		c.rgb	=	s.Albedo	*	_LightColor0.rgb	*	NdotL	*	atten;

		c.a	=	s.Alpha;

		return	c;

}

How	it	works…
The	main	characteristic	of	the	toon	shading	is	the	way	the	light	is	rendered;	surfaces	are
not	shaded	uniformly.	To	achieve	this	effect,	we	need	a	ramp	map.	Its	purpose	is	to	remap
the	Lambertian	light	intensity	NdotL	to	another	value.	Using	a	ramp	map	without	a
gradient,	we	can	force	the	lighting	to	be	rendered	in	steps.	The	following	image	shows
how	the	ramp	map	is	used	to	correct	the	light	intensity:

There’s	more…
There	are	many	different	ways	one	can	achieve	a	toon	shading	effect.	Using	different
ramps	can	produce	dramatic	changes	in	the	way	your	models	look,	so	you	should
experiment	in	order	to	find	the	best	one.

An	alternative	to	ramp	textures	is	to	snap	the	light	intensity	NdotL	so	that	it	can	only
assume	a	certain	number	of	values	equidistantly	sampled	from	0	to	1:

half4	LightingCustomLambert	(SurfaceOutput	s,	half3	lightDir,	half3	

viewDir,	half	atten)	{

half	NdotL	=	dot	(s.Normal,	lightDir);		

half	cel	=	floor(NdotL	*	_CelShadingLevels)	/	(_CelShadingLevels	-0.5);	//	

Snap

half4	c;

		c.rgb	=	s.Albedo	*	_LightColor0.rgb	*	cel	*	atten;

		c.a	=	s.Alpha;

		return	c;

}

The	snapping	code	multiplies	NdotL	times	_CelShadingLevels,	rounds	it	to	an	integer,
and	then	divides	it	back.	By	doing	this,	the	cel	quantity	is	forced	to	assume	one	of	the
_CelShadingLevels	equidistant	values	from	0	to	1.	This	removes	the	need	for	a	ramp
texture	and	makes	all	the	color	steps	of	the	same	size.	If	you	are	going	for	this
implementation,	remember	to	add	a	property	called	_CelShadingLevels	to	your	shader.

Creating	a	Phong	Specular	type
The	specularity	of	an	object	surface	simply	describes	how	shiny	it	is.	These	types	of
effects	are	often	referred	to	as	view-dependent	effects	in	the	shader	world.	This	is	because
in	order	to	achieve	a	realistic	Specular	effect	in	your	shaders,	you	need	to	include	the
direction	that	the	camera	or	user	is	facing	the	object’s	surface.	The	most	basic	and
performance-friendly	Specular	type	is	the	Phong	Specular	effect.	It	is	the	calculation	of
the	light	direction	reflecting	off	of	the	surface	compared	to	the	user’s	view	direction.	It	is	a
very	common	Specular	model	used	in	many	applications,	from	games	to	movies.	While	it
isn’t	the	most	realistic	in	terms	of	accurately	modeling	the	reflected	Specular,	it	gives	a
great	approximation	that	performs	well	in	most	situations.	Additionally,	if	your	object	is
further	away	from	the	camera	and	there	is	no	need	for	a	very	accurate	Specular,	this	is	a
great	way	to	provide	a	Specular	effect	to	your	shaders.

In	this	recipe,	we	will	be	covering	how	to	implement	the	per-vertex	version	of	the	shader
and	also	the	per-pixel	version	using	some	new	parameters	in	the	Surface	Shader’s	Input
struct.	We	will	see	the	difference	and	discuss	when	and	why	to	use	these	two	different
implementations	for	different	situations.

Getting	ready
To	start	with	this	recipe,	perform	the	following	steps:

1.	 Create	a	new	shader,	material,	and	object,	and	give	them	appropriate	names	so	that
you	can	find	them	later.

2.	 Attach	the	shader	to	the	material	and	the	material	to	the	object.	To	finish	off	your
new	scene,	create	a	new	directional	light	so	that	we	can	see	our	Specular	effect	as	we
code	it.

How	to	do	it…
Follow	the	following	steps	to	create	a	Phong	lighting	model:

1.	 You	might	be	seeing	a	pattern	at	this	point,	but	we	always	like	to	start	out	with	our
most	basic	part	of	the	shader	writing	process:	the	creation	of	properties.	So,	let’s	add
the	following	properties	to	the	shader:

Properties

{

		_MainTint	("Diffuse	Tint",	Color)	=	(1,1,1,1)

		_MainTex	("Base	(RGB)",	2D)	=	"white"	{}

		_SpecularColor	("Specular	Color",	Color)	=	(1,1,1,1)

		_SpecPower	("Specular	Power",	Range(0,30))	=	1

}

2.	 We	then	have	to	make	sure	to	add	the	corresponding	variables	to	our	CGPROGRAM
block	in	our	SubShader{}	block:

float4	_SpecularColor;

sampler2D	_MainTex;

float4	_MainTint;

float	_SpecPower;

3.	 Now	we	have	to	add	our	custom	lighting	model	so	that	we	can	compute	our	own
Phong	Specular.	Don’t	worry	if	it	doesn’t	make	sense	at	this	point;	we	will	cover
each	line	of	code	in	the	How	it	works…	section.	Add	the	following	code	to	the
shader’s	SubShader{}	function:

fixed4	LightingPhong	(SurfaceOutput	s,	fixed3	lightDir,	half3	viewDir,	

fixed	atten)

{

		//	Reflection

		float	NdotL	=	dot(s.Normal,	lightDir);

		float3	reflectionVector	=	normalize(2.0	*	s.Normal	*	NdotL	-	

lightDir);

		//	Specular

		float	spec	=	pow(max(0,	dot(reflectionVector,	viewDir)),	_SpecPower);

		float3	finalSpec	=	_SpecularColor.rgb	*	spec;

		//	Final	effect

		fixed4	c;

		c.rgb	=	(s.Albedo	*	_LightColor0.rgb	*	max(0,NdotL)	*	atten)	+	

(_LightColor0.rgb	*	finalSpec);

		c.a	=	s.Alpha;

		return	c;

}

4.	 Finally,	we	have	to	tell	the	CGPROGRAM	block	that	it	needs	to	use	our	custom	lighting
function	instead	of	one	of	the	built-in	ones.	We	do	this	by	changing	the	#pragma
statement	to	the	following:

CPROGRAM

#pragma	surface	surf	Phong

The	following	screenshot	demonstrates	the	result	of	our	custom	Phong	lighting	model
using	our	own	custom	reflection	vector:

How	it	works…
Let’s	break	down	the	lighting	function	by	itself,	as	the	rest	of	the	shader	should	be	pretty
familiar	to	you	at	this	point.

In	the	previous	recipes,	we	have	used	a	lighting	function	that	provided	only	the	light
direction,	lightDir.	Unity	comes	with	a	set	of	lighting	functions	that	you	can	use,
including	one	that	provides	the	view	direction,	viewDir.	Refer	to	the	following	table	or	go
to	http://docs.unity3d.com/Documentation/Components/SL-SurfaceShaderLighting.html:

Not	view-
dependent

half4	Lighting	Name	You	choose	(SurfaceOutput	s,	half3	lightDir,	half	atten);

View-dependent half4	Lighting	Name	You	choose	(SurfaceOutput	s,	half3	lightDir,	half3	viewDir,

half	atten);

In	our	case,	we	are	doing	a	Specular	shader,	so	we	need	to	have	the	view-dependent
lighting	function	structure.	So,	we	have	to	write	the	following:

CPROGRAM

#pragma	surface	surf	Pong

fixed4	LightingPhong	(SurfaceOutput	s,	fixed3	lightDir,	half3	viewDir,	

fixed	atten)

{

		//	...

}

This	will	tell	the	shader	that	we	want	to	create	our	own	view-dependent	shader.	Always
make	sure	that	your	lighting	function	name	is	the	same	in	your	lighting	function
declaration	and	the	#pragma	statement,	or	Unity	will	not	be	able	to	find	your	lighting
model.

The	components	that	play	a	role	in	the	Phong	model	are	described	in	the	following	image.
We	have	the	light	direction	L	(coupled	with	its	perfect	reflection	R)	and	normal	direction
N.	They	have	all	been	encountered	before	in	the	Lambertian	model,	with	the	exception	of
V,	which	is	the	view	direction:

The	Phong	model	assumes	that	the	final	light	intensity	of	a	reflective	surface	is	given	by
two	components:	its	diffuse	color	and	Specular	value,	as	follows:

http://docs.unity3d.com/Documentation/Components/SL-SurfaceShaderLighting.html

The	diffuse	component	D	remains	unchanged	from	the	Lambertian	model:

The	Specular	component	S	is	defined	as	follows:

Here,	p	is	the	Specular	power	defined	as	_SpecPower	in	the	shader.	The	only	unknown
parameter	is	R,	which	is	the	reflection	of	L	according	to	N.	In	vector	algebra,	this	can	be
calculated	as	follows:

This	is	exactly	what	is	calculated	in	the	following:

float3	reflectionVector	=	normalize(2.0	*	s.Normal	*	NdotL	-	lightDir);

This	has	the	effect	of	bending	the	normal	towards	the	light;	as	a	vertex	normal	is	pointing
away	from	the	light,	it	is	forced	to	look	at	the	light.	Refer	to	the	following	screenshot	for	a
more	visual	representation.	The	script	that	produces	this	debug	effect	is	included	in	the
book’s	support	page	at	https://www.packtpub.com/books/content/support:

The	following	screenshot	displays	the	final	result	of	our	Phong	Specular	calculation
isolated	in	the	shader:

https://www.packtpub.com/books/content/support

Creating	a	BlinnPhong	Specular	type
Blinn	is	another	more	efficient	way	of	calculating	and	estimating	specularity.	It	is	done	by
getting	the	half	vector	from	the	view	direction	and	light	direction.	It	was	brought	into	the
world	of	Cg	by	Jim	Blinn.	He	found	that	it	was	much	more	efficient	to	just	get	the	half
vector	instead	of	calculating	our	own	reflection	vectors.	It	cut	down	on	the	code	and
processing	time.	If	you	actually	look	at	the	built-in	BlinnPhong	lighting	model	included	in
the	UnityCG.cginc	file,	you	will	notice	that	it	is	using	the	half	vector	as	well,	hence	it	is
named	BlinnPhong.	It	is	just	a	simpler	version	of	the	full	Phong	calculation.

Getting	ready
To	start	with	this	recipe,	perform	the	following	steps:

1.	 This	time,	instead	of	creating	a	whole	new	scene,	let’s	just	use	the	objects	and	scene
that	we	have,	and	create	a	new	shader	and	material	and	name	them	BlinnPhong.

2.	 Once	you	have	a	new	shader,	double-click	on	it	to	launch	MonoDevelop	so	that	we
can	start	editing	our	shader.

How	to	do	it…
Perform	the	following	steps	to	create	a	BlinnPhong	lighting	model:

1.	 First,	we	need	to	add	our	own	properties	to	the	Properties	block	so	that	we	can
control	the	look	of	the	Specular	highlight:

Properties

{

		_MainTint	("Diffuse	Tint",	Color)	=	(1,1,1,1)

		_MainTex	("Base	(RGB)",	2D)	=	"white"	{}

		_SpecularColor	("Specular	Color",	Color)	=	(1,1,1,1)

		_SpecPower	("Specular	Power",	Range(0.1,60))	=	3

}

2.	 Then,	we	need	to	make	sure	that	we	have	created	the	corresponding	variables	in	our
CGPROGRAM	block	so	that	we	can	access	the	data	from	our	Properties	block,	in	our
subshader:

sampler2D	_MainTex;

float4	_MainTint;

float4	_SpecularColor;

float	_SpecPower;

3.	 Now	it’s	time	to	create	our	custom	lighting	model	that	will	process	our	Diffuse	and
Specular	calculations.	The	code	is	as	follows:

fixed4	LightingCustomBlinnPhong	(SurfaceOutput	s,	fixed3	lightDir,	

half3	viewDir,	fixed	atten)

{

		float	NdotL	=	max(0,dot(s.Normal,	lightDir));

		float3	halfVector	=	normalize(lightDir	+	viewDir);

		float	NdotH	=	max(0,	dot(s.Normal,	halfVector));

		float	spec	=	pow(NdotH,	_SpecPower)	*	_SpecularColor;

		float4	c;

		c.rgb	=	(s.Albedo	*	_LightColor0.rgb	*	NdotL)	+	(_LightColor0.rgb	*	

_SpecularColor.rgb	*	spec)	*	atten;

		c.a	=	s.Alpha;

		return	c;

}

4.	 To	complete	our	shader,	we	will	need	to	tell	our	CGPROGRAM	block	to	use	our	custom
lighting	model	rather	than	a	built-in	one	by	modifying	the	#pragma	statement	with	the
following	code:

CPROGRAM

#pragma	surface	surf	CustomBlinnPhong

The	following	screenshot	demonstrates	the	results	of	our	BlinnPhong	lighting	model:

How	it	works…
The	BlinnPhong	Specular	is	almost	exactly	like	the	Phong	Specular,	except	that	it	is	more
efficient	because	it	uses	less	code	to	achieve	almost	the	same	effect.	Before	the
introduction	of	physically-based	rendering,	this	approach	was	the	default	choice	for
Specular	reflection	in	Unity	4.

Calculating	the	reflection	vector	R	is	generally	expensive.	The	BlinnPhong	Specular
replaces	it	with	the	half	vector	H	between	the	view	direction	V	and	light	direction	L:

Instead	of	calculating	our	own	reflection	vector,	we	are	simply	going	to	get	the	vector
halfway	between	the	view	direction	and	light	direction,	basically	simulating	the	reflection
vector.	It	has	actually	been	found	that	this	approach	is	more	physically	accurate	than	the
last	approach,	but	we	thought	it	necessary	to	show	you	all	the	possibilities:

According	to	vector	algebra,	the	half	vector	can	be	calculated	as	follows:

Here,	 	is	the	length	of	the	vector	 .	In	Cg,	we	simply	need	to	add	the	view
direction	and	light	direction	together	and	then	normalize	the	result	to	a	unity	vector:

float3	halfVector	=	normalize(lightDir	+	viewDir);

Then,	we	simply	need	to	dot	the	vertex	normal	with	this	new	half	vector	to	get	our	main
Specular	value.	After	this,	we	just	take	it	to	a	power	of	_SpecPower	and	multiply	it	by	the
Specular	color	variable.	It’s	much	lighter	on	the	code	and	math,	but	still	gives	us	a	nice
Specular	highlight	that	will	work	for	a	lot	of	real-time	situations.

See	also
The	light	models	seen	in	this	chapter	are	extremely	simple;	no	real	material	is	perfectly
matte	or	perfectly	specular.	Moreover,	it	is	not	uncommon	for	complex	materials	such	as
clothing,	wood,	and	skin	to	require	knowledge	of	how	light	scatters	in	the	layers	beneath
the	surface.

Use	the	following	table	to	recap	the	different	lighting	models	encountered	so	far:

Technique Type Unity	5	shader Light	Intensity	(I)

Lambertian Diffuse Legacy	Shaders	|	Diffuse

Phong Specular 	
	

BlinnPhong Specular Legacy	Shaders	|	Specular
	

There	are	other	interesting	models	such	as	the	Oren-Nayar	lighting	model	for	rough
surfaces:	https://en.wikipedia.org/wiki/Oren%E2%80%93Nayar_reflectance_model

https://en.wikipedia.org/wiki/Oren%E2%80%93Nayar_reflectance_model

Creating	an	Anisotropic	Specular	type
Anisotropic	is	a	type	of	Specular	or	reflection	that	simulates	the	directionality	of	grooves
in	a	surface	and	modifies/stretches	the	Specular	in	the	perpendicular	direction.	It	is	very
useful	when	you	want	to	simulate	brushed	metals,	not	a	metal	with	a	clear,	smooth,	and
polished	surface.	Imagine	the	Specular	that	you	see	when	you	look	at	the	data	side	of	a
CD	or	DVD	or	the	way	Specular	is	shaped	at	the	bottom	of	a	pot	or	pan.	You	will	notice
that	if	you	carefully	examine	the	surface,	you	will	see	that	there	is	a	direction	to	the
grooves	in	the	surface,	usually	in	the	way	the	metal	was	brushed.	When	you	apply	a
Specular	to	this	surface,	you	get	a	Specular	stretched	in	the	perpendicular	direction.

This	recipe	will	introduce	you	to	the	concept	of	augmenting	your	Specular	highlights	to
achieve	different	types	of	brushed	surfaces.	In	future	recipes,	we	will	look	at	ways	in
which	we	can	use	the	concepts	of	this	recipe	to	achieve	other	effects	such	as	stretched
reflections	and	hair,	but	here,	you	are	going	to	learn	the	fundamentals	of	the	technique
first.	We	will	be	using	this	shader	as	a	reference	for	our	own	custom	Anisotropic	Shader:

http://wiki.unity3d.com/index.php?title=Anisotropic_Highlight_Shader

The	following	screenshot	shows	examples	of	different	types	of	Specular	effects	one	can
achieve	using	Anisotropic	Shaders	in	Unity:

http://wiki.unity3d.com/index.php?title=Anisotropic_Highlight_Shader

Getting	ready
Let’s	start	this	recipe	by	creating	a	shader,	its	material,	and	some	lights	for	our	scene:

1.	 Create	a	new	scene	with	some	objects	and	lights	so	that	we	can	visually	debug	our
shader.

2.	 Then	create	a	new	shader	and	material,	and	hook	them	up	to	our	objects.
3.	 Lastly,	we	will	need	some	sort	of	normal	map	that	will	indicate	the	directionality	of

our	Anisotropic	Specular	highlight.

The	following	screenshot	shows	the	Anisotropy	normal	map	we	will	be	using	for	this
recipe.	It	is	available	from	the	book’s	support	page	at
https://www.packtpub.com/books/content/support:

https://www.packtpub.com/books/content/support

How	to	do	it…
To	create	an	Anisotropic	effect,	we	need	to	make	the	following	changes	to	the	shader
previously	created:

1.	 We	first	need	to	add	the	properties	that	we	are	going	to	need	for	our	shader.	These
will	allow	a	lot	of	artistic	control	over	the	final	appearance	of	the	surface:

Properties

{

		_MainTint	("Diffuse	Tint",	Color)	=	(1,1,1,1)

		_MainTex	("Base	(RGB)",	2D)	=	"white"	{}

		_SpecularColor	("specular	Color",	Color)	=	(1,1,1,1)

		_Specular	("Specular	Amount",	Range(0,1))	=	0.5

		_SpecPower	("Specular	Power",	Range(0,1))	=	0.5

		_AnisoDir	("Anisotropic	Direction",	2D)	=	""	{}

		_AnisoOffset	("Anisotropic	Offset",	Range(-1,1))	=	-0.2

}

2.	 We	then	need	to	make	the	connection	between	our	Properties	block	and	our
SubShader{}	block	so	that	we	can	use	the	data	being	provided	by	the	Properties
block:

sampler2D	_MainTex;

sampler2D	_AnisoDir;

float4	_MainTint;

float4	_SpecularColor;

float	_AnisoOffset;

float	_Specular;

float	_SpecPower;

3.	 Now	we	can	create	our	lighting	function	that	will	produce	the	correct	Anisotropic
effect	on	our	surface.	We	will	use	the	following	code	for	this:

fixed4	LightingAnisotropic(SurfaceAnisoOutput	s,	fixed3	lightDir,	half3	

viewDir,	fixed	atten)

{

		fixed3	halfVector	=	normalize(normalize(lightDir)	+	

normalize(viewDir));

		float	NdotL	=	saturate(dot(s.Normal,	lightDir));

		fixed	HdotA	=	dot(normalize(s.Normal	+	s.AnisoDirection),	

halfVector);

		float	aniso	=	max(0,	sin(radians((HdotA	+	_AnisoOffset)	*	180)));

		float	spec	=	saturate(pow(aniso,	s.Gloss	*	128)	*	s.Specular);

		fixed4	c;

		c.rgb	=	((s.Albedo	*	_LightColor0.rgb	*	NdotL)	+	(_LightColor0.rgb	*	

_SpecularColor.rgb	*	spec))	*	atten;

		c.a	=	s.Alpha;

		return	c;

}

4.	 In	order	to	use	this	new	lighting	function,	we	need	to	tell	the	subshader’s	#pragma

statement	to	look	for	it	instead	of	using	one	of	the	built-in	lighting	functions.	We	are
also	telling	the	shader	to	target	shader	model	3.0	so	that	we	can	have	more	space	for
textures	in	our	program:

CGPROGRAM

#pragma	surface	surf	Anisotropic

#pragma	target	3.0

5.	 We	have	also	given	the	Anisotropic	normal	map	its	own	UVs	by	declaring	the
following	code	in	the	Input	struct.	This	isn’t	entirely	necessary	as	we	could	just	use
the	UVs	from	the	main	texture,	but	this	gives	us	independent	control	over	the	tiling
of	our	brushed	metal	effect	so	that	we	can	scale	it	to	any	size	we	want:

struct	Input	

{

		float2	uv_MainTex;

		float2	uv_AnisoDir;

};

6.	 We	also	need	to	add	the	SurfaceAnisoOutput	struct:

struct	SurfaceAnisoOutput

{

		fixed3	Albedo;

		fixed3	Normal;

		fixed3	Emission;

		fixed3	AnisoDirection;

		half	Specular;

		fixed	Gloss;

		fixed	Alpha;

};

7.	 Finally,	we	need	to	use	the	surf()	function	to	pass	the	correct	data	to	our	lighting
function.	So,	we	will	get	the	per-pixel	information	from	our	Anisotropic	normal	map
and	set	our	Specular	parameters	as	follows:

void	surf(Input	IN,	inout	SurfaceAnisoOutput	o)

{

		half4	c	=	tex2D(_MainTex,	IN.uv_MainTex)	*	_MainTint;

		float3	anisoTex	=	UnpackNormal(tex2D(_AnisoDir,	IN.uv_AnisoDir));

		o.AnisoDirection	=	anisoTex;

		o.Specular	=	_Specular;

		o.Gloss	=	_SpecPower;

		o.Albedo	=	c.rgb;

		o.Alpha	=	c.a;

}

The	Anisotropic	normal	map	allows	us	to	give	the	surface	direction	and	helps	us	disperse
the	Specular	highlight	around	the	surface.	The	following	screenshot	demonstrates	the
result	of	our	Anisotropic	Shader:

How	it	works…
Let’s	break	down	this	shader	into	its	core	components	and	explain	why	we	are	getting	the
effect.	We	will	mostly	be	covering	the	custom	lighting	function	here,	as	the	rest	of	the
shader	should	be	pretty	self-explanatory	at	this	point.

We	first	start	by	declaring	our	own	SurfaceAnisoOutput	struct.	We	need	to	do	this	in
order	to	get	the	per-pixel	information	from	the	Anisotropic	normal	map,	and	the	only	way
we	can	do	this	in	a	Surface	Shader	is	to	use	a	tex2D()	function	in	the	surf()	function.
The	following	code	shows	the	custom	surface	output	structure	used	in	our	shader:

struct	SurfaceAnisoOutput

{

		fixed3	Albedo;

		fixed3	Normal;

		fixed3	Emission;

		fixed3	AnisoDirection;

		half	Specular;

		fixed	Gloss;

		fixed	Alpha;

};

We	can	use	the	SurfaceAnisoOutput	struct	as	a	way	of	interacting	between	the	lighting
function	and	surface	function.	In	our	case,	we	are	storing	the	per-pixel	texture	information
in	the	variable	called	anisoTex	in	our	surf()	function	and	then	passing	this	data	to	the
SurfaceAnisoOutput	struct	by	storing	it	in	the	AnisoDirection	variable.	Once	we	have
this,	we	can	use	the	per-pixel	information	in	the	lighting	function	using
s.AnisoDirection.

With	this	data	connection	set	up,	we	can	move	on	to	our	actual	lighting	calculations.	This
begins	by	getting	the	usual	out	of	the	way,	the	half	vector,	so	that	we	don’t	have	to	do	the
full	reflection	calculation	and	diffuse	lighting,	which	is	the	vertex	normal	dotted	with	the
light	vector	or	direction.	This	is	done	in	Cg	with	the	following	lines:

fixed3	halfVector	=	normalize(normalize(lightDir)	+	normalize(viewDir));

float	NdotL	=	saturate(dot(s.Normal,	lightDir));

Then,	we	start	the	actual	modification	to	the	Specular	to	get	the	right	look.	We	first	dot	the
normalized	sum	of	the	vertex	normal	and	per-pixel	vectors	from	our	Anisotropic	normal
map	with	halfVector	calculated	in	the	previous	step.	This	gives	us	a	float	value	that	gives
a	value	of	1	as	the	surface	normal,	which	is	modified	by	the	Anisotropic	normal	map	as	it
becomes	parallel	with	halfVector	and	0	as	it	is	perpendicular.	Finally,	we	modify	this
value	with	a	sin()	function	so	that	we	can	basically	get	a	darker	middle	highlight	and
ultimately	a	ring	effect	based	off	of	halfVector.	All	the	previously	mentioned	operations
are	summarized	in	the	following	two	lines	of	Cg	code:

fixed	HdotA	=	dot(normalize(s.Normal	+	s.AnisoDirection),	halfVector);

float	aniso	=	max(0,	sin(radians((HdotA	+	_AnisoOffset)	*	180)));

Finally,	we	scale	the	effect	of	the	aniso	value	by	taking	it	to	a	power	of	s.Gloss,	and	then
globally	decrease	its	strength	by	multiplying	it	by	s.Specular:

float	spec	=	saturate(pow(aniso,	s.Gloss	*	128)	*	s.Specular);

This	effect	is	great	to	create	more	advanced	metal	type	surfaces,	especially	the	ones	that
are	brushed	and	seem	to	have	directionality	to	them.	It	also	works	well	for	hair	or	any	sort
of	soft	surface	with	directionality	to	it.	The	following	screenshot	shows	the	result	of
displaying	the	final	Anisotropic	lighting	calculation:

Chapter	4.	Physically	Based	Rendering	in
Unity	5
One	of	the	biggest	changes	introduced	in	Unity	5	is	physically-based	rendering,	which	is
also	known	as	PBR.	Previous	chapters	have	repeatedly	mentioned	it	without	revealing	too
much	about	it.	If	you	want	to	understand	not	only	how	PBR	works,	but	how	to	make	the
most	out	of	it,	this	is	the	chapter	you	should	read.

In	this	chapter,	you	will	learn	the	following	recipes:

Understanding	the	metallic	setup
Adding	transparency	to	PBR
Creating	mirrors	and	reflective	surfaces
Baking	lights	in	your	scene

Introduction
All	the	lighting	models	encountered	in	Chapter	3,	Understanding	Lighting	Models,	were
very	primitive	descriptions	of	how	light	behaves.	The	most	important	aspect	during	their
making	was	efficiency.	Real-time	shading	is	expensive,	and	techniques	such	as	Lambertian
or	BlinnPhong	are	a	compromise	between	computational	cost	and	realism.	Having	a	more
powerful	graphics	processing	unit	(GPU)	has	allowed	us	to	write	progressively	more
sophisticated	lighting	models	and	rendering	engines,	with	the	aim	of	simulating	how	light
actually	behaves.	This	is,	in	a	nutshell,	the	philosophy	behind	PBR.	As	the	name	suggests,
it	tries	to	get	as	close	as	possible	to	the	physics	behind	the	processes	that	give	a	unique
look	to	each	material.	Despite	this,	the	term	PBR	has	been	widely	used	in	marketing
campaigns	and	is	more	of	a	synonym	for	state-of-the-art	rendering	rather	than	a	well-
defined	technique.	Unity	5	implements	PBR	by	introducing	two	important	changes.	The
first	is	a	completely	new	lighting	model	(called	Standard).	Surface	Shaders	allow
developers	to	specify	the	physical	properties	of	a	material,	but	they	do	not	impose	actual
physical	constraints	on	them.	PBR	fills	this	gap	using	a	lighting	model	that	enforces
principles	of	physics	such	as	energy	conservation	(an	object	cannot	reflect	more	light	than
the	amount	it	receives),	microsurface	scattering	(rough	surfaces	reflect	light	more
erratically	compared	to	smooth	ones),	Fresnel	reflectance	(specular	reflections	appear	at
grazing	angles),	and	surface	occlusion	(the	darkening	of	corners	and	other	geometries	that
are	hard	to	light).	All	these	aspects,	and	many	others,	are	used	to	calculate	the	Standard
lighting	model.	The	second	aspect	that	makes	PBR	so	realistic	is	called	Global
Illumination	(GI)	and	is	the	simulation	of	physically-based	light	transport.	It	means	that
objects	are	not	drawn	in	the	scene	as	if	they	were	separate	entities.	They	all	contribute	to
the	final	rendering	as	light	can	reflect	on	them	before	hitting	something	else.	This	aspect	is
not	captured	in	the	shaders	themselves	but	is	an	essential	part	of	how	the	rendering	engine
works.	Unfortunately,	accurately	simulating	how	light	rays	actually	bounce	over	surfaces
in	real	time	is	beyond	the	capabilities	of	modern	GPUs.	Unity	5	makes	some	clever
optimizations	that	allow	retaining	visual	fidelity	without	sacrificing	performance.	Some	of
the	most	advanced	techniques	(such	as	reflections),	however,	require	the	user	input.	All	of
these	aspects	will	be	covered	in	this	chapter.	It	is	important	to	remember	that	PBR	and	GI
do	not	automatically	guarantee	that	your	game	will	be	photorealistic.	Achieving
photorealism	is	a	very	challenging	task	and,	like	every	art,	it	requires	great	expertize	and
exceptional	skills.

Understanding	the	metallic	setup
Unity	5	provides	two	different	types	of	PBR	shaders;	they	are	referred	to	in	the	drop-down
menu	of	the	material’s	Inspector	tab	as	Standard	and	Standard	(Specular	setup).	The
main	difference	is	that	the	former	exposes	the	Metallic	property,	while	the	latter	replaces
it	with	Specular.	Both	these	metallic	and	specular	setups	represent	different	ways	in
which	one	can	initialize	PBR	materials.	One	of	the	concepts	that	has	driven	PBR	is	the
ability	to	provide	meaningful,	physically-related	properties	that	artists	and	developers	can
tweak	and	play	with.	The	properties	of	some	materials	are	easier	to	represent	indicating
how	metallic	they	are,	while	for	some,	the	other	is	more	important	in	order	to	define	how
they	reflect	lights	directly.	If	you	have	used	Unity	4	in	the	past,	Standard	(Specular
setup)	might	look	more	familiar	to	you.	This	recipe	will	show	you	how	to	use	the	metallic
setup	effectively.	It’s	important	to	remember	that	the	metallic	workflow	is	not	just	for
metallic	materials;	it	is	a	way	to	define	how	materials	will	look	according	to	how	metallic
or	non-metallic	their	surface	is.	Despite	being	presented	as	two	different	types	of	shaders,
both	Metallic	and	Specular	setups	are	generally	equally	expressive.	As	shown	in	the
Unity	documentation	at
http://docs.unity3d.com/Manual/StandardShaderMetallicVsSpecular.html,	the	same
materials	can	usually	be	recreated	with	both	setups	(see	the	following	image):

http://docs.unity3d.com/Manual/StandardShaderMetallicVsSpecular.html

Getting	ready
This	recipe	will	use	the	Standard	Shader	provided	in	Unity	5,	so	there	is	no	need	to	create
a	new	one.	The	steps	to	start	the	recipe	are	as	follows:

1.	 Create	a	new	material.
2.	 From	its	Inspector,	make	sure	that	Standard	is	selected	from	its	Shader	drop-down

menu.

You	will	also	need	a	textured	3D	model.

How	to	do	it…
There	are	two	main	textures	that	need	to	be	configured	in	the	Standard	Shader:	Albedo
and	Metallic.	To	use	the	metallic	workflow	effectively,	we	need	to	initialize	these	maps
correctly:

1.	 The	Albedo	map	should	be	initialized	with	the	unlit	texture	of	the	3D	model.
2.	 To	create	the	Metallic	map,	start	by	duplicating	the	file	for	your	Albedo	map.	You

can	do	this	by	selecting	the	map	from	the	Project	tab	and	pressing	Ctrl	+	D.
3.	 Use	white	(#ffffff)	to	color	the	regions	of	the	map	that	correspond	to	materials	that

are	made	of	pure	metal.	Use	black	(#000000)	for	all	the	other	colors.	Shades	of	grey
should	be	used	for	dusty,	weathered,	or	worn	out	metal	surfaces,	rust,	scratched	paint,
and	so	on.	As	a	matter	of	fact,	Unity	uses	only	the	red	channel	to	store	the	metallic
value;	the	green	and	blue	ones	are	ignored.

4.	 Use	the	alpha	channel	of	the	image	to	provide	information	about	the	Smoothness	of
the	material.

5.	 Assign	the	Metallic	map	to	the	material.	Both	Metallic	and	Smoothness	sliders	will
disappear	as	these	two	properties	are	now	controlled	by	the	map.

How	it	works…
Legacy	Shaders	allow	artists	to	create	materials	that	easily	break	the	illusion	of
photorealism	by	having	lighting	conditions	that	are	impossible	in	reality.	This	happens
because	all	the	properties	of	a	material	exposed	in	a	Legacy	Surface	Shader	are
uncorrelated.	By	introducing	the	metallic	workflow,	Unity	5	imposes	more	constraints	on
the	way	objects	look,	making	it	harder	for	artists	to	create	illogical	materials.

Metals	are	known	for	the	conducting	of	electricity;	light	is	in	the	form	of	electromagnetic
waves,	meaning	that	almost	all	metals	behave	in	a	similar	way	compared	to	non-
conductors	(often	referred	as	insulators).	Conductors	tend	to	reflect	most	photons	(70-
100%),	resulting	in	high	reflectance.	The	remaining	light	is	absorbed,	rather	than	diffused,
suggesting	that	conductors	have	a	very	dark	diffuse	component.	Insulators,	conversely,
have	a	low	reflectance	(4%);	the	rest	of	the	light	is	scattered	on	the	surface,	contributing	to
their	diffused	looks.

In	the	Standard	Shader,	purely	metallic	materials	have	dark	diffuse	components	and	the
color	of	their	specular	reflections	is	determined	by	the	Albedo	map.	Conversely,	the
diffuse	component	of	purely	non-metallic	materials	is	determined	by	the	Albedo	map;	the
color	of	their	specular	highlights	is	determined	by	the	color	of	the	incoming	light.
Following	these	principles	allows	the	metallic	workflow	to	combine	the	albedo	and
specular	into	the	Albedo	map,	enforcing	physically-accurate	behaviors.	This	also	allows
saving	more	space,	resulting	in	a	significant	speed	up	at	the	expenses	of	reduced	control
over	the	look	of	your	materials.

See	also
For	more	information	about	the	metallic	setup,	you	can	refer	to	these	links:

Calibration	chart:	How	to	calibrate	a	metallic	material
(http://blogs.unity3d.com/wp-content/uploads/2014/11/UnityMetallicChart.png)
Material	chart:	How	to	initialize	the	Standard	Shader	parameters	for	common
materials	(http://docs.unity3d.com/Manual/StandardShaderMaterialCharts.html)
Quixel	MEGASCANS:	A	vast	library	of	materials,	including	textures	and	PBR
parameters	(http://quixel.se/megascans)
PBR	Texture	Conversion:	How	traditional	shaders	can	be	converted	to	PBR	shaders
(http://www.marmoset.co/toolbag/learn/pbr-conversion)
Substance	Designer:	A	node-based	software	to	work	with	PBR
(https://www.allegorithmic.com/products/substance-designer)
The	Theory	of	Physically-based	Rendering:	A	complete	guide	about	PBR
(https://www.allegorithmic.com/pbr-guide)

http://blogs.unity3d.com/wp-content/uploads/2014/11/UnityMetallicChart.png
http://docs.unity3d.com/Manual/StandardShaderMaterialCharts.html
http://quixel.se/megascans
http://www.marmoset.co/toolbag/learn/pbr-conversion
https://www.allegorithmic.com/products/substance-designer
https://www.allegorithmic.com/pbr-guide

Adding	transparency	to	PBR
Transparency	is	such	an	important	aspect	in	games	that	the	Standard	Shader	supports	three
different	ways	of	doing	it.	This	recipe	is	useful	if	you	need	to	have	realistic	materials	with
transparent	or	semi-transparent	properties.	Glasses,	bottles,	windows,	and	crystals	are
good	candidates	for	PBR	transparent	shaders.	This	is	because	you	can	still	have	all	the
realism	introduced	by	PBR	with	the	addition	of	a	transparent	or	translucent	effect.	If	you
need	transparency	for	something	different	such	as	UI	elements	or	pixel	art,	there	are	more
efficient	alternatives	that	are	explored	in	the	Creating	a	transparent	material	recipe	in
Chapter	2,	Surface	Shaders	and	Texture	Mapping.

Note
In	order	to	have	a	transparent	Standard	material,	changing	the	alpha	channel	of	its	Albedo
color	property	is	not	enough.	Unless	you	properly	set	its	Rendering	Mode,	your	material
will	not	appear	transparent.

Getting	ready
This	recipe	will	use	the	Standard	Shader,	so	there	is	no	need	to	create	a	new	one:

1.	 Create	a	new	material.
2.	 Make	sure	that	the	Shader	property	is	set	to	either	Standard	or	Standard	(Specular

setup)	from	the	material’s	Inspector	tab.
3.	 Assign	the	newly	created	material	to	the	3D	object	that	you	want	to	be	transparent.

How	to	do	it…
The	Standard	Shader	provides	three	different	types	of	transparencies.	Despite	being	very
similar,	they	have	subtle	differences	and	fit	different	contexts.

Semi-transparent	materials
Some	materials	such	as	clear	plastics,	crystal,	and	glass	are	semi-transparent.	This	means
that	they	both	require	all	the	realistic	effects	of	PBR	(such	as	specular	highlights	and
Fresnel	refraction	and	reflection)	but	allow	the	geometry	behind	to	be	seen.	If	this	is	what
you	need,	perform	the	following	steps:

1.	 From	the	material’s	Inspector	tab,	set	Rendering	Mode	to	Transparent.
2.	 The	amount	of	transparency	is	determined	by	the	alpha	channel	of	the	Albedo	color

or	the	Albedo	map	(if	any).

The	following	picture	shows	the	Unity	5	calibration	scene	with	four	different	highly
polished	plastic	spheres.	From	left	to	right,	their	transparency	is	increased.	The	last	sphere
is	fully	transparent,	but	retains	all	the	added	effects	of	PBR:

The	Transparent	rendering	mode	is	perfect	for	windows,	bottles,	gems,	and	headsets.

Note
You	should	notice	that	many	transparent	materials	don’t	usually	project	shadows.	On	top
of	this,	the	Metallic	and	Smoothness	properties	of	a	material	can	interfere	with	the
transparency	effect.	A	mirror-like	surface	can	have	the	alpha	set	to	zero,	but	if	it	reflects
all	the	incoming	light,	it	won’t	appear	transparent.

Fading	objects

Sometimes,	you	want	an	object	to	fully	disappear	with	a	fading	effect.	In	this	case,
specular	reflections	and	Fresnel	refraction	and	reflection	should	disappear	as	well.	When	a
fading	object	is	fully	transparent,	it	should	also	be	invisible.	To	do	this,	perform	the
following	steps:

1.	 From	the	material’s	Inspector	tab,	set	Rendering	Mode	to	Fade.
2.	 As	before,	use	the	alpha	channel	of	the	Albedo	color	or	map	to	determine	the	final

transparency.

The	following	picture	shows	fading	spheres.	It	is	clear	from	the	picture	that	the	PBR
effects	fade	with	the	sphere	as	well.	As	you	can	see	in	the	following	image,	the	last	one	on
the	right	is	almost	invisible:

This	rendering	mode	works	best	for	non-realistic	objects,	such	as	holograms,	laser	rays,
faux	lights,	ghosts,	and	particle	effects.

Solid	geometries	with	holes
Most	of	the	materials	encountered	in	a	game	are	solid,	meaning	that	they	don’t	allow	light
to	pass	through	them.	At	the	same	time,	many	objects	have	a	very	complex	(yet	flat)
geometry.	Modeling	leaves	and	grass	with	3D	objects	is	often	overkill.	A	more	efficient
approach	is	to	use	a	quad	(rectangle)	with	a	leaf	texture.	While	the	leaf	itself	is	solid,	the
rest	of	the	texture	should	be	fully	transparent.	If	this	is	what	you	want,	then	perform	the
following	steps:

1.	 From	the	material’s	Inspector	tab,	set	Rendering	Mode	to	Cutout.
2.	 Use	the	Alpha	Cutoff	slider	to	determine	the	cutoff	threshold.	All	the	pixels	in	the

Albedo	map	with	an	alpha	value	equal	to	or	less	than	Alpha	Cutoff	will	be	hidden.

The	following	image,	taken	from	the	Unity	Official	Tutorials	on	PBR
(https://www.youtube.com/watch?v=fD_ho_ofY6A),	shows	you	how	the	effect	of	the
Cutout	rendering	mode	can	be	used	to	create	a	hole	in	the	geometry:

It’s	worth	noticing	that	Cutout	does	not	allow	the	back	of	the	geometry	to	be	seen.	In	the
previous	example,	you	could	not	see	the	inner	volume	of	the	sphere.	If	you	require	such	an
effect,	you	need	to	create	your	own	shader	and	make	sure	that	the	back	geometry	is	not
culled.

https://www.youtube.com/watch?v=fD_ho_ofY6A

See	also
The	examples	in	these	recipe	have	been	created	using	the	Unity	5	Shader
Calibration	Scene,	which	is	freely	available	in	the	Asset	Store	at
https://www.assetstore.unity3d.com/en/#!/content/25422.
More	information	about	albedo	and	transparency	can	be	found	at
http://docs.unity3d.com/Manual/StandardShaderMaterialParameterAlbedoColor.html.

https://www.assetstore.unity3d.com/en/#!/content/25422
http://docs.unity3d.com/Manual/StandardShaderMaterialParameterAlbedoColor.html

Creating	mirrors	and	reflective	surfaces
Specular	materials	reflect	lights	when	objects	are	viewed	from	certain	angles.
Unfortunately,	even	the	Fresnel	reflection,	which	is	one	of	the	most	accurate	models,	does
not	correctly	reflect	lights	from	nearby	objects.	The	lighting	models	examined	in	the
previous	chapters	took	into	account	only	light	sources,	but	ignored	light	that	is	reflected
from	other	surfaces.	With	what	you’ve	learned	about	shaders	so	far,	making	a	mirror	is
simply	not	possible.	Global	illumination	makes	this	possible	by	providing	PBR	shaders
with	information	about	their	surroundings.	This	allows	objects	to	have	not	just	specular
highlights,	but	also	real	reflections,	which	depend	on	the	other	objects	around	them.	Real-
time	reflections	are	very	costly	and	require	manual	setting	up	and	tweaking	in	order	to
work.	When	done	properly,	they	can	be	used	to	create	mirror-like	surfaces,	as	seen	in	the
following	picture:

Getting	ready
This	recipe	will	not	feature	any	new	shader.	Quite	the	opposite;	most	of	the	work	is	done
directly	in	the	editor.	Perform	the	following	steps:

1.	 Create	a	new	scene.
2.	 Create	a	quad,	which	will	serve	as	a	mirror.
3.	 Create	a	new	material	and	attach	it	to	the	mirror.
4.	 Place	the	quad	in	a	scene	with	other	objects.
5.	 Create	a	new	reflection	probe	from	GameObject	|	Light	|	Reflection	Probe	and

place	it	in	front	of	the	quad.

How	to	do	it…
If	the	preceding	steps	have	been	followed	correctly,	you	should	have	a	quad	in	the	middle
of	your	scene,	close	to	a	reflection	probe.	In	order	to	make	it	in	a	mirror,	some	changes
need	to	be	made:

1.	 Change	the	shader	of	the	material	to	Standard	and	its	Rendering	Mode	to	Opaque.
2.	 Change	its	Metallic	and	Smoothness	properties	to	one.	You	should	see	the	material

reflecting	the	sky	more	clearly.
3.	 Select	the	reflection	probe	and	change	its	Size	and	Probe	Origin	until	it	is	in	front	of

the	quad	and	it	encloses	all	the	objects	that	you	want	to	reflect.
4.	 Finally,	change	its	Type	to	Realtime.	Make	sure	that	Culling	Mask	is	set	to

Everything.

Your	reflection	probe	should	be	configured,	as	shown	in	the	following	image:

If	your	probe	is	used	for	a	real	mirror,	you	should	check	the	Box	Projection	flag.	If	it	is
used	for	other	reflective	surfaces,	such	as	shiny	pieces	of	metal	or	glass	tables,	you	can
uncheck	it.

How	it	works…
When	a	shader	wants	information	about	its	surroundings,	it	is	usually	provided	in	a
structure	called	cube	maps.	They	have	been	briefly	mentioned	in	Chapter	1,	Creating
Your	First	Shader,	as	one	of	the	shader	property	types,	among	Color,	2D,	Float,	and
Vector.	Loosely	speaking,	cube	maps	are	the	3D	equivalent	of	2D	textures;	they	represent
a	360-degree	view	of	the	world,	as	seen	from	a	center	point.	Unity	5	previews	cube	maps
with	a	spherical	projection,	as	seen	in	the	following	picture:

When	cube	maps	are	attached	with	a	camera,	they	are	referred	to	as	skyboxes	as	they	are
used	to	provide	a	way	to	reflect	the	sky.	They	can	be	used	to	reflect	geometries	that	are	not
in	the	actual	scene,	such	as	nebulae,	clouds,	stars,	and	so	on.

The	reason	why	they	are	called	cube	maps	is	because	of	the	way	they	are	created:	a	cube
map	is	made	up	of	six	different	textures,	each	one	attached	to	the	face	of	a	cube.	You	can
create	a	cube	map	manually	or	delegate	it	to	a	reflection	probe.	You	can	imagine	a
reflection	probe	as	a	collection	of	six	cameras,	creating	a	360	mapping	of	the	surrounding
area.	This	also	gives	you	an	idea	why	probes	are	so	expensive.	By	creating	one	in	our
scene,	we	allow	Unity	to	know	which	objects	are	around	the	mirror.	If	you	need	more
reflective	surfaces,	you	can	add	multiple	probes.	You	need	no	further	action	for	the
reflection	probes	to	work.	The	Standard	Shaders	will	use	them	automatically.

You	should	notice	that	when	they	are	set	to	Realtime,	they	render	their	cube	map	at	the
beginning	of	every	frame.	There	is	a	trick	to	make	this	faster;	if	you	know	that	part	of	the
geometry	that	you	want	to	reflect	does	not	move,	you	can	bake	the	reflection.	This	means
that	Unity	can	calculate	the	reflection	before	starting	the	game,	allowing	more	precise
(and	computationally	expensive)	calculations.	In	order	to	do	this,	your	reflection	probe
must	be	set	to	Baked	and	will	work	only	for	objects	that	are	flagged	as	Static.	Static
objects	cannot	move	or	change,	which	makes	them	perfect	for	terrains,	buildings,	and
props.	Every	time	a	static	object	is	moved,	Unity	will	regenerate	the	cube	maps	for	its
baked	reflection	probes.	This	might	take	a	few	minutes	to	several	hours.

You	can	mix	Realtime	and	Baked	probes	to	increase	the	realism	of	your	game.	Baked
probes	will	provide	very	high-quality	reflections	environmental	reflections,	while	the	real-
time	ones	can	be	used	to	move	objects	such	as	cars	or	mirrors.	The	next	Baking	lights	in
your	scene	recipe	will	explain	in	detail	how	light	baking	works.

See	also
If	you	are	interested	in	learning	more	about	reflection	probes,	you	should	check	these
links:

Unity	5	manual	about	Reflection	Probe:	http://docs.unity3d.com/Manual/class-
ReflectionProbe.html

http://docs.unity3d.com/Manual/class-ReflectionProbe.html

Baking	lights	in	your	scene
Rendering	lighting	is	a	very	expensive	process.	Even	with	state-of-the-art	GPUs,
accurately	calculating	the	light	transport	(which	is	how	light	bounces	between	surfaces)
can	take	hours.	In	order	to	make	this	process	feasible	for	games,	real-time	rendering	is
essential.	Modern	engines	compromise	between	realism	and	efficiency;	most	of	the
computation	is	done	beforehand	in	a	process	called	light	baking.	This	recipe	will	explain
how	light	baking	works	and	how	you	can	get	the	most	out	of	it.

Getting	ready
Light	baking	requires	you	to	have	a	scene	ready.	It	should	have	geometries	and,	obviously,
lights.	For	this	recipe,	we	will	rely	on	Unity’s	standard	features	so	there	is	no	need	to
create	additional	shaders	or	materials.	For	a	better	control,	you	might	want	to	access	the
Lighting	window.	If	you	don’t	see	it,	select	Window	|	Lighting	from	the	menu	and	dock
it	where	it	is	more	convenient	for	you.

How	to	do	it…
Light	baking	requires	some	manual	configuration.	There	are	three	essential,	yet
independent,	steps	that	you	need	to	take.

Configuring	the	static	geometry
These	steps	must	be	followed	for	the	configuration:

1.	 Identify	all	the	objects	in	your	scene	that	do	not	change	position,	size,	and	material.
Possible	candidates	are	buildings,	walls,	terrains,	props,	trees,	and	others.

2.	 Select	these	objects,	and	check	the	Static	box	from	the	Inspector	tab,	as	shown	in
the	following	image.	If	any	of	the	selected	objects	has	children,	Unity	will	ask	if	you
want	them	to	be	considered	static	as	well.	If	they	meet	the	requirements	(fixed
position,	size,	and	material),	select	Yes,	change	children	in	the	pop-up	box:

3.	 If	a	light	qualifies	as	a	static	object	but	illuminates	non-static	geometry,	make	sure
that	its	Baking	property	is	set	to	Mixed.	If	it	will	affect	only	static	objects,	set	it	to
Baked.

Configuring	the	light	probes
There	are	objects	in	your	game	that	will	move,	such	as	the	main	character,	enemies,	and
the	other	non-playable	characters	(NPCs).	If	they	enter	a	static	region	that	is
illuminated,	you	might	want	to	surround	it	with	light	probes.	To	do	this,	follow	the	given
steps:

1.	 From	the	menu,	navigate	to	GameObject	|	Light	|	Light	Probe	Group.	A	new
object	called	Light	Probe	Group	will	appear	in	Hierarchy.

2.	 Once	selected,	four	interconnected	spheres	will	appear.	Click	and	move	them	around
the	scene	so	that	they	enclose	the	static	region	in	which	your	characters	can	enter.
The	following	picture	shows	an	example	of	how	light	probes	can	be	used	to	enclose
the	volume	of	a	static	office	space:

3.	 Select	the	moving	objects	that	will	enter	the	light	probe	region.
4.	 From	their	Inspector,	expand	their	renderer	component	(usually	Mesh	Renderer)

and	make	sure	that	Use	Light	Probes	is	checked	(see	the	following	image):

Deciding	where	and	when	to	use	light	probes	is	a	critical	problem;	more	information	about
this	can	be	found	in	the	How	it	works…section.

Baking	the	lights
To	bake	the	lights,	follow	the	given	steps:

1.	 To	finally	bake	the	lights,	open	the	Lighting	window	and	select	its	Lightmaps	tab.
2.	 If	the	Auto	checkbox	is	enabled,	Unity	will	automatically	execute	the	baking	process

in	the	background.	If	not,	click	on	Build.

Note
Light	baking	can	take	several	hours	even	for	a	relatively	small	scene.	If	you	are
constantly	moving	static	objects	or	lights,	Unity	will	restart	the	process	from	scratch
causing	a	severe	slowdown	in	the	editor.	You	can	uncheck	the	Auto	checkbox	from
the	Lighting	|	Lightmaps	tab	to	prevent	this	so	that	you	can	decide	when	to	start	the
process	manually.

How	it	works…
The	most	complicated	part	of	the	rendering	is	the	light	transport.	During	this	phase,	the
GPU	calculates	how	the	rays	of	light	bounce	between	objects.	If	an	object	and	its	lights
don’t	move,	this	calculation	can	be	done	only	once	as	it	will	never	change	during	the
game.	Flagging	an	object	as	Static	is	how	you	are	telling	Unity	that	such	an	optimization
can	be	made.

Loosely	speaking,	light	baking	refers	to	the	process	of	calculating	the	global	illumination
of	a	static	object	and	saving	it	in	what	is	called	a	lightmap.	Once	baking	is	completed,
lightmaps	can	be	seen	in	the	Lightmaps	tab	of	the	Lighting	window:

Light	baking	comes	at	a	great	expense:	memory.	Every	static	surface	is,	in	fact,	retextured
so	that	it	already	includes	its	lighting	condition.	Let’s	imagine	that	you	have	a	forest	of
trees,	all	sharing	the	same	texture.	Once	they	are	made	static,	each	tree	will	have	its	very
own	texture.	Light	baking	not	only	increases	the	size	of	your	game,	but	can	take	a	lot	of
texture	memory	if	used	indiscriminately.

The	second	aspect	introduced	in	this	recipe	is	light	probing.	Light	baking	produces
extremely	high-quality	results	for	static	geometries	but	does	not	work	on	moving	objects.
If	your	character	is	entering	in	a	static	region,	it	can	look	somehow	detached	from	the
environment.	Its	shading	will	not	match	the	surrounding,	resulting	in	an	aesthetically
unpleasant	result.	Other	objects,	such	as	skinned	mesh	renderers,	will	not	receive	global
illumination	even	if	made	static.	Baking	lights	in	real	time	is	not	possible,	although	light

probes	offer	an	effective	alternative.	Every	light	probe	samples	the	global	illumination	at	a
specific	point	in	space.	A	light	probe	group	can	sample	several	points	in	space,	allowing	to
interpolate	global	illumination	within	a	specific	volume.	This	allows	us	to	cast	a	better
light	on	moving	objects,	even	despite	the	fact	that	global	illumination	has	been	calculated
only	for	a	few	points.	It	is	important	to	remember	that	light	probes	need	to	enclose	a
volume	in	order	to	work.	It	is	best	to	place	light	probes	in	regions	where	there	is	a	sudden
change	in	the	light	condition.	Similar	to	lightmaps,	probes	consume	memory	and	should
be	placed	wisely;	remember	that	they	exist	only	for	non-static	geometry.

Even	while	using	light	probes,	there	are	a	few	aspects	that	Unity’s	global	illumination
cannot	capture.	Non-static	objects,	for	instance,	cannot	reflect	light	on	other	objects.

See	also
You	can	read	more	about	light	probes	at
http://docs.unity3d.com/Manual/LightProbes.html.

http://docs.unity3d.com/Manual/LightProbes.html

Chapter	5.	Vertex	Functions
The	term	shader	originates	from	the	fact	that	Cg	has	been	used	mainly	to	simulate
realistic	lighting	conditions	(shadows)	on	3D	models.	Despite	this,	shaders	are	now	much
more	than	that.	They	not	only	define	the	way	the	objects	are	going	to	look,	they	can	also
redefine	their	shapes	entirely.	If	you	want	to	learn	how	to	manipulate	the	geometry	of	a	3D
object	via	shaders,	this	is	the	chapter	for	you.

In	this	chapter,	you	will	learn	the	following	recipes:

Accessing	a	vertex	color	in	a	Surface	Shader
Animating	vertices	in	a	Surface	Shader
Extruding	your	models
Implementing	a	snow	shader
Implementing	a	volumetric	explosion

Introduction
In	Chapter	1,	Creating	Your	First	Shader,	we	explained	that	3D	models	are	not	just	a
collection	of	triangles.	Each	vertex	can	contain	data	that	is	essential	to	render	the	model
itself	correctly.	This	chapter	will	explore	how	to	access	this	information	in	order	to	use	it
in	a	shader.	We	will	also	explore	in	detail	how	the	geometry	of	an	object	can	be	deformed
simply	using	Cg	code.

Accessing	a	vertex	color	in	a	Surface
Shader
Let’s	begin	this	chapter	by	taking	a	look	at	how	we	can	access	the	information	of	a
model’s	vertex	using	the	vertex	function	in	a	Surface	Shader.	This	will	arm	us	with	the
knowledge	to	start	utilizing	the	elements	contained	within	a	model’s	vertex	to	create	really
useful	and	visually	appealing	effects.

A	vertex	in	a	vertex	function	can	return	information	about	itself	that	we	need	to	be	aware
of.	You	can	actually	retrieve	the	vertices’	normal	directions	as	a	float3	value,	the	position
of	the	vertex	as	float3,	and	you	can	even	store	color	values	in	each	vertex	and	return	that
color	as	float4.	This	is	what	we	will	take	a	look	at	in	this	recipe.	We	need	to	see	how	to
store	color	information	and	retrieve	this	stored	color	information	inside	each	vertex	of	a
Surface	Shader.

Getting	ready
In	order	to	write	this	shader,	we	need	to	prepare	a	few	assets.	The	following	steps	will	set
us	up	to	create	this	Vertex	Shader:

1.	 In	order	to	view	the	colors	of	a	vertex,	we	need	to	have	a	model	that	has	had	color
applied	to	its	vertices.	While	you	could	use	Unity	to	apply	colors,	you	would	have	to
write	a	tool	to	allow	an	individual	to	apply	the	colors	or	write	some	scripts	to	achieve
the	color	application.	In	the	case	of	this	recipe,	we	simply	utilized	Maya	to	apply	the
colors	to	our	model.	This	model	is	available	on	the	book’s	Support	page	at
https://www.packtpub.com/books/content/support.

2.	 Create	a	new	scene	and	place	the	imported	model	in	the	scene.
3.	 Create	a	new	shader	and	material.	When	completed,	assign	the	shader	to	the	material

and	then	the	material	to	the	imported	model.

Your	scene	should	now	look	similar	to	the	following	screenshot:

https://www.packtpub.com/books/content/support

How	to	do	it…
With	our	scene,	shader,	and	material	created	and	ready	to	go,	we	can	begin	to	write	the
code	for	our	shader.	Launch	the	shader	by	double-clicking	on	it	in	the	Project	tab	in	the
Unity	editor.	Perform	the	following	steps:

1.	 As	we	are	creating	a	very	simple	shader,	we	will	not	need	to	include	any	properties	in
our	Properties	block.	We	will	still	include	a	global	tint	color,	just	to	stay	consistent
with	the	other	shaders	in	this	book.	Enter	the	following	code	in	the	Properties	block
of	your	shader:

Properties	

{

		_MainTint("Global	Color	Tint",	Color)	=	(1,1,1,1)

}

2.	 This	next	step	tells	Unity	that	we	will	be	including	a	vertex	function	in	our	shader:

CGPROGRAM

#pragma	surface	surf	Lambert	vertex:vert

3.	 As	usual,	if	we	have	included	properties	in	our	Properties	block,	we	must	make
sure	to	create	a	corresponding	variable	in	our	CGPROGRAM	statement.	Enter	the
following	code	just	below	the	#pragma	statement:

float4	_MainTint;

4.	 We	now	turn	our	attention	to	the	Input	struct.	We	need	to	add	a	new	variable	in	order
for	our	surf()	function	to	access	the	data	given	to	us	by	our	vert()	function:

struct	Input	

{

		float2	uv_MainTex;

		float4	vertColor;

};

5.	 Now,	we	can	write	our	simple	vert()	function	to	gain	access	to	the	colors	stored	in
each	vertex	of	our	mesh:

void	vert(inout	appdata_full	v,	out	Input	o)

{

		o.vertColor	=	v.color;

}

6.	 Finally,	we	can	use	the	vertex	color	data	from	our	Input	struct	to	be	assigned	to	the
o.Albedo	parameters	in	the	built-in	SurfaceOutput	struct:

void	surf	(Input	IN,	inout	SurfaceOutput	o)	

{

		o.Albedo	=	IN.vertColor.rgb	*	_MainTint.rgb;

}

7.	 With	our	code	completed,	we	can	now	re-enter	the	Unity	editor	and	let	the	shader
compile.	If	all	goes	well,	you	should	see	something	similar	to	the	following

screenshot:

How	it	works…
Unity	provides	us	with	a	way	to	access	the	vertex	information	of	the	model	to	which	a
shader	is	attached.	This	gives	us	the	power	to	modify	things	such	as	the	vertices’	position
and	color.	With	this	recipe,	we	have	imported	a	mesh	from	Maya	(though	just	about	any
3D	software	application	can	be	used),	where	vertex	colors	were	added	to	Verts.	You’ll
notice	that	by	importing	the	model,	the	default	material	will	not	display	the	vertex	colors.
We	actually	have	to	write	a	shader	to	extract	the	vertex	color	and	display	it	on	the	surface
of	the	model.	Unity	provides	us	with	a	lot	of	built-in	functionality	when	using	Surface
Shaders,	which	make	the	process	of	extracting	this	vertex	information	quick	and	efficient.

Our	first	task	is	to	tell	Unity	that	we	will	be	using	a	vertex	function	when	creating	our
shader.	We	do	this	by	adding	the	vertex:vert	parameter	to	the	#pragma	statement	of
CGPROGRAM.	This	automatically	makes	Unity	look	for	a	vertex	function	named	vert()
when	it	goes	to	compile	the	shader.	If	it	doesn’t	find	one,	Unity	will	throw	a	compiling
error	and	ask	you	to	add	a	vert()	function	to	your	shader.

This	brings	us	to	our	next	step.	We	have	to	actually	code	the	vert()	function,	as	seen	in
step	5.	By	having	this	function,	we	can	access	the	built-in	data	struct	called	appdata_full.
This	built-in	struct	is	where	the	vertex	information	is	stored.	So,	we	then	extract	the	vertex
color	information	by	passing	it	to	our	Input	struct	by	adding	the	code,	o.vertColor	=
v.color.

The	o	variable	represents	our	Input	struct	and	the	v	variable	is	our	appdata_full	vertex
data.	In	this	case,	we	are	simply	taking	the	color	information	from	the	appdata_full
struct	and	putting	it	in	our	Input	struct.	Once	the	vertex	color	is	in	our	Input	struct,	we
can	use	it	in	our	surf()	function.	In	the	case	of	this	recipe,	we	simply	apply	the	color	to
the	o.Albedo	parameter	to	the	built-in	SurfaceOutput	struct.

There’s	more…
One	can	also	access	a	fourth	component	from	the	vert	color	data.	If	you	notice,	the
vertColor	variable	we	declared	in	the	Input	struct	is	of	the	float4	type.	This	means	that
we	are	also	passing	the	alpha	value	of	the	vertex	colors.	Knowing	this,	you	can	use	it	to
your	advantage	for	the	purpose	of	storing	a	fourth	vertex	color	to	perform	effects	such	as
transparency	or	giving	yourself	one	more	mask	to	blend	two	textures.	It’s	really	up	to	you
and	your	production	to	determine	if	you	really	need	to	use	the	fourth	component,	but	it	is
worth	mentioning	here.

With	Unity	5,	we	now	have	the	ability	to	target	shaders	to	DirectX	11.	This	is	great,	but	it
means	that	the	compiling	process	for	the	shaders	is	now	a	bit	pickier.	This	means	that	we
need	to	include	one	more	line	of	code	to	our	shader	to	initialize	the	output	of	the	vertex
information	properly.	The	following	code	shows	what	the	vertex	function	code	looks	like,
if	you	are	using	DirectX	11	in	your	shader:

void	vert(inout	appdata_full	v,	out	Input	o)

{

		UNITY_INITIALIZE_OUTPUT(Input,	o);

		o.vertColor	=	v.color;

}

By	including	this	line	of	code,	your	Vertex	Shader	will	not	throw	any	warnings,	which	say
that	it	won’t	compile	to	DirectX	11	appropriately.

Animating	vertices	in	a	Surface	Shader
Now	that	we	know	how	to	access	data	on	a	per-vertex	basis,	let’s	expand	our	knowledge
set	to	include	other	types	of	data	and	position	of	a	vertex.

Using	a	vertex	function,	we	can	access	the	position	of	each	vertex	in	a	mesh.	This	allows
us	to	actually	modify	each	individual	vertex	while	the	shader	does	the	processing.

In	this	recipe,	we	will	create	a	shader	that	will	allow	us	to	modify	the	positions	of	each
vertex	on	a	mesh	with	a	sine	wave.	This	technique	can	be	used	to	create	animations	for
objects	such	as	flags	or	waves	on	an	ocean.

Getting	ready
Let’s	gather	our	assets	together	so	that	we	can	create	the	code	for	our	Vertex	Shader:

1.	 Create	a	new	scene	and	place	a	plane	mesh	in	the	center	of	the	scene.
2.	 Then	create	a	new	shader	and	material.
3.	 Finally,	assign	the	shader	to	the	material	and	the	material	to	the	plane	mesh.

Your	scene	should	look	similar	to	the	following	screenshot:

How	to	do	it…
With	our	scene	ready	to	go,	let’s	double-click	on	our	newly	created	shader	to	open	it	in
MonoDevelop:

1.	 Let’s	begin	with	our	shader	by	populating	the	Properties	block:

Properties	

{

		_MainTex	("Base	(RGB)",	2D)	=	"white"	{}

		_tintAmount	("Tint	Amount",	Range(0,1))	=	0.5

		_ColorA	("Color	A",	Color)	=	(1,1,1,1)

		_ColorB	("Color	B",	Color)	=	(1,1,1,1)

		_Speed	("Wave	Speed",	Range(0.1,	80))	=	5

		_Frequency	("Wave	Frequency",	Range(0,	5))	=	2

		_Amplitude	("Wave	Amplitude",	Range(-1,	1))	=	1

}

2.	 We	now	need	to	tell	Unity	that	we	are	going	to	be	using	a	vertex	function	by	adding
the	following	to	the	#pragma	statement:

CGPROGRAM

#pragma	surface	surf	Lambert	vertex:vert

3.	 In	order	to	access	the	values	that	have	been	given	to	us	by	our	properties,	we	need	to
declare	a	corresponding	variable	in	our	CGPROGRAM	block:

sampler2D	_MainTex;

float4	_ColorA;

float4	_ColorB;

float	_tintAmount;

float	_Speed;

float	_Frequency;

float	_Amplitude;

float	_OffsetVal;

4.	 We	will	be	using	the	vertex	position	modification	as	a	vert	color	as	well.	This	will
allow	us	to	tint	our	object:

struct	Input	

{

		float2	uv_MainTex;

		float3	vertColor;

}

5.	 At	this	point,	we	can	perform	our	vertex	modification	using	a	sine	wave	and	vertex
function.	Enter	the	following	code	after	the	Input	struct:

void	vert(inout	appdata_full	v,	out	Input	o)

{

		float	time	=	_Time	*	_Speed;

		float	waveValueA	=	sin(time	+	v.vertex.x	*	_Frequency)	*	_Amplitude;

						

		v.vertex.xyz	=	float3(v.vertex.x,	v.vertex.y	+	waveValueA,	

v.vertex.z);

		v.normal	=	normalize(float3(v.normal.x	+	waveValueA,	v.normal.y,	

v.normal.z));

		o.vertColor	=	float3(waveValueA,waveValueA,waveValueA);

}

6.	 Finally,	we	complete	our	shader	by	performing	a	lerp()	function	between	two	colors
so	that	we	can	tint	the	peaks	and	valleys	of	our	new	mesh,	modified	by	our	vertex
function:

void	surf	(Input	IN,	inout	SurfaceOutput	o)	

{

		half4	c	=	tex2D	(_MainTex,	IN.uv_MainTex);

		float3	tintColor	=	lerp(_ColorA,	_ColorB,	IN.vertColor).rgb;	

						

		o.Albedo	=	c.rgb	*	(tintColor	*	_tintAmount);

		o.Alpha	=	c.a;

}

After	completing	the	code	for	your	shader,	switch	back	to	Unity	and	let	the	shader
compile.	Once	compiled,	you	should	see	something	similar	to	the	following	screenshot:

How	it	works…
This	particular	shader	uses	the	same	concept	from	the	last	recipe,	except	that	this	time,	we
are	modifying	the	positions	of	the	vertices	in	the	mesh.	This	is	really	useful	if	you	don’t
want	to	rig	up	simple	objects,	such	as	a	flag,	and	then	animate	them	using	a	skeleton
structure	or	hierarchy	of	transforms.

We	simply	create	a	sine	wave	value	using	the	sin()	function	that	is	built	into	the	Cg
language.	After	calculating	this	value,	we	add	it	to	the	y	value	of	each	vertex	position,
creating	a	wave-like	effect.

We	also	did	a	little	bit	of	modification	to	the	normal	on	the	mesh	just	to	give	it	a	more
realistic	shading	based	on	the	sine	wave	value.

You	will	see	how	easy	it	is	to	perform	more	complex	vertex	effects	by	utilizing	the	built-in
vertex	parameters	that	Surface	Shaders	give	us.

Extruding	your	models
One	of	the	biggest	problems	in	games	is	repetitions.	Creating	new	content	is	a	time-
consuming	task,	and	when	you	have	to	face	thousands	of	enemies,	chances	are	that	they
will	all	look	the	same.	A	relatively	cheap	technique	to	add	variations	to	your	models	is
using	a	shader	that	alters	its	basic	geometry.	This	recipe	will	show	you	a	technique	called
normal	extrusion,	which	can	be	used	to	create	a	chubbier	or	skinnier	version	of	a	model,
as	shown	in	the	following	picture	with	the	soldier	from	the	Unity	camp	demo:

Getting	ready
For	this	recipe,	we	need	to	have	access	to	the	shader	used	by	the	model	that	you	want	to
alter.	Once	you	have	it,	we	duplicate	it	so	that	we	can	edit	it	safely.	It	can	be	done	as
follows:

1.	 Find	the	shader	your	model	is	using	and	once	selected,	duplicate	it	by	pressing	Ctrl	+
D.

2.	 Duplicate	the	original	material	of	the	model	and	assign	the	cloned	shader	to	it.
3.	 Assign	the	new	material	to	your	model,	and	start	editing	it.

In	order	for	this	effect	to	work,	your	model	should	have	normals.

How	to	do	it…
To	create	this	effect,	start	by	modifying	the	duplicated	shader:

1.	 Let’s	start	by	adding	a	property	to	our	shader,	which	will	be	used	to	modulate	its
extrusion.	The	range	presented	here	goes	from	-1	to	+1,	but	you	might	have	to	adjust
this	according	to	your	own	needs:

_Amount	("Extrusion	Amount",	Range(-1,+1))	=	0

2.	 Couple	the	property	with	its	respective	variable:

float	_Amount;

3.	 Change	the	#pragma	directive	so	that	it	now	uses	a	vertex	modifier.	You	can	do	this
by	adding	vertex:function_name	at	the	end	of	it.	In	our	case,	we	have	called	the
function,	vert:

#pragma	surface	surf	Lambert	vertex:vert

4.	 Add	the	following	vertex	modifier:

void	vert	(inout	appdata_full	v)	{

		v.vertex.xyz	+=	v.normal	*	_Amount;

}

5.	 The	shader	is	now	ready;	you	can	use	the	Extrusion	Amount	slider	in	the	material’s
Inspector	tab	to	make	your	model	skinnier	or	chubbier.

How	it	works…
Surface	Shaders	works	in	two	steps.	In	all	the	previous	chapters,	we	only	explored	its	last
one:	the	surface	function.	There	is	another	function	that	can	be	used:	the	vertex	modifier.
It	takes	the	data	structure	of	a	vertex	(which	is	usually	called	appdata_full)	and	applies	a
transformation	to	it.	This	gives	us	the	freedom	to	do	virtually	everything	with	the
geometry	of	our	model.	We	signal	the	graphics	processing	unit	(GPU)	that	such	a
function	exists	by	adding	vertex:vert	to	the	#pragma	directive	of	the	Surface	Shader.
You	can	refer	to	Chapter	6,	Fragment	Shaders	and	Grab	Passes,	to	learn	how	vertex
modifiers	can	be	defined	in	a	Vertex	and	Fragment	Shader	instead.

One	of	the	most	simple,	yet	effective,	techniques	that	can	be	used	to	alter	the	geometry	of
a	model	is	called	normal	extrusion.	It	works	by	projecting	a	vertex	along	its	normal
direction.	This	is	done	by	the	following	line	of	code:

v.vertex.xyz	+=	v.normal	*	_Amount;

The	position	of	a	vertex	is	displaced	by	_Amount	units	toward	the	vertex	normal.	If
_Amount	gets	too	high,	the	results	can	be	quite	unpleasant.	With	smaller	values,	however,
you	can	add	a	lot	of	variations	to	your	models.

There’s	more…
If	you	have	multiple	enemies	and	want	each	one	to	have	its	own	weight,	you	have	to
create	a	different	material	for	each	one	of	them.	This	is	necessary	as	materials	are
normally	shared	between	models	and	changing	one	will	change	all	of	them.	There	are
several	ways	in	which	you	can	do	this;	the	quickest	one	is	to	create	a	script	that
automatically	does	it	for	you.	The	following	script,	once	attached	to	an	object	with	a
Renderer,	will	duplicate	its	first	material	and	set	the	_Amount	property	automatically:

using	UnityEngine;

public	class	NormalExtruder	:	MonoBehaviour	{

		[Range(-0.0001f,	0.0001f)]

		public	float	amount	=	0;

		//	Use	this	for	initialization

		void	Start	()	{

				Material	material	=	GetComponent<Renderer>().sharedMaterial;

				Material	newMaterial	=	new	Material(material);

				newMaterial.SetFloat("_Amount",	amount);

				GetComponent<Renderer>().material	=	newMaterial;

		}

}

Adding	extrusion	maps
This	technique	can	actually	be	improved	even	further.	We	can	add	an	extra	texture	(or	use
the	alpha	channel	of	the	main	one)	to	indicate	the	amount	of	the	extrusion.	This	allows	a
much	better	control	over	which	parts	are	raised	or	lowered.	The	following	code	shows	you
how	it	is	possible	to	achieve	such	an	effect:

sampler2D	_ExtrusionTex;

void	vert(inout	appdata_full	v)	{

float4	tex	=	tex2Dlod	(_ExtrusionTex,	float4(v.texcoord.xy,0,0));

		float	extrusion	=	tex.r	*	2	-	1;

		v.vertex.xyz	+=	v.normal	*	_Amount	*	extrusion;

}

The	red	channel	of	_ExtrusionTex	is	used	as	a	multiplying	coefficient	for	normal
extrusion.	A	value	of	0.5	leaves	the	model	unaffected;	darker	or	lighter	shades	are	used	to
extrude	vertices	inward	or	outward,	respectively.	You	should	notice	that	to	sample	a
texture	within	a	vertex	modifier,	tex2Dlod	should	be	used	instead	of	tex2D.

Note
In	shaders,	color	channels	go	from	0	to	1,	although	sometimes	you	need	to	represent
negative	values	as	well	(such	as	inward	extrusion).	When	this	is	the	case,	treat	0.5	as	zero,
having	smaller	values	considered	as	negative	and	higher	values	as	positive.	This	is	exactly
what	happens	with	normals,	which	are	usually	encoded	in	RGB	textures.	The
UnpackNormal()	function	is	used	to	map	a	value	in	the	range	(0,1)	on	the	range	(-1,+1).
Mathematically	speaking,	this	is	equivalent	to	tex.r	*	2	-1.

Extrusion	maps	are	perfect	to	zombify	characters	by	shrinking	the	skin	to	highlight	the
shape	of	the	bones	underneath.	The	following	picture	shows	you	how	a	healthy	soldier	can
be	transformed	into	a	corpse	using	just	a	shader	and	extrusion	map.	Compared	to	the
previous	example,	you	can	notice	how	the	clothing	is	unaffected.	The	shader	used	in	the
following	picture	also	darkens	the	extruded	regions	to	give	an	even	more	emaciated	look
to	the	soldier:

Implementing	a	snow	shader
The	simulation	of	snow	has	always	been	a	challenge	in	games.	The	vast	majority	of	games
simply	includes	snow	directly	in	the	model’s	textures	so	that	their	tops	look	white.
However,	what	if	one	of	these	objects	starts	rotating?	Snow	is	not	just	a	lick	of	paint	on	a
surface;	it	is	a	proper	accumulation	of	material	and	should	be	treated	as	such.	This	recipe
shows	you	how	to	give	a	snowy	look	to	your	models	using	just	a	shader.

This	effect	is	achieved	in	two	steps.	First,	a	white	color	is	used	for	all	the	triangles	facing
the	sky.	Second,	their	vertices	are	extruded	to	simulate	the	effect	of	snow	accumulation.
You	can	see	the	result	in	the	following	picture:

Note
Keep	in	mind	that	this	recipe	does	not	aim	to	create	a	photorealistic	snow	effect.	It
provides	a	good	starting	point,	but	it	is	up	to	an	artist	to	create	the	right	textures	and	find

the	right	parameters	to	make	it	fit	your	game.

Getting	ready
This	effect	is	purely	based	on	shaders.	We	will	need	the	following:

1.	 Create	a	new	shader	for	the	snow	effect.
2.	 Create	a	new	material	for	the	shader.
3.	 Assign	the	newly	created	material	to	the	object	that	you	want	to	be	snowy.

How	to	do	it…
To	create	a	snowy	effect,	open	your	shader	and	make	the	following	changes:

1.	 Replace	the	properties	of	the	shader	with	the	following	ones:

_MainColor("Main	Color",	Color)	=	(1.0,1.0,1.0,1.0)

_MainTex("Base	(RGB)",	2D)	=	"white"	{}

_Bump("Bump",	2D)	=	"bump"	{}

_Snow("Level	of	snow",	Range(1,	-1))	=	1

_SnowColor("Color	of	snow",	Color)	=	(1.0,1.0,1.0,1.0)

_SnowDirection("Direction	of	snow",	Vector)	=	(0,1,0)

_SnowDepth("Depth	of	snow",	Range(0,1))	=	0

2.	 Complete	them	with	their	relative	variables:

sampler2D	_MainTex;

sampler2D	_Bump;

float	_Snow;

float4	_SnowColor;

float4	_MainColor;

float4	_SnowDirection;

float	_SnowDepth;

3.	 Replace	the	Input	structure	with	the	following	one:

struct	Input	{

		float2	uv_MainTex;

		float2	uv_Bump;

		float3	worldNormal;

		INTERNAL_DATA

};

4.	 Replace	the	surface	function	with	the	following	one.	It	will	color	the	snowy	parts	of
the	model	white:

void	surf(Input	IN,	inout	SurfaceOutputStandard	o)	{

		half4	c	=	tex2D(_MainTex,	IN.uv_MainTex);

		o.Normal	=	UnpackNormal(tex2D(_Bump,	IN.uv_Bump));

		if	(dot(WorldNormalVector(IN,	o.Normal),	_SnowDirection.xyz)	>=	

_Snow)

				o.Albedo	=	_SnowColor.rgb;

		else

				o.Albedo	=	c.rgb	*	_MainColor;

		o.Alpha	=	1;

}

5.	 Configure	the	#pragma	directive	so	that	it	uses	vertex	modifiers:

#pragma	surface	surf	Standard	vertex:vert

6.	 Add	the	following	vertex	modifiers,	which	extrude	the	vertices	covered	in	snow:

void	vert(inout	appdata_full	v)	{

		float4	sn	=	mul(UNITY_MATRIX_IT_MV,	_SnowDirection);

		if	(dot(v.normal,	sn.xyz)	>=	_Snow)

				v.vertex.xyz	+=	(sn.xyz	+	v.normal)	*	_SnowDepth	*	_Snow;

}

You	can	now	use	the	material’s	Inspector	tab	to	select	how	much	of	your	model	is	going
to	be	covered	and	how	thick	the	snow	should	be.

How	it	works…
This	shader	works	in	two	steps.

Coloring	the	surface
The	first	one	alters	the	color	of	the	triangles	that	are	facing	the	sky.	It	affects	all	the
triangles	with	a	normal	direction	similar	to	_SnowDirection.	As	seen	before	in	Chapter	3,
Understanding	Lighting	Models,	comparing	unit	vectors	can	be	done	using	the	dot
product.	When	two	vectors	are	orthogonal,	their	dot	product	is	zero;	it	is	one	(or	minus
one)	when	they	are	parallel	to	each	other.	The	_Snow	property	is	used	to	decide	how
aligned	they	should	be	to	be	considered	facing	the	sky.

If	you	look	closely	at	the	surface	function,	you	can	see	that	we	are	not	dotting	the	normal
and	snow	direction	directly.	This	is	because	they	are	usually	defined	in	a	different	space.
The	snow	direction	is	expressed	in	world	coordinates,	while	the	object	normals	are	usually
relative	to	the	model	itself.	If	we	rotate	the	model,	its	normals	will	not	change,	which	is
not	what	we	want.	To	fix	this,	we	need	to	convert	the	normals	from	their	object
coordinates	to	world	coordinates.	This	is	done	with	the	WorldNormalVector()	function,	as
seen	in	the	following	code:

if	(dot(WorldNormalVector(IN,	o.Normal),	_SnowDirection.xyz)	>=	_Snow)

		o.Albedo	=	_SnowColor.rgb;

else

		o.Albedo	=	c.rgb	*	_MainColor;

This	shader	simply	colors	the	model	white;	a	more	advanced	one	should	initialize	the
SurfaceOutputStandard	structure	with	textures	and	parameters	from	a	realistic	snow
material.

Altering	the	geometry
The	second	effect	of	this	shader	alters	the	geometry	to	simulate	the	accumulation	of	snow.
Firstly,	we	identify	which	triangles	have	been	colored	white	by	testing	the	same	condition
used	in	the	surface	function.	This	time,	unfortunately,	we	cannot	rely	on
WorldNormalVector()	as	the	SurfaceOutputStandard	structure	is	not	yet	initialized	in
the	vertex	modifier.	We	use	this	other	method	instead,	which	converts	_SnowDirection	to
object	coordinates:

float4	sn	=	mul(UNITY_MATRIX_IT_MV,	_SnowDirection);

Then,	we	can	extrude	the	geometry	to	simulate	the	accumulation	of	snow:

if	(dot(v.normal,	sn.xyz)	>=	_Snow)

v.vertex.xyz	+=	(sn.xyz	+	v.normal)	*	_SnowDepth	*	_Snow;

Once	again,	this	is	a	very	basic	effect.	One	could	use	a	texture	map	to	control	the
accumulation	of	snow	more	precisely	or	give	a	peculiar,	uneven	look.

See	also
If	you	need	high-quality	snow	effects	and	props	for	your	game,	you	can	also	check	these
resources	on	the	Unity	Asset	Store:

Winter	Suite	($30):	A	much	more	sophisticated	version	of	the	snow	shader	presented
in	this	recipe	can	be	found	at
https://www.assetstore.unity3d.com/en/#!/content/13927
Winter	Pack	($60):	A	very	realistic	set	of	props	and	materials	for	snowy
environments	can	be	found	at
https://www.assetstore.unity3d.com/en/#!/content/13316

https://www.assetstore.unity3d.com/en/#!/content/13927
https://www.assetstore.unity3d.com/en/#!/content/13316

Implementing	a	volumetric	explosion
The	art	of	game	development	is	a	clever	trade-off	between	realism	and	efficiency.	This	is
particularly	true	for	explosions;	they	are	at	the	heart	of	many	games,	yet	the	physics
behind	them	is	often	beyond	the	computational	power	of	modern	machines.	Explosions
are,	essentially,	nothing	more	than	very	hot	balls	of	gas;	hence,	the	only	way	to	correctly
simulate	them	is	by	integrating	a	fluid	simulation	into	your	game.	As	you	can	imagine,
this	is	infeasible	for	runtime	application,	and	many	games	simulate	them	simply	with
particles.	When	an	object	explodes,	it	is	common	to	simply	instantiate	many	fire,	smoke,
and	debris	particles	that,	together,	can	achieve	believable	results.	This	approach,
unfortunately,	is	not	very	realistic	and	is	easy	to	spot.	There	is	an	intermediate	technique
that	can	be	used	to	achieve	a	much	more	realistic	effect:	volumetric	explosions.	The	idea
behind	this	concept	is	that	explosions	are	not	treated	any	more	like	a	bunch	of	particles;
they	are	evolving	3D	objects,	not	just	flat	2D	textures.

Getting	ready
Start	this	recipe	with	the	following	steps:

1.	 Create	a	new	shader	for	this	effect.
2.	 Create	a	new	material	to	host	the	shader.
3.	 Attach	the	material	to	a	sphere.	You	can	create	one	directly	from	the	editor,

navigating	to	GameObject	|	3D	Object	|	Sphere.

Note
This	recipe	works	well	with	the	standard	Unity	Sphere,	but	if	you	need	big
explosions,	you	might	need	to	use	a	more	high-poly	sphere.	In	fact,	a	vertex	function
can	only	modify	the	vertices	of	a	mesh.	All	the	other	points	will	be	interpolated	using
the	positions	of	the	nearby	vertices.	Fewer	vertices	mean	a	lower	resolution	for	your
explosions.

4.	 For	this	recipe,	you	will	also	need	a	ramp	texture	that	has,	in	a	gradient,	all	the	colors
your	explosions	will	have.	You	can	create	a	texture	like	the	following	image	using
GIMP	or	Photoshop:

5.	 Once	you	have	the	picture,	import	it	to	Unity.	Then,	from	its	Inspector,	make	sure
that	Filter	Mode	is	set	to	Bilinear	and	Wrap	Mode	to	Clamp.	These	two	settings
make	sure	that	the	ramp	texture	is	sampled	smoothly.

6.	 Lastly,	you	will	need	a	noisy	texture.	You	can	search	on	the	Internet	for	freely
available	noise	textures.	The	most	commonly	used	ones	are	generated	using	Perlin
noise.

How	to	do	it…
This	effect	works	in	two	steps:	a	vertex	function	to	change	the	geometry	and	surface
function	to	give	it	the	right	color.	The	steps	are	as	follows:

1.	 Add	the	following	properties	to	the	shader:

_RampTex("Color	Ramp",	2D)	=	"white"	{}

_RampOffset("Ramp	offset",	Range(-0.5,0.5))=	0

_NoiseTex("Noise	tex",	2D)	=	"gray"	{}

_Period("Period",	Range(0,1))	=	0.5

_Amount("_Amount",	Range(0,	1.0))	=	0.1

_ClipRange("ClipRange",	Range(0,1))	=	1

2.	 Add	their	relative	variables	so	that	the	Cg	code	of	the	shader	can	actually	access
them:

sampler2D	_RampTex;

half	_RampOffset;

sampler2D	_NoiseTex;

float	_Period;

half	_Amount;

half	_ClipRange;

3.	 Change	the	Input	structure	so	that	it	receives	the	UV	data	of	the	ramp	texture:

struct	Input	{

		float2	uv_NoiseTex;

};

4.	 Add	the	following	vertex	function:

void	vert(inout	appdata_full	v)	{

		float3	disp	=	tex2Dlod(_NoiseTex,	float4(v.texcoord.xy,0,0));

		float	time	=	sin(_Time[3]	*_Period	+	disp.r*10);

		v.vertex.xyz	+=	v.normal	*	disp.r	*	_Amount	*	time;

}

5.	 Add	the	following	surface	function:

void	surf(Input	IN,	inout	SurfaceOutput	o)	{

		float3	noise	=	tex2D(_NoiseTex,	IN.uv_NoiseTex);

		float	n	=	saturate(noise.r	+	_RampOffset);

		clip(_ClipRange	-	n);

		half4	c	=	tex2D(_RampTex,	float2(n,0.5));

		o.Albedo	=	c.rgb;

		o.Emission	=	c.rgb*c.a;

}

6.	 We	specify	the	vertex	function	in	the	#pragma	directive,	adding	the	nolightmap
parameter	to	prevent	Unity	from	adding	realistic	lightings	to	our	explosion:

#pragma	surface	surf	Lambert	vertex:vert	nolightmap

7.	 The	last	step	is	selecting	the	material,	and	from	its	Inspector,	attaching	the	two
textures	in	the	relative	slots.	This	is	an	animated	material,	meaning	that	it	evolves
over	time.	You	can	watch	the	material	changing	in	the	editor	by	clicking	on
Animated	Materials	from	the	Scene	window:

How	it	works…
If	you	are	reading	this	recipe,	you	should	already	be	familiar	with	how	Surface	Shaders
and	vertex	modifiers	work.	The	main	idea	behind	this	effect	is	to	alter	the	geometry	of	the
sphere	in	a	seemingly	chaotic	way,	exactly	like	it	happens	in	a	real	explosion.	The
following	picture	shows	you	how	such	an	explosion	will	look	inside	the	editor.	You	can
see	that	the	original	mesh	has	been	heavily	deformed:

The	vertex	function	is	a	variant	of	the	technique	called	normal	extrusion	introduced	in
the	Extruding	your	models	recipe	of	this	chapter.	The	difference	here	is	that	the	amount	of
the	extrusion	is	determined	both	by	the	time	and	noise	texture.

Note
When	you	need	a	random	number	in	Unity,	you	can	rely	on	the	Random.Range()	function.
There	is	no	standard	way	to	get	random	numbers	in	a	shader,	so	the	easiest	way	is	to
sample	a	noise	texture.

There	is	no	standard	way	to	do	this,	so	take	this	as	an	example	only:

float	time	=	sin(_Time[3]	*_Period	+	disp.r*10);

The	built-in	_Time[3]	variable	is	used	to	get	the	current	time	from	within	the	shader,	and
the	red	channel	of	the	noise	texture	disp.r	is	used	to	make	sure	that	each	vertex	moves
independently.	The	sin()	function	makes	the	vertices	go	up	and	down,	simulating	the
chaotic	behavior	of	an	explosion.	Then,	the	normal	extrusion	takes	place:

v.vertex.xyz	+=	v.normal	*	disp.r	*	_Amount	*	time;

You	should	play	with	these	numbers	and	variables	until	you	find	a	pattern	of	movement
that	you	are	happy	with.

The	last	part	of	the	effect	is	achieved	by	the	surface	function.	Here,	the	noise	texture	is
used	to	sample	a	random	color	from	the	ramp	texture.	However,	there	are	two	more
aspects	that	are	worth	noticing.	The	first	one	is	the	introduction	of	_RampOffset.	Its	usage

forces	the	explosion	to	sample	colors	from	the	left	or	right	side	of	the	texture.	With
positive	values,	the	surface	of	the	explosion	tends	to	show	more	grey	tones;	exactly	what
happens	when	it	is	dissolving.	You	can	use	_RampOffset	to	determine	how	much	fire	or
smoke	there	should	be	in	your	explosion.	The	second	aspect	introduced	in	the	surface
function	is	the	usage	of	clip().	What	clip()	does	is	it	clips	(removes)	pixels	from	the
rendering	pipeline.	When	invoked	with	a	negative	value,	the	current	pixel	is	not	drawn.
This	effect	is	controlled	by	_ClipRange,	which	determines	which	pixels	of	the	volumetric
explosions	are	going	to	be	transparent.

By	controlling	both	_RampOffset	and	_ClipRange,	you	have	full	control	to	determine	how
the	explosion	behaves	and	dissolves.

There’s	more…
The	shader	presented	in	this	recipe	makes	a	sphere	look	like	an	explosion.	If	you	really
want	to	use	it,	you	should	couple	it	with	some	scripts	in	order	to	get	the	most	out	of	it.	The
best	thing	to	do	is	to	create	an	explosion	object	and	make	it	into	a	prefab	so	that	you	can
reuse	it	every	time	you	need.	You	can	do	this	by	dragging	the	sphere	back	into	the	Project
window.	Once	it	is	done,	you	can	create	as	many	explosions	as	you	want	using	the
Instantiate()	function.

It	is	worth	noticing,	however,	that	all	the	objects	with	the	same	material	share	the	same
look.	If	you	have	multiple	explosions	at	the	same	time,	they	should	not	use	the	same
material.	When	you	are	instantiating	a	new	explosion,	you	should	also	duplicate	its
material.	You	can	do	this	easily	with	this	piece	of	code:

GameObject	explosion	=	Instantiate(explosionPrefab)	as	GameObject;

Renderer	renderer	=	explosion.GetComponent<Renderer>();

Material	material	=	new	Material(renderer.sharedMaterial);

renderer.material	=	material;

Lastly,	if	you	are	going	to	use	this	shader	in	a	realistic	way,	you	should	attach	a	script	to	it
that	changes	its	size,	_RampOffset,	and	_ClipRange	according	to	the	type	of	explosion
that	you	want	to	recreate.

See	also
Much	more	can	be	done	to	make	explosions	realistic.	The	approach	presented	in	this
recipe	only	creates	an	empty	shell;	inside	it,	the	explosion	is	actually	empty.	An	easy	trick
to	improve	this	is	to	create	particles	inside	it.	However,	you	can	only	go	that	far	with	this.
The	short	movie,	The	Butterfly	Effect	(http://unity3d.com/pages/butterfly)	created	by
Unity	Technologies	in	collaboration	with	Passion	Pictures	and	Nvidia,	is	the	perfect
example.	It	is	based	on	the	same	concept	of	altering	the	geometry	of	a	sphere,	but	it
renders	it	with	a	technique	called	volume	ray	casting.	In	a	nutshell,	it	renders	the
geometry	as	if	it’s	full.	You	can	see	an	example	in	the	following	picture:

If	you	are	looking	for	high-quality	explosions,	check	out	Pyro	Technix
(https://www.assetstore.unity3d.com/en/#!/content/16925)	on	the	Asset	Store.	It	includes
volumetric	explosions	and	couples	them	with	realistic	shockwaves.

http://unity3d.com/pages/butterfly
https://www.assetstore.unity3d.com/en/#!/content/16925

Chapter	6.	Fragment	Shaders	and	Grab
Passes
So	far,	we	have	relied	on	Surface	Shaders.	They	have	been	designed	to	simplify	the	way
shader	coding	works,	providing	meaningful	tools	for	artists.	If	we	want	to	push	our
knowledge	of	shaders	further,	we	need	to	venture	into	the	territory	of	Vertex	and	Fragment
Shaders.

In	this	chapter,	you	will	learn	the	following	recipes:

Understanding	Vertex	and	Fragment	Shaders
Using	grab	pass
Implementing	a	Glass	Shader
Implementing	a	Water	Shader	for	2D	games

Introduction
Compared	to	Surface	Shaders,	Vertex	and	Fragment	Shaders	come	with	little	to	no
information	about	the	physical	properties	that	determine	how	light	reflects	on	surfaces.
What	they	lack	in	expressivity,	they	compensate	with	power:	Vertex	and	Fragment
Shaders	are	not	limited	by	physical	constraints	and	are	perfect	for	non-photorealistic
effects.	This	chapter	will	focus	on	a	technique	called	grab	pass,	which	allows	these
shaders	to	simulate	deformations.

Understanding	Vertex	and	Fragment
Shaders
The	best	way	to	understand	how	Vertex	and	Fragment	Shaders	work	is	by	creating	one
yourself.	This	recipe	will	show	you	how	to	write	one	of	these	shaders,	which	will	simply
apply	a	texture	to	a	model	and	multiply	it	by	a	given	color,	as	shown	in	the	following
image:

The	shader	presented	here	is	very	simple,	and	it	will	be	used	as	a	starting	base	for	all	the
other	Vertex	and	Fragment	Shaders.

Getting	ready
For	this	recipe,	we	will	need	a	new	shader.	Follow	these	steps:

1.	 Create	a	new	shader.
2.	 Create	a	new	material	and	assign	the	shader	to	it.

How	to	do	it…
In	all	the	previous	chapters,	we	have	always	been	able	to	refit	Surface	Shaders.	This	is	not
the	case	anymore	as	Surface	and	Fragment	Shaders	are	structurally	different.	We	will	need
the	following	changes:

1.	 Delete	all	the	properties	of	the	shader,	replacing	them	with	the	following:

_Color	("Color",	Color)	=	(1,0,0,1)	//	Red

_MainTex	("Base	texture",	2D)	=	"white"	{}

2.	 Delete	all	the	code	in	the	SubShader	block	and	replace	it	with	this	one:

Pass	{

				CGPROGRAM

				#pragma	vertex	vert													

				#pragma	fragment	frag

				half4	_Color;

sampler2D	_MainTex;

				struct	vertInput	{

								float4	pos	:	POSITION;

float2	texcoord	:	TEXCOORD0;

				};

				struct	vertOutput	{

								float4	pos	:	SV_POSITION;

float2	texcoord	:	TEXCOORD0;

				};

				vertOutput	vert(vertInput	input)	{

								vertOutput	o;

								o.pos	=	mul(UNITY_MATRIX_MVP,	input.pos);

								o.texcoord	=	input.texcoord;

								return	o;

				}

				half4	frag(vertOutput	output)	:	COLOR{

								half4	mainColour	=	tex2D(_MainTex,	output.texcoord);

								return	mainColour	*	_Color;

}

				

ENDCG

}

This	will	also	be	the	base	for	all	future	Vertex	and	Fragment	Shaders.

How	it	works…
As	the	name	suggests,	Vertex	and	Fragment	Shaders	work	in	two	steps.	The	model	is	first
passed	through	a	vertex	function;	the	result	is	then	inputted	to	a	fragment	function.	Both
these	functions	are	assigned	using	pragma	directives:

#pragma	vertex	vert													

#pragma	fragment	frag

In	this	case,	they	are	simply	called	vert	and	frag.

Conceptually	speaking,	fragments	are	closely	related	to	pixels;	the	term	fragment	is	often
used	to	refer	to	the	collection	of	data	necessary	to	draw	a	pixel.	This	is	also	why	Vertex
and	Fragment	Shaders	are	often	called	Pixel	Shaders.

The	vertex	function	takes	the	input	data	in	a	structure	that	is	defined	as	vertInput	in	the
shader:

struct	vertInput	{

				float4	pos	:	POSITION;

float2	texcoord	:	TEXCOORD0;

};

Its	name	is	totally	arbitrary,	but	its	content	is	not.	Each	field	of	struct	must	be	decorated
with	a	binding	semantic.	This	is	a	feature	of	Cg	that	allows	us	to	mark	variables	so	that
they	will	be	initialized	with	certain	data,	such	as	normal	vectors	and	vertex	position.	The
binding	semantic	POSITION	indicates	that	when	vertInput	is	inputted	to	the	vertex
function,	pos	will	contain	the	position	of	the	current	vertex.	This	is	similar	to	the	vertex
field	of	the	appdata_full	structure	in	a	Surface	Shader.	The	main	difference	is	that	pos	is
represented	in	model	coordinates	(relative	to	the	3D	object),	which	we	need	to	convert	to
view	coordinates	manually	(relative	to	the	position	on	the	screen).

Note
The	vertex	function	in	a	Surface	Shader	is	used	to	alter	the	geometry	of	the	model	only.	In
a	Vertex	and	Fragment	Shader,	instead,	the	vertex	function	is	necessary	to	project	the
coordinates	of	the	model	to	the	screen.

The	mathematics	behind	this	conversion	is	beyond	the	scope	of	this	chapter.	However,	this
transformation	can	be	achieved	by	multiplying	pos	by	a	special	matrix	provided	by	Unity:
UNITY_MATRIX_MVP.	It	is	often	referred	to	as	the	model-view-projection	matrix,	and	it	is
essential	to	find	the	position	of	a	vertex	on	the	screen:

vertOutput	o;

o.pos	=	mul(UNITY_MATRIX_MVP,	input.pos);

The	other	piece	of	information	initialized	is	textcoord,	which	uses	the	TEXCOORD0	binding
semantics	to	get	the	UV	data	of	the	first	texture.	No	further	processing	is	required	and	this
value	can	be	passed	directly	to	the	fragment	function:

o.texcoord	=	input.texcoord;

While	Unity	will	initialise	vertInput	for	us,	we	are	responsible	for	the	initialization	of
vertOutput.	Despite	this,	its	fields	still	need	to	be	decorated	with	binding	semantics:

struct	vertOutput	{

				float4	pos	:	SV_POSITION;

float2	texcoord	:	TEXCOORD0;

};

Once	the	vertex	function	has	initialised	vertOutput,	the	structure	is	passed	to	the
fragment	function.	This	samples	the	main	texture	of	the	model	and	multiplies	it	by	the
color	provided.

As	you	can	see,	the	Vertex	and	Fragment	Shader	has	no	knowledge	of	the	physical
properties	of	the	material;	compared	to	a	Surface	Shader,	it	works	closer	to	the
architecture	of	the	graphics	processing	unit	(GPU).

There’s	more…
One	of	the	most	confusing	aspects	of	Vertex	and	Fragment	Shaders	is	binding	semantics.
There	are	many	others	that	you	can	use	and	their	meaning	depends	on	the	context.

Input	semantics
The	binding	semantics	in	the	following	table	can	be	used	in	vertInput,	which	is	the
structure	that	Unity	provides	to	the	vertex	function.	The	fields	decorated	with	these
semantics	will	be	initialized	automatically:

Binding	semantics Description

POSITION,	SV_POSITION The	position	of	a	vertex	in	world	coordinates	(object	space)

NORMAL The	normal	of	a	vertex,	relative	to	the	world	(not	to	the	camera)

COLOR,	COLOR0,	DIFFUSE,	SV_TARGET The	color	information	stored	in	the	vertex

COLOR1,	SPECULAR The	secondary	color	information	stored	in	the	vertex	(usually	the	specular)

TEXCOORD0,	TEXCOORD1,	…,	TEXCOORDi The	i-th	UV	data	stored	in	the	vertex

Output	semantics
When	binding,	semantics	are	used	in	vertOutput;	they	do	not	automatically	guarantee
that	fields	will	be	initialized.	Quite	the	opposite;	it’s	our	responsibility	to	do	so.	The
compiler	will	make	its	best	to	ensure	that	the	fields	are	initialized	with	the	right	data:

Binding	semantics Description

POSITION,	SV_POSITION,	HPOS
The	position	of	a	vertex	in	camera	coordinates	(clip	space,	from	zero	to	one	for
each	dimension)

COLOR,	COLOR0,	COL0,	COL,

SV_TARGET
The	front	primary	color

COLOR1,	COL1 The	front	secondary	color

TEXCOORD0,	TEXCOORD1,	…,

TEXCOORDi,	TEXi
The	i-th	UV	data	stored	in	the	vertex

WPOS The	position,	in	pixels,	in	the	window	(origin	in	the	lower	left	corner)

If,	for	any	reason,	you	need	a	field	that	will	contain	a	different	type	of	data,	you	can
decorate	it	with	one	of	the	many	TEXCOORD	data	available.	The	compiler	will	not	allow
fields	to	be	left	undecorated.

See	also
You	can	refer	to	the	NVIDIA	Reference	Manual	to	check	the	other	binding	semantics	that
are	available	in	Cg:

http://developer.download.nvidia.com/cg/Cg_3.1/Cg-
3.1_April2012_ReferenceManual.pdf

http://developer.download.nvidia.com/cg/Cg_3.1/Cg-3.1_April2012_ReferenceManual.pdf

Using	grab	pass
In	the	Adding	transparency	to	PBR	recipe	of	Chapter	4,	Creating	Test	Cases	and	Writing
Scenarios	for	Behavior	Driven	Development	in	Symfony,	we	have	seen	how	a	material	can
be	made	transparent.	Even	if	a	transparent	material	can	draw	over	a	scene,	it	cannot
change	what	has	been	drawn	underneath	it.	This	means	that	those	Transparent	Shaders
cannot	create	distortions	such	as	the	ones	typically	seen	in	glass	or	water.	In	order	to
simulate	them,	we	need	to	introduce	another	technique	called	grab	pass.	This	allows	us	to
access	what	has	been	drawn	on	screen	so	far	so	that	a	shader	can	use	it	(or	alter	it)	with	no
restrictions.	To	learn	how	to	use	grab	passes,	we	will	create	a	material	that	grabs	what’s
rendered	behind	it	and	draws	it	again	on	the	screen.	It’s	a	shader	that,	paradoxically,	uses
several	operations	to	show	no	changes	at	all.

Getting	ready
This	recipe	requires	the	following	operations:

1.	 Create	a	shader	that	we	will	initialize	later.
2.	 Create	a	material	to	host	the	shader.
3.	 Attach	the	material	to	a	flat	piece	of	geometry,	such	as	a	quad.	Place	it	in	front	of

some	other	object	so	that	you	cannot	see	through	it.	The	quad	will	appear	transparent
as	soon	as	the	shader	is	complete.

How	to	do	it…
To	use	grab	pass,	you	need	to	follow	these	steps:

1.	 Remove	the	Properties	section;	this	shader	will	not	use	any	of	them.
2.	 In	the	SubShader	section,	add	grab	pass:

GrabPass{		}

3.	 After	the	grab	pass,	we	will	need	to	add	this	extra	pass:

Pass	{

				CGPROGRAM

#pragma	vertex	vert

#pragma	fragment	frag

#include	"UnityCG.cginc"

				sampler2D	_GrabTexture;

				struct	vertInput	{

								float4	vertex	:	POSITION;

				};

				struct	vertOutput	{

								float4	vertex	:	POSITION;

								float4	uvgrab	:	TEXCOORD1;

				};

				//	Vertex	function	

				vertInput	vert(vertexInput	v)	{

								vertexOutput	o;

								o.vertex	=	mul(UNITY_MATRIX_MVP,	v.vertex);

								o.uvgrab	=	ComputeGrabScreenPos(o.vertex);

								return	o;

				}

				//	Fragment	function

				half4	frag(vertexOutput	i)	:	COLOR	{

								fixed4	col	=	tex2Dproj(_GrabTexture,	

UNITY_PROJ_COORD(i.uvgrab));

								return	col	+	half4(0.5,0,0,0);

				}

				ENDCG

}

How	it	works…
This	recipe	not	only	introduces	grab	passes	but	also	Vertex	and	Fragment	Shaders;	for	this
reason,	we	have	to	analyze	the	shader	in	detail.

So	far,	all	the	code	has	always	been	placed	directly	in	the	SubShader	section.	This	is
because	our	previous	shaders	required	only	a	single	pass.	This	time,	two	passes	are
required.	The	first	one	is	the	grab	pass,	which	is	defined	simply	by	GrabPass{}.	The	rest
of	the	code	is	placed	in	the	second	pass,	which	is	contained	in	a	Pass	block.

The	second	pass	is	not	structurally	different	from	the	shader	shown	in	the	first	recipe	of
this	chapter;	we	use	the	vertex	function	vert	to	get	the	position	of	the	vertex	and	then	we
give	it	a	color	in	the	fragment	function	frag.	The	difference	is	that	vert	calculates	another
important	detail:	the	UV	data	for	the	grab	pass.	The	grab	pass	automatically	creates	a
texture	that	can	be	referred	to	as	follows:

sampler2D	_GrabTexture;

In	order	to	sample	this	texture,	we	need	its	UV	data.	The	ComputeGrabScreenPos	function
returns	data	that	we	can	use	later	to	sample	the	grab	texture	correctly.	This	is	done	in	the
Fragment	Shader	using	the	following	line:

fixed4	col	=	tex2Dproj(_GrabTexture,	UNITY_PROJ_COORD(i.uvgrab));

This	is	the	standard	way	in	which	a	texture	is	grabbed	and	applied	to	the	screen	in	its
correct	position.	If	everything	has	been	done	correctly,	this	shader	will	simply	clone	what
has	been	rendered	behind	the	geometry.	We	will	see	in	the	following	recipes	how	this
technique	can	be	used	to	create	materials	such	as	water	and	glass.

There’s	more…
Every	time	you	use	a	material	with	GrabPass	{},	Unity	will	have	to	render	the	screen	to	a
texture.	This	operation	is	very	expensive	and	limits	the	number	of	grab	passes	that	you	can
use	in	a	game.	Cg	offers	a	slightly	different	variation:

GrabPass	{"TextureName"}

This	line	not	only	allows	you	to	give	a	name	to	the	texture,	but	it	also	shares	the	texture
with	all	the	materials	that	have	a	grab	pass	called	TextureName.	This	means	that	if	you
have	ten	materials,	Unity	will	only	do	a	single	grab	pass	and	share	the	texture	to	all	of
them.	The	main	problem	of	this	technique	is	that	it	doesn’t	allow	effects	that	can	be
stacked.	If	you	are	creating	a	glass	with	this	technique,	you	won’t	be	able	to	have	two
glasses	one	after	the	other.

Implementing	a	Glass	Shader
Glass	is	a	very	complicated	material;	it	should	not	be	a	surprise	that	other	chapters	have
already	created	shaders	to	simulate	it	in	the	Adding	transparency	to	PBR	recipe	of	Chapter
4,	Creating	Test	Cases	and	Writing	Scenarios	for	Behavior	Driven	Development	in
Symfony.	However,	there	is	an	effect	that	transparency	cannot	reproduce	deformations.
Most	glasses	are	not	perfect,	hence	they	create	distortions	when	we	look	through	them.
This	recipe	will	teach	you	how	to	do	this.	The	idea	behind	this	effect	is	to	use	a	Vertex	and
Fragment	Shader	with	a	grab	pass,	and	then	sample	the	grab	texture	with	a	little	change	to
its	UV	data	to	create	a	distortion.	You	can	see	the	effect	in	the	following	image,	using	the
glass-stained	textures	from	the	Unity	Standard	Assets:

Getting	ready
The	setup	for	this	recipe	is	similar	to	the	one	presented	in	the	previous	chapter:

1.	 Create	new	Vertex	and	Fragment	Shaders.	You	can	start	by	copying	the	one	used	in
the	previous	recipe,	Using	grab	pass,	as	a	base.

2.	 Create	a	material	that	will	use	the	shader.
3.	 Assign	the	material	to	a	quad	or	another	flat	geometry	that	will	simulate	your	glass.
4.	 Place	some	objects	behind	it	so	that	you	can	see	the	distortion	effect.

How	to	do	it…
Let’s	start	by	editing	the	Vertex	and	Fragment	Shaders:

1.	 Add	these	two	properties	to	the	Properties	block:

_MainTex("Base	(RGB)	Trans	(A)",	2D)	=	"white"	{}

_BumpMap("Noise	text",	2D)	=	"bump"	{}

_Magnitude("Magnitude",	Range(0,1))	=	0.05

2.	 Add	their	variables	in	the	second	pass:

sampler2D	_MainTex;

sampler2D	_BumpMap;

float		_Magnitude;

3.	 Add	the	texture	information	in	the	input	and	output	structures:

float2	texcoord	:	TEXCOORD0;

4.	 Transfer	the	UV	data	from	the	input	to	the	output	structure:

o.texcoord	=	v.texcoord;

5.	 Use	the	following	fragment	function:

half4	frag(vertOutput	i)	:	COLOR	{

								half4	mainColour	=	tex2D(_MainTex,	i.texcoord);

				half4	bump	=	tex2D(_BumpMap,	i.texcoord);

				half2	distortion	=	UnpackNormal(bump).rg;

				i.uvgrab.xy	+=	distortion	*	_Magnitude;

				fixed4	col	=	tex2Dproj(_GrabTexture,	UNITY_PROJ_COORD(i.uvgrab));

				return	col	*	mainColour	*	_Colour;

}

6.	 This	material	is	transparent	so	it	changes	its	tags	in	the	SubShader	block:

Tags{	"Queue"	=	"Transparent"	"IgnoreProjector"	=	"True"	"RenderType"	=	

"Opaque"	}

7.	 What’s	left	now	is	to	set	the	texture	for	the	glass	and	a	normal	map	to	displace	the
grab	texture.

How	it	works…
The	core	that	this	shader	uses	is	a	grab	pass	to	take	what	has	already	been	rendered	on	the
screen.	The	part	where	the	distortion	takes	place	is	in	the	fragment	function.	Here,	a
normal	map	is	unpacked	and	used	to	offset	the	UV	data	of	the	grab	texture:

half4	bump	=	tex2D(_BumpMap,	i.texcoord);

half2	distortion	=	UnpackNormal(bump).rg;

i.uvgrab.xy	+=	distortion	*	_Magnitude;

The	_Magnitude	slide	is	used	to	determine	how	strong	the	effect	is.

There’s	more…
This	effect	is	very	generic;	it	grabs	the	screen	and	creates	a	distortion	based	on	a	normal
map.	There	is	no	reason	why	it	shouldn’t	be	used	to	simulate	more	interesting	things.
Many	games	use	distortions	around	explosions	or	other	sci-fi	devices.	This	material	can	be
applied	to	a	sphere	and,	with	a	different	normal	map,	it	would	simulate	the	heat	wave	of
an	explosion	perfectly.

Implementing	a	Water	Shader	for	2D
games
The	Glass	Shader	introduced	in	the	previous	recipe	is	static;	its	distortion	never	changes.	It
takes	just	a	few	changes	to	convert	it	to	an	animated	material,	making	it	perfect	for	2D
games,	which	feature	water.	This	recipe	uses	a	similar	technique	to	the	one	shown	in
Chapter	5,	Animating	Vertices	in	a	Surface	Shader:

Getting	ready
This	recipe	is	based	on	the	Vertex	and	Fragment	Shaders	described	in	the	Using	grab	pass
recipe	as	it	will	rely	heavily	on	grab	pass.

1.	 Create	a	new	grab	pass	shader;	you	can	write	your	own	or	start	with	the	one
presented	in	the	Using	grab	pass	recipe.

2.	 Create	a	new	material	for	your	shader.
3.	 Assign	the	material	to	a	flat	geometry	that	will	represent	your	2D	water.	In	order	for

this	effect	to	work,	you	should	have	something	rendered	behind	it	so	that	you	can	see
the	water-like	displacement.

4.	 This	recipe	requires	a	noise	texture,	which	is	used	to	get	pseudo-random	values.	It	is
important	that	you	choose	a	seamless	noise	texture,	such	as	the	ones	generated	by
tileable	2D	Perlin	noise,	as	shown	in	the	following	image.	This	ensures	that	when	the
material	is	applied	to	a	large	object,	you	will	not	see	any	discontinuity.	In	order	for
this	effect	to	work,	the	texture	has	to	be	imported	in	the	Repeat	mode.	If	you	want	a
smooth	and	continuous	look	for	your	water,	you	should	also	set	it	to	Bilinear	from
Inspector.	These	settings	ensure	that	the	texture	is	sampled	correctly	from	the
shader:

How	to	do	it…
To	create	this	animated	effect,	you	can	start	by	refitting	the	shader.	Follow	these	steps:

1.	 Add	the	following	properties:

_NoiseTex("Noise	text",	2D)	=	"white"	{}

_Colour	("Colour",	Color)	=	(1,1,1,1)

_Period	("Period",	Range(0,50))	=	1

_Magnitude	("Magnitude",	Range(0,0.5))	=	0.05

_Scale	("Scale",	Range(0,10))	=	1

2.	 Add	their	respective	variables	to	the	second	pass	of	the	shader:

sampler2D	_NoiseTex;				

fixed4	_Colour;

float	_Period;

float	_Magnitude;

float	_Scale;

3.	 Define	the	following	output	structure	for	the	vertex	function:

struct	vertInput	{

				float4	vertex	:	POSITION;

				fixed4	color	:	COLOR;

				float2	texcoord	:	TEXCOORD0;

				float4	worldPos	:	TEXCOORD1;

				float4	uvgrab	:	TEXCOORD2;

};

4.	 This	shader	needs	to	know	the	exact	position	of	the	space	of	every	fragment.	To	do
this,	add	the	following	line	to	the	vertex	function:

o.worldPos	=	mul(_Object2World,	v.vertex);

5.	 Use	the	following	fragment	function:

fixed4	frag	(vertInput	i)	:	COLOR	{

								float	sinT	=	sin(_Time.w	/	_Period);

				float2	distortion	=	float2(

	tex2D(_NoiseTex,	i.worldPos.xy	/	_Scale	+	float2(sinT,	0)).r	-	0.5,

					tex2D(_NoiseTex,	i.worldPos.xy	/	_Scale	+	float2(0,	sinT)).r	-	

0.5

);

				i.uvgrab.xy	+=	distortion	*	_Magnitude;

				fixed4	col	=	tex2Dproj(_GrabTexture,	UNITY_PROJ_COORD(i.uvgrab));

				return	col	*	_Colour;

}

How	it	works…
This	shader	is	very	similar	to	the	one	introduced	in	the	Implementing	a	Glass	Shader
recipe.	The	major	difference	is	that	this	is	an	animated	material;	the	displacement	is	not
generated	from	a	normal	map	but	takes	into	account	the	current	time	in	order	to	create	a
constant	animation.	The	code	that	displaces	the	UV	data	of	the	grab	texture	seems	quite
complicated;	let’s	try	to	understand	how	it	has	been	generated.	The	idea	behind	it	is	that	a
sinusoid	function	is	used	to	make	the	water	oscillate.	This	effect	needs	to	evolve	over
time;	to	achieve	this	effect,	the	distortion	generated	by	the	shader	depends	on	the	current
time	that	is	retrieved	with	the	built-in	variable,	_Time.	The	_Period	variable	determines
the	period	of	the	sinusoid,	which	means	how	fast	the	waves	appear:

float2	distortion	=	float2(sin(_Time.w/_Period),	sin(_Time.w/_Period))	–	

0.5;

The	problem	with	this	code	is	that	you	have	the	same	displacement	on	the	X	and	Y	axes;	as
a	result,	the	entire	grab	texture	will	rotate	in	a	circular	motion,	which	looks	nothing	like
water.	We	obviously	need	to	add	some	randomness	to	this.

The	most	common	way	to	add	random	behaviors	to	shaders	is	by	including	a	noise
texture.	The	problem	now	is	to	find	a	way	to	sample	the	texture	at	seemingly	random
positions.	The	best	way	to	avoid	seeing	an	obvious	sinusoid	pattern	is	to	use	the	sine
waves	as	an	offset	in	the	UV	data	of	the	noise	texture:

float	sinT	=	sin(_Time.w	/	_Period);

float2	distortion	=	float2

(tex2D(_NoiseTex,	i.texcoord	/	_Scale	+	float2(sinT,	0)).r	-	0.5,

				tex2D(_NoiseTex,	i.texcoord	/	_Scale	+	float2(0,	sinT)).r	-	0.5

);

The	_Scale	variable	determines	the	size	of	the	waves.	This	solution	is	closer	to	the	final
version,	but	has	a	severe	issue—if	the	water	quad	moves,	the	UV	data	follows	it	and	you
can	see	the	water	waves	following	the	material	rather	than	being	anchored	to	the
background.	To	solve	this,	we	need	to	use	the	world	position	of	the	current	fragment	as	the
initial	position	for	the	UV	data:

float	sinT	=	sin(_Time.w	/	_Period);

float2	distortion	=	float2

(tex2D(_NoiseTex,	i.worldPos.xy	/	_Scale	+	float2(sinT,	0)).r	-	0.5,

				tex2D(_NoiseTex,	i.worldPos.xy	/	_Scale	+	float2(0,	sinT)).r	-	0.5

);

i.uvgrab.xy	+=	distortion	*	_Magnitude;

The	result	is	a	pleasant,	seamless	distortion,	which	doesn’t	move	in	any	clear	direction.

Note
As	it	happens	with	all	these	special	effects,	there	is	no	perfect	solution.	This	recipe	shows
you	a	technique	to	create	water-like	distortion,	but	you	are	encouraged	to	play	with	it	until
you	find	an	effect	that	fits	the	aesthetics	of	your	game.

Chapter	7.	Mobile	Shader	Adjustment
In	the	next	two	chapters,	we	are	going	to	take	a	look	at	making	the	shaders	that	we	write
performance-friendly	for	different	platforms.	We	won’t	be	talking	about	any	one	platform
specifically,	but	we	are	going	to	break	down	the	elements	of	shaders	we	can	adjust	to
make	them	more	optimized	for	mobiles	and	efficient	on	any	platform	in	general.	These
techniques	range	from	understanding	what	Unity	offers	in	terms	of	built-in	variables	that
reduce	the	overhead	of	the	shaders	memory	to	learning	about	ways	in	which	we	can	make
our	own	shader	code	more	efficient.	This	chapter	will	cover	the	following	recipes:

What	is	a	cheap	shader
Profiling	your	shaders
Modifying	our	shaders	for	mobile

Introduction
Learning	the	art	of	optimizing	your	shaders	will	come	up	in	just	about	any	game	project
that	you	work	on.	There	will	always	come	a	point	in	any	production	where	a	shader	needs
to	be	optimized,	or	maybe	it	needs	to	use	less	textures	but	produce	the	same	effect.	As	a
technical	artist	or	shader	programmer,	you	have	to	understand	these	core	fundamentals	to
optimize	your	shaders	so	that	you	can	increase	the	performance	of	your	game	while	still
achieving	the	same	visual	fidelity.	Having	this	knowledge	can	also	help	in	setting	the	way
in	which	you	write	your	shader	from	the	start.	For	instance,	by	knowing	that	the	game
built	using	your	shader	will	be	played	on	a	mobile	device,	we	can	automatically	set	all	our
lighting	functions	to	use	a	half	vector	as	the	view	direction	or	set	all	of	our	float	variable
types	to	fixed	or	half.	These,	and	many	other	techniques,	all	contribute	to	your	shaders
running	efficiently	on	your	target	hardware.	Let’s	begin	our	journey	and	start	learning	how
to	optimize	our	shaders.

What	is	a	cheap	shader?
When	first	asked	the	question,	what	is	a	cheap	shader,	it	might	be	a	little	tough	to	answer
as	there	are	many	elements	that	go	into	making	a	more	efficient	shader.	It	could	be	the
amount	of	memory	used	up	by	your	variables.	It	could	be	the	amount	of	textures	the
shader	is	using.	It	could	also	be	that	our	shader	is	working	fine,	but	we	can	actually
produce	the	same	visual	effect	with	half	the	amount	of	data	by	reducing	the	amount	of
code	we	are	using	or	data	we	are	creating.	We	are	going	to	explore	a	few	of	these
techniques	in	this	recipe	and	show	how	they	can	be	combined	to	make	your	shader	fast
and	efficient	but	still	produce	the	high-quality	visuals	everyone	expects	from	games	today,
whether	on	a	mobile	or	PC.

Getting	ready
In	order	to	get	this	recipe	started,	we	need	to	gather	a	few	resources	together.	So	let’s
perform	the	following	tasks:

1.	 Create	a	new	scene	and	fill	it	with	a	simple	sphere	object	and	single	directional	light.
2.	 Create	a	new	shader	and	material	and	assign	the	shader	to	the	material.
3.	 We	then	need	to	assign	the	material	we	just	created	to	our	sphere	object	in	our	new

scene.
4.	 Finally,	modify	the	shader	so	that	it	uses	a	diffuse	texture	and	normal	map	and

includes	your	own	custom	lighting	function.	The	following	image	shows	the	result	of
modifying	our	default	shader	that	we	created	in	step	1:

You	should	now	have	a	setup	similar	to	the	following	image.	This	setup	will	allow	us	to

take	a	look	at	some	of	the	basic	concepts	that	go	into	optimizing	shaders	using	Surface
Shaders	in	Unity:

How	to	do	it…
We	are	going	to	build	a	simple	Diffuse	shader	to	take	a	look	at	a	few	ways	in	which	you
can	optimize	your	shaders	in	general.

First,	we’ll	optimize	our	variable	types	so	that	they	use	less	memory	when	they	are
processing	data:

1.	 Let’s	begin	with	the	struct	Input	in	our	shader.	Currently,	our	UVs	are	being	stored
in	a	variable	of	the	float2	type.	We	need	to	change	this	to	use	half2	instead:

2.	 We	can	then	move	to	our	lighting	function	and	reduce	the	variable’s	memory
footprint	by	changing	their	types	to	the	following:

3.	 Finally,	we	can	complete	this	optimization	pass	by	updating	the	variables	in	our
surf()	function:

Now	that	we	have	our	variables	optimized,	we	are	going	to	take	advantage	of	a	built-
in	lighting	function	variable	so	that	we	can	control	how	lights	are	processed	by	this
shader.	By	doing	this,	we	can	greatly	reduce	the	amount	of	lights	the	shader
processes.	Modify	the	#pragma	statement	in	your	shader	with	the	following	code:

We	can	optimize	this	further	by	sharing	UVs	between	the	normal	map	and	diffuse
texture.	To	do	this,	we	simply	change	the	UV	lookup	in	our	UnpackNormal()	function
to	use	_MainTex	UVs	instead	of	the	UVs	of	_NormalMap:

4.	 As	we	have	removed	the	need	for	the	normal	map	UVs,	we	need	to	make	sure	that
we	remove	the	normal	map	UV	code	from	the	Input	struct:

5.	 Finally,	we	can	further	optimize	this	shader	by	telling	the	shader	that	it	only	works
with	certain	renderers:

The	result	of	our	optimization	passes	show	us	that	we	really	don’t	notice	a	difference	in
the	visual	quality,	but	we	have	reduced	the	amount	of	time	it	takes	for	this	shader	to	be
drawn	to	the	screen.	You	will	learn	about	finding	out	how	much	time	it	takes	for	a	shader
to	render	in	the	next	recipe,	but	the	idea	to	focus	on	here	is	that	we	achieve	the	same	result
with	less	data.	So	keep	this	in	mind	when	creating	your	shaders.	The	following	image
shows	us	the	final	result	of	our	shader:

How	it	works…
Now	that	we	have	seen	the	ways	in	which	we	can	optimize	our	shaders,	let’s	dive	in	a	bit
deeper	and	really	understand	why	all	of	these	techniques	are	working	and	look	at	a	couple
of	other	techniques	that	you	can	try	for	yourself.

Let’s	first	focus	our	attention	on	the	size	of	the	data	each	of	our	variables	is	storing	when
we	declare	them.	If	you	are	familiar	with	programming,	then	you	will	understand	that	you
can	declare	values	or	variables	with	different	sizes	of	types.	This	means	that	a	float
actually	has	a	maximum	size	in	memory.	The	following	description	will	describe	these
variable	types	in	much	more	detail:

Float:	A	float	is	a	full	32-bit	precision	value	and	is	the	slowest	of	the	three	different
types	we	see	here.	It	also	has	its	corresponding	values	of	float2,	float3,	and
float4.
Half:	The	half	variable	type	is	a	reduced	16-bit	floating	point	value	and	is	suitable	to
store	UV	values	and	color	values	and	is	much	faster	than	using	a	float	value.	It	has	its
corresponding	values	like	the	float	type,	which	are	half2,	half3,	and	half4.
Fixed:	A	fixed	value	is	the	smallest	in	size	of	the	three	types,	but	can	be	used	for
lighting	calculations	and	colors	and	has	the	corresponding	values	of	fixed2,	fixed3,
and	fixed4.

Our	second	phase	of	optimizing	our	simple	shader	was	to	declare	the	noforwardadd	value
to	our	#pragma	statement.	This	is	basically	a	switch	that	automatically	tells	Unity	that	any
object	with	this	particular	shader	receives	only	per-pixel	light	from	a	single	directional
light.	Any	other	lights	that	are	calculated	by	this	shader	will	be	forced	to	be	processed	as
per-vertex	lights	using	Spherical	Harmonic	values	produced	internally	by	Unity.	This	is
especially	obvious	when	we	place	another	light	in	the	scene	to	light	our	sphere	object
because	our	shader	is	doing	a	per-pixel	operation	using	the	normal	map.

This	is	great,	but	what	if	you	wanted	to	have	a	bunch	of	directional	lights	in	the	scene	and
control	over	which	of	these	lights	is	used	for	the	main	per-pixel	light?	Well,	if	you	notice,
each	light	has	a	Render	Mode	drop-down.	If	you	click	on	this	drop-down,	you	will	see	a
couple	of	flags	that	can	be	set.	These	are	Auto,	Important,	and	Not	Important.	By
selecting	a	light,	you	can	tell	Unity	that	a	light	should	be	considered	more	as	a	per-pixel
light	than	a	per-vertex	light,	by	setting	its	render	mode	to	Important	and	vice	versa.	If
you	leave	a	light	set	to	Auto,	then	you	will	let	Unity	decide	the	best	course	of	action.

Place	another	light	in	your	scene	and	remove	the	texture	that	is	currently	in	the	main
texture	for	our	shader.	You	will	notice	that	the	second	point	light	does	not	react	with	the
normal	map,	only	the	directional	light	that	we	created	first.	The	concept	here	is	that	you
save	on	per-pixel	operations	by	just	calculating	all	extra	lights	as	vertex	lights,	and	save
performance	by	just	calculating	the	main	directional	light	as	a	per-pixel	light.	The
following	image	visually	demonstrates	this	concept	as	the	point	light	is	not	reacting	with
the	normal	map:

Finally,	we	did	a	bit	of	cleaning	up	and	simply	told	the	normal	map	texture	to	use	the	main
texture’s	UV	values,	and	we	got	rid	of	the	line	of	code	that	pulled	in	a	separate	set	of	UV
values	specifically	for	the	normal	map.	This	is	always	a	nice	way	to	simplify	your	code
and	clean	up	any	unwanted	data.

We	also	declared	exclude_pass:	prepass	in	our	#pragma	statement	so	that	this	shader
wouldn’t	accept	any	custom	lighting	from	the	deferred	renderer.	This	means	that	we	can
really	use	this	shader	effectively	in	the	forward	renderer	only,	which	is	set	in	the	main
camera’s	settings.

By	taking	a	bit	of	time,	you	will	be	amazed	at	how	much	a	shader	can	be	optimized.	You
have	seen	how	we	can	pack	grayscale	textures	into	a	single	RGBA	texture	as	well	as	use
lookup	textures	to	fake	lighting.	There	are	many	ways	in	which	a	shader	can	be	optimized,
which	is	why	it	is	always	an	ambiguous	question	to	ask	in	the	first	place,	but	knowing
these	different	optimization	techniques,	you	can	cater	your	shaders	to	your	game	and
target	platform,	ultimately	resulting	in	very	streamlined	shaders	and	a	nice	steady
framerate.

Profiling	your	shaders
Now	that	we	know	how	we	can	reduce	the	overhead	that	our	shaders	might	take,	let’s	take
a	look	at	how	to	find	problematic	shaders	in	a	scene	where	you	might	have	a	lot	of	shaders
or	a	ton	of	objects,	shaders,	and	scripts,	all	running	at	the	same	time.	To	find	a	single
object	or	shader	among	a	whole	game	can	be	quite	daunting,	but	Unity	provides	us	with	its
built-in	Profiler.	This	allows	us	to	actually	see,	on	a	frame-by-frame	basis,	what	is
happening	in	the	game	and	each	item	being	used	by	the	GPU	and	CPU.

Using	the	Profiler,	we	can	isolate	items	such	as	shaders,	geometry,	and	general	rendering
items	using	its	interface	to	create	blocks	of	profiling	jobs.	We	can	filter	out	items	till	we
are	looking	at	the	performance	of	just	a	single	object.	This	then	lets	us	see	the	effects	on
the	CPU	and	GPU	that	the	object	has	while	it	is	performing	its	functions	at	runtime.

Let’s	take	a	look	through	the	different	sections	of	the	Profiler	and	learn	how	to	debug	our
scenes	and,	most	importantly,	our	shaders.

Getting	ready
Let’s	use	our	Profiler	by	getting	a	few	assets	ready	and	launching	the	Profiler	window:

1.	 Let’s	use	the	scene	from	the	last	recipe	and	launch	the	Unity	Profiler	from
Window|Profiler	or	Ctrl	+	7.

2.	 Let’s	also	duplicate	our	sphere	a	couple	more	times	to	see	how	that	affects	our
rendering.

You	should	see	something	similar	to	the	following	image:

How	to	do	it…
To	use	the	Profiler,	we	will	take	a	look	at	some	of	the	UI	elements	of	this	window.	Before
we	hit	play,	let’s	take	a	look	at	how	to	get	the	information	we	need	from	the	profiler:

1.	 First,	click	on	the	larger	blocks	in	the	Profiler	window	called	GPU	Usage,	CPU
Usage,	and	Rendering.	You	will	find	these	blocks	on	the	left-hand	side	of	the	upper
window:

Using	these	blocks,	we	can	see	different	data	specific	to	those	major	functions	of	our
game.	The	CPU	Usage	is	showing	us	what	most	of	our	scripts	are	doing	as	well	as
physics	and	overall	rendering.	The	GPU	Usage	block	is	giving	us	detailed
information	about	the	elements	that	are	specific	to	our	lighting,	shadows,	and	render
queues.	Finally,	the	Rendering	block	is	giving	us	information	about	the	drawcalls
and	amount	of	geometry	we	have	in	our	scene	at	any	one	frame.

By	clicking	on	each	of	these	blocks,	we	can	isolate	the	type	of	data	we	see	during	our
profiling	session.

2.	 Now,	click	on	the	tiny	colored	blocks	in	one	of	these	Profile	blocks	and	hit	play	or
Ctrl	+	P	to	run	the	scene.

This	lets	us	dive	down	even	deeper	into	our	profiling	session	so	that	we	can	filter	out
what	is	being	reported	back	for	us.	While	the	scene	is	running,	uncheck	all	of	the
boxes,	except	for	Opaque	in	the	GPU	Usage	block.	Notice	that	we	can	now	see	just
how	much	time	is	being	used	to	render	the	objects	that	are	set	to	the	Render	Queue	of

Opaque:

3.	 Another	great	function	of	the	Profiler	window	is	the	action	of	clicking	and	dragging
in	the	graph	view.	This	will	automatically	pause	your	game	so	that	you	can	further
analyze	a	certain	spike	in	the	graph	to	find	out	exactly	which	item	is	causing	the
performance	problem.	Click	and	drag	around	in	the	graph	view	to	pause	the	game
and	see	the	effect	of	using	this	functionality:

4.	 Turning	our	attention	now	towards	the	lower	half	of	the	Profiler	window,	you	will
notice	that	there	is	a	drop-down	item	available	when	we	have	the	GPU	Block
selected.	We	can	expand	this	to	get	even	more	detailed	information	about	the	current
active	profiling	session	and,	in	this	case,	more	information	about	what	the	camera	is
currently	rendering	and	how	much	time	it	is	taking	up:

This	gives	us	a	complete	look	at	the	inner	workings	of	what	Unity	is	processing	in
this	particular	frame.	In	this	case,	we	can	see	that	our	three	spheres	with	our
optimized	shader	are	taking	roughly	0.14	milliseconds	to	draw	to	the	screen,	they	are
taking	up	seven	drawcalls,	and	this	process	is	taking	3.1	percent	of	the	GPU’s	time	in
every	frame.	It’s	this	type	of	information	we	can	use	to	diagnose	and	solve
performance	issues	with	regard	to	shaders.	Let’s	conduct	a	test	to	see	the	effects	of
adding	one	more	texture	to	our	shader	and	blending	two	diffuse	textures	together
using	a	lerp	function.	You	will	see	the	effects	in	the	profiler	pretty	clearly.

5.	 Modify	the	Properties	block	of	your	shader	with	the	following	code	to	give	us
another	texture	to	use:

6.	 Then	let’s	feed	our	texture	to	CGPROGRAM:

7.	 Now	it’s	time	to	update	our	surf()	function	accordingly	so	that	we	blend	our	texture
diffuse	textures	together:

Once	you	save	your	modifications	in	your	shader	and	return	to	Unity’s	editor,	we	can	run
our	game	and	see	the	increase	in	milliseconds	of	our	new	shader.	Press	play	once	you	have
returned	to	Unity	and	let’s	take	a	look	at	the	results	in	our	profiler:

You	can	see	now	that	the	amount	of	time	to	render	our	Opaque	Shaders	in	this	scene	is
taking	0.179	milliseconds,	up	from	0.140	milliseconds.	By	adding	another	texture	and
using	the	lerp()	function,	we	increased	the	render	time	for	our	spheres.	While	it’s	a	small

change,	imagine	having	20	shaders	all	working	in	different	ways	on	different	objects.

Using	the	information	given	here,	you	can	pinpoint	areas	that	are	causing	performance
decreases	more	quickly	and	solve	these	issues	using	the	techniques	from	the	previous
recipe.

How	it	works…
While	it’s	completely	out	of	scope	of	this	book	to	describe	how	this	tool	actually	works
internally,	we	can	surmise	that	Unity	has	given	us	a	way	to	view	the	computer’s
performance	while	our	game	is	running.	Basically,	this	window	is	tied	very	tightly	to	the
CPU	and	GPU	to	give	us	real-time	feedback	of	how	much	time	is	being	taken	for	each	of
our	scripts,	objects,	and	render	queues.	Using	this	information,	we	have	seen	that	we	can
track	the	efficiency	of	our	shader	writing	to	eliminate	problematic	areas	and	code.

There’s	more…
It	is	also	possible	to	profile	specifically	for	mobile	platforms.	Unity	provides	us	with	a
couple	of	extra	features	when	the	Android	or	IOS	build	target	is	set	in	the	Build	Settings.
We	can	actually	get	real-time	information	from	our	mobile	devices	while	the	game	is
running.	This	becomes	very	useful	because	you	are	able	to	profile	directly	on	the	device
itself	instead	of	profiling	directly	in	your	editor.	To	find	out	more	about	this	process,	refer
to	Unity’s	documentation	at	the	following	link:

http://docs.unity3d.com/Documentation/Manual/MobileProfiling.html

http://docs.unity3d.com/Documentation/Manual/MobileProfiling.html

Modifying	our	shaders	for	mobile
Now	that	we	have	seen	quite	a	broad	set	of	techniques	to	make	really	optimized	shaders,
let’s	take	a	look	at	writing	a	nice,	high-quality	shader	targeted	for	a	mobile	device.	It	is
actually	quite	easy	to	make	a	few	adjustments	to	the	shaders	we	have	written	so	that	they
run	faster	on	a	mobile	device.	This	includes	elements	such	as	using	the	approxview	or
halfasview	lighting	function	variables.	We	can	also	reduce	the	amount	of	textures	we
need	and	even	apply	better	compression	for	the	textures	we	are	using.	By	the	end	of	this
recipe,	we	will	have	a	nicely	optimized	normal-mapped,	Specular	shader	for	use	in	our
mobile	games.

Getting	ready
Before	we	begin,	let’s	get	a	fresh	new	scene	and	fill	it	with	some	objects	to	apply	our
Mobile	shader:

1.	 Create	a	new	scene	and	fill	it	with	a	default	sphere	and	single	directional	light.
2.	 Create	a	new	material	and	shader,	and	assign	the	shader	to	the	material.
3.	 Finally,	assign	the	material	to	our	sphere	object	in	our	scene.

When	completed,	you	should	have	a	scene	similar	to	the	one	in	the	following	image:

How	to	do	it…
For	this	recipe,	we	will	write	a	mobile-friendly	shader	from	scratch	and	discuss	the
elements	that	make	it	more	mobile-friendly:

1.	 Let’s	first	populate	our	Properties	block	with	the	needed	textures.	In	this	case,	we
are	going	to	use	a	single	Diffuse	texture	with	the	gloss	map	in	its	alpha	channel,
normal	map,	and	slider	for	specular	intensity:

2.	 Our	next	task	is	to	set	up	our	#pragma	declarations.	This	will	simply	turn	certain
features	of	the	Surface	Shader	on	and	off,	ultimately	making	the	shader	cheaper	or
more	expensive:

3.	 We	then	need	to	make	the	connection	between	our	Properties	block	and	CGPROGRAM.
This	time,	we	are	going	to	use	the	fixed	variable	type	for	our	specular	intensity	slider
to	reduce	its	memory	usage:

4.	 In	order	for	us	to	map	our	textures	to	the	surface	of	our	object,	we	need	to	get	some
UVs.	In	this	case,	we	are	going	to	get	only	one	set	of	UVs	to	keep	the	amount	of	data
in	our	shader	down	to	a	minimum:

5.	 The	next	step	is	to	fill	in	our	lighting	function	using	a	few	new	input	variables	that
are	available	to	us	using	the	new	#pragma	declarations:

6.	 Finally,	we	complete	the	shader	by	creating	the	surf()	function	and	processing	the
final	color	of	our	surface:

When	completed	with	the	code	portion	of	this	recipe,	save	your	shader	and	return	to	the
Unity	editor	to	let	the	shader	compile.	If	no	errors	occurred,	you	should	see	a	result	similar
to	the	following	image:

How	it	works…
So,	let’s	begin	the	description	of	this	shader	by	explaining	what	it	does	and	doesn’t	do.
First,	it	excludes	the	deferred	lighting	pass.	This	means	that	if	you	created	a	lighting
function	that	was	connected	to	the	deferred	renderer’s	prepass,	it	wouldn’t	use	that
particular	lighting	function	and	would	look	for	the	default	lighting	function	like	the	ones
that	we	have	been	creating	thus	far	in	this	book.

This	particular	shader	does	not	support	Lightmapping	by	Unity’s	internal	light-mapping
system.	This	just	keeps	the	shader	from	trying	to	find	light	maps	for	the	object	that	the
shader	is	attached	to,	making	the	shader	more	performance	friendly	because	it	is	not
having	to	perform	the	lightmapping	check.

We	included	the	noforwardadd	declaration	so	that	we	process	only	per-pixel	textures	with
a	single	directional	light.	All	other	lights	are	forced	to	become	per-vertex	lights	and	will
not	be	included	in	any	per-pixel	operations	you	might	do	in	the	surf()	function.

Finally,	we	are	using	the	halfasview	declaration	to	tell	Unity	that	we	aren’t	going	to	use
the	main	viewDir	parameter	found	in	a	normal	lighting	function.	Instead,	we	are	going	to
use	the	half	vector	as	the	view	direction	and	process	our	specular	with	this.	This	becomes
much	faster	for	the	shader	to	process	as	it	will	be	done	on	a	per-vertex	basis.	It	isn’t
completely	accurate	when	it	comes	to	simulating	specular	in	the	real	world,	but	visually
on	a	mobile	device,	it	looks	just	fine	and	the	shader	is	more	optimized.

Its	techniques	like	these	that	make	a	shader	more	efficient	and	cleaner,	codewise.	Always
make	sure	that	you	are	using	only	the	data	you	need	while	weighing	this	against	your
target	hardware	and	the	visual	quality	that	the	game	requires.	In	the	end,	it	becomes	a
cocktail	of	these	techniques	that	ultimately	make	up	your	shaders	for	your	games.

Chapter	8.	Screen	Effects	with	Unity
Render	Textures
In	this	chapter,	you	will	learn	the	following	recipes:

Setting	up	the	screen	effects	script	system
Using	brightness,	saturation,	and	contrast	with	screen	effects
Using	basic	Photoshop-like	Blend	modes	with	screen	effects
Using	the	Overlay	Blend	mode	with	screen	effects

Introduction
One	of	the	most	impressive	aspects	of	learning	to	write	shaders	is	the	process	of	creating
your	own	screen	effects,	also	known	as	post	effects.	With	these	screen	effects,	we	can
create	stunning	real-time	images	with	Bloom,	Motion	Blur,	HDR	effects,	and	so	on.	Most
modern	games	out	in	the	market	today	make	heavy	use	of	these	Screen	effects	for	their
depth	of	field	effects,	bloom	effects,	and	even	color	correction	effects.

Throughout	this	chapter,	you	will	learn	how	to	build	up	the	script	system	that	gives	us	the
control	to	create	these	screen	effects.	We	will	cover	Render	Textures,	what	the	depth
buffer	is,	and	how	to	create	effects	that	give	you	Photoshop-like	control	over	the	final
rendered	image	of	your	game.	By	utilizing	screen	effects	for	your	games,	you	not	only
round	out	your	shader	writing	knowledge,	but	you	will	also	have	the	power	to	create	your
own	incredible	real-time	renders	with	Unity.

Setting	up	the	screen	effects	script	system
The	process	of	creating	screen	effects	is	one	in	which	we	grab	a	fullscreen	image	(or
texture),	use	a	shader	to	process	its	pixels	on	the	GPU,	and	then	send	it	back	to	Unity’s
renderer	to	apply	it	to	the	whole	rendered	image	of	the	game.	This	allows	us	to	perform
per-pixel	operations	on	the	rendered	image	of	the	game	in	real	time,	giving	us	a	more
global	artistic	control.

Imagine	if	you	had	to	go	through	and	adjust	each	material	on	each	object	in	your	game	to
just	adjust	the	contrast	of	the	final	look	of	your	game.	While	not	impossible,	this	would
take	a	bit	of	labor	to	perform.	By	utilizing	a	screen	effect,	we	can	adjust	the	screen’s	final
look	as	a	whole,	thereby	giving	us	a	more	Photoshop-like	control	over	our	game’s	final
appearance.

In	order	to	get	a	Screen	effect	system	up	and	running,	we	have	to	set	up	a	single	script	to
act	as	the	courier	of	the	game’s	current	rendered	image	or,	what	Unity	calls,	the	Render
Texture.	By	utilizing	this	script	to	pass	the	Render	Texture	to	a	shader,	we	can	create	a
flexible	system	to	create	screen	effects.	For	our	first	screen	effect,	we	are	going	to	create	a
very	simple	grayscale	effect,	where	we	can	make	our	game	look	black	and	white.	Let’s
take	a	look	at	how	this	is	done.

Getting	ready
In	order	to	get	our	Screen	Effects	system	up	and	running,	we	need	to	create	a	few	assets
for	our	current	Unity	project.	By	doing	this,	we	will	set	ourselves	up	for	the	steps	in	the
following	sections:

1.	 In	the	current	project,	we	need	to	create	a	new	C#	script	and	call	it
TestRenderImage.cs.

2.	 Create	a	new	shader	and	call	it	ImageEffect.shader.
3.	 Create	a	simple	sphere	in	the	scene	and	assign	it	a	new	material.	This	new	material

can	be	anything,	but	for	our	example,	we	will	make	a	simple	red,	specular	material.
4.	 Finally,	create	a	new	directional	light	and	save	the	scene.

With	all	of	our	assets	ready,	you	should	have	a	simple	scene	setup,	which	looks	similar	to
the	following	image:

How	to	do	it…
In	order	to	make	our	grayscale	screen	effect	work,	we	need	a	script	and	shader.	So,	we	will
complete	these	two	new	items	here	and	fill	them	in	with	the	appropriate	code	to	produce
our	first	screen	effect.	Our	first	task	is	to	complete	the	C#	script.	This	will	get	the	whole
system	running.	After	this,	we	will	complete	the	shader	and	see	the	results	of	our	Screen
Effect.	Let’s	complete	our	script	and	shader	with	the	following	steps:

1.	 Open	the	TestRenderImage.cs	C#	script	and	let’s	begin	by	entering	a	few	variables
that	we	will	need	to	store	important	objects	and	data.	Enter	the	following	code	at	the
very	top	of	the	TestRenderImage	class:

2.	 In	order	for	us	to	edit	the	Screen	Effect	in	real	time,	when	the	Unity	editor	isn’t
playing,	we	need	to	enter	the	following	line	of	code	just	above	the	declaration	of	the
TestRenderImage	class:

3.	 As	our	Screen	Effect	is	using	a	shader	to	perform	the	pixel	operations	on	our	Screen
image,	we	have	to	create	a	material	to	run	the	shader.	Without	this,	we	can’t	access
the	properties	of	the	shader.	For	this,	we	will	create	a	C#	property	to	check	for	a
material,	and	create	one	if	it	doesn’t	find	one.	Enter	the	following	code	just	after	the
declaration	of	the	variables	from	step	1:

4.	 We	now	want	to	set	up	some	checks	in	our	script	to	see	if	the	current	target	platform
that	we	are	building	the	Unity	game	on	actually	supports	image	effects.	If	it	doesn’t
find	anything	at	the	start	of	this	script,	then	the	script	will	disable	itself:

5.	 To	actually	grab	the	Rendered	Image	from	the	Unity	Renderer,	we	need	to	make	use
of	the	following	built-in	function	that	Unity	provides	us,	called	OnRenderImage().
Enter	the	following	code	so	that	we	can	have	access	to	the	current	Render	Texture:

6.	 Our	Screen	effect	has	a	variable	called	grayScaleAmount	with	which	we	can	control
how	much	grayscale	we	want	for	our	final	Screen	Effect.	So,	in	this	case,	we	need	to
make	the	value	go	from	0	–	1,	where	0	is	no	grayscale	effect	and	1	is	full	grayscale
effect.	We	will	perform	this	operation	in	the	Update()	function	so	that	it	sets	every
frame	this	script	is	running:

7.	 Finally,	we	complete	our	script	by	doing	a	little	bit	of	clean	up	on	objects	we	created
when	the	script	started:

At	this	point,	we	can	now	apply	this	script	to	the	camera,	if	it	compiled	without
errors,	in	Unity.	Let’s	apply	the	TestRenderImage.cs	script	to	our	main	camera	in
our	scene.	You	should	see	the	grayScaleAmount	value	and	a	field	for	a	shader,	but	the
script	throws	an	error	to	the	console	window.	It	says	that	it	is	missing	an	instance	to
an	object	and	so	won’t	process	appropriately.	If	you	recall	from	step	4,	we	are	doing
some	checks	to	see	whether	we	have	a	shader	and	the	current	platform	supports	the
shader.	As	we	haven’t	given	the	Screen	Effect	script	a	shader	to	work	with,	then	the
curShader	variable	is	just	null,	which	throws	the	error.	Let’s	continue	our	Screen
Effects	system	by	completing	the	shader.

8.	 To	begin	our	shader,	we	will	populate	our	properties	with	some	variables	so	that	we
can	send	data	to	this	shader:

9.	 Our	shader	is	now	going	to	utilize	pure	CG	shader	code	instead	of	utilizing	Unity’s
built-in	Surface	Shader	code.	This	will	make	our	Screen	Effect	more	optimized	as	we
need	to	work	only	with	the	pixels	of	the	Render	Texture.	So,	we	will	create	a	new
Pass	block	in	our	shader	and	fill	it	with	some	new	#pragma	statements	that	we
haven’t	seen	before:

10.	 In	order	to	access	the	data	being	sent	to	the	shader	from	the	Unity	editor,	we	need	to
create	the	corresponding	variables	in	our	CGPROGRAM:

11.	 Finally,	all	we	need	to	do	is	set	up	our	pixel	function,	in	this	case,	called	frag().	This
is	where	the	meat	of	the	Screen	Effect	is.	This	function	will	process	each	pixel	of	the
Render	Texture	and	return	a	new	image	to	our	TestRenderImage.cs	script:

Once	the	shader	is	complete,	return	to	Unity	and	let	it	compile	to	see	if	any	errors
occurred.	If	not,	assign	the	new	shader	to	the	TestRenderImage.cs	script	and	change	the
value	of	the	grayscale	amount	variable.	You	should	see	the	game	view	go	from	a	colored
version	of	the	game	to	a	grayscale	version	of	the	game.	The	following	image	demonstrates
this	Screen	Effect:

With	this	complete,	we	now	have	an	easy	way	to	test	out	new	Screen	Effect	shaders
without	having	to	write	our	whole	Screen	Effect	system	over	and	over	again.	Let’s	dive	in
a	little	deeper	and	learn	about	what’s	going	on	with	the	Render	Texture	and	how	it	is
processed	throughout	its	existence.

How	it	works…
To	get	a	screen	effect	up	and	running	inside	of	Unity,	we	need	to	create	a	script	and
shader.	The	script	drives	the	real-time	update	in	the	editor	and	is	also	responsible	for
capturing	the	Render	Texture	from	the	main	camera	and	passing	it	to	the	shader.	Once	the
render	texture	gets	to	the	shader,	we	can	use	the	shader	to	perform	per-pixel	operations.

At	the	start	of	the	script,	we	perform	a	few	checks	to	make	sure	that	the	current	selected
build	platform	actually	supports	screen	effects	and	the	shader	itself.	There	are	instances
where	a	current	platform	will	not	support	Screen	Effects	or	the	shader	that	we	are	using.
So	the	checks	that	we	do	in	the	Start()	function	make	sure	we	don’t	get	any	errors	if	the
platform	doesn’t	support	the	screen	system.

Once	the	script	passes	these	checks,	we	initiate	the	Screen	Effects	system	by	calling	the
built-in	function,	OnRenderImage().	This	function	is	responsible	for	grabbing	the
renderTexture,	giving	it	to	the	shader	using	the	Graphics.Blit()	function,	and	returning
the	processed	image	to	the	Unity	renderer.	You	can	find	more	information	on	these	two
functions	at	the	following	URLs:

OnRenderImage:http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.OnRenderImage.html
Graphics.Blit:http://docs.unity3d.com/Documentation/ScriptReference/Graphics.Blit.html

Once	the	current	render	texture	reaches	the	shader,	the	shader	takes	it,	processes	it	through
the	frag()	function,	and	returns	the	final	color	for	each	pixel.

You	can	see	how	powerful	this	becomes	as	it	gives	us	Photoshop-like	control	over	the
final	rendered	image	of	our	game.	These	screen	effects	work	sequentially	like	Photoshop
layers	in	the	camera.	When	you	place	these	screen	effects	one	after	the	other,	they	will	be
processed	in	that	order.	These	are	just	the	bare	bones	steps	to	get	a	screen	effect	working,
but	it	is	the	core	of	how	the	screen	effects	system	works.

http://docs.unity3d.com/Documentation/ScriptReference/MonoBehaviour.OnRenderImage.html
http://docs.unity3d.com/Documentation/ScriptReference/Graphics.Blit.html

There’s	more…
Now	that	we	have	our	simple	Screen	Effect	system	up	and	running,	let’s	take	a	look	at
some	of	the	other	useful	information	we	can	obtain	from	Unity’s	renderer:

We	can	actually	get	the	depth	of	everything	in	our	current	game	by	turning	on	Unity’s
built-in	Depth	mode.	Once	this	is	turned	on,	we	can	use	the	depth	information	for	a	ton	of
different	effects.	Let’s	take	a	look	at	how	this	is	done:

1.	 Create	a	new	shader	and	call	it	SceneDepth_Effect.	Then	double-click	on	this	shader
to	open	it	in	the	MonoDevelop	editor.

2.	 We	will	create	the	Main	Texture	property	and	a	property	to	control	the	power	of	the
scene	depth	effect.	Enter	the	following	code	in	your	shader:

3.	 Now	we	need	to	create	the	corresponding	variables	in	our	CGPROGRAM.	We	are	going
to	add	one	more	variable	called	_CameraDepthTexture.	This	is	a	built-in	variable	that
Unity	has	provided	us	with	through	the	use	of	the	UnityCG	cginclude	file.	It	gives
us	the	depth	information	from	the	camera:

4.	 We	will	complete	our	depth	shader	by	utilizing	a	couple	of	built-in	functions	that
Unity	provides	us	with,	the	UNITY_SAMPLE_DEPTH()	and	linear01Depth()	functions.
The	first	function	actually	gets	the	depth	information	from	our	_CameraDepthTexture
and	produces	a	single	float	value	for	each	pixel.	The	Linear01Depth()	function	then
makes	sure	that	the	values	are	within	the	0-1	range	by	taking	this	final	depth	value	to
a	power	we	can	control,	where	the	mid-value	on	the	0-1	range	sits	in	the	scene	based
off	of	the	camera	position:

5.	 With	our	shader	complete,	let’s	turn	our	attention	to	our	Screen	Effects	script.	We
need	to	add	the	depthPower	variable	to	the	script	so	that	we	can	let	users	change	the
value	in	the	editor:

6.	 Our	OnRenderImage()	function	then	needs	to	be	updated	so	that	it	is	passing	the	right
value	to	our	shader:

7.	 To	complete	our	depth	Screen	effect,	we	need	to	tell	Unity	to	turn	on	the	depth
rendering	in	the	current	camera.	This	is	done	by	simply	setting	the	main	camera’s
depthTextureMode:

With	all	the	code	set	up,	save	your	script	and	shader	and	return	to	Unity	to	let	them	both
compile.	If	no	errors	are	encountered,	you	should	see	a	result	similar	to	the	following
image:

Using	brightness,	saturation,	and	contrast
with	screen	effects
Now	that	we	have	our	screen	effects	system	up	and	running,	we	can	explore	how	to	create
more	involved	pixel	operations	to	perform	some	of	the	more	common	Screen	Effects
found	in	games	today.

To	begin,	using	a	screen	effect	to	adjust	the	overall	final	colors	of	your	game	is	crucial	in
giving	artists	a	global	control	over	the	final	look	of	the	game.	Techniques	such	as	color
adjustment	sliders	to	adjust	the	intensity	for	the	reds,	blues,	and	greens	of	the	final
rendered	game	or	techniques	like	putting	a	certain	tone	of	color	over	the	whole	screen	as
seen	in	something	like	a	sepia	film	effect.

For	this	particular	recipe,	we	are	going	to	cover	some	of	the	more	core	color	adjustment
operations	we	can	perform	on	an	image.	These	are	brightness,	saturation,	and	contrast.
Learning	how	to	code	these	color	adjustments	gives	us	a	nice	base	to	learn	the	art	of
screen	effects.

Getting	ready
We	will	need	to	create	a	couple	of	new	assets.	We	can	utilize	the	same	scene	as	our	test
scene,	but	we	will	need	a	new	script	and	shader:

1.	 Create	a	new	script	and	call	it	BSC_ImageEffect.
2.	 Create	a	new	shader	called	BSC_Effect.
3.	 Now	we	simply	need	to	copy	the	code	we	had	from	the	C#	script	in	the	previous

recipe	to	our	new	C#	script.	This	will	allow	us	to	focus	just	on	the	mathematics	for
the	brightness,	saturation,	and	contrast	effect.

4.	 Copy	the	code	from	the	shader	in	the	previous	recipe	to	our	new	shader.
5.	 Create	a	couple	of	new	objects	in	the	scene,	set	up	some	different	colored	diffuse

materials,	and	randomly	assign	them	to	the	new	objects	in	the	scene.	This	will	give	us
a	good	range	of	colors	to	test	with	our	new	screen	effect.

When	completed,	you	should	have	a	scene	similar	to	the	following	image:

How	to	do	it…
Now	that	we	have	completed	our	scene	setup	and	created	our	new	script	and	shader,	we
can	begin	to	fill	in	the	code	necessary	to	achieve	the	brightness,	saturation,	and	contrast
Screen	Effect.	We	will	be	focusing	on	just	the	pixel	operation	and	variable	setup	for	our
script	and	shader,	as	getting	a	Screen	Effect	system	up	and	running	is	described	in	the
Setting	up	the	screen	effects	script	system	recipe:

1.	 Let’s	begin	by	launching	our	new	shader	and	script	in	MonoDevelop.	Simply	double-
click	on	the	two	files	in	the	project	view	to	perform	this	action.

2.	 Editing	the	shader	first	makes	more	sense	so	that	we	know	what	kind	of	variables	we
will	need	for	our	C#	script.	Let’s	begin	this	by	entering	the	appropriate	properties	for
our	brightness,	saturation,	and	contrast	effect.	Remember,	we	need	to	keep	the
_MainTex	property	in	our	shader	as	this	is	the	property	that	the	RenderTexture	targets
when	creating	Screen	Effects:

3.	 As	usual,	in	order	for	us	to	access	the	data	coming	in	from	our	properties	in	our
CGPROGRAM,	we	need	to	create	the	corresponding	variables	in	the	CGPROGRAM:

4.	 Now	we	need	to	create	the	operations	that	will	perform	the	brightness,	saturation,	and
contrast	effects.	Enter	the	following	new	function	in	our	shader,	just	above	the
frag()	function.	Don’t	worry	if	it	doesn’t	make	sense	just	yet;	all	the	code	will	be
explained	in	the	next	recipe:

5.	 Finally,	we	just	need	to	update	our	frag()	function	to	actually	use	the
ContrastSaturationBrightness()	function.	This	will	process	all	the	pixels	of	our
Render	Texture	and	pass	it	back	to	our	script:

With	the	code	entered	in	the	shader,	return	to	the	Unity	editor	to	let	the	new	shader
compile.	If	there	are	no	errors,	we	can	return	to	MonoDevelop	to	work	on	our	script.	Let’s
begin	this	by	creating	a	couple	of	new	lines	of	code	that	will	send	the	proper	data	to	our
shader:

1.	 Our	first	step	in	modifying	our	script	is	to	add	the	proper	variables	that	will	drive	the
values	of	our	Screen	Effect.	In	this	case,	we	will	need	a	slider	for	brightness,	a	slider
for	saturation,	and	a	slider	for	contrast:

2.	 With	our	variables	set	up,	we	now	need	to	tell	the	script	to	pass	their	data	to	the
shader.	We	do	this	in	the	OnRenderImage()	function:

3.	 Finally,	all	we	need	to	do	is	clamp	the	values	of	the	variables	within	a	range	that	is
reasonable.	These	clamp	values	are	entirely	preferential,	so	you	can	use	whichever
values	you	see	fit:

With	the	script	completed	and	shader	finished,	we	simply	assign	our	script	to	our	main
camera	and	our	shader	to	the	script,	and	you	should	see	the	effects	of	brightness,
saturation,	and	contrast	by	manipulating	the	slider	values.	The	following	image	shows	a
result	you	can	achieve	with	this	screen	effect:

The	following	image	shows	another	example	of	what	can	be	done	by	adjusting	the	colors
of	the	render	image:

How	it	works…
Since	we	now	know	how	the	basic	Screen	Effects	system	works,	let’s	just	cover	the	per-
pixel	operations	we	created	in	the	ContrastSaturationBrightness()	function.

The	function	starts	by	taking	a	few	arguments.	The	first	and	most	important	is	the	current
render	texture.	The	other	arguments	simply	adjust	the	overall	effect	of	the	screen	effect
and	are	represented	by	sliders	in	the	screen	effects’	Inspector	tab.	Once	the	function
receives	the	render	texture	and	the	adjustment	values,	it	declares	a	few	constant	values	that
we	use	to	modify	and	compare	against	the	original	render	texture.

The	luminanceCoeff	variable	stores	the	values	that	will	give	us	the	overall	brightness	of
the	current	image.	These	coefficients	are	based	on	the	CIE	color	matching	functions	and
are	pretty	standard	throughout	the	industry.	We	can	find	the	overall	brightness	of	the
image	by	getting	the	dot	product	of	the	current	image	dotted	with	these	luminance
coefficients.	Once	we	have	the	brightness,	we	simply	use	a	couple	of	lerp	functions	to
blend	from	the	grayscale	version	of	the	brightness	operation	and	the	original	image
multiplied	by	the	brightness	value,	being	passed	into	the	function.

The	screen	effects,	like	this	one,	are	crucial	to	achieve	high-quality	graphics	for	your
games	as	it	lets	you	tweak	the	final	look	of	your	game	without	having	to	edit	each	material
in	your	current	game	scene.

Using	basic	Photoshop-like	Blend	modes
with	screen	effects
The	screen	effects	aren’t	just	limited	to	adjusting	the	colors	of	a	rendered	image	from	our
game.	We	can	also	use	them	to	combine	other	images	with	our	Render	Texture.	This
technique	is	no	different	than	creating	a	new	layer	in	Photoshop	and	choosing	a	blend
mode	to	blend	two	images	together	or,	in	our	case,	a	texture	with	a	Render	Texture.	This
becomes	a	very	powerful	technique	as	it	gives	the	artists	in	a	production	environment	a
way	to	simulate	their	blending	modes	in	the	game	rather	than	just	in	Photoshop.

For	this	particular	recipe,	we	are	going	to	take	a	look	at	some	of	the	more	common	blend
modes,	such	as	Multiply,	Add,	and	Overlay.	You	will	see	how	simple	it	is	to	have	the
power	of	Photoshop	Blend	modes	in	your	game.

Getting	ready
To	begin,	we	have	to	get	our	assets	ready.	So	let’s	follow	the	next	few	steps	to	get	our
screen	effects	system	up	and	running	for	our	new	Blend	mode	screen	effect:

1.	 Create	a	new	script	and	call	it	BlendMode_ImageEffect.
2.	 Create	a	new	shader	called	BlendMode_Effect.
3.	 Now	we	simply	need	to	copy	the	code	we	had	from	the	C#	script	in	the	first	recipe	of

this	chapter	to	our	new	C#	script.	This	will	allow	us	to	focus	on	just	the	mathematics
for	the	brightness,	saturation,	and	contrast	effect.

4.	 Copy	the	code	from	the	shader	in	the	first	recipe	in	this	chapter	to	our	new	shader.
5.	 Finally,	we	will	need	another	texture	to	perform	our	blend	mode	effect.	In	this	recipe,

we	will	use	a	grunge	type	texture.	This	will	make	the	effect	very	obvious	when	we
are	testing	it	out.

The	following	image	is	the	grunge	map	used	in	the	making	of	this	effect.	Finding	a	texture
with	enough	detail	and	a	nice	range	of	grayscale	values	will	make	for	a	nice	texture	to	test
our	new	effect:

How	to	do	it…
Our	first	blend	mode	that	we	will	implement	is	the	Multiply	blend	mode	as	seen	in
Photoshop.	Let’s	begin	by	modifying	the	code	in	our	shader	first.

1.	 Launch	the	shader	in	MonoDevelop	by	double-clicking	on	it	in	Unity’s	project	view.
2.	 We	need	to	add	some	new	properties	so	that	we	have	a	texture	to	blend	with	and	a

slider	for	an	opacity	value.	Enter	the	following	code	in	your	new	shader:

3.	 Enter	the	corresponding	variables	in	our	CGPROGRAM	so	that	we	can	access	the	data
from	our	Properties	block:

4.	 Finally,	we	modify	our	frag()	function	so	that	it	performs	the	multiply	operation	on
our	two	textures:

5.	 Save	the	shader	and	return	to	the	Unity	editor	to	let	the	new	shader	code	compile	and
check	for	errors.	If	no	errors	occurred,	then	double-click	on	the	C#	script	file	to
launch	it	in	the	MonoDevelop	editor.

6.	 In	our	script	file	as	well,	we	need	to	create	the	corresponding	variables.	So	we	will
need	a	texture	so	that	we	can	assign	one	to	the	shader	and	a	slider	to	adjust	the	final
amount	of	the	blend	mode	we	want	to	use:

7.	 We	then	need	to	send	our	variable	data	to	the	shader	through	the	OnRenderImage()
function:

8.	 To	complete	the	script,	we	simply	fill	in	our	Update()	function	so	that	we	can	clamp
the	value	of	the	blendOpacity	variable	between	a	value	of	0.0	and	1.0:

With	this	complete,	we	assign	the	screen	effect	script	to	our	main	camera	and	our	screen
effect	shader	to	our	script	so	that	it	has	a	shader	to	use	for	the	per-pixel	operations.	Finally,
in	order	for	the	effect	to	be	fully	functional,	the	script	and	shader	is	looking	for	a	texture.
You	can	assign	any	texture	to	the	texture	field	in	the	Inspector	for	the	screen	effect	script.
Once	this	texture	is	in	place,	you	will	see	the	effect	of	multiplying	this	texture	over	the
game’s	rendered	image.	The	following	image	demonstrates	the	screen	effect:

The	following	image	demonstrates	a	higher	intensity	of	opacity,	making	the	multiplied
image	much	more	apparent	over	our	render	image:

With	our	first	blend	mode	set	up,	we	can	begin	to	add	a	couple	of	simpler	blend	modes	to
get	a	better	understanding	of	how	easy	it	is	to	add	more	effects	and	really	fine-tune	the
final	result	in	your	game.	However,	first	let’s	break	down	what	is	happening	here.

How	it	works…
Now	we	are	starting	to	gain	a	ton	of	power	and	flexibility	in	our	Screen	Effects
programming.	I	am	sure	that	you	are	now	starting	to	understand	how	much	one	can	do
with	this	simple	system	in	Unity.	We	can	literally	replicate	the	effects	of	Photoshop	layer
blending	modes	in	our	game	to	give	artists	the	flexibility	they	need	to	achieve	high-quality
graphics	in	a	short	amount	of	time.

With	this	particular	recipe,	we	looked	at	how	to	multiply	two	images	together,	add	two
images	together,	and	perform	a	screen	blending	mode,	using	just	a	little	bit	of
mathematics.	When	working	with	blend	modes,	one	has	to	think	on	a	per-pixel	level.	For
instance,	when	we	are	using	a	multiply	blend	mode,	we	literally	take	each	pixel	from	the
original	render	texture	and	multiply	them	with	each	pixel	of	the	blend	texture.	The	same
goes	for	the	add	blend	mode.	It	is	just	a	simple	mathematical	operation	of	adding	each
pixel	from	the	source	texture,	or	render	texture,	to	the	blend	texture.

The	screen	blend	mode	is	definitely	a	bit	more	involved,	but	it	is	actually	doing	the	same
thing.	It	takes	each	image,	render	texture,	and	blend	texture,	inverts	them,	then	multiplies
them	together,	and	inverts	them	again	to	achieve	the	final	look.	Just	like	Photoshop	blends
its	textures	together	using	blend	modes,	we	can	do	the	same	with	screen	effects.

There’s	more…
Let’s	continue	this	recipe	by	adding	a	couple	of	more	blend	modes	to	our	screen	effect.

In	the	screen	effect	shader,	let’s	add	the	following	code	to	our	frag()	function	and	change
the	value	we	are	returning	to	our	script.	We	will	also	need	to	comment	out	the	multiply
blend	so	that	we	don’t	return	that	as	well:

1.	 Save	the	shader	file	in	MonoDevelop	and	return	to	the	Unity	editor	to	let	the	shader
compile.	If	no	errors	occurred,	you	should	see	a	result	similar	to	the	following	image.
This	is	a	simple	add	blending	mode:

As	you	can	see,	this	has	the	opposite	effect	of	multiply	because	we	are	adding	the
two	images	together.

2.	 Finally,	let’s	add	one	more	blend	mode	called	a	Screen	Blend.	This	one	is	a	little	bit

more	involved,	from	a	mathematical	standpoint,	but	still	simple	to	implement.	Enter
the	following	code	in	the	frag()	function	of	our	shader:

The	following	image	demonstrates	the	results	of	using	a	Screen	type	blend	mode	to	blend
two	images	together	in	a	screen	effect:

Using	the	Overlay	Blend	mode	with	screen
effects
For	our	final	recipe,	we	are	going	to	take	a	look	at	another	type	of	blend	mode,	the
Overlay	Blend	mode.	This	blending	actually	makes	use	of	some	conditional	statements
that	determine	the	final	color	of	each	pixel	in	each	channel.	So,	the	process	of	using	this
type	of	blend	mode	needs	a	bit	more	coding	to	work.	Let’s	take	a	look	at	how	this	is	done
in	the	next	few	recipes.

Getting	ready
For	this	last	Screen	Effect,	we	will	need	to	set	up	our	two	scripts	as	we	have	in	the
previous	recipes	in	this	chapter.	For	this	recipe,	we	will	be	using	the	same	scene	we	have
been	using,	so	we	don’t	have	to	create	a	new	one:

1.	 Create	a	new	script	file	called	Overlay_ImageEffect	and	shader	file	called
Overlay_Effect.

2.	 Copy	the	code	from	the	previous	C#	script	file	to	our	new	script	file.
3.	 Copy	the	code	from	the	previous	shader	file	to	our	new	shader	file.
4.	 Assign	the	Overlay_ImageEffect	script	to	the	main	camera	and	Overlay_Effect	to

the	script	component	in	the	Inspector.
5.	 Finally,	double-click	on	the	script	and	shader	files	to	open	them	in	the	MonoDevelop

editor.

How	to	do	it…
To	begin	our	Overlay	Screen	Effect,	we	will	need	to	get	the	code	of	our	shader	up	and
running	without	errors.	We	can	then	modify	our	script	file	to	feed	the	correct	data	to	the
shader.

1.	 We	first	need	to	set	up	our	properties	in	our	Properties	block.	We	will	use	the	same
properties	from	the	previous	few	recipes	in	this	chapter:

2.	 We	then	need	to	create	the	corresponding	variables	in	our	CGPROGRAM:

3.	 In	order	for	the	Overlay	Blend	effect	to	work,	we	will	have	to	process	each	pixel
from	each	channel	individually.	To	do	this	in	a	shader,	we	have	to	write	a	custom
function	that	will	take	in	a	single	channel,	for	instance,	the	red	channel,	and	perform
the	Overlay	operation.	Enter	the	following	code	in	the	shader	just	below	the	variable
declarations:

4.	 Finally,	we	need	to	update	our	frag()	function	to	process	each	channel	of	our
textures	to	perform	the	blending:

5.	 With	the	code	completed	in	the	shader,	our	effect	should	be	working.	Save	the	shader
and	return	to	the	Unity	editor	to	let	the	shader	compile.	Our	script	is	already	set	up,
so	we	don’t	have	to	modify	it	any	further.	Once	the	shader	compiles,	you	should	see	a
result	similar	to	the	following	image:

How	it	works…
Our	Overlay	blend	mode	is	definitely	a	lot	more	involved,	but	if	you	really	break	down	the
function,	you	will	notice	that	it	is	simply	a	multiply	blend	mode	and	screen	blend	mode.
It’s	just	that,	in	this	case,	we	are	doing	a	conditional	check	to	apply	one	or	the	other	blend
mode	to	a	pixel.

With	this	particular	Screen	Effect,	when	the	Overlay	function	receives	a	pixel,	it	checks	to
see	whether	it	is	less	than	0.5.	If	it	is,	then	we	apply	a	modified	multiply	blend	mode	to
that	pixel;	if	it’s	not,	then	we	apply	a	modified	screen	blend	mode	to	the	pixel.	We	do	this
for	each	pixel	for	each	channel,	giving	us	the	final	RGB	pixel	values	for	our	Screen	effect.

As	you	can	see,	there	are	many	things	that	can	be	done	with	screen	effects.	It	really	just
depends	on	the	platform	and	amount	of	memory	you	have	allocated	for	screen	effects.
Usually,	this	is	determined	throughout	the	course	of	a	game	project,	so	have	fun	and	get
creative	with	your	screen	effects.

Chapter	9.	Gameplay	and	Screen	Effects
When	it	comes	to	creating	believable	and	immersive	games,	material	design	is	not	the
only	aspect	that	we	need	to	take	into	account.	The	overall	feeling	can	be	altered	using
screen	effects.	This	is	very	common	in	movies,	for	instance,	when	colors	are	corrected	in
the	post-production	phase.	You	can	implement	these	techniques	in	your	games	too,	using
the	knowledge	from	Chapter	8,	Screen	Effects	with	Unity	Render	Texture.	Two	interesting
effects	are	presented	in	this	chapter;	you	can,	however,	adapt	them	to	fit	your	needs	and
create	your	very	own	screen	effect.

In	this	chapter,	you	will	learn	the	following	recipes:

Creating	an	old	movie	screen	effect
Creating	a	night	vision	screen	effect

Introduction
If	you	are	reading	this	book,	you	are	most	likely	a	person	who	has	played	a	game	or	two	in
your	time.	One	of	the	aspects	of	real-time	games	is	the	effect	of	immersing	a	player	into	a
world	to	make	it	feel	as	if	they	were	actually	playing	in	the	real	world.	The	more	modern
games	make	heavy	use	of	screen	effects	to	achieve	this	immersion.

With	screen	effects,	we	can	turn	the	mood	of	a	certain	environment	from	calm	to	scary,
just	by	changing	the	look	of	the	screen.	Imagine	walking	into	a	room	that	is	contained
within	a	level,	then	the	game	takes	over	and	goes	into	a	cinematic	moment.	Many	modern
games	will	turn	on	different	screen	effects	to	change	the	mood	of	the	current	moment.
Understanding	how	to	create	effects	triggered	by	gameplay	is	next	in	our	journey	of
shader	writing.

In	this	chapter,	we	are	going	to	take	a	look	at	some	of	the	more	common	gameplay	screen
effects.	You	are	going	to	learn	how	to	change	the	look	of	the	game	from	normal	to	an	old
movie	effect,	and	we	are	going	to	take	a	look	at	how	many	first-person	shooter	games
apply	their	night	vision	effects	to	the	screen.	With	each	of	these	recipes,	we	are	going	to
look	at	how	to	hook	these	up	to	game	events	so	that	they	are	turned	on	and	off	as	the
game’s	current	presentation	needs.

Creating	an	old	movie	screen	effect
Many	games	are	set	in	different	times.	Some	take	place	in	fantasy	worlds	or	future	sci-fi
worlds,	and	some	even	take	place	in	the	old	west,	where	film	cameras	were	just	being
developed	and	the	movies	that	people	watched	were	black	and	white	or	sometimes	tinted
with	what	is	called	a	sepia	effect.	The	look	is	very	distinct,	and	we	are	going	to	replicate
this	look	using	a	screen	effect	in	Unity.

There	are	a	few	steps	to	achieve	this	look,	and	just	to	make	the	whole	screen	black	and
white	or	grayscale,	we	need	to	break	down	this	effect	into	its	component	parts.	If	we
analyze	some	reference	footage	of	an	old	movie,	we	can	begin	to	do	this.	Let’s	take	a	look
at	the	following	image	and	break	down	the	elements	that	make	up	the	old	movie	look:

We	constructed	this	image	using	a	few	reference	images	found	online.	It	is	always	a	good
idea	to	try	and	utilize	Photoshop	to	construct	images	like	this	to	aid	you	in	creating	a	plan
for	your	new	screen	effect.	Performing	this	process	not	only	tells	us	the	elements	we	will
have	to	code	in,	but	it	also	gives	us	a	quick	way	to	see	which	blending	modes	work	and
how	we	will	construct	the	layers	of	our	screen	effect.	The	Photoshop	file	we	created	for
this	recipe	is	included	in	this	book’s	support	page	at	www.packtpub.com/support	and	is
called	OldFilmEffect_Research_Layout.psd.

http://www.packtpub.com/support

Getting	ready
Now	that	we	know	what	we	have	to	make,	let’s	take	a	look	at	how	each	of	the	layers	is
combined	to	create	the	final	effect	and	gather	some	resources	for	our	shader	and	screen
effect	script.

Sepia	tone:	This	is	a	relatively	simple	effect	to	achieve,	as	we	just	need	to	bring	all
the	pixel	colors	of	the	original	render	texture	to	a	single	color	range.	This	is	easily
achieved	using	the	luminance	of	the	original	image	and	adding	a	constant	color.	Our
first	layer	will	look	like	the	following	image:

Vignette	effect:	We	can	always	see	some	sort	of	soft	border	around	old	films	when
they	are	being	projected	with	an	old	movie	projector.	This	is	caused	because	the	bulb
being	used	for	the	movie	projector	has	more	brightness	in	the	middle	than	it	does	at
the	edges	of	the	film.	This	effect	is	generally	called	the	vignette	effect	and	is	our
second	layer	in	our	screen	effect.	We	can	achieve	this	with	an	overlaid	texture	over
the	whole	screen.	The	following	image	demonstrates	what	this	layer	looks	like,
isolated	as	a	texture:

Dust	and	scratches:	The	third	and	final	layer	in	our	old	movie	screen	effect	is	dust
and	scratches.	This	layer	will	utilize	two	different	tiled	textures,	one	for	scratches	and
one	for	dust.	The	reason	is	that	we	will	want	to	animate	these	two	textures	over	time
at	different	tiling	rates.	This	will	give	the	effect	that	the	film	is	moving	along	and
there	are	small	scratches	and	dust	on	each	frame	of	the	old	film.	The	following	image
demonstrates	this	effect	isolated	to	its	own	texture:

Let’s	get	our	screen	effect	system	ready	with	the	preceding	textures.	Perform	the	following
steps:

1.	 Gather	up	a	vignette	texture	and	dust	and	scratches	texture,	like	the	ones	we	just	saw.
2.	 Create	a	new	script	called	OldFilmEffect.cs	and	a	new	shader	called

OldFilmEffectShader.shader.
3.	 With	our	new	files	created,	fill	in	the	code	necessary	to	get	the	screen	effect	system

up	and	running.	For	references	on	how	to	do	this,	see	Chapter	8,	Screen	Effects	with
Unity	Render	Textures.

Finally,	with	our	screen	effect	system	up	and	running	and	our	textures	gathered,	we	can
begin	the	process	of	recreating	this	old	film	effect.

How	to	do	it…
Our	individual	layers	for	our	old	film	screen	effect	are	quite	simple,	but	when	combined,
we	get	some	very	visually	stunning	effects.	Let’s	run	through	how	to	construct	the	code
for	our	script	and	shader,	then	we	can	step	through	each	line	of	code	and	learn	why	things
are	working	the	way	they	are.	At	this	point,	you	should	have	the	screen	effects	system	up
and	running,	as	we	will	not	be	covering	how	to	set	this	up	in	this	recipe.

1.	 We	will	begin	by	entering	the	code	in	our	script.	Our	first	block	of	code	that	we	will
enter	will	define	our	variable	that	we	want	to	expose	to	Inspector	in	order	to	let	the
user	of	this	effect	adjust	it	as	they	see	fit.	We	can	also	use	our	mocked-up	Photoshop
file	as	a	reference	when	deciding	what	we	will	need	to	expose	to	the	Inspector	of
this	effect.	Enter	the	following	code	in	your	effect	script:

				#region	Variables

				public	Shader	oldFilmShader;

				

				public	float	OldFilmEffectAmount	=	1.0f;

				

				public	Color	sepiaColor	=	Color.white;

				public	Texture2D	vignetteTexture;

				public	float	vignetteAmount	=	1.0f;

				

				public	Texture2D	scratchesTexture;

				public	float	scratchesYSpeed	=	10.0f;

				public	float	scratchesXSpeed	=	10.0f;

				

				public		Texture2D	dustTexture;

				public	float	dustYSpeed	=	10.0f;

				public	float	dustXSpeed	=	10.0f;

				

				private	Material	curMaterial;

				private	float	randomValue;

				#endregion

2.	 Next,	we	need	to	fill	in	the	contents	of	our	OnRenderImage()	function.	Here,	we	will
be	passing	the	data	from	our	variables	to	our	shader	so	that	the	shader	can	then	use
this	data	in	the	processing	of	the	render	texture:

void	OnRenderImage(RenderTexture	sourceTexture,	RenderTexture	

destTexture)

				{

								if(oldFilmShader	!=	null)

								{				

												material.SetColor("_SepiaColor",	sepiaColor);

												material.SetFloat("_VignetteAmount",	vignetteAmount);

												material.SetFloat("_EffectAmount",	OldFilmEffectAmount);

												

												if(vignetteTexture)

												{

																material.SetTexture("_VignetteTex",	vignetteTexture);

												}

												

												if(scratchesTexture)

												{

																material.SetTexture("_ScratchesTex",	scratchesTexture);

																material.SetFloat("_ScratchesYSpeed",	scratchesYSpeed);

																material.SetFloat("_ScratchesXSpeed",	scratchesXSpeed);

												}

												

												if(dustTexture)

												{

																material.SetTexture("_DustTex",	dustTexture);

																material.SetFloat("_dustYSpeed",	dustYSpeed);

																material.SetFloat("_dustXSpeed",	dustXSpeed);

																material.SetFloat("_RandomValue",	randomValue);

												}

												

												Graphics.Blit(sourceTexture,	destTexture,	material);

								}

								else

								{

												Graphics.Blit(sourceTexture,	destTexture);

								}

				}

3.	 To	complete	the	script	portion	of	this	effect,	we	simply	need	to	make	sure	that	we
clamp	the	values	of	the	variables	that	need	to	have	a	clamped	range	instead	of	being
any	value:

void	Update()

				{

								vignetteAmount	=	Mathf.Clamp01(vignetteAmount);

								OldFilmEffectAmount	=	Mathf.Clamp(OldFilmEffectAmount,	0f,	

1.5f);

								randomValue	=	Random.Range(-1f,1f);

				}

4.	 With	our	script	complete,	let’s	turn	our	attention	to	our	shader	file.	We	need	to	create
the	corresponding	variables,	which	we	created	in	our	script	in	our	shader.	This	will
allow	the	script	and	shader	to	communicate	with	one	another.	Enter	the	following
code	in	the	Properties	block	of	the	shader:

Properties	

				{

								_MainTex	("Base	(RGB)",	2D)	=	"white"	{}

								_VignetteTex	("Vignette	Texture",	2D)	=	"white"{}

								_ScratchesTex	("Scartches	Texture",	2D)	=	"white"{}

								_DustTex	("Dust	Texture",	2D)	=	"white"{}

								_SepiaColor	("Sepia	Color",	Color)	=	(1,1,1,1)

								_EffectAmount	("Old	Film	Effect	Amount",	Range(0,1))	=	1.0

								_VignetteAmount	("Vignette	Opacity",	Range(0,1))	=	1.0

								_ScratchesYSpeed	("Scratches	Y	Speed",	Float)	=	10.0

								_ScratchesXSpeed	("Scratches	X	Speed",	Float)	=	10.0

								_dustXSpeed	("Dust	X	Speed",	Float)	=	10.0

								_dustYSpeed	("Dust	Y	Speed",	Float)	=	10.0

								_RandomValue	("Random	Value",	Float)	=	1.0

								_Contrast	("Contrast",	Float)	=	3.0

				}

5.	 Then,	as	usual,	we	need	to	add	these	same	variable	names	to	our	CGPROGRAM	block	so
that	the	Properties	block	can	communicate	with	the	CGPROGRAM	block:

CGPROGRAM

#pragma	vertex	vert_img

#pragma	fragment	frag

#pragma	fragmentoption	ARB_precision_hint_fastest

#include	"UnityCG.cginc"

												

uniform	sampler2D	_MainTex;

uniform	sampler2D	_VignetteTex;

uniform	sampler2D	_ScratchesTex;

uniform	sampler2D	_DustTex;

fixed4	_SepiaColor;

fixed	_VignetteAmount;

fixed	_ScratchesYSpeed;

fixed	_ScratchesXSpeed;

fixed	_dustXSpeed;

fixed	_dustYSpeed;

fixed	_EffectAmount;

fixed	_RandomValue;

fixed	_Contrast;

6.	 Now,	we	simply	fill	in	the	guts	of	our	frag()	function	so	that	we	process	the	pixels
for	our	screen	effect.	To	start	with,	let’s	get	the	render	texture	and	vignette	texture
passed	to	us	by	the	script:

fixed4	frag(v2f_img	i)	:	COLOR

{

				//Get	the	colors	from	the	RenderTexture	and	the	uv's

				//from	the	v2f_img	struct

				half2	distortedUV	=	barrelDistortion(i.uv);

				distortedUV	=	half2(i.uv.x,	i.uv.y	+	(_RandomValue	*	_SinTime.z	*	

0.005));

				fixed4	renderTex	=	tex2D(_MainTex,	i.uv);

																

				//Get	the	pixels	from	the	Vignette	Texture

				fixed4	vignetteTex	=	tex2D(_VignetteTex,	i.uv);

7.	 We	then	need	to	add	the	process	for	the	dust	and	scratches	by	entering	the	following
code:

//Process	the	Scratches	UV	and	pixels

half2	scratchesUV	=	half2(i.uv.x	+	(_RandomValue	*	_SinTime.z	*	

_ScratchesXSpeed),	i.uv.y	+	(_Time.x	*	_ScratchesYSpeed));

fixed4	scratchesTex	=	tex2D(_ScratchesTex,	scratchesUV);

								

//Process	the	Dust	UV	and	pixels

half2	dustUV	=	half2(i.uv.x	+	(_RandomValue	*	(_SinTime.z	*	

_dustXSpeed)),	i.uv.y	+	(_RandomValue	*	(_SinTime.z	*	_dustYSpeed)));

fixed4	dustTex	=	tex2D(_DustTex,	dustUV);

8.	 The	sepia	tone	process	is	next	on	our	list:

//	get	the	luminosity	values	from	the	render	texture	using	the	YIQ	

values.

fixed	lum	=	dot	(fixed3(0.299,	0.587,	0.114),	renderTex.rgb);

																

//Add	the	constant	color	to	the	lum	values

fixed4	finalColor	=	lum	+	lerp(_SepiaColor,	_SepiaColor	+

	fixed4(0.1f,0.1f,0.1f,1.0f),	_RandomValue);

finalColor	=	pow(finalColor,	_Contrast);

9.	 Finally,	we	combine	all	of	our	layers	and	colors	and	return	the	final	screen	effect
texture:

//Create	a	constant	white	color	we	can	use	to	adjust	opacity	of	effects

fixed3	constantWhite	=	fixed3(1,1,1);

																

//Composite	together	the	different	layers	to	create	finsl	Screen	Effect

finalColor	=	lerp(finalColor,	finalColor	*	vignetteTex,	

_VignetteAmount);

finalColor.rgb	*=	lerp(scratchesTex,	constantWhite,	(_RandomValue));

finalColor.rgb	*=	lerp(dustTex.rgb,	constantWhite,	(_RandomValue	*	

_SinTime.z));

finalColor	=	lerp(renderTex,	finalColor,	_EffectAmount);

																

return	finalColor;

10.	 With	all	of	our	code	entered	and	no	errors,	you	should	have	a	result	very	similar	to
the	following	image.	Hit	play	in	the	Unity	editor	to	see	the	effects	of	the	dust	and
scratches	and	the	slight	image	shift	that	we	gave	the	screen	effect:

How	it	works…
Now,	let’s	walk	through	each	of	the	layers	in	this	screen	effect,	break	down	why	each	of
the	lines	of	code	is	working	the	way	it	is,	and	get	more	insight	as	to	how	we	can	add	more
to	this	screen	effect.

Now	that	our	old	film	screen	effect	is	working,	let’s	step	through	the	lines	of	code	in	our
frag()	function	as	all	the	other	code	should	be	pretty	self-explanatory	at	this	point	in	the
book.

Just	like	our	Photoshop	layers,	our	shader	is	processing	each	layer	and	then	compositing
them	together,	so	while	we	go	through	each	layer,	try	to	imagine	how	the	layers	in
Photoshop	work.	Keeping	this	concept	in	mind	always	helps	when	developing	new	screen
effects.

Here,	we	have	the	first	set	of	lines	of	code	in	our	frag()	function:

fixed4	frag(v2f_img	i)	:	COLOR

{

				//Get	the	colors	from	the	RenderTexture	and	the	uv's

				//from	the	v2f_img	struct

				half2	distortedUV	=	barrelDistortion(i.uv);

				fixed4	renderTex	=	tex2D(_MainTex,	i.uv);

				fixed4	vignetteTex	=	tex2D(_VignetteTex,	i.uv);

The	first	line	of	code,	just	after	the	frag()	function	declaration,	is	the	definition	of	how
the	UVs	should	work	for	our	main	render	texture	or	the	actual	rendered	frame	of	our
game.	As	we	are	looking	to	fake	the	effect	of	an	old	film	style,	we	want	to	adjust	the	UVs
of	our	render	texture,	every	frame,	such	that	they	flicker.	This	flickering	simulates	how	the
winding	of	the	film’s	projector	is	just	a	bit	off.	This	tells	us	that	we	need	to	animate	the
UVs	and	this	is	what	this	first	line	of	code	is	doing.

We	used	the	built-in	_SinTime	variable,	which	Unity	provides,	to	get	a	value	between	-1
and	1.	We	then	multiply	this	by	a	very	small	number,	in	this	case,	0.005,	to	reduce	the
intensity	of	the	effect.	The	final	value	is	then	multiplied	again	by	the	_RandomValue
variable,	which	we	generated	in	the	effect	script.	This	value	bounces	back	and	forth
between	-1	and	1	to	basically	flip	the	direction	of	the	motion	back	and	forth.

Once	our	UVs	are	built	and	stored	in	the	renderTexUV	variable,	we	can	sample	the	render
texture	using	a	tex2D()	function.	This	operation	then	gives	us	our	final	render	texture,
which	we	can	use	to	process	further	in	the	rest	of	the	shader.

Moving	on	to	the	last	line	in	the	previous	image,	we	simply	do	a	straight	sample	of	the
vignette	texture	using	the	tex2D()	function.	We	don’t	need	to	use	the	animated	UVs	we
already	created,	as	the	vignette	texture	will	be	tied	to	the	motion	of	the	camera	itself	and
not	to	the	flickering	of	the	camera	film.

The	following	code	snippet	illustrates	the	second	set	of	lines	of	code	in	our	frag()
function:

//Process	the	Scratches	UV	and	pixels

half2	scratchesUV	=	half2(i.uv.x	+	(_RandomValue	*	_SinTime.z	*	

_ScratchesXSpeed),

								i.uv.y	+	(_Time.x	*	_ScratchesYSpeed));

fixed4	scratchesTex	=	tex2D(_ScratchesTex,	scratchesUV);

																

//Process	the	Dust	UV	and	pixels

half2	dustUV	=	half2(i.uv.x	+	(_RandomValue	*	(_SinTime.z	*	_dustXSpeed)),	

								i.uv.y	+	(_RandomValue	*	(_SinTime.z	*	_dustYSpeed)));

fixed4	dustTex	=	tex2D(_DustTex,	dustUV);

These	lines	of	code	are	almost	exactly	like	the	previous	lines	of	code	in	which	we	need	to
generate	unique	animated	UV	values	to	modify	the	position	of	our	screen	effect	layers.	We
simply	use	the	built-in	_SinTime	value	to	get	a	value	between	-1	and	1,	multiply	it	by	our
random	value,	and	then	by	another	multiplier	to	adjust	the	overall	speed	of	the	animation.
Once	these	UV	values	are	generated,	we	can	then	sample	our	dust	and	scratches	texture
using	these	new	animated	values.

Our	next	set	of	code	handles	the	creation	of	the	colorizing	effect	for	our	old	film	screen
effect.	The	following	code	snippet	demonstrates	these	lines:

//	get	the	luminosity	values	from	the	render	texture	using	the	YIQ	values.

fixed	lum	=	dot	(fixed3(0.299,	0.587,	0.114),	renderTex.rgb);

																

//Add	the	constant	color	to	the	lum	values

fixed4	finalColor	=	lum	+	lerp(_SepiaColor,	_SepiaColor	

+fixed4(0.1f,0.1f,0.1f,1.0f),	_RandomValue);

With	this	set	of	code,	we	are	creating	the	actual	color	tinting	of	the	entire	render	texture.
To	accomplish	this,	we	first	need	to	turn	the	render	texture	into	the	grayscale	version	of
itself.	To	do	this,	we	can	use	the	luminosity	values	given	to	us	by	the	YIQ	values.	YIQ
values	are	the	color	space	used	by	the	NTSC	color	TV	system.	Each	letter	in	YIQ	actually
stores	color	constants	that	are	used	by	TVs	to	adjust	the	color	for	readability.

While	it	is	not	necessary	to	actually	know	the	reasons	for	this	color	scale,	it	should	be
known	that	the	Y	value	in	YIQ	is	the	constant	luminance	value	for	any	image.	So,	we	can
generate	a	grayscale	image	of	our	render	texture	by	taking	each	pixel	of	the	render	texture
and	dotting	it	with	our	luminance	values.	This	is	what	the	first	line	in	this	set	is	doing.

Once	we	have	the	luminance	values,	we	can	simply	add	the	color	we	want	to	tint	the
image	with.	This	color	is	passed	from	our	script	to	our	shader,	then	to	our	CGPROGRAM
block,	where	we	can	add	it	to	our	grayscale	render	texture.	Once	completed,	we	will	have
a	perfectly	tinted	image.

Finally,	we	create	the	blending	between	each	of	our	layers	in	our	screen	effect.	The
following	code	snippet	shows	the	set	of	code	we	are	looking	at:

//Create	a	constant	white	color	we	can	use	to	adjust	opacity	of	effects

fixed3	constantWhite	=	fixed3(1,1,1);

																

//Composite	together	the	different	layers	to	create	finsl	Screen	Effect

finalColor	=	lerp(finalColor,	finalColor	*	vignetteTex,	_VignetteAmount);

finalColor.rgb	*=	lerp(scratchesTex,	constantWhite,	(_RandomValue));

finalColor.rgb	*=	lerp(dustTex.rgb,	constantWhite,	(_RandomValue	*	

_SinTime.z));

finalColor	=	lerp(renderTex,	finalColor,	_EffectAmount);

																

return	finalColor

Our	last	set	of	code	is	relatively	simple	and	doesn’t	really	need	a	ton	of	explanation.	In
short,	it	is	simply	multiplying	all	the	layers	together	to	reach	our	final	result.	Just	like	we
multiplied	our	layers	together	in	Photoshop,	we	multiply	them	together	in	our	shader.	Each
layer	is	processed	through	a	lerp()	function	so	that	we	can	adjust	the	opacity	of	each
layer,	which	gives	more	artistic	control	over	the	final	effect.	The	more	tweaks	one	can
offer,	the	better	when	it	comes	to	screen	effects.

See	also
For	more	information	on	the	YIQ	values,	refer	to	the	following	links:

http://en.wikipedia.org/wiki/YIQ
http://www.blackice.com/colorspaceYIQ.htm

http://en.wikipedia.org/wiki/YIQ
http://www.blackice.com/colorspaceYIQ.htm

Creating	a	night	vision	screen	effect
Our	next	screen	effect	is	definitely	a	more	popular	one.	The	night	vision	screen	effect	is
seen	in	Call	of	Duty	Modern	Warfare,	Halo,	and	just	about	any	first-person	shooter	out	in
the	market	today.	It	is	the	effect	of	brightening	the	whole	image	using	that	very	distinct
lime	green	color.

In	order	to	achieve	our	night	vision	effect,	we	need	to	break	down	our	effect	using
Photoshop.	It	is	a	simple	process	of	finding	some	reference	images	online	and	composing
a	layered	image	to	see	what	kind	of	blending	modes	you	will	need	or	in	which	order	we
will	need	to	combine	our	layers.	The	following	image	shows	the	result	of	performing	just
this	process	in	Photoshop:

Let’s	begin	to	break	down	our	rough	Photoshop	composite	image	into	its	component	parts
so	that	we	can	better	understand	the	assets	we	will	have	to	gather.	In	the	next	recipe,	we
will	cover	the	process	of	doing	this.

Getting	ready
Let’s	begin	this	screen	effect	by	again	breaking	down	our	effect	into	its	component	layers.
Using	Photoshop,	we	can	construct	a	layered	image	to	better	illustrate	how	we	can	go
about	capturing	the	effect	of	night	vision:

Tinted	green:	Our	first	layer	in	our	screen	effect	is	the	iconic	green	color,	found	in
just	about	every	night	vision	image.	This	will	give	our	effect	that	signature	night
vision	look,	as	shown	in	the	following	image:

Scan	lines:	To	increase	the	effect	of	this	being	a	new	type	of	display	for	the	player,
we	include	scan	lines	over	the	top	of	our	tinted	layer.	For	this,	we	will	use	a	texture
created	in	Photoshop	and	let	the	user	tile	it	so	that	the	scan	lines	can	be	bigger	or
smaller.
Noise:	Our	next	layer	is	a	simple	noise	texture	that	we	tile	over	the	tinted	image	and
scan	lines	to	break	up	the	image	and	add	even	more	detail	to	our	effect.	This	layer
simply	emphasizes	that	digital	read-out	look:

Vignette:	The	last	layer	in	our	night	vision	effect	is	the	vignette.	If	you	look	at	the
night	vision	effect	in	Call	of	Duty	Modern	Warfare,	you	will	notice	that	it	uses	a
vignette	that	fakes	the	effect	of	looking	down	a	scope.	We	will	do	that	for	this	screen
effect:

Let’s	create	a	screen	effect	system	by	gathering	our	textures.	Perform	the	following	steps:

1.	 Gather	up	a	vignette	texture,	noise	texture,	and	scan	line	texture,	like	the	ones	we	just
saw.

2.	 Create	a	new	script	called	NightVisionEffect.cs	and	a	new	shader	called
NightVisionEffectShader.shader.

3.	 With	our	new	files	created,	fill	in	the	code	necessary	to	get	the	screen	effect	system
up	and	running.	For	instructions	on	how	to	do	this,	refer	to	Chapter	8,	Screen	Effects
with	Unity	Render	Textures.

Finally,	with	our	screen	effect	system	up	and	running	and	our	textures	gathered,	we	can
begin	the	process	of	recreating	this	old	film	effect.

How	to	do	it…
With	all	of	our	assets	gathered	and	screen	effect	system	running	smoothly,	let’s	begin	to
add	the	code	necessary	to	both	the	script	and	shader.	We	will	begin	our	coding	with	the
NightVisionEffect.cs	script,	so	double-click	on	this	file	now	to	open	it	in
MonoDevelop.

1.	 We	need	to	create	a	few	variables	that	will	allow	the	user	of	this	effect	to	adjust	it	in
the	script’s	Inspector.	Enter	the	following	code	in	the	NightVisionEffect.cs	script:

#region	Variables

				public	Shader	nightVisionShader;

				

				public	float	contrast	=	2.0f;

				public	float	brightness	=	1.0f;

				public	Color	nightVisionColor	=	Color.white;

				

				public	Texture2D	vignetteTexture;

				

				public	Texture2D	scanLineTexture;

				public	float	scanLineTileAmount	=	4.0f;

				

				public	Texture2D	nightVisionNoise;

				public	float	noiseXSpeed	=	100.0f;

				public	float	noiseYSpeed	=	100.0f;

				

				public	float	distortion	=	0.2f;

				public	float	scale	=	0.8f;

				

				private	float	randomValue	=	0.0f;

				private	Material	curMaterial;

				#endregion

2.	 Next,	we	need	to	complete	our	OnRenderImage()	function	so	that	we	are	passing	the
right	data	to	the	shader	in	order	for	the	shader	to	process	the	screen	effect	properly.
Complete	the	OnRenderImage()	function	with	the	following	code:

void	OnRenderImage(RenderTexture	sourceTexture,	RenderTexture	

destTexture)

				{

								if(nightVisionShader	!=	null)

								{				

												material.SetFloat("_Contrast",	contrast);

												material.SetFloat("_Brightness",	brightness);

												material.SetColor("_NightVisionColor",	nightVisionColor);

												material.SetFloat("_RandomValue",	randomValue);

												material.SetFloat("_distortion",	distortion);

												material.SetFloat("_scale",scale);

												

												if(vignetteTexture)

												{

																material.SetTexture("_VignetteTex",	vignetteTexture);

												}

												

												if(scanLineTexture)

												{

																material.SetTexture("_ScanLineTex",	scanLineTexture);

																material.SetFloat("_ScanLineTileAmount",	

scanLineTileAmount);

												}

												

												if(nightVisionNoise)

												{

																material.SetTexture("_NoiseTex",	nightVisionNoise);

																material.SetFloat("_NoiseXSpeed",	noiseXSpeed);

																material.SetFloat("_NoiseYSpeed",	noiseYSpeed);

												}

												

												Graphics.Blit(sourceTexture,	destTexture,	material);

								}

								else

								{

												Graphics.Blit(sourceTexture,	destTexture);

								}

				}

3.	 To	complete	the	NightVisionEffect.cs	script,	we	simply	need	to	make	sure	that	we
clamp	certain	variables	so	that	they	stay	within	a	range.	These	ranges	are	arbitrary
and	can	be	changed	at	a	later	time.	These	are	just	values	that	worked	well:

void	Update()

				{

								contrast	=	Mathf.Clamp(contrast,	0f,4f);

								brightness	=	Mathf.Clamp(brightness,	0f,	2f);

								randomValue	=	Random.Range(-1f,1f);

								distortion	=	Mathf.Clamp(distortion,	-1f,1f);

								scale	=	Mathf.Clamp(scale,	0f,	3f);

				}

4.	 We	can	now	turn	our	attention	over	to	the	shader	portion	of	this	screen	effect.	Open
the	shader,	if	you	haven’t	already,	and	begin	by	entering	the	following	properties	in
the	Properties	block:

Properties	

				{

								_MainTex	("Base	(RGB)",	2D)	=	"white"	{}

								_VignetteTex	("Vignette	Texture",	2D)	=	"white"{}

								_ScanLineTex	("Scan	Line	Texture",	2D)	=	"white"{}

								_NoiseTex	("Noise	Texture",	2D)	=	"white"{}

								_NoiseXSpeed	("Noise	X	Speed",	Float)	=	100.0

								_NoiseYSpeed	("Noise	Y	Speed",	Float)	=	100.0

								_ScanLineTileAmount	("Scan	Line	Tile	Amount",	Float)	=	4.0

								_NightVisionColor	("Night	Vision	Color",	Color)	=	(1,1,1,1)

								_Contrast	("Contrast",	Range(0,4))	=	2

								_Brightness	("Brightness",	Range(0,2))	=	1

								_RandomValue	("Random	Value",	Float)	=	0

								_distortion	("Distortion",	Float)	=	0.2

								_scale	("Scale	(Zoom)",	Float)	=	0.8

				}

5.	 To	make	sure	that	we	are	passing	the	data	from	our	Properties	block	to	our
CGPROGRAM	block,	we	need	to	make	sure	to	declare	them	with	the	same	name	in	the
CGPROGRAM	block:

CGPROGRAM

#pragma	vertex	vert_img

#pragma	fragment	frag

#pragma	fragmentoption	ARB_precision_hint_fastest

#include	"UnityCG.cginc"

												

uniform	sampler2D	_MainTex;

uniform	sampler2D	_VignetteTex;

uniform	sampler2D	_ScanLineTex;

uniform	sampler2D	_NoiseTex;

fixed4	_NightVisionColor;

fixed	_Contrast;

fixed	_ScanLineTileAmount;

fixed	_Brightness;

fixed	_RandomValue;

fixed	_NoiseXSpeed;

fixed	_NoiseYSpeed;

fixed	_distortion;

fixed	_scale;

6.	 Our	effect	is	also	going	to	include	a	lens	distortion	to	further	convey	the	effect	that
we	are	looking	through	a	lens	and	the	edges	of	the	image	are	being	distorted	by	the
angle	of	the	lens.	Enter	the	following	function	just	after	the	variable	declarations	in
the	CGPROGRAM	block:

float2	barrelDistortion(float2	coord)	

				{

								//	lens	distortion	algorithm

								//	See	http://www.ssontech.com/content/lensalg.htm

								float2	h	=	coord.xy	-	float2(0.5,	0.5);

								float	r2	=	h.x	*	h.x	+	h.y	*	h.y;

								float	f	=	1.0	+	r2	*	(_distortion	*	sqrt(r2));

								return	f	*	_scale	*	h	+	0.5;

				}

7.	 We	can	now	concentrate	on	the	meat	of	our	NightVisionEffect	shader.	Let’s	start
this	by	entering	the	code	that	is	necessary	to	get	the	render	texture	and	vignette
texture.	Enter	the	following	code	in	the	frag()	function	of	our	shader:

fixed4	frag(v2f_img	i)	:	COLOR

				{

								//Get	the	colors	from	the	RenderTexture	and	the	uv's

								//from	the	v2f_img	struct

								half2	distortedUV	=	barrelDistortion(i.uv);

								fixed4	renderTex	=	tex2D(_MainTex,	distortedUV);

								fixed4	vignetteTex	=	tex2D(_VignetteTex,	i.uv);

8.	 The	next	step	in	our	frag()	function	is	to	process	the	scan	lines	and	noise	textures
and	apply	the	proper	animated	UVs	to	them:

//Process	scan	lines	and	noise

								half2	scanLinesUV	=	half2(i.uv.x	*	_ScanLineTileAmount,	i.uv.y	

*	_ScanLineTileAmount);

								fixed4	scanLineTex	=	tex2D(_ScanLineTex,	scanLinesUV);

																

								half2	noiseUV	=	half2(i.uv.x	+	(_RandomValue	*	_SinTime.z	*	

_NoiseXSpeed),

																																									i.uv.y	+	(_Time.x	*	

_NoiseYSpeed));

								fixed4	noiseTex	=	tex2D(_NoiseTex,	noiseUV);

9.	 To	complete	all	of	our	layers	in	the	screen	effect,	we	simply	need	to	process	the
luminance	value	of	our	render	texture,	and	then	apply	the	night	vision	color	to	it	to
achieve	that	iconic	night	vision	look:

//	get	the	luminosity	values	from	the	render	texture	using	the	YIQ	

values.

								fixed	lum	=	dot	(fixed3(0.299,	0.587,	0.114),	renderTex.rgb);

								lum	+=	_Brightness;

								fixed4	finalColor	=	(lum	*2)	+	_NightVisionColor;

10.	 Lastly,	we	will	combine	all	the	layers	together	and	return	the	final	color	of	our	night
vision	effect:

//Final	output

								finalColor	=	pow(finalColor,	_Contrast);

								finalColor	*=	vignetteTex;

								finalColor	*=	scanLineTex	*	noiseTex;

																

								return	finalColor;

When	you	have	finished	entering	the	code,	return	to	the	Unity	editor	to	let	the	script	and
shader	compile.	If	there	are	no	errors,	hit	play	in	the	editor	to	see	the	results.	You	should
see	something	similar	to	the	following	image:

How	it	works…
The	night	vision	effect	is	actually	very	similar	to	the	old	film	screen	effect,	which	shows
us	just	how	modular	we	can	make	these	components.	Just	by	simply	swapping	the	textures
that	we	are	using	for	overlays	and	changing	the	speed	at	which	our	tiling	rates	are	being
calculated,	we	can	achieve	very	different	results	using	the	same	code.

The	only	difference	with	this	effect	is	the	fact	that	we	are	including	a	lens	distortion	to	our
screen	effect.	So	let’s	break	this	down	so	that	we	can	get	a	better	understanding	of	how	it
works.

The	following	code	snippet	illustrates	the	code	used	in	processing	our	lens	distortion.	It	is
a	snippet	of	code	provided	to	us	by	the	makers	of	SynthEyes,	and	the	code	is	freely
available	to	use	in	your	own	effects:

float2	barrelDistortion(float2	coord)	

{

				//	lens	distortion	algorithm

				//	See	http://www.ssontech.com/content/lensalg.htm

				float2	h	=	coord.xy	-	float2(0.5,	0.5);

				float	r2	=	h.x	*	h.x	+	h.y	*	h.y;

				float	f	=	1.0	+	r2	*	(_distortion	*	sqrt(r2));

				return	f	*	_scale	*	h	+	0.5;

}

There’s	more…
It	is	not	uncommon	in	video	games	to	have	the	need	to	highlight	certain	objects.	For
instance,	a	thermal	visor	should	apply	a	post-processing	effect	only	to	people	and	other
sources	of	heat.	Doing	this	is	already	possible	with	the	knowledge	gathered	so	far	in	this
book;	you	can,	in	fact,	change	the	shader	or	material	of	an	object	by	code.	However,	this	is
often	laborious	and	has	to	be	replicated	on	all	the	objects.

A	more	effective	way	is	using	replaced	shaders.	Each	shader	has	a	tag	called	RenderType
that	has	never	been	used	so	far.	This	property	can	be	used	to	force	a	camera	to	apply	a
shader	only	to	certain	objects.	You	can	do	this	by	attaching	the	following	script	to	the
camera:

using	UnityEngine;

public	class	ReplacedShader	:	MonoBehaviour	{

				public	Shader	shader;

				void	Start	()	{

								GetComponent<Camera>().SetReplacementShader(shader,	"Heat");

				}

}

After	entering	the	play	mode,	the	camera	will	query	all	the	objects	that	it	has	to	render.	If
they	don’t	have	a	shader	decorated	with	RenderType	=	"Heat",	they	will	not	be	rendered.
Objects	with	such	a	tag	will	be	rendered	with	the	shader	attached	to	the	script.

Chapter	10.	Advanced	Shading
Techniques
In	this	chapter,	you	will	learn	the	following	recipes:

Using	CgInclude	files	that	are	built	into	Unity
Making	your	shader	world	modular	with	CgInclude
Implementing	a	Fur	Shader
Implementing	heatmaps	with	arrays

Introduction
This	final	chapter	covers	some	advanced	shader	techniques	that	you	can	use	for	your
game.	You	should	remember	that	many	of	the	most	eye-catching	effects	you	can	see	in
games	are	made	by	testing	the	limit	of	what	shaders	can	do.	This	book	provides	you	with
the	technical	basis	to	modify	and	create	shaders,	but	you	are	strongly	encouraged	to	play
and	experiment	with	them	as	much	as	you	can.	Making	a	good	game	is	not	a	quest	for
photorealism;	you	should	not	approach	shaders	with	the	intention	of	replicating	reality
because	this	is	unlikely	to	happen.	Instead,	you	should	try	to	use	shaders	as	a	tool	to	make
your	game	truly	unique.	With	the	knowledge	of	this	final	chapter,	you	will	be	able	to
create	the	materials	that	you	want.

Using	CgInclude	files	that	are	built	into
Unity
Our	first	step	in	writing	our	own	CgInclude	files	is	to	understand	what	Unity	is	already
providing	us	with	for	shaders.	By	writing	Surface	Shaders,	there	is	a	lot	happening	under
the	hood,	which	makes	the	process	of	writing	Surface	Shaders	so	efficient.	We	can	see	this
code	in	the	included	CgInclude	files	found	in	your	Unity	install	folder	at	Editor	|	Data	|
CGIncludes.	All	the	files	contained	within	this	folder	do	their	part	to	render	our	objects
with	our	shaders	to	the	screen.	Some	of	these	files	take	care	of	shadows	and	lighting,	some
take	care	of	helper	functions,	and	some	manage	platform	dependencies.	Without	them,	our
shader	writing	experience	would	be	much	more	laborious.

You	can	find	a	list	of	information	that	Unity	has	provided	us	with	at	the	following	link:
http://docs.unity3d.com/Documentation/Components/SL-BuiltinIncludes.html

Let’s	begin	the	process	of	understanding	these	built-in	CgInclude	files,	using	some	of	the
built-in	helper	functions	from	the	UnityCG.cginc	file.

http://docs.unity3d.com/Documentation/Components/SL-BuiltinIncludes.html

Getting	ready
Before	we	start	diving	into	the	meat	of	writing	the	shader,	we	need	to	get	a	few	items	set
up	in	our	scene.	Let’s	create	the	following	and	then	open	the	shader	in	MonoDevelop:

1.	 Create	a	new	scene	and	fill	it	with	a	simple	sphere	model.
2.	 Create	a	new	shader	and	material.
3.	 Attach	the	new	shader	to	the	new	material	and	assign	the	material	to	the	sphere.
4.	 Then,	let’s	create	a	directional	light	and	position	it	above	our	sphere.
5.	 Finally,	we	are	going	to	want	to	open	the	UnityCG.cginc	file	from	Unity’s

CgInclude	folder	located	in	Unity’s	install	directory.	This	will	let	us	analyze	some	of
the	helper	function’s	code	so	that	we	can	understand	better	what	is	happening	when
we	use	them.

6.	 You	should	have	a	simple	scene	set	up	to	work	on	the	shader.	Refer	to	the	following
screenshot	as	an	example:

How	to	do	it…
With	the	scene	prepared,	we	can	now	begin	the	process	of	experimenting	with	some	of	the
built-in	helper	functions	included	with	the	UnityCG.cginc	file.	Double-click	on	the	shader
that	was	created	for	this	scene	in	order	to	open	it	in	MonoDevelop	and	insert	the	code
given	in	the	following	steps:

1.	 Add	the	following	code	to	the	Properties	block	of	the	new	shader	file.	We	will	need
a	single	texture	and	slide	for	our	example	shader:

Properties

{

				_MainTex	("Base	(RGB)",	2D)	=	"white"	{}

				_DesatValue	("Desaturate",	Range(0,1))	=	0.5

}

2.	 We	then	need	to	make	sure	that	we	create	the	data	connection	between	our
Properties	and	CGPROGRAM	blocks,	with	the	following	code	placed	after	the
CGPROGRAM	declaration	and	#pragma	directives:

sampler2D	_MainTex;

fixed	_DesatValue;

3.	 Finally,	we	just	have	to	update	our	surf()	function	to	include	the	following	code.	We
introduce	a	new	function	that	we	haven’t	seen	yet,	which	is	built	into	Unity’s
UnityCG.cginc	file:

void	surf	(Input	IN,	inout	SurfaceOutput	o)

{

				half4	c	=	tex2D	(_MainTex,	IV.uv_MainTex);

				c.rgb	=	lerp(c.rgb,	Luminance(r.rgb),	_DesatValue);

				o.Albedo	=	c.rgb;

				o.Alpha	=	c.a;

}

With	the	shader	code	modified,	you	should	see	something	similar	to	the	following
screenshot.	We	have	simply	used	a	helper	function,	built	into	Unity’s	CgInclude	file,	to
give	us	an	effect	of	desaturating	the	main	texture	of	our	shader:

How	it	works…
Using	the	built-in	helper	function	named	Luminance(),	we	are	able	to	quickly	get	a
desaturation	or	grayscale	effect	on	our	shaders.	This	is	all	possible	because	the
UnityCG.cginc	file	is	brought	automatically	to	our	shader	as	we	are	using	a	Surface
shader.

If	you	search	through	the	UnityCG.cginc	file,	opened	in	MonoDevelop,	you	will	find	the
implementation	of	this	function	at	line	276.	The	following	snippet	is	taken	from	the	file:

inline	fixed	Luminance	(fixed3	c)

{

				return	dot(c,	fixed3(0.22,	0.707,	0.071));

}

As	this	function	is	included	in	the	file	and	Unity	automatically	compiles	with	this	file,	we
can	use	the	function	in	our	code	as	well,	thereby	reducing	the	amount	of	code	that	we	have
to	write	over	and	over	again.

If	you	notice	there	is	also	a	Lighting.cginc	file	that	Unity	comes	with.	This	file	houses
all	the	lighting	models	that	we	use	when	we	declare	something	like	#pragma	Surface
surf	Lambert.	Sifting	through	this	file	reveals	that	all	the	built-in	lighting	models	are
defined	here	for	reuse	and	modularity.

Making	your	shader	world	modular	with
CgInclude
Knowing	about	the	built-in	CgInclude	files	is	great,	but	what	if	we	wanted	to	build	our
own	CgInclude	files	to	store	our	own	lighting	models	and	helper	functions?	We	can,	in
fact,	create	our	own	CgInclude	files,	but	we	need	to	learn	a	little	more	code	syntax	before
we	can	start	using	them	efficiently	in	our	shader	writing	pipelines.	Let’s	take	a	look	at	the
process	of	creating	a	new	CgInclude	file	from	scratch.

Getting	ready
Let’s	walk	through	the	process	of	generating	a	new	item	for	this	recipe.

1.	 Begin	by	creating	a	new	text	file	and	call	it	something	like	MyCgInclude.txt.
2.	 Then	change	its	file	extension	to	.cginc.	Windows	will	give	you	a	warning	message

saying	that	the	file	may	become	unusable,	but	it	will	still	work.
3.	 Import	this	new	.cginc	file	to	your	Unity	project	and	let	it	compile.	If	all	goes	well,

you	will	see	that	Unity	knew	to	compile	it	to	a	CgInclude	file.

We	are	now	ready	to	begin	creating	our	own	custom	CgInclude	code.	Simply	double-click
on	the	CgInclude	file	that	you	created	in	order	to	open	it	in	MonoDevelop.

How	to	do	it…
With	our	CgInclude	file	open,	we	can	begin	to	enter	the	code	that	will	get	it	working	with
our	Surface	Shaders.	The	following	code	will	get	our	CgInclude	file	ready	for	use	within
our	Surface	Shaders	and	allow	us	to	continually	add	more	code	to	it	as	we	develop	more
shaders:

1.	 We	begin	our	CgInclude	file	with	what	is	called	a	preprocessor	directive.	These	are
statements	such	as	#pragma	and	#include.	In	this	case,	we	want	to	define	a	new	set
of	code	that	will	be	executed	if	our	shader	includes	this	file	in	its	compiler	directives.
Enter	the	following	code	at	the	top	of	your	CgInclude	file:

#ifndef	MY_CG_INCLUDE

#define	MY_CG_INCLUDE

2.	 We	always	need	to	make	sure	that	we	close	#ifndef	or	#ifdef	with	#endif	to	close
the	definition	check,	just	like	an	if	statement	needs	to	be	closed	with	two	brackets	in
C#.	Enter	the	following	code	just	after	the	#define	directive:

#endif

3.	 At	this	point,	we	just	need	to	fill	in	the	guts	of	the	CgInclude	file.	So	we	finish	off
our	CgInclude	file	by	entering	the	following	code:

fixed4	_MyColor;

inline	fixed4	LightingHalfLamber	(SurfaceOutput	s,	fixed3	lightDir,	

fixed	atten)

{

				fixed	diff	=	max(0,	dot(s.Normal,	lightDir));

				diff	=	(diff	+	0.5)*0.5;

				fixed	c;

				c.rgb	=	s.Albedo	*	_LightColor0.rgb	*	((diff	*	_MyColor.rgb)	*	

atten);

				c.a	=	s.Alpha;

				return	c;

}

#endif

4.	 With	this	completed,	you	now	have	your	very	first	CgInclude	file.	With	just	this	little
bit	of	code,	we	can	greatly	reduce	the	amount	of	code	that	we	have	to	rewrite,	and	we
can	begin	to	store	lighting	models	that	we	use	all	the	time	here	so	that	we	never	lose
them.	Your	CgInclude	file	should	look	similar	to	the	following	code	shown:

#ifndef	MY_CG_INCLUDE

#define	MY_CG_INCLUDE

fixed4	_MyColor;

inline	fixed4	LightingHalfLamber	(SurfaceOutput	s,	fixed3	lightDir,	

fixed	atten)

{

				fixed	diff	=	max(0,	dot(s.Normal,	lightDir));

				diff	=	(diff	+	0.5)*0.5;

				fixed	c;

				c.rgb	=	s.Albedo	*	_LightColor0.rgb	*	((diff	*	_MyColor.rgb)	*	

atten);

				c.a	=	s.Alpha;

				return	c;

}

#endif

There	are	a	couple	more	steps	that	we	need	to	complete	before	we	can	fully	utilize	this
CgInclude	file.	We	simply	need	to	tell	the	current	shader	we	are	working	with	to	use	this
file	and	its	code.	To	complete	the	process	of	creating	and	using	CgInclude	files,	let’s
complete	the	next	set	of	steps:

1.	 If	we	turn	our	attention	to	our	shader,	we	need	to	tell	our	CGPROGRAM	block	to	include
our	new	CgInclude	file	so	that	we	can	access	the	code	it	contains.	Modify	the
directives	of	our	CGPROGRAM	block	to	include	the	following	code:

CGPROGRAM

#include	"MyCGInclude.cginc"

#pragma	surface	surf	Lambert

2.	 Our	current	shader	is	currently	using	the	built-in	Lambert	lighting	model,	but	we
want	to	use	the	Half	Lambert	lighting	model	that	we	created	in	our	CgInclude.	As	we
included	the	code	from	our	CgInclude	file,	we	can	use	the	Half	Lambert	lighting
model	with	the	following	code:

CGPROGRAM

#include	"MyCGInclude.cginc"

#pragma	surface	surf	HalfLambert

3.	 Finally,	we	have	also	declared	a	custom	variable	in	our	CgInclude	file	to	show	that
we	can	set	up	default	variables	for	our	shaders	to	use.	To	see	this	in	action,	enter	the
following	code	in	the	Properties	block	of	your	shader:

Properties

{

				_MainTex	("Base	(RGB)",	2D)	=	"white"	{}

				_DesatValue	("Desaturate",	Range(0,1))	=	0.5

				_MyColor	("My	Color",	Color)	=	(1,1,1,1)

}

4.	 When	we	return	to	Unity,	the	shader	and	CgInclude	file	will	compile,	and	if	you	do
not	see	any	errors,	you	will	notice	that	in	fact	we	are	using	our	new	Half	Lambert
lighting	model	and	a	new	color	swatch	appears	in	our	material’s	Inspector.	The
following	screenshot	shows	the	result	of	using	our	CgInclude	file:

How	it	works…
When	using	shaders,	we	can	include	other	sets	of	code	using	the	#include	preprocessor
directive.	This	tells	Unity	that	we	want	to	let	the	current	shader	use	the	code	from	within
the	included	file	in	the	shader;	this	is	the	reason	why	these	files	are	called	CgInclude	files.
We	are	including	snippets	of	Cg	code	using	the	#include	directive.

Once	we	declare	the	#include	directive	and	Unity	is	able	to	find	the	file	in	the	project,
Unity	will	then	look	for	code	snippets	that	have	been	defined.	This	is	where	we	start	to	use
the	#ifndef	and	#endif	directives.	When	we	declare	the	#ifndef	directive,	we	are	simply
saying,	if	not	defined,	define	something	with	a	name.	In	this	recipe’s	case,	we	said	we
wanted	to	#define	MY_CG_INCLUDE.	So	if	Unity	doesn’t	find	a	definition	called
MY_CG_INCLUDE,	it	goes	and	creates	it	when	the	CgInclude	file	is	compiled,	thereby	giving
us	access	to	the	code	that	follows.	The	#endif	method	simply	says	that	this	is	the	end	of
this	definition,	so	stop	looking	for	more	code.

You	can	now	see	how	powerful	this	becomes	as	we	can	now	store	all	of	our	lighting
models	and	custom	variables	in	one	file	and	greatly	reduce	the	amount	of	code	that	we
have	to	write.	The	real	power	is	when	you	can	begin	to	give	your	shaders	the	flexibility	by
defining	multiple	states	of	functions	in	the	CgInclude	files.

Implementing	a	Fur	Shader
The	look	of	a	material	depends	on	its	physical	structure.	The	shaders	attempt	to	simulate
them,	but	in	doing	so,	they	oversimplify	the	way	light	behaves.	Materials	with	a	complex
macroscopic	structure	are	particularly	hard	to	render.	This	is	the	case	for	many	textile
fabrics	and	animal	furs.	This	recipe	will	show	you	how	it	is	possible	to	simulate	fur	and
other	materials	(such	as	grass)	that	are	more	than	just	a	flat	surface.	In	order	to	do	this,	the
same	material	is	drawn	multiple	times	over	and	over,	increasing	its	size	every	time.	This
creates	the	illusion	of	fur.

The	shader	presented	here	is	based	on	the	work	of	Jonathan	Czeck	and	Aras
Pranckevičius:

Getting	ready
In	order	for	this	recipe	to	work,	you	will	need	two	things.	The	first	one	is	the	texture	of	the
fur	as	it	appears	from	the	outside.	The	second	texture	will	be	used	to	control	the
distribution	of	the	fur	and	is	deeply	connected	to	the	original	one.	The	following	image
shows	a	leopard	fur	(left)	and	possible	control	mask	(right):

The	white	pixels	in	the	control	mask	will	be	extruded	from	the	original	material,
simulating	a	fur.	It	is	important	that	the	distribution	of	these	white	pixels	is	sparse	in	order
to	give	an	illusion	that	the	material	is	made	out	of	many	small	hair	strands.	A	loose	way	to
create	such	a	texture	is	as	follows:

1.	 Apply	a	threshold	to	your	original	texture	to	better	capture	patches	where	the	fur	is
less	dense.

2.	 Apply	a	noise	filter	that	pixelates	the	image.	The	RGB	channels	of	noise	must	not	be
dependent	in	order	to	produce	a	black	and	white	result.

3.	 For	a	more	realistic	look,	overlay	a	Perlin	noise	filter	that	adds	to	the	variability	of
the	fur.

4.	 Finally,	apply	a	threshold	filter	again	to	better	separate	the	pixels	in	your	texture.

Like	all	the	other	shaders	before,	you	will	need	to	create	a	new	standard	shader	and
material	to	host	it.

How	to	do	it…
For	this	recipe,	we	can	start	modifying	a	Standard	shader:

1.	 Add	the	following	Properties:

_FurLength	("Fur	Length",	Range	(.0002,	1))	=	.25

_Cutoff	("Alpha	cutoff",	Range(0,1))	=	0.5

_CutoffEnd	("Alpha	cutoff	end",	Range(0,1))	=	0.5

_EdgeFade	("Edge	Fade",	Range(0,1))	=	0.4

_Gravity	("Gravity	direction",	Vector)	=	(0,0,1,0)

_GravityStrength	("G	strenght",	Range(0,1))	=	0.25

2.	 This	shader	requires	you	to	repeat	the	same	pass	several	times.	We	will	use	the
technique	introduced	in	the	Making	your	shader	world	modular	with	CgIncludes
section	to	group	all	the	code	necessary	from	a	single	pass	in	an	external	file.	Let’s
start	creating	a	new	CgInclude	file	called	FurPass.cginc	with	the	following	code:

#pragma	target	3.0

fixed4	_Color;

sampler2D	_MainTex;

half	_Glossiness;

half	_Metallic;

uniform	float	_FurLength;

uniform	float	_Cutoff;

uniform	float	_CutoffEnd;

uniform	float	_EdgeFade;

uniform	fixed3	_Gravity;

uniform	fixed	_GravityStrength;

void	vert	(inout	appdata_full	v)

{

				fixed3	direction	=	lerp(v.normal,	_Gravity	*	_GravityStrength	+	

v.normal	*	(1-_GravityStrength),	FUR_MULTIPLIER);

				v.vertex.xyz	+=	direction	*	_FurLength	*	FUR_MULTIPLIER	*	

v.color.a;

}

struct	Input	{

				float2	uv_MainTex;

				float3	viewDir;

};

void	surf	(Input	IN,	inout	SurfaceOutputStandard	o)	{

				fixed4	c	=	tex2D	(_MainTex,	IN.uv_MainTex)	*	_Color;

				o.Albedo	=	c.rgb;

				o.Metallic	=	_Metallic;

				o.Smoothness	=	_Glossiness;

				//o.Alpha	=	step(_Cutoff,	c.a);

				o.Alpha	=	step(lerp(_Cutoff,_CutoffEnd,FUR_MULTIPLIER),	c.a);

				float	alpha	=	1	-	(FUR_MULTIPLIER	*	FUR_MULTIPLIER);

				alpha	+=	dot(IN.viewDir,	o.Normal)	-	_EdgeFade;

				o.Alpha	*=	alpha;

}

3.	 Get	back	to	your	original	shader	and	add	this	extra	pass	after	the	ENDCG	section:

CGPROGRAM

#pragma	surface	surf	Standard	fullforwardshadows	alpha:blend	

vertex:vert

#define	FUR_MULTIPLIER	0.05

#include	"FurPass.cginc"

ENDCG

4.	 Add	more	passes,	progressively	increasing	FUR_MULTIPLIER.	You	can	get	decent
results	with	20	passes,	from	0.05	to	0.95.

Once	the	shader	is	compiled	and	attached	to	a	material,	you	can	change	its	appearance
from	the	Inspector.	The	Fur	Length	property	determines	the	space	between	the	fur	shells,
which	will	be	altering	the	length	of	the	fur.	A	longer	fur	might	require	more	passes	to	look
realistic.	Alpha	Cutoff	and	Alpha	Cutoff	End	are	used	to	control	the	density	of	the	fur
and	how	it	gets	progressively	thinner.	Edge	Fade	determines	the	final	transparency	of	the
fur,	resulting	in	a	fuzzier	look.	Softer	materials	should	have	a	high	Edge	Fade.	Finally,
Gravity	Direction	and	Gravity	Strength	curve	the	fur	shells	to	simulate	the	effect	of
gravity.

How	it	works…
The	technique	presented	in	this	recipe	is	known	as	Lengyel’s	concentric	fur	shell
technique	or,	simply,	shell	technique.	It	works	by	creating	progressively	bigger	copies	of
the	geometry	that	needs	to	be	rendered.	With	the	right	transparency,	it	gives	the	illusion	of
a	continuous	thread	of	hair:

The	shell	technique	is	extremely	versatile	and	relatively	easy	to	implement.	Realistic,	real
fur	requires	not	only	extruding	the	geometry	of	the	model,	but	also	altering	its	vertices.
This	is	possible	with	tessellation	shaders,	which	are	much	more	advanced	and	not	covered
in	this	book.

Each	pass	in	this	Fur	Shader	is	contained	in	FurPass.cginc.	The	vertex	function	creates	a
slightly	bigger	version	of	the	model,	which	is	based	on	the	principle	of	normal	extrusion.
Additionally,	the	effect	of	gravity	is	taken	into	account	so	that	it	gets	more	intense	the
further	we	are	from	the	centre:

void	vert	(inout	appdata_full	v)

{

				fixed3	direction	=	lerp(v.normal,	_Gravity	*	_GravityStrength	+	

v.normal	*	(1-_GravityStrength),	FUR_MULTIPLIER);

				v.vertex.xyz	+=	direction	*	_FurLength	*	FUR_MULTIPLIER	*	v.color.a;

}

In	this	example,	the	alpha	channel	is	used	to	determine	the	final	length	of	the	fur.	This
allows	for	a	more	precise	control.

Finally,	the	surface	function	reads	the	control	mask	from	the	alpha	channel.	It	uses	the
cutoff	value	to	determine	which	pixels	to	show	and	which	ones	to	hide.	This	value
changes	from	the	first	to	the	final	fur	shell	to	match	Alpha	Cutoff	and	Alpha	Cutoff
End:

o.Alpha	=	step(lerp(_Cutoff,_CutoffEnd,FUR_MULTIPLIER),	c.a);

float	alpha	=	1	-	(FUR_MULTIPLIER	*	FUR_MULTIPLIER);

alpha	+=	dot(IN.viewDir,	o.Normal)	-	_EdgeFade;

o.Alpha	*=	alpha;

The	final	alpha	value	of	the	fur	also	depends	on	its	angle	from	the	camera,	giving	it	a
softer	look.

There’s	more…
The	Fur	Shader	has	been	used	to	simulate	fur.	However,	it	can	be	used	for	a	variety	of
other	materials.	It	works	very	well	for	materials	that	are	naturally	made	of	multiple	layers,
such	as	forest	canopies,	fuzzy	clouds,	human	hair,	and	even	grass.

There	are	many	other	improvements	that	can	dramatically	increase	its	realism.	You	can
add	a	very	simple	wind	animation	by	changing	the	direction	of	the	gravity	depending	on
the	current	time.	If	calibrated	correctly,	this	can	give	the	impression	that	the	fur	is	moving
because	of	the	wind.

Additionally,	you	can	make	your	fur	move	when	the	character	is	moving.	All	these	little
tweaks	contribute	to	the	believability	of	your	fur,	giving	the	illusion	that	it	is	not	just	a
static	material	drawn	on	the	surface.	Unfortunately,	this	shader	comes	at	a	price:	20	passes
are	very	heavy	to	compute.	The	number	of	passes	roughly	determines	how	believable	the
material	is.	You	should	play	with	fur	length	and	passes	in	order	to	get	the	effect	that	works
best	for	you.	Given	the	performance	impact	of	this	shader,	it	is	advisable	to	have	several
materials	with	different	numbers	of	passes;	you	can	use	them	at	different	distances	and
save	a	lot	of	computation.

Implementing	heatmaps	with	arrays
One	characteristic	that	makes	shaders	hard	to	master	is	the	lack	of	a	proper
documentation.	Most	developers	learn	shaders	by	messing	up	with	the	code,	without
having	a	deep	knowledge	of	what’s	going	on.	The	problem	is	amplified	by	the	fact	that
Cg/HLSL	makes	a	lot	of	assumptions,	some	of	which	are	not	properly	advertised.
Unity3D	allows	C#	scripts	to	communicate	with	shaders	using	methods	such	as	SetFloat,
SetInt,	SetVector,	and	so	on.	Unfortunately,	Unity3D	doesn’t	have	a	SetArray	method,
which	led	many	developers	to	believe	that	Cg/HLSL	doesn’t	support	arrays	either.	This	is
not	true.	This	post	will	show	you	how	it’s	possible	to	pass	arrays	to	shaders.	Just
remember	that	GPUs	are	highly	optimized	for	parallel	computations,	and	using	for	loops
in	a	shader	will	dramatically	drop	its	performance.

For	this	recipe,	we	will	implement	a	heatmap,	as	shown	in	the	following	image:

Getting	ready
The	effect	in	this	recipe	creates	a	heatmap	from	a	set	of	points.	This	heatmap	can	be
overlaid	on	top	of	another	picture,	like	in	the	preceding	image.	The	following	steps	are
necessary:

1.	 Create	a	quad	with	the	texture	that	you	want	to	use	for	the	heatmap.	In	this	example,
a	map	of	London	has	been	used.

2.	 Create	another	quad,	and	place	it	on	top	of	the	previous	one.	Our	heatmap	will	appear
on	this	quad.

3.	 Attach	a	new	material	and	shader	to	the	second	quad.

How	to	do	it…
This	shader	is	quite	different	from	the	ones	created	before,	yet	it	is	relatively	short.	For
this	reason,	the	entire	code	is	provided	in	the	following	points:

1.	 Copy	this	code	to	the	newly	created	shader:

shader	"	Heatmap"	{

				Properties	{

								_HeatTex	("Texture",	2D)	=	"white"	{}

				}

				Subshader	{

								Tags	{"Queue"="Transparent"}

								Blend	SrcAlpha	OneMinusSrcAlpha	//	Alpha	blend

								Pass	{

												CGPROGRAM

												#pragma	vertex	vert													

												#pragma	fragment	frag

												struct	vertInput	{

																float4	pos	:	POSITION;

												};		

												struct	vertOutput	{

																float4	pos	:	POSITION;

																fixed3	worldPos	:	TEXCOORD1;

												};

												vertOutput	vert(vertInput	input)	{

																vertOutput	o;

																o.pos	=	mul(UNITY_MATRIX_MVP,	input.pos);

																o.worldPos	=	mul(_Object2World,	input.pos).xyz;

																return	o;

												}

												uniform	int	_Points_Length	=	0;

												uniform	float3	_Points	[20];								//	(x,	y,	z)	=	position

												uniform	float2	_Properties	[20];				//	x	=	radius,	y	=	

intensity

												

												sampler2D	_HeatTex;

												half4	frag(vertOutput	output)	:	COLOR	{

																//	Loops	over	all	the	points

																half	h	=	0;

																for	(int	i	=	0;	i	<	_Points_Length;	i	++)

																{

																				//	Calculates	the	contribution	of	each	point

																				half	di	=	distance(output.worldPos,	

_Points[i].xyz);

																				half	ri	=	_Properties[i].x;

																				half	hi	=	1	-	saturate(di	/	ri);

																				h	+=	hi	*	_Properties[i].y;

																}

																//	Converts	(0-1)	according	to	the	heat	texture

																h	=	saturate(h);

																half4	color	=	tex2D(_HeatTex,	fixed2(h,	0.5));

																return	color;

												}

												ENDCG

								}

				}	

				Fallback	"Diffuse"

}

2.	 Once	you	have	attached	this	script	to	your	material,	you	should	provide	a	ramp
texture	for	the	heatmap.	It’s	important	to	configure	it	so	that	its	Wrap	Mode	is	set	to
Clamp.	The	following	one	has	been	used	for	this	example:

Note
If	your	heatmap	is	going	to	be	used	as	an	overlay,	then	make	sure	that	the	ramp
texture	has	an	alpha	channel	and	the	texture	is	imported	with	the	option,	Alpha	is
Transparency.

3.	 Create	a	new	script	called	Heatmaps	using	the	following	code:

using	UnityEngine;

using	System.Collections;

public	class	Heatmap	:	MonoBehaviour	{

				public	Vector3[]	positions;

				public	float[]	radiuses;

				public	float[]	intensities;

				public	material	material;

				void	Start	()

				{

								material.SetInt("_Points_Length",	positions.Length);

								for	(int	i	=	0;	i	<	positions.Length;	i	++)

								{

												material.SetVector("_Points"	+	i.ToString(),	positions[i]);

												Vector2	properties	=	new	Vector2(radiuses[i],	

intensities[i]);

												material.SetVector("_Properties"	+	i.ToString(),	

properties);

								}

				}

}

4.	 Attach	the	script	to	an	object	in	your	scene,	preferably	to	the	quad.	Then,	drag	the
material	created	for	this	effect	to	the	material	slot	of	the	script.	By	doing	this,	the
script	will	be	able	to	access	the	material	and	initialize	it.

5.	 Lastly,	expand	the	positions,	radiuses,	and	intensities	fields	of	your	script	and	fill
them	with	the	values	of	your	heatmap.	Positions	indicate	the	points	(in	world
coordinates)	of	your	heatmaps,	radii	indicate	their	size,	and	intensities	indicate	how
strongly	they	affect	the	surrounding	area:

How	it	works…
This	shader	relies	on	things	that	have	never	been	introduced	before	in	this	book;	the	first
one	is	arrays.	Cg	allows	arrays	that	can	be	created	with	the	following	syntax:

uniform	float3	_Points	[20];				

Cg	doesn’t	support	arrays	with	an	unknown	size:	you	must	preallocate	all	the	space	that
you	need	beforehand.	The	preceding	line	of	code	creates	an	array	of	20	elements.

Unity	does	not	expose	any	method	to	initialize	these	arrays	directly.	However,	single
elements	are	accessible	using	the	name	of	the	array	(_Points)	followed	by	the	position,
such	as	_Points0	or	_Points10.	This	currently	works	only	for	certain	types	of	arrays,
such	as	float3	and	float2.	The	script	attached	to	the	quad	initializes	the	shader’s	arrays,
element	by	element.

In	the	fragment	function	of	the	shader,	there	is	a	similar	for	loop	that,	for	each	pixel	of	the
material,	queries	all	the	points	to	find	their	contribution	to	the	heatmap:

half	h	=	0;

for	(int	i	=	0;	i	<	_Points_Length;	i	++)

{

				//	Calculates	the	contribution	of	each	point

				half	di	=	distance(output.worldPos,	_Points[i].xyz);

				half	ri	=	_Properties[i].x;

				half	hi	=	1	-	saturate(di	/	ri);

				h	+=	hi	*	_Properties[i].y;

}

The	h	variable	stores	the	heat	from	all	the	points,	given	their	radii	and	intensities.	It	is	then
used	to	look	up	which	color	to	use	from	the	ramp	texture.

The	shaders	and	arrays	are	a	winning	combination,	especially	as	very	few	games	are	using
them	at	their	full	potential.	However,	they	introduce	a	significance	bottleneck	as	for	each
pixel,	the	shader	has	to	loop	through	all	the	points.

Index
A

albedo	and	transparency
URL	/	See	also

Anisotropic	Specular	type
creating	/	Creating	an	Anisotropic	Specular	type,	Getting	ready,	How	to	do	it…,
How	it	works…
URL	/	Creating	an	Anisotropic	Specular	type

arrays
heatmaps,	implementing	with	/	Implementing	heatmaps	with	arrays,	Getting
ready,	How	to	do	it…,	How	it	works…

assets	/	How	it	works…
AUTODESK

URL	/	Normal	mapping

B
basic	Standard	Shader

creating	/	Creating	a	basic	Standard	Shader,	How	to	do	it…,	How	it	works…,
See	also

binding	semantic	/	How	it	works…
binding	semantics

URL	/	See	also
Blinn	/	Creating	a	BlinnPhong	Specular	type
BlinnPhong	Specular	type

creating	/	Creating	a	BlinnPhong	Specular	type,	How	to	do	it…,	How	it
works…,	See	also

Butterfly	Effect
URL	/	See	also

C
calibration	chart

URL	/	See	also
Cel	Shading	/	Creating	a	Toon	Shader
CgInclude

used,	for	making	shader	world	modular	/	Making	your	shader	world	modular
with	CgInclude,	How	to	do	it…,	How	it	works…

CgInclude	files
built	into	Unity,	using	/	Using	CgInclude	files	that	are	built	into	Unity,	Getting
ready,	How	to	do	it…,	How	it	works…

Cg	shading	language
URL	/	How	to	do	it…

cheap	shader
about	/	What	is	a	cheap	shader?,	Getting	ready,	How	to	do	it…,	How	it	works…

circle
creating,	around	terrain	/	Creating	a	circle	around	your	terrain,	Getting	ready,
How	to	do	it…
moving	/	Moving	the	circle

component	/	Creating	a	basic	Standard	Shader
CrazyBump

URL	/	Normal	mapping
cube	maps	/	How	it	works…
culling	/	Creating	a	transparent	material
custom	diffuse	lighting	model

creating	/	Creating	a	custom	diffuse	lighting	model,	Getting	ready,	How	it
works…

custom	shaders
migrating	/	Migrating	custom	shaders

D
2D	games

water	Shader,	implementing	for	/	Implementing	a	Water	Shader	for	2D	games,
Getting	ready,	How	to	do	it…,	How	it	works…

2D	texture
URL	/	See	also

3D	surface
URL	/	See	also

debugging	/	There’s	more…
Default	Value	/	How	it	works…
Diffuse	shader	/	Migrating	Legacy	Shaders	from	Unity	4	to	Unity	5
diffuse	shader

about	/	How	to	do	it…,	How	it	works…
Diffuse	shading

about	/	Diffuse	shading,	How	to	do	it…,	How	it	works…
dot	product	/	How	it	works…,	How	it	works…,	Coloring	the	surface

E
extrusion	maps

adding	/	Adding	extrusion	maps

F
fur	shader

implementing	/	Implementing	a	Fur	Shader,	Getting	ready,	How	to	do	it…,	How
it	works…,	There’s	more…

G
GIMP	/	Getting	ready
Gimp	/	Getting	ready
glass	Shader

implementing	/	Implementing	a	Glass	Shader,	Getting	ready,	How	to	do	it…,
There’s	more…

Global	Illumination	(GI)	/	Introduction
grab	pass

about	/	Introduction
using	/	Using	grab	pass,	How	to	do	it…,	How	it	works…,	There’s	more…

Graphical	processing	unit	(GPU)	/	How	it	works…
Graphics.Blit

URL	/	How	it	works…
graphics	processing	unit	(GPU)	/	How	it	works…,	Introduction,	How	it	works…

H
heatmaps

implementing,	with	arrays	/	Implementing	heatmaps	with	arrays,	Getting	ready,
How	to	do	it…,	How	it	works…

holographic	shader
creating	/	Creating	a	Holographic	Shader,	How	to	do	it…,	See	also

I
individual	time	values

URL	/	How	it	works…
Inspector	GUI	Name	/	How	it	works…
insulators	/	How	it	works…

L
Lambertian	reflectance	/	How	to	do	it…,	How	to	do	it…,	How	it	works…

about	/	Creating	a	custom	diffuse	lighting	model
Legacy	Shaders

migrating,	from	Unity	4	to	Unity	5	/	Migrating	Legacy	Shaders	from	Unity	4	to
Unity	5
automatic	upgrade	option	/	Upgrading	automatically
Standard	Shaders,	using	/	Using	Standard	Shaders
custom	shaders,	migrating	/	Migrating	custom	shaders

light	baking	/	Baking	lights	in	your	scene
lighting	functions

URL	/	How	it	works…
lighting	model	/	Introduction
lightmap	/	How	it	works…
Lightmapping	/	How	it	works…
light	probes

configuring	/	Configuring	the	light	probes
URL	/	See	also

light	probing	/	How	it	works…
lights

baking,	in	scene	/	Baking	lights	in	your	scene,	Configuring	the	static	geometry
static	geometry,	configuring	/	Configuring	the	static	geometry
light	probes,	configuring	/	Configuring	the	light	probes
baking	/	Baking	the	lights,	How	it	works…

light	transport	/	Baking	lights	in	your	scene

M
masking	/	How	to	do	it…
material	chart

URL	/	See	also
materials	/	Creating	a	basic	Standard	Shader
Maya	/	Getting	ready
metallic	setup

about	/	Understanding	the	metallic	setup,	Getting	ready,	How	it	works…
mirrors

creating	/	Creating	mirrors	and	reflective	surfaces,	Getting	ready
model-view-projection	matrix	/	How	it	works…
models

extruding	/	Extruding	your	models,	How	to	do	it…,	There’s	more…
extrusion	maps,	adding	/	Adding	extrusion	maps

MonoDevelop	/	How	to	do	it…

N
NDO	Painter

URL	/	Normal	mapping
night	vision	screen	effect

creating	/	Creating	a	night	vision	screen	effect,	How	to	do	it…,	How	it	works…,
There’s	more…
tinted	green	/	Getting	ready
scan	lines	/	Getting	ready
noise	texture	/	Getting	ready
vignette	effect	/	Getting	ready

noise	textures	/	Getting	ready
non-playable	characters	(NPCs)	/	Configuring	the	light	probes
normal	extrusion	/	Extruding	your	models,	How	it	works…
normal	mapping

about	/	Normal	mapping,	How	to	do	it…,	How	it	works…,	There’s	more…
normals	/	Getting	ready
Nvidia	/	See	also

O
old	movie	screen	effect

creating	/	Creating	an	old	movie	screen	effect,	Getting	ready,	How	to	do	it…,
How	it	works…
sepia	tone	/	Getting	ready
vignette	effect	/	Getting	ready
dust	and	scratches	/	Getting	ready

OnRenderImage
URL	/	How	it	works…

Oren-Nayar	lighting	model
URL	/	See	also

Overlay	Blend	mode
with	screen	effects	/	Using	the	Overlay	Blend	mode	with	screen	effects,	How	to
do	it…,	How	it	works…

P
packed	arrays

using	/	Using	packed	arrays,	How	to	do	it…
about	/	How	to	do	it…
URL	/	See	also

packed	matrices
about	/	Packed	matrices,	See	also

Passion	Pictures	/	See	also
PBR	Texture	Conversion

URL	/	See	also
Perlin	noise	/	Getting	ready
Phong	Specular	type

creating	/	Creating	a	Phong	Specular	type,	How	to	do	it…,	How	it	works…
Photoshop	/	Getting	ready,	Getting	ready
physically-based	rendering	/	How	to	do	it…
physically-based	rendering	(PBR)

URL	/	See	also
transparency,	adding	/	Adding	transparency	to	PBR,	How	to	do	it…

pixel	Shaders	/	How	it	works…
post	effects	/	Introduction
Profiler

using	/	Getting	ready,	How	to	do	it…
URL	/	There’s	more…

properties
adding,	to	shader	/	Adding	properties	to	a	shader,	How	to	do	it…,	How	it
works…
URL	/	See	also
using,	in	Surface	Shader	/	Using	properties	in	a	Surface	Shader,	How	to	do	it…,
How	it	works…,	There’s	more…,	See	also

Pyro	Technix
URL	/	See	also

Q
Quixel	MEGASCANS

URL	/	See	also

R
ramp	map	/	Getting	ready
real-time	shading	/	Introduction
reflection	probe

URL	/	Getting	ready,	See	also
/	How	it	works…
reflective	surfaces

creating	/	Creating	mirrors	and	reflective	surfaces,	Getting	ready
renderer	component	/	Configuring	the	light	probes
renderers	/	Creating	a	basic	Standard	Shader
render	queues	/	How	it	works…
RGB	channels	/	Getting	ready

S
scene

lights,	baking	/	Baking	lights	in	your	scene,	Configuring	the	static	geometry
screen	effects

brightness	/	Using	brightness,	saturation,	and	contrast	with	screen	effects,	How
to	do	it…,	How	it	works…
saturation	/	Using	brightness,	saturation,	and	contrast	with	screen	effects,	How
to	do	it…,	How	it	works…
contrast	/	Using	brightness,	saturation,	and	contrast	with	screen	effects,	How	to
do	it…,	How	it	works…
blend	modes,	basic	Photoshop	like	/	Using	basic	Photoshop-like	Blend	modes
with	screen	effects,	How	to	do	it…,	How	it	works…,	There’s	more…
overlay	Blend	mode	with	/	Using	the	Overlay	Blend	mode	with	screen	effects,
How	to	do	it…,	How	it	works…

screen	effects	script	system
setting	up	/	Setting	up	the	screen	effects	script	system,	How	to	do	it…,	How	it
works…,	There’s	more…

scripts	/	Creating	a	basic	Standard	Shader
shader

URL	/	Migrating	custom	shaders
properties,	adding	/	Adding	properties	to	a	shader,	How	to	do	it…,	How	it
works…
textures,	adding	/	Adding	a	texture	to	a	shader,	Getting	ready,	How	it	works…,
There’s	more…,	See	also
making	modular,	CgInclude	used	/	Making	your	shader	world	modular	with
CgInclude,	How	to	do	it…,	How	it	works…
fur	shader,	implenenting	/	Implementing	a	Fur	Shader,	Getting	ready,	How	to	do
it…,	How	it	works…,	There’s	more…

Shader	Calibration	Scene
URL	/	See	also

Shader	replacement	/	How	it	works…
shaders	/	Introduction

profiling	/	Profiling	your	shaders,	How	to	do	it…,	There’s	more…
modifying,	for	mobile	/	Modifying	our	shaders	for	mobile,	How	to	do	it…,	How
it	works…

skinned	mesh	renderers	/	How	it	works…
skyboxes	/	How	it	works…
smearing	/	How	to	do	it…
snow	shader

implementing	/	Implementing	a	snow	shader,	How	to	do	it…
surface,	coloring	/	Coloring	the	surface
geometry,	altering	/	Altering	the	geometry

Specular	shader	/	Migrating	Legacy	Shaders	from	Unity	4	to	Unity	5

standard	/	Introduction
StandardDiffuse	/	How	to	do	it…
Standard	Shaders

using	/	Using	Standard	Shaders
static	geometry

configuring	/	Configuring	the	static	geometry
substance	designer

URL	/	See	also
surface	function	/	Introduction
surface	output	/	Introduction
SurfaceOutputStandardSpecular	struct

properties	/	How	it	works…
SurfaceOutputStandard	struct

properties	/	How	it	works…
SurfaceOutput	struct

properties	/	How	it	works…
Surface	Shader

about	/	How	to	do	it…
properties,	using	/	Using	properties	in	a	Surface	Shader,	How	to	do	it…,	How	it
works…,	There’s	more…,	See	also
working	/	Introduction
vertex	color,	accessing	/	Accessing	a	vertex	color	in	a	Surface	Shader,	Getting
ready,	How	to	do	it…,	How	it	works…
vertices,	animating	/	Animating	vertices	in	a	Surface	Shader,	How	to	do	it…,
How	it	works…

swizzling	/	How	to	do	it…

T
terrain

circle,	creating	around	/	Creating	a	circle	around	your	terrain,	Getting	ready
texture	GUI	element	/	Adding	properties	to	a	shader
texture	mapping	/	Adding	a	texture	to	a	shader
textures

adding,	to	shader	/	Adding	a	texture	to	a	shader,	Getting	ready,	How	it	works…,
There’s	more…,	See	also
scrolling,	by	modifying	UV	values	/	Scrolling	textures	by	modifying	UV	values,
How	to	do	it…,	How	it	works…
packing	/	Packing	and	blending	textures,	Getting	ready,	How	to	do	it…,	How	it
works…
blending	/	Packing	and	blending	textures,	Getting	ready,	How	to	do	it…,	How	it
works…

toon	shader
creating	/	Creating	a	Toon	Shader,	Getting	ready,	How	it	works…,	There’s
more…

toon	shading	/	Creating	a	Toon	Shader
transparency

adding,	to	PBR	/	Adding	transparency	to	PBR,	How	to	do	it…
semi-transparent	materials	/	Semi-transparent	materials
objects,	fading	/	Fading	objects
solid	geometries,	with	holes	/	Solid	geometries	with	holes

transparent	material
creating	/	Creating	a	transparent	material,	Getting	ready,	How	to	do	it…,	How	it
works…

Type	/	How	it	works…

U
Unity

documentation,	URL	/	Understanding	the	metallic	setup
URL	/	Using	CgInclude	files	that	are	built	into	Unity

Unity	4
to	Unity	5,	Legacy	Shaders	migrating	from	/	Migrating	Legacy	Shaders	from
Unity	4	to	Unity	5

Unity	Asset	Store
URL	/	See	also

UNITY	DOWNLOAD	ARCHIVE
URL	/	See	also

Unity	Official	Tutorials
URL	/	Solid	geometries	with	holes

UV	data
about	/	Adding	a	texture	to	a	shader

UV	values
modifying,	to	scroll	textures	/	Scrolling	textures	by	modifying	UV	values,	How
to	do	it…,	How	it	works…

V
Variable	Name	/	How	it	works…
Vertex	and	Fragment	Shaders

about	/	Understanding	Vertex	and	Fragment	Shaders,	How	to	do	it…,	How	it
works…
fragment	function	/	How	it	works…
fragment	/	How	it	works…
pixel	Shaders	/	How	it	works…
binding	semantic	/	How	it	works…
model-view-projection	matrix	/	How	it	works…
Graphical	processing	unit	(GPU)	/	How	it	works…
binding	semantics	/	There’s	more…,	Output	semantics
input	semantics	/	Input	semantics
output	semantics	/	Output	semantics

vertex	color
in	Surface	Shader,	accessing	/	Accessing	a	vertex	color	in	a	Surface	Shader,
How	to	do	it…,	How	it	works…

vertex	modifier	/	How	it	works…
vertices

in	Surface	Shader,	animating	/	Animating	vertices	in	a	Surface	Shader,	Getting
ready,	How	to	do	it…,	How	it	works…

volume	ray	casting	/	See	also
volumetric	explosion

implementing	/	Implementing	a	volumetric	explosion,	Getting	ready,	How	to	do
it…,	How	it	works…,	See	also

volumetric	explosions
about	/	Implementing	a	volumetric	explosion

W
water	Shader

implementing,	for	2D	games	/	Implementing	a	Water	Shader	for	2D	games,	How
to	do	it…,	How	it	works…

Y
YIQ	values

URL	/	See	also

Z
Zbrush	4R7

URL	/	Normal	mapping
ZBuffering	/	How	it	works…
Z	ordering	/	Creating	a	transparent	material

	Unity 5.x Shaders and Effects Cookbook
	Credits
	About the Authors
	www.PacktPub.com
	eBooks, discount offers, and more
	Why subscribe?
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Sections
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Creating Your First Shader
	Introduction
	Creating a basic Standard Shader
	Getting ready
	How to do it…
	How it works…
	See also
	Migrating Legacy Shaders from Unity 4 to Unity 5
	Getting ready
	How to do it...
	Upgrading automatically
	Using Standard Shaders
	Migrating custom shaders
	How it works...
	See also
	Adding properties to a shader
	Getting ready
	How to do it…
	How it works…
	See also
	Using properties in a Surface Shader
	How to do it…
	How it works…
	There's more…
	See also
	2. Surface Shaders and Texture Mapping
	Introduction
	Diffuse shading
	Getting ready
	How to do it...
	How it works...
	Using packed arrays
	How to do it...
	Packed matrices
	See also
	Adding a texture to a shader
	Getting ready
	How to do it...
	How it works…
	There's more...
	See also
	Scrolling textures by modifying UV values
	Getting ready
	How to do it…
	How it works…
	Normal mapping
	Getting ready
	How to do it…
	How it works…
	There's more…
	Creating a transparent material
	Getting ready
	How to do it…
	How it works…
	Creating a Holographic Shader
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Packing and blending textures
	Getting ready
	How to do it…
	How it works…
	Creating a circle around your terrain
	Getting ready
	How to do it…
	Moving the circle
	How it works…
	3. Understanding Lighting Models
	Introduction
	Creating a custom diffuse lighting model
	Getting ready
	How to do it…
	How it works…
	Creating a Toon Shader
	Getting ready
	How to do it…
	How it works…
	There's more…
	Creating a Phong Specular type
	Getting ready
	How to do it…
	How it works…
	Creating a BlinnPhong Specular type
	Getting ready
	How to do it…
	How it works…
	See also
	Creating an Anisotropic Specular type
	Getting ready
	How to do it…
	How it works…
	4. Physically Based Rendering in Unity 5
	Introduction
	Understanding the metallic setup
	Getting ready
	How to do it…
	How it works…
	See also
	Adding transparency to PBR
	Getting ready
	How to do it…
	Semi-transparent materials
	Fading objects
	Solid geometries with holes
	See also
	Creating mirrors and reflective surfaces
	Getting ready
	How to do it…
	How it works…
	See also
	Baking lights in your scene
	Getting ready
	How to do it…
	Configuring the static geometry
	Configuring the light probes
	Baking the lights
	How it works…
	See also
	5. Vertex Functions
	Introduction
	Accessing a vertex color in a Surface Shader
	Getting ready
	How to do it…
	How it works…
	There's more…
	Animating vertices in a Surface Shader
	Getting ready
	How to do it…
	How it works…
	Extruding your models
	Getting ready
	How to do it…
	How it works…
	There's more…
	Adding extrusion maps
	Implementing a snow shader
	Getting ready
	How to do it…
	How it works…
	Coloring the surface
	Altering the geometry
	See also
	Implementing a volumetric explosion
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	6. Fragment Shaders and Grab Passes
	Introduction
	Understanding Vertex and Fragment Shaders
	Getting ready
	How to do it…
	How it works…
	There's more…
	Input semantics
	Output semantics
	See also
	Using grab pass
	Getting ready
	How to do it…
	How it works…
	There's more…
	Implementing a Glass Shader
	Getting ready
	How to do it…
	How it works…
	There's more…
	Implementing a Water Shader for 2D games
	Getting ready
	How to do it…
	How it works…
	7. Mobile Shader Adjustment
	Introduction
	What is a cheap shader?
	Getting ready
	How to do it…
	How it works…
	Profiling your shaders
	Getting ready
	How to do it…
	How it works…
	There's more…
	Modifying our shaders for mobile
	Getting ready
	How to do it…
	How it works…
	8. Screen Effects with Unity Render Textures
	Introduction
	Setting up the screen effects script system
	Getting ready
	How to do it…
	How it works…
	There's more…
	Using brightness, saturation, and contrast with screen effects
	Getting ready
	How to do it…
	How it works…
	Using basic Photoshop-like Blend modes with screen effects
	Getting ready
	How to do it…
	How it works…
	There's more…
	Using the Overlay Blend mode with screen effects
	Getting ready
	How to do it…
	How it works…
	9. Gameplay and Screen Effects
	Introduction
	Creating an old movie screen effect
	Getting ready
	How to do it…
	How it works…
	See also
	Creating a night vision screen effect
	Getting ready
	How to do it…
	How it works…
	There's more...
	10. Advanced Shading Techniques
	Introduction
	Using CgInclude files that are built into Unity
	Getting ready
	How to do it…
	How it works…
	Making your shader world modular with CgInclude
	Getting ready
	How to do it…
	How it works…
	Implementing a Fur Shader
	Getting ready
	How to do it…
	How it works…
	There's more…
	Implementing heatmaps with arrays
	Getting ready
	How to do it…
	How it works…
	Index

