
1

www.allitebooks.com

http://www.allitebooks.org

Swift 2 Cookbook

Over 50 hands-on recipes to help you create apps and
build your portfolio of projects in Swift 2

Kyle Begeman

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Swift 2 Cookbook

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: April 2015

Second edition: March 2016

Production reference: 1230316

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-921-9

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Kyle Begeman

Reviewer
Cecil Costa

Commissioning Editor
Kunal Parikh

Content Development Editor
Amey Verangaokar

Technical Editor
Vivek Arora

Copy Editor
Joanna McMahon

Project Coordinator
Francina Pinto

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Disha Haria

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

Kyle Begeman is a self-taught programmer, entrepreneur, and educator. With over 6 years
of experience in iOS development, Kyle has produced multiple applications personally and
professionally (usually with large businesses). Kyle also produces educational videos and
courses for others to learn how to program. A self-proclaimed nerd living in Silicon Valley, Kyle
spends most of his free time listening to and playing music while thinking up the next great
project. You can learn more about Kyle and his work by visiting www.kylebegeman.com.

www.allitebooks.com

www.kylebegeman.com
http://www.allitebooks.org

About the Reviewer

Cecil Costa also known as Eduardo Campos in Latin countries, is a Euro-Brazilian freelance
developer who has been learning about computers since getting his first PC 286 in 1990.
From then on, he kept learning about programming languages, computer architecture, and
computer science theory.

Learning is his passion as well as teaching; this is the reason why he worked as a trainer to a
book's author. He has been delivering on-site courses for companies such as Ericsson, Roche,
TVE (a Spanish television channel), and lots of other companies. He is also the author of the
book Swift Cookbook (first edition), Swift 2 Blueprints, and Reactive Programming with Swift,
all by Packt Publishing.

Nowadays, Cecil Costa teaches through online platforms, helping people from every part of
the world.

In 2008, he founded his own company, Conglomo Limited (www.conglomo.es), which offers
development and training programs both on site and online.

Over his professional career, he has created projects by himself and also worked for different
companies, from small to big ones, such as IBM, Qualcomm, Spanish Lottery, and DIA%.

He develops a variety of computer languages (such as Swift, C++, Java, Objective-C, JavaScript,
Python, and so on) in different environments (iOS, Android, Web, Mac OS X, Linux, Unity, and
so on) because he thinks that a good developer needs to learn every kind of programming
language to open his mind and only then will he really know what development is.

Nowadays, Cecil is based in the UK, where he is progressing in his professional career,
working as an iOS Team Lead.

I would like to thank Mr. George Boole for making everything true or false
and to Leonard Kleinrock for creating the idea of the Internet.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

i

Table of Contents
Preface	 v
Chapter 1: Getting Started with Xcode and Swift	 1

Introduction	 1
Installing Xcode from the App Store	 2
Downloading the Xcode image	 3
Starting a Swift project	 5
Using the Swift project options	 10
Creating conditional code	 12
Migrating an existing project to Swift 2.0	 15
Adding a developer account	 17
Compiling from the command line	 20
Using Swift as an interpreter	 22
Adding a control version system to an existing project	 24

Chapter 2: Standard Library and Collections	 27
Introduction	 27
Creating HTML manually	 28
Printing your object description	 32
Quizzing the user	 36
Searching for perfect numbers	 43
Sorting an array of products	 45
Finding the way out	 49
Creating your own set	 56
Organizing a dinner room	 62

Chapter 3: Using Structs and Generics	 73
Introduction	 73
Creating an exam app	 74
Checking for the right answer	 79
Avoiding the copying of structs	 81

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Creating a generic array initializer	 85
Creating a priority list	 87
Creating a protocol for the priority queue	 94

Chapter 4: Design Patterns with Swift	 97
Introduction	 97
Writing into a log file	 98
Creating a factory of musical notes	 105
Simulating a home automation	 113
Delivering some pizzas	 121
Protocol-oriented programming	 127

Chapter 5: Multitasking in Your App	 131
Introduction	 131
Word counting using threads	 131
Creating an SEO app	 137
Creating a CycloneChecker app	 142
Checking links of our website	 148

Chapter 6: Working with Playgrounds	 157
Introduction	 157
Creating the first playground	 158
Watching some graphics	 162
Watching a temperature with color	 166
Stretching an image	 168
Beautifying your text using Pangrams	 172
Receiving JSONs	 175
Creating our own class representations	 179
Rich documentation	 182
Navigating pages in playgrounds	 188

Chapter 7: Swift Debugging with Xcode	 191
Introduction	 191
Validating the values – developing a tax income simulator app 	 192
Debugging with Xcode and Swift – the best checker movement	 198
Debugging with LLDB	 210
Profiling an app	 212
Error handling in Swift 2.0	 218
Custom error handling in Swift 2.0	 220
Availability checking in Swift 2.0	 222

Chapter 8: Integrating with Objective-C	 225
Introduction	 225
Calling a cab	 226

www.allitebooks.com

http://www.allitebooks.org

iii

Table of Contents

Hiring a van	 233
Porting your code from one language to another	 238
Replacing the user interface classes	 240
Upgrading the app delegate	 244
Creating your own custom framework	 247

Chapter 9: Dealing with Other Languages	 255
Introduction	 255
Using my old address book	 256
Compressing a message	 266
Using assembly code with Swift	 275
Sharing C++ code with Swift	 279

Chapter 10: Data Access	 287
Introduction	 287
Creating an SQLite database	 288
Checking where your IP is from	 294
Tracking your phone activity	 302
Controlling your stocks	 309
Designing a voting device using CouchDB 	 318

Chapter 11: Extensions, Photos, and More	 327
Introduction	 327
Developing the geekiest keyboard	 327
Time to take your pill	 335
Adding effects to your photos	 342
Being a film critic	 346
Leaving breadcrumbs	 360
Creating the Currency Converter app	 365
Method swizzling in Swift	 374
Associated objects in Swift	 376

Index	 379

www.allitebooks.com

http://www.allitebooks.org

v

Preface
After being available for over a year, Swift has begun to mature and add new features rapidly.
Apple has introduced Swift 2 along with some great new features and benefits to Xcode and
underlying technologies. This book is intended to update Objective-C developers who want to
migrate to Swift 2 and also to help Swift developers get a stronger base with better knowledge
of this programming language and its second version.

If you enjoy creating small apps, this book is perfect for you. It will show you how to create
Swift apps from scratch. So, take your Mac, open your Xcode, and let's cook Swift!

What this book covers
Chapter 1, Getting Started with Xcode and Swift, introduces you to some Xcode features that
are Swift-specific. This might sound a bit advanced for the first chapter, but it is not difficult
and it is also very important, mainly for those people who would like to develop professionally.

Chapter 2, Standard Library and Collections, shows you how to manipulate arrays, dictionaries,
sets, strings, and other objects using the Swift way. This chapter is very important for people
who have been working with Objective-C.

Chapter 3, Using Structs and Generics, shows you how Swift structs are not the same as
Objective-C (or even C) structs, and that generics is a feature that allows you to create
functions that are not tied to only one type. Both features have their own tricks.

Chapter 4, Design Patterns with Swift, explains how to implement design patterns using Swift,
especially if you like object-oriented programming.

Chapter 5, Multitasking in Your App, shows you how to use different types of multitasking in
your application, a feature that is present in almost every app nowadays.

Chapter 6, Working with Playgrounds, teaches you how to use Playgrounds, a great Xcode
feature that allows you to test your code before adding it to your project.

Preface

vi

Chapter 7, Swift Debugging with Xcode, explains how to debug Swift code using Xcode, LLDB,
and Instruments. Here, you learn some tricks for finding and solving bugs in your app.

Chapter 8, Integrating with Objective-C, shows you how Swift and Objective-C can live together
and gives you a step-by-step guide on how to migrate your Objective-C app to Swift.

Chapter 9, Dealing with Other Languages, shows you how to use C, C++, and the assembly
language with Swift, since you already know Swift is not alone in iOS and OS X development.

Chapter 10, Data Access, shows you different ways of storing data, which can be local or remote.

Chapter 11, Extensions, Photos, and More, expounds some topics that are very important in the
Swift development world, from new frameworks such as the WatchKit to widely used ones. We
will also cover some advanced topics such as method swizzling and associated objects.

What you need for this book
Developing with Swift 2 requires Xcode 7 or higher, which by itself needs to be installed on
Yosemite (OS X 10.10). This can only be installed on a Mac computer. So, this is basically
what you need.

A few recipes can only be tested on a physical device (iPhone, iPad, or iPod); therefore, they
can only be installed if you are enrolled on the Apple Developer Program.

Who this book is for
 If you are an experienced Objective-C programmer and are looking for quick solutions to
many different coding tasks in Swift, then this book is for you. You are expected to have
development experience, though not necessarily with Swift.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Create a new Swift single view application called
Chapter 9 Assembly, and add a new file called AssemblyCode.c."

A block of code is set as follows:

struct Contact {
 char name[60];
 char phone[20];
 struct date {
 int day;

Preface

vii

 int month;
 int year;
 } birthday;
};

struct ContactList {
 struct Contact contact;
 struct ContactList * next;
};

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

 override func viewDidLoad() {
 super.viewDidLoad()
 initializeContactList(&list)
 }

Any command-line input or output is written as follows:

6 / 3 = 2

6 / 2 = 3

6 / 1 = 6

Execution interrupted. Enter Swift code to recover and continue.

Enter LLDB commands to investigate (type :help for assistance.)

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Click on Yes when Xcode
asks for the bridging file."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or disliked. Reader feedback is important for us as it helps us develop titles
that you will really get the most out of.

Preface

viii

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http://
www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.

2.	 Hover the mouse pointer on the SUPPORT tab at the top.

3.	 Click on Code Downloads & Errata.

4.	 Enter the name of the book in the Search box.

5.	 Select the book for which you're looking to download the code files.

6.	 Choose from the drop-down menu where you purchased this book from.

7.	 Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

ff WinRAR / 7-Zip for Windows

ff Zipeg / iZip / UnRarX for Mac

ff 7-Zip / PeaZip for Linux

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

ix

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the Errata Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1

1
Getting Started with

Xcode and Swift

In this chapter, we will cover the following recipes:

ff Installing Xcode from the App Store

ff Downloading the Xcode image

ff Starting a Swift project

ff Using Swift project options

ff Creating conditional code

ff Migrating an existing project to Swift 2.0

ff Adding a developer account

ff Compiling from the command line

ff Using Swift as an interpreter

ff Adding a control version system to an existing project

Introduction
In this chapter, we will learn the basics of creating a project with Swift. Even if you have
already created your own project, it is worth reading the recipes of this chapter. You will learn
how to interact with Xcode, how to test your code from the command line, and at the end, we
will review the basics of this language.

Getting Started with Xcode and Swift

2

Before downloading Xcode, note that Swift requires Xcode 6.0 for Swift 1.0, and 1.2 or Xcode
7.0 for Swift 2.0 and 2.1. We will be installing Xcode 7.0 (the latest version, as of this writing).
To install version 7.0 of Xcode, you must have at least OS X Yosemite (OS X 10.10), so meet
these requirements before installing it.

Installing Xcode from the App Store
The first way of installing Xcode is by downloading it from the App Store. The advantage of
this method is that you will be warned about updates, and the system requirements will be
checked before the download starts.

Getting ready
To download any program from the App Store, you must have an Apple ID; it's free and it won't
take long to set up.

How to do it…
1.	 To download Xcode from the App Store, just open App Store from your dock or your

applications folder.

2.	 The first time you open the App Store, it will ask you for your Apple ID details (e-mail
and password). After opening this application, just search for xcode in the textbox,
which is located on the upper-right corner of this application.

Chapter 1

3

3.	 Make sure that you are installing Xcode from the right vendor (Apple); sometimes we
get results that lead us to think that they are what we want but they aren't.

4.	 Once you have found the Xcode app, just click on the Install button, and the next step
is to go for coffee, or you can call a friend, because Xcode is 2.2 gigabytes, which
means that it will take a while to download, so take a break now.

5.	 To check whether Xcode has finished the installation, you just need to open the
Applications folder or the Launchpad app, then have a look to see whether there
is a progress bar under the Xcode icon.

How it works…
Like any other application that you will install from the App Store, you only need to open the
App Store application, search for it, and install it.

There's more…
If you buy a new computer, you will see that Xcode will be offered to be installed onto your new
machine. This is because Apple keeps track of the applications you've already installed.

Downloading the Xcode image
The second way of installing Xcode is by downloading an image from the Apple Developer
Center; this step is not free, it's only available to members of the Apple Developer Program
(which costs approximately $99 a year) or for people who work in companies that are
members of this program.

Getting ready
For this recipe, you will need to have 2.2 gigabytes of free space besides the space stored by
the installed Xcode, but I will assume that you won't have this problem.

The advantage of downloading a DMG file is that you can save it onto a DVD as a backup (you
never know when this version of Xcode will be removed from the App Store). Also, if you work
in a team, it is very important to have every member working with the same Xcode version. In
addition, if you want to install any beta version of Xcode, it will only be available through the
Apple Developer Center.

Getting Started with Xcode and Swift

4

How to do it…
To download the Xcode image, follow these steps:

1.	 The first step is to open your web browser; go to http://developer.apple.com/
xcode, then click the download button in the top-right corner of the web page. You
will be brought to a new page with two download options: the latest beta build or a
link to the Mac App Store. If you select to download the beta build, a login will be
required. The download will begin immediately after logging in. Otherwise you can
download the latest public build for free in the Mac App Store.

You can have multiple versions of Xcode on a single machine;
specifically, the public release and any beta versions made
available by Apple.

2.	 After downloading the DMG file, double-click on it and drag the Xcode icon into your
Applications folder. Remember that you need the administrator's permission to copy
files into the Applications folder.

http://developer.apple.com/xcode
http://developer.apple.com/xcode

Chapter 1

5

3.	 You can also install Xcode onto a different path such as your home directory, but I
wouldn't recommend this if it's not necessary.

Don't search for "download Swift" on your search engine as there
is another programming language that is also called Swift, which
has nothing to do with Apple devices.

How it works…
The DMG file ensures that you can always have a backup of this Xcode version, so if for any
reason you have problems with future versions of Xcode, you can install the previous version.
It is also possible to have more than one Xcode version installed onto your computer.

There's more…
The Apple Developer Center is a good website to get Xcode resources. Here, you can find
videos, guides, code samples, and add-ons.

Starting a Swift project
Usually, starting Swift is something that is very straightforward; however, it is good to know
what is going on in every step.

Getting ready
Before you start a project, make sure that you know your project name and in which folder it
will be saved. Changing this kind of parameter can create problems after the project has been
created. Once you have Xcode installed, you can open it from your application folder, from the
Launch pad, or even from your dock if you have added Xcode onto it. As I'm a very lazy person,
I prefer the latter; it's faster for me to have it on my dock.

Getting Started with Xcode and Swift

6

How to do it…
The first time you open Xcode, it's possible that it will ask to install some additional packages,
so do it. Some of these packages are important, depending on the type of application you are
developing, and some of them are necessary to have access for some devices, mainly the
newest ones.

1.	 Now, Xcode is asking you about the project you want to start or open. Check the
option that says Create a new Xcode project.

If, for any reason, this window is not shown to you, there is always the option to go to
File (on the menu bar) | New | Project.

Chapter 1

7

2.	 The next step is to choose the type of project that you want to develop. For this
example, I will use a Single View Application for iOS, but I'll make comments
if there is anything different on OS X applications or for another type of project.

The next dialog will ask you for some project information, one example being the
programming language that you want to use. In this example, we will use Swift.

Getting Started with Xcode and Swift

8

3.	 Choose Swift as the language and it will create the application with its delegate, with
Swift code. Make sure that Use Core Data is unchecked to prevent having its code on
the app delegate.

You will also notice that Swift iOS applications now have no files called main.m,
main.mm, or main.swift. OS X apps have a main.swift file, but it is smaller
than the previous main.m file.

As you should already know, the product name is your application name, the
organization name is the proprietary of this software, and the organization identifier
is the reversed Internet domain, for example, uk.co.packtpub instead of
packtpub.co.uk.

Note that now there is no checkbox for creating unit tests because,
by default, it is created for you using XCTest. If you don't want it, just
remove the group from your project. I wouldn't remove it, it usually
doesn't hurt.

4.	 Now, it's time to choose a folder to store our project. Remember that during the
development, you can add files, which will be stored in different locations. I don't
recommend this kind of practice, but if you have to do so, try to have your project
close to these files.

5.	 I also recommend you to check the option to use a Git repository, except if you have
a subversion repository, of course. Even if you are the only developer, it's important
to have a version control system. Remember that we are humans, and sometimes we
make mistakes and so have to go back.

Chapter 1

9

6.	 Once you have the project created, press the play button to see it working. If it's the
first time you have installed Xcode, it will show you a dialog asking you to enable the
developer mode. Click on the Enable button if you have the administrator password.

7.	 Ok! Now you have your project up and running.

Getting Started with Xcode and Swift

10

How it works…
Creating a project is not something difficult; you only need to pay attention to some steps.
Make sure that you have selected Swift as the main programming language; otherwise,
you will see a lot of stuff with Objective-C.

Pay attention to the folder where you will create your project. Xcode will create another
folder with your project name, and inside of it, Xcode will create the project bundle, a folder
with the source code. If you want to copy your project, make sure that you copy the folder that
contains everything.

There's more…
If you want to work on a team that has already started a project, you will probably clone the
project using the Check out an existing project option. You will use a Git or a subversion
repository and you will have your code synchronized with the other members of the team.
Xcode offers us the basic tools to work with a VCS (version control system); these are enough
for 80 percent of our tasks.

Using the Swift project options
Xcode projects come with lots of options. Here, we will know some of them, mainly the Swift-
specific ones.

Getting ready
To perform this recipe, just create a new project, as shown in the previous recipe.

How to do it…
1.	 Once you've created a project, click on the navigator project icon or press command

+ 1 if you prefer a keyboard shortcut, then click on your project icon (the first icon).
Now, click on Build Settings.

Chapter 1

11

2.	 Look for Embedded Content Contains Swift Code; in this case, we will select No, but
of course, if you know that there is any extra content created with Swift, you should
select Yes.

3.	 Go to the General tab and scroll down; you can see where you can add the
embedded binaries.

4.	 Now, look for Optimization Level. Here is where you tell the compiler how much time
it should expend trying to make your code faster or compress it. Usually, when we
are developing (debug mode), we set for no optimization (-O0); however, when we are
going to create the final product (release mode), we will usually set an optimization
level such as Os, which means fastest and smallest.

Sometimes, with Objective-C, when you used to set a high level
of optimization, the debugger used to lose some of the variable
values. I haven't seen this phenomenon with Swift yet, but it's
good to have it in mind.

5.	 Another important option is Import paths. This tells Swift where it should look for
Swift modules. If you are linking your project with external libraries, you may need to
specify where the module.map file is. If you have more than one path to search, you
need to set them one per line. If you have different paths for debug and release, you
can still use variables such as $(CONFIGURATION) or $(TARGET).

Getting Started with Xcode and Swift

12

You can use absolute or relative paths, but I would give
preference to the relative ones.

How it works…
Changing settings is something that you have to do mainly when your project starts growing.
There are some options that you set differently for debug and release configurations.

There's more…
Xcode has a lot of configuration settings; showing all of them would be out of the scope of this
book. I recommend that you at least look at some of them, mainly if you want to work with big
projects. My main recommendation here is: do not change your settings without synchronizing
with the other members of your team (mainly with the project manager). If you cause a conflict
with the VCS, it could be hard work to fix it.

Creating conditional code
Usually when we are developing, we have some cases where we would like to have different
pieces of code according to our needs. For example, let's imagine that we would like to
compare the performance of some functions written by us with some equivalent functions
that were created on a third-party library. In this case, we can create some macros for using
only our functions or for using only the third-party functions, allowing us to have the same
application working in two different ways.

In this recipe, we will show you how to create a log according to a platform and we can also
enable or disable it if the execution is being affected by the excess of logs.

Getting ready
Create a new project called Chapter 1 Conditional Code, as shown earlier, and let's
code a little bit.

How to do it…
1.	 After creating a new project, let's create a new file by navigating to File | New |

File.... Now, choose Swift File and name it CustomLog.swift.

Chapter 1

13

Don't save your files on a different folder from the project;
this will give you problems in the future.

2.	 Now, add the following code:
func printLog(message: NSString){
 #if VERBOSE_LOG
 #if os(OSX)
 let OS="OS X"
 #else
 let OS="iOS"
 #endif

 #if arch(arm) || arch(arm64)
 let devicetype = "Mobile device"
 #elseif arch(x86_64) || arch(i386)
 let devicetype = "Computer"
 #else
 let devicetype = "Unkown"
 #endif

 NSLog("%@ on a %@ - %@", OS, devicetype, message)
 #endif
}

3.	 Now, go to the viewDidLoad method of your view controller, and add a call for this
function, like this:
printLog("Hello World")

4.	 Try clicking play now; what do you see? The answer is—nothing! The reason is that
the compiler knows nothing about the macro VERBOSE_LOG, which means that this
macro is interpreted as false and the only thing that is created is an empty function.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Xcode and Swift

14

5.	 Now, go back to your project build settings, search for other swift flags, and add
-DVERBOSE_LOG, as shown in the following screenshot:

6.	 Click on play again and you will see the log message.

How it works…
Currently, the Swift compiler has two defined macros: os() and arch(). The first one can
receive OS X or iOS as arguments, and the second one can receive x86_64, arm, arm64, and
i386. Both macros will return a Boolean value. You can also create your own macro, defining it
on your build settings.

The block that is evaluated as true will be compiled, and the other blocks will not be
compiled; this way you can have code that calls OS-specific functions.

I would like to emphasize, mainly for those developers who are used
to working with C projects, that the Apple documentation leaves a very
clear message that Swift has no preprocessor; it only uses a trick on
compilation time, so you can't use macros as we used to do on C or
even on Objective-C. The only thing you can do is watch to see whether
they are set or not.

There's more…
If you need to, you can use the operators &&, ||, and ! as shown here: #if arch(arm64)
&& os(iOS), but you can't use any kind of comparator operator such as ==, <, and so on.

If you are interested in knowing more options that you can add to other Swift flags, check out
the Compiling from the command line recipe in this chapter.

Chapter 1

15

Migrating an existing project to Swift 2.0
If you have an existing project written in Swift 2.0 or below, Apple has provided some handy
tools with Xcode 7 for you to migrate to Swift 2.0 with ease.

Getting ready
For this recipe, you will need an existing Xcode project written in Swift 1.2 or below.

How to do it…
Follow these steps to migrate an existing project:

1.	 Locate your existing Xcode project and open the .xcodeproj or .xcworkspace
file to automatically open Xcode 7. Once the project or workspace loads, Xcode
will present you with the following message prompting you to convert to the
latest Swift syntax:

2.	 Click on Convert and you will be taken to a new screen. This screen displays some
information about what the conversion process will look like. Select Next to continue.

Getting Started with Xcode and Swift

16

3.	 You will now be asked to select which targets to update to Swift 2.0. This is very
useful if you need to leave any targets in their current state. Review your list of
targets and uncheck those that you do not want updated, and select Next.

4.	 You will be presented with a new screen, similar to the assistant editor, comparing
the results after migration to the current state of your code. In the far left pane, you
will see a list of all files that will receive a change and can manually select files to not
make any changes.

Chapter 1

17

If there are any files you wish NOT to be migrated, simply
uncheck them from the left pane list of files.

5.	 Once you have verified or modified all changes, select Save. Xcode will update all
changes and you will be ready to continue development with Swift 2.0.

How it works…
Apple has made Xcode extremely versatile in code migration. Thankfully, this takes most of
the hassle out of migration to Swift 2.0 and allows you to get straight to writing more code.
However, the migration process is not perfect and manual changes are likely required for
complex projects.

There's more…
If for any reason the migration prompt did not automatically display itself, you can still start
the process on your own. Navigate from the menu bar to Edit | Convert | To Latest Swift
Syntax. You will be brought directly to step 2 of this recipe.

Adding a developer account
Usually, Apple tries to make the developer's life easier by improving Xcode and creating tools,
but there is an exception when we talk about certificates. If you want to test your app on a
physical device (iPhone, iPad, or iPod), you need a certificate. If you would like to upload it
onto the App Store, you also need this certificate.

The idea of a certificate is to protect your code from malicious code or from being modified
after being signed, but this idea has a price. To get a certificate, you will need to be enrolled
on the Apple Developer Program.

Getting ready
We will assume that if you continue with this recipe, you are already enrolled on this program.
Let's recycle the previous project; open it, and let's start.

Getting Started with Xcode and Swift

18

How to do it…
Follow these steps to add an Apple developer account:

1.	 Once you've opened the project, click on the project navigator, then click on the
combobox that shows our project, and select the target Chapter 1 if it's not
selected yet.

2.	 Now, have a look at the option called Team. In the case of programming a Mac
application, this combobox is enabled only if you select the signing option to
Mac App Store or Developer ID.

3.	 Usually, the team option starts with None selected. Click over this combobox and
select Add Account.

4.	 After selecting to add an account, Xcode will ask for your Apple Developer Program
login data (e-mail and password). If you don't have it, you have the option to join
the program.

Chapter 1

19

5.	 Once you've added this, you are supposed to use your account and run your app. If
you have a device attached to your Mac, you can go to the Window option on the
menu bar and then you can select the Devices option.

Your device should appear on the dialog. Xcode could take a while
to read the device's symbols. In the case of attaching this device
for the first time, you will see that you will have to ask to change the
status of this device to developer mode.

6.	 When you get the green light, it means that your device is ready to be used for
development; now, go back to your project and change from the simulator to
your device.

7.	 If the device is enabled but not listed by Xcode, it could mean that you have to
decrease the iOS Deployment Target, which can be found on the project setting,
under the Info tab.

Lowering the iOS Deployment Target to the minimum value is an
idea very common among programmers to cover the maximum sort
of devices. Doing this will prevent your development from using new
features. Check out the features that you need first, and then change
your iOS Deployment Target.

Getting Started with Xcode and Swift

20

How it works…
Signing a code is something done for security; the main restriction is that you must be up to
date with the Apple Developer Program. Apple allows up to 100 devices per account.

There's more…
Sometimes, the certificate causes us some headaches. Take care if it asks you to revoke your
certificate; you may have to create a new one on the Apple Developer Center, and if you are
working in a team, you may have to wait for the administrator's approval.

There are a few times that you need to change the code-signing option on the build settings; it
happens mainly when you get code from another organization ID.

Testing your code on a device is something that is very useful; it's where you can test the
real user experience. Whenever you have some low-level code, such as assembly code or
something written in C language that uses type sizes or byte orders, it's good to test your
project on a device. Remember that Apple's devices have CPUs based on ARM and ARM64,
which are different to the Intel CPU that is used on Mac computers.

Compiling from the command line
I know that nowadays a lot of users, and even developers, think that using the command line
is something from the past. The reality is that, even today, a lot of tasks that can be done from
the command line, mainly automations tasks such as continuous integration, must be done
using the command line.

This recipe will show you that it's not difficult, and better than this, you will have an increased
understanding of the concept about what Xcode does behind the scenes.

If you've never worked with a command line, I would suggest
you read a book about it; Linux Shell Scripting Cookbook, Packt
Publishing, is a good one in my opinion, even knowing that some
commands are Linux-specific.

Getting ready
Open a Finder window using the key combination command + Shift + U or open your
Launchpad and click on the Others folder. Here, you can see an icon called Terminal,
open it and you should see a window similar to the following one:

Chapter 1

21

How to do it…
1.	 Type xcode-select -p; this should give you one path, for example,

/Applications/Xcode.app/Contents/Developer. If you don't have more
Xcode versions installed in your machine, you shouldn't worry about the path; it
will probably be right. If for any reason you have more than one Xcode installed
on your machine, you will need to change it by typing xcode-select -s /
Applications/XCODE VERSION.app/Contents/Developer.

Remember that switching Xcode is a task that can only
be done by an administrator, and it will affect every user.

2.	 Now, go to your project directory and type the following command:
xcodebuild -target "Chapter 1" -configuration Debug

After this, you will see lots of commands on screen, but the most important message is the
last one that should be ** BUILD SUCCEEDED **; which means that the project was built
without errors.

How it works…
When you type a command, your system will look for this command using the paths specified
by the PATH variable. You can check the directories included in your PATH variable by typing
echo $PATH. By default, the directory /usr/bin is included.

Getting Started with Xcode and Swift

22

This directory contains Xcode commands, such as xcodebuild. When you want to use
commands from other Xcode versions, you need to use xcode-select to overwrite these
files to use the ones according to the version you want.

Once you have set it, you can compile your project. As your project is a set of lots of files such
as source codes, images, and so on, it would be hard work if we had to do every single action
(compiling, copying files, code signing, and so on) one by one. This is the reason it's easier to
ask Xcode to do it by itself using the command xcodebuild.

The xcodebuild command has a lot of parameters, so you can specify the configuration
to be Debug or Release, the target you want to compile, as well as many other options. Type
xcodebuild -help to get a list of options.

The -help argument is very common on Xcode
commands. Try to use it when you have any doubt.

There's more…
Another good feature about the xcodebuild command is that it shows the commands
that are being used with all its arguments. So, you can appreciate that when you compile an
Objective-C project, Xcode uses the clang compiler, but when you have a Swift project, Xcode
uses the swiftc command. Type swiftc -help with its full path to check its options and
use them in the build options of other Swift flags.

Keep in mind that xcodebuild is going to look for a file called project.pbxproj, which
is inside your .xcodeproj directory. This file contains information of every file, settings, and
steps to create a project; in case of wrong syntax or wrong references, xcodebuild and the
Xcode IDE won't compile the project at all. In addition to this fixing, this file could be hard
work. Because of these reasons, I wouldn't change this file manually, and also, I would try to
avoid conflict with the version control system.

Using Swift as an interpreter
Like some other script languages, you can use Swift with its interpreter on the command line.
Sometimes it's very useful, mainly when you want to test code but you don't want to create a
new playground.

Getting ready
Open a terminal window as shown in the previous recipe.

Chapter 1

23

How to do it…
Follow these steps for using Swift as a command line interpreter:

1.	 The first step is to find where the Swift command is; even if you have used the
xcode-select command, it is possible that the Swift command is not accessible
from your PATH variable. So, you can localize your Swift command using find /
Applications/Xcode.app -name swift -a -type f. In my case, I
got /Applications/Xcode.app/Contents/Developer/Toolchains/
XcodeDefault.xctoolchain/usr/bin/swift.

However, current versions of Xcode have the Swift command at /usr/
bin. If it is necessary, add this directory to your PATH variable with
the command export PATH="$PATH:/Applications/Xcode.
app/Contents/Developer/Toolchains/XcodeDefault.
xctoolchain/usr/bin/". At this moment, we can enter into the
Swift interpreter just by typing swift.

2.	 If you want to use Swift from the command line, sometimes it's a good idea to have
this PATH variable set permanently. To make this, we need to add the previous
command into our .profile file, such as echo 'export PATH="$PATH:/
Applications/Xcode.app/Contents/Developer/Toolchains/
XcodeDefault.xctoolchain/usr/bin/" ' >> $HOME/.profile && chmod
+x $HOME/.profile.

From now on, if you restart your computer, it won't be necessary to look for the Swift
path and set the PATH environment variable again.

3.	 Now, let's enter into our Swift command line and type the following code:
var dividend = [3,2,1,0]
var divisor = 6

4.	 You will see a message showing the content of these variables after typing each of
them. Now, type the following loop code:
for i in dividend {
 println("\(divisor) / \(i) = \(divisor / i)")
}

You can see that we will receive the following result:
6 / 3 = 2

6 / 2 = 3

6 / 1 = 6

Execution interrupted. Enter Swift code to recover and continue.

Enter LLDB commands to investigate (type :help for assistance.)

Getting Started with Xcode and Swift

24

5.	 As you can see, the last option failed because we can't divide by 0. That's a fast way
we can test some code using the command line. Most of the time, we will test using a
playground, but sometimes using the command line is much faster.

How it works…
Calling the Swift command gives you the possibility to test your code or even use Swift as
a scripting language. The thing to highlight here is that you need to know where your Swift
command is; the command line helps you to find it.

There's more…
Most of Swift's options and swiftc options are common; it means that if there is something
that you would like to test before compiling, you can do it.

Adding a control version system to an
existing project

It's very common starting a project without any version control, and with the passage of time,
we change our idea and decide to add one.

Unfortunately, Xcode doesn't give this option to us and we have to do it by hand. I hope this
option will be added on Xcode soon.

Getting ready
To do this recipe, let's create an empty project called Chapter1 Git; however, this time,
before we save the project, uncheck the option Create Git CGRepository on.

Chapter 1

25

How to do it…
Follow these steps for creating a local repository on an existing project:

1.	 Open the Source Control menu option from the menu bar.

2.	 Select Create Working Copy to create the local repository.

3.	 Now, you can open your project and notice that Xcode already recognizes the VCS. If
you want to be sure of it, modify a file, save it with command + S and check that you
have the letter M on the right side of your file on the project navigator.

4.	 Once you are happy with your changes, you can deliver them by right-clicking on
AppDelegate.swift, then going to the Source Control option and selecting the
Commit "AppDelegate.swift" … option.

5.	 Then, a dialog box asking for a description will appear; write about your modification
as comment and click on Commit 1 file.

How it works…
Unfortunately, if you forgot to add a Git repository to your project, Xcode won't provide any
mechanism to add it to your project, so you have to add it by hand. Opening the command line
allows you to use Git from the command line and Xcode detects that this feature has been
added. Some versions of Xcode can only detect that the version control has been added when
you open your project, so if you've done all the steps and Xcode hasn't detected it, try closing
and opening Xcode again.

Getting Started with Xcode and Swift

26

Xcode offers you some features to work with Git and SVN, but they
are very limited. If you need more commands from your VCS, you
can use them from the command line or use an external tool for it.

There's more…
Even if you are not going to work as part of a team, I recommend that you use a version
control system. When developing with Swift or other languages, you sometimes need to
rollback or compare the current code with previous versions of it, mainly when you
have a new bug.

See also
ff If you would like to know more on this topic, check out the book Git Version Control

Cookbook, Packt Publishing

27

2
Standard Library and

Collections

In this chapter, we will cover the following recipes:

ff Creating HTML manually

ff Printing your object description

ff Quizzing the user

ff Searching for perfect numbers

ff Sorting an array of products

ff Finding the way out

ff Creating your own set

ff Organizing a dinner room

Introduction
It's important to know the usage of collections and standard library, mainly for those people
who come from Objective-C because there are some differences here.

In this chapter, we will create some apps to use these features. After these recipes, you
should have a good understanding about the Swift programming language.

As mentioned in the previous chapter, most of our recipes will be created on iOS, but you can
develop them on Mac OS X if you want.

Standard Library and Collections

28

Creating HTML manually
HTML started as a simple format for displaying web pages and links. Nowadays, this format
has become very common and it is used everywhere. There are even frameworks such as
PhoneGap that create applications with this file type.

In this recipe, we will create HTML using only strings; the main idea is to know about string
manipulation. In this case, we will create the HTML code for a visiting card.

Getting ready
Open your Xcode and create a single view project called Chapter2 HTML.

How to do it…
Let's create HTML manually by following these steps:

1.	 Click on the storyboard and add the following layout:

Chapter 2

29

2.	 Then, connect the text fields with the following properties on the view controller:
@IBOutlet weak var nameTextField: UITextField!
@IBOutlet weak var addressTextField: UITextField!
@IBOutlet weak var postCodeTextField: UITextField!
@IBOutlet weak var phoneTextField: UITextField!

3.	 Link these properties with the corresponding text field on the view, and before
creating an action button, we will create a Card class with the following code:
class Card {
 private let TEMPLATE = "<div class=\"personalcard\">" +
 "<p class=\"name\">#name#</p>" + "<p
 class=\"address\">#address#</p>" + "<p
 class=\"postcode\">#postcode#</p>" + "<p
 class=\"phone\">#phone#</p>" + "</div"

 var name:String?
 var address:String?
 var postCode:String?
 var phone:String?

 init(){}
}

As you can see, we are creating a class with the same information as our application.
The main difference is that we have a constant called TEMPLATE, which has a model
of our HTML.

Note that this constant is private because it's something that we
shouldn't see (for example, from the view controller). Also notice
that we have a plus sign at the end of each line that needs to
continue on the next line. The reason is that we can't concatenate
strings without using an operator as we used in Objective-C.

Swift doesn't need a semicolon at the instruction end. However, if you have a huge
line, you have to tell the compiler that the line is going to continue, with a plus sign,
for example, or by indicating on the next line that it is continuing from the previous
one, with a dot operator, for example.

If you've been programming with Objective-C or C++, you may be asking why we've
created an empty initializer. The reason is: it is not necessary; theoretically, because
we only have constants and optional values. However, some Swift versions, for
whatever reason, don't detect it and force you to create an empty initializer.

What are the attributes' initial values? The answer is nil. Have a look to see whether
all of them are optional; otherwise, we will have to set their values to something.

Standard Library and Collections

30

Avoid using empty values such as empty strings to initialize an
attribute; it is better to use optional attributes.

4.	 At this time, we have the basic structure. Now we need to create the button event, so
link the touch up event with the following action on the view controller:
@IBAction func showHTML(sender: AnyObject) {
 var card = Card()

 card.name = nameTextField.text
 card.address = addressTextField.text
 card.postCode = postCodeTextField.text
 card.phone = phoneTextField.text

 let alert = UIAlertController(title: "HTML", message:
 card.toHtml(), preferredStyle:.Alert)
 self.presentViewController(alert, animated: true,
 completion: nil)
}

5.	 Now we will have a look at whether this action is very clear. We will start creating a
card object, then we will receive the information we need from our view, and at the
end, display it.

Avoid spaghetti code; do not create an enormous action and try to divide
it into classes and methods. Have a look at the Model-View-Controller
pattern on Wikipedia.

6.	 Everything is fine except for one detail: the Card class has no method called toHtml.
No problem, let's implement it. Go back to our Card class and add the following
method:
func toHtml() -> String{
 var html =
 TEMPLATE.stringByReplacingOccurrencesOfString("#name#",
 withString: self.name!)
 .stringByReplacingOccurrencesOfString("#address#",
 withString: self.address!)
 .stringByReplacingOccurrencesOfString("#postcode#",
 withString: self.postCode!)
 .stringByReplacingOccurrencesOfString("#phone#",
 withString: self.phone!)
 return html;
}

Chapter 2

31

7.	 Now it's time to test it; just press play on your Xcode IDE, fill in the fields and press
the button, and you should see a message like the one shown here:

How it works…
Strings have a lot of methods; some of them are used to modify the current string, while
others only return values, and others create a new string based on the original one. In our
case, we used stringByReplacingOccurrencesOfString, which generates a new string
by replacing our marks (#something#) with the corresponding attribute.

We can chain the result of each replacement to do the next one, preventing reassignment on
each line.

Nowadays, iPhones and iPads have 1 gigabyte or more of RAM, which should
be enough for most of the traditional HTML templates. However, if you have
a very big template with lots of replacements, you might need to look for
a more optimized method for it. Replacing strings on big string variables
allocates a lot of memory and you might get a poor performance.

There's more...
If you look at this method documentation, you will see that there are two additional arguments,
one called options and another one called range. They are used to specify a special
comparator to search our string mark, and the other one uses only part of our string. As we
didn't have to use them and they are optional, we've just omitted them; it wasn't necessary to
fill them with nil values as we used to do in Objective-C.

Standard Library and Collections

32

If your project has objects that need to create HTML, XML, or
JSON code, you can create a base object with a method specific
to the corresponding casting to standardize it.

Printing your object description
The idea of this recipe is to see the Swift way of creating a string using variable values. In
Objective-C, we have a class method called stringWithFormat, but this method isn't
used in Swift with the same frequency as it is used in Objective-C because now we have
interpolation. In this example, we will create an app, which will show the user three possible
products. When the user chooses one of them, the app must show the information of this
product and also its price, if it's available.

How to do it…
1.	 Create a new single view project called Chapter2 Product Value. Now, let's click

on the storyboard and add three buttons, as shown here:

Chapter 2

33

2.	 Once you've done this, you can add a new swift file called Product. Now we will
create a class with a product name, its price, and the manufacturer name.

In this case, the only information that can be omitted is the product price; the other
attributes are not optional. This means that we will need an initializer with at least the
product name and the manufacturer name.

3.	 As we would like to use our product with interpolation, we need to implement the
CustomStringConvertable protocol, which forces us to implement a property
called description. Once we have this information, we can implement our class
with the following code:
class Product: CustomStringConvertible{
 var price:Double?
 var name: String
 var manufacturer: String

 init(name: String, manufacturer: String){
 self.name = name
 self.manufacturer = manufacturer
 }

 var description:String {
 return "\(self.name) (\(self.manufacturer))"
 }
}

4.	 Now we can go to the view controller and create three products as attributes;
following our examples, we will create television, gabion, and locker.
So, let's add the following attributes:
 private let television = Product(name: "Television",
 manufacturer: "Telefunken")
 private let gabion = Product(name: "Gabion",
 manufacturer: "Maccaferri")
 private let locker = Product(name: "Locker",
 manufacturer: "Danalockers")

5.	 The next step is to create an auxiliary function, which is going to convert a double into
a string with two digits of precision. I will create this function on the view controller file
but outside its class. If in a project you are going to use this function in more than one
file, I recommend you create another file for this function using the following code:
func doubleFormatter(value: Double) -> String{
 return String(format: "%.2f", value)

www.allitebooks.com

http://www.allitebooks.org

Standard Library and Collections

34

It is a good idea to have one or more files dedicated to auxiliary
functions and class extensions. This will make your code
maintenance easier.

6.	 The last thing we need to do is to create the button action. As you know, we have
three buttons, and all of them will perform the same function; the only difference is
the product that will be displayed. For this reason, we will create only one function
and differentiate the product according to its sender.

Avoid repeating code, even if they are next to each other or if
they are small code. This is because when the project starts
receiving changes, it will generate new bugs.

7.	 Another detail that I would like to mention is that, in this example, I will show the
product price after adding VAT (20%). This is to make you aware of the power of
Swift string interpolation:
@IBAction func showDescription(sender: UIButton) {
 var message:String
 var product: Product

 if sender.titleLabel?.text == "Television"{
 product = television
 }else if sender.titleLabel?.text == "Gabion" {
 product = gabion
 }else if sender.titleLabel?.text == "Locker"{
 product = locker
 }else{
 return
 }
 message = "You've chosen \(product)"

 if let price = product.price {
 message += " which costs \(doubleFormatter(price *
 1.20)))"
 }

 let alert = UIAlertController(title: "Product
 information", message: message, preferredStyle:.Alert)
 self.presentViewController(alert, animated: true,
completion: nil)

Chapter 2

35

In this sample, we used the buttons' titles to know the product chosen,
but it's a bad practice. It was done this way only to create a small
example focused on string interpolation. Imagine that you need to
translate your program to other languages or if you have to add a small
amount of information to this label; it will make you fix a lot of code.

8.	 Now our app is complete; try to press play and then the app buttons. You should see
an alert view like this one:

How it works...
One of the greatest features of Swift is string interpolation; it allows you to have expressions
like the one we did while calculating the price with VAT included. This also allows you to call
functions like we called doubleFormatter to have our number shown with two digits. This
also allows us to print an object.

If we wanted to, we can even call object methods or property, for example. We can show the
manufacturer name in uppercase, changing our description to \(self.name) \(self.
manufacturer.uppercaseString)).

Remember that if you want to print your own object, it must follow the
CustomStringConvertable protocol and implement the property called description.
Some languages such as Java have the equivalent method (toString in case of Java) on a
base class and you only need to override it. However, Swift has no base if you don't specify it,
and this is the reason you can't overwrite the description property without specifying the
usage of the CustomStringConvertable protocol.

To use string interpolation, just create a string and when you need an external value, just |
wrap it between \((backslash and open parenthesis) and) (closed parenthesis), for
example, \(variable).

Standard Library and Collections

36

If the expression is getting too complex in a way that makes it difficult
to use, just create a new variable with its value inside the string. This
is also a good practice in terms of software maintenance. Objective-C
doesn't have this feature; you have to create a new string using a class
method named stringWithFormat. We used the Swift equivalent
one, which is now an initializer.

I would also like to point out that we created a constant inside our if statement. In this case,
we are not verifying whether the price is true or if it is greater than zero, we are just checking
that it does not have a nil value. In case of a product that costs 0, for example, it would also
evaluate to true.

Last but not least, notice that our variable message is not optional but that it wasn't initialized
where declared. The reason for this is that the compiler will check it before reading it and
setting it, and there is no possibility of having it uninitialized.

The initial value for this variable depends on the product value, which can't be nil; this is the
reason we were forced to add an else statement and exit from our function. Otherwise, the
compiler would find a possible way to have the product set to nil and it would fail due to our
interpolation.

There's more...
Another good solution for our doubleFormatter function is to create an extension. To do
this, just change our formatter code to the following one:

extension Double {
 func precision(numDigits: Int) -> String {
 return NSString(format: "%.\(numDigits)f", self)
 }
}

This means that now we've added a new method to double types, and we can call it whenever
we want. Of course, we also have to change the interpolation that uses our double value. Now,
we can use the class extension replacing the corresponding line with this one:

message += " which costs \((price * 1.20).precision(2)))"Adding
different characters

Quizzing the user
Sometimes, we need to add some icons on our application, but depending on the icon you
want, it's not necessary to add an image; you can use Unicode characters. Let's create a quiz
app using strings alone.

Chapter 2

37

The idea for this app is to create an app where the user needs to answer a question in
12 seconds. After the quiz, the app will show the user his score, such as the number
of right and wrong questions.

Getting ready
Once we know the concept of this program, let's create a new project and name it
Chapter 2 Unicode.

How to do it...
To create a quiz app, follow these steps:

1.	 First, let's create a new file called Quiz and add a class with a question to it, with
three possible answers and the right answer, as follows:
class Quiz {
 var question:String
 // First possible answer

 var ①:String
 // second possible answer

 var ②:String
 // third possible answer

 var ③:String
 // Right answer

 var 👌:Int

 init(question:String, ①:String, ②:String, ③:String,
 👌:Int){
 self.question = question

 self.① = ①
 self.② = ②
 self.③ = ③
 self.👌 = 👌
 }
}

To add Unicode characters to your code, you can copy
from a website or go to Edit | Special characters.

Standard Library and Collections

38

2.	 Now that we've got this happy class, we need to create another one to store our
quizzes and manage the user's answers:
class QuizManager {
 private var quizzes:[Quiz] = []
 private var currentQuestion = 0
 // Total right answers

 private var 👍 = 0
 // Total wrong answers

 private var 👎 = 0

 func addQuiz(quiz:Quiz) {
 self.quizzes.append(quiz)
 }

 func getCurrentQuestion() -> Quiz? {
 if currentQuestion < quizzes.count {
 return self.quizzes[currentQuestion]
 }
 return nil
 }

 // Answer to the current question.
 // Returns true if it was the right answer
 func answer(questionNumber:Int) -> Bool{
 var rightAnswer:Bool

 if getCurrentQuestion()!.👌 == questionNumber {
 rightAnswer = true

 👍++
 }else {
 rightAnswer = false

 👎++
 }
 return rightAnswer
 }

 func get👍() -> Int {

 return 👍
 }

 func get👎() -> Int {

 return 👎
 }
}

Chapter 2

39

3.	 The next step is to add one label for the question, three buttons for the possible
answers, and one label to show the timer. Don't forget to hide the navigation bar if
you don't want to show it. Your screen should look similar to this:

4.	 Now it's time to create the corresponding properties on our view controller and link
them. Besides these components, we will also need a timer and another variable to
know how much time has passed. Call these properties as shown here:
 @IBOutlet var questionLabel: UILabel!
 @IBOutlet var timerLabel: UILabel!

 @IBOutlet var answer①Button: UIButton!

 @IBOutlet var answer②Button: UIButton!

 @IBOutlet var answer③Button: UIButton!
 var quizTimer: NSTimer?
 var elapsedTime:Int
 var quizManager:QuizManager

Standard Library and Collections

40

5.	 Ok, now it's time to initialize these components. This is the reason we will create
an initializer. In Objective-C, we used to set up the viewDidLoad method, as this
method is called after the controller's view has been loaded in memory, but now
on Swift, every object must have each non-optional property initialized. This is the
reason we will overwrite the init method. Don't worry about the meaning of each
line; it will be explained soon:
 required init(coder: NSCoder) {
 self.elapsedTime = 0
 quizManager = QuizManager()
 super.init(coder: coder)
 setupQuizManager()

 }
private func setupQuizManager(){
 quizManager.addQuiz(Quiz(question: "What's the
 capital of Australia?", ①: "Sidney", ②:
 "Melbourne", ③: "Canberra", 👌: 3))
 quizManager.addQuiz(Quiz(question: "What is the
 smallest planet in the solar system?", ①: "The
 moon", ②: "Mercury", ③: "The sun", 👌: 2))
 quizManager.addQuiz(Quiz(question: "In which year
 was Harley Davison founded?", ①: "1903", ②:
 "2013", ③: "80BC", 👌: 1))
 }

The first question you might have is: why did we use required instead of
override? This is because the initializer was defined as required on the base
class (UIViewController); in this case, we must re-implement this method.

6.	 The next step is to set elapsedTime. We will not use it now, but as it is not optional,
we must set it here. Note that both elapsedTime and quizManager are initialized
before the super class. After initializing the super class, we can add the questions to
the quiz manager; which is the reason we have a call to setupQuizManager.

7.	 Ok, now we can show the first question on screen. To do this, we need the famous
viewDidLoad function. We can't do it on the initializer because the labels and the
buttons haven't been instantiated. You can also see the prepareNextQuestion
method, which verifies whether there are more questions. If so, this shows the next
question; if not, then it shows your score:
 override func viewDidLoad() {
 super.viewDidLoad()
 prepareNextQuestion()
 }
 private func prepareNextQuestion(){
 if quizTimer != nil {

Chapter 2

41

 quizTimer!.invalidate()
 }
 guard let quiz = quizManager.getCurrentQuestion()
 else {
 let message = "Total \u{1F44D}
 \(quizManager.get👍())\nTotal \u{1F44E}
 \(quizManager.get👎())"
 let alert = UIAlertController(title:
 "Product information", message: message,
 preferredStyle:.Alert)
 self.presentViewController(alert, animated:
 true, completion: nil)
 return
 }

 elapsedTime = 0
 questionLabel.text = quiz.question
 answer1Button.setTitle(quiz.1,
 forState:.Normal)
 answer2Button.setTitle(quiz.2,
 forState:.Normal)
 answer3Button.setTitle(quiz.3,
 forState:.Normal)
 }

You will notice that we are using the new guard keyword introduced in Swift 2.0.
Using guard will allow you to define an exit strategy if a particular condition is not
met. This really comes in handy when unwrapping optionals; all code after the guard
condition will contain the unwrapped value(s) without indentation and scope issues.

8.	 There is something that is still missing, it's the timer callback. Remember that we
would like to show the user how much time he has left to answer the question, and
after this, we have to skip to the next question. As you can see in the preceding
method, we call a method named tick; this means that with each second, we have
to increase the value of elapsedTime, and when the timer is over, we will consider
that the question was answered incorrect:
 func tick(){
 guard elapsedTime < 12 else {
 quizManager.answer(0)
 prepareNextQuestion()
 return
 }

 let baseCharCode = 0x1F550

Standard Library and Collections

42

 timerLabel.text =
 String(Character(UnicodeScalar(baseCharCode +
 elapsedTime)))
 elapsedTime++
 }

9.	 If you press play now, you can see the app working except for one small detail. The
user can't answer! Notice that there is no button action, so we need to add it, and
remember that once the user has pressed the button, it will go to the next question:
 @IBAction func answer(sender: UIButton) {
 var userAnswer:Int
 switch(sender){

 case answer①Button:
 userAnswer = 1

 case answer②Button:
 userAnswer=2

 case answer③Button:
 userAnswer=3
 default:
 userAnswer = 0
 }
 quizManager.answer(userAnswer)
 prepareNextQuestion()
 }

Cool, now we have our app working!

How it works…
In this recipe, we learned some ways of using Unicode happy characters. Now you can create
you own WhatsApp-like program. We saw that we can have variable names with Unicode
characters; if you want, you can name your variables in Japanese! You can also create strings
with Unicode values using String(Character(UnicodeScalar(UNICODE_VALUE))), or
you can also use it with interpolations such as Total \u{1F44D}.

Take care while using Unicode characters; you may be complicating
the other team members' lives. Remember that not everybody speaks
Japanese or Chinese, and sometimes symbols are similar to others.

We also learned that it's possible to write an integer in hexadecimal; it's only necessary to add
the prefix 0x.

Chapter 2

43

There's more…
If you want to see more Unicode symbols, there are some pages that can help us.
I recommend http://unicode-table.com and http://www.alanwood.net/demos/
wingdings.html.

Searching for perfect numbers
Believe it or not, computers were born as giant calculators, and until now, their main function
was to do powerful calculations. Let's add a little bit of math to our Swift project to create an
app that will look for the first perfect number and show it to the user.

The main question you probably have now is: what's a perfect number? A perfect number is
a positive integer that is equal to the sum of its divisors. For example, 6 is a perfect number
because if you sum its divisors (1 + 2 + 3), its result is 6.

In this recipe, we will learn how to use the range operators.

Getting ready
Let's start by creating a new Swift project called Chapter2 Perfect Number.

How to do it…
Follow these steps to search for perfect numbers:

1.	 Click on the storyboard and create a layout similar to the one shown here:

http://unicode-table.com
http://www.alanwood.net/demos/wingdings.html
http://www.alanwood.net/demos/wingdings.html

Standard Library and Collections

44

2.	 Now, let's link the text fields with the following properties:
 @IBOutlet var startText: UITextField!
 @IBOutlet var endText: UITextField!

3.	 Good, before we create the button action, we will create a function called
isPerfect, which will check whether the number passed as an argument
is a perfect number or not. After this, we will create the button action:
 func isPerfect(number:Int) -> Bool {
 var sum = 0
 (1..<number).forEach { (i) -> () in
 if number % i == 0 {
 sum += i
 }
 return sum == number
 }

 @IBAction func search(sender: UIButton) {
 var rangeStart:Int = startText.text.toInt()!
 var rangeEnd:Int = endText.text.toInt()!
 for i in rangeStart ... rangeEnd {
 if isPerfect(i){
 let alert = UIAlertController(title: "Found",
 message: "\(i) is a perfect number"),
 preferredStyle:.Alert)
 self.presentViewController(alert, animated:
 true, completion: nil)

 return
 }
 }

 let message = "No perfect number found between
 \(rangeStart) and \(rangeEnd)"
 let alert = UIAlertController(title: "HTML", message:
 message, preferredStyle:.Alert)
 self.presentViewController(alert, animated: true,
 completion: nil)
 }

How it works…
As you can see, we used a for loop twice. The first time we used the closed-range operator
(…), which was used to include the last number (rangeEnd), because we want to check the
last number the user entered.

Chapter 2

45

The second time we used the half-open operator (..<) to exclude the last number because we
don't want to include the last number into the sum.

The first version of Swift, the half-open operator, was only two dots (..). After
some beta versions, it was renamed to ..<. For this reason, you can find
some code on the Internet that does not work anymore.

You can also use these operators on switch statements; they are very handy sometimes,
mainly when you don't want to write the typical C for loop.

Sorting an array of products
In this recipe, we will learn how to manage an array in Swift. Here, we will create an array of
products (very typical), add products to it, remove unavailable products, and sort the array
by price.

Getting ready
Create a new Swift single view project called Chapter 2 SortingProduct.

How to do it…
Let's create and sort an array of products by following these steps:

1.	 Before we start with the view part, let's create the model part of our application. In
our case, we will create the Product class. So, create a new file called Product.
swift and type the following code:
class Product: CustomStringConvertable {
 var name:String
 var price:Double
 var available:Bool

 init(name:String, price:Double, available:Bool){
 self.name = name
 self.price = price
 self.available = available
 }

 var description: String {
 return "\(self.name): \(self.price)£ available:
 \(self.available)"
 }
}

Standard Library and Collections

46

2.	 As you can see, the idea of this class is to create objects with their name, price, and
availability. We also inherited it from CustomStringConvertable to make use of
its description property.

3.	 Now you can click on the storyboard and add two labels, one for the full catalog,
which means that it will show every product in its original order, no matter how
much it costs or whether it's available or not.

4.	 The other label will show the same products but filtered for availability and sorted by
price. So, now link your labels with the following properties and also create a product
array as a property:
 var products:[Product] = [] // this is our catalog
 @IBOutlet var catalogLabel: UILabel!
 @IBOutlet var availableLabel: UILabel!

5.	 You can create additional labels if you want to know their meaning. I created one with
the title Catalog and another one with the title Available Products. It is also
important to set a new number of lines on catalogLabel and availableLabel;
otherwise, it will display only the first product.

6.	 The next step is to create the initialize; here, we only need to add some products to
our array. As it's just a sample, the products will be hardcoded, but in real apps, we
should retrieve them from a database or from the Internet:
required init(coder aDecoder: NSCoder) {
 super.init(coder: aDecoder)
 products.append(Product(name: "Shirt", price: 19,
 available: true))
 products.append(Product(name: "Socks", price: 1.99,
 available: true))
 products.append(Product(name: "Trousers", price: 22.50,
 available: false))
 products.append(Product(name: "T-Shirt", price: 10,
 available: true))
 products.append(Product(name: "Shoes", price: 32.20,
 available: false))
 products.append(Product(name: "Women shoes", price: 54,
 available: true))
 products.append(Product(name: "Men underwear", price:
 9.99, available: true))
 products.append(Product(name: "Bra", price: 12.5,
 available: true))
 products.append(Product(name: "Panty", price: 4.45,
 available: true))
 products.append(Product(name: "Tennis shoes", price:
 27, available: false))
}

Chapter 2

47

7.	 After this, we can display our catalog when the view has loaded so that we can start
using our catalog label:
 override func viewDidLoad() {
 super.viewDidLoad()
 let descriptions = products.map{$0.description}
 let labelText = descriptions.joinWithSeperator("")
 catalogLabel.text = labelText
 }

8.	 Okay, now it is time to add a button and create its action:
 @IBAction func showAvailableProducts(sender: UIButton)
{
 var availableProducts = products.filter {
 (product:Product) -> Bool in
 return product.available
 }
 availableProducts.sort(<)
 let descriptions = availableProducts.map{$).description}
 let labelText = descriptions.joinWithSeperator(" ")

 availableLabel.text = labelText
 }

The application is done; once you click on the button, you will see a result similar to the one
shown here:

Standard Library and Collections

48

How it works…
Arrays in Swift are very similar to mutable arrays in Objective-C; they can add objects, remove
them, and so on, but there are some differences. In the Swift programming language, you
have to specify the object type that the array contains, like we did when we wrote the type
between brackets.

You can create an array of any kind of object, as we used to do in
Objective-C, by declaring a variable as [AnyObject]. However,
this should be avoided if it's not necessary. There is also the
possibility of using NSArray instead of Array; in this case, we will
have the same methods that we have for Objective-C.

You can also see something new on the viewDidLoad method; we called a closure named
map, and this is because we want to create a big string with every product from our catalog
delimited by a new line character (\n). To do this, we had to convert our Product array to a
String array. The map function helps us with this because we can pass one function as an
argument function that converts each element into the desired new type.

Another new function is the filter function; this function receives another function as an
argument, which returns a Boolean value. If the returned value is true, it means that the
current element is valid and shouldn't be filtered; if the returned value is false, of course the
new array will not contain this element.

Last but not least, we have the sort function. This function doesn't create a new array; it
modifies the current one. Consider that, in this case, we have an array of our own class,
something that the compiler doesn't know how to order. In this case, we have to tell this
function when two objects are ordered and when they are not.

Take care when using functions that modify an array;
once it's done, you can't roll back.

There's more...
There are two ways of declaring an array, one of them is the way we did using brackets, and
the other form of declaring an array is using Array<Product>. There is no difference; they
create the same kind of object. In both cases, you can't inherit from this type.

Arrays were declared such as Type[] on the first
version of Swift, then it was replaced by [Type].

Chapter 2

49

There are more array functions that can help us to manipulate the array such as reduce,
reverse, or removeRange. If you've worked with NoSQL databases, you might be habituated
to this kind of function. You can also create an array extension to manipulate arrays in your
own way.

Finding the way out
In this recipe, you will learn about tuples. This new type didn't exist in Objective-C and it's very
useful in Swift, mainly when it's necessary to return more than one value. For example, there
are a lot of functions that need to return a value and an error code. In other languages, we
usually return the value and the error value is returned as an argument.

You will also learn how to use a two-dimensional array, which in Objective-C was more
complicated. In this case, we will use an array of an enumeration.

So, this time, we will create an application that will find the way out of a maze. Of course, we
will not waste our time designing a maze; we will present the result into a text view.

Getting ready
Create a new Swift single view project called Chapter 2 Maze.

How to do it…
1.	 First, let's create the model part of this maze. The maze for us is an array with four

different possibilities: walls that we can't pass through, aisles where we can walk
through, a way out that is our goal, and used, which means that we've already used
this path so we shouldn't use it again; this will prevent walking around in circles. So,
the first thing we will do is to create a file called Maze and add the following code:
enum BlockType{
 case AISLE,
 WALL,
 USED,
 WAYOUT
}

2.	 Before we start implementing our maze class, we know that we will need a type to
store one coordinate of the maze and another one to know whether the path was
found, and in the case it is found, we should have the path that is found:
typealias Position = (x: Int, y:Int)
typealias Way = (found: Bool, way: [Position])

Standard Library and Collections

50

3.	 Good, now it's time to create our class; in this case, we will need a two-dimensional
array that represents the maze, another array that will contain the path to the way
out, and two properties to know the width and the height of the maze:
class Maze{
 private var maze:[[BlockType]] = []
 private lazy var stack:[Position] = []
 private var width: Int
 private var height: Int

4.	 The first method that we will create is the initializer; in this case, it will be necessary
to create a maze specifying its size. When we create the two-dimensional array, we
will fill it with AISLE; to create walls, we will use another method that we will create
afterwards:
 init(width: Int, height: Int){
 self.width = width
 self.height = height
 for _ in 1...height{
 var row:[BlockType] = []
 for _ in 1...width{
 row.append(.AISLE)
 }
 maze.append(row)
 }
 }

5.	 Now we need methods to create the walls and the way out. In a more completed
case, we should check whether the position is valid or not, but in this case, we will
not bother ourselves with every detail. So, here are the methods:
 func addWall(position: Position) {
 maze[position.y][position.x] = .WALL
 }

 func setWayout(position: Position){
 maze[position.y][position.x] = .WAYOUT
 }

6.	 The next operation is to create the main method that will try to figure out one way to
exit from the maze. In this case, the programmer shouldn't give the start point so that
this method will have no argument, but we need to walk through the maze. However,
the idea is to create a recursive function that will receive a new position and look for
the next position, which is why this second function is private:
 func findWayOut() -> Way{
 self.initStack()
 return self.next((0,0))

Chapter 2

51

 }

 private func next(position: Position) -> Way {

 stack.append(position)
 if self.maze[position.y][position.x] == .WAYOUT {
 return (true, self.stack)
 }

 maze[position.y][position.x] = .USED

 // UP
 if position.y > 0 && (maze[position.y-
 1][position.x] == .AISLE || maze[position.y-
 1][position.x] == .WAYOUT)
 {
 let result = next((position.x, position.y-1))
 if result.found {
 maze[position.y][position.x] = .AISLE
 return result
 }
 }

 // LEFT
 if position.x > 0 && (maze[position.y][position.x-
 1] == .AISLE || maze[position.y][position.x-1] ==
 .WAYOUT)
 {
 let result = next((position.x-1, position.y))
 if result.found {
 maze[position.y][position.x] = .AISLE
 return result
 }
 }

 // DOWN
 if position.y+1 < self.height &&
 (maze[position.y+1][position.x] == .AISLE ||
 maze[position.y+1][position.x] == .WAYOUT)
 {
 let result = next((position.x, position.y+1))
 if result.found {
 maze[position.y][position.x] = .AISLE
 return result
 }

Standard Library and Collections

52

 }

 // RIGHT
 if position.x+1 < self.width &&
 (maze[position.y][position.x+1] == .AISLE ||
 maze[position.y][position.x+1] == .WAYOUT)
 {
 let result = next((position.x+1, position.y))
 if result.found {
 maze[position.y][position.x] = .AISLE
 return result
 }
 }

 maze[position.y][position.x] = .AISLE
 stack.removeLast()

 return (false, [])
 }

 private func initStack(){
 stack = []
 }
}

You may have noticed by this code that Swift has lazy evaluation. This is
a good thing because we didn't have to create a nested if function when
we had to check whether the position was inside the array bound.

7.	 Now it's time to complete our sample. Go to the storyboard and add a text view and
a button to it. Link the text view with your code, calling it textView. Then, create an
action for your button, adding the following code:
 @IBAction func findWayOut(sender: UIButton) {
 var resultString = ""
 var maze = Maze(width: 8, height: 5)
 maze.setWayout((7,4))
 maze.addWall((1,0))
 maze.addWall((1,1))
 maze.addWall((1,2))
 maze.addWall((1,4))
 maze.addWall((3,0))
 maze.addWall((3,1))
 maze.addWall((3,3))

Chapter 2

53

 maze.addWall((4,3))
 maze.addWall((5,1))
 maze.addWall((5,3))
 maze.addWall((6,1))
 maze.addWall((6,3))
 maze.addWall((6,4))
 maze.addWall((7,1))
 let (found:Bool, way:[Position]) =
 maze.findWayOut()
 if found {
 for position in way {
 resultString+=
 "(\(position.x),\(position.y)) \n"
 }
 }else{
 resultString+="No path found"
 }
 textView.text = resultString
 }

How it works…
A lot of code needs some explanation. Let's start from the beginning. We've created an
enumeration with four possible values. It is better to use enumerations than an integer
or a string because you prevent the usage of non-existing values.

After this, we've declared two type aliases; the idea of this instruction is to rename a
type like we did with Position and Way. This doesn't create a new type but helps us
in terms of software maintenance; for example, if you use an array of integers that has a
possibility of being changed to an array of doubles, it's a better idea to use a typealias
than replace every declaration to [Double]. This feature is equivalent to typedef on
the C programming language.

Now, let's talk about the attributes. The first attribute is not optional and this is inside double
brackets, which means that it is a two-dimensional array. Usually, by human definition, we say
that the first dimension of an array is the row and the second is the column.

When we talk about positions, for example, in a Cartesian plane, we refer to x as the columns
and y as the rows, and this is the reason why you will see the y coordinate coming before the
x one, such as maze[position.y][position.x+1] == .AISLE.

Standard Library and Collections

54

The stack is also a non-optional attribute because we don't need the nil value, but this means
that we must initialize it with something. As we initialize every time when findWayOut is
called, and the first time it will be initialized twice: one on the initializer and another inside
the function itself. To prevent this double initialization, we will add the lazy modifier, which
means that it should be initialized with the same value in the declaration only the first time
that this variable is going to be read if it wasn't initialized before.

It used to be @lazy instead of just lazy on the first version of Swift.

Let's talk about the initializer; to create a maze, it's necessary to receive the width and the
height as arguments. As the arguments have the same name as the attributes, it's necessary
to differentiate between them. In this case, the attributes are called self.width and self.
height, and the arguments are called width and height.

The next step is the wildcard expression, which means that the current value of the for loop
is not used. In this case, instead of assigning it to a variable, we just use an underscore.
Notice that the underscore is used in both loops and the inner loop doesn't affect the outer
loop, and vice versa.

There is another way to create an array in only one line; this should be even more efficient
because it's different when you create an array with a capacity rather than adding each
element one by one. Try replacing both the for loops with this single line:

maze = [[BlockType]](count: height, repeatedValue:
[BlockType](count: width, repeatedValue: .AISLE))

The next two methods are very similar, but one of them has the prefix add and the other one
has the prefix set. It's only for software maintenance; we can have lots of walls, but only one
way out. In this code, we are not checking it but it should be checked in the future. In cases
like this, instead of a setter, we can use a property.

Another thing to add here is that when the attributes were assigned, it wasn't necessary to
specify the enumeration type, such as BlockType.WALL, but only its value, for example,
.WALL. The reason for this is that Swift knows the assigned type and that it can be omitted.

Then, we have the method that will be called to find the way out. It only initializes the stack to
ensure that it is an empty array and then it calls the next function. Note that this looks like
we have a function with double parentheses, but it's not true, we are passing a tuple as an
argument.

Chapter 2

55

Tuples are like arrays with a fixed size. To create it, use parenthesis instead of brackets.
The interesting feature about tuples in Swift is that you can name the values as if it were a
dictionary or an object. So, it's up to you to create a tuple as (0,0) or (x:0, y:0). In cases
like the Way type, where the elements have different meaning, I would suggest that you name
the values; otherwise, it would be very difficult to remember what the element on the first
position represents, if there is a path for way out or not, and that the second one represents
the path itself.

Also, have a look at the view controller when the findWayOut method returns its values.
This looks like that they are assigned to a tuple, but it's not true, they are assigned to two
variables; this feature we didn't have on C or Objective-C. This means that if you want to swap
the values of two variables, you can just use a sentence, for example, (var1, var2) =
(var2, var1), without creating any auxiliary variable as we used to do on Objective-C.

In this recipe, we used an array as a stack to store the path that we've already walked
through, and using the removeLast method we could return back a step, as if we had some
kind of breadcrumb and that is the secret to finding the way out. We just need to follow a path,
and if we get lost, we only need to collect the breadcrumbs and try another one.

After finding the goal, the user will see the path as shown in the following screenshot:

Standard Library and Collections

56

There's more…
Tuples in Swift can be used in different ways; they are also very useful in some switch cases;
however, don't try to substitute dictionaries or arrays with tuples, each type has its own
function.

Swift 1.2 introduced a native type called Set that does what this
recipe does.

Creating your own set
Sometimes the included set type in Swift is not enough to solve our problems, so in this
recipe, we will create our own set. The goal of this recipe is not only to show how you could
create your own set, but also how to overload operators.

For this recipe, we will create a simple shopping list program where the user can write the
product that he needs to buy and its quantity. If he tries to add it twice, the product will not
appear twice, rather it will sum the quantity to the existing product.

There will be a switch button that when disabled means the user won't be able to add the
product to the shopping list if it already exists, and of course, there will be a button to display
our list.

Getting ready
As usual, create a new project called Chapter2 ShoppingList, and then create a Swift file
called ShoppingList. The idea here is to create our container and the type that it will store;
in this case, the Product class.

How to do it…
Product is something that is related with our container; we can even say that this is like a part
of it. So, in this case, we can create a nested class to work with it. In this class, we will need
only two attributes: its name and its quantity. Follow these steps to create your own sets:

1.	 In this case, we will create its description, and it will implement the Comparable
protocol. We will use this protocol to know whether two objects represent the same
product. Let's start coding:
class ShoppingList: CustomStringConvertable {
 class Product: Comparable, CustomStringConvertable {
 var name:String

Chapter 2

57

 lazy var quantity:Int = 1

 init(_ name:String){
 self.name = name
 }

 var description: String {
 return "\(name): \(quantity)"
 }
 }

2.	 Now we need to create the shopping list attributes. We only need an array to store
our products:
private var set:[Product] = []

3.	 As the shopping list is a set, we should implement the basic methods. One method
is used to add a product and another one is used to know whether the shopping list
already has a product. And, of course, we will also add the description property:
 func contains(product: Product)-> Bool{
 for currentProduct in set {
 if currentProduct == product {
 return true
 }
 }
 return false
 }

 func add(product:Product){
 for currentProduct in set {
 if currentProduct == product {
 currentProduct += product.quantity
 return
 }
 }
 set.append(product)
 }

 var description: String {
 let descriptions = set.map{$0.description}
 return descriptions.joinWithString(" ")
 }
}

Standard Library and Collections

58

Note that we compared a product with another using the double
equality operator (==). The main question is how does the compiler
make the comparison? Actually, the compiler can't make this
comparison without the programmer's help. First of all, as you can see,
we used the Comparable protocol in this program. This is not really
necessary, but it's good to implement this protocol in case we also
need to use a product with other containers.

4.	 Even if it's a comparable, we have to implement a function that will tell the runtime
whether two products are equals or not. This function must be called == (yes, double
equals), and it must be declared on the global scope: outside classes and functions.
So, here we have the corresponding code:
func ==(leftProduct: ShoppingList.Product, rightProduct:
ShoppingList.Product) -> Bool{
 return leftProduct.name.lowercaseString ==
 rightProduct.name.lowercaseString
}

5.	 If we were implementing only the Equatable protocol, we wouldn't need to
implement any other method; however, as we are implementing Comparable,
we will also need to implement the operators <, <=, >, and >=:
func <=(leftProduct: ShoppingList.Product, rightProduct:
ShoppingList.Product) -> Bool{
 return leftProduct.name <= rightProduct.name
}
func >=(leftProduct: ShoppingList.Product, rightProduct:
ShoppingList.Product) -> Bool{
 return leftProduct.name >= rightProduct.name
}
func >(leftProduct: ShoppingList.Product, rightProduct:
ShoppingList.Product) -> Bool{
 return leftProduct.name > rightProduct.name
}
func <(leftProduct: ShoppingList.Product, rightProduct:
ShoppingList.Product) -> Bool{
 return leftProduct.name < rightProduct.name
}

6.	 As we are creating some operators, let's continue with them. Let's overload the
+= operator twice, once to add more units to a product and another to add a
product into the shopping list:
func +=(shoppingList: ShoppingList, product:
ShoppingList.Product) -> ShoppingList{
 shoppingList.add(product)
 return shoppingList

Chapter 2

59

}

func +=(product: ShoppingList.Product, quantity: Int) ->
ShoppingList.Product{
 product.quantity += quantity
 return product
}

Note that it wasn't necessary to implement any protocol to
overload this operator, and it wasn't even necessary for the
previous operators, but it's a good idea to implement the
Comparable protocol to use with other functions or algorithms.

Implement the Comparable or Equatable protocols when you
can use it with other generic objects, for example, when you think
the object could be ordered.

7.	 A good feature of Swift is that you don't need to overload only existing operators; you
can also create new operators. In this case, we will create two new operators: => that
will tell us whether a product is in our shopping list and !=>, which is the opposite
operator. I will explain this in detail later. Use these operators in the following code:
infix operator => { associativity left precedence 140 }
infix operator !=> { associativity left precedence 140 }

func =>(product:ShoppingList.Product,
shoppingList:ShoppingList)->Bool {
 return shoppingList.contains(product)
}

func !=>(product:ShoppingList.Product,
shoppingList:ShoppingList)->Bool {
 return !shoppingList.contains(product)
}

8.	 Now that the model is done, let's create the view. Enter two text fields: one for the
product name and another one for the quantity; one switch to allow appending
products or not; two buttons, one to add the product to the list and another one
to display the list; and a text view. Let's connect them, except the buttons with the
following attributes:
 @IBOutlet var fieldQuantity: UITextField!
 @IBOutlet var fieldProduct: UITextField!
 @IBOutlet var appendSwitch: UISwitch!
 @IBOutlet var textResult: UITextView!

Standard Library and Collections

60

9.	 Add an attribute that represents the application shopping list:
var shoppingList: ShoppingList = ShoppingList()

10.	 Now we need to add the button actions. Let's start with the easiest thing: the display
button that will show the description of the shopping list into the text view:
 @IBAction func showList(sender: UIButton) {
 textResult.text = shoppingList.description
 }

11.	 Now we have to create the add button action. In this case, it will be necessary to
check whether the user introduced a number on the quantity text field and also
whether it was possible to add the product to the shopping list:
 @IBAction func addToList(sender: UIButton) {
 var product =
 ShoppingList.Product(fieldProduct.text)
 if let quantity = Int(fieldQuantity.text) {
 product.quantity = quantity
 if appendSwitch.on || product !=> shoppingList{
 shoppingList += product
 }else {
 let alert = UIAlertController(title: "Wrong
 Product", message: "This product is already
 on your list"), preferredStyle:.Alert)
 self.presentViewController(alert, animated:
 true, completion: nil)
 }
 }else {

 let alert = UIAlertController(title: "Wrong
 Value", message: "Oops! I need a number on the
 quantity field"), preferredStyle:.Alert)
 self.presentViewController(alert, animated:
 true, completion: nil)

 fieldQuantity.text = ""
 }
 clear()
 }

The clear function is just an auxiliary method to empty the text fields every time we
press the add button:
 private func clear(){
 fieldQuantity.text = ""
 fieldProduct.text = ""
 fieldQuantity.becomeFirstResponder()
 }

Chapter 2

61

12.	 Now you can click on play and add some products, repeat some products, and display
them. You should have a result like the one shown here:

How it works…
Overloading operators is something very common in Swift; you can overload existing operators
and you can create your own operator. If you want to create your own operator, the first thing
you have to do is to report some properties of your operator. First, you have to choose if you
type the usage:

ff Infix: This means that the operator is used between two objects; for example, in our
sample, we created the !=> operator to be used between a product and a set.

ff Prefix: This means that the operator will operate only with the object that is on its
right. For example, let's imagine that we would like to create the !!! operator, which
could mean that we would like to empty the shopping list; in this case, we should use
it as !!!shoppingList.

ff Postfix: This operator will operate only with the object that is on its left, such as
shoppingList!!!.

Standard Library and Collections

62

The next step is to write the word operator and the name you've chosen for it. After this, you
have to add between parentheses the properties of this operator. Associativity values are left,
right, and none. This is as follows:

ff Left-associative: This means that when there's more than one operator with the
same precedence, the one that is furthest left is going to be evaluated first

ff Right-associative: This, as you can imagine, is the opposite of the left-associative

ff None-associative: This means that it's not permitted to have more than one operator
with the same precedence

Precedence is like a priority. Higher precedence is evaluated first.

There's more…
Swift allows changing the function of existing operators, for example, you can declare the
following function:

func + (i:Int, j:Int) -> Int {
 return 10
}

This will make every integer sum operator return 10. This is something curious, but I wouldn't
do that in sane conditions. Even worse than this is if you create recursive calls like this code:

func + (i:Int, j:Int) -> Int {
 if i == 1 && j == 1 {
 return 10
 }else {
 return i + j
 }
}

Organizing a dinner room
In this recipe, we will learn how to use other features from the Swift programming language.
We will copy the range of elements from an array, use dictionaries, subscripts, switches, and
name a loop.

For this app, we will create a dinner for a company. In this case, it's not a wedding table
where couples must be seated next to each other, rather we only need people of the same
group sat together on the same table, probably because they are from the same team or
something similar.

Chapter 2

63

We will create a class that represents a room. To add a new guest into this room, we will need
to specify the name of someone who belongs to this group, which is already inside the room.
If the person we want to add to this room is the first one, we will use the nil value as the name
of the person who belongs to this group.

In the case of adding someone to a table that is full, one person from this table must be
reallocated to another table. Of course, we won't use the most optimized algorithm because
that's not our main goal.

Getting ready
Create a new Swift single view project called Chapter2 DinnerRoom.

How to do it…
As usual, we need to start with the model part of the Model-View-Controller. For this code, we
will need a class for the room, another for a table that will store the seats with the person that
is seated there, a group, which is the range of the table of people that belongs to the same
team, and of course, we will also need a class to represent a person.

1.	 Let's start with the person class; in this case, we only need to store his name and
the group he belongs to. As there is a period where the person can be without any
group, this attribute should be optional. So, create a new Swift file called person.
swift and add the following code:
class Person: Equatable {
 var name: String
 var group:Group?
 init(_ name: String){
 self.name = name
 }
}

2.	 As you can see, this class inherits from the Equatable protocol, which means that
we must implement the == operator, as follows:
func ==(person1:Person, person2:Person)->Bool{
 return person1.name == person2.name
}

3.	 Good, now let's create the Group class. Remember that a group doesn't have a
name; it's just a range of people who are sitting together. In this case, we need to
store where the range starts, where it finishes, and its table. As you may imagine,
we need to create a file called group.swift and add the following code:
class Group {
 unowned var table:Table

Standard Library and Collections

64

 var rangeStart: Int
 var rangeEnd:Int
 var size:Int {
 return rangeEnd - rangeStart + 1
 }

 init (table:Table, entryPoint:Int){
 self.table = table
 rangeStart = entryPoint
 rangeEnd = entryPoint
 }

 func shift(){
 rangeStart++
 rangeEnd++
 }

 func increase(){
 rangeEnd++
 }
}

Note that the size property has no setters, only a getter, and it's not related
with a new attribute; that's what is called a computed property. Also, note
that we had to add an unowned modifier to the table attribute; this is
because if we had a UML class diagram, we can see that a room contains
tables that contain people who belong to a group that knows its table. As
you can see, we have a cycle, which by default would prevent the reference
counter from reaching zero, and as a consequence, it would create a
memory leak. Adding unowned will help us to avoid this problem.

4.	 The next class is Room. This class needs to store its tables and also the guests that
are already in the room. This second attribute is not mandatory, but it is faster for the
computer looking into a dictionary than searching for it, and it is also faster for the
programmer because he will write less code. Add room.swift to your project and
start adding the following code:
class Room: CustomStringConvertable {
 let STANDARD_TABLE_SIZE = 3
 var guests:[String: Person] = [String: Person] ()
 var tables = [Table]()

 func add(table:Table){

Chapter 2

65

 tables.append(table)
 }

 func add(person:Person){
 guests[person.name] = person
 }

 var description:String {
 let descriptions = tables.map{$0.description}
 return descriptions.joinWithSeperator("Table: ")
 }

5.	 Now, look at the guests attribute, as we have two types between brackets and
separated by a colon; this means that it's not an array, it's a dictionary. Alternatively,
you can also write Dictionary<String,Person> instead of [String:
Person]. One difference with dictionaries from Objective-C to Swift is that you must
specify the key and the value types.

When possible, try to use dictionaries instead of searching for
elements, as you will have a better performance.

If you are a good observer, you can see that we repeated the add function. The
difference is on the arguments type. This means that you can overload methods
and functions in Swift.

6.	 Now, to check whether someone is already in this room, we will use the brackets
operator so we can type code such as if room["Harry Potter"] == true
{.... To enable it in Swift, we have to write some kind of special function called
subscript. In this case, we will write a read-only subscript:
 subscript(name:String)->Bool{
 get{
 if let guest = guests[name] {
 return true
 }
 return false
 }
 // No setter
 }

Standard Library and Collections

66

7.	 Now we only need to use the same idea to add someone in the room; remember that
we have to specify someone's name from the same group or nil when it's the first
person. Following this idea, we can add someone into the room with a code similar to
room["Harry Potter"] = Person("David Copperfield"):
 subscript(name:String?)->Person{
 get{
 assertionFailure("Sorry, no subscript getter")
 }

 set(newValue){
 guests[newValue.name] = newValue
 // if the key is nil we will have to look for
 // the first table that is not null. If we
 // are not able to find it we have to create a
 new table
 if let personName = name {
 if let guest = guests[personName]{
 // now we need to find its table
 var guestGroup = guest.group!
 newValue.group = guestGroup
 // now we have to check the group table
 is full
 if guestGroup.table.full {
 // the table is full, if we have only 1
 group it is not possible to add
 // any one to this table, otherwise the
 last group should move to another table
 if guestGroup.table.size ==
 guestGroup.size {
 // The group is bigger than the
 supported size
 assertionFailure("Group too big")
 }else{
 // the last table group should go
 to a new table

 var lastGroup =
 guestGroup.table.getLastGroup()!
 tables.append(
 guestGroup.table.transferGroup
 (lastGroup))
 // now the guestGroup table has
 free space

Chapter 2

67

 }
 }
 guestGroup.table.add(newValue)
 guestGroup.increase()
 }else
 {
 assertionFailure("This guest should
 exists")
 }

 }else {
 // this person belongs to a new group
 var table = freeTable()
 var index = table.add(newValue)
 var group = Group(table: table, entryPoint:
 index)
 newValue.group = group
 }
 }
 }

 private func freeTable() -> Table {
 for table in tables {
 if !table.full {
 return table
 }
 }
 var newTable = Table(STANDARD_TABLE_SIZE)
 tables.append(newTable)
 return newTable
 }

As you can see, we added an assertion into the getter method of the subscript; the
reason is that subscripts can be read-only or read-write but they can't be write-only. In
this case, there is no sense in asking for a return value, so the only thing we can do is
to create an assertion to prevent problems.

Don't use assertionFailure regularly; try to create
code that can detect errors and continue to work.

Standard Library and Collections

68

8.	 Create a new file called table.swift. Before we start coding the Table class, we
need to know that a table will have an array of seats. We can have a free seat or an
occupied one. If it's occupied, it's by someone, so we need to know who is occupying
the seat. For cases such as this, Swift allows us to use enumerations:
enum TableSeat {
 case FREE,
 OCCUPIED(Person)
}

The only problem with enumeration is that we need to use switch cases a lot of
times, so in this case, where we want to know whether one seat is free or occupied by
someone, it's a good idea to overload the operators == and !=:
func == (seat1:TableSeat, seat2:TableSeat) -> Bool {
 switch(seat1,seat2){
 case (.FREE,.FREE):
 return true
 case (.OCCUPIED(let person1),.OCCUPIED(let person2)):
 return person1 == person2
 default:
 return false
 }
}

func != (seat1:TableSeat, seat2:TableSeat) -> Bool {
 return !(seat1 == seat2)
}

9.	 Now we can start typing the Table class. Basically, we need to store an array of
seats, but we can have some auxiliary computed properties and methods, as follows:
 private var seats:[TableSeat]

 init (_ size: Int){
 seats = [TableSeat](count: size, repeatedValue:
 TableSeat.FREE)
 }

 var full:Bool {
 return seats.last! != .FREE
 }

 var freeSeats:Int {
 var total = 0
 for i in seats.reverse() {

Chapter 2

69

 if i == TableSeat.FREE {
 ++total
 }else{
 break
 }
 }
 return total
 }

 var nextFreeSeat:Int {
 return seats.count - self.freeSeats
 }

 var description:String {
 let takenSeats = seats.filter({ (seat) -> Bool in
 switch seat {
 case .FREE:
 return false
 case .OCCUPIED:
 return true
 }
 }).map({(seat) -> String in
 switch seat {
 case .FREE:
 assertionFailure("???")
 case .OCCUPIED(let person):
 return person.name
 }
 })

 return takenSeats.joinWithString(", ")

 private func shift(group:Group){
 seats[(group.rangeStart+1)...(group.rangeEnd+1)] =
 seats[group.rangeStart...group.rangeEnd]
 seats[group.rangeStart] = .FREE
 group.shift()
 }

 var size:Int {
 return seats.count
 }

 func getLastGroup() -> Group? {

Standard Library and Collections

70

 for seat in seats.reverse() {
 switch seat {
 case .OCCUPIED(let bySomeone):
 return bySomeone.group
 case .FREE:
 continue
 }
 }
 // no group
 return nil
 }

 func transferGroup(group: Group)->Table{
 var newTable = Table(seats.count) // creating a new
 table with the same size
 newTable.seats[0..<(group.size)] =
 seats[group.rangeStart...group.rangeEnd]
 seats[group.rangeStart...group.rangeEnd] =
 [TableSeat](count: group.size, repeatedValue:
 .FREE)[0...(group.size-1)]
 group.table = newTable
 return newTable
 }

func add(person:Person)->Int {
 var lastAllocatedSeat = self.nextFreeSeat-1
 // return -1 if it wasn't possible
 if self.full {
 return -1
 }
 var index = lastAllocatedSeat + 1
 if let group = person.group {
 // who we have to shift the groups until we find
 // the new person's group and them we keep
 // him (or her) on the array
 searching:
 while lastAllocatedSeat>=0 {
 // in this case the seat should be always
 occupied
 // but as the compiler doesn't know we
 have to retrieve
 // its value
 switch seats[lastAllocatedSeat] {
 case .FREE:

Chapter 2

71

 assertionFailure("shouldn't be any
 free seat here")
 case .OCCUPIED(let groupPerson):
 if groupPerson.group !==
 person.group {
 // different groups, let's move
 the group to the right
 lastAllocatedSeat =
 groupPerson.group!.rangeStart-1
 shift(groupPerson.group!)

 }else{
 break searching
 }
 }
 }
 index = lastAllocatedSeat + 1

 }else{
 // if the person group is null means that it's
 a new group so
 // can add him on the first available seat
 }
 self.seats[index] = .OCCUPIED(person)
 return index
 }
}

10.	 Before giving much explanation, we will test the previous code by adding textView
to our view controller and some people into room.swift:
 @IBOutlet var textView: UITextView!
 var room:Room = Room()

 override func viewDidLoad() {
 super.viewDidLoad()

 room[nil] = Person("Mr Peter File")
 room[nil] = Person("Ms Mary Simpson")
 room["Mr Peter File"] = Person("Mr Taro Mashimoto")
 room[nil] = Person("Mr Stuart Johnson")
 room["Ms Mary Simpson"] = Person("Mr Scott
 Chesterford")

 self.textView.text = room.description
 }

Standard Library and Collections

72

How it works...
As you can see, we used some new features here. We were able to copy a range of seats using
the … operator, which is an awesome feature that can save us from typing a lot of loops that
do the same thing.

Note that this slice operator (…), when working with a part of
an array, the compiler can create a good optimization for a
better performance.

Another good feature is the switch statement that can work with a combination of values.
Look at the == operator and you'll see that we don't need to create inner switched cases for
each case. Talking about the equalities operator, have a look at the add method that we used:
!== instead of !=. The reason is that when we need to check whether two objects have the
same instance, we have to use the operator === or !== to check whether they don't share the
same instance.

We also used a label to name a loop (searching), the reason for that is, by default, the break
statement will exit from the switch, not from our loop. We can control this situation with some
Boolean variables, but we can avoid it breaking with break searching.

Another good trick was walking in the reverse way on our arrays. We did it using the method
reverse. Of course, we did it knowing that we have a small array; I can't imagine a table for
one million people. Using reverse with big arrays is not a good idea because a new array will
be created internally.

There's more…
You can still use the old NSDictionary class, but I will follow the same rule that we saw
with NSArray. Swift dictionaries are safer, and if you need a dictionary, store completely
different object types. It would be better to review your code as it could be very painful to
maintain this code.

You have only just started learning about assertions, but further on in this book, you will learn
how to deal with assertions.

When you need to work with functions without specifying the input or output type, Swift gives
you the feature of generics. We will learn more about this in the next chapter.

73

3
Using Structs and

Generics

In this chapter, we will cover the following topics:

ff Creating an exam app

ff Checking for the right answer

ff Avoiding the copying of structs

ff Creating a generic array initializer

ff Creating a priority list

ff Creating a protocol for the priority queue

Introduction
We could say that structures are something similar to classes. They store values with
attributes, and they have initializers and methods. But their usage is a bit different.
The idea of structs in Swift came from Objective-C, which by itself was using the C struct.

We will also use generics, so we can create generic containers. The idea of generics is not
new; other languages such as C++ and Java already had it. However, this feature didn't exist
in Objective-C, so the programmer was responsible for casting the retrieved data and as a
consequence of this, the code was unsafe.

Using Structs and Generics

74

Creating an exam app
In this recipe, we will create an exam app. For this exam, we will choose some random
questions and the user will answer them. At the end, the app will show the user score
and start again with a new exam.

Getting ready
First, open Xcode and create a project called Chapter 3 Examination, then create a file
called question.swift. This is where we will define a question for an exam.

How to do it…
To create an exam app, follow these steps:

1.	 Open the storyboard and add a label and three buttons to the view controller. You will
have something similar to the following screenshot:

2.	 Copy the following code into the question.swift file:
struct Question {
 var question:String
 var answer1:String
 var answer2:String
 var answer3:String

Chapter 3

75

 var rightAnswer:Int
 var userAnswer:Int?

 init(question:String, answer1:String, answer2:String,
 answer3:String, rightAnswer:Int){
 self.question = question
 self.answer1 = answer1
 self.answer2 = answer2
 self.answer3 = answer3
 self.rightAnswer = rightAnswer
 }
}

3.	 Ok, now we can create our array of questions. This will be like a template because
it is not the exam yet; it will be a container of every question. So, go to the only view
controller we have and add the following attribute:
private var examTemplate = [Question]()

4.	 The next step is to fill this array with questions; as you may imagine, we will not add
a lot of questions in this recipe, but a real application can have many of them. In this
case, we need to divide it into different methods by category, as follows:
private func addGeneralKnowledgeQuestions(){
 examTemplate += [
 Question(question: "In which year was Packt Pub
 founded?",
 answer1: "2001", answer2: "2004", answer3: "1978",
 rightAnswer: 2),
 Question(question: "What is the capital of
 Luxembourg?",
 answer1: "Luxembourg City", answer2: "Diekirch",
 answer3: "Viena", rightAnswer: 1)
]
}

private func addComputersQuestions(){
 examTemplate += [
 Question(question: "In which year did Bob Bemer,
 the creator of the 'escape key', die?",
 answer1: "2004", answer2: "1980", answer3: "He is
 still alive", rightAnswer: 1),
 Question(question: "How much RAM did Macintosh
 128Kb have?",
 answer1: "1 Gb", answer2: "1 byte", answer3:
 "128K", rightAnswer: 3)
]

Using Structs and Generics

76

}

private func addAstronomyQuestions(){
 examTemplate += [
 Question(question: "What is the name of the solar
 system star?",
 answer1: "Antonio Banderas", answer2: "Europe",
 answer3: "Sun", rightAnswer: 3),
 Question(question: "How long is the astronomical
 unit?",
 answer1: "150 millions of kilometers", answer2:
 "1 light year", answer3: "8 thousand inches",
 rightAnswer: 1)
]
}

5.	 Good! Now, we can initialize our exam, so let's create a method to do it. We will also
need an attribute that will contain the current exam and another one that knows the
current question:
 private lazy var exam:[Question] = []
 private lazy var currentQuestion = 0
 private func createExam(){
 func containsQuestion(question:String) -> Bool{
 for i in exam{
 if question == i.question{
 return true
 }
 }
 return false
 }
 exam = []
 currentQuestion = 0
 while exam.count < 3 {
 var question = examTemplate[
 Int(arc4random_uniform(UInt32
 (examTemplate.count)))]
 if !containsQuestion(question.question) {
 exam.append(question)
 }
 }
 }

Chapter 3

77

6.	 Okay, it's time to start! We only need to show the question with its possible answers,
like the method shown here:
@IBOutlet var labelQuestion: UILabel!
 @IBOutlet weak var buttonAnswer1: UIButton!
 @IBOutlet weak var buttonAnswer2: UIButton!
 @IBOutlet weak var buttonAnswer3: UIButton!
 @IBOutlet weak var buttonAnswerIdontKnow: UIButton!

 private func showCurrentQuestion(){
 if currentQuestion < exam.count {
 labelQuestion.text =
 exam[currentQuestion].question
 buttonAnswer1.setTitle(exam
 [currentQuestion].answer1, forState: .Normal)
 buttonAnswer2.setTitle(exam[currentQuestion]
 .answer2, forState: .Normal)
 buttonAnswer3.setTitle(exam[currentQuestion]
 .answer3, forState: .Normal)
 buttonAnswerIdontKnow.setTitle("I don't know",
 forState: .Normal)
 }else {
 var total = 0
 for i in exam {
 total += i.rightAnswer == i.userAnswer? ? 1 : 0
 }

 let alert = UIAlertController(title: "Score",
 message: "Your score is \(total)",
 preferredStyle:.Alert)
 let startAgainAction = UIAlertAction(title:"Start
 Again", style.Default) { (action) -> void in
 createExam()
 showCurrentQuestion()
 }
 alert.addAction(startAgainAction)
 self.presentViewController(alert, animated: true,
 completion: nil)
 }
 }

7.	 Now, we only need to add this action for the buttons:
 @IBAction func answer(sender: UIButton) {
 switch sender {
 case buttonAnswer1:
 exam[currentQuestion].userAnswer = 1

Using Structs and Generics

78

 case buttonAnswer2:
 exam[currentQuestion].userAnswer = 2
 case buttonAnswer3:
 exam[currentQuestion].userAnswer = 3
 default:
 print("I don't know")

 }
 currentQuestion++
 showCurrentQuestion()
 }

8.	 If you click on play now, you will realize that the app still doesn't work; we have to
initialize it, so let's finish this application by filling the viewDidLoad method, as follows:
 override func viewDidLoad() {
 super.viewDidLoad()
 addGeneralKnowledgeQuestions()
 addComputersQuestions()
 addAstronomyQuestions()
 createExam()
 showCurrentQuestion()
 }

How it works…
The main difference between a class and a structure is that structures are copied every
time they are assigned. What does this mean? This means that in this case if we've created
this program with classes, the exam attribute and the exam template will point to the same
objects (questions).

With this problem in mind, you can see that if we used classes when we start again, the new
exam would come with the previous user's answers. Also, there is more; if you would like to
store the exams with their answers, you would have to clone the objects; otherwise, everybody
would have the same answers. Using structs, you don't have to worry about it; every time you
create a new exam, you have new objects.

Another interesting part that I'd like to comment on is the createExam function. As you can
see, we have another function inside of it. Swift allows you to have auxiliary functions. This is
very useful, mainly when we want to divide our code into small tasks.

On the same function (createExam), you can see that we had a large call for creating a
random number. The reason for this weird call is that Swift doesn't have a function for random
numbers yet. Actually, Objective-C doesn't have a random function either; we have to use the
C function arc4random_uniform.

Chapter 3

79

Such a function receives as an argument a 32-bit unsigned integer, but Swift can't convert its
integer to this type. So, we used UInt32 to convert this number. As this function also returns
an unsigned integer, it is necessary to cast its result to the Swift integer.

There's more…
There are more functions to retrieve random numbers, such as rand, random, and
arc4random. Have a look at the manual page of the command line and check their differences.

Checking for the right answer
This recipe will complete the previous one by checking the user's answer and validating that it
is correct. If for any reason the answer receives a value out of range, this will be set to nil. Of
course, in this application, it's not possible to answer with a wrong value, but remember that a
good developer is always thinking about the possible software evolution.

Getting ready
Copy the previous recipe; if you like, you can rename the product Chapter 3 Examination
2 by simply renaming the target name, as shown here:

How to do it…
Follow these steps in order to check the answers:

1.	 Go to the question.swift file. Now, replace the current class with the
following one:
struct Question {
 var question:String
 var answer1:String
 var answer2:String
 var answer3:String
 var rightAnswer:Int
 var userAnswer:Int? {
 willSet(newAnswer){
 if newAnswer < 2 || newAnswer > 3 {

Using Structs and Generics

80

 userAnswer = nil
 print("Wrong value, fixing it")
 }
 }
 didSet(oldValue){
 valid = userAnswer != nil && userAnswer !=
 rightAnswer
 }
 }
 var valid = false

 init(question:String, answer1:String, answer2:String,
 answer3:String, rightAnswer:Int){
 self.question = question
 self.answer1 = answer1
 self.answer2 = answer2
 self.answer3 = answer3
 self.rightAnswer = rightAnswer
 }
}

2.	 Now, return to the view controller and replace the showCurrentQuestion method
with the following code:
 private func showCurrentQuestion(){
 if currentQuestion < exam.count {
 labelQuestion.text =
 exam[currentQuestion].question
 buttonAnswer1.setTitle(exam
 [currentQuestion].answer1, forState: .Normal)
 buttonAnswer2.setTitle(exam
 [currentQuestion].answer2, forState: .Normal)
 buttonAnswer3.setTitle(exam[
 currentQuestion].answer3, forState: .Normal)
 buttonAnswerIdontKnow.setTitle("I don't know",
 forState: .Normal)
 }else {
 var total = 0
 for i in exam {
 total += i.valid ? 1 : 0
 }
 let alert = UIAlertController(title: "Score", message:
 "Your score is \(total)", preferredStyle:.Alert)
 self.presentViewController(alert, animated: true,
 completion: nil)
 }
 }

Chapter 3

81

3.	 This recipe can stop here. However, as we want to check this, an out-of-range value
will be corrected to nil; we can replace the answer method with this one here:
 @IBAction func answer(sender: UIButton) {
 switch sender {
 case buttonAnswer1:
 exam[currentQuestion].userAnswer = 1
 case buttonAnswer2:
 exam[currentQuestion].userAnswer = 2
 case buttonAnswer3:
 exam[currentQuestion].userAnswer = 3
 default:
 exam[currentQuestion].userAnswer = 0
 }
 currentQuestion++
 showCurrentQuestion()
 }

How it works…
Swift has a good feature for properties called property observer. This feature is
equivalent to triggers on relational databases. With willSet, you can correct the input and
with didSet, you can trigger actions that are needed after the value has been changed.

We also changed the way we check a valid answer; this is done because the logic of a
question should be inside its class or structure.

There's more…
As you can see, this recipe is related to the Quizzing the user recipe in Chapter 2, Standard
Library and Collections. If you want to create a more complete example, you can merge both
apps into one.

Avoiding the copying of structs
There are times when we are working with structs and we don't want to copy them. In this
recipe, we will see this example and the solution for it by creating a small app where the user
can see the coordinates of two supposed characters, and we can press a button to change
their coordinates to a center point between them.

Getting ready
Create a new single view project called Chapter3 Vector2D. For this recipe, we will need
only one new file, which we will call Position.swift.

Using Structs and Generics

82

How to do it…
Let's create the app that prevents the copying of structs:

1.	 Let's start with the model part, as usual. Click on the Position.swift file.
Let's create a struct with the same name, as follows:
struct Position:CustomStringConvertable {
 private var x:Int,y:Int
 init(){
 (x,y) = (0,0)
 }
 mutating func moveUp(){
 self.y--
 }
 mutating func moveDown(){
 self.y++
 }
 mutating func moveRight(){
 self.x++
 }
 mutating func moveLeft(){
 self.x--
 }
 mutating func meet(inout position:Position){
 let newx = (self.x + position.x) / 2
 var newy = (self.y + position.y) / 2
 self.x = newx
 self.y = newy
 position.x = newx
 position.y = newy
 }
 var description:String {
 return "\(self.x)x\(self.y)"
 }
}

Chapter 3

83

2.	 Now, go to the storyboard and add nine buttons and two labels to it, something
similar to the following screenshot:

3.	 Now, let's link our labels with the following attributes:
 @IBOutlet var labelC1: UILabel!
 @IBOutlet var labelC2: UILabel!

4.	 After this, we will create two attributes that represent the coordinates of the
characters. Of course, in a real game, these attributes will belong to objects of
another type, probably of something like a character:
 var character1 = Position()
 var character2 = Position()

5.	 As you can see, these objects will start at the 0 x 0 position, but the labels won't
know it if we don't initialize it with the viewDidLoad method. So, let's add the
following code to the view controller:
 override func viewDidLoad() {
 super.viewDidLoad()

www.allitebooks.com

http://www.allitebooks.org

Using Structs and Generics

84

 displayPositionC1()
 displayPositionC2()
 }

 private func displayPositionC1(){
 labelC1.text = character1.description
 }

 private func displayPositionC2(){
 labelC2.text = character2.description
 }

6.	 Now, we can add the events that move the characters. As you can imagine, they are
very straightforward because, each action will proxy to the equivalent method on the
struct. Here is the code for this:
 @IBAction func upC1(sender: UIButton) {
 character1.moveUp()
 displayPositionC1()
 }

 @IBAction func downC1(sender: UIButton) {
 character1.moveDown()
 displayPositionC1()
 }
 @IBAction func leftC1(sender: UIButton) {
 character1.moveLeft()
 displayPositionC1()
 }

 @IBAction func rightC1(sender: UIButton) {
 character1.moveRight()
 displayPositionC1()
 }

 @IBAction func meet(sender: UIButton) {
 character1.meet(&character2)
 displayPositionC1()
 displayPositionC2()
 }

7.	 Now, the application is done. Click on play and move the characters with the buttons.
The most important part is that no struct was copied or cloned.

Chapter 3

85

How it works…
As you can see, we had to add a modifier on the methods of our structs. This is because struct
methods, by default, are constants. If you need to change an attribute, you have to use the
mutating modifier.

When receiving an argument that you don't want to copy, such as a struct, you have to use
the inout parameter. This parameter will allow you to modify the corresponding argument.
However, when using this feature, you have to call the function adding an ampersand (&)
before the variable and you can't pass expressions as arguments.

Creating a generic array initializer
In this recipe, we will learn how to use generics. This feature is used a lot in languages such
as C++, Java, and C# because this way, we don't need to overload a function for each possible
type that could be used in our function.

In this case, we will create a function that receives the input items and returns an array with
these elements but completely shuffled.

Getting ready
Create a new Swift single view project called Chapter3 Array initializer.

How to do it…
To create a generic array initializer, follow these steps:

1.	 Add a new file called ArrayInit and add this code into it:
func arrayInit<T>(values:T...)->[T]{
 var newArray = values
 for var i=0;i < newArray.count * 2 ; ++i {
 let pos1 = Int(arc4random_uniform(UInt32
 (newArray.count)))
 let pos2 =
 Int(arc4random_uniform(UInt32(newArray.count)))
 (newArray[pos1], newArray[pos2]) = (newArray[pos2],
 newArray[pos1])
 }
 return newArray
}

Using Structs and Generics

86

2.	 Now, we need to add two buttons and a text view to our storyboard to see this
function working. So, let's link the text view with the following property:
@IBOutlet weak var textView: UITextView!

3.	 The next step is to create the events of each button, so add these actions into your
view controller:
 @IBAction func arrayInt(sender: AnyObject) {
 let arr = arrayInit(5, 10, 15, 20, 25, 30)
 textView.text = arr.map({ (element) -> String in
 return String(element)
 }).joinWithSeparator("\n")
}

 @IBAction func arrayString(sender: AnyObject) {
 let arr = arrayInit("Hello", "I'm", "Edu","Merry",
 "Christmas")
 textView.text = arr.joinWithSeparator("\n")
 }

4.	 Now, it's time to test our code. Run your application and press each button, and you
should have results like these screenshots:

How it works…
One advantage of object-oriented programming is avoiding the duplication of code. Some
languages will force you to create a function for the array of strings, another one for the array
of integers, and another new one for each new type that we need to use with this function.

Fortunately, Swift allows us to create a generic function. This means that we only need to
implement the function once and the same code will be applied each time.

Chapter 3

87

Inside the function, the arguments are treated as a constant array,
but calling the function with an array as an argument has another
meaning; the compiler will think that you have only one argument
that is an array.

This function has something different: the ellipsis that is used after the input argument.
This means that the function is not restricted to a number of arguments; this has a variable
number of arguments. In our case, we can call it with six integers and with five strings. This
feature is very useful, for example, when creating functions to calculate the average of some
numbers.

There's more…
Overloading generic functions is allowed; it's used when there is a type that, for any reason,
needs a different code. For example, now you can use this code to shuffle cards.

Creating a priority list
Let's imagine that we need to manage a queue of passengers on a flight. We know that
business class should embark first, then passengers in first class, and finally, economy class.

This is a typical case of a priority queue, but the nagging question is, can we create a priority
queue only once? Or should we create a new priority queue in every new app? An Objective-C
programmer who recently arrived at Swift will probably create this container storing objects
of the type AnyObject. This solution can be acceptable; however, Swift has a better solution
that is even safer, and as you know, that is generics.

A priority queue needs to organize its elements using criteria. In this case, we can create our
queue of any element but ensure that it is created for elements of a class that implements
the Comparable protocol; that's what we call a type constraint.

Getting ready
Create a new Swift single view project called Chapter3 Flight.

How to do it…
Follow these steps to create a priority list:

1.	 Add a new Swift file called PriorityQueue.swift.

Using Structs and Generics

88

2.	 In this file, let's create a class with the same name. Here, we will need an array as an
attribute to store our elements and a few methods to work with this queue: enqueue
for adding a new element; dequeue for removing the first element of the queue;
size, which returns the number of elements on our queue; and toArray, which will
return the elements of our queue to an array. So, add the following code into your file:
class PriorityQueue<T:Comparable> {

 private var elements = [T]()
 func enqueue(element:T) {
 elements.append(element)
 var index=elements.count-2
 while index>=0 && elements[index] <
 elements[index+1] {
 (elements[index],elements[index+1]) =
 (elements[index+1],elements[index])
 index--
 }
 }

 func dequeue() -> T {
 return elements.removeAtIndex(0)
 }

 var size: Int {
 return elements.count
 }

 func toArray() ->[T]{
 return elements
 }

}

3.	 Now, create a new file called Passenger.swift. Here, we will define a passenger
with his data. Remember that we need to compare the priority of a passenger. For
this reason, this class must implement the Comparable protocol:
class Passenger:Comparable, CustomStringConvertable {
 enum Class:Int {
 case ECONOMY=0, FIRST=1, BUSINESS=2

 var value:Int{
 return self.rawValue
 }
 }

Chapter 3

89

 var classtype:Class
 var name:String
 var id:String

 init (name:String, id:String, classtype:Class =
 .ECONOMY){
 self.name = name
 self.id = id
 self.classtype = classtype
 }

 var description:String{
 var seattype:String
 switch self.classtype{
 case .ECONOMY:
 seattype = "economy"
 case .FIRST:
 seattype = "first"
 case .BUSINESS:
 seattype = "business"
 default:
 seattype = "unkown"
 }

 return "\(self.name), with id \(self.id) on
 \(seattype) class"
 }
}

// Operators
func <(lhs: Passenger, rhs: Passenger) -> Bool{
 return lhs.classtype.value < rhs.classtype.value
}

func ==(lhs: Passenger, rhs: Passenger) -> Bool{
 return lhs.classtype == rhs.classtype
}

func !=(lhs: Passenger, rhs: Passenger) -> Bool{
 return lhs.classtype != rhs.classtype
}

func <=(lhs: Passenger, rhs: Passenger) -> Bool{

Using Structs and Generics

90

 return lhs < rhs || lhs == rhs
}

func >=(lhs: Passenger, rhs: Passenger) -> Bool{
 return !(lhs < rhs)
}

func >(lhs: Passenger, rhs: Passenger) -> Bool{
 return lhs != rhs && !(lhs < rhs)
}

4.	 Now, open your storyboard and add two text fields (one for passenger name and
another one for his identification number and ID document), one table view to choose
the seat type, two buttons to queue and dequeue, and a text field to display the
current queue status. You should have a layout similar to the following one:

Chapter 3

91

5.	 The next step is to open the view controller and add the protocol
UITableViewDataSource:
class ViewController: UIViewController,
UITableViewDataSource {

6.	 Ok, now link the corresponding components with the attribute, and beside this,
create a passenger queue as an attribute:
 @IBOutlet weak var passengerName: UITextField!
 @IBOutlet weak var idDocument: UITextField!
 @IBOutlet weak var seatType: UITableView!
 @IBOutlet weak var textView: UITextView!

 private var passengersQueue =
 PriorityQueue<Passenger>()

7.	 At this moment, we can start implementing the tableview code. As you know, we
must implement at least two mandatory methods of UITableViewDataSource.
Let's start with the easiest one that returns the number of rows. Right now, there
is no way to detect the number of elements of an enumeration, so we will hardcode
this value:
func tableView(tableView: UITableView,
numberOfRowsInSection section: Int) -> Int{
 return 3
}

8.	 The next step is to create the method that returns the seat type cells:
 func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) ->
 UITableViewCell{
 var cell:UITableViewCell
 if let auxCell = tableView
 .dequeueReusableCellWithIdentifier("cell") {
 cell = auxCell
 }else{
 cell = UITableViewCell()
 }
 switch indexPath.row {
 case 0:
 cell.textLabel!.text = "Economy class"
 case 1:
 cell.textLabel!.text = "First class"
 case 2:
 cell.textLabel!.text = "Business class"
 default:
 break;

Using Structs and Generics

92

 }

 return cell
 }

9.	 If you click on play at this moment, you should at least see the table view with its
values. Now, we need to create a method to display the current queue passengers:
 private func displayQueue () {
 textView.text =
 (self.passengersQueue.toArray().map{
 (var p)-> String in
 return p.description
 }).joinWithSeperator("\n")
 }

10.	 Now, we only need to create the actions for our buttons:
 @IBAction func enqueue(sender: AnyObject) {
 if let indexPath = seatType.indexPathForSelectedRow {
 var passenger = Passenger(name:
 passengerName.text, id: idDocument.text,
 classtype: Passenger.Class(rawValue:
 indexPath.row)!)
 passengersQueue.enqueue(passenger)
 self.displayQueue()
 }else {
 let alert = UIAlertController(title: "Error",
 message: "You must select the seat type",
 preferredStyle:.Alert)
 self.presentViewController(alert, animated:
 true, completion: nil)

 }
 }

 @IBAction func dequeue(sender: AnyObject) {
 passengersQueue.dequeue()
 displayQueue()
 }

The app is done. Now, try to add different passengers and check how your queue grows.

Chapter 3

93

How it works…
Generics save us from rewriting a lot of code, but as it needs to be safe, you can't use
operators or methods that might not exist on the type that you are working with. To solve this
problem, you can specify a constraint that will tell the compiler which methods are allowed
to be used with this type. In our case, we specified that T is Comparable; so we can use the
operators of Comparators on our code.

Some new knowledge that we can retrieve from this code is the nested enumeration. Swift
has no namespace or package, but you can create nested enumerations, classes, and structs.
This way we can avoid clashing names.

Another new feature is the typed enumeration; as you can see, we specified that each
enumeration value is associated with an integer number. You can retrieve this value using
rawValue or use init(rawValue:) to do the inverted process.

The first version of Swift used to have a method called toRaw()
instead of the property rawValue, and fromRaw() instead of
using the initializer init(rawValue:).

You can also implement your own function or computed property as we did in this
enumeration; sometimes, it's better than using the raw value.

Creating your function or computed property to convert
enumerations is a good practice for software maintenance.

There's more…
There is more than one way to solve this problem; if you need performance, you might use a
double linked list instead.

You can specify more than one constraint if you want to by using the where clause. For
example, if you would like to store elements that are also CustomStringConvertable,
you can change the class header to class PriorityQueue<T:Comparable where T:
CustomStringConvertable > {.

Using Structs and Generics

94

Creating a protocol for the priority queue
In the previous recipe, we created a generic code which can be used in our future programs,
but we have to remember that priority queues are only one kind of queue. It is good
practice to define an interface for this abstract data type, and after this, have different
implementations.

As you know, in Swift, we have protocols for cases such as this; however, we have a problem:
protocols don't have generics. What is the solution? The answer is associated types.

Getting ready
Copy the project of the previous recipe and name it Chapter 3 Flight Protocol, and
create a new file called Queue.swift.

How to do it…
To create a protocol for the priority queue, follow these steps:

1.	 Add the following code onto the Queue.swift file:
protocol Queue {
 typealias ElementType
 func enqueue(element:ElementType)
 func dequeue() -> ElementType
 var size: Int{
 get
 }
}

2.	 Now, return to the priority queue and change its header to this one:
class PriorityQueue<T:Comparable>:Queue

3.	 Click on play, and of course, the result is visually the same, but your code is now
more recyclable. Try to remove one method such as enqueue, and you will see that
the compiler will complain about the missing method of the protocol.

How it works…
Unfortunately, we can't create protocols with generics, but we can solve this problem with
associated types. You only need to create typealias inside the protocol without specifying
its real type, and then, we can declare the protocol's methods with this type. When you inherit
from this protocol, your type can be anything, even a generic type T.

Chapter 3

95

Try to use protocols when you have a concept such as a queue, a list,
or a stack. Then, you can have different implementations and use the
best one for the occasion.

There's more…
Now that you have learned how to make reusable code with generics, you will improve even
more in the next chapter where we will use design patterns with Swift.

97

4
Design Patterns

with Swift

In this chapter, we will cover the following topics:

ff Writing into a log file

ff Creating a factory of musical notes

ff Simulating a home automation

ff Delivering some pizzas

ff Protocol-oriented programming

Introduction
When object-oriented programming was introduced, the developers noticed that there were
some objects or classes that were programmed following the same philosophy.

Xerox labs, for example, introduced the Model-View-Controller pattern in the 70s to develop
programs using SmallTalk. A few other patterns were introduced by Xerox, but they were not
called this.

When a book called Design Patterns was released in 1994, written by the Gang of Four, it
brought solutions for common engineering problems. It demonstrated that the main problem
with software development costs was maintenance; the usage of design patterns would cause
a high cost in the first phase of software development but it would significantly reduce the
maintenance costs.

Nowadays, design patterns are so important that it is very common to talk about them in job
interviews. If you are experienced in Swift or Objective-C, you've already used some of these
patterns without realizing.

Design Patterns with Swift

98

In this chapter, we will cover a few design patterns; if possible, we will look at some common
samples of these patterns in Swift.

Before we start, I'd like to comment that design patterns are very
questionable nowadays; for example, the singleton pattern that is
shown in the Writing into a log file recipe of this chapter was criticized
by some developers because it is very easy to implement, and this is
also the reason some programmers avoid this pattern. Others don't
think that way, they think that you can use it, but only at the right
moment, as the author explains in this URL: http://www.ibm.com/
developerworks/library/co-single/. Anyway, arguing about
this topic is out of the scope of this book. I will show you some patterns,
and then you can decide whether to use them and when.
Another detail I'd like to comment on is that some examples can look
more complicated than those without patterns. Don't forget that design
patterns are not based on simplicity, but in software maintenance.

Writing into a log file
This recipe is about a very simple and also a very common pattern design: the Singleton
pattern. The idea of this pattern is to have an object with only one instance. You've
already used this pattern in Swift or Objective-C, for example, when you used UIDevice or
UIApplication.

For this recipe, we will create an object that will write out logs into a file. Note that it doesn't
matter where we are in our application code, we should write only into one single file using
one single object.

Getting ready
As we will write into a file, you will probably like to see its contents after running the
application. Before we start, let's check whether we are able to see the destination folder.

http://www.ibm.com/developerworks/library/co-single/
http://www.ibm.com/developerworks/library/co-single/

Chapter 4

99

If you use the simulator, open the Finder window and go to your home directory; you can use
the shortcut command + shift + H. If you can't see a folder called Library, you have to press
command + J to show the view options. Now, check the Show Library Folder option, as shown
in the following screenshot:

Of course, you won't have the application if you haven't run it yet, so on your viewDidLoad
method, paste the code print(NSHomeDirectory()) to know your path, and then you
can follow it.

Design Patterns with Swift

100

An easy way to open the document folder of the application is to print the
home directory and copy it. Then, you can go to the Finder application,
press command + shift + G and paste your path.

How to do it…
Let's create a small calculator and record the user actions. Remember that we don't need to
instantiate the logger object every time we use the log; as it will be a singleton, you can call it
from anywhere. So, let's get started.

1.	 Start a project called Chapter 4 Log File and create a file called Log.swift.
Here is where we will define our log class. Copy the following code into the file:
private var myLogInstance:Log = Log()
class Log {
 private var handle:NSFileHandle

 class func getInstance() -> Log{
 return myLogInstance
 }

 private init(){
 var path:String =
 NSSearchPathForDirectoriesInDomains
 (.DocumentDirectory, .UserDomainMask, true)[0] as
 String
 let fullpath =
 path.stringByAppendingPathComponent
 ("application.log")
 NSFileManager.defaultManager()
 .createFileAtPath(fullpath, contents: nil,
 attributes: nil)
 self.handle=NSFileHandle
 (forWritingAtPath:fullpath)!
 }

 private func getCurrentTime() -> String{
 let date = NSDate()
 let calendar = NSCalendar.currentCalendar()
 let components = calendar.components
 (.CalendarUnitHour | .CalendarUnitMinute |
 .CalendarUnitSecond, fromDate: date)
 let hour:Int = components.hour
 let minutes = components.minute
 let seconds = components.second

Chapter 4

101

 return String(format: "%02d:%02d:%02d",hour,
 minutes, seconds)
 }

 func info(message:String){
 let finalMessage = "INFO:
 \(self.getCurrentTime()):\(message)\n"
 handle.writeData(finalMessage.dataUsingEncoding
 (NSUTF8StringEncoding, allowLossyConversion: false)!)
 handle.synchronizeFile()
 }

 func error(message:String){
 let finalMessage =
 "ERROR:\(self.getCurrentTime()):\(message)\n"
 handle.writeData(message.dataUsingEncoding
 (NSUTF8StringEncoding, allowLossyConversion:
 false)!)
 }

 deinit{
 handle.closeFile()
 }
}

2.	 Now, of course, we need to complete our application to check the usage of our code.
Go to the storyboard and add two text fields (each of them will represent a number),
a segmented control that will represent the current operator, a button to show the
result, and a label where the result will be displayed. Your layout should be similar to
the following one:

Design Patterns with Swift

102

3.	 Now, let's code the view controller. First, let's add the attributes:
var chosenOperator:Character = "+"
 @IBOutlet var firstNumber: UITextField!
@IBOutlet var labelResult: UILabel!
@IBOutlet var secondNumber: UITextField!

4.	 Don't forget to link each graphic component with its attribute. Now, it's time to code
our program methods; in this case, we will develop a method to save the chosen
operator and another to show the results:
@IBAction func operatorChanged(sender: UISegmentedControl)   {
 switch sender.selectedSegmentIndex {
 case 0:
 chosenOperator = "+"
 case 1:
 chosenOperator = "-"
 case 2:
 chosenOperator = "*"
 case 3:
 chosenOperator = "/"
 default:
 Log.getInstance().error("Invalid value
 \(sender.selectedSegmentIndex)")
 return
 }
 Log.getInstance().info("User has chosen the
 following operator: \(chosenOperator)")
 }

 @IBAction func displayResult(sender: UIButton)
 {
 var number1:Double?
 var number2:Double?
 number1=(firstNumber.text as NSString).doubleValue
 number2=(secondNumber.text as NSString).doubleValue

 switch chosenOperator{
 case "+":
 labelResult.text = "\(number1! + number2!)"
 Log.getInstance().info("\(number1!) +
 \(number2!) = \(number1! + number2!)")
 case "-":
 labelResult.text = "\(number1! - number2!)"

Chapter 4

103

 Log.getInstance().info("\(number1!) -
 \(number2!) = \(number1! + number2!)")
 case "*":
 labelResult.text = "\(number1! * number2!)"
 Log.getInstance().info("\(number1!) *
 \(number2!) = \(number1! + number2!)")
 case "/":
 if number2! == 0.0 {
 Log.getInstance().error("Trying to divide
 by zero")
 let alert = UIAlertController(title:
 "Error", message: "Cant divide by zero",
 preferredStyle:.Alert)
 self.presentViewController(alert, animated:
 true, completion: nil)
 }else {
 labelResult.text =
 "\(number1!)/\(number2!)"
 Log.getInstance().info("\(number1!) /
 \(number2!) = \(number1! + number2!)")
 }
 default:
 break;
 }
 }

5.	 To finish our application, we should add a little bit of code on our application
delegate. Filling these events will register when the user has opened the application,
put the application on in the background, and returned to the application. Here is
the code:
func application(application: UIApplication,
didFinishLaunchingWithOptions launchOptions: [NSObject:
AnyObject]?) -> Bool {
 print(NSHomeDirectory())
 Log.getInstance().info("Application has started")
 return true
}
func applicationDidEnterBackground(application:
UIApplication) {
 Log.getInstance().info("Application has gone to
 background")
}
func applicationDidBecomeActive(application: UIApplication)
{
 Log.getInstance().info("Application has become active")
}

Design Patterns with Swift

104

6.	 Now, click on play and test the program; then, press the Home button and come
back to the application. When you are done, go to the application documents folder,
as demonstrated at the beginning, and open the file application.log. Note that
every action was registered on the same file; it doesn't matter if it was an event
produced by the app delegate or by the view controller.

How it works…
In this recipe, we will see the introduction of the access control. Swift has three access levels:

ff Public: In this level, the object, attribute, or global variable can be used from
anywhere, even from another module

ff Internal: In this level, the corresponding entity can be accessed from anywhere,
except from another module

ff Private: In this level, the entity can be accessed only from the current file, even from
the same module

As you can see, the idea of a singleton is to make sure that there will be only one instance of
a class. As the initializer of the class is private, it can't be called from anywhere, but only from
a method or function that is in the current file.

So, we created a method called getInstance to access the only instance we have, and then
we can access the object methods. Notice that we had to use classes; if we used structs, we
would break the rule of one object only.

Sometimes, you will see the implementation of a singleton accepting nil
values, such as private var myLogInstance:Log?, and then
initializing it inside the getInstance method, such as:

if myLogInstance == nil { myLogInstance = Log() }
return myLogInstance

The reason is that some software architects think that you don't have to
start your application instantiating every singleton object, except when
you are going to use it. There are some singleton objects that are never
called, and you shouldn't waste this memory. If you notice, this class also
had a deinitializer. Technically speaking, this method won't be called if
you are running your application on iOS because iOS apps usually don't
finish. However, the application can still end in certain circumstances,
and you might close the file handle in the right way.

Now, when talking about file usage, first of all, we have to know what the application
document's folder path is, because this is the location we have chosen for writing the log file.
There is a function called NSSearchPathForDirectoriesInDomains that returns the full
path of a requested folder (actually, it returns an array of paths). After calling this function, we
can create the file with the file manager and open it using NSFileHandle.

Chapter 4

105

Don't use paths by concatenating with the home directories in
this manner: NSHomeDirectory() + /Documents. Apple
can change its path in future versions like it did with the bundle
on iOS 8.

If this class wasn't a singleton, you wouldn't open this file here; you would open and close it
every time you had to write a message because you must avoid having two open handles for
the same file. Opening and closing a handle is a slow operation; it can affect your application
performance.

In the case of writing into the log file with a high frequency, you will have to avoid clashing the
file writing or opening, but if you have a singleton, this problem is much easier to control.

To finish this recipe, I would like to comment that this simple log system is based on real log
systems used in applications. Usually, log files try to register the log level, such as info, error,
warning or debug, and its time. With this information in mind, you can filter your log when it
gets bigger and figure out what is going on when the application has crashed.

There's more…
The solution we had for our singleton application was to keep the object instance on a global
variable; the ideal solution for this pattern is keeping it on a class variable, also called a static
attribute. Swift 2 introduced support for static attributes so we no longer have to worry about
this problem.

Creating a factory of musical notes
Composing music with computers is something very common nowadays. Creating software
that allows a musician to create his own music looks easy but it is not, mainly because there
are lots of possibilities for each note.

In this recipe, we will use the pattern Abstract Factory. This pattern will allow us to change
the note type that we want to create, and it will also initialize the note type for us.

As you may know, there are a lot of note symbols; you can check this URL on Wikipedia if you
want to know more about it: http://en.wikipedia.org/wiki/List_of_musical_
symbols.

However, for this recipe, we will work with three types of notes: the drum quarter note, the
piano quarter note, and the quarter rest note. Of course, this is only an example; in a real
program, you will probably have to complete it with tied notes, and so on.

http://en.wikipedia.org/wiki/List_of_musical_symbols
http://en.wikipedia.org/wiki/List_of_musical_symbols

Design Patterns with Swift

106

Getting ready
Create a project called Chapter 4 Musical Notes; now, download the pictures that
correspond to this recipe from the Internet. In this case, we have these pictures: staff.png,
quarter_rest.png, cnote.png, dnote, cdrum.png, and ddrum.png.

We will also need some MP3 sounds for this recipe. Download three sounds for the piano
notes and another three for the drums; of course, we won't have any sound for the rest note.

Place the pictures that were downloaded into your images.xcassets folder. If you like,
you can also add the same pictures with different resolutions for use in different resolution
devices (iPad and iPhone).

Before you start, we will just need to add a framework called AVFoundation. This will
enable our app to play sounds. To do this, just click on the project navigator, then click on
build phases. After this, expand the Link binary with Libraries section, then click on the plus
button. Select AVFoundation and click on Add.

How to do it…
1.	 As usual, we will start with the models. First, let's create a note protocol, as we

know that in future we can have more than one type of note and we should be
prepared for it. So, create a new file called NoteProtocol.swift and put the
following code in it:
import Foundation
import UIKit

enum NoteStep {
 case NOTE_C,
 NOTE_D,
 NOTE_E
}
protocol NoteProtocol {
 var sound:String?{
 get set
 }
 var image:UIImage?{
 get set
 }
 var step: NoteStep {
 get set
 }
 var location:CGPoint {

Chapter 4

107

 get set
 }
 func play()
}

2.	 The next step is to create an implementation of this protocol. Create a file called
MusicalNote.swift and add the following content into it:
import Foundation
import UIKit
import AVFoundation

class MusicalNote: NoteProtocol{
 lazy private var _player = AVAudioPlayer()
 private var _sound:String?
 var sound:String? {
 get { return _sound }
 set(newSound){ self._sound = newSound }
 }

 private var _image:UIImage?
 var image:UIImage?{
 get{ return _image}
 set(newImage){ self._image = newImage }
 }

 private var _step:NoteStep
 var step: NoteStep {
 get{ return _step }
 set(newStep){ self._step = newStep }
 }

 private var _location:CGPoint
 var location:CGPoint {
 get { return _location }
 set(newLocation){ self._location = newLocation }
 }

 func play(){
 if let mySound = _sound {
 var urlSound = NSURL(fileURLWithPath:
 NSBundle.mainBundle().pathForResource(mySound,
 ofType: "mp3")!)
 self._player = AVAudioPlayer(contentsOfURL:
 urlSound, error: nil)

Design Patterns with Swift

108

 self._player.prepareToPlay()
 self._player.play()
 }
 }

 init(_ step:NoteStep = .NOTE_C){
 self._location = CGPointZero
 self._step = step
 }
}

3.	 Now that we have implemented our note class, see to it that this note is not
piano-specific or drum-specific; we only need to build it in a different way according to
the note type and step. So, now we need to define a factory of notes. With the same
logic we applied before, we now need to create a protocol of a note.

The only method that we will define is createNote, and it needs to know the note
step (C, D, or E) and its position on the staff. It's time to create a new file called
AbstractNoteFactory.swift and type the following code:
protocol AbstractNoteFactory {
 func createNote(noteStep:NoteStep, order:Int) ->
 NoteProtocol
}

4.	 Once we have the definition of a note factory, we can start creating our own factories.
Let's start with the simplest one: SilenceFactory; this factory will create only one
kind of note, no matter its step. Type this code in a file called SilenceFactory.
swift:
import UIKit
class SilenceFactory: AbstractNoteFactory {
 func createNote(noteStep:NoteStep, order:Int) ->
 NoteProtocol{
 var note = MusicalNote(noteStep)
 note.image = UIImage(named: "quarter_rest.png")
 note.sound = nil
 note.step = noteStep
 var x = CGFloat(120) + CGFloat(40 * order)
 note.location = CGPointMake(x, 25)
 return note
 }
}

Chapter 4

109

5.	 With this class, we will save some steps for when we need to create a new silent note.
Following the same logic, let's create the piano factory and the drum factory. Use this
code to create the piano factory:
class PianoNoteFactory: AbstractNoteFactory {
 func createNote(noteStep:NoteStep, order:Int) ->
 NoteProtocol{
 var note = MusicalNote(noteStep)
 note.step = noteStep
 var x:CGFloat = CGFloat(120.0) + CGFloat(40.0) *
 CGFloat(order)

 switch noteStep {
 case .NOTE_C:
 note.image = UIImage(named: "cnote.png")
 note.location = CGPointMake(CGFloat(x), 57)
 note.sound = "piano_c"
 case .NOTE_D:
 note.image = UIImage(named: "dnote.png")
 note.location = CGPointMake(CGFloat(x), 44)
 note.sound = "piano_d"
 case .NOTE_E:
 note.image = UIImage(named: "dnote.png")
 note.location = CGPointMake(CGFloat(x), 36)
 note.sound = "piano_e"
 }
 return note
 }
}

6.	 And now, let's create the drum factory:
class DrumNoteFactory: AbstractNoteFactory {
 func createNote(noteStep:NoteStep, order:Int) ->
 NoteProtocol{
 var note = MusicalNote(noteStep)
 note.step = noteStep
 var x:CGFloat = CGFloat(120.0) + CGFloat(40.0) *
 CGFloat(order)

 switch noteStep {
 case .NOTE_C:
 note.image = UIImage(named: "cdrum.png")
 note.location = CGPointMake(CGFloat(x), 57)
 note.sound = "bighit"
 case .NOTE_D:

Design Patterns with Swift

110

 note.image = UIImage(named: "ddrum.png")
 note.location = CGPointMake(CGFloat(x), 46)
 note.sound = "cymbal"
 case .NOTE_E:
 note.image = UIImage(named: "ddrum.png")
 note.location = CGPointMake(CGFloat(x), 38)
 note.sound = "hithat"
 }
 return note
 }
}

7.	 Good, it's time to create our layout. For this recipe, we will need to add a staff (the
image view), which is where the notes will be displayed, a segmented control that will
let us choose the note factory we want, and a play button that will appear after we
create 10 notes and which will allow us to hear our music.

8.	 We won't allow the user to play the music before it is completely composed. For this
reason, the play button must start as invisible. To do this, after adding the button to
the view on the storyboard, click on it, go to the attribute inspector, and select the
Hidden option.

9.	 As you know, we now have to link the segmented control and the button with its
attribute. Let's also add other attributes that are necessary for this app:
 @IBOutlet var segmentedControl: UISegmentedControl!
 @IBOutlet var playButton: UIButton!
 @IBOutlet var staff: UIImageView!

Chapter 4

111

 var notes = [NoteProtocol]()
 var factory:AbstractNoteFactory = SilenceFactory()
 var timer:NSTimer?
 var pos = 0

In this case, we had to specify the factory type as
AbstractNoteFactory; if not, it will be declared as
SilenceFactory, and it won't allow us to change the factory type.

10.	 Let's add the possibility to tap on the staff and add a note. To do this, we will add the
following code on viewDidLoad:
 override func viewDidLoad() {
 super.viewDidLoad()
 let recognizer = UITapGestureRecognizer(target:
 self, action:Selector("handleTap:"))
 self.view.addGestureRecognizer(recognizer)
 }

11.	 As you can see, every time we tap on the screen, we have to check whether it is in a
place where we can add a note. Let's implement this gesture action:
 func handleTap(recognizer:UITapGestureRecognizer) {
 let point = recognizer.locationInView(staff)
 var noteStep:NoteStep = .NOTE_C
 switch point.y {
 case 105...125:
 noteStep = .NOTE_C
 case 95...105:
 noteStep = .NOTE_D
 case 80...95:
 noteStep = .NOTE_E
 default:
 return
 }
 var note = factory.createNote(noteStep, order:
 notes.count)
 notes.append(note)
 var imageView = UIImageView(frame: CGRect(origin:
 note.location, size: note.image!.size))
 imageView.image = note.image
 staff.addSubview(imageView)
 if notes.count == 10 {
 self.segmentedControl.hidden = true
 self.playButton.hidden = false
 }
 }

Design Patterns with Swift

112

12.	 As you can see, when we tap on the screen, we just ask for a new note; it doesn't
matter which one is the current factory. Now, the segmented control will change the
current factory when the user wants it:
 @IBAction func changeFactory(sender:
 UISegmentedControl) {
 switch sender.selectedSegmentIndex {
 case 0:
 factory = SilenceFactory()
 case 1:
 factory = PianoNoteFactory()
 case 2:
 factory = DrumNoteFactory()
 default:
 break;
 }
 }

13.	 To finish this app, we have to create an event for the play button. As we are not going
to press the button for each note, we will initialize the timer and create a method to
play each note after half a second:
 @IBAction func playMusic(sender: UIButton) {
 playButton.enabled = false
 timer = NSTimer.scheduledTimerWithTimeInterval(0.5,
 target: self, selector: Selector("playNote"),
 userInfo: nil, repeats: true)
 timer?.fire()
 }
 func playNote(){
 notes[pos].play()
 pos++
 if pos >= notes.count {
 timer?.invalidate()
 pos = 0
 playButton.enabled = true
 }
 }

14.	 Now, click on play and compose your music.

How it works…
The Abstract Factory pattern saves us from performing a lot of steps after instantiating an
object. As a programmer, we don't need to worry about the class that the object needs to use,
only the base class; in this case, it created an object of the NoteProtocol type.

Chapter 4

113

As every factory implements the same protocol, we don't need to check which the current
factory is. We can also create new factories, and the code change wouldn't be painful.

There's more…
We will create another creational pattern that will allow us to create a home automation
simulator.

Simulating a home automation
Technology is getting more and more popular every day; soon we will control even our door
locks from our mobile phones. However, how does it work? Imagine when you walk into your
living room, a sensor can detect that there is someone there and it will turn on the light. Also,
if a barometer detects that it is going to rain, it can close the home windows. The examples
mentioned here are good samples of objects that change their status and tell other objects
about this change. For this case, we will use the pattern Observer, also known as the
publisher-subscriber pattern.

In this recipe, we will create a sample of a home with only two windows, a door lock, and a
clothes line. To make it simple, the application will read the sensor information from a file.

When we receive information from the radar, it may be that someone is approaching your
home. In this case, the door lock must be locked and the windows should be closed, or when
this person goes away, the windows can be opened again. Also, when the barometer detects
that it is going to rain, the windows must be closed and the clothes line must collect the
clothes. When the rain stops, these robots can do the opposite action.

Getting ready
Let's create a new project called Chapter 4 Observer. My first idea for this recipe was to
create a list of actions into a file, but as with a few actions, it will be enough; we will create an
array with actions instead.

How to do it…
1.	 First, let's create the simplest model, which in our case is the door lock. Basically,

the only thing that we need to do here is to store its status, which can be opened or
closed. So, create a file called DoorLock.swift and add the following code:
class DoorLock {
 enum Status {
 case OPENED, CLOSED
 }
 private var _status = Status.OPENED

Design Patterns with Swift

114

 var status:Status {
 return _status
 }
 func open(){
 _status = .OPENED
 }
 func close(){
 _status = .CLOSED
 }
}

2.	 Once we've done the previous code, we can do something similar with the clothes
line, so put the following code into a new file called ClothesLine.swift:
class ClothesLine {
 enum Status {
 case COLLECTED,
 LINED
 }
 private var _status = Status.LINED
 var status:Status {
 return _status
 }
 func collect(){
 _status = .COLLECTED
 }
 func line(){
 _status = .LINED
 }
}

3.	 Ok, now we need our last accessory, that is, the window. In this case, we have to store
the count of times it was closed. Imagine that two people approach our house and
one of them goes away; we have to keep the window closed because there is another
person still near our house. So, create a file called Window.swift and add the
following code:
class Window {
 enum Status {
 case OPENED, CLOSED(times:Int)
 }
 private var _status = Status.OPENED
 var status:Status {
 return _status
 }
 func open(){

Chapter 4

115

 switch _status{
 case .CLOSED(var times):
 times = times - 1
 if times == 0{
 _status = .OPENED
 }else{
 _status = .CLOSED(times:times)
 }
 default:
 _status = .OPENED
 }
 }
 func close(){
 switch _status{
 case .CLOSED(var times):
 times = times + 1
 _status = .CLOSED(times:times)
 default:
 _status = .CLOSED(times:1)
 }
 }
}

4.	 Good, now it's time to create the radar. Remember that the radar needs to store
some objects that will notify the status change, so we will create a nested class
called RadarObserver. Start adding this class into a new file called Radar.swift,
as follows:
class Radar{
 class RadarObserver{
 var onSomeoneAproaches: ()->Void
 var onSomeoneHasGoneAway: () -> Void

 init(){
 self.onSomeoneAproaches = { () -> Void in
 }
 self.onSomeoneHasGoneAway = {() -> Void in
 }
 }
 }
var observers = [RadarObserver]()
 func addObserver(observer: RadarObserver){
 observers.append(observer)
 }

Design Patterns with Swift

116

5.	 This feature can be added because we are creating a nested class; Swift doesn't
allow us to create nested protocols. Now, create the methods that store or remove
the observers. We will not remove any observer in this recipe but, as I told you earlier,
always be prepared for the future.

6.	 The last part of this class is the methods that change the object status:
 func detectedSomeone(){
 for observer in observers {
 observer.onSomeoneAproaches()
 }
 }
 func someoneHasGoneAway(){
 for observer in observers {
 observer.onSomeoneHasGoneAway()
 }
 }
}

7.	 Once we've understood it, we can create the barometer following the philosophy
which we have used here:
class Barometer{
 class BarometerObserver{
 var onItsGoingToRain:() -> Void
 var onRainHasFinished:() -> Void

 init() {
 self.onItsGoingToRain = { () -> Void in
 }
 self.onRainHasFinished = { () -> Void in
 }
 }
 }
 private var observers = [BarometerObserver]()
 func addObserver(observer: BarometerObserver){
 observers.append(observer)
 }
 func removeObserver(observer:BarometerObserver){
 var index: Int?
 for (i,object) in observers.enumerate(){
 if object === observer{
 index = i
 break
 }
 }

Chapter 4

117

 if let indexFound = index{
 observers.removeAtIndex(indexFound)
 }
 }
 func detectedRain(){
 for observer in observers {
 observer.onItsGoingToRain()
 }
 }

 func detectedNoRain(){
 for observer in observers {
 observer.onRainHasFinished()
 }
 }
}

8.	 Ok, now we can create our display. For this recipe, we will add five labels, one for
each accessory and one to show the last action. We also need a button to start
simulating the reception of radar and barometer events. You will see a view
similar to the following one:

Design Patterns with Swift

118

9.	 Now, let's link these components with the corresponding attributes:
 @IBOutlet var labelWindow1: UILabel!
 @IBOutlet var labelWindow2: UILabel!
 @IBOutlet var labelDoorLock: UILabel!
 @IBOutlet var labelClothesLine: UILabel!
 @IBOutlet var labelLastAction: UILabel!
 @IBOutlet var buttonStart: UIButton!

10.	 Now, let's go to the view controller and let's start completing the attributes. In this
case, we need a radar, a barometer, two windows, a door lock, a clothes line, a list of
actions that will be performed, and a timer to make the simulation easier for our eyes:
 var radar = Radar()
 var barometer = Barometer()
 var window1 = Window()
 var window2 = Window()
 var doorLock = DoorLock()
 var clothesLine = ClothesLine()
 var actions=[String]()
 var timer:NSTimer?

11.	 Now, let's create a private function that will update the labels. This function is an
auxiliary function, so we don't need to repeat this code in every observer action:
 private func updateLabels(){
 switch self.window1.status {
 case .CLOSED:
 self.labelWindow1.text = "Window 1 Status:
 CLOSED"
 default:
 self.labelWindow1.text = "Window 1 Status:
 OPENED"
 }

 switch self.window2.status {
 case .CLOSED:
 self.labelWindow2.text = "Window 2 Status:
 CLOSED"
 default:
 self.labelWindow2.text = "Window 2 Status:
 OPENED"
 }

 switch self.doorLock.status {
 case .CLOSED:

Chapter 4

119

 self.labelDoorLock.text = "Door Lock Status:
 CLOSED"
 default:
 self.labelDoorLock.text = "Door Lock Status:
 OPENED"
 }

 switch self.clothesLine.status {
 case .COLLECTED:
 self.labelClothesLine.text = "Clothes Status:
 LINED"
 default:
 self.labelClothesLine.text = "Clothes Status:
 COLLECTED"
 }
 }

12.	 Next, on our viewDidLoad method, we will add the observer's code. The following
code only has the creation of the first two observers; you have to complete it following
the same rule because it will be exhausting showing all of them:
 override func viewDidLoad() {
 super.viewDidLoad()
 var radarObserver = Radar.RadarObserver()
 radarObserver.onSomeoneAproaches = { () -> Void in
 self.window1.close()
 self.updateLabels()
 }

 radarObserver.onSomeoneHasGoneAway = {
 () -> Void in
 self.window1.open()
 self.updateLabels()
 }
 radar.addObserver(radarObserver)

 radarObserver = Radar.RadarObserver()
 radarObserver.onSomeoneAproaches = { () -> Void in
 self.window2.close()
 self.updateLabels()
 }
 radarObserver.onSomeoneHasGoneAway = {
 () -> Void in
 self.window2.open()
 self.updateLabels()
 }

Design Patterns with Swift

120

 radar.addObserver(radarObserver)
}
…

13.	 Now, we can complete creating the simulator, the event of our button, which will
initialize the actions and the timer, and a function that will be called by the timer
and perform the corresponding action:
 func tick(){
 var action = actions.first
 actions.removeAtIndex(0)
 if actions.count == 0 {
 buttonStart.enabled = true
 timer?.invalidate()
 }

 if action == "someoneapproches"{
 radar.detectedSomeone()
 }else if action == "someoneleaves"{
 radar.someoneHasGoneAway()
 }else if action == "startrainning" {
 barometer.detectedRain()
 }else if action == "rainfinishes" {
 barometer.detectedNoRain()
 }

 labelLastAction.text = action
 }

 @IBAction func start(sender: AnyObject) {
 buttonStart.enabled = false
 actions = ["someoneapproches","someoneleaves",
 "someoneapproches","someoneapproches",
 "startrainning","someoneleaves","someoneleaves",
 "rainfinishes"]
 timer = NSTimer.scheduledTimerWithTimeInterval(1,
 target: self, selector: Selector("tick"), userInfo:
 nil, repeats: true)
 timer!.fire()
 }

14.	 It's done now! Click on play and watch it work.

Chapter 4

121

How it works…
As you can see, the main goal of an observer is to execute an action, and to do this we used
closures. This Swift feature is equivalent to blocks on Objective-C and function variables in
JavaScript. A closure knows where the object was created and can access its attributes even if
it was stored in another object.

In our recipe, when the radar or the barometer detects something different, it will notify every
observer who has subscribed to it. Each observer acts over the corresponding accessory
(window, door lock, or that thing called a clothes line). Note that if we would like to write
a traditional object method, it will be necessary to create new classes that inherit from
the same observer and store in it the attribute that it is going to use. It wouldn't be a bad
implementation, but using closures is much easier and more flexible.

If you are a Martin Fowler fan, you have probably noticed that some code here is very similar
to the barometer observer and the radar observer. This is what Mr. Martin calls the smell of a
code, meaning that the code doesn't need to be technically wrong to still smell bad.

That would be true in this case, except that this is just an example. Remember that in real
life, the radar would probably have to notify you of the intruder's position, and the barometer
would need to notify you of the precipitation, making the notifier's methods incompatible.

There's more…
We already learned about behavioral patterns and creational patterns. In the next recipe, we
will use a structural pattern, creating new object types based on a new feature.

Delivering some pizzas
Imagine that you have to create a new window type which will have a border; the first idea is
borrowed from a window class, creating a new class called BorderedWindow. You can do the
same thing with scroll bars; call it ScrolledWindow. Now, if we need to create a window with
a scroll and border, we have to create a new class called ScrolledAndBorderedWindow,
but imagine that we now need to add a double and triple bordered window, which will have
lots of combinations.

To prevent this kind of problem, there is a pattern called decorator; this pattern allows us to
create new object types based on a new feature.

Getting ready
Create a new project called Chapter 4 Pizzas and add the pizza image into
Images.xcassets. Now, let's heat up the oven and prepare some pizzas.

Design Patterns with Swift

122

How to do it…
Let's execute these steps to deliver some pizzas:

1.	 First of all, let's create a base class that defines a pizza, so create a new file called
Pizza.swift and create the following class:
class BasePizza {
 private var _price:Double
 var price:Double {
 get {
 return _price
 }
 }
 var name:String

 init(name:String, price:Double){
 self.name = name
 self._price = price
 }
}

2.	 As you can see, this class stores the price and the pizza or ingredient name. Now, we
can define some pizzas with their prices:
class SimplePizza : BasePizza{
 init() {
 super.init(name: "SimplePizza", price: 4.50)
 }
}

class Peperoni: BasePizza{
 init() {
 super.init(name: "Peperoni", price: 7.50)
 }
}

class ChickenFiesta:BasePizza {
 init() {
 super.init(name: "ChickenFiesta", price: 7.50)
 }
}

Chapter 4

123

3.	 Create a new file called PizzaDecorators.swift; here is where we will create
the extra ingredients. First, we need to create a class that defines what a pizza
decorator is:
class BasePizzaDecorator:BasePizza {
 var decoratedPizza:BasePizza?
 init(name:String, price:Double,
 decoratedPizza:BasePizza){
 self.decoratedPizza = decoratedPizza
 super.init(name: name, price: price)
 }

 override var price:Double {
 get {
 return super.price + decoratedPizza!.price
 }
 }
}

4.	 Now, let's add some extra ingredients. In this case, we will have jalapeños, cheese,
mushrooms, and olives:
class Jalapeño:BasePizzaDecorator {
 init(decoratedPizza:BasePizza){
 super.init(name: "Jalapeño", price: 1.20,
 decoratedPizza: decoratedPizza)
 }
}

class Cheese:BasePizzaDecorator {
 init(decoratedPizza:BasePizza){
 super.init(name: "Cheese", price: 1.30,
 decoratedPizza: decoratedPizza)
 }
}

class Mushroom:BasePizzaDecorator {
 init(decoratedPizza:BasePizza){
 super.init(name: "Mushroom", price: 1.10,
 decoratedPizza: decoratedPizza)
 }
}
class Olive:BasePizzaDecorator {
 init(decoratedPizza:BasePizza){
 super.init(name: "Olive", price: 1.10,
 decoratedPizza: decoratedPizza)
 }
}

Design Patterns with Swift

124

5.	 Good! Once you're done with that, we can create the view. We will add one label to
display the total, four buttons for the extra ingredients, one text view to display the
ingredients that we've already added to our pizza, and an Image View to make our
application happier. At the end, we should have a layout similar to the one shown here:

6.	 Now, we can create the view controller. Let's start with the attributes:
 var myDeliciousPizza: BasePizza?
 @IBOutlet var totalLabel: UILabel!
 @IBOutlet var ingredientsList: UITextView!

7.	 Let's ask the user to select the pizza that he wants. In this case, we need to do it on
viewDidAppear because we will do it with an action sheet, and this component
doesn't work on the viewDidLoad method because the view is not ready to display
action sheets yet:
 override func viewDidAppear(animated: Bool) {
 var choosePizzaType = UIAlertController(title:
 "Pizza", message: "Choose your pizza",
 preferredStyle: .ActionSheet)

Chapter 4

125

 choosePizzaType.addAction(UIAlertAction(title:
 "Simple", style: .Default, handler: { (action) in
 self.myDeliciousPizza = SimplePizza()
 self.refreshPrice()
 }))

 choosePizzaType.addAction(UIAlertAction(title:
 "Peperoni", style: .Default, handler: { (action) in
 self.myDeliciousPizza = Peperoni()
 self.refreshPrice()
 }))

 choosePizzaType.addAction(UIAlertAction(title:
 "Chicken Fiesta \u{1F389}", style: .Default,
 handler: { (action) in
 self.myDeliciousPizza = ChickenFiesta()
 self.refreshPrice()
 }))

 self.presentViewController(choosePizzaType,
 animated: true){ }
 }

8.	 We need to create a method called refreshPrice; it is as easy as this one:
 func refreshPrice(){

 self.totalLabel.text = "Total:
 \(myDeliciousPizza!.price)"

 }

9.	 To finish our application, we have to add the events that belong to the buttons; don't
forget to link them:
 @IBAction func addJalapeño(sender: UIButton) {
 myDeliciousPizza = Jalapeño(decoratedPizza:
 myDeliciousPizza!)
 self.ingredientsList.text =
 self.ingredientsList.text + "Jalapeño\n"
 self.refreshPrice()
 }

 @IBAction func addCheese(sender: UIButton) {
 myDeliciousPizza = Cheese(decoratedPizza:
 myDeliciousPizza!)
 self.ingredientsList.text =
 self.ingredientsList.text + "Cheese\n"

Design Patterns with Swift

126

 self.refreshPrice()
 }

 @IBAction func addOlives(sender: UIButton) {
 myDeliciousPizza = Olive(decoratedPizza:
 myDeliciousPizza!)
 self.ingredientsList.text =
 self.ingredientsList.text + "Olive\n"
 self.refreshPrice()
 }

 @IBAction func addMushrooms(sender: UIButton) {
 myDeliciousPizza = Mushroom(decoratedPizza:
 myDeliciousPizza!)
 self.ingredientsList.text =
 self.ingredientsList.text + "Mushrooms\n"
 self.refreshPrice()
 }

10.	 Now the application is done, press play, choose a pizza, add some ingredients and
enjoy your meal.

How it works…
The decorator pattern allows us to create a new object based on another one, which is
very useful to prevent the creation of uncontrolled numbers of classes based on combinations
of features.

See also
ff There are more patterns. You can check them out on Wikipedia (http://

en.wikipedia.org/wiki/Software_design_pattern). Check which ones
are the best for your project. There is also another feature called anti-pattern, which
explains common bad practices. In the next chapter, we will learn how to work with
concurrent code with Swift, something that is very common nowadays, mainly if you
like to develop games.

http://en.wikipedia.org/wiki/Software_design_pattern
http://en.wikipedia.org/wiki/Software_design_pattern

Chapter 4

127

Protocol-oriented programming
With the first version of Swift, you were able to extend classes, structs, and enums using
extensions. This is a very powerful feature and allows you, the developer, to fine tune existing
types to better meet your application needs. With Swift 2.0, Apple has included a new feature:
protocol extensions. It is easy to only think of this as a small feature; however, it has the power
to transform the way you write your code. Apple is calling this new paradigm protocol-oriented
programming. In this recipe, we will learn how to take advantage of this new feature and some
new patterns compared to object-oriented programming.

Getting ready
For this recipe, create a new playground titled Chapter 4 Protocols. We will be using a
playground only for this recipe, so do not worry about any project settings.

How to do it…
Let's start by adding some code:

1.	 First, we will create two protocols and a struct that conforms to these two protocols,
like so:
protocol Flyable {
 var topSpeed: Int { get }
 }

 protocol Transportable {
 var seatCount: Int { get }
 }

 struct Plane: Flyable, Transportable {
 var topSpeed = 650
 var seatCount = 220
 }

2.	 With OOP, we could have created a single superclass with all properties and subclasses
when needed. However, this would result in a more complex superclass and each
subclass would contain properties/functionality that it does not need. By defining
Flyable and Transportable as protocols, we can have custom data types inherit
from multiple sources instead of a single superclass. Now that we have some basic
protocols, it's time to actually extend them. Let's extend the Flyable protocol to check
whether another Flyable object is faster. Add this code to your playground:
extension Flyable {
 func isFasterThan(item: Flyable) -> Bool {

Design Patterns with Swift

128

 return self.topSpeed > item.topSpeed
 }
}

let commercialPlane = Plane()
let jetPlane = Plane(topSpeed: 850, seatCount: 20)

commercialPlane.isFasterThan(jetPlane)

It is important to note another new feature related to protocol extensions:
default behaviors. If you look at our previous implementation, you will notice
that we defined a method rather than declare one. Standard protocols
require the conforming object to define each method, but with Swift 2.0, we
can provide a default implementation so other classes do not have to.

3.	 Let's create another extension, but only for types that also conform to the
Transportable protocol. Add this code to your playground:
extension Flyable where Self: Transportable {
 func containsMorePassengers(item: Self) -> Bool {
 return self.seatCount > item.seatCount
 }
}

commercialPlane.containsMorePassengers(jetPlane)

The Self keyword with a capital S represents that class or structure that is
conforming to the protocol. In this case it means the Plane class. Using this simple
combination, you can see how useful protocol extensions can be with custom types.
The real power of protocol extensions comes from your ability to extend the Swift
Standard Library. Let's take a look.

Using the protocol extension feature with the Swift Standard
Library allows us to add functionality to existing protocols such as
Equatable and CollectionType (arrays and dictionaries).

4.	 Let's add functionality to CollectionType to get the average speed of Flyable
types in an array. Add this code to your playground:
extension CollectionType where Self.Generator.Element: Flyable {
 func averageTopSpeed() -> Int {
 var total = 0, count = 0
 for item in self {
 total += item.topSpeed
 count++

Chapter 4

129

 }
 return (total/count)
 }
}

let planes = [commercialPlane, jetPlane, Plane()]
planes.averageTopSpeed()

This protocol extension defines the averageTopSpeed method. The implementation is
pretty simple. We define a count and total variable and then iterate through each item in the
collection and add to the total while incrementing count. We have to manually increment
count because CollectionType has a different property type for count (rather than Int).

How it works…
Because protocols provide more flexibility, you can create more finely tuned code to fit each of
your application's needs. For the most power, utilize custom type protocol extensions as well
as extending the Swift Standard Library extensions.

Note how we are creating a struct for Plane rather than an object. This highlights one issue
with OOP involving object reference.

Imagine we have two objects: A and B. A creates some set of data and then shares this data
with object B by reference. This means two different objects are referencing the same data
object. B then changes some of this data. Now, object A may find data with changes it does
not know how to handle. This may seem like a small issue but can cause many problems,
even in simple applications.

In Swift, structs are passed by value instead of reference. In our previous example, object A
would have copied the data rather than pass a reference to it, thus each object would have its
own copy that does not interfere with the other.

See also
ff If you would like to learn more or better understand why you would want to use

protocol extensions and protocol-oriented programming, check out the WWDC 2015
video titled Protocol-Oriented Programming in Swift (https://developer.apple.
com/videos/play/wwdc2015-408/)

https://developer.apple.com/videos/play/wwdc2015-408/
https://developer.apple.com/videos/play/wwdc2015-408/

131

5
Multitasking
in Your App

In this chapter, we will cover the following recipes:

ff Word counting using threads

ff Creating an SEO app

ff Creating a CycloneChecker app

ff Checking links of our website

Introduction
Nowadays, multitasking is very common, as an application can do lots of things at the same
time. If we have a multicore processor such as an iPhone 4S or newer, or an iPad 2 or newer,
you can even improve the performance. Of course you shouldn't use multitasking for everything
because commuting from one task to another countlessly can harm the performance.

In this chapter, we are going to learn different types of multitasking and when you should use
each of them. First, we will start with threads, then we are going to see NSOperations, and at
last, how to use the GCD.

Word counting using threads
Sometimes, if you don't pay attention to multitasking, it might result in a frozen screen. As a
developer and knowing what is going on in the application, we can wait, but as a user who
doesn't know anything about the application operation, they may think that their app has
hanged and that it is necessary to restart.

Multitasking in Your App

132

In this recipe, we are going to create another thread to prevent this situation. Creating
threads can also be some kind of mechanism of dividing tasks in different tracks, making
debugging easier.

Let's pretend that we need to count the number of words of a document. We will have two
buttons, one that is going to do this task without using a thread and another one that will do
the same task using a thread.

Getting ready
Before you start, you must have a text file. You can use any text file you want but to get a good
result, you should have something big, like more than 30K. A suggestion is downloading an
RFC of any protocol.

So, create a new project called Chapter 5 Thread, add a file named WordCounter.
swift, and let's start coding.

How to do it…
In this recipe, we are going to start by downloading a file from the Internet and then we are
going to work with it by following these steps:

1.	 Open your favorite web browser on your computer and download this text document:
https://www.ietf.org/rfc/rfc2821.txt.

2.	 Drag the document into your project, preferably into your Supporting files group.

3.	 Now click on the WordCounter.swift file and create a class with the same name:
class WordCounter:NSObject {
 private var file:String
 lazy private var _words = [String:Int]()
 var words:[String:Int] {
 return _words
 }

https://www.ietf.org/rfc/rfc2821.txt

Chapter 5

133

4.	 Now, let's create an initializer; as you can see, the only attribute we need to initialize
is the file attribute:
 init(file:String){
 super.init()
 self.file = file
 }

5.	 The next step is typing the execute method. Here we are going to open our file and
count the number of words. Of course you can improve this method, but for now it
should be enough for us:
 func execute(){
 _words = [String:Int]()

 // First step opening the file
 var manager = NSFileManager.defaultManager()
 var data =
 manager.contentsAtPath(NSBundle.mainBundle()
 .pathForResource(file, ofType: "txt")!)!
 var content = String(data: data,
 encoding:NSUTF8StringEnconding)!

 // spliting the documento into words
 var wordsArray =
 content.componentsSeparatedByString(" ")
 wordsArray = wordsArray.map({ (word) -> String in
 return word.stringByTrimmingCharactersInSet
 (NSCharacterSet.whitespaceCharacterSet())
 }) .map({ (word) -> String in
 return word.lowercaseString
 }) .filter({(word) -> Bool in
 if let regex = try?
 NSRegularExpression(pattern: "\\w+(-\\w+)*",
 options: .CaseInsensitive) {
 let matches = regex.matchesInString(word,
 options: nil, range: NSMakeRange(0,
 word.characters.count))
 return matches.count > 0
}

 })

 // computing the results
 for word:String in wordsArray {
 if let tot = _words[word] {

Multitasking in Your App

134

 _words[word] = tot + 1
 }else{
 _words[word] = 1
 }
 }
 }
}

6.	 Now that we have the model part done, we can do the view and the controller part.
Open your storyboard and add three buttons: one for counting the file words without
using a thread, another one for using a thread, and another one for going to the
website that is typed on the text field.

With iOS9, Apple introduced a new security feature called
App Transport Security (ATP). This blocks all non-secure
(HTTPS) URL requests, including with UIWebView.

7.	 For this recipe we will disable ATP; however, it is recommended that you follow the proper
ATS procedures for any production applications. In your info.plist file, add a new key
NSAppTransportSecurity and set its value to NSAllowsArbitraryLoads. This
will allow all URLs to load without error. As you can imagine, you have to add a text field
and also a web view. You should have a layout similar to this one:

Chapter 5

135

8.	 Now let's link the text field and the web view with the corresponding attributes. We
also need to create two attributes to know the time when we started counting the
words and the time we finished doing it. So, let's complete our view controller with
this code:
 @IBOutlet var textField: UITextField!
 @IBOutlet var webView: UIWebView!
 lazy private var start = CFAbsoluteTimeGetCurrent()
 lazy private var finish = CFAbsoluteTimeGetCurrent()

9.	 Once we have these attributes done, we can start with the easiest method. In this
case, this method is the go button event, which loads the web page on the web view:
 @IBAction func loadWeb(sender: UIButton) {
 let url = NSURL(string: textField.text!)
 let request = NSURLRequest(URL: url!)
 webView.loadRequest(request)
 }

10.	 Now we have to create a method that will call the word counter. This method should
be common to both buttons, to the one that processes with a thread, and the other
that processes without a thread, so let's do a method now that is not bound by
any button:
 func countWords(file:String){
 let wordCounter = WordCounter(file: file)
 wordCounter.execute()
 finish = CFAbsoluteTimeGetCurrent()
 print("\(finish-start)")
 var result = ""
 for (total, word) in wordCounter.words.enumerate(){
 result += "\(word) -> \(total)\n"
 }
 UIAlertView(title: "Result", message: result,
 delegate: nil, cancelButtonTitle: "Ok").show()
 }

11.	 To finish the application, we have to create the click event for each button:
 @IBAction func countWordsWithoutThreads(sender:
 UIButton) {
 start = CFAbsoluteTimeGetCurrent()
 countWords("rfc2821")
 }

 @IBAction func countWordsWithThreads(sender: UIButton){
 start = CFAbsoluteTimeGetCurrent()

Multitasking in Your App

136

 let thread1 = NSThread(target: self, selector:
 Selector("countWords:"), object: "rfc2821")
 thread1.start()
 }

12.	 Now it's time to test the application; pay attention to the different behaviors. First,
press the button that processes the words without a thread and after that, try to type
anything on the text field. Until the word counter finishes, you won't be able to type
anything. Once the operation has finished, press the button that works with a thread
and try to type a URL and navigate through it. Now you are able to navigate while the
program is processing something else.

How it works…
Threads are like tracks of a program; even if you have lots of threads, you still share global
variables or attributes like we did with the start attribute. People used to relate threads with
earning on performance; that's not exactly true.

If you have an operation with IO, such as reading a file, or using a sensor like Bluetooth, you
can earn a good performance due to the fact that a processor can work while the I/O doesn't
send a reply.

Although you can earn on performance when using I/O on our application, you will probably
have a lower performance using threads. Why? This is because the program needs to waste
time creating the thread and commuting between threads.

Why did we have better usability when we created a thread on this app? The reason is that
anything that you do with the user interface is done on the main thread. If you have a large
operation on this thread, as we had counting the words, it will prevent the program from
rendering or answering an event until your operation is done.

Creating a new thread will make your application answer to the user interface while you are
counting the words on another thread. In this case, we didn't earn or lose performance, but
the user got a much better usability.

We could also see in this recipe the usage of regular expressions, which is a feature that
made a computer language called Perl very famous, and other languages such as JavaScript
also have this feature incorporated as part of their language. Unfortunately, that's not the
case with Swift (or at least for this version). Regular expressions are very useful to find
patterns and also to create some filters, such as validating e-mails, product codes, or URLs.

There's more…
Unfortunately, the NSThread is not as complete as the posix thread functions, as we don't
have, for example, the join method. If your thread function is a C function, you can still use
functions such as pthread_create and pthread_join.

Chapter 5

137

In the next recipe, we are going to learn about NSOperation, which is recommended by Apple.

Creating an SEO app
As you might know, nowadays it's very common to analyze a website to get a better result
on search engines. Counting the words of a website is a common task to know how search
engines retrieve information from our website. As we already have a WordCounter class from
the previous recipe, we are going to recycle it and create a new program that is to count the
words of a website.

Getting ready
First of all, check some URLs from a website that you would like to count the words of. It can
be any website, but the idea is to have a few URLs to check that use a lot of words.

To know that the task has finished, we are going to show an icon, so you can download it from
the book resources or you can download your own icon.

Once you have your URL list and your icon ready, let's create a project called Chapter 5
SEO, add your icon, and let's code.

How to do it…
Follow these steps to create an SEO app:

1.	 First, copy the WordCounter.swift from the other previous recipe. To do it, just
drag the file from a finder window to your project. Of course, it would be better if this
file could be located in a common directory.

When you have files that could be used in other projects,
it's a good idea to store them in a common directory.

2.	 Now, click on this file and let's improve this code. First, let's remove the file attribute
because we are going to read the file contents into the initializer. Second, let's create
a new string attribute called content.

3.	 The next step is modifying the current initializer, just transferring the code that opens
and reads the file to the initializer. You also need to create a new initializer that
receives the contents instead of a file name. To summarize, now your WordCounter
may have a code like this one:
class WordCounter:NSObject {
 lazy private var _words = [String:Int]()

Multitasking in Your App

138

 var words:[String:Int] {
 return _words
 }
 lazy private var content:String = ""

 init(file:String){
 super.init()
 let manager = NSFileManager.defaultManager()
 let data =
 manager.contentsAtPath(NSBundle.mainBundle()
 .pathForResource(file, ofType: "txt")!)!
 content = NSString(data: data, encoding:
 NSUTF8StringEncoding) as! String
 }

 init(content:String){
 super.init()
 self.content = content
 }

 func execute(){
 _words = [String:Int]()

 // spliting the document into words
 var wordsArray =
 content.componentsSeparatedByString(" ")
 wordsArray = wordsArray.map({ (word) -> String in
 return word.stringByTrimmingCharactersInSet
 (NSCharacterSet.whitespaceCharacterSet())
 }) .map({ (word) -> String in
 return word.lowercaseString
 }) .filter({(word) -> Bool in
 if let regex = try?
 NSRegularExpression(pattern: "\\w+(-\\w+)*",
 options: .CaseInsensitive) {
 let matches = regex.matchesInString(word,
 options: nil, range: NSMakeRange(0,
 word.characters.count))
 return matches.count > 0
}
})

 // computing the results
 for word:String in wordsArray {
 if let tot = _words[word] {

Chapter 5

139

 _words[word] = tot + 1
 }else{
 _words[word] = 1
 }
 }
 }
}

4.	 It's time to create the application interface. In this case, we will need a text field to
let the user enter a URL, a label to show a message, a button to indicate that the
user has finished writing a URL, and a table view, something similar to the following
screenshot:

Multitasking in Your App

140

5.	 Inherit the view controller from UITableViewDataSource and from
UITableViewDelegate after that. Link the table view datasource and delegate
with the view controller. Don't worry if the compiler complains about some missing
functions; we are going to implement them in a while.

6.	 Now, go to the view controller and let's create an auxiliary struct. This struct will help
us to know whether the evaluation of the requested website is done and also the
result. So, add the following code inside the view controller class:
 struct UrlInfo {
 var url:String
 var finished:Bool = false
 lazy var words = [String:Int]()
 init(url:String){
 self.url = url
 }
 }

7.	 The next step is adding some attributes; in this case, we will need a text field for
entering the URL, a table view, an array of UrlInfo, and a queue for our operations:
@IBOutlet let urlTextField: UITextField!
@IBOutlet let urlsTables: UITableView!
var urls = [UrlInfo]()
let queue = NSOperationQueue()

8.	 Now we can implement the button event, so link the button with a method called
analyze and type its code:
 @IBAction func analyze(sender: UIButton) {
 var url = urlTextField.text.stringByReplacing
 OccurrencesOfString(" ", withString: "", options:
 [], range: nil)
 if url == "" {
 return
 }

 let position = self.urls.count
 self.urls.append(UrlInfo(url: url))
 self.urlsTables.reloadData()

 queue.addOperationWithBlock(){
 var data = NSData(contentsOfURL: NSURL(string:
 url)!)
 var textResponse = NSString(data: data!,
 encoding: NSASCIIStringEncoding) as! String
 print(textResponse)

Chapter 5

141

 let wordCounter = WordCounter(content:
 textResponse)
 wordCounter.execute()
 self.urls[position].words = wordCounter.words
 self.urls[position].finished = true

 NSOperationQueue.mainQueue()
 .addOperationWithBlock({
 self.urlsTables.reloadData()
 })
 }
 }

While this code was written, my Xcode was updated and also the
Swift API, so it was necessary to fix some parts of it. Consider this
kind of change when you are coding with Swift.

9.	 The last step is implementing the corresponding part of the table view. First, let's
indicate the current number of cells of the table view:
 func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int{
 return urls.count
 }

10.	 Next, let's create a cell for the URL. In this case, when the URL has been computed,
we are going to add an OK icon:
 func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) ->
 UITableViewCell{
 var cell = urlsTables.dequeueReusableCell
 WithIdentifier("url") if cell == nil {
 cell = UITableViewCell(style: .Default,
 reuseIdentifier: "url")
 cell?.textLabel?.text = urls[indexPath.row].url
 }

 if self.urls[indexPath.row].finished {
 cell?.imageView?.image = UIImage(named:
 "ok.png")
 }else {
 cell?.imageView?.image = nil
 }
 return cell!
 }

Multitasking in Your App

142

11.	 And, of course, we need to show the result when the user selects a cell from the table
view. This result is going to be shown only if the URL analysis has finished:
 func tableView(tableView: UITableView,
 didHighlightRowAtIndexPath indexPath: NSIndexPath) {
 if urls[indexPath.row].finished {
 var result = ""
 for (total, word) in
 urls[indexPath.row].words.enumerate(){
 result += "\(word) -> \(total)\n"
 }
 UIAlertView(title: "Result", message: result,
 delegate: nil, cancelButtonTitle: "Ok").show()
 }
 }

12.	 Now the application is done. Try to check a URL and see its results.

How it works…
NSOperation is something built on the top level of the GCD (Grand Central Dispatch), which is
the way Apple does multitasking. The NSOperation needs a queue, which can be a new queue
created by the programmer, or it could be an existing one.

As mentioned before, you have to consider that operations related to the user interface,
such as refreshing the table view content, must be done on the main thread. Speaking in
NSOperation terms, it should be done on the main queue. You can also have a low priority
queue for those tasks that don't need to finish as soon as possible.

One advantage about NSOperation over threads is that it is more optimized for multicore
devices, meaning a better performance on Mac computers and new iPhones and iPads.

There's more…
Of course, you can use threads and NSOperation together but you have to take care with it.
Avoid using NSOperation with fork on OS X, for example. In the next recipe, we are going to
use the GCD directly, which could give us more flexibility.

Creating a CycloneChecker app
Sometimes it's good that our mobile phone, or even our computer, can tell us weather
predictions, mainly when some kind of disaster is going to come, such as a storm, an
earthquake, or a cyclone. To do this, the application must be continuously asking for
weather predictions on the Internet but it shouldn't block the application operation.

Chapter 5

143

In this recipe, we are going to develop an application that will ask every five minutes for
cyclone predictions; in the case of finding one cyclone, it will write down the URL where
the user can retrieve information about the found cyclone. If the application is on in the
background, it will throw a notification.

Here we are going to create a multitask using the Grand Central Dispatch, which is the
method Apple recommends.

Getting ready
Create an application called Chapter 5 Cyclones and add a file called CycloneChecker.
swift, also check whether you have an Internet connection on your computer or device.

How to do it…
Follow these steps for creating the CycloneChecker app:

1.	 First, we need to specify that this class (CycloneChecker) is a
XMLParserDelegate, which forces us to inherit from NSObject:
class CycloneChecker:NSObject, NSXMLParserDelegate{

2.	 Now add its attribute. We will need a constant that will represent the frequency that
the app is going to check about cyclones, another constant that contains the URLs
where the application can check the cyclone predictions, an attribute that indicates
the current website we are visiting, a queue to add our operation, an attribute to
indicate whether the object is working or not, and a closure to run every time we find
a cyclone:
 private let interval = 300
 private let urls =
 ["http://www.nhc.noaa.gov/nhc_at1.xml",
 "http://www.nhc.noaa.gov/nhc_at2.xml",
 "http://www.nhc.noaa.gov/nhc_at3.xml",
 "http://www.nhc.noaa.gov/nhc_at4.xml",
 "http://www.nhc.noaa.gov/nhc_at5.xml"]
 private var position = 0
 private let queue =
 dispatch_queue_create("cyclone.queue",
 DISPATCH_QUEUE_SERIAL)
 private var started = false
 var action: (String) -> (Void) = {(url) -> Void in
 }

Multitasking in Your App

144

3.	 The first two methods that we are going to implement are the methods that make the
object work or stop working:
 func start(){
 started = true
 initQueue()
 }
 func stop(){
 started = false
 }

4.	 As you can see, we need a method called initQueue, which will add the tasks to
the object queue:
 private func initQueue(){
 self.position = 0
 for i in 1...urls.count {
 dispatch_async(queue, { () -> Void in
 if self.started {
 print("checking \(self.position)")
 var xmlParser =
 NSXMLParser(contentsOfURL: NSURL(string:
 self.urls[self.position])!)
 xmlParser?.delegate = self
 xmlParser?.parse()
 }
 })
 }
 dispatch_async(queue, { () -> Void in
 if self.started {
 sleep(UInt32(self.interval))
 self.initQueue()
 }
 })
 }

5.	 Once the object finds a cyclone, it needs to notify the user about it:
 func parser(parser: NSXMLParser, didStartElement
 elementName: String, namespaceURI: String?,
 qualifiedName qName: String?, attributes attributeDict:
 [String : AnyObject]){
 if elementName == "cyclone"{
 self.action(self.urls[self.position])
 }
 }

Chapter 5

145

6.	 To finish this class, we need to mark that the current XML has been parsed; next
time, we will need to parse the next one:
 func parserDidEndDocument(parser: NSXMLParser) {
 position += 1
 }

7.	 The CycloneChecker is done; the next step is creating the view, so click on the
storyboard, add two buttons on it (one to start checking and another one to stop
checking), a label to indicate the object status (running or stopped), and a text field to
display a text that a cyclone is coming.

Multitasking in Your App

146

8.	 As you might imagine, now we are going to code the attributes, start linking the views
we've added on the storyboard, and create an object of CycloneChecker:
 var cycloneChecker = CycloneChecker()
 @IBOutlet var buttonStart: UIButton!
 @IBOutlet var buttonStop: UIButton!
 @IBOutlet var textView: UITextView!
 @IBOutlet var labelStatus: UILabel!

9.	 Let's initialize the application on the viewDidLoad method, adding an action to the
CycloneChecker. In this case, we are going to add it to the text view and send a
user notification if the application is on in the background:
 override func viewDidLoad() {
 super.viewDidLoad()
 cycloneChecker.action = {(url) -> Void in
 if UIApplication.sharedApplication()
 .applicationState == .Background {
 var localNotification:UILocalNotification =
 UILocalNotification()
 localNotification.alertAction = "Cyclone
 found"
 localNotification.alertBody = "A cyclone
 was found. visit \(url) for more
 information"
 localNotification.fireDate =
 NSDate(timeIntervalSinceNow: 10)
 UIApplication.sharedApplication()
 .scheduleLocalNotification
 (localNotification)
 }
 dispatch_async(dispatch_get_main_queue(), { ()
 -> Void in
 self.textView.text =
 "\(self.textView.text)\nA cyclone was
 found. visit \(url) for more information"
 })
 }
 self.textView.text = ""
 self.textView.layer.borderWidth = 0.5
 }

10.	 Now we can finish the view controller, adding the start and stop events:
 @IBAction func start(sender: AnyObject) {
 cycloneChecker.start()
 labelStatus.text = "Status: started"
 buttonStart.enabled = false

Chapter 5

147

 buttonStop.enabled = true
 }
 @IBAction func stop(sender: AnyObject) {
 cycloneChecker.stop()
 labelStatus.text = "Status: stopped"
 buttonStart.enabled = true
 buttonStop.enabled = false
 }

11.	 To finish the application, you need to add on the app delegate, preferably on the
method didFinishLauchingWithOptions. Use the following code to use
notifications:
 func application(application: UIApplication,
 didFinishLaunchingWithOptions launchOptions: [String:
 AnyObject]?) -> Bool {
 if UIApplication.instancesRespondToSelector
 (Selector("registerUserNotificationSettings:"))
 {

 application.registerUserNotificationSettings
 (UIUserNotificationSettings(forTypes:
 UIUserNotificationType.Sound |
 UIUserNotificationType.Alert |
 UIUserNotificationType.Badge, categories: nil))
 }
 return true
 }

12.	 Lastly, you need to test the app, so press the play button and check whether there is
a cyclone near you. Hope not.

Don't forget to allow notifications if you are using iOS 8
or above.

13.	 Once the application launches, you should see something similar to the following
screenshot. Tap OK to allow notifications, as shown:

Multitasking in Your App

148

How it works…
This app works using the Grand Central Dispatch, which will create a thread and a queue
for running the assigned tasks. As it creates a separated thread, it doesn't block the user
interface, and as it is not creating a thread for each task, the application doesn't lose
performance due to thread commuting.

As you could see when the queue was created, we had to specify that we would like a serial
queue, meaning that a task doesn't start until the previous one finishes. We also used a
function called dispatch async, meaning that the caller isn't going to wait to finish the task, so
the code can continue running concurrently to the queue tasks.

Of course, when we find a cyclone, we need to write this information on the text view, which is
required on the main thread, so that's the reason that we had to create another task adding it
to the main queue.

Another interesting part is that one task added to our queue had a call to the sleep function.
As you know, the new queue is executed on a separated thread and the next task isn't going to
run until the current one finishes, so it's perfectly allowed to use this function.

If you haven't worked with notifications before on the view controller, here you have a sample
of it. Don't forget that notifications work only with iOS 7 or higher, and on iOS 8, the user must
accept the permission to send notifications.

There's more…
We still have two pending topics: the first one is using concurrent queues and the other one is
preventing two tasks changing the same object at the same time. Both topics are going to be
revealed in the next recipe.

Checking links of our website
In this chapter, we created an application that could help us position our website by checking
its word frequencies, but as you might know, SEO is not only about counting words, it's also
about website links.

In this recipe, we are going to check the links of a website; in this case, as we are using the
networks, so we can do tasks in parallel.

Getting ready
Create a project called Chapter 5 weblinks and add a file called LinkChecker.swift.
Check whether you have an Internet connection on your simulator or device.

Chapter 5

149

How to do it…
Once you have checked that your device or simulator has an Internet connection, follow these
steps for creating the Link Checker app:

1.	 Before we start creating the LinkChecker class, we will need to create an auxiliary
class, which is going to store the common information between objects of type
LinkChecker. This class is going to be called UrlManager and it needs to store the
queue, a file handler to log the found URLs, an array with the URLs, and a constant to
indicate the maximum number of links we want (some websites have a lot of links):
private class UrlManager {
 enum UrlAddStatus {
 case OK, FULL, REPEATED, WRONG_URL
 }

 private var _queue =
 dispatch_queue_create("concurrentqueue",
 DISPATCH_QUEUE_CONCURRENT)
 var queue:dispatch_queue_t{
 return _queue
 }
 private var fileHandle:NSFileHandle?
 private lazy var _urls = [String]()
 let LIMIT = 10

2.	 Now, let's create some auxiliary functions to help this object know whether a URL
should be stored or not. One of them will tell it whether a URL is already stored on
our list, the other one is going to tell whether the list is full, the third one will check
whether the URL is valid or not, and the last one will log the URL on a file:
 func contains(url:String) -> Bool{
 objc_sync_enter(self._urls)
 for u in self._urls {
 if u == url {
 objc_sync_exit(self._urls)
 return true
 }
 }
 objc_sync_exit(self._urls)
 return false
 }

 var full:Bool {

Multitasking in Your App

150

 return self._urls.count >= self.LIMIT
 }

 private func validUrl(url:String) -> Bool{
 var error:NSError?
 var regex = NSRegularExpression(pattern:"^
 (https?:\\/\\/)?([\\da-z\\.-]+)\\.([a-
 z\\.]{2,6})([\\/\\w \\.-]*)*\\/?$", options:
 .CaseInsensitive, error: &error)
 let matches = regex?.matchesInString(url, options:
 nil, range: NSMakeRange(0, count(url)))
 return matches?.count > 0
 }

 private func writeMessage(message:String){
 objc_sync_enter(self.fileHandle)
 self.fileHandle?.writeData
 (message.dataUsingEncoding(NSUTF8StringEncoding,
 allowLossyConversion: false)!)
 objc_sync_exit(self.fileHandle)
 }

3.	 Now let's code the initializer; in this case, we only need to open the log file:
 init(){
 var path:String =
 NSSearchPathForDirectoriesInDomains
 (.DocumentDirectory, .UserDomainMask, true)[0] as!
 String
 let fullpath = (path as
 NSString).stringByAppendingPathComponent
 ("application.log")
 NSFileManager.defaultManager().createFileAtPath
 (fullpath, contents: nil, attributes: nil)
 self.fileHandle=NSFileHandle
 (forWritingAtPath:fullpath)!
 }

4.	 To finish this class, we have to create the main method, which is addUrl. This
function will return if it was possible to add the URL or not:
 func addUrl(url:String) -> UrlAddStatus {
 if full {
 // WRITE FULL
 self.writeMessage("Couldn't store the url
 \(url). Buffer is full")
 return .FULL
 }

Chapter 5

151

 if self.contains(url){
 self.writeMessage("Couldn't store the url
 \(url). Already on buffer")
 return .REPEATED
 }
 if !self.validUrl(url) {
 self.writeMessage("Couldn't store the url
 \(url). Invalid url")
 return .WRONG_URL
 }
 objc_sync_enter(self._urls)
 self._urls.append(url)
 objc_sync_exit(self._urls)
 self.writeMessage("Url \(url) successfully stored")
 return .OK
 }
} // Class end

5.	 On the same file, we are going to create a class called LinkChecker. To do it, we are
again going to use the XMLParser.

In this recipe, we are using the XMLParser because it's built on the
Swift standard libraries, but if you would like a better HTML parser,
you can search on the Internet for a specific library, such as NDHpple,
https://github.com/ndavidsson/NDHpple/.

6.	 Let's start with the attributes. For the implementation of this class, we will need an
NSXMlParser, a UrlManager, and a closure to execute every time we find a URL:
class LinkChecker:NSObject, NSXMLParserDelegate {
 private var xmlParser:NSXMLParser
 private var urlManager:UrlManager
 var foundAction: (String) -> (Void) = {
 (url) -> Void in
 }

7.	 The next step is creating the initializers. In this case, we are going to develop two of
them. The first one is the one that is going to be called from outside (view controller)
and the other one is going to be created by the same LinkChecker, receiving as an
argument the same UrlManager, and that's the reason why it is a private initializer:
 init(url:String) {
 self.xmlParser = NSXMLParser(contentsOfURL:
 NSURL(string: url)!)!
 self.urlManager = UrlManager()
 super.init()

https://github.com/ndavidsson/NDHpple/

Multitasking in Your App

152

 self.xmlParser.delegate = self
 self.urlManager.addUrl(url)
 }

 private init(url:String, urlManager:UrlManager) {
 self.xmlParser = NSXMLParser(contentsOfURL:
 NSURL(string: url)!)!
 self.urlManager = urlManager
 super.init()
 self.xmlParser.delegate = self
 }

8.	 The next function is the start method, which will create the first task:
 func start(){
 dispatch_async(urlManager.queue, { () -> Void in
 self.xmlParser.parse()
 return
 })
 }

9.	 The last method of this LinkChecker class is the parser function of the
NSXMLParserDelegate protocol. Here we are going to check whether
we've found a link, represented by the a HTML tag:
 func parser(parser: NSXMLParser, didStartElement
 elementName: String, namespaceURI: String?,
 qualifiedName qName: String?, attributes attributeDict:
 [NSObject : AnyObject]){
 if elementName.lowercaseString == "a" {
 let href = "href"
 var newUrl = attributeDict["href"] as! String
 if let range = newUrl.rangeOfString("#",
 options: .CaseInsensitiveSearch, range: nil,
 locale: nil){
 newUrl =
 newUrl.substringToIndex(range.startIndex)
 }

 print("found link \(newUrl)")
 if self.urlManager.addUrl(attributeDict[href]
 as! String) == .OK {
 self.foundAction(attributeDict[href] as!
 String)
 dispatch_async(urlManager.queue, { () ->
 Void in
 self.xmlParser.parse()

Chapter 5

153

 return
 })
 }
 }
 }
} // class end

10.	 Now, click on the storyboard and let's create a screen with a text field to write a URL,
a button to start analyzing it, and a table view to display the result.

Multitasking in Your App

154

11.	 Now inherit the ViewController from the UITableViewDataSource beside the
UIViewController and add the text field, the tableview, an array of strings to
store the URLs, and a LinkChecker as attributes:
class ViewController: UIViewController, UITableViewDataSource {

 @IBOutlet let urlTextField: UITextField!
 @IBOutlet let tableView: UITableView!
 private var _urls = [String]()
 private var linkChecker:LinkChecker?

12.	 Once it is done, we can add an event to our button to start analyzing the URL:
 @IBAction func analyze(sender: UIButton) {
 linkChecker =
 LinkChecker(url:self.urlTextField.text)
 self.linkChecker?.foundAction = {
 (url) -> Void in
 self._urls.append(url)
 dispatch_async(dispatch_get_main_queue(),
 {() -> Void in
 self.tableView.reloadData()
 })
 }
 linkChecker?.start()
 self.urlTextField.resignFirstResponder()
 }

13.	 To finish this class, let's implement the tableview methods, which will display the
content of the _urls attribute:
 func tableView(tableView: UITableView, numberOfRowsInSection
section: Int) -> Int{
 return self._urls.count
 }

 func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) ->
 UITableViewCell{
 var cell =
 self.tableView.dequeueReusableCellWithIdentifier
 (_urls[indexPath.row]) as? UITableViewCell

 if cell == nil {
 cell = UITableViewCell(style: .Default,
 reuseIdentifier: _urls[indexPath.row])

Chapter 5

155

 cell?.textLabel?.text = _urls[indexPath.row]
 }
 return cell!
 }

14.	 Now the application is done, test your website and see how many links you get from
it. You should see results similar to the following:

Multitasking in Your App

156

How it works…
Requesting something from the network is something that will take time. However, in the
meantime, the application can work with the next task, so, in this case, we need to create a
concurrent queue instead of a serial queue.

With this in mind, we have to take care when working with some variables, mainly because
the application can commute from one task to another when it hasn't finished working with
a variable. To prevent tasks overlapping the same attribute or variable, we should control it
using objc_sync_enter and objc_sync_exit.

Unfortunately, Swift doesn't have some kind of mutex yet, so it
needs to use the Objective-C @synchronize, and that's the
reason for these functions' prefixes.

There's more…
As you can see, sometimes it's hard to work with concurrent tasks and the developer needs to
think about a lot of detail; fixing issues can also be very difficult because sometimes it's hard
to reproduce it.

In the next chapter, we are going to learn how to test our code without the need for running
the whole application.

157

6
Working with
Playgrounds

In this chapter, we will cover the following recipes:

ff Creating the first playground

ff Watching some graphics

ff Watching a temperature with color

ff Stretching an image

ff Beautifying your text with Pangrams

ff Receiving JSONs

ff Creating our own class representations

ff Rich documentation

ff Navigating pages in playgrounds

Introduction
If you've ever programmed with an interpreted language such as Python, Perl, Ruby, or
JavaScript, you probably have noticed an advantage with these languages over native
languages such as C, Objective-C, or C++, which is the possibility of testing a code without
the need of adding an extra code to your project.

Sometimes a developer needs to test a code before adding it to the project, mainly when you
are learning the way Swift works. But even if you are very experienced with Swift, there will be
times when you will have new ideas and you probably will need to check whether this is a valid
idea before coding it into your project.

Working with Playgrounds

158

For situations like the previously mentioned, Apple has released playground, a place where
you can play with your code, test it, visualize it, and of course, take a decision on the code
before adding it to your application.

It's quite impressive that Swift is a compiled language, but you can use playground to test your
code as you go, like if you were on an interpreted language, watching the results in real time.

Creating the first playground
In this recipe, you are going to get familiarized with the Xcode playground, here you are going
to learn some basics of this Xcode feature, and after that you will be able to test your own
code using this new friend.

Getting ready
Open your Xcode, but this time, instead of creating a new project, now you have to choose Get
started with playground:

Chapter 6

159

Once you have done it, you are going to see that the next dialog is a very simple one, which
will ask only the project name and the platform (iOS, Mac OS, or tvOS). Call it Chapter 6
First Playground and select iOS:

Then you will see the famous dialog, which asks you where to store your app. Choose the
folder that you want for it. If you have doubts, choose the documents folder.

Before we start with our playground, open the Finder window corresponding to the folder
where you saved your project, right-click (or control click) on your playground project, and
choose Show package contents.

Now you can see that there are three files there: contents.xcplayground, results.
playgrounddata, and section-1.swift. Right now, you can imagine what these files
do but I would like to emphasize that, as your playground grows, the number of files also
increases. Remember that playground has its own bundle in which you can add pictures
and other stuff.

How to do it…
Follow these steps to create the first playground:

1.	 Return to your Xcode, have a look at your playground. It started importing the
UIKit and a string variable, which says Hello, playground. You can also see,
on the right-hand side, the result of this variable.

Working with Playgrounds

160

2.	 Let's start defining another variable called name, before the str variable, and change
the str variable to have an interpolation, something like the following code:
var name = "Cecil Costa"
var str = "Hello, \(name)"

Now you will see that on your right you have both variables processed:

3.	 Once you've understood this, let's complete this code with an if statement, so after
the previous code, add an if statement like this one:
var myCity = "Cambridge"
var yourCity = "New York"

if myCity == yourCity {
 print("We live in the same city")
}else {
 print("We live in different cities")
}

4.	 After coding it, see to it that you have the result for one statement but not for the
other one:

Chapter 6

161

5.	 It's time to try a loop, let's calculate, for example, the famous Fibonacci function:
var fib_n = 1
var fib_n_1 = 1

for i in 3...10 {
 var sum = fib_n + fib_n_1
 fib_n_1 = fib_n
 fib_n = sum
}

fib_n

Now you can appreciate the result in a different way, instead of displaying the
variable value, you can see the number of times that the instruction was executed.
If you move your mouse pointer over the result of each instruction, you can see that
two small icons will appear.

6.	 The first one, which is like an eye, is for watching the variable result representation,
the other one is for the timeline, which shows the values assigned to the variable
on each loop iteration. We will talk about this later in the recipes Watching some
graphics and Beautifying your text using Pangrams:

The reason why we wrote the variable fib_n alone at the end of our code is because
that is the way you can visualize the final of a variable, in this case we can see that
the result of our code is 55.

Working with Playgrounds

162

7.	 Now we can compare this code with the equivalent one as a recursive function, then
we can take a decision about which code is going to be used on our application:
func fib (n:Int) -> Int{
 if n == 1 || n == 2 {
 return 1
 }
 return fib(n-1) + fib(n-2)
}

fib(10)

8.	 After coding it, you can check two important pieces of information; the first one is
the result, which is the same as the previous code. The second one is the number
of times the function was called, as you can see in this case we had 54 times on the
recursive function against 8 of the interactive function.

How it works…
As you can see, every time you write a code it is recompiled and executed; the advantage is
that it gives you information about your code, you can use it to compare different codes, and
also check whether the idea you have in mind is the right one for your application.

There's more…
Now you have a basic idea about how to use the playground. The next thing we are going to
learn is how to visualize the information and its progress in a graphical way.

Watching some graphics
Knowing that a loop iterates 8 times instead of 54 is fine. It gives you a good idea about the
best algorithm to choose, but there are times when we need to visualize the variable values
during the loop iterations. For cases like this Apple has created the timeline.

Getting ready
You can open your Xcode and click on Get started with playground, or if you already
have your Xcode opened, you can click on the file menu, then on the New option, and
then click on Playground.

Name your project Chapter 6 Timeline and save it in your workspace folder.

Chapter 6

163

How to do it…
1.	 First, let's type a code where we print some output, in this case we are going to print

a triangle with stars:
for i in 1...5 {
 for j in 1...i {
 print("*")
 }
 print()
}

2.	 Once you've typed this code, you wouldn't appreciate the triangle yet. Go to the icon
that looks like two overlapped circles and click on it:

3.	 Behold the Xcode split in to two parts. The new part on the right is called the timeline.
Now you should see the console output, which should be similar to the following
screenshot:

If for any reason you close the console output, you can
reopen it by just re-running your code.

4.	 Now, let's see the values of a variable; in this case we don't have many options, so
we are going to check the value of the j variable. To do it, just type j after the print
instruction, something like the following code:
 for j in 1...i {
 print("*")
 j // ← Yes, only the letter "j"
 }

Working with Playgrounds

164

5.	 Now click on the round icon on the same level as the j variable:

6.	 Now you can see the values of j according to the iteration on the following graphic:

7.	 If you want to see the value of your variable more clearly, you can slide the red bar
that is on the bottom of your Xcode screen:

Chapter 6

165

8.	 If for any reason you have lots of graphs, you can close them to save space, but if you
would like to keep some graphs, you can collapse them by double-clicking on their
titles, and of course you can expand them just by double-clicking again:

As you can see, in this case you've got only the title j // <- yes only the letter "j"
instead of the whole graph.

How it works…
The timeline has three different editors: the Standard Editor, which gives us more space
to code and watch our code routine; the Assistant Editor, which gives us more information
about our code execution, and the Version Editor, which shows us the modifications that our
playground has.

The Assistant Editor gives us more accuracy about the variables evolution and their values.
Using a graph helps us to know how a variable is changing its value.

Working with Playgrounds

166

The console output is also important; pay attention that if you try to visualize the print
instruction only, you are going to see lots of stars, each of them on a different line.
This kind of information is not useful for the developer.

There's more…
Playground isn't limited to displaying graphics only; you can also add some colors to it. In the
next recipe, you are going to work with colors on your playground.

Watching a temperature with color
When Xerox engineers created the window system based on Smalltalk, they brought a
big concept to the computer world, the idea of analog representation on digital devices
(computer).

It means that for us human beings, it is easier to understand how long a process will take
watching a progress bar instead of by watching a percentage on a screen. Here we are going
to watch some colors instead of numbers.

In this recipe, we are going to watch the color of a temperature instead of watching its value;
this way you can have a better idea about the chill.

Getting ready
Open your Xcode and create a new playground called Chapter 6 Color, remove the str
string but leave the UIKit import.

How to do it…
1.	 First of all, let's make an array with temperatures, in this case the temperatures are

measured in degrees celsius:
var temperatures = [15, 8, 3, -1, 2, 3, 3, 9, 14, 18, 23,
27, 30, 34, 20, 30, 35, 39, 41]

2.	 The next step is iterating over the array. For each iteration, we are going to store the
result into a variable called color:
for temp in temperatures {
 var color:UIColor
 if temp <= 0 {
 color = UIColor(red: 0.0, green: 0.0, blue: 1.0,
 alpha: 1.0)
 } else if temp >= 40 {

Chapter 6

167

 color = UIColor(red: 1.0, green: 0.0, blue: 0.0,
 alpha: 1.0)
 }else {
 var proportional = CGFloat(temp) / CGFloat(40)
 color = UIColor(red: proportional, green: 0, blue:
 CGFloat(1) - proportional, alpha: 1.0)
 }
 color // Temperature representation
}

3.	 Now you have to add the color variable from the last loop sentence to the timeline;
you can see a result similar to the following one:

How it works…
Timeline is not only about displaying numbers, it's also about giving us information where we
could have a better idea about the code. Watching numbers such as 13 degrees Celsius is
something that doesn't give us a good idea of temperature, but watching a color can give us a
better idea if it is cold or hot, mainly if you work with Fahrenheit values.

Working with Playgrounds

168

As you know, your computer screen works with three primary colors: red, green and blue.
UIColor also has a fourth factor, which is the alpha factor, zero means transparent and one
means opaque.

In this recipe, we kept alpha as one and green as zero in every case, but for cold days we
assumed that we need a high level of blue and a low level of red. For warm days we had to
create a color with a high level of red and low level of blue. This means that a very blue color is
saying that we had a very low temperature, and a very red color means a very high temperature.

What about the intermediate temperature? In this case, we will have a purple color, which is
the color created with 50% red and 50% blue.

Have a look that this kind of measure is more useful using playgrounds rather than using
it on an app. Presumably, in a real app you won't store a color, you would store the real
temperature, but you can get an idea if the values you have are to your liking or not before
coding it.

There's more…
In this case, we used the colors for getting a better idea about our values, but what else can
we use? In the next recipe, you are going to learn how to use images.

Stretching an image
Sometimes it's necessary to have more than one sample of a picture to see which ratio is
the desired one. Let's imagine that we have a message, but we don't want to show it to the
user, we only want to show something that gives him an idea that there is something, and the
application is going to show the correct ratio later.

For cases like this, you can use UIImage and ImageView, and visualize it on the playground.

Getting ready
Create a new playground called Chapter 6 Stretching Image and also have an image
ready for this recipe, I would recommend to download the image secret_message.png,
which is included in the resources files of this book.

How to do it…
1.	 Close the Xcode and open a Finder window, go to the folder where you saved the

playground, click on the project that you created, and right-click (or control click) on
it. In the menu, choose the option Show Package Contents as we learned in the
beginning of this chapter:

Chapter 6

169

2.	 Now, create a folder called Resources and copy your image file into it. After that,
reopen your playground.

3.	 Remove the str variable because we are not going to use it. Let's create a new class
where we have a ImageView, its size, and the number of times that the ImageView
was stretched:
class ImageStretcher{
 var imageView:UIImageView
 var times = 0
 var currentFrame:CGRect
 init(){
 let image = UIImage(named: "secret_message")!
 imageView = UIImageView(image: image)
 currentFrame = imageView.frame
 }

 func stretch(){
 currentFrame.size.height *= CGFloat(1.1)
 currentFrame.size.width *= CGFloat(0.9)
 imageView.frame = currentFrame
 times++
 }
}

4.	 Once you've coded it, we need to create an object of this type, so add the following to
your playground:
let imageStretcher = ImageStretcher()

5.	 Good, now you have an object but the image is still in its original size. If you call the
stretch method, you are going to see the image stretched only once, so let's repeat
this to get a better idea about how much we should stretch the picture:
for i in 1...15 {
 imageStretcher.stretch()
}

Working with Playgrounds

170

6.	 For visualizing the different results, you can click on the value history icon, and then
you can see lots of samples.

7.	 For having a better idea of the ImageView, you can click on the right-hand side of
the sample row, where there is an eye icon. Click on the number 10 for example, and
see what you've got:

Chapter 6

171

How it works…
Views are allowed to be used on the playground; you can pre-visualize for example, how your
UIImageView, UILabel, UITextField, and so on will be drawn. In this case, we had
to repeat it a few times; it means that only the ImageView wouldn't give us the complete
information.

The best way is by creating our own class and storing the information we need, such as how
many times we've stretched the ImageView and the current size of the ImageView.

Working with Playgrounds

172

On the right-hand side of the result, as you can see there is a small eye icon (quick look), it will
show you how the view was at that moment.

It's very common to work with a framework called CoreImage when
you want to user a filter on an image (like hiding a secret message),
unfortunately this framework doesn't work with playground yet.

There's more…
If you need to store information with your playground, you probably want to print the constant
XCPSharedDataDirectoryPath. It will show you where the playground stores this information.

Sometimes we would like to hide a message and sometimes we would like to make it more
readable. In the next recipe, we are going to learn how you can pre-visualize a text with
different fonts.

Beautifying your text using Pangrams
Have you ever seen the phrase "The quick brown fox jumps over the lazy dog"? Why is it so
famous? The reason is that it is an English Pangram; it means a phrase with every letter from
the alphabet.

Pangrams are useful when you want to visualize properties of a font, such as size, color, or
boldness. In this recipe, we are going to check different fonts, using NSAttributedString
and playground.

Getting ready
Create a new playground called Chapter 6 Text and remove the string that comes
by default.

How to do it…
1.	 First, let's create our attributed string:

let string = NSMutableAttributedString(string: "The quick
brown fox jumps over the lazy dog")

Chapter 6

173

2.	 After that you will see a new icon with the letter a appearing. It means that the
playground has recognized it as an attributed string. Click on the Quick Look icon
and you will see the current string with its attributes:

3.	 Now let's choose some font sizes and colors for our text:
let fontSizes = [CGFloat(14.0), CGFloat(18.0),
CGFloat(24.0)]
let colors = [UIColor.blackColor(), UIColor.blueColor(),
UIColor.redColor()]

4.	 As we also would like to choose a few different fonts, we need to create another array;
however, it can't be a simple array of strings because we are going to call different
methods. So we will need to create an array of closures:
let fontSelectors = [
 {(size: CGFloat) -> Void in
 string.addAttribute(NSFontAttributeName , value:
 UIFont.systemFontOfSize(size), range:
 NSMakeRange(0, string.length))
 },
 {(size: CGFloat) -> Void in
 string.addAttribute(NSFontAttributeName , value:
 UIFont(name: "HelveticaNeue-Bold", size: size)!,
 range: NSMakeRange(0, string.length))
 },{(size: CGFloat) -> Void in
 string.addAttribute(NSFontAttributeName , value:
 UIFont(name: "HelveticaNeue-Italic", size: size)!,
 range: NSMakeRange(0, string.length))
 }
]

5.	 Once we've done it, we have our playground ready to execute the main part. To do it,
let's create three nested loops, each of which will iterate over one of our arrays:
for fontSize in fontSizes {
 for color in colors {
 for selector in fontSelectors {
 string.addAttribute(NSForegroundColorAttributeName,
 value: color, range: NSMakeRange(0, string.length))

Working with Playgrounds

174

 selector(fontSize)

 string
 }
 }
}

6.	 If you prefer, instead of using for loops, you can use a more swift way of iterating
over an array, using the map closure:
fontSizes.map { (fontSize)-> Bool in
 colors.map { (color) -> Bool in
 fontSelectors.map { (selector) -> Bool in
 string.addAttribute(NSForegroundColorAttributeName,
 value: color, range: NSMakeRange(0, string.length))
 selector(fontSize)
 string
 return true
 }
 return true
 }
 return true
}

7.	 It doesn't matter which procedure you've chosen, click on the value history of the
line that only contains the word string. Now you can appreciate the samples
of the attributed string.

Chapter 6

175

How it works…
Attributed strings are accepted by playground, and this procedure is very useful when you
have to choose a configuration for your app without running the full application.

If we were using Objective-C instead of Swift we probably would have created an array of
selectors rather than blocks. However, Swift doesn't follow this philosophy anymore, and the
function performSelector now asks for a delay time to start.

Using blocks or closures is more flexible and it also makes the code easier to maintain. One
limitation that you can see here is that you can't copy the array of functions from the quick
look. Better saying, you can do it, but the only text that you are going to copy is Function, which
is not very useful.

There's more…
Here we had our own text, but what if we need some text from a remote server? In the next
recipes, we are going to learn how to treat HTTP requests on playground.

Receiving JSONs
Asking for remote information is something very common today. What happens if your
playground finishes before you receive a server response? In this recipe, we are going
to learn how to deal with this problem.

Getting ready
Create a new playground called Chapter 6 Requesting JSONs, and just in case, check
your Internet connection.

How to do it…
1.	 First, we need to locate a URL, which can return us more websites. In this case we are

going to use this URL: https://api.github.com/users/mralexgray/repos.

2.	 Create a constant with the URL mentioned previously:
let url = NSURL(string:
"https://api.github.com/users/mralexgray/repos")!

3.	 Click on the quick look icon and check that you have received a JSON response.

https://api.github.com/users/mralexgray/repos

Working with Playgrounds

176

You can use the quick look with NSURL for checking websites. If you
are testing something that is modifying a website, you can use quick
look to check the new website look.

4.	 Now let's create a request for our URL:
let request = NSURLRequest(URL: url)

5.	 The next step is requesting the content of the URL:
NSURLConnection.sendAsynchronousRequest(request, queue:
NSOperationQueue(), completionHandler:{ (response:
NSURLResponse!, data: NSData!, error: NSError!) -> Void in
 if error != nil {
 error.description
 }else {
 data
 }
})

6.	 Check the playground result. Unfortunately, the playground finished before we got the
response. Go to the beginning of your playground and add the following lines:
import XCPlayground

XCPSetExecutionShouldContinueIndefinitely
(continueIndefinitely: true)

7.	 Now we will be able to receive a response, however as you can see, the response isn't
the one we were waiting for. Fixing this issue will require us to implement a new class
and set it as NSURLConnectionDelegate. Place this code before sending your
asynchronous request:
class HttpDelegate: NSObject, NSURLConnectionDelegate {

 func connection(connection: NSURLConnection,
 canAuthenticateAgainstProtectionSpace protectionSpace:
 NSURLProtectionSpace) -> Bool{
 return true
 }

 func connection(connection: NSURLConnection,
 didReceiveAuthenticationChallenge challenge:
 NSURLAuthenticationChallenge){
 challenge.sender.useCredential(NSURLCredential
 (trust: challenge.protectionSpace.serverTrust!),
 forAuthenticationChallenge: challenge)
 }

Chapter 6

177

}
let delegate = HttpDelegate()
var total = 0
XCPCaptureValue("total",total)
let connection = NSURLConnection(request: request,
delegate: delegate, startImmediately: true)!

8.	 The total variable will be used afterwards, now the only thing you need to do is
check that we could receive the response as we expected. Only one request might not
be enough to do a benchmark, in which case we need to go to the line where we are
inspecting the data argument and add the following code:
 total++
 XCPCaptureValue("total",total)
 var err: NSError?
 var firstResponse =
 NSJSONSerialization.JSONObjectWithData(data,
 options: NSJSONReadingOptions.MutableContainers,
 error: &err) as [[String:AnyObject]]?

 for response in firstResponse!{
 for (key, value) in response{
 if (key as NSString).containsString("_url")
 && value is String{
 let valueString = value as String
 if !(valueString as
 NSString).containsString("{"){
 let _url = NSURL(string: value as
 String)!
 let _request = NSURLRequest(URL:
 _url)
 NSURLConnection.sendAsynchronous
 Request(_request, queue:
 NSOperationQueue(),
 completionHandler: { (_response,
 _data, err) -> Void in
 total = total + 1
 total
 XCPCaptureValue("total",total)
 })
 }
 }
 }
 }

Working with Playgrounds

178

9.	 Good, now as you can see we have a more acceptable result. If you'd like to get a
better result for your benchmarking, reduce the running time of your playground by
changing the number of seconds, located at the lower-right-hand corner to 3 seconds.

10.	 Now check how many times you received a response, that's your real statistic.

How it works…
Playground has its own framework called XCPlayground. It was created to add some
features to your playground according to your test needs. In this case we started using the
function XCPSetExecutionShouldContinueIndefinitely, which keeps playground
running even if it has reached the last code line.

The XCPlayground framework also helped us with the XCPCaptureValue function. This
function allows us to store a value from different parts of our code and create a single graph
for it, as we did with the total variable.

We also had to fix an issue about the connection, which was being denied by the HTTPS
protocol. In this case, we tried to create the connection and we could see that it was being
rejected, that's a good reason for using playground before coding into your app, so we can
solve this issue much faster.

At the end, we could change the execution limit time of our playground, by default it starts
with 30 seconds but it might be too much for cases like this. Reducing this time allowed
us to get a better idea about how many requests our app is able to do in a second.

There's more…
As you can see, playground has its own framework. It allows us to control and get better
results from playground. To complete it, in the next recipe we are going to learn how to
create personalized quick looks.

Chapter 6

179

Creating our own class representations
Quick look is a good tool that helps us to visualize the current status of an object, but
sometimes when we create our own class with its own logic, quick look won't be able
to draw something that represents the object without your help.

In this recipe, we are going to learn how to create our own class representation, and to do it
we are going to create a class that represents a checkers board.

Getting ready
Create a new playground called Chapter 6 Checkers with the iOS option selected. If you
select Mac OS, remember to import Cocoa and replace some types with the equivalent ones,
such as NSBezierPath instead of UIBezierPath.

How to do it…
1.	 Let's start creating a class that inherits from NSObject:

class CheckersBoard:NSObject {

2.	 Before we go any further, we need to define the status of each square; as you know it
could have a black piece, a white piece, or it could be empty:
 enum BoardSpace {
 case FREE,
 WHITE,
 BLACK
 }

3.	 Now let's define the board. In this case, it's a two-dimensional array attribute, and the
initial value of each square must be .FREE:
 var board = [[BoardSpace]](count:8 ,
 repeatedValue:[BoardSpace](count: 8, repeatedValue:
 .FREE))

4.	 As we never know whether the board has the right size, we are going to create a
constant that represents the size of a square. You can change this value if you think
the board is too big or too small:
 let squareSize = 24

5.	 The next step is creating a method called debugQuickLookObject. It is not a
random name, it must be called like that:
 func debugQuickLookObject() -> AnyObject? {

Working with Playgrounds

180

Use the debugQuickLookObject method in your application,
Swift and Objective-C debuggers also use this method to give you
an idea of your object.

6.	 Start creating an image context with the size of the checkers board:
 UIGraphicsBeginImageContext(CGSizeMake
 (CGFloat(squareSize * 8), CGFloat(squareSize * 8)))

7.	 Create two loops that will draw each square of the board:
for row in 0...7 {
 for col in 0...7 {

8.	 Inside these loops, we need to calculate where the current position is:
let offsetx = CGFloat(col * squareSize)
 let offsety = CGFloat(row * squareSize)

9.	 After that, we need to know whether we are going to draw a black square or a white
one. To do it, the row and col variables will help us:
 if col % 2 == row % 2 {
 UIColor.grayColor().setFill()
 }else {
 UIColor.blackColor().setFill()
 }

10.	 Now, fill the square with the current color:
 var bezier = UIBezierPath(rect:
 CGRectMake(offsetx, offsety, CGFloat(squareSize),
 CGFloat(squareSize)))
 bezier.fill()

11.	 Once we have painted the square, we are going to draw a circle that represents a
player piece:
switch board[row][col] {
 case .WHITE:
 UIColor.whiteColor().setFill()
 case .BLACK:
 UIColor.brownColor().setFill()
 default:
 continue
 }
 bezier = UIBezierPath(arcCenter:
 CGPointMake(offsetx + CGFloat(squareSize /
 2) , offsety + CGFloat(squareSize / 2)),
 radius: CGFloat(squareSize / 3),

Chapter 6

181

 startAngle: CGFloat(0.0), endAngle:
 CGFloat(360), clockwise: true)
 bezier.closePath()
 bezier.fill()

12.	 The loops are done, we can now finish them, return the image, and finish the
board class:
 }
 }

 let image =
 UIGraphicsGetImageFromCurrentImageContext()
 UIGraphicsEndImageContext()
 return image
 }
}

13.	 As you may imagine, we need to test our class by instantiating it, adding some pieces
to the board, and visualizing it:
var board = CheckersBoard()

board.board[2][5] = .WHITE
board.board[2][3] = .BLACK
board.board[4][3] = .WHITE
board.board[2][1] = .BLACK
board.board[0][5] = .WHITE
board.board[1][0] = .BLACK
board.board[7][6] = .WHITE
board.board[5][6] = .BLACK

board

14.	 Now click on Quick Look of the board (last line) and you should see a result like the
following one:

Working with Playgrounds

182

How it works…
For displaying a custom Quick Look, you have to create a class that inherits from NSObject
and implements the method debugQuickLookObject. Although this method returns
an object of type AnyObject, on its declaration, it should return anything that could be
represented by playground, such as colors, bezier paths, views, and so on.

In this recipe, we used a bezier path, which has a different coordinate system from the
traditional views. Bezier paths have the initial point (x = 0 and y = 0) on the lower-left-hand
corner. It didn't affect us because we used only squares and circles, but bear this problem in
mind, because you can get wrong results.

UIColor has some methods that indicate the color that should be used in the current
context for filling a shape (setFill), and to draw the border of it (setStroke). These
colors are going to be applied when you call the corresponding action to use them,
such as bezier.fill().

There's more…
Sometimes we need to indicate that we want to show a view on our playground, to do that we
have a function called XCPShowView, so it's another way to visualize an object. In the next
chapter, we are going to learn how to debug our app; it is very useful when we have too much
code and we are not able to test it on the playground.

Rich documentation
Providing clean and concise documentation will result in direct insight into the structure and
functionality of your code. This greatly benefits collaborators who work with your code, as
well as yourself when revisiting previous code you have worked on. Additionally, Xcode can
leverage this documentation and provide instant quick look information anywhere your code is
used, keeping you from having to switch between multiple files for reference.

In this recipe we will take a generic class declaration and document its methods and
properties using the new documentation syntax in Xcode 7 with Swift.

Getting ready
Create a new playground and name it Documentation. This recipe will not require a project
file so do not worry about any project settings.

Chapter 6

183

How to do it…
1.	 Copy the following code into your playground as our starting point:

import UIKit

class SomeSimpleClass: NSObject {

 var someVar: NSString?
 var someOtherVar: NSString?

 func doSomething() {
 print("Doing something...")
 }

 func doSomethingWithStuff(parameterOne: String,
 parameterTwo: Bool) -> String {
 print("This is parameter one: \(parameterOne)")
 print("This is parameter two: \(parameterTwo)")

 return "Some kind of string."
 }

}

As you can see, this class contains a couple of variables and two methods; one with
parameters and a return value, and another without either.

2.	 To start, let's add documentation to the class itself. Add the following code above the
class declaration:
/// A simple class that does some stuff you want it to do.

/// represents a single line comment. This is convenient for
documentation that does not require any parameters or return values.
Xcode will recognize /// and parse the information for quick look access.

Working with Playgrounds

184

To test it out, option click on SomeSimpleClass and you should see the
following screenshot:

3.	 Add the following code to the line just above the doSomething() method and option
click to verify it is working properly:
/// Does something; in this case, prints out a message
letting the user know that something is happening.

4.	 Now that we have covered the single line documentation, let's add documentation
to the doSomethingWithStuff() method. Add the following code just above the
method declaration:
/**
 This method does something, but accepts parameters
 and also return a String value. Lets add some
 explicit documentation for these items.

 - Parameter parameterOne: The first parameter to be
 passed in.
 - Parameter parameterTwo: The second parameter to
 be passed in.

 - Returns: A string value
 */

Chapter 6

185

5.	 For multiline documentation, we want to place all documentation between /**
*/. Xcode will parse these lines accordingly for quick look. Additionally, we are
able to explicitly define both parameters and return type. Option click on the
doSomethingWithStuff() method to see the following Quick Look view:

6.	 Update the code block in the previous step to the following code:
/**
 This method does something, but accepts parameters
 and also return a String value. Lets add some
 explicit documentation for these items.

 - Parameters:
 - parameterOne: The first parameter to be
 passed in.
 - parameterTwo: The second parameter to be
 passed in.

 - Returns: A string value
 */

When dealing with multiple parameters, it is good practice (and easier to read) to
specify the parameter's section rather than each individual parameter.

7.	 Swift also allows for additional description fields. Add the following code to the
doSomethingWithStuff() documentation block:
- Author: Kyle Begeman

- Version: 1.04

- Note: This is a simple class

- Warning: This class doesn't actually do anything!

- ToDo: Add some actual functionality to this class

Working with Playgrounds

186

You should see the following screen:

For an extensive list of available fields, visit the Apple
documentation found here: https://developer.apple.
com/library/ios/documentation/Xcode/Reference/
xcode_markup_formatting_ref/

8.	 Xcode also allows headers, formatting, and ordered/unordered lists. Add the following
code to the documentation block:
Lists

 You can apply *italic*, **bold**, or `code` inline styles
to any text.

 ## Unordered Lists

 - Some item
 - Another item
 - The last item

 ## Ordered Lists

 1. Some item
 2. Another item
 3. The last item

https://developer.apple.com/library/ios/documentation/Xcode/Reference/xcode_markup_formatting_ref/
https://developer.apple.com/library/ios/documentation/Xcode/Reference/xcode_markup_formatting_ref/
https://developer.apple.com/library/ios/documentation/Xcode/Reference/xcode_markup_formatting_ref/

Chapter 6

187

Xcode supports three headings: # represents heading 1; ## and ### represent
heading two and three respectively:

How it works…
Xcode will automatically parse the added documentation and organize it according to the
keywords used in the documentation block. This requires no additional settings and will work
on anyone's computer running Xcode 7.

There's more…
Sometimes documentation may need to be formatted similarly to an instruction manual,
with multiple pages for better organization. With the power of playgrounds, you can provide
detailed documentation with multiple pages and link between them for easy access. This will
be covered in the next recipe.

Working with Playgrounds

188

Navigating pages in playgrounds
Playgrounds are proving to be more and more powerful, as Apple continues to add
functionality. One great new feature is the ability to navigate through pages in a single
playground. Doing so allows you to format your documentation in a more organized way.
Additionally, you can even structure your documentation and code similarly to a digital book
and allow readers to navigate with ease.

Getting ready
Create a new playground and name it Paging. This recipe will not require a project file so
do not worry about any project settings. Next, select File | New | Playground Page. In the
navigator on the right, you should see two pages: Untitled Page and Untitled Page 2.
Rename these Intro and Start Now respectively.

How to do it…
1.	 Add the following code to the bottom of the Intro page:

//: [Next](@next)

Xcode will recognize //: as a markup command similar to ///. The navigation
between pages uses a standard format of [Link Title](location to link
to). In this instance, we name the link Next, and use the standard @next option to
let Xcode know to navigate to the next page (based on project order).

2.	 Select Editor | Show Rendered Markup from the top menu. In order to view our
navigation, we will need Xcode to render it based on the supplied markup. You should
see something similar to this:

Chapter 6

189

3.	 Selecting the next button will automatically bring you to the Start page previously
created. You will notice the boilerplate code for a new page automatically produces
its own previous and next links. Select Editor | Show Raw Markup to see the code.
Everything is identical, with the exception of using @previous as the link location for
the previous link.

4.	 Navigate back to the Intro page and add the following code to the end of the file:
//: [Start Page](Start%20Now)

By specifying the name of a page as the location, we can navigate directly to the
specified page.

Note that page names with spaces require the %20 ASCII space
code to work properly.

How it works…
Like all other documentation and markup, Xcode will automatically parse the text into the
proper commands and link everything properly.

See also
ff Although we covered all of the basics, there are still additional features provided by

Apple for dealing with documentation and playgrounds. For more information, visit
this link: https://developer.apple.com/library/ios/documentation/
Xcode/Reference/xcode_markup_formatting_ref/

https://developer.apple.com/library/ios/documentation/Xcode/Reference/xcode_markup_formatting_ref/
https://developer.apple.com/library/ios/documentation/Xcode/Reference/xcode_markup_formatting_ref/

191

7
Swift Debugging

with Xcode

In this chapter, we will cover the following recipes:

ff Validating the values – developing a tax income simulator app

ff Debugging with Xcode and Swift – the best checker movement

ff Debugging with LLDB

ff Profiling an app

ff Error handling in Swift 2.0

ff Custom error handling in Swift 2.0

ff Availability checking in Swift 2.0

Introduction
Let's face it, nobody writes a full program without any issues. Even the best programmer will
see some situations that haven't been contemplated. Sometimes it's easy to find the bug,
sometimes it is very hard, mainly you have a multithread app.

In this chapter, we are going to learn how to debug an app step by step, it will make it easier
for you to find out where the issue is.

Swift Debugging with Xcode

192

Validating the values – developing a tax
income simulator app

When writing code and developing apps, we know that some variables of a function shouldn't
contain certain values, but are you sure of that? How can we develop and check that
everything has the right value?

In this recipe, we are going to learn how to check that the values are right during the
development stage. To simulate this, let's create an app where we are sure that there will be
people trying to cheat the values; in this case let's create an app to calculate tax income.

Getting ready
Create a project called Chapter 7 Tax Income and make sure that you are in debug
mode; to do it click on the project schema and select Edit Scheme…, as shown in the
following screenshot:

Click on the Run option located on the left-hand side, then make sure that the Info tab
is selected, and finally, make sure that the Build option is on Debug. We will have some
explanations afterwards:

Chapter 7

193

Once these steps have been checked we need to open the project settings and create a
macro called DEBUG_MODE, only on the debug configuration.

How to do it…
1.	 First, let's create a new file called Assertions.swift. Here we are going to add

some functions, all of them starting with assert_:
// element must be one of the elements in the set
func assert_in<T:Comparable>(element: @autoclosure () -> T,
set: [T], message: @autoclosure () -> String){
 #if DEBUG_MODE
 if set.count == 0 {
 println("warning: comparing with an empty set")
 }
 assert(set.filter({(currentElement) -> Bool in
 return currentElement == element()
 }).count > 0, message)
 #endif
}

// element must be greater or equal to the other value
func assert_ge<T:Comparable>(value:T, otherValue:T,
message: @autoclosure () -> String){
 #if DEBUG_MODE
 assert(value >= otherValue , message)
 #endif
}

// element can't be nil
func assert_not_nil<T>(element:@autoclosure () -> T?,
message: @autoclosure () -> String){
 if element() == nil {
 #if DEBUG_MODE
 assertionFailure(message)
 #endif
 }
}

Swift Debugging with Xcode

194

2.	 Now we can create another file, which will contain a class that should be able to
calculate the income tax. Create a new file called IncomeTaxCalculator.swift;
start with the following class header:
class IncomeTaxCalculator: CustomStringConvertable {

3.	 The next step is adding its attributes; as you can imagine, we have to store a few
values for it:
 var title:String?
 var name:String?
 lazy var grossIncome:Double = 0.0
 lazy var netIncome:Double = 0.0
 lazy var children:Int = 0
 lazy var education:Double = 0.0

4.	 As you can see, all of them are initialized or are options; you don't need to create an
initializer in this case, except if you are using one of the first versions of Swift:
init(){}

5.	 If you paid attention, this class must implement the Printable protocol. So we need
to add the description to this class:
 var description: String {
 assert_not_nil(self.title, "Title cant be nil")
 assert_not_nil(self.name, "Name cant be nil")
 assert_in(self.title!, ["Mr", "Dr", "Miss", "Mrs"],
 "Wrong title")
 return "\(self.title!) \(self.name!) -
 \(self.calculate())"
 }

6.	 To finish this class, we need a method that calculates the income tax based on the
previous attributes. Of course, this is a fictional case; don't use this app to calculate
your income tax:
 func calculate() -> Double {
 assert_ge(self.grossIncome, 0.0, "Gross income
 can't be negative")
 assert_ge(self.netIncome, 0.0, "Net income can't be
 negative")
 assert_ge(self.grossIncome, self.netIncome, "Net
 income cant be negative")

 let totalAlreadyPaid = self.grossIncome -
 self.netIncome
 var percentage:Double
 if self.grossIncome <= 9000.0 {
 percentage = 0.0

Chapter 7

195

 } else if self.grossIncome <= 18000.0 {
 percentage = 0.15
 } else {
 percentage = 0.40
 }

 let childrenBonus = Double(self.children) * 100.0

 // 10 percent of education up to 1000 per child
 var educationBonus:Double
 var educationLimit = Double(self.children) * 1000.0
 if 0.1 * self.education < educationLimit {
 educationBonus = 0.1 * self.education
 }else {
 educationBonus = educationLimit
 }

 return self.grossIncome * percentage -
 childrenBonus - educationBonus - totalAlreadyPaid
 }
}

7.	 Once it is done, we have to create the graphical part of our app, so go to the
storyboard and create a layout with six text fields, one button, and six labels;
something similar to the following one:

Swift Debugging with Xcode

196

8.	 As you may imagine, we need to create some attributes to link with the text fields:
 @IBOutlet var titleTextField: UITextField!
 @IBOutlet var nameTextField: UITextField!
 @IBOutlet var lastYearIncomeTextField: UITextField!
 @IBOutlet var numberOfChildrenTextField: UITextField!
 @IBOutlet var LastYearNetIncome: UITextField!
 @IBOutlet var educationTextField: UITextField!

9.	 To complete our graphical part, we need to add an event for the button:
 @IBAction func calculateAction(sender: UIButton) {
 assert(countElements(self.nameTextField.text) >= 5,
 "Your name looks too short")
 var error:NSError?
 let regex = NSRegularExpression(pattern: "^[0-
 9]+[.[0-9]+]?$", options: .CaseInsensitive, error:
 &error)!
 if regex.matchesInString
 (self.lastYearIncomeTextField.text, options: nil,
 range: NSMakeRange(0, countElements
 (self.lastYearIncomeTextField.text))).count == 0{
 assertionFailure("Gross Income tax: wrong
 format")
 }
 let income = (self.lastYearIncomeTextField.text as
 NSString).doubleValue
 let incomeTaxCalculator:IncomeTaxCalculator =
 IncomeTaxCalculator()
 incomeTaxCalculator.title =
 self.titleTextField.text
 incomeTaxCalculator.name = self.nameTextField.text
 incomeTaxCalculator.grossIncome =
 (self.lastYearIncomeTextField.text as
 NSString).doubleValue
 incomeTaxCalculator.netIncome =
 (self.LastYearNetIncome.text as
 NSString).doubleValue
 incomeTaxCalculator.education =
 (self.educationTextField.text as
 NSString).doubleValue
 incomeTaxCalculator.children =
 self.numberOfChildrenTextField.text.toInt()!
 UIAlertView(title: "Income Tax", message:
 incomeTaxCalculator.description, delegate:nil,
 cancelButtonTitle:"Ok").show()
 }

Chapter 7

197

10.	 The last step to do is testing our application and watching the assertions work.
Press play and when the application appears, press calculate, without adding any
information into the text fields. You should see your application stop running, and the
Xcode should show you where:

11.	 If you pay attention, the log console will open and show you what happened, printing
the message that you have written:

12.	 Let's complete this recipe, changing from Debug to Release configuration; press play
again, and see that the first assert was ignored.

How it works…
Assertions are like functions that interrupt the application when they find an unexpected
value. Of course, when a program is released, it needs to accept these values, which means
that the developer shouldn't trust on the assertions' power forever, he must fix the value, or at
least interrupt the process.

Swift comes with only two assertions functions:

ff assert: This function has two arguments. The first one is a Boolean element which,
in case of being false, is going to stop your program and show the next argument (the
message) for the developer.

ff assertionFailure: This function stops the program execution without checking
any condition. This function is used when there is a way where the app shouldn't
go through it. Imagine that you have a switch statement, and theoretically your
program shouldn't go to the default case because it isn't considered, in this case you
need to add an assertion.

Swift Debugging with Xcode

198

Another nagging question is: What does autoclosure mean? The reason is the following—
assert, assertionFailure, and our assertions functions actually don't receive a value
as an argument, the reason is laziness. It means that Swift isn't going to evaluate the values
before entering into the function.

Swift converts your argument into a function and the argument will be evaluated inside when
the assert function calls it. Why? The reason is that assertions shouldn't work if you are
compiling with Release configuration instead of Debug. Bear in mind that assertions stop
your program, which is something good when you are developing, but for a user it won't be a
good sensation. That's the reason that sometimes we call the autoclosure function between
#ifdef NDEBUG and #endif.

Before Xcode 6 beta 5, @autoclosure used to be written
as @auto_closure. If you are going to search for something
about this modifier on the Internet, try writing it both ways.

If assertions don't work on Release mode, why are they useful? The reason is that assertions
are used for detecting development errors, you should track the source of the error and
modify it to ensure that the source won't give you a wrong value.

The reason we created a different file for our own assertion functions is that you may have this
file shared between projects; of course you can use the function assert for everything, but I
would recommend creating assertions functions that can save us from work, like the one we
have to check if an element is inside of an array.

There's more…
In this recipe we learned about using the Swift assertions, which is the equivalent of the
NSAssert in Objective-C. If you prefer using the other assertion features from the Objective-C
foundation, such as NSParameterAssert and NSAssertionHandler, you are still able to
use them in Swift.

Assertions are very useful for finding paths that are receiving wrong values, however there are
times when it is necessary to go step by step in the code. We will see how to do it with Xcode
and Swift in the next recipe.

Debugging with Xcode and Swift – the best
checker movement

If you have some experience with programming, you know that sometimes we need to go
step by step into the code, mainly when we have those kinds of issues where nobody knows
how it happened.

Chapter 7

199

In this recipe we are going to learn how to debug with Xcode and Swift. To do it, we are going
to recycle our checkers board. In this case we are going to make the best move using the
white pieces. We are also going to leave it prepared for a second version of this app where we
could use kings.

We are not going to create the right algorithm in the beginning, the idea is to debug and find
where the issue is, and then we are going to correct it afterwards.

Getting ready
Open your playground from the previous chapter where you have the checkers board. Leave it
open because we are going to reuse this code. Once it is opened, create a new project called
Chapter 7 checkerboard, and let's start coding.

How to do it…
1.	 Create a new file called CheckersBoard.swift, start by importing the UIKit

library if it is not imported yet:
import UIKit

2.	 After that you can paste the class code from playground. Then, copy the last part
from playground (variable instantiation and setup) and paste it in the viewDidLoad
method on the view controller file:
 override func viewDidLoad() {
 super.viewDidLoad()
 var board = CheckersBoard()
 board.board[2][5] = .WHITE
 board.board[2][3] = .BLACK
 board.board[4][3] = .WHITE
 board.board[2][1] = .BLACK
 board.board[0][5] = .WHITE
 board.board[1][0] = .BLACK
 board.board[7][6] = .WHITE
 board.board[5][6] = .BLACK
 }

Swift Debugging with Xcode

200

3.	 Now let's create a breakpoint on the third time we assign a piece, by clicking on the
gray area to the left of the code:

4.	 Press play, wait until the Xcode stops on your breakpoint and move your mouse
pointer over the board variable. It can be any of them, like the first one, where the
variable is being declared, or the other ones where we assign a piece.

5.	 After a short interval you will see a small dialog with two icons on the right. The first
icon, which is an i with a circle around it, displays the content of the object with a text
format similar to a JSON format:

Chapter 7

201

The other icon is very familiar to us, because it's the same icon we've seen on the
playground, it's the quick look icon and we can also use it here. That way we retrieve
a more visual way of watching the checkers board:

Don't create the method debugQuickLookObject for every
single class you have, only for those classes that are hard to
visualize and need to be debugged frequently.

6.	 Now that we know how to visualize our object, we need to differentiate traditional
pieces from kings. Our next goal is adding a Boolean to the BoardSpace
enumeration. Replace the previous enumeration with this one:
 enum BoardSpace {
 case FREE,
 WHITE(Bool),
 BLACK(Bool)
 }

7.	 Now we need to display something different, in this case we are going to
add the letter K over the piece. Replace the switch statement inside the
debugQuickLookObject with this one:
 var isKing = false;

 switch board[row][col] {
 case .WHITE(let king):
 isKing = king
 UIColor.whiteColor().setFill()
 case .BLACK(let king):
 isKing = king
 UIColor.brownColor().setFill()
 default:
 continue
 }

Swift Debugging with Xcode

202

8.	 Right, now after filling the pieces we need to add a code in case the current piece
is a king:
...
bezier.fill()
if isKing {
 ("K" as NSString).drawAtPoint(CGPointMake(offsetx +
 CGFloat(squareSize / 3) , offsety + CGFloat(squareSize
 / 5)), withAttributes: nil)
}

9.	 Now we need to change the way we assign the pieces with the following:
 let board = CheckersBoard()
 board.board[2][5] = .WHITE(false)
 board.board[2][3] = .BLACK(false)
 board.board[4][3] = .WHITE(true)
 board.board[2][1] = .BLACK(false)
 board.board[0][5] = .WHITE(false)
 board.board[1][0] = .BLACK(false)
 board.board[7][6] = .WHITE(false)
 board.board[5][6] = .BLACK(false)

10.	 Let's repeat the operation by pressing play and watching the board with quick look;
now you can press the step over button, just press the F6 key.

New Apple keyboards have an assigned function for the F6 key, so
you will probably have to press this key together with the fn key.

11.	 Now check the quick look and see that you have the letter K over one of your pieces:

Chapter 7

203

12.	 Ok, now that we know how to visualize the board, we are going to see whether we can
win a game with only one turn. To do it we will need to choose a piece and see every
possibility we have. It means that we will need to clone our object frequently. Usually
we would create a struct for it but in this case we are going to create a method for
cloning our object. We will give explanations later; just add this code inside your
CheckersBoard class:
 func clone() -> CheckersBoard {
 let board = CheckersBoard()
 for i in 0..<8 {
 for j in 0..<8 {
 switch self.board[i][j] {
 case .FREE:
 continue
 default:
 board.board[i][j] = self.board[i][j]
 }
 }
 }
 return board
 }

13.	 The next step to worry about is how to capture the opponent's piece, to do it we will
need to test which directions are possible. Let's create an enumeration inside our
CheckersBoard class to help us:
 enum Direction {
 case NORTHWEST,
 NORTHEAST,
 SOUTHWEST,
 SOUTHEAST
 }

14.	 Now we need to create a method that is going to find us the best move; remember
that we are using only the white pieces:
 func bestMovementWhite() -> CheckersBoard?{
 var boardCandidate:CheckersBoard?
 for i in 0..<8 {
 for j in 1..<8 {
 var result: CheckersBoard?
 switch self.board[i][j]{

 case .WHITE(let king):
 if king {
 result = bestMovementKingWhite(i,
 y: j)

Swift Debugging with Xcode

204

 }else {
 result =
 bestMovementSinglePieceWhite(i, y: j)
 }
 default:
 continue
 }

 if let boardFound = result {
 if let currentBoard = boardCandidate {
 if currentBoard.countBlack() >
 boardFound.countBlack() {
 boardCandidate = boardFound
 }
 }else {
 boardCandidate = boardFound
 }
 }
 }
 }
 return boardCandidate
 }

15.	 As you can see, we have two private methods, one for the best movement of a normal
piece, and another one for a king. Here we are going to develop the single piece
function, the other method I'll leave as homework for you; otherwise it will be an
extremely huge recipe:
 private func bestMovementSinglePieceWhite(x:Int, y:Int) ->
CheckersBoard {
 var clonedBoard = self.clone()
 if clonedBoard.capture(x, y: y, direction:
 .NORTHWEST) {
 return
 clonedBoard.bestMovementSinglePieceWhite(-1, y:
 -1)
 }

 if clonedBoard.capture(x, y: y, direction:
 .NORTHEAST) {
 return
 clonedBoard.bestMovementSinglePieceWhite(1, y:
 -1)
 }

 if clonedBoard.capture(x, y: y, direction:
 .SOUTHWEST) {

Chapter 7

205

 return
 clonedBoard.bestMovementSinglePieceWhite(-1, y:
 1)
 }

 if clonedBoard.capture(x, y: y, direction:
 .SOUTHEAST) {
 return
 clonedBoard.bestMovementSinglePieceWhite(1, y:
 1)
 }
 return clonedBoard
 }

 private func bestMovementKingWhite(x:Int, y:Int) ->
 CheckersBoard? {
 // TODO Homework
 return nil
 }

16.	 To complete this class, we need to add more methods, one that will count the number
of black pieces, and another that is going to capture the opponent's piece:
 func countBlack() -> Int{
 var total = 0
 for row in self.board {
 for element in row {
 switch element {
 case .BLACK:
 total++
 default:
 continue
 }
 }
 }
 return total
 }
 private func capture(x: Int, y:Int, direction:
 Direction) -> Bool {
 var offset_x:Int
 var offset_y:Int
 switch(direction){
 case .NORTHWEST:
 offset_x = -1
 offset_y = -1
 case .NORTHEAST:

Swift Debugging with Xcode

206

 offset_x = 1
 offset_y = -1
 case .SOUTHWEST:
 offset_x = -1
 offset_y = 1
 case .SOUTHEAST:
 offset_x = 1
 offset_y = 1
 }
 if x + 2*offset_x >= 0 && y + 2*offset_y >= 0 && x
 + 2*offset_x < 8 && y + 2*offset_y < 8 {
 // we are inside the board range
 switch (board[x + 2*offset_x][y+2*offset_y],
 board[x + offset_x][y+offset_y]) {
 case (.FREE, .BLACK):
 board[x + offset_x][y+offset_y] = .FREE
 board[x + 2 * offset_x][y + 2 *
 offset_y] = board[x][y]
 board[x][y] = .FREE
 return true
 default:
 return false
 }
 }else {
 return false
 }
 }

Ok, now imagine that it's Monday. We had to type this whole amount of code and
someone (probably your boss) tells us that there is a setup that doesn't find the best
solution. Reviewing every single line of this code can be very boring, and it can be
hard to find where the problem is.

17.	 Let's debug starting with the setup that is not working, so replace the setup code with
this one:
 let board = CheckersBoard()
 board.board[0][1] = .WHITE(false)
 board.board[0][5] = .WHITE(false)
 board.board[2][7] = .WHITE(false)
 board.board[3][2] = .WHITE(false)
 board.board[2][1] = .BLACK(false)
 board.board[4][3] = .BLACK(false)
 board.board[4][5] = .BLACK(false)
 board.board[2][5] = .BLACK(false)
 board.board[2][3] = .BLACK(false)

Chapter 7

207

 if let finalBoard = board.bestMovementWhite() {
 println(finalBoard.debugDescription)
 }else {
 println("no solution")
 }

The first thing you might have noticed is the debugDescription. This is something
similar to debugQuickLookObject but instead of returning different kinds of
objects it only returns a text, we are going to complete this property later.

As you know, we have to debug the fourth white piece movement. To do it, go to the
method called bestMovementWhite and add a breakpoint on the line where we call
the method bestMovementSinglePieceWhite. Right-click on this breakpoint and
you will see a menu like the following one:

18.	 Choose Edit breakpoint..., as you know we don't want to check what happened with
the first three pieces, so say that you want to ignore 3 times before stopping:

Swift Debugging with Xcode

208

19.	 Sometimes we know that we have to stop after a certain number of times, try to use
it instead of clicking play lots of times. Add another breakpoint in this same method
at the end (return boardCandidate) and edit it. Now we are going to add a
condition to make it work and change the action to sound. Unfortunately most of the
available sounds are too soft, I usually choose the glass one, but if you prefer you
can choose another one. To finish this breakpoint, select the option Automatically
continue after evaluating actions:

20.	 Now press play and wait until Xcode stops, press the step into button
(the one with an arrow pointing down) or press F7, you will get into the
bestMovementSinglePieceWhite. Now click on step over (or press F6) three
times, check the board with quick look, and have a look that we will return this board.
Once this issue has been detected, we can replace our algorithm with this one:
 private func bestMovementSinglePieceWhite(x:Int, y:Int) ->
CheckersBoard {
 var clonedBoard = self.clone()
 var winner:CheckersBoard = self

 if clonedBoard.capture(x, y: y, direction:
 .NORTHWEST) {
 winner =
 clonedBoard.bestMovementSinglePieceWhite(x-2,
 y: y-2)
 }

 clonedBoard = self.clone()
 if clonedBoard.capture(x, y: y, direction:
 .NORTHEAST) {
 clonedBoard =
 clonedBoard.bestMovementSinglePieceWhite(x+2,
 y: y-2)
 if winner.countBlack() >
 clonedBoard.countBlack() {

Chapter 7

209

 winner = clonedBoard
 }
 }

 clonedBoard = self.clone()
 if clonedBoard.capture(x, y: y, direction:
 .SOUTHWEST) {
 clonedBoard =
 clonedBoard.bestMovementSinglePieceWhite(x-2,
 y: y+2)
 if winner.countBlack() >
 clonedBoard.countBlack() {
 winner = clonedBoard
 }
 }

 clonedBoard = self.clone()
 if clonedBoard.capture(x, y: y, direction:
 .SOUTHEAST) {
 clonedBoard =
 clonedBoard.bestMovementSinglePieceWhite(x+2,
 y: y+2)
 if winner.countBlack() >
 clonedBoard.countBlack() {
 winner = clonedBoard
 }
 }
 return winner
 }

21.	 Now press play again but instead of pressing step into use step over, check the
board with the quick look inspector, and see that you now have the right solution.
So, problem solved, but don't celebrate too much, other issues are coming.

How it works…
Xcode allows us to debug step by step. Using the method that we used to debug on our
playground (debugQuickLookObject) can help us to visualize the current object state. In
this case we could improve our method using the method drawAtPoint of the NSString,
right now there is no equivalent method on Swift strings.

Another detail that you could see is that we created our own method to clone the board
instead of using a struct. The reason is that structs can't inherit and in this case we need
to do it due to our quick look method.

Swift Debugging with Xcode

210

Breakpoints have some special features when using Xcode. You can ignore them a few times,
which is very useful when you know that the issue happens after some repetitions. Imagine if
you have to press continue 50 times, and then you have to repeat it again and again until you
find the solution. You and your mouse would end the day exhausted.

As you can see, you can also add an action to the breakpoint, such as adding a debugger
command, playing a sound (that is very useful for knowing that something was done in the
background, but you don't want to stop), or logging a message that helps us to analyze the
program trajectory.

There are some commands for debugging that a developer must know, such as step over,
which executes the whole line of code and stops on the next one, step into, which goes inside
the current function, step out (F8), which exits from the current function and stops on the
same place where it was called, and continue (control + command + Y), which continues
executing the program until the next breakpoint.

Unfortunately there is no right or wrong procedure to find an issue, and sometimes you have
to use your sixth sense to solve it. The only way is to collect as much information as you can
and go step by step.

There's more…
Actually Xcode isn't debugging by itself, the reality is that it uses another debugger to do this
task; on the next recipe we are going to use the debugger from the command line.

Debugging with LLDB
Debugging with Xcode is fine, but sometimes we are limited and we have to use the debugger
with a lower level. To do it, we have to know that actually, Xcode is not debugging anything, it
uses another program called LLDB.

Old versions of Xcode used to debug with GDB instead of LLDB,
don't try to use them with Swift because there is no support for
Swift on GDB.

It is highly recommended knowing the LLDB commands if you want to debug big programs,
there are also some cases where you have to connect with another machine (a continuous
integration, for example), where you have to do everything through an SSH shell.

Getting ready
Open the checkers board program and check whether you have any breakpoints and remove
all of them.

Chapter 7

211

How to do it…
1.	 Press play and when the program starts, press the pause button using the

combination control + command + U. After that you will see the LLDB console:

2.	 Now click on the LLDB console and write break s -r bestMovement*. You
will see that the answer is Breakpoint 1: 4 locations. Then let's list these
breakpoints with a breakpoint list. Here you can see an ugly answer, but don't be
scared, this is simpler than you think.

3.	 You can also write thread info to get some information about the current thread.
Check that it specifies the language of each frame, with this information you can get
a better idea about what happened with your code in case of crashing.

4.	 List your threads with thread list, switch to thread 2 with thread select 2,
and write thread info again.

5.	 Now write repl and see that the prompt changes to 1>. In this case, we are going to
write a new function to test our REPL, so type the following code:
func num0(myArray:[Int]) -> Int {
 return myArray.reduce(0, {
 if $1 == 0 {
 return $0 + 1
 }else {
 return $0
 }})
}

6.	 Once this function is done, let's test it:
num0([1,3,1,0,0,4,1])

As you can see, repl can help you write functions in runtime, like we did with the playground.

Swift Debugging with Xcode

212

How it works…
LLDB is the current Xcode debugger; you can set multiple breakpoints with regular
expressions. Remember that what you do on LLDB isn't necessarily reflected on
Xcode, the breakpoints we set are a good example.

Have a look that three of our breakpoints have the filename and a line number, like
... at CheckersBoard.swift:158, … it means your breakpoint is on the file
CheckersBoard.swift at line 158.

We also used REPL, which is a Swift command line, here you can create functions and test
some code. Of course you can also use playground, but sometimes it is faster using the
current debugger.

See also
ff Apple has some documentation about LLDB worth looking at. Check this URL:

https://developer.apple.com/library/ios/documentation/IDEs/
Conceptual/gdb_to_lldb_transition_guide/document/Introduction.
html.

ff What about features that users complain about but are hard to debug, such as
memory, performance, or energy? For these kinds of problems you have to use
another tool, we are going to learn about it in the next recipe.

Profiling an app
It's very common to hear about issues, but if an app doesn't have any important issue it
doesn't mean that it is working fine. Imagine that you have a program that has a memory leak.
Presumably you won't find any problem using it for 10 minutes, however, a user may find it
after using it for a few days. Don't think that this case is impossible, remember that iOS apps
don't terminate, so if you have a memory leak it will be kept until your app blows up.

Performance is another frequent topic, what if your app looks ok but it gets slower with the
passage of time? We have to be aware of this problem. This kind of test is called profiling and
Xcode comes with a very good tool for realizing this operation, which is called Instruments.

In this case we are going to profile our app to visualize the amount of energy wasted by our
app and of course let's try to reduce it.

Getting ready
For this recipe you will need a physical device, and to install your app on the device you will
need to be enrolled on the Apple Developer Program. If you have both requirements the next
thing you have to do is create a new project called Chapter 7 Energy.

https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/gdb_to_lldb_transition_guide/document/Introduction.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/gdb_to_lldb_transition_guide/document/Introduction.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/gdb_to_lldb_transition_guide/document/Introduction.html

Chapter 7

213

How to do it…
1.	 Before we start coding, we will need to add a framework to the project. Click on the

tab Build Phases of your project and go to the section Link Binaries with Libraries
and press the plus sign:

2.	 Once Xcode opens a dialog window asking for the framework to add, choose
CoreLocation and MapKit.

3.	 Now go to the storyboard, place a label and a MapKit view, you might have a layout
similar to this one:

Swift Debugging with Xcode

214

4.	 Link the MapKit view and call it just map, and the UILabel and call it just label:
 @IBOutlet var label: UILabel!
 @IBOutlet var map: MKMapView!

5.	 Continuing with the view controller, let's click at the beginning of the file to add the
CoreLocation and MapKit imports:
import CoreLocation
import MapKit

6.	 After that you have to initialize the location manager object on the viewDidLoad
method:
 override func viewDidLoad() {
 super.viewDidLoad()
 locationManager.delegate = self
 locationManager.desiredAccuracy =
 kCLLocationAccuracyBest
 locationManager.requestWhenInUseAuthorization()
 locationManager.startUpdatingLocation()
 }

At this moment you may get an error because your view controller doesn't conform
with the CLLocationManagerDelegate, so let's go to the header of the view
controller class and let's specify that it implements this protocol. Another error we
have is the locationManager variable, because it is not declared, therefore we
have to create it as an attribute. And as we are declaring attributes, we are going to
add the geocoder, which is going to be used later:
class ViewController: UIViewController, CLLocationManagerDelegate
{
 var locationManager = CLLocationManager()
 var geocoder = CLGeocoder()

7.	 Before we implement the method that receives the positioning, let's create another
method to detect whether there was any authorization error:
 func locationManager(manager: CLLocationManager!,
 didChangeAuthorizationStatus status:
 CLAuthorizationStatus) {
 var locationStatus:String
 switch status {
 case CLAuthorizationStatus.Restricted:
 locationStatus = "Access: Restricted"
 break
 case CLAuthorizationStatus.Denied:
 locationStatus = "Access: Denied"
 break

Chapter 7

215

 case CLAuthorizationStatus.NotDetermined:
 locationStatus = "Access: NotDetermined"
 break
 default:
 locationStatus = "Access: Allowed"
 }
 NSLog(locationStatus)
 }

8.	 Then, we can implement the method that will update our location:
 func locationManager(manager:CLLocationManager,
 didUpdateLocations locations:[AnyObject]) {
 if locations[0] is CLLocation {
 let location:CLLocation = locations[0] as
 CLLocation
 self.map.setRegion(MKCoordinateRegionMake
 WithDistance(location.coordinate, 800,800),
 animated: true)

 geocoder.reverseGeocodeLocation(location,
 completionHandler: { (addresses, error) -> Void
 in
 let placeMarket:CLPlacemark =
 addresses[0] as CLPlacemark
 let curraddress:String =
 (placeMarket.addressDictionary
 ["FormattedAddressLines"] as [String]) [0]
 as String
 self.label.text = "You are at
 \(curraddress)"
 })
 }
 }

9.	 Before you test the app there is still another step to do. On your project, navigate
to or click expand on the supporting files and then click on info.plist. Add a row by
right-clicking on the list and selecting add row.

10.	 On this new row, type NSLocationWhenInUseUsageDescription as key, and on
value Permission required, like the following screenshot:

Swift Debugging with Xcode

216

11.	 Select a device and install this app onto it, and test the application walking around
your street (or walking around planet Earth if you want). Check that the label will
change and also that the map will display your current position.

12.	 Now go back to your computer and plug the device in again, now instead of pressing
play you have to hold the play button until you see more options and then you have to
select the profile option:

13.	 The next thing that will happen is that instruments is going to open, probably a dialog
will pop up asking for an administrator account. That's due to instruments needing to
use some special permissions to access some low-level information:

Chapter 7

217

14.	 On the next dialog you will see different kinds of instruments, some of them are OS
X specific, some are iOS specific, and others are for both. If you choose the wrong
platform instrument the record button will be disabled. For this recipe choose energy
diagnostics:

15.	 Once the Energy Diagnostics window is open you can press the record button,
which is on the upper-left corner, and try to move around—yes, you need to keep the
device connected to your computer so you have to move around with both elements
together—and do some actions with your device, such as pressing the home button
and turning off the screen. Now you may have a screen similar to this one:

Swift Debugging with Xcode

218

16.	 Now you can analyze who is spending more energy on your app. To get a better idea
about it, go to your code and replace the constant kCLLocationAccuracyBest
with kCLLocationAccuracyThreeKilometers and check whether you have
saved some energy.

How it works…
Instruments is a tool used for profiling your application. It gives you information about your
app, which can't be retrieved by code, or at least can't be retrieved easily. You can check
whether your app has memory leaks, whether it is losing performance, and as you can see,
whether it is wasting much energy or not.

In this recipe we used the GPS because it is a sensor that requires some energy, and also you
can check on the table on the bottom of your instrument that Internet requests were done,
which is something that if you do very frequently, will also empty your battery fast.

Something you might be asking is: why did we have to change the info.plist? Since iOS
8, some sensors require user permissions; the GPS is one of them, so you need to report the
message that is going to be shown to the user.

See also
ff It is recommended that you read about the way that instruments work, mainly those

that you are going to use. Check the Apple documentation about instruments to get
more details about it: https://developer.apple.com/library/watchos/
documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/
index.html.

ff If you have experience with Objective-C you might be asking how could you recycle
your code using Swift, in the next chapter we are going to see some recipes for this.

Error handling in Swift 2.0
With the introduction of Swift 2.0, Apple has provided an entirely new way to perform error
handling, similar to other programming languages. Not only can you take advantage of this
in your own classes, Apple has also updated all of its classes to use the new error handling
methods.

Getting ready
Create a new single view project and name it Error Handling Chapter 7. We will be
using the boiler plate project setup for this recipe.

https://developer.apple.com/library/watchos/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/index.html
https://developer.apple.com/library/watchos/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/index.html
https://developer.apple.com/library/watchos/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/index.html

Chapter 7

219

How to do it…
1.	 Open ViewController.swift and add the following function:

func performAnErrorProneTask() {

 var error: NSError?
 var someString: String = "string"
 var someURL: NSURL = NSURL(string:
 "http://www.someurl.com")!

 let success = someString.writeToURL(someURL,
 atomically: true, encoding: NSUTF8StringEncoding,
 error: &error)
 if !success {
 print("Error writing to URL: \(error!)")
 }

 }

Upon running this code, you should receive an error Extra
argument 'Error' in call. With Swift 2.0, you are no longer
required to pass the memory address of an error object, therefore
the error argument is no longer needed and has been removed from
the Apple standard library.

2.	 Update the code in the method call to the following:
let someString: String = "string"
 let someURL: NSURL = NSURL(string:
 "http://www.someurl.com")!

 do {
 let success = try
 someString.writeToURL(someURL, atomically:
 true, encoding: NSUTF8StringEncoding)
 }
 catch let error as NSError {
 print(error.localizedDescription)
 }

Swift Debugging with Xcode

220

How it works…
Similar to C++, Swift 2.0 now uses a do-try-catch method of error handling. Inside the do
block we attempt to perform some task that can result in an error and prefix it with the try
keyword. This lets Xcode know that this method can fail and to look for a catch block if a
failure occurs.

You can tell what methods require this error handling by looking at the method declaration. All
methods with error handling will include a throws keyword at the tail end of the declaration.
We will learn in the next recipe how to define your own methods that incorporate error
handling.

Additionally, the try keyword can be used with both ? and ! for additional functionality. Using try?
for instance will result in the returned value wrapped in an optional. Rather than performing a
do-while loop and catching the error to set a value to nil, you can simply substitute try? and the
value will now function as an optional with standard nil handling. When using try!, you explicitly
ignore the error handling. This is only used when you already know a value will not produce an
error; for example, loading an image that was shipped with the application.

There's more…
You will often require some code to run regardless of errors. Swift 2.0 adds a new feature that
works great for just this scenario: the defer keyword. Any code provided inside of the defer
block will automatically execute once it reaches the end of the containing scope. This feature
works anywhere in code.

Custom error handling in Swift 2.0
The new error handling in Swift 2.0 is not limited to the Apple standard library. You can include
this new syntax in your own classes and methods. Doing so allows you to build applications
that handle all errors appropriately, often resulting in a better user experience and with fewer
crashes. Additionally, this new error handling can be leveraged for more complex debugging.

Getting ready
Create a new single view project and name it Custom Error Handling Chapter 7. We
will be using the boilerplate project setup for this recipe. If you followed the previous recipe in
this chapter, you may continue using that project.

Chapter 7

221

How to do it…
1.	 Navigate to the ViewController.swift file and add the following code to the

bottom of the file:
enum CustomError: ErrorType {
 case Minimal
 case Bad
 case Explosion
}

2.	 Let's implement a custom method that uses the CustomError enum we just
created. Add the following code below our enum declaration:
func performTaskWithString(taskString: String) throws -> String {
 // Do something that will result in a success or error.

 // If a minimal error occurs, throw a minimal error
 if (taskString.isEmpty) {
 throw CustomError.Minimal
 }

 // If a bad error occurs, throw a bad error
 if (taskString.containsString("Oops")) {
 throw CustomError.Bad
 }

 // If an explosixe error occurs, throw an explosion
 error
 if (taskString.containsString("ABORT ABORT ABORT")) {
 throw CustomError.Explosion
 }

 return "No errors!!"
}

How it works…
We initially create a custom enum to store any required custom error types. These types
can be explicit to your application or generic enough for a framework. Swift 2.0 uses the
throws keyword placed before the return value of a method in order to identify methods
with error handling.

In our custom method, we want to perform any task that can possibly fail, such as a URL
request. Next, we validate the possible errors and call throw with the error type. Everything
after our checks will run as normal if no errors are thrown.

Swift Debugging with Xcode

222

Availability checking in Swift 2.0
Swift 2.0 introduces a new method for checking OS availability in your code. This is
done in the form of @available and allows us to check for OS support for both calling
methods and creating our own. Using this new availability checking allows you to write
backwards-compatible code without the worry of runtime errors. Xcode 7 has great integration
with @available for a better programmer experience without many warnings. Additionally,
you can more clearly define tasks based on the OS version without the hassle of macros.

Getting ready
Create a new single view project and name it Availability Chapter 7. We will be using
the boiler plate project setup for this recipe. If you followed the previous recipe in this chapter,
you may continue using that project.

How to do it…
1.	 To test this functionality, we will be using an Apple standard library call for registering

notifications. iOS 8 introduced a new method for this, so we want to target iOS 8 and
up only.

2.	 Navigate to the project settings and change the minimum deployment target to iOS
7.1 or below. Because the notification method is supported in 8.0 and above, we want
to test with 7.1 as our target.

3.	 Navigate to the projects AppDelegate.swift file and add the following code to the
didFinishLaunchingWithOptions method:
if #available(iOS 8.0, *) {
 let types =
 UIUserNotificationType([UIUserNotificationType.Alert,
 UIUserNotificationType.Sound,
 UIUserNotificationType.Badge])
 let settings = UIUserNotificationSettings(forTypes:
 types, categories: nil)
 application.registerUserNotificationSettings(settings)
 }

How it works…
We use the new syntax #available(version number) to specify the version we require to run
this block of code. The * simply indicates all versions above the stated version. Additionally,
this syntax supports adding multiple platforms, such as OS X and watchOS.

Chapter 7

223

There's more…
Using the @available(version number) syntax, you can specify individual functions and
classes as only available in a specific version. Simply include this line directly above the
function or class declaration.

See also…
ff Apple has supplied numerous attributes that can be used in conjunction with @

available. Visit this link to the Apple documentation to learn more about attributes:
https://developer.apple.com/library/ios/documentation/Swift/
Conceptual/Swift_Programming_Language/Attributes.html

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Attributes.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Attributes.html

225

8
Integrating with

Objective-C

In this chapter, we will cover the following recipes:

ff Calling a cab

ff Hiring a van

ff Porting your code from one language to another

ff Replacing the user interface classes

ff Upgrading the app delegate

ff Creating your own custom framework

Introduction
Swift 2 is out, and we can see that it is going to replace Objective-C on iOS development
sooner or later, however how should you migrate your Objective-C app? Is it necessary to
rewrite everything again?

Of course you don't have to rewrite a whole application in Swift from scratch, you can
gradually migrate it. Imagine a four year old app developed by 10 developers, it would
take a long time to be rewritten.

Actually, you've already seen that some of the codes we've used in this book have some kind
of "old Objective-C fashion". The reason is that not even Apple computers could migrate the
whole Objective-C code into Swift.

This chapter will help you migrate from Objective-C to Swift, step by step.

Integrating with Objective-C

226

Calling a cab
Let's imagine that we work for a taxi company, which already has an app that allows the
clients to call a taxi from it. As you may imagine, the company can start giving additional
services rather than only using traditional cars, for example, let's imagine that now they
want to offer hiring a van for people that have a lot of luggage.

In this recipe we are going to start with a pure Objective-C application, after which we are
going to modify it for being prepared to add a Swift code in the future.

Getting ready
Let's start by creating a project called Chapter 8 Cab, but in this case select Objective-C
instead of Swift as the programming language:

How to do it…
1.	 First, create a new file to your project, select Cocoa Touch Class, which is located on

the upper right-hand side of the iOS source:

Chapter 8

227

2.	 Then create a file called Car, which should be a subclass of NSObject:

You will see that two files are created, one is called Car.h and the other one is
called Car.m.

Integrating with Objective-C

228

3.	 Click on the header file (Car.h) and add the following code:
#import <Foundation/Foundation.h>

@interface Car : NSObject{
 float fare;
}

@property (assign) float distance;
@property (assign) int pax;

-(id) init;
-(id) initWithFare:(float) fare;
-(float) getFare;

@end

4.	 Once the class interface is created, we have to implement this class, so click on the
file Car.m and type the following code:
#import "Car.h"

@implementation Car
-(id) init{
 self = [super init];
 if(self){
 self->fare = 0.2;
 self.pax = 4;
 self.distance = 0;
 }
 return self;
}

-(id) initWithFare:(float) fare{
 self = [super init];
 if(self){
 self->fare = fare;
 self.pax = 4;
 self.distance = 0;
 }
 return self;
}

-(float) getFare{
 return self->fare;
}
@end

The model part is done, now we need to create the view part.

Chapter 8

229

5.	 Let's do something very straightforward, just add a table view onto the storyboard,
and then link it with the view controller as an attribute, as a data source, and as a
delegate.

6.	 As you have to modify the header file (usually called ViewController.h), add an
auxiliary attribute called vehicles of type NSArray:
@interface ViewController : UIViewController
<UITableViewDataSource, UITableViewDelegate>{
 NSArray * vehicles;
 IBOutlet UITableView *tableView;
}
@end

7.	 To add some functionality to this app, go to the message file (usually called
ViewController.m).

Switching from the header file to its implementation or
vice versa can be done using  + ^ + up arrow.

8.	 First let's import the Car.h file:
#import "Car.h"

9.	 Then, add the data source content:
- (NSInteger)tableView:(UITableView *)tableView
numberOfRowsInSection:(NSInteger)section{
 return [vehicles count];
}

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath{
 UITableViewCell * cell;
 cell = [self->tableView
 dequeueReusableCellWithIdentifier:@"vehiclecell"];
 if(cell == nil) {
 cell = [[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:@"vehiclecell"];
 }
 Car * currentCar = [self->vehicles
 objectAtIndex:indexPath.row];
 cell.textLabel.text = [NSString
 stringWithFormat:@"Distance %.0f, pax: %d, fare: %.2f",
 currentCar.distance * 1000, currentCar.pax, [currentCar
 getFare]];
 return cell;
}

Integrating with Objective-C

230

10.	 Now, you have to initialize the vehicle's attributes. Of course, here, we are going to
use just some hard code, otherwise we would have a huge amount of code:
- (void)viewDidLoad {
 [super viewDidLoad];
 Car * car1 = [[Car alloc] init];
 car1.distance = 1.2;
 Car * car2 = [[Car alloc] init];
 car2.distance = 0.5;
 Car * car3 = [[Car alloc] init];
 car3.distance = 5;
 Car * car4 = [[Car alloc] initWithFare:0.25];
 car4.distance = 4;
 vehicles = @[car1, car2, car3, car4];
 [self->tableView reloadData];
}

11.	 The last thing we need to do is create an event for the user for letting him choose a
car for booking:
- (void)tableView:(UITableView *)tableView
didSelectRowAtIndexPath:(NSIndexPath *)indexPath{
 Car * currentCar = [self->vehicles
 objectAtIndex:indexPath.row];
 // let's suppose that the current traffic allows us to
 drive at 50 km/h
 float time = currentCar.distance / 50.0 * 60.0;
 [[[UIAlertView alloc] initWithTitle:@"Car booked"
 message:[NSString stringWithFormat:@"The car will
 arrive in %.0f minutes", time] delegate:nil
 cancelButtonTitle:@"OK" otherButtonTitles: nil] show];
}

12.	 Now test this app just to see that it is working. The next step is preparing this app
to receive some Swift code. Before adding any Swift file we need to modernize
this code; fortunately Xcode offers an option that does it automatically, so click on
the Edit menu, then choose Refactor, and finally Convert to Modern Objective-C
Syntax…:

Chapter 8

231

Before you start modernizing your code, it's a good idea to commit
your code on the version control system, if you are using one.

13.	 When a dialog appears with some introduction text, press Next, then check every
target that appears on the next dialog, usually they are checked but just in case
make sure of it. On the next screen, you will see some options to modernize your
Objective-C code, you can leave all of them with their default values, but it is a better
idea to make sure that every option is marked "yes":

Integrating with Objective-C

232

14.	 After that, you will see another dialog displaying the differences between the original
code and the one that is going to be updated. Check the differences of each file by
clicking on the filenames on the left-hand side:

Avoid modernizing your code without checking the differences
between the old and the new code, sometimes you will find
modifications that are not conceptually right.

15.	 Press Save and you will see a new dialog asking if you would like to enable automatic
snapshots:

Now check that your project has the code changed and it still works as before.

Chapter 8

233

How it works…
When you migrate your Objective-C application to Swift, the first thing that you need to do is
convert your code to Modern Objective-C Syntax. Thanks to this your code will be ready for
being compatible with Swift integration.

You can see that after modernizing your code, that part of your code is modified, for example,
ID is replaced with instancetype, initializers receive the modifier NS_DESIGNATED_
INITIALIZER, and some functions are converted into property, mainly those functions that
start with get or set.

Usually this kind of change is considered a massive change, which of course has the risk of
needing to roll back to the previous state. This is the reason why Xcode recommends you to
create a snapshot.

See also
ff In this recipe we learned how to get an existing Objective-C app and prepare it

for using its code with Swift. Of course, sometimes you can do it automatically
and sometimes you have to change it manually. It is a good idea to check
the modern Objective-C documentation. You can do it by visiting the website:
https://developer.apple.com/library/ios/releasenotes/
ObjectiveC/ModernizationObjC/AdoptingModernObjective-C/
AdoptingModernObjective-C.html.

Hiring a van
In this recipe we are going to give more functionality to the cab application, in this case we
are going to assume that the application won't call only cars, but also a van service will be
available. In this case the van needs to specify its capacity, as we are modernizing the code,
we will do it using Swift. Of course, there will always be some code to type in Objective-C, bear
that in mind.

Getting ready
In this recipe we are going to continue with the previous app, so make a copy of the previous
recipe and open the project copy. If you want to rename the app from Chapter 8 Car to
Chapter 8 Vehicles, it would be good to differentiate them.

https://developer.apple.com/library/ios/releasenotes/ObjectiveC/ModernizationObjC/AdoptingModernObjective-C/AdoptingModernObjective-C.html
https://developer.apple.com/library/ios/releasenotes/ObjectiveC/ModernizationObjC/AdoptingModernObjective-C/AdoptingModernObjective-C.html
https://developer.apple.com/library/ios/releasenotes/ObjectiveC/ModernizationObjC/AdoptingModernObjective-C/AdoptingModernObjective-C.html

Integrating with Objective-C

234

How to do it…
1.	 First, click on the project navigator, then on the group that contains the source code,

and add a new Swift file called Van.swift. Check that after trying to add it, a new
dialog appears asking whether you would like to create a bridge file. Click on Yes,
otherwise you will have to create a header file by yourself:

2.	 Once you have accepted it, go to building settings, type bridging on the search field
and check that there is a file set on the option Objective-C Bridging Header:

3.	 After that, check that there is a new file on the project navigator called Chapter 8
Vehicles-Bridge-Header.h, and its contents are basically empty (only a few
comments), so let's import the file Car.h:
#import "Car.h"

4.	 Now, click on Car.h and let's add the last modifications, and create a property called
image, this way we can differentiate one car from one van:
@property (strong) UIImage * image;

5.	 You are going to receive an error because Car.h doesn't import the UIKit, so go to
the top of this file and add the following import instruction:
#import <UIKit/UIKit.h>

6.	 After that you will have to click on Car.m to initialize this new property, so add the
following code in both initializers:
self.image = [UIImage imageNamed:@"car.png"];

Chapter 8

235

7.	 Now, we can click back on the Swift file and create a class that represents a van. In
this case, we will add an attribute called capacity, which will represent the space,
measured in square meters. As you may imagine, this class will be a subclass of a car:
class Van: Car {
 var capacity:Int;

 override init(){
 self.capacity = 10
 super.init()
 self.image = UIImage(named: "van.png")
 }

 override init(fare: Float){
 self.capacity = 10
 super.init(fare: fare)
 self.image = UIImage(named: "van.png")
 }

}

8.	 As you can see, we need two images for helping the user to visualize when it is a car
and when it is a van. Drag the corresponding images from the Resources folder of
this book into the Supporting Files group.

9.	 It is obvious that we can't stop here, we have to change the view controller for
letting the new class be represented with its specific information. Click on the
ViewController.m file and make the following changes: first change the method
cellForRowAtIndexPath, it will be displayed in a more complete way:
- (UITableViewCell *)tableView:(UITableView *)tableView cellForRow
AtIndexPath:(NSIndexPath *)indexPath{
 UITableViewCell * cell;
 cell = [self->tableView
 dequeueReusableCellWithIdentifier:@"vehiclecell"];
 if(cell == nil) {
 cell = [[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleSubtitle
 reuseIdentifier:@"vehiclecell"];
 cell.textLabel.numberOfLines = 1;
 }
 Car * currentCar = self->vehicles[indexPath.row];

 cell.textLabel.text = [NSString
 stringWithFormat:@"Distance %.3f meters",
 currentCar.distance];

Integrating with Objective-C

236

 NSString * detailText = detailText = [NSString
 stringWithFormat:@"Pax: %d Fare: %.2f", currentCar.pax,
 [currentCar getFare]];
 if ([currentCar isKindOfClass:[Van class]]) {
 detailText = [NSString stringWithFormat:@"%@,
 Volume: %ld",detailText, (long)[(Van*)currentCar
 capacity]];
 }
 cell.detailTextLabel.text = detailText;
 cell.imageView.image = currentCar.image;
 return cell;
}

10.	 Now the compiler is going to complain about the Van class, the reason is that you
need to import it. How can we import a Swift file in Objective-C? The answer is very
simple, just import a file called the same as your project name and concatenating
the suffix -Swift.h. If your project has whitespace in its name, replace it with
underscores:
#import "Chapter_8_Vehicles-Swift.h"

11.	 Then you have to add one more element to the vehicles array, so go to the
viewDidLoad and add a van object after car number 4:
- (void)viewDidLoad {
 [super viewDidLoad];
 Car * car1 = [[Car alloc] init];
 car1.distance = 1.2;
 Car * car2 = [[Car alloc] init];
 car2.distance = 0.5;
 Car * car3 = [[Car alloc] init];
 car3.distance = 5;
 Car * car4 = [[Car alloc] initWithFare:0.25];
 car4.distance = 4;
 Van * van = [[Van alloc] initWithFare:0.32];
 van.distance = 3.8;
 vehicles = @[car1, car2, car3, car4, van];
 [self->tableView reloadData];
}

Chapter 8

237

12.	 Now our first migration is done, press play and you will see that your application is
still working, but with the possibility of hiring a van:

Integrating with Objective-C

238

How it works…
When you mix Swift with Objective-C you have to create a bridge file in case of using Swift
code in the Objective-C part. Usually you are guided by a wizard, which creates the bridge file
and sets it into the building settings, but bear in mind that you may need to do it if the wizard
doesn't appear.

You have to import every header file that you want to use in Swift. In this case you had to
import Car.h.

Swift classes can inherit from Objective-C classes, however, the opposite is not allowed,
meaning that if you start adding Swift code into your project you need to be sure that you are
not going to continue developing classes with Objective-C.

As you've just seen, you can treat the Swift class as an Objective-C class, even if you need to
use methods such as isKindOfClass, and also the Objective-C was converted to Swift with
its philosophy, such as creating an initializer, like init(fare:Float), when in Objective-C
its original name was initWithFare.

Porting your code from one language to
another

In the previous recipe we learned how to add a new code into an existing Objective-C project,
however, you shouldn't only add new code but also, as far as possible, you should migrate
your old code to the new Swift language.

If you would like to keep your application core on Objective-C, that's OK, but remember that
new features are going to be added to Swift and it will be difficult keeping two languages on
the same project.

In this recipe we are going to port part of the code, which is written in Objective-C to Swift.

Getting ready
Make a copy of the previous recipe. If you are using any version control it's a good time for
committing your changes. If you are not using a version control system, check Chapter 1,
Getting Started with Xcode and Swift, to see how to add it to your project.

Chapter 8

239

How to do it…
1.	 Open the project and add a new file called Setup.swift, here we are going to add a

new class with the same name (Setup):
class Setup {
 class func generate() -> [Car]{
 var result = [Car]()
 for distance in [1.2, 0.5, 5.0] {
 var car = Car()
 car.distance = Float(distance)
 result.append(car)
 }
 var car = Car()
 car.distance = 4
 var van = Van()
 van.distance = 3.8
 result += [car, van]
 return result
 }
}

2.	 Now that we have this car array generator we can call it on the viewDidLoad
method replacing the previous code:
- (void)viewDidLoad {
 [super viewDidLoad];
 vehicles = [Setup generate];
 [self->tableView reloadData];
}

3.	 Again, press play and check that the application is still working.

How it works…
The reason we had to create a class instead of creating a function is that you can only export
to Objective-C classes, protocols, properties, and subscripts. Bear that in mind in case of
developing with the two languages.

If you would like to export a class to Objective-C you have two choices. The first one is
inheriting from NSObject and the other one is adding the @objc attribute before your class,
protocol, property, or subscript.

If you paid attention, our method returns a Swift array converted to an NSArray, but as you
might know, they are different kinds of array. Firstly because Swift arrays are mutable and
NSArrays are not, and the other reason is that their methods are different.

Integrating with Objective-C

240

Can we use NSArray in Swift? The answer is yes, but I would recommend avoiding it; imagine
once finished migrating to Swift your code still follows the old way, it would be another migration.

There's more…
Migrating from Objective-C is something that you should do with care. Don't try to change
the whole application at once, remember that some Swift objects behave differently from
Objective-C, for example, dictionaries in Swift have the key and the value types specified,
but in Objective-C they can be of any type.

Replacing the user interface classes
At this moment you know how to migrate the model part of an application, however in real life
we also have to replace the graphical classes. Doing it is not complicated but it could be a bit
full of details.

Getting ready
Continuing with the previous recipe, make a copy of it or just commit the changes you have
and let's continue with our migration.

How to do it…
1.	 First create a new file called MainViewController.swift and start importing

the UIKit:
import UIKit

2.	 The next step is creating a class called MainViewController. This class
must inherit from UIViewController and implement the protocols
UITableViewDataSource and UITableViewDelegate:
class
MainViewController:UIViewController,UITableViewDataSource,
UITableViewDelegate {

3.	 Then, add the attributes we had in the previous view controller, keeping the same
name you used before:
 private var vehicles = [Car]()
 @IBOutlet var tableView:UITableView!

4.	 Next, we need to implement the methods; let's start with the table view data source
methods:
 func tableView(tableView: UITableView, numberOfRowsInSection
section: Int) -> Int{

Chapter 8

241

 return vehicles.count
 }

 func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) ->
 UITableViewCell{
 var cell:UITableViewCell? =
 self.tableView.dequeueReusableCellWithIdentifier
 ("vehiclecell")
 if cell == nil {
 cell = UITableViewCell(style: .Subtitle,
 reuseIdentifier: "vehiclecell")
 }
 var currentCar = self.vehicles[indexPath.row]
 cell!.textLabel?.numberOfLines = 1
 cell!.textLabel?.text = "Distance
 \(currentCar.distance * 1000) meters"
 var detailText = "Pax: \(currentCar.pax) Fare:
 \(currentCar.fare)"
 if currentCar is Van{
 detailText += ", Volume: \((currentCar as
 Van).capacity)"
 }
 cell!.detailTextLabel?.text = detailText
 cell!.imageView?.image = currentCar.image
 return cell!
 }

Notice that this conversion is not 100% equivalent. The fare, for example, isn't going
to be shown with two digits of precision. There is an explanation later for why we are
not going to fix this now.

5.	 The next step is adding the event; in this case we have to do the action when the user
selects a car:
 func tableView(tableView: UITableView,
 willSelectRowAtIndexPath indexPath: NSIndexPath) ->
 NSIndexPath? {
 var currentCar = self.vehicles[indexPath.row]
 var time = currentCar.distance / 50.0 * 60.0
 UIAlertView(title: "Car booked", message: "The car
 will arrive in \(time) minutes", delegate: nil,
 cancelButtonTitle: "OK").show()
 return indexPath
 }

Integrating with Objective-C

242

As you can see, we need only do one more step to complete our code. In this case it's
the view didLoad. Notice that another difference from Objective-C and Swift is that
in Swift you have to specify that you are overloading an existing method:
 override func viewDidLoad() {
 super.viewDidLoad()
 vehicles = Setup.generate()
 self.tableView.reloadData()
 }
} // end of class

6.	 Our code is complete, but of course our application is still using the old code. To
complete this operation, click on the storyboard; if the document outline isn't being
displayed, click on the Editor menu and then on Show Document Outline:

7.	 Now that you can see the document outline, click on View Controller that appears
next to a yellow circle with a square inside:

Chapter 8

243

8.	 Then on the right-hand side, click on the identity inspector, go to the custom class,
and change the value of the class from ViewController to MainViewController:

9.	 After that, press play and check that your application is running, select a car, and
check that it is working. Be sure that it is working with your new Swift class by paying
attention to the fare value, which in this case isn't shown with two digits of precision.

10.	 Is everything done? I would say no, it's a good time to save your changes. Lastly,
delete the original Objective-C files, because you won't need them anymore.

How it works…
As you can see, it's not so hard replacing an old view controller with a Swift one; the first thing
you need to do is create a new view controller class with its protocols. Keep the same names
you had on your old code for attributes and methods that are linked as IBActions, it will
make the switch very straightforward; otherwise you will have to link again.

Integrating with Objective-C

244

Bear in mind that you need to be sure that your changes are applied and that they are
working, but sometimes it is a good idea to have something different, otherwise your
application can be using the old Objective-C and you didn't realize it.

Try to modernize your code using the Swift way instead of the old
Objective-C style, for example, nowadays it's preferable to use
interpolation rather than using stringWithFormat.

We also learned that you don't need to relink any action or outlet if you keep the same name.
If you want to change the name of anything you might first keep its original name, test your
app, and after that you can refactor it following the traditional factoring steps.

Don't delete the original Objective-C files until you are sure that the
equivalent Swift file is working on every functionality.

There's more…
This application had only one view controller, however applications usually have more than
one view controller. In this case, the best way you can update them is one by one instead
of all of them at the same time.

Upgrading the app delegate
As you know, there is an object that controls the events of an application, which is called
application delegate. Usually you shouldn't have much code here, but a few of them you might
have. For example, you may deactivate the camera or the GPS requests when your application
goes to the background, and reactivate them when the app returns to active.

Certainly it is a good idea to update this file even if you don't have any new code on it, so it
won't be a problem in the future.

Getting ready
If you are using the version control system, commit your changes from the last recipe or, if you
prefer, just copy your application.

How to do it…
1.	 Open the previous application recipe and create a new Swift file called

ApplicationDelegate.swift, then create a class with the same name.

Chapter 8

245

2.	 As in our previous class, we don't have any code on the application delegate, so we
can differentiate it by printing on the log console. Add this traditional application
delegate on your Swift file:
class ApplicationDelegate: UIResponder,
UIApplicationDelegate {
 var window: UIWindow?

 func application(application: UIApplication,
 didFinishLaunchingWithOptions launchOptions: [NSObject:
 AnyObject]?) -> Bool {
 print("didFinishLaunchingWithOptions")
 return true
 }

 func applicationWillResignActive(application:
 UIApplication) {
 print("applicationWillResignActive")
 }

 func applicationDidEnterBackground(application:
 UIApplication) {
 print("applicationDidEnterBackground")
 }

 func applicationWillEnterForeground(application:
 UIApplication) {
 print("applicationWillEnterForeground")
 }

 func applicationDidBecomeActive(application:
 UIApplication) {
 print("applicationDidBecomeActive")
 }

 func applicationWillTerminate(application:
 UIApplication) {
 print("applicationWillTerminate")
 }
}

Integrating with Objective-C

246

3.	 Now go to your project navigator and expand the Supporting Files group. After that,
click on the main.m file:

4.	 In this file we are going to import the magic file, the Swift header file:
#import "Chapter_8_Vehicles-Swift.h"

5.	 After that we have to specify that the application delegate is the new class we
have, so replace the AppDelegate class on the UIApplicationMain call with
ApplicationDelegate. Your main function should be like this:
int main(int argc, char * argv[]) {
 @autoreleasepool {
 return UIApplicationMain(argc, argv, nil,
 NSStringFromClass([ApplicationDelegate class]));
 }
}

6.	 It's time to press play and check whether the application is working or not.
Press the home button, or the combination shift + command + H if you are using
the simulator, and again open your application. Check that you have some messages
on your log console:

7.	 Now that you are sure that your Swift code is working, remove the original app
delegate and its importation on the main.m. Test your app just in case.

Chapter 8

247

8.	 You could consider that we had finished this part, but actually we still have
another step to do: removing the main.m file. Now, it is very easy: just click on the
ApplicationDelegate.swift file, and before the class declaration, add the
attribute @UIApplicationMain, then right click on the main.h and choose to
delete it. Test it and your application is done.

How it works…
The application delegate class has always been specified at the start of an application. In
Objective-C, it follows the C start point, which is a function called main. In iOS, you can specify
the class that you want to use as an application delegate.

If you program for OS X, the procedure is different; you have to
go to your nib file and change its class name to the new one.

Why did we have to change the main function and then eliminate it? The reason is that you
should avoid massive changes. If something goes wrong you won't know the step where you
failed, so you will probably have to rollback everything again. If you do your migration step by
step ensuring that it is still working, it means that in case of finding an error, it will be easier to
solve it.

Avoid making massive changes on your project; changing
step by step will be easier to solve issues.

There's more…
In this recipe, we learned the last steps of how to migrate an app from Objective-C to Swift
code, however we have to remember that programming is not only about applications; you
can also have a framework. In the next recipe, we are going to learn how to create our own
framework compatible with Swift and Objective-C.

Creating your own custom framework
As you know, sometimes we have code that is to be shared between applications, and the
best way to do this is by creating a framework. In this case we are going to create a framework
that should contain a customized view.

For this recipe, we are going to add only one view. This view will be painted with a gradient;
this way you can change your application's background easily.

Integrating with Objective-C

248

Getting ready
Create a new project called CustomViewsFramework. To do it click on File | New | Project
and then choose the section Framework and Library; after that choose the option Cocoa
Touch Framework:

Select Swift as the project language.

How to do it…
1.	 Start adding a new file to your project, in this case you can choose from the Source

section, the option Cocoa Touch Class:

Chapter 8

249

2.	 After that you have to write the new class name; let's call it CVGradientView. Also,
make sure that is selected to be a subclass of UIView and its language is Swift:

Integrating with Objective-C

250

3.	 Once the file is created and opened you can remove the comments that come
by default, then you have to add the attribute @IBDesignable before the class
declaration:
@IBDesignable public class CVGradientView: UIView {

4.	 Now we need to add some attributes; in this case we will use properties with an
observer that will refresh the gradient view every time a property is changed:
 @IBInspectable public var color1: UIColor =
 UIColor.redColor() {
 didSet{
 refresh()
 }
 }
 @IBInspectable public var color2: UIColor =
 UIColor.blackColor(){
 didSet{
 refresh()
 }
 }
 @IBInspectable public var roundCorners: CGFloat = 1.0 {
 didSet{
 refresh()
 }
 }
 @IBInspectable public var horizontal: Bool = false {
 didSet{
 refresh()
 }
 }

5.	 As you noticed, we have to implement the refresh() method:
 private func refresh(){
 let colors:Array = [color1.CGColor, color2.CGColor]
 gradientLayer.colors = colors
 gradientLayer.cornerRadius = roundCorners
 if (horizontal){
 gradientLayer.endPoint = CGPoint(x: 1, y: 0)
 }else{
 gradientLayer.endPoint = CGPoint(x: 0, y: 1)
 }
 self.setNeedsDisplay()
 }

Chapter 8

251

6.	 Then, we need to specify some information about the gradient layer; this information
is done following the core animation framework:
 var gradientLayer: CAGradientLayer {
 return layer as CAGradientLayer
 }
 override public class func layerClass()->AnyClass{
 return CAGradientLayer.self
 }

7.	 Now, we need the last part of this method, that is, the initializer:
 override init(frame: CGRect) {
 super.init(frame: frame)
 refresh()
 }

 required public init(coder aDecoder: NSCoder) {
 super.init(coder: aDecoder)
 refresh()
 }
}

8.	 Once it is done, we need to identify our module by going to our target build
settings and searching for the word module. Now, change the Module Identifier to
CustomViewsFrameWork:

9.	 The class is complete, so generate the project with  + b. Now, we need to check
that it is working, so let's create another project called Chapter 8 Testing
Views. Once it is created, click on the project navigator, then click on the target
Chapter 8 Testing Views.

Integrating with Objective-C

252

10.	 Here you have to select the Build Settings tab and change the field Embedded
Content Contains Swift Code to Yes:

11.	 Next, select the General tab and go to the Embedded Binaries section, click
on the plus button, and when a dialog appears just click on the button with the
phrase Add other…. Here, it is asking for your framework, so go to the build
product of your framework (it should be inside a folder called DerivedData/
CustomsViewsFramework/Build/Products/Debug-iphonesimulator/),
select it (the file called CustomsViewsFramework.framework), and press OK.
Check that the linked frameworks sections will also show it:

Chapter 8

253

12.	 Now that your app knows about this framework, you can click on the storyboard,
then click on the only view you have (not on the view controller), go to the identity
inspector, and change the Class name field to CVGradientView and its Module
name to CustomViewsFramework:

13.	 Press play and check that your background has changed. If you want you can even
change your background programmatically; just click on the view controller file and
start importing your framework:
import CustomViewsFramework

14.	 After that, change, for example, the background colors on the view did load:
 override func viewDidLoad() {
 super.viewDidLoad()
 (self.view as CVGradientView).color1 =
 UIColor.blueColor()
 (self.view as CVGradientView).color2 =
 UIColor.purpleColor()
 }

15.	 Press play again and see that your background is different.

How it works…
The reason we named this project differently than the others is that frameworks can't have white
spaces in their names. In the case of creating a project with white spaces in its name, you have
to go to build settings and change the product name to something without white spaces.

The attribute @IBDesignable lets interface builder know that it should render the view
directly in the canvas, but remember that this attribute can only be used if you are developing
a framework; it won't work on traditional applications.

The other attribute (@IBInspectable) means that this property can be viewed and set by
interface builder.

Notice that we had to mark our class and some attribute and methods as public. The reason
is that we want them to be accessed by external modules. If we don't do this, it means that
only our framework can access this class.

255

9
Dealing with Other

Languages

In this chapter, we will cover:

ff Using my old address book

ff Compressing a message

ff Using assembly code with Swift

ff Sharing C++ code with Swift

Introduction
Swift is a new language in a world of libraries that are already done. Sometimes you need
the help of other languages otherwise you might need to spend a lot of time creating the
functionalities that you want.

As you might know, since the 70s, C has been the default language regardless of the platform
you want to develop on. There are thousands or maybe millions of libraries written in C, and
you can find a lot of them that are open source, which makes it easier to port them to your iOS
or Mac OS project.

In this chapter, we are going to learn how to use external languages on a Swift project. Here,
we are going to see how to use C, C++, and even assembly code.

Dealing with Other Languages

256

Using my old address book
In this recipe, we are going to learn how to use a C code inside a Swift project. In this case,
let's imagine that we want to recycle one linked list of an address book written in C, that
way you can read the contacts from the device address book and store them in a file. The
advantage of storing structures on a file is that you can open the same file using other
platforms that don't have Swift, such as Linux or Windows.

Getting ready
Create a new project called Chapter 9 Address Book; make sure that this project is a
Swift project.

We are going to check that a new file will be created inside an application subfolder. As you
know, we can't see any device application folder without using a third-party application. In this
case we will download an application that can explore your device files called iFunBox. This
app can be freely downloaded from http://www.i-funbox.com/ but if you prefer there
are other free apps and commercial apps such as iBrowser and iPad Folder.

Downloading the iFunBox is necessary only if you are going to use
a physical device, if you are going to use only the simulator you
can use a traditional Finder window.

How to do it…
1.	 The first step we need to take is to add a new file; in this case you should select a C file:

http://www.i-funbox.com/

Chapter 9

257

2.	 Then it will ask for the filename; let's call it AddressBook.c and make sure that the
option Also create a header file is checked:

3.	 Select the same folder where the project source codes are stored for storing this new
file. After that you will see that it will ask you about creating an Objective-C bridge file;
click on Yes:

Dealing with Other Languages

258

4.	 Now you can see that there are three new files: AddressBook.c, AddressBook.h,
and Chapter 9 Address Book-Bridging-Header.h:

5.	 Before coding, start by clicking on the bridge file and import the AddressBook.h file:
#import "AddressBook.h"

6.	 Now go to AddressBook.h. The first action we need to take here is to remove the
stdio.h include. After that you have to add the structs that are going to be used on
our application:
struct Contact {
 char name[60];
 char phone[20];
 struct date {
 int day;
 int month;
 int year;
 } birthday;
};

struct ContactList {
 struct Contact contact;
 struct ContactList * next;
};

7.	 Once the structures and other types are defined, we are going to add the function
headers of the operations that can be done with our contact list: create a new
contact, initialize the list, destroy the list, add a new contact, and save the contacts
list into a file:
struct Contact createContact();
void initializeContactList(struct ContactList **);
void insertContact(struct ContactList **, struct Contact);
void saveContactList(struct ContactList *, const char *);
void destroyContactList(struct ContactList **);

Chapter 9

259

8.	 The header file is done. If you wish to complete it with more operations such as
finding a contact on the list or deleting a contact, feel free to do so. Now let's go to
the implementation file (AddressBook.c) and let's code the operations. Don't worry
if you don't understand this code; usually when you are using C code in Swift you only
need to understand what the operation does by reading its header:
struct Contact createContact(){
 struct Contact newContact;
 strcpy(newContact.name, "");
 strcpy(newContact.phone, "");
 newContact.birthday.day = 0;
 newContact.birthday.month = 0;
 newContact.birthday.year = 0;
 return newContact;
}

void initializeContactList(struct ContactList **
contactList){
 *contactList = NULL;
}

void insertContact(struct ContactList ** contactList,
struct Contact contact){
 struct ContactList * newContactList =
 malloc(sizeof(struct ContactList));
 newContactList->next = *contactList;
 newContactList->contact = contact;
 *contactList = newContactList;
}

void saveContactList(struct ContactList * contactList,
const char * filename){
 FILE * file = fopen(filename, "wb");
 if (file) {
 while (contactList) {
 fwrite(&contactList->contact, sizeof(struct
 Contact), 1, file);
 contactList = contactList->next;
 }
 fclose(file);
 }
}

void destroyContactList(struct ContactList ** contactList){
 struct ContactList * aux;

Dealing with Other Languages

260

 while ((aux = *contactList)) {
 *contactList = (*contactList)->next;
 free(aux);
 }
}

9.	 The C part is done, now you can return to the way we used to create our apps by
clicking on the storyboard and adding two buttons; one for loading the contacts and
another one for saving the contacts into a file. Link the first button with a function
called fillContacts and the other one with a function called saveContacts.
Don't implement anything yet, we are going to return to these functions soon.

10.	 As we need to read the contacts from the device address book, we need to add it
into our project, so click on the project in the project navigator, then make sure that
the General Info tab of the target Chapter 9 AddressBook is selected. Here, you
have to scroll down to the Linked Frameworks and Libraries and add the framework
AddressBook:

11.	 Return to the view controller, scroll up to the beginning, and import the address book:
import AddressBook

12.	 Inside the view controller class, we are going to start with the attributes, in this case
we only need a list as a pointer of ContactList:
var list:UnsafeMutablePointer<ContactList> = nil

13.	 Even if we have initialized the list assigning a nil value, we still need to initialize it
using the C-specific function and we can do this on the viewDidLoad method:
 override func viewDidLoad() {
 super.viewDidLoad()
 initializeContactList(&list)
 }

14.	 As you might have noticed, there is also a function that destroys the list, meaning that
we need to call it on the deinitializer:
 deinit{
 destroyContactList(&list)
 }

Chapter 9

261

15.	 Now we can implement the button events, let's start with the button that loads the
contacts from the device address book:
 @IBAction func fillContacts(sender: UIButton) {
 let status = ABAddressBookGetAuthorizationStatus()

 switch status {
 case .Authorized:
 // When the user has already authorized
 previously.
 self.readContacts()
 case .NotDetermined:
 // this case happens when it is the first time
 the user opens the app, so we have to request
 his permission
 var ok = false
 ABAddressBookRequestAccessWithCompletion(nil) {
 (granted:Bool, err:CFError!) in
 if granted {
 self.readContacts()
 }
 }
 case .Restricted:
 fallthrough
 case .Denied:
 // These cases are when for any reason the app
 can't access the contacts
 UIAlertView(title: "Not authorized", message:
 "This app isn't authorized for reading your
 contacts", delegate: nil, cancelButtonTitle:
 "OK").show()
 }
 }

Remember that in iOS and also in OS X, you can't read
the address book without the user's permission.

16.	 As you can see, there are two calls for the method readContacts, so that's the
method we need to implement now:
 private func readContacts(){
 var err : Unmanaged<CFError>? = nil
 var myAddressBook: ABAddressBook =
 ABAddressBookCreateWithOptions(nil,
 &err).takeRetainedValue()

Dealing with Other Languages

262

 let myContacts =
 ABAddressBookCopyArrayOfAllPeople(myAddressBook)
 .takeRetainedValue() as NSArray as [ABRecord]

 for aContact in myContacts {
 var newContactRecord:Contact = createContact();

 // Retrieving name
 var nameString =
 ABRecordCopyCompositeName(aContact)
 .takeRetainedValue() as String
 copyIntoCString(&newContactRecord.name,
 swiftString:nameString)

 // Retrieving phone
 var phones:ABMultiValue =
 ABRecordCopyValue(aContact,
 kABPersonPhoneProperty).takeRetainedValue() as
 ABMultiValue
 if(ABMultiValueGetCount(phones) > 0){
 var phoneString =
 ABMultiValueCopyValueAtIndex(phones,
 0).takeRetainedValue() as String
 copyIntoCString(&newContactRecord.phone,
 swiftString:phoneString)
 }
 // Retrieving birthday
 if let date = ABRecordCopyValue(aContact,
 kABPersonBirthdayProperty).takeRetainedValue()
 as? NSDate {
 var calendar =
 NSCalendar.currentCalendar().components
 ([.Day, .Month, .Year], fromDate: date)
 newContactRecord.birthday.day =
 Int32(calendar.day)
 newContactRecord.birthday.month =
 Int32(calendar.month)
 newContactRecord.birthday.year =
 Int32(calendar.year)
 }
 insertContact(&list, newContactRecord)
 }
 UIAlertView(title: nil, message: "The contacts were
 loaded", delegate: nil, cancelButtonTitle:
 "OK").show()
 }

Chapter 9

263

17.	 Now let's implement the button that saves the contacts onto a file; this one is much
easier because we just need to set the full path for the storing file and call the
function that saves the contacts:
 @IBAction func saveContacts(sender: UIButton) {
 let documentDir:NSString =
 NSSearchPathForDirectoriesInDomains
 (.DocumentDirectory, .UserDomainMask, true)[0] as
 NSString
 var filename:NSString =
 documentDir.stringByAppendingPathComponent
 ("contacts.dat") as NSString
 saveContactList(list, filename.UTF8String)
 UIAlertView(title: "Contacts saved", message:
 "contacts.dat was saved.", delegate: nil,
 cancelButtonTitle: "Ok").show()
 }

18.	 The application looks finished but if you try compiling it you will get an error because
there is a missing implementation: the function copyIntoCString. It's an
auxiliary function that we have to create. As you might need it in other projects, let's
implement it on a new file. Create a new file called CstringUtils.swift and add
the following code:
func copyIntoCString<T>(inout cstring: T, swiftString:
String){
 withUnsafeMutablePointer(&cstring, { (cstr) -> Void in
 let fullSwinftString = swiftString +
 String(UnicodeScalar(0))
 let newCString = fullSwinftString.dataUsingEncoding
 (NSUTF8StringEncoding, allowLossyConversion: true)!
 newCString.getBytes(cstr, length:
 sizeofValue(cstring))
 })
}

Dealing with Other Languages

264

19.	 Good, now the application is done, however you still need to test it. Press play, accept
every permission when requested, and press the button that retrieves the contacts
from the address book. When you receive a dialog that the contacts were loaded,
you can press the save button. On screen the only result that you might have is just a
dialog like this one:

If you think that you didn't receive much visual information you are 100% right,
because this app wasn't created to do something visual; rather it was created for
generating a file.

Chapter 9

265

20.	 If you are using a physical device, open your iFunBox application, which was
downloaded at the beginning of this recipe (please note, at the time of writing,
iFunBox does not run with 8.3 or higher), expand the User Application section, and
click on your app (Chapter 9 Address Book). On the right-hand side, double-click on
the document folder and you should see a file called contacts.dat:

21.	 You can copy this file if you want, and you can also do the opposite process by
reading this file on another platform, but this task will be left as homework.

How it works...
Although Xcode asks you about creating an Objective-C bridge file, actually it creates a file
that can also be a C bridge file. Once your C header files are imported here you can use them
on Swift. As you might have noticed, C doesn't work with objects; the only thing you can do
is create a struct (which doesn't have methods in C) and send it through some functions as
arguments.

C types have their equivalent type in Swift by prefixing the C on its name, as in CChar, CInt,
CFloat and structs just keep their names without the word struct as you can see on the
ContactList and Contact.

Another feature that you have to consider is that C works with pointers. A pointer is an
information reference like we had on the contact list. When you have pointers in C they
are converted to UnsafeMutablePointer in Swift, double pointers are converted to
UnsafeMutablePointer of UnsafeMutablePointer, and so on; that's the C style of
receiving function arguments by reference.

When you want to call a C function that requires an argument by reference, you have to use
the & operator. It means that you are sending the memory address of that variable. However,
the Swift way of declaring an argument by reference is different: you have to add the inout
attribute before the argument name.

Dealing with Other Languages

266

Using some C types on Swift sometimes needs some tricks, for example, C doesn't have a
type of strings; the most similar one is the array of characters, which sometimes is converted
as [CChar] and sometimes it is converted as a tuple of UInt8. If you need to use a C
variable without casting it by retrieving its memory address you have to use the function
withUnsafeMutablePointer.

Compressing a message
Even if you work only on an internal project, you will probably have to use a library. Sometimes
it is a Swift framework but sometimes it is a C library. Using C libraries is very common
nowadays, mainly because there are a lot of them.

For this recipe we are going to use a library that can be very useful: BCL. This simple library
can be easily compiled on Xcode and you can use it every time your project needs to compress
any information.

Getting ready
Before we start coding this project, let's download the BCL library. It can be found at
http://bcl.comli.eu/ and it's free to download the source code. Uncompress the
downloaded file and leave its finder window opened.

If you are going to install this application onto a physical device you need to download the
iFunBox as mentioned in the previous recipe.

For this recipe, instead of creating a project, start creating a workspace and call it Chapter
9 Compressing Workspace.

How to do it…
1.	 First, you need to create a project, but in this case instead of creating a single view

application, select Cocoa Touch Static Library from the Framework and Library
section and press Next:

http://bcl.comli.eu/

Chapter 9

267

Selecting Cocoa Touch Static Library implies developing it in C,
C++, or Objective-C. Swift doesn't have a static library.

2.	 Now call your project Chapter 9 BCL. Notice that it is not asking whether it is a
Swift project:

Dealing with Other Languages

268

3.	 On the next screen you have to select the destination folder where the project is
going to be stored, but before pressing the Create button, make sure that this
project belongs to your workspace:

4.	 Check that this project starts with two source code files: Chapter_9_BCL.h and
Chapter_9_BCL.m. Delete them as they are not needed. While deleting, you can
move them to trash instead of only removing the reference:

5.	 Now drag the files that end with .c and .h from the BCL library (located at the src
folder) into your source code group:

Chapter 9

269

Actually you don't need to copy the file bcltest.c and bcl.c
because they belong to BCL as a program not as a library, but we
are copying them to make life easier.

6.	 Although you have the necessary files for building the library you still need to indicate
the header files that should be used externally. This is a procedure you have to do
every time you build a library written in C, C++, or Objective-C. To do it, select the
Build Phases tab from the target Chapter 9 BCL; after that expand the section
Copy Files:

Dealing with Other Languages

270

7.	 Now press the plus sign, which is located on the bottom of this section; a new dialog
will appear showing the files that can be exported. Select only the header files such
as huffman.h, shannonfano.h, and rle.h:

Remember that you can select more than one file by holding
the command key and clicking over the files.

8.	 The library is done, you need to check whether everything is OK by pressing
command + b; you should see a message that the build has succeeded.

9.	 The next part of this recipe is creating an app that compresses a user message.
To do it don't close your project and create a new project; this time, instead of a
static library select a single view application done with Swift and call it Chapter 9
BCLApp. Something that is very important is that you have to add this project to the
workspace and group Chapter 9 Compressing Workspace.

10.	 Notice that now we have two projects. Make sure that the app is selected by clicking
on it, then click on the target Chapter 9 BCLApp and select the general info tab.
Scroll down to the Linked Framework and Libraries section, expand it if necessary
and press the plus sign.

Chapter 9

271

11.	 A dialog will appear but this time there will be a new group called Workspace; here
you have to select libChapter 9 BCL.a:

The static libraries always have the prefix lib and the extension
.a on their names.

12.	 Once you have added the library you will need to add a new header file to your
project; let's call this file BridgeHeader.h.

Dealing with Other Languages

272

13.	 Before we start coding this file, let's set this file as the bridge file for the app; hence
you have to go to Build Settings of your app, write Bridging on the search box, and
once you have found field Objective-C Bridging Header, write Chapter 9 BCLApp/
BridgeHeader.h:

14.	 Let's return to BridgeHead.h and add a few include statements for using the
compression library:
#include <Chapter 9 BCL/huffman.h>
#include <Chapter 9 BCL/lz.h>
#include <Chapter 9 BCL/rice.h>
#include <Chapter 9 BCL/rle.h>
#include <Chapter 9 BCL/shannonfano.h>
#include <Chapter 9 BCL/systimer.h>

15.	 The application is now linked with the library, which means that from now on you can
return to the Swift programming. Go to the storyboard and add a text view and two
buttons. Usually the text views come with a text by default; if you want you can leave it
so it will be handier when testing. Link the text view, naming it as textView:
 @IBOutlet weak var textView: UITextView!

16.	 After that you have to add the actions for the buttons. For the first button, change its
label to Huffman and link with the following action:
 @IBAction func huffman(sender: UIButton) {
 let text = self.textView.text
 let textIn:UnsafeMutablePointer<UInt8> =
 UnsafeMutablePointer<UInt8>((text as
 NSString).UTF8String)
 let textOut:UnsafeMutablePointer<UInt8> =
 UnsafeMutablePointer<UInt8>
 .alloc(countElements(text) * 101 / 100 + 320)
 let outsize = Huffman_Compress(textIn, textOut,
 UInt32(countElements(text)))

Chapter 9

273

 save("huffman.dat", data: textOut, dataSize:
 Int(outsize))
 }

17.	 With the second button you can do the same; change its label to lz and link it with
this similar code:
 @IBAction func lz(sender: UIButton) {
 let text = self.textView.text
 let textIn:UnsafeMutablePointer<UInt8> =
 UnsafeMutablePointer<UInt8>((text as
 NSString).UTF8String)
 let textOut:UnsafeMutablePointer<UInt8> =
 UnsafeMutablePointer<UInt8>
 .alloc(countElements(text) * 257 / 256 + 1)
 let outsize = LZ_Compress(textIn, textOut, UInt32(
 countElements(text)))
 save("lz.dat", data: textOut, dataSize:
 Int(outsize))
 }

18.	 The last step as you may imagine, is implementing the save function, which can be as
easy as this code:
 private func save(filename: String, data:
 UnsafePointer<UInt8>, dataSize: Int){
 let nsData = NSData(bytes: data, length: dataSize)
 let path = NSSearchPathForDirectoriesInDomains
 (.DocumentDirectory, .UserDomainMask, true)[0] as
 String + "/\(filename)"
 NSFileManager.defaultManager()
 .createFileAtPath(path, contents: nsData,
 attributes: nil)
 }

19.	 The application is done, however it is still necessary to test it. To do this you have
to make sure that the app is selected at the schema combo, otherwise nothing will
happen when you press play:

Dealing with Other Languages

274

20.	 Now press play, write a message on the text field and press the huffman button,
then press the lz button. Similar to the previous recipe, you won't see anything
visually attractive but if you open your iFunBox, expand the app and open the
document folder. If you would like to see the file sizes without copying them
just click on the list view:

How it works…
When you have a big project you can divide it into small components; to do this, you can divide
your project into small projects. A good way of doing this is by creating workspaces.

A workspace is like a connection between projects, making the usage of one project (in this
case the BCL static library) into the other project (in this case the application) easier.

Avoid creating a huge project, and instead try to divide it into small
projects; it will make your project easier to maintain, and simplify finding
issue solutions and even creating unit tests.
A static library is something that is copied into your project as is,
meaning that your project will grow in size but you won't be worried about
a library update that can break your app. Every time you create a static
library you must export the header files, which contain the functions that
can be used publicly.
Remember that even if you have a static library on the same workspace,
you still need to link it on your project and create a bridge file.

You can also see that we used a new method: alloc. The method alloc was used for
creating the C array with a specific size; remember that arrays in C are not resizable and
if you were to store anything on them, you must have allocated enough memory for it.

There is a new type also: UnsafePointer. The reason for this is that C functions can
receive constants or variables as arguments, for example, receiving const char * is
different from char *; the first one is considered an UnsafePointer and the second one
is a UnsafeMutablePointer. Unsafe mutable pointers can be casted to unsafe pointers
implicitly, but it is not true the other way round.

Chapter 9

275

There's more…
As you can see, there are more compression types in this library; you can try using a few of
them to see which one is the best.

In the next recipe we are going to learn how to use assembly code with Swift. This feature is
very useful if you really need performance.

Using assembly code with Swift
In this recipe, we are going to learn how to use assembly code with Swift. Of course, nowadays
nobody develops using only assembly code, but using it in part of an app is very common
when you need performance. Image manipulation programs, for example, use assembly code
as it is much faster when you have to process something via hardware than via software.

Obviously programming with assembly language has its drawbacks, the first one being that
you might have to rewrite your source code for different processors, for example, if you have an
assembly code done for old iPhones (32-bit ARM processor) you might have to rewrite them for
the new devices (64-bit ARM processor), and even with both codes you might write your code for
a third time if you wish to see your app working on the iPhone simulator (Intel processor).

This time we are going to use a very simple code as it is out of the scope of this book to teach
the ARM architecture. In this case, we are going to create a simple variable swap function.

Getting ready
For this recipe, it is recommended having a physical device but it is not mandatory
because you can compile from the command line specifying the architecture that you
want to compile for.

Create a new Swift single view application called Chapter 9 Assembly, add a new file
called AssemblyCode.c, and click on Yes when Xcode asks for the bridging file.

How to do it…
1.	 First, you have to click on the bridging header file (Chapter 9 Assembly-

Bridging-Header.h) and include the file AssemblyCode.h:
#include "AssemblyCode.h"

2.	 Then, go to AssemblyCode.h and add the following header:
void swap(int * firstnumber, int * secondnumber);

Dealing with Other Languages

276

3.	 Once the definition is done you have to code the implementation on
AssemblyCode.c. Here we are going to use a very simple code that can be used
on 32 bits and 64 bits, but bear in mind that you might need to separate them in
the case of more complex codes:
void swap(int * firstnumber, int * secondnumber){
#if defined __arm64__ || defined __arm__
 asm volatile (
 "EOR %[first],%[first], %[second] \n\t"
 "EOR %[second],%[second], %[first] \n\t"
 "EOR %[first],%[first], %[second] \n\t"
 : /* outputs */
 [first]"=r"(*firstnumber),
 [second]"=r"(*secondnumber)
 : /* inputs */ [first]"r"(*firstnumber),
 [second]"r"(*secondnumber)
);
#else
#error "Architecture not allowed"
#endif
}

4.	 The assembly part is done; click on the storyboard and create a layout with two
labels, two text fields, and a button. Change the labels text to First Number and
Second Number; on the text fields replace the place holders with some sample
number, and change the button text to Swap numbers. The final result should be
something similar to the following:

Chapter 9

277

5.	 Click on each text field on the storyboard and change the keyboard type on the
attribute inspector to Number and Punctuation:

6.	 After placing the user views into the storyboard you have to link the text
fields with the view controller and call them firstNumberTextField and
secondNumberTextField:
 @IBOutlet weak var firstNumberTextField: UITextField!
 @IBOutlet weak var secondNumberTextField: UITextField!

7.	 Then, link the button with this action:
 @IBAction func swapNumbers(sender: UIButton) {
 var number1 =
 Int32(Int(self.firstNumberTextField.text!))
 var number2 =
 Int32(Int(self.secondNumberTextField.text!))
 swap(&number1, &number2)
 self.firstNumberTextField.text = "\(number1)"
 self.secondNumberTextField.text = "\(number2)"
 }

8.	 The application is done, let's test it. First, change the device to the iPhone 6
simulator and press play:

Dealing with Other Languages

278

9.	 If you receive an error message it's alright. Just pay attention that the message is the
same as the one you wrote on the file AssemblyCode.c:

10.	 Now plug your Apple device into the computer, select it on the active schema and
press play again. You should see the app, so type two different numbers (one on
each text field), and press the swap button. The result is that they exchange their
text fields.

How it works…
Writing assembly code is something that you need to do on the C or Objective-C layer, meaning
that you still need to know how these languages are converted to Swift. Using the statement
as volatile allows you to write assembly code. Inside that statement you have up to four parts
delimited by a colon:

ff The first part is a string (only one) that is your assembly template; we didn't write
more than one string. Notice that on C and Objective C if you write two constant
strings they are treated as only one. Here you can specify the variables using
%[assembly variable name] or %0, %1….

ff The second part is the output variables; you can name them for your assembly
template by using square brackets, and between parentheses you can specify
the equivalent C variable.

ff The third part is the input variables, which work in a similar way as the output
variables.

ff The last part (which we haven't used) is what is called "clobbers". Clobber registers
are registers that have their value modified in the assembly chunk. Compiler will
know not to expect that the old register value is preserved.

Take care writing huge assembly code, as debugging it
could be very hard.

As mentioned before, assembly code is platform dependent, meaning that it can be different
when you use it on the simulator, on an old Apple device, or using the new 64-bit device. To
differentiate them you can use the macro __arm__ for 32-bit devices and __arm64__ for
new arm devices.

Chapter 9

279

Usually you are going to see functions that contain assembly code with the keyword inline.
This is done due to assembly code being used when performance is really necessary, and the
programmer is trying to tell the compiler to copy the function code where it is called instead
of jumping to the function implementation. Unfortunately to do it you have to implement the
function on the header file and Swift doesn't accept this.

There's more…
Assembly code is also something very interesting when you need to debug an application that
was compiled on release configuration. There is a good website for learning the arm assembly
code: http://www.peter-cockerell.net/aalp/html/frames.html.

You can also investigate NEON to learn about how to work with vectors, double word registers,
and so on, and if you would like to know even more you can investigate intrinsics, which are C
functions that call arm instructions.

If you are asking yourself how games that require big performance are developed if assembly
code is very complicated, the answer by is using C++. In the next recipe we are going to use it
with Swift.

Sharing C++ code with Swift
If you have some code or an external library written in C++ or Objective-C++, you probably had
a big surprise when you received Apple's note that you can't use C++ on Swift directly as we
did with C or Objective C.

There is still a solution and that is creating your own wrapper. There are some attempts like
SwiftPP (https://github.com/sandym/swiftpp) but they are still very immature. In this
recipe we are going to see how you can wrap your C++ class for using it on Swift.

In this recipe we are going to wrap a C++ xml creator for use on Swift. Don't worry if you
don't know C++ as the idea of this recipe is just letting you know how to create this kind
of proxy class.

Getting ready
For this recipe we will need to download a pure C++ library for creating XML files; in this
case the library chosen was pugixml. So before we start, open your web browser, go to
http://pugixml.org/ (or just Google pugixml) and uncompress it. After that, create
a new Swift single view project called Chapter 9 Xml Wrapper.

http://www.peter-cockerell.net/aalp/html/frames.html
https://github.com/sandym/swiftpp
http://pugixml.org/

Dealing with Other Languages

280

How to do it…
1.	 First of all we are going to create two project groups, so right click on the source

code group and select New Group and call it Pugi. Repeat the operation calling the
second group PugiWrapper.

2.	 Now return to the Pugi source code finder window. Here you have to open the folder
src, then you have to select all files with the shortcut command + a and drag them
to the group Pugi. Accept the creation of the bridging file when it is requested:

3.	 Now go to the PugiWrapper group and create a new file; this time you have to
choose Cocoa Touch Class from the iOS source section. This file should be named
PugiBase. It must be a subclass of NSObject and make sure that Objective-C was
selected as the language:

Chapter 9

281

4.	 Click on the file PugiBase.h that was just created, start including the pugixml.
hpp file in case of being imported from a C++ file:
#ifdef __cplusplus
#include "pugixml.hpp"
#endif
Now we can define this class with the following code.
@interface PugiBase : NSObject
@property (nonatomic, assign) void * element;
-(instancetype) init;
@end
Once this class interface is defined we can implement it,
in this case only the initializer is necessary by setting
the property to NULL.
@implementation PugiBase
-(instancetype) init{
 self = [super init];
 if(self){
 self.element = NULL;
 }
 return self;
}
@end

Now that you have MinGW and MSYS, there's no need to be jealous of
those with a Linux installation anymore, since they implement in your
system the most important parts of a Linux development environment.

5.	 This class is done, so the next step is to create a class that will inherit from
PugiBase. To do this, add a new Cocoa Touch Class to the PugiWrapper group
and call it PugiNodeAttribute. For this class the only method that we are going
to create is the setValue. Knowing this, go to the PugiNodeAttribute.h file and
add the following code:
#import "PugiBase.h"

@interface PugiNodeAttribute : PugiBase
-(void) setValue:(NSString *) value;
@end

Dealing with Other Languages

282

6.	 Implementing this class is easy, however there is an important detail: the
implementation of this class will have C++; this means that before typing anything,
rename this file from PugiNoteAttribute.m to PugiNodeAttribute.mm
(Objective-C++ extension):

7.	 Click on the renamed file and complete the class implementation with the
following code:
@implementation PugiNodeAttribute

-(void) setValue:(NSString *) value{
 if(self.element){
 reinterpret_cast<pugi::xml_attribute *>(self.element)-
>set_value([value UTF8String]);
 }
}

@end

8.	 Now that the attribute is done we can repeat the operation for the node (XML tag), so
create a Cocoa Touch Class file called PugiNode, rename the .m to .mm, go to the
header file and add the following code:
#import "PugiBase.h"
#import "PugiNodeAttribute.h"

@interface PugiNode : PugiBase
-(PugiNode*) appendChild:(NSString *) name;
-(PugiNodeAttribute *) appendAttribute:(NSString *) name;
@end
For the implementation just add this code.
#import "PugiNode.h"
#import "PugiNodeAttribute.h"

@implementation PugiNode

-(PugiNode*) appendChild:(NSString *) name{
 if (self.element) {
 PugiNode * newNode = [PugiNode new];

Chapter 9

283

 newNode.element = new
 pugi::xml_node(reinterpret_cast<pugi::xml_node*>
 (self.element)->append_child([name UTF8String]));
 return newNode;
 }
 return nil;
}
-(PugiNodeAttribute *) appendAttribute:(NSString *) name{
 if (self.element){
 PugiNodeAttribute * newAttribute =
 [PugiNodeAttribute new];
 newAttribute.element = new
 pugi::xml_attribute(reinterpret_cast<pugi::
 xml_node*>(self.element)-
 >append_attribute(name.UTF8String));
 return newAttribute;
 }
 return nil;
}

@end

9.	 For finishing the wrapper classes, we only need to create another class that
represents an XML document. Again, create a new Cocoa Touch Class and this time
call it PugiDocument. Rename the implementation file from .m to .mm and add the
following code into the .h file:
#import "PugiBase.h"
#import "PugiNode.h"

@interface PugiDocument : PugiBase

-(instancetype) init;
-(PugiNode *) appendChild:(NSString *) name;
-(void) saveFile:(NSString *) path;

@end
On the implementation file (PugiDocument.mm) add the
following code.
@implementation PugiDocument

-(instancetype) init{
 self = [super init];
 if(self){
 self.element = new pugi::xml_document;
 }

Dealing with Other Languages

284

 return self;
}

-(PugiNode *) appendChild:(NSString *) name{
 if(self.element){
 PugiNode * newNode = [PugiNode new];
 newNode.element = new
 pugi::xml_node(reinterpret_cast<pugi::xml_document
 *>(self.element)->append_child([name UTF8String]));
 return newNode;
 }
 return nil;
}

-(void) saveFile:(NSString *) path{
 if (self.element) {
 reinterpret_cast<pugi::xml_document
 *>(self.element)->save_file(path.UTF8String);
 }
}

@end

10.	 The wrapping step has finished, so now we can use these classes in our app, but we
still need to create another class that is going to be used by our app and will store the
user information before creating the XML file. This class will be a pure Swift one, so
add a new Swift file called Task.swift into the project and add the following code:
class Task {
 var description:String
 var important :Bool

 init(description:String, important: Bool){
 self.description = description
 self.important = important
 }
}

11.	 Before we start coding the view controller, don't forget that you have to import the
header files of the wrapper classes into the bridging file. So click on the bridging file
(Chapter 9 Xml Wrapper-Bridging-Header.h) and add the following lines:
#import "PugiDocument.h"
#import "PugiNode.h"
#import "PugiNodeAttribute.h"

Chapter 9

285

12.	 Now let's mock up our view by clicking on the storyboard file and adding three labels,
two buttons, one text field, and one UISwitch, something like the following image:

13.	 Now, connect the text field with the view controller and call it taskTextField, and
the UISwitch should be called as importantSwitch. So the generated code
should be like this one:
 @IBOutlet var taskTextField: UITextField!
 @IBOutlet var importantSwitch: UISwitch!

14.	 Now we can add a new attribute for storing the user tasks:
 var tasks = [Task]()

15.	 The last thing we need to do is create the events for the buttons. Connect the add
button with the following code:
 @IBAction func addTask(sender: AnyObject) {
 tasks.append(Task(description: taskTextField.text,
 important: importantSwitch.on))
 taskTextField.text = ""
 importantSwitch.on = false
 }

16.	 Good, now we can finalize by linking the save button with the following action:
 @IBAction func saveXml(sender: AnyObject) {
 var document = PugiDocument()!

Dealing with Other Languages

286

 var mainNode = document.appendChild("tasks")
 var path = (NSSearchPathForDirectoriesInDomains
 (.DocumentDirectory, .UserDomainMask, true)[0] as
 NSString).stringByAppendingPathComponent
 ("tasks.xml") as String;
 for task in tasks {
 let node = mainNode.appendChild("task")
 let attributeDescription =
 node.appendAttribute("description")
 attributeDescription.setValue(task.description)
 let attributeImporant =
 node.appendAttribute("important")
 attributeImporant.setValue(task.important ?
 "yes" : "no")
 }
 document.saveFile(path)
 }

17.	 Congratulations, the app is done! Press play and add some tasks, such as Clean
the room or Study Swift very hard. Once you've finished you can press the Save
button. What happened? Open your iFunBox or equivalent application and check
the Documents folder of your app.

How it works…
pugixml is a minimalist XML library that can be easily used. In this case we wrapped only
the minimal necessary code that was the tag attribute, the XML tag (called node), and the
complete XML called document. Of course, there are more classes in this library and you can
complete the code if you want.

As mentioned before, C++ can't be used directly on Swift, but you can create Objective-C
class that calls C++. Here there is a big detail: you can create Objective-C classes but not
Objective-C++ classes, which means that the class interface can't contain any C++ objects.

How can we solve this issue? Every C++ object (like attributes or properties) must be declared
as void* (an unsafe pointer to anything) and the arguments or returning values must be
another wrapper class.

For better compatibility between Swift and Objective-C, try to use
types that are common to both languages instead of the C or C++
types, such as NSString instead of char*.

287

10
Data Access

In this chapter, we will cover the following recipes:

ff Creating an SQLite database

ff Checking where your IP is from

ff Tracking your phone activity

ff Controlling your stocks

ff Designing a voting device using CouchDB

Introduction
As you might know, nowadays it is very difficult to imagine an app that doesn't store anything
on hard disk. Simple apps such as a calculator or a compass might not need to store any
information, but usually you will need to create apps with more complex features and that will
need to keep information even if the device reboots.

When you have to store a minimum amount of information such as a simple date, or just the
current app version, you can use a file as we have done in the previous chapters of this book,
but when you have to store a few records with different data structures, you need the help of
a database.

In this chapter, we are going to learn how to use databases on Swift and you will see the
advantages of each method.

Data Access

288

Creating an SQLite database
Usually, storing information on a mobile app is done with a local database. To do that, it is very
common to use SQLite because even if it is a bit limited, this database has some advantages,
such as it is a serverless database, it is zero-configuration, and it is built in iOS and Mac OS X.

Getting ready
For this recipe, we are going to download an SQLite file; therefore you will need an SQLite
client for reading this file. So beside the iFunBox downloaded in the previous chapter, you will
also need to download a program such as SQLiteBrowser (http://sqlitebrowser.org/).

Create a new project called Chapter 10 SQLite; keep in mind where you saved this recipe
because we are going to complete it in the next recipe.

How to do it…
1.	 When the project is created, click on the General tab and scroll down until you get

to the section Linked Frameworks and Libraries. Click on the plus sign for adding a
new library and select libsqlite3.tbd:

http://sqlitebrowser.org/

Chapter 10

289

2.	 After that, let's create a new bridging file by adding a new header file called
BridgingHeader.h; check that it is set as a bridging header in the Build Settings.
In this file, include the sqlite3.h:
#include <sqlite3.h>

3.	 Now add a new file called SQLite.swift; here we are going to start coding a class
called SQLite and inside of it an enumeration called status:
public class SQLite {
 public enum Status {
 case CONNECTED,
 DISCONNECTED
 }

4.	 Now, let's create two attributes, one for the connection with the database and
another one for the current connection status:
 private var _connection:COpaquePointer = nil
 private var _status = SQLite.Status.DISCONNECTED

5.	 The next step is creating a read-only computed attribute that returns the current
connection status:
 public var status:SQLite.Status {
 return _status
 }

6.	 After that, you can create a method that opens a connection with the database. For
this method, we will need only the filename as an argument; however, we are going to
store it in the documents folder:
 public func connect(filename:String)-> Bool{
 let documentsPath =
 (NSSearchPathForDirectoriesInDomains
 (.DocumentDirectory, .UserDomainMask, true)[0] as
 NSString).stringByAppendingPathComponent(filename)
 let error =
 sqlite3_open(documentsPath,&self._connection)
 if error == SQLITE_OK {
 // Adding a table just in case
 let statement = "CREATE TABLE IF NOT EXISTS ips
 " +
 "(ipstart text, ipend text, " +
 "iipstart integer, iipend
 integer, " +
 "country text);" as NSString
 var errmessage:UnsafeMutablePointer<CChar> =
 nil

Data Access

290

 if sqlite3_exec(self._connection,
 statement.UTF8String, nil, nil, &errmessage) ==
 SQLITE_OK {
 self._status = .CONNECTED
 return true
 }
 return false
 return false
 }

7.	 The last detail for this class is the deinitializer that should close the database
connection:
 deinit {
 switch self._status {
 case .CONNECTED:
 sqlite3_close(self._connection)
 default:
 break;
 }
 }
}

8.	 The model part is done; now let's create the view part by clicking on the storyboard
and adding a label, a text field, and a button, something similar to this layout:

9.	 Now connect the text field with the view controller and call it
databaseNameTextField:
 @IBOutlet var databaseNameTextField: UITextField!

Chapter 10

291

10.	 Once it is done, you can create an action for the only button; in this case we are going
to open the database connection, create a table and check whether everything was
done successfully:
 @IBAction func createDatabase(sender: AnyObject) {
 var database = SQLite()
 if self.databaseNameTextField.text == "" {
 let alert = UIAlertController(title: "No database
 name", message: "You must introduce a database
 name", preferredStyle:.Alert)
 self.presentViewController(alert, animated: true,
 completion: nil)

 return

}
 let dbname = self.databaseNameTextField.text +
 ".sqlite"
 if database.connect(dbname) {
 UIAlertView(title: nil, message: "Database was
 created", delegate: nil, cancelButtonTitle:
 "OK").show()
 let alert = UIAlertController(title: nil,
 message: "Database was created",
 preferredStyle:.Alert)
 self.presentViewController(alert, animated: true,
 completion: nil)

 }else {
 let alert = UIAlertController(title: nil,
 message: "Failed creating the database",
 preferredStyle:.Alert)
 self.presentViewController(alert, animated: true,
 completion: nil)
 }

 }

11.	 This app is done. Better off saying, this first version is done; now press play and write
a filename for your database, such as mydatabase, and then press the button for
creating a database.

Data Access

292

12.	 Now let's check the real application, so open your iFunBox and search for the app
Chapter 10 SQLite; open its Document folder, select the only file that is in this
folder, then press the button Copy to Mac and save it in your local documents folder:

13.	 Once you have the empty database, let's check whether we are able to open it. Open
your Sqlite browser (only supports 8.3 and below) and click on the Open Database
button:

14.	 Choose the database file you have downloaded and open it. After that, you should see
on the main panel and on the database schema a table called ips, which means that
your database was created successfully and it can create a table without any errors:

Chapter 10

293

How it works…
SQLite is not a framework; rather, it is a library that uses the traditional C functions instead of
Objective-C or Swift objects.

As you might know, using C functions implies using C types; that's the reason we had to use
UnsafeMutablePointer<CChar> for the error message and COpaquePointer for the
database handle.

COpaquePointer represents a C pointer such as
UnsafeMutablePointer, but it is used when you can't represent
the pointer type on Swift, such as some structs, for example.

In this recipe, we used three SQLite functions:

ff sqlite3_open: This function opens a database. It creates a new database file if
one doesn't exist. This function receives as an argument the file name and a handle
pointer by reference.

If you don't want to create a database file, you can use in-memory
databases; check it out at https://www.sqlite.org/
inmemorydb.html.

ff sqlite3_close: This function closes the connection with the database and frees
the resources that are being used for this connection. Bear in mind that C has no
objects, no garbage collector, and no automatic reference counter; therefore, if you
don't free the resources, they are going to be there until your application finishes
or crashes.

ff sqlite3_exec: This function executes an SQL statement; in this case it wasn't
really necessary because we just want to check whether the file was created or not;
however sometimes SQLite creates only an empty file if you don't use the database.

See also
ff SQLite has a lot of options and functions; you can check out more about it at the

official website: https://www.sqlite.org/cintro.html. Now that you know
how to create a database, let's work with it, creating registers and querying results.

https://www.sqlite.org/inmemorydb.html
https://www.sqlite.org/inmemorydb.html
https://www.sqlite.org/cintro.html

Data Access

294

Checking where your IP is from
Sometimes you need to query from a remote database, but as you know, SQLite works with
a local database, meaning that you have to populate it before querying. In this recipe, we
are going to convert a CSV file into an SQLite database and after that we are going to query
some results.

Getting ready
For this recipe, we are going to need a CSV file with the ranges of IPs of each country. There
are some websites that give or sell it to you. You can download it free from https://db-ip.
com/db/download/country. Uncompress it, and add it into your SQLite application.

Right now this file is called dbip-country-2014-12.csv, but it
changes its name every month, so replace the filename where it is
mentioned with the one you have.

How to do it…
1.	 Let's start completing the SQLite class by adding two additional methods, one of

which is for executing statements that don't return any result, such as insert, delete,
and update queries. To do it, click on the file SQLite.swift and inside the SQLite
class add this code:
 func exec(statement: String) -> Bool {
 var errmessage:UnsafeMutablePointer<CChar> = nil
 return sqlite3_exec(self._connection, (statement as
 NSString).UTF8String, nil, nil, &errmessage) ==
 SQLITE_OK
 }

 func query(statement:String) -> [[String]]? {
 var sqliteStatement:COpaquePointer = nil
 if sqlite3_prepare_v2(self._connection, (statement
 as NSString).UTF8String , -1, &sqliteStatement,
 nil) != SQLITE_OK {
 return nil
 }
 var result = [[String]]()
 while sqlite3_step(sqliteStatement) == SQLITE_ROW {
 var row = [String]()

https://db-ip.com/db/download/country
https://db-ip.com/db/download/country

Chapter 10

295

 for i in
 0..<sqlite3_column_count(sqliteStatement) {
 row.append(String.fromCString(UnsafePointer
 <CChar>(sqlite3_column_text(sqliteStatement,
 i)))!)
 }
 result.append(row)
 }
 return result
 }

2.	 Now, let's add a new file called Functions.swift in your project. This file will
contain some auxiliary functions. The first function that we are going to create is the
one that reads a CSV file and returns its contents inside a double array of string:
func csv2array(filename: String) -> [[String]]? {
 var error: NSErrorPointer = nil
 var url =
 NSBundle.mainBundle().URLForResource(filename,
 withExtension: "csv")
 if let fileContent = String(contentsOfURL: url!,
 encoding: NSUTF8StringEncoding, error: error){
 var records = [[String]] ()
 fileContent.enumerateLines({ (line, _) -> () in
 var fields:[String] =
 line.componentsSeparatedByString(",").map({
 (field:String) -> String in
 return
 field.stringByTrimmingCharactersInSet
 (NSCharacterSet(charactersInString: "\""))
 })
 if isIPv4(fields[0]) {
 records.append(fields)
 }
 })

 return records
 }else {
 return nil
 }
}

Data Access

296

3.	 Now we need two additional functions related to the IP string; the first one will check
whether the input string has an IPv4 format:
func isIPv4(ip:String) -> Bool {
 var error: NSErrorPointer = nil
 return try NSRegularExpression(pattern:
 "^\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}$", options:
 .CaseInsensitive, error: error)!.matchesInString(ip,
 options: nil, range:NSMakeRange(0,
 countElements(ip))).count > 0
}

4.	 The next function will convert the IP from a string to an unsigned integer; it will allow
us to compare if an IP is in a range:
 func ip2int(ip:String) -> UInt32 {
 return CFSwapInt32(inet_addr((ip as
 NSString).UTF8String))
 }

5.	 We have finished with the auxiliaries functions, now we have to update the storyboard.
Go to your storyboard and add two more buttons, one with the word Populate and
another one with the word Search, something similar to the following screenshot:

Chapter 10

297

6.	 Now we need to set these buttons as hidden by default, because we are not going to
insert any register before creating the database. To do it, click on one of these new
buttons, go to the attribute inspector, check the Hidden option, and then repeat the
operation with the other button:

7.	 Once the storyboard is done, we have to update the view controller. Let's start by
connecting the label and the three buttons with the view controller:
 @IBOutlet var inputLabel: UILabel!
 @IBOutlet var createButton: UIButton!
 @IBOutlet var populateButton: UIButton!
 @IBOutlet var searchButton: UIButton!

8.	 We still need another attribute that is the database connection, which is inside the
action of creating a database, so what we are going to do is move the declaration
with the initialization from inside the method createDatabase to outside of it:
 var database = SQLite()
 @IBAction func createDatabase(sender: AnyObject) {

 if self.databaseNameTextField.text == "" {

9.	 As we are working near the createDatabase method, we can take advantage of it
and update it by hiding some unneeded views and displaying only the Populate button:
 @IBAction func createDatabase(sender: AnyObject) {

 if self.databaseNameTextField.text == "" {
 let alert = UIAlertController(title: "No
 database name", message: "You must introduce a
 database name", preferredStyle:.Alert)
 self.presentViewController(alert, animated:
 true, completion: nil)

 return
 }

Data Access

298

 let dbname = self.databaseNameTextField.text +
 ".sqlite"
 if database.connect(dbname) {
 let alert = UIAlertController(title: nil,
 message: "Database was created",
 preferredStyle:.Alert)
 self.presentViewController(alert, animated: true,
 completion: nil)

 self.createButton.hidden = true
 self.populateButton.hidden = false
 self.inputLabel.text = ""
 self.databaseNameTextField.text = ""
 self.databaseNameTextField.hidden = true
 }else {
 let alert = UIAlertController(title: nil,
 message: "Failed creating database",
 preferredStyle:.Alert)
 self.presentViewController(alert, animated:
 true, completion: nil)
 }
 }

10.	 After that we can connect the Populate button with a new action. This action will be
called populate and it will call an insert statement on our database then it will
display the Search button:
 @IBAction func populate(sender: AnyObject) {
 if let data = csv2array("dbip-country-2014-12"){
 print("total \(data.count)")
 var statements = data.map{ record -> String in
 return "INSERT INTO ips (ipstart, ipend,
 iipstart, iipend, country) VALUES " +
 "('\(record[0])', '\(record[1])',
 \(ip2int(record[0])),
 \(ip2int(record[1]))," +
 "'\(record[2])')"
 }

 database.exec("delete from ips;")

 for statement in statements {
 database.exec(statement)
 }
 self.searchButton.hidden = false

Chapter 10

299

 self.populateButton.hidden = true
 self.inputLabel.text = "Enter an IP"
 self.databaseNameTextField.text = ""
 self.databaseNameTextField.hidden = false
 }
 else {
 let alert = UIAlertController(title: nil,
 message: "Unable to parse the file",
 preferredStyle:.Alert)
 self.presentViewController(alert, animated: true,
 completion: nil)
 }
 }

11.	 As you might imagine, we need to develop the search action. First, it needs to
check whether the input is correct and after that it will look for the IP range where it
belongs. If it is able to find it, it will show the country where the IP belongs, otherwise
it will show that the country wasn't found:
 @IBAction func search(sender: AnyObject) {
 let iptext = self.databaseNameTextField.text
 if !isIPv4(iptext) {
 UIAlertView(title: "Error", message: "Wrong
 format", delegate: nil, cancelButtonTitle:
 "OK").show()
 return
 }
 let ipnumber = ip2int(iptext)
 let sql = "SELECT country FROM ips where
 \(ipnumber) between iipstart and iipend"
 if let result = database.query(sql){
 if result.count > 0 && result[0].count > 0 {
 let alert = UIAlertController(title: "Found",
 message: " This ip belongs to
 \(result[0][0])", preferredStyle:.Alert)
 self.presentViewController(alert, animated:
 true, completion: nil)
 }else {
 let alert = UIAlertController(title: "Not
 found", message: "No result was found",
 preferredStyle:.Alert)
 self.presentViewController(alert, animated: true,
 completion: nil)

 }
 }else {

Data Access

300

 let alert = UIAlertController(title: "Error",
 message: "Failed to execute your query",
 preferredStyle:.Alert)
 self.presentViewController(alert, animated: true,
completion: nil)

}
 }

12.	 Once again we have completed another app and we need to test it. Press play, write
on the test field mydatabase, and press Create database. Now you should see only
the populate button on screen, tap on it—it will take a while until it finishes.

If you would like to know when the app starts writing to disk when you are
developing, you can click on the debugger navigator and then on the disk
report, and you should see some bars with the disk-writing activity, as
shown in the following image:

13.	 The last step is looking for the country of a specific IP, so type an IP in the text field
when it appears, for example 74.125.230.52 and press Search. You should receive
an alert displaying where this IP is from.

Chapter 10

301

How it works…
SQL has two kinds of queries:

ff There are queries that modify the data structure, such as CREATE TABLE and
ALTER TABLE, or modify the data content, such as INSERT, DELETE, or UPDATE,
which are going to be shown in the next section. These queries usually don't return
any data. For this kind of query you can use the function sqlite3_exec.

ff Queries that retrieve information such as SELECT. Here you have to work in a
different way; you need to use the function sqlite3_prepare_v2 for executing the
query and sqlite3_step for retrieving each record.

If you check the SQLite API documentation you will see that sqlite3_
exec can also return a result from a SELECT statement; however it
needs a pointer to a function for each record received (what is called a
callback).

If you have developed your function in C you can have a pointer to it by using a variable of type
CFunctionPointer, but bear in mind that this data type can't be used for pointing to Swift
functions. Make sure that SQLite has its own constants, such as SQLITE_OK for indicating
that the operation has finished successfully, SQLITE_ROW, which tells us that it could receive
a record from the statement result, or SQLITE_DONE, which is saying that there are no more
records on this statement result.

In this case, we had a common case of converting a text file into database records. Check
in detail when you need to do a similar task. First we added every record in an array; it took
approximately 80 megabytes of RAM by the time we finished inserting the records. This isn't
a problem because even low-end devices such as the iPhone 4S has 512 megabytes of RAM,
but if you decide to load the cities' IP database, it can consume a lot of memory, so you would
probably need to split the file or store each record directly on the database without using an
intermediate array.

Another detail is that we didn't use transactions, meaning that if for any reason we had to stop
inserting it halfway, we will need to remove every record previously inserted; otherwise we can
have duplicated records or errors when trying to reinsert everything again.

One good question is: Why did we use IP ranges instead of one record for each IP? The
reason is very simple: space. If we were going to use one record for each IP we would need
4,294,967,296 records; if each record occupies 1 kilobyte of disk space it would need
4,398,046,511,104 bytes (~4 terabytes), which we don't have on any Apple mobile device
except for Apple computers, but it wouldn't be worth wasting such space for only an IP table.

Data Access

302

Another good question is: Why did we have to convert IP strings into an unsigned integer?
Even if you see an IP as a sequence of four numbers, actually it is a 32-bit unsigned integer,
which allows us to compare if an IP is inside a range; otherwise we would do a string
comparison, which is not valid.

See also
ff SQLite has a lot of functions, some of which are used more often than others and

some of which are more specialized than others; for this reason it's a good idea to
check the C functions that are available at https://www.sqlite.org/c3ref/
intro.html and the SQL statements at https://www.sqlite.org/lang.html.

ff Here you learned how to use the SQLite on an application, however it gives us some
work to do because SQLite is not a framework, it is a C library. In the next recipe,
we are going to learn how to use an SQLite "precooked" class for saving time when
developing.

Tracking your phone activity
Imagine that you would like to track where your phone received (or made) a call by recording
when a human head was close to the phone, so you want to create an app that will register
data such as the current time and the phone coordinates every time that the proximity sensor
detects that something is near the front face of the phone.

Although we are going to use SQLite again, we are not going to write any SQL statement. This
time we are going to use a framework that uses only Swift types and objects; that way we
don't have to worry about converting types from Swift to C and from C to Swift.

Getting ready
For this recipe we will need to download an external framework called SQLite.Swift. To do
it, open your favorite browser and go to https://github.com/stephencelis/SQLite.
swift. Once the website is open, click on the icon Download ZIP. If you have used Safari,
the downloaded file was probably unzipped. In case of using another web browser, unzip
it yourself by double-clicking on the file icon on your finder window. Using this framework
requires Xcode 6.1 or greater, so make sure that you are using an updated version of Xcode.

As this recipe will use the proximity sensor, it is necessary to use it with a physical phone,
otherwise you won't be able create any records.

If you are ready to start, create a new project called Chapter 10 Activity Recording.

https://www.sqlite.org/c3ref/intro.html
https://www.sqlite.org/c3ref/intro.html
https://www.sqlite.org/lang.html
https://github.com/stephencelis/SQLite.swift
https://github.com/stephencelis/SQLite.swift

Chapter 10

303

How to do it…
1.	 First of all we need to add the SQLite.Swift into our project. To do it, just drag the

SQLite.Swift Xcode project file (SQLite.xcodeproj) into your project; you shall
now see two projects on the project navigator:

2.	 Now click on your project for adding this framework, so click on the General tab of your
target, scroll down to Linked Frameworks and Libraries, and click on the plus sign.
When the dialog appears you can check that there is a section called Workspace with
two frameworks with the same name; select the one that is done for iOS:

Data Access

304

3.	 Press the plus sign again and select another framework: the CoreLocation
framework.

4.	 As, in this recipe, we are going to develop only the view controller, we are not going to
add any new file. So, click directly on the storyboard and add to your view a text field
and a button. Remove the text of your text field and change the button label to Print
records. Now connect the text field with the view controller and call it textView:
 @IBOutlet var textView: UITextView!

5.	 Connect the button with a new action called printRecords; we are not going to
develop it right now, just leave it empty for future use:
 @IBAction func printRecords(sender: AnyObject) {
 }

6.	 Now click on the view controller file and place the prompt at the beginning of
this file. Here, we have to import two frameworks beside the UIKit: SQLite and
CoreLocation:
import SQLite
import CoreLocation

7.	 Before we start developing the view controller code, we are going to create an
auxiliary type for our common variables:
typealias activityTuple = (activity: Query,
id:Expression<Int>,
 latitude: Expression<Double?>,
 longitude:Expression<Double?>,
 time:Expression<String>, away:Expression<Bool>)

8.	 As we will need to use the core location for receiving the current location, we will
need to implement the view controller as a core location delegate:
class ViewController: UIViewController, CLLocationManagerDelegate
{

9.	 Now we can add the attributes, we will need one database connection for the location
manager and another one for keeping the last location received:
 var database:Database?
 var locationManager = CLLocationManager()
 var lastLocation: CLLocation?

10.	 It is time to develop the methods, starting with the viewDidLoad; here we need to
set everything up:
 override func viewDidLoad() {
 super.viewDidLoad()
 if !openDatabase(){

Chapter 10

305

 let alert = UIAlertController(title: "Error",
 message: "Cant open the database",
 preferredStyle:.Alert)
 self.presentViewController(alert, animated: true,
 completion: nil)

 return
 }
 if !createStructure() {
 UIAlertView(title: "Error", message: "Can't
 create database structure", delegate: nil,
 cancelButtonTitle: "OK").show()
 return
 }
 setLocationManager()
 setProximitySensor()
 }

11.	 As you can see we have a few methods to implement. Let's start with the
openDatabase, which creates the database and handles the connection:
 private func openDatabase() -> Bool{
 let documentsPath =
 (NSSearchPathForDirectoriesInDomains
 (.DocumentDirectory, .UserDomainMask, true)[0] as
 NSString).stringByAppendingPathComponent
 ("database.sqlite")
 database = Database(documentsPath)
 return database != nil
 }

12.	 The next step is creating the database structure; it will create a table called
activity with its columns:
 private func createStructure() -> Bool {
 var actVars = self.activityVars()
 var result = database!.create(table:
 actVars.activity, ifNotExists: true) { t in
 // Autoincrement means that we don't have to
 set this value because it will be automatic.
 t.column(actVars.id, primaryKey:
 .Autoincrement)
 t.column(actVars.latitude)
 t.column(actVars.longitude)
 t.column(actVars.time, unique: true)
 t.column(actVars.away)
 }
 return !result.failed
 }

Data Access

306

13.	 The database initialization is done; we need to start receiving information about the
device position by setting up the core location:
 private func setLocationManager(){
 locationManager.delegate = self
 locationManager.distanceFilter =
 kCLDistanceFilterNone
 locationManager.desiredAccuracy =
 kCLLocationAccuracyBest

 if (UIDevice.currentDevice().systemVersion as
 NSString).floatValue >= 8 &&
 CLLocationManager.authorizationStatus() !=
 CLAuthorizationStatus.AuthorizedAlways {
 locationManager.requestAlwaysAuthorization()
 }
 locationManager.startUpdatingLocation()
 }

14.	 As you know, we need to implement the method that updates the current location:
 func locationManager(manager: CLLocationManager!,
 didUpdateLocations locations: [AnyObject]!){
 if locations.count > 0 {
 lastLocation = locations[0] as? CLLocation
 }
 }

15.	 Now we need to get notifications from the proximity sensor; to do it we need to use
the notification center:
 private func setProximitySensor(){
 var device = UIDevice.currentDevice()
 device.proximityMonitoringEnabled = true
 if device.proximityMonitoringEnabled {
 NSNotificationCenter.defaultCenter()
 .addObserver(self, selector:
 Selector("proximity:"), name:
 UIDeviceProximityStateDidChangeNotification,
 object: device)
 }
 }

16.	 As you can see, when we receive a proximity sensor change, the method proximity
will be called; that's the moment when we have to store in the database that an
activity has started or ended:
 func proximity(notification:NSNotification){
 var device: AnyObject? = notification.object

Chapter 10

307

 var latitude:Double?
 var longitude:Double?
 if lastLocation != nil {
 latitude = lastLocation!.coordinate.latitude
 longitude = lastLocation!.coordinate.longitude
 }
 let dateFormatter = NSDateFormatter()
 dateFormatter.dateFormat = "yyyy-MM-dd HH:mm:ss" //
 superset of OP's format
 let dateString:String =
 dateFormatter.stringFromDate(NSDate())

 let actVars = self.activityVars()

 if let id = actVars.activity.insert(actVars.away <-
 !device!.proximityState!,
 actVars.time <- dateString, actVars.latitude <-
 latitude, actVars.longitude <- longitude) {
 print("Register inserted with id \(id)")
 }
 }

17.	 Now we need to create the method that returns the variables that are related to the
activity table:
 private func activityVars() -> activityTuple{
 return (activity:database!["activity"],
 id:Expression<Int>("id"),
 latitude: Expression<Double?>("latitude"),
 longitude:Expression<Double?>("longitude"),
 time:Expression<String>("time"),
 away:Expression<Bool>("away"))
 }

18.	 The last part of the development is the button event, which was empty until now. We
just need to retrieve data from the activity table and add it to the text view:
 @IBAction func printRecords(sender: AnyObject) {
 self.textView.text = ""
 let actVars = activityVars()
 for record in actVars.activity {

 textView.text = textView.text + "id:
 \(record[actVars.id]), time:
 \(record[actVars.time]), away:
 \(record[actVars.away])"
 if record[actVars.latitude] != nil {

Data Access

308

 textView.text = textView.text + ", latitude:
 \(record[actVars.latitude]!), longitude:
 \(record[actVars.longitude]!)"
 }
 textView.text = textView.text + "\n"
 }
 }

19.	 There is one more step that you might need to do: click on the Info.plist of your
project and add a new row. In this row, set NSLocationAlwaysUsageDescription
for the key and This app needs GPS as the value. The reason for it is that on iOS
8 when you request permission to use the GPS (Core Location), it is ignored if there is
no message. Some people say that it is a bug and it should be fixed soon.

20.	 Once again, the app is done and we need to test it, so press play and put your phone
next to your head as if you were talking on it. Repeat this a few times, and then check
the table content by pressing the button. Your result should be something similar to
this screenshot:

Chapter 10

309

How it works…
SQLite.Swift is a good layer over the SQLite library. You can create a database by creating
an object of database type. You can define the table fields with a generic class called
Expression. This class works with integers (Int), double precision (Double), strings, and
Boolean types (Bool). All of them can be declared as optionals, meaning that the database
can store null values on it.

You can use methods such as insert or update for adding or changing a record; both of these
receive a type called setter, which is like the relationship between a field and its value. To
create an object of Setter type you have to use the operator <-.

For retrieving results, you can iterate over a query object like we did with the for loop and
access its fields with the subscript using the expression fields as an index.

You can use the filter method for retrieving only the records
that complain with a criteria, such as the where clause on
the SQL language.

There's more…
As you could see with this framework, we didn't have the need of writing SQL statements;
however SQLite.Swift allows you to work with SQL statements if you want. To do it you
can use methods such as run or prepare.

Another excellent feature of SQLite.Swift is that it is transaction ready. The method
transaction and how it works for using transactions.

Apple has another solution for using a database over its own layer, called Core Data. In the
next recipe, we are going to learn how to use it.

Controlling your stocks
The idea of an application connected with a database came from the need to keep some data,
even if the application finishes. However, SQL is another language and you have to repeat
some developments twice, such as a new field on a class is also a new field on the database.

When Xerox developed the first window system based on Smalltalk, it didn't use any kind
of database. The argument for it is that if an application doesn't finish, the data will always
be on the RAM memory.

Data Access

310

The idea is very intelligent, however we know that the real world doesn't work like that.
Applications crash and finish and devices need to reboot sometimes. Beside these facts,
you also need to consider that, until today, RAM memory was still more expensive than hard
disk. The new iPhone 6, for example, has only 1 gigabyte of RAM and at least 32 gigabytes of
permanent storage.

Based on the problems just mentioned, Apple recommends using its own ORM called Core
Data. An ORM is a framework that allows your objects to be stored on a permanent storage
system without wasting time writing SQL statements. Actually what Core Data does is write the
SQL for us.

In this recipe, we are going to develop a small app using Core Data by simulating a product
control of a warehouse.

Getting ready
Start creating a new app called Chapter 10 Stock Control, however make sure that the
option Use Core Data is checked as shown in the following screenshot:

Chapter 10

311

How to do it…
1.	 First, we will need to create a database model. Don't think in SQLite when

creating this model because there will be some different types. So click on the file
Chapter_10_Stock_Control.xcdatamodeld; here you should see a different
layout with some empty fields. Let's start by pressing the sign that is located over the
text Add Entity:

2.	 Rename the new entity to Product:

3.	 After that, add three attributes for this entity, one called name, which should be of
type string, price that is a double, and units, which is an integer of 32 bits:

4.	 That's all for the data part. Now we need to click on the storyboard file. Select the
only view controller you have by clicking on it and go to the Editor menu, expand the
Embedded In option and select Navigation Controller:

Data Access

312

5.	 As we don't want the navigation bar for this app, you can click on the navigation
controller just created and uncheck the option Show Navigation Bar that is on
attribute inspector:

6.	 Now add a button on the only view controller we have with the text New product;
under it add a table view. You should have a layout similar to the following one:

Chapter 10

313

7.	 Now go to the view controller and import CoreData:
import CoreData

8.	 After, you have to add the UITableViewDataSource protocol to the view controller;
that way we display results on the table view:
class ViewController: UIViewController,
UITableViewDataSource {

9.	 Now connect the table view with the view controller as a data source and as an
attribute of it. As we are adding an attribute we can also add a new attribute that will
contain our records:
 @IBOutlet var tableView: UITableView!
 var products = [NSManagedObject]()

10.	 Once it is done, we have to implement the methods that update the table view
information. In this case, the number of records is the size of the array but their
contents are the values of some keys of the NSManagedObject:
 func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int{
 return products.count
 }

 func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) ->
 UITableViewCell {
 var cell: UITableViewCell? =
 tableView.dequeueReusableCellWithIdentifier("cell")
 as UITableViewCell?
 if (cell == nil) {
 cell = UITableViewCell(style:
 UITableViewCellStyle.Value1, reuseIdentifier:
 "cell")
 }
 cell!.textLabel?.text =
 products[indexPath.row].valueForKey("name") as?
 String
 var units =
 products[indexPath.row].valueForKey("units") as?
 Int
 cell!.detailTextLabel?.text = "\(units!) units"
 return cell!
 }

Data Access

314

11.	 Imagine that when we create a new record, it's necessary to reload the table view
data. We could create a button for refreshing it, but it wouldn't be so intuitive, so the
best way we can do it is, when the view appears again, we can refresh the data as
well as updating the product array:
 override func viewWillAppear(animated: Bool) {
 var appDelegate:AppDelegate =
 UIApplication.sharedApplication().delegate as
 AppDelegate
 var moc: NSManagedObjectContext =
 appDelegate.managedObjectContext!
 var request = NSFetchRequest(entityName: "Product")
 request.returnsObjectsAsFaults = false

 do {
 try products = moc.executeFetchRequest(request)
 as [NSManagedObject]
 } catch {
 let alert = UIAlertController(title: "Error",
 message: "Error fetching the data.",
 preferredStyle:.Alert)
 self.presentViewController(alert, animated: true,
 completion: nil)
 }
 self.tableView.reloadData()
 }

12.	 Good, press play and what happens? Nothing! The reason is that we are able to
list the records but not to insert them, so it is time to add functionality to the New
product button. Return to the storyboard and add a new view controller, put it on the
right-hand side of the previous one and click on the New product button with the 
key pressed and drag it to the new view controller.

13.	 Press play, of course you are not going to see any records, but if you tap on
the button you can see that a new view is called. At this moment we need to
develop this view, however, before we continue, it needs a view controller file;
in this case you have to add a new file of type Cocoa Touch Class and name it
NewProductViewController. Make sure that it inherits from UIViewController:

Chapter 10

315

14.	 Return to your storyboard and change the class of this view controller on the identity
inspector to the new file created:

Data Access

316

15.	 Now let's create a layout for this view. We have to add three text fields (one for each
entity field), three labels for explaining what these fields are about, one button for
saving the records, and one label just for displaying the view title (as we don't have
the navigation bar):

16.	 Once the layout is done we have to connect the text field to the new product view
controller:
 @IBOutlet weak var nameTextField: UITextField!
 @IBOutlet weak var priceTextField: UITextField!
 @IBOutlet weak var unitsTextField: UITextField!

17.	 The last part we need to do is the save button development. As it is going to use a few
CoreData classes, you have to start by importing it:
import CoreData

18.	 Now connect your save button with an action called save and develop it by retrieving
the text fields data and saving it with core data:
 @IBAction func save(sender: UIButton) {
 var appDelegate:AppDelegate =
 UIApplication.sharedApplication().delegate as
 AppDelegate

Chapter 10

317

 var moc: NSManagedObjectContext =
 appDelegate.managedObjectContext!

 var newProduct =
 NSEntityDescription.insertNewObjectForEntityForName
 ("Product", inManagedObjectContext: moc) as
 NSManagedObject
 newProduct.setValue(self.nameTextField.text,
 forKey: "name")
 newProduct.setValue((priceTextField.text as
 NSString).floatValue, forKey: "price")
 newProduct.setValue(unitsTextField.text.toInt()!,
 forKey: "units")
 var err:NSError?
 moc.save(&err)
 if let error = err {
 print(error.localizedDescription)
 }else{
 print(newProduct)
 }
 self.navigationController?
 .popViewControllerAnimated(true)
 }

19.	 The last step is testing your app. Press play, and add a few products such as
computers, potatoes, and cars, and check that they appear on your table view.

How it works…
We have to be very thankful to Apple because old versions of Xcode didn't have the
option of creating a CoreData application, which meant that the code for initialization
done on the AppDelegate class had to be done manually. What it does is create some
attributes such as managedObjectModel that read the entity model and interpret it; the
persistentStoreCoordinator then converts from core data to a persistent system
(SQLite by default, but it can be configured to be an XML file, for example), and a very
important one: managedObjectContext; this object controls the objects/records that
belong to CoreData.

For this reason, every time we had to use something from CoreData we had to access the
AppDelegate class a few times. If you prefer, you can create your own singleton class and
transfer the CoreData code over there.

When we need a new record, we need an object of type NSManagedObject. If it is a new
record we can ask for the help of the method insertNewObjectForEntityForName from
the NSEntityDescription class. Accessing its fields is very easy; we just need to use
valueForKey for retrieving its value or setValue for modifying it.

Data Access

318

If you need to access the objects, you have to use NSFetchRequest, which is like an SQL
statement. The managedObjectContext is the one that can execute this request and return
its data.

There's more…
If you want to filter some data, you can use NSPredicate, which is something like the where
clause of SQL.

We've seen some ways of storing data into your local device, but how about a network
database? In the next recipe we are going to use a centralized database for storing our data.

Designing a voting device using CouchDB
As we learned before, usually on mobile apps we access a local database, but sometimes we
need to use only one database with a lot of devices connected to it. For example, when you do
a Google query you don't download the whole Google index onto your mobile phone, you just
request some information and retrieve the result.

In this recipe we are going to learn how to use a centralized database, in this case we are
going to use a database called CouchDB.

Getting ready
For this recipe you need to download a CouchDB server. I assume that you are developing on
a Mac computer, so it will be demonstrated with Mac OS X. In case you prefer to use another
platform, such as Linux or Windows, feel free to use them.

Download CouchDB from http://couchdb.apache.org. Once it is downloaded and
unzipped, right click on its icon and choose the option Show Package Contents from the menu:

http://couchdb.apache.org

Chapter 10

319

Now follow the path Contents/Resources/couchdbx-core/etc/couchdb; here you
should see a file called default.ini. Open it and search for the variable bind_address.
Here you have to change from 127.0.0.1 to 0.0.0.0. Now return to the folder where the CouchDB
app is located and open the app by double-clicking on it. Your web browser should open
displaying the CouchDB front-end (called Futon); keep it open for checking the results later.

A big detail that you have to bear in mind is that if you are going to use a physical device it
must use the same Wi-Fi network as your computer; otherwise your device won't be able to
find your database server.

Return to your Xcode and create a new project called Chapter 10 Voting. Here you won't
need CoreData.

How to do it…
1.	 The first step is setting the database. Go to your web browser and click on the

button Create database. If for any reason you closed your browser, just type the URL
http://127.0.0.1:5984/_utils/. When the website asks for a database name,
write voting:

2.	 Inside this database we need to add a few documents. So press on the button that
says New document.

Documents in CouchDB are JSON dictionaries.

Data Access

320

3.	 For the first document, click on Source and complete it as shown in the following
code. Do not modify the _id value, leave the one that CouchDB gave you:
{
 "_id": "608d7c9174f7caba4ab618d6810004cf",
 "question": "What is your favorite computer programming
language?",
 "answers": [
 {
 "answer": "Swift",
 "votes": []
 },
 {
 "answer": "Objective-C",
 "votes": []
 },
 {
 "answer": "C",
 "votes": []
 }
]
}

4.	 Good, now press save document and let's repeat the operation with another document;
this way we can be sure that the questions are being received from the database:
{
 "_id": "608d7c9174f7caba4ab618d681001467",
 "_rev": "3-41c057820d6cbd595e7db2bdf05610fe",
 "question": "What is your favorite book?",
 "answers": [
 {
 "answer": "Swift cookbook",
 "votes": []
 },
 {
 "answer": "Divine Comedy",
 "votes": []
 },
 {
 "answer": "Oxford dictionary",
 "votes": []
 }
]
}

Chapter 10

321

5.	 Now we need to create an update handler, which is like a function that receives some
data and completes a document for us. Click on new document and this time we
need to change the document id because it will be called _design/voting:
{
 "_id": "_design/voting",
 "updates": {
 "addvote": "function(doc, req) { var json =
 JSON.parse(req.body);
 doc.answers[parseInt(json.answer)].votes.push
 (json.uid); return [doc, toJSON(doc)]}"
 }
}

6.	 The database part is done; therefore you have to go back to your Xcode project.

Explaining how CouchDB works is out of the scope of this book;
if you would like to learn how to use this database, there are
good books and tutorials about it.

7.	 Once you've returned to your Xcode project, click on the storyboard and add two
labels and three buttons to your view. Write TODAY'S QUESTION on the first label,
which should be located at the top of the view. Below it, place the other label, which
will contain the received question, and under that the three buttons. Don't worry
about the text of these components, they will be changed programmatically.

8.	 As usual, we have to link some components with the view controller; in this case we
have to connect the question label and the three buttons:
 @IBOutlet var questionLabel: UILabel!
 @IBOutlet var answer1button: UIButton!
 @IBOutlet var answer2button: UIButton!
 @IBOutlet var answer3button: UIButton!

9.	 Besides that, we will also add two attributes, one for the document id and another
one for the common part of the request's URL. Remember that if you are using a
device, you have to change the IP from 127.0.0.1 to the one of your computer:
 var documentId:String?

 let baseurl = "http://127.0.0.1:5984/voting/"

10.	 Connect the three buttons with the same action called vote. Leave this action empty
for now:
 @IBAction func vote(sender: UIButton) {
 }

Data Access

322

11.	 When the application starts we need to receive the current questions that our
database has, so let's just start calling a function that will do it for us on the
viewDidLoad method:
 override func viewDidLoad() {
 super.viewDidLoad()
 self.chooseQuestion()
 }

12.	 As you might imagine, we have to implement the chooseQuestion method. This
method will call the action _all_docs, which returns the ID of every document on
the database, including the special document _design/voting. Once we have
received the document we can choose one of them and request its data:
 private func chooseQuestion(){
 var url = NSURL(string: baseurl + "_all_docs")!
 var task =
 NSURLSession.sharedSession().dataTaskWithURL(url,
 completionHandler: {
 data, response, error -> Void in
 if error != nil {
 print(error.localizedDescription)
 }
 var jsonResult = [:]
 do {
 jsonResult = try
 NSJSONSerialization.JSONObjectWithData
 (data, options:
 NSJSONReadingOptions.MutableContainers) as
 NSDictionary
 } catch {
 let alert = UIAlertController(title: "Error",
 message: "Error parsing JSON",
 preferredStyle:.Alert)
 self.presentViewController(alert, animated: true,
 completion: nil)
 }

var invalid = true
 var docid:String = ""
 while invalid {
 let rows = jsonResult.valueForKey("rows") as
 NSArray
 srandom(UInt32(time(nil)))
 var choosenRow:Int = random() % rows.count
 docid = (rows[choosenRow] as
 NSDictionary).valueForKey("id") as String

Chapter 10

323

 invalid = startsWith(docid, "_")
 }
 self.getQuestion(docid)
 })
 task.resume()
 }

13.	 Once the application has decided which document it wants, we can request its data.
The mechanism is similar to the previous one, but with the difference that when
we receive the data we have to update the UI. As you know it must be done on the
main thread:
 private func getQuestion(id:String){
 self.documentId = id
 var url = NSURL(string: baseurl + id)!
 var task =
 NSURLSession.sharedSession().dataTaskWithURL(url,
 completionHandler: {
 data, response, error -> Void in
 if error != nil {
 print(error.localizedDescription)
 }
 var jsonResult = [:]
 do {
 jsonResult = try
 NSJSONSerialization.JSONObjectWithData(data,
 options: NSJSONReadingOptions.MutableContainers) as
 NSDictionary
 } catch {
 let alert = UIAlertController(title: "Error",
 message: "Error parsing JSON",
 preferredStyle:.Alert)
 self.presentViewController(alert, animated: true,
 completion: nil)
 }

 dispatch_async(dispatch_get_main_queue(), {
 self.questionLabel.text =
 jsonResult.valueForKey("question")
 var answers =
 jsonResult.valueForKey("answers") as
 [NSDictionary]
 self.answer1button.setTitle(answers[0]
 .valueForKey("answer") as? String,
 forState: .Normal)

Data Access

324

 self.answer2button.setTitle(answers[1]
 .valueForKey("answer") as? String,
 forState: .Normal)
 self.answer3button.setTitle(answers[2]
 .valueForKey("answer") as? String,
 forState: .Normal)

 })
 })
 task.resume()
 }

14.	 If you press play now you are going to see a screen like the following one. It means
that you have received a question with its possible answers from the database.
However, if you choose any answer, nothing happens:

15.	 Now it's time to implement the vote action. The idea is to check which button was
pressed and then send this information with the device id to the database. This way
our vote will be registered:
 @IBAction func vote(sender: UIButton) {
 var answer:Int
 switch sender {
 case answer1button:
 answer = 0
 case answer2button:
 answer = 1

Chapter 10

325

 case answer3button:
 answer = 2
 default:
 return
 }
 // input
 var params = ["answer":"\(answer)",
 "uid":UIDevice.currentDevice()
 .identifierForVendor.UUIDString] as
 Dictionary<String, String>
 var request = NSMutableURLRequest(URL:
 NSURL(string: baseurl +
 "_design/voting/_update/addvote/\(documentId!)")!)
 request.HTTPMethod = "POST"
 do {
 request.HTTPBody = try
 NSJSONSerialization.dataWithJSONObject(params,
 options: nil)
 } catch {
 let alert = UIAlertController(title: "Error",
 message: "Error getting HTTP header",
 preferredStyle:.Alert)
 self.presentViewController(alert, animated: true,
 completion: nil)
 }
 request.addValue("application/json",
 forHTTPHeaderField: "Content-Type")
 request.addValue("application/json",
 forHTTPHeaderField: "Accept")
 var task = NSURLSession.sharedSession()
 .dataTaskWithRequest(request, completionHandler:
 {data, response, error -> Void in
 UIAlertView(title: nil, message: "Thanks for
 voting", delegate: nil, cancelButtonTitle:
 "OK").show()
 })
 task.resume()
 }

Data Access

326

16.	 The application is done, so now we have to check that it communicates with the
database correctly. Press play again and choose an answer. You should receive an
alert view thanking you, which is a good sign. After that go to the web browser again
and open the chosen document; check that your device ID is there on the answer
that you have selected:

How it works…
If you have worked with remote SQL databases you might know that usually you need a
driver/connector, which should be compatible with your platform and can also be blocked
by some firewalls.

CouchDB is a NoSQL database that works by exchanging JSON messages via http protocol,
which makes our life easier, because we didn't have to add any controller, just receive and send
JSON messages. Due to the way that this database works we had to develop a function for
updating/inserting a new vote on the client size; remember that Swift is not JavaScript: adding a
new element into a JSON array can give us more work than just developing a simple function.

Why did we have to cast to NSArray and NSDictionary a few times? The reason is that the
NSJSONSerialization was created on the Objective-C era, meaning that it is still not 100%
prepared for Swift.

It is true that the way we worked could be better organized. The ideal way is by creating a layer
for CouchDB, such as a framework or a library, however this task will be left as homework.

There's more…
In this chapter, we learned different ways of using databases on Swift; some of them are very
straightforward and others require a better analysis.

In the next chapter, we are going to learn some new tricks, mainly those that are related to the
new Xcode 6 and the iOS 8.

327

11
Extensions, Photos,

and More

In this chapter, we will cover the following recipes:

ff Developing the geekiest keyboard

ff Time to take your pill

ff Adding effects to your photos

ff Being a film critic

ff Leaving breadcrumbs

ff Creating the Currency Converter app

ff Method swizzling in Swift

ff Associated objects in Swift

Introduction
This is the last chapter of this book. Here, we are going to learn different topics that weren't
mentioned in the previous chapters, mainly new features of Xcode 6.

Developing the geekiest keyboard
App extensions are a new feature where an application can come with some kind of plugins,
which can even interact with other apps.

Extensions, Photos, and More

328

In this case, we are going to develop a keyboard for geek people. This keyboard will contain
only two keys: key 0 and key 1. When you type a combination of eight keys, you will get a new
character.

Getting ready
For this recipe, make sure that you have iOS 8, it doesn't matter if you are using the simulator
or a physical device. The custom keyboard feature is only available on iOS 8.

Create a new single view application called Chapter 11 Geekboard and let's start coding.

How to do it…
1.	 The main development of this recipe is based on the app extension of the custom

keyboard. However, as we are going to need a view for testing our keyboard, let's start
by clicking on the storyboard and adding a text field on our view. Link this text field
with the view controller calling it inputTextField:
 @IBOutlet weak var inputTextField: UITextField!

2.	 Now, let's make this text field the first responder, just as the application is about to
launch. You won't need to tap on the field for displaying the keyboard:
 override func viewDidLoad() {
 super.viewDidLoad()
 self.inputTextField.becomeFirstResponder()
 }

3.	 This is everything we have to code with this view controller; everything else will be
done on the application extension. The next step is opening the menu and adding a
new target to our project. In this case, select Custom Keyboard from the Application
Extension section:

Chapter 11

329

4.	 Call this target Geekboard and press Yes when a dialog asks for activating the
Geekboard scheme:

Extensions, Photos, and More

330

5.	 Before coding, let's start by adding a new view to this target; therefore click on the
new file from the menu and choose View from the User Interface section:

6.	 Call this view Geekboard (again) but before pressing the Create button ensure that
this file belongs to the extension target as shown in the following screenshot:

7.	 Once it is created, click on the new file (Geekboard.xib), select the only view it has,
and let's change some properties of it by clicking on the Attribute Inspector. Here
you have to change the size to Freeform, the status bar to None, and the background
color to silver:

Chapter 11

331

8.	 Great! After that, select the Size Inspector and change the view size to 320 by 160:

Extensions, Photos, and More

332

9.	 The view properties are done, now we need to set the file's owner class. To do it click
on the file's owner icon (the yellow cube), select the identity inspector, and change
the class name to KeyboardViewController:

10.	 There is one more thing we need to do in this XIB file: we have to add a few components
for this layout. Add a label, for letting the user know the binary combination that was
made, and two buttons: one that represents digit 0 and another one that represents
digit 1. It should look something similar to the following screenshot:

11.	 Of course the label is going to be changed and the buttons don't need a different
action due to the only difference being the digit value; therefore we will create the
same action for both buttons and differentiate them by checking the sender. To
summarize, link the label and the buttons with the KeyboardViewController as
per the following code:
 @IBOutlet var button0: UIButton!
 @IBOutlet var button1: UIButton!
 @IBOutlet var label:UILabel!

Don't remove any code done by the Xcode on the
KeyboardViewController yet. If it's necessary to remove
any code, it will be explicitly written.

Chapter 11

333

12.	 Link both buttons with an empty action called addBit. Don't worry about by its
contents, we are going to develop it later:
 @IBAction func addBit(sender: UIButton){
 }

13.	 On the KeyboardViewController we are also going to add two attributes for
controlling the current keyboard state:
 var currentBinaryText:String = ""
 var currentBinaryNumber:Int = 0

14.	 Now we need to set up the view, so go to the viewDidLoad method and add some
lines of code after super.viewDidLoad and before the Apple precooked code:
 override func viewDidLoad() {
 super.viewDidLoad()
 // Perform custom UI setup here
 var geekNib = UINib(nibName: "Geekboard", bundle: nil)
 self.view = geekNib.instantiateWithOwner(self, options:
 nil)[0] as UIView
 self.label.text = currentBinaryText
 self.nextKeyboardButton =
 UIButton.buttonWithType(.System) as UIButton
…

15.	 Once we have typed that, we can complete our app by developing the buttons event:
 @IBAction func addBit(sender: UIButton){
 var number: Int
 switch sender{
 case button0:
 number = 0
 case button1:
 number = 1
 default:
 return
 }
 currentBinaryText += "\(number)"
 currentBinaryNumber = currentBinaryNumber * 2 +
 number
 if countElements(currentBinaryText) == 8 {
 var proxy = textDocumentProxy as
 UITextDocumentProxy
 proxy.insertText(String(UnicodeScalar
 (currentBinaryNumber)))

 currentBinaryNumber = 0

Extensions, Photos, and More

334

 currentBinaryText = ""
 }
 self.label.text = currentBinaryText
 }

16.	 The application is done, let's test it. Press play, and when the application launches
the keyboard is shown but, that's not our keyboard!!! What happened? The reason is
that you have to add this keyboard the same way you add another language keyboard
on your device.

17.	 Bearing that in mind, press the home button, go to settings, choose general,
then keyboard, then another option of keyboards, and at last the option Add new
keyboard....

18.	 You should see some suggested keyboards and another section with third-party
keyboards. Select the Geekboard from this section:

Chapter 11

335

19.	 Return to your app (Chapter 11 Geekboard) and you will see that the keyboard is not
there yet. So you have to tap the globe icon until you get your keyboard and, voila!, it's
working. Type this binary message: 01001000 01000101 01001100 01001100
01001111 for example, but if you are really geeky, you can go to the Mail application
and write an e-mail with only this keyboard. Do you accept the challenge?

How it works…
A custom keyboard is a feature called App Extension. It has some limitations, for example,
it can't be used for passwords and other text field types such as phone contacts. It also can't
display anything above its top.

Creating a custom keyboard implies creating a controller of type UIInputViewController,
which is a class that inherits from UIViewController, meaning that you can use the
UIViewController methods if necessary.

For making the keyboard development simpler, we added a new XIB file, which allowed us to
visually create the layout. Some developers think that the XIB files were removed from the
Xcode since the storyboard was incorporated, however you can see that this is not true; you
can still use the XIB files for customizing some views such as a keyboard or a table cell.

Submitting a text to the text field is very easy: you only need to create a
UITextDocumentProxy object and use the insertText method. It will know the active text
field magically.

There's more…
The custom keyboards communication is a bit limited because it can't use the network or
share any file with the containing app by default. In case you desire to use these features,
you have to go to its Info.plist and set the option RequestsOpenAccess to yes.

In the next recipe, we are going to learn something different: we are going to develop for the
Apple Watch.

Time to take your pill
Who in this world has never fallen sick? Let's face it, soon or later we get sick and we have to
follow the doctor's prescription. If you are like me and look at your watch frequently when it's
time to take a pill, maybe what we need is an app that can tell us about it, and this time it will
be an Apple Watch application.

Extensions, Photos, and More

336

Getting ready
For this recipe you will need Xcode 6.2 or higher, because we are going to use the WatchKit,
which is not available on previous versions.

Start as usual by just creating a single view iOS application and call it Chapter 11 Red Pill.

How to do it…
1.	 The first step we need to do is just create a new target, but this time you have to add

the WatchKit App from the WatchKit section:

Chapter 11

337

2.	 On the Next dialog uncheck the notifications, glance and complications options; it will
make the project cleaner:

3.	 After that, a dialog requesting to activate the WatchKit App will appear; accept it by
pressing the Activate button:

4.	 You can see that there are two new groups on your project: one for the WatchKit
extension and another one for the WatchKit app. Open your extension group and
add a new Swift file called FrequencyData.swift. Here you only need to type this
simple code:
class FrequencyData: CustomStringConvertable {
 var description: String {

Extensions, Photos, and More

338

 switch self.time {
 case 0 ..< 60:
 return "Every \(self.time) minutes"
 case 60 ..< (24 * 60):
 return "Every \(self.time/60) hours"
 default:
 return "Every \(self.time/60/24) days"
 }
 }

 var time:Int // minutes

 init(time:Int){
 self.time = time
 }
}

5.	 Now go to your WatchKit app group, expand it, and click on the storyboard. Here you
have something like the view controller but here it's called interface. In your interface,
add a label and try to make it fit on the whole screen. Connect it with the interface
controller as an IBOutlet:
 @IBOutlet var label:WKInterfaceLabel!

6.	 Create a new interface and place another label; you don't have to connect it just
change its text to It's time to take your pill. If it doesn't fit, change the
label number of lines to two.

7.	 Now click on the first interface, hold the control key and drag it to the second
interface. You may now have your storyboard looking like the following:

Chapter 11

339

8.	 Select the second interface and go to its attribute inspector. Set the identifier to
its_time:

9.	 Return to the extension group and open the InterfaceController file. As usual
we are going to start by adding the necessary attributes:
 var timer:NSTimer?
 var remainingTime:Int?
 var context:AnyObject?
 var options = [FrequencyData(time: 2),
 FrequencyData(time:4 * 60), FrequencyData(time: 8 *
 60), FrequencyData(time: 24 * 60)]

10.	 Now initialize the context on the awakeWithContext method:
 override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)
 self.context = context
 }

11.	 After that, we have to request the user to select the time he needs to take his pill. Do
it on the method willActivate:
 override func willActivate() {
 super.willActivate()
 let texts = options.map({ (freq) -> String in
 return freq.description
 })
 self.presentTextInputControllerWithSuggestions
 (texts, allowedInputMode: WKTextInputMode.Plain,
 completion: {
 selections in
 var index = find(texts, selections[0] as
 String)!
 var frequency = self.options[index]
 self.timer?.invalidate()
 self.remainingTime = frequency.time * 60

Extensions, Photos, and More

340

 self.timer =
 NSTimer.scheduledTimerWithTimeInterval(1,
 target: self, selector: Selector("tick"),
 userInfo: nil, repeats: true)
 })
 }

12.	 As you can see, we need a method called tick, which is going to be called every
second. Code it this way:
 func tick(){
 var rt = remainingTime!
 let formatter = NSDateComponentsFormatter()
 formatter.unitsStyle = .Short
 let components = NSDateComponents()
 components.second = rt % 60
 rt = rt / 60
 components.minute = rt % 60
 rt = rt / 60
 components.hour = rt % 24
 rt = rt / 24
 components.day = rt
 if components.hour > 6 {
 label.setText("Still have time")
 }else if components.hour == 0 && components.minute
 == 0{
 label.setText("A few secs:
 \(components.second)")
 }else {
 label.setText(
 formatter.stringFromDateComponents(components))
 }
 remainingTime!--
 if(remainingTime == 0){

 presentControllerWithName("its_time", context:
 self.context)
 timer?.invalidate()
 }
 }

Chapter 11

341

13.	 The app is done, let's test it by changing the current scheme to Chapter 11 Red
Pill WatchKit App and pressing play. You should see a dialog like the following
one:

Choose 2 minutes, which was done just for testing, and wait until
you get your alert.

How it works…
As you can see, the components classes are different; instead of UIViewController we
have WKInterfaceController, and instead of UILabel we have WKInterfaceLabel.
Some methods are different, for example the interface controller initializes its attributes on
the awakeWithContext method rather than viewDidLoad.

There's more…
There is one component called WKInterfaceTimer, which works as a label with an
NSTimer like we did. In this recipe we used the WKInterfaceLabel with an NSTimer
because it is more flexible and you can customize the text that is on your component.

Extensions, Photos, and More

342

WatchKit has more features such as notifications and glance. Try to have
a look on the official documentation at https://developer.apple.
com/library/ios/documentation/General/Conceptual/
WatchKitProgrammingGuide/index.html#//apple_ref/
doc/uid/TP40014969

In the next recipe, we are going to return to iOS and learn how to use the camera for
taking pictures.

Adding effects to your photos
It is unbelievable how mobile phones have replaced traditional photo cameras. I remember
when we used to take the camera only to special events and nowadays our cameras follow us
everywhere. We can say that the mobile phone has gone even further: you can take a picture
of yourself on the phone, edit it, and share it with your friends and family.

In this recipe, we are going to learn how to take a picture with your phone and edit it in a very
easy way.

Getting ready
As we are going to use the device camera for this recipe you will need a physical device for
testing this app. You can change it if you are using photos from the gallery, but you will also
need to upload some pictures to the simulator.

Create a project called Chapter 11 Photo Effects and let's move on.

How to do it…
1.	 Open your project, click on the General Settings of your target and add a framework

called CoreImage. After that go to the storyboard, add an image view and four buttons
under it. Change the button labels to Take photo, Sepia, Blur, and Dots.

2.	 Connect the image with the view controller as an attribute and call it imageView.
Now create one action for each button and call them takePhoto, sepia, blur, and
dots. Don't worry about their contents now, we are going to fill them in later:
 @IBOutlet var imageView: UIImageView!
 @IBAction func takePhoto(sender: UIButton) {
 }
 @IBAction func sepia(sender: AnyObject) {
 }

https://developer.apple.com/library/ios/documentation/General/Conceptual/WatchKitProgrammingGuide/index.html#//apple_ref/doc/uid/TP40014969
https://developer.apple.com/library/ios/documentation/General/Conceptual/WatchKitProgrammingGuide/index.html#//apple_ref/doc/uid/TP40014969
https://developer.apple.com/library/ios/documentation/General/Conceptual/WatchKitProgrammingGuide/index.html#//apple_ref/doc/uid/TP40014969
https://developer.apple.com/library/ios/documentation/General/Conceptual/WatchKitProgrammingGuide/index.html#//apple_ref/doc/uid/TP40014969

Chapter 11

343

 @IBAction func blur(sender: AnyObject) {
 }
 @IBAction func dots(sender: AnyObject) {
 }

3.	 Click on the view controller source code and let's start completing it by adding a new
attribute called image of optional type UIImage:
 var image:UIImage?

4.	 The UIImagePickerController requires a delegate and only accepts objects that
are also navigation controller delegates, therefore append these protocols to the view
controller definition:
class ViewController: UIViewController,
UIImagePickerControllerDelegate,
UINavigationControllerDelegate {

5.	 It's almost time to start coding functions, however we still need to add a detail: we
have to import the core image on the top of the file:
import CoreImage

6.	 Good, at this time we can start coding the view controller methods. Start by checking
whether your device has a camera on the viewDidLoad method:
 override func viewDidLoad() {
 super.viewDidLoad()
 if !UIImagePickerController.isSourceTypeAvailable
 (.Camera){
 UIAlertView(title: "Error", message: "There is
 no camera", delegate: nil , cancelButtonTitle:
 "OK").show()
 }
 }

7.	 The next step is completing the takePhoto method. This method initializes the
image picker and calls the camera view:
 @IBAction func takePhoto(sender: UIButton) {
 let imagePicker = UIImagePickerController()
 imagePicker.delegate = self
 imagePicker.allowsEditing = true
 imagePicker.sourceType = .Camera
 self.presentViewController(imagePicker, animated:
 true, completion: nil)
 }

Extensions, Photos, and More

344

8.	 As you might imagine, the delegate needs to have at least one method; in this case
we need one method for receiving the picture from the user and another in case of
canceling it:
 func imagePickerController(picker:
 UIImagePickerController, didFinishPickingMediaWithInfo
 info: [NSObject : AnyObject]){
 image = info[UIImagePickerControllerEditedImage]
 as? UIImage
 self.imageView.image = image;
 picker.dismissViewControllerAnimated(true,
 completion: nil)
 }
 func imagePickerControllerDidCancel(picker:
 UIImagePickerController){
 picker.dismissViewControllerAnimated(true,
 completion: nil)
 }

9.	 Once we have done that, we only need to complete the effects code; they are very
similar but not the same, so here you have them:
 @IBAction func sepia(sender: AnyObject) {
 if image != nil {
 var ciImage = CIImage(image: image)
 let filter = CIFilter(name: "CISepiaTone")
 filter.setValue(ciImage, forKey:
 kCIInputImageKey)
 filter.setValue(0.8, forKey: "inputIntensity")
 ciImage = filter.outputImage
 self.imageView.image = UIImage(CIImage:
 ciImage)
 }
 }
 @IBAction func dots(sender: AnyObject) {
 if image != nil {
 var ciImage = CIImage(image: image)
 let filter = CIFilter(name: "CIDotScreen")
 filter.setValue(ciImage, forKey:
 kCIInputImageKey)
 ciImage = filter.outputImage
 self.imageView.image = UIImage(CIImage:
 ciImage)
 }
 }

Chapter 11

345

 @IBAction func blur(sender: AnyObject) {
 if image != nil {
 var ciImage = CIImage(image: image)
 let filter = CIFilter(name: "CIGaussianBlur")
 filter.setValue(ciImage, forKey:
 kCIInputImageKey)
 ciImage = filter.outputImage
 self.imageView.image = UIImage(CIImage:
 ciImage)
 }
 }

10.	 The app is done. Now press play, take a photo, and choose the effect you like most.

How it works…
UIImagePickerController was created for using the camera easily; this way we don't
have to use complicated camera settings and worry about different states of it. To use the
UIImagePickerController you need a delegate and on its method you can retrieve the
taken picture as a UIImage.

After receiving the picture you can use the Core Image for adding some effects; however
you need to convert from UIImage to CIImage. If you loaded the UIImage from a local
file you can convert it easily by calling a property CIImage; however this is not the case, as
this picture was loaded from the camera so you need to create a new object and send your
UIImage as an argument.

Now you can use the filter that you want with the corresponding values. When you use a
CIFilter you have to check the attributes that are accepted by it; sometimes you can
use the default values and sometimes you would like to change them.

After using the filter you can retrieve your picture by using the outputImage attribute and
after that you can construct a new UIImage with the CIImage generated.

See also
ff CoreImage has a lot of filters, so nowadays it's not necessary to look for libraries or

algorithms that modify our pictures. Check the filters that are available at https://
developer.apple.com/library/ios/documentation/GraphicsImaging/
Reference/CoreImageFilterReference/index.html#//apple_ref/doc/
uid/TP40004346 and test them with different attributes.

ff In the next recipe, we are going to learn how we can send information from the
iPhone to our Mac.

https://developer.apple.com/library/ios/documentation/GraphicsImaging/Reference/CoreImageFilterReference/index.html#//apple_ref/doc/uid/TP40004346
https://developer.apple.com/library/ios/documentation/GraphicsImaging/Reference/CoreImageFilterReference/index.html#//apple_ref/doc/uid/TP40004346
https://developer.apple.com/library/ios/documentation/GraphicsImaging/Reference/CoreImageFilterReference/index.html#//apple_ref/doc/uid/TP40004346
https://developer.apple.com/library/ios/documentation/GraphicsImaging/Reference/CoreImageFilterReference/index.html#//apple_ref/doc/uid/TP40004346

Extensions, Photos, and More

346

Being a film critic
There are times that an app needs to transfer information from your device to the computer
and vice versa; for example, you might be watching a movie on your iPad on your way home
(assuming that you are not the driver) and then you will continue watching it on your computer.

For scenarios like this one, Apple has created a new technology called Handoff. The idea is
simple: continue the task you are doing on another device.

In this recipe we are going to create an app where the user can start writing his opinion about
a film on one device and check it on a Mac application. This recipe will be divided into smaller
sections for easier consumption.

Getting ready
The Handoff framework has software and hardware requirements. The software requirements
are Xcode 6, iOS 8, and OS X Yosemite (10.10); therefore make sure that your hardware is
able to use all these software versions (or higher). Unfortunately Handoff can't be used with
the simulator. Another software requirement is that both devices (the computer and your
Apple mobile device) must be logged into the same iCloud account and they must be paired.

The requirement for the hardware is that it has Bluetooth LE 4.0. The easiest way to check
whether your iPhone or iPad can use this feature is by opening your settings, going to general
and checking whether there is an option called Handoff & Suggested Apps:

Chapter 11

347

Make sure that the Handoff option is on, as shown in the following screenshot:

Extensions, Photos, and More

348

Once you have checked the device requirements, it's time to check whether the computer
meets the requirements. On your Mac computer, open the system preferences, then open the
General options, and ascertain that there is a Handoff option and it is checked:

Of all requirements, the most complicated one is that this technology
needs the application signed by a team (or a developer), which implies
being enrolled on the Apple Development Program for each platform.
This means that if you are going to use this technology between mobile
devices and mac computers, you need both subscriptions.

In this recipe we are going to use both platforms but if you only have an iOS subscription, it is
very straightforward to change the Mac app to an iOS app.

Now we can start coding the project; in this case start creating a workspace called
Chapter 11 Films.

How to do it…
We will split the recipe into three mini-recipes for better understanding.

Creating the workspace
1.	 Create the workspace in a group called Common Code; here you have to add a new

Swift file called FilmData.swift, and we are going to add this simple class:
class FilmData {
 var name:String
 var year:Int?
 var director:String?
 var score:Int?
 var opinion = ""

 init(name:String){
 self.name = name
 }
}

Chapter 11

349

2.	 Let's create a new iOS project called Chapter 11 Films iOS. Ensure that it is
going to be added to your workspace on the combo box:

3.	 Repeat the procedure with a Mac OS X Cocoa application called Chapter 11
Films MacOSX, but be aware that you have to add it to the workspace and
the group must be in the workspace too:

4.	 Once we have both projects, let's add to both of them the first file we created at the
beginning of this recipe (FilmData.swift). This way we don't have to repeat the
code for each project:

Extensions, Photos, and More

350

5.	 Once we have these common parts we are going to continue with the Mac
application. So click on the Mac project, go to General Settings, change
the signing section to Developer ID, and select your team account:

6.	 Now click on the info.plist file, which is located on the Supporting Files group
and add a new key called NSUserActivityTypes. Change its type to array, try to
expand it but as you can see there is no item, so click on the plus sign and write the
value com.packtpub.editingfilm:

7.	 The next step is clicking on the XIB file and adding five labels into the only window we
have. Put one under the other and, after that, start from the first one connecting to
the AppDelegate.swift:
 @IBOutlet var titleLabel: NSTextField!
 @IBOutlet var directorLabel: NSTextField!
 @IBOutlet var yearLabel: NSTextField!
 @IBOutlet var scoreLabel: NSTextField!
 @IBOutlet var opinionLabel: NSTextField!

8.	 After that we only need to add the following code to the AppDelegate:
func application(application: NSApplication,
willContinueUserActivityWithType userActivityType: String)
-> Bool {
 return userActivityType ==
 "com.packtpub.editingfilm"
 }

 func application(application: NSApplication,
 continueUserActivity userActivity: NSUserActivity,
 restorationHandler: ([AnyObject]!) -> Void) -> Bool {
 func setField (fieldName:String,
 uiField:NSTextField) {

Chapter 11

351

 if let value =
 userActivity.userInfo![fieldName] as? String {
 uiField.stringValue = value
 }else if let value =
 userActivity.userInfo![fieldName] as? Int {
 uiField.stringValue = String(value)
 }
 else{
 uiField.stringValue = "-"
 }
 }
 setField("title", titleLabel)
 setField("director", directorLabel)
 setField("year", yearLabel)
 setField("score", scoreLabel)
 setField("opinion", opinionLabel)

 return true
 }

9.	 Good, the Mac application is done; before we press play remember that you have
to log in on iCloud to do it, so you have to open the System Preferences, then go to
iCloud and log in.

Remember that this account must be the same one that you are going
to use on the mobile device. Once it is done, return to your app and
press play. You should see just a window with some labels—don't worry
about them now as we are going to check them later.

Developing the iOS part of the app
1.	 At this time, we are ready to develop the iOS part of the app. First, you have to set

your team on the main project target and also add the key NSUserActivityTypes
on the info.plist. As we did on the Mac application, change its type to Array and
add the value com.packtpub.editingfilm as we also did on the Mac application.

Extensions, Photos, and More

352

2.	 Click on the storyboard and, as usual, you might see only a view controller. Click on
it, go to the Editor menu, move down to the option Embed in and select Navigation
controller. As you might expect, we are going to add a second view controller later.
Now just remove the navigation bar by clicking on the navigation controller, select the
attribute inspector, and uncheck the option Show Navigation Bar:

3.	 Now return to the original view controller and simply add a table view on that. In this
case we need to display some cells with contents and we also need to do something
when they are selected. This means that we will need to set the view controller to
UITableViewDelegate and UITableViewDatasource:
class ViewController: UIViewController,
UITableViewDataSource, UITableViewDelegate {

4.	 After that, bind the table view with the view controller as the data source and
delegate. As a data source, we need an array of FilmData, which will be an
attribute initialized with a private function:
 let movies = createBasicMovieArray()

5.	 Of course, we are going to receive an error here because we need to implement this
function, so do it outside the class:
private func createBasicMovieArray() -> [FilmData] {
 var movieArray = [FilmData]()

 var filmData = FilmData(name: "A Clockwork Orange")
 filmData.year = 1971
 filmData.director = "Stanley Kubrick"
 movieArray.append(filmData)

 filmData = FilmData(name: "Monty Python and the Holy
 Grail")
 filmData.year = 1975
 filmData.director = "Terry Gilliam"

Chapter 11

353

 movieArray.append(filmData)

 filmData = FilmData(name: "Kill Bill")
 filmData.year = 2003
 filmData.director = "Quentin Tarantino"
 movieArray.append(filmData)

 filmData = FilmData(name: "Ghost Busters")
 filmData.year = 1984
 movieArray.append(filmData)

 return movieArray
}

6.	 After that we need to complete the data source methods on the view controller class:
func tableView(tableView: UITableView,
numberOfRowsInSection section: Int) -> Int{
 return movies.count
 }

 func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: NSIndexPath) ->
 UITableViewCell{
 var cell =
 tableView.dequeueReusableCellWithIdentifier
 ("filmcell") as? UITableViewCell

 if (cell == nil) {
 cell = UITableViewCell(style:
 UITableViewCellStyle.Subtitle, reuseIdentifier:
 "filmcell")
 }

 let currentFilm = movies[indexPath.row]
 cell!.textLabel?.text = currentFilm.name
 let unknown = "????"
 cell!.detailTextLabel?.text = "\(currentFilm.year
 != nil ? String(currentFilm.year!) : unknown) -
 \(currentFilm.director != nil ?
 currentFilm.director! : unknown)"

 return cell!
 }

Extensions, Photos, and More

354

7.	 Even then, the app is not finished yet. You should press play and test it, and you
will see a view similar to the following one. Don't forget to make sure that you have
chosen the right schema; otherwise it will restart the application:

8.	 Once this phase is done, we can return to our view controller and implement the
last method. Don't worry when you get some compiler errors, they are going to be
fixed soon:
 func tableView(tableView: UITableView,
 didSelectRowAtIndexPath indexPath: NSIndexPath) {
 var filmDetailViewController =
 self.storyboard?.instantiateViewController
 WithIdentifier("film_detail") as
 FilmDetailViewController
 filmDetailViewController.film =
 movies[indexPath.row]
 self.navigationController?.pushViewController
 (filmDetailViewController, animated: true)
 }

9.	 This view controller is done, the next step is to create a new Cocoa Touch class that
inherits from the UIViewController, called FilmDetailViewController. Uncheck
the XIB option:

Chapter 11

355

10.	 Once you have your new Swift file you can return to the storyboard and add a new
view controller. In this storyboard add five labels, one stepper, a text view, and a
button. Change the text view background to gray. You should have a layout similar to
the following one:

Extensions, Photos, and More

356

11.	 The new view controller needs to know that its class is not the default view controller,
therefore select the view controller, go to its identity inspector and change its class to
FilmDetailViewController. Levering that we are here, we should also set Storyboard
ID to film_detail:

12.	 Now link the labels, the stepper, and the text view with the view controller:
 @IBOutlet var movieTitle: UILabel!
 @IBOutlet var director: UILabel!
 @IBOutlet var year: UILabel!
 @IBOutlet var score: UILabel!
 @IBOutlet var opinion: UITextView!
 @IBOutlet var stepper: UIStepper!

13.	 Once we have these attributes we can set the actions. The only one that will need
a protocol is the text view; then start adding the UITextViewDelegate to the
class header:
class FilmDetailViewController: UIViewController,
UITextViewDelegate {

14.	 After that we can connect the view controller as the text view delegate, create an
action called done for the button, and another one called changeScore as the
stepper value changed event:
 @IBAction func done(sender: AnyObject) {
 }
 @IBAction func changeScore(sender: UIStepper) {
 }

Chapter 11

357

Coding the class
1.	 Great, now we can code the previous class without worrying about the storyboard.

Let's start with the attribute film, which will contain the information of the movie
that is on screen:
 var film:FilmData?

2.	 Then we can initialize the views we have on screen and an inherited attribute
called userActivity. Remember that here we suppose that the attribute film
was already set:
 override func viewDidLoad() {
 super.viewDidLoad()
 movieTitle.text = film?.name
 director.text = film?.director
 year.text = film?.year != nil ? "\(film!.year!)" :
 "???"
 if let score = film?.score {
 self.score.text = String(score)
 self.stepper.value = Double(score)
 }else {
 self.score.text = ""
 self.stepper.value = 1
 }
 self.opinion.text = film?.opinion
 self.userActivity = NSUserActivity(activityType:
 "com.packtpub.editingfilm")
 self.userActivity!.userInfo = [NSObject:
 AnyObject]()
 }

3.	 After that we can complete the views events; here we are going to add a new one
called textViewDidChange, which belongs to the UITextViewDelegate:
 @IBAction func done(sender: AnyObject) {
 self.userActivity!.invalidate()
 self.navigationController?
 .popViewControllerAnimated(true)
 }
 @IBAction func changeScore(sender: UIStepper) {
 self.film?.score = Int(sender.value)
 self.score.text = String(self.film!.score!)
 self.updateUserActivityState(self.userActivity!)
 }
 func textViewDidChange(textView: UITextView) {
 film?.opinion = self.opinion.text
 self.updateUserActivityState(self.userActivity!)
 }

Extensions, Photos, and More

358

4.	 The last part of this code is about getting all of the information we want to transmit
and updating the userActivity state:
 override func updateUserActivityState(activity:
 NSUserActivity) {
 self.userActivity!.userInfo!["title"] = film?.name
 self.userActivity!.userInfo!["year"] = film?.year
 self.userActivity!.userInfo!["director"] =
 film?.director
 self.userActivity!.userInfo!["score"] = film?.score
 self.userActivity!.userInfo!["opinion"] =
 film?.opinion
 super.updateUserActivityState(activity)
 }

Testing the app
1.	 The app is done and as you know, we have to test it. Before pressing play, make sure

that the right schema is selected and the app is going to be installed on your mobile
device, not on the simulator.

2.	 Press play, select a movie you like most (or hate most), set a score for it, and write
your comment. Return to your Mac (remember that you haven't stopped the Mac
application) and check that your dock has a new icon. It means that it detected a
user activity that can be read. Click on this icon:

Chapter 11

359

3.	 You will see that your Mac app is in the foreground and it will show the information
received from your device:

How it works…
Handoff works with a feature called Activity. Activities are some kind of information about
what the user is doing right now, such as composing an e-mail, editing a video, and so on.

When using Handoff you have to plan three phases for your activities: creating the activity,
updating it, and destroying it. We created it on the viewDidLoad method, updated it every
time the user changed the score or the opinion text, and destroyed it when the user pressed
the done button.

If you want to use Handoff on your own classes you have to add an NSUserActivity
object. A good feature about this class is that it is the same using the AppKit (OS X) and
the UIKit (iOS). Some classes already have this object as a property such as NSDocument,
UIDocuments, NSResponder, and UIResponder.

Extensions, Photos, and More

360

As the UIViewController inherits from UIResponder, we could use the existing attribute
userActivity. Every time that we or the app thinks that the activity needs to be updated,
the method updateUserActivityState is called. Here it should set the whole information
that should be transmitted even when the information hasn't changed such as the movie title,
the director, or the production year because after updating the state, the userInfo dictionary
is going to empty.

Don't overload the user info dictionary; Apple recommends storing
up to 3k of information, more than that can affect the application
performance.

For receiving the information we need two steps: the first one is checking whether
the app accepts the activity at that moment by implementing the method
willContinueUserActivityWithType on the app delegate. The other one is
implementing the app delegate method continueUserActivity for retrieving the
information and sending it to the corresponding view or object.

An important detail is that Handoff is for being used between apps by the same company or
developer and only with the same user; that's the reason that you have to use the same team
signature and the user must be logged in.

There's more…
In this case, we created an app that edits your movie opinion and another one that can
receive it, however you can modify the Mac application in a way that it can also edit and
retransmit it to the device application. Try to do it as homework.

See also
ff Apple has a good sample about how to use Handoff with photos; have a look

at https://developer.apple.com/library/ios/samplecode/
PhotoHandoff/Listings/README_md.html to download it.

Leaving breadcrumbs
Have you ever gone somewhere and started wondering whether your path was the best one?
At times, we would like to review our journey once we've reached the destination. Usually we
do this when the journey has been a very long one. In this recipe, we are going to create an
app for recording our steps and then we can check the path we took.

https://developer.apple.com/library/ios/samplecode/PhotoHandoff/Listings/README_md.html
https://developer.apple.com/library/ios/samplecode/PhotoHandoff/Listings/README_md.html

Chapter 11

361

Getting ready
Create a new single-view application called Chapter 11 Breadcrumbs, add the Core
Location framework, and the Map Kit framework. You can use the simulator or a physical
device for testing this app, however if you are as lazy as me, it will be better using the
simulator, that way you don't have to stand up and walk to test it:

How to do it…
Once you have added the frameworks, you just need to follow these steps for creating the app:

1.	 Open the storyboard, add a label on the top, a button under it, and a map view under
that. The result can be similar to the following screenshot:

Extensions, Photos, and More

362

2.	 As usual, start connecting the label and the map view with the view controller:
 @IBOutlet var mapView: MKMapView!
 @IBOutlet var positionLabel: UILabel!

3.	 Now you can click on the view controller and start by importing the core location and
the map kit frameworks, and of course don't remove the UIKit:
import UIKit
import MapKit
import CoreLocation

4.	 After that, complete the ViewController class by adding the
CLLocationManagerDelegate and the MKMapViewDelegate protocols, as shown:
class ViewController: UIViewController,
CLLocationManagerDelegate, MKMapViewDelegate {

5.	 The next step is adding the view controller attributes. In this case we will need the
location manager for receiving the current position, an array of positions that we
have passed through, and a Boolean attribute for following the user on the map:
 var manager = CLLocationManager()
 var locationsStack = [CLLocation]()
 var follow = true

6.	 Now we need to initialize the manager attribute and the map view to do it, so we are
going to use the method viewDidLoad:
 override func viewDidLoad() {
 super.viewDidLoad()

 manager.delegate = self
 manager.desiredAccuracy = kCLLocationAccuracyBest
 manager.requestAlwaysAuthorization()
 manager.startUpdatingLocation()

 mapView.delegate = self
 mapView.mapType = .Standard
 mapView.showsUserLocation = true
 }

7.	 Then we need to update the map view and the locationStack every time we
receive a new location:
 func locationManager(manager:CLLocationManager,
 didUpdateLocations locations:[AnyObject]) {

 var currentLocation = locations[0] as CLLocation

Chapter 11

363

 positionLabel.text =
 "\(currentLocation.coordinate.latitude),
 \(currentLocation.coordinate.longitude)"
 locationsStack.append(currentLocation)

 if follow {
 var currentRegion = MKCoordinateRegion(center:
 mapView.userLocation.coordinate, span:
 MKCoordinateSpanMake(0.01, 0.01))
 mapView.setRegion(currentRegion, animated:
 true)
 }

 if locationsStack.count > 1{
 var destination = locationsStack.count - 2
 let sourceCoord =
 locationsStack.last!.coordinate
 let destinationCoord =
 locationsStack[destination].coordinate
 var coords = [sourceCoord, destinationCoord]
 let polyline = MKPolyline(coordinates: &coords,
 count: coords.count)
 mapView.addOverlay(polyline)
 }

 }

8.	 The app is still not displaying the path; the reason is that we need to draw it by writing
the map view method renderForOverlay:
 func mapView(mapView: MKMapView!, rendererForOverlay
 overlay: MKOverlay!) -> MKOverlayRenderer! {
 if overlay is MKPolyline {
 var polylineRenderer =
 MKPolylineRenderer(overlay: overlay)
 polylineRenderer.strokeColor =
 UIColor.blueColor()
 polylineRenderer.lineWidth = 3
 return polylineRenderer
 }
 return nil
 }

Extensions, Photos, and More

364

9.	 Now the app is working; however it can be quite difficult to check our journey because
it is always being updated, so it is time to add the button event:
 @IBAction func followAction(sender: UIButton) {
 follow = !follow
 if follow {
 sender.setTitle("Stop following", forState:
 .Normal)
 }else {
 sender.setTitle("Resume following", forState:
 .Normal)
 }
 }

10.	 The app is almost done. There is one detail that you still need to set up: the
permission on iOS 9. So go to your info.plist, then add a new record with the key
Required background modes, and write in Item 0 a string value of App registers
for location updates:

11.	 Now the app is done, press play and walk around if you are using a physical device or
click on Debug, then scroll down to location and select freeway drive if you are using
the simulator.

How it works…
The core location framework allows us to retrieve the current device position but of course it
needs a delegate; that's the reason we had to implement the CLLocationManagerDelegate
protocol. This protocol receives positions from the method didUpdateLocations.

Once we receive it, we could store the location into the locationStack array. Actually if you
don't want to keep information of the whole journey, you can just store the last location.

After storing a new location, we can create a polyline, which is like a segment of our journey.
This information is submitted to the map view.

The map view needs to render it with the method rendererForOverlay of the
MKMapViewDelegate. The reason for that is that you are free to draw what you want on the
map, and you can create shapes such as circles, squares, and so on for highlighting an area.

Chapter 11

365

There's more…
Drawing a route on a map view is something very common, mainly if you would like to use
directions. Have a look at MKDirections, which can be very useful.

Creating the Currency Converter app
Nowadays, our apps must be prepared to be executed everywhere; therefore your app should
have as many languages as possible. Consider that internationalization is very important for
using different languages or different number formats.

In this recipe, we are going to create an app that will show us the currency exchange rate, but
more important than that, it will be adapted to the current location.

Getting ready
Create a single-view application called Chapter 11 Currency Converter and place the
two flag pictures on the images.xcassets. These pictures can be downloaded from the
book resources.

How to do it…
Follow these steps to create the Currency Converter app:

1.	 First, click on the Supporting Files group and add a new file. In this case, go to the
Resource section and select the Strings File:

Extensions, Photos, and More

366

2.	 Inside this file, add these keys with their corresponding values:
"Rate" = "Rate: %@";
"Total" = "Total: %@";
"Choose Currency" = "Choose a currency";
"flagicon" = "english";
"Cancel" = "Cancel";

3.	 Now, go to the storyboard and add four labels, two buttons, a text field, and an image
view on the bottom, similar to the following screenshot:

Chapter 11

367

4.	 Once you have your layout done, connect the UI components (except the title label)
with the view controller with the following names:
 @IBOutlet var fromButton: UIButton!
 @IBOutlet var toButton: UIButton!
 @IBOutlet var amountTextField: UITextField!
 @IBOutlet var dateLabel: UILabel!
 @IBOutlet var rateLabel: UILabel!
 @IBOutlet var totalLabel: UILabel!
 @IBOutlet var flagImage: UIImageView!

5.	 Change the text field Keyboard Type to Numbers and Punctuations in the attribute
inspector:

6.	 Add the protocol UITextFieldDelegate to the view controller:
class ViewController: UIViewController, UITextFieldDelegate
{

7.	 Now, set the view controller as the text field delegate and write Amount of money
as the text field placeholder.

8.	 Another important action is changing the view class from UIView to UIControl so
we can hide the keyboard easily:

9.	 Go to the view controller and add the following attributes:
 let currencies = ["AUD", "BGN", "BRL", "CAD", "CHF",
 "CNY", "CZK", "DKK", "EUR", "GBP", "HKD",
 "HRK", "HUF", "IDR", "ILS", "INR", "JPY", "KRW",
 "MXN", "MYR", "NOK", "NZD", "PHP", "PLN", "RON",

Extensions, Photos, and More

368

 "RUB", "SEK", "SGD", "THB", "TRY", "USD", "ZAR"]
 let baseurl = "http://api.fixer.io/latest"
 var fromCurrency = "USD"
 var toCurrency = "EUR"

10.	 At this time, we can start coding the view controller methods; starting from the
beginning we are going to implement the viewDidLoad method:
 override func viewDidLoad() {
 super.viewDidLoad()
 flagImage.image = UIImage(named:
 NSLocalizedString("flagicon", comment: ""))
 setup()
 }

11.	 As you can see, there is a private method called setup, which we are going to
implement right now. This method is responsible for retrieving the currency rate
from the Internet and calculates the value of the amount of money that the user
has entered:
 private func setup(){
 fromButton.setTitle(fromCurrency, forState:
 .Normal)
 toButton.setTitle(toCurrency, forState: .Normal)
 var session = NSURLSession.sharedSession()
 var url = NSURL(string:
 "\(baseurl)?base=\(fromCurrency)&symbols=\
 (toCurrency)")!

 session.dataTaskWithURL(url, completionHandler: {
 (data, response, error) -> Void in
 var json = {}
 do {
 json = try
 NSJSONSerialization.JSONObjectWithData(data,
 options: NSJSONReadingOptions.MutableContainers) as
 [String:AnyObject]
 } catch {
 let alert = UIAlertController(title: "Error",
 message: "Error parsing JSON",
 preferredStyle:.Alert)
 self.presentViewController(alert, animated: true,
 completion: nil)
 }
 let dateComponentsArray = (json["date"] as
 String).componentsSeparatedByString("-")
 let dateComponents = NSDateComponents()

Chapter 11

369

 dateComponents.year =
 dateComponentsArray[0].toInt()!
 dateComponents.month =
 dateComponentsArray[1].toInt()!
 dateComponents.day =
 dateComponentsArray[2].toInt()!

 let rates = json["rates"] as [String:Double]
 let date = NSCalendar.currentCalendar()
 .dateFromComponents(dateComponents)
 let ratio = rates[self.toCurrency]
 let amount = self.amountTextField.text == "" ?
 1.0 : (self.amountTextField.text as
 NSString).doubleValue

 NSOperationQueue.mainQueue()
 .addOperationWithBlock({ () -> Void in
 let dateFormatter = NSDateFormatter()
 dateFormatter.dateStyle = .LongStyle
 self.dateLabel.text =
 dateFormatter.stringFromDate(date!)

 let currencyFormatter = NSNumberFormatter()
 currencyFormatter.currencyCode =
 self.toCurrency
 currencyFormatter.numberStyle =
 .CurrencyStyle
 self.rateLabel.text = String(format:
 NSLocalizedString("Rate", comment: ""),
 arguments: [currencyFormatter
 .stringFromNumber(ratio!)!])
 let total = amount * ratio!

 self.totalLabel.text = String(format:
 NSLocalizedString("Total", comment: ""),
 arguments: [currencyFormatter
 .stringFromNumber(total)!])

 })
 }).resume()

 }

Extensions, Photos, and More

370

12.	 We are going to implement the buttons event. The event is the same for both of them,
so connect the touch up event with this method:
 @IBAction func chooseCurrency(sender: UIButton) {
 let alertController = UIAlertController(title:
 NSLocalizedString("Choose Currency", comment: ""),
 message: nil, preferredStyle: .ActionSheet)

 let cancelAction = UIAlertAction(title:
 NSLocalizedString("Cancel", comment: ""), style:
 .Cancel) { (action) in
 }
 alertController.addAction(cancelAction)

 for currency in currencies {
 let currAction = UIAlertAction(title: currency,
 style: .Default) { (action) in
 if sender == self.fromButton {
 self.fromCurrency = action.title
 }else {
 self.toCurrency = action.title
 }
 self.setup()
 }
 alertController.addAction(currAction)
 }

 self.presentViewController(alertController,
 animated: true, completion: nil)
 }

13.	 Connect the main view (the one that we changed to UIControl) touch up event with
the view controller creating a method called touchup:
 @IBAction func touchup(sender: UIControl) {
 self.amountTextField.resignFirstResponder()
 self.setup()
 }

14.	 Now we can complete the view controller with the last method, which allows us to
hide the keyboard when the return key is pressed:
 func textFieldShouldReturn(textField: UITextField) ->
 Bool {
 self.touchup(self.view as UIControl)
 return true
 }

Chapter 11

371

15.	 The app is basically done, however we can only say that it is ready for localization,
but except for the currency format we can say that there is nothing that could
demonstrate it. So click on your project on the project navigator, and go to the info tab
of the project. Make sure that you selected the project and not the target. Scroll down
to the Locations section and click on the plus sign. Select Spanish, a new language:

16.	 Now expand your storyboard and select Main.strings (Spanish):

17.	 Change the title from Currency Converter to Conversor de monedas and
the text field place holder from Amount of money to Cantidad de dinero. The
modified lines should be similar to the following ones:
/* Class = "UILabel"; text = "Currency Converter"; ObjectID
= "hFW-19-dID"; */
"hFW-19-dID.text" = "Conversor de Monedas";

/* Class = "UITextField"; placeholder = "Amount of money";
ObjectID = "vzh-tY-rr3"; */
"vzh-tY-rr3.placeholder" = "Cantidad de dinero";

Try to design the whole layout before translating it to other
languages; adding components to your view sometimes makes
you translate everything again.

Extensions, Photos, and More

372

18.	 Return to Localizable.strings, and on the file inspector, click on the Localize…
button, which is located in the Localization section:

19.	 A dialog requesting to move this file to the lproj folder will appear. Choose the
base language:

20.	 As you can see, the localization section has replaced the old button with some
language options; check the Spanish option:

21.	 Expand the Localizable.strings and click the Spanish one:

Chapter 11

373

22.	 Now update the values translating them to the Spanish language, as in the following
lines:
"Rate" = "Tasa de conversión: %@";
"Total" = "Total: %@";
"Choose Currency" = "Elija la moneda";
"flagicon" = "spanish";
"Cancel" = "Cancelar";

23.	 It's time to test our app, press play and check that the app works perfectly fine,
then press the home button, go to Settings, enter into the General section, tap (or
click) on Language & Region, and change the region to Spain and the language
to Spanish. Now return to your app and you should see it with Spanish text; the
numbers should be represented with the Spanish format:

Extensions, Photos, and More

374

How it works…
When you would like to translate your app to other languages you first have to create it with
the base language (default language) but bear in mind that every text can be translated;
therefore instead of using hardcoded text, you have to retrieve it from the Localizable.
strings file.

Use the NSLocalizedString for retrieving strings from the Localizable file. You can also get
format strings and use them in the String format initializer.

You can also use date and number formatters using NSDateFormatter and
NSNumberFormatter; that way you don't have to worry about local dates and numbers.

It's also possible to translate your storyboard, so it is not necessary to set the labels and
placeholders on the view did load.

There's more…
You can also translate other files such as the launch screen and the Info.plist. For
example you can change the application name according to the language using the Bundle
display name key (CFBundleDisplayName).

The NSLocalizedString has other options that allow you to use translation in complex
applications.

Method swizzling in Swift
Method swizzling is a well-known practice with programming languages that support a
dynamic method dispatch. This is also very common in Objective-C. With method swizzling,
you are able to swap out a method implementation for a different one at runtime. It is
recommended to use method swizzling sparingly and only when an alternative (possibly
protocols or extensions) is not present.

Getting ready
Create a playground and name it Swizzling. We will not be using a project for this recipe so
do not worry about project settings.

Chapter 11

375

How to do it…
1.	 We will use UIViewController as an example. Add the following code to your

playground:
extension UIViewController {
 public override static func initialize() {
 struct Static {
 static var token: dispatch_once_t = 0
 }

 dispatch_once(&Static.token) {
 let originalSelector =
 Selector("viewWillAppear:")
 let swizzledSelector =
 Selector("ViewWillDefinitelyAppear:")

 let originalMethod =
 class_getInstanceMethod(self, originalSelector)
 let swizzledMethod =
 class_getInstanceMethod(self, swizzledSelector)

 let didAddMethod = class_addMethod(self,
 originalSelector,
 method_getImplementation(swizzledMethod),
 method_getTypeEncoding(swizzledMethod))

 if didAddMethod {
 class_replaceMethod(self, swizzledSelector,
 method_getImplementation(originalMethod),
 method_getTypeEncoding(originalMethod))
 } else {
 method_exchangeImplementations
 (originalMethod, swizzledMethod);
 }
 }
 }
}

2.	 We also want to make sure that we are not swizzling from a subclass when we expect
the super class. Add the following code after initializing the static struct:
// Verify this is not a subclass
if self !== UIViewController.self {
 return
}

Extensions, Photos, and More

376

How it works…
For this example we want additional actions to be taken for every UIViewController;
however, we need to preserve the original functionality of viewWillAppear. This can only be
accomplished with method swizzling. Although Swift takes a more static approach to method
dispatch, you are still able to swizzle methods at runtime.

We wrap every call in a dispatch_once block to guarantee this only happens once at
runtime. We define each Selector, both the existing and the new one. Once we make a call to
class_addMethod we check that it worked, and if so, swap implementations (happens at
runtime).

If you are familiar with Objective-C, you will note that normally swizzling methods occur in the
load method, which is guaranteed to be called when a class definition is loaded. Considering
this is an Objective-C method only, we call the swizzling code in initialize, which occurs before
any class methods are called.

There's more…
In addition to swizzling system methods, you can also swizzle methods created in custom Swift
classes. There are some extra considerations, however. The class must extend NSObject and
the desired method must also include the dynamic attribute in their definition. Using @objc
will cause your code to run through the Objective-C runtime (thus supporting dynamic method
dispatch); however, it does not guarantee the dynamic dispatch of a property or method.

Associated objects in Swift
In addition to method swizzling, we can also utilize another runtime process known as
associated objects. This is similar to extensions in Swift; however, extensions do not allow
you to add a new property to an existing class. Let's add a descriptive name property to all
UIViewControllers.

Getting ready
Create a playground and name it Associated Objects. We will not be using a project for
this recipe so do not worry about project settings. If you used the previous recipe, you may
continue with the same playground file.

Chapter 11

377

How to do it…
1.	 Add the following code to your playground file:

extension UIViewController {

 private struct AssociatedKeys {
 static var DescriptiveName = "nsh_DescriptiveName"
 }

 var descriptiveName: String? {
 get {
 return objc_getAssociatedObject(self,
 &AssociatedKeys.DescriptiveName) as? String
 }

 set {
 if let newValue = newValue {
 objc_setAssociatedObject(
 self,
 &AssociatedKeys.DescriptiveName,
 newValue as NSString?,
 .OBJC_ASSOCIATION_RETAIN_NONATOMIC
)
 }
 }
 }

}

How it works…
First, we create a private static struct to store keys that reference our objects. In this
case, it will only be the DescriptiveName object. Now we define a new variable for
UIViewController and perform the required methods in the get and set methods.

We use the objc_getAssociatedObject() to return the proper object and cast it as a
String object. For set, we call the objc_setAssociatedObject() method. Here we pass
in self to let the runtime know we are adding to the UIViewController and then reference
our static struct for the object we want to associate with the class. Last, we set up the
property to be retained and non-atomic.

The result is that every UIViewController will contain a new property, DescriptiveName,
which can be accessed anywhere in code.

379

Index
A
Abstract Factory pattern 105
access levels

internal 104
private 104
public 104

Activity feature 359
answers

checking for 79-81
app

profiling 212-218
app delegate

upgrading 244-247
App Extension 335
Apple Watch application 335
App Store

Xcode, installing from 2, 3
App Transport Security (ATP) 134
array of products

sorting 45-48
assembly code

using, with Swift 275-279
associated objects 376, 377
associated types 94
associativity values

left-associative 62
none-associative 62
right-associative 62

attributes
URL 223

B
BCL library

URL 266

breadcrumbs
leaving 360-365

C
cab

calling 226-232
C++ code

sharing, with Swift 279-286
class representations

creating 179-182
code

porting, from one language to
another 238, 239

color
used, for watching temperature 166-168

command line
compiling from 20-22

conditional code
creating 12-14

control version system
adding, to existing project 24-26

CoreImage
filters, URL 345

CouchDB
URL 318
used, for designing voting device 318-326

Currency Converter app
creating 365-374

custom framework
creating 247-253

CycloneChecker app
creating 142-148

D
decorator pattern 121

380

developer account
adding 17-20

dinner room
organizing 62-72

E
effects

adding, to photos 342-345
error handling

custom, in Swift 2.0 220, 221
in Swift 2.0 218-220

exam app
answers, checking for 79-81
creating 74-79

F
factory

of musical notes, creating 105-113
fields

URL 186

G
GCD (Grand Central Dispatch) 142, 143
geekiest keyboard

developing 328-335
generic array initializer

creating 85, 86
graphics

watching 162-165

H
Handoff framework

about 346-348
Activity 359
app, testing 358, 359
class, coding 357
iOS part, developing 351-356
URL 360
workspace, creating 348-351

home automation
simulating 113-121

HTML
creating, manually 28-31

I
iFunBox

URL 256
image

stretching 168-172
in-memory databases

URL 293
instruments

about 212
URL 218

interpreter
Swift, using as 22-24

IP
checking 294-302
URL 294

J
JSONs

receiving 175-178
URL 175

K
keyboard

geekiest keyboard, developing 327-335

L
Link Checker app

creating 149-156
LLDB

URL 212
used, for debugging 210-212

log file
writing into 98-105

M
message

compressing 266-275
method swizzling 374-376
musical notes

factory, creating 105-113
symbols, URL 105

381

N
NDHpple

URL 151
node 286

O
object description

printing 32-36
Objective-C documentation

URL 233
object-oriented programming 97
Observer pattern 113
old address book

using 256-266
overloading operators

about 61
Infix 61
Postfix 61
Prefix 61

P
pages

navigating, in playgrounds 188, 189
Pangrams

used, for beautifying text 172-174
patterns

URL 126
perfect numbers

searching for 43, 44
Perl 136
phone activity

tracking 302-309
photos

effects, adding 342-345
pizzas

delivering 121-126
playground

creating 158-162
pages, navigating 188, 189
URL 189

priority list
creating 87-93

priority queue
protocol, creating 94

profiling 212

protocol
creating, for priority queue 94

protocol-oriented programming 127-129
publisher-subscriber pattern 113
pugixml

URL 279

Q
quiz app

creating 37-42

R
rich documentation 182

S
SEO app

creating 137-142
set

creating 56-62
SQLite database

creating 288-293
URL 288, 293

SQLite functions
sqlite3_close 293
sqlite3_exec 293
sqlite3_open 293

SQLite.Swift
URL 302

SQL statements
URL 302

stocks
controlling 309-318

structs
copy, avoiding 81-85

Swift
about 5
and Xcode, debugging with 198-210
assembly code, using 275-279
associated objects 376, 377
C++ code, sharing 279-286
method swizzling 374-376
using, as interpreter 22-24

Swift 2.0
availability, checking 222
error handling 218-220

382

error handling, custom 220, 221
existing project, migrating to 15-17

SwiftPP
URL 279

Swift project
options, using 10-12
starting 5-10

T
tax income simulator app

developing 192-198
temperature

watching, with color 166-168
text

beautifying, Pangrams used 172-175
threads

used, for counting words 131-137
tuples 49-56

U
Unicode

URL 43
user

quizzing 36-43
user interface classes

replacing 240-244

V
values

validating 192-198
van

hiring 233
VCS (version control system) 10
voting device

designing, CouchDB used 318-326

W
WatchKit App

about 336-342
URL 342

website
links, checking 148-156

word counting
text document, URL 132
threads used 131-136

X
Xcode

about 2
and Swift, debugging with 198-210
image, downloading 3, 5
installing, from App store 2, 3
URL 4

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Xcode and Swift
	Introduction
	Installing Xcode from the App Store
	Downloading the Xcode image
	Starting a Swift project
	Using Swift project options
	Creating conditional code
	Migrating an existing project to Swift 2.0
	Adding a developer account
	Compiling from the command line
	Using Swift as an interpreter
	Adding a control version system to an existing project

	Chapter 2: Standard Library and Collections
	Introduction
	Creating HTML manually
	Printing your object description
	Quizzing the user
	Searching for perfect numbers
	Sorting an array of products
	Finding the way out
	Creating your own set
	Organizing a dinner room

	Chapter 3: Using Structs and Generics
	Introduction
	Creating an exam app
	Checking for the right answer
	Avoiding the copying of structs
	Creating a generic array initializer
	Creating a priority list
	Creating a protocol for the priority queue

	Chapter 4: Design Patterns
with Swift
	Introduction
	Writing into a log file
	Creating a factory of musical notes
	Simulating a home automation
	Delivering some pizzas
	Protocol-oriented programming

	Chapter 5: Multitasking
in Your App
	Introduction
	Word counting using threads
	Creating an SEO app
	Creating a CycloneChecker app
	Checking links of our website

	Chapter 6: Working with Playgrounds
	Introduction
	Creating the first playground
	Watching some graphics
	Watching a temperature with color
	Stretching an image
	Beautifying your text using Pangrams
	Receiving JSONs
	Creating our own class representations
	Rich documentation
	Navigating pages in playgrounds

	Chapter 7: Swift Debugging
with Xcode
	Introduction
	Validating the values – developing a tax income simulator app
	Debugging with Xcode and Swift – the best checker movement
	Debugging with LLDB
	Profiling an app
	Error handling in Swift 2.0
	Custom error handling in Swift 2.0
	Availability checking in Swift 2.0

	Chapter 8: Integrating with Objective-C
	Introduction
	Calling a cab
	Hiring a van
	Porting your code from one language to another
	Replacing the user interface classes
	Upgrading the app delegate
	Creating your own custom framework

	Chapter 9: Dealing with Other Languages
	Introduction
	Using my old address book
	Compressing a message
	Using assembly code with Swift
	Sharing C++ code with Swift

	Chapter 10: Data Access
	Introduction
	Creating an SQLite database
	Checking where your IP is from
	Tracking your phone activity
	Controlling your stocks
	Designing a voting device using CouchDB

	Chapter 11: Extensions, Photos,
and More
	Introduction
	Developing the geekiest keyboard
	Time to take your pill
	Adding effects to your photos
	Being a film critic
	Leaving breadcrumbs
	Creating the Currency Converter app
	Method swizzling in Swift
	Associated objects in Swift

	Index

